

Building and Executing Trusted

Execution Environment (TEE) based

applications on Azure (and on the Edge)
A starter guide for developers

Version 1.2, April 2020

For the latest information about Azure, please see

https://azure.microsoft.com/en-us/overview/

For the latest information on Azure Confidential Computing (ACC), please see

https://azure.microsoft.com/en-us/solutions/confidential-compute/

For the latest information about open source on Azure, please see

https://azure.microsoft.com/en-us/overview/choose-azure-opensource/

For the latest information on the Open Enclave (OE) SDK, please see

https://openenclave.io/sdk/

ii Building and Executing Trusted Execution Environment (TEE) based applications on Azure

This page is intentionally left blank.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 1

Table of contents

NOTICE .. 3

ABOUT THIS GUIDE .. 4

GUIDE ELEMENTS ... 9

GUIDE PREREQUISITES ... 10

Installing OpenSSH on Windows 10 .. 10

Generating your RSA Key pairs with OpenSSH ... 11

MODULE 1: SETTING UP A CONFIDENTIAL COMPUTING VM IN AZURE .. 13

OVERVIEW .. 13

STEP-BY-STEP DIRECTIONS ... 15

Deploying a v1 DC-series VM on Azure ... 15

Deploying a v2 DCsv2-series VM on Azure .. 20

Connecting to your DC-series VM .. 26

Cloning and building the Open Enclave SDK ... 28

Using the Open Enclave SDK .. 29

MODULE 2: DEVELOPING TEE-BASED APPLICATION IN AZURE .. 34

OVERVIEW .. 34

IMPORTANT CONCEPTS ... 35

Terminology... 35

Enclave interface definition ... 36

Data marshalling .. 37

STEP-BY-STEP DIRECTIONS ... 38

Building a TEE-based Linux application on Intel SGX ... 38

MODULE 3: DEVELOPING TEE-BASED APPLICATION FOR THE EDGE ... 47

OVERVIEW .. 47

IMPORTANT CONCEPT ... 49

Azure IoT Platform for the “Intelligent Cloud, Intelligent Cloud” ... 49

STEP-BY-STEP DIRECTIONS ... 50

Building a TEE-based Linux application on a simulated ARM TrustZone environment .. 51

Building a TEE-based Linux module on an Edge ARM TrustZone device ... 62

APPENDIX. PREREQUISITES AND ADDITIONAL CONFIGURATION ... 86

SETTING UP A CORE AZURE IOT ENVIRONMENT .. 86

2 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Creating an Azure Container Registry ... 86

Creating an Azure IoT Hub .. 88

Registering an Azure IoT Edge device to your Azure IoT hub ... 91

Installing and starting the Azure IoT Edge runtime on your device ... 93

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 3

Notice

This guide for developers is intended to illustrate a new way for companies to build and execute so-called Trusted

Execution Environment (TEE) based applications using the Microsoft Open Enclave SDK (OESDK) in C and C++. The

OESDK is available in open source at https://openenclave.io/sdk/.

MICROSOFT DISCLAIMS ALL WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, IN RELATION WITH THE

INFORMATION CONTAINED IN THIS WHITE PAPER. The white paper is provided "AS IS" without warranty of any

kind and is not to be construed as a commitment on the part of Microsoft.

Microsoft cannot guarantee the veracity of the information presented. The information in this guide, including but

not limited to internet website and URL references, is subject to change at any time without notice. Furthermore,

the opinions expressed in this guide represent the current vision of Microsoft France on the issues cited at the date

of publication of this guide and are subject to change at any time without notice.

All intellectual and industrial property rights (copyrights, patents, trademarks, logos), including exploitation rights,

rights of reproduction, and extraction on any medium, of all or part of the data and all of the elements appearing

in this paper, as well as the rights of representation, rights of modification, adaptation, or translation, are reserved

exclusively to Microsoft France. This includes, in particular, downloadable documents, graphics, iconographics,

photographic, digital, or audiovisual representations, subject to the pre-existing rights of third parties authorizing

the digital reproduction and/or integration in this paper, by Microsoft France, of their works of any kind.

The partial or complete reproduction of the aforementioned elements and in general the reproduction of all or part

of the work on any electronic medium is formally prohibited without the prior written consent of Microsoft France.

Publication: August 2019 (updated April 2020)

Version 1.2

© 2019 Microsoft France. All rights reserved

https://openenclave.io/sdk/

4 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

About this guide

Welcome to the Building and Executing Trusted Execution Environment (TEE) based applications on Azure

starter guide for developers.

This document is part of a series of guides that covers confidential computing in the Cloud, and the Edge, and

considerations that pertain to it from a development perspective and/or an infrastructure one. (This series of

guides is available at https://aka.ms/CCDevGuides.)

Data can be uploaded encrypted (i.e. in transit) to the cloud. Furthermore, in most situations, not to say in all of

them, data is stored encrypted (i.e. at rest) in the cloud and decrypted on the fly when used or computed by a

program. This is both a usual and an adapted way to proceed for the most common data.

But sometimes, protecting data at rest and data in transit is not enough. Data may be indeed too sensible to

appear in clear in memory (i.e. in use), even if the (virtual) machine and the workload processing data can be

considered hardened respectively secured.

Financial data processing constitutes one typical illustration but is far from being the only one.

The specificities of your workload may require protecting data in use confidentiality and integrity from malicious

insiders with administrative privilege or direct access, safeguarding against hackers and malware that exploit bugs

in the operating system, application, or hypervisor, protecting against third-party access without consent, etc.

By extension, you may also consider the situation where multiple data sources from different organizations that

do not necessarily trust each other, or are even competitor, must be combined.

For example, multiples organizations, such as health facilities/institutions and pharmaceutic industries, may have

to joint their effort and combine their own respective private patient/health data sources to build, train, evaluate a

deep/machine learning model for a better algorithmic outcome without sacrificing data confidentiality:

organizations do not see each other’s data sets.

The resulting solution, known as a privacy-preserving multi-party machine learning1, should allow to fusion

sensitive data sources across different organizations while not revealing data to participants or the cloud platform.

1 OBLIVIOUS MULTI-PARTY MACHINE LEARNING ON TRUSTED PROCESSORS: https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/07/paper.pdf

https://aka.ms/CCDevGuides
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/paper.pdf

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 5

Note For more information on privacy-preserving multi-party machine learning, see the various presentations of

the one-day workshop NIPS 2016 Workshop Private Multi‑Party Machine Learning2.

In some cases, your sensitive content is the code and not the data. To secure sensitive IP, you may require protect

confidentiality and integrity of your code while it’s in use.

Increasing popularity of use cases like the above ones has led to secure compute workloads within the confines of

Trusted Execution Environments3 (TEEs).

This concept called Confidential Computing is an ongoing effort to protect data and/or code throughout its

lifecycle at rest, in transit and now in use.

With the use of TEEs or simply enclaves, you can build applications that protect workloads during computation.

A TEE-based application partitions itself into two components 1) an untrusted component (called the host

application) and 2) a trusted component, i.e. a TEE or enclave:

1. The host component runs unmodified on the untrusted operating system (OS), while the trusted component

runs within the enclave. It’s a normal user mode application that loads an enclave into its address space

before starting to interact with an enclave.

2. The enclave is a secured container provided by a TEE implementation whose memory (text and data) is

protected from entities outside the enclave, including the host application, privileged users, and even the

hardware: a user (remotely) connected to the machine (even a trusted administrator or the operating system

(OS)) can’t see what is running and processing inside this enclave.

These protections allow enclaves to perform secure computations with assurances that secrets will not be

compromised. Thus, all functionality that needs to be run in an enclave should be compiled into the enclave

binary. The enclave may run in an untrusted environment with the expectation that secrets will not be

compromised.

2
 NIPS 2016 Workshop Private Multi‑Party Machine Learning: https://pmpml.github.io/PMPML16/

3 Trusted execution environment: https://en.wikipedia.org/wiki/Trusted_execution_environment

https://pmpml.github.io/PMPML16/
https://en.wikipedia.org/wiki/Trusted_execution_environment

6 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

One can obtain a remote attestation of the enclave’s identity, call the enclave’s exposed functions’ interface, but

cannot access the code itself within the enclave, the defined variables (and therefore data). In this context, data

stays encrypted all the way long from the user point of view: in transit, at rest, and in use. Same considerations

may apply for the code itself.

To sump-up, code and date are isolated in encrypted enclaves, preventing snooping or tampering even by the OS

or trusted administrators.

TEE-based applications root trust in any secure silicon TEE built on such enclaving technologies like Intel Software

Extension Guard4 (SGX) - The Intel SGX instruction extension was introduced with 7th Generation Intel Core

processor platforms and Intel Xeon processor E3 v5 for data center servers back in 2015 -, ARM TrustZone5 (TZ),

and embedded Secure Elements using Windows or Linux OSs.

Note For more information on the two above TEE technologies, see article SGX AND TRUSTZONE6.

But all of this is still really a low-level work and developing applications above that is really difficult and requires

both advanced security expertise and specifics skills.

In this context, Microsoft Research, together with partners, has embarked and invested in a way that simplifies

TEE-based application development for all audiences from hardcore hardware security experts to edge and cloud

software applications developers, regardless of the underlying enclaving technologies. The effort results in the

Microsoft Open Enclave SDK7 (OESDK), an open source framework available on GitHub over a year ago under an

open source license.

The OESDK aims at creating a single unified enclaving abstraction for developer to build applications once that

run across multiple TEE architectures, and thus was designed to:

• Make it easy to write and debug code that runs inside TEEs.

• Allow the development of code that’s portable between TEEs.

4 Intel Software Extension Guard: https://software.intel.com/en-us/sgx
5 Layered Security for Your Next SoC: https://www.arm.com/products/silicon-ip-security

6 SGX AND TRUSTZONE: https://github.com/openenclave/openenclave/blob/feature.new_platforms/new_platforms/docs/sgx_trustzone_arch.md
7 Open Enclave SDK: https://Open Enclave.io/sdk/

https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.arm.com/products/silicon-ip-security
https://github.com/openenclave/openenclave/blob/feature.new_platforms/new_platforms/docs/sgx_trustzone_arch.md
https://openenclave.io/sdk/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 7

• Provide a flexible plugin model to support different runtimes and cryptographic libraries.

• Have a high degree of compatibility with existing code.

As such, the OESDK provides an open source consistent API surface across enclave technologies and platforms

from the cloud to the edge8.

Note Beyond the ongoing shift to the “Intelligent Cloud”, one can observe the inevitable rise of the “Intelligent

Edge”. The enormity of data and the evolution of intelligence in (Industrial) Internet of Things ((I)IoT) is inspiring new

computational models that distribute compute from cloud to edge and synthesize data to improve business outcomes. As

the (I)IoT continues to increasingly accelerate and businesses realize the immense benefits, the next breakthrough

capability upon us - or even already here.

Enabling intelligence on edge devices means enabling analytics and insights to happen closer to the source of the

(sensitive) data, saving organizations money and simplifying their solutions. The result is rapid growth in patterns such as

deploying proprietary algorithms and data including Artificial Intelligence (AI), generating valuable insights including

monetization avenues in, and creating direct actions including those controlling downstream critical infrastructure from

(I)IoT devices.

Increased functionalities and computing power available on the edge are already changing the way organizations design

and build products, from intelligent construction site video surveillance9, to oil rig maintenance tracking10. But such

patterns are potentially susceptible to exposure of algorithms, data, valuable insights, and tampering of actions unless the

computational environment is protected by Confidential Computing.

Confidential compute resources are different for the “Intelligent Cloud” to the “Intelligent Edge” but the

development experience for confidential compute workloads targeting the cloud and edge platforms need not be

different. In a single development environment, developers can create trusted applications for deployment in

8 The future of computing: intelligent cloud and intelligent edge: https://azure.microsoft.com/en-us/overview/future-of-cloud
9 INTELLIGENT VIDEO SURVEILLANCE: AN UNTAPPED SOURCE OF VALUE: https://blog.deepomatic.com/en/intelligent-video-surveillance-an-untapped-

source-of-value/4098/

10 EDGE TECHNOLOGIES GIVE OIL, GAS OPERATORS EXTRA COMPUTING POWER:

https://www.rigzone.com/news/edge_technologies_give_oil_gas_operators_extra_computing_power-30-aug-2018-156789-article/

8 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

cloud enclaves like Azure Confidential Computing11 (ACC) and in TEE enabled Internet of Things (IoT) Edge devices

such as the ones running Azure IoT Edge12 bits.

