

Microsoft SQL Server 2019
Case Study:
SQL Workloads running on Apache Spark in
MS SQL Server 2019 Big Data Cluster

Technical White Paper
Published: November 2019
Applies to: Microsoft SQL Server 2019 Big Data Cluster

Abstract

In October 2019, Microsoft and Intel conducted performance and scalability testing using workloads

based on TPC-DS Schema with data sets 1TB, 3TB, 10TB, 30TB, and 100TB running on the first Microsoft

SQL Server 2019 Big Data Cluster solution, utilizing Apache Spark. We showcase the ability of Microsoft

SQL Server 2019 Big Data Cluster running on Intel-powered platforms to handle Big Data Sets at various

data sizes.

This white paper presents the definitions of these configurations and the benefits that Microsoft SQL

Server 2019 brings as a solution for your Big Data problems at scale. It is confirming that Microsoft SQL

Server 2019 Big Data Cluster is your choice for Big Data storage and processing large volumes of data

and workloads. For your review, we detail the cluster environment, storage, workload, and Microsoft

SQL Server 2019 Big Data Cluster configurations.

©2019 Microsoft Corporation. All rights reserved. This document is provided “as-is.” Information and

views expressed in this document, including URL and other Internet website references, may change

without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes.

Table of Contents
Introduction .. 5

Technology .. 6

Microsoft SQL Server 2019 Big Data Cluster ... 6

Intel® Xeon® Based Platforms ... 8

Intel® Data Center SSDs .. 8

Microsoft Reference Cluster Configurations .. 9

Intel Reference Cluster Configurations ... 11

Test Data Sets ... 14

10TB Data set .. 14

100TB Data Set .. 15

Data Load .. 17

Run Methodology ... 17

Spark SQL Configuration ... 19

Results and Analysis .. 21

Scaling Performance ... 21

Microsoft reference cluster .. 21

10TB with Spark Optimizer enabled ... 21

1TB – 10TB – 100TB with Spark Optimizer enabled.. 22

Query Runtimes .. 24

Performance Analysis.. 25

Intel Reference Cluster ... 26

Scaling Query Runtimes .. 26

Performance Analysis.. 27

System Performance ... 28

Built-in Grafana Monitoring .. 28

SAR .. 29

Performance Analysis Tool (PAT) .. 29

Summary ... 30

References .. 30

Appendix ... 31

TPC-DS Schema Based Queries ... 31

Microsoft Reference cluster.. 31

Intel Reference Cluster ... 31

Storage setup .. 32

Logical Volume for storage ... 32

Move Docker and Kubelet working directory ... 32

sar-multinodes-collect.sh .. 33

Microsoft Reference Cluster – Logical Volumes Configuration Details .. 33

Examples of system resources consumptions under these workloads .. 35

List of Figures .. 40

List of Tables ... 40

Introduction

Big data refers to the large, diverse sets of information that grow at ever-increasing rates.

(www.investopedia.com)

Big data usually includes data sets with sizes beyond the ability of commonly used software tools to

capture, curate, manage, and process data within a tolerable elapsed time. (wikipedia.org)

The ever-evolving digital world is rapidly scaling the demands for flexible compute, networking, and

storage. Future workloads will necessitate infrastructures that can seamlessly scale to support

immediate responsiveness and widely diverse performance requirements. The exponential growth of

data generation and consumption require that your data centers urgently evolve – or left behind in a

highly competitive environment. These demands are driving the architecture of modernized, future-

ready data centers and networks that can quickly fix and scale.

With an increasing amount of data, there is an increasing demand for flexibility to use the data from
various sources. Microsoft SQL Server 2019 Big Data Cluster integrates Microsoft SQL Server and the
best of big data open-source solutions. It deploys today’s big data solutions on scalable clusters using
Spark, HDFS containers with Kubernetes and SQL Server. This is Microsoft SQL Big Data Cluster response
to offer a perfect balance of cutting-edge software and hardware, performance and scalability,
deployment efficiency and simplified data management/analysis. It enables intelligence overall
customers’ data and represents the best platform to securely manage your big data at all data sets.

This paper showcases Microsoft SQL Server 2019 Big Data Cluster as a choice to answer your questions

about finding the platform to store, manage, and process big data sets. In this study, we are providing

insights into two systems to address ever-increasing data demands: Fueled by Intel® Xeon® processors

and Intel® Data Center Storage Solutions, we put Microsoft SQL Server Big Data Cluster to test.

Technology

Microsoft SQL Server 2019 Big Data Cluster

Microsoft SQL Server 2019 Big Data Cluster is a versatile platform that seamlessly meets the
requirements of the ever-expanding data sets. Its first version is built on top of Kubernetes to offer
extreme scalability with today’s best orchestration. With embedded HDFS storage, its elastic solution
leverages large volumes of structured and unstructured data, while the best in class Microsoft SQL
Server engine processes the relational data sets. Thanks to tuned integration with Kubernetes, Microsoft
SQL Server 2019 Big Data Cluster is the ideal Big Data solution for AI, ML, M/R, Streaming, BI, T-SQL, and
Spark.

Figure 1: Microsoft SQL Server 2019 Big Data Cluster and Analytics Features

The Big Data Cluster’s beating heart and brain is Microsoft SQL Server 2019, which creates the perfect
environment for marriage between structured and unstructured data. The simplified deployment with
containers and Kubernetes is putting the elasticity and the portability at the core of the platform and
enabling easy on-prem and on-cloud deployments. The development and management experience are
consistent regardless of where you run: on-prem or any of the major cloud providers.

As Big Data refers to decision support at scale, we have deployed today’s best decision support
benchmark, based on TPC-DS Schema, on two reference clusters. Between the two configurations, we
deployed 1TB, 3TB, 10TB, 30TB, and 100TB data sets to challenge our Microsoft SQL Server 2019 Big
Data Cluster deployments. With this document, we want to present these use cases and our current
findings for your reviews before your deployments.

Before preparing the deployment, we should initially consider:

1- The Microsoft SQL Server 2019 Big Data architecture and its components (see Figure 2),
2- How the control, data pool, storage pool and compute pool components are laid out on the

actual cluster master(s) and worker nodes (see Figure 3),

3- Specifically, how pools get composed of these functional pods (see Figure 4).
We provide insights for deploying SQL Server Big Data Cluster in our environments based on these
considerations throughout the paper.

Figure 2: Microsoft SQL Server 2019 Big Data Cluster Architecture – Overview

Figure 3: Microsoft SQL Server 2019 Big Data Cluster Architecture – Logical View

Figure 4: Microsoft SQL Server 2019 Big Data Cluster - Pod Level View

Intel® Xeon® Based Platforms

The Intel® Xeon® Scalable platform provides the foundation for a powerful data center. Disruptive by

design, this innovative processor sets a new level of platform convergence and capabilities across

compute, storage, memory, network, and security. Across infrastructures, Intel® Xeon® Scalable

platform is designed for data center modernization to drive operational efficiencies to lead to improved

total cost of ownership (TCO) and higher productivity for users. From its new Intel® Mesh Architecture

and widely expanded resources to its hardware-accelerating and newly integrated technologies, the

Intel® Xeon® Scalable platform enables a new level of consistent, pervasive and breakthrough

performance.

Intel® Data Center SSDs

Reliable Intel® SSD D3-S4510 Series and DC P4510 series, based on 64-layer Intel® 3D NAND TLC, meet

demanding service level requirements while increasing server efficiency. Innovative SATA firmware and

Figure 5: Intel® Xeon® Processors

the latest generation of Intel®3D NAND make D3-S4510 SSDs compatible with existing SATA setups for an

easy storage upgrade, whereas it also enables scalable performance and low latency via PCIe/NVMe based

DC P4510 family. Simply by integrating SSDs into the solution, organizations improve server agility and

scale for more users and better services, supporting larger data without expanding the server footprint.

