

x

Leveraging Confidential Computing on

Kubernetes on Azure

A starter guide for developers

Version 2.0 (Draft), July 2020

For the latest information about Azure, please see

https://azure.microsoft.com/en-us/overview/

For the latest information on Azure Confidential Computing (ACC), please see

https://azure.microsoft.com/en-us/solutions/confidential-compute/

For the latest information about open source on Azure, please see

https://azure.microsoft.com/en-us/overview/choose-azure-opensource/

For the latest information about Kubernetes on Azure, please see

https://azure.microsoft.com/en-us/topic/what-is-kubernetes/

For the latest information on the Open Enclave (OE) SDK, please see

https://openenclave.io/sdk/

ii Leveraging Confidential Computing with Kubernetes on Azure

This page is intentionally left blank.

 Leveraging Confidential Computing with Kubernetes on Azure 1

Table of contents

NOTICE .. 2

ABOUT THIS GUIDE .. 3

GUIDE ELEMENTS ... 4

GUIDE PREREQUISITES ... 5

MODULE 1: SETTING UP A KUBERNETES CLUSTER .. 6

ALTERNATIVE 1: USING AKS-ENGINE .. 6

ALTERNATIVE 2: USING AKS ... 7

Being added to added to the preview .. 7

Registering for the preview ... 8

Creating the cluster .. 8

MODULE 2: CONTAINERIZING A TEE BASED APPLICATION .. 11

MODULE 3: DEPLOYING A TEE BASED APPLICATION .. 13

ALTERNATIVE 1: USING AKS-ENGINE .. 13

Direct deployment .. 13

Using a device plugin... 14

ALTERNATIVE 2: USING AKS ... 16

AS A CONCLUSION .. 18

APPENDIX .. 19

2 Leveraging Confidential Computing with Kubernetes on Azure

Notice

This guide in intended for developers to create a Kubernetes cluster on Azure using nodes having the Intel SGX

technologies thanks to Azure Confidential Computing. As such, it also illustrates a way to build and execute so-

called Trusted Execution Environment (TEE) based applications using the Microsoft Open Enclave SDK (OESDK) in in

containers. The OESDK is available in open source at https://openenclave.io/sdk/.

MICROSOFT DISCLAIMS ALL WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, IN RELATION WITH THE

INFORMATION CONTAINED IN THIS WHITE PAPER. The white paper is provided "AS IS" without warranty of any

kind and is not to be construed as a commitment on the part of Microsoft.

Microsoft cannot guarantee the veracity of the information presented. The information in this guide, including but

not limited to an internet website and URL references, is subject to change at any time without notice. Furthermore,

the opinions expressed in this guide represent the current vision of Microsoft France on the issues cited at the date

of publication of this guide and are subject to change at any time without notice.

Publication: July 2020

Version 2.0

© 2020 Microsoft France. All rights reserved

https://openenclave.io/sdk/

 Leveraging Confidential Computing with Kubernetes on Azure 3

About this guide

Welcome to the Leveraging Confidential Computing on Kubernetes using Open Enclave SDK on Azure guide

for developers.

This document is part of a series of guides that covers Confidential Computing in the Cloud, and the Edge, and

considerations that pertain to it from a development perspective and/or an infrastructure one. This series of

guides is available at https://aka.ms/CCDevGuides.

The focus of this guide is to present a way to create a Kubernetes cluster on Azure with Confidential Computing.

Confidential Computing adds new data security capabilities using Trusted Execution Environment1 (TEE), a.k.a.

enclaves, or encryption mechanisms to protect your data while in use.

As such, this guide is intended as practical approach to using TEE and TEE based application on a Kubernetes

cluster, and thus won’t expand on theorical concerns on what specifically a TEE is, and the guarantees it provides,

etc.

For more theorical approaches of Confidential Computing, please refer to other guides of this series, and more

particularly to the Building and Executing Trusted Execution Environment (TEE) based applications on Azure

– A starter guide for developers.

For the sake of this guide, you will simply need to know that TEEs are hardware or software implementations that

safeguard data being processed from access outside the TEE. The TEE type that will be illustrated in this guide is the

SGX enclave as enabled by the Intel Software Extension Guard2 (Intel SGX) technology available in the latest

generation of Intel Xeon processors.

For Confidential Computing in code, you will need to write your TEE application leveraging the Intel SGX

technology with the SDK for Intel SGX3 or, preferably with the Open Enclave SDK4 , an open source project that

drives towards a consistent API surface around enclaving abstraction, and supports portability across various TEE

types, and thus flexibility in architecture.

