
Enterprise Architecture
Design and the Integrated
Architecture Framework
Andrew Macaulay, CGE&Y
pp 04 – 09

Understanding Service
Oriented Architecture
David Sprott and Lawrence
Wilkes, CBDI Forum
pp 10 – 17

Business Process
Decomposition and
Service Identification
using Communication
Patterns
Gerke Geurts and Adrie Geelhoed,
LogicaCMG
pp 18 – 27

Metadata-driven
Application Design and
Development
Kevin S Perera, Temenos
pp 28 – 38

Best Practice for Rule-
Based Application
Development
Dennis Merritt, Amzi! Inc.
pp 39 – 48

DasBlog: Notes from
Building a Distributed
.NET Collaboration
System
Clemens Vasters, newtelligence AG
pp 49 – 58

Dear Architect
Adapting to change has always been
important to business success and
today change is more rapid than ever.
Companies merge, markets shift,
competitors develop new products,
and customers demand change, all
with unprecedented speed. In today’s
business environment, staying ahead
means continuously adapting to change
– and making change work in your
favour. To do that, business leaders
need IT systems that support and
enable their strategic decisions.
There is a growing consensus in
the industry that the way to create
this kind of adaptive, agile IT
architecture is through Web services –
discrete units of software, based on
industry-standard protocols that
interoperate across platforms and
programming languages.

Whether or not you build IT systems
and Web service-based connectivity
using Microsoft® Windows™ and
Microsoft® .NET, you still need to
connect together a broad range of

personal and business technologies.
These enable you to access and use
important information, whenever
and wherever it is needed. The final
result you desire is an integrated,
cost-effective IT architecture that
empowers your business. Information
once isolated in back-end systemsis now
available to all your employees via
streamlined and automated processes
that can span multiple systems.

It gives me great pleasure to introduce
the very first issue of the new ‘Microsoft
Architects Journal’ – a platform where
authoritative software architects from
all corners of Microsoft’s architect
community will discuss the connection
between opportunities once out of
reach and the solutions that now make
them possible.

We hope you will enjoy your journal.

Simon Brown
General Manager,
Developer and Platform
Evangelism Group, Microsoft EMEA

JOURNAL1 MICROSOFT ARCHITECTS JOURNAL JANUARY 2004 A NEW PUBLICATION FOR SOFTWARE ARCHITECTS

JOURNAL1

JOURNAL1 | Editorial 2

Dear Architect
Welcome to the inaugural issue
of JOURNAL! Software architecture
is a tough thing – a vast, interesting
and largely unexplored subject area.
As an art, it requires intuition and
understanding of well-established
architectural disciplines. As an
engineering practice, it leads to
formation of system models consisting
of parts; with descriptions of their
shape and form in terms of properties,
relationships and constraints. The
rationale for their existence often
derives from the system requirements.
And of course, everyone has or wants
to say something about it!

The richness of this topic is one of the
reasons we have launched JOURNAL
– ‘Microsoft Architects Journal’. It will
be a platform for thought leadership
on a wide range of subjects on
enterprise application architecture,
design and development. Authors
will discuss various business and
‘soft’ concerns that play a key role
in enterprise systems development.
It will provide a unique source of
information previously not available
through any other Microsoft offering.

The responsibilities and required
capabilities of the architect vary,
depending on the particular role that
is being fulfilled during the enterprise
solutions development cycle. Typically,
during the early business and IT
strategy phases, the architect provides
a supporting role. This involvement
serves to add value in visioning and
scoping, helping to reduce complexity
and risks, and ensuring the strategy is
viable and feasible. The architect also
gains knowledge of the business and
its aspirations, which will provide
the basis for architecture design. The
architect can translate between the
technology view and business view
of the strategy.

As the organisation moves into
enterprise and project architecture
design phases, the architect role
becomes much more significant. The
architect is responsible for structuring,
modelling and design of the architecture.

Finally, as the organisation moves
through subsequent phases to
implement, deploy and maintain
the solution, the architect performs
a guiding and verification role:

ensuring quality and architectural
implementation conformance to the
design. The architect may also
optimise the architecture, as the
problem domain becomes better
understood. In all stages, the architect
will perform as part of the assignment
team, and frequently a team will fulfil
the architecture role. An indicative list
of typical architect responsibilities is:

– Support business visioning and
scoping activities

– Translate between business and IT
requirements

– Communicate with stakeholders,
both within business and IT

– Weigh different interests
– Determine solution alternatives
– Create a viable and feasible design
– Choose solutions
– Manage quality
– Manage complexity
– Mitigate risks
– Communicate

This requires a diverse range of skills,
including knowledge of architecture
design, workgroup and communications
skills, and consultancy skills. In this
issue of JOURNAL, we reflect the

Editorial
By Arvindra Sehmi

Keep updated with additional information
at http://msdn.microsoft.com/architecture/journal

http://msdn.microsoft.com/architecture/journal

JOURNAL1 | Editorial 3

wide variety of architectural issues
in today’s software industry – from
Service-Oriented Architecture and
best practices for rule-based systems
to the role of Blogging in an enterprise
solution. Our authors come from
organizations throughout the world,
and each offers a unique perspective
on software architecture and design.

Andrew Macaulay, a technical
architect at Cap Gemini Ernst &
Young, writes about enterprise
architecture design and the Integrated
Architecture Framework, and describes
a model for enterprise architecture
and its importance in helping software
architects understand the business as
a whole.

David Sprott and Lawrence Wilkes,
analysts at CBDI Forum, provide
an insight into Service-Oriented
Architecture. In their article they
outline some of the principles of
architecting solutions with services
and emphasize the importance of a
service-oriented environment.

Gerke Geurts and Adrie Geelhoed,
architects at LogicaCMG, discuss

communication patterns and their
role in defining business processes
and services. They assert that such
patterns afford decomposition of
business processes into business,
informational and infrastructural
services and the definition of their
dependencies, thus providing a solid
basis for enterprise information and
application architecture.

Kevin Perera, systems architect with
Temenos, will present a pragmatic
‘late-bound’ approach using metadata
descriptions of artifacts at design
time, to make development time
implementation of his applications
extremely flexible.

Dennis Merrit, a principal in Amzi! Inc.,
discusses the problem of encoding
logical rules, and argues for a rules
processing engine based approach to
business automation in which the rules
are abstracted from the process.

Clemens Vasters, an executive team
member at newtelligence AG and
prominent ‘blogger’, expounds the
merits of Weblogs as a means
of sharing knowledge and ideas.

He describes the lessons he learned
while designing and implementing
‘dasBlog’ – a Web service based
Weblog engine built using Microsoft
.NET technologies.

I’m certain you’ll find something of
interest and value in JOURNAL.
We’ll be keeping you updated
with additional information at
[http://msdn.microsoft.com/architecture/
journal] where you’ll also be able
to download the articles for your
added convenience.

Finally, if you have an idea for an
article you’d like to submit for a
future issue of JOURNAL, please
send a brief outline and resume
to me – asehmi@microsoft.com.

Please also e-mail me any comments
on JOURNAL.

Arvindra Sehmi
Architect, Developer and Platform
Evangelism Group, Microsoft EMEA

http://msdn.microsoft.com/architecture/journal
mailto:asehmi@microsoft.com

JOURNAL1 | Enterprise Architecture 4

Enterprise Architecture in context
Over the past few years, and as
software and systems engineering
has matured, it has become accepted
that there is a clear need for an
‘architectural view’ of systems. This
need has grown as a result of the
increasing complexity of systems and
their interactions within and between
businesses. Furthermore, continued
pressure to reduce IT costs and
deliver real, quantifiable business
benefit from solutions necessitate a
clear understanding of how systems
support and enable the business.

The ‘architectural view’ of systems
(both business and IT systems) is
defined in the ANSI/IEEE Standard
1471-2000 as: ‘the fundamental
organization of a system, embodied in
its components, their relationships to
each other and the environment, and
the principles governing its design
and evolution’. Further to this high-
level definition, and in the same way
as there are different levels of
architecture within building (city
plans, zoning plans and building
plans), it is important to classify
business and IT architecture into
a number of different levels:

Enterprise Architecture – defining
the overall form and function of
systems (business and IT) across an
enterprise (including partners and
organisations forming the extended
enterprise), and providing a
framework, standards and guidelines
for project-level architectures. The
vision provided by the Enterprise
Architecture allows the development
of consistent and appropriate systems
across the enterprise with the ability

to work together, collaborate or
integrate where and when required.

Project-Level Architecture –
defines the form and function of the
systems (business and IT) in a project
or programme, within the context of
the enterprise as a whole and not just
the individual systems in isolation.
This project-level architecture will
refine, conform to and work within
the defined Enterprise Architecture.

Application Architecture –
defines the form and function of the
applications that will be developed to
deliver the required functionality of the
system. Some of this architecture may
be defined in the Enterprise and

Project-level Architecture (as
standards and guidelines) to ensure
best-practice and conformance to
the overall architecture.

When considering how organisations
typically manage business change and
IT enablement, traditional approaches
to strategic business change use a top
down view of the business in terms
of its people and processes. However,
the traditional software and systems
engineering approaches tend to focus
on identifying and delivering the
specific functionality required to
automate a task or activity. Less
importance is attached to how the
resulting system will interact with
other systems and the rest the

Enterprise Architecture Design and
the Integrated Architecture Framework
By Andrew Macaulay, CGE&Y

“Over the past few years, and as software and systems
engineering has matured, it has become accepted that
there is a clear need for an ‘architectural view’ of systems.”

Information,

Organisation

and Process

Framework

Standards &

Guidance

Business

Architecture
Enterprise

Architecture

Business Vision and Strategy

Business

Drivers

Business

Drivers

IS and IT Strategy

Technical

Architecture

Development

Projects

(Project

Architectures)

Framework

Standards &

Guidance

Drives

Supports & enables

M
a
i
n
t
a
i
n

a
n
d

E
v
o
l
v
e

C
h
a
n
g
e

P
r
o
g
r
a
m
m
e

Figure 1. Business and Systems Alignment

JOURNAL1 | Enterprise Architecture 5

business in order to deliver wider
business benefit. As a result, there
is often a gap between the high level
vision and structure of the business,
and the systems implemented to
support them (in other words the
alignment between business and
IT is poor).

To bridge this gap, many
organisations are developing an
enterprise architecture to provide
a clear and holistic vision of how
systems (both manual and automated)
will support and enable their business.
An effective enterprise architecture
comprises a comprehensive view of the
business, including its drivers, vision
and strategy; the organisation and
services required to deliver this vision
and strategy; and the information,
systems and technology required for
the effective delivery of these services
(see Figure 1).

Defining an enterprise architecture
is complex, because it encompasses
the systems within the context of
the whole enterprise. To simplify
this, an enterprise architecture is
typically structured by considering
a business or system as a series
of components (or services) with
inter-relationships, without having
to consider the detailed design
within the individual components.

Both the components and their inter-
relationships must be viewed in terms
of the services that they provide, and
the characteristics, such as security,
scalability, performance, integration,
required of those services. These
components can then be grouped by
service characteristics, distribution

and other business-driven aspects
as well as functionality.

Although enterprise architecture
should ideally be designed using a top
down approach, many organisations
have severe budget constraints for
strategic IT initiatives which do not
readily offer short-term return on
investment or quantifiable business
benefit. For this reason, many
enterprise architectures are initially
created as part of an approved large
project or programme. Once in place
there are opportunities to refine it
further and to start demonstrating
benefit and value by providing
standards and guidelines for
subsequent projects.

Cap Gemini Ernst & Young’s
Integrated Architecture
Framework
Cap Gemini Ernst & Young has,
over the past 10 years, developed
an approach to the analysis and
development of enterprise and

project-level architectures know as the
Integrated Architecture Framework
(IAF). This approach, now its third
major revision, has been developed
at a global level based on the
experience of Cap Gemini Ernst &
Young architects on real projects,
together with a formal review process
including academics. IAF has been
successfully used on many hundreds
of engagements, both large and small,
across the globe.

IAF breaks down the overall problem
into a number of the related aspect
areas covering Business (people
and process), Information (including
knowledge), Information Systems, and
Technology Infrastructure, with two
specialist areas addressing the
Governance and Security aspects
across all of these. Analysis of each
of these areas is structured into four
levels of abstraction: Contextual,
Conceptual, Logical and Physical,
as shown in Figure 2.

Contextual

Why?

Security

Governance

Conceptual

what?

Logical

how?

Physical

with what?

Business Information Information

systems

Technology

infra-structure

Contextual answers the

question 'why do we need

an architecture?' and 'what

is the overall context?'

Conceptual answers the

question 'what are the

requirements and what is

the vision of a solution?'

Logical answers the

question 'how are these

requirements to be met?'

Physical answers the

question 'with what is

the solution built?'

Figure 2. Integrated Architecture Framework

JOURNAL1 | Enterprise Architecture 6

This approach allows the pragmatic
deployment of the framework in many
different scenarios, both by using only
the relevant parts of the framework
and by supporting iterative working
across the streams. This flexibility
minimises the traditional effects of
a waterfall approach and ensures
coherency across the aspect areas. For
example, a project architecture using
IAF will, in many cases, only need to
use sufficient of the Business and
Information aspect areas to provide
the overall context for the project. An
enterprise architecture will concentrate
mainly on the contextual, conceptual
and logical levels.

The Contextual level brings together
the business and other drivers, vision
and strategy and their resulting
priorities into a set of principles
all of which are described with their
implications and priorities. This
comprehensive set of statements is
then used in a consistent manner in
the decision making process, providing
traceability back to the original
business drivers, strategy and vision,
and demonstrating the required
business-systems alignment.

Although much of the work done
at this stage is concerned with data
gathering, the importance of this stage
cannot be overstressed. It will provide
the basis for the entire architecture
design by creating and documenting
an understanding of the scope from
an overall business perspective.

The Conceptual level details the
services and the interactions between
these services in support of the
principles defined in the Contextual
level. As the models defined in the

Conceptual level are service-based
(that is they do not detail specific
products or standards), they remain
stable unless the business itself
fundamentally changes its vision and
objectives; providing a solid foundation
from which the logical architecture can
be derived. Key decisions taken at this
level include:
– What areas of the business to use

IT to support?
– Which overall business architecture

(e.g. moving to a front-office, mid-
office, back-office model) will be used?

– How systems will reflect the
organisation/business architecture,
the level to which department
systems are consolidated into a suite
of core applications or are allowed
departmental flexibility with a central
integration service?

The Logical level describes the
solution as product-independent
services or components, includes a
clear definition of the integration and
collaboration contracts between these
services or components. By remaining
independent of products, this level of
the architecture can remain relatively
stable. It can change to reflect top-down
changes, including new fundamental
business models (for example a move
towards a Customer-Centric model),
as well as bottom-up changes, such
as opportunities for technology
enablement (such as CRM) or
fundamental changes in technology
paradigm (for example Services
Architecture or Grid). Through this,
the impact of change at the business
or technology level can be assessed
in a clear and consistent manner.

Key decisions taken at this
level include:

– How should the logical components
be grouped (for example, providing
a multi-channel customer logon
service with separate channel-
specific/optimised authentication
components alongside a common
authentication support component
using a central directory)?

– How will logical components
be shared across systems (these
components could be presented
as Web Services)?

– How a central integration hub
supports the various business
systems, or the way in which
collaboration tools are used alongside
databases applications and
integration to support virtual team?

Typically, at the logical level, there
might be more than one way to
approach the solution (which reflects
the various drivers, for example cost,
flexibility, security, manageability). The
key decision at this level is then to
select (with the business) the solution
alternative that delivers the services
required, in a way that best addresses
the guiding principles.

The Physical level details the design
principles, standards and guidelines,
including component grouping in
critical areas as well as deployment
models. This provides the framework
within which the detailed design can
be undertaken, as well as selection
criteria (not functional specifications)
for products to be either developed
or purchased.

It is at this level that solution
frameworks and architectures such as
the Microsoft Systems Architecture
(MSA) can be used at this level to
accelerate development of the physical

JOURNAL1 | Enterprise Architecture 7

architecture, improve the quality of
the architecture (by using proven
solutions) and reduce project risks.

Examples of key decisions taken at
this level are:
– Which physical components which

will be part of a package solution
(e.g. using physical components
from the ERP solution).

– What additional components will be
required around this package, and
the standards and guidelines for
developing these components (e.g.
language, tools, etc.)?

– What are the standards and detailed
product selection criteria for the
infrastructure products to be
deployed? – leading onto a candidate
list for selection. If there is a clear
product or vendor strategy, this
candidate list becomes the product
standards to be taken forward.

Communication and
Architecture Governance
Because of the large number of
potential stakeholders, the enterprise

architecture needs to be communicated
at many different levels, using the
appropriate visual representations and
language: For senior management, the
architecture must show how the
business goals and drivers will be
supported, and how benefit can be
derived. The focus of business users is
more on their own individual business
areas and is more functionally-biased.
IT management and staff will want
to focus on the technical components,
including how they will be able to
provide the required levels of support.
Project-level architects will be
concerned with the standards and
guidelines which will provide re-use
opportunities or impose constraints
on their individual designs.

Programmes and projects must
conform to the enterprise architecture
to ensure that business benefits can
be realised, and that the systems and
software engineering activities can
benefit from the analysis already done
in defining the enterprise architecture.
Furthermore, as with all architectures,

the enterprise architecture requires
ongoing maintenance, especially
around the more physical areas such
as technical standards. This ensures
that the enterprise architecture
remains valid and relevant to the
business as it changes. The enterprise
architecture should be under the control
of an enterprise-wide governance
function that ensures its maintenance
and verifies the ongoing conformance
of systems. Even where, for clear and
justified business reasons, conformance
is not possible, this function is then
able to make sure that the business
understands the real costs of
implementing non-conformant systems,
for example increased running costs or
lack of future flexibility.

Linking Architecture and Design
As the use of the term ‘architecture’ has
grown within business and IT, there
have been many areas of confusion:
for example, in many organisations,
architecture and design are seen as
being the same thing. It is Cap Gemini
Ernst & Young’s view that this is not

Delivers Does Not Deliver

Architecture – Non-functional requirements – Prototypes
– Functional scope and – Comprehensive functional requirements

responsibilities (who does what) – Detailed data analysis
– Key design and product choices – Built and implemented systems
– High level design
– Design constraints

Design – Functional requirements and – Solution Vision
how they will be met – Comprehensive and traceable non-

– Detailed data analysis and functional requirements
data model as necessary – Security and governance architectures

– System design documentation
– Built and implemented systems

Table 1. Comparing Architecture and Design

“Programmes and projects must conform
to the enterprise architecture to ensure
that business benefits can be realised.”

JOURNAL1 | Enterprise Architecture 8

the case because design and
architecture offer different and
complimentary perspectives on the
solution – in fact, Cap Gemini Ernst
& Young use IAF and the Rational
Unified Process (RUP; a software
development approach) on projects to
deliver a complete design approach
from architecture to code. Table 1
shows the comparison between
architecture (IAF) and design (RUP,
including application architecture):

As with the architecture of buildings,
software architecture and (detailed)
design are, in fact, part of an overall
‘design continuum’ required to deliver
a complete solution. Aligning IAF and
RUP processes provides a

comprehensive and consistent
framework in support of this.
Furthermore, the enterprise
architecture will provide much
of the context and other inputs
required by the project architecture,
whilst the project architecture will
cater for the unique requirements
of the solution. In projects with
significant potential risk, especially
on complex or large projects, the
use of the architectural approach at
project-level will mitigate many of
the risks by ensuring that there is
a clear and holistic understanding
of the overall context of the solution
including external systems and drivers
that may affect the solution.

With IAF, a project-level technical
architecture uses the same basic
approach as the enterprise
architecture, albeit with different
levels of detail, with more focus on
the logical and physical level of
information, information systems,
technology infrastructure, governance
and security aspects (using the
context and business architecture
defined in the enterprise architecture).

As a result, the output from the
enterprise architecture can be used
directly as the input into the project-
level technical architecture. From the
project-specific technical architecture,
the detailed and specific design
principles, guidelines, standards, and

Inception

Business Modelling

Requirements

Analysis & Design

Implementation

Test

Deployment

Configuration &

Change Management

Environment

Contextual

Architecture

Conceptual

Architecture

Logical

Architecture

Physical

Architecture

Elaboration Construction Transition

RUP

IAF

Project Management

Figure 3. IAF and RUP

JOURNAL1 | Enterprise Architecture 9

constraints, which then guide the
detailed software and systems
engineering design activities, can be
derived. In the case of IAF, the output
from the project-level technical
architecture can be mapped onto RUP
design artefacts such as business use
cases, system use cases, and non-
functional specification. These mappings
typically are not one-to-one, but do
provide traceability through from the
architecture to the physical detailed
design, as well as helping accelerate the
overall design process from architecture
through to delivered systems.
This helps accelerate the design/
development effort whilst continuing
to mitigate project risks.

Summary
Enterprise architectures are becoming
more important today as the level of
complexity and inter-operation
between systems and business
increases, and as there is even more
need for business-system alignment
and cost-effective use of IT to deliver
business benefit. Enterprise
architecture (and project-level
technical architecture) provides
valuable input into application
architecture and detailed design

by helping architects understand the
business as a whole and by placing the
solution being designed into the overall
business and technical context within
which the project is being delivered.

The key objectives of an enterprise
architecture are to understand …
– The relevant parts of whole business,

in context (incl. external partners)
– The end-to-end processes (including

external processes/actors)
– Non-functional requirements

(including security & governance)
which results in a solution that …
– Supports the non-functional

requirements.This may need specific
component organization to support,
for example, specific cross-domain
security requirements, or a service-
based approach to provide the
required flexibility.

– Is seen in the context of the
whole business and end-to-end
processes.For example, service
level objectives may exist for overall
transaction times that span more
than one business – understanding
the limitations of this allow these
measures to be refined.

– Links to, and is traceable to, the
business principles so that the

impact of changes, some of which may
result from the design stage, can be
evaluated in business terms.

– Drives, contextualises, and constrains
the design. The design for the
application or infrastructure will
need to be governed by the
architecture in order to fully deliver
the complete solution including the
non-functional requirements.

– Is clearly scoped, understood and
clearly defines the responsibilities
of each element.

and provides the rationale …
– For decisions, standards and product

selections that support the business
goals and drivers.

Further Reading
Cap Gemini Ernst &
Young Technology Services
http://www.cgey.com/technology

Services Architecture
http://www.cgey.com/technology/
sa/index.shtml

Adaptive IT
http://www.cgey.com/adaptive/
solutions/adaptive-it-overview.shtml

Andrew Macaulay
andrew.macaulay@cgey.com

Andrew Macaulay joined Cap
Gemini Ernst & Young as a Technical
Architect in 1993 following ten years
as a Technical Consultant. He has
been an Architect and Technical
Consultant on many major

engagements, both at an Enterprise
and the Project level, and has been
instrumental in developing, delivering
and training Cap Gemini Ernst &
Young’s approach to architecture,
Integrated Architecture Framework.

http://www.cgey.com/technology
http://www.cgey.com/technology/sa/index.shtml
http://www.cgey.com/adaptive/solutions/adaptive-it-overview.shtml
mailto:andrew.macaulay@cgey.com

JOURNAL1 | Understanding SOA 10

If there was a hit parade of
IT acronyms, Service Oriented
Architecture, or SOA, would surely
be number one. Yet for all the
media comment, how many really
understand what SOA is? How
does it affect what architects,
CIOs, project managers, business
analysts and lead developers
do? In this article we provide
a concise explanation that
we anticipate will baseline
the subject.