Table 1: Intel® Data Center SSD Technology Overview

Features At-a-Glance

Capacity S4510 2.5in: 240GB, 480GB, 960GB, 2TB, 4TB, 8TB; M.2 240GB, 480GB, 960GB

P4510 1TB, 2TB, 4TB, 8TB

Performance S45101 128K Sequential Read/Write – up to 560/510 MB/s
4KB Random Read/Write – up to 97,000/36,000 IOPS

P45102 128K Sequential Read/Write – up to 3200/3000 MB/s
4KB Random Read/Write – up to 637K/139K IOPS

Reliability Designed for end-to-end data protection from silent data corruption,
uncorrectable bit error rate < 1 sector per 10^17 bits read

Power S4510 Active power up to 3.6W; Idle power up to 1.1W

P4510 Up to 16W

Interface S4510 SATA 6Gb/s

P4510 PCIe 3.1 x4, NVMe 1.2

Form Factor S4510 2.5in x 7mm; M.2 2280

P4510 U.2 2.5in x 15mm

Media Intel® 3D NAND TLC

Endurance S4510 up to 2 DWPD

P4510 up to 1 DWPD (JESD219 workload)

Warranty 5-year limited warranty

Microsoft Reference Cluster Configurations

Great deployment flexibility – hardware reusability

Microsoft SQL Server 2019 Big Data Reference Cluster has 9 servers running Linux: one master node and
8 storage nodes. In this document, the presented use case scenarios are dictating the configuration of
the Big Data Cluster, and its implementation (deployment) is done via Kubernetes instructions
embedded into YAML files.

A YAML file is describing the set of common pods that are pulled as images out of the public Docker
repository and deployed in a very easy, automated way. The existing parameters of the deployed
configuration could be changed afterward. A new configuration can be deployed if the new use case

1 System Configuration: Motherboard - H270N-WIFI-CF (Gigabyte Technology Co.); CPU – Intel © Core ™ i7-17700 @ 3.6GHz;

BIOS version – F8d (American Megatrends Inc.); Memory – 8052144KB; OS version – CentOS 7.5; Kernel version – 4.17; FIO

version – 3.1

2 System Configuration: FIO* was used with this configuration: Intel® Server Board S2600WTTR, Intel® Xeon® E5-2699 v4,

Speed: 2.30GHz, Intel BIOS: Internal Release, DRAM: DDR4 – 32GB, OS: Linux Centos* 7.2 kernel 4.8.6. SSD firmware version

VDV10120. Testing performed by Intel.

arises from the changes in the customer’s business model or the usage pattern. The previous
configuration must be removed, and then the new configuration can be deployed. We have used this
flexibility to deploy 1TB, 10TB, and 100TB benchmarks. This demonstrates fantastic flexibility and
hardware re-use for different business purposes.

Figure 6: Microsoft Reference Cluster – Physical View

For the Big Data use case scenario, we have configured the Big Data Cluster with 8 physical nodes as the
storage nodes to be able to store a large amount of data into the platform embedded HDFS file system.
Here, the powerful software meets powerful hardware (see Table 1Table 2).

For each agent node storage of the Microsoft reference cluster, we created 3 logical volumes /data,

/mssql and /general that the Kubernetes persistent volumes (PV) mount. These volumes were created

using the Linux mdadm utility. The logical volumes are striped across partitions of physical disks. The

detailed steps to configure these logical volumes are provided in the Microsoft Reference Cluster -

Logical Volume for storagethe Appendix.

https://en.wikipedia.org/wiki/Mdadm

Table 2: Microsoft Reference Cluster - Configurations

OVERVIEW

Sockets/Cores/Threads (per node) 2/48/48

Nodes 1 master + 8 agents

Cluster Network Switch Vendor Mellanox SX1701

Server Vendor Lenovo ThinkSystem SR650

BIOS Operating Mode Max. Performance

SYSTEM DETAILS – Server configurations per node

Processor Intel® Xeon®(R) Platinum 8160 CPU @ 2.10GHz

Memory (RAM) 768GB (32GBx24)

OS Disk 480GB; Micron 5100 PRO

Data Disk 5x 8TB; Intel® DC P4510

Network Corpnet: 10Gbps, HDFS: 40Gbps

SOFTWARE

OS Distribution Ubuntu 16.04 LTS

SQL Big Data Cluster Version RC1

Framework Spark 2.4.2

WORKLOAD

Data Set Size 1TB, 10TB, 100TB

Intel Reference Cluster Configurations

The Intel Reference Cluster is set up similarly to the Microsoft Reference Cluster. It has 1 master and 8

agent nodes powered by Intel® Xeon® technology. The cluster has 8 Storage pods, 4 Data pods and 4

Compute pods forming the Storage, Data, and Compute pools. Each node is packed with Intel® Xeon

Gold processors, Intel® Data Center SSDs, and other hardware, as mentioned in the

http://www.mellanox.com/related-docs/prod_eth_switches/PB_SX1710.pdf
https://www.lenovo.com/us/en/data-center/servers/racks/ThinkSystem-SR650/p/77XX7SRSR65
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/platinum-processors/platinum-8160.html
https://www.micron.com/products/solid-state-drives/product-lines/5100
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/dc-p4510-series.html

Table 3, to deliver the best performance offering a stable system viable to 1TB, 3TB, 10TB and 30TB data

sets. The reference cluster is setup as shown in Figure 7.

Figure 7: Intel Reference Cluster - Physical View

Table 3: Intel Reference Cluster - Configurations

OVERVIEW

Sockets/Cores/Threads (per node) 2/36/72

Nodes 1 master + 8 agents

BIOS Settings HT on, Turbo On

SYSTEM DETAILS - Server Configuration per node:

Processor Intel® Xeon® Gold Processor

Memory (RAM) 768GB (32GBx24)

OS Disk 200GB; Intel® SSD 710

Data Disk (Agent nodes only) 3x 3.84TB; Intel® D3-S4510

Network 1Gbps, 40Gbps

SOFTWARE

OS Distribution Ubuntu 16.04 LTS

SQL Big Data Cluster Version RC1

Framework Spark 2.4.2

WORKLOAD

Data Set Size 1TB, 3TB, 10TB, 30TB

In the Intel Reference clusters, we configured the storage as follows: On each agent node, the

Kubernetes persistent volumes (PV) are mounted on a logical volume mounted at /mnt/local-

storage. This logical volume is created using Logical Volume Management (LVM). As shown in Figure 8,

physical volumes corresponding to SSD (SATA or PCIe) disks map together into a volume group and then

a logical volume. The logical volume is striped across the disks, resulting in superior performance.

Detailed steps to configure logical volumes are provided in the Logical Volume for storage section of the

Appendix.

Figure 8: Logical Volumes in Agent Nodes - Configuration

In both the Microsoft and Intel Reference Clusters, to improve the performance of Docker and

Kubernetes, on our agent nodes, we mounted the Docker’s /var/lib/docker directory and Kubernetes’

/var/lib/kubelet directory on the striped logical volume as well. Without this step, the OS disk was the

https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/gold-processors.html
https://ark.intel.com/content/www/us/en/ark/products/56583/intel-ssd-710-series-100gb-2-5in-sata-3gb-s-25nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/134911/intel-ssd-d3-s4510-series-3-84tb-2-5in-sata-6gb-s-3d2-tlc.html

performance bottleneck at higher data sets. Hence this step is necessary to run queries at higher data

sets. Detailed steps are provided in the Appendix.

