

Getting started with the Confidential

Consortium Framework on Azure
A starter guide for developers

Version 1.0, July 2020

For the latest information about Azure, please see

https://azure.microsoft.com/en-us/overview/

For the latest information on Azure Confidential Computing (ACC), please see

https://azure.microsoft.com/en-us/solutions/confidential-compute/

For the latest information about open source on Azure, please see

https://azure.microsoft.com/en-us/overview/choose-azure-opensource/

For the latest information on the Open Enclave (OE) SDK, please see

https://openenclave.io/sdk/

For the latest information on the Confidential Consortium Framework (CCF), please see

https://aka.ms/ccf/

ii Getting started with the Confidential Consortium Framework on Azure

This page is intentionally left blank.

 Getting started with the Confidential Consortium Framework on Azure 1

Table of contents

NOTICE .. 2

ABOUT THIS GUIDE .. 3

GUIDE ELEMENTS ... 4

GUIDE PREREQUISITES ... 5

Installing OpenSSH on Windows 10 .. 5

Generating your RSA Key pairs with OpenSSH ... 6

MODULE 1: INTRODUCING THE CONFIDENTIAL CONSORTIUM FRAMEWORK (CCF) 8

A BRIEF RECAP ON BLOCKCHAIN NETWORK .. 8

UNDERSTANDING CCF OBJECTIVES .. 9

A CONSORTIUM FIRST APPROACH IN CCF ... 11

MODULE 2: BUILDING A CCF NETWORK ON AN ACC VM.. 12

CONNECTING TO YOUR ACC VM ... 14

INSTALLING CCF ON YOUR ACC VM .. 15

STARTING A TEST CCF NETWORK .. 16

SENDING REQUESTS TO THE CFF APPLICATION ... 19

2 Getting started with the Confidential Consortium Framework on Azure

Notice

This mini guide for developers is intended to new way for companies to build and execute blockchain-type or any

other distributed applications using the Confidential Consortium Framework (CCF). The Confidential Consortium

Framework (CCF) is available in open source at https://microsoft.github.io/CCF/.

MICROSOFT DISCLAIMS ALL WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, IN RELATION WITH THE

INFORMATION CONTAINED IN THIS WHITE PAPER. The white paper is provided "AS IS" without warranty of any

kind and is not to be construed as a commitment on the part of Microsoft.

Microsoft cannot guarantee the veracity of the information presented. The information in this guide, including but

not limited to internet website and URL references, is subject to change at any time without notice. Furthermore,

the opinions expressed in this guide represent the current vision of Microsoft France on the issues cited at the date

of publication of this guide and are subject to change at any time without notice.

All intellectual and industrial property rights (copyrights, patents, trademarks, logos), including exploitation rights,

rights of reproduction, and extraction on any medium, of all or part of the data and all of the elements appearing

in this paper, as well as the rights of representation, rights of modification, adaptation, or translation, are reserved

exclusively to Microsoft France. This includes, in particular, downloadable documents, graphics, iconographics,

photographic, digital, or audiovisual representations, subject to the pre-existing rights of third parties authorizing

the digital reproduction and/or integration in this paper, by Microsoft France, of their works of any kind.

The partial or complete reproduction of the aforementioned elements and in general the reproduction of all or part

of the work on any electronic medium is formally prohibited without the prior written consent of Microsoft France.

Publication: July 2020

Version 1.0

© 2020 Microsoft France. All rights reserved

https://microsoft.github.io/CCF/

 Getting started with the Confidential Consortium Framework on Azure 3

About this guide

Welcome to the Getting started with the Confidential Consortium Framework on Azure starter guide for

developers.

This document is part of a series of guides that covers confidential computing in the Cloud, and the Edge, and

considerations that pertain to it from a development perspective and/or an infrastructure one. This series of

guides is available at https://aka.ms/CCDevGuides.

The Confidential Consortium Framework1 (CCF), a joint project between Microsoft Research and Azure Engineering,

is an open-source framework2 for building a new category of secure, highly available, and performant distributed

applications that focus on multi-party compute and data.

Note CCF has been initially known as the Confidential Consortium Blockchain Framework, a.k.a. CoCo Framework.

While not limited just to blockchain applications, CCF can enable high-scale, confidential blockchain networks that

meet key enterprise requirements, providing a means to accelerate production enterprise.

Note For an overview, watch the episodes Confidential Consortium Framework (CCF) Overview3 and Confidential

Consortium Framework (CCF) Part II: A deeper look and demos4 on the Block Talk series on Channel 9.

Deployed as a blockchain-type network between parties, every node of a CCF network is running a Trusted

Execution Environment5 (TEE) or enclave, - you can read the guide Building and Executing Trusted Execution

Environment (TEE) based applications on Azure in this series of guides to learn about TEE -.

