Leveraging Attestations with Trusted
Execution Environment (TEE) based
applications on Azure @and on the Edge)

A starter guide for developers

Version 2.0 (Draft), July 2020

For the latest information about Azure, please see
https://azure.microsoft.com/en-us/overview/

For the latest information on Azure Confidential Computing (ACC), please see
https://azure.microsoft.com/en-us/solutions/confidential-compute/

For the latest information about open source on Azure, please see
https://azure.microsoft.com/en-us/overview/choose-azure-opensource/

For the latest information on the Open Enclave (OE) SDK, please see
https://openenclave.io/sdk/

This page is intentionally left blank.

i Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

Table of contents

INOTICE ...ttt sttt sttt et sttt et s et e et a e et s et e ae e st sae et ese st ss et saeatenestassstasssessenentasens 4
ABOUT THIS GUIDE ...ttt ettt st s e st et e st st e et s st a s et s et e as st e s et saebesestassneassasasans 5
GUIDE ELEMENTS...cotumiireremmeemmesmeemsssnsesssssssessssssnensssssssessssessessssssnesssisnessssesnenes 6
GUIDE PREREQUISITES ...cccouumirvummecmmmseenssseesssemsssesssssesesssessssssessssssesssessssssssssnesessnesess 7
USING ATTESTATIONS WITH THE INTEL SGX TECHNOLOGYccrrtriierceereteeeeeeecereteaeseeesesesneeeneseenens 8
INTRODUCING THE ATTESTATION PROCESS ..uccvvuueceemmecesenmerssmcsssseesssssessssssssssessnesess 8

A FIRST LOOK AT LOCAL ATTESTATION .covtievemmcresmecessmsessseessssessssecssssessssnesessnees 9

A FIRST LOOK AT REMOTE ATTESTATION ...cccovvummeervermeremmessmesermesmeneesesnmesessesneeeseense 10

A FIRST LOOK AT THE ROOT OF TRUST AND THE KEY HIERARCHYcovvmeermcrmcrmecrmecnnee 13
Key derivation mechanism........c..cemrinnrnneesnseisnssssssesnssennnns 14
DEIVE KEYS ..co.voeierireiseinssinssisssissssss s ssssssssssssssssssssssssssssssssssness 14
EPID private key and remote attestationcvrnrernrvnnniennssnsssessssesnsnenn, 15
INTERACTING WITH THE INTEL ATTESTATION SERVICEcoommrvemneeerereennnees 15
Registering and connecting to the Intel Attestation Service 16
Sending quote attestation reqUEST.........ccoccrervrervsneinnenseessisssesesseeens 17
Using Data Center Attestation Primitives (DCAP)........ccoccovvrerernrernrenn. 17
Using ECDSA-based QUOtING ENCIAVE.........coriureeeeereeeeeeceeeceesseeetesesssesesssesesssssesssssessssesessnens 18
Provisioning Certification Enclave and PCKcccouneneenecenneeeineeceenseeeeneeens 18
USING ATTESTATIONS WITH MICROSOFT AZURE ATTESTATIONomiieeeeeeeeeeeeeeeceeeeeeeeee e 22
AN OVERVIEW OF THE MICROSOFT AZURE ATTESTATION ..cuucvverrreeerressseeesseessssesesssesessssessssessssnens 22
Understanding how Microsoft Azure Attestation WOTKS..........ccoovnrenerennercenerce s 24
Understanding the role of PCK Caching SEIVICEcoomrneeensereenereeseseeerseeesseeeene 26
PREPARING YOUR ENVIRONMENT FOR INTERACTING WITH MAA 27
Preparing your local PowerShell environment on Windows 10.........cccceccovevencunces 27
Preparing your AZUre SUDSCIIPTIONooiurereieereceeeeseceseeeeeetesessesssseeisseesssesssssessssessssssesssseses 30
DISCOVERING MICROSOFT PROVIDED ATTESTATION DEFAULT PROVIDERSucuueumcmmecrmcrnecenee 32
CREATING YOUR OWN ATTESTATION PROVIDER ..cuccurrumeureereeirectesssesssesssesssesssesssesssesssesssesssesssesssessessesssessnens 34
Creating a resource group for your own attestation providercoccoevecrneveenn. 34
Creating a New attestation ProVIAEN ...ttt sees s sessseees 35
Discovering the newly created attestation Provider.......... e 36
Understanding the MAA'S trust MOdEl ...t 37
USING THE ATTESTATION PROVIDER REST APL....coriiiiieiireiireiirecireiireeiseeiseeesesesesssessse s sssessse s s s s sssesns 38

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 1

38

Sending requests to the attestation Provider ...

MANAGING THE ATTESTATION POLICIES OF YOUR OWN ATTESTATION PROVIDERccvvereereereererranenes

42

Understanding the basics of attestation policy management........ccccoeccenvvenneecn.

43

Getting the policies by default of your attestation provider..........cccoovvrnrvenneec.

44

Creating a user defined attestation POlCY ...

47

Creating the attestation POliCy file JWS...... st sssssssens

50

Uploading the attestation policy file JWS.........connnsnresseninenns

52

53

Resetting the attestation policies of your attestation provider ...

USING ATTESTATION WITH ATTESTATION PROVIDERScvurvrririrerensensenssssssssssssssssssssssssssssssnens

53

Sending an attestation rEQUEST ... ssss s sssessens

Leveraging an attestation’s FESPONSE ...ttt ettt sssssss s ssssans

53
54

DELETING YOUR OWN ATTESTATION PROVIDERcovervurirersessssssesessesssanes

54

DEVELOPING TEE-BASED APPLICATIONS USING ATTESTATIONS.......ccoiiiinrcccnnnsssesccsnesesesescans

2

DISCLAIMER .ttt sttt sase ettt sttt ettt et sies

56

INTRODUCING THE MULTI-PARTY MACHINE LEARNING USE CASE....cveveveverererereeeeeeeerereessstssssssssssssssesenesens

56

THE 3 SCENARIOScuieeeeire ittt eesetse e saseess e sase s ases s sttt sttt

57

SIMPLIFIED VIEW OF THE PROCESSuucuueuueimeuetreasesseesessessssssssssessssssssessessssssessessesssessesassssssssaees

SCENARIO 1: EXCHANGING ENCRYPTED DATA BETWEEN LOCAL ENCLAVES.....ccrvrerrerrerrereenn.

58
59

OVEIVIEW Of ThE SCENAIIO ...ttt s s

59

Scenario T WOrkflow didgram ... essseeesssesese e sssseessssesesens

61

A sample code walkthrough for the SCeNario ...,

62

SCENARIO 2: EXCHANGING ENCRYPTED DATA BETWEEN REMOTE ENCLAVEScoveeueereenecereereenees

64

OVEIVIEW OFf ThE SCENAIIO ..ottt s s sss s

64

66

Scenario 2 WOrkflow didgram ...t essseeesssesesss s sseesssesesens

67

A sample code walkthrough for the SCenario ...,

SCENARIO 3: ATTESTING A REMOTE ENCLAVE USING MICROSOFT AZURE ATTESTATION

70

OVEIVIEW OF T8 SCENAIIO ettt es s s sss s

70

Scenario 3 WOrkflow diagram ...t seeee s sesesssesess s eesssesesens

72

A sample code walkthrough for the SCeNario ...,

72

BUILDING AND RUNNING THE SAMPLE CODES FOR THE SCENARIOScoeverrrrtretreeseesaesssessessseesessassassnsenes

74

USING @ DC_SEIES VM IN AZUTE ...ttt sssse s s s ssssessssssssessssssssssssns

74

78

Connecting t0 YOUr DC_SEIES VMireereerneeireeetreeeeseeisseeisseessseessssesssessssesssssssssssssssssssssneees

80

Installing the Open Enclave SDK and other dependencies........cccccoveveerrrecen.

INSTAIIING AZUIE CLI ..ottt ettt ss s ess st sttt

Cloning the sSampPles’ COAE MEPO ...ttt sesss s esseessseens

83
84

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

Building the samples’ COAE..... et ss s 84

FURTHER ILLUSTRATING THE SCENARIO 3...oouivevemmmrrmmermereemissenesssesmesesssssensssssssesssssssessssssssssessssenssssennens 86
Configuring an Azure AD identity for the Remote Attestation with local attestation sample code............ccouecceene. 86
Compiling and running the Remote Attestation with local attestation sample code 88
Getting the enclave A Quote and related Enclave Held Data (EHD) 89
Interacting with your attestation provider ... 93

APPENDIX. FREQUENTLY USED ACRONYMS......o o erceteeteeeeeereteetesetees et sesteseseses et ssestessssssenssnensenenes 98

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 3

Notice

This guide for developers is intended to illustrate how to leverage attestation along with so-called Trusted Execution
Environment (TEE) based applications using the Microsoft Open Enclave SDK in C and C++. The Microsoft Open
Enclave SDK (OESDK) is available in open source at https://openenclave.io/sdk/.

It features for that purposes the Intel® Software Guard Extensions (Intel® SGX) technology that comes with the
latest generation of Intel Xeon families of processors for hardware-based TEE.

MICROSOFT DISCLAIMS ALL WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, IN RELATION WITH THE
INFORMATION CONTAINED IN THIS WHITE PAPER. The white paper is provided "AS IS" without warranty of any
kind and is not to be construed as a commitment on the part of Microsoft.

Microsoft cannot guarantee the veracity of the information presented. The information in this guide, including but
not limited to internet website and URL references, is subject to change at any time without notice. Furthermore,
the opinions expressed in this guide represent the current vision of Microsoft France on the issues cited at the date
of publication of this guide and are subject to change at any time without notice.

All intellectual and industrial property rights (copyrights, patents, trademarks, logos), including exploitation rights,
rights of reproduction, and extraction on any medium, of all or part of the data and all of the elements appearing
in this paper, as well as the rights of representation, rights of modification, adaptation, or translation, are reserved
exclusively to Microsoft France. This includes, in particular, downloadable documents, graphics, iconographics,
photographic, digital, or audiovisual representations, subject to the pre-existing rights of third parties authorizing
the digital reproduction and/or integration in this paper, by Microsoft France, of their works of any kind.

The partial or complete reproduction of the aforementioned elements and in general the reproduction of all or part
of the work on any electronic medium is formally prohibited without the prior written consent of Microsoft France.

Publication: July 2020
Version 2.0

© 2020 Microsoft France. All rights reserved

4 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://openenclave.io/sdk/

About this guide

Welcome to the Leveraging Attestations with Trusted Execution Environment (TEE) based applications on
Azure starter guide for developers.

This document is part of a series of guides that covers confidential computing (with Trusted Execution
Environments’ (TEE)) in the Cloud, and the Edge, and considerations that pertain to it from a development
perspective and/or an infrastructure one. This series of guides is available https://aka.ms/CCDevGuides.

In this starter guide, and as its title suggest, the basics of attestations with TEE-based application
development will be covered.

The concept of TEE is given in the document Trusted Execution Environment: What It is, and What It is Not*:

“Trusted Execution Environment (TEE) is a tamper-resistant processing environment that runs on a separation kernel.
It guarantees the authenticity of the executed code, the integrity of the runtime states (e.g. CPU registers, memory
and sensitive 1/0), and the confidentiality of its code, data and runtime states stored on a persistent memory. In
addition, it shall be able to provide remote attestation that proves its trustworthiness for third-parties.”

As such, only authorized code is permitted to run and to access data, so data is protected against viewing and
modification from outside of TEE, a.k.a. enclave. As of this writing, multiple TEE architectures, technologies and
platforms® are available whether they are hardware based or software based - you can read the guide Building
and Executing Trusted Execution Environment (TEE) based applications on Azure in this series of guides to
learn about TEE -.

The Intel® Software Guard Extensions (Intel® SGX) technology*, as available with the latest generation of Intel
Xeon with the latest generation of Intel Xeon families of processors, is one of them for hardware based TEE. Intel
SGX is a set of extensions to the Intel CPU architecture that aims to provide integrity and confidentiality
guarantees to sensitive computation performed on a computer, where all the privileged software (kernel,
hypervisor and so on) might potentially be compromised.

The above definition highlights the important points that are the separation between two spaces, i) the space of
the OS and ii) that of the TEE controlled by what is designated as a “separation kernel”, the guarantee of integrity
of the code and confidentiality of data in the TEE, but adds the centrally important notion of an attestation. This
function of attestation allows an external code to ensure that it is communicating with a real, expected TEE and
that this TEE it is loaded without any alteration with the code and data provided to it.

One of the interesting capabilities of the Intel SGX platform of course notably resides in its ability to attest TEE,
a.k.a. SGX enclave. This capability will be covered in detail with all the considerations that pertain to the keys'
hierarchy, the related services in place to sustain all the guarantees conveyed but the notion of attestation.

As also covered by the above guide in this series, the Microsoft Open Enclave SDK®> (OESDK), i.e. an open source
framework available on GitHub over two years, aims at creating a single unified TEEs' abstraction and a consistent
API surface for developers to build applications once that run across the multiple TEE “flavors” that exist — it

T Trusted execution environment: https://en.wikipedia.org/wiki/Trusted_execution_environment

2 Trusted Execution Environment: What It is, and What It is Not, M. Sabt, M. Achemlal, A. Bouabdallah, 18 December 2015 https://hal.archives-
ouvertes.fr/hal-01246364/file/trustcom_2015_tee_what_it_is_what_it_is_not.pdf

3 The future of computing: intelligent cloud and intelligent edge: https://azure.microsoft.com/en-us/overview/future-of-cloud
4 Intel Software Extension Guard: https://software.intel.com/en-us/sgx
5> Open Enclave SDK: https://Open Enclave.io/sdk/

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 5

https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://aka.ms/CCDevGuides
https://hal.archives-ouvertes.fr/hal-01246364/file/trustcom_2015_tee_what_it_is_what_it_is_not.pdf
https://software.intel.com/en-us/sgx
https://openenclave.io/sdk/

unsurprisingly supports the Intel SGX amongst others. It thus offers a universal secure application model that
minimizes platform specificities. It unsurprisingly supports the Intel SGX. TEE OE is Azure's de rigueur for designing
customized secure apps for deployment on Confidential Computing VMs with Azure Confidential Computing®
(ACCQ).

So, you will also learn how to use of attestation through “its lenses” to ease your own development of such
applications. (Microsoft views it as an essential stepping-stone toward democratizing enclave technologies such as
Intel SGX and increasing their uptake on Azure.)

For that purposes, you're invited to follow a short series of modules, each of them illustrating a specific aspect of
attestations for the TEE-based application development, in terms of core understanding of some underlying
important principles and concepts, or practical coding experience to get your hands a bit dirty with nitty-gritty
details of a working implementation.

Each module within the guide builds on the previous. You're free to stop at any module you want, but our
advice is to go through all the modules.

Module 1 Module 2 Module 3

Using attestations with Using attestations Developing TEE-based

the Intel SGX technology with Microsoft Azure applications using
Attestation attestations

At the end of the starter guide, you will be able to:

e Understand how both local and remote attestations work with the Intel SGX technology, and what all this
implies in terms of key hierarchy and infrastructure.

e Understand what benefits the new Microsoft Azure Attestation (MAA) service will provide in this space.

e Leverage an MAA instance, i.e. an attestation provider in Azure, for your TEE-based applications in the
Cloud, and on the Edge.

e Use attestation as part of your TEE-based applications, whether it is about using Intel local and remote
attestations, or ones delivered by an attestation provider.

Guide elements

In the starter guide modules, you will see one or all of the following elements:

e Important concepts and principles. An explanation of some of the concepts important to the
procedures in the module, and what happens behind the scenes.

e Step-by-step directions. Click-through instructions — along with relevant snapshots — or links to online
documentation for completing each procedure or part.

6 Azure Confidential Computing: https://azure.microsoft.com/en-us/solutions/confidential-compute/

6 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://azure.microsoft.com/en-us/solutions/confidential-compute/

Sample applications, and files. A downloadable or cloneable version of the project containing the code
that you will use in this guide, and other files you will need. Please go to the following repos on GitHub
to download or clone all necessary assets:

o https://github.com/openenclave/openenclave

o https://github.com/microsoft/azure-tee-attestation-samples/

Guide prerequisites

To successfully leverage the provided code in this starter guide, you will need:

A Microsoft account’.

An Azure subscription. If you don't have an Azure subscription, create a free account® before you begin.

A Windows 10 local machine.

A code editor of your choice, such as Visual Studio® or Visual Studio Code'’, with C++ for Linux and Open
Enclave installed. The related installation and configuration will be further covered later in this guide.

A terminal console for your Windows 10 local machine, which allows you to remotely connect to a virtual
machine (VM) in SSH, such as PuTTY"", Git for Windows'? (2.10 or later).

Important note With Git, ensure that long paths are enabled: git config --global core.longpaths true.

Note Recent versions of Windows 10 provide OpenSSH client commands to create and manage SSH keys and
make SSH connections from a command prompt. For more information, see blogpost What's new for the Command Line
in Windows 10 version 1803,

7 Microsoft Account: https://account.microsoft.com/account?lang=en-us

8 Create your Azure free account today: https://azure.microsoft.com/en-us/free/?WT.mc_id=A261C142F

9 Visual Studio: https://visualstudio.microsoft.com/

10 Visual Studio Code: https://code.visualstudio.com/

1 PUTTY: https://www.chiark.greenend.org.uk/~sgtatham/putty/

12 Git for Windows: https://git-for-windows.github.io/

3 What's new for the Command Line in Windows 10 version 1803:
https://blogs.msdn.microsoft.com/commandline/2018/03/07/windows10v1803/

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 7

https://github.com/openenclave/openenclave
https://github.com/microsoft/azure-tee-attestation-samples/
https://account.microsoft.com/account?lang=en-us
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://visualstudio.microsoft.com/
https://code.visualstudio.com/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://git-for-windows.github.io/
https://blogs.msdn.microsoft.com/commandline/2018/03/07/windows10v1803/
https://blogs.msdn.microsoft.com/commandline/2018/03/07/windows10v1803/

Using attestations with the Intel SGX
technology

Introducing the attestation process

The attestation process consists in assuring a client application which wants to execute a code inside an enclave
that it is communicating with a genuine enclave and that the latter is executing the code unmodified. Indeed, the
platform that implements the enclave — for example the Intel SGX processor — must be able to prove that it is not
a software emulating an enclave and also guarantee the integrity of the code that has been loaded into the
enclave for processing.

This guarantee is essential for the client application before starting to communicate with the enclave and transfer
sensitive data to be processed or secrets (for example cryptographic keys).

The attestation mechanism is provided by the platform on which are executed the enclaves. The attestation is a
data structure including characteristics of the enclave and a cryptographic proof which confirms the link with the
platform (TCB — Trusted Computing Base binding) hosting the enclave. Among the characteristics of the enclave is
a measurement of the code loaded during the creation of the enclave.

For the attestation to be considered trustworthy, the client must trust the platform hosting the enclaves. The
trusted root, for example in the case of the Intel SGX implementation, is based on the presence of two root keys
fused in the processor itself, these two generated keys being specific to each processor and integrated during the
processor construction stage.

The attestation can take two flavors: local or remote. In the case of local attestation, two enclaves running on the
same processor want to make sure that each one communicates with another genuine enclave. The platform (the
processor) implements the mechanism for providing these attestations through processor instructions. The
implementation by the platform relies on cryptographic keys and special "architectural” enclaves.

In the remote attestation scenario, an application wants to make sure that it communicates with a genuine remote
enclave. The mechanism is more complex since the client application does not necessarily run in an enclave and
that the processor or platform boundary is crossed: for example the client application runs on an on-prem
computer and is requesting to process data in an enclave created in a server in the cloud.

Through the attestation mechanism, it is possible to transfer data — only a few bytes in the case of Intel SGX
technology — while ensuring their integrity. This functionality will be used in the implementation examples, later in
the document, to exchange encryption keys, then allowing encrypted data to be transferred to an enclave.

The following paragraphs detail these mechanisms as implemented by Intel SGX processors.

Note For a definition of attestation, see article Intel® Software Guard Extensions Developer Guide : Attestation'.

4 Intel® Software Guard Extensions Developer Guide: Attestation https://software.intel.com/en-us/node/702982

8 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://software.intel.com/en-us/node/702982

A first look at local attestation

The principle of local attestation consists, for an enclave, in ensuring that the enclave with which it is
communicating is indeed an enclave running on the same processor and that the state of this enclave has not
been modified since its creation.

Therefore, it is first of all necessary to have a guarantee of the enclave integrity obtained by a digest (SHA256) on
a set of information characteristics of the enclave following its creation (code, data, stack, heap...). This digest is
called MRENCLAVE and defines a kind of enclave identity card.

The attestation process involves the exchange between two enclaves of a structure called REPORT describing the
characteristics of the enclave which must prove its genuineness. This REPORT contains attributes of the enclave, its
measurement (MRENCLAVE) and a User Data field (report_data) of limited size but available for a particular use,
for example to exchange a key or a hash.

The attestation process is implemented by the processor and is based on two instructions:

e The EREPORT instruction allows an enclave to ask the processor to generate its attestation structure (the
report).

e The EGETKEY instruction allows an enclave to access its own ReportKey which will be used to validate the
attestation report.

Endave A Enclave B

Send Enclave A identity (MRENCLAVE) -

>

Get Report (Enclave B)
+ MAC with ReportKey(A)

Send Report (Enclave B) + MAC

Retrieve Reportiey(A)
Verify Report (Enclave B)
with ReportKey{A)
Access to Re[g:ort (Enclave B)
ata

Figure 1 Local Attestation workflow

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 9

In the flow diagram above, Enclave A wants to ensure the authenticity of Enclave B.

e Enclave A transmits its identity (the value of the hash MRENCLAVE) to Enclave B. The transmission channel
does not need to be secure and can be done through an untrusted part of an application.

e Enclave B requests to the processor, through the EREPORT instruction, to generate its REPORT targeting
Enclave A by providing the value of MRENCLAVE identifying the latter. The EREPORT instruction uses a
symmetric key linked to enclave A, the ReportKey (A), to calculate a hash on the REPORT structure. More
specifically, it is a Message Authentication Code (MAC also known as keyed hash) on the REPORT structure.
By design, the EREPORT instruction executed from the target enclave (Enclave B) has access to the symmetric
key of the source enclave (Enclave A).

e Then the REPORT, including the MAC, is retransmitted to enclave A. Enclave A recover its own ReportKey
(A) through the EGETKEY instruction.

e The REPORT is then verified by recalculating the associated MAC and using the symmetric shared key
ReportKey (A).

e If the verification is successful, Enclave A has certified the authenticity of Enclave B
o Enclave B is a genuine enclave that runs on the same processor.

o The characteristics of Enclave B have not been modified since its creation and more particularly the
code that runs in the enclave.

Enclave A can access the data included in the REPORT including the report_data field which allows the
transmission of a few bytes of information coming from Enclave B.

Note Unlike a simple hash that does not use a key, a Message Authentication Code (MAC also known as a keyed-
hash) uses a symmetric key which guarantees not only the integrity of the message on which it is calculated but also its
authenticity (that is to say the assurance that the sender is in possession of the symmetric key). For more information, see
Message authentication code' on Wikipedia.

Note The ReportKey is a key derived from the Root Seal Key though the EGETKEY instruction. This key is specific to
the enclave because it is derived using characteristics of the enclave such as the value of MRENCLAVE or its attributes. For
more information on the key hierarchy, see section § A first look at the Root of Trust and the Key hierarchy.

It is important to note that the local attestation process as described above must take place between two
enclaves. In fact, the client part who wants to ensure that it is communicating with a genuine enclave, must be
able to use instructions that are only accessible from an enclave. In the Intel SGX implementation, only one
enclave can generate a Report, so the attestation of a target enclave can only be done from an enclave.

Knowing that this scenario typically relates to two enclaves that want to cooperate, it would be logical that
Enclave B can ensure the authenticity of enclave A using the same attestation process.

A first look at remote attestation

The local attestation scenario remains limited to certifying enclaves which run on the same platform (the same
processor). This scenario is interesting because it allows several enclaves to interconnect or leverage each other to
perform different and isolated tasks.

5 Message Authentication Code: https://en.wikipedia.org/wiki/Message_authentication_code

10 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://en.wikipedia.org/wiki/Message_authentication_code

In addition, Intel has defined in its design, so-called "architectural” enclaves that can perform processing related to
the implementation of more complex scenarios. Among these processing natively included in the platform; is the
Quoting Enclave whose role is to implement the remote attestation mechanism.

Remote attestation makes it possible to cover a common scenario where a client side addresses a server
application which implements a service relying on one or more processes executing in enclaves. This service must
be able to prove to the client, through the remote attestation mechanism, that the specific processing operations
are carried out inside authentic enclaves.

This scenario is particularly interesting in the context of a processing which must be executed in a secure manner
in a public cloud. Servers equipped with SGX processors are hosted in the cloud provider's data centers (Microsoft
Azure) but will be able to perform opaque processing on encrypted data — that is to say without the cloud
provider being able to access data in clear-text, processing or results.

From an implementation point of view, the local attestation relies on the use of a symmetric key shared between
the two enclaves (the ReportKey generated by the processor). The ReportKey is used to sign the REPORT and to
allow the target enclave to verify the attestation. However, this attestation principle must be extended beyond
attesting enclaves on the same processor to implement a remote attestation.

This type of attestation allows a remote client running on another machine (another platform without the need to
be an SGX processor) to communicate with the machine running the enclaves by asking it to prove that it is a
genuine SGX platform running authentic enclaves.

The implementation is based on the use of the Quoting Enclave whose role is to check the REPORTs provided by
the other local enclaves and to make them "exportable" by signing them with a private key linked to the
processor. The result is a "Quote”, which can be verified by the requestor by leveraging an attestation service in
possession of the public key.

The private key, called the EPID key (Enhanced Privacy ID, registered trademark by Intel), is linked to the physical
processor as well as its firmware version. Only the Quoting Enclave has access to the EPID Key and can sign the
quotes.

The magic about the EPID key is that, although unique for each processor, it belongs to a group of other private
EPID keys that are associated with the same public key named EPID Group Public key. This means that the
attestation service, with the sole indication of the group, can verify the "Quote" with the group's public key while
respecting the privacy of the platform that signed the Quote (see also section § A first look at the Root of Trust and
the Key hierarchy below).

Note Intel has made the choice to not publish public keys directly but to make verification available through its
attestation service, Intel Attestation Service.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 11

©

Quoting Enclave ‘ Enclave ‘ ‘ Application Challenger
1 | @ Attestation request with Challenge
: Send Challenge |
| = — | %

Generate |
@ ephemeral
Public key
Generate
@ hash (manifest)
as User Data
H @Generate Report H
Return Report

ES— U |
Send Report
Verify Report
with ReportKey
Create Quote &
Sign with EPID Key Return Quote Send Quote
| | - -

Verify Quote with EPID pubkey
calling Attestation Service

Figure 2 Remote Attestation workflow

The above schema details the flow of the remote attestation process. The challenger is the remote client who
wants to ensure the authenticity of the application before sending data for processing. The application runs on
the server equipped with the SGX processor on which the enclave is created and will have to execute secure
processing. The Quoting Enclave is the architectural enclave that generates the Quote.

1.

The challenger establishes a connection with the application and sends an attestation request in which a
nonce can be added to avoid replay attacks.

The application transmits the request to the enclave.

The enclave generates a key pair (ephemeral) whose public key will be returned to the challenger to allow
the transfer of secrets (for example a symmetric key used to encrypt data)

The enclave generates a hash of the manifest to include in the report_data field of the REPORT.

The enclave calls the EREPORT instruction to generate a REPORT including the hash of the manifest and
targeting the Quoting Enclave (the application has passed the identity of the Quoting Enclave).

The application retrieves the REPORT structure and sends it to the Quoting Enclave which retrieves its
ReportKey to check the REPORT.

The Quoting Enclave creates the Quote structure including the REPORT information and signs it with its
private EPID key before returning it to the application. Then the application returns the Quote to the
challenger.

12 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

8. The challenger calls the attestation service to verify the validity of the Quote using the public key EPID. If
the answer is positive, the challenger is guaranteed that it is indeed communicating with enclaves on an
SGX platform and that information in the Quote can be trusted.

Note that this is a description of a simple implementation example to explain the principle of remote attestation.

Note For more information, see article Innovative Technology for CPU Based Attestation and Sealing'®,

A first look at the Root of Trust and the Key hierarchy

The previous section described the local certification mechanism which relies on a symmetric key shared between
the two enclaves, the ReportKey. It is the platform in the broad sense — the processor and the architectural
enclaves — which is responsible for providing this key to the two enclaves:

1. to allow the enclave which needs to generate the attestation for the target enclave, to sign the Report
through the EREPORT instruction (the EREPORT instruction has access to the ReportKey of the target
enclave),

2. to make it possible for the target enclave to verify the Report by retrieving its own ReportKey through the
EGETKEY instruction.

The question is: "how is this key generated and why can we trust it?". It is not difficult to guess that this key is a
derived key since it is unique for each enclave. To understand how is established the trust in the hardware
platform, we must go up the chain of trust which is detailed in the diagram below.

Root Keys
Hardware Fused

=

£ EPID Private Key
@x} & h Provisioning
> _— <
= Enclave
Root a Provisioning Key . Intel .
Provisioning Key ﬂ : - Provisioning Service

o =
L4 -

Enclave
Measurements

: Quote
Quoting R— >
Enclave
— i

Intel

REPORT Key @ Attestation Service
_’h EPID Private Key

Provisioning Seal Key
%h

Seal Key
" I

EINIT Token Key

(oo

Root Seal Key

Derivation

Figure 3 Key Hierarchy

6 Innovative Technology for CPU Based Attestation and Sealing: https://software.intel.com/en-us/articles/innovative-technology-for-cpu-
based-attestation-and-sealing

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 13

https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing

Note A subtlety has crept into this hierarchy: the Provisioning Seal Key derives from the 2 root keys: the Root Seal
Key but also the Root Provisioning Key.

The chain of trust hierarchy begins with 2 root keys: i) the Root Provisioning Key (RPK), and ii) the Root Seal Key
(RSK) which are both integrated into the hardware during the processor manufacturing.

The RPK is a randomly generated key and is kept in a HSM of the Intel company: it constitutes the root of trust of
the SGX processor which can prove that it is referenced as Intel hardware. The RSK is also created during
manufacturing but is not stored by Intel. The RSK is unique to the processor and could be compared to a serial
number.

The Root Provisioning Key is used to support the remote attestation mechanism (upper part of the diagram).

