
 0215msdn_CoverTip.indd 1 1/13/15 11:52 AM

www.devexpress.com/try

 0115msdn_CoverTip.indd 2 12/9/14 4:44 PM

www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS FEBRUARY 2015 VOL 30 NO 2

Share UI Code Across Mobile Platforms
with Xamarin.Forms
Jason Smith . 18

Adding a Code Fix to Your Roslyn Analyzer
Alex Turner . 26

The Rise of Event Stream-Oriented Systems
Christopher Bennage . 32

Build Better Software with Smart Unit Tests
Pratap Lakshman . 38

What Every Programmer Should Know
About Compiler Optimizations
Hadi Brais . 48

Building an Enterprise Search for .NET
Damian Zapart . 56

COLUMNS
CUTTING EDGE
Lightweight Client-Side
Device Detection
Dino Esposito, page 6

WINDOWS WITH C++
COM Smart Pointers Revisited
Kenny Kerr, page 10

TEST RUN
L1 and L2 Regularization
for Machine Learning
James McCaffrey, page 64

THE WORKING
PROGRAMMER
Rise of Roslyn, Part 2:
Writing Diagnostics
Ted Neward and
Joe Hummel, page 70

MODERN APPS
Implement Search in
Windows Store and Windows
Phone Store Apps
Rachel Appel, page 76

DON’T GET ME STARTED
5 Years Down the Road
David Platt, page 80

Cross-Platform UI
Code with Xamarin.............18

0215msdn_C1_v1.indd 1 1/13/15 8:31 AM

www.microsoft.com

Untitled-7 2 12/4/14 2:22 PM

www.axosoft.com/msdn

Untitled-7 3 12/4/14 2:23 PM

www.axosoft.com/msdn

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published monthly by 1105 Media, Inc., 9201 Oakdale
Avenue, Ste. 101, Chatsworth, CA 91311. Periodicals
postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offices. Annual subscription rates
payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in
U.S. funds are: U.S. $25.00, International $25.00. Single
copies/back issues: U.S. $10, all others $12. Send orders
with payment to: MSDN Magazine, P.O. Box 3167, Carol
Stream, IL 60132, email MSDNmag@1105service.com
or call (847) 763-9560. POSTMASTER: Send address
changes to MSDN Magazine, P.O. Box 2166, Skokie,
IL 60076. Canada Publications Mail Agreement No:
40612608. Return Undeliverable Canadian Addresses
to Circulation Dept. or XPO Returns: P.O. Box 201,
Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader ’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
A list of editors and contact information is also available
online at Redmondmag.com.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF
Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Assistant Art Director Dragutin Cvijanovic
Graphic Designer Erin Horlacher
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF
Director, Print Production David Seymour
Print Production Coordinator Anna Lyn Bayaua

ADVERTISING AND SALES
Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Regional Sales Manager/Microsoft Account Manager
Danna Vedder
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA
Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Senior Site Administrator Shane Lee
Site Administrator Biswarup Bhattacharjee
Senior Front-End Developer Rodrigo Munoz
Junior Front-End Developer Anya Smolinski
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

LEAD SERVICES
Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services
Mallory Bundy
Editorial Director, Custom Content Lee Pender
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos
Coordinator, Lead Generation Marketing
Obum Ukabam

MARKETING
Chief Marketing Officer Carmel McDonagh
Vice President, Marketing Emily Jacobs
Senior Manager, Marketing Christopher Morales

ENTERPRISE COMPUTING GROUP EVENTS
Senior Director, Events Brent Sutton
Senior Director, Operations Sara Ross
Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Senior Vice President & Chief Financial Officer
Richard Vitale

Executive Vice President
Michael J. Valenti

Vice President, Information Technology
& Application Development
Erik A. Lindgren

Chairman of the Board
Jeffrey S. Klein

Director Keith Boyd
Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Lafe Low
Features Editor Sharon Terdeman
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Rachel Appel, Dino Esposito, Kenny Kerr, Julie Lerman, Ted Neward,
David S. Platt, Bruno Terkaly, Ricardo Villalobos
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

FEBRUARY 2015 VOLUME 30 NUMBER 2

magazine

0215msdn_Masthead_v5_2.indd 2 1/13/15 11:42 AM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/QuickQuote.asp
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:FirstinitialLastname@1105media.com

Untitled-3 1 1/13/15 12:55 PM

www.leadtools.com

msdn magazine4

In this month’s issue of MSDN Magazine, Microsoft Senior Program
Manager for the Managed Languages Team Alex Turner writes about
the new Analyzer functionality in Visual Studio 2015 Preview and
the .NET Compiler Platform (known previously by the code name
“Roslyn”). His feature, “Adding a Code Fix to Your Roslyn Analyzer,”
is actually the second in a two-part exploration of the new Analyzer
functionality. The first part, “Use Roslyn to Write a Live Code Ana-
lyzer for Your API” (msdn.microsoft.com/magazine/dn879356), appeared in
last month’s special issue on Visual Studio 2015 and Microsoft Azure.

There’s a reason we’re running multiple articles on this topic. As
Turner notes, the addition of diagnostic Analyzers to Visual Studio
2015 changes the game for developers, enabling real-time feedback
about detected code issues as you type. What’s more, Analyzers can
provide custom guidance that’s specific to the APIs being used.
The opportunities to enable and enforce best practices across the
coding environment are hugely compelling, and promise to help
eliminate many common flaws and errors that plague code builds
today. The Azure Code Analysis package is a case in point. The
package provides a set of rules that detect code issues that can
impair the scalability, reliability and security of cloud applications.

This is a huge step forward from traditional code analysis, which
can only go to work on code at build time. As Turner tells it, the

response from developers has been “amazing.” “The community
has already built open source Analyzer projects on GitHub such
as Code Cracker, which now has over 40 diagnostic rules and over
300 commits. Not bad for a Visual Studio 2015 feature that’s still in
Preview,” Turner says.

Helping spur early adoption is the decision by Microsoft to rely
on NuGet for package management. Turner says he expects to
see dev teams use NuGet not just to download external packages,
but to enable private package servers to manage internal libraries.
Authorized users can discover these libraries and distribute
Analyzers with them.

“Every issue your Analyzer detects is one less e-mail you’ll get
from the teams using your libraries, which helps your team save
time and focus on development,” Turner says.

One misconception around Analyzers is that developers must
be a compiler or language expert to write them. Turner recounts
a recent boot camp session where he set attendees off to build
Analyzers after a 90-minute talk.

“Within the first two hours, they’d already written 10 meaningful
Analyzers, such as one that made sure sensitive information like
connection strings or passwords don’t end up in string literals by
accident,” he says. “Roslyn makes it easy for every dev team to write
custom code analysis that enforces their own coding practices and
business rules, well before problems make it as far as a code review.”

For those getting started with the Analyzer functionality in
Visual Studio 2015, Turner suggests that developers start simple.
Implement a streamlined version of each rule and build it out in
increments. The payback will happen quickly, he says, because
developers can often catch 80 percent of the cases they hope to
snare in less than 100 lines of code.

“Once you’ve got a successful Analyzer that’s squiggling real
problems, go ahead and dig in to start catching any special cases
you find slipping through,” Turner adds. “Analyzers don’t need to
be perfect to start saving your team lots of debugging time.”

Analyze This

© 2015 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEditor’s NotE

“Every issue your Analyzer detects
is one less e-mail you’ll get from
the teams using your libraries,

which helps your team save time
and focus on development.”

 Alex Turner, Microsoft Senior Program Manager,
Microsoft Managed Languages Team

0215msdn_DesmondEdNote_v2_4.indd 4 1/13/15 8:37 AM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://msdn.microsoft.com/magazine/dn879356

Untitled-1 1 12/2/14 4:42 PM

www.appdynamics.com

msdn magazine6

There are two basic options for creating device-friendly Web sites—
create a separate mobile site (m-site) or rework a site so it can intel-
ligently adapt content and behavior to the current screen size and
orientation. Neither of those two strategies is ideal in all cases. There-
fore, the most insightful approach is the classic, “It depends,” approach.

The m-site approach has two major drawbacks. First, all devices
are different in terms of screen size and other physical capabilities
(from smartphones, tablets and mini-tablets to older cell phones,
phablets, wearable devices and so on). In the end, how do you
actually define “mobile”?

Years ago, having an m-site made more sense because there was
a clear separation between desktop computers and everything else.
Today, the space of “everything else” has so many options that a
generic unified mobile site is out of the question. The second draw-
back of an m-site is it requires users to navigate to a distinct URL,
typically some m.yourserver.com. This is no longer a desirable
solution and only acceptable as a temporary fix.

The other option—a responsive UI—isn’t without its issues,
either. The key question is how would you go about making a Web
site responsive? A responsive site is commonly associated with the
idea that it was built with responsive Web design (RWD). RWD is
a development approach that uses the browser implementation of
CSS Media Queries to detect screen size and orientation and lets
you define breakpoints (essentially a pixel width) to automatically
apply a different CSS.

The net effect is attractive. As you resize the browser window and
trespass one of those visual breakpoints, the appearance of the site
changes to make better use of the available real estate. The content
adapts at no extra cost to any full-screen mobile browser used to
visit the site. RWD is device-agnostic and scalable to any number
and type of devices available now and in the future.

As pointed out in my December 2014 column, “Effective Image
Handling in Responsive Web Sites” (msdn.microsoft.com/magazine/
dn857356), being device-agnostic is both a strength and weakness of
RWD. If your customers are happy with the results you can achieve

through RWD (mostly performance and usability), then you’re all
set. RWD is your baby and you’re done.

RWD usually works well with sites presenting content without
requiring much interaction or wizard-like workflows. The more
forms you have, the more you need users to select and type. In that
case, the one-size-fits-all approach like RWD is less appropriate.
So where are we, then?

The industry demands an effective way to serve appropriate con-
tent to any device without remembering a different URL. RWD is
a popular approach to achieve this end. However, RWD is unapol-
ogetically device-agnostic. Developers don’t love doing device
detection. There are bad memories of when making a Web site look
the same across multiple browsers required parsing the user agent
string and bringing it to countless branches of code.

Device Detection over Feature Detection
While you wait for the time when all browsers eventually expose
platform and capabilities through a standard object model, parsing
the user agent string is currently the only way to figure out which
browser is actually requesting pages from a Web site. Parsing a user
agent is a challenge, but there are a few tools that can mitigate the
pain to some extent.

One of these tools is the script you get from detectmobilebrowsers.com.
This script uses regular expressions to check a list of known mobile
keywords and answer the question: “Is it mobile?” In this context,
mobile simply means it’s not a desktop browser. Another tool is
Modernizr, which has a long list of plug-ins for user agent parsing
and detecting touch events to try to detect a tablet.

Modernizr, however, isn’t the right tool to detect anything other
than JavaScript-detectable features. And whether the browser
is a tablet or a smartphone isn’t something you can detect with
JavaScript. You can only ask the browser about its identity through
JavaScript, but most browsers (especially mobile browsers) return
inaccurate information for a number of reasons, including being
incorrectly recognized by legacy code based on user agents.

Modernizr heralds the flag of feature detection versus device
detection. It’s an apples-to-oranges comparison. They’re different
things serving different purposes. If you need to determine the form
factor of the requesting device, feature detection isn’t the way. Some
developers detect tablets and smartphones via JavaScript by asking
Modernizr to check for touch events. This is increasingly unreli-
able considering the growing number of touch-enabled desktops
and devices you want to treat as desktops.

Lightweight Client-Side Device Detection

Cutting EdgE DINO ESPOSITO

The key question is how would
you go about making a Web site

responsive?

0215msdn_EspositoCEdge_v3_6-9.indd 6 1/13/15 8:34 AM

http://msdn.microsoft.com/magazine/dn857356
http://msdn.microsoft.com/magazine/dn857356
www.detectmobilebrowsers.com

Move from finger-pointing blame to data-driven accountability.
Find the truth with a single source of data from multiple views.

newrelic.com/truth

©2008-15 New Relic, Inc. All rights reserved.

Mobile Developers
End-to-end visibility,
24/7 alerting, and
crash analysis.

Front-end Developers
Deep insights into
your browser-side
app’s engine.

IT Operations
Faster delivery.
Fewer bottlenecks.
More stability.

App Owners
Track engagement.
Pinpoint issues.
Optimize usability.

One source of truth
See all your data. Boost performance. Drive accountability for everyone.

Untitled-3 1 1/13/15 11:56 AM

www.newrelic.com/truth

msdn magazine8 Cutting Edge

You need expert help analyzing user agents and returning easily
consumable information. Expert help means some framework that’s
continuously updated to add new devices as they hit the market. It
also implies sophisticated parsing logic that properly handles false
positive and uses statistical analysis to work around incorrect infor-
mation passed by some mobile browsers. Frankly, it’s a lot of work.
There are some companies doing it for you, though. These tools are
called Device Description Repositories (DDRs).

The WURFL.JS Endpoint
A lightweight form of JavaScript device detection can improve the
UX in client-side-intensive Web applications, such as a single-page
application (SPA). WURFL (wurfl.sourceforge.net) is a popular DDR that
has been around for a few years as a server-side solution. I wrote
about using WURFL in an ASP.NET MVC application in my August
2013 column, “Creating Mobile-Optimized Views in ASP.NET MVC
4, Part 2: Using WURFL” (msdn.microsoft.com/magazine/dn342866.aspx).

Server-side WURFL is subject to a license fee whether you use
it on-premises or access the DDR in the cloud. The WURFL team
recently released a free HTTP endpoint (WURFL.JS) that you can
invoke from the client side through JavaScript. To enable JavaScript
device detection via the WURFL.JS endpoint, all you need to do is
add the following line to HTML (in ASP.NET, you can even place
it in the master page or layout file):

<script type="text/javascript" src="http://wurfl.io/wurfl.js"></script>

The referenced resource—wurfl.js—is not clearly a plain
JavaScript file you can download and host on-premises or upload
in your cloud site. It’s a JavaScript-like HTTP endpoint that injects
a JavaScript object right in the Document Object Model (DOM).
The net effect is once the browser has made a call to the endpoint,
your DOM contains the following:

var WURFL = {
 "complete_device_name":"iPhone 5",
 "is_mobile":false,
 "form_factor":"Smartphone"};

The browser sends its user agent string while making the request.
Backed by the server-side WURFL framework, the endpoint analyzes

the string and determines key information about the requesting
device. Such information is then formatted into three properties in a
global object named WURFL (see Figure 1). It’s interesting to notice
WURFL.JS can also reliably detect whether your Web page is being
viewed from within the WebView component of a native mobile app.
This happens when the form_factor property returns App.

WURFL.JS uses a lot of caching to ensure a quick response. In
the development phase, you can switch off the cache by adding
debug=true to the URL. When the DOM ready event is fired, you
can safely use the WURFL object to enable or disable client-side
features or request optional data to the server.

WURFL.JS Adds Power to RWD
Suppose you have a page with video and you don’t want it to play
on smartphones for performance reasons. With plain RWD, you
can’t make adjustments like that. If you hide the video player
below a given breakpoint, you won’t be able to play anything when
the desktop browser is resized to a tiny window. WURFL.JS used
with RWD solves the issue, as shown here:

<script type="text/javascript">
 $(document).ready(function () {
 if (WURFL.form_factor == "Smartphone") {
 $("#video_player").hide();
 }
 });
</script>

First, load the page and style it according to the RWD layout. Next,
use WURFL to check the form factor and hide the video player.
When a desktop browser is resized to the size of a smartphone,
users will still be able to play videos, but not when it’s a real smart-
phone. An even better formulation of the earlier code is shown here:

<script type="text/javascript">
 $(document).ready(function () {
 if (WURFL.form_factor != "Desktop" &&
 WURFL.form_factor != "Tablet") {
 $("#video_player").hide();
 }
 });
</script>

In this case, the video player is hidden in all cases, except when
the device is a desktop or tablet. There’s another more interesting
scenario for WURFL.JS. Suppose you have an RWD site in pro-
duction where all views are generated on the server, within an
ASP.NET MVC application, for example.

At some point, you’ll get feedback that smartphone users aren’t
having an appropriate experience. Should you consider creating an
entirely new m-site for them? If you can use the server-side services
of WURFL, then you can easily implement a view switcher within
the same site, as demonstrated in my August 2013 column.

This approach would save most of the work you’ve done. Otherwise,
there’s not much you can do other than create a separate site and imple-
ment some redirect mechanism, as demonstrated in my January 2015
column, “Mobilize an Existing Web Site” (msdn.microsoft.com/magazine/
dn890366). To display regular and m-site under the same URL, you still
need some good device detection done on the server side.

A pleasant side effect of using WURFL.JS is you can collect
device information from the WURFL object and pass it on to
Google Analytics. That gives you an immediate measure of how
users are visiting your site and which device they use most. If you
upgraded to the new analytics.js you need the following:

Property Description
complete_device_name Contains a descriptive name for the detected

device that typically includes vendor and device
name (for example, iPhone 5).

form_factor Contains one of a few predefined strings such
as: Desktop, App, Tablet, Smartphone, Feature
Phone, Smart-TV, Robot, Other non-Mobile,
Other Mobile.

is_mobile Boolean value, indicates whether the device is
not a desktop.

Figure 1 Device Information WURFL.JS Injects in the DOM Page

WURFL is a popular DDR that has
been around for a few years as a

server-side solution.

0215msdn_EspositoCEdge_v3_6-9.indd 8 1/13/15 8:34 AM

http://wurfl.sourceforge.net
http://msdn.microsoft.com/magazine/dn342866.aspx
http://msdn.microsoft.com/magazine/dn890366
http://msdn.microsoft.com/magazine/dn890366

msdnmagazine.com

The Smart Choice for Text Retrieval® since 1991

www.dtSearch.com 1-800-IT-FINDS

Instantly Search
Terabytes of Text

®

Ask about fully-functional evaluations

25+ fielded and full-text search types

dtSearch’s own document filters
support “Office,” PDF, HTML, XML, ZIP,
emails (with nested attachments), and
many other file types

Supports databases as well as static
and dynamic websites

Highlights hits in all of the above

APIs (including 64-bit) for .NET, Java,
C++, SQL, etc.

dtSearch products:
Desktop with Spider

Network with Spider

Publish (portable media)

Web with Spider

Engine for Win & .NET-SDK

Engine for Linux-SDK

Engine for Android-SDK beta

“lightning fast” Redmond Magazine

“covers all data sources” eWeek

“results in less than a second” InfoWorld

hundreds more reviews and developer
case studies at www.dtsearch.com

Document Filters – included with all products, and
also available for separate licensing

<script type="text/javascript">
 /* Universal tracking code of Google Analytics:
 see http://goo.gl/HakYmP
 */

 ga('create', 'UA-XXXX-Y', 'auto');
 ga('send', 'pageview', {'dimension1': WURFL.form_factor});
</script>

If you’re using the classic Google Analytics script (ga.js), here’s
the slight change you need to implement:

_gaq.push(['_setCustomVar', 1, 'form_factor', WURFL.form_factor, 1]);

Google Analytics has a bunch of built-in features to track mobile
and tablet traffic. The mobile traffic incorporates tablet traffic, as
well, and can’t immediately separate smartphone from tablet, for
example. WURFL.JS adds handy information missing at first in
Google Analytics so you can create custom reports just focusing
on the numbers instead of data projection. WURFL.JS, though, is
just a data provider. It works with Google Analytics, but you can
also use it with other analytics tools.

Wrapping Up
In many cases, an RWD site is harder (more expensive) to implement
than a plain ASP.NET Web Forms Web site. Don’t listen to the sirens
of RWD. RWD is a great solution for desktops and high-end devices,
but it might not be appropriate when effectively implementing
functions on small devices is crucial for the business. RWD makes
a point of being device-agnostic. This means RWD Web sites serve
the same content to a 480x360 resized desktop browser window
and a full-screen small feature phone.

Hardware and connectivity may be significantly different in the
two cases. Performance is objectively a sore point of RWD. At the
same time, it might be not be painful in the same way for all sites.
Performance issues affect primarily low-level devices. If those devices
aren’t common site visitors, you can go with RWD and be happy.

However, the amount of data being served and user expecta-
tions may grow in the near future. This would render more devices
inadequate and, ideally, requiring an ad hoc view. In this article, I’ve
presented a lightweight and nearly unobtrusive client-side solution
for detecting the underlying device—WURFL.JS.

WURFL.JS is an endpoint that injects device information in
the DOM, specifically the form factor. In other words, it tells you
whether the device is a desktop, a tablet, a smartphone, an old
phone, an Xbox or perhaps a native app. Based on that, you can
arrange small changes in the pages and even feed analytics tools
with form factor information.

Knowing how your site performs on a per-form-factor basis is a
powerful indicator of its success and the areas you need to improve.
If you want more details on how to use WURFL.JS with Google
Analytics, check bit.ly/1u0lpGB. n

Dino Esposito is the co-author of “Microsoft .NET: Architecting Applications for
the Enterprise” (Microsoft Press, 2014) and “Programming ASP.NET MVC 5”
(Microsoft Press, 2014). A technical evangelist for the Microsoft .NET Framework
and Android platforms at JetBrains and frequent speaker at industry events world-
wide, Esposito shares his vision of software at software2cents.wordpress.com and
on Twitter at twitter.com/despos.

thanks to the following technical expert for reviewing this article:
Jon Arne Saeteras

0215msdn_EspositoCEdge_v3_6-9.indd 9 1/13/15 8:34 AM

http://www.dtsearch.com
www.bit.ly/1u0lpGB
http://software2cents.wordpress.com
www.twitter.com/despos
www.msdnmagazine.com

msdn magazine10

After the second coming of COM, otherwise known as the Windows
Runtime, the need for an efficient and reliable smart pointer for
COM interfaces is more important than ever. But what makes for
a good COM smart pointer? The ATL CComPtr class template has
been the de facto COM smart pointer for what feels like decades.
The Windows SDK for Windows 8 introduced the ComPtr class
template as part of the Windows Runtime C++ Template Library
(WRL), which some hailed as a modern replacement for the ATL
CComPtr. At first, I also thought this was a good step forward, but
after a lot of experience using the WRL ComPtr, I’ve come to the
conclusion it should be avoided. Why? Keep reading.

So what should be done? Should we return to ATL? By no means,
but perhaps it’s time to apply some of the modern C++ offered by
Visual C++ 2015 to the design of a new smart pointer for COM
interfaces. In the Connect(); Visual Studio 2015 & Microsoft Azure
Special Issue, I showed how to make the most of Visual C++ 2015 to
easily implement IUnknown and IInspectable using the Implements
class template. Now I’m going to show you how to use more of Visual
C++ 2015 to implement a new ComPtr class template.

Smart pointers are notoriously difficult to write, but thanks to
C++11, it’s not nearly as difficult as it once was. Part of the reason for
this has to do with all of the clever tricks library developers devised
to work around the lack of expressiveness in the C++ language and
standard libraries, in order to make their own objects act like built-in
pointers while remaining efficient and correct. In particular, rvalue
references go a long way toward making life so much easier for us
library developers. Another part is simply hindsight—seeing how
existing designs have fared. And, of course, there’s every developer’s
dilemma: showing restraint and not trying to pack every conceiv-
able feature into a particular abstraction.

At the most basic level, a COM smart pointer must provide
resource management for the underlying COM interface pointer.
This implies that the smart pointer will be a class template and
store an interface pointer of the desired type. Technically, it doesn’t
actually need to store an interface pointer of a particular type, but

could instead just store an IUnknown interface pointer, but then the
smart pointer would have to rely on a static_cast whenever the smart
pointer is dereferenced. This can be useful and conceptually danger-
ous, but I’ll talk about it in a future column. For now, I’ll begin with a
basic class template for storing a strongly typed pointer:

template <typename Interface>
class ComPtr
{
public:

 ComPtr() noexcept = default;

private:

 Interface * m_ptr = nullptr;
};

Longtime C++ developers might wonder at first what this is all
about, but chances are that most active C++ developers won’t be
too surprised. The m_ptr member variable relies on a great new
feature that allows non-static data members to be initialized where
they’re declared. This dramatically reduces the risk of accidentally
forgetting to initialize member variables as constructors are added
and changed over time. Any initialization explicitly provided by a
particular constructor takes precedence over this in-place initial-
ization, but for the most part this means that constructors need not
worry about setting such member variables that would otherwise
have started off with unpredictable values.

Given the interface pointer is now assured to be initialized, I
can also rely on another new feature to explicitly request a default
definition of special member functions. In the previous example,
I’m requesting the default definition of the default constructor—a
default default constructor, if you will. Don’t shoot the messenger.
Still, the ability to default or delete special member functions along
with the ability to initialize member variables at the point of decla-
ration are among my favorite features offered by Visual C++ 2015.
It’s the little things that count.

The most important service a COM smart pointer must offer
is that of shielding the developer from the perils of the intrusive
COM reference-counting model. I actually like the COM approach
to reference counting, but I want a library to take care of it for me.
This surfaces in a number of subtle places throughout the ComPtr
class template, but perhaps the most obvious is when a caller deref-
erences the smart pointer. I don’t want a caller to write something
like what follows, accidentally or otherwise:

ComPtr<IHen> hen;

hen->AddRef();

COM Smart Pointers Revisited

WindoWs With C++ KENNY KERR

I actually like the COM approach
to reference counting, but I want
a library to take care of it for me.

0215msdn_KerrCPP_v3_10-16.indd 10 1/13/15 8:31 AM

Untitled-1 1 12/8/14 11:11 AM

www.devexpress.com/try

msdn magazine12 Windows with C++

The ability to call the AddRef or Release virtual functions should
be exclusively under the purview of the smart pointer. Of course, the
smart pointer must still allow the remaining methods to be called
via such a dereferencing operation. Normally, a smart pointer’s
dereference operator might look something like this:

Interface * operator->() const noexcept
{
 return m_ptr;
}

That works for COM interface pointers and there’s no need for an
assertion because an access violation is more instructive. But this
implementation will still allow a caller to call AddRef and Release.
The solution is simply to return a type that prohibits AddRef and
Release from being called. A little class template comes in handy:

template <typename Interface>
class RemoveAddRefRelease : public Interface
{
 ULONG __stdcall AddRef();
 ULONG __stdcall Release();
};

The RemoveAddRefRelease class template inherits all of the tem-
plate argument’s methods, but declares AddRef and Release private
so that a caller may not accidentally refer to those methods. The
smart pointer’s dereference operator can simply use static_cast to
protect the returned interface pointer:

RemoveAddRefRelease<Interface> * operator->() const noexcept
{
 return static_cast<RemoveAddRefRelease<Interface> *>(m_ptr);
}

This is just one example where my ComPtr deviates from the WRL
approach. WRL opts to make all of IUnknown’s methods private, includ-
ing QueryInterface, and I see no reason for restricting callers in that way.
It means that WRL must inevitably provide alternatives for this essential
service and that leads to added complexity and confusion for callers.

Because my ComPtr decidedly takes command of reference
counting, it had better do so correctly. Well, I’ll start with a pair of
private helper functions beginning with one for AddRef:

void InternalAddRef() const noexcept
{
 if (m_ptr)
 {
 m_ptr->AddRef();
 }
}

This isn’t all that exciting, but there are a variety of functions that
require a reference to be taken conditionally and this will ensure I
do the right thing every time. The corresponding helper function
for Release is a bit more subtle:

void InternalRelease() noexcept
{
 Interface * temp = m_ptr;

 if (temp)
 {
 m_ptr = nullptr;
 temp->Release();
 }
}

Why the temporary? Well, consider the more intuitive but
incorrect implementation that roughly mirrors what I did (cor-
rectly) inside the InternalAddRef function:

if (m_ptr)
{
 m_ptr->Release(); // BUG!
 m_ptr = nullptr;
}

The problem here is that calling the Release method might set off
a chain of events that could see the object being released a second
time. This second trip through InternalRelease would again find a
non-null interface pointer and attempt to Release it again. This is
admittedly an uncommon scenario, but the job of the library developer
is to consider such things. The original implementation involving
a temporary avoids this double Release by first detaching the inter-
face pointer from the smart pointer and only then calling Release.
Looking through the annals of history, it appears as if Jim Springfield
was the first to catch this vexing bug in ATL. Anyway, with these two
helper functions in hand, I can begin to implement some of the spe-
cial member functions that help to make the resulting object act and
feel like a built-in object. The copy constructor is a simple example.

Unlike smart pointers that provide exclusive ownership, copy
construction should be allowed for COM smart pointers. Care
must be taken to avoid copies at all costs, but if a caller really wants
a copy then a copy is what it gets. Here’s a simple copy constructor:

ComPtr(ComPtr const & other) noexcept :
 m_ptr(other.m_ptr)
{
 InternalAddRef();
}

This takes care of the obvious case of copy construction. It copies
the interface pointer before calling the InternalAddRef helper. If I left
it there, copying a ComPtr would feel mostly like a built-in pointer,
but not entirely so. I could, for example, create a copy like this:

ComPtr<IHen> hen;
ComPtr<IHen> another = hen;

This mirrors what I can do with raw pointers:
IHen * hen = nullptr;
IHen * another = hen;

But raw pointers also permit this:
IUnknown * unknown = hen;

With my simple copy constructor, I’m not permitted to do the
same thing with ComPtr:

ComPtr<IUnknown> unknown = hen;

Even though IHen must ultimately derive from IUnknown,
ComPtr<IHen> doesn’t derive from ComPtr<IUnknown> and the
compiler considers them unrelated types. What I need is a con-
structor that acts as a logical copy constructor for other logically
related ComPtr objects—specifically, any ComPtr with a template
argument that’s convertible to the constructed ComPtr’s template
argument. Here, WRL relies on type traits, but this isn’t actually
necessary. All I need is a function template to provide for the pos-
sibility of conversion and then I’ll simply let the compiler check
whether it’s actually convertible:

template <typename T>
ComPtr(ComPtr<T> const & other) noexcept :
 m_ptr(other.m_ptr)
{
 InternalAddRef();
}

It’s when the other pointer is used to initialize the object’s inter-
face pointer that the compiler checks whether the copy is actually
meaningful. So this will compile:

ComPtr<IHen> hen;
ComPtr<IUnknown> unknown = hen;

But this won’t:
ComPtr<IUnknown> unknown;
ComPtr<IHen> hen = unknown;

0215msdn_KerrCPP_v3_10-16.indd 12 1/13/15 8:31 AM

Untitled-1 1 1/6/15 10:47 AM

www.devexpress.com/try

msdn magazine14 Windows with C++

And that’s as it should be. Of course, the compiler still considers
the two very much different types, so the constructor template
won’t actually have access to the other’s private member variable,
unless I make them friends:

template <typename T>
friend class ComPtr;

You might be tempted to remove some of the redundant code
because IHen is convertible to IHen. Why not just remove the
actual copy constructor? The problem is that this second constructor
isn’t considered a copy constructor by the compiler. If you omit the
copy constructor, the compiler will assume you meant to remove
it and object to any reference to this deleted function. Onward.

With copy construction taken care of, it’s very important that
ComPtr also provide move construction. If a move is permissible in
a given scenario, ComPtr should allow the compiler to opt for that
as it will save a reference bump, which is far more costly in compar-
ison to a move operation. A move constructor is even simpler than
the copy constructor because there’s no need to call InternalAddRef:

ComPtr(ComPtr && other) noexcept :
 m_ptr(other.m_ptr)
{
 other.m_ptr = nullptr;
}

It copies the interface pointer before clearing or resetting the
pointer in the rvalue reference, or the object being moved from. In
this case, however, the compiler is not so picky and you can simply
eschew this move constructor for a generic version that supports
convertible types:

template <typename T>
ComPtr(ComPtr<T> && other) noexcept :
 m_ptr(other.m_ptr)
{
 other.m_ptr = nullptr;
}

And that wraps up the ComPtr constructors. The destructor is
predictably simple:

~ComPtr() noexcept
{
 InternalRelease();
}

I’ve already taken care of the nuances of destruction inside the
InternalRelease helper, so here I can simply reuse that goodness.
I’ve discussed copy and move construction, but the corresponding
assignment operators must also be provided for this smart pointer
to feel like a real pointer. In order to support those operations, I’m
going to add another pair of private helper functions. The first is
for safely acquiring a copy of a given interface pointer:

void InternalCopy(Interface * other) noexcept
{
 if (m_ptr != other)
 {
 InternalRelease();
 m_ptr = other;
 InternalAddRef();
 }
}

Assuming the interface pointers are not equal (or not both null
pointers), the function releases any existing reference before taking
a copy of the pointer and securing a reference to the new interface
pointer. In this way, I can easily call InternalCopy to take owner-
ship of a unique reference to the given interface even if the smart
pointer already holds a reference. Similarly, the second helper

deals with safely moving a given interface pointer, along with the
reference count it represents:

template <typename T>
void InternalMove(ComPtr<T> & other) noexcept
{
 if (m_ptr != other.m_ptr)
 {
 InternalRelease();
 m_ptr = other.m_ptr;
 other.m_ptr = nullptr;
 }
}

While InternalCopy naturally supports convertible types, this
function is a template to provide this capability for the class tem-
plate. Otherwise, InternalMove is largely the same, but logically
moves the interface pointer rather than acquiring an additional
reference. With that out of the way, I can implement the assignment
operators quite simply. First, the copy assignment, and as with the
copy constructor, I must provide the canonical form:

ComPtr & operator=(ComPtr const & other) noexcept
{
 InternalCopy(other.m_ptr);
 return *this;
}

I can then provide a template for convertible types:
template <typename T>
ComPtr & operator=(ComPtr<T> const & other) noexcept
{
 InternalCopy(other.m_ptr);
 return *this;
}

But like the move constructor, I can simply provide a single ge-
neric version of move assignment:

template <typename T>
ComPtr & operator=(ComPtr<T> && other) noexcept
{
 InternalMove(other);
 return *this;
}

While move semantics are often superior to copy when it comes
to reference-counted smart pointers, moves aren’t without cost,
and a great way to avoid moves in some key scenarios is to provide
swap semantics. Many container types will favor swap operations to
moves, which can avoid the construction of a tremendous load of
temporary objects. Implementing swap functionality for ComPtr
is quite straightforward:

void Swap(ComPtr & other) noexcept
{
 Interface * temp = m_ptr;
 m_ptr = other.m_ptr;
 other.m_ptr = temp;
}

I’d use the Standard swap algorithm but, at least in the Visual
C++ implementation, the required <utility> header also indirectly
includes <stdio.h> and I don’t really want to force developers into
including all of that just for swap. Of course, for generic algorithms
to find my Swap method, I need to also provide a non-member
(lowercase) swap function:

template <typename Interface>
void swap(ComPtr<Interface> & left, ComPtr<Interface> & right) noexcept
{
 left.Swap(right);
}

As long as this is defined in the same namespace as the ComPtr
class template, the compiler will happily allow generic algorithms
to make use of the swap.

0215msdn_KerrCPP_v3_10-16.indd 14 1/13/15 8:31 AM

Untitled-1 1 10/13/11 11:25 AM

www.nsoftware.com

msdn magazine16 Windows with C++

Another nice feature of C++11 is that of explicit conversion oper-
ators. Historically, it took some messy hacks to produce a reliable,
explicit Boolean operator for checking whether a smart pointer
was logically not null. Today, it’s as simple as this:

explicit operator bool() const noexcept
{
 return nullptr != m_ptr;
}

And that takes care of the special and practically special members
that make my smart pointer behave much like a built-in type with
as much assistance as I can possibly provide to help the compiler
optimize any overhead away. What remains is a small selection of
helpers that are necessary for COM applications in many cases. This
is where care should be taken to avoid adding too many bells and
whistles. Still, there are a handful of functions on which almost any
nontrivial application or component will rely. First, it needs a way
to explicitly release the underlying reference. That’s easy enough:

void Reset() noexcept
{
 InternalRelease();
}

And then it needs a way to get the underlying pointer, should
the caller need to pass it as an argument to some other function:

Interface * Get() const noexcept
{
 return m_ptr;
}

I might need to detach the reference, perhaps to return it to a caller:
Interface * Detach() noexcept
{
 Interface * temp = m_ptr;
 m_ptr = nullptr;
 return temp;
}

I might need to make a copy of an existing pointer. This might
be a reference held by the caller that I’d like to hold on to:

void Copy(Interface * other) noexcept
{
 InternalCopy(other);
}

Or I might have a raw pointer that owns a reference to its target
that I’d like to attach without an additional reference being procured.
This can also be useful for coalescing references in rare cases:

void Attach(Interface * other) noexcept
{
 InternalRelease();
 m_ptr = other;
}

The final few functions play a particularly critical role, so I’ll spend
a few more moments on them. COM methods traditionally return
references as out parameters via a pointer to a pointer. It’s important
that any COM smart pointer provide a way to directly capture such
references. For that I provide the GetAddressOf method:

Interface ** GetAddressOf() noexcept
{
 ASSERT(m_ptr == nullptr);
 return &m_ptr;
}

This is again where my ComPtr departs from the WRL implemen-
tation in a subtle but very critical way. Notice that GetAddressOf
asserts that it doesn’t hold a reference before returning its address. This
is vitally important, otherwise the called function will simply over-
write whatever reference may have been held and you’ve got yourself
a reference leak. Without the assertion, such bugs are much harder to

detect. On the other end of the spectrum is the ability to hand out ref-
erences, either of the same type or for other interfaces the underlying
object might implement. If another reference to the same interface
is desired, I can avoid calling QueryInterface and simply return an
additional reference using the convention prescribed by COM:

void CopyTo(Interface ** other) const noexcept
{
 InternalAddRef();
 *other = m_ptr;
}

And you might use it as follows:
hen.CopyTo(copy.GetAddressOf());

Otherwise, QueryInterface itself can be employed with no further
help from ComPtr:

HRESULT hr = hen->QueryInterface(other.GetAddressOf());

This actually relies on a function template provided directly by
IUnknown to avoid having to explicitly provide the interface’s GUID.

Finally, there are often cases where an app or component needs
to query for an interface without necessarily passing it back to the
caller in the classic COM convention. In those cases, it makes more
sense to return this new interface pointer tucked snugly inside
another ComPtr, as follows:

template <typename T>
ComPtr<T> As() const noexcept
{
 ComPtr<T> temp;
 m_ptr->QueryInterface(temp.GetAddressOf());
 return temp;
}

I can then simply use the explicit operator bool to check whether
the query succeeded. Finally, ComPtr also provides all of the expected
non-member comparison operators for convenience and to support
various containers and generic algorithms. Again, this just helps to
make the smart pointer act and feel more like a built-in pointer, all
the while providing the essential services to properly manage the
resource and provide the necessary services that COM apps and com-
ponents expect. The ComPtr class template is just another example
from Modern C++ for the Windows Runtime (moderncpp.com). n

Kenny Kerr is a computer programmer based in Canada, as well as an author
for Pluralsight and a Microsoft MVP. He blogs at kennykerr.ca and you can
follow him on Twitter at twitter.com/kennykerr.

ThanKs to the following Microsoft technical expert for reviewing this article:
James McNellis

COM methods traditionally return
references as out parameters
via a pointer to a pointer. It’s

important that any COM smart
pointer provide a way to directly

capture such references.

0215msdn_KerrCPP_v3_10-16.indd 16 1/13/15 8:31 AM

www.moderncpp.com
www.twitter.com/kennykerr
www.kennykerr.ca

(888) 850-9911
Sales Hotline - US & Canada:

/update/2015/02

Help & Manual Professional from $583.10
Easily create documentation for Windows, the Web and iPad.

• Powerful features in an easy accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

• Styles and Templates give you full design control

BEST SELLER

Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

• Programmatically manage popular � le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, project plans, emails, barcodes, OCR and OneNote � les
alongside many more document management features in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the � y and extracting text from most document types

BEST SELLER

LEADTOOLS PDF Pro SDK V19 from $1,495.00 SRP

Add powerful PDF read, write, view & editing functionality to desktop, tablet & mobile applications.

• View PDF � les as raster in .NET, WinRT and C/C++

• Merge, Split, Convert, Linearize and Distill PDF � les

• Read and Extract text, hyperlinks, metadata and more from PDF

• Create the smallest � le possible utilizing advanced PDF Optimizer

• Convert PDF to an image format such as JPEG or TIFF

NEW RELEASE

ComponentOne Studio Enterprise 2014 v3 from $1,315.60
.NET Tools for the Professional Developer: Windows, HTML5/Web, and XAML.

• Hundreds of UI controls for all .NET platforms including grids, charts, reports and schedulers

• A line of HTML5 and JavaScript products for enterprise application development

• Built in themes and an array of designers for creating custom themes and styling

• 40+ Windows 8.1 & Windows Phone 8.1 controls and Universal Windows app support

• All Microsoft platforms supported, Visual Studio 2013, ASP.NET, WinForms, WPF & more

BEST SELLER

Untitled-1 1 1/6/15 10:44 AM

www.componentsource.com

msdn magazine18

With Xamarin, you can use C# to build beautiful native mobile
apps and share most of your code between platforms. Traditionally,
you had to design a separate UI for each targeted platform. But
with Xamarin.Forms, you can build one UI that renders natively
across all of them.

Xamarin.Forms is a cross-platform UI abstraction layer. You can
use it to share UI and back-end code between platforms and yet still
deliver a fully native UI experience. Because they’re native, your
controls and widgets have the look and feel of each target platform.

Xamarin.Forms is fully compatible with the Model-View-
ViewModel (MVVM) design pattern so you can bind page elements
to properties and commands in a view model class.

If you prefer to design your pages declaratively, you can use XAML,
a markup language with features such as resource dictionaries,
dynamic resources, data binding, commands, triggers and behaviors.

Xamarin.Forms has a small, easy-to-use API. If you need deeper
access to the native UI of a platform, you can create custom views
and platform-specific renderers. This sounds complicated, but
it’s really just a way to get to native UIs, and there are plenty of
samples on the Xamarin Web site to help you do it.

You can start by using any of the readymade pages, layouts and
views that come with Xamarin.Forms. As your app matures and
you discover new use cases and design opportunities, you might
come to rely on Xamarin.Forms support for XAML, MVVM,
custom platform-specific renderers, and a variety of other features
such as animations and data templates.

I’ll provide an overview of the Xamarin functionality with spe-
cific examples to illustrate how to share the bulk of your UI code
across different target platforms and incorporate platform-specific
code when needed.

Getting Started
First, open the NuGet package manager in Visual Studio or Xamarin
Studio and check for new releases of Xamarin.Forms. Because you
won’t be notified about new releases just by opening a Xamarin.Forms
solution in either IDE, checking for updated NuGet packages is the
only way to ensure you get the latest enhancements.

Create a Xamarin.Forms Solution When you’re sure you’ve
got the latest version of Xamarin.Forms, create a Blank App
(Xamarin.Forms Portable) solution.

Your solution has three platform-specific projects and one
Portable Class Library (PCL). Create your pages in the PCL. Start
by creating a basic login page.

CRO S S -P L AT FOR M

Share UI Code Across
Mobile Platforms with
Xamarin.Forms
Jason Smith

This article discusses:
•	Setting up a simple Xamarin.Forms project

•	Using	platform-specific	code	when	needed

•	The building blocks of Xamarin.Forms

•	Showing	data	in	a	list	view

•	Navigating	app	pages

•	Using animation

Technologies discussed:
Xamarin.Forms

0215msdn_SmithXamarin_v5_18-24.indd 18 1/13/15 8:48 AM

19February 2015msdnmagazine.com

Use C# to Create a Page Add a class to your PCL project. Then
add controls (called “views” in Xamarin), as shown in Figure 1.

To show the page when an app starts, open the MyApp class and
assign an instance of it to the MainPage property:

public class MyApp : Application
{
 public MyApp()
 {
 MainPage = new LogInPage();
 }
}

This is a good time to discuss the Application class. Starting in
v1.3.0, all Xamarin.Forms apps will contain this class. It’s the entry
point of a Xamarin.Forms app and, among other things, it provides

lifecycle events, as well as a persistent data store (the Properties
dictionary) for any serializable data. If you have to get to an
instance of this class from anywhere in your app, you can use the
static Application.Current property.

In the preceding example, I removed the default code inside of
the application class and replaced it with a single line of code that
makes the LogInPage appear when you run the app. It appears when
the app runs because this code assigns a page (the LogInPage) to
the MainPage property of the Application class. You have to set it
in the constructor of the Application class.

You can also override three methods in this class:
• The OnStart method, which is called when an app is

first started.
• The OnSleep method, which is called when the app is about

to go into a background state.
• The OnResume method, which is called when an app

returns from a background state.
In general, pages aren’t very interesting until you connect them

with some sort of data or behavior, so I’ll show how to do that.
Bind a Page to Data If you use the MVVM design pattern, you

might create a class such as the one in Figure 2 that implements
the INotifyPropertyChanged interface.

You can bind the views of your login page to the properties of
that class, as shown in Figure 3.

To read more about how to bind to data in your Xamarin.Forms app,
see “From Data Bindings to MVVM” on the Xamarin site at bit.ly/1uMoIUX.

Use XAML to Create a Page For smaller apps, creating your
UIs by using C# is a perfectly reasonable approach. However, as
the size of your app grows, you might find yourself typing a lot
of repetitive code. You can avoid that problem by using XAML
instead of C# code.

Add a Forms XAML Page item to your PCL project. Then add
markup to the page, as shown in Figure 4.

The XAML in Figure 4 might look familiar if you’ve written
Windows Presentation Foundation (WPF) apps. However, the tags
are different because they refer to Xamarin.Forms types. Also, the
root element refers a subclass of the Xamarin.Forms.Element class.
All XAML files in a Xamarin.Forms app must do this.

To read more about using XAML to create pages in a Xamarin.Forms
app, see “XAML for Xamarin.Forms” on the Xamarin Web site
at bit.ly/1xAKvRN.

Design for a Specific Platform
Xamarin.Forms has a relatively small number of APIs compared
with other native mobile platforms. That makes it easier for you
to design your pages, but sometimes Xamarin.Forms doesn’t
render a view exactly the way you want it to on one or more of
your platform targets.

If you run up against this barrier, just create a custom view, which
is just a subclass of any view that’s available in Xamarin.Forms.

To make the view appear on a page, extend the view renderer. In
more advanced cases, you can even create a custom renderer from
scratch. Custom renderer code is specific to a platform, so you
can’t share it. But this approach could be worth the cost in order to
introduce native features and usability to the app.

public class LogInPage : ContentPage
{
 public LogInPage()
 {
 Entry userEntry = new Entry { Placeholder = "Username" };
 Entry passEntry =
 new Entry { Placeholder = "Password", IsPassword = true };

 Button submit = new Button { };
 Content = new StackLayout
 {
 Padding = 20,
 VerticalOptions = LayoutOptions.Center,
 Children = { userEntry, passEntry, submit }
 };
 }
}

Figure	1	Adding Views (Controls)

public class LoginViewModel : INotifyPropertyChanged
{
 private string usrnmTxt;
 private string passWrd;

 public string UsernameText
 {
 get { return usrnmTxt; }
 set
 {
 if (usrnmTxt == value)
 return;
 usrnmTxt = value;
 OnPropertyChanged("UsernameText");
 }
 }

 public string PassWordText
 {
 get { return passWrd; }
 set
 {
 if (passWrd == value)
 return;
 passWrd = value;
 OnPropertyChanged("PassWrd");
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

Figure	2	Implementing the INotifyPropertyChanged Interface

0215msdn_SmithXamarin_v5_18-24.indd 19 1/13/15 8:48 AM

www.bit.ly/1uMoIUX
www.bit.ly/1xAKvRN
www.msdnmagazine.com

msdn magazine20 Cross-Platform

Create a Custom View First, create a subclass of any view that’s
available in Xamarin.Forms. Here’s code for two custom views:

public class MyEntry : Entry {}
public class RoundedBoxView : BoxView {}

Extend an Existing Renderer Figure 5 extends the renderer
that renders the Entry view for the iOS platform. You’d put this
class in the iOS platform project. This renderer sets the color and
style of the underlying native text field.

You can do just about anything you want in your renderer because
you’re referencing native APIs. If you want to view the sample that con-
tains this snippet, see “Xamarin.Forms Custom Renderer” at bit.ly/1xTIjmR.

Create a Renderer from Scratch You can create a brand-new
renderer that doesn’t extend any other renderers. You’ll do a bit
more work, but it makes sense to create one if you want to do any
of these things:

• Replace the renderer of a view.
• Add a new view type to your solution.
• Add a native control or native page to your solution.

For example, if you want to add a native UIView control to a page
in the iOS version of your app, you could add a custom renderer to
your iOS project, as shown in Figure 6.

The general pattern that appears in this renderer ensures you can
use it in virtualized layouts such as a list view, which I’ll discuss later.

If you want to view the sample that contains this snippet, see
bit.ly/xf-customrenderer.

Add Properties to a Custom View You can add properties to a
custom view, but just make sure you make them bindable so you can
bind them to properties in a view model or to other types of data.
Here’s a bindable property in the RoundedBoxView custom view:

public class RoundedBoxView : BoxView
{
 public static readonly BindableProperty CornerRadiusProperty =
 BindableProperty.Create<RoundedBoxView, double>(p => p.CornerRadius, 0);

 public double CornerRadius
 {
 get { return (double)base.GetValue(CornerRadiusProperty);}
 set { base.SetValue(CornerRadiusProperty, value);}
 }
}

To connect new properties to your renderer, override the
OnElementPropertyChanged method of the renderer and add
code that runs when the property changes:

protected override void OnElementPropertyChanged(object sender,
 System.ComponentModel.PropertyChangedEventArgs e)
{
 base.OnElementPropertyChanged(sender, e);
 if (e.PropertyName ==
 RoundedBoxView.CornerRadiusProperty.PropertyName)
 childView.Layer.CornerRadius = (float)this.Element.CornerRadius;
}

To learn more about creating custom views and custom renderers,
see “Customizing Controls for Each Platform” at bit.ly/11pSFhL.

Pages, Layouts and Views: The Building Blocks of
Xamarin.Forms
I’ve showcased a few elements, but there are many more. This would
be a good time to visit them.

Xamarin.Forms apps contain pages, layouts and views. A page
contains one or more layouts, and a layout contains one or more
views. The term view is used in Xamarin to describe what you

might be used to calling a control. In total, the Xamarin.Forms
framework contains five page types, seven layout types and 24
view types. You can read more about them at xamarin.com/forms. I’ll
visit some important page types later, but first I’ll take a moment to
review some of the layouts you can use in your app. Xamarin.Forms
contains four primary layouts:

• StackLayout: The StackLayout positions child elements
in a single line that can be oriented vertically or horizon-
tally. You can nest StackLayouts to create complex visual
hierarchies. You can control how views are arranged in a
StackLayout by using the VerticalOptions and Horizontal­
Options properties of each child view.

• Grid: The Grid arranges views into rows and columns.
This layout is similar to the one you get with WPF and
Silverlight except you can add spacing between rows
and columns. You do that by using the RowSpacing and
ColumnSpacing properties of the Grid.

• RelativeLayout: The RelativeLayout positions views by
using constraints relative to other views.