1 Confidential Consortium Framework: https://aka.ms/ccf
2 The Confidential Consortium Framework: https://github.com/Microsoft/CCF

3 Confidential Consortium Framework (CCF) Overview: https://channel9.msdn.com/Shows/Blocktalk/Confidential-Consortium-Framework-CCF-

Overview

4 Confidential Consortium Framework (CCF) Part II: A deeper look and demos: https://channel9.msdn.com/Shows/Blocktalk/Confidential-

Consortium-Framework-CCF-Part-II-A-deeper-look-and-demos
5 Trusted execution environment: https://en.wikipedia.org/wiki/Trusted_execution_environment

https://aka.ms/CCDevGuides
https://aka.ms/ccf
https://github.com/Microsoft/CCF
https://channel9.msdn.com/Shows/Blocktalk/Confidential-Consortium-Framework-CCF-Overview
https://channel9.msdn.com/Shows/Blocktalk/Confidential-Consortium-Framework-CCF-Part-II-A-deeper-look-and-demos
https://channel9.msdn.com/Shows/Blocktalk/Confidential-Consortium-Framework-CCF-Part-II-A-deeper-look-and-demos
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment

4 Getting started with the Confidential Consortium Framework on Azure

CCF is built on top of the Microsoft Open Enclave SDK6 (OESDK), (yet) another open source framework available

on GitHub over two years. The OESDK aims at creating a single unified enclaving abstraction and consistent API

surface for developers to build applications once that run across multiple TEE architectures, technologies and

platforms7, such as the Intel Software Extension Guard8 (SGX).

CCF also provides a simple programming model of a highly available data store and a universally verifiable log that

implements a ledger abstraction. Furthermore, CCF leverages trust in a consortium of governing members and in a

network of replicated hardware-protected execution environments to achieve high throughput, low latency, strong

integrity and strong confidentiality for application data and code executing on the ledger.

In this starter guide, and as its title suggest, we will cover the basics of the CCF.

This guide aims at helping you as a developer get started start with CCF, and in particular build a trusted network

of nodes/TEEs, deploy an application on top of it, etc.

You will indeed learn how to create and deploy with CCF this new kind of multi-party applications on top of Azure

Confidential Computing9 (ACC), and the SGX-based DC-series family of VMs it provides.

For that purposes, you’re invited to follow a short series of two modules.

This guide is intended to be used in conjunction with the CCF documentation available at

https://microsoft.github.io/CCF/. Please note, that besides Microsoft Azure here, networks can be run on-premises,

in one or many cloud-hosted data centers, or in any hybrid configuration.

At the end of the mini guide, you will be able to:

• Instantiate an ACC VM well-suited for blockchain or any other trusted distributed multi-party applications

development,

• Install the Confidential Consortium Framework (CCF) on top of that ACC VM,

• Deploy, manage, and use a multi-node CCF network.

Guide elements

In the starter guide modules, you will see the following elements:

• Step-by-step directions. Click-through instructions - along with relevant snapshots - or links to online

documentation for completing each procedure or part.

6 Open Enclave SDK: https://Open Enclave.io/sdk/
7 The future of computing: intelligent cloud and intelligent edge: https://azure.microsoft.com/en-us/overview/future-of-cloud
8 Intel Software Extension Guard: https://software.intel.com/en-us/sgx
9 Azure Confidential Computing: https://azure.microsoft.com/solutions/confidential-compute/

https://openenclave.io/sdk/
https://software.intel.com/en-us/sgx
https://azure.microsoft.com/solutions/confidential-compute/
https://azure.microsoft.com/solutions/confidential-compute/
https://microsoft.github.io/CCF/

 Getting started with the Confidential Consortium Framework on Azure 5

• Sample applications, and files. A downloadable or cloneable version of the project containing the code

that you will use in this guide, and other files you will need. Please go to

https://github.com/Microsoft/CCF on GitHub to download or clone all necessary assets.

Guide prerequisites

To successfully leverage the provided code in this starter guide, you will need:

• A Microsoft account10.

• An Azure subscription. If you don't have an Azure subscription, create a free account11 before you begin.

• A windows 10 local machine.

• A terminal console for your Windows 10 local machine, which allows you to remotely connect to a virtual

machine (VM) in SSH, such as PuTTY12, Git for Windows13 (2.10 or later).

Important note With Git, ensure that long paths are enabled: git config --global core.longpaths true.

As far as the latter is concerned, recent versions of Windows 10 provide OpenSSH client commands to create and

manage SSH keys and make SSH connections from a command prompt.

Note For more information, see blogpost What’s new for the Command Line in Windows 10 version 180314.

Installing OpenSSH on Windows 10

The OpenSSH Client and OpenSSH Server are separately installable components in Windows 10 1809 and above.

Note For information about the OpenSSH availability on Windows 10, see here15.

To install OpenSSH on your Windows 10 local machine, perform the following steps.

1. Open an elevated PowerShell console.

2. Run the following command:

PS C:\> Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0

10 Microsoft Account: https://account.microsoft.com/account?lang=en-us

11 Create your Azure free account today: https://azure.microsoft.com/en-us/free/?WT.mc_id=A261C142F
12 PuTTY: https://www.chiark.greenend.org.uk/~sgtatham/putty/
13 Git for Windows: https://git-for-windows.github.io/

14 What’s new for the Command Line in Windows 10 version 1803:

https://blogs.msdn.microsoft.com/commandline/2018/03/07/windows10v1803/
15 Installation of OpenSSH For Windows Server 2019 and Windows 10: https://docs.microsoft.com/en-us/windows-

server/administration/openssh/openssh_install_firstuse

https://github.com/Microsoft/CCF
https://account.microsoft.com/account?lang=en-us
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://git-for-windows.github.io/
https://blogs.msdn.microsoft.com/commandline/2018/03/07/windows10v1803/
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

6 Getting started with the Confidential Consortium Framework on Azure

Once the installation completes, you can use the OpenSSH client from PowerShell or the Windows 10 command

shell.