Test Data Sets

TPC-DS is the world’s first industry-standard benchmark designed to measure the performance of SQL-
based Big Data implementations. In this study, we have used data sets based on TPC-DS schema
producing 1TB, 10TB, 30TB and 100TB worth of raw structured and semi-structured data. TPC-DS
schema describes a data model of a retail enterprise selling through 3 channels (stores, catalogs, and
web). It is comprised of 99 queries that scan large volumes of data by utilizing Spark SQL and gives
answers to real-world business questions. It challenges the cluster configurations to extract maximum
efficiency in the areas of CPU, memory, and I/O utilization along with operating system and the big data
solution.

Both reference clusters utilize the publicly available kit from Databricks for data generation, data load,
simple table statistics generation, and query execution. It generates data and then loads it into HDFS
of Microsoft SQL Server 2019 Big Data Cluster as a set of Parquet files. The used schema contains 24
tables of data that are distributed over 8 Storage nodes.

To illustrate these data sets to the reader, we present the following 10TB and 100TB data sets as
examples:

10TB Data set

The 10TB data set consists of 56 billion rows with 2 largest tables: catalog_sales and store_sales. Figure

9 shows the cardinality distribution of our data set.

Figure 9: 10TB Data Set - Data Distribution

We observe that 99% of data is stored in 7 tables with a corresponding partition key, which is used for
fast data retrieval. The data load and statistics generation for the 10TB data set was done in 3.69 hours
on the Microsoft Reference cluster. This is the simple 10TB data set statistics for NULL value count of the
used partition keys for 3 tables.

Figure 10: 10TB NULL Count - Data Statistics

100TB Data Set

The 100TB dataset consists of 556 billion rows with 2 largest tables: catalog_sales and store_sales.

Figure 11 shows the distribution of our data set.

0

5

10

15

20

25

30

10 TB

1

14

1
3

29

1

7

B
ill

io
n

s
10TB Data Set

(56 Billion Rows)

catalog_returns catalog_sales customer customer_address

customer_demographics date_dim household_demographics income_band

inventory item promotion reason

ship_mode store store_returns store_sales

time_dim warehouse web_page web_returns

web_sales web_site call_center catalog_page

1,296,015,799

100,816,044

32,394,197

28,799,956,113

2,880,021,991

720,003,611

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

store_sales.ss_sold_date_sk

store_return.sr_returned_date_sk

web_return.wr_returned_date_sk

10TB NULL Count - Data Statistics
NULL Count

Total Row Count

Figure 11: 100TB Data Set - Distribution

The data load and the statistics generation for 100TB data set was done in 35.25 hours on Microsoft
Reference Cluster. The composition of the same partition key NULL value statistics for 100TB data set is
shown in Figure 12.

Figure 12: 100TB NULL Count - Data Statistics

It is worth noting that the total number of store_sales table partitions is 1824, and table takes 14.1TB of
disk space, and the NULL partition size is around 535 GB, and that constitutes 3.8% of that space. It is a
similar situation with store_return and web_return tables their NULL partitions. These statistics show
that data in these tables is skewed on the NULL partition, and that is reflected as slower processing of
more complex queries where these tables are referenced and/or partition keys used, as well as the
longer data load time. Due to Spark's limitation of processing one partition with one thread, most of the
data load time is spent on loading the NULL partitions of the mentioned tables. It takes around 18 hours
to load the NULL partition of the largest schema table store_sales and that in combination with load
times of other two table NULL partitions determine the data loading time of the data set.

0

50

100

150

200

250

300

100 TB

14

144

2
29

288

7

72

B
ill

io
n

s

100TB Data Set
(556 Billion Rows)

catalog_returns catalog_sales customer

customer_address customer_demographics date_dim

household_demographics income_band inventory

item promotion reason

ship_mode store store_returns

store_sales time_dim warehouse

web_page web_returns web_sales

web_site call_center catalog_page

12,960,274,691

1,008,156,533

323,953,082

287,999,930,999

28,800,220,305

7,200,000,292

0% 20% 40% 60% 80% 100%

store_sales.ss_sold_date_sk

store_return.sr_returned_date_sk

web_return.wr_returned_date_sk

100TB NULL Count - Data Statistics

NULL Count

Total Row Count

Data Load

On the Microsoft reference cluster, we observe that the data load and the compute table statistics

scales linearly from 1TB to 10TB to 100TB data sets. It takes 0.5 hours, 3.69 hours, and 35.28 hours

respectively. The data generation and the data load are shown in Figure 13, but they are considered as a

single step.

Figure 13: 1TB/10TB/100TB Data Load - Compute Tables Statistics

Similar observations were made on the Intel reference cluster, where the data load time is scaling, as

illustrated in Figure 14.

Figure 14: 1TB/3TB/10TB/30TB Data Load - Compute Tables Statistics

Run Methodology

The following are the detailed steps involved to perform the experiments in this study.

1473

12183

117518

385 1125

9484

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100 120

Ti
m

e
(s

ec
o

n
d

s)

Data Set Size (TB)

1TB/10TB/100TB Data Load - Compute Tables Statistics

Data Load Compute Tabe Stat

1403 4625

12895

38230

780 1043 1814
3933

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25 30 35

Ti
m

e
(s

ec
o

n
d

s)

Data Set Size (TB)

1TB/3TB/10TB/30TB Data Load - Compute Tables Statistics

Data Load Compute Table Stat

1. Microsoft SQL Server 2019 Big Data Cluster setup and deployment

First, for each node in the cluster, we installed Linux and tuned the BIOS settings for optimal

performance (see Tables 2 and 3). Then we installed Docker 18.09 and Kubernetes 1.15. Then, we

setup the Kubernetes network across all the nodes, with one node being the master. After validating

the setup, we deploy the Microsoft SQL Server 2019 Big Data Cluster using the cluster configuration

tool azdata. Once the cluster is deployed, we ensure that each storage pod comes up on a separate

node. This is critical to performance scaling since they provide the spark execution environment for

our experiments.

As described in our cluster configuration, our persistent volumes are mounted on the logical volume

that is striped across our data disks. This ensures high IO bandwidth and utilization across the cluster

storage subsystem.

2. Data set creation

To generate the data set, we use the Databricks’ kit without any modifications. For all data sets, it

dumps the partitioned data to the HDFS volumes configured across the storage pods in a parquet

file format.

For both the Microsoft and Intel Reference Clusters, we increase the HDFS replication factor to 3.

Further details of the impact of this parameter on overall IO and network characteristics will be

discussed in a future whitepaper.

3. Test run

We use Databricks’ TPC-DS Spark SQL kit to run the read-only suite of 99 queries, some of which are

split into queries a and b, resulting in 104 Spark SQL queries (see TPC-DS Schema Based Queries

section of Appendix). We copy the kit’s JAR file on the Big Data Cluster sparkhead pod or one of the

storage pool pods. Then we launch the spark application using the spark parameters discussed in the

Spark SQL Configuration section. In all our performance runs, the queries are executed in sequence

1 to 99. Once the run is complete, we collect the query time results from the HDFS. These results are

analyzed offline together, along with some system-level performance counters we collect to

measure system characteristics.

For each data set size, we repeat steps 2 and 3 and re-adjust spark parameters for the data set size.

Given this is a big-data environment, there is no need to restart the nodes or the SQL BDC software in

between the performance runs.