Note For more information on Azure Confidential Computing, see blog post INTRODUCING AZURE CONFIDENTIAL

COMPUTING13 and the webcast AZURE CONFIDENTIAL COMPUTING UPDATES WITH MARK RUSSINOVICH | BEST OF MICROSOFT IGNITE 201814.

Note For more information on confidential computing with Azure IoT Edge, see blog post SIMPLIFYING CONFIDENTIAL

COMPUTING: AZURE IOT EDGE SECURITY WITH ENCLAVES – PUBLIC PREVIEW15 and the webcast DEEP DIVE: CONFIDENTIAL COMPUTING IN IOT

USING OPEN ENCLAVE SDK16.

In other words, this means that you as a developer can use the same APIs across multiple enclaves, greatly

reducing the complexity of following best practices and encouraging organizations to integrate (host) applications

with enclaves.

As TEE technology matures and as different implementations arise, the OESDK is committed to supporting an API

set that allows developers to build once and deploy on multiple technology platforms, different environments

from cloud to hybrid to edge, and for both Linux and Windows.

Important note As of this writing, and available with this version is the ability to write enclave applications for cloud

workloads targeting TEE technology based on Intel SGX hardware technology with a Linux host application

Preview support is also provided for new TEE platforms, namely ARM TrustZone with a Linux host application, and intel

SGX with a Windows host application via the Intel SGX SDK. Support for a Windows host application on ARM TrustZone

and native Open Enclave support for a Windows host application on Intel SGX will be added in the future.

This broad applicability across different enclave technologies greatly simplifies the work developers must do to

protect sensitive data. Furthermore, with accessibility by all security expertise as topmost goal, this integration is

laden with features to truly simplify and shorten the journey from idea to at-scale production deployment of

secure (intelligent edge) TEE-based applications.

Note Microsoft has recently joined partners and the Linux Foundation to create Confidential Computing

Consortium17 that will be dedicated to defining and accelerating the adoption of confidential computing.

Microsoft will be contributing the OESDK to the Confidential Computing Consortium to develop a broader industry

collaboration and ensure a truly open development approach. “The Open Enclave SDK is already a popular tool for

developers working on Trusted Execution Environments, one of the most promising areas for protecting data in use,” said

Mark Russinovich, chief technical officer, Microsoft. “We hope this contribution to the Consortium can put the tools in

11 Azure Confidential Computing: https://azure.microsoft.com/solutions/confidential-compute/

12 Azure IoT Edge: https://azure.microsoft.com/en-us/services/iot-edge/

13 INTRODUCING AZURE CONFIDENTIAL COMPUTING: https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/

14 AZURE CONFIDENTIAL COMPUTING UPDATES WITH MARK RUSSINOVICH | BEST OF MICROSOFT IGNITE 2018:

https://www.youtube.com/watch?v=Qu6sP0XDMU8

15 SIMPLIFYING CONFIDENTIAL COMPUTING: AZURE IOT EDGE SECURITY WITH ENCLAVES – PUBLIC PREVIEW: https://azure.microsoft.com/en-

us/blog/simplifying-confidential-computing-azure-iot-edge-security-with-enclaves-public-preview/

16 DEEP DIVE: CONFIDENTIAL COMPUTING IN IOT USING OPEN ENCLAVE SDK: https://channel9.msdn.com/Shows/Internet-of-Things-Show/Deep-Dive-

Confidential-Computing-in-IoT-using-Open-Enclave-SDK
17 Confidential Computing Consortium: https://confidentialcomputing.io/

https://azure.microsoft.com/solutions/confidential-compute/
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://www.youtube.com/watch?v=Qu6sP0XDMU8
https://azure.microsoft.com/en-us/blog/simplifying-confidential-computing-azure-iot-edge-security-with-enclaves-public-preview/
https://azure.microsoft.com/en-us/blog/simplifying-confidential-computing-azure-iot-edge-security-with-enclaves-public-preview/
https://channel9.msdn.com/Shows/Internet-of-Things-Show/Deep-Dive-Confidential-Computing-in-IoT-using-Open-Enclave-SDK
https://channel9.msdn.com/Shows/Internet-of-Things-Show/Deep-Dive-Confidential-Computing-in-IoT-using-Open-Enclave-SDK
https://confidentialcomputing.io/
https://confidentialcomputing.io/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 9

even more developers’ hands and accelerate the development and adoption of applications that will improve trust and

security across cloud and edge computing.”18

In this starter guide, and as its title suggest, we will cover the basics of TEE-based application

development.

You will learn how to create and deploy this new kind of applications on top of Azure Confidential Computing

(ACC), using the OESDK.

For that purposes, you’re invited to follow a short series of modules, each of them illustrating a specific aspect of

the TEE-based application development.

Each module within the guide builds on the previous. You’re free to stop at any module you want, but our

advice is to go through all the modules.

At the end of the starter guide, you will be able to:

• Understand the Azure Confidential Computing (ACC) offering,

• Instantiate a Confidential Computing (CC) or other Linux VMs well-suited for trusted applications

development,

• Setup a full-pledged development environment with Visual Studio and Visual Studio Code,

• Create new trusted applications or containers using the Open Enclave SDK (OESDK) in C or C++ in the

Cloud and in the Edge.

Guide elements

In the starter guide modules, you will see the following elements:

• Step-by-step directions. Click-through instructions - along with relevant snapshots - or links to online

documentation for completing each procedure or part.

• Important concepts. An explanation of some of the concepts important to the procedures in the module,

and what happens behind the scenes.

• Sample applications, and files. A downloadable or cloneable version of the project containing the code

that you will use in this guide, and other files you will need. Please go to

https://github.com/openenclave/ on GitHub to download or clone all necessary assets.

18 NEW CROSS-INDUSTRY EFFORT TO ADVANCE COMPUTATIONAL TRUST AND SECURITY FOR NEXT-GENERATION CLOUD AND EDGE COMPUTING:

https://www.linuxfoundation.org/press-release/2019/08/new-cross-industry-effort-to-advance-computational-trust-and-security-for-next-

generation-cloud-and-edge-computing/

https://github.com/openenclave/

10 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Guide prerequisites

To successfully leverage the provided code in this starter guide, you will need:

• A Microsoft account19.

• An Azure subscription. If you don't have an Azure subscription, create a free account20 before you begin.

• A windows 10 local machine.

• A code editor of your choice, such as Visual Studio21 or Visual Studio Code22, with C++ for Linux and Open

Enclave installed. The related installation and configuration will be further covered later in this guide.

• A terminal console for your Windows 10 local machine, which allows you to remotely connect to a virtual

machine (VM) in SSH, such as PuTTY23, Git for Windows24 (2.10 or later).

Important note With Git, ensure that long paths are enabled: git config --global core.longpaths true.

As far as the latter is concerned, recent versions of Windows 10 provide OpenSSH client commands to create and

manage SSH keys and make SSH connections from a command prompt.

Note For more information, see blogpost WHAT’S NEW FOR THE COMMAND LINE IN WINDOWS 10 VERSION 180325.

Installing OpenSSH on Windows 10

The OpenSSH Client and OpenSSH Server are separately installable components in Windows 10 1809 and above.

Note For information about the OpenSSH availability on Windows 10, see here.

To install OpenSSH on your Windows 10 local machine, perform the following steps.

1. Open an elevated PowerShell console.

2. Run the following command:

PS C:\> Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0

19 Microsoft Account: https://account.microsoft.com/account?lang=en-us

20 Create your Azure free account today: https://azure.microsoft.com/en-us/free/?WT.mc_id=A261C142F
21 Visual Studio: https://visualstudio.microsoft.com/

22 Visual Studio Code: https://code.visualstudio.com/

23 PuTTY: https://www.chiark.greenend.org.uk/~sgtatham/putty/
24 Git for Windows: https://git-for-windows.github.io/

25 WHAT’S NEW FOR THE COMMAND LINE IN WINDOWS 10 VERSION 1803:

https://blogs.msdn.microsoft.com/commandline/2018/03/07/windows10v1803/

https://account.microsoft.com/account?lang=en-us
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://visualstudio.microsoft.com/
https://code.visualstudio.com/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://git-for-windows.github.io/
https://blogs.msdn.microsoft.com/commandline/2018/03/07/windows10v1803/
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 11

Once the installation completes, you can use the OpenSSH client from PowerShell or the Windows 10 command

shell.

Generating your RSA Key pairs with OpenSSH

OpenSSH includes different tools and more specifically the ssh-keygen command for generating secure RSA key

pairs, that can be in turn used for key authentication with SSH.

RSA Key pairs refer to the public and private key files that are used by certain authentication protocols.

To generate your RSA Key pairs, perform the following steps.

1. Open an elevated PowerShell console.

2. Run the following command:

PS C:\> ssh-keygen

You can just hit ENTER to generate them, but you can also specify your own filename if you want. At this point,

you'll be prompted to use a passphrase to encrypt your private key files. The passphrase works with the key file to

provide 2-factor authentication. For this example, we are leaving the passphrase empty.

12 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Note SSH public-key authentication uses asymmetric cryptographic algorithms to generate two key files – one

"private" and the other "public". The private key file is the equivalent of a password and should protected under all

circumstances. If someone acquires your private key, they can log in as you to any SSH server you have access to. The

public key is what is placed on the SSH server and may be shared without compromising the private key.

When using key authentication with an SSH server, the SSH server and client compare the public key for username

provided against the private key. If the public key cannot be validated against the client-side private key, authentication

fails.

By default, the files are saved in the following folder %USERPROFILE%\.ssh:

File Description

%USERPROFILE%\.ssh\id_rsa Contains the RSA private key

%USERPROFILE%\.ssh\id_rsa.pub Contains the RSA public key.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 13

Module 1: Setting up a Confidential

Computing VM in Azure

Overview

This first module of this starter guide will illustrate how to deploy a Confidential Compute (CC) VM to later

leverage the Open Enclave SDK (OESDK) to develop in C and C++ Trusted Execution Environment (TEE) based

applications.

In the Azure Platform, the OESDK must be indeed installed on top of a Confidential Compute DC-series26 or

DCsv2-series27 28 virtual machine (VM).

For the Azure Confidential Computing (ACC) offering currently in public preview, v1 DC-series and v2 DCsv2-series

VMs are indeed (as of this writing) the (only) two types of VMs in Azure that can support Trusted Execution

Environment (TEEs), thanks to the latest generation of the Intel XEON processor with the Intel Software Guard

Extensions (Intel SGX) technology.

As such, both DC-series and DCsv2-series VMs are generation 2 VMs29 that, besides the supports the Intel SGX

technology, use the new UEFI-based boot architecture rather than the BIOS-based architecture used by

generation 1 VMs, along with additional features that are not available in generation 1 VMs, such as increased

memory, and virtualized persistent memory (vPMEM).

These series’ instances enable customers to build secure enclave-based applications to protect their code and the

confidentiality and integrity of their data while it’s processed, and thus in use in the public cloud. Example use

cases include confidential multiparty data sharing, fraud detection, anti-money laundering, blockchain,

confidential usage analytics, intelligence analysis and confidential machine learning.

The DC-series corresponds to the initially introduced family of CC VMs in Azure, that are backed by

the 3.7GHz Intel XEON E-2176G30 processor with SGX technology, and with the Intel Turbo Boost Technology can

go up to 4.7GHz. This family is currently available in East US and West Europe regions only.