Generating your RSA Key pairs with OpenSSH

OpenSSH includes different tools and more specifically the ssh-keygen command for generating secure RSA key

pairs, that can be in turn used for key authentication with SSH.

RSA Key pairs refer to the public and private key files that are used by certain authentication protocols.

To generate your RSA Key pairs, perform the following steps.

1. Open an elevated PowerShell console.

2. Run the following command:

PS C:\> ssh-keygen

You can just hit ENTER to generate them, but you can also specify your own filename if you want. At this point,

you'll be prompted to use a passphrase to encrypt your private key files. The passphrase works with the key file to

provide 2-factor authentication. For this example, we are leaving the passphrase empty.

 Getting started with the Confidential Consortium Framework on Azure 7

Note SSH public-key authentication uses asymmetric cryptographic algorithms to generate two key files – one

"private" and the other "public". The private key file is the equivalent of a password and should protected under all

circumstances. If someone acquires your private key, they can log in as you to any SSH server you have access to. The

public key is what is placed on the SSH server and may be shared without compromising the private key.

When using key authentication with an SSH server, the SSH server and client compare the public key for username

provided against the private key. If the public key cannot be validated against the client-side private key, authentication

fails.

By default, the files are saved in the following folder %USERPROFILE%\.ssh:

File Description

%USERPROFILE%\.ssh\id_rsa Contains the RSA private key

%USERPROFILE%\.ssh\id_rsa.pub Contains the RSA public key.

8 Getting started with the Confidential Consortium Framework on Azure

Module 1: Introducing the Confidential

Consortium Framework (CCF)

Before starting to create your Confidential Consortium Framework (CCF) network node(s), let’s take the time to

(shortly) remind or present you what blockchain (network) is and how TEEs are keeping the network safe from

fraudulent transactions or external attacks in CCF.

This is the purpose of this first module to introduce some important concepts regarding blockchain network, and

in contrast/parallel, outlines the benefits CCF provide. If you already familiar with these considerations, you can

skip this module and jump into the next one start building your own network.

A brief recap on blockchain network

A blockchain (network) is a tamper-proof, highly available, decentralized ledger.

It’s a system that maintains cryptographically chained blocks of transactions (containing cryptocurrencies, code or

assets) across nodes that are linked in a peer-to-peer network:

• It records what happened and the order it happened in.

• There isn’t any central server or organization, which rules the network. It’s a fully decentralized

environment.

There are 2 types of blockchain: public vs. private.

On a public blockchain, members are usually unknown - you only know public addresses - and everybody can join

the network. This is a permissionless network.

Conversely, on a private blockchain, everybody knows each other and when someone tries to join the blockchain,

he usually needs to be accepted inside the network by other peers. This is a permissioned network.

To keep the network tamper-proof, a blockchain is usually based on/govern by algorithms. The goal of those

algorithms aims at validating that a transaction is valid and spreading this transaction across the peer network.

Indeed, every peer of the network runs its own copy of the transaction ledger, so such an algorithm is in charge of

keeping every ledger consistent across nodes.

On a public blockchain, the algorithm requires that a peer, which wants to validate a transaction, needs to bet a

lot of “something” (computation power, cryptocurrency, etc.). So, considering that, at least half of the members

inside the network are not trying to attack or steal something on the network, this part of peers will overwhelm

cheaters, which will lost their “bets”. This is why a public blockchain can be considered as secure: if you try to

attack the blockchain, you likely will lose more than what you could win as potential rewards.

Those algorithms such as the well-known Proof of work16 (PoW) or Proof of stake17 (PoS), provide reliability but

there are some drawbacks, such as a low transaction throughput, a high computation cost, or an impossibility to

scale up. To illustrate the point, Bitcoin currently uses approximately 69 TWh/year of electricity, about the same as

16 Proof of work: https://en.wikipedia.org/wiki/Proof_of_work
17 Proof of stake: https://en.wikipedia.org/wiki/Proof_of_stake

https://en.wikipedia.org/wiki/Proof_of_work
https://en.wikipedia.org/wiki/Proof_of_stake

 Getting started with the Confidential Consortium Framework on Azure 9

Austria, to process between 2 and 3 transactions (Tx)/second. Determining if a transaction was successful is

probabilistic rather than deterministic and takes at least an hour. In addition, transactions are not confidential.

This is (currently) not “enterprise ready”, resulting in the rise of private or consortium blockchains (in the

meantime). In so far as you know every member inside the network, you can implement lighter algorithms (with

less confidence) to verify transactions. Indeed, if someone tries to cheat, he/she will simply be kicked out of the

blockchain. But this is not a perfect solution either, as this is still possible to cheat at least one time before being

kicked, or, even if performances of the network are better, this isn’t as good as a database.

Furthermore, governance is a difficult problem, making changes and bug fixes problematic.

Understanding CCF objectives

In this context, Microsoft tried another approach: what if the algorithm were just a way to establish a consensus

between nodes, and the security part would be managed by something else, such as Trusted Execution

Environments (TEEs) or enclaves.

As you saw before, an enclave is a secure area inside the processor, in a fully isolated environment. A user

connected to the machine (even an administrator) can’t see what is running and processing inside this enclave.

However, the user can get an attestation about the code running in that enclave. This means that if you put some

(trusted) code inside an enclave, you can verify at any moment if your code was modified or not.