You will also need to create a Kubernetes cluster on hardware that supports Intel SGX. Fortunately, Azure is the

very first major cloud platform to support provisioning of SGX-enabled virtual machines (VMs) under the umbrella

of Azure Confidential Computing5 (ACC). You can create a Kubernetes cluster with one or multiple agent pool(s)

running ACC VMs by instantiating DC-series VMs size run Ubuntu 16.04 or Ubuntu 18.04 on Intel Xeon processors

and that are Confidential Computing ready.

So, you will then need to provision a Kubernetes cluster either by using Azure Kubernetes Services (AKS)6 or AKS-

Engine7.

AKS is the Microsoft proprietary managed Kubernetes cluster toolbox, allowing for easily controlled and

monitored cluster providing a true out-of-the-box experience. These clusters appear as a single resource on your

1 Trusted execution environment: https://en.wikipedia.org/wiki/Trusted_execution_environment

2 Intel Software Extension Guard: https://software.intel.com/en-us/sgx

3 SDK for Intel SGX: https://software.intel.com/en-us/sgx/sdk

4 Open Enclave SDK: https://github.com/openenclave/openenclave

5 Azure Confidential Computing: http://aka.ms/azurecc

6 Azure Kubernetes Service (AKS): https://azure.microsoft.com/en-us/services/kubernetes-service/
7 AKS-engine: https://github.com/Azure/aks-engine

https://aka.ms/CCDevGuides
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx/sdk
https://github.com/openenclave/openenclave
http://aka.ms/azurecc
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine

4 Leveraging Confidential Computing with Kubernetes on Azure

Azure portal, providing a total abstraction of all the inner workings of Kubernetes. The cluster can then be used as

an incubator for your application without any additional configuration required.

AKS-Engine is (yet) another open-source project from Microsoft that provides convenient tooling to quickly

bootstrap a Kubernetes cluster on Azure, and maintain clusters provisioned with basic IaaS resources in Azure by

leveraging Azure Resource Manager8 (ARM): AKS-Engine allows you generates Azure Resource Manager

templates you can use for deploying Kubernetes clusters on Azure. With this project, you are in complete control

of the created resources.

A Confidential Computing device plugin (manually installed if using AKS-engine, already installed if using AKS) will

be then used to surface the usage of the Encrypted Page Cache (EPC) RAM as a schedulable resource for

Kubernetes, and will allow you to schedule pods and containers that use the Open Enclave SDK onto hardware

which supports TEE.

In this guide, and as its title suggest, we will cover the basics of the above, i.e. illustrating how SGX-

capable nodes of a Kubernetes cluster and to deploy a TEE based application onto it.

For that purposes, you’re invited to follow a short series of modules, each of them illustrating a specific aspect of

the above outlined steps for leveraging Confidential Computing with Kubernetes on azure.

Each module within the guide builds on the previous. You’re free to stop at any module you want, but our

advice is to go through all the modules.

At the end of the starter guide, you will be able to:

• Create a Kubernetes cluster with AKS-Engine on top of DC-series VMs for SGQ-capable nodes, along with

the Confidential Computing device plugin.

• Use the Open Enclave SDK to create a TEE based application that targets Intel SGX,

• Containerize the TEE based application,

• Deploy the TEE based application on the Kubernetes cluster with Confidential Computing.

Et voilà!

Guide elements

In the guide modules, you will see the following elements:

• Step-by-step directions. Instructions or links to online documentation for completing each procedure or

part.

• Important concepts. A short explanation of some of the concepts important to the procedures in the

module, and what happens behind the scenes.

8 What is Azure Resource Manager?: https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview

 Leveraging Confidential Computing with Kubernetes on Azure 5

• Sample application, and files. A downloadable or cloneable version of the project containing the code

that you will use in this guide, and other files you will need. Please go to

https://github.com/openenclave/ on GitHub to download or clone all necessary assets.

Guide prerequisites

To successfully leverage the provided code in this starter guide, you will need:

• A Windows or Linux local machine

• Docker, Azure-CLI , AKS-engine, kubectl9 installed

• A Microsoft account10 along with an Azure subscription. If you don't have an Azure subscription, create

a free account11 before you begin. You must be able to create a service principal12 with the

Contributor role.