Introduction
It seems probable that eventually most
software capabilities will be delivered
and consumed as services. Of course
they may be implemented as tightly
coupled systems, but the point of usage
– to the portal, to the device, to another
endpoint, and so on, will use a service
based interface. We have seen the
comment that architects and designers
need to be cautious to avoid everything
becoming a service. We think this is
incorrect and muddled thinking.
It might be valid right now given the
maturity of Web Service protocols and
technology to question whether
everything is implemented using Web
services, but that doesn’t detract from
the need to design everything from a
service perspective. The service is the
major construct for publishing and
should be used at the point of each
significant interface. Service Oriented
Architecture allows us to manage
the usage (delivery, acquisition,
consumption, and so on) in terms of,
and in sets of, related services. This
will have big implications for how we
manage the software life cycle – right
from specification of requirements as
services, design of services, acquisition
and outsourcing as services, asset
management of services, and so on.

Over time, the level of abstraction
at which functionality is specified,
published and or consumed has
gradually become higher and higher.
We have progressed from modules,
to objects, to components, and now to
services. However in many respects the
naming of SOA is unfortunate. Whilst
SOA is of course about architecture,
it is impossible to constrain the
discussion to architecture, because
matters such as business design and
the delivery process are also important
considerations. A more useful
nomenclature might be Service
Orientation (or SO). There are actually
a number of parallels with object
orientation (or OO) and component
based development (CBD):
– Like objects and components, services

represent natural building blocks that
allow us to organize capabilities in
ways that are familiar to us.

– Similarly to objects and components,
a service is a fundamental building
block that
a. Combines information

and behaviour.
b. Hides the internal workings

from outside intrusion.
c. Presents a relatively simple

interface to the rest of the
organism.

– Where objects use abstract data
types and data abstraction, services
can provide a similar level of
adaptability through aspect or
context orientation.

– Where objects and components
can be organized in class or service
hierarchies with inherited behaviour,
services can be published and
consumed singly or as hierarchies
and or collaborations.

For many organizations, the logical
starting place for investigating Service

Oriented Architecture is the
consideration of Web services. However
Web services are not inherently service
oriented. A Web service merely exposes
a capability which conforms to Web
services protocols. In this article we will
identify the characteristics of a well
formed service, and provide guidance
for architects and designers on how to
deliver service oriented applications.

Principles and Definitions
Looking around we see the term or
acronym SOA becoming widely used,
but there’s not a lot of precision in the
way that it’s used. The World Wide
Web Consortium (W3C) for example
refers to SOA as ‘A set of components
which can be invoked, and whose
interface descriptions can be published
and discovered’. We see similar
definitions being used elsewhere; it’s
a very technical perspective in which
architecture is considered a technical
implementation. This is odd, because
the term architecture is more
generally used to describe a style or
set of practices – for example the style
in which something is designed and
constructed, for example Georgian
buildings, Art Nouveau decoration
or a garden by Sir Edwin Lutyens
and Gertrude Jekyll .

CBDI believes a wider definition
of Service Oriented Architecture
is required. In order to reach this
definition, let’s start with some existing
definitions, and compare some W3C
offerings with CBDI recommendations.
We’ll begin by looking at definitions of
basic Service concepts.

Service
– A Component capable of performing

a task. A WSDL service: A collection
of end points (W3C).

Understanding Service
Oriented Architecture
By David Sprott and Lawrence Wilkes, CBDI Forum

JOURNAL1 | Understanding SOA 11

– A type of capability described using
WSDL (CBDI).

A Service Definition
– A vehicle by which a consumer’s

need or want is satisfied according
to a negotiated contract (implied
or explicit) which includes Service
Agreement, Function Offered and
so on (CBDI).

A Service Fulfillment
– An instance of a capability

execution (CBDI).

Web service
– A software system designed to

support interoperable machine-to-
machine interaction over a network.
It has an interface described in a
format that machines can process
(specifically WSDL). Other systems
interact with the Web service in a
manner prescribed by its description
using SOAP messages, typically
conveyed using HTTP with XML
serialization in conjunction with
other Web-related standards (W3C).

– A programmatic interface to a
capability that is in conformance
with WSnn protocols (CBDI).

From these definitions, it will be clear
that the W3C have adopted a somewhat
narrower approach to defining services
and other related artefacts than CBDI.
CBDI differs slightly insofar as not all
Services are Components, nor do they
all perform a task. Also CBDI
recommends it is useful to manage
the type, definition and fulfilment as
separate items. However it is in the
definition of SOA that CBDI really
parts company with the W3C.

Service Oriented Architecture:
– A set of components which can be

invoked, and whose interface
descriptions can be published and
discovered (W3C).

CBDI rejects this definition on two
counts: First the components (or
implementations) will often not be
a set. Second the W3C definition of
architecture only considers the
implemented and deployed
components, rather than the science, art
or practice of building the architecture.
CBDI recommends SOA is more
usefully defined as:

The policies, practices, frameworks that
enable application functionality to be
provided and consumed as sets of
services published at a granularity
relevant to the service consumer.
Services can be invoked, published
and discovered, and are abstracted
away from the implementation using
a single, standards based form of
interface. (CBDI)

CBDI defines SOA as a style resulting
from the use of particular policies,
practices and frameworks that deliver
services that conform to certain
norms. Examples include certain
granularity, independence from the
implementation, and standards
compliance. What these definitions
highlight is that any form of service
can be exposed with a Web services
interface. However higher order
qualities such as reusability and
independence from implementation,
will only be achieved by employing
some science in a design and building
process that is explicitly directed at
incremental objectives beyond the
basic interoperability enabled by use
of Web services.

SOA Basics
It’s would be easy to conclude that
the move to Service Orientation
really commenced with Web services –
about three years ago. However,
Web services were merely a step
along a much longer road. The notion
of a service is an integral part of
component thinking, and it is clear
that distributed architectures were
early attempts to implement Service
Oriented Architecture. What’s
important to recognize is that Web
services are part of the wider picture
that is SOA. The Web service is the
programmatic interface to a capability
that is in conformance with WSnn
protocols. So Web services provide
us with certain architectural
characteristics and benefits –
specifically platform independence,
loose coupling, self description, and
discovery – and they can enable a
formal separation between the provider
and consumer because of the formality
of the interface.

Service is the important concept. Web
Services are the set of protocols by
which Services can be published,
discovered and used in a technology
neutral, standard form.

In fact Web services are not a
mandatory component of a SOA,
although increasingly they will
become so. SOA is potentially much
wider in its scope than simply
defining service implementation,
addressing the quality of the service
from the perspective of the provider
and the consumer. You can draw a
parallel with CBD and component
technologies. COM and UML
component packaging address

“Higher order qualities such as reusability and independence
from implementation, will only be achieved by employing
some science in a design and building process.”

JOURNAL1 | Understanding SOA 12

components from the technology
perspective, but CBD, or indeed
Component Based Software
Engineering (CBSE), is the discipline
by which you ensure you are building
components that are aligned with
the business. In the same way, Web
services are purely the implementation.
SOA is the approach, not just the
service equivalent of a UML
component packaging diagram.

Many of these SOA characteristics were
illustrated in a recent CBDI report1,
which compared Web services
published by two dotcom companies as
alternatives to their normal browser-
based access, enabling users to
incorporate the functionality offered
into their own applications. In one
case it was immediately obvious that
the Web services were meaningful
business services – for example
enabling the Service Consumer to
retrieve prices, generate lists, or add
an item to the shopping cart.
In contrast the other organization’s
services are quite different. It
implemented a general purpose API,
which simply provides Create, Read,
Update, and Delete (CRUD) access to
their database through Web services.
While there is nothing at all wrong
with this implementation, it requires
that users understand the underlying
model and comply with the business
rules to ensure that your data
integrity is protected. The WSDL tells
you nothing about the business or
the entities. This is an example of
Web services without SOA.

SOA is not just an architecture of
services seen from a technology
perspective, but the policies, practices,
and frameworks by which we ensure

the right services are provided
and consumed.

So what we need is a framework for
understanding what constitutes a good
service. If, as we have seen in the
previous example, we have varying
levels of usefulness, we need some
Principles of Service Orientation that
allow us to set policies, benchmarks
and so on.

We can discern two obvious sets here:
– Interface related principles –

Technology neutrality,
standardization and consumability.

– Design principles – These are more
about achieving quality services,
meeting real business needs, and
making services easy to use,
inherently adaptable, and easy
to manage.

Interestingly the second set might
have been addressed to some extent
by organizations that have established
mature component architectures.
However it’s certainly our experience
that most organizations have found
this level of discipline hard to justify.
While high quality components have
been created perhaps for certain core
applications where there is a clear
case for widespread sharing and
reuse, more generally it has been hard
to incur what has been perceived as
an investment cost with a short
term return on investment.

However when the same principles
are applied to services, there is now
much greater awareness of the
requirements, and frankly business
and IT management have undergone
a steep learning curve to better
understand the cost and benefits of

IT systems that are not designed for
purpose. Here we have to be clear –
not all services need all of these
characteristics; however it is
important that if a service is to be
used by multiple consumers, (as is
typically the case when a SOA is
required), the specification needs
to be generalized, the service
needs to be abstracted from the
implementation (as in the earlier
dotcom case study), and developers of
consumer applications shouldn’t need
to know about the underlying model
and rules. The specification of
obligations that client applications
must meet needs to be formally
defined and precise and the service
must be offered at a relevant level of
granularity that combines appropriate
flexibility with ease of assembly into
the business process.

Table 1 shows principles of good
service design that are enabled
by characteristics of either Web
services or SOA.

If the principles summarized in Table
1 are complied with, we get some
interesting benefits:
– There is real synchronization

between the business and IT
implementation perspective. For
many years, business people haven’t
really understood the IT architecture.
With well designed services we can
radically improve communications
with the business, and indeed move
beyond alignment and seriously
consider convergence of business
and IT processes.

– A well formed service provides us
with a unit of management that
relates to business usage.
Enforced separation of the service

1 Service Based Packaged Applications
http://www.cbdiforum.com/
secure/interact/2003-
07/service_based_pkd_apps.php3

http://www.cbdiforum.com/secure/interact/2003-07/service_based_pkd_apps.php3

JOURNAL1 | Understanding SOA 13

provision provides us with basis
for understanding the life cycle costs
of a service and how it is used in
the business.

– When the service is abstracted
from the implementation it is
possible to consider various
alternative options for delivery
and collaboration models. No one
expects that, at any stage in the
foreseeable future, core enterprise
applications will be acquired purely
by assembling services from multiple
sources. However it is entirely
realistic to assume that certain
services will be acquired from
external sources because it is more
appropriate to acquire them. For
example authentication services,
a good example of third party
commodity services that can deliver
a superior service because of

specialization, and the benefits of
using a trusted external agency
to improve authentication.

Process Matters
As indicated earlier, CBDI advises
that good SOA is all about style –
policy, practice and frameworks.
This makes process matters an
essential consideration.

Whilst some of the benefits of services
might have been achieved by some
organizations using components, there
are relatively few organizations that
rigorously enforce the separation of
provision and consumption throughout
the process. This gets easier with
services because of the formality of the
interface protocols, but we need to
recognize that this separation needs
managing. For example it’s all too

easy to separate the build processes
of the service and the consumer, but
if the consumer is being developed by
the same team as the service then it’s
all too easy to test the services in a
manner that reflects understanding
of the underlying implementation.

With SOA it is critical to implement
processes that ensure that there are
at least two different and separate
processes – for provider and consumer.

However, current user requirements
for seamless end-to-end business
processes, a key driver for using
Web Services, mean that there will
often be clear separation between the
providing and consumer organizations,
and potentially many to many
relationships where each participant
has different objectives but

Enabled by Web services Technology neutral Endpoint platform independence.

Standardized Standards based protocols.

Consumable Enabling automated discovery and usage.

Enabled by SOA Reusable Use of Service, not reuse by copying
of code/implementation.

Abstracted Service is abstracted from the implementation.

Published Precise, published specification functionality
of service interface, not implementation.

Formal Formal contract between endpoints places
obligations on provider and consumer.

Relevant Functionality presented at a granularity
recognized by the user as a meaningful service.

Table 1. Web services and SOA

JOURNAL1 | Understanding SOA 14

nevertheless all need to use the
same service. Our recommendation
is that development organizations
behave like this, even when both the
providing and consuming processes are
in-house, to ensure they are properly
designing services that accommodate
future needs

For the consumer, the process must be
organized such that only the service
interface matters, and there must be
no dependence upon knowledge of the
service implementation. If this can
be achieved, considerable benefits of
flexibility accrue because the service
designers cannot make any
assumptions about consumer
behaviours. They have to provide
formal specifications and contracts
within the bounds of which consumers
can use the service in whatever way
they see fit. Consumer developers
only need to know where the service
is, what it does, how they can use it.
The interface is really the only thing
of consequence to the consumer as
this defines how the service can be
interacted with.

Similarly, whilst the provider has a
very different set of concerns, it needs
to develop and deliver a service that
can be used by the Service Consumer
in a completely separate process. The
focus of attention for the provider
is therefore again the interface –
the description and the contract.
Another way of looking at this is
to think about the nature of the
collaboration between provider and
consumer. At first sight you may think
that there is a clear divide between
implementation and provisioning,
owned by the provider, and
consumption, owned by the consumer.

However if we look at these top level
processes from the perspective of
collaborations, then we see a very
different picture.

What we have is a significant number of
process areas where (depending on the
nature of the service) there is deep
collaboration between provider and
consumer. Potentially we have a major
reengineering of the software delivery
process. Although we have two
primary parties to the service based
process, we conclude there are three
major process areas which we need to
manage. Of course these decompose, but
it seems to us that the following are
the primary top level processes.

– The process of delivering the
service implementation.
– ‘Traditional’ Development
– Programming
– Web Services automated by tools

– The provisioning of the service –
the life cycle of the service as a
reusable artefact.
– Commercial Orientation
– Internal and External View
– Service Level Management

– The consumption process.
– Business Process Driven
– Service Consumer could be

internal or external
– Solution assembly from Services,

not code
– Increasingly graphical, declarative

development approach
– Could be undertaken by business

analyst or knowledge worker

The advantage of taking this view is
that the collaborative aspects of the
process are primarily contained in the

provisioning process area. And the
provisioning area is incredibly
important because the nature of
the agreement has a major influence
on the process requirements.
There are perhaps two major
patterns for designing consumer/
provider collaborations:

– Negotiated – Consumer and
Provider jointly agree service
When new services are developed
though, there is an opportunity for
both provider and consumer to agree
what and how the services should
work. In industries where there are
many participants all dealing with
each other, and where services are
common to many providers, it is
essential that the industry considers
standardizing those services.
Examples include:
– Early adopters
– New Services
– Close partners
– Industry initiative –

forming standards
– Internal use

– Instantiated – This is it.
Take it or leave it
One party in the collaborative
scenario might simply dictate the
services that must be used.
Sometimes the service will already
exist. You just choose to use it, or not.
Examples include:
– Dominant partner
– Provider led – Use this service

or we can’t do business
– Consumer led – Provide this service

or we can’t do business
– Industry initiative –

standards compliance
– Existing system/interface

JOURNAL1 | Understanding SOA 15

Architectures
This process view that we have
examined at is a prerequisite to
thinking about the type of architecture
required and the horizons of interest,
responsibility and integrity. For
SOA there are three important
architectural perspectives as
shown in Figure 1.

– The Application Architecture.
This is the business facing solution
which consumes services from one or
more providers and integrates them
into the business processes.

– The Service Architecture.
This provides a bridge between
the implementations and the
consuming applications, creating
a logical view of sets of services
which are available for use,
invoked by a common interface
and management architecture.

– The Component Architecture.
This describes the various
environments supporting the
implemented applications, the business
objects and their implementations.

These architectures can be viewed
from either the consumer or provider
perspective. Key to the architecture
is that the consumer of a service
should not be interested in the
implementation detail of the service –
just the service provided. The
implementation architecture could
vary from provider to provider
yet still deliver the same service.
Similarly the provider should not be
interested in the application that
the service is consumed in. New
unforeseen applications will reuse
the same set of services.

The consumer is focused on their
application architecture, the services
used, but not the detail of the
component architecture. They are

interested at some level of detail
in the general business objects that
are of mutual interest, for example
provider and consumer need to share
a view of what an order is. But the
consumer does not need to know how
the order component and database
are implemented.

Similarly, the provider is focused on the
component architecture, the service
architecture, but not on the application
architecture Again, they both need to
understand certain information about
the basic applications, for example to
be able to set any sequencing rules
and pre and post conditions. But the
provider is not interested in every detail
of the consuming application.

The Service Architecture
At the core of the SOA is the need to be
able to manage services as first order
deliverables. It is the service that we
have constantly emphasized that is the
key to communication between the
provider and consumer. So we need a
Service Architecture that ensures that
services don’t get reduced to the
status of interfaces, rather they have
an identity of their own, and can be
managed individually and in sets.

CBDI developed the concept of the
Business Service Bus (BSB) precisely
to meet this need. The BSB is a logical
view of the available and used services
for a particular business domain, such
as Human Resources or Logistics. It
helps us answer questions such as:
– What service do I need?
– What services are available to me?
– What services will operate together?

(common semantics, business rules)
– What substitute services

are available?

Application
Architecture

Service
Architecture

Component
Architecture

Component
Architecture

C
o
n
s
u
m
e
r

P
r
o
v
i
d
e
r

Business
process

Business
service
bus

Figure 1. Three Architectural Perspectives

JOURNAL1 | Understanding SOA 16

– What are the dependencies between
services and versions of services?

Rather than leaving developers to
discover individual services and put
them into context, the Business Service
Bus is instead their starting point that
guides them to a coherent set that has
been assembled for their domain.

The purpose of the BSB is so that
common specifications, policies, etc
can be made at the bus level, rather
than for each individual service. For
example, services on a bus should all
follow the same semantic standards,
adhere to the same security policy,
and all point to the same global model
of the domain. It also facilitates the
implementation of a number of
common, lower-level business
infrastructure services that can be
aggregated into other higher level
business services on the same bus

(for example, they could all use the
same product code validation service).
Each business domain develops a
vocabulary and a business model of
both process and object.

A key question for the Service
Architecture is ‘What is the scope of
the service that is published to the
Business Service Bus?’ A simplistic
answer is ‘At a business level of
abstraction’. However this answer
is open to interpretation – better to
have some heuristics that ensure
that the service is the lowest common
denominator that meets the criteria
of business, and is consumer oriented,
agreed, and meaningful to the
business. The key point here is that
there is a process of aggregation and
collaboration that should probably
happen separately from the
implementing component as illustrated
in Figure 2. By making it separate,

there is a level of flexibility that allows
the exposed service(s) to be adjusted
without modifying the underlying
components. In principle, the level
of abstraction will be developed such
that services are at a level that is
relevant and appropriate to the
consumer. The level might be one
or all of the following:
– Business Services
– Service Consumer Oriented
– Agreed by both Provider

and Consumer
– Combine low level implementation

based services into something
meaningful to business

– Coarser Grained
– Suitable for External Use
– Conforms to pre-existing

connection design

The SOA Platform
The key to separation is to define
a virtual platform that is equally

Aggregation

Fine Grained

Implementation

-Based Services

Coarse Grained

Business Services

Infrastructure

Services

Existing

Application

Service

Wrapper

External

Services

Existing

Application

Service

Wrapper

A
b
s
t
r
a
c
t
i
o
n

Figure 2. Levels of Abstraction

David Sprott
david.sprott@cbdiforum.com
David Sprott, CEO and Principal
Analyst, CBDI Forum is a software

industry veteran, a well-known
commentator and analyst specializing
in advanced application delivery. Since
1997 he has founded and led CBDI, an

independent analyst firm and think-
tank, providing a focus for the industry
on best practice in business software
creation, reuse and management.

mailto:david.sprott@cbdiforum.com

JOURNAL1 | Understanding SOA 17

relevant to a number of real
platforms. The objective of the
virtual platform is to enable the
separation of services from the
implementation to be as complete
as possible and allow components
built on various implementation
platforms to offer services which have
no implementation dependency.

The virtual SOA platform comprises a
blueprint which covers the development
and implementation platforms. The
blueprint provides guidance on the
development and implementation
of applications to ensure that the
published services conform to the
same set of structural principles that
are relevant to the management and
consumer view of the services.

When a number of different
applications can all share the same
structure, and where the relationships
between the parts of the structure are
the same, then we have what might be
called a common architectural style.
The style may be implemented in
various ways; it might be a common
technical environment, a set of policies,
frameworks or practices. Example
platform components of a virtual
platform include:
– Host environment
– Consumer environment
– Middleware
– Integration and

assembly environment
– Development environment
– Asset management
– Publishing & Discovery
– Service level management
– Security infrastructure

– Monitoring & measurement
– Diagnostics & failure
– Consumer/Subscriber management
– Web service protocols
– Identity management
– Certification
– Deployment & Versioning

The Enterprise SOA
The optimum implementation
architecture for SOA is a component-
based architecture. Many will be
familiar with the concepts of process
and entity component, and will
understand the inherent stability
and flexibility of this component
architecture, which provide a one to
one mapping between business entities
and component implementations.
Enterprise SOA (ESOA) brings the
two main threads – Web services and
CBD (or CBSE) – together. The result
is an enterprise SOA that applies to
both Web services made available
externally and also to core business
component services built or specified
for internal use. It is beyond the scope
of this article to explore ESOA in more
depth. For more on this topic there
is a five part CBDI Report Series on
Enterprise SOA2.

Summary
The goal for a SOA is a world wide
mesh of collaborating services, which
are published and available for
invocation on the Service Bus. Adopting
SOA is essential to deliver the business
agility and IT flexibility promised by
Web Services. These benefits are
delivered not by just viewing service
architecture from a technology
perspective and the adoption of Web

Service protocols, but require
the creation of a Service Oriented
Environment that is based on the
following key principals we have
articulated in this article;

– Service is the important concept.
Web Services are the set of protocols
by which Services can be published,
discovered and used in a technology
neutral, standard form.

– SOA is not just an architecture of
services seen from a technology
perspective, but the policies,
practices, and frameworks by which
we ensure the right services are
provided and consumed.

– With SOA it is critical to implement
processes that ensure that there
are at least two different and
separate processes – for provider
and consumer.

– Rather than leaving developers
to discover individual services and
put them into context, the Business
Service Bus is instead their starting
point that guides them to a coherent
set that has been assembled for
their domain.

For further guidance on planning
and managing the transition to Web
Services and SOA, CBDI are providing
the ‘Web Services Roadmap’, a set of
resources that are freely available at
http://roadmap.cbdiforum.com/

Lawrence Wilkes
lawrence.wilkes@cbdiforum.com
Lawrence Wilkes, Technical Director
and Principal Analyst, CBDI Forum is
a frequent speaker, lecturer and writer

on Web Services, Service Oriented
Architecture, Component Based
Development and Application
Integration approaches. Lawrence has
over 25 years experience in IT working

both for end user organizations in
various industries, as well as for
software vendors and as a consultant.2
http://www.cbdiforum.com/secure/
interact/2003-03/foundation.php3

http://roadmap.cbdiforum.com/
http://www.cbdiforum.com/secure/interact/2003-03/foundation.php3
mailto:lawrence.wilkes@cbdiforum.com

JOURNAL1 | Business Process Decomposition 18

Introduction
Organisations use information and
communication technology (ICT)
as a means to reach their objectives.
Paradoxically, many organisations find
that yesterday’s business ICT solutions
hinder them in reaching today’s
objectives. An organisation might
be able to modify, wrap or replace
existing ICT solutions to meet today’s
requirements, but how can it avoid
today’s solutions once again becoming
tomorrow’s problems?