• AbsoluteLayout: The AbsoluteLayout lets you position
child views in two ways: at an absolute position, or pro-
portionally relative to the parent. This can be useful if
you plan to create split and overlaid hierarchies. Figure 7
shows an example.

Note that all layouts give you a property named Children. You
can use that property to access additional members. For example,

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Jason3.LogInPage"
 xmlns:local="clr-namespace:XamarinForms;assembly=XamarinForms">
 <StackLayout VerticalOptions="Center">
 <StackLayout.BindingContext>
 <local:LoginViewModel />
 </StackLayout.BindingContext>
 <Entry Text="{Binding UsernameText}" Placeholder="Username" />
 <Entry Text="{Binding PasswordText}"
 Placeholder="Password" IsPassword="true" />
 <Button Text="Login" Command="{Binding LoginCommand}" />
 </StackLayout>
</ContentPage>

Figure	4	Adding Markup to a Forms XAML Page

public LogInPage()
{
 Entry userEntry = new Entry { Placeholder = "Username" };
 userEntry.SetBinding(Entry.TextProperty, "UsernameText");

 Entry passEntry =
 new Entry { Placeholder = "Password", IsPassword = true };
 passEntry.SetBinding(Entry.TextProperty, "PasswordText");

 Button submit = new Button { Text = "Submit" };
 Content = new StackLayout
 {
 Padding = 20,
 VerticalOptions = LayoutOptions.Center,
 Children = { userEntry, passEntry, submit }
 };

 BindingContext = new LoginViewModel();
}

Figure	3	Binding Views to Class Properties

0215msdn_SmithXamarin_v5_18-24.indd 20 1/13/15 8:48 AM

www.bit.ly/1xTIjmR
http://bit.ly/xf-customrenderer
www.bit.ly/11pSFhL
www.xamarin.com/forms

Untitled-1 1 1/6/15 11:59 AM

www.aspose.com

msdn magazine22 Cross-Platform

If you opened this page on a mobile device, the first tab would
appear as selected. However, you can change that by setting the
CurrentPage property of the TabbedPage page.

The NavigationPage A NavigationPage manages the navigation
and UX of a stack of pages. This page offers you the most common
type of mobile app navigation pattern. Here’s how you would add
your pages to it:

var loginPage = new LoginPage();

var navigationPage = new NavigationPage(loginPage);

loginPage.LoginSuccessful += async (o, e) => await
 navigationPage.PushAsync(new DirectoryPage());

Notice the use of PushAsync as a way to navigate users to a spe-
cific page (in this case the DirectoryPage). In a NavigationPage, you
“push” pages onto a stack and then “pop” them off as users navigate
backward to the previous page.

[assembly: ExportRenderer (typeof (MyEntry), typeof (MyEntryRenderer))]

namespace CustomRenderer.iOS
{
 public class MyEntryRenderer : EntryRenderer
 {
 protected override void OnElementChanged
 (ElementChangedEventArgs<Entry> e)
 {
 base.OnElementChanged (e);

 if (e.OldElement == null) {

 var nativeTextField = (UITextField)Control;
 nativeTextField.BackgroundColor = UIColor.Gray;
 nativeTextField.BorderStyle = UITextBorderStyle.Line;
 }
 }
 }
}

Figure	5	Extending an Existing Renderer

you can use the Children property of the Grid layout to add and
remove rows and columns, as well as specify row and column spans.

Show Data in a Scrolling List
You can show data in a scrolling list by using a list view form (named
ListView). This view performs well because the renderers for each
cell in the list are virtualized. Because each cell is virtualized, it’s
important that you properly handle the OnElementChanged event
of any custom renderers that you create for cells or lists by using a
pattern similar to the one shown earlier.

First, define a cell, as shown in Figure 8. All data templates for
a ListView must use a Cell as the root element.

Next, define a data source and set the ItemTemplate property of
the ListView to a new data template. The data template is based on
the MyCell class created earlier:

var items = new[] {
 new { Name = "Flower", Description = "A lovely pot of flowers." },
 new { Name = "Tuna", Description = "A can of tuna!" },
 // ... Add more items
};
var listView = new ListView
{
 ItemsSource = items,
 ItemTemplate = new DataTemplate(typeof(MyCell))
};

You can do this in XAML by using the following markup:
<ListView ItemsSource="{Binding Items}">
 <ListView.ItemTemplate>
 <ViewCell>
 <StackLayout VerticalOptions="center">
 <Label Text="{Binding Name}" />
 <Label Text="{Binding Description}" />
 </StackLayout>
 </ViewCell>
 </ListView.ItemTemplate>
</ListView>

Navigate Between Pages
Most apps contain more than one page, so you’ll need to enable
users to navigate from one page to another. The following pages
have built-in support for page navigation and support full-screen
modal page presentation:

• TabbedPage
• MasterDetailPage
• NavigationPage
• CarouselPage

You can add your pages as children to any of these four pages
and get navigation for free.

The Tabbed Page A TabbedPage shows an array of tabs across
the top of a screen. Assuming your PCL project contains pages
named LogInPage, DirectoryPage and AboutPage, you could add
them all to a TabbedPage by using the following code:

var tabbedPage = new TabbedPage
{
 Children =
 {
 new LoginPage { Title = "Login", Icon = "login.png" },
 new DirectoryPage { Title = "Directory", Icon = "directory.png" },
 new AboutPage { Title = "About", Icon = "about.png" }
 }
};

In this case, it’s important to set the Title and Icon property of
each page so that something appears on page tabs. Not all platforms
render icons. That depends on the platform’s tab design.

[assembly: ExportRendererAttribute(typeof(RoundedBoxView),
 typeof(RoundedBoxViewRenderer))]

namespace RBVRenderer.iOS
{
 public class RoundedBoxViewRenderer :
 ViewRenderer<RoundedBoxView,UIView>
 {
 protected override void OnElementChanged(
 ElementChangedEventArgs<RoundedBoxView> e)
 {
 base.OnElementChanged(e);

 var rbvOld = e.OldElement;
 if (rbvOld != null)
 {
 // Unhook any events from e.OldElement here.
 }

 var rbv = e.NewElement;
 if (rbv != null)
 {
 var shadowView = new UIView();
 // Set properties on the UIView here.
 SetNativeControl(shadowView);
 // Hook up any events from e.NewElement here.
 }
 }
 }
}

Figure	6	Adding a Native UIView Control to an iOS App with a
Custom Renderer

0215msdn_SmithXamarin_v5_18-24.indd 22 1/13/15 8:48 AM

Untitled-1 1 1/6/15 12:00 PM

www.groupdocs.com

msdn magazine24 Cross-Platform

The PushAsync and PopAsync methods of a NavigationPage
are asynchronous so your code should await them and not push
or pop any new pages while the task is running. The task of each
method returns after the animation of a push or pop completes.

For convenience, all Xamarin.Forms views, layouts and pages con-
tain a Navigation property. This property is a proxy interface that
contains the PushAsync and PopAsync methods of a NavigationPage
instance. You could use that property to navigate to a page instead of
calling the PushAsync and PopAsync methods on the Navigation-
Page instance directly. You can also use the NavigationProperty to
get to the PushModalAsync and PopModalAsync methods. This is
useful if you want to replace the contents of the entire screen with
a new modal page. You don’t have to have a NavigationPage in the
parent stack of a view to use the Navigation property of a view, but
nonmodal PushAsync/PopAsync operations might fail.

A Note about Design Patterns As a general practice, consider
adding NavigationPages as children to TabbedPages, and TabbedPages

as children to MasterDetailPages. Certain types of patterns can cause
an undesirable UX. For example, most platforms advise against
adding a TabbedPage as a child of a NavigationPage.

Animate Views in a Page
You create a more engaging experience by animating the views
on a page, which can be done in two ways. Either choose built-in
animations that come with Xamarin.Forms or build one yourself
by using the animation API.

For example, you could create a fading effect by calling the
FadeTo animation of a view. The FadeTo animation is built into a
view so it’s easy to use:

async Task SpinAndFadeView(View view)
{
 await view.FadeTo(20, length: 200, easing: Easing.CubicInOut);
}

You can chain a series of animation together by using the await
keyword. Each animation executes after the previous one completes.
For example, you could rotate a view just before you fade it into focus:

async Task SpinAndFadeView(View view)
{
 await view.RotateTo(180);
 await view.FadeTo(20, length: 200, easing: Easing.CubicInOut);
}

If you have trouble achieving the effect you want, you can use the
full animation API. In the following code, the view fades halfway
through the rotation:

void SpinAndFadeView(View view)
{
 var animation = new Animation();
 animation.Add(0, 1, new Animation(
 d => view.Rotation = d, 0, 180, Easing.CubicInOut));
 animation.Add(0.5, 1, new Animation(
 d => view.Opacity = d, 1, 0, Easing.Linear));
 animation.Commit(view, "FadeAndRotate", length: 250);
}

This example composes each animation into a single Animation
instance and then runs the entire animation sequence by using the
Commit method. Because this animation isn’t tied to a specific view,
you can apply the animation to any of them.

Wrapping Up
Xamarin.Forms is an exciting new way to build cross-platform
native mobile apps. Use it to build a UI that renders natively across
iOS, Android and Windows Phone. You can share almost all of your
code between platforms.

Xamarin Inc. built Xamarin and Xamarin.Forms to make it possible
for C# developers to jump into mobile development virtually overnight.
If you’ve developed for the Windows Runtime, WPF or Silverlight,
then you’ll find that Xamarin.Forms is an easy bridge into the world
of cross-platform native mobile development. You can install Xamarin
today and immediately start to use C# to build beautiful native
apps that run on iOS, Android and Windows Phone devices. n

Jason smith is an engineering technical lead at Xamarin Inc. in San Francisco,
currently leading the Xamarin.Forms project. He was one of the principal architects
of Xamarin.Forms, prior to which he contributed to the Xamarin Studio project
and was part of the initial research that lead to the creation of Xamarin Test Cloud.

thanks to	the	following	Microsoft	technical	expert	for	reviewing	this	article:	
Norm Estabrook

public class MyCell : ViewCell
{
 public MyCell()
 {
 var nameLabel = new Label();
 nameLabel.SetBinding(Label.TextProperty, "Name");
 var descLabel = new Label();
 descLabel.SetBinding(Label.TextProperty, "Description");

 View = new StackLayout
 {
 VerticalOptions = LayoutOptions.Center,
 Children = { nameLabel, descLabel }
 };
 }
}

Figure	8	Defining a Cell for a ListView

void AbsoluteLayoutView()
{
 var layout = new AbsoluteLayout();
 var leftHalfOfLayoutChild = new BoxView { Color = Color.Red };
 var centerAutomaticallySizedChild =
 new BoxView { Color = Color.Green };
 var absolutelyPositionedChild = new BoxView { Color = Color.Blue };
 layout.Children.Add(leftHalfOfLayoutChild,
 new Rectangle(0, 0, 0.5, 1),
 AbsoluteLayoutFlags.All);
 layout.Children.Add(centerAutomaticallySizedChild,
 new Rectangle(
 0.5, 0.5, AbsoluteLayout.AutoSize, AbsoluteLayout.AutoSize),
 AbsoluteLayoutFlags.PositionProportional);
 layout.Children.Add(
 absolutelyPositionedChild, new Rectangle(10, 20, 30, 40));
}

Figure	7	Using the AbsoluteLayout

You create a more engaging
experience by animating the

views on a page, which can be
done in two ways.

0215msdn_SmithXamarin_v5_18-24.indd 24 1/13/15 8:48 AM

Untitled-6 1 5/28/14 4:02 PM

www.amyuni.com

msdn magazine26

If you followed the steps in my previous article, “Use
Roslyn to Write a Live Code Analyzer for Your API” (msdn.microsoft.com/
magazine/dn879356), you wrote an analyzer that displays live errors
for invalid regular expression (regex) pattern strings. Each invalid
pattern gets a red squiggle in the editor, just as you’d see for compiler
errors, and the squiggles appear live as you type your code. This
is made possible by the new .NET Compiler Platform (“Roslyn”)
APIs, which power the C# and Visual Basic editing experiences in
Visual Studio 2015 Preview.

Can you do more? If you’ve got the domain knowledge to see
not just what’s wrong but also how to fix it, you can suggest the rel-
evant code fix through the new Visual Studio light bulb. This code
fix will allow a developer using your analyzer to not just find an
error in his code—he can also clean it up instantly.

In this article, I’ll show you how to add a code fix provider to your
regex diagnostic analyzer that offers fixes at each regex squiggle.
The fix will be added as an item in the light bulb menu, letting the
user preview the fix and apply it to her code automatically.

Picking Up Where You Left Off
To get started, be sure you’ve followed the steps in the previous
article. In that article, I showed you how to write the first half of
your analyzer, which generates the diagnostic squiggles under
each invalid regex pattern string. That article walked you through:

• Installing Visual Studio 2015 Preview, its SDK and the
relevant Roslyn VSIX packages.

• Creating a new Diagnostic with Code Fix project.
• Adding code to DiagnosticAnalyzer.cs to implement the

invalid regex pattern detection.
If you’re looking to quickly catch up, check out Figure 1, which

lists the final code for DiagnosticAnalyzer.cs.

Transforming Immutable Syntax Trees
Last time, when you wrote the diagnostic analyzer to detect invalid
regex patterns, the first step was to use the Syntax Visualizer to
identify patterns in the syntax trees that indicated problem code.
You then wrote an analysis method that ran each time the relevant
node type was found. The method checked for the pattern of syn-
tax nodes that warranted an error squiggle.

Writing a fix is a similar process. You deal in syntax trees, focusing
on the desired new state of the code files after the user applies your
fix. Most code fixes involve adding, removing or replacing syntax
nodes from the current trees to produce new syntax trees. You can
operate directly on syntax nodes or use APIs that let you make
project-wide changes, such as renames.

One very important property to understand about the syntax
nodes, trees and symbols in the .NET Compiler Platform is that
they’re immutable. Once a syntax node or tree is created, it can’t
be modified—a given tree or node object will always represent the
same C# or Visual Basic code.

Immutability in an API for transforming source code may seem
counterintuitive. How can you add, remove and replace the child nodes
in a syntax tree if neither the tree nor its nodes can be changed? It’s
helpful here to consider the .NET String type, another immutable type
you use most likely every day. You perform operations to transform
strings quite often, concatenating them together and even replacing
substrings using String.Replace. However, none of these operations
actually change the original string object. Instead, each call returns
a new string object that represents the new state of the string. You
can assign this new object back to your original variable, but any
method you passed the old string to will still have the original value.

C#

Adding a Code Fix to
Your Roslyn Analyzer
Alex Turner

This article discusses prerelease versions of Visual Studio 2015 and
the .NET Compiler Platform (“Roslyn”) SDK. All related information
is subject to change.

This article discusses:
• Transforming immutable syntax trees

• Getting the diagnostic ID

• Producing a code fix for a given diagnostic

• Updating the code

Technologies discussed:
.NET Compiler Platform, Visual Studio 2015 Preview

0215msdn_TurnerAnalyzers_v3_26-31.indd 26 1/13/15 8:32 AM

http://msdn.microsoft.com/magazine/dn879356
http://msdn.microsoft.com/magazine/dn879356

27February 2015msdnmagazine.com

Adding a Parameter Node to an Immutable Tree To explore
how immutability applies to syntax trees, you’ll perform a simple
transform manually in the code editor, and see how it affects the
syntax tree.

Inside Visual Studio 2015 Preview (with the Syntax Visualizer
extension installed, see previous article), create a new C# code file.
Replace all of its contents with the following code:

class C
{
 void M()

 }
}

Open up the Syntax Visualizer by choosing View | Other
Windows | Roslyn Syntax Visualizer and click anywhere within
the code file to populate the tree. In the Syntax Visual-
izer window, right-click the root CompilationUnit node
and choose View Directed Syntax Graph. Visualizing
this syntax tree results in a graph like the one in Figure
2 (the graph shown here omits the gray and white trivia
nodes that represent whitespace). The blue Parameter List
syntax node has two green child tokens representing its
parentheses and no blue child syntax nodes, as the list
contains no parameters.

The transform you’ll simulate here is one that would add
a new parameter of type int. Type the code “int i” within
the parentheses of method M’s parameter list and watch
the changes within the Syntax Visualizer as you type:

class C
{
 void M(int i)
 {
 }
}

Note that even before you finish typing, when your incomplete
code contains compile errors (shown in the Syntax Visualizer as nodes
with a red background), the tree is still coherent, and the compiler
guesses that your new code will form a valid Parameter node. This
resilience of the syntax trees to compiler errors is what allows IDE
features and your diagnostics to work well against incomplete code.

Right-click on the root CompilationUnit node again and gener-
ate a new graph, which should look like Figure 3 (again, depicted
here without trivia).

Note that the ParameterList now has three children, the two parenthe-
sis tokens it had before, plus a new Parameter syntax node. As you typed
“int i” in the editor, Visual Studio replaced the document’s previous syn-
tax tree with this new syntax tree that represents your new source code.

Figure 1 The Complete Code for DiagnosticAnalyzer.cs

using System;
using System.Collections.Immutable;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.CSharp.Syntax;
using Microsoft.CodeAnalysis.Diagnostics;

namespace RegexAnalyzer
{
 [DiagnosticAnalyzer(LanguageNames.CSharp)]
 public class RegexAnalyzerAnalyzer : DiagnosticAnalyzer
 {
 public const string DiagnosticId = "Regex";
 internal const string Title = "Regex error parsing string argument";
 internal const string MessageFormat = "Regex error {0}";
 internal const string Category = "Syntax";

 internal static DiagnosticDescriptor Rule =
 new DiagnosticDescriptor(DiagnosticId, Title, MessageFormat,
 Category, DiagnosticSeverity.Error, isEnabledByDefault: true);

 public override ImmutableArray<DiagnosticDescriptor>
 SupportedDiagnostics { get { return ImmutableArray.Create(Rule); } }

 public override void Initialize(AnalysisContext context)
 {
 context.RegisterSyntaxNodeAction(
 AnalyzeNode, SyntaxKind.InvocationExpression);
 }

 private void AnalyzeNode(SyntaxNodeAnalysisContext context)
 {
 var invocationExpr = (InvocationExpressionSyntax)context.Node;

 var memberAccessExpr =

 invocationExpr.Expression as MemberAccessExpressionSyntax;
 if (memberAccessExpr?.Name.ToString() != "Match") return;

 var memberSymbol = context.SemanticModel.
 GetSymbolInfo(memberAccessExpr).Symbol as IMethodSymbol;
 if (!memberSymbol?.ToString().StartsWith(
 "System.Text.RegularExpressions.Regex.Match") ?? true) return;

 var argumentList = invocationExpr.ArgumentList as ArgumentListSyntax;
 if ((argumentList?.Arguments.Count ?? 0) < 2) return;

 var regexLiteral =
 argumentList.Arguments[1].Expression as LiteralExpressionSyntax;
 if (regexLiteral == null) return;

 var regexOpt = context.SemanticModel.GetConstantValue(regexLiteral);
 if (!regexOpt.HasValue) return;

 var regex = regexOpt.Value as string;
 if (regex == null) return;

 try
 {
 System.Text.RegularExpressions.Regex.Match("", regex);
 }
 catch (ArgumentException e)
 {
 var diagnostic =
 Diagnostic.Create(Rule, regexLiteral.GetLocation(), e.Message);
 context.ReportDiagnostic(diagnostic);
 }
 }
 }
}

Figure 2 Syntax Tree Before the Transform

CompilationUnit

EndofFileToken

(

ClassDeclaration

class C MethodDeclaration{ }

ParameterListPredefinedType

void

M Block

) { }

0215msdn_TurnerAnalyzers_v3_26-31.indd 27 1/13/15 8:32 AM

www.msdnmagazine.com

msdn magazine28 C#

Performing a full replacement works well enough for small strings,
which are single objects, but what about syntax trees? A large code
file may contain thousands or tens of thousands of syntax nodes,
and you certainly don’t want all of those nodes to be recreated every
time someone types a character within a file. That would generate
tons of orphaned objects for the garbage collector to clean up and
seriously hurt performance.

Luckily, the immutable nature of the syntax nodes also provides
the escape here. Because most of the nodes in the document aren’t
affected when you make a small change, those nodes can be safely
reused as children in the new tree. The behind-the-scenes internal node
that stores the data for a given syntax node points only downward to
the node’s children. Because those internal nodes don’t have parent
pointers, it’s safe for the same internal node to show up over and over

again in many iterations of a given syntax tree,
as long as that part of the code remains the same.

This node reuse means that the only nodes
in a tree that need to be recreated on each key-
stroke are those with at least one descendant
that has changed, namely the narrow chain
of ancestor nodes up to the root, as depicted
in Figure 4. All other nodes are reused as is.

In this case, the core change is to create your
new Parameter node and then replace the
ParameterList with a new ParameterList that
has the new Parameter inserted as a child node.
Replacing the ParameterList also requires replac-
ing the chain of ancestor nodes, as each ancestor’s
list of child nodes changes to include the replaced
node. Later in this article, you’ll do that kind of
replacement for your regex analyzer with the
SyntaxNode.ReplaceNode method, which takes
care of replacing all the ancestor nodes for you.

You’ve now seen the general pattern for
planning a code fix: You start with code in
the before state that triggers the diagnostic.
Then you manually make the changes the fix
should make, observing the effect on the syntax
tree. Finally, you work out the code needed to
create the replacement nodes and return a
new syntax tree that contains them.

Be sure you’ve got your project open, con-
taining the diagnostic you created last time.
To implement your code fix, you’ll dig into
CodeFixProvider.cs.

GetFixableDiagnosticIds Method
Fixes and the diagnostics they resolve are
loosely coupled by diagnostic IDs. Each code
fix targets one or more diagnostic IDs. When-
ever Visual Studio sees a diagnostic with a
matching ID, it will ask your code fix provider
if you have code fixes to offer. Loose coupling
based on the ID string allows one analyzer
to provide a fix for a diagnostic produced
by someone else’s analyzer, or even a fix for
built-in compiler errors and warnings.

In this case, your analyzer produces both the
diagnostic and the code fix. You can see that
the GetFixableDiagnosticIds method is already
returning the diagnostic ID you defined in your
Diagnostic type, so there’s nothing to change here.

Figure 3 Syntax Tree After the Transform

CompilationUnit

EndofFileTokenClassDeclaration

class C MethodDeclaration{ }

ParameterListPredefinedType M Block

void () {

i

}Parameter

PredefinedType

int

Figure 4 The Ancestor Nodes Replaced During the Transform

CompilationUnit

EndofFileTokenClassDeclaration

class C MethodDeclaration{ }

ParameterListPredefinedType M Block

void () {

i

}Parameter

PredefinedType

int

0215msdn_TurnerAnalyzers_v3_26-31.indd 28 1/13/15 8:32 AM

29February 2015msdnmagazine.com

ComputeFixesAsync Method
The ComputeFixesAsync method is the main driver for the
code fix. This method is called whenever one or more matching
Diagnostics are found for a given span of code.

You can see that the template’s default implementation of the
ComputeFixesAsync method pulls out the first diagnostic from
the context (in most cases, you only expect one), and gets the
diagnostic’s span. The next line then searches up the syntax tree
from that span to find the nearest type declaration node. In the
case of the default template’s rule, that’s the
relevant node whose contents needed fixing.

In your case, the diagnostic analyzer you
wrote was looking for invocations to see
if they were calls to Regex.Match. To help
share logic between your diagnostic and your
code fix, change the type mentioned in the
tree search’s OfType filter to find that same
InvocationExpressionSyntax node. Rename
the local variable to “invocationExpr,” as well:

var invocationExpr = root.FindToken(
 diagnosticSpan.Start).Parent.AncestorsAndSelf()
 .OfType<InvocationExpressionSyntax>().First();

You now have a reference to the same
invocation node with which the diagnostic
analyzer started. In the next statement,
you pass this node to the method that will
calculate the code changes you’ll be sug-
gesting for this fix. Rename that method from
MakeUppercaseAsync to FixRegexAsync
and change the fix description to Fix regex:

context.RegisterFix(
 CodeAction.Create("Fix regex", c => FixRegexAsync(
 context.Document, invocationExpr, c)), diagnostic);

Each call to the context’s RegisterFix
method associates a new code action with
the diagnostic squiggle in question, and will
produce a menu item inside the light bulb.
Note that you’re not actually calling the Fix-
RegexAsync method that performs the code
transform yet. Instead, the method call is
wrapped in a lambda expression that Visual
Studio can call later. This is because the
result of your transform is only needed when
the user actually selects your Fix regex item.
When the fix item is highlighted or chosen,
Visual Studio invokes your action to gen-
erate a preview or apply the fix. Until then,
Visual Studio avoids running your fix meth-
od, just in case you’re performing expensive
operations, such as solution-wide renames.

Note that a code fix provider isn’t obligated
to produce a code fix for every instance of
a given diagnostic. It’s often the case that
you have a fix to suggest only for some of
the cases your analyzer can squiggle. If
you’ll only have fixes some of the time, you
should first test in ComputeFixesAsync any

conditions you need to determine whether you can fix the specific
situation. If those conditions aren’t met, you should return from
ComputeFixesAsync without calling RegisterFix.

For this example, you’ll offer a fix for all instances of the diag-
nostic, so there are no more conditions to check.

FixRegexAsync Method
Now you get to the heart of the code fix. The FixRegexAsync method
as currently written takes a Document and produces an updated

0215msdn_TurnerAnalyzers_v3_26-31.indd 29 1/13/15 8:32 AM

www.softfluent.com/forms/msdn-2015
www.softfluent.com
www.msdnmagazine.com

msdn magazine30 C#

Solution. While diagnostic analyzers look at specific nodes and sym-
bols, code fixes can change code across the entire solution. You can
see that the template code here is calling Renamer.RenameSymbol-
Async, which changes not just the symbol’s type declaration, but
also any references to that symbol throughout the solution.

In this case, you only intend to make local changes to the pattern
string in the current document, so you can change the method’s
return type from Task<Solution> to Task<Document>. This signature
is still compatible with the lambda expression in ComputeFixes­
Async, as CodeAction.Create has another overload that accepts
a Document rather than a Solution. You’ll also need to update the
typeDecl parameter to match the InvocationExpressionSyntax node
you’re passing in from the ComputeFixesAsync method:

private async Task<Document> FixRegexAsync(Document document,
 InvocationExpressionSyntax invocationExpr, CancellationToken cancellationToken)

Because you don’t need any of the “make uppercase” logic, delete
the body of the method, as well.

Finding the Node to Replace The first half of your fixer will look
much like the first half of your diagnostic analyzer—you need to dig into
the InvocationExpression to find the relevant parts of the method call
that will inform your fix. In fact, you can just copy in the first half of the
AnalyzeNode method down to the try-catch block. Skip the first line,
though, as you already take invocationExpr as a parameter. Because
you know this is code for which you’ve successfully found a diagnostic,
you can remove all of the “if ” checks. The only other change to make
is to fetch the semantic model from the Document argument, as you
no longer have a context that provides the semantic model directly.

When you finish those changes, the body of your FixRegexAsync
method should look like this:

var semanticModel = await document.GetSemanticModelAsync(cancellationToken);

var memberAccessExpr =
 invocationExpr.Expression as MemberAccessExpressionSyntax;
var memberSymbol =
 semanticModel.GetSymbolInfo(memberAccessExpr).Symbol as IMethodSymbol;
var argumentList = invocationExpr.ArgumentList as ArgumentListSyntax;
var regexLiteral =
 argumentList.Arguments[1].Expression as LiteralExpressionSyntax;
var regexOpt = semanticModel.GetConstantValue(regexLiteral);
var regex = regexOpt.Value as string;

Generating the Replacement Node Now that you again have
regexLiteral, which represents your old string literal, you need to
generate the new one. Calculating exactly what string you need to
fix an arbitrary regex pattern is a large task that’s far beyond the
scope of this article. As a stand-in for now, you’ll just use the string
valid regex, which is indeed a valid regex pattern string. If you
decide to go further on your own, you should start small and tar-
get your fix at very particular regex problems.

The low-level way to produce new syntax nodes to substitute
into your tree is through the members on SyntaxFactory. These
methods let you create every type of syntax node in exactly the
shape you choose. However, often it proves easier to just parse
the expression you want from text, letting the compiler do all
the heavy lifting to create the nodes. To parse a snippet of code,
just call SyntaxFactory.ParseExpression and specify the code for
a string literal:

var newLiteral = SyntaxFactory.ParseExpression("\"valid regex\"");

Figure 5 The Complete Code for CodeFixProvider.cs

using System.Collections.Immutable;
using System.Composition;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CodeFixes;
using Microsoft.CodeAnalysis.CodeActions;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.CSharp.Syntax;
using Microsoft.CodeAnalysis.Formatting;

namespace RegexAnalyzer
{
 [ExportCodeFixProvider("RegexAnalyzerCodeFixProvider",
 LanguageNames.CSharp), Shared]
 public class RegexAnalyzerCodeFixProvider : CodeFixProvider
 {
 public sealed override ImmutableArray<string> GetFixableDiagnosticIds()
 {
 return ImmutableArray.Create(RegexAnalyzer.DiagnosticId);
 }

 public sealed override FixAllProvider GetFixAllProvider()
 {
 return WellKnownFixAllProviders.BatchFixer;
 }

 public sealed override async Task ComputeFixesAsync(CodeFixContext context)
 {
 var root =
 await context.Document.GetSyntaxRootAsync(context.CancellationToken)
 .ConfigureAwait(false);

 var diagnostic = context.Diagnostics.First();
 var diagnosticSpan = diagnostic.Location.SourceSpan;

 // Find the invocation expression identified by the diagnostic.
 var invocationExpr =

 root.FindToken(diagnosticSpan.Start).Parent.AncestorsAndSelf()
 .OfType<InvocationExpressionSyntax>().First();

 // Register a code action that will invoke the fix.
 context.RegisterFix(
 CodeAction.Create("Fix regex", c =>
 FixRegexAsync(context.Document, invocationExpr, c)), diagnostic);
 }

 private async Task<Document> FixRegexAsync(Document document,
 InvocationExpressionSyntax invocationExpr,
 CancellationToken cancellationToken)
 {
 var semanticModel =
 await document.GetSemanticModelAsync(cancellationToken);

 var memberAccessExpr =
 invocationExpr.Expression as MemberAccessExpressionSyntax;
 var memberSymbol =
 semanticModel.GetSymbolInfo(memberAccessExpr).Symbol as IMethodSymbol;
 var argumentList = invocationExpr.ArgumentList as ArgumentListSyntax;
 var regexLiteral =
 argumentList.Arguments[1].Expression as LiteralExpressionSyntax;
 var regexOpt = semanticModel.GetConstantValue(regexLiteral);
 var regex = regexOpt.Value as string;

 var newLiteral = SyntaxFactory.ParseExpression("\"valid regex\"")
 .WithLeadingTrivia(regexLiteral.GetLeadingTrivia())
 .WithTrailingTrivia(regexLiteral.GetTrailingTrivia())
 .WithAdditionalAnnotations(Formatter.Annotation);
 var root = await document.GetSyntaxRootAsync();
 var newRoot = root.ReplaceNode(regexLiteral, newLiteral);

 var newDocument = document.WithSyntaxRoot(newRoot);

 return newDocument;
 }
 }
}

0215msdn_TurnerAnalyzers_v3_26-31.indd 30 1/13/15 8:32 AM

31February 2015msdnmagazine.com

This new literal would work well as a replacement in most cases,
but it’s missing something. If you recall, syntax tokens can have
attached trivia that represents whitespace or comments. You’ll
need to copy over any trivia from the old literal expression to
ensure you don’t delete any spacing or comments from the old
code. It’s also good practice to tag new nodes you create with the
“Formatter” annotation, which informs the code fix engine that
you want your new node formatted according to the end user’s
code style settings. You’ll need to add a using directive for the
Microsoft.CodeAnalysis.Formatting namespace. With these addi­
tions, your ParseExpression call looks like this:

var newLiteral = SyntaxFactory.ParseExpression("\"valid regex\"")
 .WithLeadingTrivia(regexLiteral.GetLeadingTrivia())
 .WithTrailingTrivia(regexLiteral.GetTrailingTrivia())
 .WithAdditionalAnnotations(Formatter.Annotation);

Swapping the New Node into the Syntax Tree Now that you
have a new syntax node for the string literal, you can replace the
old node within the syntax tree, producing a new tree with a fixed
regex pattern string.

First, you get the root node from the current document’s syntax tree:
var root = await document.GetSyntaxRootAsync();

Now, you can call the ReplaceNode method on that syntax root
to swap out the old syntax node and swap in the new one:

var newRoot = root.ReplaceNode(regexLiteral, newLiteral);

Remember that you’re generating a new root node here. Replacing
any syntax node also requires you to replace its parents all the way
up to the root. As you saw before, all syntax nodes in the .NET
Compiler Platform are immutable. This replacement operation
actually just returns a new root syntax node with the target node
and its ancestors replaced as directed.

Now that you have a new syntax root with a fixed string lit-
eral, you can walk up one more level of the tree to produce a new

Document object that contains your updated root. To replace the
root, use the WithSyntaxRoot method on the Document:

var newDocument = document.WithSyntaxRoot(newRoot);

This is the same With API pattern you just saw when calling With-
LeadingTrivia and other methods on the expression you parsed.
You’ll see this With pattern often when transforming existing
objects in the Roslyn immutable object model. The idea is similar
to the .NET String.Replace method that returns a new string object.

With the transformed document in hand, you can now return
it from FixRegexAsync:

return newDocument;

Your code in CodeFixProvider.cs should now look like Figure 5.
Trying It Out That’s it! You’ve now defined a code fix whose trans-

form runs when users encounter your diagnostic and choose the fix
from the light bulb menu. To try out the code fix, press F5 again in the
main instance of Visual Studio and open up the console application.
This time, when you place the cursor on your squiggle, you should
see a light bulb appear to the left. Clicking on the light bulb should
bring up a menu that contains the Fix regex code action you defined,
as shown in Figure 6. This menu shows a preview with an inline diff
between the old Document and the new Document you created,
which represents the state of your code if you choose to apply the fix.

If you select that menu item, Visual Studio takes the new Docu-
ment and adopts it as the current state of the editor buffer for that
source file. Your fix has now been applied!

Congratulations
You’ve done it! In about 70 total lines of new code, you identified
an issue in your user’s code, live, as he’s typing, squiggled it red as an
error, and surfaced a code fix that can clean it up. You transformed
syntax trees and generated new syntax nodes along the way, all

while operating within your familiar
target domain of regular expressions.

While you can continuously refine
the diagnostics and code fixes you
write, I’ve found that analyzers built
with the .NET Compiler Platform let
you get quite a lot done within a short
amount of time. Once you get comfort-
able building analyzers, you’ll start to
spot all sorts of common problems in
your daily coding life and detect repet-
itive fixes you can automate.

What will you analyze? n

Alex Turner is a senior program manager for
the Managed Languages team at Microsoft,
where he’s been brewing up C# and Visual
Basic goodness on the .NET Compiler Platform
(“Roslyn”) project. He graduated with a
Master of Science in Computer Science from
Stony Brook University and has spoken at Build,
PDC, TechEd, TechDays and MIX.

ThAnks to the following Microsoft technical
experts for reviewing this article: Bill Chiles
and Lucian WischikFigure 6 Trying Out Your Code Fix

0215msdn_TurnerAnalyzers_v3_26-31.indd 31 1/13/15 8:32 AM

www.msdnmagazine.com

msdn magazine32

It’s all about data these days. Data helps us make informed
decisions. Big Data helps us make informed and insightful deci-
sions. Big streams of data help us make informed, insightful and
timely decisions. These continuously flowing streams of data are
often called event streams. It’s increasingly common to build soft-
ware systems whose primary purpose is to process event streams.

Even across different industries and domains, there’s a discernable
common architectural pattern around these event stream-oriented
systems. This pattern for modern event stream-oriented systems
plays the same fundamental role that the classic n-tier architecture
held for traditional on-premises enterprise systems. I’ll start off by
exploring a thumbnail sketch of this nascent pattern.

Identify the Pattern
First, I should clarify what is meant by the term event. Here, it
means merely a bit of data signifying that something happened
in a system. Events tend to be small in size, in the byte or kilobyte

range. You’ll also hear terms like message, telemetry or even just
data in place of event.

Next, there are event producers. These producers could be almost
anything—connected cars, smart thermostats, game consoles,
personal fitness devices or even a software system generating self-
diagnostic events. It’s important to recognize, though, that in most
of these systems, you’re dealing with numerous event producers.

Many systems anticipate numbers of event producers in the tens
of thousands and ranging into tens of millions or more. This means
these systems tend to have both high volume and high velocity.
High volume means there’s a lot of data overall and high velocity
means the data is generated frequently.

There are also event consumers. Consumers are the real heart
of these types of systems. They’re responsible for analyzing, inter-
preting and responding to events. The number of consumers in a
typical system might range from a couple to a couple dozen. Events
aren’t routed to specific consumers. Each consumer is looking at the
same set of events. In the context of Microsoft Azure, consumers
are most likely cloud services.

Consider this example. There’s an event stream representing financial
transactions. The event producers in this scenario are point-of-sale
systems in retail stores. One consumer owns the responsibility to
analyze the stream for fraudulent activity and raise alerts. Another
consumer analyzes the same stream to make just-in-time supply
chain optimizations. Finally, a third consumer is responsible for
translating the events into long-term cold storage for later analytics.

MICRO SOF T A ZUR E

The Rise of Event
Stream-Oriented Systems
Christopher Bennage

This article discusses:
•	The Azure Event Hubs architecture

•	How	to	configure	Azure	Event	Hubs

•	Implementing an event processor

Technologies discussed:
Microsoft Azure, Azure Event Hubs

0215msdn_BennageAzure_v3_32-36.indd 32 1/13/15 8:28 AM

L� Veg�
vslive.com/lasvegas

MARCH 16 – 20
BALLY’S HOTEL & CASINO LAS VEGAS, NV

Code on the Strip

Scan the QR code to
register or for more

event details.

Bonus Content

Presented in
Partnership with

Reg� ter by February 25
 and Save $300!

USE PROMO CODE VSLFEBTI

TRACKS INCLUDE:
➤ Visual Studio / .NET
➤ JavaScript/HTML5
➤ ASP.NET
➤ Windows 8.1/WinRT
➤ Cross-Platform Mobile

Development
➤ Database and Analytics
➤ Cloud Computing
➤ SharePoint/Offi ce

VSL_LV15_Tip-in_f.indd 1 1/5/15 2:12 PM

www.vslive.com/lasvegas

vslive.com

NAVIGATE THE
.NET HIGHWAY

Scan the QR code to
register or for more
event details.

Scan the QR code to
register or for more
event details.

Scan the QR code to Scan the QR code to Scan the QR code to
register or for more
Scan the QR code to
register or for more register or for more register or for more
Scan the QR code to Scan the QR code to Scan the QR code to
register or for more
Scan the QR code to
register or for more register or for more
event details.
register or for more
event details.event details.event details.

Scan the QR code to Scan the QR code to Scan the QR code to
register or for more
Scan the QR code to
register or for more register or for more
event details.
register or for more
event details.event details.event details.

Scan the QR code to Scan the QR code to Scan the QR code to Scan the QR code to Scan the QR code to Scan the QR code to Scan the QR code to Scan the QR code to Scan the QR code to Scan the QR code to Scan the QR code to Scan the QR code to
register or for more register or for more register or for more register or for more

Scan the QR code to
register or for more
Scan the QR code to Scan the QR code to Scan the QR code to
register or for more register or for more register or for more register or for more register or for more register or for more register or for more

event details.
register or for more register or for more register or for more register or for more

event details.event details.event details.

Scan the QR code to Scan the QR code to Scan the QR code to
register or for more
Scan the QR code to
register or for more register or for more register or for more
event details.event details.

Scan the QR code to Scan the QR code to Scan the QR code to
register or for more
Scan the QR code to
register or for more register or for more
event details.
register or for more
event details.event details.event details.

Scan the QR code to Scan the QR code to Scan the QR code to
register or for more
Scan the QR code to
register or for more register or for more
event details.
register or for more
event details.event details.event details.

Scan the QR code to Scan the QR code to
register or for more register or for more
event details.event details.

Scan the QR code to

March 16–20 June 1–4 June 15–18 August 10–14 Sept. 28–Oct. 1 Nov. 16–20

GOLD SPONSOR

PRODUCED BY

magazine

SUPPORTED BY

EVENT PARTNERS PLATINUM SPONSOR

Join us on the Ultimate Code Trip in 2015!

VSL_LV15_Tip-in_f.indd 2 1/5/15 2:13 PM

www.vslive.com

33February 2015msdnmagazine.com

When combined with the reality of high-volume and high-
velocity events, this pattern of producers and consumers presents
a few interesting problems:

• How do you prevent event production surges from over-
whelming consumers? That is, how should the system
respond when the rate of event production starts to
exceed the rate of consumption?

• Because event velocity is high, how can you scale an
individual event consumer?

The key to the problem is to use an event broker (see Figure 1).
This is precisely the role performed by the recently released Azure
Event Hubs.

So how, exactly, does using a broker such as Event Hubs solve
the problems I’ve outlined so far?

Understand Event Hubs
Event Hubs provides the elasticity needed to absorb and persist
events until downstream consumers can catch up. Event Hubs can
effectively level out variability in the event stream rate so consumers
don’t have to worry about it. Without this leveling, a receiving
consumer might become overwhelmed and begin to fail.

Using a broker isolates the event producers and event consumers
from each other. This isolation is especially important in more
sophisticated versions of the architectural pattern where additional
intermediaries are necessary between the producers and the con-
sumers. Event Hubs is a point of composition, a seam or boundary
in the architecture. All components that interact through an Event
Hub don’t require specific knowledge of each other.

At this point, it might be easy to confuse Event Hubs with tradi-
tional enterprise messaging services that offer the same type of
isolation. However, Event Hubs is different in several key ways that
make it ideal for this architectural pattern.

Independent Consumers
Event Hubs uses a publish and subscribe model; however, each con-
sumer has an independent view of the same event stream. In some
traditional messaging systems with multiple consumers, messages
are copied for each interested consumer. This can be inefficient in
terms of speed and space, but the benefit is that each consumer
has its own “inbox.” As a consumer processes messages, it removes
them from its inbox. There’s no affect on other consumers because
they have their own copies in their own inboxes.

With Event Hubs, there’s one set of immutable events and,
because they’re immutable, there only needs to be one copy of each
event. Likewise, consumers never remove events from the system.

All consumers are looking at the same set of events. Because of this,
consumers own the responsibility of keeping track of where they
are in the event stream. They do this by tracking their offset in the
event stream. There’s actually an API for this built into the SDK.

Time-Based Retention
In traditional messaging systems, the consumer is responsible for
telling the system when it’s done with the message. The system
can then get rid of the message. Because an Event Hubs consumer
is responsible for tracking his own position within the event
stream, how does an Event Hub know when the consumer is done
with the events? In short, it doesn’t. With Event Hubs, you config-
ure a retention period and events are stored for that amount of
time. This means events expire on their own, independent of any
consumer action.

The implication of time-based retention is the consumer needs
to examine and process events before they expire. With time-based
retention, each consumer has pressure to keep up. Fortunately, the
underlying design of Event Hubs lets individual consumers scale
as necessary.

Event Hubs supports this by is physically partitioning the event
stream. You set the number of partitions when provisioning an Event
Hub. See the official documentation at bit.ly/11QAxOY for more details.

 As events are published to an Event Hub, they’re placed in parti-
tions. A given event resides in only one partition. Events are evenly
distributed by default across partitions in a round-robin fashion.
There are mechanisms for providing partition affinity. The most
common lets you set a partition key property on an event, and all
events with the same key will be delivered to the same partition.

How does a partitioned event stream help consumers with time-
based retention? In the context of Event Hubs, the correct term is
actually consumer group. The reason for calling it a group is each
consumer really consists of multiple instances. Each group has
one instance per partition. From this point, consumer group refers
to the consumer as a whole and consumer instance refers to the
member of the group interested in a particular partition.

This means a consumer group can process stream events in par-
allel. Each consumer instance in the group can process a partition
independent of other instances. These consumer instances can all
reside in one machine, with each consumer instance running in
isolation from one another. They could all be distributed across
multiple machines, even to the point of each consumer instance
running on a dedicated box. This way, Event Hubs circumvents
some of the typical problems associated with the classic pattern
of competing consumers.

Figure	1	The Azure Event Hub Architecture

Consumer 1

Consumer 2

Consumer N

Applications

Devices

Event Broker

Event Hubs provides the
elasticity needed to absorb and
persist events until downstream

consumers can catch up.

0215msdn_BennageAzure_v3_32-36.indd 33 1/13/15 8:28 AM

www.bit.ly/11QAxOY
www.msdnmagazine.com

msdn magazine34 Microsoft Azure

Isolation is a key concept here. First, you’re isolating event pro-
ducers and event consumers from each other, thus enabling flexible
architecture composition, as well as load leveling. Second, consumer
groups are isolated from each other, reducing the opportunity
for cascading failures across consumer groups. Third, consumer
instances in a given consumer group are isolated from each other
to enable horizontal scaling for individual consumer groups.

Use Event Hubs
There are several good tutorials for getting started with Event Hubs.
Check out the official documentation at bit.ly/11QAxOY and follow the
tutorial that uses the platform of your choice.

You’ll need to provision an Event Hub first. The process is straight-
forward. You can easily try it out with a trial Azure account. In the
Azure Management Portal, navigate to the Service Bus section.
You’ll need to create a Service Bus namespace if you don’t already
have one. After that, you’ll see a tab called Event Hubs that has
instructions for creating an Event Hub (see Figure 2).

You also need to set up a shared access policy for the Event Hub
before you can begin. These policies manage security for an Event
Hub. In the portal, navigate to the Event Hub you just created and
select the Configure tab.

Choose Manage for the permissions and give the policy a name
such as “super” or “do-not-use-in-production.” After that, switch
back to the Dashboard tab and click the Connection Information
button at the bottom. You’ll want to make note of the connection
string there, as well as the name you gave your Event Hub.

Produce Events
The code I’ll show here uses the .NET SDK, but you can use any
platform that supports HTTP or AMQP. You’ll need to reference
the Microsoft Azure Service Bus NuGet package. The classes you
need are in the Microsoft.ServiceBus.Messaging namespace. All
you need to do is create a client, create an event and send:

var client = EventHubClient.CreateFromConnectionString (
 connectionString,
 eventHubName);

var body = Encoding.UTF8.GetBytes("My first event");
var eventData = new EventData (body);

await client.SendAsync (eventData);

Despite the simplicity, there are a few interesting items to point out.
The body of the event is just a byte array. Any consumer groups process-
ing this event will need to know how to interpret those bytes. It’s likely
the consumer groups will need some sort of hint to determine how to
deserialize the body. Before the event is sent, metadata can be attached:

eventData.Properties.Add ("event-type", "utf8string");

This means using keys and values that are well known by both
producers and consumer groups. If you want to ensure a set of
events is delivered to the same partition, you can set a partition key:

eventData.PartitionKey = "something-meaningful-to-your-domain";

You’ll get better performance if events don’t have affinity with
partitions. In some cases, though, you’ll want a set of related events
routed to a single consumer instance for processing. Events in a given
partition are guaranteed to be in the order they were received.
Likewise, there’s no easy way to guarantee the order of events across
different partitions in an Event Hub. This is often the motivation
for wanting events to have affinity to a particular partition.

For example, if you’re enabling smart cars, you want all events
for a given car to be in the same partition. You might choose the
Vehicle Identification Number (VIN) for the partition key. Or your
system might focus on smart buildings, with hundreds of devices
in each building producing events. In that case, you might use the
identity of the building itself as the partition key so all events from
all devices in the same building land in the same partition.

Overall, partition affinity is a dangerous practice and you should
only use it carefully. A poor choice of partition key can result in an

uneven event distribution across
partitions. This could ultimately
mean consumer groups would have
trouble scaling. The good news is
that many times you can change
the system design to avoid the need
for partition affinity.

Consume Events
You may be concerned about how
you’ll manage all this. Your con-
sumer groups need to keep track of
their offset in the event stream. Each
group needs to have an instance for
each partition. Fortunately, there’s
an API for that.

Reference the NuGet package
Microsoft Azure Service Bus Figure	2	Create an Event Hub

Event Hubs uses a publish and
subscribe model. However, each
consumer has an independent
view of the same event stream.

0215msdn_BennageAzure_v3_32-36.indd 34 1/13/15 8:28 AM

www.bit.ly/11QAxOY

Untitled-1 1 1/6/15 10:48 AM

www.textcontrol.com/html5

msdn magazine36 Microsoft Azure

Event Hub-Event ProcessorHost. The classes you need are in
the Microsoft.ServiceBus.Messaging namespace. Getting started
is as simple as implementing a single interface: IEventProcessor.

Once you’ve implemented your event processor, you’ll create an
instance of EventProcessorHost to register your event processor. The
host will handle all the grunt work for you. When it starts up, it will
examine your Event Hub to see how many partitions it has. It will then
create one instance of your event processor for each available partition.

There are three methods you need to implement. The first two are
OpenAsync and CloseAsync. The host calls OpenAsync when the
event processor instance is first granted a partition lease. This means
the event processor instance has exclusive access to the partition for
the consumer group in question. Likewise, the host calls CloseAsync
when its lease is lost or when it’s shutting down. While you’re getting
started, you can use a very simple implementation:

public Task OpenAsync(PartitionContext context)
{
 return Task.FromResult(true);
}

public Task CloseAsync(PartitionContext context, CloseReason reason)
{
 return Task.FromResult(true);
}

Both of these methods receive a PartitionContext argument.
The remaining method receives it, as well. You can examine this
argument if you want to view details about the specific partition
leased to the event processor. The final method is where you actually
receive the events (see Figure 3).

As you can see, this is straightforward. You receive an enumerable
set of events you can iterate over and do whatever work is needed.
You also have this invocation of context.CheckpointAsync at the
end of the method. This tells the host you’ve successfully processed
this set of events and you’d like to record a checkpoint. The check-
point is the offset of the last event in the batch.

That’s how your consumer group can keep track of which events
have been processed for each partition. After a host is started, it tries
to acquire a lease for any available partition. When it starts processing
for a partition, it will examine the checkpoint information for that
partition. Only events more recent than the last checkpointed
offset are sent to their respective processors.

The host also provides automatic load leveling across machines.
For example, let’s say you have an Event Hub with 16 partitions. This

means there will be 16 instances of your event processor—one for each
partition. If you’re running the host on a single machine, it creates
all 16 instances on the same machine. If you start another host on a
second machine and it’s part of the same consumer group, the two
hosts will begin to level the distribution of event processor instances
across the two machines. There will ultimately be eight event pro-
cessor instances per machine. Likewise, if you take down the second
machine, then the first host takes back over the orphaned partitions.