26 PREVIOUS GENERATIONS OF VIRTUAL MACHINE SIZES: https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-

gen?toc=/azure/virtual-machines/linux/toc.json&bc=/azure/virtual-machines/linux/breadcrumb/toc.json#preview-dc-series
27 GENERAL PURPOSE VIRTUAL MACHINE SIZES: https://docs.microsoft.com/en-us/azure/virtual-machines/dcv2-series

28 AZURE LAUNCHES DC-SERIES CONFIDENTIAL COMPUTE VM PREVIEW: https://www.petri.com/azure-launches-dc-series-confidential-compute-vm-

preview

29 SUPPORT FOR GENERATION 2 VMS ON AZURE: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/generation-2#creating-a-

generation-2-vm

30 Intel XEON E-2176G: https://www.intel.com/content/www/us/en/products/processors/xeon/e-processors/e-2176g.html

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general#dc-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/generation-2#creating-a-generation-2-vm
https://www.intel.com/content/www/us/en/products/processors/xeon/e-processors/e-2176g.html

14 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Two VM sizing options are available for the v1 DC-series:

1. Standard_DC2s with 2 vCPUs and 8 GB of memory,

2. Standard_DC4s with 4 vCPUs and 16 GB of memory.

These sizes are still supported but will not receive additional capacity.

V1 DC-Series VMs in Preview and deploys an older version of the DC-Series VMs. They aren’t going to be

generally available and will remain in preview until deprecation.

For the most up-to-date technology and confidential computing VM, you will need to use DCsv2-series

instead that correspond to an Azure Confidential Compute (Virtual Machine) V2 deployment.

The DCsv2-series is indeed a new family of CC VMs in Azure that are backed by the latest generation of the Intel

XEON E-2288G processor31 with the Intel SGX technology. With the above-mentioned Intel Turbo Boost

Technology, these machines can go up to 5.0GHz. This family is currently available in UK South and Canada

Central only.

DCsv2-series VMs allow for a greater selection of VM sizes, higher EPC (Enclave Page Cache), and a higher level of

support.

As such, the following four sizing options VM sizing options are available for the DC-Series:

1. Standard_DC1s_v2 with 1 vCPU and 4 GB of memory,

2. Standard_DC2s_v2 with 2 vCPUs and 8 GB of memory,

3. Standard_DC4s_v2 with 4 vCPUs and 16 GB of memory,

4. Standard_DC8s_v2 with 8 vCPUs and 32 GB of memory.

Currently, three operating systems are supported for the above families of VMs:

1. Windows Server 2016 Datacenter,

2. Ubuntu Server 16.04 LTS,

3. Ubuntu Server 18.04 TLS.

Note Additional OS offerings may be supported once the ACC program transitions from public preview to general

availability (GA).

31 Intel XEON E-2288G: https://www.intel.com/content/www/us/en/products/processors/xeon/e-processors/e-2288g.html

https://www.intel.com/content/www/us/en/products/processors/xeon/e-processors/e-2288g.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e-processors/e-2288g.html

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 15

Step-by-step directions

This module covers the following four activities:

1. Deploying a v1 DC-series VM on Azure.

-or-

2. Deploying a v2 DCsv2-series VM on Azure.

3. Connecting to your DC-series VM.

4. Cloning and building the Open Enclave SDK.

5. Using the Open Enclave SDK.

Each activity is described in order in the next sections.

Deploying a v1 DC-series VM on Azure

The older v1 DC-series VMs are not listed by default in your Virtual Machines tab in the Azure portal. They can

instead can be found in the directory in the Azure Marketplace32 or by searching “Confidential Compute” in the

search bar in Azure.

To (still) deploy a v1 DC-series VM in your Azure subscription, perform the following steps:

Note For more information, see article GET STARTED WITH MICROSOFT AZURE* CONFIDENTIAL COMPUTING33.

1. Open a browser session and go to the Azure portal at https://portal.azure.com.

2. Sign in with your Azure account.

32 Confidential Compute VM Deployment: https://azuremarketplace.microsoft.com/marketplace/apps/microsoft-azure-

compute.confidentialcompute
33 GET STARTED WITH MICROSOFT AZURE* CONFIDENTIAL COMPUTING: https://software.intel.com/en-us/articles/get-started-with-azure-confidential-

computing

https://azuremarketplace.microsoft.com/marketplace/apps/microsoft-azure-compute.confidentialcompute
https://software.intel.com/en-us/articles/get-started-with-azure-confidential-computing
https://portal.azure.com/
https://portal.azure.com/

16 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

3. First search for “Confidential Comput” in the search bar in the Azure portal.

4. Click on Confidential Computing DC-series VM [Preview] under Marketplace.to select a DC-Series VM.

(Azure Confidential Compute (Virtual Machine) corresponds to the template for creating a DCsv2-

series VM). You will be then re-directed to the Confidential Compute VM Deployment wizard.

5. Click Create.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 17

18 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

6. Specify the required settings.

Setting Description

Image Select Ubuntu Server 18.04 LTS.

Name Provide the VM a hostname (as a resource, which will be displayed in Azure). For

example, acc-vm1 in our illustration.

Username Specify a username for the privileged user account of the VM. For example,

azureadmin in our illustration.

Authentication type Select SSH public key for stronger authentication to later remotely connect to your

VM.

SSH public key Specify a RSA public key34 in the single-line format beginning with “ssh-rsa” - you

can use instead the multi-line PEM format -. On a Windows command prompt, run

the following command to retrieve the content of your SSH public key and copy it to

the clipboard.

C:\> type %USERPROFILE%\.ssh\id_rsa.pub | clip

And then, paste the content in this field.

Include Open Enclave SDK Ensure that the Open Enclave SDK (OESDK) will NOT be included with this VM

deployment. No should be selected.

Important note The version of the Open Enclave SDK that comes with the

VM is currently outdated. You will have to install it manually later on. For more

information on how to install the Open Enclave SDK, see article INSTALL THE OPEN

ENCLAVE SDK (UBUNTU 18.04)35.

Subscription Select your own subscription. If you have more than one, select the most

appropriate subscription.

Resource group For public preview, the wizard will only allow deployment to an empty resource

group. Create one during VM deployment as follows:

1. Under Resource group, click on Create new.

2. In the dialog box, name the new resource group and click on OK.

34 PUBLIC KEY AUTHENTICATION FOR SSH: https://www.ssh.com/ssh/public-key-authentication
35 INSTALL THE OPEN ENCLAVE SDK (UBUNTU 18.04):

https://github.com/openenclave/openenclave/blob/v0.6.x/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_18.04.md

https://www.ssh.com/ssh/public-key-authentication
https://github.com/openenclave/openenclave/blob/v0.6.x/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_18.04.md
https://github.com/openenclave/openenclave/blob/v0.6.x/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_18.04.md

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 19

Location Select the Microsoft Azure data enter location to which you want to deploy. Choose

between East US and West Europe as this particular type of VM is only available in

these locations. Any selection other than these two locations will fail validation

checks.

Click on OK to continue to the Virtual Machine Settings page.

7. This second page of the form is about more specific settings for the DC-series VM, which include VM size,

storage type, and virtual network details. Fill in the Virtual Machine Settings.

Setting Description

Size Azure Confidential Computing (ACC) public preview DC_series VMs come in two

sizes. Let Standard_DC2s selected by default.

Storage Select your preferred storage type. Premium SSD is the default.

Virtual Network Configure the (new) virtual network (VNet) where your VM will reside. For simplicity,

this starter guide will use the default settings.

Subnets Configure the subnet. Again, this starter guide will use the defaults provided. Go to

the configuration sub-menu (click on the red exclamation point) and click on OK to

accept the default values Click on the option, then click on OK below the newly

created subnet.

Inbound ports Select SSH (Linux)/RDP (Windows) as you’re going to use SSH.

20 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Important note The ports will be open for all public inbound traffic from

the Internet, posing a serious security issue. For a production environment, it is

recommended that you leave selected none; after the VM has been created and

deployed, configure the VM’s networking inbound port rules to open the

required port for a specific IP Address range or enable the Microsoft Azure

Security Center Just-in-time VM access.

Boot diagnostics Leave Enabled.

Diagnostic storage account Leave the default parameter untouched.

8. Click on OK to continue. Validation of your configuration settings will occur on the Summary page.

9. If validation has passed, review your configuration and click on OK to continue.

10. Before creating and deploying your newly configured VM, carefully read the terms of use and understand

any costs associated with the use of Microsoft Azure resources. When you are ready to deploy the VM,
click on Create. Your DC-series VM will be deployed on Azure.

The completion process will take approximately 10 minutes, at which time you will see a new message in

the Microsoft Azure portal notifications tab.

Deploying a v2 DCsv2-series VM on Azure

Let’s now see how to deploy the newest family of VMs that enable confidential computing features in Azure. It just

takes you with a few configurations and a single-click deployment with the provided template to create a DCsV2-

series VM.

Like the v1 DC-series, DCsv2-series are not (yet) listed by default in your Virtual Machines tab in the Azure portal.

They can instead can be found in the directory in the Azure Marketplace36 or by searching “Confidential Comput in

the search bar in Azure.

To deploy a DCsv2-series VM in your Azure subscription, perform the following steps:

1. Open a browser session and go to the Azure portal at https://portal.azure.com.

2. Sign in with your Azure account.

3. First search for “Confidential Comput” in the search bar in the Azure portal.

36 Confidential Compute VM Deployment: https://azuremarketplace.microsoft.com/marketplace/apps/microsoft-azure-

compute.confidentialcompute

https://azuremarketplace.microsoft.com/marketplace/apps/microsoft-azure-compute.confidentialcompute
https://portal.azure.com/
https://portal.azure.com/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 21

4. Click this time on Azure Confidential Compute (Virtual Machine) under Marketplace to select a

DCsv2-Series VM. (Confidential Computing DC-series VM [Preview] corresponds to the template for

creating a v1 DC-series VM). You will be then re-directed to the Confidential Compute VM Deployment

wizard.

5. Click Create.

22 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

6. Specify the required settings.

Setting Description

Subscription Select your own subscription. If you have more than one, select the most appropriate

subscription.

Resource group For public preview, the wizard will only allow deployment to an empty resource group. Create

one during VM deployment as follows:

3. Under Resource group, click on Create new.

4. In the dialog box, name the new resource group and click on OK.

Region Select the Microsoft Azure data enter location to which you want to deploy. Choose between UK

South and Canada Central as this particular type of VM is only currently available in these

locations. Any selection other than these two locations will fail validation checks.

Image Select Ubuntu Server 18.04 (Gen 2).

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 23

Virtual Machine name Specify a name for the VM. For example, accvm2 in our illustration.

Username Specify a username for the privileged user account of the VM. For example, azureadmin in our

illustration.

Authentication type Select SSH public key for stronger authentication to later remotely connect to your VM.

SSH public key Specify a RSA public key37 in the single-line format beginning with “ssh-rsa” - you can use instead

the multi-line PEM format -. On a Windows command prompt, run the following command to

retrieve the content of your SSH public key and copy it to the clipboard.

C:\> type %USERPROFILE%\.ssh\id_rsa.pub | clip

And then, paste the content in this field.

7. Click on Next : Virtual Machine Settings > to continue to the Virtual Machine Settings page.

37 PUBLIC KEY AUTHENTICATION FOR SSH: https://www.ssh.com/ssh/public-key-authentication

https://www.ssh.com/ssh/public-key-authentication

24 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

8. This second page of the form is about more specific settings for the DC-series VM, which include VM size,

storage type, and virtual network details. Fill in the Virtual Machine Settings.

Setting Description

Virtual Machine Size Azure Confidential Computing (ACC) DCsv2_series VMs come in four sizes. For the

sake of this guide, keep the default or select DC2s_v2.

OS Disk Type Select your preferred storage type. Premium SSD is the default.

Virtual network Configure the (new) virtual network (VNet) where your VM will reside. For simplicity,

this starter guide will use the default settings.

Subnets Configure the subnet. Again, this starter guide will use the defaults provided. Go to

the configuration sub-menu (click on the red exclamation point) and click on OK to

accept the default values Click on the option, then click on OK below the newly

created subnet.

Select public inbound ports Select SSH (Linux)/RDP (Windows) as you’re going to use SSH.