Many business ICT solutions tend to
lack flexibility to deal with changing
business requirements and
technology. Business requirements
change as organisations adjust their
strategies, business processes and
internal structures to deal with changes
in their environment (for example
because of competition or legislation)
or because they choose to merge or
outsource activities. New technologies
are introduced to obtain and maintain
competitive advantage or because older
technologies become too cumbersome
and expensive to support.

A main reason for the lack of
sufficient flexibility in business ICT
solutions is the failure to consider
long-term dynamics of business
and technology during solution
development. Should enterprise
fortune-telling therefore become a
valued discipline within development
projects? Not necessarily. To build
ICT solutions that provide long-
lasting support for organisations, it
is essential to have models that help
us to understand the structure and
dynamics of the organisations we
are trying to support.

Many of the today’s organisation
and business modelling approaches
are based on ‘best practices’ but to a
certain extent remain a black art.
What is often missing is a stable
theoretical foundation such as the
DEMO (Dynamic Essential Modelling
of Organisations) framework [Dietz
2002]. By looking at organisations from
a communication perspective, DEMO
recognises reoccurring communication
patterns between people and proceeds
to describe how these patterns combine
to form business processes.

DEMO provides business analysts
and ICT solution architects with tools
to decompose the business processes
into elementary business transactions.
Each business transaction identifies
a business role that operates as a
miniature supply chain providing a
well-defined service to other business
roles. Thus when providing automated
support to business processes, it
makes sense to decompose business
process logic according to the same
patterns that occur in a purely human
world. Therefore, the DEMO approach
can be used to identify process-
oriented business services in service-
oriented and component-based ICT
solution architectures.

In this article we will first discuss
on how organisations are made up
of cooperating people who use
communication to align their actions.
By studying how people use
communication to align their actions,
we will encounter the business
transaction communication pattern.
We will then describe how business
transactions are composed to form
business processes and enable the
identification of business roles. Each

business role provides a well-defined
service for other business roles within
or outside of the organisation. By
studying how business roles exchange
and remember organisation we
will encounter organisational roles
that provide informational and
infrastructural services. This will
result in a technology-independent
information architecture that consists
of business, informational and
infrastructural services and
describes their dependencies. We
will conclude this article with some
remarks regarding the realisation
of services using human resources
and/or technology.

Organisations
An organisation is a group of people
who cooperate to achieve common
objectives. In all but the simplest
organisations no single person is able
to perform all the work that must be
done to achieve the common goals, so
members specialise themselves and
must cooperate for the organisation
to be effective. To improve cooperation,
organisations tend to formalise the
roles that members play within the
organisation and to agree upon
common procedures to coordinate
the work performed by different roles.

A business process is an ordered
execution of activities by people playing
organisational roles in order to produce
goods or provide services that has add
value in the organisation’s
environment or to the organisation
itself. Each activity on its own can be
regarded as a decomposable process,
and as a sub-process of the containing
process [Eriksson and Penker 2000:71].
For example, a sales process may
contain a delivery activity that

Business Process Decomposition and Service
Identification using Communication Patterns
By Gerke Geurts and Adrie Geelhoed, LogicaCMG

“Many business ICT solutions tend to lack
flexibility to deal with changing business
requirements and technology.”

JOURNAL1 | Business Process Decomposition 19

contains nested activities for the
selection of a transport provider
and the transport itself.

A person may play one or more roles
within an organisation. Each role
represents the elementary authority
and responsibility a person must
have in order to perform a particular
production act. In practice, roles do
not usually correspond directly
with organisational functions. Often
organisational functions map to
multiple roles and roles may be played
by various organisational functions.
For example, ‘secretary’ and ‘claim
handler’ may be organisational
functions within a social service. Both
the secretary and the claim handler
are allowed to refuse incomplete
benefit requests, but only the claim
handler is allowed to grant benefits
to claimants. So both organisational
functions can play the ‘claim
admission’ role, but only one
organisational function can play
the ‘claim granting’ role.

The roles participating in a business
process perform two types of acts:
production acts and coordination
acts [Dietz 2002]. Production acts
contribute to the realisation of goods
and/or services for the environment
of an organisation. The result of a
production act can be material or
immaterial. The manufacturing, storage
and transport of goods are examples
of material production acts. A verdict
by a judge or a decision to grant a
benefit claim are examples of
immaterial products.

Different roles must cooperate when
they are dependent on goods or services
that are produced by other roles within

or outside the organisation. By
performing coordination acts people
enter into and honour commitments
towards each other regarding the
execution of certain production acts
[Dietz 2002]. An example of a
commitment is an account manager
promising to extend a credit limit
when requested to do so by a client.

A successful production act causes a
change in the ‘production world’ (the
creation of a good or service), which
is recorded as a production fact.
Similarly, a successful coordination
act causes a change in the ‘coordination
world’ (the creation or compliance with
a commitment), which is recorded as a
coordination fact. Examples of
production facts are ‘John’s club
membership has started to exist’ and
‘product P has been transported to
location L’. Example of coordination
facts are ‘John has requested
Ferdinand to start John’s club
membership’ or ‘supplier
representative S has promised
customer representative C to
transport product P to location L’.
This principle is shown in Figure 1.

Communication
A coordination act is performed by one
role (the performer) and directed to

another role (the addressee). Because
people are not able to read one
another’s minds, the performer must
communicate with the addressee to
share his thoughts.

To introduce some communication
(and information) concepts we will use
an example. A bank client wants his
account manager to arrange a higher
credit limit on his bank account. To
communicate with his account
manager, the client formulates his
desire for a higher credit limit (mental
state of speaker) in a message using a
language that both he and the bank
manager understand (common
language). He then converts the
message into perceivable signs by
speaking out the message. Sound
waves in the air (a communication
channel) surrounding the client and
the account manager transport the
signs to the account manager. The
account manager hears the signs and
reconstructs the message. She
subsequently interprets the message to
determine its meaning (mental state of
the hearer). She understands that her
client wants to increase his credit limit,
but as he has a private and a joint
account she asks him which account is
involved. The client indicates he wants
to adjust the credit limit on his private

Coordination Acts

COORDINATION

WORLD

ROLES PRODUCTION

WORLD

Responsibility Authority Competence

Production ActsCoordination

Facts

Production

Facts

Figure 1. Coordination and Production Worlds

JOURNAL1 | Business Process Decomposition 20

account. Once she understands
completely what her client wants her
to do, she checks his credit rating and
then promises him she will perform
the requested action. Both parties
understand that she has committed
herself to increasing the credit limit
on his private account and that she
is expected to comply with her
commitment (common social culture).

The example illustrates that
communication takes place by the
exchanging of messages. However,
the example also shows that
communication is more than the
mere exchange of information.
When communicating, people try
to influence each other’s behaviour.
By everything they say, they do
something [Reijswoud and Dietz
1999:5], i.e. they perform communicative
acts. This principle is the main tenet
of the Language/Action Perspective
(LAP) [Austin 1962; Habermas 1981;
Searle 1969], a methodology that
considers communication from an
action perspective.

Messages or communicative acts
have a form (syntax) and a meaning
(content in the form, i.e. information).
The form of a message consists of the
language the message is expressed in
and the substance (e.g. sound waves,
electric charges, light pulses) that
carries the message [Dietz and Mallens
2001]. The meaning of a message
consists of an intention, a fact and a
time-for-completion [Reijswoud and
Dietz 1999:13]. A fact specifies a
certain action or state of affairs (for
example, the credit limit of client
account 1-345 is €2000). The intention
of a message reflects how a message is
intended to be taken by the receiver
(e.g. request, promise). Depending on

their intention, messages can be
grouped in five families:

– Assertives commit the speaker
to something being the case (for
example stating);

– Directives try to get the hearer to
do something expressed in the
message (for example asking,
requesting and commanding);

– Commissives commit the speaker to
one or more actions in the future (for
example promising);

– Declaratives bring about a new
state of affairs by merely declaring
it (for example declaring);

– Expressives express the attitudes
and/or feelings of the speaker
about a state of affairs (for
example apologising).

The time-for-completion of a message
specifies how long the combination of
the fact and the intention are valid.
In day-to-day conversation the time-
for-completion tends to be implicit and
a default value of ‘now’ or ‘as soon as
possible’ is assumed. Figure 2 shows the
form and content of a sample message.

A communication process is successful
when mutual understanding is
reached, i.e. when the mental state
of the speaker and the generated
mental state in the hearer correspond
[Reijswoud and Dietz 1999:14]. To
achieve mutual understanding the

speaker and the hearer may ask
each other for clarification.
Communication is only complete
when the hearer confirms he has
understood the speaker.

A conversation is a sequence of
communicative acts between two
people with a particular goal [Dietz
and Mallens 2001]. Technically,
conversations consist of
communicative acts that share the
same fact and time-for-completion
(see Figure 3) [Reijswoud and Dietz
1999:20]. Within business processes
two kinds of conversations are
relevant. Performative conversations
aim at letting other people do
something. Informative conversations
aim at the sharing of existing
knowledge. The main difference
between performative and informative
conversations, is that performative
conversations are about the creation
of new (production) facts, whereas
informative conversations are about
the distribution of knowledge.
Examples of informative and
performative conversations are
shown in Figure 3.

Business Events
A coordination act is a communicative
act directed from the performer of the
coordination act to an addressee. As
a communication act consists of an
intention, a fact and a time-for-

(English spoken sentence)

promise
the house is clean

this evening (before partner is home)

message

form

content/meaning
intention

proposition
fact

time-for-completion

Figure 2. Message form and content

JOURNAL1 | Business Process Decomposition 21

completion, coordination acts can be
fully specified as follows [Dietz 2002]:

<performer>: <intention>:

<addressee>: <fact>: <time-

for-completion>

A coordination act is always about
a production act, or more precisely
about the production fact, whose
creation marks successful completion
of the production act. The fact in the
specification of a coordination act
therefore is a production fact.

Examples of concrete coordination
acts are:

Mark: request: Esther:

credit limit of account

1-345 is ¤2000:tomorrow

Greg: promise: Harvey:

Greg’s article for journal

#1 is written:13/10/2003

The successful completion of a
coordination act is recorded as a
coordination fact, which can be specified
in the same way as the coordination

act. For the performer of a coordination
act, the coordination fact represents
his/her expectation that the addressee
will perform certain actions. From
the perspective of the addressee the
coordination fact is a ‘business event’,
an event within the organisation or
its environment that triggers the
organisation to perform some action
[Eriksson and Penker 2000:74]. An
example of coordination (f)acts and
business events is shown in Figure 4.

The Business Transaction Pattern
When studying conversations between
people who are trying to coordinate
their actions, the communicative acts
that make up the conversation appear
to follow the same conversation
pattern, regardless of the business
context. Dietz and Mallens [2001]
describe this pattern as follows:

First of all, one agrees upon what is to
be achieved. Next the execution takes
place in the production world, for
example, the shipment of goods ordered.
The commitment still stands, however,
until the result is accepted between the
parties involved, meaning that there
is a third phase. It is this pattern that
we call a ‘business transaction’, the
elementary block of a business process.

The three phases of the business
transaction pattern are shown in
Figure 5.

A business transaction involves two
roles; a customer or initiator role
starts the business transaction, and
a supplier or executor role actually

Informative conversation
(natural language):

Harry: what is the capital
of the Netherlands?
Sally: Amsterdam

Informative conversation
(communicative acts):

Harry: asks: Sally:
What is the capital
of the Netherlands?
Sally: States: Harry: Amsterdam

Performative conversation
(natural language):

Person W: The house will be
clean when I come back home
tonight, won’t it?
Sally H: Off course it will be.

Performative conversation
(communicative acts):

Person W: requests: Person H:
The house is clean tonight

Figure 3. Informative and performative conversation examples

performer intention addressee production fact time-for-completion

Harvey Greg

coordination (f)act/

business event

request

Greg's article for journal #1 is written

before 13th October 2003

Figure 4. Structure of coordination (f)acts or business events

JOURNAL1 | Business Process Decomposition 22

performs the intended action. The
first phase of a business transaction,
the order phase, is a performative
conversation that starts with a
request from the customer to perform
a particular action and ends with a
promise by the supplier. During the
execution phase the supplier performs
the requested action. The transaction
is concluded with a performative
conversation in the result phase,
which starts with a statement from
the supplier that the requested action
has been performed and finishes when
the customer accepts that the action
actually has been performed as
originally agreed.

The amount of interaction (negotiation)
that takes place between customers
and suppliers in the order and result
phases can vary strongly. In practice
there are instances where certain
steps are taken implicitly and no
communication occurs at all. For
example, the expiry of the period in
which a customer can return bought
products to a shop can be regarded
as the implicit acceptance by the
customer that the shop has fulfilled
its obligations. In other situations
long negotiations may take place
before suppliers promise certain
actions or customers accept the
outcome of a production action. The
ICT industry (unfortunately) provides
plenty of examples in this respect.
Reijswoud and Dietz [1999:98-108]
describe the business transaction
pattern in greater detail.

Business Processes and Roles
In each of the three phases in a
business transaction, new business
transactions can be initiated whose
outcomes are required to continue with
the original transaction. In this way

Request

Quit

Promise

Decline

Execute

Stop

State Accept

Reject

Order Phase

Initiator
(Customer)

Executor
 (Supplier)

Initator
(Customer)

Result Phase

Success Layer

Negotiation Layer

Failure Layer

Execution Phase

Figure 5. Activity diagram for business transaction pattern

<<coordination fact>>
MemberPayment
[requested]

<<coordination fact>>
MemberPayment
[promised]

<<coordination fact>>
MemberPayment

[stated]

<<coordination fact>>
MemberPayment
[accepted]

<<production fact>>
fee for membership M

Payment
[promised]

Request

Promise

<<coordination fact>>
MemberRegistration

[requested]

<<coordination fact>>
MemberRegistration

[requested]

<<coordination fact>>
MemberRegistration

[stated]

<<coordination fact>>
MemberRegistration

[accepted]

Person MemberRegistration

Request

MemberPayment

Promise

State

Pay fee for membership M

<<production fact>>
membership M
Membership

[new]

State

start membership M

Accept

Accept

Figure 6. Example business process [Dietz 2002]

“The amount of interaction (negotiation) that takes place
between customers and suppliers in the order and result
phases can vary strongly.”

JOURNAL1 | Business Process Decomposition 23

it is possible to create arbitrary
complex structures of nested and
chained business transactions. Dietz
[2002] defines a business process as
a structure of causally interconnected
transactions for delivering a particular
final product to the environment.
In other words, a business process
starts with a top-level business
transaction which is initiated by a
role in the environment of the
organisation and which may include
other business transactions. These
child transactions produce intermediate
goods or services (production facts)
that are required to successfully
complete the parent transaction.

Figure 6 shows an example business
process for the registration of library
members. The business process consists
of two business transactions. The
‘member registration’ business
transaction is initiated by a person
who wants to become a library
member and executed by employees
of the library who are authorised to
register new members, i.e. they are
allowed to play the ‘member
registration’ role. A person must pay
before being registered as member. For
this reason the ‘member registration’
role initiates a second business
transaction to obtain payment of the
membership fee. The executor of the
‘membership payment’ transaction
is the ‘membership payment’ role.

Though the ‘membership payment’
role usually is played by the same
person who initiates the membership
registration transaction, this is not
necessarily the case, e.g. an altruistic
friend or relative might pay the fee.
This particular example illustrates
an important principle: every business
transaction has by definition one

corresponding business role, which
represents the elementary amount
of authority a person must have to
be an executor of the transaction.
Dietz [2002] explores the subject of
authorisation in greater detail.

Each business role that is responsible
for the execution of a particular
business transaction operates as an
elementary supply chain. Actors in
a particular business role can act as
supplier in one business transaction
and as a consumer in an arbitrary
number of subordinate business
transactions (see Figure 7). Every
business role provides an elementary
and well-defined business service
and may consume one or more other
elementary business services offered
by other business roles.

Up until this point in our analysis
of how organisations achieve their
objectives, we have focused on how
organisation members ‘talk’ to each
other to align their acts. In the
following sections we will concentrate
on what people do between
coordination actions.

Work Items and Action Rules
An organisation springs to life when a

business event occurs – that is, when
a coordination fact is created. The
coordination fact is created within
a particular business transaction
instance and signals there is work
to be done by one of the roles that
participate in the transaction, unless
the coordination fact signals the end
of the business transaction instance
(for example a business transaction
has reached the ‘accepted’ or
‘stopped’ state).

Every business role has a work item
list that contains prioritised entries
for all coordination facts that the
role must respond to. Whether a
coordination fact results in a work
item for the initiator or the executor
of a business transaction depends on
the intention of a coordination fact.
For example, a request results in a
work item for the executor, whereas
a promise creates a work item for
the initiator.

An action rule (shown in Figure 8)
specifies the actions that must be
performed by a certain business role in
response to a particular coordination
fact [Dietz 2002; Reijswoud and Dietz
1999:117-128]. Though action rules are
procedures for business roles, these

Membership Registration
Business Transaction

Person

customer

roles within business transaction

supplier customer supplier

Membership
Registration

business roles

Membership
Payment

Membership Payment
Business Transaction

Figure 7. Business roles

JOURNAL1 | Business Process Decomposition 24

roles always remain responsible for
taking well-considered and socially
acceptable decisions, even if that
means deviating from the procedures!
This is a fundamental reason why
it is not possible to fully automate
the execution of action rules. When
automating action rules, the people who
are responsible for the execution of
these rules must be able to intervene in
and overrule the automated procedures.

The daily life of a person in a business
role consists of selecting the work item
with the highest priority from his/her
work item list and performing the
applicable action rule. The execution
of an action rule always ends with the
performance of one or more
coordination acts to pass the buck on
to the next role that must play its part

in the business process. The
coordination act may be preceded
by one or more actions to retrieve or
calculate facts and/or a production
act. provides some examples of action
rules written in pseudo code.

Business Knowledge
The participating roles in a business
transaction must have knowledge about
applicable business rules (restrictions),
production facts and coordination
facts in order to be able to act
responsibly. The restriction that
someone can only rent a video if he
has paid all previously completed
rentals is an example where knowledge
of production facts is needed. Video
store employees need knowledge of
coordination facts (in this case
unfinished video return transactions)

to be able to comply with the
restriction that a customer may not
rent any videos if he/she still has
any unreturned videos.

In many cases knowledge of external
rules and facts is also required.
Legislation and standards are examples
of external rules on how acts are to be
performed. In any stage of a business
transaction external knowledge may
be required. For example, during the
assessment of a benefit request, a
social service may require additional
information about the income, housing
situation, household and health of an
applicant. As the actual facts that
must be known about an applicant
might depend strongly on his or her
situation, the applicant only has to
provide a limited amount of

Business role Work item Action Rule

Membership on requested with person P is member of new membership M
Registration MembershipRegistration(M) if Age(P) > minimal age for membership

and number of members < maximum number
then
promise MembershipRegistration(M)

else
decline MembershipRegistration(M)

end if
end with

Membership on promised request MembershipPayment(M)
Registration MembershipRegistration(M) with fee(M) is remaining_fee(M)

Membership on accepted if promised MembershipRegistration(M)
Registration MembershipRegistration(M) then

<decide to start membership M>
state membership M has started

end if

Figure 8. Examples of action rules [Dietz 2002]

“The participating roles in a business transaction must have
knowledge about applicable business rules (restrictions), production
facts and coordination facts in order to be able to act responsibly.”

JOURNAL1 | Business Process Decomposition 25

information in the benefit request.
Additional information will be
requested from the applicant and/or
other organisations when necessary.
Figure 9 shows business process and
business knowledge concepts.

Three Layers of Services
We can view the actions that take
place within a business process at
three levels of abstraction: the business,
informational and infrastructural level.
So far we have focused on the business
level. At this level we see business
roles that are played by social actors;
actors who are aware of the social
implications of their actions. These
actors are responsible for the
coordination of production acts by

entering into and complying with
mutual commitments. They are also
responsible for the execution of
production acts.

Social actors use the services of rational
actors to memorise and remember
knowledge and to exchange messages
with other actors. Rational actors can
perform logical operations on
knowledge, but have no awareness of
the social context they operate in. They
play roles at the informational level,
as they are responsible for the
gathering, remembering, providing
and computing of knowledge. We can
see what knowledge is remembered
and distributed by these actors, but
cannot see how the storage and

transmission takes place. That is, we
can see the meaning of documents and
messages but cannot see their form.

Rational actors depend on the
services of formal/physical actors
to produce, distribute, store, copy
and destroy data or documents that
contain knowledge. These actors play
infrastructural roles: they deal with
data and documents but do not show
any interest in their meaning.

The actors at the business,
informational and infrastructural level
provide three types of services, layered
on top of each other. At the business
level we find business transaction
execution services that coordinate
other business transaction execution
services and informational services to
produce a particular good or service.
At the informational level we
distinguish three categories of
informational services: communication
services enable the exchange of
messages between business roles,
computation services offer facilities to
compute derived facts and information
management services provide long-term
memory of (production, coordination and
external) facts and business rules.
Informational services depend on
infrastructural services for the storage,
distribution and calculation of data.
The dependencies between these roles
are shown in Figure 10.

The realisation of services at all three
levels of abstraction can vary from
being fully manual to highly
automated. Human beings are able
to perform roles at all levels, whereas
machines are very capable to perform
infrastructural and informational tasks,

BUSINESS PROCESS

BUSINESS KNOWLEDGE

0..11
*

*

*

*

*

1

delegator

*

1

1

1

ends with
performs

delegate

authorises execution of

executor

*

1

*

* *

*

*

* *

1 0..1

0..10..11

1

follows guidelines of

schedules response to

uses uses

contains

generatesgenerates

1

<<business>>

action rule

<<business>>

Business Transaction
<<business>>

Role

<<business>>

delegation

<<business>>

Work Item
<<business>>

Coordination Activity
<<business>>

Production Activity

<<business>>

Production Fact
<<business>>

Coordination Fact
<<business>>

External Fact

<<business>>

Derived Fact

<<business>>

Fact

<<business>>

Original Fact

initiator

Figure 9. Business process and business knowledge concepts

JOURNAL1 | Business Process Decomposition 26

but have absolutely no social
awareness. It is for this reason
that machines cannot carry the
responsibility for performing actions
in a socially acceptable manner. In the
end there must always be a person
who is responsible for the execution
of business transactions.

A human actor who plays a certain
business role can delegate parts of the
execution of business transactions to a
machine, but he/she will always remain
responsible for the result and have to
stand by to deal with exceptional
situations. For example, an e-commerce
web site may handle the majority of
orders without any human

intervention. However, a customer who
does not receive his order will contact
a sales person to resolve the problem.