Assume your implementation of IEventProcessor is MyEvent-
Processor. Then instantiating the host can be as simple as this:

var host = new EventProcessorHost(
 hostName,
 eventHubName,
 consumerGroupName,
 eventHubConnectionString,
 checkpointConnectionString);

await host.RegisterEventProcessorAsync<MyEventProcessor>();

The eventHubConnectionString and eventHubName are the
same values used when sending events in the previous example.
It’s best to use connection strings with shared access policies that
restrict usage to just what’s needed.

The hostName identifies the instance of the EventProcessorHost.
When running the host in a cluster (meaning multiple machines),
it’s recommended you provide a name that reflects the identity of
the machine on which it’s running.

The consumerGroupName argument identifies the logical
consumer group this host represents. There’s a default consumer
group you can reference using the constant EventHubConsumer-
Group.DefaultGroupName. Any other name requires you first
provision the consumer group. Do this by creating an instance of
Microsoft.ServiceBus.NamespaceManager and using methods
such as CreateConsumerGroupAsync.

Finally, you need to provide a connection string to an Azure Storage
account using checkpointConnectionString. This storage account is
where the host tracks all state regarding partitions and event offsets.
This state is stored in blobs in plain text you can readily examine.

There are other Azure services that are integrated with Event Hubs
out-of-the-box. Azure Stream Analytics (currently in Preview) pro-
vides a declarative SQL-like syntax for transforming and analyzing
event streams originating in Event Hubs. Likewise, Event Hubs
offers a spout for the very popular Apache Storm, now available as
a Preview on Azure through HDInsight.

Wrapping Up
The architectural pattern outlined here is just the beginning. When
implementing a real-world system, there are numerous other con-
cerns you’ll need to take into consideration. These concerns involve
advanced security, provisioning and management of event producers,
protocol translation, outbound communication, and more. Neverthe-
less, you’re now equipped with the foundational concepts necessary
to build a system using an event broker such as Event Hubs. n

Christopher Bennage is a member of the Microsoft patterns & practices team. He
likes to make things with computers.

thanks to the following Microsoft technical experts for reviewing this article:
Mostafa Elhemali and Dan Rosanova

public async Task ProcessEventsAsync (PartitionContext context,
IEnumerable<EventData> messages)
{
 foreach (var message in messages)
 {
 var eventType = message.Properties["event-type"];
 var bytes = message.GetBytes();

 if (eventType.ToString() == "utf8string") {
 var body = System.Text.Encoding.UTF8.GetString (bytes);
 // Do something interesting with the body
 } else {
 // Record that you don't know what to do with this event
 }
 }

 await context.CheckpointAsync();
 // This is not production-ready code
}

Figure	3	The Final Method that Delivers the Events

0215msdn_BennageAzure_v3_32-36.indd 36 1/13/15 8:28 AM

Untitled-1 1 1/6/15 2:19 PM

www.alachisoft.com

msdn magazine38

The world of software development is hurtling toward
ever-shortening release cycles. The time when software develop-
ment teams could strictly sequence the functions of specification,
implementation and testing in a waterfall model is long past.
Developing high-quality software is hard in such a hectic world,
and calls for a reevaluation of existing development methodologies.

To reduce the number of bugs in a software product, all team
members must agree on what the software system is supposed to
do, and that’s a key challenge. Specification, implementation and
testing have typically happened in silos, with no common medium
of communication. Different languages or artifacts used for each
made it difficult for them to co-evolve as the software implemen-
tation activity progresses, and so, while a specification document
ought to connect the work of all the team members, that’s rarely
the case in reality. The original specification and the actual imple-
mentation might diverge, and the only thing holding everything
together eventually is the code, which ends up embodying the ulti-
mate specification and the various design decisions made en route.
Testing attempts to reconcile this divergence by resorting to testing
just a few well-understood end-to-end scenarios.

This situation can be improved. A common medium to specify
the intended behavior of the software system is needed, one that can

be shared across design, implementation and testing, and that’s easy
to evolve. The specification must be directly related to the code, and
the medium be codified as an exhaustive suite of tests. Tool-based
techniques enabled by Smart Unit Tests can help fulfill this need.

Smart Unit Tests
Smart Unit Tests, a feature of Visual Studio 2015 Preview (see
Figure 1), is an intelligent assistant for software development,
helping dev teams find bugs early and reduce test maintenance
costs. It’s based on previous Microsoft Research work called “Pex.”
Its engine uses white-box code analyses and constraint solving to
synthesize precise test input values to exercise all code paths in
the code under test, persist these as a compact suite of traditional
unit tests with high coverage, and automatically evolve the test
suite as the code evolves.

Moreover, and this is strongly encouraged, correctness proper-
ties specified as assertions in code can be used to further guide test
case generation.

By default, if you do nothing more than just run Smart Unit Tests
on a piece of code, the generated test cases capture the observed
behavior of the code under test for each of the synthesized input
values. At this stage, except for test cases causing runtime errors,
the remaining are deemed to be passing tests—after all, that’s the
observed behavior.

Additionally, if you write assertions specifying the correctness
properties of the code under test, then Smart Unit Tests will come
up with test input values that can cause the assertions to fail, as
well, each such input value uncovering a bug in the code, and
thereby a failing test case. Smart Unit Tests can’t come up with such
correctness properties by itself; you’d write them based on your
domain knowledge.

V IS UAL ST UD IO 20 1 5

Build Better Software with
Smart Unit Tests
Pratap Lakshman

This article discusses:
• Test case generation

• Bounded exploration

• Parameterized unit testing

Technologies discussed:
Visual Studio 2015 Preview

0215msdn_LakshmanSmart_v4_38-42.indd 38 1/13/15 8:39 AM

39February 2015msdnmagazine.com

Test Case Generation
In general, program analysis techniques fall between the following
two extremes:

• Static analysis techniques verify that a property holds true
on all execution paths. Because the goal is program verifi-
cation, these techniques are usually overly conservative and
flag possible violations as errors, leading to false positives.

• Dynamic analysis techniques verify that a property holds
true on some execution paths. Testing takes a dynamic
analysis approach that aims at detecting bugs, but it usually
can’t prove the absence of errors. Thus, these techniques
often fail to detect all errors.

It might not be possible to detect bugs precisely when applying
only static analysis or employing a testing technique that’s unaware of
the structure of the code. For example, consider the following code:

int Complicated(int x, int y)
{
 if (x == Obfuscate(y))
 throw new RareException();
 return 0;
}

int Obfuscate(int y)
{
 return (100 + y) * 567 % 2347;
}

Static analysis techniques tend to be conservative, so the non-linear
integer arithmetic present in Obfuscate causes most static analysis
techniques to issue a warning about a potential error in Compli-
cated. Also, random testing techniques have very little chance of
finding a pair of x and y values that trigger the exception.

Smart Unit Tests implements an analysis technique that falls between
these two extremes. Similar to static analysis techniques, it proves
that a property holds for most feasible paths. Similar to dynamic
analysis techniques, it reports only real errors and no false positives.

Test case generation involves the following:
• Dynamically discovering all the branches (explicit and

implicit) in the code under test.

• Synthesizing precise test input values that exercise
those branches.

• Recording the output from the code under test for the
said inputs.

• Persisting these as a compact test suite with high coverage.
Figure 2 shows how it works using runtime instrumentation

and monitoring and here are the steps involved:
1. The code under test is first instrumented and callbacks

are planted that will allow the testing engine to monitor
execution. The code is then run with the simplest relevant
concrete input value (based on the type of the parameter).
This represents the initial test case.

2. The testing engine monitors execution, computes coverage for
each test case, and tracks how the input value flows through
the code. If all paths are covered, the process stops; all excep-
tional behaviors are considered as branches, just like explicit
branches in the code. If all paths haven’t been covered yet, the
testing engine picks a test case that reaches a program point
from which an uncovered branch leaves, and determines
how the branching condition depends on the input value.

3. The engine constructs a constraint system representing the
condition under which control reaches to that program point
and would then continue along the previously uncovered
branch. It then queries a constraint solver to synthesize a
new concrete input value based on this constraint.

4. If the constraint solver can determine a concrete input
value for the constraint, the code under test is run with
the new concrete input value.

5. If coverage increases, a test case is emitted.
Steps 2 through 5 are repeated until all branches are covered, or

until preconfigured exploration bounds are exceeded.
This process is termed an “exploration.” Within an exploration,

the code under test can be “run” several times. Some of those runs
increase coverage, and only the runs that increase coverage emit
test cases. Thus, all tests that are generated exercise feasible paths.

Bounded Exploration
If the code under test doesn’t con-
tain loops or unbounded recursion,
exploration typically stops quick-
ly because there are only a (small)
finite number of execution paths
to analyze. However, most inter-
esting programs do contain loops
or unbounded recursion. In such
cases, the number of execution
paths is (practically) infinite, and
it’s generally undecidable whether
a statement is reachable. In other
words, an exploration would take
forever to analyze all execution
paths of the program. Because test
generation involves actually run-
ning the code under test, how do
you protect from such runaway Figure 1 Smart Unit Tests Is Fully Integrated into Visual Studio 2015 Preview

0215msdn_LakshmanSmart_v4_38-42.indd 39 1/13/15 8:39 AM

www.msdnmagazine.com

msdn magazine40 Visual Studio 2015

exploration? That’s where bounded exploration plays a key role. It
ensures explorations stop after a reasonable amount of time. There
are several tiered, configurable exploration bounds that are used:

• Constraint solver bounds limit the amount of time
and memory the solver can use in searching for the next
concrete input value.

• Exploration path bounds limit the complexity of the
execution path being analyzed in terms of the number of
branches taken, the number of conditions over the inputs
that need to be checked, and the depth of the execution
path in terms of stack frames.

• Exploration bounds limit the number of “runs” that don’t
yield a test case, the total number of runs permitted and an
overall time limit after which exploration stops.

An important aspect to any tool-based testing approach being
effective is rapid feedback, and all of these bounds have been
preconfigured to enable rapid interactive use.

Furthermore, the testing engine uses heuristics to achieve high
code coverage quickly by postponing solving hard constraint sys-
tems. You can let the engine quickly generate some tests for code on
which you’re working. However, to tackle the remaining hard test
input generation problems, you can dial up the thresholds to let the
testing engine crunch further on the complicated constraint systems.

Parameterized Unit Testing
All program analysis techniques try to validate or disprove certain
specified properties of a given program. There are different tech-
niques for specifying program properties:

• API Contracts specify the behavior of individual API actions
from the implementation’s perspective. Their goal is to guaran-
tee robustness, in the sense that operations don’t crash and data
invariants are preserved. A common problem of API contracts
is their narrow view on individual API actions, which makes
it difficult to describe system-wide protocols.

• Unit Tests embody exemplary usage scenarios from the perspec-
tive of a client of the API. Their goal is to guarantee functional
correctness, in the sense that the interplay of several operations
behaves as intended. A common problem of unit tests is that
they’re detached from the details of the API’s implementation.

Smart Unit Tests enables parameterized unit testing, which unites
both techniques. Supported by a test-input generation engine, this
methodology combines the client and the implementa-
tion perspectives. The functional correctness properties
(parameterized unit tests) are checked on most cases of
the implementation (test input generation).

A parameterized unit test (PUT) is the straight-
forward generalization of a unit test through the
use of parameters. A PUT makes statements about
the code’s behavior for an entire set of possible input
values, instead of just a single exemplary input value.
It expresses assumptions on test inputs, performs a
sequence of actions, and asserts properties that should
hold in the final state; that is, it serves as the specifica-
tion. Such a specification doesn’t require or introduce
any new language or artifact. It’s written at the level

of the actual APIs implemented by the software product, and in
the programming language of the software product. Designers
can use them to express intended behavior of the software APIs,
developers can use them to drive automated developer testing, and
testers can leverage them for in-depth automatic test generation.
For example, the following PUT asserts that after adding an element
to a non-null list, the element is indeed contained in the list:

void TestAdd(ArrayList list, object element)
{
 PexAssume.IsNotNull(list);
 list.Add(element);
 PexAssert.IsTrue(list.Contains(element));
}

PUTs separate the following two concerns:
1. The specification of the correctness properties of the code

under test for all possible test arguments.
2. The actual “closed” test cases with the concrete arguments.

The engine emits stubs for the first concern, and you’re encouraged
to flesh them out based on your domain knowledge. Subsequent
invocations of Smart Unit Tests will automatically generate and
update individual closed test cases.

Application
Software development teams may be entrenched in various method-
ologies already, and it’s unrealistic to expect them to embrace a new
one overnight. Indeed, Smart Unit Tests is not meant as a replacement
for any testing practice teams might be following; rather, it’s meant
to augment any existing practices. Adoption is likely to begin with
a gradual embrace, with teams leveraging the default automatic test
generation and maintenance capabilities first, and then moving on
to write the specifications in code.

Testing Observed Behavior Imagine having to make changes
to a body of code with no test coverage. You might want to pin
down its behavior in terms of a unit test suite before starting, but
that’s easier said than done:

• The code (product code) might not lend itself to being unit
testable. It might have tight dependencies with the exter-
nal environment that will need to be isolated, and if you
can’t spot them, you might not even know where to start.

• The quality of the tests might also be an issue, and there are
many measures of quality. There is the measure of coverage—
how many branches, or code paths, or other program artifacts,
in the product code do the tests touch? There’s the measure

Figure 2 How Test Case Generation Works Under the Hood

Testing Engine

Instrumentation
Framework

Code
Under Test

Constraint
Solver

(4) Run with computed
test inputs.

(2) Listen to monitoring
callbacks. Symbolic execution
along concrete paths.

(1) Instrument .NET code at
runtime using CLR Profiler.
Monitor data/control flow.

(3) Compute precise
inputs.

(5) Emit test if it
increases coverage.

0215msdn_LakshmanSmart_v4_38-42.indd 40 1/13/15 8:39 AM

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1 9/8/11 11:56 AM

www.dynamicpdf.com

msdn magazine42 Visual Studio 2015

of assertions that express if the code is doing the right thing.
Neither of these measures by themselves is sufficient, however.
Instead, what would be nice is a high density of assertions
being validated with high code coverage. But it’s not easy to
do this kind of quality analyses in your head as you write the
tests and, as a consequence, you might end up with tests that
exercise the same code paths repeatedly; perhaps just testing
the “happy path,” and you’ll never know if the product code
can even cope with all those edge cases.

• And, frustratingly, you might not even know what asser-
tions to put in. Imagine being called upon to make changes
to an unfamiliar code base!

The automatic test generation capability of Smart Unit Tests is
especially useful in this situation. You can baseline the current observed
behavior of your code as a suite of tests for use as a regression suite.

Specification-Based Testing Software teams can use PUTs as
the specification to drive exhaustive test case generation to uncover
violations of test assertions. Being freed of much of the manual
work necessary to write test cases that achieve high code cover-
age, the teams can concentrate on tasks that Smart Unit Tests can’t
automate, such as writing more interesting scenarios as PUTs, and
developing integration tests that go beyond the scope of PUTs.

Automatic Bug Finding Assertions expressing correctness prop-
erties can be stated in multiple ways: as assert statements, as code
contracts and more. The nice thing is that these are all compiled
down to branches—an if statement with a then branch and an else
branch representing the outcome of the predicate being asserted.
Because Smart Unit Tests computes inputs that exercise all branches,
it becomes an effective bug-finding tool, as well—any input it comes
up with that can trigger the else branch represents a bug in the code
under test. Thus, all bugs that are reported are actual bugs.

Reduced Test Case Maintenance In the presence of PUTs, a
significantly lower number of tests cases need to be maintained.
In a world where individual closed test cases were written manu-
ally, what would happen when the code under test evolved? You’d
have to adapt the code of all tests individually, which could repre-
sent a significant cost. But by writing PUTs instead, only the PUTs
need to be maintained. Then, Smart Unit Tests can automatically
regenerate the individual test cases.

Challenges
Tool Limitations The technique of using white-box code analyses
with constraint solving works very well on unit-level code that’s well
isolated. However, the testing engine does have some limitations:

• Language: In principle, the testing engine can analyze
arbitrary .NET programs, written in any .NET language.
However, the test code is generated only in C#.

• Non-determinism: The testing engine assumes the
code under test is deterministic. If not, it will prune non-
deterministic execution paths, or it might go in cycles until
it hits exploration bounds.

• Concurrency: The testing engine does not handle
multithreaded programs.

• Native code or .NET code that’s not instrumented: The
testing engine does not understand native code, that is, x86

instructions called through the Platform Invoke (P/Invoke)
feature of the Microsoft .NET Framework. The testing engine
doesn’t know how to translate such calls into constraints that
can be solved by a constraint solver. And even for .NET code,
the engine can only analyze code it instruments.

• Floating point arithmetic: The testing engine uses an
automatic constraint solver to determine which values are
relevant for the test case and the code under test. However,
the abilities of the constraint solver are limited. In particular,
it can’t reason precisely about floating point arithmetic.

In these cases the testing engine alerts the developer by emitting
a warning, and the engine’s behavior in the presence of such lim-
itations can be controlled using custom attributes.

Writing Good Parameterized Unit Tests Writing good PUTs
can be challenging. There are two core questions to answer:

• Coverage: What are good scenarios (sequences of method
calls) to exercise the code under test?

• Verification: What are good assertions that can be stated
easily without reimplementing the algorithm?

A PUT is useful only if it provides answers for both questions.
• Without sufficient coverage; that is, if the scenario is too narrow

to reach all the code under test, the extent of the PUT is limited.
• Without sufficient verification of computed results; that

is, if the PUT doesn’t contain enough assertions, it can’t
check that the code is doing the right thing. All the PUT
does then is check that the code under test doesn’t crash
or have runtime errors.

In traditional unit testing, the set of questions includes one more:
What are relevant test inputs? With PUTs, this question is taken
care of by the tooling. However, the problem of finding good
assertions is easier in traditional unit testing: The assertions tend
to be simpler, because they’re written for particular test inputs.

Wrapping Up
The Smart Unit Tests feature in Visual Studio 2015 Preview lets you spec-
ify the intended behavior of the software in terms of its source code, and
it uses automated white-box code analysis in conjunction with a con-
straint solver to generate and maintain a compact suite of relevant tests
with high coverage for your .NET code. The benefits span functions—
designers can use them to specify the intended behavior of software
APIs; developers can use them to drive automated developer testing;
and testers can leverage them for in-depth automatic test generation.

The ever-shortening release cycles in software development is driving
much of the activities related to planning, specification, implementa-
tion and testing to continually happen. This hectic world is challenging
us to reevaluate existing practices around those activities. Short, fast,
iterative release cycles require taking the collaboration among these
functions to a new level. Features such as Smart Unit Tests can help
software development teams more easily reach such levels. n

PrataP Lakshman works in the Developer Division at Microsoft where he is currently
a senior program manager on the Visual Studio team, working on testing tools.

thanks to the following Microsoft technical expert for reviewing this article:
Nikolai Tillmann

0215msdn_LakshmanSmart_v4_38-42.indd 42 1/13/15 8:39 AM

Untitled-2 1 5/31/13 10:57 AM

www.rssbus.com

MARCH 16 – 20
BALLY’S HOTEL & CASINO LAS VEGAS, NV

Code on the Strip

magazine

Untitled-3 2 1/6/15 4:28 PM

www.vslive.com/lasvegas

TRACKS INCLUDE:

Untitled-3 3 1/6/15 4:33 PM

www.vslive.com/lasvegas
www.twitter.com/vslive
www.facebook.com/vsliveevents
www.linkedin.com

MARCH 16 – 20
BALLY’S HOTEL & CASINO LAS VEGAS, NV

VSLV_15_Feb_4pg_ad_final.indd 4 1/6/15 9:16 AMUntitled-3 4 1/6/15 4:17 PM

www.vslive.com/lasvegas
www.twitter.com/vslive
www.facebook.com/vsliveevents
www.linkedin.com

Untitled-3 5 1/6/15 4:18 PM

www.vslive.com/lasvegas

msdn magazine48

High-level programming languages offer many abstract
programming constructs such as functions, conditional statements
and loops that make us amazingly productive. However, one disad-
vantage of writing code in a high-level programming language is the
potentially significant decrease in performance. Ideally, you should
write understandable, maintainable code—without compromising
performance. For this reason, compilers attempt to automatically
optimize the code to improve its performance, and they’ve become
quite sophisticated in doing so nowadays. They can transform
loops, conditional statements, and recursive functions; eliminate
whole blocks of code; and take advantage of the target instruction
set architecture (ISA) to make the code fast and compact. It’s much
better to focus on writing understandable code, than making

manual optimizations that result in cryptic, hard-to-maintain code.
In fact, manually optimizing the code might prevent the compiler
from performing additional or more efficient optimizations.

Rather than manually optimizing code, you should consider
aspects of your design, such as using faster algorithms, incor-
porating thread-level parallelism and using framework-specific
features (such as using move constructors).

This article is about Visual C++ compiler optimizations. I’m
going to discuss the most important optimization techniques and
the decisions a compiler has to make in order to apply them. The
purpose isn’t to tell you how to manually optimize the code, but to
show you why you can trust the compiler to optimize the code on
your behalf. This article is by no means a complete examination of
the optimizations performed by the Visual C++ compiler. How-
ever, it demonstrates the optimizations you really want to know
about and how to communicate with the compiler to apply them.

There are other important optimizations that are currently
beyond the capabilities of any compiler—for example, replacing an
inefficient algorithm with an efficient one, or changing the layout
of a data structure to improve its locality. However, such optimi-
zations are outside the scope of this article.

Defining Compiler Optimizations
An optimization is the process of transforming a piece of code
into another functionally equivalent piece of code for the purpose
of improving one or more of its characteristics. The two most

CO MPILER OPT IMIZAT IONS

What Every Programmer
Should Know About
Compiler Optimizations
Hadi Brais

This article discusses:
•	Important Visual C++ compiler optimizations

•	How the Visual C++ compiler uses the vector unit of the processor

•	How to control compiler optimizations

•	Compiler optimizations in the Microsoft .NET Framework

Technologies discussed:
Visual	Studio	2013,	Visual	C++	Compiler,	Microsoft	.NET	Framework

Code download available at:
msdn.microsoft.com/magazine/msdnmag0215

0215msdn_BraisCompiler_v5_48-55.indd 48 1/13/15 8:36 AM

http://msdn.microsoft.com/magazine/msdnmag0215

49February 2015msdnmagazine.com

important characteristics are the speed and size of the code. Other
characteristics include the amount of energy required to execute
the code, the time it takes to compile the code and, in case the
resulting code requires Just-in-Time (JIT) compilation, the time it
takes to JIT compile the code.

Compilers are constantly improving in terms of the techniques
they use to optimize the code. However, they’re not perfect. Still,
instead of spending time manually tweaking a program, it’s usually
much more fruitful to use specific features provided by the com-
piler and let the compiler tweak the code.

There are four ways to help the compiler optimize your code
more effectively:

1. Write understandable, maintainable code. Don’t look at
the object-oriented features of Visual C++ as the enemies
of performance. The latest version of Visual C++ can keep
such overhead to a minimum and sometimes completely
eliminate it.

2. Use compiler directives. For example, tell the compiler to use a
function-calling convention that’s faster than the default one.

3. Use compiler-intrinsic functions. An intrinsic function
is a special function whose implementation is provided
automatically by the compiler. The compiler has an intimate
knowledge of the function and substitutes the function call
with an extremely efficient sequence of instructions that
take advantage of the target ISA. Currently, the Microsoft
.NET Framework doesn’t support intrinsic functions, so
none of the managed languages support them. However,
Visual C++ has extensive support for this feature. Note that
while using intrinsic functions can improve the perfor-
mance of the code, it reduces its readability and portability.

4. Use profile-guided optimization (PGO). With this technique,
the compiler knows more about how the code is going to
behave at run time and can optimize it accordingly.

The purpose of this article is to show you why you can trust
the compiler by demonstrating the optimizations performed on
inefficient but understandable code (applying the first method).
Also, I’ll provide a short introduction to profile-guided optimiza-
tion and mention some of the compiler directives that enable you
to fine-tune some parts of your code.

There are many compiler optimization techniques ranging from
simple transformations, such as constant folding, to extreme trans-
formations, such as instruction scheduling. However, in this article,

I’ll limit discussion to some of the most important optimizations—
those that can significantly improve performance (by a double-
digit percentage) and reduce code size: function inlining,
COMDAT optimizations and loop optimizations. I’ll discuss the
first two in the next section, then show how you can control the
optimizations performed by Visual C++. Finally, I’ll take a brief
look at optimizations in the .NET Framework. Throughout this
article, I’ll be using Visual Studio 2013 to build the code.

Link-Time Code Generation
Link-Time Code Generation (LTCG) is a technique for perform-
ing whole program optimizations (WPO) on C/C++ code. The C/
C++ compiler compiles each source file separately and produces
the corresponding object file. This means the compiler can only
apply optimizations on a single source file rather than on the whole
program. However, some important optimizations can be per-
formed only by looking at the whole program. You can apply these
optimizations at link time rather than at compile time because the
linker has a complete view of the program.

When LTCG is enabled (by specifying the /GL compiler switch),
the compiler driver (cl.exe) will invoke only the front end of the
compiler (c1.dll or c1xx.dll) and postpone the work of the back end
(c2.dll) until link time. The resulting object files contain C Inter-
mediate Language (CIL) code rather than machine-dependent
assembly code. Then, when the linker (link.exe) is invoked, it sees
that the object files contain CIL code and invokes the back end of
the compiler, which in turn performs WPO, generates the binary
object files, and returns to the linker to stitch all object files together
and produce the executable.

The front end actually performs some optimizations, such as con-
stant folding, irrespective of whether optimizations are enabled or
disabled. However, all important optimizations are performed by the
back end of the compiler and can be controlled using compiler switches.

LTCG enables the back end to perform many optimizations
aggressively (by specifying /GL together with the /O1 or /O2 and /Gw
compiler switches and the /OPT:REF and /OPT:ICF linker switches).
In this article, I’ll discuss only function inlining and COMDAT
optimizations. For a complete list of LTCG optimizations, refer
to the documentation. Note that the linker can perform LTCG on
native object files, mixed native/managed object files, pure man-
aged object files, safe managed object files and safe .netmodules.

I’ll build a program consisting of two source files (source1.c and
source2.c) and a header file (source2.h). The source1.c and source2.c

#include <stdio.h> // scanf_s and printf.
#include "Source2.h"

int square(int x) { return x*x; }

main() {
 int n = 5, m;
 scanf_s("%d", &m);
 printf("The square of %d is %d.", n, square(n));
 printf("The square of %d is %d.", m, square(m));
 printf("The cube of %d is %d.", n, cube(n));
 printf("The sum of %d is %d.", n, sum(n));
 printf("The sum of cubes of %d is %d.", n, sumOfCubes(n));
 printf("The %dth prime number is %d.", n, getPrime(n));
}

Figure	1	The source1.c File

One disadvantage of
writing code in a high-level

programming language is the
potentially significant decrease

in performance.

0215msdn_BraisCompiler_v5_48-55.indd 49 1/13/15 8:36 AM

www.msdnmagazine.com

msdn magazine50 Compiler Optimizations

files are shown in Figure 1 and Figure 2, respectively. The header
file, which contains the prototypes of all functions in source2.c, is
quite simple, so I won’t show it here.

The source1.c file contains two functions: the square function,
which takes an integer and returns its square, and the main func-
tion of the program. The main function calls the square function
and all functions from source2.c except isPrime. The source2.c file
contains five functions: the cube function returns the cube of a
given integer; the sum function returns the sum of all integers from
1 to a given integer; the sumOfcubes function returns the sum of
cubes of all integers from 1 to a given integer; the isPrime function
determines whether a given integer is prime; and the getPrime
function, which returns the xth prime number. I’ve omitted error
checking because it’s not of interest in this article.

The code is simple but useful. There are a number of functions
that perform simple computations; some require simple for loops.
The getPrime function is the most complex because it contains a
while loop and, within the loop, it calls the isPrime function, which
also contains a loop. I’ll use this code to demonstrate one of the
most important compiler optimizations, namely function inlining,
and some other optimizations.

I’ll build the code under three different configurations and exam-
ine the results to determine how it was transformed by the compiler.
If you follow along, you’ll need the assembler output file (produced
with the /FA[s] compiler switch) to examine the resulting assembly
code, and the map file (produced with the /MAP linker switch) to
determine the COMDAT optimizations that have been performed
(the linker can also report this if you use the /verbose:icf and
/verbose:ref switches). So make sure these switches are specified in

all of the following configurations I discuss. Also, I’ll be using the
C compiler (/TC) so that the generated code is easier to examine.
However, everything I discuss here also applies to C++ code.

The Debug Configuration
The Debug configuration is used mainly because all back-end
optimizations are disabled when you specify the /Od compiler
switch without specifying the /GL switch. When building the code
under this configuration, the resulting object files will contain
binary code that corresponds exactly to the source code. You can
examine the resulting assembler output files and the map file
to confirm this. This configuration is equivalent to the Debug
configuration of Visual Studio.

The Compile-Time Code
Generation Release Configuration
This configuration is similar to the Release configuration in
which optimizations are enabled (by specifying the /O1, /O2 or
/Ox compile switches), but without specifying the /GL compiler
switch. Under this configuration, the resulting object files will
contain optimized binary code. However, no optimizations at the
whole-program level are performed.

By examining the generated assembly listing file of source1.c, you’ll
notice that two optimizations have been performed. First, the first call
to the square function, square(n), in Figure 1 has been completely
eliminated by evaluating the computation at compile time. How did
this happen? The compiler determined that the square function is
small, so it should be inlined. After inlining it, the compiler determined
that the value of the local variable n is known and doesn’t change
between the assignment statement and the function call. Therefore, it
concluded that it’s safe to execute the multiplication and substitute the
result (25). In the second optimization, the second call to the square
function, square(m), has been inlined, as well. However, because the
value of m isn’t known at compile time, the compiler can’t evaluate
the computation, so the actual code is emitted.

Now I’ll examine the assembly listing file of source2.c, which is
much more interesting. The call to the cube function in sumOf-
Cubes has been inlined. This in turn has enabled the compiler to
perform significant optimizations on the loop (as you’ll see in the
“Loop Optimizations” section). In addition, the SSE2 instruction set
is being used in the isPrime function to convert from int to double
when calling the sqrt function and also to convert from double to
int when returning from sqrt. And sqrt is called only once before
the loop starts. Note that if no /arch switch is specified to the com-
piler, the x86 compiler uses SSE2 by default. Most deployed x86
processors, as well as all x86-64 processors, support SSE2.

The Link-Time Code Generation
Release Configuration
The LTCG Release configuration is identical to the Release config-
uration in Visual Studio. In this configuration, optimizations are
enabled and the /GL compiler switch is specified. This switch is
implicitly specified when using /O1 or /O2. It tells the compiler to
emit CIL object files rather than assembly object files. In this way,
the linker invokes the back end of the compiler to perform WPO

#include <math.h> // sqrt.
#include <stdbool.h> // bool, true and false.
#include "Source2.h"

int cube(int x) { return x*x*x; }

int sum(int x) {
 int result = 0;
 for (int i = 1; i <= x; ++i) result += i;
 return result;
}

int sumOfCubes(int x) {
 int result = 0;
 for (int i = 1; i <= x; ++i) result += cube(i);
 return result;
}

static
bool isPrime(int x) {
 for (int i = 2; i <= (int)sqrt(x); ++i) {
 if (x % i == 0) return false;
 }
 return true;
}

int getPrime(int x) {
 int count = 0;
 int candidate = 2;
 while (count != x) {
 if (isPrime(candidate))
 ++count;
 }
 return candidate;
}

Figure	2	The source2.c File

0215msdn_BraisCompiler_v5_48-55.indd 50 1/13/15 8:36 AM

Untitled-1 1 1/6/15 10:43 AM

www.lightningChart.com

msdn magazine52 Compiler Optimizations

as described earlier. Now I’ll discuss several WPO optimizations
to show the immense benefit of LTCG. The assembly code listings
generated with this configuration are available online.

As long as function inlining is enabled (/Ob, which is turned
on whenever you request optimizations), the /GL switch enables
the compiler to inline functions defined in other translation units
irrespective of whether the /Gy compiler switch (discussed a bit
later) is specified. The /LTCG linker switch is optional and provides
guidance for the linker only.

By examining the assembly listing file of source1.c, you can see
that all function calls except for scanf_s have been inlined. As a
result, the compiler was able to execute the computations of the
cube, sum and sumOfCubes. Only the isPrime function hasn’t been
inlined. However, if it has been inlined manually in getPrime, the
compiler would still inline getPrime in main.

As you can see, function inlining is important not only because it
optimizes away a function call, but also because it enables the compiler
to perform many other optimizations as a result. Inlining a function
usually improves performance at the expense of increasing the code
size. Excessive use of this optimization leads to a phenomenon known
as code bloat. At every call site, the compiler performs a cost/benefit
analysis and then decides whether to inline the function.

Due to the importance of inlining, the Visual C++ compiler
provides much more support than what the standard dictates
regarding inlining control. You can tell the compiler to never inline
a range of functions by using the auto_inline pragma. You can tell
the compiler to never inline a specific function or method by mark-
ing it with __declspec(noinline). You can mark a function with the
inline keyword to give a hint to the compiler to inline the function
(although the compiler may choose to ignore this hint if inlining
would be a net loss). The inline keyword has been available since
the first version of C++—it was introduced in C99. You can use the
Microsoft-specific keyword __inline in both C and C++ code; it’s
useful when you’re using an old version of C that doesn’t support
this keyword. Furthermore, you can use the __forceinline keyword
(C and C++) to force the compiler to always inline a function when-
ever possible. And last, but not least, you can tell the compiler to
unfold a recursive function either to a specific or indefinite depth
by inlining it using the inline_recursion pragma. Note that the
compiler currently offers no features that enable you to control
inlining at the call site rather than at the function definition.

The /Ob0 switch disables inlining completely, which takes
effect by default. You should use this switch when debugging (it’s
automatically specified in the Visual Studio Debug Configuration).
The /Ob1 switch tells the compiler to only consider functions for

inlining that are marked with inline, __inline or __forceinline. The
/Ob2 switch, which takes effect when specifying /O[1|2|x], tells the
compiler to consider any function for inlining. In my opinion, the
only reason to use the inline or __inline keywords is to control
inlining with the /Ob1 switch.

The compiler won’t be able to inline a function in certain con-
ditions. One example is when calling a virtual function virtually;
the function can’t be inlined because the compiler may not know
which function is going to be called. Another example is when
calling a function through a pointer to the function rather than
using its name. You should strive to avoid such conditions to
enable inlining. Refer to the MSDN documentation for a complete
list of such conditions.

Function inlining isn’t the only optimization that’s more effec-
tive when applied at the whole program level. In fact, most
optimizations become more effective at that level. In the rest of
this section, I’ll discuss a specific class of such optimizations called
COMDAT optimizations.

By default, when compiling a translation unit, all code will be
stored in a single section in the resulting object file. The linker
operates at the section level. That is, it can remove sections, com-
bine sections, and reorder sections. This precludes the linker from
performing three optimizations that can significantly (double-digit
percentage) reduce the size of the executable and improve its
performance. The first is eliminating unreferenced functions and
global variables. The second is folding identical functions and
constant global variables. The third is reordering functions and
global variables so those functions that fall on the same execution
path and those variables that are accessed together are physically
located closer in memory to improve locality.

To enable these linker optimizations, you can tell the compiler to
package functions and variables into separate sections by specifying
the /Gy (function-level linking) and /Gw (global data optimization)
compiler switches, respectively. Such sections are called COMDATs.
You can also mark a particular global data variable with __declspec(
selectany) to tell the compiler to pack the variable into a COMDAT.
Then, by specifying the /OPT:REF linker switch, the linker will elimi-
nate unreferenced functions and global variables. Also, by specifying
the /OPT:ICF switch, the linker will fold identical functions and global
constant variables. (ICF stands for Identical COMDAT Folding.)
With the /ORDER linker switch, you can instruct the linker to place
COMDATs into the resulting image in a specific order. Note that all
of these optimizations are linker optimizations and don’t require the
/GL compiler switch. The /OPT:REF and /OPT:ICF switches should
be disabled while debugging for obvious reasons.

You should use LTCG whenever possible. The only reason
not to use LTCG is when you want to distribute the resulting
object and library files. Recall that these files contain CIL code
rather than assembly code. CIL code can be consumed only by
the compiler/linker of the same version that produced it, which
can significantly limit the usability of the object files because
developers have to have the same version of the compiler to use
these files. In this case, unless you’re willing to distribute the
object files for every compiler version, you should use compile-time
code generation instead. In addition to limited usability, these

Ideally, developers prefer
to write understandable,

maintainable code—without
compromising performance.

0215msdn_BraisCompiler_v5_48-55.indd 52 1/13/15 8:36 AM

Untitled-7 1 11/5/14 4:57 PM

www.nevron.com

msdn magazine54 Compiler Optimizations

object files are many times larger in size than the corresponding
assembler object files. However, do keep in mind the huge benefit
of CIL object files, which is enabling WPO.

Loop Optimizations
The Visual C++ compiler supports several loop optimizations, but I’ll
discuss only three: loop unrolling, automatic vectorization and loop-
invariant code motion. If you modify the code in Figure 1 so that m
is passed to sumOfCubes instead of n, the compiler won’t be able to
determine the value of the parameter, so it must compile the function
to handle any argument. The resulting function is highly optimized
and its size is rather large, so the compiler won’t inline it.

Compiling the code with the /O1 switch results in assembly
code that’s optimized for space. In this case, no optimizations will
be performed on the sumOfCubes function. Compiling with the
/O2 switch results in code that’s optimized for speed. The size of
the code will be significantly larger yet significantly faster because
the loop inside sumOfCubes has been unrolled and vectorized. It’s
important to understand that vectorization would not be possible
without inlining the cube function. Moreover, loop unrolling would
not be that effective without inlining. A simplified graphical rep-
resentation of the resulting assembly code is shown in Figure 3.
The flow graph is the same for both x86 and x86-64 architectures.

In Figure 3, the green diamond is the entry point and the red rect-
angles are the exit points. The blue diamonds represent conditions
that are being executed as part of the sumOfCubes function at run
time. If SSE4 is supported by the processor and x is larger than or
equal to eight, then SSE4 instructions will be used to perform four
multiplications at the same time. The process of executing the same
operation on multiple values simultaneously is called vectorization.
Also, the compiler will unroll the loop twice; that is, the loop body
will be repeated twice in every iteration. The combined effect is that
eight multiplications will be performed for every iteration. When
x becomes less than eight, traditional instructions will be used to
execute the rest of the computations. Note that the compiler has
emitted three exit points containing separate epilogues in the func-
tion instead of just one. This reduces the number of jumps.

Loop unrolling is the process of repeating the loop body within the
loop so that more than one iteration of the loop is executed within
a single iteration of the unrolled loop. The reason this improves
performance is that loop control instructions will be executed less
frequently. Perhaps more important, it might enable the compiler
to perform many other optimizations, such as vectorization. The
downside of unrolling is that it increases the code size and register
pressure. However, depending on the loop body, it might improve
performance by a double-digit percentage.

Unlike x86 processors, all x86-64 processors support SSE2.
Moreover, you can take advantage of the AVX/AVX2 instruction
sets of the latest x86-64 microarchitectures from Intel and AMD
by specifying the /arch switch. Specifying /arch:AVX2 enables the
compiler to use the FMA and BMI instruction sets, as well.

Currently, the Visual C++ compiler doesn’t enable you to control
loop unrolling. However, you can emulate this technique by using
templates together with the __ forceinline keyword. You can dis-
able auto-vectorization on a specific loop using the loop pragma
with the no_vector option.

By looking at the generated assembly code, keen eyes would
notice that the code can be optimized a bit more. However, the
compiler has done a great job already and won’t spend much more
time analyzing the code and applying minor optimizations.

someOfCubes is not the only function whose loop has been
unrolled. If you modify the code so that m is passed to the sum
function instead of n, the compiler won’t be able to evaluate the
function and, therefore, it has to emit its code. In this case, the loop
will be unrolled twice.

The last optimization I’ll discuss is loop-invariant code motion.
Consider the following piece of code:

int sum(int x) {
 int result = 0;
 int count = 0;
 for (int i = 1; i <= x; ++i) {
 ++count;
 result += i;
 }
 printf("%d", count);
 return result;
}

The only change here is that I have an additional variable that’s
being incremented in each iteration and then printed. It’s not hard
to see that this code can be optimized by moving the increment
of the count variable outside the loop. That is, I can just assign x

Figure	3	Control Flow Graph of sumOfCubes

Use SSE4.1 to perform 8 multiplications

Use traditional instructions to
perform 2 multiplications

Store result in
eax and return

Store result in
eax and return

Iterate once more, store
result in eax and return

SSE4.1 supported
and x >= 8

SSE4.1 not supported
or x < 8

x >= i + 7

x < i + 7

x < i

x >= i

x == i

x > i

x > i

x <= i

x == ix < i

0215msdn_BraisCompiler_v5_48-55.indd 54 1/13/15 8:36 AM

55February 2015msdnmagazine.com

to the count variable. This optimization is called loop-invariant
code motion. The loop-invariant part clearly indicates that this
technique only works when the code doesn’t depend on any of the
expressions in the loop header.

Now here’s the catch: If you apply this optimization manually,
the resulting code might exhibit degraded performance in certain
conditions. Can you see why? Consider what happens when x is
nonpositive. The loop never executes, which means that in the
unoptimized version, the variable count won’t be touched. How-
ever, in the manually optimized version, an unnecessary assignment
from x to count is executed outside the loop! Moreover, if x was
negative, then count would hold the wrong value. Both humans
and compilers are susceptible to such pitfalls. Fortunately, the
Visual C++ compiler is smart enough to realize this by emitting
the condition of the loop before the assignment, resulting in an
improved performance for all values of x.

In summary, if you are neither a compiler nor a compiler optimi-
zations expert, you should avoid making manual transformations
to your code just to make it look faster. Keep your hands clean and
trust the compiler to optimize your code.

Controlling Optimizations
In addition to the compiler switches /O1, /O2 and /Ox, you can
control optimizations for specific functions using the optimize
pragma, which looks like this:

#pragma optimize("[optimization-list]", {on | off})

The optimization list can be either empty or contain one or
more of the following values: g, s, t and y. These correspond to the
compiler switches /Og, /Os, /Ot and /Oy, respectively.

An empty list with the off parameter causes all of these optimi-
zations to be turned off regardless of the compiler switches that
have been specified. An empty list with the on parameter causes
the specified compiler switches to take effect.

The /Og switch enables global optimizations, which are those
that can be performed by looking at the function being optimized
only, not at any of the functions that it calls. If LTCG is enabled,
/Og enables WPO.

The optimize pragma is useful when you want different func-
tions to be optimized in different ways—some for space and others
for speed. However, if you really want to have that level of control,
you should consider profile-guided optimization (PGO), which is
the process of optimizing the code by using a profile that contains
behavioral information recorded while running an instrumented
version of the code. The compiler uses the profile to make better
decisions on how to optimize the code. Visual Studio provides the
necessary tools to apply this technique on native and managed code.

Optimizations in .NET
There’s no linker involved in the .NET compilation model. However,
there is a source code compiler (C# compiler) and a JIT compiler.
The source code compiler performs only minor optimizations. For
example, it doesn’t perform function inlining and loop optimiza-
tions. Instead, these optimizations are handled by the JIT compiler.
The JIT compiler that ships with all versions of the .NET Framework
up to 4.5 doesn’t support SIMD instructions. However, the JIT
compiler that ships with the .NET Framework 4.5.1 and later
versions, called RyuJIT, supports SIMD.

What’s the difference between RyuJIT and Visual C++ in terms
of optimization capabilities? Because it does its work at run time,
RyuJIT can perform optimizations that Visual C++ can’t. For example,
at run time, RyuJIT might be able to determine that the condition of an
if statement is never true in this particular run of the application and,
therefore, it can be optimized away. Also RyuJIT can take advantage
of the capabilities of the processor on which it’s running. For exam-
ple, if the processor supports SSE4.1, the JIT compiler will only emit
SSE4.1 instructions for the sumOfcubes function, making the generated
code much more compact. However, it can’t spend much time opti-
mizing the code because the time taken to JIT-compile impacts the
performance of the application. On the other hand, the Visual C++
compiler can spend a lot more time to spot other optimization oppor-
tunities and take advantage of them. A great new technology from
Microsoft, called .NET Native, enables you to compile managed code
into self-contained executables optimized using the Visual C++ back
end. Currently, this technology supports only Windows Store apps.

The ability to control managed code optimizations is currently
limited. The C# and Visual Basic compilers only provide the ability
to turn on or off optimizations using the /optimize switch. To control
JIT optimizations, you can apply the System.Runtime.Compiler-
Services.MethodImpl attribute on a method with an option from
MethodImplOptions specified. The NoOptimization option turns
off optimizations, the NoInlining option prevents the method from
being inlined, and the AggressiveInlining (.NET 4.5) option gives
a recommendation (more than just a hint) to the JIT compiler to
inline the method.

Wrapping Up
All of the optimization techniques discussed in this article can sig-
nificantly improve the performance of your code by a double-digit
percentage, and all of them are supported by the Visual C++
compiler. What makes these techniques important is that, when
applied, they enable the compiler to perform other optimizations.
This is by no means a comprehensive discussion of the compil-
er optimizations performed by Visual C++. However, I hope it
has given you an appreciation of the capabilities of the compiler.
Visual C++ can do more, much more, so stay tuned for Part 2. n

Hadi Brais is a Ph.D. scholar at the Indian Institute of Technology Delhi (IITD),
researching compiler optimizations for the next-generation memory technology. He
spends most of his time writing code in C/C++/C# and digging deep into the CLR
and CRT. He blogs at hadibrais.wordpress.com. Reach him at hadi.b@live.com.

THanks to the following Microsoft technical expert for reviewing this article:
Jim Hogg

Some important optimizations
can be performed only by

looking at the whole program.

0215msdn_BraisCompiler_v5_48-55.indd 55 1/13/15 8:36 AM

mailto:hadi.b@live.com
http://hadibrais.wordpress.com
www.msdnmagazine.com

msdn magazine56

The emergence of cloud computing in recent years
has been a boon for organizations and users alike. Organizations
can know their customers like never before, and target them with
personalized communications. Users can get to their data from
almost anywhere, making it far more accessible and useful. Huge
datacenters have been built all around the world to store all of that
data. But Big Data leads to big challenges.

The well-known quote by John Naisbitt, “We are drowning in
data but starving for information,” in his book, “Megatrends: Ten
New Directions Transforming Our Lives” (Warner Books, 1982),
perfectly describes the current situation in the Big Data market.
Companies are able to store petabytes of data, but being able to
make sense of that data, and making it searchable, is far more
difficult, especially because most data warehouses store data in a
non-structured way (NoSQL) across multiple collections inside

particular Big Data stores or even in a distributed form between
different warehouses. Moreover, there are a variety of data formats,
such as JSON documents, Microsoft Office files and so forth.
Searching through a single unstructured collection typically isn’t
a problem, but it’s much harder to search all unstructured data
across multiple collections to find just a particular small subset of
results when the user has no idea where it might be. This is where
enterprise search comes into play.

Enterprise Search
Here’s the essential challenge of enterprise search: How can a large
organization with a lot of data sources provide internal and external
users with the ability to search all public company data sources
through one interface? That single interface might be an API, a
company Web site, or even a simple textbox with autocomplete
functionality implemented under the hood. No matter which
interface a company chooses, it must provide the ability to search
through its entire data universe, which might include structured
and unstructured databases, intranet documents in different
formats, other APIs and other kinds of data sources.

Because searching through multiple datasets is quite complex,
there are only a few recognized enterprise search solutions—and
the bar is high. An enterprise search solution must include the
following features:

• Content awareness: Know where particular types of data
can be located.

• Real-time indexing: Keep all data indexed.
• Content processing: Make different data sources accessible.

One of the most popular enterprise search solutions is the open
source Elasticsearch (elasticsearch.org). This Java-based server built on

. N E T FRAMEW OR K

Building an Enterprise
Search for .NET
Damian Zapart

This article discusses:
•	Creating a simple, multi-source search solution

•	Setting up Elasticsearch as a Windows Service

•	Extending Elasticsearch with plug-ins

•	Setting up SQL Server

•	Making the data sources searchable

•	Searching the data

Technologies discussed:
Microsoft	.NET	Framework,	Elasticsearch,	JSON,	SQL	Server	2014		

Code download available at:
msdn.microsoft.com/magazine/msdnmag0215

0215msdn_ZapartSearch_v3_56-61.indd 56 1/13/15 8:33 AM

http://msdn.microsoft.com/magazine/msdnmag0215
www.elasticsearch.org

57February 2015msdnmagazine.com

top of Apache Lucene (lucene.apache.org) pro-
vides scalable, full-text search over multiple
data sources, with JSON support and a REST
Web interface, as well as high availability,
conflict management and real-time analyt-
ics. Visit bit.ly/1vzoUrR to see its full feature set.

From a high level, the way Elasticsearch
stores data is very simple. The topmost ele-
ment of the structure within a server is called
an index, and multiple indices can exist in
the same data store. The index itself is just
a container for documents (one or many),
and each document is a collection of one
or more fields (with no structures defined).
Each index can contain data aggregated into
units called types, which represent logical
groups of data within a particular index.

It might be useful to think of Elasticsearch
as similar to a table from the world of the relational databases. The
same correlation exists between a table’s rows and columns and an
index’s documents and fields, where a document corresponds to
a row and a field to a column. However, with Elasticsearch, there’s
no fixed data structure or database schema.

As I noted, developers can communicate with the Elasticsearch
server via a REST Web interface. This means they can query indices,
types, data or other system information just by sending REST Web
requests from a browser or any other type of Web client. Here are
some examples of GET requests:

• Query for all indices:
 http://localhost:9200/_cat/indices/?v

• Query for index metadata:
 http://localhost:9200/clients/_stats

• Query for all index data:
 http://localhost:9200/clients/_search?q=*:*

• Search for a specific field value within the index:
 http://localhost:9200/clients/_search?q=field:value

• Getting all data within the index mapping type:
 http://localhost:9200/clients/orders/_search?q=*:*

Creating a Search
To demonstrate how to create a simple, multi-source solution, I’m going
to use Elasticsearch 1.3.4 with JSON documents, PDF documents and
a SQL Server database. To start, I’ll briefly describe Elasticsearch setup
and then demonstrate how to plug in each data source to make the data
searchable. To keep things simple, I’ll present a close-to-real-life exam-
ple that uses data sources from the well-known Contoso company.

I’ll use a SQL Server 2014 database with multiple tables in it,
though I’ll only be using one, dbo.Orders. As the table name
suggests, it stores records about the company’s client orders—a
huge number of records, yet easy to manage:

CREATE TABLE [dbo].[Orders]
(
 [Id] [int] IDENTITY(1,1) NOT NULL primary key,
 [Date] [datetime] NOT NULL,
 [ProductName] [nvarchar](100) NOT NULL,
 [Amount] [int] NOT NULL,
 [UnitPrice] [money] NOT NULL
);

I also have a network share with mul-
tiple company documents organized in a
folder hierarchy. The documents are related
to different product marketing campaigns
the company organized in the past and are
stored in multiple formats, including PDF
and Microsoft Office Word. The average
document size is approximately 1MB.