• A fast and reliable Internet connection

So, it’s high time to get our hands dirty with the keyboard! :-)

9 Kubectl on Kubernetes: https://kubernetes.io/docs/reference/kubectl/kubectl/

10 Microsoft Account: https://account.microsoft.com/account?lang=en-us

11 Create your Azure free account today: https://azure.microsoft.com/en-us/free/?WT.mc_id=A261C142F
12 Application and service principal objects in Azure Active Directory: https://docs.microsoft.com/en-us/azure/active-directory/develop/app-

objects-and-service-principals

https://github.com/openenclave/
https://kubernetes.io/docs/reference/kubectl/kubectl/
https://account.microsoft.com/account?lang=en-us
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals

6 Leveraging Confidential Computing with Kubernetes on Azure

Module 1: Setting up a Kubernetes cluster

Deploying an application using Intel SGX capabilities requires to have at least one machine, a Kubernetes node, to

be equipped with an SGX-enabled processor underneath.

There are two ways to achieve setting up the cluster: either by using the AKS-Engine or the Azure Kubernetes

Service (AKS) service.

Let’s start with the first one.

Alternative 1: Using AKS-Engine

In this first alternative, you will use AKS-engine, the underlying core behind a classical Azure AKS deployment.

Using AKS-Engine doesn’t require any form submission or prior registration as you will see for AKS but is a bit more

manual. However, this feature (in Alpha) should be considered as in a proof of concept state, and thus IS NOT

intended for production purposes. It has been introduced prior to the above preview

Using the engine directly allows you to specify which type of VM to require to build the Kubernetes cluster. For

the sake of this guide, you will be using the capabilities of Azure Confidential Computing (ACC), and creating v1

DC-Series VMs, and more particularly Standard_DC2s13 VMs with 2 vCPUs and 8 GiB of memory.

Important Note V1 DC-Series VMs are in Preview and deploy an older version of the DC-Series VMs. They aren’t

going to be generally available and will remain in preview until deprecation.

For the most up-to-date technology and Confidential Computing VMs, you will need to use the new Generation 214 DCsv2-

Series15 instead that correspond to an Azure Confidential Compute (Virtual Machine) V2 deployment. Besides the initially

released v1 DC-Series VMs, DCsv2-Series VMs are backed by the latest generation of Intel XEON E-2288G Processor with

the Intel SGX technology.

The AKS-engine quick start for SGX16 presents a method to build an SGX-enabled cluster, and is the basis used for

this guide. Follow all the instructions provided.

To set up the cluster, a resource group must be created. This resource group will contain all of the cluster

components.

An Azure Active Directory (Azure AD) service principal is then created for this resource group. This service principal

will act as a surrogate to create all the cluster building blocks while deploying and must be created with a

Contributor role.

13 Preview: DC-series: https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-gen#preview-dc-series

14 Support for generation 2 VMs on Azure: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/generation-2

15 Preview: DCsv2-series: https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series

16 Using SGX with Kubernetes: https://github.com/Azure/aks-engine/blob/master/docs/topics/sgx.md

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-gen#preview-dc-series
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2
dcsv2-series:%20https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series
dcsv2-series:%20https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series
https://github.com/Azure/aks-engine/blob/master/docs/topics/sgx.md

 Leveraging Confidential Computing with Kubernetes on Azure 7

The cluster model to deploy is contained in the file deployment.json. An example deployment can be found in the

Appendix.

$resGroupName = "<Ressource group name>"
$resGroupLocation = "<Ressource group/cluster location>"
$modelToDeploy = "deployment.json"
$subName = "<Your subscription name here>"
Get Azure subscription from the list and set it as default
$subscription = `
 az account list --query "[?name=='$subName']" | ConvertFrom-Json
az account set --subscription="$($subscription.id)"

Create a resource group to receive the cluster elements
$groupDef = `
 az group create --name "$resGroupName" --location "$resGroupLocation" | ConvertFrom-Json

Create service principal for the created resource group
$servicePrincipal = `
 az ad sp create-for-rbac --role="Contributor" --
scopes="/subscriptions/$($subscription.id)/resourceGroups/$($groupDef.name)"

Actually deploy the cluster using the template in deployment.json
aks-engine deploy --subscription-id $($subscription.id) `
 --dns-prefix $resGroupName `
 --resource-group $resGroupName `
 --location $resGroupLocation `
 --api-model $modelToDeploy `
 --client-id $servicePrincipal.appId `
 --client-secret $servicePrincipal.password `
 --set servicePrincipalProfile.clientId="$($servicePrincipal.appId)" `
 --set servicePrincipalProfile.secret="$($servicePrincipal.password)"

Let’s now consider the second alternatives with AKS.

Alternative 2: Using AKS

As already outlined, building an SGX-enabled cluster using AKS is a preview feature, but is the recommended way,

as it will be the go-to solution in the near future.