Conclusion
By analysing how and why
communication takes place between
cooperating persons, we have
encountered the business transaction

Data Storage

Business Transaction Execution

Business Role Informational Role Infrastructural Role

Derived Fact Computation

Calculator

Data Transfer

Message Exchange

Original Fact & Rule Memory

Figure 10. Business role support by informational and infrastructural roles

JOURNAL1 | Business Process Decomposition 27

communication pattern. We have
seen how instances of this pattern
are chained together to form business
processes. The understanding that
business processes are composed of
business transactions enables us to
perform the reverse action; the
decomposition of business processes
into business transactions.

Each business transaction identifies
one business role, which represents
the elementary amount of authority
and responsibility to execute the
transaction. These business roles are
the building blocks for authorisation
policies within organisations.

Each business role can be viewed as an
elementary supply chain and provides a
well-defined service. By studying how
these services are realised we have
encountered the need for additional
informational and infrastructural
services to enable storage and
exchange of information.

The decomposition of business
processes into business, informational
and infrastructural services and the
definition of their dependencies provide
a solid basis for enterprise information
and application architecture. As
technology has not played a role in the
decomposition of business processes
into services, the resulting services
are technology-independent. The degree

to which services are automated may
vary strongly, but this has no influence
on the information architecture.

When implementing a service, we
would recommend hiding both the
chosen implementation technology
from other interacting services as
well as the degree of automation
within the service. This approach
provides an organisation with the
flexibility to change the technology
itself as well as the way it is applied
in business process implementations.

We started this article with the
question how to avoid today’s
solutions becoming tomorrow’s
headaches. Focusing on communication
patterns that stay the same regardless
of technology and business process
changes certainly seems like a good
place to start.

Further Reading
More information on DEMO can
be found on the DEMO web site
(http://www.demo.nl). The DEMO
handbook [Reijswoud and Dietz
1999] provides detailed information
on the theoretical background of
DEMO and also describes a
business modelling approach.

References
Austin 1962
J L Austin, How to do things with
words, Harvard University Press,
Cambridge MA, 1962

Dietz 2002
J L G Dietz, The Atoms, Molecules and
Fibers of Organizations, Data &
Knowledge Engineering, 2003, internet:
www.demo.nl/documents/2003-DKE.pdf

Dietz and Mallens 2001
J L G Dietz, P J M Mallens, An
Integrated, Business-Oriented
Perspective on Facts and Rules,
data2knowledge newsletter, January-
May 2001

Eriksson and Penker 2000
Business Modeling with UML: Business
Patterns at Work. Wiley Computer
Publishing, 2000

Habermas 1981
J Habermas, Theorie des
Kommunikatives Handelns, Erster
Band, Suhrkamp Verlag, Frankfurt am
Main, 1981

Reijswoud and Dietz 1999
V E van Reijswoud, J L G Dietz,
DEMO Modelling Handbook Volume 1,
Delft University of Technology –
Department of Information Systems,
Version 2.0, May 1999

Searle 1969
J R Searle, Speech Acts, an Essay in
the Philosophy of Language,
Cambridge University Press,
Cambridge MA, 1969

Gerke Geurts
gerke.geurts@logicacmg.com
Gerke Geurts is a technical architect
within LogicaCMG. He has a keen
interest in the many facets of software
development in an enterprise setting.
His waking hours are spent coaching
and trying to stay ahead of clients,
software developers and his children.

Adrie Geelhoed
adrie.geelhoed@logicacmg.com
Adrie Geelhoed is an enterprise
architect working for LogicaCMG
Financial Services and provides
business-centric architecture and
software development guidance to
customers and consultants.

http://www.demo.nl
mailto:gerke.geurts@logicacmg.com
mailto:adrie.geelhoed@logicacmg.com

JOURNAL1 | Metadata Application Design 28

In this article, I present an overview
of a pragmatic approach to using a
metadata-driven approach to
designing applications that has a
practical presence in the development
of applications. The article is presented
in an open style and hence is not
targeted at the deep technical
community. I hope this will
demonstrate why metadata-driven
design is one of the most powerful
tools at the disposal of IT professionals
who are engaged on building a
software product.

Remember 30?
Turning thirty was a brief affair. No
run up to a massive ‘fair well twenties’
party, no late night at a nightclub, and
no enormous hangover in the morning.
But it was no less memorable for the
lack of pomp and ceremony. In place of
a hangover was a small realisation
that formulating patterns is important
to anyone working with technology.

I was in Singapore, to assist a small
team running a package selection and
integration project for a bank. I had
arrived shortly before my birthday,
with the intention to lay low, get some
reading done, maybe to do a little
work, and certainly to defer all
celebrations until I returned home.
A colleague of mine, Lyn, was clearly
appalled by my attitude and had an
altogether different idea. Post dinner
on that ceremonious day I was duly
press-ganged up to the seventieth floor
bar of our hotel. So there we were sat,
with the wonderful views out over the
Singapore harbour, me drinking the
ubiquitous Singapore Sling and Lyn
drinking a fruit cocktail as she was
nearly six months into her second
pregnancy. Not a scenario I ever

imagined for my thirtieth birthday.
It was the first time any of us had
worked closely together and hence we
sat discussing the path of professional
fortune that had brought us to this
project. Lyn had formerly worked for
SWIFT and held much of the business
knowledge the project would require.
As for me, my previous engagement had
been on a large custom application
project but this time my role was to
define an architecture in which to
position and integrate the various
products to be employed on the project.

Clearly, Lyn and I were different
characters with very different
professional backgrounds. Business
verses techie on the seventieth floor.
The stage was set for a showdown, a
tête-à-tête to the bone, but strangely
we didn’t end up trying to kill each
other. Business verses techie it may
have been, but Lyn and I reached an
agreement that evening on one thing
that has influenced my professional
work since I first started reading the
patterns literature. When it comes to
IT projects, they work on patterns. And
these patterns are not just for techies.

How high are your patterns?
Patterns of analysis, design, and
implementation are virtually
ubiquitous in the IT industry today
and have received much publicity.
Given the corpus of work freely
available in the patterns area, there
can be little doubt that the majority of
key players in the IT industry believe
applying patterns to the building of
applications is a valuable and powerful
approach. Many aspects of patterns
feed directly into the common goals
of methodologists, analysts, designers,
implementers, testers and

management, namely those of higher
quality, more maintainable, more
reliable and faster to develop solutions.

Powerful as patterns can be, they have
one aspect in application design and
development that has arguably proven
difficult to achieve. That aspect is
a substantial improvement in
traceability (and hence consistency),
from the analysis of the solution
domain through to the creation of
an application based on a standard
framework-based implementation.

It’s a simple but lofty goal; to make
software quicker to develop and more
reliable the IT industry needs to learn
to reuse software infrastructure more
effectively; to reuse infrastructure
more effectively, we need to define the
allowable (or supportable?) patterns
of use for the target infrastructure.
Introduce a more complete traceability
in the software lifecycle and you get
the potential to realise this, because
traceability provides a formalised path
to transform analysis-time artefacts
right through to build-time artefacts.
This is the key to being able to
forward-engineer the analysis;
you need to know the technical
(infrastructure) environment you are
planning to target with generated code.

Looking at the various infrastructure
initiatives in the IT industry, across
many technologies, it is clear that
many software infrastructure providers
are looking to productise the concepts
around patterns in to a framework
for the general implementation of
applications. To a certain extent, this
has been going on in the IT industry
for many years. However, this time the
infrastructure providers are looking

Metadata-driven Application
Design and Development
By Kevin S Perera, Temenos

“Traceability provides a formalised path
to transform analysis-time artefacts right
through to build-time artefacts.”

JOURNAL1 | Metadata Application Design 29

much higher in the layers of the
application architecture. This time,
they are out to steal the wind of the
application architect and put it in the
sails of their framework.

Looking at what is on offer today
and what is clearly in the pipeline,
application architects out there should
be tracking this carefully; this time
we have infrastructure products
and tools that have been creeping
up towards the base of the functional
layers. And with this creeping comes a
new adversary for the not-invented-
here syndrome. The tools are not just
helping you to model, but are helping
you to speed your coding via
systematic code generation.

Want some of this? Then you need
to start working with patterns,
both on the infrastructure and
application layers.

This movement in the IT industry
has been gathering strength for
many years. A simplified view could
be, naturally, simple.

– The higher the patterns of [reuse
of] infrastructure climb, the more
we can produce repeatable, higher
quality and faster time to market
business applications.

The less simple, more technical
view on this should be a more long-
term perspective.

– Understand the patterns and
we can build the supporting
infrastructure.

– Productise the infrastructure and
we can build high-productivity tools
to support that infrastructure.

– Give the technical community the
tools, and they will create more
repeatable, higher quality
applications with a faster time
to market than is typical today.

Patterns, patterns, everywhere
If our work in information technology is
as heavily linked to patterns as the
industry appears to believe, then
working with patterns is a reality for
most of us. We probably don’t realise the
patterns we employ in our everyday
roles, but this is the nature of a
pervasive subject matter. If something
is everywhere, after only a brief
period most of us simply don’t see it
anymore; especially if it’s related to
tasks we know and perform frequently.

If they are everywhere, what does it
mean to work with patterns? Many
things to many people I am sure, but
for the purposes of this article it has
two concrete meanings. In the design
process, using patterns means basing
the design on commonly occurring
structures (‘patterns of design’)1,
preferably using design tools capable
of storing the design in some form
of model representation such as UML.
In the build process – where the
real code is cut – using patterns
means using software infrastructure
products and tools including code
frameworks and code generators
such as Codesmith2.

Fortunately, the nature of architecture
and design proffers the opportunity
to identify and classify patterns. The
valuable work done by other authors
means I don’t need to engage in a long
discourse on the value proposition of
patterns in design. However, the same
statement cannot be made carte

blanche for the implementation
phase of the software lifecycle where
patterns – or more specifically
frameworks – unfortunately have
gained the occasional bad reputation.

Effectively, frameworks suffer from
‘generics’. It is often possible to apply
the use – or abuse – of a framework in
many different ways. In providing for a
reasonable number of alternative uses
and styles of use, to provide a generic
base service to those people building
applications, frameworks have gained
an unjust reputation of being overly
complex and hence difficult to
understand as IT professionals are
swamped with information on the
various approaches employed.
Getting the level of a framework
right, achieving the balance between
prescription and flexibility, has proven
a difficult challenge to meet. Get it
wrong and you always face the
question, do you need patterns to
implement software-based systems?

The root cause of this issue is
probably that most application teams
are under pressure to produce higher
quality solutions as fast as possible.
Naturally, this leads teams away from
approaches that are potentially more
complex and that hence may delay the
onset of the application’s build. When
working under pressure, nobody is
looking for an approach that they feel
has the potential to bring more stress.

Anyone for some stress reduction?
Thinking about stress brings a
question to mind. Ever found a pattern
to help relieve some stress? I have one
that is absolutely fantastic. Go home,
hide in the study away from the
madding crowd, scan read the
remainder of the days’ emails and

1 For example, as per the definitions
documented so very successfully in
the ‘gang of four’ book ‘Patterns of
Software Design’.

2 http://www.ericjsmith.net/codesmith/

http://www.ericjsmith.net/codesmith/

JOURNAL1 | Metadata Application Design 30

try to update the little work and play
mind-map I keep hidden on my laptop.
All the while sipping a good single malt
or maybe a white port. Now that is a
truly great pattern.

I have always found patterns in many
places, from the manner in which
start of day status meetings are run
to the end of the day wind-down. It is
inherent in the nature of patterns that
they help us to manage complexity.
A good pattern can provide a good
understandable description of complex
structures that can equally assist in
the description of complex relations.
This can make life so much more
pleasant and stress-free for anyone
whom needs to work with complexity.
Admittedly, doing so also has a couple
of other useful side-effects, but we will
investigate those later in the article.

If the use of software frameworks
and infrastructure can be defined by
patterns [of use], then metadata is
the language used to describe those
patterns. Hence, describing the
patterns is the responsibility of
metadata. Metadata is not a secular
language, many different dialects of
metadata exist and may even cohabit.
Metadata is the common term for the
representation of the data models that
describe patterns. Hence, for any given
set of metadata the quality of the
description it offers is determined
by the associated metadata model
(literally, the model of the metadata).

It is worth noting at this point that
patterns are not and should never be
restricted to design-time. Previously,
standards such as the Unified
Modelling Language and initiatives
such as Model Driven Architecture
indicated to many that modelling

and metadata were upstream in the
project lifecycle. Not so. IBM, like many
large technology organisations,
started work on formalising a model
of a total system based in UML during
the late 90’s. Many of these initiatives
never became official external
publications, but in October 2003
Microsoft broke this apparent silence
and published details of its pending
System Definition Model (SDM). With
models such as SDM covering the entire
scope of a system, you can expect to see
model-driven and hence metadata-
driven processes encroaching on
almost every area of the software
development lifecycle.

Describe your patterns to reap the
benefits of functional, policy and
service abstractions
Using metadata in the design and build
processes – or metadata-driven design
and development of applications –
proffers one solution that can
elegantly leverage the powerful nature
of patterns, and hence leverage the
high value software framework and
infrastructure products that are now
available in the market.

Metadata helps to describe the patterns
present in your application’s domain.
Describing (or modelling) the patterns
that the application must employ helps
to promote understanding of what
features the software infrastructure
must provide and the style in which
that infrastructure could best be
utilised. This provides very early
visibility of the infrastructure needs
and also permits, very importantly,
a safer, more controlled environment
in which the software infrastructure
can climb higher in the layers of an
application’s architecture. Control
over how infrastructure creeps up

the layers is critical to providing higher
value services to the application
developers. This provides your
applications developers with an
increased level of functional abstraction.

Modelling the needs of an application
using patterns (in turn described by
metadata) may be applied to almost
any area. Hence, metadata can be
used to describe the mapping of object
attributes to relational tables, through
the definition of rules around the
runtime session management of a pool
of related objects to the signatures
of the services offered by a particular
class of object. Such rules form the
policy definitions used by application
developers to control the underlying
behaviour of the infrastructure.

When carefully and judiciously applied
to the modelling of your application,
metadata may be employed in the
description of both the infrastructure
and application service boundaries
and for the configuration data of the
associated service implementations.
Subsequently, the metadata
descriptions associated with these
services (and the metadata model) may
be used in the forward-engineering of
your services – into existing and future
technology environments. This provides
a rich – and reusable – approach to
services definitions.

Using metadata in this manner, across
the business (application) and technical
(infrastructure) domains, requires an
agreement on the overall metadata-
model between the business analysis
and the software infrastructure. This
is an agreement on a behavioural
contract between the application and
its infrastructure and permits both the
detailed functional analysis and the

“The metadata concept may be applied to many
areas of technology, and hence to many software
products, in the business and technical layers.”

JOURNAL1 | Metadata Application Design 31

construction of software
infrastructure to run in parallel.
In such a scenario, the application
development team may now tackle
critical issues at a very early stage
in the development process which is
known to be a key factor in improving
the effectiveness of the software
development lifecycle.

The metadata-driven approach also
works well with other mainstream
approaches such as use case modelling
and artefact-based methodologies
(for example, the Rational Unified
Process), has the potential to naturally
lend itself to reuse and repeatability,
and is independent of the target
technology platform.

Technology
Before diving into the discussion
about how metadata links to the
Service Oriented Architecture and
Web Services, it is probably worth a
little pause at this point to discuss
the technology behind metadata.
In thinking how should this be best
formulated, I came to the conclusion
that there is no easy way to say this in
a technology-related article. So let’s
just put it out there – quite simply,
there is no ‘technology’ in metadata.

Metadata itself is a concept. That is
why many different models of metadata
– or metadata models – can exist. The
metadata concept may be applied to
many areas of technology, and hence
to many software products, in the
business and technical layers. JNDI
has a meta model, as does LDAP and
Active Directory. They all use similar
concepts in their meta models, but all
have different (physical) metadata.
What is clear is those design and
development products using metadata

also use (embed) or link (integrate)
to tools. Frequently these tools are
graphical and, more and more, are
linked to improving development
productivity. Next to the metadata
itself, which clearly has a primary
importance, this use and integration
of tools to support the storage,
propagation and use of your metadata
model across the software lifecycle is
probably the most important aspect
of technology in the design and build
environments.

When selecting tools to assist with
design and development, the most
important criteria are often centred on:

– the ability of the tools to store and
use metadata, both of their design
and yours.

– the ability of the tools to share
metadata, which is particularly
useful between the design-time
and build-time to help reduce the
semantic gap between the design
and the implementation.

– the integration of the development
tooling with the underlying software
infrastructure and runtime platform,
particularly for code generation.

– the integration of the design and
development tooling with code
generation technology, such as
scripting languages that may
be used to interrogate the
metadata model.

– standards (MOF) compliance.

Linking SOA and Web
Services using metadata
Instead of creating a several thousand
word essay on why using metadata in
design and development is so great,
I’ll try an alternative, more ‘techie-
friendly’ approach. Let’s assume we
all agree that metadata-driven design

and development is just fine. Patterns
are great, patterns govern most of
what we do in IT, metadata is a cool
way to represent your patterns, and
finally that metadata can be used in
both design and build.

As we all agree that metadata-driven
design and development is great, we
don’t have to waste any more time
debating its merits. In place of the
essay, let’s take a look at what we could
implement with this approach based on
a link between SOA and Web Services.

First, a cautionary note to the reader
before continuing. The examples are
exactly that – examples. Focussing
on one aspect of using metadata in a
system does not mean the same
concepts do not apply to other areas.
Many areas of systems already use
accepted metadata models, particularly
around authentication and
authorisation using products such as
Active Directory/LDAP and certificate
management services.

The proposition
Walking through two example
applications built on similar principles
but different implementations, I am
going to explore how a metadata-based
approach can be used to define the
service interfaces on an existing
application and on a new application.
The primary goal of this exercise is to
propagate those interfaces to an
additional technology environment
using a combination of infrastructure
products, a (code) framework for
building applications (an application
framework) and a metadata model
seeded in the design phase.

JOURNAL1 | Metadata Application Design 32

Example applications –
common ground
In this walkthrough, the two example
applications perform similar functional
roles and have a similar façade to the
exterior world.

As I am focussing on the service
interface layer on the core server, I’m
going to make a few assumptions
about the implementation of each
application. First, both applications are
running on the same database and data
model – application #2 is the
candidate replacement for application
#1. Second, I am not concerned with
the presentation interface or any
middle-tier user interface components.
Third, I am not concerned with any
detailed deployment aspects or
configuration of any communications
mechanisms. Fourth, the server model
is identical, with application sessions
shared across all requests for services
and server-side session handling
embedded in the application or the
runtime platform. Fifth, and last, the
development of the application is
carried out by multiple teams in
several time zones.

While the actual (business)
functionality may be similar between
the applications, what is not common
between the applications is the model
for presenting their service interfaces
on the system boundary.

Example application #1 –
the original, the legacy
The server-side interface of the original
application was comprised of a C
header file. Each function on the
interface employed a signature
tailored to its purpose. External
components called to the interface

functions using a DCE-based remote
procedure call.

Adding a new function is relatively
simple, but highly coupled to the DCE
technology. Adding an alterative access
to provide a non-DCE invocation
channel to the function is not possible
without significant re-engineering.

Note that the data dictionaries of all
services are exposed directly on the
application’s interfaces and that
function names are placed directly in
the global namespace of the application
(they must be unique across all
functions being developed by the
teams). This is shown in Figure 1.

Example application #1 – the
evolution
The original application #1 was later
wrapped by a set of C++ classes to
expose the server-side interfaces on
a CORBA bus. The C++ interfaces
are not direct wrappers, but group ‘C’
functions in to sets of services and

provide a uniform ‘generic’ object as
the request context.

Each service defines a number of classes
derived from the request context class,
to create a set of dedicated ‘containers’
for the parameters required by the
underlying ‘C’ functions on the server-
side. Thus functions are grouped into
services and the parameter definitions
for all functions are encapsulated by

the set of container class definitions.
To facilitate the handling of these
‘more generic’ requests, a new server-
side (application) component type was
introduced to check the request context
to validate the correct parameters
have been supplied and map these
parameters to the correct underlying
‘C’ function. The request mapper is the
implementation of the service defined
in the interface definition language
(IDL). Normally, to permit parallel
development, there is one request
mapper per service IDL. However, this
model is not enforced by the system.

Adding a new function to an existing
service requires the derivation of a
new container class and the addition
of new code in the mapper to marshal
the container data and make the
underlying ‘C’ call. Adding a new
function to a new service requires first
that the service interface be defined in
IDL and a mapper be created based on
that service interface.

Note that the data dictionaries of all
services are exposed directly on the
application’s interfaces, but are scoped
by service and request context
definitions as shown in Figure 2.

Example application #2 – the King
of the Hill?
The key difference between
application #2 and application #1 is
that application #2 was built with a

External

Component

‘C’ RPC fooA(p1, p2, p3)

‘C’ RPC fooB(p12, p5) Application

Server

Component

Figure1. Application #1

JOURNAL1 | Metadata Application Design 33

metadata-based approach. Application
#2 is not restricted to reusing the
existing ‘C’ functions.

Each server-side function in
application #2 is written based on
a common metadata model for the
representation of a service request.
This is similar to the evolved
application #1 in concept, but the
handling of the generic request contexts
is embedded in the server code. Server-
side functions must now understand the
generic request context format. This is
shown in Figure 3.

To represent the request context,
concrete parameters are not desirable.
In place of a concrete function
signature, at runtime application #2
is using a generic structure for the
request context. However, in this
instance the request context needs to
be similar in nature to a name-value
pair property-bag. Property bags can
be hierarchical and hence can be
used to represent any arbitrary data
structure much like an XML document
based on an XML Schema.

The service name and request context
are all that is required by the new
server-side application components
to execute the request. The service
name coupled to the definition of the
permitted structure of the request
context is persisted in the database as
a ‘service definition’. This definition,
effectively an entry (row) in the
database, belongs to that service alone.

A new generic request handler
application module is included in
the system. This module has been
designed to interrogate the metadata
repository and validate incoming
requests against the associated service
description metadata. It can also create
the internal memory structure from the
request context to pass to the target
service implementation.

Thus the interface definition is held in
the metadata repository (in this case,
the applications database).

Adding a new service to the
application is straightforward on the
server-side. Implement the generic

interface and manage the request
context structure required for the
service request, assign the service a
name, register the name and request
context description in the database
and perform any deployment actions
required to deploy the new service
code on the server.

The same cannot be stated for the
client side. In place of the definitive
client-side header file or IDL interface
definitions of application #1, the
client-side of application #2 receives
only a generic entry point function
via the same technical-interfacing
technique. This is a big change, in
that the service data dictionaries
are no longer propagated directly
onto the service interfaces. The
service interfaces, from an external
perspective, are all soft-set in the
database. Note also that the scope of
a service definition is now one-to-one
with the service implementation.

Clearly, application #2 suffers from
an imbalance. The server-side is now
very flexible and well defined, while
the client-side needs to understand
the metadata before it is possible to
understand what services are on offer.

Enter the world of service discovery.
The services of application #2 need
to be discoverable by clients wishing
to use them. This is possible via the
tried and trusted pattern called
documentation, Users (clients) of
the applications services can read
the interface specification and
therefore construct well formed
and validate requests.