And this is basically how CCF works: by putting the code in charge of verifying transactions inside enclaves, you

can be sure that a transaction signed by the code inside the enclave and the code itself are correct and not

fraudulent.

Also, since you can verify transaction by yourselves, you can make them private if needed, as other nodes, which

will append their ledger with this transaction, will only have to know if the transaction is signed, they don’t have to

know about their content anymore.

With the use of Trusted Execution Environments (TEEs) or enclaves, CCF creates a trusted distributed blockchain

network of physical nodes on which to run a distributed ledger, providing secure, reliable components for the

protocol to use.

CCF is an infrastructure framework that leverages HW based (e.g. Intel SGX via ACC) Trusted Execution

Environments (TEEs), Paxos18 and similar consensus mechanisms (namely Raft19 for Crash Fault Tolerance and

18 Paxos (computer science): https://en.wikipedia.org/wiki/Paxos_%28computer_science%29

19 In Search of an Understandable Consensus Algorithm: https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf

https://en.wikipedia.org/wiki/Paxos_%28computer_science%29
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf

10 Getting started with the Confidential Consortium Framework on Azure

PTBF20 for Byzantine Fault Tolerance), a governance model, standard cryptography to enable arbitrary blockchain

protocols to deliver high-throughput, secure computation with confidential transaction models for consortium

blockchain networks.

Note For additional information on governance, see paper Blockchain Governance Models: Insights for

Enterprises21.

The Confidential Consortium Framework (CCF) doesn’t compete with blockchain’s technologies. It rather

provides the foundation, the groundwork for turning these technologies into high-performance,

confidential implementations.

All of these simplify consensus and transaction processing for high throughput and confidentiality.

Leveraging the power of trusted execution environments (TEEs), decentralized systems concepts, and

cryptography, CCF provides for blockchain and multi-party application builders with enterprise-ready computation

or blockchain networks that deliver:

• Throughput and latency approaching database speeds. Through its use of TEEs, CCF creates a network

of remotely attestable enclaves - you can read the guide Leveraging Attestations with Trusted

Execution Environment (TEE) based applications on Azure in this series of guides to learn about TEE -.

This gives a Web of Trust across the distributed system, allowing a user that verifies a single cryptographic

quote from a CCF node to effectively verify the entire network. This simplifies consensus and thus

improves transaction speed - currently running 50,000+ Tx/sec. For context, Visa averages 2,000 Tx/sec,

with 50,000 Tx/sec peaks - and latency - Transaction latency in 10s of milliseconds -, all without

compromising security or assuming trust.

• Richer, more flexible confidentiality models. Beyond safeguarding data access with encryption-in-use

via TEEs, CCF uses industry standards (mTLS and remote attestation) to ensure secure node

communication. Transactions can be processed in the clear or revealed only to authorized parties, without

requiring complicated confidentiality schemes. Confidential transactions is more than welcome in a

number of multi-party scenarios.

• Network and service policy management through non-centralized governance. CCF provides a

network and service configuration to express and manage consortium and multi-party policies. Strong,

smart contract-based governance actions, such as adding members to the governing consortium or

initiating catastrophic recovery, can be managed and recorded through standard ledger transactions

agreed upon via stakeholder voting.

• Improved efficiency versus traditional blockchain networks. CCF improves on bottlenecks and energy

consumption by eliminating computationally intensive consensus algorithms for data integrity, such as

proof-of-work or proof-of-stake.

• Attestation at scale. CCF Maintains integrity, resilience, and accountability properties of existing

blockchains’ technologies.

20 Practical Byzantine Fault Tolerance: http://pmg.csail.mit.edu/papers/osdi99.pdf
21 Blockchain Governance Models: Insights for Enterprises: https://blockchain.uark.edu/files/2019/11/BCCoEWhitePaper022019OPEN.pdf

http://pmg.csail.mit.edu/papers/osdi99.pdf
https://blockchain.uark.edu/files/2019/11/BCCoEWhitePaper022019OPEN.pdf
https://blockchain.uark.edu/files/2019/11/BCCoEWhitePaper022019OPEN.pdf

 Getting started with the Confidential Consortium Framework on Azure 11

A consortium first approach in CCF

In a public blockchain network, anyone can transact on the network, actors on the network are pseudo-

anonymous and untrusted, and anyone can add nodes to the network — with full access to the ledger and with

the ability to participate in consensus. Similarly, other distributed data technologies (such as distributed

databases) can have challenges in multi-party scenarios when it comes to deciding what party operates it and

whether that party could choose or could be compelled to act maliciously.

In contrast, in a consortium or multi-party network backed by TEEs, as enabled by CCF, consortium member

identities and node identities are known and controlled. A trusted network of TEEs, or enclaves, running on

physical nodes is established without requiring the actors that control those nodes to trust one another, i.e. what

code is run is controlled and correctness of its output can be guaranteed, simplifying the consensus methods and

reducing duplicative validation of data.

In CCF, using TEE technology through all the goodness of the OESDK (in terms of abstraction level and unified API

surface), the enclave of each node in the network (where cryptographically protected data is processed) can

decide whether it can trust the enclaves of other nodes based on mutual attestation exchange and mutual

authentication, regardless of whether the parties involved trust each other or not. This enables a network of

verifiable, remotely attestable enclaves on which to run a distributed ledger and execute confidential and secure

transactions in highly performant and highly available fashion.

If you want to learn more about CCF, we strongly advise to read the CCF technical report CCF: A Framework for

Building Confidential Verifiable Replicated Services22.