Spark SQL Configuration

Two sets of spark optimizations configurations are shown in Tables 4 and 5. We choose the number of
executors and executor memory allocated based on the hardware resources (CPU, Memory, and
Storage) available on the cluster.

Table 4: Microsoft Reference Cluster - Spark Parameters

Microsoft Reference Cluster
Spark Parameters

spark.sql.statistics.histogram.enabled=true

spark.sql.cbo.enabled=true

spark.sql.cbo.joinReorder.enabled=true

spark.sql.cbo.joinReorder.dp.threshold=18

spark.driver.maxResultSize=16g

Spark.yarn.executor.memoryOverhead=6g

num-executors = 80

executor memory='65g'

executor-cores = 4

Table 5: Intel Reference Cluster - Spark Parameters

Intel Reference Cluster
Spark Parameters

Baseline Optimized

spark.sql.autoBroadcastJoinThreshold=20971520 spark.sql.autoBroadcastJoinThreshold=20971520

spark.sql.statistics.histogram.enabled=true spark.sql.statistics.histogram.enabled=true

spark.driver.maxResultSize=16g spark.driver.maxResultSize=16g

num-executors = 128 num-executors = 128

executor-memory = 41g executor-memory = 41g

executor-cores = 4 executor-cores = 4

 spark.sql.cbo.enabled=true

 spark.sql.cbo.joinReorder.enabled=true

 spark.sql.cbo.joinReorder.dp.star.filter=false

 spark.sql.cbo.starSchemaDetection=true

 spark.sql.optimizer.nestedSchemaPruning.enabled=true

 spark.sql.cbo.joinReorder.dp.threshold=18

Based on our experiments, we find the best performance with 4 cores per executor. We also identified a
set of spark optimizations that improve query performance. These optimizations include Cost Based
Optimizations (CBO), modifying the Join Reorder threshold, Broadcast Join Threshold, and the Join Types
(SortMerge Join, Broadcast Hash Join). In both reference clusters, we enable sql.statistics.histogram for
accurate cardinality estimates for filter and join predicates. The flag spark.sql.cbo.joinReorder.enabled is
recommended to be true when CBO is enabled.

For both reference clusters, we have performance runs with two configurations, called baseline and
optimized, respectively. The optimized configuration has CBO, and related flags enabled.

In Microsoft Reference Cluster, we increased the joinReorder.dp.threshold to 18 (from the default value
of 12) to enable join-reorder optimization if more than 12 tables are joined. This tremendously improves
the performance of query 64 for the 100TB data set. However, the optimization process creates over
38k physical plans, which increases the optimization time to around 20 mins, and reduces performance
for smaller data sets. Thus, this parameter is not applicable for 10TB data set.

In the Intel Reference Cluster, we increased the autoBroadcastJoinThreshold to 20MB (from default
value of 10MB) to encourage queries to perform more efficient broadcast join, leading to improved
performance in selected queries. For all data sets, we increase joinReorder.dp.threshold to 18 (from
default value of 12) for reasons described above on this platform.

Results and Analysis

Scaling Performance

For the Microsoft Reference Cluster configuration, we have performed characterizations with 1TB, 10TB,

and 100TB data sets.

For the Intel Reference Cluster, characterizations were executed with 1TB, 3TB, 10TB and 30TB data

sets.

Microsoft reference cluster

10TB with Spark Optimizer enabled

The test results of the 10TB data set for all the queries based on TPC-DS schema are shown in Figure 15.
Apache Spark optimizer (Catalysts) brings a benefit of the shorter execution time for more than 50 % of
queries.

Figure 15: 10TB Data Set - Elapsed Query Runtimes

1TB – 10TB – 100TB with Spark Optimizer enabled

The 94-query subset of TPC-DS is used to demonstrate the scalability and performance of the Microsoft
SQL Server 2019 Big Data Reference Cluster. The described hardware configuration presents “the sweet
spot” from the cost perspective. It is a configuration that offers great performance, scales very well as
data grow, and it could be used for typical customer deployments. Additional investments into memory
would be required to enable rest of the queries to run.
Join-reorder optimization plays an important role in long running queries when there are joins between
multiple tables. The notable winner is query 72. Apache Spark join-reorder will not bring benefits across

q67: 2665

-100 100 300 500 700 900 1100 1300 1500

q1

q4

q7

q10

q13

q15

q18

q21

q23b

q25

q28

q31

q34

q37

q39b

q42

q45

q48

q51

q54

q57

q60

q63

q66

q69

q72

q75

q78

q81

q84

q87

q90

q93

q96

q99

Query Run Time (seconds)

Q
u

er
ie

s
10TB Data Set - Elapsed Query Runtimes

all queries and in some cases, there is execution degradation when Spark Optimizer is used compared to
when the query execution when Spark Optimizer is disabled. This execution degradation is usually with
shorter runtime queries, and it modestly fluctuates between successive executions of the test runs
which is normal with this type of processing that involves Big Data sets.

Figure 16: 1TB - 10TB - 100TB Data Set - Elapsed Query Runtimes

q24b@100TB: 12399;
q24a@100TB: 12916

q80@100TB: 11027

q95@100TB: 14847

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

q1

q4

q7

q10

q13

q17

q20

q24a

q26

q29

q32

q35

q39a

q42

q45

q48

q51

q55

q58

q61

q64

q67

q70

q73

q76

q81

q85

q88

q91

q94

q97

qs_max

Query Run Time (seconds)

Q
u

er
ie

s

1TB - 10TB - 100 TB Data Set - Elapsed Query Runtimes

100TB

10TB

1TB

Query Runtimes

The following two graphs show the excellent scaling capabilities of Microsoft SQL Server 2019 Big Data
Reference Cluster as the data grows and demonstrates powerful elasticity and performance of the
entire platform. The total runtime of 94 queries and Geo Mean are linearly changing as the data set
grows.

Figure 17: 1TB - 10TB - 100TB - Query Runtimes

Geometric Mean is calculated for 94 queries using the formula shown below.

𝐺𝑒𝑜𝑚𝑒𝑎𝑛 𝑜𝑓 𝑄𝑢𝑒𝑟𝑦 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = √∏ 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(𝑄𝑖)

94

𝑖=1

94

Figure 18: Query Runtime - Geometric Mean

0.56
3.37

31.49

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 20 40 60 80 100 120

Q
u

er
y

R
u

n
ti

m
e

(h
o

u
rs

)

Data Set (TB)

1TB - 10TB- 100TB Data Set - Query Runtimes

9

40

317

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120

Ti
m

e
(s

ec
o

n
d

s)

Data Set (TB)

Query Runtime - Geometric Mean

Performance Analysis

From the master node, we monitor the system performance on each agent node using the free and

open-sourced Linux tools sysstat SAR and Intel® Performance Analysis Tool (PAT). The following figures

show the average CPU utilization, disk bandwidth, and network bandwidth across the entire runs,

averaged across the nodes, at different data sets. The performance scales linearly across all data sets.

Figure 19: System Performance per Node – Microsoft Reference Cluster

For the memory allocation, the following graph presents the percentage of used memory in average per

node for one of these 100TB Optimized runs:

Figure 200: 100TB % of Memory Usage per Node

We also have graphic representations of various system resources under these workloads shared in

System Performance section of Appendix. They should help you understand the updates we applied to

the hardware, Microsoft SQL Server 2019 Big Data Cluster deployment, and Spark settings.

0

10

20

30

40

50

60

70

80

C
P

U
 U

ti
l.