Metadata-driven SOA
Obviously, example application #2 is
very service oriented at the system

External

Component

‘CORBA’ svcA.doIt('fooC', txA)

‘CORBA’ svcA.doIt('fooC', txB) Application

Server

Component

R
e
q
u
e
s
t

M
a
p
p
e
r

Figure 2. Application #1 evolved

External

Component

application.doIt(‘svcA’, requestContext)

application.doIt(‘svcB’, requestContext) Application

Server

Component

R
e
q
u
e
s
t

H
a
n
d
l
e
r

Metadata

Figure 3. Application #2

JOURNAL1 | Metadata Application Design 34

boundary – it does not know anything
else – but it would be unfair to claim
example application #1 does not
embody some aspects of a service
oriented architecture.

In its original form, application #1 is
like many so-called legacy applications
written in ‘C’ or COBOL. The code may
have been modified many times, but
within the domains of the technologies
available at the time these applications
were fundamentally service-oriented.
‘C’ programs had their extern function
signatures; COBOL programs had
their copy books. Include an
infrastructure like IMS or CICS, and
you certainly have a service-oriented
system façade as these TP monitors
forced that model – a bucket of data
in, run the request, a bucket of data
out and describe the data buckets
via data structures. That is a
service, right?

So what is the fundamental difference
between applications #1 and #2? The
answer [for me] is they are both
service-oriented at their system
boundaries, but to be a true service-
oriented application the fractal model
must be applicable from the system
boundary to the database, with service
interfaces defined for each component
or sub-system and each service treated
as a black-box by the caller.

However, staying concentrated on the
system boundaries of the examples
indicates that the quality of the
service description is vastly different
between them.

– The original application #1 is doing
nothing more than exposing library
or executable end points, with its
entry point function signatures

propagated over the system boundary
via the DCE technology.

– The evolved application #1 is doing
the same, but with a more elegant
end point description mechanism
employing a simple abstraction.
Entry point functions are exposed
as a simple service-oriented
abstraction via CORBA, with the
link between the abstraction
and the concrete implementation
via coded marshalling.

– Application #2 has only one
technical end point to expose.
Exposing this end point in any
technical environment in the same
manner (via DCE, CORBA, COM,
asynchronous messaging, etc.) will
generate the same result – the data
dictionary will never be exposed,
only the signature of a generic
service call. The value in this
approach is to use the metadata-
driven service definition and the
associated application infrastructure
for invoking those services, as the
implementation runtime for
generating many different proxies in
a number of different technologies to
permit wider usage of the services.

The metadata-driven nature of the
services of application #2 leads the
solution to a dead-end if a pure
technical ‘code it’ approach is taken
to providing access to those services.
In such a metadata-driven application
exposing functions is replaced by
exposing metadata.

Sound a little dangerous, this idea
of exposing metadata? Exposing the
metadata itself is not the true intent of
a metadata-driven application. Using
the metadata to drive the propagation
of services [functions] over the system
boundary is a more accurate manner of

phasing the approach that needs to
be employed.

From SOA to CORBA, from SOA to
Web Services, from SOA to …
To demonstrate how a real metadata
based service design can outrun
the competition, let’s propose some
new modifications to our existing
example applications.

– We have our basic server-side
runtime setup for all three
applications, this stays ‘as is’.

– We would like to add a clean
migration path to a very fashionable
new integration capability based
on Web Services.

– We also want a migration path for a
number of the external applications
that have been integrated via
CORBA against a number of specific
services of application #1.

– Someone asked for documentation,
so let’s give them that too.

– These external applications are to be
migrated to use the corresponding
services of application #2, requiring
that application #2 supports the
same type of CORBA interface
as employed in the evolved
application #1.

Providing support for both CORBA
and Web Services access channels to
the services of application #2 may all
be achieved efficiently, effectively and
safely using an infrastructure and
code generation. The same cannot be
stated for either guise of application
#1. If the same approach were to be
applied to application #1, the most
likely result would be the sufferance
of increased complexity from the lack of
a central model to describe its services.
Note it is the central model that is
important, much like the TModel

“… a bucket of data in, run the request, a bucket
of data out and describe the data buckets via
data structures. That is a service, right?”

JOURNAL1 | Metadata Application Design 35

concept in UDDI being the central
model (as opposed to the physical data
model used in MSDE or SQLServer as
the repository).

Using the metadata service definitions
coupled to an appropriate tools and
infrastructure environment, a
metadata-driven application is capable
of providing this bridging approach
to propagate its services in to many
technologies via code generation. This
is a direct result of all services being
regular (described in a common
grammar and vocabulary) and that
all service descriptions are available
in a meta-format (a descriptive format
– the metadata) at both build-time
and runtime.

Design direct to implementation –
linking metadata to tools
There are a number of prerequisites
to this approach that are formidable
enough subjects to warrant articles
of their own. But to touch on them
briefly, in a horribly simplified vein,
we need to go shopping for the
following items.

– Modelling tools that are capable of
providing a graphical interface on to
a model repository where we may
store our metadata models and the
associated metadata instances (not
necessarily in the same physical
store). Dependent on your application
domain the usual suspects are likely
to be an UML-style tool, a process
modelling tool or a combination of
the two. The tools must provide a
programmatic interface to their
model storage.

– One or more target infrastructure
products, preferably standards
based or de facto third party
standards based but home-grown

if required. These products should be
focussed on providing the bulk of the
technical services required by an
application, from persistent storage
to session management (and that is
session management on all tiers of
the application, where possible).

– Development environment tools
capable of supporting the
programmatic interfaces of the
modelling tools and the target
infrastructure products.

– Development environment tools
capable of supporting code
generation. For those familiar with
Lex and Yacc, this is not the type of
‘tool’ in question. Supporting code
generation in this context needs to be
at a higher level than the basis of
regular expressions and context-free
grammars. Ideally, code generation
tools should embody some of the
principles of dealing with metadata
as this helps significantly reduce the
complexity of the code generator.

– One or two strong technical leaders,
familiar with the concept and use of
employing metadata to drive the
application development lifecycle.

– A number of designers familiar with
the concept of metadata modelling
and the design of application
infrastructure.

– A number of developers familiar
with the concept of using metadata
and whom agree with the designers.

The modelling tools, infrastructure
products and development
environments all exist in today’s
marketplace. The final ‘people-
oriented points’ are arguably the
most difficult prerequisites to get
right, as is the case with most software
teams it is the mix of people and
approaches that often makes or
breaks the software lifecycle.

Professor Belbin’s test will help get
the mix of ‘people types’ reasonably
well balanced, but there is no
compensating for a unified team3. This
is critically important in a metadata-
driven approach, as all team members
must adhere to the model if the
application is to achieve its goals.

Putting the whole thing together, we
arrive at a process whereby it is viable
for the solution analysis (sometimes
termed the requirements analysis)
to feed directly in to the application
design and the application
infrastructure. The application design
governs the overall schema of the
component model and the metadata
definitions. The application
infrastructure looks to provide support
for the application schema via a set of
application framework APIs, the reuse
of standard infrastructure or building
of bespoke infrastructure. Finally,
the application tooling is responsible
for interrogating the models and
metadata of the application’s design
and generating code on top of the
application infrastructure. This is
shown in Figure 4.

Build-time
Looking a little more closely at the
build-time, and once again focussing
on the service interfaces, the metadata
service definitions are used by the
application tooling to provide code
generation of the service interface
implementations (the service proxies,
in different technology environments).

The application’s metadata is used
directly to derive generated code. It is
important to note the metadata feeds in
to the build of the application’s services
also, as does the common infrastructure
of the application. The generated code

3 The potential impact on team
dynamics and corresponding
management techniques when
applying these techniques is outside

the scope of this paper and is a
substantial enough subject in its own
right to warrant a dedicated article.

JOURNAL1 | Metadata Application Design 36

should be based on the same code
base (the framework) as the core
application. This helps to keep the
volume of generated code to a
minimum – code is generated on top
of this infrastructure layer. This is
important to help reduce the need
for complete regression testing.

The role of the generated code is to
providing the marshalling of requests
from one format (such as a request
originated from a CORBA peer, or a Web
Services POST) to the generic internal
metadata-oriented request format. The
metadata must contain information
about the service interface, such as
parameters types and names, but can
be extended to include default values
and validation. If extended in this vein,
the generated proxy will be able to use
the same validation rules as the core
service (on the assumption that the
same metadata is used by the core
service – which in this scenario, it
should be!).

The generic infrastructure is,
fundamentally, extended to support a
specific technology via systemic code
generation. The code generation
should simply be defining a wrapper
on the underlying application
infrastructure to marshal requests
from ‘one side to the other’. This is
made possible by the presence of a
metadata model, as that model defines
an overall structural representation
for the service interfaces. The result
is that the infrastructure for a given
technical environment can be tested
independently of the code generation,
a key factor in increasing the
quality of a solution employing
code generation. Deriving from the
metadata also permits different code
generation policies to be applied,
such as ‘include code generation for
request validation’ verses ‘no code
generation for validation’.

One downside to code generation is
the need to ensure that all critical
requirements of the target

environment (to be bridged by the code
generator) are well described in the
service metadata model. If not, the
metadata model needs to be revised
or extended to support the concepts in
the target environment that are absent
from the metadata model (that is, the
model is not complete).
Another downside to deriving the
service proxies in this manner is
that of versioning. Versioning and
configuration management is often
a very thorny subject and certainly a
subject that warrants dedicated
treatment. However, the issues facing
proxy versioning are not so different
from the issues faced by more typical
development approaches. If a service
definition changes, the associated
proxy will need to be regenerated and
any integration against that proxy
will need to be assessed for impact
(all facilitated by the formalised
traceability of the approach). This is
no different to any other scenario,
except here we need to ensure the core
services, infrastructure and generated
proxies are all matching what was
intended in a deployment!

For the former, there is no real
answer to this as it is all about the
completeness of the metadata model
being utilised. Looking for standards
may help, but nothing will beat a
well reviewed and documented (use
cases!) model. Fortunately, for the
latter, derivation from a metadata
model means both packaging and
impact analysis on changes to
packages or packaging may be
performed within the same tools-
based regime. At code generation,
the exact configuration of the build
is well known and can be used to
populate a deployment repository.

Application Design

Design-time
Model/Metadata
Repository

Application
Infastructure

Solution
Analysis

Core Infastructure
Design & Build

Infastructure
products

Application
Framework APIs

Code Generator Tooling

Application Tooling
Design & Build

Application
Infastructure

Development
Tools APIs

Figure 4. A metadata-driven process

JOURNAL1 | Metadata Application Design 37

Run-time
Returning to the original intent
of showing what can be done with a
metadata-driven approach to design
and development of applications,
the best place to review that is in
the runtime.
Assuming the build process used a
common application infrastructure
tailored towards the metadata service
definitions and that metadata was
used in the creation (coding – no magic
there!) of the core services of the
application as well as the generation
of service proxies, the consistency
of the overall solution will be
as complete as the metadata
model itself.

A request originating from any
supported external source is

marshalled by the respective service
proxy. In that marshalling, dependent
on the code generation policy
employed, the service proxy may
perform some validation of the request
based on the rules supplied via the
metadata. This could even include
authentication, authorisation and
session management via a hand-off of
metadata to delegated sub-systems.

Once marshalled in to the generic
service request format the request is
forwarded to the request manager
for execution. In that execution, the
request manager interrogates the
request and matches it against the
metadata for the target [core] service.
If all is well, the request is accepted by
the target service and that service
may then use additional metadata in

the processing of the request. This
is shown in Figure 6.

The final result is an approach to
solution design that flows from
inception to implementation, providing
a pragmatic view on how and why
metadata-driven applications
potentially have a longer life than
their more traditional counterparts.

Documentation
If this approach permits the
generation of code from service
definitions, there is no reason not to
generate the service interface
specification documentation also. This
has been common practice for many
years, with top-down documentation
generation from tools like Rational Rose
(to Microsoft Office Word) or bottom-up
via code-oriented tools such as
AutoDuck or JavaDoc.

Applicability
Worthy of a few observations, is a brief
summation on the organisational
aspects involved in the application
of this approach. To characterise the
types of organisations that often
appear drawn to a metadata-driven
philosophy to developments, this
approach probably is geared:
– for designers and developers that

want a closer link between the
design and the implementation;

– for organisations that are looking
seriously at a real infrastructure-
driven, higher productivity and
higher quality approach to their
development;

– for organisations that are not
nervous about getting in to bed
with a couple of productivity
enhancing tools;

– for organisations looking to build
knowledge repositories and the

WS-based Application
Infrastructure

Common Application Infrastructure

CORBA-based Application
Infrastructure

Coding of the
Application
services

Code
Generator

WS Code-Behind
Modules + WSDL

CORBA Implementation
Classes & IDL

WS
Specialisations

CORBA
Specialisations

Metadata
Service

Definitions

Common Application Infrastructure

Figure 5. Systemic code generation

Application Service WS Code-Behind Modules

WSDL

IDL

WS-based Application
Infrastructure

Application Service

Application Service

Application Service

Application Service

R
e
q
u
e
s
t

M
a
n
a
g
e
r

Common Application Infrastructure

CORBA-based Application

Infrastructure

CORBA Implementation
Classes

Common Application Infrastructure

Requests to/from
Clients & Peers

Requests to/from
Clients & Peers

Common Application
Infrastructure

Metadata
Service

Definitions

Figure 6. Request processing

JOURNAL1 | Metadata Application Design 38

associated tools, to better describe
their product(s) via a formalised
description language;

– for organisations whom need
to support a range of technical
environments, particularly at
the system boundary.

Positive benefits?
This approach has been used to
varying degrees on many projects
I have discussed, reviewed and
worked with. Many of these projects
have sought the high goal of complete
forward engineering from the models
to the runtime, and some have
found success when dealing with
a specific domain.

At Temenos, we have been using
this and related techniques in the
production of the new 24x7 capable
banking system, ‘T24’, launched
late in 2003. More specifically, we
have used these techniques in the
production of a software development
kit (programmatic APIs on existing
functions) and Web Services
deployment tooling. It might not be
easy, and it might hurt your head from
time to time. But looking at the model
for the T24 solution it is clear to us
that a metadata-driven approach to
the design and development of your
applications will, when the next
technology wave comes, help you
engineer your existing services out
of a hole and in to the limelight.

Check, carefully, the initiatives of
many of the IDE and tools vendors.
Metadata representation and code
generation is being courted once more.
This time however, the aim appears
to be to help the development process
become more productive by providing
tools to manage the abstractions
and complexity in today’s
technical environment.

References
Pattern-Oriented Software
Architecture: Patterns for
Concurrent and Networked Objects
Douglas C Schmidt, Michael Stal, Hans
Rohnert and Frank Buschmann, John
Wiley & Sons

Anti Patterns
William J Brown, Raphael C Malveau,
Hays W McCormick III, Thomas J
Mowbray John Wiley & Sons

Applied Microsoft .NET
Framework Programming
Jeffrey Richter, Microsoft Press

Application Architecture for
.NET, Microsoft Patterns
& Practices Group
Microsoft Press

Beyond the Component
Based Process
CBDi Newswire Commentary
www.CBDiForum.com

Design Patterns
Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides,
Addison-Wesley

Dinosaurs Battle in the Tar Pits
CBDi Newswire Commentary
www.CBDiForum.com

Modelling Languages
for Distributed Applications
White Paper, Microsoft Corporation

Modern C++ Design
Andrei Alexandrescu, Addison-Wesley

Objects, Components and
Frameworks with UML
Desmond Francis D’Souza &
Alan Cameron Wills, Addison-Wesley

SOA – A Cost Reduction Strategy
CBDi Newswire Commentary
www.CBDiForum.com

Service Oriented Process Matters
CBDi Newswire Commentary
www.CBDiForum.com

Structure and Interpretation
of Computer Programs
Harold Abelson, Gerald Jay Sussman,
Julie Sussman, The MIT Press

Kevin S Perera
kperera@temenos.com
kevin@sandokan.co.uk

Working within the Technology &
Research team at TEMENOS, a
core systems provider to the finance
industry, Kevin Perera is engaged in
the role of Systems Architect. Advising
and guiding the key design and
development teams of the company,
Kevin’s primary goal is to ensure
the overall consistency of the
solution components

and their alignment with the technical
strategy of the TEMENOS product
suite. His main areas of focus during
2003 have been XML interfaces and
protocols, with a particular interest
in the provision of APIs for ‘business
services’ provided by the existing
applications of the company in new
technology domains such as .NET
and Web Services.

mailto:kperera@temenos.com
mailto:kevin@sandokan.co.uk

JOURNAL1 | Rule-Based App Development 39

The word ‘knowledge’, like many
words adapted for computer science,
has a technical meaning that is
different from its common meaning –
and like many such words, it has been
defined and re-defined many times
to suit the needs of various trends in
computer science.

This paper takes a high level view
of knowledge, using the word in its
more general sense, rather than as a
specific technical term, and then looks
at different types of knowledge and
their mappings to executable computer
code. The purpose is to gain insights
into when and why rule engines
provide advantages over conventional
software development tools.

The three types of knowledge
considered are factual, procedural, and
logical. These divisions correspond to
the capabilities of computers. The first
two map naturally to a computer’s
architecture; the third does not.

Factual Knowledge
Factual knowledge is just that, facts,
or data. It can be facts about customers,
orders, products, or the speed of light.

Computers have memory and external
storage devices. These are ideally
suited to the storage and retrieval
of factual knowledge. Database tools
and programming languages that
manipulate memory have evolved
naturally from these basic components
of machine architecture.

Factual knowledge appears in the
computer as either elements in a
database or variables and constants
in computer programs, as shown
in Figure 1.

Procedural Knowledge
Procedural knowledge is the knowledge
about how to perform some task. It can be
how to process an order, search the Web,
or calculate a Fourier transform.

Computers have a central processing
unit (CPU) that processes instructions
one at a time. This makes a computer
well-suited to storing and executing
procedures. Programming languages
that make it easy to encode and execute
procedural knowledge, have evolved
naturally from this basic
computational component.

Procedural knowledge appears in a
computer as sequences of statements
in programming languages, as shown
in Figure 2.

Logical Knowledge
Logical knowledge is the knowledge
of relationships between entities.
It can relate a price and market
considerations, a product and
its components, symptoms and a
diagnosis, or the relationships
between various tasks.

Unlike for factual and procedural
knowledge, there is no core
architectural component of a computer
that is well suited to the storage and
use of logical knowledge.

Typically, there are many independent
chunks of logical knowledge that are too
complex to store in a database, and lack
an implied order of execution which
makes them ill-suited for
programming. Because it doesn’t
map well to the underlying computer
architecture (as shown in Figure 3),
logical knowledge is difficult to
encode and maintain using the
conventional database and

Best Practices for Rule-Based
Application Development
By Dennis Merritt, Amzi! Inc.

step step

step step

step

Procedural

Programming

Tools

PROCEDURAL KNOWLEDGE

Real World

Computer

CPU

this that

this that

this that

this that

LOGICAL KNOWLEDGE

Logic/Rule

Language

Logic Base

Real World

Virtual Machine

FACTUAL KNOWLEDGE

Real World

Computer

Database

Tools

Programming

Tools

Disks Memory

fact

fact

fact

fact

fact

this that

this that

this that

this that

LOGICAL KNOWLEDGE

Real World

Computer

Database

Tools

Procedural

Programming

Tools

Disks CPU

Figure 1. Factual Knowledge

Figure 2. Procedural Knowledge

Figure 3. Logical knowledge does not map well
to computer architecture

Figure 4. Using virtual machines for logical knowledge

JOURNAL1 | Rule-Based App Development 40

programming tools that have evolved
from a computer’s architecture.

Specialized tools, which are effectively
virtual machines better suited to
logical knowledge, can often be used
instead of conventional tools (as shown
in Figure 4). Rule engines and logic
engines are two examples.

Conventional vs Specialized Tools
Logical knowledge is often at the core
of business automation, and often is
associated with the ‘difficult’ modules
of an application. Consider, for
example, a pricing module for phone
calls or airline seats, or an order
configuration module. Furthermore,
logical knowledge is often changing.
Government regulations are expressed
as logical knowledge, as are the effects
of changing market conditions.
Business rules that drive an
organization are almost always
expressed as logical knowledge.

Because of the critical role logical
knowledge can play, there are good
arguments for using specialized tools
which make the encoding of logical
knowledge quicker, easier and more
reliable. There are also, however, good
arguments against them, foremost
being the ready pool of talent that is
familiar with conventional tools.
There is a lot to be said for sticking
with the familiar, although in general
the cost is lengthy development times,
tedious maintenance cycles, a higher
than normal error rate, and often
compromises in the quality of service
the application provides. On the other
hand, there are some well known
problems with rule engines and other
tools designed for working with
logical knowledge:

– There are many choices, and they are
usually vendor specific. There isn’t
a standard rule language to use.

– Each tool is better suited for some
types of logical knowledge than other
types. Rules that diagnose a fault
need to behave different from rules
that calculate a price, which in
turn behave different from rules
that dictate how an order can
be configured.

– Maintenance is not as easy as
sometimes promised. It is important
the rules all use similar terms and
definitions, otherwise the
interrelationships between the rules
don’t work as intended – making
maintenance difficult. Furthermore,
because there is no order to the
rules, tracking interrelationships
can be difficult.

– There is no standard application
program interface (API) for
integrating a rule engine with other
components of an application.

Given these difficulties, is the payoff
from using rule-based tools worth the
investment? In many cases, yes! For
example, one organization that
provides online mortgage services
replaced 5000 lines of procedural code
to price mortgages, with 500 lines of
logical rules. The logic-based solution
was implemented in two months as
opposed to the year invested in the
original module. Maintenance turn
around due to changing market
conditions was reduced from weeks to
hours, and the errors in the resulting
code went to practically zero.

One reason for near zero errors is
simply that there’s less code to go
wrong, but the main reason is the code
closely reflects the logical knowledge
as it is expressed. There is no tricky

translation from business specification
to ill-suited procedural code.

The biggest win of all might be the
flexibility the logic-based solution
provided them with, allowing them
to expand their product offerings.
They could now offer more and better
mortgage pricing options for their
customers, including the option of
customizing the pricing logic for
each institutional customer.

This is not an uncommon story. The
same benefits and 10 to 1 improvement
ratio appear over and over again in the
success stories of vendors of rule-based
and logic technologies.

Semantic Gap
The concept of ‘semantic gap’ can be
used to explain many of the issues with
logical knowledge. A semantic gap refers
to the difference between the way
knowledge to be encoded in an
application is naturally specified and
the syntax of the computer language
or tool used to do the encoding. For
example, you can use assembler to code
scientific equations. But it is tedious
and error-prone because there is a
large semantic gap between the
syntax of assembler and an equation.
The FORTRAN scientific programming
language was invented to reduce the
semantic gap. It allowed a programmer
to code an equation in a way that was
much closer to the way a scientist might
write the equation on paper. The result
was easier, quicker coding of
engineering and scientific applications,
and fewer errors.

Factual knowledge and procedural
knowledge are both readily coded
in computers because there is a
reasonably small semantic gap

“Because of the critical role logical knowledge can play, there
are good arguments for using specialized tools which make the
encoding of logical knowledge quicker, easier and more reliable.”

JOURNAL1 | Rule-Based App Development 41

between the way facts and procedures
are described and the tools for
encoding them. As pointed out
previously, this is because computers
are inherently good at facts and
procedures. The semantics of logical
knowledge however does not map
readily to conventional tools. Consider
this piece of knowledge:

The price of an airfare from Cincinnati
to Denver is $741 if departing and
returning midweek. It’s $356 if the stay
includes Saturday or Sunday.