Finally, I have an internal company API
that exposes the company’s client informa-
tion in JSON format; because I know the
structure of the response, I’m able to easily
deserialize it to an object of type client.
My goal is to make all of the data sources
searchable using the Elasticsearch engine.
Moreover, I want to create a Web API
2-based Web service that, under the hood,
will perform an enterprise query across all

indices by making a single call to the Elasticsearch server. (Find
more information on Web API 2 at bit.ly/1ae6uya.) The Web service
will return the results as a list of suggestions with potential hints
to the end user; such a list can later be consumed by an autocom-
plete control embedded in the ASP.NET MVC application, or by
any other kind of Web site.

Setting Up
The first thing I need to do is install the Elasticsearch server. For
Windows, you can do this either automatically or manually, with
the same result—a running Windows service hosting the Elastic-
search server. The automatic installation is very quick and easy;
all you need to do is to download and run the Elasticsearch MSI
installer (bit.ly/12RkHDz). Unfortunately, there’s no way to choose a
Java version or, much more important, an Elasticsearch version.
The manual installation process, in contrast, requires a little more
effort, but it allows much more control over the components so it’s
more suitable in this case.

Setting up Elasticsearch as a Windows service manually requires
the following steps:

1. Download and install the most recent Java SE Runtime
Environment (bit.ly/1m1oKlp).

2. Add the environment variable called JAVA_HOME. Its
value will be the folder path you’ve installed Java into (for
example, C:\Program Files\Java\jre7), as shown in Figure 1.

Figure	1	Setting the Java_Home
Environment Variable

Because searching through
multiple datasets is quite

complex, there are only a few
recognized enterprise search
solutions—and the bar is high.

0215msdn_ZapartSearch_v3_56-61.indd 57 1/13/15 8:33 AM

http://lucene.apache.org
www.bit.ly/1vzoUrR
www.bit.ly/1ae6uya
www.bit.ly/12RkHDz
www.bit.ly/1m1oKlp
www.msdnmagazine.com

msdn magazine58 .NET Framework

3. Download the Elasticsearch file (bit.ly/1upadla) and unzip it.
4. Move unzipped sources to Program Files | Elasticsearch

(optional).
5. Run the command prompt as an administrator and

execute service.bat with the install parameter:
 C:\Program Files\Elasticsearch\elasticsearch-1.3.4\bin>service.bat install

That’s all it takes to get the Windows service up and running, with
the Elasticsearch server accessible on localhost, on the port 9200.
Now I can make a Web request to the URL http://localhost:9200/
via any Web browser and I’ll get a response that looks like this:

{
 "status" : 200,
 "name" : "Washout",
 "version" : {
 "number" : "1.3.4",
 "build_hash" : "a70f3ccb52200f8f2c87e9c370c6597448eb3e45",
 "build_timestamp" : "2014-09-30T09:07:17Z",
 "build_snapshot" : false,
 "lucene_version" : "4.9"
 },
 "tagline" : "You Know, for Search"
}

Now my local instance of Elasticsearch is ready to go; however,
the raw version doesn’t give me the ability to connect to SQL Server
or run a full-text search through data files. To make these features
available, I must also install several plug-ins.

Extending Elasticsearch
As I mentioned, the raw version of
Elasticsearch doesn’t let you index
an external data source like SQL
Server, Office or even a PDF. To
make all these data sources search-
able I need to install a few plug-ins,
which is quite easy.

My first goal is to provide full-
text search support for attachments.
By attachment, I mean a base64-
encoded representation of the
source file that has been uploaded
to an Elasticsearch data store as a
JSON document. (See bit.ly/12RGmvg
for information on the attachment
type.) The plug-in I need for this
purpose is the Mapper Attach-
ments Type for Elasticsearch ver-
sion 2.3.2, available at bit.ly/1Alj8sy.
This is the Elasticsearch extension
that enables a full-text search for
documents, and it’s based on the
Apache Tika project (tika.apache.org),
which detects and extracts meta-
data and text content from various
types of documents and provides

support for the file formats listed at bit.ly/1qEyVmr.
As with most plug-ins for Elasticsearch, this installation is

extremely straightforward and all I need to do is run the command
prompt as an Administrator and execute the following command:

bin>plugin --install elasticsearch/elasticsearch-mapper-attachments/2.3.2

After downloading and extracting the plug-in, I need to restart
the Elasticsearch Windows service.

When that’s done, I need to configure SQL Server support. Of
course, there’s also a plug-in for this. It’s called JDBC River (bit.ly/
12CK8Zu) and allows fetching data from a JDBC source, such as
SQL Server, for indexing into Elasticsearch. The plug-in is easily
installed and configured, though the installation process has three
stages that need to be completed.

1. First, I install the Microsoft JDBC Driver 4.0, a Java-based
data provider for SQL Server that can be downloaded from

Figure	3	Enabling TCP/IP for the SQL Server Instance

Figure	2	The Installed Plug-Ins

My first goal is to provide full-text
search support for attachments.

0215msdn_ZapartSearch_v3_56-61.indd 58 1/13/15 8:33 AM

www.bit.ly/1upadla
www.bit.ly/12RGmvg
www.bit.ly/1Alj8sy
http://tika.apache.org
www.bit.ly/1qEyVmr
www.bit.ly/12CK8Zu
www.bit.ly/12CK8Zu

59February 2015msdnmagazine.com

bit.ly/1maiM2j. The important thing to remember is I need to
extract the content of the downloaded file into the folder
called Microsoft JDBC Driver 4.0 for SQL Server (which
needs to be created if it doesn’t exist), directly under the
Program Files folder, so the resulting path looks like: C:\
Program Files\Microsoft JDBC Driver 4.0 for SQL Server.

2. Next, I install the plug-in using the following command:
 bin> plugin --install
 jdbc --url "http://xbib.org/repository/org/xbib/elasticsearch/

plugin/elasticsear ch-river-jdbc/1.3.4.4/
 elasticsearch-river-jdbc-1.3.4.4-plugin.zip"

3. Finally, I copy the SQLJDBC4.jar file extracted in the first
step (C:\Program Files\Microsoft JDBC DRIVER 4.0 for
SQL Server\sqljdbc_4.0\enu\SQLJDBC4.jar) into the lib
folder in the Elasticsearch directory (C:\Program Files\
Elasticsearch\lib). When I’m done, I need to remember
to restart the Windows service.

Now all of the required plug-ins have been installed. However,
to verify the installations finished correctly, I need to send the fol-
lowing command as an HTTP GET request:

 http://localhost:9200/_nodes/_all/plugins

In the response, I expect to see both installed plug-ins listed, as
shown in Figure 2.

Setting up SQL Server
To use JDBC River with SQL Server, the SQL Server instance
needs to be accessible via TCP/IP, which, by default, is disabled.
However, enabling it is simple, and all I need to do is open SQL
Server Configuration Manager and, under the SQL Server Network
Configuration, for the SQL Server instance I want to connect to,
change the Status value to Enable for TCP/IP protocol, as shown
in Figure 3. After doing this, I should be able to log into my SQL
Server instance via Management Studio by using localhost 1433 in
the Server Name (port 1433 is the default port for accessing SQL
Server via TCP/IP).

Making Sources Searchable
All required plug-ins have been installed, so now it’s time to load
the data. As mentioned earlier, I have three different data sources
(JSON documents, files and an order table from a SQL Server
database) that I wish to have indexed on Elasticsearch. I can
index these data sources in many different ways, but I want to

demonstrate how easy it is using a .NET-based application I’ve
implemented. Therefore, as a pre-condition for indexing, I need to
install an external library called NEST (bit.ly/1vZjtCf) for my project,
which is nothing but a managed wrapper around an Elasticsearch
Web interface. Because this library is available on NuGet, making
it part of my project is as simple as executing a single command in
the Package Manager Console:

PM> Install-Package NEST

Now, with the NEST library available in my solution, I can create
a new class library project called ElasticSearchRepository. I used this
name because I decided to keep all function calls from the Elastic-
Client class (which is part of the NEST library) separate from the
rest of the solution. By doing this, the project becomes similar to
the repository design pattern widely applied in Entity Framework-
based applications, so it should be easy to understand. Also, in this
project I have just three classes: the BaseRepository class, which
initializes and exposes the inherited classes and the instance of the
ElasticClient, and two other repository classes:

• IndexRepository—a read/write class I’ll use to manipu-
late indices, set mappings and upload documents.

• DiscoveryRepository—a read-only class I’ll use during
API-based search operations.

Figure 4 shows the structure of the BaseRepository class with
a protected property of ElasticClient type. This type, provided as
part of the NEST library, centralizes communication between the
Elasticsearch server and client application. To create an instance
of it, I can pass a URL to the Elasticsearch server, which I pass as
an optional class constructor parameter. If the parameter is null, a
default value of http://localhost:9200 will be used.

With the client ready, first I’ll index the Client data; this is the
easiest scenario because no additional plug-ins are required:

public class Client
{
 public int Id { get; set; }

 public string Name { get; set; }

 public string Surname { get; set; }

 public string Email { get; set; }
}

To index this type of data, I call the instance of my Elasticsearch
client, as well as the Index<T> function, where T is the type of my
Client class, which represents serialized data returned from the API.
This generic function takes three parameters: the instance of T object
class, a target index name and a mapping name within the index:

public bool IndexData<T>(T data, string indexName =
 null, string mappingType = null)
 where T : class, new()
 {
 if (client == null)
 {
 throw new ArgumentNullException("data");
 }

 var result = this.client.Index<T>(data,
 c => c.Index(indexName).Type(mappingType));
 return result.IsValid;
 }

The last two parameters are optional because NEST will apply
its default logic for creating a target index name based on the
generic type.

namespace ElasticSearchRepository
{
 using System;
 using Nest;

 public class BaseRepository
 {
 protected ElasticClient client;

 public BaseRepository(Uri elastiSearchServerUrl = null)
 {
 this.client = elastiSearchServerUrl != null ?
 new ElasticClient(new ConnectionSettings(elastiSearchServerUrl)) :
 : new ElasticClient();
 }
 }
}

Figure	4	The BaseRepository Class

0215msdn_ZapartSearch_v3_56-61.indd 59 1/13/15 8:33 AM

www.bit.ly/1maiM2j
www.bit.ly/1vZjtCf
www.msdnmagazine.com

msdn magazine60 .NET Framework

Now I want to index the marketing documents, which are related
to the company products. As I have these files stored in a network
share, I can wrap information about each particular document into
a simple MarketingDocument class. It’s worth noting here that if I
want a document to be indexed in Elasticsearch, I need to upload
it as a Base64-encoded string:

public class MarketingDocument
{
 public int Id { get; set; }
 public string Title { get; set; }
 public string ProductName { get; set; }

 // Base64-encoded file content.
 public string Document { get; set; }
}

The class is ready, so I can use the ElasticClient to mark a partic-
ular field in my MarketingDocument class as an attachment. I can
achieve this by creating a new index called “products” and adding
a new marketing mapping to it (for simplicity, the class name will
be the mapping name):

private void CreateMarketingIndex()
 {
 client.CreateIndex("products", c =>
 c.AddMapping<Marketing>
 (m => m.Properties(ps =>ps.Attachment(a =>
 a.Name(o =>o.Document).TitleField(t =>
 t.Name(x => x.Name)
 TermVector(TermVectorOption.WithPositionsOffsets)
)))));
 }

Now that I have both the .NET type and the mapping for the
marketing data, as well as the definition for an attachment, I can
start indexing my files in the same way I indexed the client data:

var documents = GetMarketingDocumentsMock();
documents.ForEach((document) =>
{
 indexRepository.IndexData<MarketingDocument>(document, "marketing");
});

The final step is the JDBC River setup on Elasticsearch. Unfor-
tunately, NEST doesn’t support JDBC River yet. In theory, I can
create a JDBC River mapping by using a Raw function to send a
raw request with JSON, but I don’t want to overcomplicate things.
Therefore, to complete the mapping creation process, I’m going to
specify the following parameters:

• A connection string to SQL Server database
• A SQL query, which will be used to query for data
• Update schedule
• Target index name and type (optional)

(You’ll find a full list of configurable parameters at bit.ly/12CK8Zu.)
To create a new JDBC River mapping, I need to send a PUT

request with a request body specified in it to the following URL:
http://localhost:9200/_river/{river_name}/_meta

In the example in Figure 5, I put a request body to create a new
JDBC River mapping, which connects to the Contoso database
hosted on the local SQL Server instance, which is accessible on
port 1433 via TCP/IP.

It uses the login “elastic” and the password “asd” to authenticate
the user and execute the following SQL command:

SELECT * FROM dbo.Orders

Each row of data returned by this SQL query will be indexed
under the clients index in the orders mapping type and the
indexing will take place every 30 seconds (represented in the Cron
notation, see bit.ly/1hCcmnN for more information).

When this process completes, you should see in the Elasticsearch
log file (/logs/ elasticsearch.log) information similar to the following:

namespace ElasticSearchRepository
{
 using System;
 using System.Collections.Generic;
 using System.Linq;

 public class DiscoveryRepository : BaseRepository
 {

 public DiscoveryRepository(Uri elastiSearchServerUrl = null)
 : base(elastiSearchServerUrl)
 {
 }
 ///<summary>
 public List<Tuple<string, string>> SearchAll(string queryTerm)
 {
 var queryResult=this.client.Search<dynamic>(d =>
 d.AllIndices()
 .AllTypes()
 .QueryString(queryTerm));
 return queryResult
 .Hits
 .Select(c => new Tuple<string, string>(
 c.Indexc.Source.Name.Value))
 .Distinct()
 .ToList();
 }
 ///<summary>
 public dynamic FuzzySearch(string queryTerm)
 {
 return this.client.Search<dynamic>(d =>
 d.AllIndices()
 .AllTypes()
 .Query(q => q.Fuzzy(f =>
 f.Value(queryTerm))));
 }
 }
}

Figure	6	Implementation of Two Types of Search
In theory, I can create a JDBC
River mapping by using a Raw
function to send a raw request
with JSON, but I don’t want to

overcomplicate things.

PUT http://localhost:9200/_river/orders_river/_meta
{
"type":"jdbc",
"jdbc":
 {
 "driver": "com.microsoft.sqlserver.jdbc.SQLServerDriver",
 "url":"jdbc:sqlserver://127.0.0.1:1433;databaseName=Contoso",
 "user":"elastic",
 "password":"asd",
 "sql":"SELECT * FROM dbo.Orders",
 "index" : "clients",
 "type" : "orders",
 "schedule": "0/30 0-59 0-23 ? * *"
 }
}

Figure	5	HTTP PUT Request to Create a New JDBC River Mapping

0215msdn_ZapartSearch_v3_56-61.indd 60 1/13/15 8:33 AM

www.bit.ly/12CK8Zu
www.bit.ly/1hCcmnN

61February 2015msdnmagazine.com

[2014-10-2418:39:52,190][INFO][river.jdbc.RiverMetrics]
pipeline org.xbib.elasticsearch.plugin.jdbc.RiverPipeline@70f0a80d
complete: river jdbc/orders_river metrics: 34553 rows, 6.229481683638776
mean, (0.0 0.0 0.0), ingest metrics: elapsed 2 seconds, 364432.0 bytes
bytes, 1438.0 bytes avg, 0.1 MB/s

If something is wrong with the river configuration, the error
message will also be in the log.

Searching the Data
Once all the data has been indexed in the Elasticsearch engine, I can
start querying. Of course, I can send simple requests to the Elastic-
search server to query one or multiple indices and mapping types at
the same time, but I want to build something more useful and closer
to a real-life scenario. So I’m going to split my project into three dif-
ferent components. The first component, which I already presented,
is Elasticsearch, which is available via http://localhost:9200/. The
second component is an API I’m going to build using Web API 2
technology. The last component is a console application I’ll use to
set up my indices on Elasticsearch, as well as to feed it with data.

To create my new Web API 2 project, first I need to create an empty
ASP.NET Web Application project and then, from the Package
Manager Console, run the following install command:

Install-Package Microsoft.AspNet.WebApi

After the project is created, the next step is to add a new con-
troller, which I’ll use to process query requests from the client
and pass them to Elasticsearch. Adding a new controller named
DiscoveryController involves nothing more than adding a new
item, a Web API ApiController class (v2.1). And I need to imple-
ment a Search function, which will be exposed via the URL: http://
website/api/discovery/search?searchTerm=user_input:

[RoutePrefix("api/discovery")]
public class DiscoveryController : ApiController
{
 [HttpGet]
 [ActionName("search")]
 public IHttpActionResult Search(string searchTerm)
 {
 var discoveryRepository = new DiscoveryRepository();
 var result = discoveryRepository.Search(searchTerm);
 return this.Ok(result);
 }
}

If the Web API 2 engine can’t serialize a response because of
a self-referencing loop, you’ll have to add the following in the

WebApiConfig.cs file, which is
located in the AppStart folder:

GlobalConfiguration.Configuration
.Formatters
.JsonFormatter
.SerializerSettings
.ReferenceLoopHandling =

 ReferenceLoopHandling.Ignore;

As Figure 6 shows, in the
body of the controller I created, I
instantiated a class of Discovery-
Repository type, which is just a
wrapper around the ElasticClient
type from the NEST library. Inside
this non-generic, read-only repos-
itory I implemented two types of
search functions and both of them
return a dynamic type. This part

is important because by doing this in both function bodies, I’m
not limiting my queries just to one index; instead, I’m querying all
indices and all types at the same time. This means my results will
have a different structure (will be of different types). The only
difference between the functions is the query method. In the first
function I just use a QueryString method (bit.ly/1mQEEg7), which
is an exact match search, and in the second one, a Fuzzy method
(bit.ly/1uCk7Ba), which performs a fuzzy search across indices.

Now when my API is ready, I can run and start testing it just
by sending GET requests to http://website:port/api/discovery/
search?searchTerm=user_input, and pass user input as the value
of the searchTerm query parameter. Therefore, Figure 7 shows
the results that my API generates for the search term “scrum.” As I
highlighted on the screenshot, a search function performed a query
over all indices in the data stores and returned hits from multiple
indices at the same time.

By implementing the API layer I created the possibility of imple-
menting multiple clients (like a Web site or mobile app), which will
be able to consume it. This provides the ability of giving enterprise
search functionality to end users. You can find an example implemen-
tation of the autocomplete control for an ASP.NET MVC 4-based
Web client on my blog at bit.ly/1yThHiZ.

Wrapping Up
Big Data has brought a lot to the technology marketplace, in terms
of both opportunities and challenges. One of the challenges, which
is also potentially a great opportunity, is the possibility of imple-
menting fast search across petabytes of data without having to know
the exact location of the data in the data universe. In this article I
described how to implement enterprise search and demonstrated
how to do it in the .NET Framework in combination with the
Elasticsearch and NEST libraries. n

Damian Zapart is a development lead at Citigroup Inc. and focuses mainly on
enterprise solutions. At the same time he’s a programming geek interested in
cutting-edge technologies, design patterns and Big Data. Visit his blog at bit.ly/
1suoKN0 to read more about him.

thanks to the following technical experts for reviewing this article: Evren
Onem (D&B) and Bruno Terkaly (Microsoft)

Figure	7	API Search Results for the Term “scrum”

0215msdn_ZapartSearch_v3_56-61.indd 61 1/13/15 8:33 AM

www.bit.ly/1mQEEg7
www.bit.ly/1uCk7Ba
www.bit.ly/1yThHiZ
www.bit.ly/1suoKN0
www.bit.ly/1suoKN0
www.msdnmagazine.com

magazine

JUNE 1-4
HYATT REGENCY, AUSTIN, TX

DON’T MESS
WITH CODE

Untitled-2 2 1/13/15 12:38 PM

www.vslive.com/austin

Register NOW
and Save $300!

FOLLOW US

Use promo code VAUFEB2

DEVELOPMENT
TRACKS INCLUDE:

Untitled-2 3 1/13/15 12:38 PM

www.vslive.com/austin
www.twitter.com/vslive
www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine64

L1 regularization and L2 regularization are two closely related
techniques that can be used by machine learning (ML) training
algorithms to reduce model overfitting. Eliminating overfitting
leads to a model that makes better predictions. In this article I’ll
explain what regularization is from a software developer’s point
of view. The ideas behind regularization are a bit tricky to explain,
not because they’re difficult, but rather because there are several
interrelated ideas

In this article I illustrate regularization with logistic regression
(LR) classification, but regularization can be used with many types
of machine learning, notably neural network classification. The goal
of LR classification is to create a model that predicts a variable that
can take one of two possible values. For example, you might want
to predict the result for a football team (lose = 0, win = 1) in an
upcoming game based on the team’s current winning percentage (x1),
field location (x2), and number of players absent due to injury (x3).

If Y is the predicted value, an LR model for this problem would
take the form:

z = b0 + b1(x1) + b2(x2) + b3(x3)
Y = 1.0 / (1.0 + e^-z)

Here b0, b1, b2 and b3 are weights, which are just numeric values
that must be determined. In words, you compute a value z that is the
sum of input values times b-weights, add a b0 constant, then pass the
z value to the equation that uses math constant e. It turns out that Y
will always be between 0 and 1. If Y is less than 0.5, you conclude the
predicted output is 0 and if Y is greater than 0.5 you conclude the out-
put is 1. Notice that if there are n features, there will be n+1 b-weights.

For example, suppose a team currently has a winning percentage
of 0.75, and will be playing at their opponent’s field (-1), and has 3
players out due to injury. And suppose b0 = 5.0, b1 = 8.0, b2 = 3.0,
and b3 = -2.0. Then z = 5.0 + (8.0)(0.75) + (3.0)(-1) + (-2.0)(3) = 2.0
and so Y = 1.0 / (1.0 + e^-2.0) = 0.88. Because Y is greater than 0.5,
you’d predict the team will win their upcoming game.

I think the best way to explain regularization is by examining
a concrete example. Take a look at the screenshot of a demo pro-
gram in Figure 1. Rather than use real data, the demo program
begins by generating 1,000 synthetic data items. Each item has 12
predictor variables (often called “features” in ML terminology). The
dependent variable value is in the last column. After creating the
1,000 data items, the data set was randomly split into an 800-item

training set to be used to find the model b-weights, and a 200-item
test set to be used to evaluate the quality of the resulting model.

Next, the demo program trained the LR classifier, without using
regularization. The resulting model had 85.00 percent accuracy on
the training data, and 80.50 percent accuracy on the test data. The
80.50 percent accuracy is the more relevant of the two values, and
is a rough estimate of how accurate you could expect the model to
be when presented with new data. As I’ll explain shortly, the model
was over-fitted, leading to mediocre prediction accuracy.

Next, the demo did some processing to find a good L1 regular-
ization weight and a good L2 regularization weight. Regularization
weights are single numeric values that are used by the regularization
process. In the demo, a good L1 weight was determined to be 0.005
and a good L2 weight was 0.001.

The demo first performed training using L1 regularization and
then again with L2 regularization. With L1 regularization, the
resulting LR model had 95.00 percent accuracy on the test data,
and with L2 regularization, the LR model had 94.50 percent
accuracy on the test data. Both forms of regularization significantly
improved prediction accuracy.

This article assumes you have at least intermediate programming
skills, but doesn’t assume you know anything about L1 or L2 regu-
larization. The demo program is coded using C#, but you shouldn’t
have too much difficulty refactoring the code to another language
such as JavaScript or Python.

The demo code is too long to present here, but complete source
code is available in the code download that accompanies this arti-
cle. The demo code has all normal error checking removed to keep
the main ideas as clear as possible and the size of the code small.

Overall Program Structure
The overall program structure, with some minor edits to save space,
is presented in Figure 2. To create the demo, I launched Visual Studio

L1 and L2 Regularization
for Machine Learning

TesT Run JAMES MCCAFFREY

Code download available at msdn.microsoft.com/magazine/msdnmag0215.

Regularization can be
used with many types of

machine learning, notably neural
network classification.

0215msdn_McCaffreyTRun_v3_64-69.indd 64 1/13/15 8:32 AM

http://msdn.microsoft.com/magazine/msdnmag0215

65February 2015msdnmagazine.com

and created a new C# console
application named Regulariza-
tion. The demo has no significant
Microsoft .NET Framework
dependencies, so any recent version
of Visual Studio will work.

After the template code loaded
into the Visual Studio editor, in
the Solution Explorer window I
renamed file Program.cs to the
more descriptive Regularization-
Program.cs and Visual Studio auto-
matically renamed class Program
for me. At the top of the source
code, I deleted all using statements
that pointed to unneeded name-
spaces, leaving just the reference
to the top-level System namespace.

All of the logistic regression
logic is contained in a single
LogisticClassifier class. The Logistic-
Classifier class contains a nested
helper Particle class to encapsu-
late particle swarm optimization
(PSO), the optimization algorithm
used for training. Note that the
LogisticClassifier class contains
a method Error, which accepts
parameters named alpha1 and
alpha2. These parameters are the
regularization weights for L1 and
L2 regularization.

In the Main method, the synthetic data is created with these statements:
int numFeatures = 12;
int numRows = 1000;
int seed = 42;
double[][] allData = MakeAllData(numFeatures, numRows, seed);

The seed value of 42 was used only because that value gave nice,
representative demo output. Method MakeAllData generates 13
random weights between -10.0 and +10.0 (one weight for each fea-
ture, plus the b0 weight). Then the method iterates 1,000 times. On
each iteration, a random set of 12 input values is generated, then an
intermediate logistic regression output value is calculated using the
random weights. An additional random value is added to the output
to make the data noisy and more prone to overfitting.

The data is split into an 800-item set for training and a 200-item
set for model evaluation with these statements:

double[][] trainData;
double[][] testData;
MakeTrainTest(allData, 0, out trainData, out testData);

A logistic regression prediction model is created with these statements:
LogisticClassifier lc = new LogisticClassifier(numFeatures);
int maxEpochs = 1000;
double[] weights = lc.Train(trainData, maxEpochs, seed, 0.0, 0.0);
ShowVector(weights, 4, weights.Length, true);

Variable maxEpochs is a loop counter limiting value for the PSO
training algorithm. The two 0.0 arguments passed to method Train
are the L1 and L2 regularization weights. By setting those weights

to 0.0, no regularization is used. The model’s quality is evaluated
with these two statements:

double trainAccuracy = lc.Accuracy(trainData, weights);
double testAccuracy = lc.Accuracy(testData, weights);

One of the downsides to using regularization is that the regu-
larization weights must be determined. One approach for finding
good regularization weights is to use manual trial and error, but a
programmatic technique is usually better. A good L1 regularization
weight is found and then used with these statements:

double alpha1 = lc.FindGoodL1Weight(trainData, seed);
weights = lc.Train(trainData, maxEpochs, seed, alpha1, 0.0);
trainAccuracy = lc.Accuracy(trainData, weights);
testAccuracy = lc.Accuracy(testData, weights);

The statements for training the LR classifier using L2 regulariza-
tion are just like those for using L1 regularization:

double alpha2 = lc.FindGoodL2Weight(trainData, seed);
weights = lc.Train(trainData, maxEpochs, seed, 0.0, alpha2);
trainAccuracy = lc.Accuracy(trainData, weights);
testAccuracy = lc.Accuracy(testData, weights);

In the demo, the alpha1 and alpha2 values were determined
using the LR object public-scope methods FindGoodL1Weight
and FindGoodL2Weight and then passed to method Train. An
alternative design is suggested by calling this code:

bool useL1 = true;
bool useL2 = false:
lc.Train(traiData, maxEpochs, useL1, useL2);

This design approach allows the training method to determine
the regularization weights and leads to a bit cleaner interface.

Figure 1 Regularization with Logistic Regression Classification

0215msdn_McCaffreyTRun_v3_64-69.indd 65 1/13/15 8:32 AM

www.msdnmagazine.com

msdn magazine66 Test Run

Understanding Regularization
Because L1 and L2 regularization are techniques to reduce model
overfitting, in order to understand regularization, you must under-
stand overfitting. Loosely speaking, if you train a model too much,
you will eventually get weights that fit the training data extremely
well, but when you apply the resulting model to new data, the pre-
diction accuracy is very poor.

Overfitting is illustrated by the two graphs in Figure 3. The first
graph shows a hypothetical situation where the goal is to classify

two types of items, indicated by red and green dots. The smooth
blue curve represents the true separation of the two classes, with
red dots belonging above the curve and green dots belonging below
the curve. Notice that because of random errors in the data, two of
the red dots are below the curve and two green dots are above the
curve. Good training, where overfitting doesn’t occur, would result
in weights that correspond to the smooth blue curve. Suppose a
new data point came in at (3, 7). The data item would be above the
curve and be correctly predicted to be class red.

Figure 2 Overall Program Structure

using System;
namespace Regularization
{
 class RegularizationProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin L1 and L2 Regularization demo");

 int numFeatures = 12;
 int numRows = 1000;
 int seed = 42;

 Console.WriteLine("Generating " + numRows +
 " artificial data items with " + numFeatures + " features");
 double[][] allData = MakeAllData(numFeatures, numRows, seed);

 Console.WriteLine("Creating train and test matrices");
 double[][] trainData;
 double[][] testData;
 MakeTrainTest(allData, 0, out trainData, out testData);

 Console.WriteLine("Training data: ");
 ShowData(trainData, 4, 2, true);

 Console.WriteLine("Test data: ");
 ShowData(testData, 3, 2, true);

 Console.WriteLine("Creating LR binary classifier");
 LogisticClassifier lc = new LogisticClassifier(numFeatures);

 int maxEpochs = 1000;
 Console.WriteLine("Starting training using no regularization");
 double[] weights = lc.Train(trainData, maxEpochs,
 seed, 0.0, 0.0);

 Console.WriteLine("Best weights found:");
 ShowVector(weights, 3, weights.Length, true);

 double trainAccuracy = lc.Accuracy(trainData, weights);
 Console.WriteLine("Prediction accuracy on training data = " +
 trainAccuracy.ToString("F4"));

 double testAccuracy = lc.Accuracy(testData, weights);
 Console.WriteLine("Prediction accuracy on test data = " +
 testAccuracy.ToString("F4"));

 Console.WriteLine("Seeking good L1 weight");
 double alpha1 = lc.FindGoodL1Weight(trainData, seed);
 Console.WriteLine("L1 weight = " + alpha1.ToString("F3"));

 Console.WriteLine("Seeking good L2 weight");
 double alpha2 = lc.FindGoodL2Weight(trainData, seed);
 Console.WriteLine("L2 weight = " + alpha2.ToString("F3"));

 Console.WriteLine("Training with L1 regularization, " +
 "alpha1 = " + alpha1.ToString("F3"));
 weights = lc.Train(trainData, maxEpochs, seed, alpha1, 0.0);

 Console.WriteLine("Best weights found:");
 ShowVector(weights, 3, weights.Length, true);

 trainAccuracy = lc.Accuracy(trainData, weights);
 Console.WriteLine("Prediction accuracy on training data = " +
 trainAccuracy.ToString("F4"));

 testAccuracy = lc.Accuracy(testData, weights);
 Console.WriteLine("Prediction accuracy on test data = " +
 testAccuracy.ToString("F4"));

 Console.WriteLine("Training with L2 regularization, " +
 "alpha2 = " + alpha2.ToString("F3"));
 weights = lc.Train(trainData, maxEpochs, seed, 0.0, alpha2);

 Console.WriteLine("Best weights found:");
 ShowVector(weights, 3, weights.Length, true);

 trainAccuracy = lc.Accuracy(trainData, weights);
 Console.WriteLine("Prediction accuracy on training data = " +
 trainAccuracy.ToString("F4"));

 testAccuracy = lc.Accuracy(testData, weights);
 Console.WriteLine("Prediction accuracy on test data = " +
 testAccuracy.ToString("F4"));

 Console.WriteLine("End Regularization demo");
 Console.ReadLine();
 }

 static double[][] MakeAllData(int numFeatures,
 int numRows, int seed) { . . }

 static void MakeTrainTest(double[][] allData, int seed,
 out double[][] trainData, out double[][] testData) { . . }

 public static void ShowData(double[][] data, int numRows,
 int decimals, bool indices) { . . }

 public static void ShowVector(double[] vector, int decimals,
 int lineLen, bool newLine) { . . }
 }

 public class LogisticClassifier
 {
 private int numFeatures;
 private double[] weights;
 private Random rnd;

 public LogisticClassifier(int numFeatures) { . . }
 public double FindGoodL1Weight(double[][] trainData,
 int seed) { . . }
 public double FindGoodL2Weight(double[][] trainData,
 int seed) { . . }
 public double[] Train(double[][] trainData, int maxEpochs,
 int seed, double alpha1, double alpha2) { . . }
 private void Shuffle(int[] sequence) { . . }
 public double Error(double[][] trainData, double[] weights,
 double alpha1, double alpha2) { . . }
 public double ComputeOutput(double[] dataItem,

 double[] weights) { . . }
 public int ComputeDependent(double[] dataItem,
 double[] weights) { . . }
 public double Accuracy(double[][] trainData,
 double[] weights) { . . }

 public class Particle { . . }
 }
} // ns

0215msdn_McCaffreyTRun_v3_64-69.indd 66 1/13/15 8:32 AM

Connecting the dots is a no-brainer. DotImage image-enables your
.NET-based web application faster, more cost effectively, and less
painfully than if done on your own. This proven SDK is versatile, with
options including OCR capabilities, WingScan compatibility, and
support for a range of formats. Coupled with dedicated assistance
from our highly knowledgeable and skilled engineers, DotImage
helps your business connect with powerful information hidden
inside your documents, making the big picture much easier to see.

Let DotImage take some of the bite out of your challenges.

www.atalasoft.comImage-enabling experts & bacon connoisseurs. Visit us online to see our full line of SDK products for .NET and Java

We know how application development can be.

Untitled-2 1 10/14/14 11:04 AM

http://www.atalasoft.com

msdn magazine68 Test Run

The second graph in Figure 3 has the same dots but a different
blue curve that is a result of overfitting. This time all the red dots
are above the curve and all the green dots are below the curve. But
the curve is too complex. A new data item at (3, 7) would be below
the curve and be incorrectly predicted as class green.

Overfitting generates non-smooth prediction curves, in other
words, those that are not “regular.” Such poor, complex prediction
curves are usually characterized by weights that have very large
or very small values. Therefore, one way to reduce overfitting is to
prevent model weights from becoming very small or large. This is
the motivation for regularization.

When an ML model is being trained, you must use some measure
of error to determine good weights. There are several different ways
to measure error. One of the most common techniques is the
mean squared error, where you find the sum of squared differences
between the computed output values for a set of weight values and
the known, correct output values in the training data, and then
divide that sum by the number of training items. For example,
suppose for a candidate set of logistic regression weights, with just
three training items, the computed outputs and correct output
values (sometimes called the desired or target values) are:

computed desired
 0.60 1.0
 0.30 0.0
 0.80 1.0

Here, the mean squared error would be:
((0.6 - 1.0)^2 + (0.3 - 0.0)^2 + (0.8 - 1.0)^2) / 3 =
(0.16 + 0.09 + 0.04) / 3 =
0.097

Expressed symbolically, mean squared error can be written:
E = Sum(o - t)^2 / n

where Sum represents the accumulated sum over all training items,
o represents computed output, t is target output and n is the num-
ber of training data items. The error is what training minimizes
using one of about a dozen numerical techniques with names like
gradient descent, iterative Newton-Raphson, L-BFGS, back-prop-
agation and swarm optimization.

In order to prevent the magnitude of model weight values from
becoming large, the idea of regularization is to penalize weight val-
ues by adding those weight values to the calculation of the error
term. If weight values are included in the total error term that’s being
minimized, then smaller weight values will generate smaller error
values. L1 weight regularization penalizes weight values by adding
the sum of their absolute values to the error term. Symbolically:

E = Sum(o - t)^2 / n + Sum(Abs(w))

L2 weight regularization penalizes weight values by adding the
sum of their squared values to the error term. Symbolically:

E = Sum(o - t)^2 / n + Sum(w^2)
Suppose for this example there are four weights to be determined

and their current values are (2.0, -3.0, 1.0, -4.0). The L1 weight penalty
added to the 0.097 mean squared error would be (2.0 + 3.0 + 1.0 +
4.0) = 10.0. The L2 weight penalty would be 2.0^2 + -3.0^2 + 1.0^2
+ -4.0^2 = 4.0 + 9.0 + 1.0 + 16.0 = 30.0.

To summarize, large model weights can lead to overfitting, which
leads to poor prediction accuracy. Regularization limits the magni-
tude of model weights by adding a penalty for weights to the model
error function. L1 regularization uses the sum of the absolute val-
ues of the weights. L2 regularization uses the sum of the squared
values of the weights.

Why Two Different Kinds of Regularization?
L1 and L2 regularization are similar. Which is better? The bottom line
is that even though there are some theory guidelines about which
form of regularization is better in certain problem scenarios, in my
opinion, in practice you must experiment to find which type of reg-
ularization is better, or whether using regularization at all is better.

As it turns out, using L1 regularization can sometimes have a
beneficial side effect of driving one or more weight values to 0.0,
which effectively means the associated feature isn’t needed. This
is one form of what’s called feature selection. For example, in the
demo run in Figure 1, with L1 regularization the last model weight
is 0.0. This means the last predictor value doesn’t contribute to the
LR model. L2 regularization limits model weight values, but usually
doesn’t prune any weights entirely by setting them to 0.0.

So, it would seem that L1 regularization is better than L2 regular-
ization. However, a downside of using L1 regularization is that the Figure 3 Model Overfitting

Therefore, one way to
reduce overfitting is to prevent
model weights from becoming

very small or large.

0215msdn_McCaffreyTRun_v3_64-69.indd 68 1/13/15 8:32 AM

69February 2015msdnmagazine.com

technique can’t be easily used with some ML training algorithms,
in particular those algorithms that use calculus to compute what’s
called a gradient. L2 regularization can be used with any type of
training algorithm.

To summarize, L1 regularization sometimes has a nice side effect
of pruning out unneeded features by setting their associated weights
to 0.0 but L1 regularization doesn’t easily work with all forms of
training. L2 regularization works with all forms of training, but
doesn’t give you implicit feature selection. In practice, you must
use trial and error to determine which form of regularization (or
neither) is better for a particular problem.

Implementing Regularization
Implementing L1 and L2 regularization is relatively easy. The demo
program uses PSO training with an explicit error function, so all that’s
necessary is to add the L1 and L2 weight penalties. The definition of
method Error begins with:

public double Error(double[][] trainData, double[] weights,
 double alpha1, double alpha2)
{
 int yIndex = trainData[0].Length - 1;
 double sumSquaredError = 0.0;
 for (int i = 0; i < trainData.Length; ++i)
 {
 double computed = ComputeOutput(trainData[i], weights);
 double desired = trainData[i][yIndex];
 sumSquaredError += (computed - desired) * (computed - desired);
 }
...

The first step is to compute the mean squared error by summing
the squared differences between computed outputs and target out-
puts. (Another common form of error is called cross-entropy error.)
Next, the L1 penalty is calculated:

double sumAbsVals = 0.0; // L1 penalty
for (int i = 0; i < weights.Length; ++i)
 sumAbsVals += Math.Abs(weights[i]);

Then the L2 penalty is calculated:
double sumSquaredVals = 0.0; // L2 penalty
for (int i = 0; i < weights.Length; ++i)
 sumSquaredVals += (weights[i] * weights[i]);

Method Error returns the MSE plus the penalties:
...
 return (sumSquaredError / trainData.Length) +
 (alpha1 * sumAbsVals) +
 (alpha2 * sumSquaredVals);
}

The demo uses an explicit error function. Some training algo-
rithms, such as gradient descent and back-propagation, use the
error function implicitly by computing the calculus partial deriv-
ative (called the gradient) of the error function. For those training
algorithms, to use L2 regularization (because the derivative of w^2
is 2w), you just add a 2w term to the gradient (although the details
can be a bit tricky).

Finding Good Regularization Weights
There are several ways to find a good (but not necessarily optimal)
regularization weight. The demo program sets up a set of candi-
date values, computes the error associated with each candidate,
and returns the best candidate found. The method to find a good
L1 weight begins:

public double FindGoodL1Weight(double[][] trainData, int seed)
{
 double result = 0.0;
 double bestErr = double.MaxValue;
 double currErr = double.MaxValue;
 double[] candidates = new double[] { 0.000, 0.001, 0.005,
 0.010, 0.020, 0.050, 0.100, 0.150 };
 int maxEpochs = 1000;
 LogisticClassifier c =
 new LogisticClassifier(this.numFeatures);

Adding additional candidates would give you a better chance of
finding an optimal regularization weight at the expense of time. Next,
each candidate is evaluated, and the best candidate found is returned:

 for (int trial = 0; trial < candidates.Length; ++trial) {
 double alpha1 = candidates[trial];
 double[] wts = c.Train(trainData, maxEpochs, seed, alpha1, 0.0);
 currErr = Error(trainData, wts, 0.0, 0.0);
 if (currErr < bestErr) {
 bestErr = currErr; result = candidates[trial];
 }
 }
 return result;
}

Notice the candidate regularization weight is used to train the
evaluation classifier, but the error is computed without the regu-
larization weight.

Wrapping Up
Regularization can be used with any ML classification technique
that’s based on a mathematical equation. Examples include logistic
regression, probit classification and neural networks. Because it
reduces the magnitudes of the weight values in a model, regular-
ization is sometimes called weight decay. The major advantage of
using regularization is that it often leads to a more accurate model.
The major disadvantage is that it introduces an additional param-
eter value that must be determined, the regularization weight. In
the case of logistic regression this isn’t too serious because there’s
usually just the learning rate parameter, but when using more
complex classification techniques, neural networks in particular,
adding another so-called hyperparameter can create a lot of addi-
tional work to tune the combined values of the parameters. n

Dr. James mccaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products including Internet Explorer and Bing. Dr.
McCaffrey can be reached at jammc@microsoft.com.

Thanks to the following technical expert at Microsoft Research for reviewing
this article: Richard Hughes

As it turns out, using L1
regularization can sometimes
have a beneficial side effect

of driving one or more weight
values to 0.0, which effectively
means the associated feature

is not needed.

0215msdn_McCaffreyTRun_v3_64-69.indd 69 1/13/15 8:32 AM

mailto:jammc@microsoft.com
www.msdnmagazine.com

msdn magazine70

By now, readers will have heard
much of the buzz surrounding the
strategies Microsoft seems to be
pursuing for the next generation of
Microsoft developer tools: more
open source, more cross-platform,
more openness and more trans-
parency. “Roslyn”—the code name
for the .NET Compiler Platform
project—forms a major part of
that story, being the first time that
Microsoft has really commit-
ted production-quality compiler
tool infrastructure to an open
development model. With the
announcement that Roslyn is now
the compiler used by the Microsoft
.NET Framework teams themselves
to build .NET, Roslyn has achieved
a certain degree of “inception”: The
platform and its language tools
are now being built by the platform and its language tools. And,
as you’ll see in this article, you can use the language tools to build
more language tools to help you build for the platform.

Confused? Don’t be—it’ll all make sense in just a bit.

‘But We Don’t Do That’
Since the first programmer started working with the second
programmer—and found him “doing it wrong,” at least in the first
programmer’s opinion—teams have struggled to create some
semblance of unity and consistency in the way code is written, the
degree of error checking done, the manner in which objects are
used and so on. Historically, this has been the province of “coding
standards,” essentially a set of rules that every programmer is
supposed to follow when writing code for the company. Some-
times, programmers even go so far as to read them. But without
any sort of coherent and consistent enforcement—usually through
that time-honored practice of “code review” during which every-
body bickers over where the curly braces should go and what

the variables should be named—coding standards really end up
having little impact overall on code quality.

Over time, as language tools got more mature, developers started
looking to tools themselves to provide this level of enforcement.
After all, if there’s one thing a computer is good at, it’s repeatedly
performing the same kinds of detailed analysis, over and over
again, without fail or hesitation or mistake. Remember, that’s
part of the job of a compiler in the first place: Discover common
human mistakes that can lead to error-prone code, and fail early so
programmers are required to fix them before end users see them.
Tools that analyze code, looking for error patterns, are called “static
analysis tools” and can help identify bugs long before you even
run the unit tests.

Historically in the .NET Framework, it’s been difficult to build
and maintain such tools. Static analysis tools require a significant
development effort and must be updated as languages and libraries
evolve; for companies working in both C# and Visual Basic .NET,
the effort doubles. Binary analysis tools, such as FxCop, work at the
Intermediate Language (IL) level, avoiding language complexities.
However, at the very least, there’s a structural loss of information in the
translation from source to IL, making it that much more difficult to
relate issues back to the level where the programmer is working—the

Rise of Roslyn, Part 2: Writing Diagnostics

The Working Programmer

This article discusses prerelease versions of Visual Studio 2015 and the .NET Compiler
Platform, code-named “Roslyn.” All related information is subject to change.

TED NEWARD AND
JOE HUMMEL, PH.D.

Figure 1 Diagnostic with Code Fix (NuGet + VSIX) Project Template

0215msdn_NewHumWProg_v5_70-73.indd 70 1/13/15 8:45 AM

71February 2015msdnmagazine.com

source. Binary analysis tools also run after compilation, preventing
IntelliSense-like feedback during the programming process.

Roslyn, however, was built from the beginning to be extended.
Roslyn uses the term “analyzer” to describe source-code analysis
extensions that can—and do—run in the background while devel-
opers are programming. By creating an analyzer, you can ask
Roslyn to enforce additional, higher-order kinds of “rules,” helping
to eliminate bugs without having to run additional tools.

What Could Go Wrong?
It’s a sad, sad day to admit this, but periodically we see code like this:

try
{
 int x = 5; int y = 0;
 // Lots of code here
 int z = x / y;
}
catch (Exception ex)
{
 // TODO: come back and figure out what to do here
}

Often, that TODO is written with the best of intentions. But, as
the old saying goes, the road to perdition is paved with good inten-
tions. Naturally, the coding standard says this is bad, but it’s only
a violation if somebody catches you. Sure, a text-file scan would
reveal the “TODO,” but the code is littered with TODOs, none of
which are hiding errors as ugly as this. And, of course, you’ll only
find this line of code after a major demo bombs silently and you
slowly, painfully backtrack the devastation until you find that this
code, which should’ve failed loudly with an exception, instead sim-
ply swallowed it and allowed the program to carry on in blissful
ignorance of its impending doom.

The coding standard likely has a case for this: Always throw the
exception, or always log the exception to a standard diagnostic
stream or both, or but, again, without enforcement, it’s just a
paper document that nobody reads.

With Roslyn, you can build a diagnostic that catches this and
even (when configured to do so) works with Visual Studio Team
Foundation Server to prevent this code from ever being checked
in until that empty catch block is fixed.

Roslyn Diagnostics
As of this writing, project Roslyn is a preview release, installed as
part of Visual Studio 2015 Preview. Once the
Visual Studio 2015 Preview SDK and Roslyn
SDK templates are installed, diagnostics can
be written using the provided Extensibility
template, Diagnostic with Code Fix (NuGet
+ VSIX). To start, as shown in Figure 1,
select the diagnostic template and name the
project EmptyCatchDiagnostic.

The second step is to write a Syntax Node
Analyzer that walks the Abstract Syntax Tree
(AST), looking for empty catch blocks. A tiny
AST fragment is shown in Figure 2. The good
news is the Roslyn compiler walks the AST
for you. You need only provide code to ana-
lyze the nodes of interest. (For those familiar

with classic “Gang-of-Four” design patterns, this is the Visitor pattern
at work.) Your analyzer must inherit from the abstract base class
DiagnosticAnalyzer and implement these two methods:

public abstract
 ImmutableArray<DiagnosticDescriptor> SupportedDiagnostics { get; }

public abstract void Initialize(AnalysisContext context);

The SupportedDiagnostics method is a simple one, returning
a description of each analyzer you’re offering up to Roslyn. The
Initialize method is where you register your analyzer code with
Roslyn. During initialization you provide Roslyn with two things:
the kind of nodes in which you’re interested; and the code to exe-
cute when one of these nodes is encountered during compilation.
Because Visual Studio performs compilation in the background,
these calls will occur while the user is editing, providing immediate
feedback on possible errors.

Start by modifying the pre-generated template code into what
you need for your empty catch diagnostic. This can be found in the
source code file DiagnosticAnalyzer.cs within the EmptyCatch-
Diagnostic project (the solution will contain additional projects
you can safely ignore). In the code that follows, what you see in
boldface are the changes in relation to the pre-generated code.
First, some strings describing our diagnostic:

internal const string Title = "Catch Block is Empty";
internal const string MessageFormat =
 "'{0}' is empty, app could be unknowingly missing exceptions";
internal const string Category = "Safety";

The generated SupportedDiagnostics method is correct; you only
have to change the Initialize method to register your custom-written
syntax analysis routine, AnalyzeSyntax:

Figure 2 Roslyn Abstract Syntax Tree for the Code Fragment:
if (score > 100) grade = “A++”;

Condition
Statement

RightLeft

RightLeft

Identifier

Value Value

Value Value

Token

Identifier Token

Else

grade A++

StringLiteralToken

SimpleAssignmentExpression

IdentifierName

IdentifierToken

StringLiteralExpression

ExpressionStatement

IfStatement

score 100

NumericalLiteralToken

GreaterThanExpression

IdentifierName

IdentifierToken

NumericalLiteralExpression

By creating an analyzer, you can
ask Roslyn to enforce additional,

higher-order kinds of “rules,”
helping to eliminate bugs without

having to run additional tools.

0215msdn_NewHumWProg_v5_70-73.indd 71 1/13/15 8:45 AM

www.msdnmagazine.com

msdn magazine72 The Working Programmer

Figure 4 Visual Studio Running an Empty Catch Block Diagnostic in Another
Instance of Visual Studio

public override void Initialize(AnalysisContext context)
{
 context.RegisterSyntaxNodeAction<SyntaxKind>(
 AnalyzeSyntax, SyntaxKind.CatchClause);
}

As part of the registration, note that you inform Roslyn you’re
only interested in catch clauses within the AST. This cuts down on
the number of nodes fed to you and also helps keep the analyzer
clean, simple and single-purposed.

During compilation, when a catch clause node is encountered
in the AST, your analysis method AnalyzeSyntax is called. This is
where you look at the number of statements in the catch block, and
if that number is zero, you display a diagnostic warning because the
block is empty. As shown in Figure 3, when your analyzer finds an
empty catch block, you create a new diagnostic warning, position
it at the location of the catch keyword and report it.

The third step is to build and run the diagnostic. What happens
next is really interesting, and makes sense once you think about it.
You just built a compiler-driven diagnostic—so how do you test it?
By starting up Visual Studio, installing the diagnostic, opening a
project with empty catch blocks and seeing what happens! This is
depicted in Figure 4. The default project type is a VSIX installer,
so when you “run” the project, Visual Studio starts up another
instance of Visual Studio and runs the installer for it. Once that

second instance is up, you can test it. Alas, automated testing of
diagnostics is a bit beyond the scope of the project for now, but
if the diagnostics are kept simple and single-focused, then it’s not
too hard to test manually.