(%
)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

D
is

k
b

an
d

w
id

th
 (

M
B

/s
)

0

50

100

150

200

250

300

350

400

N
et

w
o

rk
 b

an
d

w
id

th
 (

M
B

/s
)

0

20

40

60

80

100

120

1
3

2
9

6
5

7
9

8
5

1
3

1
3

1
6

4
1

1
9

6
9

2
2

9
7

2
6

2
5

2
9

5
3

3
2

8
1

3
6

0
9

3
9

3
7

4
2

6
5

4
5

9
3

4
9

2
1

5
2

4
9

5
5

7
7

5
9

0
5

6
2

3
3

6
5

6
1

6
8

8
9

7
2

1
7

7
5

4
5

7
8

7
3

8
2

0
1

8
5

2
9

8
8

5
7

9
1

8
5

9
5

1
3

9
8

4
1

1
0

1
6

9
1

0
4

9
7

1
0

8
2

5
1

1
1

5
3

1
1

4
8

1
1

1
8

0
9

M
em

o
ry

 u
se

d
 (

%
)

Time (seconds)

100TB Optimized % memused

https://github.com/sysstat/sysstat
https://github.com/intel-hadoop/PAT

Intel Reference Cluster

In this setup, we increase the data sets from 1TB, 3TB, 10TB and 30TB and demonstrate that the same

cluster configuration offers great performance across different data sets.

Scaling Query Runtimes
We compare the performance of our baseline configuration with the optimized configuration and

observe that the optimized Spark configuration results in significant performance improvement for all

data sets, with more than 50% improvement for the30TB data set.

Figure 211: Performance of 1TB - 3TB - 10TB - 30TB Data Set – Query Runtime

The plot in Figure 21 shows the performance difference between baseline and optimized configuration

for all queries, excluding 14a, 14b, 64 for reasons discussed in the TPC-DS Schema Based Queries

section of the Appendix.

The performance improvement is contributed majorly by the following:
1) Enabling CBO: CBO significantly improves the performance of the 16 queries (q04, q06, q11, q13, q15,
q17, q24a, q24b, q25, q29, q45, q49, q72, q74, q85, q91). The prime example being query 72, in which
we observe a 47x performance Improvement for the 30TB data set.
2) Tuning spark.sql.autoBroadcastJoinThreshold: This configures the maximum size in bytes for a table

that will be broadcasted to all worker nodes when performing a join. Increasing this parameter to 20MB

(default is 10MB) promotes the queries to perform efficient broadcast joins.

3) Enabling spark.sql.cbo.joinReorder.enabled: The execution engine selects the optimal plan using the

plan statistics. Enabling this parameter (default is False) makes the query plan optimized to have more

Broadcast Joins over Hash Joins.

For both the baseline and optimized configurations, the query runtime scales linearly with an increasing

data set.

3484
7554

24504

77549

2710
5642

15905

48948

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 5 10 15 20 25 30 35

To
ta

l Q
u

er
y

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Data Set (TB)

Performance of 1TB - 3TB - 10TB - 30TB Data Set - Query Runtime

Baseline Optimized

Performance Analysis

From the master node, we monitor the system performance at each agent node using the Intel® PAT

and analyze the data to estimate various system metrics across the entire performance run. Figure 22

shows the average CPU utilization, disk bandwidth, and network bandwidth across the entire run,

averaged across the nodes, at different data sets. We observe that the performance metrics scales well

with increasing data set. Thus, this configuration is viable to implement different data sets without any

performance degradation.

Figure 222: System Performance Per Node – Intel reference Cluster

Going from 3TB to 10TB, we observe that the disk bandwidth increases significantly. This happens since

the data size exceeds the total DRAM memory across the cluster. Thus the data set needs to be fetched

from the disks more often.

It is worth mentioning that we observe high disk queue length for 10TB and 30TB data set, resulting in
high CPU IO wait (~4% for 10TB and ~10% for 30TB data set). Upgrading the storage with high
performant Intel® NVMe based drives would improve the disk bandwidth with lower latencies at higher
queue depths for modern cloud storage systems.

We also gathered detailed performance metrics corresponding to each query run and present the data
as a scatter plot in Figure for the 30TB data set. The plot shows the average CPU utilization, storage
bandwidth, and network bandwidth, averaged across the nodes, during the run duration of each query.
We find that most queries are in the upper right quadrant of the plot, indicating high CPU utilization and

storage bandwidth. As illustrated, the Microsoft SQL Server 2019 Big Data Cluster leverages the high

performance of Intel® Xeon® processors and Intel® SSDs to deliver great performance for complex

queries.

Figure 23: Performance Metrics per query - 30TB

System Performance

Built-in Grafana Monitoring

Microsoft SQL Server 2019 Big Data Cluster has built-in ready-to-use Grafana interface (see Figure 23).
Grafana offers a unified view of system monitoring and performance. It is a web-based, full-featured,
interactive dashboard that gives the cluster administrator full overview of the system usage. It enables
creation of custom dashboards for nice and easy presentation of system metrics and visualization of the
most important system information instantaneously.

Figure 234: Built-in Grafana Monitoring Interface Showcasing System Metrics

SAR

For our measurements and, specifically, for the post-processing of these measurements, we also use
Linux sysstat SAR measurements, which we detail in sar-multinodes-collect.sh script in the Appendix.

The processing of these measurements allowed us to compare the runs: per cluster node for all CPUs,
per CPU, for memory, per storage device, and per network interface. Profiling measurements allowed us
to get per-container, per module and per function.

Performance Analysis Tool (PAT)

Intel Reference cluster used the Performance Analysis Tool (PAT) to monitor and gather system-level

performance metrics, including CPU, Memory, Disk, and Network. It can be configured for a single

machine as well as an entire cluster of machines. We ran the PAT tool on the master node and collect

metrics from all the agent nodes. We analyzed the data collected to derive the average system metrics

across all the agent nodes during the workload run. We also gathered metrics to analyze individual

query performance.

https://github.com/sysstat/sysstat
https://github.com/intel-hadoop/PAT

Summary

This first version of Microsoft SQL Server Big Data Cluster is ready for deployment for your data sets. The

technology effectively utilizes Docker Containers, Kubernetes container orchestration, Apache HDFS,

Apache Spark, SQL Server 2019 on Ubuntu Linux (Version 16.04) and Intel® Xeon® Processors on Intel®

Data Center SSDs. We have used these reference configurations with various Big Data set sizes to

characterize and tune the cluster nodes, pods and Spark parameters to help you get a head start at

deploying Microsoft SQL Server 2019 Big Data Cluster, using best in class Intel® Xeon® Processors and

Intel® Data Center SSDs/NVMe. With this case study, we have demonstrated that the performance

scales linearly from 1TB to 100TB datasets seamlessly and the various system resources are effectively

utilized. We also analyze performance with optimized SPARK tunings (SPARK Optimizer) and parameters

that improve the performance of most of the queries for all the datasets. The data shows that with the

SPARK Optimizer settings, customers are getting the most out of the hardware resources like CPU,

memory, and Intel® Data Center SSDs.

Studies are underway to improve the performance at larger dataset sizes. Our future study would

involve Intel accelerators to offload key compute operators for optimal utilization of hardware

resources.

As the Microsoft SQL Server Big Data Cluster solution evolves to fulfill our customers’ Big Data needs by

continuously integrating Microsoft SQL Server latest solutions and Big Data cluster innovations, we will

continue updating these deployment references with our performance characterizations.