As such, the preview of "Confidential workloads on Azure Kubernetes Service (AKS)" service, i.e. the ACC Node

Pools support on AKS, has been announced as a preview feature at the //Build2020 Conference.

Leveraging the preview is a three steps process:

1. Being added to added to the preview.

2. Registering for the preview.

3. Creating the cluster.

Being added to added to the preview

As of this writing, you can join this preview if you are interested by submitting a form

at https://aka.ms/accakspreview (https://microsoft.qualtrics.com/jfe/form/SV_1NU9xTXfFKUQXFH) with your

details and your Azure Subscription ID that you plan to use with this starter guide.

https://aka.ms/accakspreview
https://microsoft.qualtrics.com/jfe/form/SV_1NU9xTXfFKUQXFH

8 Leveraging Confidential Computing with Kubernetes on Azure

Registering for the preview

Once accepted, you will first need to register to the preview. This is a simple step, only requiring a few commands.

You may however need to increase your ACC quota by creating a support ticket17.

The sample cluster built during this guide shouldn’t require increasing the quota, but any production environment

using more than 1 or 2 ACC cores will require this quota to be increased.

You can then register to the AKS-preview for confidential computing using this Azure CLI script.

This scripts register the current user for the private preview version of AKS

Wait for a register call to be completed. Throw on abnormal states
function waitUntilRegistered($name, $namespace){
 enum ContainerServiceState{
 LOADING
 OK
 }
 $values = @{
 [ContainerServiceState]::LOADING = "Registering";
 [ContainerServiceState]::OK = "Registered"
 }

 do {
 $state = `
 (az feature show `
 --name $name `
 --namespace $namespace `
 | ConvertFrom-Json).properties.state
 if ($state -ne $values.[ContainerServiceState]::LOADING`
 -and $state -ne $values.[ContainerServiceState]::OK) {
 throw [System.Exception]::new("Couldn't register to the service")
 }
 Start-Sleep -s 5
 }until($state -eq $values.[ContainerServiceState]::OK)
}
Register to AKS private preview
az extension add --name aks-preview
az feature register --name "Gen2VMPreview" --namespace "Microsoft.ContainerService" --verbose
waitUntilRegistered "Gen2VMPreview" "Microsoft.ContainerService"
Refresh service to propagate changes
az provider register --namespace 'Microsoft.ContainerService'

Creating the cluster

Once you have been registered for the preview, creating the cluster is as simple as creating any other AKS cluster,

the only difference being using a custom header (usegen2vm=true) to use Generation 2 VMs18. This is required

because all ACC nodes are second generation VMs.

First, a resource group must be created. This resource group will contain all of the cluster components.

17 Standard quota: Increase limits by VM series: https://docs.microsoft.com/en-us/azure/azure-portal/supportability/per-vm-quota-requests
18 Support for generation 2 VMs on Azure: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/generation-2

https://docs.microsoft.com/en-us/azure/azure-portal/supportability/per-vm-quota-requests
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2

 Leveraging Confidential Computing with Kubernetes on Azure 9

An Azure Active Directory (Azure AD) service principal is then created for this resource group. This service principal

will act as a surrogate to create all the cluster building blocks while deploying and must be created with a

Contributor role.

Finally, using a single aks create command, you can build a whole confidential computing-ready Kubernetes

cluster!

You can use the script below to deploy a cluster named brandNewCluster within the Resource Group sconaksrg.

$resGroupName = "sconaksrg"
Must be a region with support for ACC nodes. Either uksouth, canadacentral or eastus
$resGroupLocation = "uksouth"
$clusterName = "brandNewCluster"
Every compatible nodes are following the "Standard_DCXs_v2" pattern, X being the number of vCPU
$nodeSize = "Standard_DC1s_v2"
Standard ACC quota is 8. 2 nodes with 1 vCPU is using 2*1 = 2 on the 8 allowed
$nodeCount = 2

Create the cluster resource group
$groupDef = `
 az group create --name "$resGroupName" --location "$resGroupLocation" | ConvertFrom-Json

Create a service principal for the resource group, to create the cluster
$servicePrincipal = `
 az ad sp create-for-rbac --role="Contributor" --
scopes="/subscriptions/$($subscription.id)/resourceGroups/$($groupDef.name)"

Create the cluster
az aks create `
 -l $resGroupLocation `
 -g $resGroupName `
 -n $clusterName `
 --service-principal $servicePrincipal.appId `
 --client-secret $servicePrincipal.password `
 --vm-set-type VirtualMachineScaleSets `
 --node-count $nodeCount `
 --kubernetes-version 1.15.10 `
 --network-plugin azure `
 --node-vm-size $nodeSize `
 --aks-custom-headers usegen2vm=true

Cluster created ! Get the kubeconfig to use with kubectl
az aks get-credentials --resource-group $resGroupName --name $clusterName

Catch exception, log and exit
trap {
 Write-Log $PSItem.ToString()
 exit -1
}

For the sake of this guide, you will be using here for the two nodes the capabilities of Azure Confidential

Computing (ACC), and more particularly DCsv2-Series19 VMs with 1 vCPUs and 4 GiB of memory.