Important note The ports will be open for all public inbound traffic from

the Internet, posing a serious security issue. For a production environment, it is

recommended that you leave selected none; after the VM has been created and

deployed, configure the VM’s networking inbound port rules to open the

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 25

required port for a specific IP Address range or enable the Microsoft Azure

Security Center Just-in-time VM access.

Boot diagnostics Leave Disabled.

9. Click on Next : Review + create to continue. Validation of your configuration settings will occur on the

Summary page.

10. If validation has passed, review your configuration.

11. Before creating and deploying your newly configured VM, carefully read the terms of use and understand

any costs associated with the use of Microsoft Azure resources. When you are ready to deploy the VM,
click on Create. Your DCsv2-series VM will be deployed on Azure.

26 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

The completion process will take approximately 10 minutes, at which time you will see a new message in

the Microsoft Azure portal notifications tab.

Connecting to your DC-series VM

Once your DC-series VM is online, by using a SSH client of your choice, such as OpenSSH, PuTTY, etc. you can test

your remote connection to the newly created (v1 DC-series or v2 DCsv2-series VM) VM using the administrator

credentials provided above. The public IP address of the VM can be found on the VM Networking page.

Note Depending on your configuration, you may need to configure a proxy in the SSH client to connect to the

virtual machine.

To connect to your VM using OpenSSH, perform the following steps:

1. From the Azure portal, search for your VM and click on it to display its menu.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 27

2. Click on Connect, select SSH, and then make a note of the public IP address and the SSH connection

string.

In our illustration, the IP address of the DC_series VM is 13.95.140.218, and the SSH connection string is

azureadmin@13.95.140.218.

3. Open a PowerShell console, and the SSH to your VM:

PS C:\> ssh azureadmin@13.95.140.218

4. When prompted, type “yes”. Optionally specify your passphrase if any for your private key.

28 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Et voila! You are now connected to your DC-series VM.

At this stage, your DC-series VM is ready.

You can now clone and build the Open Enclave SDK (OESDK) from its GitHub repo. Let’s see how to instantiate it

on top of your DC_series VM: an older v1 DC-series or a v2 DCsv2-series.

Cloning and building the Open Enclave SDK

See Install the Open Enclave SDK (Ubuntu 18.04)

Perform the following steps:

1. From the Bash terminal, configure the Intel and Microsoft APT repositories:

$ echo 'deb [arch=amd64] https://download.01.org/intel-sgx/sgx_repo/ubuntu bionic main' | sudo tee
/etc/apt/sources.list.d/intel-sgx.list
$ wget -qO - https://download.01.org/intel-sgx/sgx_repo/ubuntu/intel-sgx-deb.key | sudo apt-key add -

$ echo "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-7 main" | sudo tee
/etc/apt/sources.list.d/llvm-toolchain-bionic-7.list
$ wget -qO - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -

https://github.com/openenclave/openenclave/blob/master/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_18.04.md

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 29

$ echo "deb [arch=amd64] https://packages.microsoft.com/ubuntu/18.04/prod bionic main" | sudo tee
/etc/apt/sources.list.d/msprod.list
$ wget -qO - https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add –

2. Install the Intel SGX DCAP driver:

$ sudo apt update
$ sudo apt -y install dkms
$ wget https://download.01.org/intel-sgx/sgx-
dcap/1.5/linux/distro/ubuntuServer18.04/sgx_linux_x64_driver_1.21.bin -O sgx_linux_x64_driver.bin
$ chmod +x sgx_linux_x64_driver.bin
$ sudo ./sgx_linux_x64_driver.bin

Note This step also installs the az-dcap-client package which is necessary for performing remote attestation in

Azure. A general implementation for using Intel DCAP outside the Azure environment is coming soon.

3. Install the Intel and Open Enclave packages and dependencies:

$ sudo apt -y install clang-7 libssl-dev gdb libsgx-enclave-common libsgx-enclave-common-dev
libprotobuf10 libsgx-dcap-ql libsgx-dcap-ql-dev az-dcap-client open-enclave

Note This may not be the latest Intel SGX DCAP driver. Please check with Intel's SGX site if a more recent SGX

DCAP driver exists.

4. Install CMake

$ sudo snap install cmake --classic
$ cmake –version

You can now start studying and compiling the Open Enclave SDK sample applications. Let’s see quickly how to

begin with.

Using the Open Enclave SDK

As covered in the introduction, Open Enclave SDK helps you build TEE-based applications and provides you a

series of sample applications that demonstrate how to develop enclave applications using Open Enclave APIs.

In your newly created DC-series VM, the Open Enclave SDK is installed to its default directory /opt/openenclave,

which contains the following folders:

Path Description

bin All the developer tools for developing, debugging and signing TEE-based

applications using the Open Enclave SDK.

include/openenclave Open Enclave runtime headers for use in your application enclave (enclave.h) and its

host application (host.h)

include/openenclave/3rdparty Headers for libc, libcxx and mbedlts libraries for use inside the enclave.

https://github.com/microsoft/azure-dcap-client
https://01.org/intel-software-guard-extensions/downloads

30 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

lib/openenclave/cmake Open Enclave SDK CMake package for integration with your CMake projects. For

example, and as illustrated in the module, Visual Studio 2017/2019 supports CMake

projects for cross-platform builds and there are extensions for Visual Studio Code.

lib/openenclave/enclave Libraries for linking into the enclave, including the libc, libcxx and mbedtls libraries

for Open Enclave.

lib/openenclave/host Library for linking into the host application process of the enclave.

lib/openenclave/debugger Libraries used by the gdb plug-in for debugging enclaves.

share/pkgconfig Pkg-config files for header and library includes when building TEE-based

applications using the Open Enclave SDK (OESDK).

share/openenclave/samples Sample applications’ code showing how to use the Open Enclave SDK.

Note For more information, see article USING THE OPEN ENCLAVE SDK38.

As far as the sample applications are concerned, it's advised to go through them in the order listed hereafter to

progressively familiarize yourself with the Open Enclave SDK (OESDK).

Sample Application Description

HelloWorld39 Minimum code needed for an Open Enclave application. Help understand the basic components

a TEE-based application with the Open Enclave SDK.

File-Encryptor40 Show how to encrypt and decrypt data inside an enclave.

Data-Sealing41 Introduce the Open Enclave sealing and unsealing features.

Remote Attestation42 Explain how the Open Enclave attestation works.

38 USING THE OPEN ENCLAVE SDK: https://github.com/openenclave/openenclave/blob/master/docs/GettingStartedDocs/using_oe_sdk.md

39 HelloWorld sample: https://github.com/openenclave/openenclave/blob/master/samples/helloworld/README.md

40 File-Encryptor sample: https://github.com/openenclave/openenclave/blob/master/samples/file-encryptor/README.md

41 Data-Sealing sample: https://github.com/openenclave/openenclave/blob/master/samples/data-sealing/README.md

42 Remote Attestation sample: https://github.com/openenclave/openenclave/blob/master/samples/remote_attestation/README.md

https://github.com/openenclave/openenclave/blob/master/docs/GettingStartedDocs/using_oe_sdk.md
https://github.com/openenclave/openenclave/blob/master/samples/helloworld/README.md
https://github.com/openenclave/openenclave/blob/master/samples/file-encryptor/README.md
https://github.com/openenclave/openenclave/blob/master/samples/data-sealing/README.md
https://github.com/openenclave/openenclave/blob/master/samples/remote_attestation/README.md

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 31

Demonstrate an implementation of such a remote attestation between two enclaves running on

different machines.

Local Attestation43 Explain the concept of Open Enclave local attestation.

Demonstrate an implementation of local attestation between two enclaves on the same machine.

Attested TLS44 Explain what an Attested TLS channel is. See article WHAT IS AN ATTESTED TLS CHANNEL45.

Demonstrate an implementation for how to establish an Attested TLS channel between i) two

enclaves, and ii) one non-enclave client and an enclave.

Note For a detailed explanation of each sample application, see article OPEN ENCLAVE SDK SAMPLES46.

All the above sample applications that come with the Open Enclave SDK installation share a similar directory

structure with underneath a host folder for the host application and an enclave folder for the enclave itself, along

with build instructions for two different build systems: one using GNU Make and pkg-config, the other using

CMake.

However, writing files under the /opt folder, where the Open Enclave is installed, is not allowed unless the

command is running in the context of the superuser, i.e. sudo.

To build the above sample applications and avoid this sudo requirement, perform the following steps:

1. Connect to your DC-series VM as per previous activity.

2. You may want to first copy the sample applications to a user directory of your choice then build and run

on those local copy. Copy them to your home directory, for example in a folder mysamples:

$ sudo cp -r /opt/openenclave/share/openenclave/samples ~/mysamples

3. Change the owner of the sample applications’ code directory from root to your account:

$ sudo chown -R azureadmin ~/mysamples/

In our illustration, the username specified when creating the VM was azureadmin.

4. Before building any sample application code, you first need to source the file openenclaverc to setup

environment variables for the Open Enclave SDK for ease of development:

• Open Enclave SDK pkgconfig folder to PKG_CONFIG_PATH,

• Open Enclave SDK bin folder to PATH.

Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the MIT License.

Update PKG_CONFIG_PATH.
$ export PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/openenclave/share/pkgconfig

43 Local Attestation sample: https://github.com/openenclave/openenclave/blob/master/samples/local_attestation/README.md

44 Attested TLS sample: https://github.com/openenclave/openenclave/blob/master/samples/attested_tls/README.md
45 WHAT IS AN ATTESTED TLS CHANNEL:

https://github.com/openenclave/openenclave/blob/master/samples/attested_tls/AttestedTLSREADME.md#what-is-an-attested-tls-channel
46 OPEN ENCLAVE SDK SAMPLES: https://github.com/openenclave/openenclave/blob/master/samples/README.md

https://github.com/openenclave/openenclave/blob/master/samples/local_attestation/README.md
https://github.com/openenclave/openenclave/blob/master/samples/attested_tls/README.md
https://github.com/openenclave/openenclave/blob/master/samples/attested_tls/AttestedTLSREADME.md#what-is-an-attested-tls-channel
https://github.com/openenclave/openenclave/blob/master/samples/README.md

32 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Set CMake Config-package path
$ export OpenEnclave_DIR=/opt/openenclave/lib/openenclave/cmake

Update PATH.
$ export PATH=${PATH}:/opt/openenclave/bin

The file openenclaverc is located in the folder share/openenclave of the Open Enclave SDK installation

directory. Initialize the Open Enclave build environment.

$. /opt/openenclave/share/openenclave/openenclaverc

Note You can use . in Bash to source.

5. Go to the sample applications’ directory:

$ cd ~/mysamples

6. To build the sample applications for example using GNU Make, go into each subfolder and build and

execute only an individual project, for example:

$ cd helloworld
$ make build
$ make run

Verify that the sample application runs successfully. You should see the following messages in the

console: Hello world from the enclave and Enclave called into host to print: Hello
World!

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 33

Enjoy your first exploration of the Azure Confidential Computing (ACC) and the Open Enclave SDK (OESDK).

Studying and the sample applications’ code will help you understand how to develop enclaves using the OESDK.

This is also the purpose of the next module.

34 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Module 2: Developing TEE-based application

in Azure

Overview

In the direct line of the previous module, this second module of this guide will illustrate the basics on how to

develop Trusted Execution Environment (TEE) based application for Linux with the Open Enclave SDK (OESDK) in C

and C++ on top of a DC-series VM in Azure (see sections § Deploying a v1 DC-series VM on Azure or § Deploying a

v2 DCsv2-series VM on Azure above).

It’s intended to help you understand the key characteristics of such an application and to illustrate the available

tooling as a developer.

For these purposes, this module will more specifically cover a Linux host app and an enclave on Intel SGX.

As stated in the Guide prerequisites, you will use a local Windows 10 machine to develop and cross-build such

applications for Linux.

You will unsurprisingly use the DC-series VM running Ubuntu 18.04 you have setup in the previous module as a

build machine: this machine that is SGX-capable will thus be used as your remote compiler and linker for your

application.