The Root Seal Key is used mainly in the sealing functions (i.e. the protection of the data of an enclave when it dies,
and when it is re-instantiated later on) and to generate the Report Key which, as we have seen, is the basic
building block of local attestation.

Key derivation mechanism

The derivation mechanism is supported by the EGETKEY instruction which makes it possible to produce versions of
each type of key specific to each enclave by taking into account the software characteristics specific to each
enclave. These characteristics, or Enclave Measurements, include for example the MRENCLAVE and MRSIGNER
hashes or the CPU Security Version Number (CPUSVN).

All keys are derived from the two root keys, the Root Provisioning Key and the Root Seal Key.
Note Not all keys are derived with the same characteristics or attributes of the enclave and software versions of the

processor. For a precise correspondence table, see table 3: SGX Key Properties of the document Intel Software Guard
Extensions : EPID Provisioning and Attestation Services'’.

Derived keys

The derived keys linked to each enclave have different functions. Four keys derive from the Root Seal Key:
e The Report Key which is used for the local attestation mechanism.

e The Seal Key which allows to protect secrets outside the enclave when it stops executing and to be able to
recover them when it is recreated.

e The Provisioning Seal Key used during the EPID key generation process to encrypt it before its transmission
to the Intel Provisioning Service (EPID private Key Escrow).

e The EINIT Token Key (also referenced as Launch Key) used to authenticate the initialization token during
the creation process of the enclave.

Finally, the Provisioning Key derives only from the Root Provisioning Key to implement the remote attestation
process.

It is interesting to note that all keys except the Provisioning Key derive from the Root Seal Key, which implies that
they cannot be known to Intel.

7 Intel Software Guard Extensions: EPID Provisioning and Attestation Services: https://software.intel.com/en-us/sgx/attestation-services

14 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://software.intel.com/en-us/sgx/attestation-services
https://software.intel.com/en-us/sgx/attestation-services

EPID private key and remote attestation

The EPID key is not a derived key but the private key of a key pair generated by the Provisioning Enclave during a
dialogue with the Intel Provisioning Service in an initialization phase of the platform.

The EPID key is then transmitted to the Quoting Enclave. The Quoting Enclave uses this key to sign the Quotes
submitted to the Intel remote Attestation Service, which uses the associated EPID public key to validate the
Quotes.

This EPID private key has the particularity of being associated with a group public key (referenced as EPID Group
Public key) which provides anonymization in the attestation request. Indeed, the EPID key generation protocol
used makes it possible to associate a set of private EPID keys with a single public key of the EPID group. As a
result, the attestation service can validate the quotes it receives with the group public EPID key, but is not able to
know which private key and therefore which processor signed the quote.

Note For more information, see section § 3.2.1 Intel Enhanced Privacy ID (EPID) of the document Innovative
Technology for CPU Based Attestation and Sealing'®, and section §& 3 Intel Enhanced Privacy ID of the document Intel
Software Guard Extensions : EPID Provisioning and Attestation Services'®.

Note The document published on the Blackhat website by Yogesh Swami describes in detail the use of the different
keys and the mechanism linked to the EPID key. See document Intel SGX Remote Attestation is not sufficient®.

Interacting with the Intel Attestation Service

For the moment, we have approached the mechanism linked to attestation from the SGX platform point of view
on which enclaves are executed, and more particularly how local attestations can be extended to remote
attestations through two elements:

e The Quoting Enclave which is responsible for verifying local attestations and transforming them into quotes

e The Attestation service, which role is to certify to the calling entity it that the quotes it sends for verification
are valid.

For example, we saw in the previous scenario that the quote was transmitted by the Quoting enclave to the
challenger who will submit it to the attestation service for validation.

If we refer to the hierarchy of keys, we remember that the signature of the quote is made by the private key EPID
and that this key is associated with a public group EPID key in the possession of Intel. This key pair is generated
when the platform is initialized by a dialog between the Quoting Enclave and the Intel Provisioning Service?'.

'8 Innovative Technology for CPU Based Attestation and Sealing: https://software.intel.com/en-us/articles/innovative-technology-for-cpu-
based-attestation-and-sealing

9 Intel Software Guard Extensions: EPID Provisioning and Attestation Services: https://software.intel.com/en-us/sgx/attestation-services

20 Intel SGX Remote Attestation is not sufficient: https://www.blackhat.com/docs/us-17/thursday/us-17-Swami-SGX-Remote-Attestation-Is-
Not-Sufficient-wp.pdf

21 See previous section § EPID private key and remote attestation in the document.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 15

https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/sgx/attestation-services
https://software.intel.com/en-us/sgx/attestation-services
https://www.blackhat.com/docs/us-17/thursday/us-17-Swami-SGX-Remote-Attestation-Is-Not-Sufficient-wp.pdf

—L

T Root i
High Votume Provisioning Offline)
Manufacturing Keys Key Generation

TCB & EPID Master
Root Seal Key, Keys
Root Provisioning Key

—
L — |
v
L FUISES J ‘ < {,-/

|
| Derived | EPID r Intel A
| Provisioning Key ‘ Provisioning _ PrDV'S'Omng-\L/J
| | (Service)
.
| | ST EPID Public Keys
£ Provisioning & Revocation
I Enclave ‘E: — Data
|§s | ‘ ;/7\(.\/\/ ~ —
| EPID Key | Quote ’/,- |ntel‘)y J
| ‘ (via Service Provider) '\?‘_ Attes?t‘un ~ /."I
| Quoting ‘ ‘_\‘_SEWICE /JL
| Enclave \j
| \
- |

Figure 4 Intel SGX Infrastructure Services®

The diagram above, extracted from the Intel documentation, highlights the two infrastructure services provided by
Intel:

e The Intel Provisioning Service responsible for the dialogue with SGX platforms to generate the EPID key
pairs.

e The Intel Attestation Service responsible for validating quotes during remote attestation requests, in
addition to revocation data.

Note that the EPID group public keys are transferred to the Attestation Service in charge of checking the integrity
of the quotes which are submitted to it.

Registering and connecting to the Intel Attestation Service

The attestation service is a service provided by Intel in the form of a web service in a cloud environment. It is
accessible from the internet but requires prior registration from the portal before it can be requested. Registration
is done from the Intel Registration Portal®.

Two types of subscription are possible depending on whether you want to use the service for testing purposes or
for a production platform. In the first case, the subscription is free, in the second case, a paid user license is
required.

During registration, a Service Provider ID is assigned (Service Provider ID or SPID) as well as an authentication key
(Subscription key). The SPID must be indicated in each Quote structure submitted for validation, and the

2 Intel Software Guard Extensions: EPID Provisioning and Attestation Services, Chapter 4 SGX Infrastructure Services:
https://software.intel.com/en-us/sgx/attestation-services

2 Explore EPID Attestation to Enhance Enclave Security: https://api.portal.trustedservices.intel.com/EPID-attestation

16 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://api.portal.trustedservices.intel.com/EPID-attestation

subscription key, which must appear in the header of each request, will be used as a shared secret key to
authenticate with the Intel attestation service.

All communications with the service are encrypted using the HTTPS protocol (TLS) with client and server
authentication.

Sending quote attestation request

The web service endpoint is different depending on whether you are working with the service with:

e A development subscription: https://api.trustedservices.intel.com/sgx/dev

-0r-

e A production subscription: https://api.trustedservices.intel.com/sgx

The dialogue with the attestation service is done through 2 REST APlIs:
1. One to verify the attestation (Verify Attestation Evidence).
2. And the other to retrieve the revocation list for a particular EPID group (Retrieve SigRL).

The call to the attestation verification API takes as input the structure corresponding to the Quote which was
transmitted to the challenger by the Quoting Enclave. The attestation service verifies the integrity of the
attestation signed by the private key EPID of the platform executing the enclave, checks that this key is not
revoked and returns an Attestation Verification Report including the initial Quote structure.

This gives the challenger the confidence that a particular code is performing in a real enclave of an Intel certified
processor. It remains, however, for the challenger to check the identity of the enclave with which it then wants to
order a processing.

Note For more information, see Attestation Service for Intel® Software Guard Extensions (Intel® SGX): API
Documentation®*, and section § 4.5 The Intel Attestation Service (IAS) of the document Intel Software Guard Extensions :
EPID Provisioning and Attestation Services.

Using Data Center Attestation Primitives (DCAP)

The remote attestation mechanism described above is supported by the IAS service provided by Intel which
requires that each platform (processor) has an internet access to Intel services: with the Intel Provisioning Service
for negotiation leading to the creation of the EPID key, then with the Intel Attestation Service to validate the
quotes issued by the Quoting Enclaves.

This solution, initially deployed by Intel, is not suitable for several scenarios and more particularly in the case of

the cloud, for example Azure, where it is not desirable for security reasons to impose on each machine hosting a
SGX platform an outbound internet connection to external services. In addition, the cloud provider may want to
limit the impact on availability linked to a possible loss of connection to Intel services.

By deploying its own attestation service based on a cache principle, the cloud provider will be able to continue to
validate attestations for platforms hosted in its datacenter while relying on Intel's trusted roots. The cloud provider
may also want to have more control over the attestation mechanism and more freedom in the evolution and

24 Attestation Service for Intel® Software Guard Extensions (Intel ® SGX): APl Documentation:
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 17

https://api.trustedservices.intel.com/sgx/dev
https://api.trustedservices.intel.com/sgx
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/en-us/sgx/attestation-services
https://software.intel.com/en-us/sgx/attestation-services

capabilities to integrate Intel SGX attestations into a global attestation system. Finally, the principle of the EPID
key under Intel control can go against the confidentiality needs requested by the cloud provider or its customers.

To meet these expectations, Intel has made available an evolution of its remote attestation process to open it to
third-party solutions mainly for cloud providers. This involves defining a more open architecture model with the
availability of open source components to allow cloud providers to build their own attestation system.

This evolution involves changes on the local platform with impacts on the "architectural” enclaves, but also
requires building and deploying services in the data center to ensure the functions of cache, internal attestation
and registration of SGX platforms deployed in the data center.

To understand it is necessary to go deeper into the new principle of attestation. Let's start with the impacts on the
Intel SGX platforms hosted in the data center.

Using ECDSA-based Quoting Enclave

The role of the Quoting enclave is to transform a local attestation into a remote attestation which can be verified
outside the machine on which the application enclave is executed by using the attestation service. In the previous
chapter, we detailed how the private EPID key is used by the Quoting enclave to sign the Report of the application
enclave, and how the associated EPID group public key is used by the IAS service to validate the quotes.

The new generation of Quoting enclave no longer relies on the use of an EPID key — which required a dialogue
with the Intel Provisioning Service — but generates its own attestation key pair, a signature key generated by an
algorithm of type Elliptic Curve Digital Signature Algorithm (ECDSA) compliant with FIPS 186-4 and RFC 6090. For
the sake of simplicity, we will call it "ECDSA attestation key” or simply attestation key.

This ECDSA attestation key is derived from the Seal Key, which gives it the advantage of being able to be
regenerated identically (as long as the TCB of the platform does not evolve), to be able to survive to reboots
(which does not need to make it persistent) and to be unique for the whole platform.

An "architectural" Quoting Enclave developed and signed by Intel is now provided in its ECDSA Quoting library®.

Provisioning Certification Enclave and PCK

A new enclave "architectural" enclave has emerged to support this new mode of attestation: the Provisioning
Certification Enclave. Indeed, the ECDSA attestation key is generated locally by the Quoting Enclave but, for the
moment, there is nothing to prove from an external point of view, that it was actually created in an enclave of an
SGX processor.

The purpose of the Provisioning Certification Enclave (or PCE) is to certify that the ECDSA attestation key has been
created by an SGX processor. To do this, the PCE must both:

e make sure, when it receives a request, that this request comes from a Quoting Enclave hosted on the same
platform.

e be able to sign with a key which proves that the platform on which it is running — like the other enclaves
—is a genuine Intel SGX platform.

25 Intel(R) Software Guard Extensions Data Center Attestation Primitives
https://github.com/intel/SGXDataCenterAttestationPrimitives/blob/master/README.md

18 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://github.com/intel/SGXDataCenterAttestationPrimitives/blob/master/README.md

The PCE generates a key, the Provisioning Certification Key (PCK), derived from hardware keys of the processor.
This key is unique to each SGX processor. Intel also makes the associated public key available in a certificate to be
used by attestation services.

An identifier is also generated, the Platform Provisioning ID (PPID) which makes it possible to serve as a key (in a
database sense) to reference and access the PCK certificate associated with the platform and containing the PCK
public key.

The way in which the keys will be used allows to retrace the chain of trust. The Quoting enclave asks the
Provisioning Certification Enclave to sign with its PCK key the ECDSA attestation key which is itself used to sign the
REPORT structure of the application enclave. As a result, the trust in the hardware carried by the PCK is transferred
to the ECDSA key, which itself proves that the REPORT is indeed issued from an enclave running on an SGX
processor.

This is the principle, but the reality is a little bit more complex and is detailed in the attestation workflow below.

Introducing the Cloud Provider Attestation Service

The last component of the chain is the attestation service deployed in the cloud provider datacenter. The service is
responsible for validating the attestation presented by client applications which want to ensure that they initiate a
dialogue with real enclaves.

To do this, the service must have at its disposal the list of PCK certificates for SGX machines that registered during
their deployment in the datacenter. These certificates will have been previously downloaded from the Provisioning
Certification Service for Intel SGX accessible on the internet along with other information that is necessary for
validation (revocation list of the certificate or intermediate CAs, versions of CPU and PCE, etc.).

Upon request for validation of a quote, the Attestation Service uses the platform identifier (PPID), provided in
encrypted form to find the associated PCK certificate. It then proceeds to verify the certification chain and
information concerning the requesting Quoting Enclave before rendering a verdict.

Understanding the Remote Attestation Workflow

The remote attestation workflow is represented on the diagram below.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 19

Quote o

Cloud Provider
- Attestation
App Enclave Report Service
QE Attestation Key

QE Attestation Key h

Kol Quoting Enclave Report @
ication .
FI’EI:r:clave Provisioning Certification Key .<.
QE Certification Data -

Provisioning Certification
ﬂ Key Certificate

App Enclave Report ” o

REPORT KEeY

ECDSA Attestation Key
Quoting Enclave Report (CSSeN] i
o 2 a Provisioning

ECDSA > Certification

Quoting Enclave a Enclave

ECDSA Attestation Key Provisioning Certification Key (PCK)

Figure 5 Detailed Remote Attestation workflow

The remote attestation workflow begins with the request from a remote application (challenger) to the application
enclave to provide an attestation. This challenger (not shown in the diagram) wants to establish a dialogue with
the enclave but requests this attestation to ensure that the enclave is a true SGX enclave and execute an
uncompromised code.

e Step 1: Creation of the Application Enclave REPORT and request for signature:

o The Application enclave creates its REPORT targeting the Quoting Enclave (QE) by having it
signed with the ReportKey of the latter. The REPORT is sent to the Quoting Enclave.

e Step 2: Signature of the ECDSA attestation key of the Quoting Enclave?®:

o TheQuoting Enclave generates its ECDSA attestation key. It then generates its REPORT structure
targeting the Provisioning Certification Enclave (PCE). It calculates a hash of its attestation key
and includes it in the ReportData field of its REPORT. This will allow later to check the integrity
of the attestation key.

o The ECDSA attestation key and the QE REPORT are sent to the PCE for signature.

o The PCE signs the REPORT structure of the QE with its Provisioning Certification Key (PCK) and
returns it to the QE.

e Step 3: Creation of the Quote:
o The QE creates the Quote which includes:

» the REPORT of the application enclave signed with the ECDSA attestation key.
* the public key part of the ECDSA attestation key.

2 Note that this step may have taken place previously and the REPORT structure of the QE already available.

20 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

» the REPORT of the Quoting Enclave signed with the PCK key.
= additional data to verify the REPORT of the QE (including for example the encrypted
PPID).

o Once created, the Quote is returned to the application enclave so that it can return it to the
challenger.

e Step 4: Verification of the certificate with the Attestation Service

o The challenger received the Quote and requests the cloud provider's Attestation Service to
validate it.

o The Attestation Service looks for the certificate containing the PCE public key associated with
the platform using the PPID identifier?’.

o The Attestation Service can validate the Quote by checking®:

» The signature of the REPORT by going up the chain of trust from the PCK key, by relying
on the certificate containing the public key PCE (validating that no key has been
revoked).

» The identity of the Quoting Enclave and its update status.

o If the result of the verification is correct, the attestation service sends a positive response to the
challenger.

Note For a more complete description of the certification verification process, see document Supporting Third Party
Attestation for Intel® SGX with Intel® Data Center Attestation Primitives®®. For a precise description of structures and
APIs, see document Intel® Software Guard Extensions (Intel® SGX) Data Center Attestation Primitives: ECDSA Quote
Library API*°,

27 In the implementation of the DCAP library of Intel SGX, the User Data field is used to store a QE identifier to make the link between the
encrypted PPID and the PCK certificate.

2 For the sake of simplicity, certain points of verification relying to possible versions of the TCB have been omitted.

23 Supporting Third Party Attestation for Intel® SGX with Intel® Data Center Attestation Primitives:
https://software.intel.com/sites/default/files/managed/f1/b8/intel -sgx-support-for-third-party-attestation.pdf

30 Intel® Software Guard Extensions (Intel® SGX) Data Center Attestation Primitives: ECDSA Quote Library API: https://download.01.org/intel-
sgx/dcap-1.1/linux/docs/Intel_SGX_ECDSA_QuoteGenReference_DCAP_API_Linux_1.1.pdf

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 21

https://software.intel.com/sites/default/files/managed/f1/b8/intel-sgx-support-for-third-party-attestation.pdf
https://software.intel.com/sites/default/files/managed/f1/b8/intel-sgx-support-for-third-party-attestation.pdf
https://download.01.org/intel-sgx/dcap-1.1/linux/docs/Intel_SGX_ECDSA_QuoteGenReference_DCAP_API_Linux_1.1.pdf
https://download.01.org/intel-sgx/dcap-1.1/linux/docs/Intel_SGX_ECDSA_QuoteGenReference_DCAP_API_Linux_1.1.pdf

Using attestations with Microsoft Azure
Attestation

As cover in the previous section, enclave attestation is a process for verifying that an enclave is secure and
trustworthy, and thus can be attested.

Let's consider what Microsoft Azure Attestation (MAA) provides in this space.

An overview of the Microsoft Azure Attestation

Microsoft Azure Attestation (MAA) is a newly introduced regional service on the Azure platform. As of this writing,
MAA is currently in Public Preview as announced at the //Build’2020 Conference.

As such, MAA is a unified customer-facing service and framework for attestation. As its name indicates, attestation
is the central tenet of MAA.

As already illustrated in the previous section, attestation is a process for demonstrating that software binaries
were properly instantiated on a trusted platform. Remote parties can then gain confidence that only such
intended software is running. The attestation can include detail on the mode of operation, as well as any other
data associated by the attested software.

MAA supports Azure’s growth and expansion by enabling cutting-edge security paradigms such as
Confidential Computing (with Azure Confidential Computing®' (ACC), and Intelligent Edge protection.

These innovative approaches take cloud security to a new level by introducing data encryption in use. Such
capabilities allow high-value customers to minimize their trust in the Cloud Service Provider (CSP) and
paves their path to the public cloud.

ACC protects the confidentiality and integrity of customer’s data and code while it is processed in the public
cloud. ACC is aimed to protect data from the following threats:

1. Malicious insiders with administrative privilege or direct access to hardware on which it is being
processed.

2. Hackers and malware that exploit bugs in the operating system, application, or hypervisor.
3. Third parties accessing it without their consent.

ACC ensures that the data is protected inside a TEE. Protection of data using ACC*? is accomplished in two ways:

1. Hardware. Azure can offer hardware-protected families of virtual machines (VMs) that run on the Intel
SGX technology at the center of this paper. See section § Using a DC_series VM in Azure below.

2. Hypervisor. Virtualization-based security (VBS), a.k.a. Virtual Secure Mode (VSM), is a software-based TEE
that's implemented by Hyper-V in Windows Server 2016 and above (as well as Windows 10). Hyper-V

31 Azure Confidential Computing: https://azure.microsoft.com/en-us/solutions/confidential-compute/

32 Protect Your Data with Azure Confidential Computing: https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/february/azure-
protect-your-data-with-azure-confidential-computing

22 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/february/azure-protect-your-data-with-azure-confidential-computing

prevents administrator code from running on the computer or server, as well as local administrators and
cloud service administrators from viewing the contents of the enclave or modifying its execution.

As a result, customers can tap into disruptive business models which hitherto required scalable compute resources
and uncompromising trust, an often-impossible combination. Concretely, customers have been requesting the
ability to independently verify the location of a machine, the posture of a VM, and the environment within which
TEE are running. MAA empowers these and many additional customer requests.

As a unified service, MMA enables customers to attest their trusted execution environments (TEEs). MAA is a
single extendable service for attesting diverse TEE's types to certify: off course the Intel SGX enclaves widely
discussed so far, with specific caching capabilities, the already introduced Open Enclave SDK (OESDK) as well -
OESDK standardizes specific requirements for verification of identity. This qualifies Open Enclave as a highly fitting
attestation consumer of MAA -, but also above software-based VBS/VSM enclave on Microsoft Hyper-V, Cyber
Resilient Security (CyReS) TrustZone enclaves for ARM.

Thanks to this coverage, MAA provides customers and their workloads security assurances that specific
sensitive code environments running in TEEs, both in the cloud, on the edge, and on-premises, are
trustworthy.

You can attest a TEE using a Microsoft provided attestation default provider’s service endpoint or can create your
own a MAA instance, i.e. a so-called attestation provider if you have specific attestation policy requirements.

As such, an attestation provider is service endpoint that provides the MAA REST contract, see section § Using the
attestation provider REST API below. Each provider honors a specific, discoverable policy. To configure MAA for
attesting enclaves, customers would create an attestation provider, see section § Creating your own attestation
provider below.

They or their workloads can then use in turn the related service endpoints to get attestation for the above-
mentioned TEEs.

MAA is critical to Confidential Computing scenarios, as MAA:

e Validates if a trusted execution environment (TEE) is a valid one.

e Evaluates the TEE against a customer policy (evaluates identity/properties of the TEE).
e Manage and store tenant specific policies.

e Generates and signs a token that is used by relying parties to interact with the TEE.

Last but not least, being an integrated Azure service, MAA will provide azure level SLA.

Let’s see how this works.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 23

Understanding how Microsoft Azure Attestation works

Below is a high-level view of Microsoft Azure Attestation (MAA) validating a client TEE.

MAA
Trust relationship
Attestation II i
Policy

Trust relationship

Quote
(Measurements)

-

Signed claims

- Lo/’k//g/%

Data and/or

Enclave ﬂ secret C%

SGX Enabled
Host *

Figure 6 Microsoft Azure Attestation workflow

Relying
Party

Here are the general steps in a typical TEE attestation validation workflow using a MAA:

1. The client TEE based application has an attestation URL which references its attestation provider, i.e. a
MAA instance.

a. The TEE creates a “quote” which expresses the state of the enclave.

b. The Host authenticates to Azure and obtains an access token for the attestation provider,
referenced in the attestation URL (from Azure Active Directory). (The attestation provider runs
here in the AAD trust mode, see section § Understanding the MAA's trust model below.)

¢. The Host collects the attestation quote about the portion of the application running inside the
TEE, as well as the TEE environment.

d. The Host sends this information to the attestation provider. Exact information submitted to the
provider depends on the TEE's type.

2. The attestation provider verifies the submitted information against the attestation policy in place for that
TEE's type (SGX, OESDK, VBS, etc.) (defined when creating the provider).

a. If the verification succeeds, i.e. all the required conditions as per defined policy are fulfilled, the

provider emits the provider a set of claims in an attestation token and returns the token to client
application:

e The series of claims to include in the attestation is dictated by the above policy that
applies.

24 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

o The attestation token generated by MAA is formatted as RFC 7800 JSON Web Token
JWT)*.

Note JWT is an open standard that defines a compact and self-contained way for securely transmitting information
between parties as a JSON object. This information can be verified and trusted because it is digitally signed. JWTs can be
signed using a secret or a public/private key pair.

o The JWT token is finally signed so that the client TEE base application or any relying party
can validate that the token is originated from a trusted attestation provider.

b. If this step fails, the attestation provider reports an error to the client TEE based application.

Note Customers are in full control of their security policies. Beyond the default policies in place for the each
supported TEE's types, custom attestation policy requirements in terms of authorization and issuance can be expressed,
uploaded to the attestation provider, and then enforced as part of the evaluation process of any attestation request that
comes in and drive the release of any attestation token. Besides the conditions to fulfill to issue a token, such a policy also
dictates the claims to include in the related JWT token. See section § Managing the attestation policies of your own attestation
provider below.

3. The client TEE based application sends in turn the attestation token to the relying party if any.

4. The relying party can encrypt secrets/data with the asserted public key of the client TEE and send it back
to the enclave.

a. First, the relying party, whatever it is in terms of application or service, can verify the signature of
the attestation token using the public signing key of the attestation provider. To verify the
signature, the Relying party can contact the public key endpoint of the attestation provider,
referenced in the attestation URL, to retrieve a public signing key for the provider, see section §
Using the OpenlD Metadata endpoint below.

b. Then the relying party uses the public key contained in the attestation (i.e. the aas-ehd field) to
encrypt the data to be sent to the enclave. The relying party can be certain that the key was in
fact a key known to the TEE because the attestation service verified that the TEE was valid and the
TEE held data was known to the portion of the application in the TEE.

As outlined above, one of the important steps in this TEE attestation validation workflow is the validation of the
returned attestation token.

Fortunately, because it follows the standard JWT, it can be verified and parsed by various existing libraries. For
example, the following code in C# will validate the JWT returned by the attestation provider (using the APIs in the
Microsoft.IdentityModel.Tokens namespace®).

For simple validation of the JWT, it can be done as easily as:

var jwtHandler = new JsonWebTokenHandler();

var validatedToken = jwtHandler.ValidateToken(encodedJIwt, tokenValidationParams);
Assert.IsTrue(validatedToken.IsValid);

33 RFC 7800 Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs): https://tools.ietf.org/html/rfc7800

34 MICROSOFT.IDENTITYM ODEL.TOKENS NAMESPACE: https://docs.microsoft.com/en-us/dotnet/api/microsoft.identitymodel.tokens?view=azure-
dotnet

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 25

https://tools.ietf.org/html/rfc7800
https://tools.ietf.org/html/rfc7800
https://docs.microsoft.com/en-us/dotnet/api/microsoft.identitymodel.tokens?view=azure-dotnet

For the attestation provider, the certificate which is used to sign the quote is a self-signed certificate with a subject
name whose name matches the attestUri value for the tenant, see section § Creating a new attestation provider
below.

Furthermore, to establish trust in the above workflow, it is critical to ensure that Microsoft entities such as VM
admins, Host admins and Microsoft developers cannot modify attestation requests, policies and MAA-issued
tokens. To achieve this, features of MAA like quote validation, token generation, token signing, and policy
management are moved into a SGX enclave.

MAA is built to run in two types of environments:

e TEE implementation of MAA running in SGX enclaves.

e Non TEE implementation of MAA with Business continuity and disaster recovery (BCDR
enables to mitigate service disruptions resulting from significant availability issues or disaster events in a
region.

)** capability, which

in order to validate that a particular quote was evaluated in the MAA SGX enclave, the client TEE based application
or any relying party will check that the signing key used to sign the attestation token was generated in an SGX
enclave. The client TEE based application or any relying party will fetch the token signing cert from the MAA
OpenlD Metadata endpoint, see section § Using the OpenlD Metadata endpoint below.

As far as the above former type of environment is concerned, the token signing certificate contains the MAA SGX
Quote Enclave that the client can verify to ascertain that the signing key was generated in the SGX enclave. (The
SHA256 hash of the public key used to sign the attestation token is put in the report_data field of the quote’s
REPORT.)

Furthermore, regarding more specifically the Intel SGX technology at the core of this paper, one should note that
MMA implements a Provisioning Certificate Key (PCK) Caching Service.

Understanding the role of PCK Caching service

The Provisioning Certificate Key (PCK) Caching Service is an Azure caching service for the Intel® SGX provisioning
certificate service. It's used by MAA and exposed through REST APIs.

As extensively covered in section § Interacting with the Intel Attestation Service above, Intel publishes the PCK
structures through a hosted service called the SGX provisioning certificate service.

These include PCK certificates, certificate revocation lists, TCB Information, and Quoting Enclave identity
structures. Azure collects periodically and caches these structures from Intel’s certificate service. Additional
information can be found on Intel's product brief*® on Datacenter Attestation Primitives.

The primary objectives of the PCK caching service are to operate at scale, reduce dependencies on externally
hosted services, and limit access to the Internet to perform runtime operations. These cached primitives are
typically valid for a period measured in days or more.

It's high time to put all of these concepts in practice. This will provide you with the occasion of deepen
your understanding and knowledge of MMA.

35 Business continuity and disaster recovery (BCDR): Azure Paired Regions: https://docs.microsoft.com/en-us/azure/best-practices-availability-
paired-regions

3¢ Intel ®SGX Data Center Attestation Primitives (Intel ®SGX DCAP): https://download.01.org/intel-sgx/dcap-
1.1/linux/docs/Intel_SGX_DCAP_ECDSA _Orientation.pdf

26 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions
https://download.01.org/intel-sgx/dcap-1.1/linux/docs/Intel_SGX_DCAP_ECDSA_Orientation.pdf

Preparing your environment for interacting with MAA

To setup the configuration, you will need access to an Azure subscription and at least one server with Intel SGX
extension, such as in the rest of this document a DC_series VM instance in Azure (see section § Using a DC_series
VM in Azure below).

First, you will need to configure your Azure subscription(s).

Preparing your local PowerShell environment on Windows 10

Let's start by installing Azure PowerShell on your local machine if you haven't done so yet.

Installing Azure PowerShell

See Install Azure PowerShell*” as well as Overview of Azure PowerShell?® for information on how to install and run
Azure PowerShell.

If Azure PowerShell isn't already installed on your Windows 10 local machine, start by doing so. Perform the
following steps:

1. Open an elevated PowerShell console and install Azure PowerShell:

PS C:\> Set-ExecutionPolicy -ExecutionPolicy RemoteSignedLocation

a. When invited, press A.

PS C:\> Install-Module -Name Az -AllowClobber -Scope CurrentUser

b. When invited, press Y.
¢. When invited, press A.