References
1. https://docs.microsoft.com/en-us/sql/big-data-cluster/big-data-cluster-

overview?view=sqlallproducts-allversions
2. https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-

guidance?view=sqlallproducts-allversions#configfile
3. https://info.microsoft.com/ww-landing-SQL-Server-2019-Big-Data-WhitePaper.html
4. http://www.tpc.org/information/benchmarks.asp
5. https://github.com/databricks/spark-sql-perf
6. https://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2-2.html
7. https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-data-persistence
8. https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-

cluster/deployment/kubeadm/ubuntu
9. https://blog.cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/
10. https://github.com/intel-hadoop/PAT
11. https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/platinum-

processors/platinum-8160.html
12. https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/gold-

processors.html
13. https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-

center-ssds/d7-series/dc-p4510-series.html
14. https://www.lenovo.com/us/en/data-center/servers/racks/ThinkSystem-SR650/p/77XX7SRSR65
15. https://spark.apache.org/docs/latest/sql-performance-tuning.html
16. https://arch-long.cn/articles/spark%20sql/Spark-SQL-Configurations.html

https://docs.microsoft.com/en-us/sql/big-data-cluster/big-data-cluster-overview?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/big-data-cluster/big-data-cluster-overview?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance?view=sqlallproducts-allversions#configfile
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance?view=sqlallproducts-allversions#configfile
https://info.microsoft.com/ww-landing-SQL-Server-2019-Big-Data-WhitePaper.html
http://www.tpc.org/information/benchmarks.asp
https://github.com/databricks/spark-sql-perf
https://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2-2.html
https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-data-persistence?view=sql-server-ver15
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster/deployment/kubeadm/ubuntu
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster/deployment/kubeadm/ubuntu
https://blog.cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/
https://github.com/intel-hadoop/PAT
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/platinum-processors/platinum-8160.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/platinum-processors/platinum-8160.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/gold-processors.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/gold-processors.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/dc-p4510-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d7-series/dc-p4510-series.html
https://www.lenovo.com/us/en/data-center/servers/racks/ThinkSystem-SR650/p/77XX7SRSR65
https://spark.apache.org/docs/latest/sql-performance-tuning.html
https://arch-long.cn/articles/spark%20sql/Spark-SQL-Configurations.html

Appendix

TPC-DS Schema Based Queries

We use Databricks’ TPC-DS Spark SQL kit to run the read-only suite of 99 queries, some of which are split
into queries a and b, resulting in 104 Spark SQL queries as listed in Table below:

Table 6: List of TPC-DS Queries

Query-1 Query - 14a Query - 24b Query - 37 Query - 49 Query - 62 Query - 75 Query - 88

Query-2 Query - 14b Query - 25 Query - 38 Query - 50 Query - 63 Query - 76 Query - 89

Query - 3 Query - 15 Query - 26 Query - 39a Query - 51 Query - 64 Query - 77 Query - 90

Query - 4 Query - 16 Query - 27 Query - 39b Query - 52 Query - 65 Query - 78 Query - 91

Query - 5 Query - 17 Query - 28 Query - 40 Query - 53 Query - 66 Query - 79 Query - 92

Query - 6 Query - 18 Query - 29 Query - 41 Query - 54 Query - 67 Query - 80 Query - 93

Query - 7 Query - 19 Query - 30 Query - 42 Query - 55 Query - 68 Query - 81 Query - 94

Query - 8 Query - 20 Query - 31 Query - 43 Query - 56 Query - 69 Query - 82 Query - 95

Query - 9 Query - 21 Query - 32 Query - 44 Query - 57 Query - 70 Query - 83 Query - 96

Query - 10 Query - 22 Query - 33 Query - 45 Query - 58 Query - 71 Query - 84 Query - 97

Query - 11 Query - 23a Query - 34 Query - 46 Query - 59 Query - 72 Query - 85 Query - 98

Query - 12 Query - 23b Query - 35 Query - 47 Query - 60 Query - 73 Query - 86 Query - 99

Query - 13 Query - 24a Query - 36 Query - 48 Query - 61 Query - 74 Query - 87 Query - s_max

The TPC-DS queries are designed to scan large volumes of data. The operation that naturally fits this
design is join operation. The Apache Spark, by default, is using Sort Merge Join, and in some of the query
it is consuming all available Spark executor memory when query execution is done against large data
sets like in the case of the 100TB data set.

Microsoft Reference cluster

In the Microsoft reference cluster, the 94 queries not colored in blue, listed in the above table are used
with 1TB/10TB/100TB data sets. Tests are executed with Open Source Apache Spark 2.4 running on the
Microsoft SQL Server 2019 Big Data Cluster. The collected results show excellent performance and
scaling capabilities of Microsoft SQL Server Big Data Cluster when different data sets are used.

Intel Reference Cluster

In Intel reference cluster, queries 14a,14b did not run for the30TB data set due to memory limitations.
Regarding query 64, as discussed earlier, increasing spark.sql.cbo.joinReorder.The threshold significantly
improves performance for the 30TB data set. However, at lower data sets, high optimization time
reduces its performance, significantly affecting the total runtime. To keep the metrics comparable
across data sets, we removed the results for queries 14a,14b,64 across all data sets.

Storage setup

Logical Volume for storage

This section outlines the steps for creating an LVM across three physical disks mounted at

/dev/sd[b,c,d], respectively.

1. Create physical volumes for three disks
sudo pvcreate /dev/sdb /dev/sdc /dev/sdd

2. Create volume group
sudo vgcreate local-storage /dev/sdb /dev/sdc /dev/sdd

3. Create logical volume with default stripe size
sudo lvcreate --extents 100%FREE -n test local-storage --stripes 3

4. Format logical volume
sudo mkfs.ext4 /dev/mapper/local--storage-test

5. Mount it on ‘/mnt/local-storage’
sudo mount /dev/mapper/local--storage-test /mnt/local-storage

6. Add the following entry to `/etc/fstab’
/dev/mapper/local--storage-test /mnt/local-storage ext4 defaults 0 0

7. Verify the logical volume
sudo lvdisplay -vm

Move Docker and Kubelet working directory

For best storage IO performance, we moved the Docker and kubelet working directory from OS disk

(default) to the striped logical volume.

Docker

Run all the following commands in superuser mode
1. Create directory

mkdir -p /mnt/local-storage/docker
2. Change Docker daemon path

In file /lib/systemd/system/docker.service

Change from:
ExecStart=/usr/bin/dockerd -H fd:// --
containerd=/run/containerd/containerd.sock
To:
ExecStart=/usr/bin/dockerd -g /mnt/local-storage/docker -H fd:// --
containerd=/run/containerd/containerd.sock

3. Stop all docker processes

systemctl stop docker

Check if the process stopped - ps aux | grep -i docker | grep -v grep

4. Reload and rsync folders

rsync -aqxP /var/lib/docker/ /mnt/local-storage/docker

5. Start docker

systemctl start docker

Check that it runs with the new path - ps aux | grep -i docker | grep -v grep

Kubernetes

Run all the following commands in superuser mode
1. Create directory

mkdir -p /mnt/local-storage/kubelet/
chmod 777 /mnt/local-storage/kubelet

2. Change kubelet root directory
vim /etc/default/kubelet
#Add line
KUBELET_EXTRA_ARGS=--root-dir=/mnt/local-storage/kubelet/