Important note A non-SGX machine can still be used in simulation mode.

Note For a system to be considered to be SGX enabled, it must meet all the following three conditions: i) the CPU

in the system must support the Intel SGX extension, ii) the system BIOS must support Intel SGX control, and iii) Intel SGX

must be enabled in the BIOS. For more information, see article DETERMINE THE SGX SUPPORT LEVEL47.

Visual Studio will be used on the local Windows 10 machine for the integrated development environment (IDE)

and you will need to configure it with the address (or name) of your Linux machine for cross-building the TEE-

based application.

47 DETERMINE THE SGX SUPPORT LEVEL: https://github.com/openenclave/openenclave/blob/master/docs/GettingStartedDocs/SGXSupportLevel.md

https://github.com/openenclave/openenclave/blob/master/docs/GettingStartedDocs/SGXSupportLevel.md

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 35

This machine can also be any of the followings running Ubuntu 18.04 or Ubuntu 16.04 (64-bit) and the Open

Enclave SDK:

• A remote (SGX-capable) Linux machine,

• A Linux VM running on your local Windows 10 machine.

Note To install the Open Enclave SDK, see articles INSTALL THE OPEN ENCLAVE SDK (UBUNTU 18.04)48 or INSTALL THE OPEN

ENCLAVE SDK (UBUNTU 16.04)49.

Before doing that, let’s take the time to consider some important concepts first, and in particular, some of the

data marshalling and unmarshalling principles and how to transfer control between the host application and the

secure enclave.

Important concepts

Terminology

Let’s clarify some of the commonly used terminology in the rest of this module:

• Untrusted. refers to code or construct that runs in the host application environment outside the enclave.

• Trusted. refers to code or construct that runs in the Trusted Execution Environment (TEE) inside the

enclave.

• ECALL. A call from the host application into an interface function within the enclave.

• OCALL. A call made from within the enclave to the host application.

• Generated code. refers to code automatically generated by the Open Enclave edger8r tool through the

definition/use of enclave interface definition files; i.e. EDL files (see below):

o Boilerplate code in the normal execution environment that executes outside the enclave

environment and performs functions such as loading and manipulating an enclave (e.g.

destroying an enclave), and making calls (ECALLs) to an enclave and receiving calls (OCALLs) from

an enclave.

o Boilerplate code in the trusted execution environment that executes within the enclave

environment and performs functions such as receiving calls (ECALLs) from the host application

and making calls outside (OCALLs) the enclave, and managing the enclave itself.

Important note For information about the Open Enclave edger8r tool, see article GETTING STARTED WITH THE OPEN

ENCLAVE EDGER8R50.

48 INSTALL THE OPEN ENCLAVE SDK (UBUNTU 18.04):

https://github.com/microsoft/openenclave/blob/master/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_18.04.md

49 INSTALL THE OPEN ENCLAVE SDK (UBUNTU 16.04):

https://github.com/microsoft/openenclave/blob/master/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_16.04.md
50 GETTING STARTED WITH THE OPEN ENCLAVE EDGER8R:

https://github.com/openenclave/openenclave/blob/feature.new_platforms/docs/GettingStartedDocs/Edger8rGettingStarted.md

https://github.com/microsoft/openenclave/blob/master/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_18.04.md
https://github.com/microsoft/openenclave/blob/master/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_16.04.md
https://github.com/microsoft/openenclave/blob/master/docs/GettingStartedDocs/install_oe_sdk-Ubuntu_16.04.md
https://github.com/openenclave/openenclave/blob/feature.new_platforms/docs/GettingStartedDocs/Edger8rGettingStarted.md
https://github.com/openenclave/openenclave/blob/feature.new_platforms/docs/GettingStartedDocs/Edger8rGettingStarted.md

36 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Enclave interface definition

As introduced above, the interface between the host application (untrusted) and the application enclave (trusted)

is defined using the Enclave Definition Language or EDL. The EDL file defines the interfaces and data types the

enclave will support.

The EDL file is used to define:

1. How a host application calls in to an enclave to request a secure service, i.e. an Enclave CALL or ECALL

2. And how an enclave calls into its host application to request an unsecured service, i.e. an Out CALL or

OCALL.

There are thus two parts to an EDL file: the trusted section that defines the ECALLS whereas the untrusted section

defines the OCALLS. While an ECALL defines entry point into the enclave, the OCALL defines the transfer of control

from inside the enclave to the host application to perform system calls and other I/O operations. OCALLS could

also be used in cases where the enclave needs to transfer data back to the host application.

Important note An SGX enabled application should always have at least one public ECALL to enter the enclave.

OCALLs are optional.

Definitions must be described using the EDL file syntax51.

Furthermore, the same EDL file is used to define the interface between the host application and the enclave, and

regardless of whether the enclave is:

1. An Intel SGX enclave,

-or-

2. An Open Portable Trusted Execution Environment (OP-TEE) Trusted Application (TA) based on ARM

TrustZone to provide isolation of the TEE from the rich OS in hardware. See section § Module 3:

Developing TEE-based application for the Edge.

An EDL file may include other EDL files and is processed using the Open Enclave edger8r tool, i.e. ooedger8r,

which generates boilerplate code for you.

51 ENCLAVE DEFINITION LANGUAGE FILE SYNTAX - INTEL® DEVELOPER ZONE: https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-definition-

language-file-syntax

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-definition-language-file-syntax

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 37

Data marshalling

Calling into and out of enclaves is done through special methods that switch into and out of the enclave, along

with the marshaling of parameters that are passed into these functions. A lot of the code necessary to handle

these calls and parameter marshaling are common to all function calls. Marshaling parameters from the host

application to the enclave for security purposes, and in doing so, also helps to mitigate certain processor

vulnerabilities such as Meltdown and Spectre52.

The aforementioned Open Enclave edger8r helps to define these special functions through the use of EDL file(s)

and then generates boilerplate code for you. It more specifically generates five files as follows:

• A source (<host>_u.c) and a header file (<host>_u.h) to be included by the host application (when

ooedger8r is executed with the --untrusted flag),

• Conversely, a source (<enclave>_t.c) and a header file (<enclave>_t.c) to be included by the enclave (when

ooedger8r is executed with the --trusted flag),

• And a header file (<host|enclave>_args.h) that defines the parameters that are passed to all functions

defined in the EDL file.

Note For more information on using the oeedger8r tool, see article GETTING STARTED WITH THE OPEN ENCLAVE EDGER8R53.

The above generated files contain code to aid in the marshalling of function calls and data across the host

application/enclave boundary such that the ECALLs and OCALLs appears as normal function calls to you as a

developer. The underlying platform and TEE specifics behaviors are abstracted away.

52 Meltdown and Spectre: https://meltdownattack.com/
53 GETTING STARTED WITH THE OPEN ENCLAVE EDGER8R:

https://github.com/openenclave/openenclave/tree/master/docs/GettingStartedDocs/Edger8rGettingStarted.md

https://meltdownattack.com/
https://github.com/openenclave/openenclave/tree/master/docs/GettingStartedDocs/Edger8rGettingStarted.md

38 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Step-by-step directions

This module covers the following three activities:

1. Building a TEE-based Linux application on Intel SGX.

2. Building a TEE-based Linux application on a simulated ARM TrustZone environment.

3. Building a TEE-based Linux module on an Edge ARM TrustZone device.

Each activity is described in order in the next sections.

Building a TEE-based Linux application on Intel SGX

This section covers the following activities:

1. Installing and configuring Visual Studio on your Windows 10 development machine.

2. Creating a C/C++ TEE-based Linux application.

3. Modifying the TEE-based Linux application.

Each activity is described in order in the next sections.

Note For more information, see articles AN INTRODUCTION TO CREATING A SAMPLE ENCLAVE USING INTEL SOFTWARE GUARD

EXTENSIONS54 and USING VISUAL STUDIO TO DEVELOP ENCLAVE APPLICATIONS FOR LINUX55.

You will first need to setup the development environment on your local machine. Let’s see how to proceed.

Installing and configuring Visual Studio on your Windows 10 development machine

This section describes how to configure on your local Windows 10 development machine a Visual Studio IDE, as it

supports an Open Enclave extension as well as a remote compiler: the Open Enclave Wizard – Preview extension56.

This extension includes preview support for TEE platforms, including Intel SGX and ARM TrustZone with a

Windows or Linux host application. In addition, this preview includes support for testing your enclave under

simulation when developing for Intel SGX or ARM TrustZone.

As the title of this activity indicates, you will walk through the development for Intel SGX.

Perform the following steps:

1. Install Visual Studio 2017 or Visual Studio 2019 (Community Edition57, or any other edition). (Visual Studio

2017 is featured in the steps below. Any difference with Visual Studio 2019 if any will be highlighted.)

2. Launch Visual Studio.

54 AN INTRODUCTION TO CREATING A SAMPLE ENCLAVE USING INTEL SOFTWARE GUARD EXTENSIONS: https://software.intel.com/en-us/articles/intel-

software-guard-extensions-developing-a-sample-enclave-application
55 USING VISUAL STUDIO TO DEVELOP ENCLAVE APPLICATIONS FOR LINUX:

https://github.com/openenclave/openenclave/blob/feature.new_platforms/docs/GettingStartedDocs/VisualStudioLinux.md
56 Open Enclave Wizard – Preview extension: https://marketplace.visualstudio.com/items?itemName=MS-TCPS.OpenEnclaveSDK-VSIX
57 Visual Studio Community: https://visualstudio.microsoft.com/vs/community

https://software.intel.com/en-us/articles/intel-software-guard-extensions-developing-a-sample-enclave-application
https://software.intel.com/en-us/articles/intel-software-guard-extensions-developing-a-sample-enclave-application
https://github.com/openenclave/openenclave/blob/feature.new_platforms/docs/GettingStartedDocs/VisualStudioLinux.md
https://marketplace.visualstudio.com/items?itemName=MS-TCPS.OpenEnclaveSDK-VSIX
https://visualstudio.microsoft.com/vs/community

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 39

3. On the menu bar of Visual Studio, select Tools and then Get Tools and Features. This will launch Visual

Studio Installer. (If a user control dialog pops up, click on Yes.)

Note In Visual Studio 2019, simply select Tools.

4. In Visual Studio Installer, select Workloads > Other Toolsets > Linux Development with C++. Click

on Modify.

5. Back in Visual Studio, on the menu bar, select Tools > Extensions and Updates > Online.

Note In Visual Studio 2019, select Extensions -> Manage Extensions -> Online.

6. Search for “Open Enclave Wizard – Preview“, install the extension.

You MUST restart Visual Studio after installing the extension to complete the installation.

7. Finally, configure Visual Studio with the address (or name) of your DC-series VM (or any other Linux build

machine), via Tools > Options > Cross Platform > Connection Manager.

40 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Click on Add. A Connect to Remote System dialog opens up.

8. Fill in the fields required to connect to your DC-series VM and click on Connect.

Important note Your PuTTY private key .ppk file that you generated for your key pair must be first converted to the

OpenSSH format. You can use the Conversions > Export OpenSSH key from the application menu.

This step may take a minute or two, as Visual Studio will copy some files locally for use by IntelliSense.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 41

Note For more information, see article CONNECT TO YOUR TARGET LINUX SYSTEM IN VISUAL STUDIO58.

Congrats! Your Windows 10 development machine is now fully configured.

You will now walk through the process of creating a C/C++ TEE-based application that uses an enclave.

Creating a C/C++ TEE-based Linux application

Perform the following steps:

1. Create a new Linux application by choosing File > New > Project on the menu bar of Visual Studio. The

New Project dialog box opens up.

2. Search the Linux console app template called "Console Application (Linux)" by typing “Linux”.

Important note This is NOT the "Console App (.NET Core)".

Note In Visual Studio 2019, this template is called “Console App”.

(If it is not immediately visible, the template can be found under Installed > Visual C++ > Cross

Platform > Linux.)

a. Enter a name, for example “HostApp” in our illustration, a location, and solution name in the

appropriate fields like any other Visual Studio project.