Don’t Just Stand There, Fix It!
Unfortunately, a tool that points out an error that it could easily fix—
but doesn’t—is really just annoying. Sort of like that cousin of yours
who watched you struggle to open the door for hours before deciding
to mention that it’s locked, then watched you struggle to find another
way in for even longer before mentioning that he has the key.

Roslyn doesn’t want to be that guy.
A code fix provides one or more suggestions to the developer—

suggestions to hopefully fix the issue detected by the analyzer. In
the case of an empty catch block, an easy code fix is to add a throw
statement so that any exception caught is immediately rethrown.
Figure 5 illustrates how the code fix appears to the developer in
Visual Studio, as a familiar tooltip.

In this case focus your attention on the other pre-generated
source file in the project, CodeFixProvider.cs. Your job is to inherit
from the abstract base class CodeFixProvider and implement three
methods. The key method is ComputeFixesAsync, which offers
suggestions to the developer:

public sealed override async Task ComputeFixesAsync(CodeFixContext context)

When the analyzer reports an issue, this method is called
by the Visual Studio IDE to see if there are any suggested code
fixes. If so, the IDE displays a tooltip containing the suggestions,
from which the developer may select. If one is selected, the given
document—which denotes the AST for the source file—is updated
with the suggested fix.

This implies that a code fix is nothing more than a suggested
modification to the AST. By modifying the AST, the change is
carried through to the remaining phases of the compiler, as if the
developer had written that code. In this case, the suggestion is to
add a throw statement. Figure 6 is an abstract depiction of what’s

going on.
So your method builds a new subtree to

replace the existing catch block subtree in
the AST. You build this new subtree bottom
up: a new throw statement, then a list to con-
tain the statement, then a block to scope the
list and, finally, a catch to anchor the block:

// Called when Roslyn encounters a catch clause.
private static void AnalyzeSyntax(SyntaxNodeAnalysisContext context)
{
 // Type cast to what we know.
 var catchBlock = context.Node as CatchClauseSyntax;

 // If catch is present we must have a block, so check if block empty?
 if (catchBlock?.Block.Statements.Count == 0)
 {
 // Block is empty, create and report diagnostic warning.
 var diagnostic = Diagnostic.Create(Rule,
 catchBlock.CatchKeyword.GetLocation(), "Catch block");
 context.ReportDiagnostic(diagnostic);
 }
}

Figure 3 Encountering a Catch Clause

In the case of an empty
catch block, an easy code fix

is to add a throw statement so
that any exception caught is

immediately rethrown.

0215msdn_NewHumWProg_v5_70-73.indd 72 1/13/15 8:45 AM

73February 2015msdnmagazine.com

public sealed override async Task ComputeFixesAsync(
 CodeFixContext context)
{
 // Create a new block with a list that contains a throw statement.
 var throwStmt = SyntaxFactory.ThrowStatement();
 var stmtList = new SyntaxList<StatementSyntax>().Add(throwStmt);
 var newBlock = SyntaxFactory.Block().WithStatements(stmtList);
 // Create a new, replacement catch block with our throw statement.
 var newCatchBlock = SyntaxFactory.CatchClause().WithBlock(newBlock).
 WithAdditionalAnnotations(
 Microsoft.CodeAnalysis.Formatting.Formatter.Annotation);

The next step is to grab the root of the AST for this source file, find
the catch block identified by the analyzer and build a new AST. For
example, newRoot denotes a newly rooted AST for this source file:

 var root = await context.Document.GetSyntaxRootAsync(
 context.CancellationToken).ConfigureAwait(false);

 var diagnostic = context.Diagnostics.First();
 var diagnosticSpan = diagnostic.Location.SourceSpan;

 var token = root.FindToken(diagnosticSpan.Start); // This is catch keyword.
 var catchBlock = token.Parent as CatchClauseSyntax; // This is catch block.

 var newRoot = root.ReplaceNode(catchBlock, newCatchBlock); // Create new AST.

The last step is to register a code action that will invoke your fix
and update the AST:

 var codeAction =
 CodeAction.Create("throw", context.Document.WithSyntaxRoot(newRoot));
 context.RegisterFix(codeAction, diagnostic);
}

For a variety of good reasons, most data structures in Roslyn are
immutable, including the AST. This is a particularly good choice
here, because you don’t want to update the AST unless the developer
actually selects the code fix. Because the existing AST is immutable,

the method returns a new AST, which is
substituted for the current AST by the
IDE if the code fix is selected.

You might be concerned that immuta-
bility comes at the high cost of memory
consumption. If the AST is immutable,
does that imply a complete copy is
needed every time a change is made?
Fortunately, only the differences are
stored in the AST (on the grounds that
it’s easier to store the deltas than to deal
with the concurrency and consistency

issues that making the AST entirely mutable would create) to
minimize the amount of copying that occurs to ensure immutability.

Breaking New Ground
Roslyn breaks some new ground by opening up the compiler (and
the IDE, as well!) this way. For years, C# has touted itself as a “strongly
typed” language, suggesting that up-front compilation helps reduce
errors. In fact, C# even took a few steps to try to avoid common
mistakes from other languages (such as treating integer compar-
isons as Boolean values, leading to the infamous “if (x = 0)” bug
that often hurt C++ developers). But compilers have always had to
be extremely selective about what rules they could or would apply,
because those decisions were industry-wide, and different organi-
zations often had different opinions on what was “too strict” or “too
loose.” Now, with Microsoft opening up the compiler’s innards to
developers, you can begin to enforce “house rules” on code, without
having to become compiler experts on your own.

Check out the Roslyn project page at roslyn.codeplex.com for details
on how to get started with Roslyn. If you want to dive more deeply
into parsing and lexing, numerous books are available, including
the venerable “Dragon Book,” officially published as “Compilers:
Principles, Techniques & Tools” (Addison Wesley, 2006) by
Aho, Lam, Sethi and Ullman. For those interested in a more
.NET-centric approach, consider “Compiling for the .NET Common
Language Runtime (CLR)” (Prentice Hall, 2001) by John Gough,
or Ronald Mak’s “Writing Compilers and Interpeters: A Software
Engineering Approach” (Wiley, 2009).

Happy coding! n

Ted Neward is the CTO at iTrellis, a consulting services company. He has written
more than 100 articles and authored a dozen books, including “Professional
F# 2.0” (Wrox, 2010). He’s an F# MVP and speaks at conferences around the
world. He consults and mentors regularly—reach him at ted@tedneward.com or
ted@itrellis.com if you’re interested.

Joe Hummel, PH.d, is a research associate professor at the University of Illinois,
Chicago, a content creator for Pluralsight, a Visual C++ MVP, and a private
consultant. He earned a Ph.D. at UC Irvine in the field of high-performance
computing and is interested in all things parallel. He resides in the Chicago area,
and when he isn’t sailing can be reached at joe@joehummel.net.

THaNks to the following Microsoft technical expert for reviewing this article:
Kevin Pilch-Bisson

Figure 5 A Code Fix Suggesting a Throw Within the Empty
Catch Block

Figure 6 Updating the
Abstract Syntax Tree

With Microsoft opening
up the compiler’s innards to
developers, you can begin to

enforce “house rules” on code,
without having to become

compiler experts on your own.

0215msdn_NewHumWProg_v5_70-73.indd 73 1/13/15 8:45 AM

mailto:ted@tedneward.com
mailto:ted@itrellis.com
mailto:joe@joehummel.net
http://roslyn.codeplex.com
www.msdnmagazine.com

PRODUCED BY

magazine

SUPPORTED BY

THE FAIRMONT, SAN FRANCISCO, CA

JUNE
15 - 18

vslive.com/sf

CODE BY
THE BAY

Untitled-2 2 1/13/15 1:37 PM

www.vslive.com/sf

CONNECT WITH VISUAL STUDIO LIVE!

vslive.com/sf

REGISTER NOW
AND SAVE $300!

the Fairmont

Untitled-2 3 1/13/15 1:37 PM

www.vslive.com/sf
www.twitter.com/vslive
www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine76

Search is an integral part of our digital life. Millions of people use
sites like Bing and Google to find information every day. Millions
more search through the Web, apps and proprietary data stores alike.
Because search is arguably the most frequently used digital feature,
the smart move is to help users more easily search with your apps.

How Windows Facilitates Search
Due to the physical form factor differences of PCs, tablets and
laptops, the Windows OSes provide search UIs that behave accord-
ingly. For example, Windows Phone 8.1 uses Cortana to search (read
more about Cortana at bit.ly/1nFGMxG). Apps can perform a custom
search from within a Windows Phone Store app with or without
Cortana. Windows Phone-based devices have a special hardware
button for search, located on the bottom right of the phone itself,
next to the Windows (center) and Back (left) buttons.

You can do a number of things to invoke search with Windows 8.
The easiest way is to just start typing while you’re on the Windows
Start screen. That kicks off the global search, across the device and
the Internet. Using a swipe touch gesture is another way to invoke
search for touch-enabled devices. You could also jam the mouse into
the top-right or bottom-right corners of the screen to initiate search.

Finally, if you live and die by shortcut keys, you can also use
Windows+S to display the Windows Search charm. Iconography
doesn’t need to change due to form factors. When a user sees a
magnifying glass, he knows it always means search.

Microsoft recommends using the SearchBox control, although
it’s fine to use the Search charm (also called a Search Contract) for
backward compatibility. You can read more about that at bit.ly/1xkqwXN.
When using the SearchBox control, you can add it to your app’s
canvas or show it in the app bar. If search is one of the primary
methods of interacting with your app, it’s best to present it consis-
tently throughout the app UI.

A good location is anywhere easily spotted on the app’s canvas,
usually the top-right corner. Apps that deal with news, movies,
sports, academic papers and financial reports are great examples

of apps that need a prominent search box. Sometimes users like to
browse lazily, but more often they know what they want and prefer
to navigate directly to it via search.

You might be concerned with a search box taking up too much
screen real estate. That’s a valid concern. Using a revealing search

Implement Search in Windows Store and
Windows Phone Store Apps

Modern Apps RACHEL APPEL

<SearchBox x:Name="SearchBox" Height="35"
 HorizontalAlignment="Stretch" VerticalAlignment="Bottom"
 SuggestionsRequested="SearchBoxEventsSuggestionsRequested"
 QuerySubmitted="SearchBoxEventsQuerySubmitted"
 FocusOnKeyboardInput="True"/>
public sealed partial class SearchBoxWithSuggestions :
 SDKTemplate.Common.LayoutAwarePage
{
 public SearchBoxWithSuggestions()
 {
 this.InitializeComponent();
 }
 private static readonly string[] suggestionList =
 {
 "ActionScript", "Ada", "Basic", "C", "C#", "C++", "Clipper",
 "Clojure", "COBOL", "ColdFusion", "Dart", "Delphi", "Erlang",
 "F#", "Haskell", "HTML", "Java", "JavaScript", "LISP",
 "Objective-C", "Pascal", "Perl", "PowerShell", "R", "Ruby",
 "Rust", "RPG", "SQL", "SmallTalk", "Small Basic", "Swift",
 "TypeScript", "Turbo C", "Visual Basic"
 };

 private void SearchBoxEventsSuggestionsRequested(
 object sender, SearchBoxSuggestionsRequestedEventArgs e)
 {
 string queryText = e.QueryText;
 if (!string.IsNullOrEmpty(queryText))
 {
 Windows.ApplicationModel.Search.
 SearchSuggestionCollection suggestionCollection =
 e.Request.SearchSuggestionCollection;
 int n = 0;
 foreach (string suggestion in suggestionList)
 {
 if (suggestion.StartsWith(queryText,
 StringComparison.CurrentCultureIgnoreCase))
 {
 Uri uri = new Uri("ms-appx:///Assets/laptop1.png");
 RandomAccessStreamReference imageSource =
 RandomAccessStreamReference.CreateFromUri(uri);
 suggestionCollection.AppendResultSuggestion(
 suggestion, "", n.ToString(), imageSource, suggestion);
 }
 }
 }
 }
 private void SearchBoxEventsQuerySubmitted(
 object sender, SearchBoxQuerySubmittedEventArgs e)
 {
 SearchListView.Items.Add(e.QueryText);
 }
}

Figure 1 The SearchBox with Suggestions Using XAML and C#

When a user sees a
magnifying glass, he knows it

always means search.

0215msdn_AppelModApps_v3_76-78.indd 76 1/13/15 8:28 AM

www.bit.ly/1nFGMxG
www.bit.ly/1xkqwXN

77February 2015msdnmagazine.com

icon is one way to show a small but noticeable visual search indicator.
After a user clicks or taps on the revealing search glyph, the Search-
Box reveals itself so they can enter a search string and view results.

You can use the SearchBox to find data locally or globally. As
you might expect, global searches are when your app is accessing
data outside the app itself. This can be on a removable device, net-
work or the Internet. If you do search through files such as music
or pictures on the device, don’t forget to set the capabilities in the
program’s manifest.

Implement Search with the SearchBox Control
You can incorporate search boxes into your apps using either
XAML or HTML for Windows Store and Windows Phone Store
apps. The controls and API calls conceptually work the same across

languages, but naturally with different syntax. Coding search for
the search charm is also roughly the same as far as complexity is
concerned. The code must perform the same basic steps, and the
same UX guidelines apply, regardless of language.

Figure 1 demonstrates a XAML SearchBox. You can put this
control within any container control such as a StackPanel. As with
other controls, you must wire up events that fire in response to
the user invoking search. When you use the SearchBox control,
there’s no need to set the search icon. You’ll likely want to set the
FocusOnKeyboardInput to True. That lets users simply start typing
to give focus control to the SearchBox, which makes for an easier
search experience.

In XAML, the SearchBoxEventsSuggestionsRequested and
SearchBoxEventsQuerySubmitted events are the two primary event
wire-ups you’ll need. SearchBoxEventsSuggestionsRequested fires
once for each keystroke entered to capture the keystrokes in real
time. As its name suggests, SearchBoxEventsQuerySubmitted hap-
pens when the user presses Enter, clicks, taps on the search icon or
otherwise triggers a search. The SearchBoxEventsQuerySubmitted
event is where you add code to perform the actual search. Figure
1 shows both events in action.

In C#, the first thing you need to do is supply a list of search
strings to use as suggestions. Figure 1 shows an array of strings
named suggestionList. The list contains the names of several pro-
gramming languages. The code in Figure 1 demonstrates a search
implementation with the SearchSuggestionCollection. When the
SearchBoxEventsSuggestions Requested event fires, its argument
named “e” contains the SearchSuggestionCollection to which
you can append queries. That’s reflected in Figure 1 when the
suggestionCollection variable is declared and set.

You can append queries to the SearchSuggestionCollection
through the AppendQuerySuggestion, AppendQuerySuggestions,
AppendSearchSuggestion or AppendResultSuggestion methods.
Result suggestions appear in the same list as query suggestions, but
they let you pass in extra data such as an image into the SearchBox.

While XAML has the notion of a Resource to set styles and
aesthetic features, HTML uses CSS to perform these tasks. As
an example, because the <div> element in Figure 2 contains no
reference to any styles, it will use the default Windows Library
for JavaScript (WinJS) .win-searchbox class that’s part of the
WinJS base CSS.

Figure 3 shows the runtime results of either Figure 1 or Figure 2.
Notice the SearchBoxes in Figure 3 show filtered suggestions

based on what the user enters. This is a great feature. Fortunately,
it’s something the SearchBox control does for you automatically
in XAML or HTML. However, you must perform the actual
search yourself in the query submission event. That means it’s up
to you to read the files, access the databases and Web services, or
search the Web.

When you append items to the SuggestionCollection, the
AppendResultSuggestion method lets you supply more informa-
tion than the AppendQuerySuggestion method. Pass in the text,
description, image and alternate text to apply items in the list, as the
code in Figure 4 reveals. Figure 5 illustrates the runtime screen-
shot the code in Figure 4 will create.

<div id="searchBox" data-win-control="WinJS.UI.SearchBox"></div>
(function () {
"use strict";
var suggestionList = ["ActionScript", "Ada", "Basic", "C", "C#", "C++", "Clipper",
 "Clojure", "COBOL", "ColdFusion", "Dart", "Delphi", "Erlang", "F#", "Haskell",
 "HTML", "Java", "JavaScript", "LISP", "Objective-C", "Pascal", "Perl",
 "PowerShell", "R", "Ruby", "Rust", "RPG", "SQL", "SmallTalk",
 "Small Basic", "Swift", "TypeScript", "Turbo C", "Visual Basic"];
var page = WinJS.UI.Pages.define("/html/S1-SearchBoxWithSuggestions.html", {
 ready: function (element, options) {
 var searchBox = document.getElementById("searchBox");
 searchBox.addEventListener("suggestionsrequested",
 suggestionsRequestedHandler);
 searchBox.addEventListener("querysubmitted", querySubmittedHandler);
 searchBox.winControl.focusOnKeyboardInput = true;
 }
 });
function suggestionsRequestedHandler(eventObject) {
 var queryText = eventObject.detail.queryText,
 query = queryText.toLowerCase(),
 suggestionCollection = eventObject.detail.searchSuggestionCollection;
 if (queryText.length > 0) {
 for (var i = 0, len = suggestionList.length; i < len; i++) {
 if (suggestionList[i].substr(0, query.length).toLowerCase() === query) {
 suggestionCollection.appendQuerySuggestion(suggestionList[i]);
 }
 }
 }
 }
function querySubmittedHandler(eventObject) {
 var queryText = eventObject.detail.queryText;
 WinJS.log && WinJS.log(queryText, "sample", "status");
 }
})();

Figure 2 The SearchBox with Suggestions
Using HTML and JavaScript

Figure 3 Three SearchBoxes with Query and Result Suggestions

0215msdn_AppelModApps_v3_76-78.indd 77 1/13/15 8:28 AM

www.msdnmagazine.com

msdn magazine78 Modern Apps

The image argument passed to the AppendResultSuggestions class
is an IRandomAccessStreamReference type from the Windows.Stor-
age.Streams namespace. If you’re using JavaScript, you’ll have to
create a Uri using the same CreateFromUri method. This is in contrast
to the usual way of setting an image in HTML with a src attribute.

At this point, you have a working SearchBox and suggestions
with text and images. The next step is to display the search results.
In both XAML and HTML, you can add a pre-defined search
results page for displaying and interacting with the results. Visual
Studio provides page templates with code that displays search
results with a filtered list of data that you provide. Because these pages
are customizable, you can show the results exactly how you want.

When you add a SearchResultsPage from the New File dialog
in Visual Studio, it creates a page with a ListView for displaying
the search results. For more information on using the ListView,
see my December 2013 column, “Everything You Need to Know
About the ListView Control” (msdn.microsoft.com/magazine/dn532209).
Of course, it’s not mandatory you use the search results page
template—you can incorporate search results anywhere into the
UI that makes sense and is easiest for the user. When you do, make
sure you check out the UX guidelines first.

Search UX Guidelines
If the user can never find anything, or has difficulty searching, he’ll

be more apt to rate your app
poorly in the store. Even worse
is when a user won’t buy your
app because search in the trial
version doesn’t work.

Because search is such a
frequently used feature, take
the time to get it right in both
paid and trial apps. Here are
some suggestions about how
to implement search in your
apps and raise those ratings:

• If search is a frequently used feature of your app, place it
where users can immediately find and use it.

• Help users with query and result suggestions. Users rely
on suggestions to quickly navigate throughout the app
and perform actions.

• Display results so they’re easy to skim. Aggregate infor-
mation is the friend of both you and the user. The point
of search is to present information to users so they can
make a choice as to what details to pursue.

• Ensure the search box works with a touch keyboard, as
well as physical keyboards.

• Support Ctrl+F as the keyboard shortcut for finding text
in your app (Windows only).

Many of these points are aesthetic in nature. If anything, Windows
UX guidelines err on the side of presenting fewer but more important
pieces of information. A user should be able to navigate back to his
previous location from the search results through a back button. To
catch up or refresh your knowledge on navigation in Windows Store
apps, read my August 2013 column, “Navigation Essentials in
Windows Store Apps” (msdn.microsoft.com/magazine/dn342878).

You should always provide search suggestions, especially on the
phone. No user wants to enter a search query and receive no further
help. It’s also much harder to type quickly and correctly on small
devices. Phone users have fewer or restricted methods of input.
Having to tap out entire words just makes your app harder to use
and frustrates the user.

Searching for the Conclusion
As you can see, implementing a pleasant search experience is easy
to do for Windows Store and Windows Phone Store apps. Adding
search capabilities not only makes your app more robust, but it
offers users easy access to an important and frequently used feature.
Keep in mind you can search both global and local data.

Don’t forget to review and follow the guidelines outlined in
this article and the ones Microsoft describes at bit.ly/1BQ5fGZ when
implementing search in your app. n

Rachel appel is a consultant, author, mentor and former Microsoft employee with
more than 20 years of experience in the IT industry. She speaks at top industry
conferences such as Visual Studio Live!, DevConnections, MIX and more. Her
expertise lies within developing solutions that align business and technology
focusing on the Microsoft dev stack and open Web. For more about Appel, visit
her Web site at rachelappel.com.

Thanks to the following Microsoft technical expert for reviewing this article:
Frank La Vigne

private void SearchBoxEventsSuggestionsRequested(object sender,
 SearchBoxSuggestionsRequestedEventArgs e)
{
 string queryText = e.QueryText;
 if (!string.IsNullOrEmpty(queryText))
 {
 Windows.ApplicationModel.
 Search.SearchSuggestionCollection suggestionCollection =
 e.Request.SearchSuggestionCollection;
 int n = 0;
 foreach (string suggestion in suggestionList)
 {
 if (suggestion.StartsWith(queryText,
 StringComparison.CurrentCultureIgnoreCase))
 {
 Uri uri = new Uri("ms-appx:///Assets/laptop.png");
 RandomAccessStreamReference imageSource =
 RandomAccessStreamReference.CreateFromUri(uri);
 suggestionCollection.AppendResultSuggestion(
 suggestion, "", n.ToString(), imageSource, suggestion);
 }
 }
 }

Figure 4 Code to Add Images to Suggestions

Figure 5 SearchBox with Result
Suggestions and Images

If the user can never find
anything, or has difficultly

searching, he’ll be more apt to
rate your app poorly in the store.

0215msdn_AppelModApps_v3_76-78.indd 78 1/13/15 8:28 AM

http://msdn.microsoft.com/magazine/dn532209
http://msdn.microsoft.com/magazine/dn342878
www.bit.ly/1BQ5fGZ
www.rachelappel.com

Untitled-7 1 12/8/14 4:44 PM

www.msdnmagazine.com
www.visualstudiomagazine.com
www.vslive.com

msdn magazine80

How the hell did five years go by? I swear I just submitted the first
installment of this column, entitled “The Human Touch.” In it I
argued that geeks fundamentally misunderstand their users, as
evidenced by their terrible designs. I chided them: “Humans are
not going to stop being human any time soon, no matter how much
you might wish they would evolve into something more logical.
Good applications recognize this and adjust to their human users,
instead of hoping, futilely, for the opposite.”

That principle certainly applies today. But my lying calendar
insists that I did it in February 2010.

It was a different world then. Windows 7 still had four months
before RTM. The now-ubiquitous mobile sector didn’t exist. The
iPhone was only a year old, and the most popular app was the
picture of a full beer stein, in which the level went down when
pathetic geeks tilted their phones to their lips. The cloud meant
Hotmail. My daughters still believed in Santa Claus.

It’s been quite a journey from then to now. I salute Keith Ward,
the editor who recruited me for this gig before wisely fleeing to
VisualStudioMagazine.com. He inflicted me on his successor,
Michael Desmond, whose life I make quite interesting. And I salute
Microsoft, for taking (almost) all the lumps I’ve dished out to them
without squawking (much), considering it owns this magazine.

Above all, I’ve loved meeting you, my readers—through e-mails,
article comments and in person at conferences. You are the reason
I write, to celebrate the good and castigate the bad, and to let in
the sunshine. Gadfly, jester, cynic, curmudgeon, loudmouth, con-
science, jerk; call me what you will. I’m glad you’re along for the
ride, because it sure would suck doing this all by myself.

“Your column is always the first page I turn to,” say some readers.
“I use it to line my parakeet’s cage, with your picture facing up,”
say others. I feel especially honored by the reader who said, “I can
give this column to my parents, so they can understand something
about what I do.”

Sometimes these columns have been painful to write, like the one
about Lloyd’s daughter (aka.ms/k3so4r). And I feel like I spent much of
2011 eulogizing late industry titans. Ken Olsen (aka.ms/czi7w5). Dennis
Ritchie and Steve Jobs (aka.ms/xzape5). Even Simba (aka.ms/ar9yxu).

Good Advice and Bad Intentions
This much I’ll say: Microsoft has done well by following my advice.
It’s doing a decent job of shedding its PC blindness, as I urged back in
my June 2011 column (aka.ms/d417jm). More recently, my November

2013 column, “Advice to the New CEO,” called for Redmond to start
becoming a cloud and services company (aka.ms/pjuinu). Microsoft is
moving well in that direction today, faster than I would have thought
possible, though it’s still finding mobile devices to be tricky.

Not all my insights have been on target. I wonder what I’ll be
writing for my next “Biggest Misteaks” column (aka.ms/ktri5g). Last
month, I described my 2007 prediction that the “iPhone would
crash in flames.” That prognostication will be hard to top, but you
can count on me to keep trying. Right now, I’d be lying if I said I
saw the point of wearables, like Google Glass and the smart watches
now coming on the market.

The technology changes quickly, but our need to understand
its impact on our users and our world doesn’t. Nor does our need
to step back and have a good look at ourselves, with laughter and
tears, as needed. I promise you, I won’t change that. I promise you,
I’ll keep calling ’em as I see ’em, pouring oil on troubled fires, for
your instruction, amusement and thought stimulation. I promise,
I’ll keep doing as Robert Heinlein’s character Lazarus Long said:
“Here’s one monkey that’s going to keep on climbing, and looking
around him to see what he can see, as long as the tree holds out.” n

DaviD S. Platt teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Software Legend in 2002. He wonders whether he should tape down two
of his daughter’s fingers so she learns how to count in octal. You can contact him
at rollthunder.com.

5 Years Down the Road

Don’t Get Me StarteD DAVID S. PLATT

Gadfly, jester, cynic,
curmudgeon, loudmouth,

conscience, jerk; call me what
you will. I’m glad you’re along for
the ride, because it sure would
suck doing this all by myself.

0215msdn_PlattDGMS_v4_80.indd 80 1/13/15 8:46 AM

www.aka.ms/k3so4r
www.aka.ms/czi7w5
www.aka.ms/xzape5
www.aka.ms/ar9yxu
www.aka.ms/d417jm
www.aka.ms/pjuinu
www.aka.ms/ktri5g
www.rollthunder.com

Untitled-10 1 12/5/14 1:59 PM

http://marketdash.componentone.com/redirect.ashx?rdtl=4677

Untitled-1 1 1/6/15 2:50 PM

www.syncfusion.com/communitylicense

THE DEFINITIVE DEVELOPER CONFERENCE

 |

ALLEN HOLUB

KEVLIN HENNEY

DINO ESPOSITO

NEAL FORD

| | | | | | | | | | |
| | | | | |

DevWeek_2015_Brochure.indd 1 1/5/15 10:52 AM

www.devweek.com

DON’T MISS THE UK’S LEADING
DEVELOPER CONFERENCE

Share your ticket
Only have time to attend one day?
Get great value out of DevWeek by
sharing your ticket with others in
your team. That way, you can make the
most of five packed days of sessions
and workshops. Our online registration
page lets you add colleagues’ details
so we know who will be joining us for
each day of DevWeek.

Never miss a session
So much content is packed into
DevWeek’s five days, there are bound
to be times when you wish you could
be in two places at once. But you
needn’t miss out: all our sessions are
filmed (subject to speaker approval)
– and as a registered delegate, you’ll
have exclusive access to the whole
event online to watch when you want.

With shareable tickets and online catch-up, DevWeek gives you all the information you
need, when you want it – ensuring you and your team make the most of every session.

Topics
• Agile
• Architecture
• BI
• Big Data
• Cloud
• Database
• DevOps
• IoT
• Leadership
• Mobile

• MQ
• MS Tech
• Patterns
• Programming Languages /

Techniques
• Security
• Software Design
• Testing
• UI/UX
• Web

2 | | | | 3

For five full days, from Monday 23 March
to Friday 27 March, DevWeek takes over
Westminster’s iconic Central Hall.

Built in 1912, Central Hall is one of the UK’s
oldest purpose-built conference centres.
O�ering easy access to public transport and the
restaurants and theatres of the West End, the
venue fuses architectural grandeur with state-
of-the-art facilities – making it the ideal setting
for the UK’s premier developer conference.

For more information about Central Hall,
visit www.c-h-w.com

Westminster
(District, Circle & Jubilee)
St James’s Park
(District & Circle)

Do you provide services
or technologies to the
developer community?
Let DevWeek work for you

DevWeek is the UK’s leading event for software
developers, DBAs and IT architects. As an exhibitor
or sponsor, we can can help you reach an engaged
audience of professionals with a package that’s
custom-designed to suit your needs.

To discuss the wide range of sponsorship
and exhibition opportunities available,
contact Chris Handsley
+44 (0)207 830 3634
chris.handsley@publicis-blueprint.co.uk

Developer,
Engineer,
Programmer

DBAConsultant

C-Level, Director

Analyst

Architect

Development
Head, Manager,
Team Lead

Senior / Lead / Principle
Developer, Engineer, Programmer

ROW

UNITED
KINGDOM

EUROPE

Where are they from?

DevWeek_2015_Brochure.indd 2 1/5/15 10:52 AM

http://www.c-h-w.com
www.devweek.com
www.twitter.com/devweek

DON’T MISS THE UK’S LEADING
DEVELOPER CONFERENCE

Share your ticket
Only have time to attend one day?
Get great value out of DevWeek by
sharing your ticket with others in
your team. That way, you can make the
most of five packed days of sessions
and workshops. Our online registration
page lets you add colleagues’ details
so we know who will be joining us for
each day of DevWeek.

Never miss a session
So much content is packed into
DevWeek’s five days, there are bound
to be times when you wish you could
be in two places at once. But you
needn’t miss out: all our sessions are
filmed (subject to speaker approval)
– and as a registered delegate, you’ll
have exclusive access to the whole
event online to watch when you want.

With shareable tickets and online catch-up, DevWeek gives you all the information you
need, when you want it – ensuring you and your team make the most of every session.

Topics
• Agile
• Architecture
• BI
• Big Data
• Cloud
• Database
• DevOps
• IoT
• Leadership
• Mobile

• MQ
• MS Tech
• Patterns
• Programming Languages /

Techniques
• Security
• Software Design
• Testing
• UI/UX
• Web

2 | | | | 3

For five full days, from Monday 23 March
to Friday 27 March, DevWeek takes over
Westminster’s iconic Central Hall.

Built in 1912, Central Hall is one of the UK’s
oldest purpose-built conference centres.
O�ering easy access to public transport and the
restaurants and theatres of the West End, the
venue fuses architectural grandeur with state-
of-the-art facilities – making it the ideal setting
for the UK’s premier developer conference.

For more information about Central Hall,
visit www.c-h-w.com

Westminster
(District, Circle & Jubilee)
St James’s Park
(District & Circle)

Do you provide services
or technologies to the
developer community?
Let DevWeek work for you

DevWeek is the UK’s leading event for software
developers, DBAs and IT architects. As an exhibitor
or sponsor, we can can help you reach an engaged
audience of professionals with a package that’s
custom-designed to suit your needs.

To discuss the wide range of sponsorship
and exhibition opportunities available,
contact Chris Handsley
+44 (0)207 830 3634
chris.handsley@publicis-blueprint.co.uk

Developer,
Engineer,
Programmer

DBAConsultant

C-Level, Director

Analyst

Architect

Development
Head, Manager,
Team Lead

Senior / Lead / Principle
Developer, Engineer, Programmer

ROW

UNITED
KINGDOM

EUROPE

Where are they from?

DevWeek_2015_Brochure.indd 3 1/5/15 10:52 AM

mailto:chris.handsley@publicis-blueprint.co.uk
www.devweek.com
www.twitter.com/devweek

4 | | | | 5

®8 | ® | | ®

Agile systems are, by
necessity, tightly coupled
to the user’s notion of
what the system is doing.
Without that connection,
the software can’t stand
up to the stress of
constant change that all
Agile processes mandate.
Moreover, the process
you use influences the
architecture of your
system. That’s why hybrid
processes that mix Agile
and traditional practices
often fail. The hybrid
architectures that come
out of those processes
are unworkable.

In this workshop,
Allen will talk about both
process and architecture.
We’ll look at how Agile
processes work, and see
how both architecture
and low-level design
naturally fall out of those
processes. Specifically,
we’ll examine the role of
stories: how they’re
created and developed,
and how they flow
through the process,
with a focus on
developing an optimal
architecture that closely
mirrors both the stories
themselves and the
assumptions that
underlie the stories.

We’ll also work
through a real-world
example of the process
from requirements
gathering and problem-
statement definition,
to story development
(use-case analysis)
and the simultaneous
construction of
lightweight dynamic
and static models that
underlie the code.

From big consumer
success stories, such as
the Nest Thermostat, to
more o�eat monitoring
systems, such as
Botanicalls (which lets
your plant call you when
it is thirsty), your things
are finding their own
voice through small but
powerful embedded
microcontrollers. The
market for the Internet
of Things (IoT) and
wearables is exploding.
But what are your
options for getting
started with making
physical things when
you’re more used to
writing software? In this
workshop, Pearl explores
a few hardware options
that are great for hobbyist
and rapid prototyping.

You’ll get hands-on
time to choose from
some of the available
hardware platforms,
from a standard Arduino
to an Intel Edison,
MaKey MaKey, or
LightBlue Bean. You’ll be
given a self-paced guide
on how to set up the
development
environment on your
computer and get a
“Hello World” program
running (typically an
onboard blinking light).
Once you have a feel for
the technology, we’ll
go through a project
brainstorming exercise.
Finally, you’ll be let loose
to build your own
hardware-based
prototype in groups of
2-4. The workshop will
be capped at 30
participants so expect a
very team-oriented day.

In this workshop, Sahil
will teach you advanced
concepts in JavaScript,
allowing you to structure
your code well and learn
JavaScript beyond the
basics we have been
tinkering with.

This workshop
teaches you not to just
know JavaScript, but to
be good at JavaScript.
There are plenty of
hands-on labs, which
will walk you through
objects, prototypes,
scopes, this variable,
debugging, performance
and best practices.

We will begin with the
very basics of JavaScript:
variables, language
syntax, referencing
files, loops, conditions,
built-in functions and
custom functions,
arrays and so on. We’ll
move on to talk about
functions as expressions,
closures to structure
your code, the concept
of nested scopes, and the
confusion around “this”.
We’ll learn all about
objects and prototypes,
and how you can mimic
things in JavaScript that
are usually reserved for
higher-level languages.

We’ll solidify that
knowledge with some
best practices and
debugging tricks. We’ll
also explain how to avoid
common pitfalls, and
how to organise your
code in modules to keep
it maintainable and
understandable. Lastly,
there’s performance
– let’s not forget
performance!

With .NET, Xamarin
and portable class
libraries, you can now
create native apps that
target iOS, Android
and Windows without
compromising on
performance, user
experience or developer
productivity. And you
can do it all within Visual
Studio IDE or Xamarin
Studio IDE for Mac or PC.

James will introduce
the Xamarin platform,
including building native
iOS and Android apps
with C#. We’ll look
at the fundamentals
of how each platform
works, and deep-dive
into platform-specific
functionality. Designing
iOS and Android apps
could not be easier with
Xamarin’s integrated
iOS and Android
designers for both Visual
Studio and Xamarin
Studio. You’ll find out
how to use both of these
designers to craft unique
user interfaces for each
platform. We’ll also take
a look at sharing code
with Universal Windows
apps, enabling you reach
all platforms from a single
shared C# code base.

You’ll gain a full
understanding of the
Xamarin platform and
how to build iOS and
Android apps using
C#, as well as a solid
introduction to code
reuse techniques, plus
lots of sample code
to take home!

Review by peers,
colleagues, experts and
stakeholders is perhaps
the most e¥ective tool
we have for improving
the quality of software.
But if review is so
wonderful, why is it used
so infrequently?

In this workshop,
Robert and Austin
will show you how to
conduct e¥ective code,
design and requirements
reviews using a variety
of techniques from
the relatively informal
sort of reviews you’re
perhaps doing already,
through to the most
formal inspections.
We’ll work together
to understand what
makes a good review,
and help you to identify
behaviours that lead
to poor outcomes,
in the form of either
defective software or
unhappy colleagues.

Throughout this
workshop, you’ll receive
plenty of advice on
how you can introduce
e¥ective technical
reviews into your
engineering culture.

Since it was released
in 2008, F# has
inspired more and
more excitement. It’s
a functional language,
like Haskell or ML, and
yet it’s built on top of
.NET, so it leverages all
the mature object-
oriented power that the
platform provides. The
result is neither purely
functional, nor obviously
object-oriented, but is
something entirely new:
a unique and powerful
mixture of the two.

Those programmers
who have already
discovered F# find they
can write code that is
shorter, faster, vastly
more reliable, and
delightfully reusable.
This is no research
language – it’s being
used on real, large-scale
projects, and it has
the backing of the F#
Software Foundation
and Microsoft.

If you want to
understand what the
fuss is about, this is
the day for you. In this
workshop, Jules will
touch on what makes F#
programming so special,
and show where it gets
its power from. We’ll
write some functional
code, we’ll write some
of F#’s unique take on
object-oriented code,
and we’ll write some
code that only F# can do.

When you think of
ASP.NET security, the
first things that come
to mind are Windows
authentication and
forms authentication
using ASP.NET
Membership. For
years, those were the
common authentication
techniques for ASP.
NET applications and
services. But with the
new releases to the ASP.
NET Identity system,
those days are long gone.

For the enterprise,
ASP.NET broadened
its support from the
on-premises Active
Directory to include
Microsoft Azure
Active Directory. By
supporting external
identity providers, such
as Facebook, Microsoft
Account and Twitter,
the new ASP.NET
Identity system makes
the process of securing
an application less
scary than ever.

In this workshop,
Ido will start from the
basics of getting to
know concepts such as
SSL, OAuth, OpenID
and claim-based
authorisation. From
there we will continue
to explore the various
scenarios of using
self-managed identities,
Active Directory and
ADFS, external identity
providers (Facebook,
Google, Microsoft) and
Microsoft Azure Active
Directory.

Are you a developer
writing T-SQL
queries for SQL
Server databases?
Maybe you’re already
mastered the basics
of T-SQL, but want to
reach a higher level in
T-SQL to write better
performing queries?
In this workshop,
Klaus will take a full
day to talk about how
to improve your T-SQL
skills to solve complex
problems, and how to
further speed up your
queries by applying a
good indexing strategy to
your T-SQL queries.

In the workshop, we’ll
cover four modules:
query processing basics
(set theory, predicate
logic, relational
models and logical
query processing),
physical query
processing (execution
plans, data access
paths, physical join
operators, aggregation
operators and spool
operators), temporary
data and aggregations
(temp tables, table
variables, common
table expressions,
and aggregations and
pivoting), and working
with windowing
functions (window
aggregate functions,
ranking functions,
distribution functions,
o¥set functions, query
tuning guidelines
and parallelism
optimisations).

As a responsive web
framework, Twitter
Bootstrap is leading
the world of web
development today,
setting new standards
and capturing followers.
In this workshop, Dino
will provide a day-long
tour of the library and
delve deep into its
HTML chunks, CSS
styles and JavaScript
components.

We’ll focus on
facilities available for
building static and
responsive layouts,
rich input forms and
advanced features such
as auto-completion,
modals, tabs, carousels
and more. We’ll also
consider the downsides
of the framework,
missing pieces (ie. image
handling) and its overall
role in the broader
context of responsive
and device-friendly
sites. This workshop
is ideal for clearing up
a few things you may
already have heard
about Bootstrap, or just
for gaining an additional
perspective about it.
In any case, after this
workshop you should
be ready to get into it
at any level of further
complexity.

In this workshop, Seb
will provide a practical
introduction to using
examples to specify
software. You’ll learn
to break down complex
business requirements
with your stakeholders,
using examples in their
own language, giving
you the tools you need
to explore their ideas
before you even write
any software.

This workshop is
for everybody involved
in the process of
developing software,
so please bring product
owners, testers and
architects along. As well
as describing what BDD
is (and isn’t), we’ll spend
a lot of time practising
collaborative analysis
to make sure that our
stories are appropriately
sized, easy to read and
unambiguous. We’ll
develop a “ubiquitous
language”, explore the
workings of the Three-
Amigos meeting, and
really get to grips with
the slippery interaction
between features,
stories, acceptance
criteria and examples.

We’ll use pens,
cards and other bits
of paper, so you won’t
need to know any tools
in advance, or even
remember your laptop!

To build further on
these ideas, don’t miss
Seb’s post-conference
workshop: “Applied
BDD with Cucumber,
Cucumber-JVM and
SpecFlow”.

DevWeek_2015_Brochure.indd 4 1/5/15 10:52 AM

www.devweek.com
www.twitter.com/devweek

4 | | | | 5

®8 | ® | | ®

Agile systems are, by
necessity, tightly coupled
to the user’s notion of
what the system is doing.
Without that connection,
the software can’t stand
up to the stress of
constant change that all
Agile processes mandate.
Moreover, the process
you use influences the
architecture of your
system. That’s why hybrid
processes that mix Agile
and traditional practices
often fail. The hybrid
architectures that come
out of those processes
are unworkable.

In this workshop,
Allen will talk about both
process and architecture.
We’ll look at how Agile
processes work, and see
how both architecture
and low-level design
naturally fall out of those
processes. Specifically,
we’ll examine the role of
stories: how they’re
created and developed,
and how they flow
through the process,
with a focus on
developing an optimal
architecture that closely
mirrors both the stories
themselves and the
assumptions that
underlie the stories.

We’ll also work
through a real-world
example of the process
from requirements
gathering and problem-
statement definition,
to story development
(use-case analysis)
and the simultaneous
construction of
lightweight dynamic
and static models that
underlie the code.

From big consumer
success stories, such as
the Nest Thermostat, to
more o�eat monitoring
systems, such as
Botanicalls (which lets
your plant call you when
it is thirsty), your things
are finding their own
voice through small but
powerful embedded
microcontrollers. The
market for the Internet
of Things (IoT) and
wearables is exploding.
But what are your
options for getting
started with making
physical things when
you’re more used to
writing software? In this
workshop, Pearl explores
a few hardware options
that are great for hobbyist
and rapid prototyping.

You’ll get hands-on
time to choose from
some of the available
hardware platforms,
from a standard Arduino
to an Intel Edison,
MaKey MaKey, or
LightBlue Bean. You’ll be
given a self-paced guide
on how to set up the
development
environment on your
computer and get a
“Hello World” program
running (typically an
onboard blinking light).
Once you have a feel for
the technology, we’ll
go through a project
brainstorming exercise.
Finally, you’ll be let loose
to build your own
hardware-based
prototype in groups of
2-4. The workshop will
be capped at 30
participants so expect a
very team-oriented day.

In this workshop, Sahil
will teach you advanced
concepts in JavaScript,
allowing you to structure
your code well and learn
JavaScript beyond the
basics we have been
tinkering with.

This workshop
teaches you not to just
know JavaScript, but to
be good at JavaScript.
There are plenty of
hands-on labs, which
will walk you through
objects, prototypes,
scopes, this variable,
debugging, performance
and best practices.

We will begin with the
very basics of JavaScript:
variables, language
syntax, referencing
files, loops, conditions,
built-in functions and
custom functions,
arrays and so on. We’ll
move on to talk about
functions as expressions,
closures to structure
your code, the concept
of nested scopes, and the
confusion around “this”.
We’ll learn all about
objects and prototypes,
and how you can mimic
things in JavaScript that
are usually reserved for
higher-level languages.

We’ll solidify that
knowledge with some
best practices and
debugging tricks. We’ll
also explain how to avoid
common pitfalls, and
how to organise your
code in modules to keep
it maintainable and
understandable. Lastly,
there’s performance
– let’s not forget
performance!

With .NET, Xamarin
and portable class
libraries, you can now
create native apps that
target iOS, Android
and Windows without
compromising on
performance, user
experience or developer
productivity. And you
can do it all within Visual
Studio IDE or Xamarin
Studio IDE for Mac or PC.

James will introduce
the Xamarin platform,
including building native
iOS and Android apps
with C#. We’ll look
at the fundamentals
of how each platform
works, and deep-dive
into platform-specific
functionality. Designing
iOS and Android apps
could not be easier with
Xamarin’s integrated
iOS and Android
designers for both Visual
Studio and Xamarin
Studio. You’ll find out
how to use both of these
designers to craft unique
user interfaces for each
platform. We’ll also take
a look at sharing code
with Universal Windows
apps, enabling you reach
all platforms from a single
shared C# code base.

You’ll gain a full
understanding of the
Xamarin platform and
how to build iOS and
Android apps using
C#, as well as a solid
introduction to code
reuse techniques, plus
lots of sample code
to take home!

Review by peers,
colleagues, experts and
stakeholders is perhaps
the most e¥ective tool
we have for improving
the quality of software.
But if review is so
wonderful, why is it used
so infrequently?

In this workshop,
Robert and Austin
will show you how to
conduct e¥ective code,
design and requirements
reviews using a variety
of techniques from
the relatively informal
sort of reviews you’re
perhaps doing already,
through to the most
formal inspections.
We’ll work together
to understand what
makes a good review,
and help you to identify
behaviours that lead
to poor outcomes,
in the form of either
defective software or
unhappy colleagues.

Throughout this
workshop, you’ll receive
plenty of advice on
how you can introduce
e¥ective technical
reviews into your
engineering culture.

Since it was released
in 2008, F# has
inspired more and
more excitement. It’s
a functional language,
like Haskell or ML, and
yet it’s built on top of
.NET, so it leverages all
the mature object-
oriented power that the
platform provides. The
result is neither purely
functional, nor obviously
object-oriented, but is
something entirely new:
a unique and powerful
mixture of the two.

Those programmers
who have already
discovered F# find they
can write code that is
shorter, faster, vastly
more reliable, and
delightfully reusable.
This is no research
language – it’s being
used on real, large-scale
projects, and it has
the backing of the F#
Software Foundation
and Microsoft.

If you want to
understand what the
fuss is about, this is
the day for you. In this
workshop, Jules will
touch on what makes F#
programming so special,
and show where it gets
its power from. We’ll
write some functional
code, we’ll write some
of F#’s unique take on
object-oriented code,
and we’ll write some
code that only F# can do.

When you think of
ASP.NET security, the
first things that come
to mind are Windows
authentication and
forms authentication
using ASP.NET
Membership. For
years, those were the
common authentication
techniques for ASP.
NET applications and
services. But with the
new releases to the ASP.
NET Identity system,
those days are long gone.

For the enterprise,
ASP.NET broadened
its support from the
on-premises Active
Directory to include
Microsoft Azure
Active Directory. By
supporting external
identity providers, such
as Facebook, Microsoft
Account and Twitter,
the new ASP.NET
Identity system makes
the process of securing
an application less
scary than ever.

In this workshop,
Ido will start from the
basics of getting to
know concepts such as
SSL, OAuth, OpenID
and claim-based
authorisation. From
there we will continue
to explore the various
scenarios of using
self-managed identities,
Active Directory and
ADFS, external identity
providers (Facebook,
Google, Microsoft) and
Microsoft Azure Active
Directory.

Are you a developer
writing T-SQL
queries for SQL
Server databases?
Maybe you’re already
mastered the basics
of T-SQL, but want to
reach a higher level in
T-SQL to write better
performing queries?
In this workshop,
Klaus will take a full
day to talk about how
to improve your T-SQL
skills to solve complex
problems, and how to
further speed up your
queries by applying a
good indexing strategy to
your T-SQL queries.

In the workshop, we’ll
cover four modules:
query processing basics
(set theory, predicate
logic, relational
models and logical
query processing),
physical query
processing (execution
plans, data access
paths, physical join
operators, aggregation
operators and spool
operators), temporary
data and aggregations
(temp tables, table
variables, common
table expressions,
and aggregations and
pivoting), and working
with windowing
functions (window
aggregate functions,
ranking functions,
distribution functions,
o¥set functions, query
tuning guidelines
and parallelism
optimisations).

As a responsive web
framework, Twitter
Bootstrap is leading
the world of web
development today,
setting new standards
and capturing followers.
In this workshop, Dino
will provide a day-long
tour of the library and
delve deep into its
HTML chunks, CSS
styles and JavaScript
components.

We’ll focus on
facilities available for
building static and
responsive layouts,
rich input forms and
advanced features such
as auto-completion,
modals, tabs, carousels
and more. We’ll also
consider the downsides
of the framework,
missing pieces (ie. image
handling) and its overall
role in the broader
context of responsive
and device-friendly
sites. This workshop
is ideal for clearing up
a few things you may
already have heard
about Bootstrap, or just
for gaining an additional
perspective about it.
In any case, after this
workshop you should
be ready to get into it
at any level of further
complexity.

In this workshop, Seb
will provide a practical
introduction to using
examples to specify
software. You’ll learn
to break down complex
business requirements
with your stakeholders,
using examples in their
own language, giving
you the tools you need
to explore their ideas
before you even write
any software.

This workshop is
for everybody involved
in the process of
developing software,
so please bring product
owners, testers and
architects along. As well
as describing what BDD
is (and isn’t), we’ll spend
a lot of time practising
collaborative analysis
to make sure that our
stories are appropriately
sized, easy to read and
unambiguous. We’ll
develop a “ubiquitous
language”, explore the
workings of the Three-
Amigos meeting, and
really get to grips with
the slippery interaction
between features,
stories, acceptance
criteria and examples.

We’ll use pens,
cards and other bits
of paper, so you won’t
need to know any tools
in advance, or even
remember your laptop!

To build further on
these ideas, don’t miss
Seb’s post-conference
workshop: “Applied
BDD with Cucumber,
Cucumber-JVM and
SpecFlow”.

DevWeek_2015_Brochure.indd 5 1/5/15 10:52 AM

www.devweek.com
www.twitter.com/devweek

6 | | | | 7

®8 | ® | | ®

ø

Trees. Both beautiful and useful. But we’re not talking about
the green, oxygen-providing ones. As abstract structures we
see trees all over the place – file systems, class hierarchies,
ordered data structures, and so on. They are neat and tidy,
nested and hierarchical – a simple way of organising things;
a simple way of breaking large things down into small things.

The problem is, though, that there are many things –
from modest fragments of code up to enterprise-wide IT
systems – that do not comfortably fit into this way of looking
at the world and organising it. Software architecture, design
patterns, class decomposition, performance, unit tests…
all of these cut across the strict hierarchy of trees. In this
keynote, Kevlin will look at what this means for how we
think and design systems, whether large or small.