2. If Azure PowerShell is already installed, check that you are using the latest version of AzureRm:

PS C:\> Update-Module -Name Az

Note Az and AzureRm modules cannot be imported in the same session or used in the same script or runbook. If
you are running PowerShell in an environment, you control you can use the 'Uninstall-AzureRm' cmdlet to remove all
AzureRm modules from your machine. See here* for more information.

Let's continue with the Azure Attestation cmdlets for Azure PowerShell.

37 Install Azure PowerShell: https://docs.microsoft.com/en-us/powershell/azure/install-az-ps?view=azps-4.4.0
38 Azure PowerShell documentation: https://docs.microsoft.com/en-us/powershell/azure/?view=azps-4.4.0

3% Uninstall the Azure PowerShell module: https://docs.microsoft.com/en-us/powershell/azure/uninstall-az-ps?view=azps-4.4.0

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 27

https://docs.microsoft.com/en-us/powershell/azure/install-az-ps?view=azps-3.7.0
https://docs.microsoft.com/en-us/powershell/azure/overview?view=azps-2.4.0
https://docs.microsoft.com/en-us/powershell/azure/uninstall-az-ps

Installing Azure Attestation Cmdlets for Azure PowerShell

See Az.Attestation®.

You will now Install the Az.Attestation PowerShell module containing cmdlets for MAA.
To install for all users, perform the following steps:

1. From the above elevated PowerShell console, install the latest version of Microsoft Azure Attestation
cmdlets for Azure Resource Manager (ARM) in Windows PowerShell from PSGallery*'.

g Az Attestation 018
Microsoft Azure PowerShell - Attestation service cmdlets for Azure Resource Manager in Windows PowerShell and

PowerShell Core.

1,554
Downloads For more information on Attestation, please visit the following: https://docs.microsoft.com/azure/attestation/
44 o .
Downloads of 018 Minimum PowerShell version
View full stats 51
7/14/2020 v Installation Options
Last Published
Install Module Azure Automation Manual Download
Info
Project Site Copy and Paste the following command to install this package using PowerShellGet More Info
License Info
Contact Owners .
PS> Install-Module -Name Az.Attestation]
Report
Author(s)

Microsoft Corporation

Copyright

Microsoft Corporation. All rights reserved.
As of this writing, the current version is 0.1.8.

PS C:\> Install-Module -Name Az.Attestation -AllowClobber -Scope AllUsers

2. Show the Az Attestation module:

PS C:\> Import-Module -Name Az.Attestation
PS C:\> Get-Module -Name Az.Attestation| Format-Table -Property Version, ExportedCommands

40 Az Attestation: https://docs.microsoft.com/en-us/powershell/module/az.attestation/?view=azps-4.4.0

41 Az Attestation (PSGallery): https://www.powershellgallery.com/packages/Az.Attestation

28 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://docs.microsoft.com/en-us/powershell/module/az.attestation
https://www.powershellgallery.com/packages/Az.Attestation

At this stage, the following Azure Attestation Cmdlets are available in your environment:

Name of the cmdlet
Create operations

Add-AzAttestationPolicySigner*?

New-AzAttestation*?

Read operations
Get-AzAttestation**

Get-AzAttestationPolicy*®

Get-AzAttestationPolicySigners*®

Update operations

Reset-AzAttestationPolicy*’

Set-AzAttestationPolicy*®

Delete operations

Remove-AzAttestation*®

Remove-AzAttestationPolicySigner®®

Description

Adds a trusted policy signer for a tenant in an attestation provider.

Specifies the RFC7519 JSON Web Token containing a claim named “aas-
policyCertificate" whose value is an RFC 7517 JSON Web Key which contains a new
trusted signing key to add. The RFC 7519 JWT must be signed with one of the
existing trusted signing keys.

Creates an attestation provider in a specified resource group.

Gets information about an attestation provider.
Gets the policy from an attestation provider and for a specific TEE.

Gets the trusted policy signers from an attestation provider.

Resets the user defined attestation policy from an attestation provider.

Sets the user defined policy on a specific attestation provider for a specific TEE.

Deletes the specified attestation provider.

Removes a trusted policy signer on a specific Microsoft Azure Attestation instance.

You will use some of the cmdlet later in this section. For example, New-AzAttestation to create a
Microsoft Azure Attestation, a.k.a. an attestation provider, see section § Creating your own attestation

provider below.

Note

For more information on Attestation cmdlets, please visit this website®'.

3. Close the elevated PowerShell console.

42 Add-AzAttestationPolicySigner: https://docs.microsoft.com/en-us/powershell/module/az.attestation/add-

azattestationpolicysigner?view=azps-4.4.0

43 New-AzAttestation: https://docs.microsoft.com/en-us/powershell/module/az.attestation/new-azattestation?view=azps-4.4.0

4 Get-AzAttestation: https://docs.microsoft.com/en-us/powershell/module/az.attestation/get-azattestation?view=azps-4.4.0

4> Get-AzAttestationPolicy: https://docs.microsoft.com/en-us/powershell/module/az.attestation/get-azattestationpolicy?view=azps-4.4.0

46 Get-AzAttestationPolicySigners: https://docs.microsoft.com/en-us/powershell/module/az.attestation/get-

azattestationpolicysigners?view=azps-4.4.0

47 Reset-AzAttestationPolicy: https://docs.microsoft.com/en-us/powershell/module/az.attestation/reset-azattestationpolicy?view=azps-4.4.0

48 Set-AzAttestationPolicy: https://docs.microsoft.com/en-us/powershell/module/az.attestation/set-azattestationpolicy?view=azps-4.4.0

4 Remove-AzAttestation: https://docs.microsoft.com/en-us/powershell/module/az.attestation/remove-azattestation?view=azps-4.4.0

50 Remove-AzAttestationPolicySigner: https://docs.microsoft.com/en-us/powershell/module/az.attestation/Remove-

AzAttestationPolicySigner?view=azps-4.4.0

51 Az Attestation (PSGallery): https://www.powershellgallery.com/packages/Az.Attestation/

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 29

https://docs.microsoft.com/en-us/powershell/module/az.attestation/Add-AzAttestationPolicySigner?view=azps-3.7.0
https://docs.microsoft.com/en-us/powershell/module/az.attestation/New-AzAttestation?view=azps-3.7.0
https://docs.microsoft.com/en-us/powershell/module/az.attestation/Get-AzAttestation?view=azps-3.7.0
https://docs.microsoft.com/en-us/powershell/module/az.attestation/Get-AzAttestationPolicy?view=azps-3.7.0
https://docs.microsoft.com/en-us/powershell/module/az.attestation/Get-AzAttestationPolicySigners?view=azps-3.7.0
https://docs.microsoft.com/en-us/powershell/module/az.attestation/Reset-AzAttestationPolicy?view=azps-3.7.0
https://docs.microsoft.com/en-us/powershell/module/az.attestation/Set-AzAttestationPolicy?view=azps-3.7.0
https://docs.microsoft.com/en-us/powershell/module/az.attestation/Remove-AzAttestation?view=azps-3.7.0
https://docs.microsoft.com/en-us/powershell/module/az.attestation/Remove-AzAttestationPolicySigner?view=azps-3.7.0
https://www.powershellgallery.com/packages/Az.Attestation/

Preparing your Azure subscription

Let's now install all the prerequisites that pertains to your Azure subscription(s).

Registering the required Microsoft.Attestation resource provider
To use Microsoft Azure Attestation (MAA), you must register the Microsoft.Attestation required resource provider.

Note that registering a resource provider is required only once for a subscription.

Perform the following steps:
1. Open a new PowerShell console (without elevated access privileges).

2. Import the Az.Attestation module.

PS C:\> Import-Module -Name Az.Attestation

3. Signin to Azure.

PS C:\> Connect-AzAccount

4. If needed, switch to the subscription you to use for MAA.

PS C:\> Set-AzContext -Subscription <your_ SubscriptionId>

5. Register the Microsoft.Attestation resource provider in your subscription.

PS C:\> Register-AzResourceProvider -ProviderNamespace Microsoft.Attestation

ProviderNamespace : Microsoft.Attestation

RegistrationState : Registering

ResourceTypes . {attestationProviders, defaultProviders, locations, locations/defaultProvider...}
Locations : {East US 2, Central US, UK South}

You can also register the above Resource Providers using the Azure portal.

Note For more information about Azure resource providers and how to configure and manage resources
providers, see article Azure resource providers and types®?.

52 Azure resource providers and types
- https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-supported-services

30 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-supported-services

Listing the Azure region(s) in which MAA is available

To list the Azure region(s) in which the Microsoft Azure Attestation provider is available, use the following
command:

PS C:\> Get-AzResourceProvider -ProviderNamespace Microsoft.Attestation

ProviderNamespace : Microsoft.Attestation
RegistrationState : Registered

ResourceTypes : {attestationProviders}

Locations : {East US 2, Central US, UK South}

ProviderNamespace : Microsoft.Attestation
RegistrationState : Registered

ResourceTypes : {defaultProviders}

Locations : {East US 2, Central US, UK South}

ProviderNamespace : Microsoft.Attestation
RegistrationState : Registered
ResourceTypes : {locations}

Locations : {}

ProviderNamespace : Microsoft.Attestation
RegistrationState : Registered

ResourceTypes : {locations/defaultProvider}
Locations : {East US 2, Central US, UK South}

ProviderNamespace : Microsoft.Attestation
RegistrationState : Registered
ResourceTypes : {operations}
Locations : {}

PS C:\Users\philber> Get-AzResourceProvider Microsoft.Attestation

ProviderNamespace : Microsoft.Attestation
Registrationstate : Registered

ResourceTypes : {attestationProviders}

Locations : {East US 2, Central US, UK South}

ProviderNamespace : Microsoft.Attestation
RegistrationState : Registered

ResourceTypes : {defaultProviders}

Locations : {East US 2, Central US, UK South}

ProviderNamespace : Microsoft.Attestation
RegistrationState : Registered
ResourceTypes : {locations}

Locations : {1

ProviderNamespace : Microsoft.Attestation
RegistrationState : Registered

ResourceTypes : {locations/defaultProvider}
Locations : {East Us 2, central US, UK South}

ProviderNamespace : Microsoft.Attestation
RegistrationState : Registered
ResourceTypes : {operations}
Locations : {}

PS C:\Users\philber>

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 31

Currently, with the Public Preview, an attestation provider can be instantiated only in the East US 2, Central
US, and UK South Azure regions.

Discovering Microsoft provided attestation default providers

Microsoft runs a set of regional attestation default providers that meet the needs of many customers.

To discover Microsoft provided attestation default providers, run the following command:

PS C:\> Get-AzAttestation -DefaultProvider

Id : /providers/Microsoft.Attestation/attestationProviders/sharedeus2
Location : East US 2

ResourceGroupName :

Name : sharedeus2

Status : Ready

TrustModel : AAD

AttestUri : https://sharedeus2.eus2.attest.azure.net

Tags

TagsTable

Id : /providers/Microsoft.Attestation/attestationProviders/sharedcus
Location : Central US

ResourceGroupName :

Name : sharedcus

Status : Ready

TrustModel : AAD

AttestUri : https://sharedcus.cus.attest.azure.net

Tags

TagsTable

Id : /providers/Microsoft.Attestation/attestationProviders/shareduks
Location : UK South

ResourceGroupName :

Name : shareduks

Status : Ready

TrustModel : AAD

AttestUri : https://shareduks.uks.attest.azure.net

Tags

TagsTable

32 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

PS C:\Users\philber> Get-AzAttestation

1d
Location

Name
Status
TrustModel
Attesturi
LEES
TagsTable

Id
Location

Name
Status
TrustModel
Attesturi
Tags
TagsTable

1d
Location

Name
Status
TrustModel
Attesturi

: /providers/Microsoft.Attestation/attestationProviders/sharedeus2
1 East US 2

ResourceGroupName :

1 sharedeus2

! Ready

. AAD

: https://sharedeus2.eus2.attest.azure.net

1 /providers/Microsoft.Attestation/attestationProviders/sharedcus
: Central US

ResourceGrouplame :

: sharedcus

: Ready

i AAD

: https://sharedcus.cus.attest.azure.net

: /providers/Microsoft.Attestation/attestationProviders/shareduks
¢ UK South
ResourceGroupName :

: shareduks

! Ready

H]

: https://shareduks.uks.attest.azure.net

Tags
TagsTable

PS C:\Users\philber>

Note the DefaultProvider parameter switch to retrieve the complete set of regional attestation default
providers.

Note For more information on the command and its parameters, see Get-AzAttestation®?.

You can then use the results of this enumeration (e.g. ResourceGroup, Name) to call the Get-* cmdlets for MAA,
as per above section § Installing Azure Attestation Cmdlets for Azure PowerShell above, to determine the attest URI,
examine the trust model, and, examine their policies.

The attestation default providers use the AAD trust model and provide default policy for each TEE type, see
section § Understanding the MAA’s trust model below.

The below table describes MAA environment type as per availability in different regions.

Region MAA Environment Type Supported services in Azure
Non TEE
US East 2 on SGX, OESDK, and VBS TEE
attestation
Central US Non TEE SGX, OESDK, and VBS TEE
attestation
UK South TEE SGX and OESDK TEE attestation

53 Get-AzAttestation: https://docs.microsoft.com/en-us/powershell/module/az.attestation/get-azattestation?view=azps-4.4.0

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 33

https://docs.microsoft.com/en-us/powershell/module/az.attestation/get-azattestation?view=azps-3.6.1

The regions that are supported by BCDR are as follows:
e East US 2 => Paired with Central US
e Central US => Paired with East US 2

Creating your own attestation provider

As already mentioned, If the TEE policy in the attestation default provider doesn’'t meet your own specific needs,
you can instead create your own attestation provider in any of the regions supported by MAA.

Unlike the attestation default providers, you will be then able to specify the policy values in your own attestation
providers, see section § Managing the attestation policies of your own attestation provider below.

Creating a resource group for your own attestation provider

First, create a resource group to hold the required resources, from the previous PowerShell console (without
elevated access privileges):

PS C:\> $location = "eastus2"
PS C:\> $attestationResourceGroup = "<your_ResourceGroupName>"
PS C:\> New-AzResourceGroup -Name $attestationResourceGroup -Location $location

ResourceGroupName : AzureAttestationTest

Location : eastus2

ProvisioningState : Succeeded

Tags 3

Resourceld : /subscriptions/2f291b88-9ebf-4d90-836F-

ae532edaalb@/resourceGroups/AzureAttestationTest

ResourceGroupName : AzureAttestationTest
Location 1 eastus2
ProvisioningState : Succeeded

Tags :
ResourceId 1 /subscriptions/2f291b88-9ebf-4d9e-836f-ae532edaalbe/resourcecroups/AzureAttestationTest

PS C:\Users\philber>

e Replace <your_ResourceGroupName> by the name of your choice for the resource group. For example,
AzureAttestationTest in our illustration.

You can put other Azure resources (including a DC_series VM with your client application instance, see section
§ Further illustrating the scenario 3 below) in the same resource group.

34 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

Creating a new attestation provider

From the previousPowerShell console (without elevated access privileges), create your own specific attestation
provider, i.e. Microsoft Azure Attestation (MAA) instance:

PS C:\> $attestationProvider = "<your AttestationProviderName>"
PS C:\> New-AzAttestation -Name $attestationProvider -ResourceGroupName $attestationResourceGroup -
Location $location

Id : /subscriptions/2f291b88-9ebf-4d90-836-
ae532edaalb@/resourceGroups/AzureAttestationTest/providers/M
icrosoft.Attestation/attestationProviders/maatest

Location . eastus2

ResourceGroupName : AzureAttestationTest

Name : maatest

Status : Ready

TrustModel : AAD

AttestUri : https://maatest.eus2.attest.azure.net
Tags :

TagsTable

zAttestation

: /subscriptions/2f291b88-9ebf-4d9@-836f-ae532edaalbe/resourceGroups/AzureAttestationTest/providers/m
icrosoft.Attestation/attestationProviders/maatest
Location 1 eastus2
ResourceGrouphame : eAttestationTest
Name 3
Status
TrustModel
AttestUri : https://maatest.eus2.attest.azure.net
LEES
LEESEL]

PS C:\Users\philber>

e Replace <your_AttestationProviderName> with the name of your choice for your new attestation
provider. For example, maatest in our illustration.

Note For more information on the command and its parameters, see New-AzAttestation®.

> New-AzAttestation: https://docs.microsoft.com/en-us/powershell/module/az.attestation/new-azattestation?view=azps-4.4.0

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 35

https://docs.microsoft.com/en-us/powershell/module/az.attestation/new-azattestation?view=azps-3.6.1

Discovering the newly created attestation provider

Perform the following steps:

1. Discover the attestation provider you've previously created:

PS C:\> Get-AzAttestation -Name $attestationProvider -ResourceGroupName $attestationResourceGroup

The results of this command include the following information:

Id : <ARM_ResourceId>

Location ¢ <your_AzureRegion>

ResourceGroupName : <your_ResourceGroupName>

Name . <your_AttestationProviderName>

Status : Ready

TrustModel : AAD

AttestUri . https://<your AttestationProviderName>.<your AzureRegion>.attest.azure.net
Tags :

TagsTable

PS C:\Users\philber> Get-AzAttestation

Id 1 [/subscriptions/2f291b88-9ebf-4d90-8367-ae532edaalbe/resourceGroups/AzuredttestationTest/providers/m
icrosoft.Attestation/attestationProviders/maatest

Location 1 eastus2

ResourceGroupName : eAttestationTest

Name

Status
TrustModel
AttestUri : https://maatest.eus2.attest.azure.net

Tags
TagsTable

PS C:\Users\philber>

As such, the creation of an attestation provider is an asynchronous process. Retrieve the Status and
AttestURI properties of your newly created attestation provider.

You may notice that initially the status value is Not Ready. It can take up to 10 minutes for it to become
Ready. Therefore, you may run the below command a few times to confirm the new attestation provider
is ready to use.

Note For more information on the command and its parameters, see Get-AzAttestation®®.

% Get-AzAttestation: https://docs.microsoft.com/en-us/powershell/module/az.attestation/get-azattestation?view=azps-4.4.0

36 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://docs.microsoft.com/en-us/powershell/module/az.attestation/get-azattestation?view=azps-3.6.1

2. Take a note of the AttestURI property, as you will need it later. For example,
https://maatest.eus?.attest.azure.net in our illustration.

Understanding the MAA's trust model

Trust model defines the authorization model used to define and update policy on a resource provider.

Microsoft Azure Attestation defines two trust models to choose from. The first model named AAD is based on the
Azure Active Directory (Azure AD) authorization model and leverages the Azure AD tenant trusted by your Azure
subscription(s). In this mode, MAA is integrated into the Azure AD's authentication framework. This enables MAA
to support policies that permit token issuance based on identity and ownership.

This is the one used above and, which is the default.

As such, this model supports the following two roles (see section § Managing the attestation policies of your own
attestation provider below):

1. Attestation Reader. This role has granted rights to perform operation such as get access token for valid
Quotes and get the policy definition set for the tenant. This role can also read the attestation provider
properties.

2. Attestation Contributor. This role has permission to set the Policy. This role can also read, write or delete
the attestation provider instance.

The second trust model is named Isolated. Policy signing keys are the cryptographic keys used to authorize this
Isolated trust model.

If you require this trust model for your development, you will be required to specify your own specific policy
signing keys at creation time of your attestation provider, so that it will be configured for an isolated trust, and
thus not relying on your Azure AD tenant. For example:

PS C:\> New-AzAttestation -Name <your_ AttestationProviderName>
-ResourceGroupName <your_ ResourceGroupName> °
-PolicySignersCertificateFile <your_SignersCertificatefile>
-Location $location

e Replace <your SignersCertificatefile> with the path to a PEM Privacy-Enhanced Mail*® file for your new
attestation provider.

The results of this command include the following information:

Id : <ARM_ResourcelId>

Location : <your_AzureRegion>

Name 1 <your_AttestationProviderName>

Status : Ready

TrustModel : Isolated

AttestUri : https://<your AttestationProviderName>.<your AzureRegion>.attest.azure.net
Tags

TagsTable

% Privacy-Enhanced Mail: https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 37

https://maatest.eus2.attest.azure.net/
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

Important note If your attestation provider is configured in Isolated Mode with a Policy Signer Certificate file, then
it will reject all unsealed policy JWTs.

Using the attestation provider REST API

Microsoft Azure Attestation is multi-tenant service that supports AAD authentication or certificate authentication
(isolated mode). Each customer is expected to create its own MAA instance. Each MAA instance provides a tenant
specific URL to access the MAA instance. It's service endpoint that provides the MAA REST contract that honors a
specific, discoverable policy.

Sending requests to the attestation provider

Depending on the trusting mode, Azure AD credentials of the tenant or certificate credentials in (PEM) file are
used control access to attestation REST APIs.

If the attestation provider’'s endpoints are Azure AD protected, the client will typically present a bearer token in an
Authorization header as part of the request to leverage specific operations:

Authorization: Bearer eyJ@eXAiOiJKV1QiLCJhbGciOilJ..

Note For information about retrieving an Azure AD bearer token, see blog post Accessing Azure App Services
using Azure AD Bearer token®”. (See the portion of this blog post that discusses “Create code to get a Bearer token from
Azure AD and use this token to call the Target app”).

Note The resource URI for the MAA required for the bearer token should be set to “https://attest.azure.net”.

Each attestation provider has REST service endpoints that provides multiple features, like attestation of various TEE
types. Each of the APIs is a RESTful APl and is accessed via HTTPS URls.

For example, in our above illustration, we have our own attestation provider resource with the URL
https://maatest.eus?.attest.azure.net.

57 Accessing Azure App Services using Azure AD Bearer token: https://docs.microsoft.com/en-us/archive/blogs/jpsanders/accessing-azure-app-
services-using-azure-ad-bearer-token-2

38 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://docs.microsoft.com/en-us/archive/blogs/jpsanders/accessing-azure-app-services-using-azure-ad-bearer-token-2
https://docs.microsoft.com/en-us/archive/blogs/jpsanders/accessing-azure-app-services-using-azure-ad-bearer-token-2
https://maatest.eus2.attest.azure.net/

The tenant will use its tenant specific URL to access MAA for both data plane and control plane operations.

Name of the URI HTTP Authorization | Description
Verb Required?
Attestation
/attest/Tee/OpenEnclave POST Yes Attests OpenEnclave generated quotes
/attest/SgxEnclave POST Yes Attests an SGX Enclave
/attest/VBSEnclave POST Yes Attests a VBS enclave
/attest/Cyrescomponent POST Yes Attests a CyRes enclave

OpenlD Metadata

/.well-known/openid- GET No Retrieves the OpenlD Metadata document for
configuration the considered attestation provider. Returns an
OpenlD Configuration response as per OpenID
Connect Discovery 1.0°® protocol.

Certificate
/certs GET No Gets information on signing keys and returns
an RFC 7517 JSON Web Key Set that contains
the signing keys used to sign the attestation
response.
Others
/revoke POST Yes This endpoint enables clients to inform an

authorization server that a specified token is
no longer used and must be revoked.

Using the OpenlID Metadata endpoint

Every attestation provider follows the Open Connect 1.0 standard to publish the signing certificate. The standard
specifies using a standard OpenID Metadata endpoint for metadata about token signing. The metadata specifies
the algorithm and the keys used to sign the token.

An attestation provider publishes its metadata on the following endpoint:

https://<your AttestationProviderName>.<your AzureRegion>.attest.azure.net/.well-known/openid-configuration

For example, in our illustration:

https://maatest.eus2.attest.azure.net:443/.well-known/openid-configuration

Use Postman to get the OpenID Configuration from the OpenID Metadata endpoint. Send a GET command to this
URL.

8 OpenlID Connect Discovery 1.0: https://openid.net/specs/openid-connect-discovery-1_0.html

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 39

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://maatest.eus2.attest.azure.net/.well-known/openid-configuration
https://www.postman.com/

-
File Edit View Help

Runner a8 My Workspace ~ &, Invite

Q — No Environment v o ¥
sunchpac GET https//.® GET hitps//..@ [CONELICT] ¢ GET https//..® GET https//..@ GET https//_ @ 4 ees

History Collections APIs

Save Responses Clear all
GET w https://maatest.eus2.attest.azure.net:443/.well-known/openid-configuration Save «
~ Today

GET Params Authorization Headers (7) Body Pre-request Script Tests Settings
Query Params
KEY VALUE DESCRIPTION ss+ BulkE
Body Cookies Headers (5) Test Results Status: 200 0K e: 89Tms Size: 6238 Save Response ¥
Pretty Raw Preview Visualize JSON = = mQ
1 {
2 "response_types_supported”: [
3 “token”,
a “"none”
5 1
3 "id_token_signing_alg_values_supported”: [
7 "RS256"
8 1
B "revocation_endpoint”: "https://mastest.eus2.attest.azure.net/revoke”,
18 "jwks_uri”: "https://meatest.eus2.attest.azure.net/certs”,
11 "claims_supported s [
12 "is-debuggable”,
13 "sgx-mrsigner”,
14 "sgx-mrenclave”,
15 "product-id",
16 "swn",
17 “tee", L
18 "device_id",
13 "component_8_id",
28 "expected_components”
21]
2}
B = Bootcamp Buile Browse M & @

"response_types_supported": [
"token",
"none"
1,
"id_token_signing_alg values_supported": [
"RS256"
1,
"revocation_endpoint": "https://maatest.eus2.attest.azure.net/revoke",
"jwks_uri": "https://maatest.eus2.attest.azure.net/certs”,
"claims_supported": [
"is-debuggable",
"sgx-mrsigner",
"sgx-mrenclave",
"product-id",
"svn",
"tee",
"device_id",
"component_0 id",
"expected_components"

40 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

As illustrated above, the metadata specifies the following fields:

Field Description

response_types_supported JSON array containing a list of the OAuth 2.0 "response_type" values
that this authorization server supports.

id_token_signing_alg_values_supported The signing algorithm supported.

revocation_endpoint This endpoint enables clients to inform an authorization server that a
specified token is no longer used and must be revoked.

Jwks_uri The URL location of the signing certs

claims_supported JSON array containing a list of the claims that the MAA instance MAY
be able to supply values for.

As outlined in the above table, the jwks_uri filed contains the URL location of the signing certs, i.e. the
attestation token signing keys.

Now get the signing keys used to sign the attestation response. Send a GET command to this URL. For example,
in our illustration:

https://maatest.eus2.attest.azure.net/certs

| @
File Edit View Help

New = | import Runner 28 MyWorkspace ¥ &, Invite

Q [rm— No Environment - o 1%
aunchpad GET hitps://..® GET hips:t/ ® [CONFLICT] ¢ GET hitps://..@ GET hups//..@ GET hipsi//..@ 4 e

History Collections APIs

| Untitled Request

| Save Responses Clear all
GET v hitpsi#/maatest.eus2.attest.azure.net/certs Save v
v Today

https:/

GET Params Authorization Headers (7) Body Pre-request Script Tests Settings
Query Params

KEY VALUE DESCRIPTION wee

Body Cookies Headers (6) TestResults

Pretty Raw Preview Visualize SON ~ = mQ

noE W
-

“MIIDPICCALagAWIBAZTBATANB gkqhkiGEWBBAQsFADAMS4uLAYDVQQDDCVodHRWE zovL 21hYXR Le 3QUZXVzMi ShdHR1e 3QuYXpLemUubmyalB4XDT TwMDeyMTEBUDEXG
VoXDT TxMD ey T EBMDEXOVowMDEUMCKGALUE Auwl aHRBHUE Ly 9t YHIFEZXNOLmV e 2 TuYXROZXNALMF 66X 11 Lm51dDCCAS TuDQY K62 ThyeNAQEBBQADEEEPADCCAQD
CggEBAIGELSYMPIuLYs/ Di3sOLXZJayPhtnusBhofZN92Py7n10tQCy DB Fhuwl BOluXk401bNI3rVASrpEyUPdtZhZrld/ sEHFIVECYHO
+dMOubKp3RTXS7AEMRAF rEVEO10ABPHUQd Oy 285 YSE s+BatLCHIGRE L5 DT p++EPEIYCCEY/ MOWNI 2MT L Zdghe+Qy 270 tmcBUGSPPXT3XDYPenh/XiG
+153x977IHj iK7XTIXE 30NVPyoXYLXVV/ f1ndpIbb2QROacTPnIKOQheT IYXrVSXUIS YNSkssFLoghAvelhMA3 Zm/
5LRYNxynlF 7wz LpaXTRKNXs imGsn6NbRBCAWEAAAN JMGEWDNYDVRE TBAZWBEEB wIBADAdBENVHQAEF gQUYbZeE 2uasniIHAFPAOLBONy/
FhowHnYDVRE jBBguF oAUYbZeE 2uasiIHdFPAOLBQNy /FhowDgVDVREPAGH/

BAQDAgEEMABGCSqGSTh3DQEBCWUARITBAQBUDH b, aNrzdE13shpbp, kBUR2C/
20CX1QIFYhexxUn@okqB 1T 105umy VSH7Chhginzhik2zBZGUSARIMLNS7F SAKPNZAOUGVKVUSMTHE /UPEZZ+hzXIrgseAZYNph142T0I I IRANDOYDFBEP/ THIOTW
+V3T+bnelRXSvAQnwGanFUmb92dmi F i P540R zbesDT FITZR5 I 9mdxTGEKVVHOPPaYG3FOX03y GinFalX2hOuP3LACy aoby toNGS I 1xznVINA/y1T

+GujOYRmMKTECEGXBU! XBywIN7RGWSNLQWIS YteTCqIBUVQLxNanhLd/"

s L

7 “kid": "RTS9K7]6e2oYtUxBhufyPkTyeulchdiZq/c1d6IpXIU=",

E] “kty™: "RSA"

9 b

16 {

1 "xset: [

12 "MIIF5jCCABEEAWIBAgI TMWAAAAPLY] xBzBHHIWAAAAAAAZ ANBgkghk 1G9w@BAQs FADCBgZE LMAKGALUEBhMCVVMXEZARBENVBARTC1dhe 2hpbmd @b 24 XEDADBGNVBACTE
1J1ZG1vbmQxHjAcBENVBAOTFU1pY3Ive2SmdCBOb3Iwb3IhdGlvbjEtMCSGALUEAXMKTWL jem9zb2Z@IEF6dX] 1 IEFOAGYzdGF@aWsul FBDQSAYMDESMBAXDTESMDY
WNTE3M3 kwNVOXDT IWMDkwNTE 3MjkwNVowf zELMAKGALUEBhMC! ZARBENVBAgTCldhe2hpbmd@b! JgNVBACTE111ZGlvbmQxHJAcBENVBACTFUlpY3Ive
25mdCBDb3Iwb3IhdGlvbjEpMCcGALUEAXMETW1 jcm9zb2Z@IEFEdXI1 IEFBdGY zdGFBaWSuIDIWMTkwggEiMABGCSqGSTb3DQEBAQUAASTBDWAWEEEKAOIBAQCa
+24LKNyEoAULNSU3NMVIW2/4Xs THUK+78v8513rMDcaHodyaBlQL FVXhz7/PD1bUF2 T9bg+ux THI SN TQROFEhpT LuiMBE@NS2PVZUN2S tXdHMMROZ
ACruTun TR ETAPhKBAT A+ 7k 3K TRUIRAL T AuMRK 22 11 Mvaalifh oM Thi&mrd BAaRIK1 T34 AmYDuvOmue] FSavmu1iilacabed1Bh/

B B & Bootcamp Built Browse £ &5 ®

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://maatest.eus2.attest.azure.net/certs

This should return an RFC 7517 JSON Web Key Set>® that contains the signing keys used to sign attestation
responses.