58 CONNECT TO YOUR TARGET LINUX SYSTEM IN VISUAL STUDIO: https://docs.microsoft.com/en-us/cpp/linux/connect-to-your-remote-linux-

computer?view=vs-2017

https://docs.microsoft.com/en-us/cpp/linux/connect-to-your-remote-linux-computer?view=vs-2017

42 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

b. Click on OK. This will create a "Hello World" console application.

3. Configure the application project to use your Linux build environment, by right clicking on the project in

the Solution Explorer and selecting Properties. The application property pages opens up.

4. Under Configuration Properties > General -> Remote Build Machine, explicitly set the build machine

to the build machine you configured in the Connection Manager.

Note Due to a current Visual Studio bug, this step is required even if the correct value is shown by default. In other

words, make sure the connection is shown in bold.

Note If you’re using Visual Studio 2019 instead, you also need to update Configuration Properties > Debugging

> Remote Debug Machine to your build machine, again due to a current Visual Studio 2019 bug.

At this point, you should be able to build and debug your newly created Hello World application.

Note For further discussion, see articles DEPLOY, RUN, AND DEBUG YOUR LINUX PROJECT59 and LINUX DEBUGGING

WALKTHROUGH60.

You now have your first application project, but this is only the host application. You now need to create

the enclave component.

59 DEPLOY, RUN, AND DEBUG YOUR LINUX PROJECT: https://docs.microsoft.com/en-us/cpp/linux/deploy-run-and-debug-your-linux-project?view=vs-

2017

60 LINUX DEBUGGING WALKTHROUGH: https://docs.microsoft.com/en-us/cpp/linux/deploy-run-and-debug-your-linux-

project?view=vs-2017

https://docs.microsoft.com/en-us/cpp/linux/deploy-run-and-debug-your-linux-project?view=vs-2017
https://docs.microsoft.com/en-us/cpp/linux/deploy-run-and-debug-your-linux-project?view=vs-2017
https://docs.microsoft.com/en-us/cpp/linux/deploy-run-and-debug-your-linux-project?view=vs-2017

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 43

5. Right-click on your newly solution in the Solution Explorer, click on Add > New project > Open Enclave

TEE Project (Linux) to add an enclave library project.

(If it is not immediately visible, look under Installed > Visual C++ > Cross Platform > Linux.)

6. Give it a name, for example “MyFirstEnclave” in our illustration and click on OK.

The Wizard creates an enclave project with several files.

44 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

The sample enclave has an ecall_DoWorkInEnclave() method exposed to host applications, that will

simply call an ocall_DoWorkInHost() method that will be implemented in the host application, as

reflected in the EDL file (<YourEnclaveProjectName>.edl).

enclave {
 trusted {
 /* define ECALLs here. */
 public int ecall_DoWorkInEnclave();
 };

 untrusted {
 /* define any OCALLs here. */
 void ocall_DoWorkInHost();
 };
};

In accordance, the wizard will create a sample enclave with an ecall_DoWorkInEnclave() method

exposed to host applications, that will simply call an ocall_DoWorkInHost() method that will be

implemented in the host application. In this walkthrough, you'll leave this project as is for now, but

afterwards you can modify it as you like.

7. Configure the enclave project to use your Linux build environment, as you did in the above step 3. At this

point, the enclave would build, but cannot be run as the host application doesn't invoke it yet. At this

stage, you have indeed two projects in place in solution, but they aren’t linked together for now…

9. You now need to import the enclave into your host application project. To do so, right-click on your host

application project in the Solution Explorer and select Open Enclave Configuration > Import enclave,

then navigate to and select the EDL file (<YourEnclaveProjectName>.edl) in your enclave project. This file

is containing all the enclave details.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 45

Visual Studio will then link your projects by adding references between them and importing relevant

libraries. As such, this step will modify your host application project settings and add some additional files

to it, including a C file named <YourEnclaveProjectName>_host.c. This C file contains a

sample_enclave_call() method that will load and call ecall_DoWorkInEnclave(), and also contains a

sample implementation of a ocall_DoWorkInHost() method that just prints a message when called.

Although the app could be compiled and run at this point, sample_enclave_call() is still not called

from anywhere.

8. Open the host application's file main.cpp and add a call to sample_enclave_call(). For example,

update the file main.cpp to look like this, where the extern C declaration is needed because main.cpp is a

C++ file whereas the <YourEnclaveProjectName>_host.c file is a C file:

include <cstdio>

extern "C" {
 void sample_enclave_call(void);
};

int main()
{
 printf("hello from LinuxApp!\n");
 sample_enclave_call();
 return 0;
}

8. You can now set breakpoints in Visual Studio, e.g., inside ecall_DoWorkInEnclave() and inside

ocall_DoWorkInHost() and run and debug the enclave application just like any other application.

The resulting Visual Studio solution will have three configurations: Debug, SGX-Simulation-Debug, and Release.

The SGX-Simulation-Debug will work the same as Debug, except that SGX support will be emulated rather than

using hardware support. This allows debugging on hardware that does not support SGX. The Debug and Release

configurations can only be run (whether natively or in a VM) successfully on SGX-capable hardware like your DC-

series VM.

For the platform, use x64 since the Open Enclave SDK currently only supports 64-bit enclaves.

Modifying the TEE-based Linux application

Once you have the basic application working, you can modify it as desired.

For example, to define new APIs between the enclave and the host application, perform the following steps:

1. Edit the file <YourProjectName>.edl.

2. Define any trusted APIs (called "ECALLs" as covered in section § Before doing that, let’s take the time to

consider some important concepts first, and in particular, some of the data marshalling and unmarshalling

principles and how to transfer control between the host application and the secure enclave.

3. Important concepts) you want to call from your application in the trusted{} section, and in the

untrusted{} section.

4. Likewise, define any application APIs (called "OCALLs" as covered in section § Before doing that, let’s take

the time to consider some important concepts first, and in particular, some of the data marshalling and

unmarshalling principles and how to transfer control between the host application and the secure enclave.

46 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

5. Important concepts) that you want to call from your enclave.

6. Edit the <YourProjectName>_ecalls.c file and fill in implementations of the ECALL(s) you added.

7. Edit your application sources and fill in implementations of the OCALL(s) you added.

8. Run and debug the enclave application just like any other application.

Let’s now consider how to develop TEE-based application for the so-called “Intelligent Edge”.

This is the purpose of the next module.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 47

Module 3: Developing TEE-based application

for the Edge

Overview

This third and last module of this guide will illustrate the basics on how to develop Trusted Execution Environment

(TEE) based application (or containers) for Linux on ARM TrustZone with the Open Enclave SDK (OESDK) in C and

C++.

In addition, and as such, it will help you understand the key characteristics of such applications (or containers) in

the context of the so-called “Intelligent Edge”.

For that purpose, this module will more specifically cover the following two types of TEE-based applications (or

containers):

1. A Linux host app and an enclave on a (simulated) ARM TrustZone environment.

2. An enclave-based Linux container on an Edge ARM TrustZone device.

Note This first module is partially inspired by the webcast Deep Dive: Confidential Computing in IoT using Open

Enclave SDK61 available on the IoT Show62 on Microsoft Channel 9.

As stated in the Guide prerequisites, you will use still a local Windows 10 machine to develop and cross-build

such applications (or containers) for Linux.

In the former case, for the sake of simplicity, you will also leverage your DC-series VM running Ubuntu 18.04 as a

Linux machine, see section § Module 1: Setting up a Confidential Computing VM in Azure.

61 DEEP DIVE: CONFIDENTIAL COMPUTING IN IOT USING OPEN ENCLAVE SDK: https://channel9.msdn.com/Shows/Internet-of-Things-Show/Deep-Dive-

Confidential-Computing-in-IoT-using-Open-Enclave-SDK

62 IoT Show: https://aka.ms/IoTShow

https://channel9.msdn.com/Shows/Internet-of-Things-Show/Deep-Dive-Confidential-Computing-in-IoT-using-Open-Enclave-SDK
https://channel9.msdn.com/Shows/Internet-of-Things-Show/Deep-Dive-Confidential-Computing-in-IoT-using-Open-Enclave-SDK
https://aka.ms/IoTShow

48 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Similarly, this machine can also be any of the followings running Ubuntu 18.04 and the Open Enclave SDK:

• A remote Linux machine,

• A Linux VM running on your local Windows 10 machine,

• Or the Windows Subsystem for Linux (WSL) environment on your local Windows 10 machine.

Note For information about Windows Subsystem for Linux (WSL), see the WSL documentation63, or the WSL

learning resources page64.

Moreover, Visual Studio Code will be used instead for the IDE. In addition, the Visual Studio Code Remote

Development Extension Pack65 will be used to connect in SSH to your Linux machine, or to integrate with WSL 2,

for cross-building the TEE-based application.

Eventually, in the above-mentioned second and last case, a real edge device would typically be one like the Scalys

TrustBox Edge66 device, which is an industrial grade, tamper-resistant secured Azure IoT Edge67 device optimized

for confidential computing using TEEs. Azure IoT Edge is an implementation of a secure Intelligent Edge platform

that is operating system, processor architecture, and hardware agnostic (see section § Azure IoT Platform for the

“Intelligent Cloud, Intelligent Cloud” below).

This device comes pre-loaded with Open Enclave SDK and is Azure IoT Edge ready so you can immediately focus

on your TEEs-based workloads. It is powered by a NXP QorIQ LS1012A68 single core 64-bit ARM, and as such,

supports the aforementioned ARM TrustZone v8 architecture.

However, to lessens the barrier for the walkthrough, and not requiring you to buy some hardware, you will use

instead an Edge Linux VM69 running Ubuntu 16.04 as a (virtual) Edge device.

63 WINDOWS SUBSYSTEM FOR LINUX DOCUMENTATION: https://aka.ms/wsldocs

64 LEARN ABOUT WINDOWS CONSOLE & WINDOWS SUBSYSTEM FOR LINUX (WSL): https://aka.ms/learnwsl

65 Visual Studio Code Remote Development Extension Pack: https://marketplace.visualstudio.com/items?itemName=ms-vscode-

remote.vscode-remote-extensionpack
66 Scalys TrustBox Edge: https://scalys.com/trustbox-industrial/
67 Azure IoT Edge: https://azure.microsoft.com/en-us/services/iot-edge/
68 QorIQ® Layerscape 1012A Low Power Communication Processor: https://www.nxp.com/products/processors-and-microcontrollers/arm-

processors/layerscape-communication-process/qoriq-layerscape-1012a-low-power-communication-processor:LS1012A
69 Azure IoT Edge on Ubuntu: https://azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoft_iot_edge.iot_edge_vm_ubuntu

https://aka.ms/wsldocs
https://aka.ms/learnwsl
https://aka.ms/learnwsl
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://scalys.com/trustbox-industrial/
https://scalys.com/trustbox-industrial/
https://azure.microsoft.com/en-us/services/iot-edge/
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-communication-process/qoriq-layerscape-1012a-low-power-communication-processor:LS1012A
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoft_iot_edge.iot_edge_vm_ubuntu

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 49

As far as the development machine is concerned, you can use:

• Your local Windows 10 machine,

• A remote Linux machine,

• A Linux VM running on your local Windows 10 machine.

As long as your development machine can run Linux containers: a container engine on the development machine

is indeed required for Linux devices.

To limit the required resources and for simplicity, you will also use the same above Edge Linux VM but one must

points out both the difference and the distinction between the edge device and the development machine that

are normally speaking separate ones.

Likewise, Visual Studio Code will also be used for the IDE as well as the Visual Studio Code Remote Development

Extension Pack to connect in SSH to your edge Linux VM for cross-building the TEE-based container.

Before dive in, let’s consider what the Azure IoT70 platform is for the so-called “Intelligent Cloud, Intelligent Edge”.

Important concept

Azure IoT Platform for the “Intelligent Cloud, Intelligent Cloud”

Generally speaking, a cloud gateway represents a key component for the so-called “Intelligent Cloud, Intelligent

Edge”. It indeed provides a cloud hub for (edge) devices to connect securely to the cloud and send data. It also

provides device management, capabilities, including command and control of devices.