3. Restart kubelet
systemctl daemon-reload
systemctl restart kubelet

sar-multinodes-collect.sh

#!/bin/bash
if [-z $1]; then
 # default to 30 seconds collection.
 DURATION=00:00:30
else
 if [[$1 =~ [0-9]+:[0-9]+:[0-9]+]];
 then
 DURATION=$1
 else
 echo “Usage: $0 HH:MM:SS”
 exit 1
 fi
fi
DURATION_IN_SECONDS=`echo $DURATION | awk -F’:’ ‘{print $1 * 60 * 60 + $2 * 60 + $3}’`
export WCOLL=/tmp/cluster/clusternodes
export PDSH_RCMD_TYPE=ssh
export SAR_DIR=/data/sar
export SAR_OPTS=”-dpqrwWB -u ALL -P ALL -n DEV -n EDEV -I SUM”
export SAR_INTERVAL=10
export SAR_DURATION_IN_COUNTS=`echo “$DURATION_IN_SECONDS/$SAR_INTERVAL” |bc`
TAG=`date +%m%d_%H%M`
pdsh “mkdir -p $SAR_DIR”
pdsh “sar $SAR_OPTS $SAR_INTERVAL $SAR_DURATION_IN_COUNTS > $SAR_DIR.$TAG 2>&1”
rpdcp “$SAR_DIR.$TAG” $SAR_DIR
pdsh “rm -f $SAR_DIR.$TAG”

Microsoft Reference Cluster – Logical Volumes Configuration Details

Per Server block physical partitions, with 5 data disks:

brw-rw---- 1 root disk 259, 16 Oct 11 16:35 /dev/nvme0n1
brw-rw---- 1 root disk 259, 0 Oct 11 16:35 /dev/nvme1n1
brw-rw---- 1 root disk 259, 2 Oct 11 16:35 /dev/nvme2n1
brw-rw---- 1 root disk 259, 1 Oct 11 16:35 /dev/nvme3n1
brw-rw---- 1 root disk 259, 12 Oct 11 16:35 /dev/nvme4n1

/dev/sda1 Partition
/dev/sda2 Partition
/dev/sda3 Partition
/dev/nvme0n1p1 Partition

/dev/nvme0n1p2 Partition
/dev/nvme0n1p3 Partition
/dev/nvme1n1p1 Partition
/dev/nvme1n1p2 Partition
/dev/nvme1n1p3 Partition
/dev/nvme2n1p1 Partition
/dev/nvme2n1p2 Partition
/dev/nvme2n1p3 Partition
/dev/nvme3n1p1 Partition
/dev/nvme3n1p2 Partition
/dev/nvme3n1p3 Partition
/dev/nvme4n1p1 Partition
/dev/nvme4n1p2 Partition
/dev/nvme4n1p3 Partition

The logical partitions were created with:

sudo mdadm --create --verbose /dev/md0 --level=raid0 --raid-devices=5
/dev/nvme0n1p1 /dev/nvme1n1p1 /dev/nvme2n1p1 /dev/nvme3n1p1
/dev/nvme4n1p1
sudo mdadm --create --verbose /dev/md1 --level=raid0 --raid-devices=5
/dev/nvme0n1p2 /dev/nvme1n1p2 /dev/nvme2n1p2 /dev/nvme3n1p2
/dev/nvme4n1p2
sudo mdadm --create --verbose /dev/md2 --level=raid0 --raid-devices=5
/dev/nvme0n1p3 /dev/nvme1n1p3 /dev/nvme2n1p3 /dev/nvme3n1p3
/dev/nvme4n1p3

sudo mount /dev/md0 /data
sudo mount /dev/md1 /mssql
sudo mount /dev/md2 /general

Resulting in the following logical partitions:

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 447.1G 0 disk
├─sda1 8:1 0 512M 0 part /boot/efi
├─sda2 8:2 0 445.7G 0 part /
└─sda3 8:3 0 977M 0 part
nvme0n1 259:0 0 7.3T 0 disk
├─nvme0n1p1 259:1 0 5T 0 part
│ └─md0 9:0 0 25T 0 raid0 /data
├─nvme0n1p2 259:2 0 465.7G 0 part
│ └─md1 9:1 0 2.3T 0 raid0 /mssql
└─nvme0n1p3 259:3 0 1.8T 0 part
 └─md2 9:2 0 9.1T 0 raid0 /general
nvme1n1 259:6 0 7.3T 0 disk
├─nvme1n1p1 259:11 0 5T 0 part
│ └─md0 9:0 0 25T 0 raid0 /data
├─nvme1n1p2 259:13 0 465.7G 0 part
│ └─md1 9:1 0 2.3T 0 raid0 /mssql
└─nvme1n1p3 259:16 0 1.8T 0 part
 └─md2 9:2 0 9.1T 0 raid0 /general
nvme2n1 259:4 0 7.3T 0 disk
├─nvme2n1p1 259:7 0 5T 0 part
│ └─md0 9:0 0 25T 0 raid0 /data
├─nvme2n1p2 259:8 0 465.7G 0 part
│ └─md1 9:1 0 2.3T 0 raid0 /mssql
└─nvme2n1p3 259:9 0 1.8T 0 part
 └─md2 9:2 0 9.1T 0 raid0 /general
nvme3n1 259:5 0 7.3T 0 disk
├─nvme3n1p1 259:12 0 5T 0 part

│ └─md0 9:0 0 25T 0 raid0 /data
├─nvme3n1p2 259:14 0 465.7G 0 part
│ └─md1 9:1 0 2.3T 0 raid0 /mssql
└─nvme3n1p3 259:15 0 1.8T 0 part
 └─md2 9:2 0 9.1T 0 raid0 /general
nvme4n1 259:10 0 7.3T 0 disk
├─nvme4n1p1 259:17 0 5T 0 part
│ └─md0 9:0 0 25T 0 raid0 /data
├─nvme4n1p2 259:18 0 465.7G 0 part
│ └─md1 9:1 0 2.3T 0 raid0 /mssql
└─nvme4n1p3 259:19 0 1.8T 0 part

Examples of system resources consumptions under these workloads

Captured on the Microsoft cluster configuration:

Figure 245: 100TB Optimized – Agent node CPU utilization

0

10

20

30

40

50

60

70

80

90

1
3

2
9

6
5

7
9

8
5

1
3

1
3

1
6

4
1

1
9

6
9

2
2

9
7

2
6

2
5

2
9

5
3

3
2

8
1

3
6

0
9

3
9

3
7

4
2

6
5

4
5

9
3

4
9

2
1

5
2

4
9

5
5

7
7

5
9

0
5

6
2

3
3

6
5

6
1

6
8

8
9

7
2

1
7

7
5

4
5

7
8

7
3

8
2

0
1

8
5

2
9

8
8

5
7

9
1

8
5

9
5

1
3

9
8

4
1

1
0

1
6

9
1

0
4

9
7

1
0

8
2

5
1

1
1

5
3

1
1

4
8

1
1

1
8

0
9

cp
u

 u
ti

lis
at

io
n

 (
%

)

%usr %sys %iowait %irq %soft

Figure 256: 100TB Baseline - Agent node cpu utilization

Figure 267: 100TB Optimized - Agent node disk utilization

0

10

20

30

40

50

60

70

80

90

100

1
4

9
6

9
9

1
1

4
8

6
1

9
8

1
2

4
7

6
2

9
7

1
3

4
6

6
3

9
6

1
4

4
5

6
4

9
5

1
5

4
4

6
5

9
4

1
6

4
3

6
6

9
3

1
7

4
2

6
7

9
2

1
8

4
1

6
8

9
1

1
9

4
0

6
9

9
0

1
1

0
3

9
6

1
0

8
9

1
1

1
3

8
6

1
1

8
8

1
1

2
3

7
6

1
2

8
7

1
1

3
3

6
6

1
3

8
6

1
1

4
3

5
6

1
4

8
5

1
1

5
3

4
6

1
5

8
4

1
1

6
3

3
6

1
6

8
3

1
1

7
3

2
6

1
7

8
2

1

cp
u

 u
ti

lis
at

io
n

 (
%

)