Also feel free to explore the GitHub repository available here23, or the website at this address.24

Now that you’re equipped with an understanding of the core capabilities of CCF, you are ready to build our own

network, based on that great framework.

This concludes this brief introduction of CCF and it’s high time to get your hands a little bit dirty with CCF.

22 CCF: A Framework for Building Confidential Verifiable Replicated Services: https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-

REPORT.pdf
23 Confidential Consortium Framework: https://github.com/microsoft/CCF
24 Welcome to CCF’s documentation: https://microsoft.github.io/CCF/

https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-REPORT.pdf
https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-REPORT.pdf
https://github.com/microsoft/CCF
https://microsoft.github.io/CCF/

12 Getting started with the Confidential Consortium Framework on Azure

Module 2: Building a CCF network on an ACC

VM

You will see in this second module how to create CCF nodes based on the DC-series VMs available in Azure

Confidential Computing (ACC).

This section covers the setup of your ACC VM and installation of CCF.

For this sake of this guide, you will create a single node blockchain network. As CCF runs on top of the Open

Enclave SDK (OESDK), a node will unsurprisingly be a DCsv2-series25 VM which is an easy to instantiate enclave-

capable VM in Azure.

Important Note V1 DC-Series VMs are in Preview and deploy an older version of the DC-Series VMs. They aren’t

going to be generally available and will remain in preview until deprecation.

For the most up-to-date technology and Confidential Computing VMs, you will need to use the new Generation 226 DCsv2-

Series instead that correspond to an Azure Confidential Compute (Virtual Machine) V2 deployment. Besides the initially

released v1 DC-Series VMs, DCsv2-Series VMs are backed by the latest generation of Intel XEON E-2288G Processor with

the Intel SGX technology.

The DCsv2-series uses the latest generation of 3.7GHz Intel XEON E-2176G Processor with SGX technology, and

with the Intel Turbo Boost Technology can go up to 4.7GHz. This family is currently available in Canada Central,

East US, and UK South regions only. Future availability is on the way, see Products available by region27.

25 Preview: DC-series: https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-gen#preview-dc-series

26 Support for generation 2 VMs on Azure: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/generation-2

27 Products available by region: https://azure.microsoft.com/en-us/global-infrastructure/services/?products=virtual-machines®ions=all

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-gen#preview-dc-series
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2
https://azure.microsoft.com/en-us/global-infrastructure/services/?products=virtual-machines®ions=all

 Getting started with the Confidential Consortium Framework on Azure 13

For the sake of this guide, between the four available size, you can opt for a Standard_DC4s_v228 VMs with 4

vCPUs and 16 GiB of memory, or instead to minimize the implied cost a Standard_DC2s_v229 with 2 vCPUs and 8

GiB of memory.

Furthermore, in terms of OS, amongst the three operating systems are supported for the above family of VMs, you

will choose Ubuntu Server 18.04 TLS.

You can refer to the section § Module1: Setting up a confidential computing VM in Azure of the guide Building

and Executing Trusted Execution Environment (TEE) based application in Azure in this series of guide to see

how to instantiate such VMs.

At this stage, you should have an ACC VM up and running.

28 DCsv2-series: https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series

29 Ibid

https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series

14 Getting started with the Confidential Consortium Framework on Azure

Connecting to your ACC VM

Once your ACC VM is online, by using a SSH client of your choice, such as OpenSSH, PuTTY, etc. you can test your

remote connection to the newly created VM using the administrator credentials provided above. The public IP

address of the VM can be found on the VM Networking page.

Note Depending on your configuration, you may need to configure a proxy in the SSH client to connect to the

virtual machine.

To connect to your one of your VMs using OpenSSH on your Windows 10 local machine, perform the following

steps:

1. From the Azure portal, search for your VM and click on it to display its menu.

2. Click on Connect, select SSH, and then make a note of the public IP address and the SSH connection

string.

In our illustration, the DNS FQDN name of the VM is accvm.uksouth.cloudapp.azure.com, and the SSH

connection string is danywin@accvm.uksouth.cloudapp.azure.com.

The public IP address can be used in lieu of the above DNS name. For example, 51.140.34.92 in our

illustration.

3. Open a PowerShell console, and the SSH to your VM:

PS C:\> ssh danywin@accvm.uksouth.cloudapp.azure.com

4. When prompted, type “yes”. Optionally specify your passphrase if any for your private key.

Et voila! You should now be connected to your ACC VM.

 Getting started with the Confidential Consortium Framework on Azure 15

Installing CCF on your ACC VM

In your Azure subscription, you should now have one ACC VM up and running and be connected to it.

Perform the following:

1. Open a remote terminal console on your first DC-series VM as per previous. We will use here Windows

Terminal30, i.e. a modern, fast, efficient, powerful, and productive terminal application for users of

command-line tools and shells.

2. Now that you are logged in your ACC VM, first make sure that you’re in your home directory on each of

the VMs. Type the following command if not:

$ cd ~

3. It’s now time to download CCF. To do so, on each of the VMs, type the following command:

$ git clone https://github.com/microsoft/CCF

4. Before building CCF, you will need to install a few dependencies. Fortunately, a Shell script is available

inside the CCF project to do that for you.

a. Simply type the following command:

$ cd CCF/getting_started/setup_vm

b. and then, execute the script:

$./run.sh driver.yml ccf-dev.yml

5. The next step consists in building CCF from its source files.

a. Go back into the root directory of CCF by typing:

$ cd ../..

b. Create a build directory:

$ mkdir build

c. Then, go inside it:

$ cd build

30 Windows Terminal: https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701

https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701

16 Getting started with the Confidential Consortium Framework on Azure

d. You can then build run cmake.