In the Azure IoT platform, Azure IoT Hub71 is a hosted cloud service that ingests events from (edge) devices, acting

as a message broker between these devices and backend services. IoT Hub provides secure connectivity, event

ingestion, bidirectional communication, and device management.

70 Azure IoT : https://azure.microsoft.com/en-us/overview/iot/

71 Azure IoT Hub: https://azure.microsoft.com/en-us/services/iot-hub/

https://azure.microsoft.com/en-us/overview/iot/
https://azure.microsoft.com/en-us/services/iot-hub/

50 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Mobile and (Industrial) Internet of Things ((I)IoT) devices can thus securely register with the cloud, here the Azure

cloud, and can connect to the cloud to send and receive data. Some devices may be edge devices that perform

some data processing on the device itself or in a field gateway.

The Intelligent Edge indeed brings the power of the cloud to edge devices and demands security for trust. “Cloud-

enabled computing at the edge means concentrating data, and therefore inherent value even if only momentarily.

It also means moving tremendous value from the cloud to the edge in the form of intellectual property,

algorithms, curated parameters, and value operations like policy enforcements, metering, and monetization. The

Intelligent Edge is without a doubt a high-value bullseye to nefarious hacking and demands a high bar for

security.”72

For edge processing, we then recommend Azure IoT Edge. Azure IoT Edge is an implementation of a secure

Intelligent Edge platform that is operating system, processor architecture, and hardware agnostic.

As such, Azure IoT Edge is a fully managed service built on Azure IoT Hub that allows you to remotely manage

code on your devices so that you can send more of your (cloud) workloads to the edge devices - Artificial

Intelligence (AI), Azure and third-party services, or your own business logic - to run on these devices via standard

containers. By moving certain workloads to the edge of the network, your devices spend less time communicating

with the cloud, react more quickly to local changes, and operate reliably even in extended offline periods.

Note For more information, see the Microsoft Azure IoT Architecture Reference73 guide. This guide aims to

accelerate customers building IoT solutions on the Azure IoT platform, and more generally speaking on Azure, by

providing a proven production ready architecture, with proven technology implementation choices, and with links to

Solution Accelerator reference architecture implementations such as Remote Monitoring74 and Connected Factory75 on

GitHub.

This document offers an overview of the IoT space, recommended subsystem factoring for scalable IoT solutions,

prescriptive technology recommendations per subsystems, and detailed sections per subsystem that explore use cases and

technology alternatives.

Step-by-step directions

This module covers the following two activities:

1. Building a TEE-based Linux application on a simulated ARM TrustZone environment.

2. Building a TEE-based Linux module on an Edge ARM TrustZone device.

Each activity is described in order in the next sections.

72 Securing the Intelligent Edge: https://azure.microsoft.com/en-us/blog/securing-the-intelligent-edge/
73 Microsoft Azure IoT Architecture Reference guide: http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-

87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf

74 Remote Monitoring Solution with Azure IoT: https://github.com/Azure/azure-iot-pcs-remote-monitoring-dotnet/

75 Azure IoT connected factory preconfigured solution: https://github.com/Azure/azure-iot-connected-factory

http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
https://github.com/Azure/azure-iot-pcs-remote-monitoring-dotnet/
https://github.com/Azure/azure-iot-connected-factory

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 51

Building a TEE-based Linux application on a simulated ARM TrustZone

environment

This first section covers the following four activities:

1. Installing and configuring Visual Studio Code on your Windows 10 development machine.

2. Creating a standalone C/C++ application.

3. Building the standalone C/C++ application.

4. Debugging the standalone C/C++ application.

Each activity is described in order in the next sections.

Note For more information, see article OPEN ENCLAVE EXTENSION FOR VISUAL STUDIO CODE76.

You will first need to setup the development environment on your local machine. Let’s see how to proceed.

Installing and configuring Visual Studio Code on your Windows 10 development machine

This section describes how to configure on your local Windows 10 machine a Visual Studio Code IDE.

In addition, you will need to install some Visual Studio Code extensions:

1. Locally, the Visual Studio Code Remote Development extension pack77 that allows you to open any folder

in a container on a remote machine like your DC-series VM in Azure, A Linux machine elsewhere, or in the

local Windows Subsystem for Linux (WSL) of your Windows 10 local machine. This pack includes three

extensions:

a. Visual Studio Code Remote - SSH78. It allows you to work with source code in any location by

opening folders on a remote machine/VM using SSH and supports connecting to x86_64 Linux

SSH servers like your above DC-series VM.

b. Visual Studio Code Remote - WSL79. It allows you to get a Linux-powered development

experience from the comfort of Windows 10 by opening any folder in WSL.

c. Visual Studio Code Remote - Containers80. It allows you to work with a sandboxed toolchain or

container-based application by opening any folder inside (or mounted into) a container.

2. Remotely, the Open Enclave extension for Visual Studio Code81, supporting the Open Enclave SDK,

including development, debugging, emulators, and deployment.

76 OPEN ENCLAVE EXTENSION FOR VISUAL STUDIO CODE:

https://github.com/openenclave/openenclave/blob/feature.new_platforms/new_platforms/vscode-extension/README.md
77 Remote Development Extension Pack: https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-

extensionpack
78 Visual Studio Code Remote – SSH: https://aka.ms/vscode-remote/download/ssh

79 Visual Studio Code Remote – WSL: https://aka.ms/vscode-remote/download/wsl

80 Visual Studio Code Remote – Containers: https://aka.ms/vscode-remote/download/containers
81 Open Enclave extension for Visual Studio Code: https://marketplace.visualstudio.com/items?itemName=ms-iot.msiot-vscode-Open Enclave

https://github.com/openenclave/openenclave/blob/feature.new_platforms/new_platforms/vscode-extension/README.md
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://aka.ms/vscode-remote/download/ssh
https://aka.ms/vscode-remote/download/wsl
https://aka.ms/vscode-remote/download/containers
https://marketplace.visualstudio.com/items?itemName=ms-iot.msiot-vscode-openenclave

52 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

You will create a Standalone project on your Linux machine, once connected to it in SSH. For that purpose,

in the suggested configuration, you will need to install on your DC-series VM all the requirements82 listed.

Perform the following steps:

1. Install Visual Studio Code or Visual Studio Code – Insiders83.

2. Install Git for Windows84 (2.10 or later) and make sure that long paths are enabled:

$ git config --global core.longpaths true

3. Install an OpenSSH compatible SSH client85 if one is not already present on your local Windows 10

machine. See section § Installing OpenSSH on Windows 10.

4. Install the Remote Development extension pack.

Note For details on setting up and working with each specific extension of the Remote Development extension

pack, see articles REMOTE DEVELOPMENT USING SSH86, DEVELOPING IN WSL87, and DEVELOPING INSIDE A CONTAINER88. For

troubleshooting tips and tricks for each of these extensions, see article REMOTE DEVELOPMENT TIPS AND TRICKS89.

5. Visual Studio Code uses SSH configuration files90 and requires SSH key based authentication to

connect to your host.

6. Back in Visual Studio Code, press F1 or CTRL-Shift-P to open the Command Palette, and run Remote-SSH:
Open Configuration File...

82 Open Enclave extension for Visual Studio Code: https://marketplace.visualstudio.com/items?itemName=ms-iot.msiot-vscode-

openenclave#Requirements
83 Visual Studio Code – Insiders: https://code.visualstudio.com/insiders
84 Git for Windows: https://git-for-windows.github.io/

85 INSTALLATION OF OPENSSH FOR WINDOWS SERVER 2019 AND WINDOWS 10: https://docs.microsoft.com/en-us/windows-

server/administration/openssh/openssh_install_firstuse
86 REMOTE DEVELOPMENT USING SSH: https://code.visualstudio.com/docs/remote/ssh

87 DEVELOPING IN WSL: https://code.visualstudio.com/docs/remote/wsl

88 DEVELOPING INSIDE A CONTAINER: https://code.visualstudio.com/docs/remote/containers
89 REMOTE DEVELOPMENT TIPS AND TRICKS: https://code.visualstudio.com/docs/remote/troubleshooting#_installing-a-supported-ssh-client
90 ssh_config: https://linux.die.net/man/5/ssh_config

https://marketplace.visualstudio.com/items?itemName=ms-iot.msiot-vscode-openenclave#Requirements
https://code.visualstudio.com/insiders
https://git-for-windows.github.io/
https://code.visualstudio.com/docs/remote/troubleshooting#_installing-a-supported-ssh-client
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/wsl
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/troubleshooting#_installing-a-supported-ssh-client
https://linux.die.net/man/5/ssh_config

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 53

7. Select the SSH config file you wish to change, for example %USERPROFILE%\.ssh\config, and add (or

modify) a host entry in the config file as follows:

Read more about SSH config files: https://linux.die.net/man/5/ssh_config
Host <name-of-your-dc-series-vm-here>
 User <your-user-name-on-your-dcseries-vm>
 HostName <dc-series-vm-ip-goes-here>
 IdentityFile c:\users\<your-user-name-on-Windows10>\.ssh\id_rsa

8. Press CTRL+S to save the config file.

9. Open a remote SSH session to your DC-series VM:

a. Press F1 or CTRL-Shift-P to specify a command, run Remote-SSH: Connect to SSH Host...,

and select your DC-series VM name in the list.

A SSH session to your DC-series VM is opening. Visual Studio Code will now continue to

configure it.

b. When prompted, type your passphrase for your SSH key and press ENTER.

Once finished, you now see a SSH indicator in the bottom left corner, and you'll be able to use

Visual Studio Code as you would normally!

54 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

ET voila! Any Visual Studio Code operations you perform in this window will be executed in the

SSH environment, everything from editing and file operations, to debugging, using terminals, and

more.

10. Ensure that the requirements91 are met for the Open Enclave extension for Visual Studio Code:

a. In Visual Studio Code, make sure that the Visual Studio Code Native Debug extension92 is

installed. Press CRTL-p and run ext install webfreak.debug in Visual Studio Code and install

GDB/LLDB.

b. Install CMake 3.12 or above93, currently 3.15:

i. From Visual Studio Code, click on Terminal > New Terminal.

ii. From the terminal console, download the archive file cmake-3.15.2.tar.gz and compile it:

$ wget http://www.cmake.org/files/v3.15/cmake-3.15.2.tar.gz
$ tar -xvzf cmake-3.15.2.tar.gz
$ cd cmake-3.15.2/
$./configure
$ make

iii. Make's install command installs cmake by default in the folder /usr/local/bin/cmake. Run

the following command to install (copy) the binary and libraries to the new destination:

$ sudo make install

iv. If you haven't already installed a newer cmake installation, run the following command to

tell your distro, e.g. Ubuntu in our illustration, that the cmake command is now being

replaced by an alternative installation:

91 Open Enclave extension for Visual Studio Code: https://marketplace.visualstudio.com/items?itemName=ms-iot.msiot-vscode-

openenclave#Requirements
92 Native Debug extension: https://marketplace.visualstudio.com/items?itemName=webfreak.debug
93 CMake download: https://cmake.org/download/

https://marketplace.visualstudio.com/items?itemName=ms-iot.msiot-vscode-openenclave#Requirements
https://marketplace.visualstudio.com/items?itemName=webfreak.debug
https://cmake.org/download/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 55

$ sudo update-alternatives --install /usr/bin/cmake cmake /usr/local/bin/cmake 1 --force

Verify the cmake version using the following command:

$ cmake --version

c. Install the required build components from the bash shell:

$ sudo apt update && sudo apt install -y build-essential cmake gcc-arm-linux-gnueabihf gcc-aarch64-
linux-gnu g++-arm-linux-gnueabihf g++-aarch64-linux-gnu gdb-multiarch python

When prompted, type your password.

Furthermore, you may get the following warning and error:

W: GPG error: https://packages.microsoft.com/repos/azure-cli bionic InRelease: The following
signatures couldn’t be verified because the public ckey is not available: NO_PUBKEY EB3E94ADBE1229CF
E: the repository ‘https://packages.microsoft.com/repos/azure-cli bionic InRelease’ is not signed.
N: Updating from such a repository can’t be done securely, and its therefore disabled by default.
N: See apt-secure(8) manpage for repository creation and user configuration details.