The meaning, or semantics, of this
knowledge is best captured in a
pattern-matching sense. It really
means that the details of a proposed
trip should be matched against the
conditions in the rule, and the
appropriate rule should be used
to determine the fare.

This sort of knowledge could be
shoehorned into procedural code, but
the semantics of procedural code are
designed to express a sequence of
operations, not a pattern-matching
search. On the other hand, a rule engine
is designed to interpret rules in a
pattern-matching sense, so rules
entered in such a tool will have a
smaller semantic gap than rules
encoded procedurally.

There’s If Then, and
Then There’s If Then
It is very tempting to store if-then
logical relationships in procedural code,
especially since procedural code has if-
then statements. In fact, not only is it
tempting, it can work reasonably well
up to a point. However there is a big
difference between a logical
relationship and a procedural if-then. A
procedural if-then is really a branching
statement, controlling the flow of

execution of a procedure. If the
condition is true, control goes one way,
and if not control goes a different way.
It’s a fork in the road.

It’s the road bit that causes the trouble.
A logical relationship can be coded as a
procedural if-then, but must be placed
somewhere along the road of execution
of the procedure it is in. Furthermore,
if there are more logical relationships,
they too must be placed at some point
in the procedural path – and, by
necessity, the placement of one affects
the behaviour of another. It makes a
difference which rule gets placed first,
and if there are branches from
previous rules, and which branch a
following rule is placed on.

This is not a problem if the rules map
easily to a decision tree, but in that case
the knowledge is really procedural. It’s
also not a problem if there are a small
number of rules, but as the number of
rules increases it becomes very
difficult to maintain them as forks
in a procedural flow. The arbitrarily
imposed thread of execution that links
the various rules becomes extremely
tangled, making the code difficult to
write in the first place, and very
difficult to maintain. This isn’t to say
it can’t be done, or indeed that it isn’t
done; it often is. However, the module
with the rules is often the most
troublesome module in a system.

Once encoded procedurally, logical
knowledge is no longer easily
accessible; that is, it no longer looks
like a collection of rules and
declarative relationships. The
knowledge resource has, in a sense,
been lost and buried in the code, just
as a scientific equation can no longer
be read if it is coded in assembler.

The same is not true of either factual or
procedural knowledge. In those cases,
reading the code generally does show
the underlying knowledge.

Databases for Rules
It is possible, in some cases, to
shoehorn logical relationships into a
database. If the relationships can be
represented in a tabular form, then a
database table can be used to encode
the rule. So for example, if the amount
of discount a customer got was
dependent on the amount of previous
sales at a few different levels, this
could be represented as a table and
stored in a database. However, as with
the using procedures, the database
approach is limited in that it only
works for very clean sorts of logical
relationships.

A Mixed Approach
Sometimes applications use a mixture
of both the procedural and database
approaches. Logical relationships that
can be expressed in tables are stored
in a database, and the remaining
relationships are coded as procedural if-
then statements.

This can simplify the coding task, but
it makes maintenance harder because
the logical knowledge is now spread
across two different vehicles.
Despite these difficulties, there is a
strong appeal to using data, procedure
or both to encode logical knowledge,
and that is that they are familiar
techniques, and there are numerous
individuals skilled in their use.

Artificial Intelligence
The problems with encoding logical
relationships were first explored back
in the 1970s by researchers at
Stanford University. They were trying
to build a system that advised

JOURNAL1 | Rule-Based App Development 42

physicians on courses of antibiotics for
treating bacterial infections of the
blood and meningitis. They found that
the medical knowledge consists
mainly of logical relationships that
can be expressed as if-then rule.

They attempted many times to encode
the knowledge using conventional
tools, and failed because of the
problems described previously.

If the problem with coding logical
knowledge is that the nature of a
computer is not well-suited to
expressing logical relationships, then
clearly the answer is to create a
machine that is. Building specialised
hardware is not very practical, but it
turns out a computer is a good tool for
creating virtual computers. This is
what the researchers at Stanford did.
They effectively created a virtual
machine that was programmed using
logical rules. This type of virtual
machine is often called a rule engine.

Why is a computer good at building a
rule engine, but not the rules
themselves? It is because behaviour
of a rule engine can be expressed in
a procedural algorithm, along the
lines of:

– Search for a rule that matches
the pattern of data

– Execute that rule
– Go to top

The Stanford researchers who were
working on the first rule-based systems
had originally called their work
‘heuristic programming,’ which is, of
course, a fancy way of saying rule-
based programming. Because a large
amount of human thought seems to
involve the dynamic applying of

pattern-matching rules stored in our
brains, the idea surfaced that this was
somehow ‘artificial intelligence’.
However the real reason for the
growth of the term was pure and simple
marketing – it was easier to get
Department of Defence funding for
advanced research on Artificial
Intelligence (AI) than it was for
heuristic programming. The term
‘expert system’ was also invented at
about this time for the same reasons.

The media too, was very excited about
the idea of Artificial Intelligence and
expert systems, and the software
industry went through a cycle of
tremendous hype about AI, followed
by disillusionment as the technology
simply couldn’t live up to the hype.
Those companies that survived and
continue to market and sell the
technology have found the term AI to be
a detriment, so they looked for a
different term. Now it is most often
called rule-based programming.

Whether you call it heuristic
programming, Artificial Intelligence,
expert systems, or business rule
processing, the underlying technology
is the same – a virtual engine that uses
pattern-matching search to find and
apply the right logical knowledge at
the right time.

Other Logical Virtual Engines
Virtual engines programmed with
declarative rules are not the only
example of specialized software
designed to deal with logical
knowledge. Other such programs
dramatically altered the course of the
history of computing.
In the early days of data processing,
reports from a database had to be
coded using COBOL. But reporting

requirements were specified as logical
relationships–these columns, these
partial sums, etc. Culprit was a report
writer that let a user specify in a
declarative, logical, way the
knowledge about a report. It would
then generate the procedural code to
make the report happen.

The benefits were exactly as we’ve
discussed – users could now create and
maintain their own reports without
having to go through a programmer.
The result was quicker reports, faster
turn around of new reports, and
reporting that met user’s needs much
better than procedural approaches
channelled through programming
groups.

The resistance to this technology was
also exactly the same. Data processing
departments did not want to use a
separate tool for reports, they knew
COBOL. The product only became
a commercial success when it was
marketed to the end-users, and not
data processing departments.

Culprit was the first commercial
software product from a non-hardware
company, launching the software
industry.

The VisiCalc spreadsheet program was
another example. It let users easily
describe the logical relationships
between cells without having to write
procedural code. As with rule-based
languages and report writers, the key
was a virtual engine that translated
the logical knowledge into executable
procedural code.

Spreadsheet applications
drove the early acceptance of
personal computers.

“If the problem with coding logical knowledge is that the nature
of a computer is not well-suited to expressing logical relationships,
then clearly the answer is to create a machine that is.”

JOURNAL1 | Rule-Based App Development 43

Data & Process First, Then Logic
Recent work at Stanford has explored
the question of why AI is not more
widely spread in medicine, but their
observations apply to application
software in general. Logical knowledge
expresses relationships between
entities, and unless those entities
are available for computation, the
logic cannot be automated.

One can write a rule-based system
that helps deal with patients and other
aspects of health care, but without the
underlying patient data to reason over,
the logic base is of limited value.

The same is true for other application
areas. Without a database of product
components, you can’t build a
configuration system, and without the
raw data of phone call dates, times
and durations, you can’t implement
a pricing module.

The lack of underlying data reflects
the delay in wide-spread adaptation
of new technologies. It is just recently,
for example, that a higher percentage
of doctor’s offices are using computer
based patient records.

Likewise, it is only in recent years
that more and more data is becoming
available in relational databases
that lend themselves to multiple
application uses, rather than the
application-specific files that have
been used for most of the history
of computing.

Early AI success stories are related to
applications that dynamically gather
the data from users, as in
diagnostic systems, or that work
with organizations that have good
computerized records, such as

insurance and phone companies.
As more and more data becomes
readily accessible for multi-
application use, there will be more
and more applications deploying
logical knowledge.

Logical Knowledge Tools
Tools for encoding and deploying
logical knowledge are relatively
straightforward. The two critical
parts are a knowledge representation
language and a reasoning engine.

Knowledge Representation
Language
Knowledge representation is the
syntax of a particular tool. Each
tool allows the entering of logical
knowledge in a certain format, which
might be simple if-then statements
referencing simple entities, or complex
if-then statements that reference
complex objects and properties. They
can be in and English like syntax or
more closely resemble formal logic. The
classic design tradeoffs of ease-of-use
versus expressive power apply.

A tool might provide other means for
expressing logical knowledge as well,
such as hierarchical structures,, and
might include capabilities for
expressing uncertainty. Uncertainty is
useful for some types of applications,
like diagnosis where there isn’t a clear
right answer, but just gets in the way
for something like pricing where there
is only one right answer. Uncertainty
itself comes in competing flavours –
fuzzy, Bayesian, and the original
‘certainty factors’.

Reasoning Engine
The reasoning engine determines
how rules will be applied at runtime.
All reasoning engines are basically

pattern-matching search engines, looping
through the rules, deciding which to
use next, and then repeating the
process until some end condition is
reached. However, there can be major
differences in how patterns are
searched for, and what happens
when a rule is used.

The two basic strategies are goal
driven and data driven. A goal driven
reasoning engine looks for a rule that
provides an answer for a goal, such as
price. Having found one, it then looks for
any sub-goals that might be necessary,
such as customer status. A data driven
reasoning engine looks at the current
known data and picks a rule that can
do something with that data. It then
fires the rule, which will add or
otherwise change the known data.
For example a customer might want
to configure a custom door, which is
the first bit of data, and matches a
rule that adds the data that hinges
are needed, which leads to a rule
that decides what type of hinges.

Within these two basic schemes,
there are many application-specific
variations one might encounter. A
diagnostic reasoning engine might
have strategies that let it follow the
most likely paths to a solution first,
or the least expensive if there are
requirements for the user to research
more information.

A critical aspect of any reasoning
engine is an API that can be called
from other application components.
This lets logic bases be integrated into
an application context in a manner that
lets the logic base be updated without
requiring updates to the main
application code.

JOURNAL1 | Rule-Based App Development 44

Ontology
One of the biggest problems with
maintaining a logic base is consistency
of definitions. If you are writing a
technical support system, for example,
and one rule refers to Microsoft®

Windows® and another to XP, well they
won’t communicate unless somehow
the system ‘understands’ that XP is a
type of Windows operating system.
This, unfortunately, is the difficult part
about maintaining a logic base. While it
is easy to write and add rules, unless
each rule author uses the same
terminology the rules will not work
as a cohesive unit.

A solution to the naming problem is
ontology. Just as with other terms,
ontology is a perfectly normal word
appropriated for use in computer
science. The dictionary definition of
ontology has little to do with the
computer science use of the word. (Not
surprisingly, the term ontology was
coined by the same people who decided
heuristic was a better word than rule.)

A logic base ontology is a collection of
definitions and relationships between
entities that can then be used by other
components of an application. An
ontology would have the information
that XP is a type of Windows. And
that Windows is a type of operating
system. An ontology would also know
that Windows 2000, Win2000, and
Win2K are all synonyms. Given an
ontology, rules can now be entered that
refer to XP and be ‘understood’ to
refering to an operating system.
For example a rule might have the
condition ‘if system is an operating
system …’, and that rule will fire if the
value of system is XP. An ontology
provides an alternate way to represent
logical knowledge relating to

terminology that is a powerful
adjunct to the more common rules.

Custom Rule Engines
Given the wide variety of ways in
which rule engines can represent
knowledge, reason with that
knowledge, and integrate with the
surrounding environment, it is
sometimes difficult to choose the right
one. A general purpose rule engine will
fit a wide range of problems, but
might not fit them very well, requiring
some stuffing and bending around the
corners. For this reason you will find
rule engine products designed for
specific applications. Microsoft BizTalk®

Server is a perfect example. It is a tool
designed for integrating business
processes. It ‘knows’ about business
process, and passing messages between
them, and can be used to express the
rules of which process fires when, under
what conditions, and which other
processes needed to be informed of what
when it happens.

There are also products for
pricing problems, support problems,
configuration problems and a number
of other common areas. Each of these
will work better for the problem
domain they are designed for, but
won’t be much help for other
problem areas.

There is another option to consider
as well, and that is the creation of
a custom solution for a particular
application. Rule engines are not that
difficult to write, and building one for
a particular application allows for
the best possible knowledge
representation, reasoning strategy
and integration with the main
components of the application.
The key advantage relates back to

semantic gap. A custom knowledge
representation language can provide
the smallest possible semantic gap for
an application with the associated
benefits of ease of development and
ease of maintenance.

Short Case Studies
In order to better understand the
advantages of rules-based solutions,
consider the following case studies.

Workflow
A number of companies use logic
engines or specialized rule-based
tools for encoding logical knowledge
about workflow. Typically, these
tools integrate with the larger
facilities of an application with
rules governing workflow.

For example, one large supplier of
workflow for the telecommunications
industry has integrated the rules
describing workflow with the
facilities of the larger application
context, so the rules can be directly
applied to the tasks in the
telecommunications domain.

This allows for the separation of the
business logic defining work flow rules
from the procedural knowledge of
the actual processes that need to be
performed, and it puts that work flow
knowledge in a representation that can
be easily understood and maintained.

Configuration
A vendor of windows and doors uses a
logic base of rules to drive interactive
product configuration through a Visual
Basic interface. Contractors use the
Visual Basic program to determine
the best configuration for a job site, and
then automatically connect with the
company’s server for entering an order.

“Early AI success stories are related to applications that dynamically
gather the data from users, as in diagnostic systems, or that work
with organizations that have good computerized records.”

JOURNAL1 | Rule-Based App Development 45

They have customized their own
development front-end using Excel,
allowing the experts to directly
maintain the logical knowledge of
product configuration using a familiar
tool. The spreadsheet is translated to a
lower-level rule language that is then
used to deploy the knowledge.

Because the logic base is a separate
entity from the main application code,
it can be easily updated. Whenever the
user, working with the Visual Basic
program connects to the server,
updates to the configuration logic
base are automatically downloaded.

The result is a very flexible and
responsive architecture for providing
their customers, the contractors, with
a powerful tool for deciding on and
ordering the best products for a
particular job.

Mining
A sophisticated pattern-matching
application determines if a geologic site
has good mining potential. The rules
that match geologic characteristics
and mining potential are in a logic
base that is maintained separately
from the Visual Basic interface that
graphically displays geologic maps and
other information about the potential
site. Key to this application is an
ontology of definitions of mining
terminology that allows geologic field
data to be easily accessed by the
pattern-matching rules. Without the
ontology, it would be very difficult for
the rules to make use of the field data
entered by different geologists with
different ways of expressing the same
geologic concepts. The ontology is
stored and maintained as part of
the logic base.

The application is currently a stand-
alone Visual Basic application but will
be deployed on the Web using Visual
Basic.NET.

Detailed Case Study – Vaccinations
Visual Data LLC provides a Windows
software product called Office
Practicum for paediatrician’s offices. It
keeps medical records for patients and
performs all of the ‘data’ and ‘processing’
functions you might expect.

One of the items it tracks for a
patient is vaccination history. It
turns out that one of the problems
for a paediatrician is following all of
the complex rules and regulations for
vaccinations, and scheduling children
for future appointments based on
their vaccination needs.

Customers asked Visual Data to
provide a feature in Office Practicum
that would tell what vaccinations were
up-to-date for a child on a visit, and
which were due. It should also be able
to provide reports on each child
analyzing their vaccination histories,
making sure they were in compliance
with regulations for schools and
summer camps. This took Visual Data
into the realm of encoding logical
knowledge. The knowledge about
vaccinations is published in papers
made available by the CDC. Each
vaccine has one or more schedules of
doses, based on the particular type
of vaccine, and each has numerous
exception rules that describe conditions
when a vaccination may or may not
be given. There are a number of
interesting observations to be made
about this application.

Data and Process First, then Logic
The first relates to the Stanford

comment about AI in medicine, which
was that AI had not advanced due to
the lack of data. They observed that
AI is really the encoding of logical
relationships, but, without entities
for the logical knowledge to reason
over, there is no practical value in
automating the logic. The vaccination
program illustrates this.

People in the past have worked on AI
systems to automate vaccination logic,
but the patient data on vaccination
history was not readily available. It
had to be typed in by hand as input
to the system in order to get a
vaccination schedule. However, any
medical practitioner experienced in
vaccinations could figure out the
schedule directly from the data in
about the same time without having
to engage a computer in the process.
So there wasn’t much point.

Office Practicum provides enough help in
the day-to-day business of running a
paediatrician’s office that collecting data
on patient histories comes naturally.
Because that data is in the computer,
and because the office is already
using the computer for other aspects
of managing the patient, it now
makes sense to automate the logical
knowledge for vaccination
scheduling. In fact, it was the
customers who started to ask for this
feature, after using the software. They
noted that all the vaccination
information was in the computer, so
why couldn’t it automatically generate
the vaccination schedules.

Procedural Code Works,
but is Impractical
Visual Data first attacked the problem
by attempting to encode the vaccination
logic using procedural code. In their

JOURNAL1 | Rule-Based App Development 46

case the application is developed in
Borland’s Delphi, and they used
Pascal for the encoding. The software
worked, but was difficult to write, and
was in a large complex module, and
only provided some of the features
they wanted to provide.

However, the world of vaccines kept
changing. New vaccines were coming
out that combined earlier vaccines in
a single vaccination with new more
complex rules about the interactions
between the components. Customers
wanted to know when the software
would support Pediatrix, a new complex
multi disease vaccine. The software
developers groaned.

While they were a Delphi shop, and
familiar with Delphi, and would love
to do all their work in Delphi, they
realized the vaccination module was
just too difficult to maintain, so they
opted for a logic base solution. The
logic base reduced the code size from
thousands of lines of code to hundreds
of lines of easily understandable rules.
It was the same 10:1 ratio seen so many
times for these applications.

Further, the rules were now in a format
that their resident paediatrician, not a
programmer, could understand. The
application was restructured so that
the Delphi code called the logic base,
much the same way it called the
database. The ‘knowledge’ of
vaccination scheduling was now
completely outside of the core Delphi
code. The logic base can be updated
without affecting the main application,
just as the database can be updated
without changing the application.

Unlike the database, the logic base
must be tested, and Office Practicum

uses a tool set to independently test
the rules. Regression tests are a part
of the system, so that various scenarios
can be automatically retested when
changes are made to the logic base.

The Nature of Vaccine Logical
Knowledge
Visual Data did not use an off-the-shelf
rule engine for a couple of reasons.
One was cost, but more important, the
logical knowledge of vaccines seemed
to require its own specific set of
ways to represent knowledge. These
included definitions, tables and rules.
While all three could be stored in
rules, some of the visual clarity of the
mapping from documentation to logic
base would be lost. It would be better
if the logic base more directly
expressed the CDC logic.

Further, most of the logical
knowledge had to do with dates and
date intervals expressed in any of
the date units – days, months, weeks
or years. The conditions in the rules
needed to use the intervals and dates
correctly, and assume age from context
when appropriate.

Accordingly the knowledge
representation language for the
vaccination system was designed
to have

– An ontology of terms to
store definitions.

– A means of entering
tabular knowledge.

– A means of entering rules.
– Language statements that recognized

dates and date intervals.

This made it easy to add new
definitions without affecting the
rules, allowed for the direct encoding

of the basic tables, and enabled the
rules to refer to the tables and reason
with concepts such as the last live
virus vaccination.

Ontology
The ontology describes semantic
relationships such as the various types
of vaccines that are Hib vaccines, as
well as distinguishing between those
that contain PRP-OMP and those that
don’t. This is critical because different
schedules are used for each.

It also describes which vaccines are
live virus vaccines, another critical
fact used in many of the rules
concerned with the interaction between
different vaccines that both contain
live viruses.

Additionally, there are multi-vaccine
products, such as a combined measles,
mumps and rubella (MMR) vaccine.
There are rules that are just
concerned with, for example, whether
or not a child had a measles vaccine,
but the database might indicate
MMR. This knowledge is all in the
ontology as well.

Here, for example, are the definitions
in the logic base that indicate
Varicella and Small Pox are live
virus vaccinations:

live_virus ->> 'Varicella'.

live_virus ->> 'Small Pox'.

Here are some different types of Hib.

'Hib' ->> 'HbOC'.

'Hib' ->> 'PRP-OMP'.

'Hib' ->> 'PRP-T'.

Tables
Standard tables provide the minimum

“The ability for an organization to
successfully encode its logical knowledge
can lead to better services for its users.”

JOURNAL1 | Rule-Based App Development 47

age, recommended age, and minimum
spacing interval for each dose of a
vaccine. If this was all there was to
the vaccination logic, then a database
solution or other table lookup would
have worked, although even the tables
aren’t that simple. For a given vaccine,
different tables apply depending on
factors such as whether it is a multi-
vaccine, what the active components
are, and whether or not the child has
followed a standard schedule.

Here’s an example of a table in the
logic base that describes the Hib
schedule for vaccines containing
PRP-OMP.
table('Recommended B', [

% Recommended Schedule B from

'DHS Hib 2003Mar' for vaccines

% containing PRP-OMP

% Dose Minimum Minimum Recommended

% Age Spacing Age

[1, 6 weeks, none, 2 months],

[2, 10weeks, 4weeks, 4 months],

[3, 12months, 8 weeks, 15 months]]).

Rules
The rules work in concert with the
definitions and the tables. They are
used to determine which table is
appropriate in a given situation.
They also provide coverage for all the
exception cases, such as the fact that
a given vaccine isn’t necessary after
a certain age, or that a schedule can’t
be kept if other live virus vaccines
have been given, or what the corrective
measures are if a previous vaccine was
given earlier than allowed.

Here’s a relatively simple rule that fires
when the Polio sequence is complete.
Note that the ontology lets rules refer
to either ‘Polio’ in general, or the
two main vaccines, ‘IPV’ and ‘OPV’
separately. This rule describes when

an OPV sequence is complete. The
output includes an explanatory note
that is displayed in verbose mode.

complete :-

valid_count('OPV') eq 3,

vaccination(last, 'OPV')

*>= 4 years,

!,

output('Polio', [

status = complete,

citation = 'DHS IPV

2003Mar',

note = [

`Complete: An all OPV,

three dose sequence is

complete when`,

`the last dose is given

after 4 years of age.`

]]).

Modularization
Modularization was a key
requirement for this application.
The tables and rules for each vaccine
were kept in separate modules. The
ontology, on the other hand, was in
a common module as it was used by
all the other modules.

Reasoning Engine
The reasoning engine for the vaccine
logic base is designed to meet a variety
of application needs. It takes as input
the vaccination history of a child and
then goes to the module for each
vaccine in question and gets the
status information for that vaccine.
This includes an analysis of the past
vaccinations with that vaccine; the
status as of today, the current office
visit; and the recommended range
and minimum dates for the next
vaccination with that vaccine.

Each module is designed with the
same goal and output, and that goal

is called by the reasoning engine.
This allows for the easy addition
of different vaccines, and the
easy maintenance of any
particular vaccine.