Estimates are always guesses – and they’re always
wrong. Consequently, estimate-based planning is
foolhardy at best, and time spend creating them is a
waste. In spite of this fact, estimates are a central part
of most software-development processes, even some
Agile processes. Getting rid of estimates doesn’t
mean that you can’t plan, but you do have to
go about planning in a more e�ective way.
In this keynote, Allen will discuss both
the problems surrounding an estimation
culture and how to solve those problems
by using actual measurements
and priority-based planning.

Transducers – a
portmanteau of
“transform reducers”
– are a new functional
programming concept
introduced into the
Clojure programming
language. Although
transducers are actually
pretty straightforward,
wrapping your brain
around them, especially
if you’re not already a
competent Clojureist,
can be challenging. In
this session, Robert will
introduce transducers
by implementing
them from scratch in
everybody’s favourite
executable pseudocode:
Python. We’ll start with
the familiar staples of
functional programming
and derive transducers
from first principles.

What do you do when
your application crashes
or hangs in production?
Nothing can compete
with a debugger or a full
process dump captured
on a production system.
But you can’t always
a�ord the time to analyse
hundreds of crash
dumps. In this session,
Sasha will show you how
to perform automatic
dump analysis and triage
using Microsoft’s ClrMD,
a .NET library that can
explore threads, call
stacks and exceptions;
visualise threads and
locks to form wait chains
and detect deadlocks;
and walk heap memory
to inspect important
objects for your
application.

Coming from a Java
background, there was
a time when JavaScript
was nothing but
annoyances. Now, even
after we’ve grown to love
the language, there are
dozens of times when we
feel the pain of missing
features that Java has
built in. ECMAScript 6
is changing all of that.
The next version of
JavaScript brings with
it an amazing standard
library that rivals that of
Java, Python and their
ilk. In this session, John
will explain some of
the great new additions
to the language and
demonstrate use cases
that take advantage of
ES6’s elegance for client-
side development.

TDD, BDD, ATDD are
all methodologies that
enable incremental
design that is suitable
for Agile environments.
It seems that every day a
new xDD methodology
is born with the promise
of being better than what
came before. Should
you use behaviour-
driven tests or plain
old unit tests? Which
methodology is better?
And how exactly
would it benefit the
development life cycle?
In this session, Dror
will help to sort out the
various methodologies
– explaining where they
came from, the tools
they use, and discussing
how and when to use
each one.

As more and more of
our applications move
on to the web, security
becomes even more
critical. Good security,
however, has to be built
in, not tacked on as an
afterthought. In this
session, Allen will give
you an overview of what
it means to make an
application secure. He’ll
cover topics such as
security architectures,
code and design review,
penetration testing, risk
analysis and risk-based
testing, security-related
requirements, static
analysis, abuse cases,
security operations
and crypto.

Hekaton is the Greek
word for 100 – and the
goal of In-Memory
OLTP in SQL Server
2014 is to improve query
performance up to 100
times. In this session,
Klaus will look inside
the case of Hekaton
and the multiversion
concurrency control
(MVCC) principles
on which Hekaton
is built. He’ll start by
looking at the challenges
that can be solved by
Hekaton, especially
locking, blocking and
latching within SQL
Server. Based on this
foundation, he’ll move
into the principles
of MVCC, and how
a storage engine and
transaction manager can
be built on that concept.

R is a free software
programming
language and software
environment for
statistical computing,
data mining and
graphics. Azure
Machine Learning
(Azure ML) is the new
Microsoft cloud service
and environment for
advanced data analysis,
which utilises the R
algorithms intensively.
In this session, Dejan
will introduce both R,
with RStudio IDE, and
Azure ML.

Retrospectives are a
key tool in the Agile
toolkit, but they aren’t
easy. In fact, it’s not
just retrospectives.
Teams need to learn
to talk, discuss and
reflect together over
many things. Good
conversation makes
for good software.
Retrospective
dialogue sheets can
help overcome these
problems. In this
hands-on session,
in which everyone
will get the chance to
work with a dialogue
sheet, discovering
what one is and how
to use it, Allan will
discuss some of the ways
teams are using them
and look to the future.

With the introduction
of the iPhone 6 and 6+,
we now have several
form factors to consider
when designing our
iOS applications. In this
session, Mark will focus
on the designer and
layout features Apple
has included in iOS to
help you create a single,
unified storyboard that
is capable of working
with all variations of
iOS. This will include
layout constraints (auto
layout), size classes,
unified storyboards
and the updated
UISplitViewController.

In this session, Seb will
demonstrate some key
techniques that help
decompose large
problems. Decomposing
problems is a skill all
software developers
need, but we’re often not
very good at. Whether it’s
stories that take longer
than an iteration, or
features that can’t be
delivered in the expected
release, we’ve all seen the
problems that tackling
an over-large problem
can cause. We’ll work
through two detailed
examples to demonstrate
the value of delivering
small, low-fidelity pieces
of work early rather than
prematurely focusing
on fully-polished
final version.

 Swift is Apple’s newest
language for building
native, high performance
applications for both iOS
and OS X. This session
will introduce you to
this exciting language.
Developers with a
background in either C#
or Python will see many
similarities. Almost
everyone will find Swift a
much more comfortable
and inviting language
when compared to
Objective C or C. Come
and learn why it’s now
fun to develop (natively)
for iOS and OS X.

DevWeek_2015_Brochure.indd 6 1/5/15 10:52 AM

www.devweek.com
www.twitter.com/devweek

6 | | | | 7

®8 | ® | | ®

ø

Trees. Both beautiful and useful. But we’re not talking about
the green, oxygen-providing ones. As abstract structures we
see trees all over the place – file systems, class hierarchies,
ordered data structures, and so on. They are neat and tidy,
nested and hierarchical – a simple way of organising things;
a simple way of breaking large things down into small things.

The problem is, though, that there are many things –
from modest fragments of code up to enterprise-wide IT
systems – that do not comfortably fit into this way of looking
at the world and organising it. Software architecture, design
patterns, class decomposition, performance, unit tests…
all of these cut across the strict hierarchy of trees. In this
keynote, Kevlin will look at what this means for how we
think and design systems, whether large or small.

Estimates are always guesses – and they’re always
wrong. Consequently, estimate-based planning is
foolhardy at best, and time spend creating them is a
waste. In spite of this fact, estimates are a central part
of most software-development processes, even some
Agile processes. Getting rid of estimates doesn’t
mean that you can’t plan, but you do have to
go about planning in a more e�ective way.
In this keynote, Allen will discuss both
the problems surrounding an estimation
culture and how to solve those problems
by using actual measurements
and priority-based planning.

Transducers – a
portmanteau of
“transform reducers”
– are a new functional
programming concept
introduced into the
Clojure programming
language. Although
transducers are actually
pretty straightforward,
wrapping your brain
around them, especially
if you’re not already a
competent Clojureist,
can be challenging. In
this session, Robert will
introduce transducers
by implementing
them from scratch in
everybody’s favourite
executable pseudocode:
Python. We’ll start with
the familiar staples of
functional programming
and derive transducers
from first principles.

What do you do when
your application crashes
or hangs in production?
Nothing can compete
with a debugger or a full
process dump captured
on a production system.
But you can’t always
a�ord the time to analyse
hundreds of crash
dumps. In this session,
Sasha will show you how
to perform automatic
dump analysis and triage
using Microsoft’s ClrMD,
a .NET library that can
explore threads, call
stacks and exceptions;
visualise threads and
locks to form wait chains
and detect deadlocks;
and walk heap memory
to inspect important
objects for your
application.

Coming from a Java
background, there was
a time when JavaScript
was nothing but
annoyances. Now, even
after we’ve grown to love
the language, there are
dozens of times when we
feel the pain of missing
features that Java has
built in. ECMAScript 6
is changing all of that.
The next version of
JavaScript brings with
it an amazing standard
library that rivals that of
Java, Python and their
ilk. In this session, John
will explain some of
the great new additions
to the language and
demonstrate use cases
that take advantage of
ES6’s elegance for client-
side development.

TDD, BDD, ATDD are
all methodologies that
enable incremental
design that is suitable
for Agile environments.
It seems that every day a
new xDD methodology
is born with the promise
of being better than what
came before. Should
you use behaviour-
driven tests or plain
old unit tests? Which
methodology is better?
And how exactly
would it benefit the
development life cycle?
In this session, Dror
will help to sort out the
various methodologies
– explaining where they
came from, the tools
they use, and discussing
how and when to use
each one.

As more and more of
our applications move
on to the web, security
becomes even more
critical. Good security,
however, has to be built
in, not tacked on as an
afterthought. In this
session, Allen will give
you an overview of what
it means to make an
application secure. He’ll
cover topics such as
security architectures,
code and design review,
penetration testing, risk
analysis and risk-based
testing, security-related
requirements, static
analysis, abuse cases,
security operations
and crypto.

Hekaton is the Greek
word for 100 – and the
goal of In-Memory
OLTP in SQL Server
2014 is to improve query
performance up to 100
times. In this session,
Klaus will look inside
the case of Hekaton
and the multiversion
concurrency control
(MVCC) principles
on which Hekaton
is built. He’ll start by
looking at the challenges
that can be solved by
Hekaton, especially
locking, blocking and
latching within SQL
Server. Based on this
foundation, he’ll move
into the principles
of MVCC, and how
a storage engine and
transaction manager can
be built on that concept.

R is a free software
programming
language and software
environment for
statistical computing,
data mining and
graphics. Azure
Machine Learning
(Azure ML) is the new
Microsoft cloud service
and environment for
advanced data analysis,
which utilises the R
algorithms intensively.
In this session, Dejan
will introduce both R,
with RStudio IDE, and
Azure ML.

Retrospectives are a
key tool in the Agile
toolkit, but they aren’t
easy. In fact, it’s not
just retrospectives.
Teams need to learn
to talk, discuss and
reflect together over
many things. Good
conversation makes
for good software.
Retrospective
dialogue sheets can
help overcome these
problems. In this
hands-on session,
in which everyone
will get the chance to
work with a dialogue
sheet, discovering
what one is and how
to use it, Allan will
discuss some of the ways
teams are using them
and look to the future.

With the introduction
of the iPhone 6 and 6+,
we now have several
form factors to consider
when designing our
iOS applications. In this
session, Mark will focus
on the designer and
layout features Apple
has included in iOS to
help you create a single,
unified storyboard that
is capable of working
with all variations of
iOS. This will include
layout constraints (auto
layout), size classes,
unified storyboards
and the updated
UISplitViewController.

In this session, Seb will
demonstrate some key
techniques that help
decompose large
problems. Decomposing
problems is a skill all
software developers
need, but we’re often not
very good at. Whether it’s
stories that take longer
than an iteration, or
features that can’t be
delivered in the expected
release, we’ve all seen the
problems that tackling
an over-large problem
can cause. We’ll work
through two detailed
examples to demonstrate
the value of delivering
small, low-fidelity pieces
of work early rather than
prematurely focusing
on fully-polished
final version.

 Swift is Apple’s newest
language for building
native, high performance
applications for both iOS
and OS X. This session
will introduce you to
this exciting language.
Developers with a
background in either C#
or Python will see many
similarities. Almost
everyone will find Swift a
much more comfortable
and inviting language
when compared to
Objective C or C. Come
and learn why it’s now
fun to develop (natively)
for iOS and OS X.

DevWeek_2015_Brochure.indd 7 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

8 | | | | 9

ø

We’ll never be able to
understand large-scale
systems from a single
snapshot of the code.
Instead, we need to
understand how the
code evolved and how
the people who work
on it are organised. We
also need strategies
that let us find design
issues and uncover
hidden dependencies
between both code and
people. Where do you
find such strategies if
not within the field of
criminal psychology?
In this session, Adam
will use this approach
to predict bugs, detect
architectural decay and
find the code that is most
expensive to maintain.

ASP.NET Identity is the
new and comprehensive
membership system for
the whole ASP.NET
platform, including Web
API and SignalR. Similar
in many ways to the
popular simple
membership provider,
ASP.NET Identity goes
well beyond in a number
of aspects: replaceable
storage, flexible
representation of user
profiles, external logins,
claims-based
authentication and role
providers. Dino will use
the Identity API to set
up social authentication
via Facebook and
Twitter, and to collect
any user information
made available by
social networks.

Inspired by the success
of companies such as
Amazon and Netflix,
many organisations
are moving rapidly
towards microservice
architectures. This
style of architecture is
important because it’s
the first architecture
to fully embrace the
Continuous Delivery
and DevOps revolutions.
In this session, Neal will
cover the motivations for
building a microservice
architecture, some
considerations you must
make before starting
(such as transactions
versus eventual
consistency), how
to determine service
partition boundaries,
and ten tips for success.

In the last couple of years,
we’ve seen the rise of
client-side JavaScript
frameworks. From almost
nothing, now we have at
least a dozen to choose
from. One of the new kids
in the block, AngularJS,
comes straight from the
Google o�ces and tries
to stand out from the
crowd with a complete
set of tools and utilities.
Some are very powerful
and try to ease your
way towards your SPA
web site. In this session,
Shay will go through
the di�erent features
of AngularJS and see
what makes it one of the
most popular JavaScript
frameworks out there.

Recently, there has
been a lot of talk
around IoT, M2M,
big data and similar
topics. It’s important
to understand how we
can take advantage of
these concepts, and how
they can help us achieve
our goals. Fortunately,
Microsoft has some
solutions for us. These
are Azure Event Hubs,
Azure Stream Analytics
and Azure Intelligence
Systems Service (ISS).
In this session, Nuno
will explore these three
topics, demonstrate
their interconnectivity,
and show how they
provide the perfect
answer for our next-
generation solutions
and interactions.

The great promise of the
NoSQL databases has
been their ability to scale
out rather than scaling
up. In this session,
Michael will look at a
concrete example of
scaling one of the most
generally useful and
most widely deployed
NoSQL database:
MongoDB. He’ll explore
why you might need
to scale out, and you’ll
see the full spectrum
of choices for scaling
(replication, sharding,
geo-replication, etc).
NoSQL document
databases typically
outperform RDBMSes
on single servers but
with the ability to
scale out they can truly
achieve an entirely new
level of performance.

Discover the scalability
bottlenecks for your
.NET applications in
Microsoft Azure, and
how you can improve
their scalability with
distributed caching.
This session provides
a quick overview of
scalability bottlenecks,
and answers some key
questions: What is
distributed caching and
why is it the answer in
Microsoft Azure? Where
in your application can
you use distributed
caching? What are some
important features in
a distributed cache?
You’ll also see hands-on
examples of using a
distributed cache.

JavaScript, the lingua
franca of the web, is
incredibly freeform and
therefore hard to get
right. We’ve all hacked
JavaScript, but what
do you need to know
when you are doing big
and complex JavaScript
projects? This isn’t your
Dad’s browser, y’know!
So you have written
JavaScript, but want to
go beyond the basics? In
this session, Sahil will
show you the JavaScript
concepts that every
modern JavaScript
developer needs to know.

In 1968, CACM
published a letter from
Edgar Dijkstra, called
“Go To statement
considered harmful”.
In it, he explained why
most bugs in programs
were caused by Gotos,
and appealed for
Goto to be expunged
from programming
languages. But Goto has
a twin brother, which is
responsible for nearly
every bug that appears
in our programs today.
That twin is If. In this
session, Jules revisits
Dijkstra’s original
explanation to show
why If and Goto have
the same pathology, and
how you can avoid it.

In today’s competitive
landscape, a stellar user
experience is a strong
product di�erentiator
and enabler of market
success. Companies
hope to get to this
“Promised Land”
where their own sta�
deploys mature UX
design practices, their
customers are happy,
and their market share
and profits increase.
No one ever said that
this journey to the
Promised Land is easy
– a lot of companies
have tried and failed.
In this inspirational
overview session, Tobias
will show the path and
identify what strategic
elements are critical
to successful design.

Making complex
decisions in software
design involves
balancing many factors,
and maintaining
that balance can be
challenging. By opening
up the decision process
for evolution, we can
harness the insight
of fellow developers,
communicate plans and
designs more e�ectively,
and produce a useful
record of the work we do.
In this session, Austin
will look at a specific
technique: Open Design
Proposals. He’ll examine
implementations of this
approach, see why it’s
e�ective, and show how
development teams can
use it to manage their
own decision making.

Make no mistake: data
science can be hard,
but it can also be fun. In
this session, Gary will
introduce you to classic
and Bayesian statistics
and machine learning, all
through the medium of
predicting horse-racing
results. He’ll explore a
number of techniques
for making such
predictions and finish by
combining them into a
powerful “mixed model”
prediction engine that’s
sure to pick the next big
winner. This session
won’t only improve your
knowledge, it’ll improve
your bank balance too!
(Note: Session may not
improve bank balance.)

Many-core processors
and computing
platforms will be
ubiquitous in the future:
from multi-core and
many-core CPUs to
integrated GPUs to
compute clusters in
the cloud, it’s the new
parallel universe for
software developers.
In this session, you
will learn the tools,
techniques and best
practices available to
C/C++ developers to
make sure your code is
ready today to run with
maximum performance
and reliability in this
new parallel universe.

Developing large apps
is di�cult. Ensuring
that code is consistent,
maintainable, testable
and has an architecture
that enables change is
essential. When it comes
to large server-focused
apps, solutions to some
of these challenges have
been tried and tested.
But, how do you achieve
this when building
HTML5 single-page
apps? In this session,
Phil will highlight
signs to watch out for
as your HTML5 SPA
grows, and patterns
and practices to help
you avoid problems.
He will also explain
the architecture that
their HTML5 apps
have that is core to
ensuring they scale.

In this session, Sasha
will lead us through
a sample of the new
Visual Studio 2015
features, ranging from
developer productivity
to low-level C++ code
optimisations. In a
series of quick-paced
demos, we will show
how Visual Studio 2015
makes key diagnostics
experiences easier,
improves IntelliTrace
analysis, helps
developer collaboration
and productivity, and
produces higher-quality
and faster code for
both managed (with
.NET Native) and C++
applications. If you’re
using Visual Studio,
you can’t a�ord to
miss this talk!

From big consumer
success stories, such as
the Nest Thermostat, to
more o�eat monitoring
systems, such as
Botanicalls (which lets
your plant call you when
it is thirsty), your things
are finding their own
voice through small but
powerful embedded
microcontrollers. The
market for the Internet
of Things (IoT) and
wearables is exploding.
But what are your
options for getting
started with making
physical things when
you’re more used to
writing software? In this
session, Pearl will go
through a few hardware
options that are great
for hobbyists and rapid
prototyping.

The dependency
injection/inversion
of control design
pattern is an important
technique that helps
to write testable and
maintainable code. In
this session, Ed will
debunk the myth that
it’s hard to understand
or only for “enterprise
development”, and
demonstrate how to use
it in everyday code. This
demo-led session will
discuss the rationale
behind dependency
injection, demonstrate
injection with and
without a dependency
container, as well
as writing a simple
container from scratch.

There are many reasons
why asynchronous
messaging should
be introduced in
applications, as well
as many approaches
in incorporating
messaging subsystems.
In some cases, intensive
workloads need to be
pushed to back-end
processing, or perhaps
specialised (and often
expensive) resources
need to be utilised
to perform certain
operations. In this
session, Mike will cover
several scenarios where
introducing messaging
can help, discuss a few
messaging patterns, and
look at abstracting your
messaging subsystem to
guard against evolving
technology and designs.

Although not yet fully
mainstream, functional
programming has
finally reached a critical
mass of awareness
among developers.
The problem, however,
is that many developers
are up against an even
greater critical mass
of existing code. Much
of this code purports
to be object oriented,
but beyond the use
of the class keyword,
falls somewhat short
of putting the
OO to good use.
Many techniques
identified as functional
have broader
applicability. In this
session, Kevlin will
explore how some
FP habits can be
incorporated into
OOP practice.

We’ve all been writing
lots of JavaScript code
lately. But JavaScript
is incredibly free
form, and that sharp
double-edged sword can
also make debugging
JavaScript errors a lot
more di�cult. The new
operating system is the
browser, and complex
JavaScript pages cannot
ignore performance,
or their unpredictable
behaviour under
di�erent bandwidths.
In this session, Sahil
will show you some
really useful debugging
techniques and
demonstrate how to
use each browser for
its best capabilities.
Ninety minutes spent
here will save you hours
in your day job.

iBeacons are taking the
world by storm – from
retail stores to major
sporting events, you’ll
soon be finding iBeacons
just about everywhere.
This gives you the ability
to enable any number of
device proximity-based
scenarios that were
never before possible.
In this session, James
will explain what an
iBeacon is, how they
work, how you would
want to use them, and
how to get started
making apps in both
Android and iOS. All
demonstrations will be
coded in C#, but will be
applicable to any iOS or
Android developer in
any language.

®8 | ® | | ®

In this session, Oren
will explain all there is
to know about end-to-
end test automation.
Starting with the basics
and a comparison to
unit testing, he will then
drill down into what is
considered uncharted
territory for many
developers. You will
learn the best practises
and design patterns,
common pitfalls, and
– most importantly
– the full ecosystem
and how it connects to
your existing toolchain.
You will learn about
di�erent approaches to
UI verifications, and see
real industry use cases
and bugs.

DevWeek_2015_Brochure.indd 8 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

8 | | | | 9

ø

We’ll never be able to
understand large-scale
systems from a single
snapshot of the code.
Instead, we need to
understand how the
code evolved and how
the people who work
on it are organised. We
also need strategies
that let us find design
issues and uncover
hidden dependencies
between both code and
people. Where do you
find such strategies if
not within the field of
criminal psychology?
In this session, Adam
will use this approach
to predict bugs, detect
architectural decay and
find the code that is most
expensive to maintain.

ASP.NET Identity is the
new and comprehensive
membership system for
the whole ASP.NET
platform, including Web
API and SignalR. Similar
in many ways to the
popular simple
membership provider,
ASP.NET Identity goes
well beyond in a number
of aspects: replaceable
storage, flexible
representation of user
profiles, external logins,
claims-based
authentication and role
providers. Dino will use
the Identity API to set
up social authentication
via Facebook and
Twitter, and to collect
any user information
made available by
social networks.

Inspired by the success
of companies such as
Amazon and Netflix,
many organisations
are moving rapidly
towards microservice
architectures. This
style of architecture is
important because it’s
the first architecture
to fully embrace the
Continuous Delivery
and DevOps revolutions.
In this session, Neal will
cover the motivations for
building a microservice
architecture, some
considerations you must
make before starting
(such as transactions
versus eventual
consistency), how
to determine service
partition boundaries,
and ten tips for success.

In the last couple of years,
we’ve seen the rise of
client-side JavaScript
frameworks. From almost
nothing, now we have at
least a dozen to choose
from. One of the new kids
in the block, AngularJS,
comes straight from the
Google o�ces and tries
to stand out from the
crowd with a complete
set of tools and utilities.
Some are very powerful
and try to ease your
way towards your SPA
web site. In this session,
Shay will go through
the di�erent features
of AngularJS and see
what makes it one of the
most popular JavaScript
frameworks out there.

Recently, there has
been a lot of talk
around IoT, M2M,
big data and similar
topics. It’s important
to understand how we
can take advantage of
these concepts, and how
they can help us achieve
our goals. Fortunately,
Microsoft has some
solutions for us. These
are Azure Event Hubs,
Azure Stream Analytics
and Azure Intelligence
Systems Service (ISS).
In this session, Nuno
will explore these three
topics, demonstrate
their interconnectivity,
and show how they
provide the perfect
answer for our next-
generation solutions
and interactions.

The great promise of the
NoSQL databases has
been their ability to scale
out rather than scaling
up. In this session,
Michael will look at a
concrete example of
scaling one of the most
generally useful and
most widely deployed
NoSQL database:
MongoDB. He’ll explore
why you might need
to scale out, and you’ll
see the full spectrum
of choices for scaling
(replication, sharding,
geo-replication, etc).
NoSQL document
databases typically
outperform RDBMSes
on single servers but
with the ability to
scale out they can truly
achieve an entirely new
level of performance.

Discover the scalability
bottlenecks for your
.NET applications in
Microsoft Azure, and
how you can improve
their scalability with
distributed caching.
This session provides
a quick overview of
scalability bottlenecks,
and answers some key
questions: What is
distributed caching and
why is it the answer in
Microsoft Azure? Where
in your application can
you use distributed
caching? What are some
important features in
a distributed cache?
You’ll also see hands-on
examples of using a
distributed cache.

JavaScript, the lingua
franca of the web, is
incredibly freeform and
therefore hard to get
right. We’ve all hacked
JavaScript, but what
do you need to know
when you are doing big
and complex JavaScript
projects? This isn’t your
Dad’s browser, y’know!
So you have written
JavaScript, but want to
go beyond the basics? In
this session, Sahil will
show you the JavaScript
concepts that every
modern JavaScript
developer needs to know.

In 1968, CACM
published a letter from
Edgar Dijkstra, called
“Go To statement
considered harmful”.
In it, he explained why
most bugs in programs
were caused by Gotos,
and appealed for
Goto to be expunged
from programming
languages. But Goto has
a twin brother, which is
responsible for nearly
every bug that appears
in our programs today.
That twin is If. In this
session, Jules revisits
Dijkstra’s original
explanation to show
why If and Goto have
the same pathology, and
how you can avoid it.

In today’s competitive
landscape, a stellar user
experience is a strong
product di�erentiator
and enabler of market
success. Companies
hope to get to this
“Promised Land”
where their own sta�
deploys mature UX
design practices, their
customers are happy,
and their market share
and profits increase.
No one ever said that
this journey to the
Promised Land is easy
– a lot of companies
have tried and failed.
In this inspirational
overview session, Tobias
will show the path and
identify what strategic
elements are critical
to successful design.

Making complex
decisions in software
design involves
balancing many factors,
and maintaining
that balance can be
challenging. By opening
up the decision process
for evolution, we can
harness the insight
of fellow developers,
communicate plans and
designs more e�ectively,
and produce a useful
record of the work we do.
In this session, Austin
will look at a specific
technique: Open Design
Proposals. He’ll examine
implementations of this
approach, see why it’s
e�ective, and show how
development teams can
use it to manage their
own decision making.

Make no mistake: data
science can be hard,
but it can also be fun. In
this session, Gary will
introduce you to classic
and Bayesian statistics
and machine learning, all
through the medium of
predicting horse-racing
results. He’ll explore a
number of techniques
for making such
predictions and finish by
combining them into a
powerful “mixed model”
prediction engine that’s
sure to pick the next big
winner. This session
won’t only improve your
knowledge, it’ll improve
your bank balance too!
(Note: Session may not
improve bank balance.)

Many-core processors
and computing
platforms will be
ubiquitous in the future:
from multi-core and
many-core CPUs to
integrated GPUs to
compute clusters in
the cloud, it’s the new
parallel universe for
software developers.
In this session, you
will learn the tools,
techniques and best
practices available to
C/C++ developers to
make sure your code is
ready today to run with
maximum performance
and reliability in this
new parallel universe.

Developing large apps
is di�cult. Ensuring
that code is consistent,
maintainable, testable
and has an architecture
that enables change is
essential. When it comes
to large server-focused
apps, solutions to some
of these challenges have
been tried and tested.
But, how do you achieve
this when building
HTML5 single-page
apps? In this session,
Phil will highlight
signs to watch out for
as your HTML5 SPA
grows, and patterns
and practices to help
you avoid problems.
He will also explain
the architecture that
their HTML5 apps
have that is core to
ensuring they scale.

In this session, Sasha
will lead us through
a sample of the new
Visual Studio 2015
features, ranging from
developer productivity
to low-level C++ code
optimisations. In a
series of quick-paced
demos, we will show
how Visual Studio 2015
makes key diagnostics
experiences easier,
improves IntelliTrace
analysis, helps
developer collaboration
and productivity, and
produces higher-quality
and faster code for
both managed (with
.NET Native) and C++
applications. If you’re
using Visual Studio,
you can’t a�ord to
miss this talk!

From big consumer
success stories, such as
the Nest Thermostat, to
more o�eat monitoring
systems, such as
Botanicalls (which lets
your plant call you when
it is thirsty), your things
are finding their own
voice through small but
powerful embedded
microcontrollers. The
market for the Internet
of Things (IoT) and
wearables is exploding.
But what are your
options for getting
started with making
physical things when
you’re more used to
writing software? In this
session, Pearl will go
through a few hardware
options that are great
for hobbyists and rapid
prototyping.

The dependency
injection/inversion
of control design
pattern is an important
technique that helps
to write testable and
maintainable code. In
this session, Ed will
debunk the myth that
it’s hard to understand
or only for “enterprise
development”, and
demonstrate how to use
it in everyday code. This
demo-led session will
discuss the rationale
behind dependency
injection, demonstrate
injection with and
without a dependency
container, as well
as writing a simple
container from scratch.

There are many reasons
why asynchronous
messaging should
be introduced in
applications, as well
as many approaches
in incorporating
messaging subsystems.
In some cases, intensive
workloads need to be
pushed to back-end
processing, or perhaps
specialised (and often
expensive) resources
need to be utilised
to perform certain
operations. In this
session, Mike will cover
several scenarios where
introducing messaging
can help, discuss a few
messaging patterns, and
look at abstracting your
messaging subsystem to
guard against evolving
technology and designs.

Although not yet fully
mainstream, functional
programming has
finally reached a critical
mass of awareness
among developers.
The problem, however,
is that many developers
are up against an even
greater critical mass
of existing code. Much
of this code purports
to be object oriented,
but beyond the use
of the class keyword,
falls somewhat short
of putting the
OO to good use.
Many techniques
identified as functional
have broader
applicability. In this
session, Kevlin will
explore how some
FP habits can be
incorporated into
OOP practice.

We’ve all been writing
lots of JavaScript code
lately. But JavaScript
is incredibly free
form, and that sharp
double-edged sword can
also make debugging
JavaScript errors a lot
more di�cult. The new
operating system is the
browser, and complex
JavaScript pages cannot
ignore performance,
or their unpredictable
behaviour under
di�erent bandwidths.
In this session, Sahil
will show you some
really useful debugging
techniques and
demonstrate how to
use each browser for
its best capabilities.
Ninety minutes spent
here will save you hours
in your day job.

iBeacons are taking the
world by storm – from
retail stores to major
sporting events, you’ll
soon be finding iBeacons
just about everywhere.
This gives you the ability
to enable any number of
device proximity-based
scenarios that were
never before possible.
In this session, James
will explain what an
iBeacon is, how they
work, how you would
want to use them, and
how to get started
making apps in both
Android and iOS. All
demonstrations will be
coded in C#, but will be
applicable to any iOS or
Android developer in
any language.

®8 | ® | | ®

In this session, Oren
will explain all there is
to know about end-to-
end test automation.
Starting with the basics
and a comparison to
unit testing, he will then
drill down into what is
considered uncharted
territory for many
developers. You will
learn the best practises
and design patterns,
common pitfalls, and
– most importantly
– the full ecosystem
and how it connects to
your existing toolchain.
You will learn about
di�erent approaches to
UI verifications, and see
real industry use cases
and bugs.

DevWeek_2015_Brochure.indd 9 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

10 | | | | 11

You know Bookmark
Lookups in SQL
Server? You like their
flexibility to retrieve
data? If you do, then you
should be warned that
you are dealing with
the most dangerous
concept in SQL Server!
Bookmark Lookups
can lead to massive
performance losses
that will devastate your
CPU and I/O resources!
In this session, Klaus
will provide a basic
understanding of
Bookmark Lookups and
how they are used by
SQL Server. After laying
out the foundations,
he’ll talk in more detail
about the various
performance problems
they can introduce.

JavaScript is the
scripting glue that
holds the web together
– largely because of
its flexibility. This
flexibility also means
that it can be di�cult to
manage, especially in
large-scale applications.
In this session, using
real-world examples,
Ed will explore some
of the problems with
client-side JavaScript
development as a
motivating example and
introduce TypeScript as
a way of solving some of
these issues. He’ll also
explore how existing
JavaScript codebases
can be targeted by
TypeScript and how it
can be integrated into
build systems.

Yesterday’s best practice
is tomorrow’s anti-
pattern. Architecture
doesn’t exist in a
vacuum: a painful
lesson developers who
built logically sound
but operationally
cumbersome
architectures
learned. Continuous
Delivery is a process
for automating the
production-readiness
of your application every
time a change occurs
to code, infrastructure
or configuration. In
this session, Neal will
take a deep dive into
the intersection of the
architect role and the
engineering practices in
Continuous Delivery.

The C++ standard
library dates back to the
1990s, but that doesn’t
mean there aren’t new
and exciting frameworks
to use in your C++
application. In this
session, Sasha will look
at some brand-new
and some existing C++
libraries that can speed
up C++ cross-platform
development rapidly.
Some of the libraries
we might cover include:
Casablanca (C++ REST
SDK), Cinder (creative
coding), Boost (general-
purpose), Google Test
(unit testing), SOCI
(modern database
access) and many others.
There’s something
for everyone!

In an ideal world,
front-end developers
don’t need to worry
about visual design
because they get
specs and assets from
professionally trained
designers. The reality
is that developers often
need to make their own
decisions about how to
make the UI attractive.
In this session, Tobias
will provide a solid
base knowledge about
what constitutes
attractiveness and what
design principles can
be applied to boost the
visual appeal of UIs. By
the time you leave, you’ll
be ready to step up to the
mark when designers
are nowhere to be found!

Web Components are
touted as the future of
web development. In this
session, Phil will explain
what Web Components
are, the state of native
support in web browsers,
what your options are for
building componentised
web apps right now
using AngularJS, Ember,
Knockout or React, and
why Web Components
probably are the future of
web development. He’ll
also cover the benefits
of a component-based
architecture and how
it helps when building
JavaScript apps, as well
as how components
can communicate
in a loosely coupled
way, and why.

As the mobile landscape
continues to expand
and evolve, managing
multiple codebases in
di�erent programming
languages and
development tools
can quickly become a
nightmare. Wouldn’t
you love to build native
UIs for iOS, Android and
Windows Phone from
a single codebase? In
this session, James will
show how to leverage the
awesome features of C#
and combine them with
Xamarin technology to
create beautiful, native,
cross-platform, mobile
apps from a shared C#
codebase, with the tools
that you love.

Data mining is gaining
popularity as the most
advanced data analysis
technique. With modern
data mining engines,
products and packages,
such as SQL Server
Analysis Services
(SSAS) and R, data
mining has become a
black box. It’s possible to
use data mining without
knowing how it works,
but this can lead to many
problems, such as using
the wrong algorithm for
a task, misinterpretation
of the results and more.
In this session (and Part
2, at 11.30), Dejan will
explain how the most
popular data mining
algorithms work and
when to use each one.

People think, remember
and reason in a very
di�erent way from that in
which code is presented.
So how should code
look to make it both
easier to understand and
maintain? To see what
really works, we need to
look across languages
and paradigms. In this
session, Adam will
start with common
problematic constructs
such as null references,
surprising corner-
cases and repetitive
code, and discuss the
cognitive costs and
consequences of each.
He’ll then apply ideas
from object-orientation,
functional programming
and lesser-known array
languages to explore
better approaches.

In this special two-day
workshop, Andrew and
Richard will take you
through the core skills
required to successfully
develop async and
multithreaded code,
both in the .NET and
web worlds. Not only do
we cover the core APIs,
but also how they are
used e�ectively, tested
and debugged.

For a full description
of the workshop, please
see Page 20

®8 | ® | | ®

Every now and again,
every professional
developer faces a
program that he or she
has trouble writing. Try
to imagine an algorithm
that has to di�erentiate
a dog from a cat. They
come in di�erent shapes
and sizes, and there is
no single feature that
could discriminate
between the two. Any
attempt to code that
algorithm manually
using deep-nested
“if/else” branches is
doomed. Human beings,
on the other hand, have
no trouble with this task.
In this session, Pavel will
introduce the basics of
an artificial intelligence-
based approach to
solving these problems.

When developers are
tasked with improving
UX, their focus tends
to be on the screen:
elements, interactions,
workflow, often
accompanied by the
worrying cry, “I’m
not a UI designer!”
Fortunately, Joe has
good news: you can
still design great user
experiences without a
shred of visual design
talent. In this session,
Joe will show you
how changing the
way you think about
features, functions and
implementations can
make a massive, positive
change in the experience
people have with your
UI and your product.

The Knockout
framework is
a standalone
implementation of the
MVVM (Model-View-
ViewModel) pattern,
which is one of the
best user-interface
architectures for
web applications. It
provides an alternative
to AngularJS – more
limited in scope but
smaller and, in some
contexts, faster. In this
session, Allen will look at
Knockout’s architecture
and how to leverage
that architecture to
build highly interactive
web-application user
interfaces. The session
will include several code
(JavaScript) examples.

Writing unit tests is
hard, isn’t it? You need an
entire set of tools just to
start. One of the crucial
decisions when building
this set is picking up a
mocking framework.
But beware – the
mocking framework
you choose has the
ability to make or break
you! In this session,
Dror – at one time a
mocking framework
developer – will cover
the capabilities and
functionality of the
leading frameworks,
showing the good and
the bad of the di�erent
options (both free
and commercial), and
making them battle to
the death!

In this session, Shai will
deliver an overview of
the steps required in
order to build JavaScript
apps and get them
ready for deployment.
He’ll cover build
theory, asking “Why
build in JS?” He’ll also
talk about the build steps
and then jump to Grunt,
explaining what it is and
providing a live demo.
Finally, Shai will cover
the sca�olding tool,
Yeoman. This session
is intended to be both
funny and informative,
so get ready to have a
good time while picking
up some essential tips to
make your day job that
much easier.

NoSQL is a hot topic
in the tech industry
today. But what exactly
is NoSQL and should I
use it to build my next
application? In this
session, Michael will
dig into why NoSQL
databases are sweeping
the industry and discuss
the trade-o�s between
the various types
(key-value stores vs
document databases,
for example). He will
explore the most broadly
applicable variant of
NoSQL, document
databases, through
hands-on demos with
the most popular
and successful of the
document databases,
MongoDB.

Data mining is gaining
popularity as the most
advanced data analysis
technique. With modern
data mining engines,
products and packages,
such as SQL Server
Analysis Services
(SSAS) and R, data
mining has become a
black box. It is possible to
use data mining without
knowing how it works,
but this can lead to many
problems, such as using
the wrong algorithm for
a task, misinterpretation
of the results and more.
In this session (following
on from Part 1, at 09:30),
Dejan will explain how
the most popular data
mining algorithms
work and when to
use each one.

For too long, domain-
driven design (DDD)
has been sold as the
ideal solution for very
complex problems
that only a few teams
are actually facing.
While technically
correct, this statement
sparked a number of
misconceptions. In
fact, DDD is only an
approach to the design
of software systems and
is driven by the domain
of the problem. In this
session, Dino will clear
the ground around
DDD, emphasising
the theoretical pillars
of the approach:
ubiquitous language
and bounded context.

Mobile development
has exploded, and
everyone has an idea
they want to try out.
But bootstrapping a
mobile app doesn’t
always seem that easy.
Consumers demand
slick user experiences
and the ability to share
data across a plethora of
devices and platforms,
while we’re trying to
get a minimal viable
product out the door
to test our ideas as fast
as possible. Thankfully,
Azure has powerful
features available to
help. In this session,
Mike will take a practical
look at five features of
Azure that are useful
for mobile developers
of any platform.

JavaScript, by its nature,
makes it di©cult to
write maintainable code.
HTML, by its nature,
is loosely structured.
AngularJS fixes both of
those. It’s a structural
framework for dynamic
web apps, allowing you to
extend HTML’s syntax,
enabling you to write
powerful, maintainable
applications succinctly.

In this workshop,
Sahil will build on your
existing knowledge of
JavaScript and teach
you the ins and outs of
AngularJS. There are
plenty of examples,
which will walk
you through a basic
introduction, models,
controllers and views in
Angular, templates and
databinding, services
and dependency
injection, directives,
routing and single-page
applications.

For a full description
of the workshop, please
see Page 21

DevWeek_2015_Brochure.indd 10 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

10 | | | | 11

You know Bookmark
Lookups in SQL
Server? You like their
flexibility to retrieve
data? If you do, then you
should be warned that
you are dealing with
the most dangerous
concept in SQL Server!
Bookmark Lookups
can lead to massive
performance losses
that will devastate your
CPU and I/O resources!
In this session, Klaus
will provide a basic
understanding of
Bookmark Lookups and
how they are used by
SQL Server. After laying
out the foundations,
he’ll talk in more detail
about the various
performance problems
they can introduce.

JavaScript is the
scripting glue that
holds the web together
– largely because of
its flexibility. This
flexibility also means
that it can be di�cult to
manage, especially in
large-scale applications.
In this session, using
real-world examples,
Ed will explore some
of the problems with
client-side JavaScript
development as a
motivating example and
introduce TypeScript as
a way of solving some of
these issues. He’ll also
explore how existing
JavaScript codebases
can be targeted by
TypeScript and how it
can be integrated into
build systems.

Yesterday’s best practice
is tomorrow’s anti-
pattern. Architecture
doesn’t exist in a
vacuum: a painful
lesson developers who
built logically sound
but operationally
cumbersome
architectures
learned. Continuous
Delivery is a process
for automating the
production-readiness
of your application every
time a change occurs
to code, infrastructure
or configuration. In
this session, Neal will
take a deep dive into
the intersection of the
architect role and the
engineering practices in
Continuous Delivery.

The C++ standard
library dates back to the
1990s, but that doesn’t
mean there aren’t new
and exciting frameworks
to use in your C++
application. In this
session, Sasha will look
at some brand-new
and some existing C++
libraries that can speed
up C++ cross-platform
development rapidly.
Some of the libraries
we might cover include:
Casablanca (C++ REST
SDK), Cinder (creative
coding), Boost (general-
purpose), Google Test
(unit testing), SOCI
(modern database
access) and many others.
There’s something
for everyone!

In an ideal world,
front-end developers
don’t need to worry
about visual design
because they get
specs and assets from
professionally trained
designers. The reality
is that developers often
need to make their own
decisions about how to
make the UI attractive.
In this session, Tobias
will provide a solid
base knowledge about
what constitutes
attractiveness and what
design principles can
be applied to boost the
visual appeal of UIs. By
the time you leave, you’ll
be ready to step up to the
mark when designers
are nowhere to be found!

Web Components are
touted as the future of
web development. In this
session, Phil will explain
what Web Components
are, the state of native
support in web browsers,
what your options are for
building componentised
web apps right now
using AngularJS, Ember,
Knockout or React, and
why Web Components
probably are the future of
web development. He’ll
also cover the benefits
of a component-based
architecture and how
it helps when building
JavaScript apps, as well
as how components
can communicate
in a loosely coupled
way, and why.

As the mobile landscape
continues to expand
and evolve, managing
multiple codebases in
di�erent programming
languages and
development tools
can quickly become a
nightmare. Wouldn’t
you love to build native
UIs for iOS, Android and
Windows Phone from
a single codebase? In
this session, James will
show how to leverage the
awesome features of C#
and combine them with
Xamarin technology to
create beautiful, native,
cross-platform, mobile
apps from a shared C#
codebase, with the tools
that you love.

Data mining is gaining
popularity as the most
advanced data analysis
technique. With modern
data mining engines,
products and packages,
such as SQL Server
Analysis Services
(SSAS) and R, data
mining has become a
black box. It’s possible to
use data mining without
knowing how it works,
but this can lead to many
problems, such as using
the wrong algorithm for
a task, misinterpretation
of the results and more.
In this session (and Part
2, at 11.30), Dejan will
explain how the most
popular data mining
algorithms work and
when to use each one.

People think, remember
and reason in a very
di�erent way from that in
which code is presented.
So how should code
look to make it both
easier to understand and
maintain? To see what
really works, we need to
look across languages
and paradigms. In this
session, Adam will
start with common
problematic constructs
such as null references,
surprising corner-
cases and repetitive
code, and discuss the
cognitive costs and
consequences of each.
He’ll then apply ideas
from object-orientation,
functional programming
and lesser-known array
languages to explore
better approaches.

In this special two-day
workshop, Andrew and
Richard will take you
through the core skills
required to successfully
develop async and
multithreaded code,
both in the .NET and
web worlds. Not only do
we cover the core APIs,
but also how they are
used e�ectively, tested
and debugged.

For a full description
of the workshop, please
see Page 20

®8 | ® | | ®

Every now and again,
every professional
developer faces a
program that he or she
has trouble writing. Try
to imagine an algorithm
that has to di�erentiate
a dog from a cat. They
come in di�erent shapes
and sizes, and there is
no single feature that
could discriminate
between the two. Any
attempt to code that
algorithm manually
using deep-nested
“if/else” branches is
doomed. Human beings,
on the other hand, have
no trouble with this task.
In this session, Pavel will
introduce the basics of
an artificial intelligence-
based approach to
solving these problems.

When developers are
tasked with improving
UX, their focus tends
to be on the screen:
elements, interactions,
workflow, often
accompanied by the
worrying cry, “I’m
not a UI designer!”
Fortunately, Joe has
good news: you can
still design great user
experiences without a
shred of visual design
talent. In this session,
Joe will show you
how changing the
way you think about
features, functions and
implementations can
make a massive, positive
change in the experience
people have with your
UI and your product.

The Knockout
framework is
a standalone
implementation of the
MVVM (Model-View-
ViewModel) pattern,
which is one of the
best user-interface
architectures for
web applications. It
provides an alternative
to AngularJS – more
limited in scope but
smaller and, in some
contexts, faster. In this
session, Allen will look at
Knockout’s architecture
and how to leverage
that architecture to
build highly interactive
web-application user
interfaces. The session
will include several code
(JavaScript) examples.

Writing unit tests is
hard, isn’t it? You need an
entire set of tools just to
start. One of the crucial
decisions when building
this set is picking up a
mocking framework.
But beware – the
mocking framework
you choose has the
ability to make or break
you! In this session,
Dror – at one time a
mocking framework
developer – will cover
the capabilities and
functionality of the
leading frameworks,
showing the good and
the bad of the di�erent
options (both free
and commercial), and
making them battle to
the death!

In this session, Shai will
deliver an overview of
the steps required in
order to build JavaScript
apps and get them
ready for deployment.
He’ll cover build
theory, asking “Why
build in JS?” He’ll also
talk about the build steps
and then jump to Grunt,
explaining what it is and
providing a live demo.
Finally, Shai will cover
the sca�olding tool,
Yeoman. This session
is intended to be both
funny and informative,
so get ready to have a
good time while picking
up some essential tips to
make your day job that
much easier.

NoSQL is a hot topic
in the tech industry
today. But what exactly
is NoSQL and should I
use it to build my next
application? In this
session, Michael will
dig into why NoSQL
databases are sweeping
the industry and discuss
the trade-o�s between
the various types
(key-value stores vs
document databases,
for example). He will
explore the most broadly
applicable variant of
NoSQL, document
databases, through
hands-on demos with
the most popular
and successful of the
document databases,
MongoDB.

Data mining is gaining
popularity as the most
advanced data analysis
technique. With modern
data mining engines,
products and packages,
such as SQL Server
Analysis Services
(SSAS) and R, data
mining has become a
black box. It is possible to
use data mining without
knowing how it works,
but this can lead to many
problems, such as using
the wrong algorithm for
a task, misinterpretation
of the results and more.
In this session (following
on from Part 1, at 09:30),
Dejan will explain how
the most popular data
mining algorithms
work and when to
use each one.

For too long, domain-
driven design (DDD)
has been sold as the
ideal solution for very
complex problems
that only a few teams
are actually facing.
While technically
correct, this statement
sparked a number of
misconceptions. In
fact, DDD is only an
approach to the design
of software systems and
is driven by the domain
of the problem. In this
session, Dino will clear
the ground around
DDD, emphasising
the theoretical pillars
of the approach:
ubiquitous language
and bounded context.

Mobile development
has exploded, and
everyone has an idea
they want to try out.
But bootstrapping a
mobile app doesn’t
always seem that easy.
Consumers demand
slick user experiences
and the ability to share
data across a plethora of
devices and platforms,
while we’re trying to
get a minimal viable
product out the door
to test our ideas as fast
as possible. Thankfully,
Azure has powerful
features available to
help. In this session,
Mike will take a practical
look at five features of
Azure that are useful
for mobile developers
of any platform.

JavaScript, by its nature,
makes it di©cult to
write maintainable code.
HTML, by its nature,
is loosely structured.
AngularJS fixes both of
those. It’s a structural
framework for dynamic
web apps, allowing you to
extend HTML’s syntax,
enabling you to write
powerful, maintainable
applications succinctly.

In this workshop,
Sahil will build on your
existing knowledge of
JavaScript and teach
you the ins and outs of
AngularJS. There are
plenty of examples,
which will walk
you through a basic
introduction, models,
controllers and views in
Angular, templates and
databinding, services
and dependency
injection, directives,
routing and single-page
applications.

For a full description
of the workshop, please
see Page 21

DevWeek_2015_Brochure.indd 11 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

12 | | | | 13

®8 | ® | | ®

One-day workshop
continues from the
morning session.

For a full description
of the workshop, please
see Page 21

Two-day workshop
continues from the
morning session.

For a full description
of the workshop, please
see Page 20

Is it good practice to
use uniqueidentifiers
as primary keys in SQL
Server? They have a
lot of pros for devs, but
DBAs just cry when
they see them enforced
by default as unique
clustered indexes.
In this session, Klaus
will cover the basics
of uniqueidentifiers:
why they are sometimes
bad and sometimes
good; and how to
discover if they a�ect
the performance of
your performance-
critical database.
If they are having a
negative impact, you
will also learn some best
practices you can use to
resolve those limitations
without changing your
underlying application.

(BIML) is a powerful
XML-based markup
language that allows
you to generate
SSIS packages
programmatically. Using
BIML along with C#,
you can create metadata-
driven packages, greatly
reducing development
time and increasing
consistency across the
team. In this session,
Dan will show you how
to automate your SSIS
package creation using
the power of BIML and
C#. You’ll see how to
create a template for
loading dimension tables
that will greatly increase
your productivity.

Although Git has rapidly
become almost a de facto
standard in recent years,
it can be intimidating
or confusing for those
transitioning from
other systems or those
new to using source
control. In this session,
Ed will explain how to
use Git e�ectively, how
to navigate your way
around a repository, and
how to work as part of a
team. He’ll attempt to cut
through the mystique
and demonstrate how
easy it can actually be
to use. Then he’ll go on
to show some of the
more advanced ways
of working with Git.

DevOps is commonly
believed to be
accomplished by having
the development sta�
collaborate more closely
with the operations
sta�. That’s definitely
necessary, but woefully
inadequate to achieve
the goal of faster and
better delivery in the
“last mile” of an Agile
shop. In this session,
Howard will discuss
the rationale behind
Continuous Delivery,
along with specific
practices to get you
started on making your
sprints toward customer
satisfaction less tiring
and more enjoyable for
everyone involved.