$ cmake -GNinja ..

e. And finally build the solution:

$ ninja

Note To learn more about CCF installation (build arguments, etc.), see article Getting Started31 of the

CCF documentation.

Congratulations! CCF is installed at this stage, you’re now able to leverage it to start a CCF network32.

Starting a test CCF network

As per CCF documentation33, “a CCF network consists of several nodes, each running on top of a Trusted

Execution Environment (TEE), here and SGX enclave in your ACC VM. As such, a CCF network is both decentralized

and highly available.

Nodes are run and maintained by operators, who are in charge of operating the considered CCF network (e.g.

adding or removing nodes). Their identities are not registered in CCF.

However, nodes must be trusted by the consortium of members before participating in a CCF network. Members

constitute the consortium governing a CCF network. Their public identity should be registered in CCF.

Each node runs the same CCF (a.k.a. transaction engine). A CCF application is consists of a collection of endpoints

that can be triggered by users via commands over TLS. Their public identity should be voted in by members

before they are allowed to issue requests.

Each endpoint mutates an in-TEE-memory Key-Value store that is replicated across all nodes in the network.

Changes to the Key-Value store must be agreed by a variable number of nodes, depending on the consensus

algorithm selected (either Raft or PBFT), before being applied.”

31 GETTING STARTED: https://microsoft.github.io/CCF/getting_started.html
32 Starting a New Network: https://microsoft.github.io/CCF/master/operators/start_network.html#starting-a-new-network
33 Concepts: https://microsoft.github.io/CCF/master/concepts.html

https://microsoft.github.io/CCF/master/quickstart/index.html
https://microsoft.github.io/CCF/master/operators/start_network.html#starting-a-new-network
https://microsoft.github.io/CCF/master/concepts.html

 Getting started with the Confidential Consortium Framework on Azure 17

As a straightforward illustration, we will leverage the sample logging application34, which provides an interface for

users to write private messages available only to nodes in the network, and public messages available to anyone

who has access to the ledger.

This application is implemented in C++ and Lua35, i.e. a powerful, efficient, lightweight, embeddable scripting

language. The implementation details in terms of RPC handlers and interface are discussed in the CCF

documentation.

For convenience, we will run tmux36 to split our console so that we can run the server on one tab, and execute

commands on it in the other. Another solution would be to create another console and connect to it using SSH as

before.

Here we will choose to use tmux. Therefore, start by running:

$ tmux

34 Example Application: https://microsoft.github.io/CCF/master/developers/example.html

35 The programming Language Lua: https://www.lua.org/

36 A Quick and Easy Guide to tmux: https://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/

https://microsoft.github.io/CCF/master/developers/example.html
https://www.lua.org/
https://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/

18 Getting started with the Confidential Consortium Framework on Azure

This will give you the following screen:

Then by pressing first CTRL + b, then press ", this should split the console in two:

Now you can start a simple 3-node test network on your ACC VM by running in the bottom console the following

command:

$../start_test_network.sh --package ./liblogging.enclave.so.signed

 Getting started with the Confidential Consortium Framework on Azure 19

start_test_network.sh is a thin wrapper around the python script start_network.py. It ensures the necessary Python

dependencies are available, sets some sensible default values, and uses curl to submit CCF commands.

As such, this script automates the steps described in Starting a New Network37:

1. Generating new identities (private keys and certs) for the initial members and users.

2. Starting an initial node.

3. Starting two additional nodes, instructed to join the initial node.

4. Verifying that each node has successfully joined the new service, i.e. the referenced CCF application.

5. Proposing and passing governance votes using the generated member identities.

As a result, this should give you the following output:

Great! Now the test CCF network with the example logging application has been started for us. We can see that it

has created three nodes to which we can send requests.

Sending requests to the CFF application

Now that we have launched the server in the bottom panel, we can switch to the top panel by pressing CRTL+b,

then TopArrow.

You will notice now that the top panel is responsive. Then you simply need to change folder:

$ cd workspace/test_network_common/

37 Starting a New Network: https://microsoft.github.io/CCF/master/operators/start_network.html#starting-a-new-network

https://microsoft.github.io/CCF/master/operators/start_network.html#starting-a-new-network

20 Getting started with the Confidential Consortium Framework on Azure

You should then get this:

We can now start to interact with our test CCF network.

You can communicate with the network using HTTPS requests. We will first start by logging a simple “Hello there”

message at id 42.

To do so, first create a request.json using vim:

$ vim request.json

As a reminder, to edit a file using vim, you must first press I to enter insertion mode. Then enter this:

{
 "id": 42,
 "msg": "Hello There"
}

Then press ESC and type “:wq” to exit and save. To make sure the file was properly edited you can cat it:

$ cat request.json
>
{
 "id": 42,
 "msg": "Hello There"
}

Now we can send this request to our CCF logging application.

To interact with the test CCF network, you need to provide your certification and private key, as well as the

certification of the network which was generated by the first node.

 Getting started with the Confidential Consortium Framework on Azure 21

This is used as the Certificate Authority (CA) to authenticate the server’s identity.