19 Preview: DCsv2-series: https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series

https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series

10 Leveraging Confidential Computing with Kubernetes on Azure

As of this writing, the DCsv2-Series VMs are available in Canada Central, UK South & US East regions, see DCsv2-

series20. UK South is target here. However, please deploy to Canada Central if you run into any issues.

Regardless of the alternative you’ve opted to, if everything went smoothly, you should now have a

Kubernetes cluster in place with SGX-capable nodes.

Let’s now consider how to containerize a TEE based application written with aforementioned Open Enclave

SDK.

20 DCsv2-series: https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series

https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series

 Leveraging Confidential Computing with Kubernetes on Azure 11

Module 2: Containerizing a TEE based

application

As you may know, only containerized applications can be deployed onto Kubernetes. Thus, every TEE based

application makes no exception to that, and must be containerized before being deployed on your newly created

Kubernetes cluster.

To achieve that, you are now invited to follow the Open Enclave SDK quick start guide21 as a basis. It is, however,

important to remember that as containers share an underlying kernel with their host, Data Center Attestation

Primitives (DCAP) drivers don’t have to be installed inside the containers.

Important Note DCAP provides SGX attestation support for SGX enclave. For more information about DCAP and

attestation, please refer to the guide Leveraging attestation for TEE based applications on Azure in this series of

guides.

As of this writing, ACC VMs are installed with Intel SGX DCAP driver version 1.2.622. Microsoft work closely with

Intel to keep the patches updated.

It is also important to keep in mind that containers should be as lightweight as possible. Thus, only the compiled

binary and its dependencies should be shipped into the cluster. A great way to achieve this is by using Docker

multi-stage builds23, as shown below for the Hello World sample24, coming with the Open Enclave SDK, and being

used here for illustration purpose.

FROM ubuntu:16.04 as build
RUN apt update && apt -y install wget\
 # Add Microsoft repositories and keys
 && echo 'deb [arch=amd64] https://download.01.org/intel-sgx/sgx_repo/ubuntu xenial main' | tee
/etc/apt/sources.list.d/intel-sgx.list\
 && wget -qO - https://download.01.org/intel-sgx/sgx_repo/ubuntu/intel-sgx-deb.key | apt-key add -
\
 && echo "deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-7 main" | tee
/etc/apt/sources.list.d/llvm-toolchain-xenial-7.list\
 && wget -qO - https://apt.llvm.org/llvm-snapshot.gpg.key | apt-key add -\
 && echo "deb [arch=amd64] https://packages.microsoft.com/ubuntu/16.04/prod xenial main" | tee
/etc/apt/sources.list.d/msprod.list\
 && wget -qO - https://packages.microsoft.com/keys/microsoft.asc | apt-key add -\
 # Update repo and install SGX lib
 && apt install -y apt-transport-https ca-certificates\
 && apt update\
 && apt -y install clang-7 libssl-dev gdb libsgx-enclave-common libsgx-enclave-common-dev
libprotobuf9v5 libsgx-dcap-ql libsgx-dcap-ql-dev az-dcap-client open-enclave

Build the HelloWorld app
WORKDIR /app
COPY . /app

21 Install the Open Enclave SDK (Ubuntu 18.04):

https://github.com/openenclave/openenclave/blob/master/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_18.04.md

22 DCAP Linux 1.2 Open Source: https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-dcap-linux-1.2-release
23 Docker multi-stage builds: https://docs.docker.com/develop/develop-images/multistage-build/

24 Hello World sample: https://github.com/openenclave/openenclave/tree/master/samples/helloworld

https://github.com/openenclave/openenclave/blob/master/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_18.04.md
https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-dcap-linux-1.2-release
https://docs.docker.com/develop/develop-images/multistage-build/
https://github.com/openenclave/openenclave/tree/master/samples/helloworld