Below is an example of an RSA signing certificate at the URL.

{
"keys":[
{"x5c": [

"MIIDPjCCAiagAwIBAgIBATANBgkqhkiGOwOBAQsFADAWMSAwWLAYDVQQDDCVodHRwWczovL21hYXR1c3QuZzXVzMi5hdHR1c3QuYXpl
cmUubmVOMBAXDTIWMDcyMTEGMDUYMFoXDTIXMDcyMTEOMDUyMFowMDEUMCWGALUEAww1aHROCHMELY9tYWFOZXNOLmMV1czIuYXROZ
XNOLmF6dXJ1Lm51dDCCASIwDQYIKoZIhvcNAQEBBQADEEEPADCCAQoCggEBAI6gtSYyMPjwlYs/DW3soLXZjayPhtnu5Bh9fzN92Py
7n1btQCvDBfhuwlL801uXW40ibN93rVd5rptyurdt2hzrid/s6WfIVtCyHO+dmOubKp3RTXx57AeWRdFrEUE010A8PHUQdofyzasYSE
s+BatLCM3GOelsbTFp++ePgIYcC6Y/MOWh92MTtZdgWe+Qyz7btmcBUdSPPXt3xDYPenh/XwG+1i53x977IHjiK7XTIXt1z7bv3ONv
PyoXYLXVV/f1mdpIbb2QR9acTPnIKOQheTIYXrYSXU95YNOkssFLQghAvelhMA32m/5LRYNxynUF7wzLpgXTRKNXsimGsn6NbR8CA
WEAAaNjMGEwDwWYDVROTBAgwWBEEB/wIBADAdBgNVHQAEFgQUYbZeE2uaswWIHdFPAOt8QNy /fhowHwYDVROjBBgwFoAUYbZeE2uasw
WIHdFPAOt8QNy/fhowDgYDVROPAQH/BAQDAEEEMARGCSqGSIb3DQEBCWUAA4IBAQBF 10XGhVHSKZB6iWCh7 swQc7nS3C961J+CDiA
gEILWF3dAnr9pgYTA3BrkKG5w7kHtQjXUPSVSoArKZcmUCNckGkBGNOV7yy1NLcOx+rZnAEpPtShdWqEXSF3KZp/0B1SPPBVH4sKfy
ZXy12DVjXJVOUE@Id]jTuT/ysQxIm7ZWFNV1QXKkFysPow7Hg6jGUlCak5gyCEKFLXbH38dQ4261H64 jMSNW+ELICO49pjg/FDbwOo
rRrW07mvK5mZ1HKxaryL50f1UncF75rXtmnFDweKCZ8rTOI1iCQhAQivvXhD5p5XpzvAh6BqE7g/4BRWWbOIqiA4Ta4UIbTANSV6S
oF"

1,
"kid": "RTS9K7J6e20YtUx8hufyPkTyeuUch4izq/c1d6IpXIU=",

"kty": "RSA"

Managing the attestation policies of your own attestation
provider

With your own specific attestation provider, you can update the issuance policy for all TEE types. MAA indeed
allows the use of user defined attestation policies to validate properties of the portion of an application running
inside a TEE and the platform which hosts it. You can specify a user defined attestation policy or reset to the
default policy whenever needed.

Policies are used to determine whether the attestation provider shall issue an attestation token based on
evidence, and thereby endorse it. The attestation token would contain the set of claims, which match the
configured policy. Accordingly, failure to pass the policies means that no JWT will be issued.

In the AAD trusting model, in order to manage policies, an Azure AD user requires the following permissions for
Actions:

e Microsoft.Attestation/attestationProviders/attestation/read
e Microsoft.Attestation/attestationProviders/attestation/write
e Microsoft.Attestation/attestationProviders/attestation/delete

These permissions can be assigned to an AD user through a role such as Owner (wildcard permissions),
"Contributor" (wildcard permissions) or Attestation Contributor (specific permissions for MAA only).

59 RFC 7517 JSON Web Key (JWK): https://tools.ietf.org/html/rfc7517

42 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://tools.ietf.org/html/rfc7517

In order to read policies, an Azure AD user requires the following permission for Actions:
e Microsoft.Attestation/attestationProviders/attestation/read

This permission can be assigned to an AD user through a role such as Reader (wildcard permissions) or
Attestation Reader (specific permissions for MAA only).

Understanding the basics of attestation policy management

Policy management are supported by command-line scripts (PowerShell, Azure CLI) available through Azure SDK.
You or administrators, if they choose to do so, can sign their attestation policy using their own cryptographic key.

Note MAA defines a default policy for each TEE type. Default policies are not available through the Azure portal.

Policy management is twofold. It's important to distinguish the policy creation part from the assignment part.

Policy creation is the process of authoring a custom policy and transforming it into a JWT token describing the
policy document to set that Microsoft Azure Attestation can act upon.

The process of creating an attestation policy consists of the following steps:

1. Administrators write a plaintext policy based on the policy language
(using their editor of choice, like Visual Studio Code®?).

2. JSON policy templates are provided for the different TEE types.

3. If administrators want the Isolated trust model (see section § Understanding the MAA's trust model above),
they will prepare a credential, which will be used to sign the attestation policy

4. Administrators can use a command-line script to prepare the attestation policy for MAA.

a. The input to the script is the plaintext attestation policy, and the optional credential for signing it.
b. The script shall sign the policy JWT using the customer credential (if asked).

Policy assignment is the process of associating an attestation policy with an existing MAA instance, see section §
Creating your own attestation provider above. The attestation policy will be uploaded to the attestation provider,
as encoded payload, in a RFC 7515 JSON Web Signature (JWS)®'.

One attestation policy can be configured for each supported TEE type.
The process of uploading an attestation policy consists of the following steps:
1. Administrators use a command-line script to assign the policy on an attestation provider.

2. The attestation provider will parse the attestation policy file and validate its signature (if optionally
signed).
a. For the isolated trust model, the parsing function is run inside a TEE.
b. If parsing fails, MAA return descriptive error messages.

3. If parsing and assigning the policy succeeds, MAA returns the policy hash, and the credential used to sign
it.

80 Visual Studio Code: https://code.visualstudio.com/
61 RFC 7515 JSON Web Signature (JWS): https://tools.ietf.org/html/rfc7515

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 43

https://code.visualstudio.com/
https://tools.ietf.org/html/rfc7515

Now that you are equipped with the basics, let's put all of these in practice, and start by getting the policies by
default.

Getting the policies by default of your attestation provider
Now download the default policy for the Open Enclave TEE endpoint:

PS C:\> Get-AzAttestationPolicy -Name <your_AttestationProviderName> -ResourceGroupName
<your_ResourceGroupName> -Tee <your_ TEEType>

e Replace <your_AttestationProviderName> with the name of your choice for your new attestation
provider. For example, maatest in our illustration.

e Replace <your_ResourceGroupName> with the name you have chosen before for the previous resource
group. For example, AzureAttestationTest in our illustration.

e Replace <your TEEType> with one of the supported TEE types: SgxEnclave, OpenEnclave,
CyResComponent and VBSEnclave. For example, OpenEnclave in our illustration

For example, to get the policy in place for the OpenEnclave endpoint of the attestation provider maatest in our
illustration:

PS C:\> Get-AzAttestationPolicy -Name maatest -ResourceGroupName AzureAttestationTest -Tee
OpenEnclave

Note For more information on the command and its parameters, see Get-AzAttestationPolicy®?.

Policies are used to determine whether your attestation provider shall issue an attestation token based on
evidence, and thereby endorse it. The token would contain the set of claims, which match the configured policy.
Accordingly, failure to pass the policies means that no JWT will be issued.

If success, you will get in return a Base64Url encoded attestation policy file. As already outlined, this file is a RFC
7515 JWS attestation policy file. For example, in our illustration:

Text : version= 1.0;authorizationrules{c:[type=="$is-debuggable"] =>
permit();};issuancerules{c:[type=="$is-debuggable"] => issue(type="is-debuggable",
value=c.value);c:[type=="$sgx-mrsigner"] => issue(type="sgx-mrsigner",
value=c.value);c:[type=="$sgx-mrenclave"] => issue(type="sgx-mrenclave",
value=c.value);c:[type=="$product-id"] => issue(type="product-id",

value=c.value);c:[type=="$svn"] =>
issue(type="svn", value=c.value);c:[type=="$tee"] => issue(type="tee", value=c.value);};

TextLength : 479

Jwt 3

eyJhbGci0iJub251In@.eyIBdHR1c3RhdGlvblBvbGljeSI6ICIkbVZ5YZzIsdmIgMGdNUzR3TzIGMWRHaHZ jbWw2WVhS cGIyNX1kV

3hsYzN@ak9sdDB1WEJ sUFQwaUpHbHpMV1J sWW5WbloyRm1iR1VpWFNBOVBpQndaWEp@YVhRbOtUdD1PMmMx6YzNWaGItTmxjblZzW1
hON116cGIkSGx3W1QwOUlpUnBjeTFriWldkKMVoyZGhZbXhsSWwwZ1BUNGAhWES56ZFdVb2RIbHdaVDBpYVhNdFpHVmM1kV2RuWvVdKclp

TSXNJISFpoYkhWbFBXTXVkbUZzZFdVcE8YyTTZXM1I1YOdVOVBTSWtjMmQOTF cxeWMybG5ibVZ5SWwwZ1BUNGAhWES56ZFdVb2RIbHda

VDBpYzJKNEXXMX1jMmxuYmlWeUlpd2dkbUZzZFdVOV15NTIZV3gxW1NrN116cGIkSGx3W1QwOUlpUnpaM2d@Y1hKbGItTnNZWFpsS

WwwZ1BUNGdhWE56ZFdVb2RIbHdaVDBpYzJkNExXMX1aVzVqYkdGM1pTSXNISFpoYkhWbFBXTXVkbUZzZFdVcE8yTTZXM1I1YOdVOV

BTSWtjSEp2WkhWamRDMXBaQopkSUQwLU1HbHpjM1ZsSOhSNWNHVT1IbkI5YjISMVkzUXRhV1FpTENCM11XeDFaVDFqTG5aaGIIVmx

62 Get-AzAttestationPolicy: https://docs.microsoft.com/en-us/powershell/module/az.attestation/get-azattestationpolicy?view=azps-4.4.0

44 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://docs.microsoft.com/en-us/powershell/module/az.attestation/get-azattestationpolicy?view=azps-3.6.1

LVHRgT2x0OMGVYQmxQVDBpSkhOMmIpSmRIRDAtSUdsemMzVmxLSFI1YOdVOUluTjJiaUlzSUhaaGIIVmxQVO11ZG1Gc2RXVXBPMkO2
VzNSNWNHVT1QUO1rZEdWbE1sMGAQVDRNYVhOemRXVWIOkSGx3W1QwaWRHVmMxJaXdnZG1Gc2RXVT1ZeTUyWVd4MVpTazdmVHMifQ.

JwtLength
Algorithm

907
none

PS C:\Users\philber> Get-AzAttestationPolicy maatest AzureAttestationTest OpenEnclave

JwtLength
Algorithm

: version= 1.8j;authorizationrules{c:[type=="$is-debuggable"] =>

permit();};issuancerules{c:[type= is-debuggable"] => issue(type="is-debuggable",
value=c.value);c:[type=="$sgx-mrsigner"] => issue(type="sgx-mrsigner",

value=

.value);c:[typ $sgx-mrenclave

=> issue(type="sgx-mrenclave",

value=c.value);c:[typ $product-id"] issue(type="product-id", value=c.value);c:[type=="$svn"] =>
issue(type="svn", value=c.value);c:[typ “"$tee"] => issue(type="tee", value=c.value);};

: 479
: eyJhbGci0iJub251In6.eyIBdHR1c3RhdGlvblBvbGljeSI6ICIkbVZ5YzIsdmIgMGdNUzR3TzIGMWRHaHZjbWw2WVhScGIyNX1kV3hsYz

Neak9sdDB1WEJsUFQwaUpHbHpMV1JsWW5WbloyRmliR1VpWFNBOVBpQndaWEp@YVhRbOtUdD1PMmX6YzNWaGItTmxjblZzWlhON116cGIk
SGx3W1QwoUlpUnBjeTFriwldKMVoyZGhZbXhsSWwwZ1BUNGdhWE56ZFdVb2RIbHdaVDBpYVhNdFpHVmM1kV2RulWVdK c1pTSXNISFpoYkhWbF
BXTXVkbUZzZFdVcE8YTTZXM1I1YOdVOVBTSWtjMmQOTF cxeWMybG51ibVZ5SWwwZ 1BUNGAhWES6ZFdVb2RIbHdaVDBpYz JIKNEXXMX1jMmxu
YmlWeUlpd2dkbUZzZFdVOV1SNTIZV3gxWINrN116cGIkSGx3W1QwOUlpUnpaM2deY1lhKbGIt TnNZWFpsSWwwZ1BUNGAhWES6ZFdVb2RIbH
daVDBpYzIKNEXXMX1aVzVqYkdGM1pTSXNISFpoYkhWbFBXTXVkbUZzZFdVcE8YTTZXM1I1Y@dVOVBTSWtjSEp2WkhiwamRDMXBaQepkSUQw
LUIHbHpjM1ZsS@hSNWNHVT1IbkJ5Y5jISMVkzUXRhV1FpTENCM11XeDFaVDFqTG5aaG] IVmxLVHRGT2x0MGVYQmxQVDBpSkhOMmIpSmRIRD
AtSUdsemMzVmxLSFI1Y@dVOUluTjliaUlzSUhaaGIIVmxQVe11ZG1Gc2RXVXBPMkO2VzNSNWNHVT1QUO1rZEdWbE1sMGdQVDRNYVhOemRX
VWIKSGX3W1QwaWRHVmMXxJaXdnZG1Gc2RXVT1ZeTUyWVd4MVpTazdmVHMifQ.

: 997

none

Open a browsing session and navigate to https://jwt.ms.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 45

https://jwt.ms/

O
| jwtms: Welcome! x | +

& O & https://jwt.ms VE ® = @ e ‘
R

Enter token below (it never leaves your browser):

eyJhbGci0iJub2511In@.eyIBdHR1c3RhdGlvb1BvbG1ljeSI6ICIkbVZ5YzIsdmIgMGANUZR3TzIGMWRHaHZ jbWw2WVhScGIyNX1kV3hsYzN@ak
9sdDB1WEJsUFQwaUpHbHpMV1JsWWSWbloyRm1iR1VpWFNBOVBpQndaWEp@YVhRbOtUdD1PMmx6YzNWaGItTmxjblZzW1hON116cGIkSGX3W1Qw
0OUlpUnBjeTFrWldKMVoyZGhZbXhsSWwwZ1BUNGAhWES6ZFdVb2RIbHdaVDBpYVhNAFpHVM1kV2RuWVdKc1pTSXNISFpoYkhWbFBXTXVkbUZZZF
dVcE8YTTZXM1I1YQdVOVBTSWtjMmQOTFcxeWMybG5ibVZ5SWwwZ1BUNGAhWES6ZFdVb2RIbHdaVDBpYzIKNEXXMX1jMmxuYmlWeUlpd2dkbUzZz
ZFdVOV15NTIZV3gxWINrN116cGIkSGx3W1QwOUlpUnpaM2d@Y1hKbGItTnNZWFpsSWwwZ1BUNGAhWES56ZFdVb2RIbHdaVDBpYzIkNEXxXMX1aVz
VqYkdGM1pTSXNISFpoYkhWbFBXTXVkbUZZzZFdVcE8Y TTZXM1I1Y@dVOVBTSWtjSEp2WkhWamRDMXBaQ@pkSUQwLULIHbHpjM1ZsS@hSNWNHVT1]
bkJ5YjISMVkzUXRhV1FpTENCM11XeDFaVDFqTG5aaGIIVmxLVHRGT2x8MGVYQmxQVDBpSkhOMmIpSmRIRDAtSUdsemMzVmxLSFI1Y@dVOULuTj
JiaUlzSUhaaGIIVmxQVe11ZG1Gc2RXVXBPMkO2VZNSNWNHVT1QUO1rZEdWbE1sMGAQVDRNYVhOemRXVIWOkSGx 3W1QwaWRHVmMxJaXdnZG1Gc2RX
VT1ZeTUyWVd4MVpTazdmVHMifQ.

Decoded Token Claims
{

"alg": "none"
A

"AttestationPolicy":
"dmVyc21vbjegMS4w02F1dGhveml6YXRpb25ydWx1c3tjO1t0eXB1PTO1IG1zLWR1YNVNnZ2FibGUiXSA9PiBwZXItaXQoKTt9021zc3VhbmNlc
nVsZXN7YzpbdH1lwZTO9IiRpcy1kZWI1Z2dhYmx1I10gPT4gaXNzdWUodH1wZT@iaXMtZGVidWdnYWIsZSIsIHZhbHVIPWMudmFsdWUpO2MEW3R
5cGUIPSIkc2d4LWlyc21nbmVyIlegPT4gaXNzdWUodH1wZT@ic2d4LWlyc21lnbmVyIiwgdmFsdWU9Yy52YWx1ZSk7YzpbdHlwZT@9IiRzZ3gth
XJ1bmNsYXZ1I10gPT4gaXNzdWUodH1wZTOic2d4LW1yZW5jbGF2ZSIsIHZhbHV1PWMudmFsdWUpO2MEW3R5cGUOPSTIkcHIVZHVjdC1pZCIdIDO
-IG1zc3V1KHRS5cGU9INBYb2R1Y3QtaWQiLCB2YWx1ZT1jLnZhbHV1KTtjO1t@eXB1PTOiJHN2bildIDO-
IG1zc3V1KHR5cGUIINN2biIsIHZhbHV1PWMudmFsdWUpO2M6W3R5cGUIPSIkdGV1I10gPT4gaXNzdWUodHIwZTOidGV1IiwgdmFsdWU9Yy52YW
x1ZSk7fTs"
j o

Copy the value of the AttestationPolicy field, which corresponds to the Base64Url decoded attestation policy.
For example, in our illustration:

dmVyc21vbjogMS4w02F1dGhvecml6YXRpb25ydix1c3tjO1t@eXB1PTOiJG1lzLWR1YNVNnZ2FibGUiXSA9PiBwZXJtaXQoKTt9021zc
3VhbmN1cnVsZXN7YzpbdH1wZTO9IiRpcy1lkZWI1Z2dhYmx1I10gPT4gaXNzdWUodH1wZTOiaXMtZGVidWdnYWIsZSISIHZhbHV1PW
MudmF sdWUpO2M6W3R5cGUIPSIkc2d4LWlyc21nbmVyI10gPT4gaXNzdWUodH1wZTOic2d4LW1lyc21nbmVyIiwgdmFsdWU9Yy52YWx
1ZSk7YzpbdH1wZT@O9IiRzZ3gtbXJ1bmNsYXZ1I10gPT4gaXNzdWUodH1wZTO1ic2d4LW1yZW5jbGF2ZSIsIHZhbHV1PWMudmFsdWUp
02M6W3R5cGUIPSIkcHIVZHVjdC1pZCIdIDe-
IG1zc3V1KHR5cGU9INBYyb2R1Y3QtaWQiLCB2YWXx1ZT1jLnZhbHV1KTtjO1t@eXB1PTOiJHN2biJdIDO -
IG1zc3V1KHR5cGUIINN2biIsIHZhbHV1PWMudmFsdWUpO2M6W3R5cGUIPSIkdGV1I1l0gPT4gaXNzdWUodH1wZTOidGV1IiwgdmFsd
WU9YyY52YWx1ZSk7fTs

From the browser session, open another tab and navigate to https://base64.guru/standards/base64url/decode.
Paste the Base64Url decoded attestation policy, click Decode from Base64URL, and then show the decoded

policy.

46 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://base64.guru/standards/base64url/decode

| - jwtms: Welcome! x w Base64URL Decode | Base64URL X =

& O & https://base64.guru/standards/base64url/decode Y @ = e

Ba S e 64AG u ru Home Converter Developers Learn Standards Tools

A virtual teacher who reveals to you the great secrets of Base64

Base64URL Decode

Base64URL Decode is a free online tool for decoding Base64URL values to original data. By default, it decodes Base64URL as plain
text, nevertheless, it also supports binary data, such as images or other files.

Base64URL* copy clear download ‘

dmvyc21vbjegMs4w02F1dGhveml6YXRpb25ydiix1c3tj01t@eXBlPT@iIGLZLWR1VNVNZ2F ibGUiXSASPiBWZX]taXQoKTt9021zc3VhbmNlenVsZXN7YzpbdH1WZTO9IiRpey1kZWI1Z2dh |
Ymx1I1ogPT4gaXNzdWUodHlwZTOiaXMtZGVidWdnYWIsZSIsIHZhbHVIPWMudmFsdWUpO2MEW3R5cGUIPSIke2d4LiWlyc2lnbmVyIlogPT4gaXNzdWUodHIwZT@ic2d4LWlyc2lnbmVyIing
dmFsdWU9Yy52YWx1ZSk7YzpbdH1wZTBITiRzZ3gtbXJ1bmNsYXZ1118gPT4gaXNzdWUodHIwZT@ic2d4LW1lyZWSjbGF2ZSTs IHZhbHV1PWMudmFsdWUp02MBW3R5cGUIPSTkcHIVZHVjdClp
ZCJdIDe-IG1zc3V1KHR5cGUIINByb2R1Y3QtaWQiLCB2YWX1ZT1iLnZhbHV1KTtj01t@eXBlPTOiIHN2biIdIDE-

1G1z¢3VIKHRScGUSINNZbiIsIHZhbHY IPWMudmFsdWUpO2MEW3R5cGUIPSIkdGV1I1legPTdgaXNzdWUodHIwZ T@1dGV1IiwgdmF sdWU9Yy52YNx1ZSk7fTs

Decode from Base64URL

Text copy clear download

version= 1.@;authorizationrules{c:[type=="$is-debuggable”] => permit();};issuancerules{c:[type=="¢is-debuggable”] => issue(type="is-debuggable”,
value=c.value);c:[type=="$sgx-mrsigner"] => issue(type="sgx-mrsigner"”, value=c.value);c:[type=="$sgx-mrenclave"”] => issue(type="sgx-mrenclave",
value=c.value);c:[type=="$product-id"] => issue(type="product-id", value=c.value);c:[type=="$svn"] => issue(type="svn", value=c.value);c:
[type=="$tee"] => issue(type="tee", value=c.value);};

LI you want to encode data to Base64URL string, check the Base64URL Encoder. Or, you may want to encode data to Base64 using the
. online convertor which supports various standards.

| Add new comment

I If you have any questions, remarks, need help, or just like this page, please feel free to let me know by leaving a comment using the form bellow.
I will be happy to read every comment and, if necessary, I will do my best to respond as quickly as possible. Of course, spammers are welcome only
as readers. -

Creating a user defined attestation policy

The attestation policy contains properties that need to be attested, alongside the rules that should apply to these
properties.

The client TEE based application making the attestation call sends attestation evidence which the service parses and
converts into incoming claims (set of properties, value).

Then the attestation provider processes the claims, based on what's defined in the attestation policy, and returns
the computed result.

Understanding the components of an attestation policy

As illustrated in the above screenshot, an attestation policy file is structured as follows:

version= 1.0;

authorizationrules{c:[type=="$is-debuggable"] => permit();};

issuancerules{

:[type=="$is-debuggable"] => issue(type="is-debuggable", value=c.value);
:[type=="$sgx-mrsigner"] => issue(type="sgx-mrsigner", value=c.value);
:[type=="$sgx-mrenclave"] => issue(type="sgx-mrenclave", value=c.value);
:[type=="$product-id"] => issue(type="product-id", value=c.value);
:[type=="$svn"] => issue(type="svn", value=c.value);

0

00N o0 n

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 47

}s

c:[type=="$tee"] => issue(type="tee", value=c.value);

A policy file has 3 segments:

1. Version,

2. Authorizationrules,

3. Issuancerules.

Segment

Version

Authorizationrules

Issuancerules

Description
Version=MajorVersion.MinorVersion

The version is the version number of the grammar.
Currently the only version supported is version 1.0.

The authorization rules are a collection of claim rules that will be checked first, to determine if the
attention service should proceed to Issuancerules.
The claim rules apply in the order they are defined.

The issuance rules are a collection of Claim rules that will be evaluated to add additional information
to the attestation result as defined in the policy.
The claim rules apply in the order they are defined.

Using the available properties for attesting SGX enclaves / Open Enclave

MAA cryptographically validates multiple properties of the SGX platform, including the microcode, firmware, and

software components.

The following client application properties that can be used for attestation are as follows:

Property
tee
sgx-mrsigner

sgx-mrenclave

is-debuggable
product-id

svn

Description
The type of Trusted Execution Environment
A hash of the public key used for signing the enclave library

A cryptographic hash of the enclave log (measurement) as it goes through every step of the build
and initialization process

Indicates whether the enclave library supports debugging.
An identifier of the enclave library (each library signed with a given key has a unique product-id)

Security version number

The following platform properties that can be used for attestation are as follows:

Property
TCB Info

Quoting Enclave Identity
PCK Certificate

Description

SGX-specific Trusted Computing Base® information for a given Intel processor type (e.g. SKU
information, PCE identifier).

Identity information for SGX Quoting Enclave issued by Intel

Provisioning Certification Key (PCK) certificate for a specific SGX enclave-enabled machine with a
specified TCB level (listed in the TCB Info structure.)

6 Trusted Computing Base: https://en.wikipedia.org/wiki/Trusted_computing_base

48 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://en.wikipedia.org/wiki/Trusted_computing_base

PCK Revocation List Certificate Revocation List (CRL) of all revoked PCK Certificates. This CRL is issued by Intel CA.

Understanding the policy language and the claim rule grammar

MAA provides administrators with the option to define custom rules that they can use to determine the behavior of
attestation claims with the claim rule grammar.

You can use the claim rule grammar syntax examples to create a custom rule that enumerates, adds, deletes, and
modifies claims to meet the needs of your organization:

e Rules are separated from each other with semicolons.

e Each claim rule needs to be enclosed in [].

e Action needs to be followed by ().

e A prefix(string) followed by "' can be used to identify a claim in the claim rule, for later usage in the policy.

For example:

F1:[type=="0SName” , issuer=="CustomClaim”] &&
C2:[type=="0SName” , issuer=="AttestationService”, value== Fl.value]
=> issue(claim=C2);

The following are the operators that can be used to check conditions:

Value type Operations Supported

Integer == (equals), != (not equal), <= (less than or equal), < (less than), >= (greater than or equal), >
(greater than)

String == (equals), != (not equal)

Boolean == (equals), != (not equal)

The claim rule grammar consists of the following components, separated by the “=>" operator:
e Authorizationrules. You can use conditions in a rule to check input claims and determine whether the
Issuancerules statement of the policy should be executed (permit, deny).

Action Verb Description

Permit The incoming claim set can be used to compute the Issuancerules.
Does not take any claim as a parameter.

Deny The incoming claim set will not be used to compute the Issuancerules.
Does not take any claim as a parameter.

Add Add the claim to the incoming claim set.
Any claim added to the incoming claim set will be available for the subsequent claim rules.

e TIssuancerules. In an issuance rule, claims rules are processed based on the issuance statements (issue,
add, issueproperty) that you program into the claim rule.

Action Verb Description

Add Add the claim to the incoming claim set.
Any claim added to the incoming claim set will be available for the subsequent claim rules.

Issue Add the claim to the incoming claim set and to the result.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 49

Any claim issued to the incoming claim set will be available for the subsequent claim rules.

issueproperty Special properties on the attestation result can be set using the Issueproperty.

The only supported property is report_validity_in_minutes which defines for how long the outgoing
claim set report is valid for.

Understanding what a claim is

To understand the claim rule grammar, in context of the MAA and your attestation provider, it is important to
understand what a claim is.

A claim is a set of properties, that convey information. A claim can be visualized as below.

[type="TEE", value="True" , valueType="String", issuer="AttestationService"]

A claim contains the following properties:

e type. The name of the property.

e value. The value of the property.

e valueType. The data type of information stored in the value property. Supported types are String,
Integer, Boolean.

Note if not defined the default value is String.

e issuer. Information(string) regarding the issuer of the claim. The issuer can be one of the following:

o AttestationService. Attestation Service generates a set of claims after parsing the attestation
evidence and adds it to the incoming claim set. The issuer in this case is set as
AttestationService.

o AttestationPolicy. The attestation policy (as defined by the administrator) itself can add claims
to the incoming claim set during processing. The issuer in this case is set as AttestationPolicy.

o CustomClaim. The attestor (client application) can also add additional claims to the attestation
evidence. The issuer in this case is set as CustomClaim.

Note If not defined the default value is CustomClaim.

Creating the attestation policy file JWS

It is thus of utmost importance that the attestation policy evaluated by the attestation provider for a particular TEE
type is in fact the intended user defined attestation policy written by you or the administrators and it has not been
tampered or modified by external entities. This protection is achieved by inserting into the attestation report a
cryptographic evidence so that the relying party can verify that the policy evaluated by the service is indeed the
one that is expected.

The administrator can upload a signed policy object.

After creating an attestation policy file (see previous section), administrators will create an attestation policy file
JWS.

50 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

The following steps should typically be performed:

1. Generate the JWS with attestation policy file (utf-8 encoded) as the payload. The payload identifier for the
base64url® encoded policy should be AttestationPolicy.