The reasoning engine has an
application program interface (API)
that is used by the calling application.
The API provides the various reports
required for different uses. For example,
it can tell what vaccines need to be
given on the day of an office visit,
or what vaccines will be needed for
scheduling a follow-up visit. It also
allows for short and verbose
reporting and explanations of the
recommendations, and provides
the historical analysis reporting
required for camp and school forms.

Cost Benefit
The benefits from the logic base
approach have been:
– a 90% reduction in code used

for vaccine logic rules,
– direct access to the knowledge

by the in-house paediatrician,
– localization of all the vaccine logic,

which used to be scattered in the
different parts of the application
with different needs,

– easy maintenance, and quality
assurance testing, and

– additional capabilities that were too
hard to encode before, such as the
complete analysis of past vaccination
history and support for new multi-
vaccine products.

All of these benefits add up to the
one major benefit, which is that their
software now provides better services
for their customers in this area which
is critically important in the running
of a paediatric office.

JOURNAL1 | Rule-Based App Development 48

The costs were:
– time spent investigating and learning

about various alternative approaches
for encoding the vaccination logic,

– software license fees,
– two month’s development time, and
– time spent learning the

new technology.

Conclusion
Logical knowledge, unlike factual or
procedural knowledge, is difficult to
encode in a computer. Yet, the ability
for an organization to successfully
encode its logical knowledge can
lead to better services for its users.
The question then, is how best to
encode logical knowledge. It can be
shoe-horned into data–and procedure-
based tools, but the encoding is
difficult, the knowledge becomes
opaque, and maintenance becomes
a nightmare.

Rule-based and logic-based tools are
better suited to the encoding of logical
knowledge, but require the selection of
the proper tool for the knowledge to be
encoded, and the learning of how to
use that tool.

Off-the-shelf rule or logic tools
sometimes provide a good solution, but
often the knowledge representation
of the tool doesn’t fit the actual
knowledge, or the reasoning engine
doesn’t use the knowledge as it is
supposed to be used. This leads to
the same coding and maintenance
problems experienced with
conventional tools, but to a lesser extent
depending on how big the semantic gap
is between the knowledge and the tool.

A viable alternative is the building
of a custom logic-based language and
reasoning engine. This allows for the
closest fit between the coding of the
knowledge and the actual knowledge,
and for the cleanest integration
between the tool and the rest of the
application context.

Resources
http://ksl-web.stanford.edu
Standford’s Knowledge System
Laboratory’s home page has information
about their current work with
ontologies and other research areas,
as well as links to related sites and
organizations. www.aaai.org

American Association of Artificial
Intelligence (AAAI) is a non-profit
scientific organization devoted to
supporting AI research and
development. They have conferences
and journals and an excellent Web site,
www.aaai.org/AITopics/aitopics.html,
that introduces AI research and topics.

http://www.ddj.com/topics/ai
Dr Dobb’s Journal’s Web site devoted
to AI topics and links.

www.ainewsletter.com
Past issues of the DDJ AI Expert
newsletter. You can subscribe to the
newsletter at www.ddj.com

http://www.pcai.com
PCAI Magazine has a wealth of
information about AI technologies
and products on their Web site.

A Google search for ‘business rule
engine’ will yield links to a number
of commercial offerings.

Dennis Merritt
dennis@amzi.com

Dennis Merritt is a principal in Amzi!
Inc. (www.amzi.com), a small privately-
funded company specializing in tools
for developing knowledge-based and AI
components that can be embedded in
larger application contexts.

He has written two books and several
articles on logic programming and
expert systems, and is currently the
editor of the Dr. Dobb's Journal AI
Expert newsletter www.ddj.com

http://ksl-web.stanford.edu
http://www.ddj.com/topics/ai
http://www.pcai.com
mailto:dennis@amzi.com

JOURNAL1 | DasBlog 49

Keeping a diary seems mostly an
obsession of teenage girls, politicians,
and people who are planning to write
their memoirs at a later point in life.
A diary is the place to write down
a daily or weekly snapshot of very
private thoughts that are nobody
else’s business. No matter whether
the diary is kept by a 15 year old girl
who is desperately in love with rock
star Robbie Williams, or by the German
chancellor, all diaries have one thing in
common – they are top secret, locked
away and never shared with anyone.

Looking at the newest trend on the
Web, we might need to revise, or at
least widen, our definition of a diary.
Weblogs (usually shortened to ‘Blogs’)
are the digital equivalent of the
personal diary, and have taken the
Internet by storm over the past two
years. Mid-2003 estimates1 put the
total number of Weblogs somewhere
between 1.3 and 2.2 million, and these
numbers are rapidly growing. The
two most striking differences between
diaries and Weblogs are that Weblogs
are not only for teenage girls or
politicians, and that they are not
secret at all. On the contrary; Weblogs
are out there for everyone to see!

So why is this topic being discussed in
a magazine for software architects and
information technology managers?
There are two main reasons: First,
there are a lot of architectural lessons
that can be learned from the Weblog
phenomenon and from the technologies
that make the Weblog universe tick.
In fact, the Weblog space as a whole
has already grown to be the largest
distributed XML and Web services
application in existence. Second,
Weblogs are becoming a strategic
tool to improve communication and

collaboration in the enterprise that
may eventually turn out to be just
as important as email.

In the first part of this article, I
will analyze and explain the Weblog
phenomenon and give some examples
of how Weblogs can be used as
collaboration systems in business
environments. In the second part
I will take a closer look at Weblog
related technologies, examine a
concrete example of a Weblog Engine
in the form of newtelligence’s free
Microsoft ® ASP.NET based dasBlog
application, and share some of the
architectural lessons newtelligence
learned from implementing, deploying
and running Weblogs on this platform.

Part 1: The Weblog Phenomenon
Before we go into the more technical
aspects, we should spend a bit of time
analysing why Weblogs have become so
wildly popular and why some people are
publishing their once secret diary on
the Internet, where it can potentially be
read by anyone.

Keeping a diary, and therefore keeping
a Weblog, is a very good idea, indeed.
Formulating thoughts and ideas in
writing requires more serious and
intense consideration of a topic than
just thinking about it. Keeping track
of thoughts, ideas, problems, and
solutions over time helps build a great
growing resource of personal experience
that you can turn back to in order to
look up all of those details that were
once well thought out and known but
now almost forgotten.

However, being a good idea is not
enough of a reason to explain the
sudden popularity of Weblogs. What
makes Weblogs really popular is that

they provide a near-perfect personal
publishing approach for everybody.
Even with the most recent generation
of HTML editing tools, maintaining a
private Web site is far too complicated
for most people and the result is often
disappointing when compared to the
polished Web sites created by
professional web-designers. Even if the
technical design challenges can be
overcome there is often a ‘content
dilemma’ regarding the information
that should actually be included in the
home page. Unless the owner is a
fanatic hobbyist keen to share his
expertise about postage stamps, model
railways or his favourite movie star,
the home page creation efforts usually
result in little more than a few pictures,
a personal greeting such as ‘Welcome
to my home on the Web’ and some
favourite links – with the frustrating
consequence that nobody will ever
look at it.

Weblogs – or more precisely, the tools
that are used to create Weblogs – help
overcome these hurdles to personal
publishing. Most popular Weblog
tools are in fact quite sophisticated
personal content management
systems that will take care of
rendering content into a professional
looking HTML template. They usually
provide content categorization as well
as topical and historical navigation
capabilities. This functionality, together
with their ease of use also seems to
solve the content dilemma. If the effort
to publish a quick thought of no more
than three lines onto a Web site isn’t
greater than that of writing an email,
then it’s more likely that it will
happen. The ease of publishing and
the ability to publish random thoughts
quickly, results in a qualitative
difference between home pages and

DasBlog: Notes from Building
a Distributed .NET Collaboration System
By Clemens Vasters, newtelligence AG

“The Weblog space as a whole has already
grown to be the largest distributed XML
and Web services application in existence.”

1 http://www.blogcensus.net/ and
http://dijest.com/bc/2003_06_23_bc.html

http://www.blogcensus.net/
http://dijest.com/bc/2003_06_23_bc.html

JOURNAL1 | DasBlog 50

Weblogs: Home pages help show
off HTML skills or knowledge and
admiration for a particular subject;
Weblogs exhibit personality and tell
an ongoing story.

Moreover, Weblogs have turned into
a public discussion platform where
thoughts and ideas can be exchanged.
Because Weblogs are formatted as
hypertext, they allow links to other
Weblogs, enabling Weblog authors to
publicly comment on other authors’
entries, and to any other Web-pages
the authors want to highlight to their
readers. Many Weblog tools also
facilitate the collection of per-topic
reader comments, allowing everybody,
not only ‘Bloggers’, to participate in
discussions. Weblog tools not only
expose the content as Web sites, but
also in XML. The most commonly
used format is the Real Simple
Syndication (RSS) 2.0 format (also
referred to as RDF Site Summary
or Rich Site Summary).

XML and RSS allow Weblog readers
using special tools to consolidate all
content of interest into a local content
store that’s searchable, easily
navigable, and provides pre-
categorized views that are also
available offline. The NewsGator2

plug-in for Microsoft Outlook® even
goes so far as to integrate this ability
into your everyday email client.

Weblogs in the Software Business
Recently, Weblogs have moved very
much beyond being just a trendy tool
for personal publishing and
community discussion. Corporate
knowledge and information workers
already benefit greatly from Weblogs
as an information source today.
Software developers and architects as

well as sales and marketing employees
quite often find Weblog links amongst
the top 10 entries of a Web search
result – and sometimes Weblog entries
seem to be the only good source for
certain information.

Technology companies like Microsoft
and Sun even have dedicated portals
where their employees can host their
Weblogs. However, while the Microsoft
portal is quite liberal about Weblogs
and only provides a set of links
pointing to their employee’s personal
blogs reflecting their personal
opinions and not the ‘official’ Redmond
position, the Sun portal and Weblogs
are much more of a developer
marketing and developer education
tool with a personal touch. Both
approaches have upsides and
downsides and neither can be called
better or worse. Sun’s primary
interest is a consistent, polished
external corporate message, while
Microsoft’s approach is to get and retain
traction with customers on an informal,
personal level and give them an
uncensored insight about what’s
happening behind the scenes.

Both the Microsoft and Sun
approaches to public corporate Weblogs
fill a gap in corporate messaging. The
Weblog format, the personal nature,
and the ease of publishing allows
authors to post small, informative
snippets about a product or solution
path and, as demonstrated by the very
liberal Microsoft approach, sometimes
even without going through the usual
corporate review, editing and
publishing cycle. It’s obvious that even
companies as large as Microsoft cannot
document every problem solution and
workaround using the ‘official
channels’, with all of the requirements

around localization, consistency and
publication processes – letting
employees augment the official
documentation with their own insight
is a brilliant way to complete the
picture and fill those gaps.

The corporate use of Weblogs is most
visible in the software industry, but it’s
not restricted to it. There are signs that
Weblogs are starting to fulfil similar
roles in other fields of business such
as law, the media industry, the fashion
industry and various fields of
engineering. Weblogs aid in bringing
a more personal touch to the corporate
message and are a very valuable
marketing and public relations tool that
demonstrates the personal competence
and abilities of the people that are the
drivers behind the a company.

Weblogs as an Enterprise
Communication and
Collaboration Tool
An even more attractive application of
Weblogs for corporations is
information distribution and
collaboration inside the corporate
network. Although many enterprises
have embraced and implemented
portal solutions and ‘groupware’ as
information distribution and
discussion platforms for a long time
now, Weblogs have the potential to
substantially enhance the corporate
information ecosystem and foster a
more transparent corporate culture.

Let’s look at a few examples of how
Weblogs and related technologies can
be used in a corporate environment
and that use differs from more
established solutions:

– Personal Weblogs Personal
Weblogs are the most obvious

2 NewsGator: http://www.newsgator.com

http://www.newsgator.com

JOURNAL1 | DasBlog 51

application, but – depending on the
corporate culture – also have the most
potential for conflict. Personal
Weblogs are a ‘personal portal’ and
allow individuals to track the results
of their own work and information
they gather from third party
information sources such as external
websites. Due to its chronological
nature, it also provides a great way of
document the history of decision
processes, of assumptions about
future events and therefore provides
a great foundation for post-mortem
analysis in the event of success or,
more importantly, failure. The conflict
potential lies in issues like content
ownership, supervision, freedom of
personal expression, disciplinary
consequences and similar issues.

– Topic-Centric Knowledge
Weblogs (K-Logs) Knowledge Logs
are not person-centric but topic-
centric. They are based on the same
technology as Weblogs, but have
multiple authors, usually from one
team, but sometimes across teams or
even divisions. K-Logs focus on
certain subject areas and enable the
aggregation of information and
references to topical content as a
growing and chronological
repository. In this function K-Logs
have substantial overlap with classic
knowledge portal solutions. What
makes K-Logs appealing is the
relatively low software acquisition
cost, the ease of use and the ability to
distribute and aggregate the content
via RSS. These advantages will be
examined in detail later in this
article.

– Team Weblogs Team Weblogs are
team centric and track the progress
of the development of a certain
product or project.

– Automated Weblogs Using features

like ‘Mail-To-Weblog’ (discussed later
in this article) or integrating with
Web services exposed by Weblog
engine software, Weblogs can serve as
an easy-to-install and easy-to-
maintain publishing point for
automatically generated information.
In the software industry this
information could include daily
reports generated from automated
build and test processes, in
manufacturing processes it could be
statistical information, and so on.
The benefit of automated Weblogs is
that the effort for publishing such
information in an accessible way is
minimized and it is sufficient for the
information provider to supply very
simple plain-text fragments.

An analysis of your own corporate
knowledge capturing and distribution
needs might yield more possible
applications of Weblogs. In addition
to this, subscription-based RSS
information services can help to
improve information distribution inside
the company without flooding email
inboxes. Examples of this are
automatically generated daily or
hourly reports about system or
machine activities, but also mundane
yet important things such as today’s
menu in the company’s cantina
or the latest scores of the company
football team.

Part 2 Weblog Technologies
and Applications
The ‘Blogosphere’, as the Weblog
space is also often called by Weblog
aficionados, is powered by a set of
core technologies and techniques
that we need to explain before we
can move on to the details of the
concrete implementation in
newtelligence’s dasBlog.

RSS Publishing and Aggregating
Information via XML
The most important Weblog
technology is undoubtedly the Real
Simple Syndication3 (RSS) XML format
that has already been mentioned
earlier in this article. RSS was
initially created by Userland Software
and Netscape as the XML format
behind the ‘Sidebar’ feature of Netscape
Navigator 6.0 that was the follow-up
technology to the ‘Netcaster’ in the 4.0
generation of Netscape’s product. RSS
can be seen as a response to Microsoft’s
XML-based Channel Definition
Format4 (CDF) for ‘Active Channels’
and the ‘Active Desktop’ that had
already been introduced in Internet
Explorer’s version 4.0, and both serve
approximately the same purpose:

The common idea behind the RSS and
CDF was to provide machine readable
indices for websites that could be
picked up by Netscape Navigator and
Internet Explorer and allowed the
browsers to display the current site
highlights and headlines either in the
Netscape Sidebar, in Internet
Explorer’s Favourites View or on
Windows’ ‘Active Desktop’. The vision
and promise was that all news
headlines and articles that a user was
interested in could be imported in a
quick online session and were then
available offline – primarily as a
convenient workaround to expensive,
pay-per-minute Internet access cost.
The long defunct Pointcast Network5

had a similar approach and was also
(in part) using the CDF format to
acquire information from its sources
and to push subscribed channels to
their client software. Unfortunately,
none of these products and features
were blessed with any great success;
Pointcast went floating belly up and

3 RSS 2.0 specification home:
http://blogs.law.harvard.edu/tech/rss

4 CDF W3C Note:
http://www.w3.org/TR/NOTE-
CDFsubmit.html, Official reference:
http://msdn.microsoft.com/workshop/
delivery/cdf/reference/CDF.asp

5 Pointcast Webopedia entry:
http://www.webopedia.com/TERM/P/
PointCast.html

http://blogs.law.harvard.edu/tech/rss
http://www.w3.org/TR/NOTE-CDFsubmit.html
http://msdn.microsoft.com/workshop/delivery/cdf/reference/CDF.asp
http://www.webopedia.com/TERM/P/PointCast.html

JOURNAL1 | DasBlog 52

‘channels’ built for either Netscape
or Internet Explorer have become
an extinct species. RSS survived
thanks to the continued efforts of
Userland Software and some other
vendors focusing on small scale
content management systems,
from which today’s Weblog tools
eventually evolved.

Despite its popularity and the fact
that RSS has accumulated a critical
mass of adoption that makes it hard
to replace, it is widely recognized that
RSS has several critical deficiencies
requiring changes or additions. RSS
lacks proper support for XML
Namespaces, does not use the ISO
time format mandated by the XML
specification, has no normative XML
Schema or even Document Type
Definition, and the specification itself
is ambiguous and lacks formality.
These issues have prompted the
formation of a working group6 around
the IBM engineer Sam Ruby who
are working to replace RSS, along
with a consolidation of most of Weblog
technologies into a set of specifications
under the name Atom.

Referrals Sparking Discussion
and Interaction
The public interaction between
Bloggers that emerges in the
Blogosphere is one of its greatest
appeals and motivators. Discussions
on certain topics quite often involve
dozens of authors who independently
publish their own views on their
Weblogs, but by citing other authors
and linking to their respective
Weblogs they jointly create a
hyperlinked mesh of views,
information and opinions on
a given topic.

Discussions spanning multiple
Weblogs are formed by no rules
other than chaos. This is distinctively
different from discussions in Internet
newsgroups, on mailing-lists, or in
public folders in a Groupware system.
In these, discussion participants must
active subscribers of a certain group
and the discussion usually goes
unnoticed outside of the group. Google’s
newsgroup archive exposes newsgroup
discussions to the web to some degree,
but still requires the user to explicitly
search either in a particular
newsgroup or for certain keywords.

The primary tool aiding the chaotic
formation of discussion and
interaction is a simple and well-known
mechanism supported by all common
Web browsers: The HTTP Referrer
header. When someone comes across
an interesting tip, a thought provoking
article or an opinion they post their
applause, concerns or supporting
information to the own Weblog – and
in doing so add a hyperlink to the cited
Weblog post over on the other Weblog.
Because almost all Weblog tools
recognize and log the Referrer HTTP
header, notifying the author of the
original entry is as simple as clicking
the link in a browser, because the
Referrer header contains the URL of
the page where the hyperlink was set.
Most popular Weblog engines track
and consolidate the referrals in easily
accessible lists, ranking them by the
number of visitors that have arrived at
the Weblog through the external links
and rendering the referrer URL as
a clickable hyperlink – some Weblog
engines can even notify their owner
by email of every such referral. In that
way, an author learns about external
comments or citations and can post his
own responses or additional comments

– and in the process linking back and
possibly citing and linking Weblogs
of third parties for examples or
supporting opinions, causing the on-
topic mesh to form and spread.

Because hyperlink referrals still require
manual intervention in order to
trigger notification, two additional
and more instant notification
mechanisms have gained the support
of the Weblog community and tool
builders: Pingback7 and Trackback8.

Pingback allows implementing
automatic notifications between
Weblog engines without having to rely
on HTTP referrals. Pingback defines a
Web service interface (using the XML-
RPC Web services protocol, not its
successor SOAP) and two auto-discovery
mechanisms. The function principle is
very simple: When the Weblog author
posts a new entry to their Weblog, the
engine looks at the submitted HTML
fragment and scans it for hyperlinks.
It will then issue an HTTP GET
request to each of those links, using
one or both of the auto-discovery
mechanisms, looking for an HTTP
header or a special tag embedded in
HTML, in order to find out whether
the link target supports the Pingback
protocol. If a Pingback endpoint is
detected, the engine will submit a ping
Web service call, supplying the URLs
of both, the pinged and the pinging
Weblog entry. Pingback has the
advantage of instant notification
about citations and, just as important,
about changes to these citations.

Trackback aims to provide similar
functionality, but with a slightly
different spin. The protocol does not
only provide the URL of the pinging
entry, but optionally also the title

6 Project Atom:
http://www.intertwingly.net/
wiki/pie/FrontPage

7 Pingback 1.0:
http://www.hixie.ch/specs/pingback/pi
ngback

8 Trackback 1.1:
http://www.movabletype.org/docs/
mttrackback.html

http://www.intertwingly.net/wiki/pie/FrontPage
http://www.hixie.ch/specs/pingback/pingback
http://www.movabletype.org/docs/mttrackback.html

JOURNAL1 | DasBlog 53

and a short excerpt of the source
entry along with the Weblog’s name.
Contrary to Pingback, which is fully
automatic, Trackback is typically
used as an explicit, on-demand
notification mechanism.

The major technical difference between
Pingback and Trackback is that
Pingback employs an XML-RPC Web
service interface while a Trackback
ping is technically equivalent to
submitting a form in a browser –
the information is posted using a
HTTP POST request employing the
application/x-www-form-urlencoded
content type, precisely as it is the case
with HTML forms. Although different,
both protocols succeed in achieving
their goal: improving collaboration
and communication.

To enable people who do not own their
own Weblog to participate in Weblog
discussions,, most Weblog engines
support user comments that can be
added using a Web-based interface.
Additionally, a widely adopted Web
services interface for comments exists;
the Comment API9. The Comment API
is directly supported by some of the
popular RSS aggregators like ‘RSS
Bandit’10, which allow readers to post
comments straight from the tool.

dasBlog: Implementing
a Weblog engine
Early in 2003, at newtelligence we
decided that building our own Weblog
engine would be a good thing to do.
There were several motivations. As
the most active and likely best known
Weblog author at newtelligence,
I primarily wanted to have a
replacement for my previous Weblog
tool for myself, with the side effect
that the other colleagues at

newtelligence could use it too. Writing
our own blog engine also promised to
give us a great set of example code to
use for developer education and a
platform to try out new technologies
and techniques. Finally, developing
a solution that supports all the
described and a few more collaboration
Web services seemed like a great
experiment to participate in, and
allowed us to research the reality
of a distributed system that already
implements a great deal of the Web
services vision.

At the time I got around starting to
implement dasBlog in July 2003,
with just 5 calendar weeks allocated
to complete the job, there were two
major Weblog engines existing for
the Microsoft .NET Framework, our
default platform: The engine powering
http://weblogs.asp.net (now called
‘.Text’), for which code was not
available at the time, and the engine
BlogX, which had been thrown
together by a couple of people at
Microsoft in their spare time along
with some community contributors.

The ‘make or take’ decision was a
relatively easy one, because BlogX
was already a working implementation
with a file-based backend store and
was relatively lightweight in terms of
existing features providing a good
skeleton that made refactoring and
adding new features relatively easy.
Also, the license conditions for BlogX
were largely equivalent to the BSD
license, which we also favour for work
that we publish for free and in source
code form.

While our initial intent was to merge
our changes back into the original
BlogX code base, it turned out that

the refactoring process led to the
elimination of almost all of the original
BlogX source code as the project
progressed. Because merging the
result into the code base would have
amounted to a hostile takeover of that
community project, we’ve decided to
give it a new name and to maintain it
as a separate project, and so dasBlog
was born. Version 1.0 of the new code
base went public after 3 weeks, with
the follow-up versions leading up to
the complete feature set in version 1.2
being released after 5 weeks – in time
and with a stability and quality that
has convinced several dozen bloggers
to abandon their old tools and switch
to the dasBlog engine even in the
early stages of the project.

dasBlog: Requirements,
Considerations, and Solutions
Fundamentally, dasBlog is a
small content management system
that’s directly bound to a rendering
engine, which renders all content just
in time and based on the view that
a visitor chooses.