12 Leveraging Confidential Computing with Kubernetes on Azure

WORKDIR /app/samples/helloworld
Note : sourcing openenclaverc actually add all the build tools into the PATH
RUN /bin/bash -c "source /opt/openenclave/share/openenclave/openenclaverc && make build "
#Stage 2 : Production
FROM busybox:glibc
Copying the compiled hello world app
COPY --from=build /app/samples/helloworld /
Copy over the shared lib it depends on
COPY --from=build /lib/x86_64-linux-gnu/libdl.so.2 /lib/
COPY --from=build /usr/lib/x86_64-linux-gnu/libsgx_enclave_common.so.1 /lib/
COPY --from=build /usr/lib/x86_64-linux-gnu/libsgx_dcap_ql.so.1 /lib/
COPY --from=build /usr/lib/x86_64-linux-gnu/libsgx_urts.so /lib/
COPY --from=build /usr/lib/x86_64-linux-gnu/libssl.so /lib/
COPY --from=build /lib/x86_64-linux-gnu/libssl.so.1.0.0 /lib/
COPY --from=build /lib/x86_64-linux-gnu/libcrypto.so.1.0.0 /lib/
COPY --from=build /usr/lib/x86_64-linux-gnu/libstdc++.so.6 /lib/
COPY --from=build /lib/x86_64-linux-gnu/libgcc_s.so.1 /lib/
CMD ["host/helloworldhost", "./enclave/helloworldenc.signed"]

Using multi-stage builds allows the final image size to be about 17 MB. A lot of smaller than a single stage build,

that would be about 1.4 GB, accounting for Ubuntu and all the build tools downloaded.

Figure 1: multi-stage building size comparison

Please note that in the above Dockerfile, all the shared libraries used by the Hello World sample are copied over

to the production stage (busybox). This technique isn’t applicable for a large application with multiple

dependencies, as it would be too difficult to maintain. To attain the smallest image size possible for larger

deployments, using static compilation and a binary packer25 would be a better solution.

Please also note that both the official Hello World image26 (504 MB) and the Hello World image used in this

guide27 (17 MB) are available on the Docker Hub.

Now that you are equipped with container images for your TEE based application, let’s now see how to

adequately deploy it on your previously created cluster.

25 UPX binary packer: https://github.com/upx/upx
26 Official Hello World image: https://hub.docker.com/r/oeciteam/sgx-test

27 Minimal Hello world image: https://hub.docker.com/r/eternalintern/enclavehello

https://github.com/upx/upx
https://hub.docker.com/r/oeciteam/sgx-test
https://hub.docker.com/r/eternalintern/enclavehello
https://hub.docker.com/r/eternalintern/enclavehello

 Leveraging Confidential Computing with Kubernetes on Azure 13

Module 3: Deploying a TEE based application

The final step is to deploy the containerized TEE based application on the Kubernetes cluster.

Alternative 1: Using AKS-Engine

With AKS-Engine, there are two ways to achieve it, depending on whether you use or not a device plugin.

Fortunately, the AKS-Engine guide28 explains both ways:

1. Direct deployment.

2. Using a device plugin.

Let’s consider them successively so that you can ultimately opt for the best one :-)

Direct deployment

Your TEE application needs direct access to the Intel SGX capabilities. To achieve it, a privileged container29 is used

in conjunction with a volume mounting of the SGX descriptor /dev/sgx30.

apiVersion: v1
kind: Pod
metadata:
 name: enclavehello
spec:
 restartPolicy: OnFailure
 containers:
 - name: enclavehello
 image: eternalintern/enclavehello:busybox
 imagePullPolicy: Always
 volumeMounts:
 - name: dev-sgx
 mountPath: /dev/sgx
 securityContext:
 privileged: true
 volumes:
 - name: dev-sgx
 hostPath:
 path: /dev/sgx
 type: CharDevice

This deployment can be pushed directly onto the cluster with a typical declarative kubectl command, as follows:

$ kubectl apply -f.

28 AKS-engine guide on Intel SGX: https://github.com/Azure/aks-engine/blob/master/docs/topics/sgx.md#optional-using-oe-sgx-device-

plugin-alpha

29 Docker privileged containers description: https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

30 SGX details: https://github.com/jovanbulck/sgx-step/blob/master/README.md

https://github.com/Azure/aks-engine/blob/master/docs/topics/sgx.md#optional-using-oe-sgx-device-plugin-alpha
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://github.com/jovanbulck/sgx-step/blob/master/README.md

14 Leveraging Confidential Computing with Kubernetes on Azure

However, this solution presents multiple flaws and is NOT recommended.

First, using a privileged container is a bad practice that should be avoided when possible, as it can lead to major

security issues. But maybe even more importantly, this configuration doesn’t support having both nodes with SGX

and nodes without it.

Indeed, in this configuration, the Kubernetes Scheduler has no way to know that pods using SGX must be

executed on SGX-capable nodes. This could result in random failures when the scheduler makes the wrong guess.