%usr %sys %iowait %irq %soft

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

5000.00

1
3

4
8

6
9

5
1

0
4

2
1

3
8

9
1

7
3

6
2

0
8

3
2

4
3

0
2

7
7

7
3

1
2

4
3

4
7

1
3

8
1

8
4

1
6

5
4

5
1

2
4

8
5

9
5

2
0

6
5

5
5

3
5

9
0

0
6

2
4

7
6

5
9

4
6

9
4

1
7

2
8

8
7

6
3

5
7

9
8

2
8

3
2

9
8

6
7

6
9

0
2

3
9

3
7

0
9

7
1

7
1

0
0

6
4

1
0

4
1

1
1

0
7

5
8

1
1

1
0

5
1

1
4

5
2

1
1

7
9

9

d
is

k
u

ti
lis

at
io

n
 (

M
B

/s
)

rMB/s wMB/s

Figure 278: 100TB Baseline – Agent node disk utilization

Figure 28: 100TB Optimized - Agent node network utilization

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

1
5

2
4

1
0

4
7

1
5

7
0

2
0

9
3

2
6

1
6

3
1

3
9

3
6

6
2

4
1

8
5

4
7

0
8

5
2

3
1

5
7

5
4

6
2

7
7

6
8

0
0

7
3

2
3

7
8

4
6

8
3

6
9

8
8

9
2

9
4

1
5

9
9

3
8

1
0

4
6

1
1

0
9

8
4

1
1

5
0

7
1

2
0

3
0

1
2

5
5

3
1

3
0

7
6

1
3

5
9

9
1

4
1

2
2

1
4

6
4

5
1

5
1

6
8

1
5

6
9

1
1

6
2

1
4

1
6

7
3

7
1

7
2

6
0

1
7

7
8

3

d
is

k
u

ti
lis

at
io

n
 (

M
B

/s
)

rMB/s wMB/s

0.00

500.00

1000.00

1500.00

2000.00

2500.00

1
3

4
8

6
9

5
1

0
4

2
1

3
8

9
1

7
3

6
2

0
8

3
2

4
3

0
2

7
7

7
3

1
2

4
3

4
7

1
3

8
1

8
4

1
6

5
4

5
1

2
4

8
5

9
5

2
0

6
5

5
5

3
5

9
0

0
6

2
4

7
6

5
9

4
6

9
4

1
7

2
8

8
7

6
3

5
7

9
8

2
8

3
2

9
8

6
7

6
9

0
2

3
9

3
7

0
9

7
1

7
1

0
0

6
4

1
0

4
1

1
1

0
7

5
8

1
1

1
0

5
1

1
4

5
2

1
1

7
9

9

n
et

w
o

rk
 u

ti
lis

at
io

n
 (

M
B

/s
)

rxMB/s txMB/s

Figure 290: 100TB Baseline – Agent node network utilization

To provide references for the 10TB Optimized runs:

Figure 301: 10TB Optimized – Agent node disk utilization

0.00

500.00

1000.00

1500.00

2000.00

2500.00

1
5

2
4

1
0

4
7

1
5

7
0

2
0

9
3

2
6

1
6

3
1

3
9

3
6

6
2

4
1

8
5

4
7

0
8

5
2

3
1

5
7

5
4

6
2

7
7

6
8

0
0

7
3

2
3

7
8

4
6

8
3

6
9

8
8

9
2

9
4

1
5

9
9

3
8

1
0

4
6

1
1

0
9

8
4

1
1

5
0

7
1

2
0

3
0

1
2

5
5

3
1

3
0

7
6

1
3

5
9

9
1

4
1

2
2

1
4

6
4

5
1

5
1

6
8

1
5

6
9

1
1

6
2

1
4

1
6

7
3

7
1

7
2

6
0

1
7

7
8

3

n
et

w
o

rk
 u

ti
lis

at
io

n
 (

M
B

/s
)

rxMB/s txMB/s

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

d
is

k
u

ti
lis

at
io

n
 (

M
B

/s
)

rMB/s wMB/s

Figure 312: 10TB Baseline - Agent node network utilization

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

n
et

w
o

rk
 u

ti
lis

at
io

n
 (

M
B

/s
)

rxMB/s txMB/s

List of Figures
Figure 1: Microsoft SQL Server 2019 Big Data Cluster and Analytics Features .. 6

Figure 2: Microsoft SQL Server 2019 Big Data Cluster Architecture – Overview ... 7

Figure 3: Microsoft SQL Server 2019 Big Data Cluster Architecture – Logical View 7

Figure 4: Microsoft SQL Server 2019 Big Data Cluster - Pod Level View .. 8

Figure 5: Intel® Xeon® Processors ... 8

Figure 6: Microsoft Reference Cluster – Physical View .. 10

Figure 7: Intel Reference Cluster - Physical View .. 12

Figure 8: Logical Volumes in Agent Nodes - Configuration ... 13

Figure 9: 10TB Data Set - Data Distribution .. 15

Figure 10: 10TB NULL Count - Data Statistics ... 15

Figure 11: 100TB Data Set - Distribution .. 16

Figure 12: 100TB NULL Count - Data Statistics ... 16

Figure 13: 1TB/10TB/100TB Data Load - Compute Tables Statistics .. 17

Figure 14: 1TB/3TB/10TB/30TB Data Load - Compute Tables Statistics ... 17

Figure 15: 10TB Data Set - Elapsed Query Runtimes .. 22

Figure 16: 1TB - 10TB - 100TB Data Set - Elapsed Query Runtimes .. 23

Figure 17: 1TB - 10TB - 100TB - Query Runtimes .. 24

Figure 18: Query Runtime - Geometric Mean .. 24

Figure 19: System Performance per Node – Microsoft Reference Cluster ... 25

Figure 20: 100TB % of Memory Usage per Node .. 25

Figure 21: Performance of 1TB - 3TB - 10TB - 30TB Data Set – Query Runtime ... 26

Figure 22: System Performance Per Node – Intel reference Cluster .. 27

Figure 24: Built-in Grafana Monitoring Interface Showcasing System Metrics .. 29

Figure 25: 100TB Optimized – Agent node CPU utilization .. 35

Figure 26: 100TB Baseline - Agent node cpu utilization ... 36

Figure 27: 100TB Optimized - Agent node disk utilization .. 36

Figure 28: 100TB Baseline – Agent node disk utilization .. 37

Figure 29: 100TB Optimized - Agent node network utilization .. 37

Figure 30: 100TB Baseline – Agent node network utilization ... 38

Figure 31: 10TB Optimized – Agent node disk utilization ... 38

Figure 32: 10TB Baseline - Agent node network utilization .. 39

List of Tables

Table 1: Intel® Data Center SSD Technology Overview .. 9

Table 2: Microsoft Reference Cluster - Configurations... 11

Table 3: Intel Reference Cluster - Configurations ... 13

Table 4: Microsoft Reference Cluster - Spark Parameters .. 19

Table 5: Intel Reference Cluster - Spark Parameters .. 19

Table 6: List of TPC-DS Queries ... 31

https://microsoft-my.sharepoint.com/personal/anrampal_microsoft_com/Documents/SQL%20Server%202019%20Launch/Blogs/Joint_v2.10_Microsoft%20SQL%20Server%202019%20Big%20Data%20Cluster%20Case%20Study%20White%20Paper.docx#_Toc31288377