The certificates and private keys were generated using the keygenerator.sh present in the folder

build/workspace/test_network_common, and you can also notice that it was already called by the

start_test_network.sh script we used earlier, as the current folder is already populated with certificates and private

keys.

One more thing to notice, is that there are members and users created. Members can participate in the

governance, which means that they can access the /gov endpoint, while users can only interact with the /app

endpoint.

Now, we can send our first message to the logging app using a POST request. To do so, simply run:

$ curl https://<ccf-node-address>/app/log/private --cacert networkcert.pem --key user0_privk.pem --
cert user0_cert.pem --data-binary @request.json -H "content-type: application/json" -i

with <ccf-node-address> the address of one node. This address is available in your screen below where you

started the test CCF network.

You should get the following output:

>
HTTP/1.1 200 OK
content-length: 5
content-type: application/json
x-ccf-tx-seqno: 23
x-ccf-tx-view: 2
true

We can then have a look at the message using a GET request:

curl https://<ccf-node-address>/app/log/private?id=42 -X GET --cacert networkcert.pem --cert
user0_cert.pem --key user0_privk.pem

Which should give the output:

>
{"msg":"Hello There"}

Finally, if you want to see all methods available on this network, you can simply query the /app/api endpoint by

running:

$ curl https://<ccf-node-address>/app/api -X GET --cacert networkcert.pem --cert user0_cert.pem --key
user0_privk.pem
>
{"methods":["api","api/schema","code","commit","log/private","log/private/anonymous","log/private/his
torical","log/private/prefix_cert","log/private/raw_text/{id}","log/public","metrics","network_info",
"node/ids","primary_info","receipt","receipt/verify","tx","user_id"]}

To have more information on a specific method, you can query the /app/api/schema endpoint with the

appropriate method. For instance, to have more information on the /app/api method, simply run:

22 Getting started with the Confidential Consortium Framework on Azure

$ curl 'https://<ccf-node-address>/app/api/schema?method="api"' -X GET --cacert networkcert.pem --
cert user0_cert.pem --key user0_privk.pem -H "Content-Type: application/json"
>

Perfect! Now we have seen how we could interact with a CCF network. As a final exercise, we wll see how we can

send proposals, vote, and add a member to the consortium.

To create a new member, we must send a proposal to the other members to add the new member. This will be

done by submitting our proposal to the /gov/proposals/. Beforehand, we will need the scurl.sh to interact with

the governance endpoint. This script is present two folders above, so we will start by copying to the current folder:

$ cp ../../scurl.sh .

Then to add a member to the consortium, we will use the keygenerator.sh script to generate the member’s

certificate and associated private key as well as their encryption public and private keys.

$ keygenerator.sh --name member_name --gen-enc-key
>
-- Generating identity private key and certificate for participant "member_name"...
Identity curve: secp384r1
Identity private key generated at: member_name_privk.pem
Identity certificate generated at: member_name_cert.pem (to be registered in CCF)
-- Generating encryption key pair for participant "member_name"...
Encryption private key generated at: member_name_enc_privk.pem
Encryption public key generated at: member_name_enc_pubk.pem (to be registered in CCF)

The member’s private keys (e.g. member_name_privk.pem and member_name_enc_privk.pem) should be stored on

a trusted device while the certificate (e.g. member_name_cert.pem) and public encryption key (e.g.

member_name_enc_pubk.pem) should be registered in CCF by members.

Now we just need to create the json file which would represent our proposal. To do so, create a file

new_member.json, and fill it with:

{
 "parameter": {
 "cert": "-----BEGIN CERTIFICATE-----
\nMIIBrzCCATSgAwIBAgIUTu47sG/Ziz4hgoeMhKzs/alrEYcwCgYIKoZIzj0EAwMw\nDjEMMAoGA1UEAwwDYm9iMB4XDTIwMDcwO
TE0NTc0OFoXDTIxMDcwOTE0NTc0OFow\nDjEMMAoGA1UEAwwDYm9iMHYwEAYHKoZIzj0CAQYFK4EEACIDYgAENhB3M5fWT5YQ\n+v
BOl0T9xt29CvYBsJyLCGeflqLAFA4YDs7Bb3mMH46EiJg+BFT0HmIPtGW91qE5\nZEPMINQ2zuU0IU6uomPBi76pQ5vhm/2HDy3SL
DwRytrSDNqTXZXfo1MwUTAdBgNV\nHQ4EFgQUBchpeGuTHjy4XuwdgQqC3pOqOdEwHwYDVR0jBBgwFoAUBchpeGuTHjy4\nXuwdgQ
qC3pOqOdEwDwYDVR0TAQH/BAUwAwEB/zAKBggqhkjOPQQDAwNpADBmAjEA\nmNPNpZvqn3piEepKGFJtqKtq+bZxUZuWZxxXILj4/
qnC1fLatJaMQ/DHRtCxwcU/\nAjEAtZe3LAQ6NtVIrn4qFG3ruuEgFL9arCpFGEBLFkVdkL2nFIBTp1L4C1/aJBqk\nK9d9\n----
-END CERTIFICATE-----\n",
 "keyshare": "-----BEGIN PUBLIC KEY-----
\nMCowBQYDK2VuAyEAO63rFGghBlp4DUvFQ6437ZGBlB8LNHnzgNEjW5hRPHM=\n-----END PUBLIC KEY-----\n"
 },
 "script": {
 "text": "tables, args = ...; return Calls:call(\"new_member\", args)"
 }
}

In this case I have prefilled the cert and keyshare values, but you can replace it with the contents of

member_name_cert.pem and member_name_enc_pubk.pem.