Thus, this is not advised for any non-testing environment.

Note The Hello World sample should be a Kubernetes Job rather than a Pod.

Using a device plugin

A slightly more complicated solution is to rely on a device plugin. However, this solution does allow to use an

“hybrid” cluster with both SGX and non-SGX nodes, as special instructions will be used to schedule pods needing

SGX into SGX-enabled nodes.

First, the SGX-capable nodes need to be both labeled and tainted31. A label identifies a node with a special ability,

such as an SGX-enabled processor. A taint repels any pods that doesn’t tolerate it. Thus, any Kubernetes pods

that doesn’t support SGX won’t be scheduled on an SGX tainted node (a physical machine).

Labeling and tainting a node can be achieved with the following commands:

$ kubectl label nodes <node-name> tee=sgx
$ kubectl taint nodes <node-name> openenclave.io/sgx_epc_MiB=true:NoSchedule

Next, a device plugin will expose the SGX Encrypted Page Cache (EPC)32 as a schedulable resource for Kubernetes,

thus removing the need to run every single application needing SGX as a privileged container. This plugin is

applied to nodes having both the label tee=sgx and the taint openenclave.io/sgx_epc_MiB.

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: oe-sgx-device-plugin
 namespace: kube-system
 labels:
 app: oe-sgx-device-plugin
spec:
 selector:
 matchLabels:
 app: oe-sgx-device-plugin
 template:
 metadata:
 labels:
 app: oe-sgx-device-plugin
 spec:
 tolerations:
 - key: openenclave.io/sgx_epc_MiB # Toleration of sgx taint
 operator: Exists

31 Kubernetes Labels and taints: https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

32 SGX Encrypted Page Cache : https://eprint.iacr.org/2016/086.pdf#page=58

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://eprint.iacr.org/2016/086.pdf#page=58

 Leveraging Confidential Computing with Kubernetes on Azure 15

 effect: NoSchedule
 containers:
 - name: oe-sgx-device-plugin
 image: "mcr.microsoft.com/aks/acc/sgx-device-plugin:0.1"
 command: ["/usr/local/bin/oe-sgx-device-plugin"]
 imagePullPolicy: IfNotPresent
 volumeMounts:
 - name: device-plugin
 mountPath: /var/lib/kubelet/device-plugins
 - name: dev-sgx
 mountPath: /dev/sgx
 securityContext:
 privileged: true
 volumes:
 - name: device-plugin
 hostPath:
 path: /var/lib/kubelet/device-plugins
 - name: dev-sgx
 hostPath:
 path: /dev/sgx
 nodeSelector:
 tee: sgx # Selecting by label

Once the plugin is deployed using kubectl, the Encrypted Page Cache size on the SGX-enabled node is now

visible on each node.

$ (kubectl get nodes <node> -o json | ConvertFrom-Json).status.allocatable

The final step is to deploy the containerized Hello World TEE based application. This can be achieved by applying

this file:

apiVersion: v1
kind: Pod
metadata:
 name: enclavehello
spec:
 tolerations:
 - key: openenclave.io/sgx_epc_MiB
 operator: Exists
 effect: NoSchedule
 restartPolicy: OnFailure
 containers:
 - name: enclavehello

Figure 2: Schedulable resources table for an SGX-enabled node

16 Leveraging Confidential Computing with Kubernetes on Azure

 image: eternalintern/enclavehello:busybox
 imagePullPolicy: Always
 resources:
 limits:
 openenclave.io/sgx_epc_MiB: 10

This pod tolerates the SGX taint, so it can be scheduled on the SGX-capable node. As the Encrypted Page Cache

(EPC) is a schedulable resource, it is also possible to limit the max requirable size for this pod.

This is the preferred way to leverage Intel SGX on an Azure Kubernetes cluster.

Let’s see how to proceed with AKS.

Alternative 2: Using AKS

Using SGX plugin/daemon set is also the path taken in AKS. The SGX plugin/daemon set is directly deployed from

the get-go, see section § Creating the cluster above. This removes any additional step left in using SGX on a

Kubernetes cluster.

You can verify that SGX plugin/daemon set is effectively installed during the provisioning process.