ASP.NET vNext is being
designed from the
bottom up to be a lean
and composable .NET
stack for building web
and cloud-based
applications. Envision
an ASP.NET stack
where MVC, Web API,
and web pages are all
merged into the same
framework, where you
have a server-optimised
version of ASP.NET
with a smaller memory
footprint. This is the new
ASP.NET vNext. In this
session, Ido will explore
the ecosystem of ASP.
NET vNext, its new
project system and
configuration system,
and how to use it to build
exciting web applications.

Every developer needs
a set of tools, especially
web developers that
bend under the pressure
of multiple languages,
environments, IDEs
and what not. One of the
most comprehensive
toolsets out there today
is Chrome Developer
Tools. It contains so
many amazing features
beyond the common
ones, and it’s just a
shame most developers
don’t know about
them! In this session,
Shay will tell you all
about the known and
less-known features
of Chrome Developer
Tools, and you’ll see
how your everyday
web development can
become easier with just
a few simple steps.

Internet of Things (IoT)
is here, and every day
a new sensor or device
starts to generate more
data. With that, more
and more machine-
to-machine (M2M)
communications start
to happen, which make
our solutions behave
di
erently and face new
issues. In this session,
Nuno will look at how
both of these new “buzz
words” are changing the
world we live in, from
fitbit to Google Glass
and smart watches. How
can we prepare for this?
How can we anticipate
and get some business
opportunities from it?
Join us and find out.

Speed is king on mobile
devices, embedded
systems, and even
run-of-the-mill
desktop applications
that need to start up
quickly and deliver
good performance on
low-power machines.
In this session, Sasha
will review a collection
of practical tips you
can use today to make
your .NET applications
faster. He’ll talk about
choosing the right
collection, improving
start-up times, reducing
memory pressure, and
many other techniques
for quickly improving
your app’s performance.

Visual Studio 2015, .NET
2015 and C# 6 are just
around the corner. The
new language features
have been out of the
bag for a while now,
but how do you apply
them e
ectively? How
do you refactor existing
code to be shorter and
sweeter? In this fast-
paced session, Sasha
will lead us through
experiments with the
new language features,
including expression-
bodied members,
enhancements to
automatic properties,
null propagation,
string interpolation
and many others.

Unit testing and end-to-
end (e2e) testing are the
tools to enforce stability
on applications. They
create an environment
that ensures our code
does what it was
designed to do. Recently,
web application
developers are looking
to identify the best
testing option, as their
applications are getting
increasingly large and
more complex. In this
session, Michael will
review two methods for
testing web applications
in di�erent JS-based
frameworks: the
unit-testing approach
and end-to-end
testing. He will also
review the benefit of
combining the two.

These days, testing
is considered a sexy
topic for programmers.
Who’d have thought
it? But what makes
for good unit tests
(GUTs)? There’s more
to e�ective unit testing
than just knowing the
assertion syntax of a
testing framework.
Testing represents a
form of communication
and, as such, it o�ers
multiple levels and
forms of feedback,
not just basic defect
detection. E�ective
unit testing requires
an understanding of
what forms of feedback
and communication
are o�ered by tests. In
this session, Kevlin will
explore exactly what
makes a good unit test.

Messaging is an
essential technology in
high-volume,
dynamically scalable
server applications. It’s
the most e�ective way to
pass non-time-critical
information between
servers, and to distribute
work within a server
farm. At the inter-server
level, messaging is ideal
for use with remote
databases, monitoring,
logging and so on, and a
far better solution to
intra-server data sharing
than a shared database.
Allen looks at messaging
from an architectural
perspective, with
practical examples using
RabbitMQ and ZeroMQ.

The first statement in
the Agile Manifesto
favours individuals,
teams, interaction
and collaboration over
processes and tools.
But there are two sides
to every story. When
it comes to tools, the
Agile Manifesto is often
misinterpreted, in the
sense that it’s wrong
to use tooling in Agile
projects. Despite this,
more and more vendors
are trying to jump on the
Agile bandwagon and
sell their tools as being
the most Agile toolset
available. In this session,
Sander shines a critical
light on the sense and
nonsense of tools in
the Agile field.

No programmer is
an island. Modern
programs are created
by teams of developers.
And everybody knows
you need great teams to
build great products – so
you need to build your
teams carefully. But
what, exactly, makes
a great programming
team? Great
programming skills?
Great interpersonal
skills? Working-all-
night-because-the-
boss-has-thrown-a-fit
skills? Turns out, it’s
none of these. In this
session, Jules will reveal
that what makes a
programming team great
is exactly the same stu�
that makes any other
team great – and most
programming teams
don’t have it.

Behaviour-driven
development (BDD) and
specification by example
(SBE) are quite recent
additions to the software
development toolbox.
Sometimes it feels like
we’re using a hammer
to drive in a screw.
So, in this session, Seb
will explore what they’re
good for and when to
use them. He’ll also look
at what problems they
don’t help with and when
not to use them. By the
end of this session, you’ll
know enough to decide
whether your problems
are more like a screw
or a nail – and whether
Cucumber/SpecFlow
is the right hammer.

Big data is the new
shiny thing right now,
and if you read the
blogosphere you’d be
forgiven for thinking
it was a tool just for
Linux devs – or worse,
only for those annoying
hipsters with their shiny
Macs. Nothing could
be further from the
truth. Windows makes
an excellent platform
for Hadoop and, in this
session, Gary will show
you everything you need
to know to get started.
From downloading and
installing, to writing your
first map-reduce job,
using both the streaming
API and the SDK. This
session will cover it all,
so come along and join
the big data wave!

Localising your
applications can open up
a whole new audience of
users for your software.
In this session, Mark will
take a look at how to get
your application ready
for localisation and
how to then utilise the
built-in services of iOS,
Android and Windows
Phone to display proper
information for di�erent
cultures and regions.

Sometimes the
technology landscape
is changing so fast, it
feels like you’re standing
on quicksand. That is
certainly the case with
ASP.NET Web API,
the new OWIN hosting
model and Microsoft’s
Katana implementation.
In this session, Anthony
will show how to
correctly apply security
at the transport level to
ensure confidentiality,
integrity and server
authentication, as well
as the nuts and bolts of
configuring SSL for both
web and self-hosted
web APIs using the new
OWIN hosting model.

DevWeek_2015_Brochure.indd 12 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

12 | | | | 13

®8 | ® | | ®

One-day workshop
continues from the
morning session.

For a full description
of the workshop, please
see Page 21

Two-day workshop
continues from the
morning session.

For a full description
of the workshop, please
see Page 20

Is it good practice to
use uniqueidentifiers
as primary keys in SQL
Server? They have a
lot of pros for devs, but
DBAs just cry when
they see them enforced
by default as unique
clustered indexes.
In this session, Klaus
will cover the basics
of uniqueidentifiers:
why they are sometimes
bad and sometimes
good; and how to
discover if they a�ect
the performance of
your performance-
critical database.
If they are having a
negative impact, you
will also learn some best
practices you can use to
resolve those limitations
without changing your
underlying application.

(BIML) is a powerful
XML-based markup
language that allows
you to generate
SSIS packages
programmatically. Using
BIML along with C#,
you can create metadata-
driven packages, greatly
reducing development
time and increasing
consistency across the
team. In this session,
Dan will show you how
to automate your SSIS
package creation using
the power of BIML and
C#. You’ll see how to
create a template for
loading dimension tables
that will greatly increase
your productivity.

Although Git has rapidly
become almost a de facto
standard in recent years,
it can be intimidating
or confusing for those
transitioning from
other systems or those
new to using source
control. In this session,
Ed will explain how to
use Git e�ectively, how
to navigate your way
around a repository, and
how to work as part of a
team. He’ll attempt to cut
through the mystique
and demonstrate how
easy it can actually be
to use. Then he’ll go on
to show some of the
more advanced ways
of working with Git.

DevOps is commonly
believed to be
accomplished by having
the development sta�
collaborate more closely
with the operations
sta�. That’s definitely
necessary, but woefully
inadequate to achieve
the goal of faster and
better delivery in the
“last mile” of an Agile
shop. In this session,
Howard will discuss
the rationale behind
Continuous Delivery,
along with specific
practices to get you
started on making your
sprints toward customer
satisfaction less tiring
and more enjoyable for
everyone involved.

ASP.NET vNext is being
designed from the
bottom up to be a lean
and composable .NET
stack for building web
and cloud-based
applications. Envision
an ASP.NET stack
where MVC, Web API,
and web pages are all
merged into the same
framework, where you
have a server-optimised
version of ASP.NET
with a smaller memory
footprint. This is the new
ASP.NET vNext. In this
session, Ido will explore
the ecosystem of ASP.
NET vNext, its new
project system and
configuration system,
and how to use it to build
exciting web applications.

Every developer needs
a set of tools, especially
web developers that
bend under the pressure
of multiple languages,
environments, IDEs
and what not. One of the
most comprehensive
toolsets out there today
is Chrome Developer
Tools. It contains so
many amazing features
beyond the common
ones, and it’s just a
shame most developers
don’t know about
them! In this session,
Shay will tell you all
about the known and
less-known features
of Chrome Developer
Tools, and you’ll see
how your everyday
web development can
become easier with just
a few simple steps.

Internet of Things (IoT)
is here, and every day
a new sensor or device
starts to generate more
data. With that, more
and more machine-
to-machine (M2M)
communications start
to happen, which make
our solutions behave
di
erently and face new
issues. In this session,
Nuno will look at how
both of these new “buzz
words” are changing the
world we live in, from
fitbit to Google Glass
and smart watches. How
can we prepare for this?
How can we anticipate
and get some business
opportunities from it?
Join us and find out.

Speed is king on mobile
devices, embedded
systems, and even
run-of-the-mill
desktop applications
that need to start up
quickly and deliver
good performance on
low-power machines.
In this session, Sasha
will review a collection
of practical tips you
can use today to make
your .NET applications
faster. He’ll talk about
choosing the right
collection, improving
start-up times, reducing
memory pressure, and
many other techniques
for quickly improving
your app’s performance.

Visual Studio 2015, .NET
2015 and C# 6 are just
around the corner. The
new language features
have been out of the
bag for a while now,
but how do you apply
them e
ectively? How
do you refactor existing
code to be shorter and
sweeter? In this fast-
paced session, Sasha
will lead us through
experiments with the
new language features,
including expression-
bodied members,
enhancements to
automatic properties,
null propagation,
string interpolation
and many others.

Unit testing and end-to-
end (e2e) testing are the
tools to enforce stability
on applications. They
create an environment
that ensures our code
does what it was
designed to do. Recently,
web application
developers are looking
to identify the best
testing option, as their
applications are getting
increasingly large and
more complex. In this
session, Michael will
review two methods for
testing web applications
in di�erent JS-based
frameworks: the
unit-testing approach
and end-to-end
testing. He will also
review the benefit of
combining the two.

These days, testing
is considered a sexy
topic for programmers.
Who’d have thought
it? But what makes
for good unit tests
(GUTs)? There’s more
to e�ective unit testing
than just knowing the
assertion syntax of a
testing framework.
Testing represents a
form of communication
and, as such, it o�ers
multiple levels and
forms of feedback,
not just basic defect
detection. E�ective
unit testing requires
an understanding of
what forms of feedback
and communication
are o�ered by tests. In
this session, Kevlin will
explore exactly what
makes a good unit test.

Messaging is an
essential technology in
high-volume,
dynamically scalable
server applications. It’s
the most e�ective way to
pass non-time-critical
information between
servers, and to distribute
work within a server
farm. At the inter-server
level, messaging is ideal
for use with remote
databases, monitoring,
logging and so on, and a
far better solution to
intra-server data sharing
than a shared database.
Allen looks at messaging
from an architectural
perspective, with
practical examples using
RabbitMQ and ZeroMQ.

The first statement in
the Agile Manifesto
favours individuals,
teams, interaction
and collaboration over
processes and tools.
But there are two sides
to every story. When
it comes to tools, the
Agile Manifesto is often
misinterpreted, in the
sense that it’s wrong
to use tooling in Agile
projects. Despite this,
more and more vendors
are trying to jump on the
Agile bandwagon and
sell their tools as being
the most Agile toolset
available. In this session,
Sander shines a critical
light on the sense and
nonsense of tools in
the Agile field.

No programmer is
an island. Modern
programs are created
by teams of developers.
And everybody knows
you need great teams to
build great products – so
you need to build your
teams carefully. But
what, exactly, makes
a great programming
team? Great
programming skills?
Great interpersonal
skills? Working-all-
night-because-the-
boss-has-thrown-a-fit
skills? Turns out, it’s
none of these. In this
session, Jules will reveal
that what makes a
programming team great
is exactly the same stu�
that makes any other
team great – and most
programming teams
don’t have it.

Behaviour-driven
development (BDD) and
specification by example
(SBE) are quite recent
additions to the software
development toolbox.
Sometimes it feels like
we’re using a hammer
to drive in a screw.
So, in this session, Seb
will explore what they’re
good for and when to
use them. He’ll also look
at what problems they
don’t help with and when
not to use them. By the
end of this session, you’ll
know enough to decide
whether your problems
are more like a screw
or a nail – and whether
Cucumber/SpecFlow
is the right hammer.

Big data is the new
shiny thing right now,
and if you read the
blogosphere you’d be
forgiven for thinking
it was a tool just for
Linux devs – or worse,
only for those annoying
hipsters with their shiny
Macs. Nothing could
be further from the
truth. Windows makes
an excellent platform
for Hadoop and, in this
session, Gary will show
you everything you need
to know to get started.
From downloading and
installing, to writing your
first map-reduce job,
using both the streaming
API and the SDK. This
session will cover it all,
so come along and join
the big data wave!

Localising your
applications can open up
a whole new audience of
users for your software.
In this session, Mark will
take a look at how to get
your application ready
for localisation and
how to then utilise the
built-in services of iOS,
Android and Windows
Phone to display proper
information for di�erent
cultures and regions.

Sometimes the
technology landscape
is changing so fast, it
feels like you’re standing
on quicksand. That is
certainly the case with
ASP.NET Web API,
the new OWIN hosting
model and Microsoft’s
Katana implementation.
In this session, Anthony
will show how to
correctly apply security
at the transport level to
ensure confidentiality,
integrity and server
authentication, as well
as the nuts and bolts of
configuring SSL for both
web and self-hosted
web APIs using the new
OWIN hosting model.

DevWeek_2015_Brochure.indd 13 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

 | | 15

®8 | ® | | ®

Two-day workshop
continues from the
previous day’s session.

For a full description
of the workshop, please
see Page 20

SQL Server needs its
locking mechanism to
provide the isolation
aspect of transactions.
As a side-e�ect, your
workload can run into
deadlock situations
– a guaranteed headache
for any DBA! In this
session, Klaus will
look into the basics of
locking and blocking
in SQL Server. Based
on that knowledge,
you will learn about
the various kinds of
deadlocks that can occur
in SQL Server, how to
troubleshooting them,
and how you can resolve
them by changing your
queries, your indexing
strategy and your
database settings.

A number of libraries
and frameworks allow
developers to use
JavaScript to create
engaging visuals without
switching programming
languages. So let’s
explore the visual (and
fun) side of JavaScript!
In this session, Amy will
provide a whirlwind
tour of a few libraries
and frameworks that let
you create animations,
simple drawings and
infographics with
JavaScript. First, she’ll
examine the advantages
(and disadvantages)
of using JavaScript for
graphics and animations.
Then she’ll go through
“Hello World” examples
of a few JavaScript-
based libraries.

Self-service business
intelligence is gaining
popularity among
business analysts
today. It greatly
relieves the problems
created by traditional
data warehouse
implementations.
Using tools such as
Microsoft’s Power Pivot,
Power Query and Power
View alters the process
significantly. In this
session, Dan will take
you through the process
of creating a solid data
model in Power Pivot.
You will learn how to
import data from various
sources, combine
these in a scalable data
model, use DAX to
create measures, and
incorporate time-based
analysis.

With the best intentions,
people have flocked to
behaviour-driven
development by way of
Cucumber over the past
few years, and that’s a
great thing! But often,
BDD can fall by the
wayside due to the
pressure to deliver more
and more functionality,
sprint after sprint. In this
session, Howard will
explore 12 of the most
important issues, such
as imperative versus
declarative style, and
how to keep Gherkin-
driven Selenium
WebDriver tests
working dependably
through the use of
advanced Expected-
Condition techniques.

Always neglected in
favour of domain
analysis and modelling,
the presentation layer of
applications receives
little attention. But
whether your application
is web, mobile or desktop,
the presentation layer is
the face it shows to users.
Dino will discuss a
design approach that
starts from requirements
and builds the system
from top to bottom,
focusing on use-cases,
screens and overall user
experience measured by
a new professional figure
– the UX architect – and
backed by new, but
partially green, tools such
as UXPin and Balsamiq.

When new technologies
and paradigms appear,
it’s essential to learn
them quickly and
well. But this can be
di�cult, since some
things are only learned
with experience. That’s
why best practices are
so important. In this
session, Nuno will look
at some architecture
best practices that
will help us make our
solutions better across
several levels, including
performance, cost,
integration, security
and so on. By doing this,
you’ll gain the knowledge
needed to quickly start
using the technology and
paradigms that can help
improve your business.

The C++ standard
library dates back to
the 1990s, but that
doesn’t mean there
aren’t new and exciting
frameworks to use in
your C++ application. In
this session, Sasha will
look at some brand-new
and some existing C++
libraries that can speed
up C++ cross-platform
development rapidly.
Some of the libraries
we might cover include:
Casablanca (C++ REST
SDK), Cinder (creative
coding), Boost (general-
purpose), Google Test
(unit testing), SOCI
(modern database
access) and many others.
There’s something for
everyone!

The big data hype
is all about NoSQL
databases that can
support huge amounts
of data, replication,
scaling and super-fast
queries. RavenDB is the
best NoSQL database
for .NET developers,
because it has a first-
class .NET client with
a LINQ API. In this
session, Sasha will
show you how to model
data as documents for
storage in RavenDB;
how to query the data
e�ciently; and how to
construct indexes that
will help you get the data
you need in just a few
milliseconds. We’ll also
review full-text search
and query suggestions
support, which make it
very easy to add search
capabilities.

Getting started with
unit testing is not hard,
the only problem is that
most programs are more
than a simple calculator
with two parameters
and a return value that’s
easy to verify. Writing
unit tests for multi-
threaded code is harder
still. In this session,
Dror will demonstrate
useful patterns that he
has discovered over
the years, and that
have helped him to test
multi-threaded and
asynchronous code and
enabled the creation of
deterministic, simple
and robust unit tests.
He’ll also point out the
pitfalls to avoid.

Design by Coding
(DbC) is a way to
develop an architecture
incrementally as you
code. It builds on test-
and behaviour-driven-
development techniques,
but adds a focus on the
“story” that’s central to
all Agile processes. The
process answers the
question of how you can
build a coherent Agile
system incrementally,
without a formal up-
front design process.
In this session, Allen
will explain how DbC
eliminates the need for
a separate design phase
in the development
process, since your code
is e�ectively your design
artefact.

In this session, Allen
will take a deep dive
into a micro-service
implementation.
He’ll look at both the
architecture and the
implementation of
authentication and
comment-management
micro-services suitable
for use in a blog or
similar application. The
core system is written
in Java, so you’ll need
to know Java, C++, C#,
or equivalent to follow
along easily. Auxiliary
technologies include
Mongo, JavaScript,
AngularJS and
Bootstrap, so this session
provides a real-world
example of how those
technologies work. You
don’t need to be familiar
with any of them, though.

Bootstrap is by far
the most popular web
framework of all, with
many ready-to-use styles
and components in CSS
and JavaScript. In this
session, Sander will
show you how to build a
basic web site, leveraging
the many components
of the Bootstrap
framework. He will then
go on to show the use of
additional frameworks
and libraries to add
drop-down support,
icons and date pickers
to your web pages, and
how to build additional
reusable components
using Razor syntax,
in JSF, and applying
Angular directives. Of
course, Sander’s talk will
be illustrated with many
coding demos.

Imagine if you could
write an ASP.NET
application using your
favourite text editor,
compile it and run it on
Mac OS X. Imagine if
you could mix and match
Web Forms, MVC, Web
API and SignalR within
a single project. How
would it feel to create a
faster, leaner and more
memory-e�cient ASP.
NET application that
has been freed from the
shackles of Windows,
and all you need are your
coding skills, a couple of
NuGet packages and
your imagination? In
this session, Christos
provides an intro to
Microsoft’s ASP.NET 5
– the “new kid on
the block”.

Power Query, a free
add-in for Excel 2010
and 2013 and part of the
Power BI suite in Excel
365, is a powerful tool.
Dejan will show how you
can use Power Query to
gather all kinds of data,
from databases to web
sites and social media,
inside Excel data models.
In this way, you can
make Excel an analysing
engine for structured
and unstructured data.
In addition to the queries
you can create through
the UI, there is a fully
functional language,
called M, behind the
scenes. This session
introduces both Power
Query and M.

Security is now
important to all of us, not
just people who work
at Facebook. But it’s a
complicated domain,
with a lot of concepts
to understand. In any
technical ecosystem,
there is a blizzard of
security technology,
as well as generic
concepts such as keys,
roles, certificates, trust,
signing and so on. Yet
none of this is useful
unless we know what
problem we’re really
trying to solve. In this
session, Eoin will dive
into the fundamentals
of system security to
introduce the topics we
need to understand in
order to decide how to
secure our systems.

The modern software
development landscape
is a terrain of many
platforms and
technologies. Gone are
the days where knowing
one technology really
well was enough to stay
on the cutting edge. Even
as we know we should
learn more and branch
out, that choice is
increasingly di�cult as
the technology options
explode. In this session,
Michael o�ers one very
solid choice: Python. It
may seem like a very
di�erent language and
ecosystem from .NET
but beneath the surface,
there are many more
similarities than
di�erences.

Roslyn, the revamped
compiler for C# and
Visual Basic.NET,
goes beyond a mere
black-box compiler
and gives us limitless
possibilities. Besides
enabling a new era for
C# as a language, it gives
everyone a chance to
utilise compiler powers
for building custom
tools. It acts as a CaaS,
or Compiler as a Service,
which allows you to plug
in at any point in the
compilation process.
But what can you do
with it? In this session,
Toni will show you,
demonstrating how you
can build Visual Studio
extensions, create your
own editors or host
C# compiler to form a
scripting environment.

Performance. Scalability.
Maintainability.
Testability. Security.
Today’s application
developers need to build
systems that are
designed to achieve
these goals from the
outset. In this in-depth
workshop, Anthony will
take you beyond the
basics, to learn how to
build RESTful services
that are robust, scalable
and loosely coupled, using
dependency injection
with repository and unit
of work design patterns.

But there’s more
to building loosely
coupled systems than
applying a set of design
patterns. Anthony
will show you how to
harness the power
of code generation
by customising T4
templates for reverse
engineering Code First
classes from an existing
database, in order to
produce entities with
persistence concerns
that are completely
stripped away. You’ll also
learn ninja techniques
for handling cyclical
references with code-
based configuration
and using e�cient
binary formatters,
all without polluting
your entities with
mapping, serialisation or
validation attributes.

This workshop will
focus on developing
real-world business
apps using the Entity
framework and ASP.
NET Web API.

14 | |

In this session, Pavel
will reveal how a new
direction in artificial
intelligence, called “deep
learning”, is gradually
reducing demand for
hand-crafted code for
intellectual data analysis,
primarily in the area
of feature extraction.
He will explain why
the internet giants
(Google, Microsoft
etc) are interested in
deep learning, and the
connection with big data
projects. He will also
cover practical examples
of applying existing
deep-learning software
frameworks to an image-
recognition problem.

DevWeek_2015_Brochure.indd 14 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

 | | 15

®8 | ® | | ®

Two-day workshop
continues from the
previous day’s session.

For a full description
of the workshop, please
see Page 20

SQL Server needs its
locking mechanism to
provide the isolation
aspect of transactions.
As a side-e�ect, your
workload can run into
deadlock situations
– a guaranteed headache
for any DBA! In this
session, Klaus will
look into the basics of
locking and blocking
in SQL Server. Based
on that knowledge,
you will learn about
the various kinds of
deadlocks that can occur
in SQL Server, how to
troubleshooting them,
and how you can resolve
them by changing your
queries, your indexing
strategy and your
database settings.

A number of libraries
and frameworks allow
developers to use
JavaScript to create
engaging visuals without
switching programming
languages. So let’s
explore the visual (and
fun) side of JavaScript!
In this session, Amy will
provide a whirlwind
tour of a few libraries
and frameworks that let
you create animations,
simple drawings and
infographics with
JavaScript. First, she’ll
examine the advantages
(and disadvantages)
of using JavaScript for
graphics and animations.
Then she’ll go through
“Hello World” examples
of a few JavaScript-
based libraries.

Self-service business
intelligence is gaining
popularity among
business analysts
today. It greatly
relieves the problems
created by traditional
data warehouse
implementations.
Using tools such as
Microsoft’s Power Pivot,
Power Query and Power
View alters the process
significantly. In this
session, Dan will take
you through the process
of creating a solid data
model in Power Pivot.
You will learn how to
import data from various
sources, combine
these in a scalable data
model, use DAX to
create measures, and
incorporate time-based
analysis.

With the best intentions,
people have flocked to
behaviour-driven
development by way of
Cucumber over the past
few years, and that’s a
great thing! But often,
BDD can fall by the
wayside due to the
pressure to deliver more
and more functionality,
sprint after sprint. In this
session, Howard will
explore 12 of the most
important issues, such
as imperative versus
declarative style, and
how to keep Gherkin-
driven Selenium
WebDriver tests
working dependably
through the use of
advanced Expected-
Condition techniques.

Always neglected in
favour of domain
analysis and modelling,
the presentation layer of
applications receives
little attention. But
whether your application
is web, mobile or desktop,
the presentation layer is
the face it shows to users.
Dino will discuss a
design approach that
starts from requirements
and builds the system
from top to bottom,
focusing on use-cases,
screens and overall user
experience measured by
a new professional figure
– the UX architect – and
backed by new, but
partially green, tools such
as UXPin and Balsamiq.

When new technologies
and paradigms appear,
it’s essential to learn
them quickly and
well. But this can be
di�cult, since some
things are only learned
with experience. That’s
why best practices are
so important. In this
session, Nuno will look
at some architecture
best practices that
will help us make our
solutions better across
several levels, including
performance, cost,
integration, security
and so on. By doing this,
you’ll gain the knowledge
needed to quickly start
using the technology and
paradigms that can help
improve your business.

The C++ standard
library dates back to
the 1990s, but that
doesn’t mean there
aren’t new and exciting
frameworks to use in
your C++ application. In
this session, Sasha will
look at some brand-new
and some existing C++
libraries that can speed
up C++ cross-platform
development rapidly.
Some of the libraries
we might cover include:
Casablanca (C++ REST
SDK), Cinder (creative
coding), Boost (general-
purpose), Google Test
(unit testing), SOCI
(modern database
access) and many others.
There’s something for
everyone!

The big data hype
is all about NoSQL
databases that can
support huge amounts
of data, replication,
scaling and super-fast
queries. RavenDB is the
best NoSQL database
for .NET developers,
because it has a first-
class .NET client with
a LINQ API. In this
session, Sasha will
show you how to model
data as documents for
storage in RavenDB;
how to query the data
e�ciently; and how to
construct indexes that
will help you get the data
you need in just a few
milliseconds. We’ll also
review full-text search
and query suggestions
support, which make it
very easy to add search
capabilities.

Getting started with
unit testing is not hard,
the only problem is that
most programs are more
than a simple calculator
with two parameters
and a return value that’s
easy to verify. Writing
unit tests for multi-
threaded code is harder
still. In this session,
Dror will demonstrate
useful patterns that he
has discovered over
the years, and that
have helped him to test
multi-threaded and
asynchronous code and
enabled the creation of
deterministic, simple
and robust unit tests.
He’ll also point out the
pitfalls to avoid.

Design by Coding
(DbC) is a way to
develop an architecture
incrementally as you
code. It builds on test-
and behaviour-driven-
development techniques,
but adds a focus on the
“story” that’s central to
all Agile processes. The
process answers the
question of how you can
build a coherent Agile
system incrementally,
without a formal up-
front design process.
In this session, Allen
will explain how DbC
eliminates the need for
a separate design phase
in the development
process, since your code
is e�ectively your design
artefact.

In this session, Allen
will take a deep dive
into a micro-service
implementation.
He’ll look at both the
architecture and the
implementation of
authentication and
comment-management
micro-services suitable
for use in a blog or
similar application. The
core system is written
in Java, so you’ll need
to know Java, C++, C#,
or equivalent to follow
along easily. Auxiliary
technologies include
Mongo, JavaScript,
AngularJS and
Bootstrap, so this session
provides a real-world
example of how those
technologies work. You
don’t need to be familiar
with any of them, though.

Bootstrap is by far
the most popular web
framework of all, with
many ready-to-use styles
and components in CSS
and JavaScript. In this
session, Sander will
show you how to build a
basic web site, leveraging
the many components
of the Bootstrap
framework. He will then
go on to show the use of
additional frameworks
and libraries to add
drop-down support,
icons and date pickers
to your web pages, and
how to build additional
reusable components
using Razor syntax,
in JSF, and applying
Angular directives. Of
course, Sander’s talk will
be illustrated with many
coding demos.

Imagine if you could
write an ASP.NET
application using your
favourite text editor,
compile it and run it on
Mac OS X. Imagine if
you could mix and match
Web Forms, MVC, Web
API and SignalR within
a single project. How
would it feel to create a
faster, leaner and more
memory-e�cient ASP.
NET application that
has been freed from the
shackles of Windows,
and all you need are your
coding skills, a couple of
NuGet packages and
your imagination? In
this session, Christos
provides an intro to
Microsoft’s ASP.NET 5
– the “new kid on
the block”.

Power Query, a free
add-in for Excel 2010
and 2013 and part of the
Power BI suite in Excel
365, is a powerful tool.
Dejan will show how you
can use Power Query to
gather all kinds of data,
from databases to web
sites and social media,
inside Excel data models.
In this way, you can
make Excel an analysing
engine for structured
and unstructured data.
In addition to the queries
you can create through
the UI, there is a fully
functional language,
called M, behind the
scenes. This session
introduces both Power
Query and M.

Security is now
important to all of us, not
just people who work
at Facebook. But it’s a
complicated domain,
with a lot of concepts
to understand. In any
technical ecosystem,
there is a blizzard of
security technology,
as well as generic
concepts such as keys,
roles, certificates, trust,
signing and so on. Yet
none of this is useful
unless we know what
problem we’re really
trying to solve. In this
session, Eoin will dive
into the fundamentals
of system security to
introduce the topics we
need to understand in
order to decide how to
secure our systems.

The modern software
development landscape
is a terrain of many
platforms and
technologies. Gone are
the days where knowing
one technology really
well was enough to stay
on the cutting edge. Even
as we know we should
learn more and branch
out, that choice is
increasingly di�cult as
the technology options
explode. In this session,
Michael o�ers one very
solid choice: Python. It
may seem like a very
di�erent language and
ecosystem from .NET
but beneath the surface,
there are many more
similarities than
di�erences.

Roslyn, the revamped
compiler for C# and
Visual Basic.NET,
goes beyond a mere
black-box compiler
and gives us limitless
possibilities. Besides
enabling a new era for
C# as a language, it gives
everyone a chance to
utilise compiler powers
for building custom
tools. It acts as a CaaS,
or Compiler as a Service,
which allows you to plug
in at any point in the
compilation process.
But what can you do
with it? In this session,
Toni will show you,
demonstrating how you
can build Visual Studio
extensions, create your
own editors or host
C# compiler to form a
scripting environment.

Performance. Scalability.
Maintainability.
Testability. Security.
Today’s application
developers need to build
systems that are
designed to achieve
these goals from the
outset. In this in-depth
workshop, Anthony will
take you beyond the
basics, to learn how to
build RESTful services
that are robust, scalable
and loosely coupled, using
dependency injection
with repository and unit
of work design patterns.

But there’s more
to building loosely
coupled systems than
applying a set of design
patterns. Anthony
will show you how to
harness the power
of code generation
by customising T4
templates for reverse
engineering Code First
classes from an existing
database, in order to
produce entities with
persistence concerns
that are completely
stripped away. You’ll also
learn ninja techniques
for handling cyclical
references with code-
based configuration
and using e�cient
binary formatters,
all without polluting
your entities with
mapping, serialisation or
validation attributes.

This workshop will
focus on developing
real-world business
apps using the Entity
framework and ASP.
NET Web API.

14 | |

In this session, Pavel
will reveal how a new
direction in artificial
intelligence, called “deep
learning”, is gradually
reducing demand for
hand-crafted code for
intellectual data analysis,
primarily in the area
of feature extraction.
He will explain why
the internet giants
(Google, Microsoft
etc) are interested in
deep learning, and the
connection with big data
projects. He will also
cover practical examples
of applying existing
deep-learning software
frameworks to an image-
recognition problem.

DevWeek_2015_Brochure.indd 15 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

 | | 17

®8 | ® | | ®

In recent years, the
mobile evolution caused
many developers
to find themselves
migrating from desktop
applications to web
applications. In this
session, Michael will
explore how to make the
transition from XAML
and C# to HTML5 and
JavaScript. He will
review how to port the
MVVM design pattern
to the web environment,
and go on to tackle
important architecture
concepts, such as
dependency injection
and modularity.

One-day workshop
continues from the
morning session.

For a full description
of the workshop, please
see Page 21

The .NET framework
is now open source,
with the CLR to follow
along and a cross-
platform reference
implementation for
Linux and OS X to show
up during the year. In
this session, Sasha will
talk about the future of
.NET in this new era,
what it means for the
core stack on the server
and desktop, and how it’s
going to a�ect our .NET
applications. We will
also see how to build, test
and run our own version
of the .NET framework
and CLR, and how
to make changes to
components previously
treated as a black box.

The Intel RealSense
SDK is the powerhouse
behind the perceptual
computing cameras
powering the next
generation of Ultrabook
devices. In this session,
Peter will take a look at
how RealSense devices
can provide unique
ways to interact with
applications, explaining
the advantages, and
o�ering tips and tricks
to building compelling
applications using
RealSense devices. You
will learn how to easily
create applications that
use gesture and facial
recognition, emotion
detection, as well as
speech recognition and
speech synthesis.

In this session, Andrey
will focus on a set of
tools to automate the
provisioning of (cloud)
servers using Groovy
libraries and Gradle
plug-ins. He will explore
how to leverage those to
create an infrastructure
for building, configuring
and testing the
provisioning of boxes in
the cloud – elegant and
groovy. This session will
help those Java/Groovy
developers interested
in reusing their existing
skills for infrastructure
provisioning and
learning more about
problems encountered
during system
operations.

Have you ever looked at
an execution plan that
performs a join between
two tables? And have
you ever wondered what
a “Left Anti Semi Join”
actually is? Joining
two tables using SQL
Server is far from easy!
In this session, Klaus
will take a deep dive into
how join processing
happens in SQL Server.
Initially, he will lay out
the foundation of logical
join processing, then
dig deeper into physical
join processing in the
execution plan. After
attending this session,
you will be well prepared
to understand the
various join techniques
used by SQL Server.

Do you feel frustrated
every time you run
across a web site
that doesn’t adjust to
the viewport of your
current phone browser?
In some cases, for a
better experience, you
have to know that a
mobile version of the
site exists somewhere
with a di�erent URL.
There’s no reason to
further delay plans to
make your primary web
site display nicely on
small-screen devices,
including smartphones.
In this session, Dino will
lead the discussion and
explore pros, cons and
technologies that could
make each option viable.

Single-page applications
(SPAs) are web
applications that are
built using a single page,
which acts as a shell to
all the other web pages,
with a rich JavaScript
front-end. As opposed
to traditional web
applications, most of
the SPA development is
done on the front-end.
The server, which once
acted as a rendering
engine, provides only
a service layer to the
SPA. In this session,
Gil will explain the
characteristics and
building blocks that form
the foundation of any
successful SPA.

Every web developer
needs to see what goes
on “in the wire”, whether
it is a jQuery call from
JavaScript, a WCF
service call from a client
app, or a simple GET
request for a web page.
With Fiddler, the most
famous HTTP sni�er,
this is simple enough
to do. But Fiddler is
more than just a sni�er.
With Fiddler you can
intercept, alter and
record messages, and
even write your own
message visualiser. In
this session, we will
learn how to use Fiddler
from bottom to top to
debug, test and improve
web applications.

How much time will
it take us to move to
Azure? Can we just “Lift
& Shift” our servers?
Will my load-balancer
work in Azure? Should
I use SQL Databases
or an SQL Server VM?
These are just some of
the questions customers
ask when they consider
migrating their
applications to Azure. If
you’re evaluating Azure,
come to this session,
where Ido will explain
what to do, what not to
do, what to avoid and
what to embrace when
moving your apps to
Azure. These are not
general best practices;
these are lessons learned
from the field.

ThoughtWorks’
Technical Advisory
Board creates a
“technology radar”
twice a year: a working
document that helps
the company make
decisions about what
technologies are
interesting. This is a
useful exercise both for
you and your company.
In this session, Neal
will describe the radar
visualisation, how to
create litmus tests for
technologies, and the
process of building a
radar. Attendees will
leave with tools that
enhance your filtering
mechanisms for new
technology and help you
(and your organisation)
develop a cogent strategy
to make good choices.

Code is basically made
up of three things:
names, spacing and
punctuation. With
these three tools, a
programmer needs to
communicate intent,
and not simply instruct.
But if we look at most
approaches to naming,
they are based on the
idea that names are
merely labels, so that
discussion of identifier
naming becomes little
more than a discussion
of good labelling. A
good name is more than
a label; a good name
should change the way
the reader thinks. Good
naming is part of good
design. In this session,
Kevlin will look at why
and what it takes to get a
good name.

How do you design
a large system? The
architecture of any
system is crucial to
its success – get this
wrong, and the project
may never recover. And
yet, we are expected
to deliver designs
that can last five, 10,
sometimes 30 years into
an unknowable future.
Problem space analysis
is a technique that
informs and documents
system designs by
anticipating and defining
the variabilities of a long-
lived, evolving system.
In this session, Jules will
explain the principles
of the method, give an
outline of the benefits,
and demonstrate its
power with some
illustrative examples.

The prescriptive
interpretation of this
axiom has guided the
work of engineers,
programmers,
developers – and even
designers – for a very
long time. The result
of this has been sites,
software and systems
that exhibit poor
usability, frustrating
user experiences and a
marked failure to deliver
expected business
results. In this session,
Joe will show you why
pure function is rarely
the single or most
important component of
success. He will explain
how every force at play
in any project is what
really evolves form (and
dictates function).

So your company is
planning to build a large-
scale web application,
and has chosen to do it in
Angular.js. That raises a
lot of questions: Where
do I start from? What
tools should I use? And,
basically, how do I avoid
making mistakes and do
the job e�ciently? Shai
has worked with more
than 20 companies,
helping them with their
struggles migrating to
Angular and avoiding
crucial mistakes in the
process. In this talk,
Shai will present useful
time-saving architecture
tips that will help you
prepare for scalability,
write cleaner code, and
even make your life
happier.

In this session, Seb will
help you to be a better
software developer. As
software developers, we
have to deliver
something useful to our
customers. We have to
produce it in a manner
that acknowledges their
requirements and
context. And usually, we
need to be able to work
as part of a team. Are my
customers more likely to
be satisfied if I’m
awesome? In what
circumstances would
monads (or any other
implementation level
detail) be a critical part
of a successful solution?
Seb will analyse
real-world examples
of projects that
succeeded and failed.

Power Map is a new 3D
visualisation add-in
for Excel, used for
mapping, exploring
and interacting with
geographical and
temporal data. Power
Map exists as free
preview add-in for Excel
2013 and in the Power
BI suite in O�ce 365.
In this session, Dejan
will explain how to
use Power Map to plot
geographic and temporal
data visually, analyse
that data in 3D, and
create cinematic tours to
share with others.

In this session, Tushar
will propose a unique
approach to developing
high-quality software
design. Borrowing
a phrase from the
healthcare domain,
“a good doctor is one who
knows the medicines
but a great doctor is
one who knows the
disease”, the proposed
approach is grounded
on the philosophy that
“a good designer is one
who knows about the
design principles but
a great designer is one
who understands the
problems (or smells)
with the design, their
cause, and how they
can be addressed by
applying proven and
sound design principles”.

With so many people
on social media these
days, almost inevitably
not a day goes by
without some tragedy
befalling someone. As
if that wasn’t horrible
enough, these poor
souls and their families
can then become
victims of the perverse
behaviour of the
“trolls. In this session,
Gary will examine
this problem from a
data scientist’s point
of view, showing how
to use computational
linguistics to ensure that
such posts never reach
people’s streams, and
network theory to trace
and expose the trolls so
that they no longer have
the shield of anonymity
to hide behind.

16 | |

Two-day workshop
continues from the
morning session.

For a full description
of the workshop, please
see Page 20

DevWeek_2015_Brochure.indd 16 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

 | | 17

®8 | ® | | ®

In recent years, the
mobile evolution caused
many developers
to find themselves
migrating from desktop
applications to web
applications. In this
session, Michael will
explore how to make the
transition from XAML
and C# to HTML5 and
JavaScript. He will
review how to port the
MVVM design pattern
to the web environment,
and go on to tackle
important architecture
concepts, such as
dependency injection
and modularity.

One-day workshop
continues from the
morning session.

For a full description
of the workshop, please
see Page 21

The .NET framework
is now open source,
with the CLR to follow
along and a cross-
platform reference
implementation for
Linux and OS X to show
up during the year. In
this session, Sasha will
talk about the future of
.NET in this new era,
what it means for the
core stack on the server
and desktop, and how it’s
going to a�ect our .NET
applications. We will
also see how to build, test
and run our own version
of the .NET framework
and CLR, and how
to make changes to
components previously
treated as a black box.

The Intel RealSense
SDK is the powerhouse
behind the perceptual
computing cameras
powering the next
generation of Ultrabook
devices. In this session,
Peter will take a look at
how RealSense devices
can provide unique
ways to interact with
applications, explaining
the advantages, and
o�ering tips and tricks
to building compelling
applications using
RealSense devices. You
will learn how to easily
create applications that
use gesture and facial
recognition, emotion
detection, as well as
speech recognition and
speech synthesis.

In this session, Andrey
will focus on a set of
tools to automate the
provisioning of (cloud)
servers using Groovy
libraries and Gradle
plug-ins. He will explore
how to leverage those to
create an infrastructure
for building, configuring
and testing the
provisioning of boxes in
the cloud – elegant and
groovy. This session will
help those Java/Groovy
developers interested
in reusing their existing
skills for infrastructure
provisioning and
learning more about
problems encountered
during system
operations.

Have you ever looked at
an execution plan that
performs a join between
two tables? And have
you ever wondered what
a “Left Anti Semi Join”
actually is? Joining
two tables using SQL
Server is far from easy!
In this session, Klaus
will take a deep dive into
how join processing
happens in SQL Server.
Initially, he will lay out
the foundation of logical
join processing, then
dig deeper into physical
join processing in the
execution plan. After
attending this session,
you will be well prepared
to understand the
various join techniques
used by SQL Server.

Do you feel frustrated
every time you run
across a web site
that doesn’t adjust to
the viewport of your
current phone browser?
In some cases, for a
better experience, you
have to know that a
mobile version of the
site exists somewhere
with a di�erent URL.
There’s no reason to
further delay plans to
make your primary web
site display nicely on
small-screen devices,
including smartphones.
In this session, Dino will
lead the discussion and
explore pros, cons and
technologies that could
make each option viable.

Single-page applications
(SPAs) are web
applications that are
built using a single page,
which acts as a shell to
all the other web pages,
with a rich JavaScript
front-end. As opposed
to traditional web
applications, most of
the SPA development is
done on the front-end.
The server, which once
acted as a rendering
engine, provides only
a service layer to the
SPA. In this session,
Gil will explain the
characteristics and
building blocks that form
the foundation of any
successful SPA.

Every web developer
needs to see what goes
on “in the wire”, whether
it is a jQuery call from
JavaScript, a WCF
service call from a client
app, or a simple GET
request for a web page.
With Fiddler, the most
famous HTTP sni�er,
this is simple enough
to do. But Fiddler is
more than just a sni�er.
With Fiddler you can
intercept, alter and
record messages, and
even write your own
message visualiser. In
this session, we will
learn how to use Fiddler
from bottom to top to
debug, test and improve
web applications.

How much time will
it take us to move to
Azure? Can we just “Lift
& Shift” our servers?
Will my load-balancer
work in Azure? Should
I use SQL Databases
or an SQL Server VM?
These are just some of
the questions customers
ask when they consider
migrating their
applications to Azure. If
you’re evaluating Azure,
come to this session,
where Ido will explain
what to do, what not to
do, what to avoid and
what to embrace when
moving your apps to
Azure. These are not
general best practices;
these are lessons learned
from the field.

ThoughtWorks’
Technical Advisory
Board creates a
“technology radar”
twice a year: a working
document that helps
the company make
decisions about what
technologies are
interesting. This is a
useful exercise both for
you and your company.
In this session, Neal
will describe the radar
visualisation, how to
create litmus tests for
technologies, and the
process of building a
radar. Attendees will
leave with tools that
enhance your filtering
mechanisms for new
technology and help you
(and your organisation)
develop a cogent strategy
to make good choices.

Code is basically made
up of three things:
names, spacing and
punctuation. With
these three tools, a
programmer needs to
communicate intent,
and not simply instruct.
But if we look at most
approaches to naming,
they are based on the
idea that names are
merely labels, so that
discussion of identifier
naming becomes little
more than a discussion
of good labelling. A
good name is more than
a label; a good name
should change the way
the reader thinks. Good
naming is part of good
design. In this session,
Kevlin will look at why
and what it takes to get a
good name.

How do you design
a large system? The
architecture of any
system is crucial to
its success – get this
wrong, and the project
may never recover. And
yet, we are expected
to deliver designs
that can last five, 10,
sometimes 30 years into
an unknowable future.
Problem space analysis
is a technique that
informs and documents
system designs by
anticipating and defining
the variabilities of a long-
lived, evolving system.
In this session, Jules will
explain the principles
of the method, give an
outline of the benefits,
and demonstrate its
power with some
illustrative examples.

The prescriptive
interpretation of this
axiom has guided the
work of engineers,
programmers,
developers – and even
designers – for a very
long time. The result
of this has been sites,
software and systems
that exhibit poor
usability, frustrating
user experiences and a
marked failure to deliver
expected business
results. In this session,
Joe will show you why
pure function is rarely
the single or most
important component of
success. He will explain
how every force at play
in any project is what
really evolves form (and
dictates function).

So your company is
planning to build a large-
scale web application,
and has chosen to do it in
Angular.js. That raises a
lot of questions: Where
do I start from? What
tools should I use? And,
basically, how do I avoid
making mistakes and do
the job e�ciently? Shai
has worked with more
than 20 companies,
helping them with their
struggles migrating to
Angular and avoiding
crucial mistakes in the
process. In this talk,
Shai will present useful
time-saving architecture
tips that will help you
prepare for scalability,
write cleaner code, and
even make your life
happier.

In this session, Seb will
help you to be a better
software developer. As
software developers, we
have to deliver
something useful to our
customers. We have to
produce it in a manner
that acknowledges their
requirements and
context. And usually, we
need to be able to work
as part of a team. Are my
customers more likely to
be satisfied if I’m
awesome? In what
circumstances would
monads (or any other
implementation level
detail) be a critical part
of a successful solution?
Seb will analyse
real-world examples
of projects that
succeeded and failed.

Power Map is a new 3D
visualisation add-in
for Excel, used for
mapping, exploring
and interacting with
geographical and
temporal data. Power
Map exists as free
preview add-in for Excel
2013 and in the Power
BI suite in O�ce 365.
In this session, Dejan
will explain how to
use Power Map to plot
geographic and temporal
data visually, analyse
that data in 3D, and
create cinematic tours to
share with others.

In this session, Tushar
will propose a unique
approach to developing
high-quality software
design. Borrowing
a phrase from the
healthcare domain,
“a good doctor is one who
knows the medicines
but a great doctor is
one who knows the
disease”, the proposed
approach is grounded
on the philosophy that
“a good designer is one
who knows about the
design principles but
a great designer is one
who understands the
problems (or smells)
with the design, their
cause, and how they
can be addressed by
applying proven and
sound design principles”.

With so many people
on social media these
days, almost inevitably
not a day goes by
without some tragedy
befalling someone. As
if that wasn’t horrible
enough, these poor
souls and their families
can then become
victims of the perverse
behaviour of the
“trolls. In this session,
Gary will examine
this problem from a
data scientist’s point
of view, showing how
to use computational
linguistics to ensure that
such posts never reach
people’s streams, and
network theory to trace
and expose the trolls so
that they no longer have
the shield of anonymity
to hide behind.

16 | |

Two-day workshop
continues from the
morning session.

For a full description
of the workshop, please
see Page 20

DevWeek_2015_Brochure.indd 17 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

Getting software released
to users can be painful,
risky and time-
consuming. Here, Neal
sets out the principles
and practices that enable
rapid, incremental
delivery of high-quality,
valuable new functionality
to users. By automating
the build, deployment
and testing process, and
improving collaboration
between developers,
testers and operations,
delivery teams release
changes in a matter of
hours or even minutes.

Neal will look at the
di�erences between
related topics such as
continuous integration,
continuous deployment
and continuous delivery,
and explore the new
technical artefact that
continuous delivery
introduces: the
deployment pipeline.
He’ll discuss the various
stages, how triggering
works, and how to
pragmatically determine
what “production
ready” means, before
covering the role of
testing and the testing
quadrant, including
the audience and
engineering practices
around di�erent types
of tests. This is followed
by version control usage
and o�ering alternatives
to feature branching,
such as toggle and
branch by abstraction.
Neal will then go on to
cover operation, DevOps
and programmatic
control of infrastructure,
using tools such as
Puppet and Chef.

Ask any group of people
what they want or
need and you’ll find no
shortage of opinions or
answers. Clients and
stakeholders will always
have a voluminous
laundry list of features
and functions, all
of which they will
insist are equally
important. Your clients,
employers, project
stakeholders and users
all share something very
important in common:
they’re all human beings.
And we human beings
all have a fundamental
flaw: we often make very
confident – but equally
false – predictions about
our future behaviour.

So the requirements
that will actually be most
useful and most valuable
– the ones that will
increase user adoption
or sales; the ones that
will make or save money
– are almost never
surfaced in traditional
requirements sessions.

In this workshop, Joe
will show you how to
change that, along with
how to tell the di�erence
between what people say
they need and what they
actually need. Finally,
he’ll show you how to
uncover the things they
don’t know they need
(but absolutely do).