Following is a sample JWT:

Header: {"alg":"none"

Payload: {"AttestationPolicy":"base64url(policy file)"}

Signature: {}

Complete JWS Web signature (JWS, RFC 7515): eyJhbGci0iJub251TIn0 . XXXXXXXXX.

2. Optionally sign the policy, currently MAA supports the following algorithms:

a. None - When you don't want to sign the policy payload.
b. RS256 — Supported algorithm to sign the policy payload.

If the trust model is AAD (see section § Understanding the MAA's trust model above) meaning that Microsoft is
allowed to be operationally within the Trusted Computing Base (TCB), customers can specify an unsecured RFC

7515 signature (with a fixed header of '{"alg":"none"}). The unsecured signature option allows a customer to
specify a JWS without performing any cryptographic operations.

Alternatively, the customer can define a signing key used to sign the certificate and creating an X.509 certificate
wrapping that signing key. The customer will then create a JWS using this newly created X.509 certificate. MAA will
validate that the signing key was used to sign the JWS.

The signer should be a part of the JWS.

When MAA is operating in “Isolated” trust mode, the service will ensure that the JWS was signed using the key
contained in the JWS and that the certificate chain created by the x5c field in the JWS header contains one of the
configured root policy certificates.

Note This also means that when MAA is configured in “Isolated” mode, it will reject all self-signed certificates and
all unsigned JWS documents.

As an illustration, the following Python sample script can be used to perform the above steps:

from OpenSSL import crypto
import jwt
import getpass

def cert_to_b64(cert):
cert_pem = crypto.dump_certificate(crypto.FILETYPE_PEM, cert)
cert_pem_str = cert_pem.decode('utf-8")
return ''.join(cert_pem_str.split('\n')[1:-2])

print("Provide the path to the PKCS12 file:")
pkcs12 path = str(input())
pkcs12_password = getpass.getpass("\nProvide the password for the PKCS12 file:\n")
pkcs12 bin = open(pkcsl2 path, "rb").read()
pkcs12 = crypto.load_pkcs12(pkcs12_bin, pkcsl2_password.encode('utf8'))
ca_chain = pkcsl2.get_ca_certificates()
ca_chain_b64 = []
for chain_cert in ca_chain:
ca_chain_b64.append(cert_to_b64(chain_cert))

64 base64url encoding: https://brockallen.com/2014/10/17/base64url-encoding/

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 51

https://brockallen.com/2014/10/17/base64url-encoding/

signing cert_pkey = crypto.dump_privatekey(crypto.FILETYPE_PEM, pkcsl2.get_privatekey())
signing cert_b64 = cert_to_b64(pkcsl2.get_certificate())
ca_chain_b64.insert(0, signing_cert_b64)

print("Provide the path to the policy text file:")

policy_path = str(input())

policy_text = open(policy_path, "r").read()

encoded = jwt.encode({'text': policy_text }, signing cert_pkey, algorithm='RS256', headers={'x5c"'
ca_chain_b64})

print("\nAttestation Policy JWS:")

print(encoded.decode('utf-8"))

Uploading the attestation policy file JWS

Once the attestation policy file JWS is created for the user defined attestation policy, it can then be uploaded to
the attestation provider.

For the sake of the illustration, let's supposed that you defined an attestation policy for the Open Enclave TEE
endpoint, and that the related file JWS is named userdefined.oe.policy.txt.

From a PowerShell console, upload your attestation policy file JWS to your attestation provider:

PS C:\> $policy = Get-Content -Path .\userdefined.oe.policy.txt
PS C:\> Set-AzAttestationPolicy -Name <your_ AttestationProviderName> -ResourceGroupName
<your_ResourceGroupName> -Tee <your TEEType> -Policy $policy

e Replace <your_AttestationProviderName> with the name of your choice for your new attestation
provider. For example, maatest in our illustration.

e Replace <your_ResourceGroupName> with the name you have chosen before for the previous resource
group. For example, AzureAttestationTest in our illustration.

e Replace <your_ TEEType> with one of the supported TEE types: SgxEnclave, OpenEnclave,
CyResComponent and VBSEnclave. For example, OpenEnclave in our illustration

For example, to set the user defined policy for TEE type OpenEnclave for the attestation provider maatest in our
illustration:

PS C:\> $policy = Get-Content -Path .\userdefined.oe.policy.txt
PS C:\> Set-AzAttestationPolicy -Name maatest -ResourceGroupName AzureAttestationTest -Tee
OpenEnclave -Policy $policy

Note For more information on the command and its parameters, see Set-AzAttestationPolicy®.

When the attestation policy file JWS is uploaded, the attestation provider validates the user defined policy:
o If the policy file is free of syntax errors the policy file gets accepted by the provider.

Once the provider has validated the policy document, it will save the policy in storage and return a JWT
signed with the tenant specific signing key which contains a claim named aas-policyHash which

65 Set-AzAttestationPolicy: https://docs.microsoft.com/en-us/powershell/module/az.attestation/set-azattestationpolicy?view=azps-4.4.0

52 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://docs.microsoft.com/en-us/powershell/module/az.attestation/set-azattestationpolicy?view=azps-3.7.0

contains the hash of the policy file JWS provided request. The value of the aas-policyHash will be the
Base64url encoded SHA256 hash of the policy document expressed in the payload request.

If the certificate in the policy file JWS was matched with a configured root certificate, then the JWT will
also contain a claim named aas-policySigningCertificate, which will contain the policy signing
certificate encoded as a JSON Web Key.

o If the policy file contains syntax errors the policy file will be rejected by the provider.

MAA will reject all policy file JWS that have any header parameters other than x5¢, kid, jwk or alg —a
client MUST provide an x5c value for the certificate chain.

Resetting the attestation policies of your attestation provider
Run the following command to reset the attestation policy from a tenant in MAA for an attestation provider:

PS C:\> Set-AzAttestationPolicy -Name <your_ AttestationProviderName> -ResourceGroupName
<your_ResourceGroupName> -Tee <your_TEEType>

e Replace <your_AttestationProviderName> with the name of your choice for your new attestation
provider. For example, maatest in our illustration.

e Replace <your_ResourceGroupName> with the name you have chosen before for the previous resource
group. For example, AzureAttestationTest in our illustration.

e Replace <your TEEType> with one of the supported TEE types: SgxEnclave, OpenEnclave,
CyResComponent and VBSEnclave. For example, OpenEnclave in our illustration

For example, to reset the attestation policy for the TEE type OpenEnclave for the attestation provider maatest in
our illustration:

PS C:\> Reset-AzAttestationPolicy -Name maatest -ResourceGroupName AzureAttestationTest -Tee
OpenEnclave

Note For more information on the command and its parameters, see Set-AzAttestationPolicy®®.

Using attestation with attestation providers

Sending an attestation request

MAA, and more specifically, Microsoft provided attestation default providers or your own attestation providers will
accept an input set of properties, evaluate that evidence based on a policy and emit a set of claims in the form of
a JWT token.

The JWT token is signed so that a relying party can validate the token. Relying party needs to validate that MAA
issued the token.

66 Set-AzAttestationPolicy: https://docs.microsoft.com/en-us/powershell/module/az.attestation/set-azattestationpolicy?view=azps-4.4.0

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 53

https://docs.microsoft.com/en-us/powershell/module/az.attestation/set-azattestationpolicy?view=azps-3.7.0

Furthermore, the relying party can optionally validate that the expected attestation provider, i.e. the right instance
of MAA was used to issue the token. Every attestation provider is tied to a tenant and each attested provider has
its own policy for the different TEE types as you now understand.

This way a relying party can confirm that the JWT token was issued by an attestation provider that belongs to
Tenant ‘A" with Policy 'B'.

For that purpose, the issued JWT tokens by MAA contains iss (issuer) field in the payload. The issuer field
contains the base URI of the attestation provider. The base URI binds the token to an instance of MAA.

Leveraging an attestation’s response

Getting and decoding the JWT token

As mentioned, the JWT token is signed so you can also validate that the token is originated from a trusted
attestation provider.

Validating the JWT token signature
You, as a developer, or a relying party can typically validate the issued attestation token by:

1. Extracting the value of the iss field and appending /.well-known/openid-configuration to form the URL of
the OpenID Metadata endpoint.

2. Retrieving the metadata and extract the jwks_uri endpoint, and then using that URL to retrieve the
token signing keys

3. Ordirectly retrieving the keys form jwks_url from the iss claim as it too is well known endpoint (You
will need to append /certs to base URL from iss field).
Verifying the signature of the token using one of the signing keys from the jwks_uri endpoint.

5. Extracting the MAA enclave quote from the cert extension

6. Validating the MAA enclave quote

This allows to determine that:

1. The attestation token was issued by MAA. OpenlD metadata endpoint and jwks_uri endpoint are
protected using TLS.
2. Optionally, the token was issued by MAA TEE with the signing key generated in the TEE.

Optionally, you, as a developer, or the relying party can also determine if the attestation token was issued by the
expected attestation provider, i.e. the right instance of MAA. You can check the tenant information in the base URI
to determine the particular instance of the attestation provider that issued the JWT token.

Deleting your own attestation provider

Eventually, when you no longer need a previously created attestation provider (see section § Creating your own
attestation provider above, you can delete it.

PS C:\> Remove-AzAttestion -Name <your_AttestationProviderName> -ResourceGroupName
<your_ResourceGroupName>

54 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

e Replace <your_AttestationProviderName> with the name of your choice for your new attestation
provider. For example, maatest in our illustration.

e Replace <your_ResourceGroupName> with the name you have chosen before for the previous resource
group. For example, AzureAttestationTest in our illustration.

For example, to remove the attestation provider maatest in our illustration:

PS C:\> Remove-AzAttestion -Name maatest -ResourceGroupName AzureAttestationTest

Note For more information on the command and its parameters, see Remove-AzAttestationPolicy®’.

67 Remove-AzAttestation: https://docs.microsoft.com/en-us/powershell/module/az.attestation/remove-azattestation?view=azps-4.4.0

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 55

https://docs.microsoft.com/en-us/powershell/module/az.attestation/remove-azattestation?view=azps-3.7.0

Developing TEE-based applications using
attestations

To build the example scenarios described in the rest of the document, we were inspired by two examples of
file_encryptor and remote_attestation code from the Open Enclave SDK available on the GitHub repo at the URL
https://github.com/openenclave/openenclave/tree/v0.8.1.

The primary objective of this document is to deepen the attestation process. We wanted to illustrate this by
basically implementing the transfer of encrypted data to an enclave, a necessary step for the implementation of
the Multi-party Machine Learning scenario described below.

The attestation process allows a party to validate that it is communicating with a real enclave but also, through the
exchange of attestation structures, to transmit information (for example encryption keys) which will then make it
possible to transfer encrypted data to the enclave. The three proposed scenarios constitute a progression in the
use of attestations to serve the same type of scenario but in cases closer to reality.

Disclaimer

The code style from the two samples has been respected as much as possible for the development of the new
scenarios presented below.

Please note, this implementation should only be considered as an example allowing a better understanding in
using the remote attestation process in a simplified scenario of data transfer between several parties respecting
confidentiality. These are by no means examples of implementation to be put into production.

Introducing the Multi-party Machine Learning use case

This scenario, which demonstrates how to share of information between several parties without anyone revealing
their own data to the others, is one of the emblematic examples made possible by confidential computing.

The scenario is the following: several hospitals have their own data sets from the patients they treat. They wish to
develop a machine learning model to be able, for example, to make analyzes from patients’ radiographies or
scanners. This model should allow them to detect abnormalities that would be difficult to detect by humans, and
thus help doctors in their diagnosis.

However, each hospital has an insufficient data set to effectively train a model and does not wish to share its own
data with other hospitals, both for compliance purposes concerning the protection of health data and for
competitive aspects such as this may be the case for private hospitals.

The solution, however, would be to share the data from all hospitals to train the model so that everyone can
request the model afterwards for future detections. Confidential calculation can meet these needs by authorizing
the sharing of data for common processing without disclosing their own data to the other parties.

The implementation is based on the features offered by enclaves to carry out processing on data which is sent to
them without the data or the processing being visible from outside.

56 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://github.com/openenclave/openenclave/tree/v0.8.1

However, to set up this scenario:

e Each party must be responsible beforehand for encrypting its data before transmitting it to the enclave, to
ensure that it cannot be visible either by the other parties or by the cloud provider;

e It must be possible to exchange with the enclave the encryption key used to protect the data : this will allow
the enclave to decrypt the data to carry out the training of the model or inference on the proposed data.

The principle of implementation is as follows:

K,))
WV
l Hospital B

[[
QK QK
Host Operating System

Hospital A

Figure 7 Multi party-Machine Learning use case

Hospital A locally has a set of data that it wishes to submit for training the machine learning model. It encrypts its
data locally with a symmetric key (in reality, block encryption will most certainly use a set of symmetric keys). The
encrypted data is then copied to a cloud storage accessible by the enclave.

To start the processing, the client part of the hospital A application communicates with the enclave which is
running on a server in the datacenter and asks the enclave for an attestation to ensure that it communicates with
a genuine enclave. This communication will be the preferred means for the enclave to transfer the public part of a
key pair inside the attestation (the asymmetric key pair has been generated previously inside the enclave and does
not need to be sealed).

After validation of the attestation by requesting an attestation service, the hospital A application encrypts the
symmetric key used to encrypt the data with the public key of the enclave and returns it to the enclave.

The enclave is then able to use its private key to decrypt the symmetric key. The data available on the cloud
storage is retrieved by the enclave which can decrypt it with the symmetric key and train the machine learning
model running confidentially inside the enclave.

Hospital B follows the same process, allowing to train the model without any party revealing its data.

Once trained, the model can be used in the same way by transferring to the enclave the data to be processed in
an encrypted manner and recovering later on the results of the inference in complete confidentiality.

The 3 scenarios

The 3 example scenarios that are implemented bring a certain progression in the use of attestations for the
transfer of encrypted data to an enclave:

1. Secure data transfer between enclaves running on the same host based on a remote attestation; it could
have been possible to rely on a local attestation but this choice allows to test the remote attestation to
prepare the following scenario.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 57

2. Secure data transfer between enclaves running on different hosts with remote attestation and
communication between hosts across the network using the gRPC protocol.

3. Data transfer triggered by a client application not running in an enclave and leveraging Azure Attestation
Service to validate the enclave and send it an encryption key to decrypt the data to be processed.

Each scenario is explained with pseudo-code based on a diagram. Then sequence diagrams (in format inspired by
UML) are proposed to describe the initialization and key exchange part through the attestation process.

Simplified view of the process

The diagram below explains the basic principle used to transfer encrypted data between two enclaves. This same
principle will then be used regardless of the nature of the client application (enclave or not) and the type of
attestation service used.

Create Create
°Enclave °Enclave

Generate &, Privkb
osym key Q, Pubkb +—— QPubkb — €, Pubkb S Symk

Enclave A Enclave B

Host

Figure 8 Transferring encrypted data between enclaves

e During step 1 of the scenario, two enclaves, enclave A and enclave B are created on an SGX host and
their initialization code is launched.

e Enclave A generates a symmetric key and then retrieves the data to be transferred to encrypt it with
this key. If the data is large, it is cut into blocks (step 2).

e For its part, enclave B generates an asymmetric key pair and waits for receiving a request.
¢ Enclave A establishes a communication channel with enclave B and requests an attestation (step 3).

e The public key of enclave B is transmitted to enclave A which uses it to encrypt the symmetric key
previously used to encrypt the data.

e The encrypted symmetric key is transmitted to Enclave B which decrypts it with the RSA private key
and uses it to decrypt the data before processing.

58 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

Scenario 1. Exchanging encrypted data between local
enclaves

Overview of the scenario

CACHE

Azure Internal
Attestation
Service DCAP

Azure Cloud
[_L] VM Host SGX

Ageg:::;ure get_remote_report_with_key

verify_report_and_set_ke!
& ot S Y

Enclave Enclave

| |
] |
| v 1
I |
-—»l verify_report | | get_report 1
| I
| I
| |
I I

|
|
A4 !
1
|

__

N}

Resource Group

Figure 9 Exchanging encrypted data between enclaves

This first scenario uses the model described above with the implementation of two enclaves on the same host but
based on a remote attestation. However, a small additional complexity was added related to a limitation, in the
SGX implementation, of the size of the information that can be transmitted in the attestation.

Indeed, the size of the report_data field is limited to 64 bytes, which does not allow to transmit an RSA 2048 key
which requires 256 bytes. It is therefore not possible to directly convey the public key generated by the
destination enclave in the attestation. The workaround is to generate a hash of the RSA key, specifically a SHA256
that fits in 64 bytes and that will be stored in the report_data field of the attestation.

The RSA public key will therefore be transmitted via the communication channel, without any particular
protection. To verify that the transmitted public key was not changed during the transfer, Enclave A will just have
to recalculate the hash of the public key and compare it to the hash transmitted in the attestation.

The remote attestation relies on a DCAP client made available by the Open Enclave SDK and installed on the SGX
host machines which allows to access to the Azure Internal Attestation Service, without the machines having to be
connected to internet.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 59

Note This solution is inspired by what is described in the example Remote Attestation Sample du SDK Open
Enclave®®,

10.

At the beginning, the application running on the host creates the two enclaves, enclave A and enclave B,
and their initialization code is launched.

Enclave A generates an AES 256-bit symmetric key, retrieves a file from the disk and encrypts its data with
this key. This encrypted data is transferred to the host's memory in the untrusted part (which is not a
problem since it is encrypted).

For its part, enclave B generates an RSA 2048-bits key pair and waits for a request. Note that the private key
part of the key pair remains stored in the enclave's memory.

Enclave A establishes a communication channel with enclave B and requests an attestation from it.

Enclave B computes a hash (SHA 256) of its RSA public key and generates an attestation (REPORT structure)
where this hash is included in the report_data of the attestation. The attestation is returned to enclave A, as
well as the public key (outside of the attestation).

Enclave A requests a validation of the received attestation. If the return is OK, this confirms the validity of
enclave B and guarantees the integrity of the information contained in the attestation structure.

Enclave A computes the hash of the public key and compares it with the hash value transmitted in the
report_data field of the attestation. Identical values confirm that the public key was not altered during its
transfer.

Enclave A encrypts the AES private key with the RSA public key of enclave B. It calculates the hash of the
encrypted symmetric key and generates an attestation in which this hash is inserted in the report_data field.

The attestation is finally returned to enclave B along with the encrypted symmetric key.

Enclave B recomputes the hash on the encrypted symmetric key and compares it to report_data value. If
there is a match, enclave B decrypts the symmetric key with its private key and then uses it to decrypt the
data.

68 The Remote Attestation Sample https://github.com/openenclave/openenclave/tree/master/samples/remote_attestation#remote-
attestation-sample

60

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://github.com/openenclave/openenclave/tree/master/samples/remote_attestation#remote-attestation-sample
https://github.com/openenclave/openenclave/tree/master/samples/remote_attestation#remote-attestation-sample

Scenario 1T workflow diagram

Local Attestation Sequence Diagram

create_enclave
OE_OK

iy

<+

create_enclave
generate sym key

OE_OK

v

get_remote_report_with_key(PUBL

Sha256 of pub key b
in report.report_data

report b, pub key b

<

= verify_report_and_set_ke(pub key b)

oe_verify_report

[report not valid]

exit
ret=1

OE_OK

recompute Sha256 on pub key b
and compare to report_data

—

[Sha256 match]

[Else]

ret=1

Sym Key Sync
See Sym Key Sharing
Sequence Diagram

exit
oe_terminate_enclave

oe_terminate_enclave

v

return ret;

Figure 10 Scenario 1: Local Attestation Diagram

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 61

Sym Key Sharing Sequence Diagram

init and attestation

get_remote_report_with_key(SYM)

encrypt sym key with PubKey(b)

Sha256 of encrypted SymKey(a)
by PubKey(b) in report.report_data

> report, encrypted sym key

verify_report_and_set_key(Encrypted sym key)

oe_verify_report

opt
[report not valid]

exit
ret=1

OE_OK

recompute Sha256 of encrypted sym key
and compare to report_data

)

alt

[Sha256 match]

dectypt sym key with private b

[Else]

exit

ret=1

Figure 11 Scenario 1: Symmetric Key Sharing Diagram

A sample code walkthrough for the scenario

In this sample, the host application does the following:

1. Create the two enclaves, enclave_a and enclave_b:

oe_create_secretsharinge_enclave(enclaveImagePath, OE_ENCLAVE_TYPE_SGX, OE_ENCLAVE_FLAG_DEBUG, NULL,
0, &enclave);

62 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

int

int

2. Ask enclave_b for a remote report and a public key:

get_remote_report_with_key(
KeyKind key_kind,

uint8 t** key,

size_t* key_size,

uint8_ t** remote_report,
size_t* remote_report_size);

Where:

e key kind set to KeyKind: :PEM

e key will hold the public key that identifies enclave_b

e remote_report will contain a remote report signed by the enclave platform for use in remote
attestation

Implementation of get_remote_report_with_key calls oe_get_report OE_CALL, which generates the
report. Then the hash of the public key is computed and stored it in the report_data. The enclave allocates
space and copies its public key into the host memory, addressed by key pointer.

3. Ask enclave_a to attest (validate) enclave_b's remote report. This is done through the following call:

verify_report_and_set_key(
KeyKind key_kind,

uint8_t* key,

size_t key_size,

uint8_t* remote_report,
size_t remote_report_size);

Where:

e key kind set to KeyKind: :PEM
e key holds the public key that identifies enclave_b
e remote_report contains the remote report to verify

Implementation of verify_report_and_set_key calls oe_verify_report OE_CALL, which verifies the
report, and recomputes the hash of the key to compare it to the report data.
The public key is then copied from host to enclave's memory for future use.

Now the secure channel is set. Step 2 and 3 a repeated to ask symmetrically enclave_b to validate
enclave_a. This is represented in the Sym Key Sharing Sequence Diagram.

4. Ask enclave_a for a remote report and its symmetric key encrypted by enclave_b public key. This is done
through the following call: get_remote_report_with_key

Where:

® key kind set to KeyKind: :AES

e key holds the public key that identifies enclave_b

e remote_report contains a remote report signed by the enclave platform for use in remote
attestation

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 63

With key_kind set to AES, the symmetric key is encrypted by the previously set public key, then the hash
of this data is included into the generated report.

Ask enclave_b to attest (validate) enclave_a's remote report. This is done through the following call:
verify_report_and_set_key where:

® key kind set to KeyKind: :AES
e key holds the encrypted symmetric key
® remote_report contains the remote report to verify

With key_kind set to AES, on top of verifying the hash from the report_data, the key data from host
memory is decrypted and stored in enclave's memory.

Now both enclaves share the same symmetric key and can encrypt/decrypt data.

Free the resource used, including the host memory allocated by the enclaves and the enclaves themselves.
For example:

oe_terminate_enclave(enclave_a);
oe_terminate_enclave(enclave_b);

Scenario 2: Exchanging encrypted data between remote
enclaves

Overview of the scenario

64

, Azure Cloud
CACHE
... > 4
: Azure Internal
: Attestation
: Service DCAP
Private Subnet Private Subnet
i VMHost SGX VM Host SGX
3 Client Server A
E'] Ev]
Agent Azure Agent Azure
DCAP DCAP
——————————————————
Enclave Enclave
A 4 A4

1 I
1 I
1 I
| I
verify_report | I get_report | I get_report I | verify_report
I I
! I
1 i
1 I

%) N%)

Resource Group Resource Group

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

Figure 12 Exchanging encrypted data between remote enclaves

This scenario is like the previous scenario with the difference that the enclaves run on different hosts. This implies
that communication between the two enclaves is done through the untrusted parts of the applications that
communicate across the network.

The choice was made to use gRPC for its efficiency (it relies on HTTP/2) and the fact it is implemented in many
languages which will be useful for the following scenario. In addition, gRPC integrates Protocol Buffers (Protobuf)
and its interface description language as a way of serialization.

As for the previous scenario, the remote attestation relies on a DCAP client that provides access to the Azure
Internal attestation service for internal hosts.

Note For more information about gRPC and Protobuf, see gRPC®°.

69 gRPC: https://grpc.io/

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 65

https://grpc.io/

Scenario 2 workflow diagram

Remote Attestation Sequence Diagram

create_enclave

OF_OK GetAftestation(ATTESTATION)

Sha256 of pub key b
in repon.reguoﬂ_ggtu

AttestationReply{report b, pub key b}

:vevify_report.and_su_key(PEM, pub key

oe_verify_report
[report not valid]
ret=1
recompute Sha256
on pub key b
and compare to report_data
2256 mat
& ' OE_OK
ret=1

See Sym Key Sharing
Sequence Diagram

oe_terminate_enclave

retum ret; i

return ret;

Figure 13 Scenario 2: Remote Attestation Sequence Diagram

66 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

init and attestation | i init and attestation
>

generate sym key

encrypt sym key with pub b

get_remote_report_with_key(AES)
Sha256 of symmetric key b
in report report_data

report, encrypted sym key
VerifyAtiestation(SY M, report, sym key)

verify_report_and_set_key(AES, sym key)

oe_veiify_report

[report not valid]

et
ret=1

and compare to report_data

W recompute Sha256 on encrypted sym key

at | le—
[Sha256 match] OE_OK
<
‘ decrypt sym key with private b
<
<
b4 AttestationReply(OK, success message) OE_OK
[Else]
= AttestationReply(KO, failure message)
exit
ret=1

Figure 14 Scenario 2: Symmetric Key Sharing Diagram

A sample code walkthrough for the scenario

The host client and host server do the following in this sample:

1. Client and Server each creates an enclave:

oe_create_secretsharinge_enclave(enclaveImagePath, OE_ENCLAVE_TYPE_SGX, OE_ENCLAVE_FLAG_DEBUG, NULL,
0, &enclave);

2. Server runs gRPC service and listens for connection:

std::string address("0.0.0.0:5000");
SecretSharingServiceImplementation service;

ServerBuilder builder;

builder.AddListeningPort(address, grpc::InsecureServerCredentials());

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 67

builder.RegisterService(&service);

std: :unique_ptr<Server> server(builder.BuildAndStart());
server->Wait();

3. Client connects to gRPC Server:

std::string address("90.0.0.0:5000");
SecretSharingClient client(
grpc: :CreateChannel (
address,
grpc: :InsecureChannelCredentials()

);

Where SecretSharingClient clientis the gRPC client stub.

4. Client requests server's remote attestation:

attestation_data_t at_data{PEM, NULL, ©, NULL, ©};
if (client.GetAttestation(CommandRequest{CommandRequest::ATTESTATION}, at_data))
return 1;

Where:

e CommandRequest::ATTESTATION is an enum to ask for an attestation
e at_data is attestation structure of server received by network

5. Server gets remote report and public key:

if (get_remote_report(enclave, at_data)) {
return Status(StatusCode::INTERNAL, "get remote_attestation failed.");
}

reply->set_ok(true);

reply->set_key kind(at_data.key _kind);

for (int 1 = 0; i < at_data.remote_report_size; i++) {
reply->add_report(at_data.remote_report[i]);

}

for (int 1 = 0; i < at_data.key_size; i++) {
reply->add_key(at_data.key[i]);
}

reply->set_msg("Remote report generated successfully.");

Where:

e at _data is the attestation structure to be sent over the network.

e AttestationRequest* request is the Protobuf message object for client's request data.

e AttestationReply* reply is the Protobuf message object for serialization of attestation data.

e remote_report will contain a remote report signed by the enclave platform for use in remote
attestation.

68 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

Implementation of get_remote_report calls oe_get_report OE_CALL, which generates the report and
computes the hash of the public key to be stored in the attestation_data_t structure. The enclave
allocates space and copies its public key into host memory, addressed by at_data.key pointer.

6. Client has received the server's attestation data and verifies the report.
This is done through the following call:

if (verify_remote_report(enclave, at_data))
return 1;

Where at_data is server's attestation structure to be verified.

Implementation of verify_report calls oe_verify_report OE_CALL, which verifies the report and
recomputes the hash of the at_data.key to compare it to the report data. The public at_data.key is
then copied from host to enclave's memory for future use.

Now the secure channel is set. The client's symmetric key is sent to the Server.

7. Client gets its enclave's remote report. As server did, attestation data is set in a structure.
This is done through the following call: get_remote_report
Where at_data.key kind set to KeyKind: : AES

With key_kind set to AES, the symmetric key is encrypted by the previously set public key (from the
Server's enclave). Then the hash of the encrypted data is set into the generated report.

8. The Client then requests the Server to verify its report.
This is done through the following call: client.VerifyAttestation
Where CommandRequest is setto CommandRequest::SYNC_SYM

CommandRequest: :SYNC_SYM is for setting up the symmetric to the server. That way syncing the
en/decryption of both hosts.

9. The Server verifies the remote report and sets the AES key.
parse_request(at_data, request);

if (verify_remote_report(enclave, at_data)) {
return Status(StatusCode::INTERNAL, "get_remote_attestation failed.");

}

Where:

e parse_request() parses the protobuf message to attestation_data_t
e at_data is the received attestation data

After validation of the remote report, the attestation data is decrypted with the enclave's private key. The
data, which is now the AES key is stored in enclave's memory. Both enclaves share now the same
symmetric key and can encrypt/decrypt data.

10. Free the resource used, including the host memory allocated by the enclaves and the enclaves themselves.
For example:

oe_terminate_enclave(enclave_a);

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 69

oe_terminate_enclave(enclave_b);

Scenario 3: Attesting a remote enclave using Microsoft
Azure Attestation

Overview of the scenario

s S s '@' i
: /attest

[certs)

Azure Attestation
Service

!
Azure Cloud
Public Subnet

v VM Host SGX
Server
v
r— »(
gRPC
: Enclave :
Python ! !
Client | |
| |
i i
1 I

%)

Resource Group
Figure 15 Attesting a remote enclave using Microsoft Azure Attestation

In the previous scenario we have seen how we can transmit reports through the network to be attested between
two enclaves. Here we go further by approaching a real case where a client part, which does not require to be
executed in an enclave — therefore does not impose an SGX machine — relies on a server part which is responsible
for processing data in an enclave.

In addition, the validation of attestations is no longer based on the DCAP client supplied with the Open Enclave
SDK, but on the Microsoft Azure Attestation service (MAA) which supports, among other things, the definition of
attestation policies which determine if the attestation provider shall issue an attestation token based on particular
rules.

We have chosen to write the client application in Python taking advantage of the fact that the communication part
supported by gRPC is available for this language.