 Getting started with the Confidential Consortium Framework on Azure 23

Now we can finally propose this to the test CCF network by running:

$./scurl.sh https://127.12.222.235:42199/gov/proposals --cacert networkcert.pem --key
member0_privk.pem --cert member0_cert.pem --data-binary @new_member.json -H "content-type:
application/json"
>
{"proposal_id":4,"proposer_id":0,"state":"OPEN"}

In this case, a new proposal with id 4 has successfully been created and the proposer member has voted to accept

it (they may instead pass a voting ballot with their proposal if they wish to vote conditionally, or withhold their

vote until later). Other members can then vote to accept or reject the proposal.

Now we can other members’ ballot. Create two other .json files (with Vim for instance) with the following content:

• vote_reject.json

{
 "ballot": {
 "text": "return false"
 }
}

• vote_accept.json

{
 "ballot": {
 "text": "return true"
 }
}

Now to simulate other members voting, we will just send their ballot (the json file), with the appropriate

credentials and private keys to the right endpoint, which is /gov/proposals/4/votes (4 is the id of the proposition):

$./scurl.sh https://127.12.222.235:42199/gov/proposals/4/votes --cacert networkcert.pem --key
member1_privk.pem --cert member1_cert.pem --data-binary @vote_reject.json -H "content-type:
application/json"
>
{"proposal_id":4,"proposer_id":0,"state":"OPEN"}

Now that we made the member 1 reject, we will make the member 2 accept by sending the other ballot:

$./scurl.sh https://127.12.222.235:42199/gov/proposals/4/votes --cacert networkcert.pem --key
member2_privk.pem --cert member2_cert.pem --data-binary @vote_accept.json -H "content-type:
application/json"
>
{"proposal_id":4,"proposer_id":0,"state":"ACCEPTED"}

The proposal has now been accepted.

24 Getting started with the Confidential Consortium Framework on Azure

To view the details of the proposal we can do a GET on /gov/proposals/{proposal_id}:

$./scurl.sh https://127.12.222.235:42199/gov/proposals/4 --cacert networkcert.pem --key
member2_privk.pem --cert member2_cert.pem -H "content-type: application/json" -X GET
>
{"parameter":{"cert":"-----BEGIN CERTIFICATE-----
\nMIIBrzCCATSgAwIBAgIUTu47sG/Ziz4hgoeMhKzs/alrEYcwCgYIKoZIzj0EAwMw\nDjEMMAoGA1UEAwwDYm9iMB4XDTIwMDcwO
TE0NTc0OFoXDTIxMDcwOTE0NTc0OFow\nDjEMMAoGA1UEAwwDYm9iMHYwEAYHKoZIzj0CAQYFK4EEACIDYgAENhB3M5fWT5YQ\n+v
BOl0T9xt29CvYBsJyLCGeflqLAFA4YDs7Bb3mMH46EiJg+BFT0HmIPtGW91qE5\nZEPMINQ2zuU0IU6uomPBi76pQ5vhm/2HDy3SL
DwRytrSDNqTXZXfo1MwUTAdBgNV\nHQ4EFgQUBchpeGuTHjy4XuwdgQqC3pOqOdEwHwYDVR0jBBgwFoAUBchpeGuTHjy4\nXuwdgQ
qC3pOqOdEwDwYDVR0TAQH/BAUwAwEB/zAKBggqhkjOPQQDAwNpADBmAjEA\nmNPNpZvqn3piEepKGFJtqKtq+bZxUZuWZxxXILj4/
qnC1fLatJaMQ/DHRtCxwcU/\nAjEAtZe3LAQ6NtVIrn4qFG3ruuEgFL9arCpFGEBLFkVdkL2nFIBTp1L4C1/aJBqk\nK9d9\n----
-END CERTIFICATE-----\n","keyshare":"-----BEGIN PUBLIC KEY-----
\nMCowBQYDK2VuAyEAO63rFGghBlp4DUvFQ6437ZGBlB8LNHnzgNEjW5hRPHM=\n-----END PUBLIC KEY-----
\n"},"proposer":0,"script":{"text":"tables, args = ...; return Calls:call(\"new_member\",
args)"},"state":"ACCEPTED","votes":[[1,{"text":"return false"}],[0,{"text":"return
true"}],[2,{"text":"return true"}]]}

Here we can see at the end of the response that the state is “ACCEPTED”, and that members 0 and 2 voted yes,

while member 1 voted no.

This concludes this module as well as this starter guide for a first look at CCF.

Copyright © 2020 Microsoft France. All right reserved.

Microsoft France

39 Quai du Président Roosevelt

92130 Issy-Les-Moulineaux

The reproduction in part or in full of this document, and of the associated trademarks and logos, without

the written permission of Microsoft France, is forbidden under French and international law applicable to

intellectual property.

MICROSOFT EXCLUDES ANY EXPRESS, IMPLICIT OR LEGAL GUARANTEE RELATING TO THE INFORMATION

IN THIS DOCUMENT.

Microsoft, Azure, Office 365, Microsoft 365, Dynamics 365 and other names of products and services are, or

may be, registered trademarks and/or commercial brands in the United States and/or in other countries.