Cluster created ! Get the kubeconfig to use with kubectl
$ az aks get-credentials --resource-group $resGroupName --name $clusterName
$ kubectl get pods –all-namespace

A pod named sgx-device-plugin-xxx should be listed. If the sgx-device-plugin pod is missing, you can

manually install it:

• If AKS version >=1.17:

$ kubectl apply -f https://raw.githubusercontent.com/Azure/aksengine/master/docs/topics/sgx/device-
plugin.yaml

• If AKS version is <1.17:

$ kubectl apply -f https://raw.githubusercontent.com/Azure/aksengine/master/docs/topics/sgx/device-
plugin-before-k8s-1-17.yaml

This is only required if the SGX plugin/daemon set is not showing up.

At this stage, your are now ready to deploy the containerized TEE based application (see section § Module 2:

Containerizing a TEE based application above) like you normally do with AKS application deployments.

Sample deployment file for this TEE based application on AKS will look like this:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: enclavehello-deployment
spec:
 selector:
 matchLabels:
 app: enclavehello

 Leveraging Confidential Computing with Kubernetes on Azure 17

 replicas: 1
 template:
 metadata:
 labels:
 app: enclavehello
 spec:
 tolerations:
 - key: kubernetes.azure.com/sgx_epc_mem_in_MiB
 operator: Exists
 effect: NoSchedule
 restartPolicy: OnFailure
 containers:
 - name: enclavehello
 image: eternalintern/enclavehello:busybox
 command: ["/usr/local/bin/oe-sgx-device-plugin"]
 imagePullPolicy: IfNotPresent
 resources:
 limits:
 kubernetes.azure.com/sgx_epc_mem_in_MiB: 10

You can also follow some examples from here33.

33 OE Samples: https://github.com/openenclave/openenclave/tree/master/samples

https://github.com/openenclave/openenclave/tree/master/samples

18 Leveraging Confidential Computing with Kubernetes on Azure

As a conclusion

As of this writing, using Intel SGX capable hardware on Kubernetes is an experimental feature with AKS_engine,

and more concise ways to achieve it should be on their ways as illustrated with the current public preview of AKS.

It is, however, very easy to use, even in its pre-release state and could lead to major improvements in the

confidential computing field.

For Confidential Computing, along with ARM Trust Zone, Intel SGX could become a milestone for the

establishment of a global standard security practice for data critical domains.

Leveraging an idiomatic way of achieving Confidential Computing is a requirement for future cloud-native

applications. Some Microsoft initiatives like the Open Application Model (OAM)34 could even bring Confidential

Computing to any Cloud with any orchestrator, bringing data security and privacy by design to the Cloud

landscape.

If your curiosity is sharpened, to find additional information on OAM, and rudr35, a Kubernetes Implementation of

OAM, please do not hesitate to consult (yet) another series of whitepapers New perspectives for cloud-native

applications with the Open Application Model (OAM), and the Distributed Application Runtime (Dapr). This series

can be downloaded at http://aka.ms/CloudNativeAppsFuture.

This concludes this guide. We hope you enjoyed this (guided) tour!

34 Open Application Model home page: https://oam.dev/

35 Rudr: https://github.com/oam-dev/rudr

https://oam.dev/
https://github.com/oam-dev/rudr
http://aka.ms/CloudNativeAppsFuture

 Leveraging Confidential Computing with Kubernetes on Azure 19

Appendix

{
"apiVersion":"vlabs",
"properties":{
 "orchestratorProfile":{
 "orchestratorType":"Kubernetes",
 "OrchestratorVersion":"1.14.7"

},
"masterProfile":{
 "count":1,
 "dnsPrefix":"",
 "vmSize":"Standard_D2_v3"

},
"agentPoolProfiles":[
{
 "name":"agentpool1",
 "count":1,
 "distro":"acc-16.04",
 "vmSize":"Standard_DC2s"

},
{
 "name":"agentpool2",
 "count":2,
 "distro":"aks-ubuntu-16.04",
 "vmSize":"Standard_D2_v2"

}

],
"linuxProfile":{
 "adminUsername":"azureuser",
 "ssh":{"publicKeys":[{"keyData":""}]}

},
 "servicePrincipalProfile":{
 "clientId":"",
 "secret":""

 }

}
}

Copyright © 2020 Microsoft France. All right reserved.

Microsoft France

39 Quai du Président Roosevelt

92130 Issy-Les-Moulineaux

The reproduction in part or in full of this document, and of the associated trademarks and logos, without

the written permission of Microsoft France, is forbidden under French and international law applicable to

intellectual property.

MICROSOFT EXCLUDES ANY EXPRESS, IMPLICIT OR LEGAL GUARANTEE RELATING TO THE INFORMATION

IN THIS DOCUMENT.

Microsoft, Azure, Office 365, Microsoft 365, Dynamics 365 and other names of products and services are, or

may be, registered trademarks and/or commercial brands in the United States and/or in other countries.