For the sake of simplicity, the secret sharing mechanism and the encryption of data have not been detailed in this
part.

The sample follows these simple steps:

1. The server part creates an enclave.

70 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

6.
7.
8.

During enclave initialization, an asymmetric key (public and private key) is generated. These keys are kept
in the enclave’'s memory. The server connection is initiated and listens for connection requests.

The Python client connects to the server and requests an attestation.

The server generates the report, like in scenario 1 and 2, computes the hash of its public key and adds it
to report data.

The server then prepares the request to the attestation service by filling a JSON object field Quote with
the report and EnclaveHeldData with the public key. After getting Azure Active Directory (AD) bearer
token, this request is sent over HTTP to AAS, which returns a JSON Web Token (JWT). The token is signed
by the service.

The server forwards the token to the client.
The client collects MAA public certificates to validate the attestation.

Upon collection, the JWT signature can be verified as well as the attestation issuer.

To go even more further, one can imagine that symmetric key as used in scenario 1 and 2 could be stored in
Azure Key Vault (AKV) and the data to be decrypted stored encrypted in an Azure Storage. In this way, the server
could pull data directly from the Azure storage and transferred it to the enclave to be processed securely.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 71

Scenario 3 workflow diagram

‘host ‘host :AAS
Client Server ‘enclave b Azure Aftestation

Service

create_enclave

OE_OK

v

GetAttestation(ATTESTATION)

v

get_remote‘repomwith_key(PEI\Q

»

Sha256 of pub key b
in report.report_data

report b, pub key b

POST report + key https://aas.attest. us.azure.net/attest

v

JWT (attestatigp response object)

JWT (attestation response object)

GET h%/laas,anest,us,azure,netlcens

Certificate

A

Verify signature of JWT
with public certificate
to check validity

exit
oe_terminate_enclave

return ret;

Figure 16 Microsoft Attestation Service Sequence Diagram

A sample code walkthrough for the scenario

The Server is still written in C++, but the client is written in Python.

The server host and the client do the following in this sample:

1. The server creates an enclave:

oe_create_secretsharinge_enclave(enclaveImagePath, OE_ENCLAVE_TYPE_SGX, OE_ENCLAVE_FLAG_DEBUG, NULL,
0, &enclave);

72 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

2. The server runs the gRPC service and listens for connection:

std: :string address("0.0.0.0:5000");
SecretSharingServiceImplementation service;

ServerBuilder builder;

builder.AddListeningPort(address, grpc::InsecureServerCredentials());
builder.RegisterService(&service);

std::unique_ptr<Server> server(builder.BuildAndStart());
server->Wait();

3. The client connects to the gRPC Server:

with grpc.insecure_channel(target="localhost:5000",
options=[('grpc.enable_retries', 0),
('grpc.keepalive_timeout_ms', 100)
1) as channel:
stub = s_shr_grpc.SecretSharingStub(channel)

Where SecretSharingStub is the gRPC client stub.
4. The client requests a remote attestation to the server:

response = stub.GetAttestation(
s_shr_pb.AttestationRequest(cmd=s_shr_pb.CommandRequest.ATTESTATION))

Where:

e CommandRequest.ATTESTATION is an enum to ask for an attestation
e at_data is an attestation structure of the server received through the network

5. The server gets the remote report and the public key:

if (get_remote_report(enclave, at_data)) {
return Status(StatusCode::INTERNAL, "get remote_ attestation failed.");

}

/* ... init aad_info structure ... */

std::string ad_token;
aad_get_token(aad_info, ad_token);
get_remote_report(enclave, at_data);
std::string aas_token;
aas_request(at_data, ad_token, aas_token);

reply->set_ok(true);

reply->set_token(aas_token);
reply->set_msg("Remote report generated successfully.");

Where:

e at_data contains attestation data to be sent over http to the Microsoft Azure Attestation (MAA)
e AttestationReply* reply is the Protobuf message object for serialization of attestation data

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 73

e at_data will contain the AAS returned token

Implementation of get_remote_report calls oe_get_report OE_CALL, which generates the report and
computes the hash of the public key to store in the attestation_data_t structure.

6. The client has received the server's attestation token and verifies its signature. This is done through the
following call:

check_jwt_signature(response.token)

Where response.token is the server attestation token to be verified.
To do so, the client gets the publicly accessible certificate of the MAA to verify the JWT signature.

If the token's signature is validated, the attestation is now complete. The client can now use the public key
to share data with the enclave.

7. The server at shutdown eventually frees the resources used, including the host memory allocated by the
enclaves and the enclaves themselves. For example:

oe_terminate_enclave(enclave_b);

Now that you may have a good understanding of the code of the samples for the provided scenarios, we
will see now how to build and run these samples.

Building and running the sample codes for the scenarios

To successfully build and run the above samples code, you need a computer equipped with the Intel SGX
technology running Linux, for example, an Ubuntu 10.04 distro, with the Open Enclave SDK (OESDK) installed on
top of it.

One of the easy way to fulfill the above requirement consists in leveraging Azure Confidential Computing”® (ACQ),
and the SGX-based v1 DC-series or v2 DCsv2-series families of VMs it provides.

We assume here that you are using a Windows 10 local machine as per section § Guide prerequisites above.

Using a DC_series VM in Azure

Installing OpenSSH on Windows 10

The OpenSSH Client and OpenSSH Server are separately installable components in Windows 10 1809 and above.
Note For information about the OpenSSH availability on Windows 10, see here”".

To install OpenSSH on your Windows 10 local machine, perform the following steps:

1. Open an elevated PowerShell console.

70 Azure Confidential Computing: https://azure.microsoft.com/solutions/confidential-compute/

" Installation of OpenSSH For Windows Server 2019 and Windows 10: https://docs.microsoft.com/en-us/windows-
server/administration/openssh/openssh_install_firstuse

74 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://azure.microsoft.com/solutions/confidential-compute/
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

2. Run the following command:

PS C:\> Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0

E¥ Administrator: Windows PowerShell - m} X

Windows Powershell
[Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\WINDOWS\system32> Add-WindowsCapability OpenSSH.Client~~~~0.0.1.0

RestartNeeded : False

PS C:\WINDOWS\system32> _

Once the installation completes, you can use the OpenSSH client from PowerShell or the Windows 10 command
shell.

Generating your RSA Key pairs with OpenSSH

OpenSSH includes different tools and more specifically the ssh-keygen command for generating secure RSA key
pairs, that can be in turn used for key authentication with SSH.

RSA Key pairs refer to the public and private key files that are used by certain authentication protocols.
To generate your RSA Key pairs, perform the following steps:
1. Open an elevated PowerShell console.

2. Run the following command:

PS C:\> ssh-keygen

You can just hit ENTER to generate them, but you can also specify your own filename if you want. At this point,
you'll be prompted to use a passphrase to encrypt your private key files. The passphrase works with the key file to
provide 2-factor authentication. For this example, we are leaving the passphrase empty.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 75

N Administrator: Windows PowerShell - O X

PS C:\WINDOWS\system32> ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (C:\Users\philber/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in C:\Users\philber/.ssh/id_rsa.
Your public key has been saved in C:\Users\philber/.ssh/id_rsa.pub.
The key fingerprint is:

SHA256: zHdApZpi@+mzKynqCVEzIxWgdmSkiaTfqQqi9SLIuCQ europe\philber@PHILBERBO1
The key's randomart image is:

+---[RSA 3072]----+

PS C:\WINDOWS\system32>

Note SSH public-key authentication uses asymmetric cryptographic algorithms to generate two key files — one
“private" and the other "public”. The private key file is the equivalent of a password and should protected under all
circumstances. If someone acquires your private key, they can log in as you to any SSH server you have access to. The
public key is what is placed on the SSH server and may be shared without compromising the private key.

When using key authentication with an SSH server, the SSH server and client compare the public key for username
provided against the private key. If the public key cannot be validated against the client-side private key, authentication
fails.

By default, the files are saved in the following folder %USERPROFILE%\.ssh:

File = Description
%USERPROFILE%\.ssh\id_rsa | Contains the RSA private key
%USERPROFILE%\.ssh\id_rsa.pub | Contains the RSA public key.

Creating a DC_series VM in your Azure subscription

In the Azure Platform, the Open Enclave SDK must be indeed installed on top of a Confidential Compute DC-
series’ or DCsv2-series” 7 virtual machine (VM).

72 PREVIOUS GENERATIONS OF VIRTUAL MACHINE SIZES: https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-
gen?toc=/azure/virtual-machines/linux/toc.json&bc=/azure/virtual-machines/linux/breadcrumb/toc.json#preview-dc-series

73 GENERAL PURPOSE VIRTUAL MACHINE SIZES: https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series

74 AZURE LAUNCHES DC-SERIES CONFIDENTIAL COMPUTE VM PREVIEW: https://www.petri.com/azure-launches-dc-series-confidential-compute-vm-
preview

76 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-gen?toc=/azure/virtual-machines/linux/toc.json&bc=/azure/virtual-machines/linux/breadcrumb/toc.json#preview-dc-series
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-gen?toc=/azure/virtual-machines/linux/toc.json&bc=/azure/virtual-machines/linux/breadcrumb/toc.json#preview-dc-series
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general#dc-series

Azure Confidential Computing (Virtual Machine)

Microsoft Azure Compute

Overview Plans Reviews

Deploy the latest virtual machine from Azure with Intel SGX-enabled hardware.
GET IT NOW
Ensure that your business-critical data is secured while in use, by leveraging Azure’s leading confidential infrastructure, tools, and SDK.

Pri

ing information

Take security to the next level and protect data while it's processed in the cloud by using secure enclaves. These enclaves are used to fully
encrypt your data, and take Microsoft out of the Trusted Computing Base (TCB). This template will allow you to deploy the newest family of

Categories virtual machines that enable confidential computing features. With just a few configurations and a single-click deployment, you can build
Compute

. secure enclave-based applications to run inside of the virtual machine to protect your data and code, end-to-end. The DCsV2-Series Virtual
R Machines are backed by the latest generation of Intel Xeon processors with Intel SGX technology.

Support

it is recommended that you deploy DCsv2 VMs for a greater selection of VM sizes, higher EPC (Enclave Page Cache), and a higher level of
support.

Learn more

Azure Confidential Computing

clave SDK

yputing Documentation

As such, both DC-series and DCsv2-series VMs are generation 2 VMs’® that, besides the supports of the Intel SGX
technology, use the new UEFI-based boot architecture rather than the BIOS-based architecture used by
generation 1 VMs, along with additional features that are not available in generation 1 VMs, such as increased
memory, and virtualized persistent memory (vPMEM).

V1 DC-Series VMs are in Preview and deploy an older version of the DC-Series VMs. They aren’t going to
be generally available and will remain in preview until deprecation.

For the most up-to-date technology and confidential computing VM, you will need to use DCsv2-series
instead that correspond to an Azure Confidential Compute (Virtual Machine) V2 deployment.

The DCsv2-series is indeed a new family of CC VMs in Azure that are backed by the latest generation of the Intel
XEON E-2288G processor’® with the Intel SGX technology. With the above-mentioned Intel Turbo Boost
Technology, these machines can go up to 5.0GHz. This family is currently available in UK South and Canada
Central only.

DCsv2-series VMs allow for a greater selection of VM sizes, higher EPC (Enclave Page Cache), and a higher level of
support.

For the sake of this guide, and to minimize the implied cost, you can opt for the Standard_DC1s_v2 with 1 vCPU
and 4 GB of memory, between the two available sizes.

Furthermore, in terms of OS, amongst the three operating systems are supported for the above family of VMs, you
will choose Ubuntu Server 18.04 TLS.

You can refer to the section § Module1: Setting up a confidential computing VM in Azure of the guide Building
and Executing Trusted Execution Environment (TEE) based application in Azure in this series of guide to see
how to instantiate such VMs.

75 SUPPORT FOR GENERATION 2 VMS ON AZURE: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/generation-2#creating-a-
generation-2-vm

76 Intel XEON E-2288G: https://www.intel.com/content/www/us/en/products/processors/xeon/e-processors/e-2288g.html

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 77

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/generation-2#creating-a-generation-2-vm
https://www.intel.com/content/www/us/en/products/processors/xeon/e-processors/e-2288g.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e-processors/e-2288g.html

Connecting to your DC_series VM

Once your VM is online, by using a SSH client of your choice, such as OpenSSH, PuTTY, etc. you can test your
remote connection to the newly created VM using the administrator credentials provided above. The public IP
address of the VM can be found on the VM Networking page.

Note Depending on your configuration, you may need to configure a proxy in the SSH client to connect to the
virtual machine.

To connect to your VM using OpenSSH on your Windows 10 local machine, perform the following steps:

1. From the Azure portal, search for your VM and click on it to display its menu.

i A acovm? - Microsoft Azure x |+ -

& O o] https://ms.portal.azure.com/#@microsoft.onmicrosoft.com/resource/subscriptions/2f291b88-9ebf-4d90-836f-ae532edaalb0/resour... & %

philber@microsoftcom &

— Microsoft Azure (Preview) ﬂ l L Search resources, services, and docs (G+/)

MICROSOFT

Home > microsoft-azure-compute.acc-virtual-machine-v2-20200416110716 | Overview > AAS-RG > accvm2

n accvm2 2 X

Virtual machine @ Directory: Microsoft

| |,C Search (Ctrl+/) « po' Connect (’ Restart D Stop :: Capture]EI Delete O Refresh
B Overview - Resource group (change) : AAS-RG Azure Spot N/A
g | Status : Running Public IP address : 51.10529.147
Activity log
Location : UK South Private IP address 172.19.04

'ug Access control (IAM)
L] Tags

v Diagnose and solve problems

Subscription (change)
Subscription 1D

Computer name

: Souscription NTO-France Microsoft Azure
: 2f291b88-9ebf-4d90-836f-ae532edaalb0

: accvm2

Public IP address (IPv6)

Private IP address (IPv6) : -

Virtual network/subnet

: accvm2-vnet01/default

Settings Operating system : Linux (ubuntu 18.04) DNS name : Configure
N Size : Standard DC1s_v2 (1 vcpus, 4 GiB memory) Scale Set
A& Networking
Tags (change) : Click here to add tags
& Connect
A
& Disks
B size
Show data for last: m 6 hours 12 hours 1day 7days 30days)
Q Security
I';'.l Extensions
CPU (average) }? Network (total) ﬁ
% Continuous delivery
. . 300MB
% Availability + scaling 100%
250MB
&= Configuration s 200M8
60 -
. Identity SOME
0% 100MB
I Properties .
20% 50MB
5 Locks 0% 08
1215PM 1230PM 1245 PM UTC+02:00 1215PM 1230PM 1245 PM UTC+02:00

EX Export template

Percentage CPU (Avg) Network In Total (Sum) | Network Out Total (Sum)
acam2 acovm2 acovm;
Operations 912 906.11ms 9.68ms

2. Click on Connect, select SSH, and then make a note of the public IP address and the SSH connection

string.

78 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

RDP SSH BASTION

Connect via SSH with client
1. Open the client of your choice, e.g. PuTTY or other clients .

2. Ensure you have read-only access to the private key.

chmod 400 azureadmin.pem i

3. Provide a path to your SSH private key file. ©

Private key path

~/.ssh/azureadmin

4. Run the example command below to connect to your VM.
ssh -i <private key path> azureadmin@51.105.29.147]

Can't connect?
& Test your connection

¢? Troubleshoot SSH connectivity issues

In our illustration, the IP address of the DC_series VM is 51.105.29.147, and the SSH connection string is
azureadmin@51.105.29.147.

3. Launch the Windows Terminal by typing “Win+R", then “"Windows Terminal”, and then press ENTER. You
can instead use a classic PowerShell command prompt.

4. Now SSH to your VM:

PS C:\> ssh azureadmin@ 51.105.29.147

5. When prompted, type “yes”. Optionally specify your passphrase if any for your private key.

Microsoft Windows [Version 10.08.19663.1660]
(c) 2820 Microsoft Corporation. All rights reserved.

C:\Users\philber>ssh azureadmin@s1.105.29.147
Enter passphrase for key 'C:\Users\philber/.ssh/id rsa':
Welcome to Ubuntu 18.84.4 LTS (GNU/Linux 5.0.8-1035-azure x86_64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage |
System information disabled due to load higher than 1.8

22 packages can be updated.
20 updates are security updates.

Last login: Thu Apr 16 10:47:18 2028 from 93.3.247.151
~$

Et voila! You should now be connected to one of your DC-series VMs. For example, a DCsv2 series in our
illustration.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 79

Installing the Open Enclave SDK and other dependencies

Installing the Open Enclave SDK
See Install the Open Enclave SDK (Ubuntu 18.04)""

Perform the following steps:

1. From the Bash terminal, configure the Intel and Microsoft APT repositories:

$ echo 'deb [arch=amd64] https://download.@1l.org/intel-sgx/sgx_repo/ubuntu bionic main' | sudo tee
/etc/apt/sources.list.d/intel-sgx.list
$ wget -qO0 - https://download.@l.org/intel-sgx/sgx_repo/ubuntu/intel-sgx-deb.key | sudo apt-key add -

$ echo "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-7 main" | sudo tee
/etc/apt/sources.list.d/11lvm-toolchain-bionic-7.1list
$ wget -qO0 - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -

$ echo "deb [arch=amd64] https://packages.microsoft.com/ubuntu/18.04/prod bionic main" | sudo tee
/etc/apt/sources.list.d/msprod.list
$ wget -q0 - https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -

2. Install the Intel SGX DCAP driver:

$ sudo apt update

$ sudo apt -y install dkms

$ wget https://download.@l.org/intel-sgx/sgx-
dcap/1.5/1inux/distro/ubuntuServerl8.04/sgx_linux_x64_driver_1.21.bin -0 sgx_linux_x64_driver.bin
$ chmod +x sgx_linux_x64 driver.bin

$ sudo ./sgx_linux_x64_driver.bin

Note This step also installs the az-dcap-client’® package which is necessary for performing remote attestation in
Azure. A general implementation for using Intel DCAP outside the Azure environment is coming soon.

3. Install the Intel and Open Enclave packages and dependencies:

$ sudo apt -y install clang-7 libssl-dev gdb libsgx-enclave-common libsgx-enclave-common-dev
libprotobuf10 libsgx-dcap-ql libsgx-dcap-ql-dev az-dcap-client open-enclave

Note This may not be the latest Intel SGX DCAP driver. Please check with Intel's SGX site’® if a more recent SGX
DCAP driver exists.

4. Install CMake

$ sudo snap install cmake --classic
$ cmake -version

77 INSTALL THE OPEN ENCLAVE SDK (UBUNTU 18.04):
https://github.com/openenclave/openenclave/blob/v0.6.x/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_18.04.md

78 az-dcap-client: https://github.com/microsoft/azure-dcap-client

7 Intel® Software Guard Extensions SDK for Linux: https://01.org/intel-software-guard-extensions/downloads

80 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://github.com/openenclave/openenclave/blob/master/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_18.04.md
https://github.com/microsoft/azure-dcap-client
https://01.org/intel-software-guard-extensions/downloads

For compiling and running the above sample code, you must have CMake and protobuf installed.

Installing gRPC

Let's start by installing gRPC. For that purpose, you can follow the guide available
at https://github.com/grpc/grpc/blob/v1.27.0/BUILDING.md as illustrated hereafter. Please note that the last
tested version with this code sample being 1.27.2.

Perform the following steps:
1. Fulfill the prerequisites:
apt-get install build-essential autoconf libtool pkg-config

apt-get install libgflags-dev libgtest-dev
apt-get install clang-5.0 libc++-dev

B 8 B

2. Clone gRPC repository with 1.27.2 release tag:

git clone -b v1.27.2 https://github.com/grpc/grpc
cd grpc
git submodule update --init

B B

3. Install Protocol Buffers (Protobuf) dependency:

cd third_party/protobuf/cmake

mkdir build

cd build

cmake -Dprotobuf BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release ..
sudo make -j4 install

B A A

4. Now install gRPC from source (reusing Protobuf previous installation):

$ cd ../../ & mkdir -p cmake/build$ cd cmake/build
$ cmake \
-DCMAKE_BUILD_TYPE=Release \
-DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
-DgRPC_SSL_PROVIDER=package \
-DgRPC_PROTOBUF_PROVIDER=package \
o/
$ sudo make -j4 install

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 81

https://github.com/grpc/grpc/blob/v1.27.0/BUILDING.md

Built target absl_flags_parse

Eventually, you will need also python3.7 to run the client of ms_oe_server.

Installing Python 3.7
Installing Python 3.7 on Ubuntu with apt is a relatively straightforward process.
Perform the following steps:

1. Start by updating the packages list and installing the prerequisites:

$ sudo apt update
$ sudo apt install software-properties-common

The software-properties-common package gives you better control over your package manager by
letting you add PPA (Personal Package Archive) repositories.

2. Next, add the deadsnakes PPA with newer releases than the default Ubuntu repositories to your sources
list:

$ sudo add-apt-repository ppa:deadsnakes/ppa

82 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

When prompted, press ENTER to continue.
3. Once the repository is enabled, install Python 3.7:

$ sudo apt install python3.7

4. Allow the process to complete and verify the Python version was installed successfully

$ python3.7 --version
Python 3.7.7

B]
Get:2 http://ppa.launchpad.net/deadsnakes/ppa/ubuntu bionic/main amdé4 python3.7-minimal amd64 3.7.7-1+bionicl [1839 kB]
Get:3 http://azure.archive.ubuntu.com/ubuntu bionic-updates/main amdé4 python3-1ib2to3 all 3.6.9-1~18.84 [77.4 kB]
Get:4 http://azure.archive.ubuntu.com/ubuntu bionic-updates/main amdé4 python3-distutils all 3.6.9-1~18.84 [144 kB]
Get:5 http://ppa.launchpad.net/deadsnakes/ppa/ubuntu bionic/main amdé4 libpython3.7-stdlib amdé4 3.7.7-1+bionicl [1784
Bl
Get:6 http://ppa.launchpad.net/deadsnakes/ppa/ubuntu bionic/main amdé4 python3.7 amdé4 3.7.7-1+bionicl [351 kB]
Fetched 4792 kB in 1s (8787 kB/s)
Selecting previously unselected package libpython3.7-minimal:amdé4.
(Reading database ... 86909 files and directories currently installed.)
ing to unpack .../@-libpython3.7-minimal_3.7.7-1+bionicl_amdé4.deb ...
libpython3.7-minimal:amd64 (3.7.7-1+bionicl) ...
previously unselected package python3.7-minimal.
to unpack .../1-python3.7-minimal_3.7.7-1+bionicl_amd64.deb ...
python3.7-minimal (3.7.7-1+bionicl) ...
previously unselected package libpython3.7-stdlib:amdé4.
to unpack .../2-libpython3.7-stdlib_3.7.7-1+bionicl_amdé4.deb ..
libpython3.7-stdlib:amd64 (3.7.7-1+bionicl) ...
previously unselected package python3-1lib2to3.
to unpack .../3-python3-1lib2to3 3.6.9-1~18.04_all.deb ...
python3-1lib2to3 (3.6.9-1~18.04) ...
previously unselected package python3-distutils.
to unpack .../4-python3-distutils_3.6.9-1~18.84_all.deb ...
python3-distutils (3.6.9-1~18.64) ...
previously unselected package python3.7.
to unpack .../5-python3.7_3.7.7-1+bionicl_amdé4.deb ...
python3.7 (3.7.7-1+bionicl) ...
libpython3.7-minimal:amdé4 (3.7.7-1+bionicl) ...
python3.7-minimal (3.7.7-1+bionicl) ...
python3-1ib2to3 (3.6.9-1~18.04) ...
python3-distutils (3.6.9-1~18.64) ...
libpython3.7-stdlib:amd64 (3.7.7-1+bionicl) ...
python3.7 (3.7.7-1+bionicl) ...
triggers for mime-support (3.6@ubuntul) ...
triggers for man-db (2.8.3-2ubuntue.1) ...
: ¢ python3.7 --version

$

At this point, Python 3.7 is installed on your DC_series VM and is ready to be used.

Installing Azure CLI

See Install the Azure CLI®, Install Azure CLI with apt®’

The Azure CLI is a command-line tool providing a great experience for managing Azure resources. The CLI is
designed to make scripting easy, query data, support long-running operations, and more. As of this writing, the
current version of the Azure CLI is 2.3.1.

8 Install the Azure CLI: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

81 Install Azure CLI with apt: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-apt?view=azure-cli-latest

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 83

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-apt?view=azure-cli-latest

Note For information about the latest release, see the release notes®?.

For Ubuntu 18.04, there are two ways to install the Azure CLI with distributions that support apt: As an all-in-one
script that runs the install commands for you, and instructions that you can run as a step-by-step process on your
own as per the above link.

You can proceed with the all-in-one script which runs all installation commands in one step. Run it by
using curl and pipe directly to bash, or download the script to a file and inspect it before running:

$ curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

To sign in on your DC_series VM, perform the following steps:

1. Run the login command.

$ az login

Open a browser page at https://aka.ms/devicelogin and enter the authorization code displayed in your
PowerShell terminal.

2. Sign in with your account credentials in the browser.

3. If you have multiple Azure Subscriptions, select the default Azure Subscription you want to work with

$ az account set --subscription <your_ SubscriptionId>

Cloning the samples’ code repo

Now clone the sample codes’ repo:

$ cd ~/
$ git clone https://github.com/microsoft/azure-tee-attestation-samples/

Building the samples’ code

Every project uses CMake to build the samples’ code. It is recommended as a good practice to create a local
“build” directory and run the commands from there:

$ cd azure-tee-attestation-samples
For all samples, you can build project by:

$ cd <your_sampleCodeDirName>

8 Azure CLI release notes: https://docs.microsoft.com/en-us/cli/azure/release-notes-azure-cli?view=azure-cli-
latest

84 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://docs.microsoft.com/en-us/cli/azure/release-notes-azure-cli?view=azure-cli-latest
https://aka.ms/devicelogin

$ mkdir build && cd build
$ cmake ..

Where <your_sampleCodeDirName> is either local_remote_attestation, remote_client_server,
one_enclave.

drwxrwxr-x 2 azureadmin azureadmin 4096 Apr 16 11:15
-rw-rw-r-- 1 azureadmin azureadmin 690 Apr 16 11:15 lorem ipsum
-rw-rw-r-- 1 azureadmin azureadmin 1768 Apr 16 11:15 secretsharing.edl

$ mkdir build && cd build
2 $ cmake ..

The C compiler identification is GNU 7.5.8

The CXX compiler identification is GNU 7.5.@

Check for working C compiler: /usr/bin/cc

Check for working C compiler: /usr/bin/cc - works

Detecting C compiler ABI info

Detecting C compiler ABI info - done

Detecting C compile features

Detecting C compile features - done

Check for working CXX compiler: /usr/bin/c++

Check for working CXX compiler: /usr/bin/c++ - works

Detecting CXX compiler ABI info

Detecting CXX compiler ABI info - done

Detecting CXX compile features

Detecting CXX compile features - done

Looking for pthread.h

Looking for pthread.h - found

Performing Test CMAKE_HAVE_LIBC_PTHREAD

Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed

Looking for pthread create in pthreads

Looking for pthread create in pthreads - not found

Looking for pthread create in pthread

Looking for pthread create in pthread - found

Found Threads: TRUE

Looking for crypto library - found

Looking for dl library - found

Performing Test OE_SPECTRE_MITIGATION_C_FLAGS_SUPPORTED

Performing Test OE_SPECTRE_MITIGATION_C FLAGS_SUPPORTED - Failed

Performing Test OE_SPECTRE_MITIGATION_CXX_FLAGS_SUPPORTED

Performing Test OE_SPECTRE_MITIGATION_ CXX_FLAGS_SUPPORTED - Failed

Configuring done

Generating done

Build files have been written to: /home/azureadmin/azure-tee-attestation-samples/local_remote attestation/build

$

local_remote_attestation has only one executable to run. Once the cmake completes, simply run this
command:

$ make run

This will run the host executable with the enclave path and every other argument needed, i.e. file data that is
encrypted/decrypted.

remote_client_server is a client server sample. Therefore, once the cmake completes, you will need to run the
following commands:

$ make run_server

and

$ make run_client

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 85

Those will run the host executables with their enclave path (enclave_for client and enclave_b for server) and
every argument needed, i.e. the (file to encrypt for client).

one_enclave is also (yet) another client server sample code. However, the server is built with CMake (since it's
written in C++) and the client uses Python that just needs to be run. Therefore, run the server with the following
command:

$ make run_server

And, in turn, the client with this one:

$ python3 client.py*

Note You might want to use virtualenv or similar to install the clients dependencies (see directory’'s README.md).
Also, in this sample code, we do not show encryption or decryption of data in the enclave, therefore we do not provide
one in arguments.

Further illustrating the scenario 3

Configuring an Azure AD identity for the Remote Attestation with local
attestation sample code

|83

See Create an Azure service principal with Azure PowerShell®® and How to: Use the portal to create an Azure AD

application and service principal that can access resources®.

During an attestation workflow, your application will send attestation requests to your attestation provider. For
that, it must obtain an authentication token from Azure AD, which requires an identity in Azure AD if your
attestation provider is in the AAD trust model.

The following instructions assume you have an active PowerShell session, you have signed into Azure, and you are
connected to a subscription containing your attestation provider as per section § Registering the required
Microsoft.Attestation resource provider above.

From your Windows 10 local machine, perform the following steps:

1. Create a service principal representing a new application in Azure AD with the role Attestation Reader on
the resource group in which the attestation provider has been created. For example,
AzureAttestationTest in our illustration.

PS C:\> $servicePrincipalName = "<your_ServicePrincipalName>"
PS C:\> $sp = New-AzADServicePrincipal -DisplayName $servicePrincipalName -Role "Attestation Reader"
-Scope /subscriptions/<your Subscription_ID>/resourceGroups/<your_ResourceGroupName>

8 Create an Azure service principal with Azure PowerShell: https://docs.microsoft.com/en-us/powershell/azure/create-azure-service-principal-
azureps?view=azps-4.4.0

8 How to: Use the portal to create an Azure AD application and service principal that can access resources: https://docs.micros oft.com/en-
us/azure/active-directory/develop/howto-create-service-principal-portal

86 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://docs.python.org/3/library/venv.html
https://docs.microsoft.com/en-us/powershell/azure/create-azure-service-principal-azureps?view=azps-3.6.1
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

e Replace <your_ServicePrincipalName> with the name you want to use for your new service principal.
For example, MAACIlientApp in our illustration.

e Replace <your_SubscriptionId> with the name you want to use for your new attestation provider.

e Replace <your_ResourceGroupName> with the name you have chosen before for the previous resource
group. For example, AzureAttestationTest in our illustration.