Software design plays
an important role in
adapting changing
requirements for
software development.
Software products
that follow Agile
methodologies are
no exception. Agile
methodologies welcome
rapid requirement
changes and yet promote
timely delivery. Often,
software teams follow
these practices (to some
extent) but ignore the
software design and its
quality due to negligence
or ignorance. “Design
agility” suggests that
the software design has
to be Agile if the team
intends to follow Agile
practices in a true sense.
In the absence of agility
of design, it’s di�cult to
achieve the benefits of
being Agile.

Tushar emphasises
the importance of
design agility by
exposing design smells
in software systems. He
explains design smells
and connects them to
their impact on software
design, design agility,
bug-proneness and
delivery schedule of the
software.

This workshop o�ers
an understanding of the
importance of software
design quality and design
agility. You’ll also learn
the vocabulary of smells,
using a comprehensive
classification, and
practical refactoring
strategies to repay
technical debt.

Is you web application
working slower than
anticipated? Have
you rewritten your
application code, but still
wonder if there is some
ASP.NET or IIS trick
you can use to boost
things up?

Testing and profiling
a web application is
trickier than with
desktop or mobile apps.
It requires testing both
front-end and back-end,
and the network in-
between the two. And
since web applications
are a mix of HTML, CSS,
JavaScript and .NET
code, you often need
to use several tools to
accomplish this task.

In this workshop, Ido
will go over the process
of testing and profiling
web applications, and
demonstrate how to
use various tools of the
trade – both for front
and back ends. Ido will
then go into detail on
how to speed up your
web applications, by
providing important tips
and tricks you can apply
to the di�erent parts of
the application: ASP.
NET (Web Forms, MVC
and Web API), general
.NET best practices,
IIS server, networking
tips, HTML/CSS and
JavaScript.

In this workshop, Sasha
will look at the most
important C++ language
features that improve
system performance and
developer productivity,
and see how to apply
them to existing code.

The C++11 standard
is already behind us,
and C++14 is just
around the corner.
With a huge variety
of language features
such as lambdas, rvalue
references, auto and
decltype, and variadic
templates, it’s easy to
get lost in C++. In fact,
it often seems like a
completely new and
foreign language. We
will make the most of
Visual C++ 2013 and
give a special focus
to converting and
refactoring code to use
modern C++ idioms.
Specifically, we will
look at how to best use
STL algorithms with
lambda functions,
when to use each kind
of smart pointer class,
how to convert macros
and non-generic code
to templates, and a
variety of best practices
concerning concurrency
in C++ applications.

This will be a
particularly relevant
workshop for C++
developers who watched
the C++ 11/14 train
passing by and weren’t
able to apply all the best
practices of modern C++
to their applications
just yet.

Microsoft has really
been investing a lot in
business intelligence
(BI) over the last 10
years. The result is
a huge number of
analytical tools and
services. When building
a BI solution, many
companies make basic
mistakes and choose
inappropriate tools for
the problem they are
trying to solve.

In this workshop,
Dejan will help you put
the building blocks into
the right context. You
will learn about data
warehousing with SQL
Server, reporting with
SQL Server Reporting
Services (SSRS), Power
View and Power Map,
on-line analytical
processing (OLAP) with
SQL Server Analysis
Services (SSAS),
Multidimensional,
Tabular, Power Pivot for
Excel, and Power Pivot
for SharePoint Server,
data mining with SSAS,
Excel, R and Azure
Machine Learning
(ML), and about the
extract-transform-load
process with SQL Server
Integration Services
(SSIS) and Power Query.

Building and
maintaining large
and scalable JavaScript
web apps isn’t easy.
So how do you build
your front-end-
oriented applications
without being driven
to madness? Using
and combining proven
JavaScript patterns will
do the trick.

In this workshop,
Gil will discuss the
patterns behind some
of the largest JavaScript
apps, such as Gmail
and Twitter, and we’ll
explore how to apply
them in your own apps.
We’ll start from object
patterns and discuss
how to write more
object-oriented-like
code in JavaScript.
Then, we will focus
on module patterns
and asynchronous
module definitions
(AMD). We will also
discuss patterns such
as promises, timers and
mediator. At the end of
the day, we will combine
the patterns and see how
to use them to build your
next scalable JavaScript
web app.

Swift is Apple’s
new programming
language. It represents a
significant improvement
over both Objective C
and C++; incorporating
many contemporary
language features
(such as duck typing
and closures) without
abandoning object
orientation. It promises
to become the dominant
language of the Apple
platform.

Swift is, unfortunately,
a mixed bag. It supports
many important
language features, but it
also omits features that
are essential for long-
term maintainability
(privacy, for example).

In this workshop,
geared to programmers
who already know an
OO language (C++,
Java, C#, etc.), Allen
will present all the
interesting parts of the
Swift language. We’ll
gloss over the basic
stu� (declarations,
flow control, etc.) and
focus on those parts
of the language that
will be new to you
(lambdas, subscripts,
the inheritance model,
extensions and chaining,
etc.), with considerable
emphasis on places
where the language can
get you into trouble.

It’s all very well reading
books, but nothing beats
actually getting practical
experience. In this
workshop, working in
your choice of Java, C#
or Ruby, Seb will drive
out the implementation
of a simple utility by
specifying its behaviour
in Cucumber. The
tyrannical Product
Owner will regularly
change his mind, so we’ll
need to keep our code
well factored and easy to
modify.

This session is
designed for developers
and testers. By the end
of the day, you’ll be
comfortable working
with Cucumber in your
chosen development
environment. You’ll have
seen, first hand, how to
use Cucumber to drive
out valuable features
for your customers
and how that can help
keep your stakeholders
engaged in the software
development process.
It will also be clear how
BDD interacts with TDD.

Bring a laptop
with your chosen
development
environment installed,
and try to pre-install
your chosen Cucumber
variant before you come
(instructions available).
But don’t worry, we
can install on the day if
necessary.

If this subject
interests you, but you’d
prefer a gentler intro,
don’t miss Seb’s earlier
workshop on Monday:
“BDD by example”.

How do you design a
large system? We know
Waterfall doesn’t work
very well; yet we also
know that Agile scales
poorly. Various proposals
have been made (BDUF,
domain-driven design,
prototyping) but none
really solves the problem.

The key to managing
a large system is
managing change. No
specification ever
survives its own
implementation: as a
system takes shape,
everyone – developers,
architects, stakeholders
– change their minds. In
any non-trivial project,
goalposts are constantly
in motion. A robust
architecture is one that
anticipates those changes,
and a good design is one
that accommodates them
cheaply and e�ciently.

Problem space
analysis is a technique
that simply and clearly
anticipates, documents
and defines the changes
that can a�ect a project.
It informs the
architectural design so
that it can accommodate
those changes, and it
delivers a change-
tolerant ubiquitous
language to unify and
coordinate the
development e�ort.

Jules introduces the
principles of problem
space analysis and how
they translate into
architectures and
working systems, even
while the goalposts are
moving. The technique
will be actualised using a
real-life design problem.

18 | | | | 19

®8 | ® | | ®

DevWeek_2015_Brochure.indd 18 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

Getting software released
to users can be painful,
risky and time-
consuming. Here, Neal
sets out the principles
and practices that enable
rapid, incremental
delivery of high-quality,
valuable new functionality
to users. By automating
the build, deployment
and testing process, and
improving collaboration
between developers,
testers and operations,
delivery teams release
changes in a matter of
hours or even minutes.

Neal will look at the
di�erences between
related topics such as
continuous integration,
continuous deployment
and continuous delivery,
and explore the new
technical artefact that
continuous delivery
introduces: the
deployment pipeline.
He’ll discuss the various
stages, how triggering
works, and how to
pragmatically determine
what “production
ready” means, before
covering the role of
testing and the testing
quadrant, including
the audience and
engineering practices
around di�erent types
of tests. This is followed
by version control usage
and o�ering alternatives
to feature branching,
such as toggle and
branch by abstraction.
Neal will then go on to
cover operation, DevOps
and programmatic
control of infrastructure,
using tools such as
Puppet and Chef.

Ask any group of people
what they want or
need and you’ll find no
shortage of opinions or
answers. Clients and
stakeholders will always
have a voluminous
laundry list of features
and functions, all
of which they will
insist are equally
important. Your clients,
employers, project
stakeholders and users
all share something very
important in common:
they’re all human beings.
And we human beings
all have a fundamental
flaw: we often make very
confident – but equally
false – predictions about
our future behaviour.

So the requirements
that will actually be most
useful and most valuable
– the ones that will
increase user adoption
or sales; the ones that
will make or save money
– are almost never
surfaced in traditional
requirements sessions.

In this workshop, Joe
will show you how to
change that, along with
how to tell the di�erence
between what people say
they need and what they
actually need. Finally,
he’ll show you how to
uncover the things they
don’t know they need
(but absolutely do).

Software design plays
an important role in
adapting changing
requirements for
software development.
Software products
that follow Agile
methodologies are
no exception. Agile
methodologies welcome
rapid requirement
changes and yet promote
timely delivery. Often,
software teams follow
these practices (to some
extent) but ignore the
software design and its
quality due to negligence
or ignorance. “Design
agility” suggests that
the software design has
to be Agile if the team
intends to follow Agile
practices in a true sense.
In the absence of agility
of design, it’s di�cult to
achieve the benefits of
being Agile.

Tushar emphasises
the importance of
design agility by
exposing design smells
in software systems. He
explains design smells
and connects them to
their impact on software
design, design agility,
bug-proneness and
delivery schedule of the
software.

This workshop o�ers
an understanding of the
importance of software
design quality and design
agility. You’ll also learn
the vocabulary of smells,
using a comprehensive
classification, and
practical refactoring
strategies to repay
technical debt.

Is you web application
working slower than
anticipated? Have
you rewritten your
application code, but still
wonder if there is some
ASP.NET or IIS trick
you can use to boost
things up?

Testing and profiling
a web application is
trickier than with
desktop or mobile apps.
It requires testing both
front-end and back-end,
and the network in-
between the two. And
since web applications
are a mix of HTML, CSS,
JavaScript and .NET
code, you often need
to use several tools to
accomplish this task.

In this workshop, Ido
will go over the process
of testing and profiling
web applications, and
demonstrate how to
use various tools of the
trade – both for front
and back ends. Ido will
then go into detail on
how to speed up your
web applications, by
providing important tips
and tricks you can apply
to the di�erent parts of
the application: ASP.
NET (Web Forms, MVC
and Web API), general
.NET best practices,
IIS server, networking
tips, HTML/CSS and
JavaScript.

In this workshop, Sasha
will look at the most
important C++ language
features that improve
system performance and
developer productivity,
and see how to apply
them to existing code.

The C++11 standard
is already behind us,
and C++14 is just
around the corner.
With a huge variety
of language features
such as lambdas, rvalue
references, auto and
decltype, and variadic
templates, it’s easy to
get lost in C++. In fact,
it often seems like a
completely new and
foreign language. We
will make the most of
Visual C++ 2013 and
give a special focus
to converting and
refactoring code to use
modern C++ idioms.
Specifically, we will
look at how to best use
STL algorithms with
lambda functions,
when to use each kind
of smart pointer class,
how to convert macros
and non-generic code
to templates, and a
variety of best practices
concerning concurrency
in C++ applications.

This will be a
particularly relevant
workshop for C++
developers who watched
the C++ 11/14 train
passing by and weren’t
able to apply all the best
practices of modern C++
to their applications
just yet.

Microsoft has really
been investing a lot in
business intelligence
(BI) over the last 10
years. The result is
a huge number of
analytical tools and
services. When building
a BI solution, many
companies make basic
mistakes and choose
inappropriate tools for
the problem they are
trying to solve.

In this workshop,
Dejan will help you put
the building blocks into
the right context. You
will learn about data
warehousing with SQL
Server, reporting with
SQL Server Reporting
Services (SSRS), Power
View and Power Map,
on-line analytical
processing (OLAP) with
SQL Server Analysis
Services (SSAS),
Multidimensional,
Tabular, Power Pivot for
Excel, and Power Pivot
for SharePoint Server,
data mining with SSAS,
Excel, R and Azure
Machine Learning
(ML), and about the
extract-transform-load
process with SQL Server
Integration Services
(SSIS) and Power Query.

Building and
maintaining large
and scalable JavaScript
web apps isn’t easy.
So how do you build
your front-end-
oriented applications
without being driven
to madness? Using
and combining proven
JavaScript patterns will
do the trick.

In this workshop,
Gil will discuss the
patterns behind some
of the largest JavaScript
apps, such as Gmail
and Twitter, and we’ll
explore how to apply
them in your own apps.
We’ll start from object
patterns and discuss
how to write more
object-oriented-like
code in JavaScript.
Then, we will focus
on module patterns
and asynchronous
module definitions
(AMD). We will also
discuss patterns such
as promises, timers and
mediator. At the end of
the day, we will combine
the patterns and see how
to use them to build your
next scalable JavaScript
web app.

Swift is Apple’s
new programming
language. It represents a
significant improvement
over both Objective C
and C++; incorporating
many contemporary
language features
(such as duck typing
and closures) without
abandoning object
orientation. It promises
to become the dominant
language of the Apple
platform.

Swift is, unfortunately,
a mixed bag. It supports
many important
language features, but it
also omits features that
are essential for long-
term maintainability
(privacy, for example).

In this workshop,
geared to programmers
who already know an
OO language (C++,
Java, C#, etc.), Allen
will present all the
interesting parts of the
Swift language. We’ll
gloss over the basic
stu� (declarations,
flow control, etc.) and
focus on those parts
of the language that
will be new to you
(lambdas, subscripts,
the inheritance model,
extensions and chaining,
etc.), with considerable
emphasis on places
where the language can
get you into trouble.

It’s all very well reading
books, but nothing beats
actually getting practical
experience. In this
workshop, working in
your choice of Java, C#
or Ruby, Seb will drive
out the implementation
of a simple utility by
specifying its behaviour
in Cucumber. The
tyrannical Product
Owner will regularly
change his mind, so we’ll
need to keep our code
well factored and easy to
modify.

This session is
designed for developers
and testers. By the end
of the day, you’ll be
comfortable working
with Cucumber in your
chosen development
environment. You’ll have
seen, first hand, how to
use Cucumber to drive
out valuable features
for your customers
and how that can help
keep your stakeholders
engaged in the software
development process.
It will also be clear how
BDD interacts with TDD.

Bring a laptop
with your chosen
development
environment installed,
and try to pre-install
your chosen Cucumber
variant before you come
(instructions available).
But don’t worry, we
can install on the day if
necessary.

If this subject
interests you, but you’d
prefer a gentler intro,
don’t miss Seb’s earlier
workshop on Monday:
“BDD by example”.

How do you design a
large system? We know
Waterfall doesn’t work
very well; yet we also
know that Agile scales
poorly. Various proposals
have been made (BDUF,
domain-driven design,
prototyping) but none
really solves the problem.

The key to managing
a large system is
managing change. No
specification ever
survives its own
implementation: as a
system takes shape,
everyone – developers,
architects, stakeholders
– change their minds. In
any non-trivial project,
goalposts are constantly
in motion. A robust
architecture is one that
anticipates those changes,
and a good design is one
that accommodates them
cheaply and e�ciently.

Problem space
analysis is a technique
that simply and clearly
anticipates, documents
and defines the changes
that can a�ect a project.
It informs the
architectural design so
that it can accommodate
those changes, and it
delivers a change-
tolerant ubiquitous
language to unify and
coordinate the
development e�ort.

Jules introduces the
principles of problem
space analysis and how
they translate into
architectures and
working systems, even
while the goalposts are
moving. The technique
will be actualised using a
real-life design problem.

18 | | | | 19

®8 | ® | | ®

DevWeek_2015_Brochure.indd 19 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

Performance. Scalability.
Maintainability. Testability.
Security. Today’s application
developers need to build
systems that are designed
to achieve these goals from
the outset. In this in-depth
workshop, Anthony will take

you beyond the basics, to learn what it takes to build
RESTful services that are robust, scalable and loosely
coupled, using dependency injection with repository and
unit of work design patterns.

But there’s more to building loosely coupled systems than applying
a set of design patterns. Anthony will show how you can harness
the power of code generation by customising T4 templates for
reverse engineering Code First classes from an existing database,
in order to produce entities with persistence concerns that are
completely stripped away. You’ll also learn ninja techniques for
handling cyclical references with code-based configuration and
using e cient binary formatters, all without polluting your entities
with mapping, serialisation or validation attributes.

This workshop will focus primarily on developing real-world
business apps using the Entity framework and ASP.NET Web API.

JavaScript, by its nature,
makes it di cult to write
maintainable code. HTML, by
its nature, is loosely structured.
AngularJS fixes both of those.
It is a structural framework
for dynamic web apps,
allowing you to extend HTML’s

syntax, enabling you to write powerful, maintainable
applications succinctly.

In this workshop, Sahil will build on your existing knowledge
of JavaScript and teach you the ins and outs of AngularJS.
There are plenty of examples, which will walk you through a
basic introduction, models, controllers and views in Angular,
templates and databinding, services and dependency injection,
directives, routing and single-page applications.

An introduction to AngularJS
AngularJS is a structural framework for dynamic web apps.
It lets you use HTML as your template language and lets
you extend HTML’s syntax to express your application’s
components clearly and succinctly. This module gets you
started with AngularJS showing the basic syntax and some
quick starts to get us running.

Models, controllers and views
Controllers in AngularJS are a fundamental building block
of Angular. AngularJS encourages better code architecture
by encouraging you to use MVC-based patterns. There is
rich support for controllers and views, and this module will
familiarise you with those.

Templates and databinding
When working with complex forms, or even reactive user
interfaces, it really helps to leverage concepts such as
databinding. Databinding in JavaScript is especially valuable
but can be di�cult to implement, unless you use something like
Angular.

Services in Angular, dependency injection
Services in Angular are substitutable objects that are wired
together using dependency injection. Fancy! What on Earth
does that even mean? Well for one, services are a classic way
of bundling together reusable code across controllers in your
application, and they can be lazily instantiated or singletons.
There are services that Angular provides, such as $http, or ones
you can create. And then there is something called interceptors.
This module gets in in the deep of AngularJS services.

Directives
Directives in AngularJS are markers on DOM elements that
tell the AngularJS HTML compiler to attach some specified
behaviour to that particular DOM element or its children. There
are many directives, such as ngBind, ngModel, ngClass, and this
module shows you the most important directives.

Routing and single-page applications (SPAs)
AngularJS routes enable you to create di�erent URLs for
di�erent content in your application. Having di�erent URLs for
di�erent content enables the user to bookmark URLs to specific
content. Single-page applications allow you to write HTML and
JavaScript code that more or less performs and behaves like
a thick client application. It’s pretty neat – trust me, you’ll be
using this.

 | | 2120 | |

®8 | ® | | ®

In this special two-day workshop, Andrew
and Richard will take you through the core
skills required to be successful developing
async and multithreaded code, both in the
.NET and web worlds. Not only do we cover
the core APIs but also how they are used
e�ectively, tested and debugged.

Tasks
When the Parallel Framework Extensions (PFx)
were first announced, it looked as though they
were going to target a narrow set of requirements
around parallelising processor intensive code.
Over time, the scope of the library has grown
significantly, such that it will become the main
model for building asynchronous code. The
pivotal type enabling this transition is the Task
class. This is a functionally very rich type,
allowing the creation of both short- and long-lived
asynchronous work, Tasks can have dependencies
on one another and support cancellation. In this,
the first of the PFx modules we look specifically
at how this class gives us a unified framework for
building multithreaded code.

Thread safety
Asynchronous programming requires careful
attention to detail, since most objects are
not designed with multithreaded access
in mind. This module introduces the
importance of Interlocked and Monitor-based
synchronisation.

Concurrent data structures
Ever since its inception, .NET has had support
for a number of synchronisation primitives (such
as Interlocked, Monitor and Mutex). However,
on their own, these primitives do not provide
support for more complex synchronisation
situations, and so people have had to use them as
building blocks to build things such as e�cient
semaphores. PFx finally brings to the library a set
of richer primitives, such as lazy initialisation, a
lightweight semaphore and a countdown event.
But more than this, it also introduces a set of
high-performance concurrent data structures
that allow you to use them without you having
to provide your own synchronisation logic
around them. We also look at the new Immutable

Collections package, now available on NuGet,
which provides another way to model data for
async applications.

Parallel
The initial goal of PFx was to simplify the
parallelisation of processor intensive tasks – and this
remains a key feature. This part of its functionality is
focused on the Parallel class and its For and ForEach
members. In this module, we look at the simplified
model but also highlight that parallelising algorithms
is never as simple as it might first seem – we show
you some of the pitfalls that you should be aware of
when trying to parallelise functionality using the
Parallel class.

async/await
C# 5 builds on the Task API, introducing async
and await keywords, which bring asynchronous
execution as a first-class concept in the C# language.
These new keywords create a very elegant model for
all sorts of async work and this module explains not
only how to use them but also how they work under
the covers.

Server-side async
The nature of server-side applications often means
they are asynchronous by their very design, servicing
many clients at the same time on di�erent threads.
But as you dig deeper, you often find these threads
performing long-running blocking operations –
particularly in terms of IO resulting in consuming
more threads (an expensive resource) than
necessary. This module focuses on a range of server-
side technologies and demonstrates how to perform
maximum concurrency for least number of threads.

TPL Dataflow
TPL Dataflow is a downloadable addition to the
TPL (Task Parallel Library) that ships with the
.NET framework. TPL Dataflow provides an
alternative approach to define concurrency. Instead
of just simply throwing threads at a synchronously
structured program and having to deal with all the
thread safe and race conditions that introduces; we
have the concept of many autonomous objects, each
with its own thread of execution. These autonomous
objects co-operate with other such objects through
asynchronous message passing. In this module, we
will see how TPL Dataflow can greatly reduce the
complexity normally associated with asynchronous
programming.

Rx
Reactive Framework is a new library that uses the
.NET 4.0 IObservable interface and LINQ to create a
compelling new programming model that allows you
to build “event”-based code with declarative LINQ
statements. This module introduces the Reactive
Framework and shows how it can greatly simplify
your code.

DevWeek_2015_Brochure.indd 20 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

Performance. Scalability.
Maintainability. Testability.
Security. Today’s application
developers need to build
systems that are designed
to achieve these goals from
the outset. In this in-depth
workshop, Anthony will take

you beyond the basics, to learn what it takes to build
RESTful services that are robust, scalable and loosely
coupled, using dependency injection with repository and
unit of work design patterns.

But there’s more to building loosely coupled systems than applying
a set of design patterns. Anthony will show how you can harness
the power of code generation by customising T4 templates for
reverse engineering Code First classes from an existing database,
in order to produce entities with persistence concerns that are
completely stripped away. You’ll also learn ninja techniques for
handling cyclical references with code-based configuration and
using e cient binary formatters, all without polluting your entities
with mapping, serialisation or validation attributes.

This workshop will focus primarily on developing real-world
business apps using the Entity framework and ASP.NET Web API.

JavaScript, by its nature,
makes it di cult to write
maintainable code. HTML, by
its nature, is loosely structured.
AngularJS fixes both of those.
It is a structural framework
for dynamic web apps,
allowing you to extend HTML’s

syntax, enabling you to write powerful, maintainable
applications succinctly.

In this workshop, Sahil will build on your existing knowledge
of JavaScript and teach you the ins and outs of AngularJS.
There are plenty of examples, which will walk you through a
basic introduction, models, controllers and views in Angular,
templates and databinding, services and dependency injection,
directives, routing and single-page applications.

An introduction to AngularJS
AngularJS is a structural framework for dynamic web apps.
It lets you use HTML as your template language and lets
you extend HTML’s syntax to express your application’s
components clearly and succinctly. This module gets you
started with AngularJS showing the basic syntax and some
quick starts to get us running.

Models, controllers and views
Controllers in AngularJS are a fundamental building block
of Angular. AngularJS encourages better code architecture
by encouraging you to use MVC-based patterns. There is
rich support for controllers and views, and this module will
familiarise you with those.

Templates and databinding
When working with complex forms, or even reactive user
interfaces, it really helps to leverage concepts such as
databinding. Databinding in JavaScript is especially valuable
but can be di�cult to implement, unless you use something like
Angular.

Services in Angular, dependency injection
Services in Angular are substitutable objects that are wired
together using dependency injection. Fancy! What on Earth
does that even mean? Well for one, services are a classic way
of bundling together reusable code across controllers in your
application, and they can be lazily instantiated or singletons.
There are services that Angular provides, such as $http, or ones
you can create. And then there is something called interceptors.
This module gets in in the deep of AngularJS services.

Directives
Directives in AngularJS are markers on DOM elements that
tell the AngularJS HTML compiler to attach some specified
behaviour to that particular DOM element or its children. There
are many directives, such as ngBind, ngModel, ngClass, and this
module shows you the most important directives.

Routing and single-page applications (SPAs)
AngularJS routes enable you to create di�erent URLs for
di�erent content in your application. Having di�erent URLs for
di�erent content enables the user to bookmark URLs to specific
content. Single-page applications allow you to write HTML and
JavaScript code that more or less performs and behaves like
a thick client application. It’s pretty neat – trust me, you’ll be
using this.

 | | 2120 | |

®8 | ® | | ®

In this special two-day workshop, Andrew
and Richard will take you through the core
skills required to be successful developing
async and multithreaded code, both in the
.NET and web worlds. Not only do we cover
the core APIs but also how they are used
e�ectively, tested and debugged.

Tasks
When the Parallel Framework Extensions (PFx)
were first announced, it looked as though they
were going to target a narrow set of requirements
around parallelising processor intensive code.
Over time, the scope of the library has grown
significantly, such that it will become the main
model for building asynchronous code. The
pivotal type enabling this transition is the Task
class. This is a functionally very rich type,
allowing the creation of both short- and long-lived
asynchronous work, Tasks can have dependencies
on one another and support cancellation. In this,
the first of the PFx modules we look specifically
at how this class gives us a unified framework for
building multithreaded code.

Thread safety
Asynchronous programming requires careful
attention to detail, since most objects are
not designed with multithreaded access
in mind. This module introduces the
importance of Interlocked and Monitor-based
synchronisation.

Concurrent data structures
Ever since its inception, .NET has had support
for a number of synchronisation primitives (such
as Interlocked, Monitor and Mutex). However,
on their own, these primitives do not provide
support for more complex synchronisation
situations, and so people have had to use them as
building blocks to build things such as e�cient
semaphores. PFx finally brings to the library a set
of richer primitives, such as lazy initialisation, a
lightweight semaphore and a countdown event.
But more than this, it also introduces a set of
high-performance concurrent data structures
that allow you to use them without you having
to provide your own synchronisation logic
around them. We also look at the new Immutable

Collections package, now available on NuGet,
which provides another way to model data for
async applications.

Parallel
The initial goal of PFx was to simplify the
parallelisation of processor intensive tasks – and this
remains a key feature. This part of its functionality is
focused on the Parallel class and its For and ForEach
members. In this module, we look at the simplified
model but also highlight that parallelising algorithms
is never as simple as it might first seem – we show
you some of the pitfalls that you should be aware of
when trying to parallelise functionality using the
Parallel class.

async/await
C# 5 builds on the Task API, introducing async
and await keywords, which bring asynchronous
execution as a first-class concept in the C# language.
These new keywords create a very elegant model for
all sorts of async work and this module explains not
only how to use them but also how they work under
the covers.

Server-side async
The nature of server-side applications often means
they are asynchronous by their very design, servicing
many clients at the same time on di�erent threads.
But as you dig deeper, you often find these threads
performing long-running blocking operations –
particularly in terms of IO resulting in consuming
more threads (an expensive resource) than
necessary. This module focuses on a range of server-
side technologies and demonstrates how to perform
maximum concurrency for least number of threads.

TPL Dataflow
TPL Dataflow is a downloadable addition to the
TPL (Task Parallel Library) that ships with the
.NET framework. TPL Dataflow provides an
alternative approach to define concurrency. Instead
of just simply throwing threads at a synchronously
structured program and having to deal with all the
thread safe and race conditions that introduces; we
have the concept of many autonomous objects, each
with its own thread of execution. These autonomous
objects co-operate with other such objects through
asynchronous message passing. In this module, we
will see how TPL Dataflow can greatly reduce the
complexity normally associated with asynchronous
programming.

Rx
Reactive Framework is a new library that uses the
.NET 4.0 IObservable interface and LINQ to create a
compelling new programming model that allows you
to build “event”-based code with declarative LINQ
statements. This module introduces the Reactive
Framework and shows how it can greatly simplify
your code.

DevWeek_2015_Brochure.indd 21 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

Andrey is a software
craftsman with years of
experience. His true love
is the JVM ecosystem,
and applying it to his
company’s DevOps
initiatives. He is one
of the authors of the
Groovy 2 Cookbook,
and a frequent speaker
at conferences.

Klaus provides
independent SQL Server
Consulting Services
across Europe and the
US. He has worked
with SQL Server
2005/2008/2012/2014
from its very beginning,
and has also written
the book Pro SQL
Server 2008.

Ed is an experienced
software developer and
technical evangelist who
has been programming
professionally for
more than 25 years.
He currently works for a
major manufacturer and
retailer in the UK, leading
the team responsible for
its ecommerce web site.

Shay is a Visual C#/
IronRuby MVP and the
author of IronRuby
Unleashed. With more
than 10 years’ experience
in the software industry,
he is the co-founder of
CodeValue, a company
that creates products for
developers, consults and
conducts courses.

Sasha is the CTO of
Sela Group, a Microsoft
C# MVP and Azure
MRS, a Pluralsight
author, and an
international consultant
and trainer. The author
of two books, Sasha is
a prolific blogger and
author of numerous
training courses.

Nuno is Director of
Cloud Services, Europe
at Aditi Technologies,
and has more than
16 years’ experience in IT.
His specialities include
enterprise architecture
and solution architecture,
cloud computing,
development
and training.

Howard is a software
consultant and educator
who specialises in Agile
process and practices.
With a career spanning
more than 30 years, he’s
been a developer, analyst,
team lead, architect and
project manager, and is a
long-standing member
of the ACM and IEEE.

Dino is a trainer,
speaker, consultant and
author. CTO of Crionet,
a company providing
software and mobile
services to professional
sports, Dino is also
technical evangelist
for software developer
JetBrains, focusing on
Android and Kotlin.

Neal is director,
software architect
and meme wrangler at
ThoughtWorks, a global
IT consultancy focusing
on end-to-end software
development and
delivery. He’s the author
of applications, articles,
and books on a variety of
subjects and technologies.

Dror is a senior
consultant at software
company CodeValue,
with a decade of
experience ranging from
Intel and SAP to small
start-ups. He evangelises
Agile methodologies and
test-driven design in his
work, at conferences
and as a consultant.

Sander is the author
of the best-selling
book This Is Agile. An
independent mentor,
trainer, programmer,
architect, speaker
and writer, Sander
is a catalyst in the
innovation of software
development at many
international clients.

Allan has held just about
every job in software,
before joining Software
Strategy to help teams
adopt and deepen Agile
practices. He has written
books including Xanpan
– Team-centric Agile
Software Development,
and is a regular speaker
and journal contributor.

Michael is an author,
instructor and technical
curriculum director
at DevelopMentor,
and lead developer
for its online training
platform, LearningLine.
He has been building
commercial applications
with .NET since its initial
public beta in 2001.

Tobias is Senior Director
of User Experience at
Infragistics, Inc., and
has worked in user
experience for more than
10 years. He specialises
in Human Factors
Engineering, which is
rooted in his academic
background in cognitive
psychology.

Iqbal is the President
and Technology
Evangelist of software
developer Alachisoft,
maker of NCache,
the industry’s leading
open-source distributed
cache for .NET. NCache
is also available for
Microsoft Azure.

Andy is a co-founder of
Rock Solid Knowledge,
creating Kiosk-based
solutions on Windows
Embedded with
.NET. He cut his teeth
programming on a host
of platforms at various
start-ups, and now
consults and teaches for
a diverse range of clients.

Ido is a senior architect
and trainer at SELA
Group, a Microsoft ASP.
NET/IIS MVP, and an
expert on Microsoft
Azure and web
technologies such as
WCF, ASP.NET and IIS.
He has co-authored a
number of books and
o�cial Microsoft courses.

Michael (MCT, MCPD)
is a senior consultant and
lecturer specialising in
rich client technologies
such as WPF, Windows
Phone, XNA and
HTML/JS. He has
helped to develop
complex infrastructures
using Prism, MVVM
and Angular.

Austin is a founder of
Sixty North, a Norway-
based software consulting,
training and application
development company.
Developer of industry-
leading oil reservoir
modelling software
in C++ and Python,
he is an experienced
presenter and teacher.

Richard has worked on
distributed systems,
including as middle-tier
architect on the UK
national police systems.
He focuses on technologies
that enable developers to
build large-scale systems
on the Microsoft platform,
such as WCF, BizTalk,
Workflow and Azure.

Amy is a web developer
at the Brooklyn Museum
of Art in New York City,
working to increase
dialogue between the
museum and its visitors
through technology, and
has been a mentor for
the non-profit Girls Who
Code. She is interested in
using code to create art.

Dan is a senior business
intelligence (BI)/
programming consultant
specialising in Microsoft
technologies. A former
physics teachers, he has
written several books and
numerous articles on
.NET programming and
BI development, and is a
regular conference speaker.

Pearl’s cross-disciplinary
approach ranges from
Android to Arduino,
HTML to LEDs. Her
work has taken her from
Facebook campaigns for
Google Chrome to projects
that turn payphones into
gumball machines or
dynamically create origami
from SMS messages.

22 | | | | 23

Gil is a web development
expert, ASP.NET/
IIS Microsoft MVP
and the founder of
sparXys. He consults for
various enterprises and
companies, where he
helps to develop web and
RIA-based solutions,
and conducts lectures
and workshops.

Kevlin is an independent consultant
and trainer based in the UK. His
development interests are in patterns,
programming, practice and process.
He is co-author of two volumes
in the Pattern-Oriented Software
Architecture series, editor of the book
97 Things Every Programmer Should
Know, and a columnist for various
magazines and web sites.

Phil is a Developer
Evangelist at Caplin
Systems, working on
the BladeRunnerJS
open source project.
He writes frequently
and specialises in
JavaScript development
and real-time web
technologies.

Sahil, the founder
and principal of
Winsmarts.com, has
been a Microsoft MVP
and INETA speaker
for 11 years. Author of
books and articles about
Microsoft technologies,
iOS and JavaScript,
Sahil helps make the
most di�cult topics fun.

Christos is a software
engineer with more than
10 years’ experience
mainly focusing on
the .NET stack. He has
worked with big names
including MarkIT,
Strathclyde University,
Amor/Lockheed Martin,
Ignis Asset Management
and Barclays.

John is the VP of
engineering at Penton
Media and former lead
technical architect of
Condé Nast’s platform
engineering team.
He also organises the
NYC HTML5 meetup
group, and contributes
to a number of open-
source projects.

Dejan, MCT and
SQL Server MVP,
is an independent
consultant, trainer and
developer focusing on
database and business
intelligence applications.
He specialises in topics
like data modeling, data
mining and data quality,
and has written 13 books.

Adam combines degrees
in engineering and
psychology for a di�erent
perspective on software.
An architect and
programmer, he writes
open-source software in a
variety of languages, and
is the author of Your Code
as a Crime Scene.

Mark runs the curriculum
team at Xamarin
University, building and
managing the growing
course catalogue
used to train Xamarin
developers all over the
world. He is a Microsoft
MVP, Wintellect
author and Xamarin
Consulting partner.

Jules is a software
architect with a particular
interest in languages
(both for programming
and discourse), presently
active in web and mobile
convergence. He has been
writing, teaching and
speaking for 25 years,
and is the originator of
“Problem Space Analysis”.

Joe has been preaching
and practising the gospel
of user and customer
experience to Fortune
100, 500 and government
organisations for more
than 25 years. As founder
of Give Good UX, he
o�ers coaching, training
and product audit
programmes.

Toni is a Microsoft
MVP for C#, developer,
speaker, blogger and
technology enthusiast.
With years of
professional experience
working on range of
technologies, his recent
focus has been on
Windows Phone and
Windows 8 as a platform.

Shai is an AngularJS
consultant working with
enterprise companies,
helping with migration
and building large-scale
projects. He recently
founded HiRez.io,
an online training
web site teaching
front-end architecture
with humour.

Pavel is a graduate of
the Moscow Institute of
Physics and Technologies
(MIPT), with a PhD
in Neurocomputer
application for the
representation of static
and dynamic 3D data. He
is also the founder, CEO
and ideological leader of
Pawlin Technologies Ltd.

James is a Developer
Evangelist at Xamarin.
He has been a .NET
developer for more than
a decade, working in
industries including
games development,
printer software and web
services, with several
published apps on iOS,
Android and Windows.

Seb focuses on helping
teams adopt and refine
their Agile practices. The
founding trainer with
Kickstart Academy, he
has more than 30 years’
industry experience
(including IBM Rational
and Amazon), and is
a popular speaker at
international meetings.

Gary is a freelance data
science practitioner
and trainer. He has a
deep understanding
of the full Hadoop and
HDInsight environment,
as well as an interest in
Social Network Analysis,
(UCINet and Pajek)
and computational
linguistics (NLTK).

Tushar is a technical
expert at the Siemens
Research and Technology
Center in Bangalore,
India. His research into
software design, design
smells and refactoring
has resulted in several
patents, research papers
and tools.

Mike is a Technical
Evangelist for Red Gate
Software, on the Cerebrata
Team. He describes
himself as a “problem-
solving, outdoorsy, user
group founding, dog-loving,
blog writing, solution-
creating, event planning,
married, technology-
speaking, father-of-one”.

Tony is a course author,
instructor and consultant
for Wintellect, specialising
in robust, scalable and
maintainable applications
using Entity framework,
WCF, Windows Identity
Foundation and ASP.NET
Web API. He is the
author of two popular
open-source frameworks.

Oren has more than 16
years’ experience with
IBM, Cadence, Wix and
others, and is the founder
of Testim.io. He regularly
speaks about new
technologies in web
development and test
automation, and teaches
at the Techion, Israel
institute of Technology.

Robert is a founding
director of Sixty North,
a software product and
consulting business in
Norway. He has worked
in senior architecture and
technical management
roles, providing tools for
dealing with the masses
of information flowing
from today’s energy sector.

Peter’s fascination
with new technologies
has seen him writing
articles for CodeProject,
blogging and contributing
to open-source projects.
He was recently made an
Intel Software Innovator
for his work with
RealSense technology.

Eoin is a lead architect in
the Operations Technology
group at UBS. Prior to
UBS, he spent 20 years in
software engineering at
Bull, Sybase, InterTrust
and BGI. His main
interests are software
architecture, distributed
systems, computer security
and data management.

Ralph has spent 10 years
focusing on the software
development market at
Intel, helping companies
and institutions to
maximise application
performance and move
code from serial to parallel.
He has spoken at TechEd,
TechDays, OOP and other
conferences across Europe.

Allen is an internationally
recognised consultant, trainer,
speaker and author. He specialises
in lean/Agile processes and culture,
Agile-focused architecture and
cloud-based web-application
development. He has written a
dozen books, hundreds of magazine
articles, and currently blogs on
Agile for Dr Dobb’s Journal.

®8 | ® | | ®

DevWeek_2015_Brochure.indd 22 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

Andrey is a software
craftsman with years of
experience. His true love
is the JVM ecosystem,
and applying it to his
company’s DevOps
initiatives. He is one
of the authors of the
Groovy 2 Cookbook,
and a frequent speaker
at conferences.

Klaus provides
independent SQL Server
Consulting Services
across Europe and the
US. He has worked
with SQL Server
2005/2008/2012/2014
from its very beginning,
and has also written
the book Pro SQL
Server 2008.

Ed is an experienced
software developer and
technical evangelist who
has been programming
professionally for
more than 25 years.
He currently works for a
major manufacturer and
retailer in the UK, leading
the team responsible for
its ecommerce web site.

Shay is a Visual C#/
IronRuby MVP and the
author of IronRuby
Unleashed. With more
than 10 years’ experience
in the software industry,
he is the co-founder of
CodeValue, a company
that creates products for
developers, consults and
conducts courses.

Sasha is the CTO of
Sela Group, a Microsoft
C# MVP and Azure
MRS, a Pluralsight
author, and an
international consultant
and trainer. The author
of two books, Sasha is
a prolific blogger and
author of numerous
training courses.

Nuno is Director of
Cloud Services, Europe
at Aditi Technologies,
and has more than
16 years’ experience in IT.
His specialities include
enterprise architecture
and solution architecture,
cloud computing,
development
and training.

Howard is a software
consultant and educator
who specialises in Agile
process and practices.
With a career spanning
more than 30 years, he’s
been a developer, analyst,
team lead, architect and
project manager, and is a
long-standing member
of the ACM and IEEE.

Dino is a trainer,
speaker, consultant and
author. CTO of Crionet,
a company providing
software and mobile
services to professional
sports, Dino is also
technical evangelist
for software developer
JetBrains, focusing on
Android and Kotlin.

Neal is director,
software architect
and meme wrangler at
ThoughtWorks, a global
IT consultancy focusing
on end-to-end software
development and
delivery. He’s the author
of applications, articles,
and books on a variety of
subjects and technologies.

Dror is a senior
consultant at software
company CodeValue,
with a decade of
experience ranging from
Intel and SAP to small
start-ups. He evangelises
Agile methodologies and
test-driven design in his
work, at conferences
and as a consultant.

Sander is the author
of the best-selling
book This Is Agile. An
independent mentor,
trainer, programmer,
architect, speaker
and writer, Sander
is a catalyst in the
innovation of software
development at many
international clients.

Allan has held just about
every job in software,
before joining Software
Strategy to help teams
adopt and deepen Agile
practices. He has written
books including Xanpan
– Team-centric Agile
Software Development,
and is a regular speaker
and journal contributor.

Michael is an author,
instructor and technical
curriculum director
at DevelopMentor,
and lead developer
for its online training
platform, LearningLine.
He has been building
commercial applications
with .NET since its initial
public beta in 2001.

Tobias is Senior Director
of User Experience at
Infragistics, Inc., and
has worked in user
experience for more than
10 years. He specialises
in Human Factors
Engineering, which is
rooted in his academic
background in cognitive
psychology.

Iqbal is the President
and Technology
Evangelist of software
developer Alachisoft,
maker of NCache,
the industry’s leading
open-source distributed
cache for .NET. NCache
is also available for
Microsoft Azure.

Andy is a co-founder of
Rock Solid Knowledge,
creating Kiosk-based
solutions on Windows
Embedded with
.NET. He cut his teeth
programming on a host
of platforms at various
start-ups, and now
consults and teaches for
a diverse range of clients.

Ido is a senior architect
and trainer at SELA
Group, a Microsoft ASP.
NET/IIS MVP, and an
expert on Microsoft
Azure and web
technologies such as
WCF, ASP.NET and IIS.
He has co-authored a
number of books and
o�cial Microsoft courses.

Michael (MCT, MCPD)
is a senior consultant and
lecturer specialising in
rich client technologies
such as WPF, Windows
Phone, XNA and
HTML/JS. He has
helped to develop
complex infrastructures
using Prism, MVVM
and Angular.

Austin is a founder of
Sixty North, a Norway-
based software consulting,
training and application
development company.
Developer of industry-
leading oil reservoir
modelling software
in C++ and Python,
he is an experienced
presenter and teacher.

Richard has worked on
distributed systems,
including as middle-tier
architect on the UK
national police systems.
He focuses on technologies
that enable developers to
build large-scale systems
on the Microsoft platform,
such as WCF, BizTalk,
Workflow and Azure.

Amy is a web developer
at the Brooklyn Museum
of Art in New York City,
working to increase
dialogue between the
museum and its visitors
through technology, and
has been a mentor for
the non-profit Girls Who
Code. She is interested in
using code to create art.

Dan is a senior business
intelligence (BI)/
programming consultant
specialising in Microsoft
technologies. A former
physics teachers, he has
written several books and
numerous articles on
.NET programming and
BI development, and is a
regular conference speaker.

Pearl’s cross-disciplinary
approach ranges from
Android to Arduino,
HTML to LEDs. Her
work has taken her from
Facebook campaigns for
Google Chrome to projects
that turn payphones into
gumball machines or
dynamically create origami
from SMS messages.

22 | | | | 23

Gil is a web development
expert, ASP.NET/
IIS Microsoft MVP
and the founder of
sparXys. He consults for
various enterprises and
companies, where he
helps to develop web and
RIA-based solutions,
and conducts lectures
and workshops.

Kevlin is an independent consultant
and trainer based in the UK. His
development interests are in patterns,
programming, practice and process.
He is co-author of two volumes
in the Pattern-Oriented Software
Architecture series, editor of the book
97 Things Every Programmer Should
Know, and a columnist for various
magazines and web sites.

Phil is a Developer
Evangelist at Caplin
Systems, working on
the BladeRunnerJS
open source project.
He writes frequently
and specialises in
JavaScript development
and real-time web
technologies.

Sahil, the founder
and principal of
Winsmarts.com, has
been a Microsoft MVP
and INETA speaker
for 11 years. Author of
books and articles about
Microsoft technologies,
iOS and JavaScript,
Sahil helps make the
most di�cult topics fun.

Christos is a software
engineer with more than
10 years’ experience
mainly focusing on
the .NET stack. He has
worked with big names
including MarkIT,
Strathclyde University,
Amor/Lockheed Martin,
Ignis Asset Management
and Barclays.

John is the VP of
engineering at Penton
Media and former lead
technical architect of
Condé Nast’s platform
engineering team.
He also organises the
NYC HTML5 meetup
group, and contributes
to a number of open-
source projects.

Dejan, MCT and
SQL Server MVP,
is an independent
consultant, trainer and
developer focusing on
database and business
intelligence applications.
He specialises in topics
like data modeling, data
mining and data quality,
and has written 13 books.

Adam combines degrees
in engineering and
psychology for a di�erent
perspective on software.
An architect and
programmer, he writes
open-source software in a
variety of languages, and
is the author of Your Code
as a Crime Scene.

Mark runs the curriculum
team at Xamarin
University, building and
managing the growing
course catalogue
used to train Xamarin
developers all over the
world. He is a Microsoft
MVP, Wintellect
author and Xamarin
Consulting partner.

Jules is a software
architect with a particular
interest in languages
(both for programming
and discourse), presently
active in web and mobile
convergence. He has been
writing, teaching and
speaking for 25 years,
and is the originator of
“Problem Space Analysis”.

Joe has been preaching
and practising the gospel
of user and customer
experience to Fortune
100, 500 and government
organisations for more
than 25 years. As founder
of Give Good UX, he
o�ers coaching, training
and product audit
programmes.

Toni is a Microsoft
MVP for C#, developer,
speaker, blogger and
technology enthusiast.
With years of
professional experience
working on range of
technologies, his recent
focus has been on
Windows Phone and
Windows 8 as a platform.

Shai is an AngularJS
consultant working with
enterprise companies,
helping with migration
and building large-scale
projects. He recently
founded HiRez.io,
an online training
web site teaching
front-end architecture
with humour.

Pavel is a graduate of
the Moscow Institute of
Physics and Technologies
(MIPT), with a PhD
in Neurocomputer
application for the
representation of static
and dynamic 3D data. He
is also the founder, CEO
and ideological leader of
Pawlin Technologies Ltd.

James is a Developer
Evangelist at Xamarin.
He has been a .NET
developer for more than
a decade, working in
industries including
games development,
printer software and web
services, with several
published apps on iOS,
Android and Windows.

Seb focuses on helping
teams adopt and refine
their Agile practices. The
founding trainer with
Kickstart Academy, he
has more than 30 years’
industry experience
(including IBM Rational
and Amazon), and is
a popular speaker at
international meetings.

Gary is a freelance data
science practitioner
and trainer. He has a
deep understanding
of the full Hadoop and
HDInsight environment,
as well as an interest in
Social Network Analysis,
(UCINet and Pajek)
and computational
linguistics (NLTK).

Tushar is a technical
expert at the Siemens
Research and Technology
Center in Bangalore,
India. His research into
software design, design
smells and refactoring
has resulted in several
patents, research papers
and tools.

Mike is a Technical
Evangelist for Red Gate
Software, on the Cerebrata
Team. He describes
himself as a “problem-
solving, outdoorsy, user
group founding, dog-loving,
blog writing, solution-
creating, event planning,
married, technology-
speaking, father-of-one”.

Tony is a course author,
instructor and consultant
for Wintellect, specialising
in robust, scalable and
maintainable applications
using Entity framework,
WCF, Windows Identity
Foundation and ASP.NET
Web API. He is the
author of two popular
open-source frameworks.

Oren has more than 16
years’ experience with
IBM, Cadence, Wix and
others, and is the founder
of Testim.io. He regularly
speaks about new
technologies in web
development and test
automation, and teaches
at the Techion, Israel
institute of Technology.

Robert is a founding
director of Sixty North,
a software product and
consulting business in
Norway. He has worked
in senior architecture and
technical management
roles, providing tools for
dealing with the masses
of information flowing
from today’s energy sector.

Peter’s fascination
with new technologies
has seen him writing
articles for CodeProject,
blogging and contributing
to open-source projects.
He was recently made an
Intel Software Innovator
for his work with
RealSense technology.

Eoin is a lead architect in
the Operations Technology
group at UBS. Prior to
UBS, he spent 20 years in
software engineering at
Bull, Sybase, InterTrust
and BGI. His main
interests are software
architecture, distributed
systems, computer security
and data management.

Ralph has spent 10 years
focusing on the software
development market at
Intel, helping companies
and institutions to
maximise application
performance and move
code from serial to parallel.
He has spoken at TechEd,
TechDays, OOP and other
conferences across Europe.

Allen is an internationally
recognised consultant, trainer,
speaker and author. He specialises
in lean/Agile processes and culture,
Agile-focused architecture and
cloud-based web-application
development. He has written a
dozen books, hundreds of magazine
articles, and currently blogs on
Agile for Dr Dobb’s Journal.

®8 | ® | | ®

DevWeek_2015_Brochure.indd 23 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek

24 | |

DevWeek_2015_Brochure.indd 24 1/5/15 10:53 AM

www.devweek.com
www.twitter.com/devweek
mailto:devweek@bsi.co.uk
www.devweek.com

	Back
	Print
	MSDN Magazine, February 2015
	Cover Tip
	Front
	Back

	Contents
	CUTTING EDGE: Lightweight Client-Side Device Detection
	WINDOWS WITH C++: COM Smart Pointers Revisited
	Share UI Code Across Mobile Platforms with Xamarin.Forms
	Adding a Code Fix to Your Roslyn Analyzer
	The Rise of Event Stream-Oriented Systems
	Build Better Software with Smart Unit Tests
	What Every Programmer Should Know About Compiler Optimizations
	Building an Enterprise Search for .NET
	TEST RUN: L1 and L2 Regularization for Machine Learning
	THE WORKING PROGRAMMER: Rise of Roslyn, Part 2: Writing Diagnostics
	MODERN APPS: Implement Search in Windows Store and Windows Phone Store Apps
	DON’T GET ME STARTED: 5 Years Down the Road

	Visual Studio Live! - Insert
	DevWeek 2015 - Conference Brochure