Storage
The primary task of a Weblog system
is to capture and present a chronology
of events. The front page of a Weblog
therefore presents a configurable
number of Weblog entries,
chronologically ordered, with the
most recent entries at the top. This
fundamental principle also requires
that visitors can easily navigate
through the history of the Weblog by
date. This primary function immediately
influences the design of the backend
store, for which the most common
lookup criteria is a date or a time span.
At the same time, it must be possible
to efficiently access individual Weblog
entries by their identifier in order to

9 Comment API:
http://wellformedweb.org/story/9

10 RSS Bandit:
http://www31.brinkster.com/rssbandit/

http://weblogs.asp.net
http://wellformedweb.org/story/9
http://www31.brinkster.com/rssbandit/

JOURNAL1 | DasBlog 54

attach ‘tracking’ information such as
referrals, pingbacks and trackbacks,
and to associate and display
comments as explained earlier
in this article.

Because a Weblog is a person-centric,
not topic-centric publishing point, it
is also required to enable and ease
by-topic navigation by introducing a
categorization scheme. Creating and
maintaining categories should be
largely automated and should not
require much administrative effort
on behalf of the user.

Fulfilling these requirements would
be very easy with a relational database
system and a few simple indexes.
However, to achieve the desired ease
of initial deployment and future
upgrades coupled with minimal
administrative effort for anyone with a
low-cost, ASP.NET enabled account at
a web-hosting company as well as for
users on corporate desktop machines
running a local web server as their own
publishing point, it’s not a good idea to
depend on the existence of a full
database system. Instead, the backend
is factored in a way that a database
could be supported if that requirement
should arise, but the best and primary
storage mechanism is quite simply the
file system. This could have been
achieved by using a file-based
database like Microsoft’s well-known Jet
or FoxPro engines, but such a built-in
dependency would limit extensibility
and impact the efforts required for
upgrading to newer versions of the
software as they appear. Once the road
down the database route is taken, any
changes or additions to the storage
require schema updates for databases
in the installed base, substantially
increasing the administrative effort.

The resulting architectural decision
that was already pre-defined by the
original BlogX code base, and which
we consequently decided to stick
with, was to store all information in
XML files in a subdirectory of the
application. Because the lookup criteria
is based on time, or at least a time
interval, the content is stored
following a ‘one day, one file’ scheme
and the index is simply the file
system’s directory information: The
files names contain the date. The
auxiliary indexes for the categories
and the entry’s unique identifiers are
stored in separate files. Additional
information such as tracking data
(referrals, pingbacks, and trackbacks)
and comments are stored in files that
are also named (and thus indexed) by
date, but are kept separate from the
actual content in order to limit
concurrency issues and to address the
differences in their characteristics:

The core content has a very low update
frequency (a few times a day), has very
many reads, and must never be lost.
Tracking information is updated very
often, potentially concurrently, has
many reads, and is less critical.
Whenever changes to the core content
occur, the engine persists them
synchronously to be able to report any
errors straight back to the user. These
changes also cause all in-memory
caches to be discarded and the auxiliary
indexes to be rebuilt. All trackings,
however, are processed asynchronously
on a single secondary thread that is
sequentially fed information through
an in-memory queue. This can be done,
because the timeliness requirements for
trackings are very relaxed: They need
to be reflected in the Weblog eventually,
but they don’t need to appear as the
event occurs.

Because a new file is created each day,
the resulting file sizes are quite small
(typically substantially less than
100KB), and writes are quick with
minimal locking. An aggressive
approach to caching allows synchronous
updates to the in-memory caches and
the backend store especially for the
tracking information, and therefore
further reduces concurrency problems.
It should be noted, however, that
the chosen storage model and the
interaction between the in-memory
caches and the backend store limits
clustering or otherwise having multiple
engines share a common store.
That’s a deliberate and acceptable
restriction, because even very popular
Weblogs usually get only a few ten
thousand hits per day. This is aided
by the fact that most users read
Weblogs though RSS aggregators and
due to infrequent updates of the core
content, the RSS streams can be easily
cached on the server side and even
by upstream proxies.

Content Management
While we have already discussed
the storage strategy, we haven’t yet
covered how content is actually
submitted to the engine. Here again,
dasBlog had to fulfil multiple
requirements for a variety of
different usage scenarios.

The most obvious way to submit
content into a Web-based application is
to use a form on a Web page. dasBlog
supports this for all browsers, but
gives Microsoft’s Internet Explorer
preferred treatment for a few quite
simple reasons: Users that access the
editor web pages using Microsoft
Internet Explorer are provided with a
page that includes a set of client scripts
and an inline frame, utilizing Internet

“All trackings, however, are processed asynchronously
on a single secondary thread that is sequentially fed
information through an in-memory queue.”

JOURNAL1 | DasBlog 55

Explorer’s inherent ability to act as an
HTML editor. With this, users get rich,
in-browser text editing capabilities
and can style text using several fonts,
typographic effects and colours. The
editor also supports attaching files
and embedding pictures. The binaries
are uploaded using the standard HTML
upload control and stored in a special
directory below or alongside the content
directory. Once the upload is complete,
the picture or a hyperlink is inserted
into the current text.

For users with other browsers, such
as Opera or the Mozilla browser, the
web-based editing capabilities are
unfortunately much more restricted.
With these browsers, users only get a
standard multi-line text field and must
write HTML mark up explicitly. The
decision to go with such a limited
version for non-Microsoft browsers is
based on Internet Explorer’s market
share, the assumption that the users
of dasBlog will run Windows on their
desktops, and the fact that HTML
editing support is not standardized
across browsers. However, this
limitation isn’t as significant as it
might appear at first sight, because
using the web form is only one of three
ways to submit content into the
engine. The first alternative to
submitting content through a browser
is to use one of a variety of offline
Weblog editors such as Zempt11 or
w.bloggar12 that directly support
the Web services API developed by
the makers of the popular Weblog
environment ‘Blogger’. Any editor that
can target Blogger servers can also
target dasBlog. dasBlog implements
the Blogger API along with extensions
made for the competing MovableType
Weblog software and extensions made
by Userland, so that a wide range of

tools can be used both to submit
new entries and to edit existing
entries from a rich client.

The Blogger API and its various
extensions define Web services
endpoints that do not use the SOAP
protocol, but rather use XML-RPC.
The Atom working group that has
already been mentioned in the previous
discussion on RSS is planning to
consolidate the partially overlapping
functionality of what are essentially
three APIs and define the resulting
API to be SOAP based. However, the
server-side XML-RPC protocol
endpoints are sufficiently easy to
target by client applications, because
there are plenty of pre-built libraries
supporting the protocol for practically
all platforms that matter13, even if
these libraries are not too well known.
This entry point to the content
management backend is not only
well suited for interactive editing
tools, but also as an interface to push
automatically generated content into
dasBlog from any other application
and even to synchronise content
between Weblogs.

The second alternative to submitting
content through a browser, and by far
the most attractive one, is email. When
the dasBlog web application starts, it
spins up a dedicated thread that will
watch, in configurable intervals, a
POP3 mail account defined by the
Weblog owner. Whenever the engine
polls the account, it processes every
email item in the account, looking for
emails whose subject line is prefixed
with a configured passphrase. Emails
with a matching passphrase are added
to the content store. This is obviously
a minimalist security measure and
the passphrase can even be empty,

allowing any email to be published.
dasBlog can handle HTML and plain-
text formatted messages, and extract,
store and link attachments, handle
embedded pictures, and through a
configuration switch create and embed
thumbnails for picture attachments.

Email support provides the most
flexible and instantly interoperable
model for adding information to the
Weblog, is readily supported on every
platform. It allows content creation
and submission anywhere, with
familiar tools including SMS and
MMS messages sent from mobile
phones through an email gateway.
With support for HTML and picture
embedding and using state-of-the-
art email tools like Microsoft Office
Outlook 2003, publishing rich content
to the Web becomes easier than ever.

Rendering Engine and
Localisation
The rendering engine is responsible
for formatting the content for Web
presentation. The core requirements
are easy to define: Navigation
through the site should be easy and
obvious for all visitors, the site should
be accessible using virtually every
current Web browser on any
platform, and it should be possible
to easily customise and enhance the
site’s visual design.

These requirements led to an approach
where dasBlog borrows heavily from
the popular Radio Userland14 Weblog-
tool, and is indeed largely compatible
with design templates created for that
tool. The reason for taking this route
was that there are many free and
ready-to-use design templates
available for Radio Userland, and also
for Userland’s Manila15 content

11 Zempt: http://www.zempt.com

12 W.bloggar: http://www.wbloggar.com

13 XML-RPC implementations:
http://www.xmlrpc.com/directory/
1568/implementations

14 Radio Userland:
http://radio.userland.com

15 Manila: http://manila.userland.com/

http://www.zempt.com
http://www.wbloggar.com
http://www.xmlrpc.com/directory/1568/implementations
http://radio.userland.com
http://manila.userland.com/

JOURNAL1 | DasBlog 56

management system, and allowing
reuse of these immediately provided a
variety of widely known and appealing
visual themes that fit many personal
tastes. In addition to having a broad
selection of ready-to-use themes, the
basic navigation scheme is therefore
also aligned with a large number of
other public Weblogs, providing the
desired instant familiarity and ease-
of-use.

The installable version of dasBlog
comes with a set of these templates
already configured for use – enabling
the user to focus on content and not on
technical details of HTML right from
the start. Still, because many users
want to give their Weblogs a personal
touch and are not afraid of HTML,
customisation beyond simply selecting
a template must be very simple.

Design templates for dasBlog use
a combination of simple HTML,
Cascading Style Sheets (CSS) and a set
of macros that is implemented by the
engine. A design template (or theme)
always consists of three simple HTML
files: homeTemplate.blogtemplate
(or .txt or .html), dayTemplate.
blogtemplate and itemTemplate.
blogtemplate. The homeTemplate is
used to render the content framework
for every page, the dayTemplate is
used as a frame for the content of a
certain day and the itemTemplate is
used to render individual entries.
The engine also supports separate
templates for each content category.

The templates themselves are fairly
easy to customize using a standard
HTML editor with Cascading Style
Sheet support. The supported macros
are well documented16 and can be
inserted into the page using special

escape sequences. All dynamic
elements such as the calendar or the
category lists are partially hard-wired
into the rendering engine because of
their complexity, but their appearance
can be extensively customized using
Cascading Style Sheets.

Another concern and requirement for
dasBlog was to have good support for
localization. Because newtelligence is
a German company with customers all
across the EMEA region, it was
important for us to support full
localization into German and English
for ourselves and into all EMEA region
languages, including the right-to-left
languages Hebrew and Arabic, for our
customers. To make localization work,
dasBlog combines several techniques.

The engine looks at the Accept-
Language HTTP header that all major
browsers send with each request to
indicate the user’s preferred language.
The current culture of the ASP.NET
thread handling the request is set to
the language-identifier with the
highest preference and subsequently
causes all resources to be loaded
from the most appropriate resource
tables, with a default fallback to a
neutral culture that contains all
resources in English. This causes the
date formatting and the calendar to
be properly localized from within the
.NET Framework itself and causes all
hardwired strings that the Weblog
engine needs to emit to be rendered
in the most appropriate language. For
templates, the engine provides a macro
that allows specifying multi-lingual
strings within the HTML source.
Switching the thread into the
appropriate locale also enables right-
to-left support for Arabic and Hebrew,
because the resource tables for these

locales contains a special flag that
causes the engine to inject the
appropriate additional dir attributes
into the HTML streams.

In addition to these general
localization techniques, it is possible
to explicitly set the language for every
Weblog entry so that only visitors
who have this language listed in their
browser preferences (and therefore
indicate that they can understand it)
will see this content. If an entry uses
the invariant culture default setting,
it is shown to all visitors, independent
of language preference. If a language
is set of individual entries this is also
reflected in the XML data streams
rendered by dasBlog where the
respective elements are labelled with
the appropriate xml:lang attribute.

The combination of these techniques
demonstrates that flexible localization
is very possible for Web sites in general
and we found that the effort it took to
implement the complete localization
support was very low when using the
.NET Framework. In fact, the code
required to make localization work
was added to the already existing
application and deployed in less
than two days.

Threading Model and Hosting
dasBlog is hosted in an application
domain inside the ASP.NET worker
process on Windows 2000 and Windows
XP, or in the Web Application runtime
of Internet Information Server 6.0 on
Windows Server 2003. Because of the
focus on a single user’s Weblog and the
resulting limited traffic, it is safe to
minimize I/O workload by using
aggressive caching, incrementally
loading content at the time of the first
request and keeping it cached for

16 DasBlog Macro Documentation:
http://www.dasblog.net/documentation
/CategoryView.aspx?category=
Templates%20and%20Macros

http://www.dasblog.net/documentation/CategoryView.aspx?category=Templates%20and%20Macros

JOURNAL1 | DasBlog 57

further requests. Because users very
rarely browse through the Weblog’s
history, typically only the content of
the last month is cached and even for
a very busy Weblog this means an in-
memory data volume of well under
2MB. Requests for binaries and
pictures are handled and served by the
Web server directly and are therefore
not a concern for the engine.

Because of these considerations,
operation in a Web Farm where
multiple servers operate on the same
content store is not explicitly
supported, and therefore not a test
requirement. That said, all content
updates cause a shared file to be
updated. Whenever this file’s time
stamp changes, indicating an update
to the file’s content, the internal
caches are discarded and incrementally
reloaded and clustered operation is
therefore possible without causing
cache coherency problems. Both
failover clustering and load balancing
could be implemented by pointing the
Website’s storage directory to a
network drive, but support for this is,
as explained, not a primary concern.

A more central concern is to design an
appropriate threading model to handle
work inside the engine. Of course, the
main purpose of the engine is to
respond to synchronous HTTP
requests for Web service invocations
and HTML resources and therefore
we can rely on ASP.NET’s threading
model for the vast majority of the
work: Each request is served by a
thread that’s allocated from the
ASP.NET thread pool.

However, there are several activities
that the engine can and should perform
asynchronously and in background in

order to maximize request/response
performance. Because the
asynchronous actions differ slightly
in their execution characteristics,
dasBlog employs three variants
of thread use:

The first thread model is in the Mail-
To-Weblog feature and another feature
called the Xml Storage System update
service (XSS), which we have not
discussed in this article because it
mainly serves to provide an easier
migration path for users switching
to dasBlog from Radio Userland, both
share similar characteristics. The
threads for these two features perform
periodic actions. Mail-To-Weblog
periodically polls a POP3 account and
the XSS thread periodically pushes
a static copy of the current RSS
document to a remote Web service
that fronts a distributed file storage
system. The only difference between
them is that the XSS thread can be
explicitly triggered by signalling an
event so that content updates are
quickly synchronized into the remote
store. Neither of these threads is time
critical and therefore both run with a
below-normal thread priority, which
means that they only get served when
the system is not busy. Both threads
are designed to start up immediately
when the application domain is
started and to spin infinitely as long
the application domain runs. Both
threads are robust against internal
failures and will fail out gracefully
when the application domain shuts
down and tears down all running
background threads. Except for the
signalling event of the XSS thread,
the main application does not actively
communicate with either thread, but
the threads rather invoke functions
out of themselves.

The second, slightly different model
for threads is employed for handling
incoming trackings (that is referrals
through, Trackback, and Pingback).
Incoming trackings are important to log,
but there is no urgency to get them
into the data store. One somewhat
critical factor relating to detailed
tracking of referrers is that it results in
a write operation for every incoming
request, which creates concurrency
issues on the files. Because the required
locking results in sequential access to
the file store, all trackings are written
to an in-memory queue watched by a
single thread that runs for the entire
application domain lifespan and that
processes all trackings in sequence,
eliminating concurrency issues. The
same strategy is used for sending
notification emails to the
administrator. While this technique
conveniently decouples foreground
and background tasks, the primary
motivation of this model is to
serialize access to limited resources.

The third usage scenarios for threads
are Pingbacks, Trackbacks and change
notifications that dasBlog actively
sends to other sites. Serialization of
requests is not required here, because
notifications are usually targeted at
several different sites, but decoupling
from the main thread is imperative
because sites might be very slow or
unreachable, causing delays of several
seconds that can quickly add up when
a series of automated Pingbacks needs
to be issued based on a single post.
Doing this in the thread processing
the request (submitting a new or
changed post) would mean that the
response is delayed by the cumulative
time needed for the notifications, which
is clearly unacceptable. Therefore, the
data that is required to execute these

“Another concern and requirement
for dasBlog was to have good
support for localization.”

JOURNAL1 | DasBlog 58

external notifications is packaged into
jobs that are submitted to the .NET
thread pool for execution.

Using the .NET thread pool permits
concurrent execution once threads
become available for servicing, but
does not create undue stress by
recreating new threads all the time.
Instead, the active threads in the pool
are being reused. This thread pool is
shared with the ASP.NET runtime,
which by itself puts a global throttle
on the threads that can be executed
concurrently, limiting the potential to
overstress the machine. At the same
time, this approach creates a limited
risk of drying up the ASP.NET thread
pool and causing external requests to be
queued up – at the extreme it may even
cause the ASP.NET application domain
to recycle (shut down and restart). As
in many application designs, this is
a case where the advantages (easy
programming model) must be weighed
against the disadvantages and risks.
The special use-case here does justify
the chosen model, but if these actions

weren’t confined to the rare case
of updating and adding content, the
model used for handling incoming
trackings described earlier would
be a better choice.

Summary
Weblogs are an extremely promising,
but much hyped new phenomenon.
There are overly enthusiastic claims
that Weblogs will change and shake
the foundations of journalism and
even democracy. While these ideas
might dramatically overstate their
importance, Weblogs present some
real advantages and opportunities
for collaboration and a quick and
easy way to publish content in an
organized manner.

However, as we have shown, creating
a Weblog engine that is able to act as
a node in an ever changing, growing,
distributed, and cross-platform
application network comes with a
few architectural challenges, even if it
the resulting application is relatively
small. It must be easy to deploy, easy

to use, and easy to customize,
navigation must be simple, intuitive
and responsive and it must be able
to interact and integrate with a wide
variety of systems across many
platforms. Weblogs are proof that
the first generation of Web services
is working and that deep interaction
between foreign systems is not just
a vision of the future, but today’s
reality – deployed across thousands
of servers running Unix, Linux,
MacOS X, Windows and many more
platforms. They are also proof that
commitment to make integration
work across all technology camps
in a concerted grassroots effort does
indeed yield tangible results. None
of the Weblog technologies highlighted
in this article has ever seen a formal
standards committee.

Resources
An installable version of dasBlog
and the source code of the latest
release can be downloaded from the
project’s documentation website at
http://www.dasblog.net

Clemens Vasters
clemensv@newtelligence.com

Clemens is co-founder and executive
team member of newtelligence AG,
a developer services company
headquartered in Germany. He is
a Microsoft Regional Director for
Germany. A well-known developer
and architect trainer, he is a popular

conference speaker, author/co-author of
several books, and maintains a widely
read and frequently referenced Weblog
focused on architectural and
development topics at http://
staff.newtelligence.com/ clemensv

http://www.dasblog.net
http://staff.newtelligence.com/clemensv
mailto:clemensv@newtelligence.com

Microsoft is a registered trademark of Microsoft Corporation

JOURNAL1

Executive Editor
& Program Manager
Arvindra Sehmi
Architect, Developer and Platform
Evangelism Group, Microsoft EMEA

Managing Editor
Graeme Malcolm
Principal Technologist,
Content Master Ltd

Editorial Board
Christopher Baldwin
Principal Consultant, Developer
and Platform Evangelism Group,
Microsoft EMEA
Gianpaolo Carraro
Architect Evangelist, Developer
and Platform Evangelism Group,
Microsoft EMEA

Simon Guest
Program Manager,
.NET Enterprise
Architecture Team,
Microsoft Corporation
Wilfried Grommen
General Manager, Business
Strategy Microsoft EMEA
Neil Hutson
Director of Windows Evangelism,
Platform Strategy and Partner
Group, Microsoft Corporation
Eugenio Pace
Principal Consultant,
Microsoft Consulting Services,
Microsoft Argentina
Michael Platt
Architect Evangelist, Developer
and Platform Evangelism Group,
Microsoft Ltd
Philip Teale
Partner Strategy Manager, Enterprise
Partner Group, Microsoft Ltd

Project Management
Content Master Ltd
www.contentmaster.com

Design Direction
venturethree, London
www.venturethree.com

Orchestration
Devinia Hudson
Projects Coordinator, Developer
and Platform Evangelism Group,
Microsoft EMEA

Foreword Contributor
Simon Brown
General Manager, Developer
and Platform Evangelism Group,
Microsoft EMEA

The information contained in this Architects Journal (‘Journal’) is for information purposes only. The material in the Journal does not constitute the opinion of Microsoft or Microsoft’s advice and you should not rely on any
material in this Journal without seeking independent advice. Microsoft does not make any warranty or representation as to the accuracy or fitness for purpose of any material in this Journal and in no event does Microsoft

accept liability of any description, including liability for negligence (except for personal injury or death), for any damages or losses (including, without limitation, loss of business, revenue, profits, or consequential loss)
whatsoever resulting from use of this Journal. The Journal may contain technical inaccuracies and typographical errors. The Journal may be updated from time to time and may at times be out of date. Microsoft accepts no

responsibility for keeping the information in this Journal up to date or liability for any failure to do so. This Journal contains material submitted and created by third parties. To the maximum extent permitted by applicable
law, Microsoft excludes all liability for any illegality arising from or error, omission or inaccuracy in this Journal and Microsoft takes no responsibility for such third party material.

All copyright, trade marks and other intellectual property rights in the material contained in the Journal belong, or are licenced to, Microsoft Corporation. Copyright © 2003 All rights reserved. You may not copy, reproduce,
transmit, store, adapt or modify the layout or content of this Journal without the prior written consent of Microsoft Corporation and the individual authors. Unless otherwise specified, the authors of the literary and artistic

works in this Journal have asserted their moral right pursuant to Section 77 of the Copyright Designs and Patents Act 1988 to be identified as the author of those works.

	Front Cover / Contents
	Editorial By Arvindra Sehmi
	Enterprise Architecture Design and the Integrated Architecture Framework By Andrew Macaulay, CGE&Y
	Andrew Macaulay - Biography
	Understanding Service Oriented Architecture By David Sprott and Lawrence Wilkes, CBDI Forum
	David Sprott - Biography
	Lawrence Wilkes - Biography
	Business Process Decomposition and Service Identification using Communication Patterns By Gerke Geurts and Adrie Geelhoed, LogicaCMG
	Gerke Geurts - Biography
	Adrie Geelhoed - Biography
	Metadata-driven Application Design and Development By Kevin S Perera, Temenos
	Kevin S Perera - Biography
	Best Practices for Rule-Based Application Development By Dennis Merritt, Amzi! Inc.
	Dennis Merritt - Biography
	DasBlog: Notes from Building a Distributed .NET Collaboration System By Clemens Vasters, newtelligence AG
	Clemens Vasters - Biography
	Editorial Board / Contributors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