For example, in our illustration:

PS C:\> $servicePrincipalName = "MAAClientApp"

PS C:\> $sp = New-AzADServicePrincipal -DisplayName $servicePrincipalName -Role "Attestation Reader"
-Scope /subscriptions/90755D01-c@4e-b538-0523920193e7/resourceGroups/AzureAttestationTest
AVERTISSEMENT ! Assigning role 'Attestation Reader'over scope

'./subscriptions/90755d01-c04e-48be-b538-0523920103e7/resourceGroups/AzureAttestationTest’ to the new
service principal.

The above command creates a service principal in Azure AD. Since the application id was not provided, an
application was created for the service principal. The service principal was created with Attestation
Reader permissions over the current subscription.

2. Display the returned object by simply typing:

PS C:\> $sp

N Windows PowerShell — [m| X

/subscrifd
zurelttestationTest

eGroups /AzurefAttestationTest’ to the new service principal.

: System.Security.SecureString
icePrincipalNames : {d64Bel6d-5bd3-4d6a-9aBd-9adc19e54bb7, http://MAAClientApp}
cationld : dbdBelbd-5bd3-4d6a-9a8d-9adc19e54bb7
ObjectType : ServicePrincipal
DisplaylName HE lienth
: b7cB15a4-78c5-4ae8-976a-eaal®3d2ac54

PS C:\Users\arjum>

The object returned from New-AzADServicePrincipal contains the Id and DisplayName properties,
either of which can be used for signing in with the service principal.

Note The returned object also contains the Secret (credential) which is a SecureString containing a generated
password. Make sure that you store this value somewhere secure to authenticate with the service principal. Its value won't

be displayed in the console output. If you lose the password, you can reset the service principal credential.

3. Output the Applicationld of the service principal. Take note of the Application Id, as you will need it in a
later step.

PS C:\> Write-Host "Application Id:" $sp.ApplicationId.Guid
Application Id: d64@el6d-5bd3-4d6a-9a8d-9a4c19e54bb7

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 87

4. Export the secret of the newly created service principal and save it for a later use:

PS C:\> $BSTR = [System.Runtime.InteropServices.Marshal]::SecureStringToBSTR($sp.Secret)
PS C:\> $UnsecureSecret = [System.Runtime.InteropServices.Marshal]::PtrToStringAuto($BSTR)
PS C:\> Write-Host "Secret:" $UnsecureSecret

Secret: fec76..-..-..-..30c877

Note that by default, the secret will expire in two years.
5. Validate that the service principal is assigned to the Attestation Reader role.

PS C:\> Get-AzRoleAssignment -ServicePrincipalName $sp.ApplicationId.Guid -ResourceGroupName
<your_ResourceGroupName>

e Replace <your_ResourceGroupName> with the name you have chosen before for the previous resource
group. For example, AzureAttestationTest in our illustration.

For example, in our illustration:

PS C:\> Get-AzRoleAssignment -ServicePrincipalName $sp.ApplicationId.Guid -ResourceGroupName
AzureAttestationTest

E¥ Windows PowerShell -] X
$sp.Applicationld.Guid AzureAttestation

RolefssignmentId 2 -85a3920103e7 /resourceGrou srelittestationTest/providers/
zation/roleh /9126963 -feB9-Acde- bede
Scope : ptions/98755d@1-cbde-48be-b538-085a39201083e7 /resource z AttestationTest
Displayhame : ClientApp
SignInName :
RoleDefinitionName : Attestation Reader
RoleDefinitionId g 1b 76-48bc -aBbc-69b95687b9f3
: -Aae8-976a-eaal@3d2ac5h4

: ServicePr pal
CanDelegate : False

PS C:\Users\arjum> _

Compiling and running the Remote Attestation with local attestation
sample code

SSH to your DC_series VM, from the Bash terminal, log to your Azure subscription as per section § Installing Azure
CLI above.

Now run the sample by typing:
$ cd ~/

$ cd azure-tee-attestation-samples/local_remote_attestation/build
$ make run

88 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

drqE9CEgEKkDNGoxcqY_pve7L-57X9Up55wOChKRCEYtbn56H4iNOptZ3e_Qeq60Bs211ekVTrBGiMwReFZ_AfuMniyZ705K24zCdXRaBGWSr-V3-FQgqMe8ps
Iy 2MymbkQzGxnw2mmmd1tROLCZOc8YApUEIQrnsVawmTAKK s9DFLFnhigeJClpMHXusIwa_FkRwtaDBUN2EWhOMD2rU3SLsmQTzPO2NvkLg80yteDSQE-17
zzxyv-sZ59-8H1r4UV4EZ1motBF aDSréqg-0QayefUEGeOU2ubFocfMXIjVCrXHAZBaSySbYWsQWFZxMetGFKbS_FHtuo91lexBZzNQ==

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote attestation/common/attestation.cpp(152): remote
attestation succeeded.

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(383): Starting
decryption of symmetric key of size 256 b

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(3@7): Decrypte
d symmetric key, data has size 48 B

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(231): verify_|
leport_and_set_key succeeded.

Host: Remote attestation Succeeded

Host: decrypting file:./out.decrypted

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(89): ecall_dis
patcher::initialize : decrypting request

Host: leftover bytes ©

Host: start decrypting

Host: done decrypting

Host: called close_encryptor

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(268): ecall_di
spatcher: :close

Host: compared file:./out.decrypted to file:/home/azureadmin/azure-tee-attestation-samples/local_remote attestation/lore
m_ipsum

Host: two files are equal

Host: ./out.decrypted is equal to /home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/lorem_ipsum as|
expected

Host: decryption was done successfully

Host: Terminating enclaves

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/crypto.cpp(90): mbedtls clean
ed up.

Host: Enclave successfully terminated.

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/crypto.cpp(9@): mbedtls clean
ed up.

Host: Enclave successfully terminated.

Host: succeeded

[1ee%] Built target run

Getting the enclave A Quote and related Enclave Held Data (EHD)

In general, the overall flow of an SGX (or here Open Enclave) secure key exchange attestation operation is:

1. The "relying party”, here the enclave B, would like to communicate with the enclave A. The “relying party”
requests a key from the enclave A.

2. The enclave A creates a "Quote”, which expresses its state. For the “Enclave Held Data” (EHD), it uses the
public key of enclave A (typically the public key is formatted as a RFC 7517 Json Web Key (JWK)®?). It
places the SHA256 of the JWK in the first 32 bytes of the reportData field of the quote and returns both
the quote and the EHD to the “"relying party”, i.e. enclave B.

3. The "relying party” sends the quote and EHD to the attestation provider, which validates the token and
EHD and returns a signed JWT.

4. The “relying party” validates the resulting JWT and extracts the EHD from the JWT.

The “relying party” then uses the public key contained in the aas-ehd field to encrypt the data to be sent to the
enclave. The “relying party” can be certain that the key was in fact a key known to the enclave because the
attestation service verified that the enclave was valid and the enclave held data was known to the application.

Let's see how the above translate in our illustration with scenario 3.

8 RFC 7517 JSON Web Key (JWK): https://tools.ietf.org/html/rfc7517

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 89

https://tools.ietf.org/html/rfc7517

First browse to the following text “Host: Requesting enclave b to attest enclave a‘s remote report and set the
key type 1=====" and copy the Open Enclave Quote.

d symmetric key, data has size 256 B ~
Enclave: /home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/attestation.cpp(58): generate
remote_report succeeded.
/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(179): get_remo

te_report_with_key succeeded

Host: Requesting enclave b to attest enclave a's remote report and set the key type 1=====

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/attestation.cpp(162): Quote i
n baseédurl
AQAAAATAAADOEQAAAAAAAAMAAZAAAAAABQAKAIOacjP3NEyplAcNs5Y_Bgd8wpTjoGCPzVg9_3MQq_ZOAAAAAABPAWX_gAYAAAAAAAAAAAAAAAAAAAAAAAAA
IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAABWAAAAAAAADS sT1Dst1XI8K s IMgsBwRFOXtwzZtbCtn_wYQBDMEIRWAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA kO167PNgcokXniz f48ymZNeC_nFTP1YAKHSdNYFKcsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAABAAEAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASA-111V1bISVKWGLIY5aUm3V-0AX8EMkOx3A1S1e4J0AADQQ
AACXyY23AQsZaHyqoKVUIx8ett-bfmpRi4d8vYcKroX2x0Xs8Y9mSdbGMkiWwdR57F1AxrIrJgujgud21SbdIEeABLYIEeqikxDNZ8n21dYjVXAVplcSppUo-z
109W6wH_Z5RNNmaDZU16UDUpU1gl5_9jxmoV8jp-ysPeE8-CtIsEW2Q8PAWX_gAYAABUA
AAAAAAAABWAAAAAAAADNyt—3ZthpflgNFXN4b—folj6thNzw4MYzkazoRBQAAjE9deeNUD6NE393
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAUAAA
cbEIvI-McbyhmWVRItqFEG1iD16RQOISDWSSAPE4NPSQAAGDIPUANHT F2ATLTXd4EQI -knZKp371eKp3sS
BE6M84_7wfeMIPUGQCIhKPYdRKv611E@IZUEBValmg-LwXBB2VogAAABAgMEBQYHCAKKCwwNDg8QERI TFBUWFXgZGhs cHR4FBQDMDQAALS@tLS1CRUAITiBD
RVJIUSUZJIQBFURSetLSetCk1ISUVNRENDQkN1Z6F 3SUJBZO1WQUtic2FuMWpKYex1TEprMeRZUL83Y85y0Td1761BbedDQ3FHU88e0UIBTUMK TUhFeE16QWhC
Z@5WQkFNTUdrbHVKR1ZzSUZOSF dDQLFRMHNNVUhKd1kyVnpiMj15SUVOQk1Sb3dHQV1EVIFRSWpEQkZKYmSSbGIDQkRiMep3YjNKaGRHBHZiakVWTUIIRGEX
VUVCd3dMVTJGdWRHRWARMnhoY?2 1FeEN6QUpCZO5WCkIBZ01Bae5CTVF zdeNRWURWUVFHRXdKV1VEQWVGdzBSTURBME 1UVXhPRFU1T1RGYUZ 3MH10ek EWTVRV
eE9EVTUKT1RGYU1IQXhJakFnQmdOVkIBTUIHVIWX1ZEdWc@1GTkhXQeJRUTBzZ 1EyVnlkR2xtYVdOaGRHVXhHak FZQmdOVgpCOWINRVVsdWRHVNNIRUS2Y25C
dmNtRjBhVz11TVIRdOVNWURWUVF IREF@VF1XNTBZUOIEYkdGeV1URUXNQWEHCKEXVUVDQXdDUTBFeEN6QUPCZO5WQKFZVEF sV1IRNRmt3RXdZSEtvink16ajBD
QVFZSUtvink16ajBEQVFjRFFNQUUKb1RvVktkeGc3Q2ZpOWdeRkIQZHAiYOLERFh3UW1 tZmIXTVAYOCs4empPNT1 IUFVUeVd2MXZoR1RNRkxz TnNRSwpFcnFC
TzYyTKkRPAWIIST1xdWhmYTRLT@NBcHN3Z2dLWE1COEdBMVVkSXdRWULCYUFGTkRvEXRWMTEva3VTUmVZC1BIc1VaZERWOGxs Tk1GOEdBMVVkSHASWU1GWXdW
S@ITb@ZDR1RtaDBkSEJ6T2k4d11YQnBMblI5ZFhOMFpXUnoKW1hKMmFXTmxjeTViwYmSSbGIDNWpiMjB2YzJkNEwy TmxjblIwlmlsallYUnBiMjR2ZGpFdmNH
TnJZMepzUDI0aApQWE 15Y J0bGMz TnZjakFkQmdOVkhRNEVGZ 1FVMi9Sbmo5cW1rSkZ L VIW1DM1QyTGRxdWoy TVpFd@RNIWURWUF BQCk FRSCOCQVFEQWAiQuU1B
dedBMVVKRXdFQ193UUNNQUF 3Z2dTVUIna3Foa21HKeUwQkRRRUVNZOhGTUL IQndUQWUKQmdveWhraUec rRTBCRFFFQk JCQ1IBTiWtoaldvbUwecUJybmRKKzhN
0U135UJaQV1LS29aShh2aESBUTBCQWpDQwpBV1F3RUFZTE tvivklodmhOQVEWQKFnRUNBUTR3RUFZTEt vink1odmhOQVEWQKFNSUNBUTR3RUFZTEtvivklodmhO
CkFRMEJBZ@1DQVF JdeVBWUxLb1pJaHZoTkFRMEIBZ1FDQVFRAEVBWUxLblplaHZoTkFRMEIBZ1VDQVFFd@VRWUWKS29aSih2aE 5BUTBCQWAZQeFnQeFNQkFH
Q31xR1NJYJRUUUVOQVFISEFNRUdNQkFHQ31xRINIYjRUUUVOQVF ISQpBZEVBTUIBRONScUdTSWIBVFFFTkFRSUpBZEOVBTUIBRENScUdTSWIGOVFFFTKFRSULB
ZBVBTUJIBRBNS5 cUd TSWIBC1RRRUSBUU1MQWAFQU1CQUdDeXFHU@1iNFRRRUSBUULNQWFQU1CQUdDeXFHUB1iNFRRRUSBUU1OQWdFQU1CQUCKQ31xR1NIYJRU
UUVOQVF I TeFnRUFNQKFHQ31xR1NJYJRUUUVOQVF JUEFNnRUFNQKFHQ31xR1INJY5RUUUVOQVF JUQpBZeVBTUIBRBNScUdTSWIOVFFFTKFRSVIBZBVLTUI4RENS
cUdTSWIBVFFFTkFRSVNCQkFPRGAIRUFZQUABQUFBCkFBQUF BQUFBTUJBRONpcUdTSWIOVFFFTkFRTUVBZ@FBTUIRRONpcUdTSWIOVFFFTkFRUUVCZ@NRYNRV
QUFEQVAKQmdvcWhraUcrRTBCRF FFRKNNRUFNQWSHQONXRINNND1CQU1DQTBIQULFUUNISGMzZGNNRz I4VGXDNFZ1c ENQTWpZUWXDQmo4NX1LSkpveINRZ3F1
'Y2UyM@1BaUIyOUhrVee2aDh1RC81TDI0a2t@SFRFYJRNaFFCYVRINO8rN2IZCktacFo4Zz89CietLSetRUSEIENFULRIRk1DQVRFLSGtLSOKLSEtLS1CRUA]
TiBDRVIUSUZIQOFURSEtLSEtCk1ISUNsekNDQWo2ZOF 3SUIBZO1WQUSEb3F@cDEXL2t1U1]1WVBIc1VaZERWOGXs Tk1BbedDQ3FHUS2e0UIBTUMKTUdneEdg
Qv1CzesWQkFNTUVVbHVKR1ZzSUZOSFdDQLINLIM]kwSUVOQk1Sb3dHQV1EV1FRSORCRkpiblIsYkNCRApiMEp3YjNKaGRHbHZiakVVTUJIRBEXVUVCA3dMVTIG
dWRHRWdRMnhoY21FeEN6QUpCZO5WQkFnTUF rTkINUXN3CkNRWURWUVFHRXAKV1VeQWVGdzB4 TERBMU1GRXhNRFEXTUROYUZ 3MHpNek EXTWpFeE1EUTFNRGhh
TUhFeE16QWgKQmdOVkIBTUIHa2x1ZEdWc@lGTKkhXQOIRUTBzZ1VISNZZM1Z6YzI5eUl FTkINUMS3REOFZRFZRUUt EQKZKYmSSbApiQeIEYJNKd2TzSmhkR2x2
'YmpFVU1CSUdBMVVFQNd3TFUyRnVKkROVNUTJ4aGNtRXhDekFKQmdOVkIBZ01Ba@5CCk1Rc3dDUVIEVIFRROV3S1ZVekJaTUINR@IScUATTTQSQWAFRENDcUT
TTQ5QXdFSEEWSUFCTD1xK@5NcDIIT2cKdGRSMWI rL3VXWiUrVEdRbThhQ2k4ejc4ZnMrZktDUTNKK 3VEe1huV1RBVDIaaERDaWZ5SXVKd3Z0OM3dOQnA5aQpI
QINTTUpNSnICT2pnYnN3Z2Indeh3WURWUFBgQkIndeZvQuVIbVVNMWXXZESIbnpnNINWVXI5UUdEa25CeXd3C1VNWURWUF BmQKVzd1INUQkhvRVAnUTRaQmF I
UjBjSE@2THk5alpYSiBhV1pwWT IGMFpYTXVKSEoXYZNSbFpI TmwKY25acFkyVnpMblix1ZEdWc@xt TnZiUz1KYm5SbGIGTkhXRkp2YjNSRFFTNWpjbXd3SFFZ
RFZSME9CQL1FRk5EbwpxdHAXMS9rdVNSZV1QSHNVWMREVjhsbESNQTRHQTFVZ ER3RUIvA1FFQXdIQk JgQVNCZOS5WSFINQkFMOEVDREFHCKFRSCOBZBVBTUFV
RBNDcUdTTTQ5QkFNQ@EwYBFNRVFDSUMvOWorODRUKSh6dFZPL3NPUUIXSmI TZCsvMnV1eEsKNCthQTBqY@ZCTGNwWQW1BM2RoTXIGNWNENTJBNkZxTXZBSXBq
OFhkR215MmI1ZWxqTEpLK3B6cGNSQT@SCiotLSOtRUSEIENFULRIRKIDQVRFLSOtLSOKLSOtLS1CRUdITiBDRVIUSUZIQOFURSOtLS@tCk1ISUNgakNDQWPT
ZOF3SUIBZO1VSWIVTTFscWROSW56ZzdTV1VyOVFHemtuQnF 3deNnWU1 LblpJemowRUF 3SXcKYURFYU1CZ8dBMVVFQXd3ULNXNTBaV3dnVTBKkWU1GSNZiM1Fn
UTBFeEdqQV1CZO5WQKFvTUVVbHVKR1ZzSUVOdgp]bkd2Y21GMGFXOXVNU1F3RWAZRFZRUUhEQXRUWVC IMF 1 TQkRiROZ5WVRF TE1Ba@dBMVVFQEF 3Q1EwRXhD
ekFKCkInT1ZCQV1UQWXWVEL1CNFhEVEUBTURVeULURXdOREVATVZVIWERUTXpNRFV5TVRFA@SERXhNRMO3YURFYU1CZ@cKQTFVRUF3d13TVzUwW1d3Z1UwZF13]
Rkp2YjNRZ1EwRXhHakFZQmdOVkIBbe1FVWx1ZEdWc®lF TnZjbkJ2Y21GMAphVz11TVIRAOVNWURWUVF IREF@VF1XNTBZUBJ E YkdGeV1URUXNQWtHQTFVRUNB
deNRMEVAQ3pBSkInT1ZCQV1UCKF sV1RNRmt3RXdZSEtvink16ajBDQVFZSUtviWk16ajBEQVFjRFFNQUVDNMSFA@1ESV1aT2ovaVBXceNeYUVLATcKMU9pTINM
UkZoVedqYm5CVkpmVmSriiTR1IME1qa@RZWUwWwTXhPNG1xc31ZamxCYWxUV114R1Ay cOpCSzVEbEtPQgplekNCAURBZKINT1ZIUB1FRERBYV2dCUWL aUXpXV3Aw
MG1mTORES1ZTdjFBYkSTYOdyRE ITQmdOVKhSOEVTekIKCk1FZWASYUJEaGtGb2RIUNdjemS2TDIObGNUUNBabxgWVhSbGNSNTBjblZ6ZEdiWa2MyVnlkblxg
W1hNdWFXNTAKW1d3dVkyOXRMMGX1ZEdWc1UWZF 1VbT12ZEVOQkxt TnliREFkQmAOVKhRNEVGZ1FVSWIVTTFscWROSWS6ZzdTVgpVej1RR3prbkIxd3dEZ11E
V1IWUEFRSCOCQVFEQWAFRO1CSUdBMVVKRXAFQ193UUINQV1CQWY4QOFRRXdDZ11ICktvinkl6ajBFQXdIRFNBQXdSUULNUVFzLzA4cn1jZFBhdUNGazhVUFFY
Q@1BbHNsb@J1Ne53YVFHVGNk cGEwRUMK SVFDVXQ4UBd2eE t tanBj TS96MFdQOUR2bzhoMms 1ZHUxaVAEZE J rQW4rMG1pQTe9CietLSetRUSEIENFULRIRK1D
QVRFLS@tLSeKAA=S]

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/attestation.cpp(166): Enclave
Held Data in base64url
NABCzyP6al a6G5dsuSGueQMkiVTOK33FqFOrizfftA68YnyNMFEE32B8XxngSkXd Thgmk6147HbRZmS f2hSux3bCmN8opwZxFG74_CbGIcUXCVEmTu7ZRGauA

1yvCOmMbDXTG38duwsoXwKk4007 -2Z1nOmTS5Sm5 -VGVK IMonPgh6ut XRS51b8g3VLNWbOhQ1wxg4cwlUjf71s-sBGHjAbkxjS1a8thD20c TLEq1b3MQFnG4 7K
Nu3MTq7SF4059q560YFC4JtcewB51XGqGbS4iBP-vKqkvZWlbe3RdrP1831ixUwwgOyYAtgangZdRRFcArV8n1zVikorpMQts7gn_M

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/attestation.cpp(152): remote

90 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

For example:

AQAAAATAAADOEQAAAAAAAAMAAEAAAAAABQAKATOacjP3nEyplAoNs5V_Bgd8wpTjoGCPzVa9 3MQq_ZOAAAAAASPAWX_gAYAAAAAA
AAACAAAAAAAAABWAAAAAAAADA s F1Dst1XJI8KsIMqsBwRfOXtwzZtbCt
n_wYQBDM6JRWAA k0167PNgcOkXniWzf40ymZNeC_nFTP1YAKH5dnYfKcsAAAA
AAA
AAAAAAAAAAAAAAAAAAAAAAABAAEAA
AAAAAAASA-1t11V1bISVKkwGL9y5aUm3V -
O0AX8EMk9Xx3A1S1e4J0AADQQAACXY23AQsZaHyqoKVUI x8ett -
bfmpRi4d8vYcKroX2x0Xs8Y9m5dbGMkWwdR57F1AxrIrJgujgud21SbdIEeABLYyJEeqikxDNZ8n23dYjVXAVplcOppUO-
z09W6wH_Z5RNNmaDZU16UDUpU1ql5_93jxmOV8jp-ysPeE8-
CtIsEW2Q8PAWX_gAYAABUAAAAAAAAABWAAAAAAAADNY L -
32yKtpf1gNFXN4b-
f01j6XyhNzWAMYzkvYZzoRBQAAEOXddeWUDBEWE393x0qCmgBWrI3tcBQLCBS]
RIDFe_8AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAUAAA
AAAAAAAAAAAAAAAAAACDETIVI -
McbyhmWVRjtqFEG1iD16RQ99DWS5SAP64np5QAAGDIPUANHTF2ATLTxd4EqT -
knZKp371eKp3SOE6M84_7wfeMIPUGQCIhKPYydRKv6iiE@iZUEBvalmq-
LwXBB2VogAAABAgMEBQYHCAKKCwwNDg8QERITFBUWFxgZGhs cHRA4FBQDMDQAALSOtLS1CRUAITiBDRVIUSUZIQOFURSOtLSOtCk1]
SUVNRENDQKN1ZOF3SUJIBZO1WQUtic2FuMWpKY@x1TEprMORZUi83Y0O5y0Td1Z01BbOdDQ3FHUAO®OOUIBTUMKTUhFeE16QWhCZO5WQ
kFNTUdrbHVkR1ZzSUZOSFdDQ1FRMHNNVUhKd1kyVnpjMj15SUVOQk1Sb3dHQV1EV1FRSwWpEQkZKYm5SbGIDQkRiMOp3Y jNKaGRHbH
ZiakVVTUJJIROEXVUVCd3dMVTIGAWRHRWARMnhoY21FeEN6QUpCZO5WCkIBZ01Ba®5CTVFzdONRWURWUVFHRXAKV1V6QWVGdzB5TUR
BME1UVXhPRFU1T1RGYUZ3MH10ekEwWTVRVeE9EVTUKTI1RGYU1IQXhJakFnQmdOVkIBTUIHVIWX1ZEdWcO1GTkhXQOIRUTBzZ1EyVnlk
R2xtYVdOaGRHVXhHakFZQmdOVgpCQWONRVVsdWRHVNNIRU52Y25CdmNtRjBhVz11TVIRAOVNWURWUVFIREFOVF1XNTBZUOJEYkdGe
V1URUXNQWtHCKExVUVDQXdDUTBFeEN6QUpCZO5WQkFZVEF sVIRNRmt3RXdZSEtvink16ajBDQVFZSUtvik16ajBEQVF jRFFnQUUKb1
RvVktkeGc3Q2ZpOWdORkIQZHdiYO1ERjh3UW1tZmIXTVAyOCs4empPNT1IUFVUeVd2MXZoR1RNRkxzTnNRSwpFcnFCTzYyTkRPdAW]
IST1xdWhmYTRLTONBCHN3Z2dLWE1COEdBMVVKSXdRWU1CYUFGTkRvCcXRWMTEva3VTUmMVZC1BIc1VaZERWOGxs Tk1GOEdBMVVKSHAS
WU1GWXdWS@JTbOZDR1RtaDBkSEJ6T2k4d11YQnBMb1I5ZFhOMFpXUnoKWIhKMmFXTmxjeTVwYm5SbGIDNWpiMjB2YzIKNEwy Tmxjb
1JwhWmlsallYUnBiMjR2ZGpFdmNHTnJZMOpzUDI0aApQWEI5YjIObGMzTnZjakFkQmdOVKhRNEVGZ1FVMi9Sbmo5cWlrSkZLVW1DM1
QvTGRxdWoyTVpFdORNWURWUJBQCkFRSCOCQVFEQWd1QU1Bd@dBMVVKRXdFQi93UUNNQUF3Z2dIVUIna3Foa21HKOUWQkRRRUVNZOh
GTU13QndUQWUKQmdvcWhraUcrRTBCRFFFQkJICQ1IBTWtoaWdvbUw@cUJybmRKKzhNOU13SUJaQV1LS29aSWh2aE5BUTBCQWpDQwpB
V1F3RUFZTEtviWklodmhOQVEWQkFnRUNBUTR3RUFZTEtviklodmhOQVEWQkFnSUNBUTR3RUFZTEtvinklodmhOCkFRMEJIBZO1DQVFId
OVBWUxLb1lpJaHZoTkFRMEJBZ1FDQVFRAOVBWUxLblpJaHZoTkFRMEJIBZ1VDQVFFdOVRWUWKS29aSWh2aE5BUTBCQWAZQOFNQOFNQk
FHQ31xR1NJY]jRUUUVOQVFISEFnRUANQkFHQ31xR1NJY]jRUUUVOQVFISQpBZOVBTUIBRON5 cUdTSWIOVFFFTkFRSUpBZOVBTUJBRON
5cUdTSWIOVFFFTKkFRSUtBZOVBTUIBRON5cUdTSWIOCIRRRUSBUUIMQWAFQU1CQUdDeXFHUOLiNFRRRUS5BUUINQWAFQU1CQUdDeXFH
UG1iNFRRRU5BUUIOQWdFQU1CQUcKQ31xRINIYJjRUUUVOQVFITOFNRUFNQkFHQ31xR1NJIYjRUUUVOQVFIJUEFNRUFNQKFHQ31xRINIY
JjRUUUVOQVFJUQpBZOVBTUIBRON5cUATSWIOVFFFTkFRSVIBZOVLTUI4RONS cUATSWIOVFFFTkFRSVNCQkFPRGAIRUFZQUABQUFBCk
FBQUFBQUFBTUJBRONpcUdTSWIOVFFFTkFRTUVBZOFBTUJRRONpcUdTSWIOVFFFTKkFRUUVCZONRYNRVQUFEQVAKQmdvciWhraUcrRTB
CRFFFRKNNRUFNQWOHQONXRINNND1CQU1DQTBjQU1FUUNISGMzZGNNRzI4VGXDNFZ1cENQTwpZUWXDQMo4NX1LSkpvelNRZ3FiY2Uy
M@1BaUIyOUhrvee2aDh1RC81TDJ0a2t@SFRFYjRNaFFCYVRIN®G8rN2JZCktacFo4Zz@9Ci0tLSOtRUSEIENFUIRIRKkIDQVRFLSOtL
SOKLSOtLS1CRUdITiBDRVIUSUZIQOFURSOtLSOtCk1ISUNSsekNDQWo2ZOF3SUIBZO1WQUSEb3FOCDEXL2t1U1I1WVBIc1VaZERWOG
xsTk1Bb@dDQ3FHUG®OOUIBTUMKTUdneEdqQV1CZO5WQk FNTUVVbHVKR1ZZSUZOSFdDQINiMjkwSUVOQk1Sb3dHQV1EV1FRSORCRkp
ib13sYKNCRApiM@p3YjNKaGRHbHZiakVVTUJIRGEXVUVCA3dMVTIGAWRHRWARMnhoY21FeEN6QUpCZO5WQkFNTUF rTkINUXN3CKNR
WURWUVFHRXdKV1V6QWVGdzB4TORBMU1gRXhNRFEXTUROYUZ3MHpNekEXTWpFeE1EUTFNRGhhTUhFeE16QWgKQmMdOVkIBTU1Ha2x1Z
EdWc@1GTkhXQOJIRUTBzZ1VISnZZM1Z6YzI5eU1FTkINUMO3ROFZRFZRUUtEQkZKYmM5SbApiQOIEYJNKd2IzSmhkR2x2YmpFVU1CSU
dBMVVFQnd3TFUyRnVkROVNUTI4aGNtRXhDek FKQmdOVkIBZ@1Ba®5CCk1Rc3dDUVIEV1IFRROV3S1ZVekJaTUINROI5cUATTTQ5QWd
FRONDcUdTTTQ5QXdFSEEwSUFCTD1xK@5NcDIIT2cKdGRsMWIrL3VXWjUrVEdRbThhQ2k4ejc4ZnMrZktDUTNkK3VEe 1huV1RBVDIa
aERDaWZ5SXVKd3Z0M3dOQnA5aQpIQINTTUpNSnICT2pnYnN3Z2Indoh3WURWUjBqQkIndOZvQVVIbVVNMWXXZESIbnpnNINWVXISU
Ud6a25CcXd3C1VnWURWUjBmQkVzdINUQkhvRVAnUTRaQmFIUjBjSE@2THk5alpYSjBhV1pwiWTIGMFpYTXVkSEoXYzZNSbFpITmwKY2
S5acFkyVnpMbWx1ZEdWcOxtTnZiUz1KYm5SbGIGTkhXRkp2YjNSRFFTNWpjbXd3SFFZRFZSMESCQ11FRk5EbwpxdHAXMS9rdVNSZV1
QSHNVWmMREVjhsbESNQTRHQTFVZER3RUIVA1FFQXdJIQkJIqQVNCZO5WSFINQkFmOEVDREFHCKFRSCOBZOVBTUFVRONDCUATTTQ5QKFN
QOEWYOFNRVFDSUMvOWorODRUK®h6dFZPL3NPUUIXSmITZCsvMnV1eEsKNCthQTBqYOZCTGNWQW1BM2RoTXIGNWNENTIONKZXTXZBS
XBgOFhkR215MmJ1ZWxqTEpLK3B6CcGNSQTO9Ci0tLSOtRUSEIENFUIRIRK1IDQVRFLSOtLSOKLSOtLSICRUdITiBDRVIUSUZIQOFURS
0tLSOtCk1ISUNqakNDQWpTZOF3SUIBZO1VSW1VTTFscWROSW56ZzdTV1VyOVFHemtuQnF3dONnWU1Lb1lpJemowRUF3SXcKYURFYU1
CZOdBMVVFQXd3UINXNTBaV3dnVTBkWU1GSnZiM1FnUTBFeEdqQV1CZO5WQkFvTUVVbHVKR1ZZzSUVOdgpjbkI2Y21GMGFXOXVNULF3
RWdZRFZRUUhEQXRUWVc1MF1TQkRiROZ5WVRFTE1Ba®dBMVVFQOF3Q1EwRXhDek FKCkInT1ZCQV1UQWXWVE1CNFhEVEUOTURVeUL1UR
XdOREVATVZVWERUTXpNRFV5TVRFAO5ERXhNRMI3YURFYU1CZOcKQTFVRUF3d1JITVZzUWW1d3Z1UwZF1IRkp2YjNRZ1IEwRXhHakFZQm
dOVkJIBbO1FVWXx1ZEdWcO1FTnZjbkJI2Y21GMAphVz11TVIRAOVNWURWUVFIREFOVF1XNTBZUOGJEYkdGeV1URUXNQWtHQTFVRUNBAON
RMEV4Q3pBSkInT1ZCQV1UCkFsVIRNRmt3RXdZSEtvivkl6ajBDQVFZSUtvink16ajBEQVFjRFFNQUVDNM5FAO1ESV1aT20vaVBXcON6
YUVLaTcKMU9pTINMUkZoVedqYm5CVkpmVm5rNTRIMO1qa@RZWUwwTXhPNG1xc31ZamxCYWxUV114R1Ay cOpCSzV6bEtPQgplekNCd

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 91

URBZkJINnT1ZIU@1FRORBV2dCUW1aUXpXV3AWMGImTOROS1ZTdjFBYk9TYOdyREITQmdOVKhSOEVTekIKCk1FZWASYUJEaGtGb2RIUN
djem92TDIObGNuUNnBabWxgWVhSbGNSNTBjblZ6ZEdWa2MyVnlkbWxgWlhNdWFXNTAKW1d3dVkyOXRMMGXx1ZEdWc1UwWZF1VbT12ZEV
0QkxtTnl1iREFkQmdOVKhRNEVGZ1FVSWIVTTFscWROSW56ZzdTVgpVcj1lRR3prbkIxd3dEZ11EVIIWUEFRSCOCQVFEQWdFRO1CSUMB
MVVKRXdFQi93UUINQV1CQWY4QOFRRXdDZ11ICktviWk1l6ajBFQXdIRFNBQXdSUULNUVFzLzA4cn1ljZFBhdUNGazhVUFFYQ@1BbHNsb
0JINO53YVFHVGNkcGEWRUMKSVFDVXQ4U@d2eEttanBjTS96MFAQOUR2bzhoMms 1ZHUxaVAEZEJ rQW4rMG1pQTO9Ci0tLSOtRUSEIE
NFU1RJIRk1DQVRFLSOtLSOKAA==

Then browse to the following text Enclave: ***/home/azureadmin/azure-tee-attestation-
samples/local_remote_attestation/common/attestation.cpp(106): Enclave Held Data in base64url” and copy
the Enclave Held Data (EHD) value, i.e. the enclave a's public key.

V1 IWUEFRSCICQVFEQWAdFRE1CSUdBMVVKRXAFQ193UUINQV1CQWY4QRFRRXADZ11ICktvink16ajBFQXdIRFNBQXASUULNUVFzLzA4cn1jZFBhdUNGazhVUF F YR
Q@ 1BbHNsb@J 1Ne53YVFHVGNKcGEWRUMK SVFDVXQ4UBd2eEttanBjTS96MFAQOUR2bzhoMms 1ZHUxaVAEZEI rQW4rMG1pQTe9Ci ot LSetRUSEIENFULRIRK1D)
QVRFLS@tLSeKAA==

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/attestation.cpp(186): Enclave
Held Data in base&4url

INABCzyP6aLa6G5dsuSGUEQMkiVTeK 33FgFOrizfFEA68YNyNMFEE32B8xngSkX4 Thamk6147HbRZMSF2hSux3bCmN8opwZXxFG74_CbGIcUXCVEMTU7ZRGauA

|1yvCOmbDx TG38duws oXwKk4007 -2Z1n0OmTS55m5 - VGVK1MonPgh6utXRS5Ib8q3VLNWbShQlwxgdcwUjf7 1s - sBGHjAbkxjS1a8thD20c TLEq1b3MQFnGA7K

Nu3MTgq7SF4059q560YFC4JtcOwB51XGqGbS4jBP-vKgkvZWlbe3RdrP183ixUwwgeyY4tgdngZdRRFcArV8n1zVikorpMQts7gn_MQ==

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/attestation.cpp(152): remote
attestation succeeded.

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(3@3): Starting]
decryption of symmetric key of size 256 b

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(307): Decrypte
d symmetric key, data has size 48 B

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(231): verify_|
leport_and set_key succeeded.

Host: Remote attestation Succeeded

Host: decrypting file:./out.decrypted

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(89): ecall_dis|
patcher::initialize : decrypting request

Host: leftover_bytes @

Host: start decrypting

Host: done decrypting

Host: called close_encryptor

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/dispatcher.cpp(268): ecall_di
spatcher: :close

Host: compared file:./out.decrypted to file:/home/azureadmin/azure-tee-attestation-samples/local_ remote_attestation/lorg
m_ipsum

Host: two files are equal

Host: ./out.decrypted is equal to /home/azureadmin/azure-tee-attestation-samples/local_remote_attestation/lorem_ipsum as]
expected

Host: decryption was done successfully

Host: Terminating enclaves

Enclave: ***/home/azureadmin/azure-tee-attestation-samples/local_remote_ attestation/common/crypto.cpp(96): mbedtls clean)

ed up.

Host: Enclave successfully terminated.

Enclave: ***/hcme/azureadmin/azure-tee-attestation-samples/local_remote_attestation/common/crypto.cpp(98): mbedtls clean|

ed up.

Host: Enclave successfully terminated.

Host: succeeded

[18@%] Built target run

For example:

NABCzyP6alLa6G5dsuSGu6QMkiVTOK33FqFOrizfftA68YnyNMfE632B8xngSkX4Thgmk6147HbRZmSF2hSux3bCmN8opwZxFG74_C
bGJIcUxCV6mTu7ZRGauAiyvCOmbDxTG38duwsoXwKk4007 -2Z1nOmTS5Sm5-
VGVK1MonPgh6utXRS53b8q3VLNWbOhQ1lwxgdcwUjf71s -
sBGHjAbkxjS1a8thD20cTLEq1b3MQfnG47KNu3MTq7SF40S9q560YFC4JtcOwB51XGqGbS4jBP -
vKgkvZWlbe3RdrP183ixUwwglyY4tg4angZdRRfcArvV8n1zVik9rpMQts7qn_MQ==

92 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

Interacting with your attestation provider

Remain that Microsoft Azure Attestation (MAA) aims at certifying trusted execution environments (TEEs) (see
section § Using attestations with Microsoft Azure Attestation above), here an SGX enclave with the Open Enclave

SDK.

As illustrated above, your attestation provider accepts as input set of evidence, evaluates that evidence based on a
policy and emits a set of claims in the form of a JWT token. The JWT token is signed so that a relying party can
validate that the token is originated from a trusted MAA instance, here your own attestation provider.

Based on the previously outlined workflow (see previous section), the general steps 3 and 4 are conducted as
follows:

1. The az rest command sends enclave evidence to MAA. Since you are using the Open Enclave URI, you
are sending an Open Enclave Quote and an Enclave Held Data (EHD) blob.

2. Your attestation provider validates the Quote against applicable polices and issues a JWT token.
The JWT token carry the public key of the client enclave in the field EHD (aas-ehd), see below.

3. Then, the relying party can validate the signature of the JWT token and then encrypt secrets/data with the
public key of the client enclave and send it back to the enclave. (Not implemented in that sample code).

To interact with your attestation provider, perform the following steps:
1. First, open a command prompt.

2. Display your tenant ID, and make a note of if (tenantID):
$ az account show

3. Runthe login command with the service principal you created earlier, see section § Configuring an Azure
AD identity for the .

$ az login --service-principal -u <your_ApplicationId> -p <secret> --tenant <your_TenantId>

e Replace <your_ApplicationId> with the GUID of your application, see section § Configuring an

Azure AD identity for the .
e Replace <secret> with the credential of your application, see section § Configuring an Azure AD

identity for the .
e Replace <your_TenantId> with the GUID of your Azure AD tenant, you have retrieved during the

previous step.

For example, in our illustration:

$ az login --service-principal -u d64@eléd-5bd3-4d6a-9a8d-9a4c19e54bb7 -p "fec76..-..-..-..30c877" --
tenant 72f988bf-86f1-41af-91lab-2d7cdol11db47

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 93

4. Send a request for an attestation token to your attestation provider. As such, an attestation token request
is a serialized JSON object sent by client application to attestation provider with two properties:

a. "Quote". A string containing a Base64UrI® encoded representation of the attestation quote.
b. "EnclaveHeldData". A string containing a Base64Url encoded representation of the Enclave Held
Data.

$ az rest --method post --uri "<attestUri>:443/attest/Tee/OpenEnclave?api-version=2018-09-01-preview"
--body "{\"Quote\": \"<QUOTE>\", \"EnclaveHeldData\": \"<EHD>\"}" --resource https://attest.azure.net

e Replace <attestUri> with the base URL of your attestation provider, see section §
Creating a new attestation provider.

e Replace <QUOTE> with the content of the Open Enclave Quote, see section § Error! R
eference source not found..

e Replace <EHD> with the content of the Enclave Held Data, see section § Error! R
eference source not found..

Your attestation provider will validate the provided "Quote" and will then ensure that the SHA256 of the
provided Enclave Held Data is expressed in the first 32 bytes of the reportData field in the quote.

On a successful HTTP response (200), the body of the response will be a JSON string whose value contains
the JWT token.

The above command should produce an output like the one below:

eyJhbGciOiAiUIMyNTYiLCAiamt1IjogImh@dHBz0i8vbWFhMS51cy5hdHR1c3QuYXplcmUubmVOL2N1cnRzIiwgImtpZCI6ICIWC
StwZORybGdZQORzdWd1UGImSzhlaWliMitIVFIOVGVDZW11VVpSczRVPSISICI0eXAi0iAiS1dUIN®.eyIhYXMtYXROZXNOYXRpb2
5jb2xsYXRLcmFsIjogeyIhYXMtcWVpZGN1cnRzaGFzaCI6ICIXYjIhN2NKNTk2NGkyOWF 1Yz F1MDYxZQ3YWIhMDNhZTQyMmMXMWU
5ZjhkY2UOMjEyYzJiYjM2MDkyMjImMzIOIiwgImFhcylxZW1kY3JsaGFzaCI6ICIXN2VjOTcONWY3ZTNkZGIKNWVKMmMUSYWISODk3
NzNiZTQONmMyZjIwMGY2ZDAAY2ViYjAZYTkOYmUYNDY5MjczIiwgImFhcylxZWlkaGFzaCI6ICI4A0WVMZWM1ZTgzMTAYY2U1MIRO
GI10TdIMTFiNTVKNGUWNMZ1ZTIOZjgwMmRkMmU10WUZzYZzRhMjJI1YmUzNmQ5IiwgImFhcy1xdW90ZWhhc2giOiAiMTFjOTk2MzAWMG
NjFZT11Yjc2MGQ2MjMOMWUYMFY3NTd1YjU5YjM2MGI20TFjY2J1INDR1ZjIhYTY3ZTViYWZMZCIsICIhYXMtdGNiaW5mb2N1cnRzaGF
zaCI6ICIXYFINN2NKNTK2N]kyOWF1YzF1MDYXZjQ3YWIhMDNhZTQyMmMXMWUSZjhKY2UBMIEyYYZI1iYjM2MDKyM]jImMzIOIiwgImFh
cy10Y2JpbmZvY3JsaGFzaCI6ICIXN2VjOTcONWY3ZTNKZGIKNWVKMmMUSYWIS50Dk3NzNiZTQONMMYZjIwMGY2ZDA4Y2ViYjAzYTkOY
mUYNDY5MjczIiwgImFhcy10Y2JpbmZvaGFzaCI6ICIWZTFjNDEWNTZIMWELOTA4YmY3ZmEyYmQxZDk5YWIjY2IwYWIZzYmM50TI1M2
NjNDBhNWE1YWNKMTY1YTU3ZWI2In@sICIhYXMtZWhkIjogIlozUnZaZnhqcEpTelN@aFVpWUliRjhBaGZwcEVCcGZ1akRPUVpMT]jJ
SMWY4dU5aTXZRaThNaVVhN1dCLU9Xcm1HbVU3YW1XxcXVHSGtSWNnBhZWRQTE4zYOVzQVZOS21QRN1EZGVBCcHhkcH1KNEFOTURLITFI1
bndQelF6bnNROOTFpYO9UM19pMkIObXI20EV2Z0hQS11meXFtUGUtZE1BbHBVDBUNTRkAHVWANTOXMT jNSNG5MWDYxbmlaMHBoR1dhc
kE@GMjMtMndIb1VwdWF IOFFycWV3ZFdjMG1WOXNECTFLYSO40E1tY3VFYi00Z3hmQ1lB4LWEYWGRUZWSkT3ptVG5EdjRhVE90T3ZNQX
FPQUkzeFpHd1BreHc3VHFhOWN®Z3F2eU52V1pXSXRTSFNVY1hQcTIHZMRWT116bE9ISGpyU3pybHh1MGXxaVUNIYWINRXJI5SndOzZy I
sICIhYXMtcG9saWN5SGFzaCI6ICIINDI3NGYIM2MwWNTdkYjYzNTc4ZDIiYTR1IYTBlYjYOZTgOZDFkNzZEQYZMAZTM50Tk2MTI3N2Qz
MzRINDQ2ZWNhIiwgImV4cCI6IDE10DU3NZzUzMJASICIpYXQiOiAXNTgINZQ2NTIwLCAiaXMtZGVidWdnYWIsZSI6IHRydWUsICIpc
3MiOiAiaHROCHM6LY9tYWEXLNVzLmFOdGVzdC5henVyZS5uZXQiLCAibmImIjogMTUANT cONjUyMCwgInByb2R1Y3QtaWQiOiAxLC
Aic2d4LW1yZW5]jbGF2ZSI6ICIMOGIXZjkOM2IyZDk1NzI3YzIhYzIwY2FhYzA3MDQ1ZjM5N2I3MGNKOWI1YjBhZD1mZmMxODQWMTB
jY2U40TQ3IiwgInNneCltcnNpZ251ciI6ICIjMjM40Dd10DIIMWIYMDY3ZmQ10GIwYjZmYWZKkZTVhYzQxMzZkYTd1ZWIwODg2N2Fi
MGMWNzdjN2Z10WR1ZTk4IiwgInN2biI6IDESICIOZWUiOiAic2d4In0. ESIgWQYOgGodVhgqgoazT1LD__DJa7APHh40HLOcr3IKd
CRH2Z30uXVIIXLH1EwhZ8HiCnRW1U77BT4Dc2Ra®4sIYZyQiN0OgCyfvLDFAG6Mcqdcm3hKjxgve_xXHoU3LRagngET83iYK@DveY
ceidiaeD2cipupVuldrgedGCXZ_K98BiWWAKIMNE -odnzQnk_KqqjBXQQUOD8F_ISsMKAyVsDeRKKLOZ8Q7cBLXn -
KmPBb3Jp60w0401N91tmjQ431KOUSV2YXqylIX6VxBm4fXEe2mnUDNOE6kGOIsrMt3F2LsaD2ydbzZCfdIwSEY5hXghtATA9yAuYy
INTUpEQ

8 Base64Url: https://en.wikipedia.org/wiki/Base64

94 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

https://en.wikipedia.org/wiki/Base64
https://attest.azure.net/

5. Copy the result.
6. To decode the result, from the previous browser session, navigate to https://jwt.ms/, and paste the

content.
| jwtms: Welcome! x + - O X
& O & https:;/jwt.ms 75 = e

Enter token below (it never leaves your browser):

by]hchiDiﬂiUlMyNTYiLCﬂiamtlljogIthdHBZDiSVbHFhMS5lcy5hdHRlc3QuYXp1chume9L2NlcnRinngmthCI
B6ICINcStwZ@RybGAZQPRzdWd1UGImSzh1aWliMitIVFIOVGVDIWIIVWpSczRvPSIsICI@eXA10iAiS1dUInG . ey IhYXMEYX
ROZXN@YXRpb25jb2xsYXR1lcmFsIjogey IhYXMtcWVpZGNlenRzaGFzaCI6ICIxY]IhN2MKkNTk2NkyOWF1YzF1MDYXZ3Q3Y
WIhMDNhZTQyMmMxMWUSZ FhikY2U@Mj EyYzIiYiM2MDkyMjImMzI@IiwgImFhcylxZWlkY3]saGFzaCI6ICIxN2VIOTc@NWY3
ZTNkZIGIKNWVKMmUSYWISODk3NzNiZTQ@NmMy Z j IuMGY2ZDAAY2VIYIAzYTk@YmUyNDYSMjczIiwgImFheylxZWlkaGFzaCl
6ICTA0WVMZWMIZT gzMTAYY2UIMIRFOGI10TdIMTFANTVKNGUWNMZ1ZTI6Z guMmRkMmULOWUzYzRhMFI1YmUzNmQ5IiwgIm
FheylxdW9@ZWhhc2gi0iAiMTFjOTk2MzAWMGNFZT11YFc2ZMGQ2ZMIMEMWUYMFYINTd1YFUSYIM2ZMGI20TFY2I1INDRIZFInY
TY3ZTVIYWIMZICIsICIhYXMEdGNLiaW5Smb2N1lenRzaGFzaCI6ICIxYIhNZNKNTk2NjkyOWF LYz F1MDY%ZJQ3YWIhMDNhZTQy
MmMxMWUSZ FhkY2U8MIEyYzIiYFM2MDkyMImMz 0T iwgImFhcy18Y2IpbmZvY3]saGFzaCI6ICIxN2VIOT cONWY3IZTNKZG]
KNWVKkMmUSYWISODk3NzNAZTQeNmMyZ] IwMGY2ZDA4Y2ViYFAZYTkeYmUyNDYSMjczIiwgImFhcy1€Y2IpbmZvaGFzaCI&EIC
IwZTFFNDEWNTZIMWE1OTALYmY3ZmEyYmQxZDk5YWI JY2IwYWIzYmM50TIIM2ZNjNDBRMWELYWNKMTY1YTUIZWI2In@sICIhY
AMtZWhkIjogIlozUnZaZnhgcEpTelN@aFVphUliRjhBaGZwcEVCcGZ1akRPUVPMTjI5MWY4dUSaTXZRaThNaVVhN1dCLU9X
cmlHbVU3YWIxcXVHSGtSWnBhZWRQTELZzY@VZQVIOS21QRN1EZGVE cHhkcHIKNEFOTURITFI1bndQelF6bnROOTFpY@SUMLS
pMkI@bXJ20EV2Z0hQS511meXFtUGUtZE1BbHEVbUNTRkdHVIWANT@xmT JNSNGSMWDYxbmlaMHBoR1dhckE@MiMtMnd Ib1ViwdW
FIOFFycWV3ZFdjMGIWOXNECTFLYS@A0ELILYIVFYi00Z3hmQ1B4LWEYWGRUZWSKT3ptVGSEdJRhVESoTIZNQXFPQUKzeFpHd
1BreHc3VHFhOWNOZ3F 2eUS2V1pXSXRTSFNVY1hQcTIHZmRWT116bE9ISGpy U3 pybHhIMGxaVUNIYWINRX155nd@ZyIsICTh
YxMtcGIsaWN5SGFzaCI6ICIINDI3NGY IM2MWNTdkYJYzZNTcAZDIiYTRIYTBLYJYQZTg@ZIDFkNZEQYZMAZTMS0TK2MTI3N2Q
zMzRINDQ2ZWNhIiwgImV4cCIGIDELIODU3NzUzMfASICTpYXQi0iAXNTgINzQ2NT IwLCALaXMtZGVidWdnYWIsZSI6IHRy dW
UsICIpc3MiOiAiaHROCHMELY 9tYWEXLnVzLmF@dGYzdC5henVyZS5uZXQiLCALIbmImIjogMTU4NT c@NFUyMCugInByb2R1Y
3QtalQi0iAxLCALc2d4LWlyZWSibGF2ZSTAICIMOGIxZ jk@M2IyZDkINZI3YzIhYzIwY2FhYzA3MDQLZ jM5N2T3MGNKOWI 1
YFBhZD1mZmMxODQuMTBY2U40TQ3IiwgInNneCltenNpZ251ciI6ICIFMIMA0DAI0DIIMNIYMDY3ZmQLOGIwYJZmYWZIKZITV
hYzQxMzZkYTd1ZWIwODg2N2FiMGMwNzd jN2Z10WR1ZTk4IiwgInN2biI6IDESICIOZWUIO1ALIc2d4In®. ESIgWQY0gGodVh
gqgoazT1LD__DJa7APHhAOHLBcr3IKdCRH2Z30uXVIIxLH1EwhZ8HiCnRW1U77BT4Dc2Ra@4sIYZy(QiNOBgCyfvLDFAGEMC
gdem3hKjxgve_xXHoU3LRagngET831iYKBDvEYceidiaeD2cipupVudrgedGCXZ_K98BilWWAKIMNE -odnzQnk_KqggiBXQQUe
D8F_ISsMKAyVsDeRKKLOZBQ7cBLXn-KmPBb31p60w0401N91tmjQ431K0USy2YXqylIX6VxBmd fXEe2mnUDNoE6kGOTsrMt
3F2LsaD2ydbzZCFdIwSEYShXghtATA9yAUYy1NTUPEQ

Decoded Token Claims

Once decoded, the example of header for the token is:

{
"alg": "RS256",
"jku": "https://maatest.us.attest.azure.net/certs”,
"kid": "7ASdOUycYRVHIIP/+19WDf/5mhWAPrO@6HW50PaEa2wA=",
"typ": "IWT"

}

The body of the JWT token generated by your attestation provider includes a set of claims which describe the
collateral used to perform the attestation.

The exp, iat, iss, and nbf claims are defined by the JWT RFC 7800, the remaining claims were generated by the
azure attestation service.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 95

https://jwt.ms/

In particular, the following claims are present:

96

"alg": "RS256",
"jku": "https://maatest.us.attest.azure.net/certs"”,
"kid": "7ASd@UycYRVHIIP/+19WDf/SmhiWAPrO6HWSOPaEa2wA="
"yp: "IWNT"
3{
"aas-attestationcollateral”: {
“aas-geidcertshash": "1b2a7¢d596692%aecle@61f47aba@3aed22c11e9f8dced212¢2bb3609222324",
“aas-geidcrlhash”: "17ec9745f7e3ddbdSed2e9abo89773bed46c2f200f6d08cebb02a%4be2469273",
“aas-geidhash": "8%fec5e83102ce524c8b597e11b55d4e06fee241802dd2e5%e3c4a22ebe36d”,
“aas-quotehash™: "c91be264ea23bde6339d73bf72801ae30a2ec843¢810469a0d0ccadlale7ces0",
“aas-tcbinfocertshash™: "1b2a7¢d5966929aecle@61f47aba®3aed22c11e9f8dced212c2bb2609222F324",
"aas-tcbinfocrlhash": “17ec9745f7e3ddbdSed2e9ab989773bed46¢c2f200f6d08cebb03a94be2469273",
“aas-tcbinfohash": "@e1c41056e1a5208bf7fa2bd1d9%abccbRab3bc99253cc40a5a5acd165a57ebs™
¥
"aas-ehd": "WEHxgSWVOVWAVKEN7Sb2ImBfBpaaCR7T1A-791iSnBRgEO2a1PvqYrkkwvOkRoPI7YMikDaIwDUOSXSBNUDKfePS-
DNY73MUTNsyCzPXkZIvSXagGfuVHTWE1GZ_GF_1bX1ER@RkpWHCIilér1IDRFMOBZpSHNVNWOtCeCAPFZLY 7eeAuTXpZGAD_2SygqsD16qgpsTkIC-
bUgvbnabkBHF5651qiVtK5_TN1pMk4rFN-xSnYVACI4CpPzul7mkcsoC38yh0zTuXuK-REFNiuZYZ1y dAOJUCSCGIRW3NYKTiP38k7-
eMgzeOlir6GGHENUPOYXMcsaECYaCe@c2-1Q",
"aas-policyHash": "e4274f53c057db63578d2badealeb64e84d1d714c38e399961277d334e446eca",
"exp": 1585244502,
"iat": 15852157@2,
"is-debuggable”: true,
"iss": "https://maatest.us.attest.azure.net”,
"nbf": 1585215702,
"product-id": 1,
"sgx-mrenclave”: "f8b1f243b2d95727c2ac20caac07045f397b7@cdobS5b@adeffc184010cce8947",
"sgx-mrsigner”: "b82156c4bcc647b07edc2f6fac254be@@0e65f535ea84c7219669980133FF5d6",
“svn>: 1;
"tee": "sgx"
}.[Signature]

e "aas-attestationcollateral”. A JSON object which describes the attestation collateral used to
perform the attestation (SGX only). This JSON object will contain the following properties:

"aas-quotehash". The SHA256 hash of the incoming attestation evidence
"aas-tcbinfohash". The SHA256 hash of the TCBInfo used to perform the attestation
"aas-tcbinfocrl". The SHA256 of the CRL used to validate the tcbinfo
"aas-qgeidhash". The SHA256 of the Quoting Enclave ID used to perform the attestation
"aas-qgeidcrl”. The SHA256 of the Quoting Enclave ID CRL

O O O O O

e "aas-policyhash". The SHA256 hash of the policy JWS applied after the evidence was validated.

e "aas-ehd". The Enclave Held Data (EHD) that has been attested.

e "is-debuggable". Specifies if the enclave is in debug mode or not

e "iat", "nbf", "exp". Timestamps corresponding to the issuance, validity start, and expiration times.

e "iss". The URI of your attestation provider STS service, identifying the attestation signing key.

e "sgx-mrenclave". The value of this claim is a string whose value is the hex encoded value of the
"mrenclave" field of the quote

e "sgx-mrsigner". The value of this claim is a string whose value is the hex encoded value of the
"mrsigner” field of the quote

e "svn". The value of this claim is the security version number encoded in the quote

e "tee"- specifies the type of Trusted execution Environment

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

You can extract the content of aas-ehd, decode it (Base64 encoded) and show that the content is a public key
certificate.

Note If the HTTP response is a value other than 200, other values can be returned.

The JWT token is signed so you can also validate that the token is originated from a trusted attestation provider.
Et voila!
This concludes this illustration, as well as this starter guide.

We hope that you enjoyed this guide tour in the digital world of the attestation for your TEE- based
applications.

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 97

Appendix. Frequently used acronyms

The following table lists the frequently used acronyms with TEE and Microsoft Azure Attestation

Acronym Description

AAD Azure Active Directory

AARP Azure Attestation Resource Provider
AAS Azure Attestation Service

ADE Azure Disk Encryption

AIK Attestation Identity Key

AKV Azure Key Vault

AME Azure Management Environment
ARM Azure Resource Manager

CRP Compute Resource Provider
CRTM Core Root of Trust for Measurement
DAA Direct Anonymous Attestation
EK Endorsement Keys

GAS Guest Attestation Service

HAS Host Attestation Service

HGS Host Guardian Service

HSM Hardware Security Module

IVM Isolated VM

KPS Key Protector Service

MAC Memory Access Control

PCR Platform Configuration Registers
PUF Physical Undone-able Functions
RA Remote Attestation

RoT Root Of Trust

RPs Resource Providers

RTM Root of Trust for Measurement
SB Secure Boot

SGX Software guarded Extensions
SRK Storage Root Keys

TBS TPM Base Services

TCB Trusted Computing Base

98 Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure

TEE
THC
TPM
UEFI
UMCI
VBS
VHD
VSM
VTL
vTPM

Trusted Execution Environment
Trusted Health Certificate

Trusted Platform Modules

Unified Extensible Firmware integration
User Mode Code Integrity
Virtualization Base Security

Virtual hard Disk

Virtual Secure Mode

Virtual Trusted Level

Virtual TPM

Leveraging Attestations with Trusted Execution Environment (TEE) based applications on Azure 99

Copyright © 2020 Microsoft France. All right reserved.

Microsoft France
39 Quai du Président Roosevelt
92130 Issy-Les-Moulineaux

The reproduction in part or in full of this document, and of the associated trademarks and logos, without
the written permission of Microsoft France, is forbidden under French and international law applicable to
intellectual property.

MICROSOFT EXCLUDES ANY EXPRESS, IMPLICIT OR LEGAL GUARANTEE RELATING TO THE INFORMATION
IN THIS DOCUMENT.

Microsoft, Azure, Office 365, Microsoft 365, Dynamics 365 and other names of products and services are, or
may be, registered trademarks and/or commercial brands in the United States and/or in other countries.