It happens when you don't have a suitable public key for this repository.

To solve this problem, perform the following steps:

i. Use this command, which retrieves the key from ubuntu key server:

$ gpg --keyserver hkp://keyserver.ubuntu.com:80 --recv EB3E94ADBE1229CF

ii. And then this one, which adds the key to apt trusted keys:

$ gpg --export --armor EB3E94ADBE1229CF | sudo apt-key add –

56 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

iii. Rerun the above command to install the required build components.

d. Ensure that all QEMU dependencies are installed. QUEMU94 is a system emulator that can run

ARM TrustZone Trusted Applications (TAs) on a x64 machine as though they were running on a

TrustZone-capable hardware.

In the terminal console, run:

$ sudo apt update && sudo apt install -y libpixman-1-0 zlib1g libc6 libfdt1 libglib2.0-0 libpcre3
libstdc++6

11. Back in Visual Studio code, on the menu bar, install the Open Enclave extension for Visual Studio Code.

When prompted, click on Install.

Visual Studio Code runs extensions in one of two places: i) locally on the UI / client side, or ii) remotely in

the SSH session. While extensions that affect the Visual Studio Code UI, like themes and snippets, are

installed locally, most extensions needed here will reside inside your DC-series VM. This will be the case

for the Open Enclave extension for Visual Studio Code.

12. Use the Microsoft Open Enclave: Check System Requirements command - commands can be

found using F1 or CTRL-Shift-P to validate your system.

The command will query whether the required tools and the required versions are present on your

system. Any unmet requirements will be presented in a Visual Studio Code warning window.

94 QEMU: https://www.qemu.org/

https://www.qemu.org/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 57

Otherwise, you should see instead the message “Your system meets the requirements”.

Creating a standalone C/C++ application

Perform the following steps:

1. Launch Visual Studio Code.

2. As already stated, and illustrated above, the Visual Studio Code Remote - SSH extension lets you connect

to your DC-series VM as your full-time development environment right from Visual Studio Code. You can

develop in a Linux-based environment, use Linux specific toolchains and utilities, and run and debug your

Linux-based applications all from the comfort of Windows.

Open a remote SSH session to your DC-series VM:

a. Press F1 or CTRL-Shift-P to specify a command, run Remote-SSH: Connect to SSH Host...,

and select your DC-series VM name in the list.

b. When prompted, type your passphrase for your SSH key and press ENTER.

Note For more information, see article Remote Development using SSH95.

3. Use the Microsoft Open Enclave: New Open Enclave Solution command - commands can be

found using F1 or CTRL-Shift-P - to create your first new standalone application.

4. Specify the folder in which you want to create the application.

5. When invited to choose the option, create a Standalone project.

95 REMOTE DEVELOPMENT USING SSH: https://code.visualstudio.com/docs/remote/ssh

https://code.visualstudio.com/docs/remote/ssh

58 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

6. Provide a name for the host application/enclave, for example “Standalone”, and press ENTER to confirm.

A new solution will be created in the folder you've selected.

That solution will contain both the host and enclave as well as the required EDL file. The solution appears to

somehow like the one in the previous activity.

The EDL file is as follows:

// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

enclave {
 from "openenclave/stdio.edl" import *;

 trusted {
 /* define ECALLs here. */
 public int ecall_handle_message([in, string] char *input_msg, [out, count=enclave_msg_size]
char *enclave_ms, unsigned int enclave_msg_size);
 };

 untrusted {
 /* define OCALLs here. */
 int ocall_log([in, string] char *msg);
 };
};

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 59

Building the standalone C/C++ application

As already noticed, and considering previous requirements, the underlying system used in Visual Studio Code to

build is CMake.

Perform the following steps

1. Once still connect to your DC-series VM via a SSH session, press F1 or CTRL-Shift-P to specify a command.

2. Select Tasks: Run Task. You should see tasks configured and build for each target: ARMv7-A (32-bit),

AArch64/ARMv8-A (64-bit), and TrustBoxEdge (LS1012a).

3. Select Configure for AArch64/ARMv8-A.

Note For more information, see document TRUSTZONE TECHNOLOGY FOR ARM V8-M ARCHITECTURE96
.

The configure task will invoke cmake to create the required build files. This is only required to be run once.

4. Select Build for AArch64/ARMv8-A. The build task will do the actual compiling and linking.

96 TRUSTZONE TECHNOLOGY FOR ARM V8-M ARCHITECTURE:

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

60 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Debugging the standalone C/C++ application

Debugging your standalone project's enclave is easy as you will see now.

Important note Ensure that all of the QEMU dependencies are installed in your development environment. See step

4.d in above section § Installing and configuring Visual Studio Code on your Windows 10 development machine.

Perform the following steps:

1. Set breakpoints in the files you wish to debug. Breakpoints in the enclave may only be added before the

emulator (QEMU) starts or when the debugger is already broken inside the enclave.

2. Choose the architecture you are interested in debugging:

a. Navigate to the Visual Studio Debug view – Use CTRL-Shift-D -.

b. Select (gdb) Launch QEMU (AArch64/ARMv8-A) from the debug configuration dropdown.

3. You can simply hit F5. This will run cmake configuration, run the build, start QEMU, and load the host and

enclave symbols into an instance of the debugger.

4. Open the terminal view.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 61

5. Log into QEMU using root (no password is required).

6. Start the host process by entering “/mnt/host/bin/<YourOpenEnclaveSolutionName>”, for example in

our illustration:

/mnt/host/bin/Standalone

Once you have the standalone application working, you can modify it as desired.

62 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Building a TEE-based Linux module on an Edge ARM TrustZone device

As already introduced, the Intelligent Edge brings the power of the cloud to mobile and (Industrial) Internet of

Things ((I)IoT) devices and demands security for trust.

So, let’s now considered more specifically TEE-based application. As already stressed, we recommend Azure IoT

Edge for edge processing (see section § Azure IoT Platform for the “Intelligent Cloud, Intelligent Cloud” earlier in

this document), and consequently the Azure IoT Edge will be featured in this section.

With an IoT Edge device as a target, the TEE-based code will take the form of an Azure IoT Edge module. An Azure

IoT Edge module, or sometimes just module for short, is a container that contains executable code. You can

deploy one or more modules to an Azure IoT Edge device. Modules perform specific tasks like ingesting data from

sensors, performing data analytics or data cleaning operations, or sending messages to an IoT hub.

Note For more information, see article UNDERSTAND AZURE IOT EDGE MODULES97
..

As such, this section and illustration walks through what it takes to develop and deploy your own TEE-based

module to an IoT Edge device.

More specifically, this section covers the following ten activities:

1. Setting up an Azure IoT environment with an edge device.

2. Setting up your development machine.

3. Configuring your development environment for the Open Enclave SDK.

4. Creating an Edge container C/C++ project.

5. Providing your registry credentials to the IoT Edge agent.

6. Reviewing the generated host program code for the Azure IoT Edge module.

7. Selecting your target architecture for the Azure IoT Edge module.

8. Building the Azure IoT Edge module.

9. Pushing the Azure IoT Edge module to your container registry.

10. Deploying the Azure IoT Edge module to your actual Azure IoT Edge device.

Each activity is described in order in the next sections.

Note For more information, see articles TUTORIAL: DEVELOP IOT EDGE MODULES FOR LINUX DEVICES98 and TUTORIAL: DEVELOP

A C IOT EDGE MODULE FOR LINUX DEVICES99.

Setting up an Azure IoT environment with an edge device

As already introduced, you will create an Azure IoT Edge device using a Linux VM.

For that purpose, perform all the instructions outlined in section § Setting up a core Azure IoT environment in

Appendix. Prerequisites and additional configuration.

97 UNDERSTAND AZURE IOT EDGE MODULES: https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-modules

98 TUTORIAL: DEVELOP IOT EDGE MODULES FOR LINUX DEVICES: https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-develop-for-linux

99 TUTORIAL: DEVELOP A C IOT EDGE MODULE FOR LINUX DEVICES: https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-c-module

https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-modules
https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-develop-for-linux
https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-c-module
https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-c-module

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 63

Once completed, you will now need to setup your development machine to connect to your Azure IoT

environment and your newly created Azure IoT Edge device. This is the purpose of the next section.

Setting up your development machine

This section describes how to configure your development environment. As such, and as already outlined, when

developing IoT Edge modules, it's important to understand the different concepts between the development

machine and the target IoT Edge device where the module will eventually be deployed.

Microsoft recommend that you don't run IoT Edge on your development machine, but instead use a separate

device. This distinction between development machine and IoT Edge device more accurately mirrors a true

deployment scenario and helps to keep the different concepts straight.

However, for the sake of simplicity, we will here use the same Ubuntu VM in Azure: IoT Edge modules are

packaged as containers, so you need a container engine on your development machine to build and manage the

Linux containers of the edge device. A container engine, i.e. Docker CE, is already up and running on this Ubuntu

VM.

You will use on your local Windows 10 machine your Visual Studio Code IDE to connect to this Ubuntu VM and do

TEE-based applications cross-development with it.

In the previous illustration of this module (see section § Building a TEE-based Linux application on a simulated ARM

TrustZone environment), you already installed Visual Studio Code along with the Visual Studio Code Remote

Development Extension Pack that allows you to open any folder in a container on a remote machine like your

Ubuntu VM.

Installing the Azure IoT Tools extension pack

In addition, you will now need to install the Azure IoT Tools extension pack100 to help developing IoT Edge

modules.

These extensions make it easy to discover and interact with Azure IoT Hub that power your Azure IoT Edge

device(s), provide project templates, automate the creation of the deployment manifest, and allow you to monitor

and manage your Azure IoT Edge device(s):

• The Azure IoT Hub Toolkit101 extension allows you to interact with an Azure IoT Hub, manage connected

Azure IoT Edge devices, and enable distributed tracing for your Azure IoT applications.

• The Azure IoT Edge for Visual Studio Code102 allows you to easily code, build, and debug your custom

logic and deploy it to your Azure loT Edge devices.

You will install The Azure IoT Tools extension pack, then set up your Azure account to manage IoT Hub resources

from within Visual Studio Code.

Note For more information, see article USE VISUAL STUDIO CODE TO DEVELOP AND DEBUG MODULES FOR AZURE IOT EDGE103
..

100 Azure IoT Tools extension pack: https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.azure-iot-tools

101 Azure IoT Hub Toolkit: https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.azure-iot-toolkit

102 Azure IoT Edge for Visual Studio Code: https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.azure-iot-edge
103 USE VISUAL STUDIO CODE TO DEVELOP AND DEBUG MODULES FOR AZURE IOT EDGE: https://docs.microsoft.com/en-us/azure/iot-edge/how-to-vs-

code-develop-module

https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.azure-iot-tools
https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.azure-iot-toolkit
https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.azure-iot-edge
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-vs-code-develop-module

64 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Perform the following steps:

1. Launch Visual Studio Code.

2. select View > Extensions.

3. Search for Azure IoT Tools, which is actually a collection of extensions that help you interact with your

IoT Hub and your devices, as well as developing IoT Edge modules.

4. Select Install. Each included extension installs individually.

As previously stated, you will use the Ubuntu VM also as your Linux development machine. Since it’s should be

already up and running if you followed the steps in order, Let’s now connect it to your Visual Studio Code IDE.

Connecting to your remote Linux development machine

As you already did, you will use the Visual Studio Code Remote Extension Pack to connect your Visual Studio

Code IDE to your development machine, i.e. to your Ubuntu VM.

To do so, perform the following steps:

1. From Visual Studio Code, press F1 or CTRL-Shift-P to open the Command Palette, and run Remote-SSH:
Open Configuration File...

2. Select the SSH config file you wish to update with the Ubuntu VM information, for example

%USERPROFILE%\.ssh\config used before and add a host entry in the config file for this machine as

follows:

Read more about SSH config files: https://linux.die.net/man/5/ssh_config
Host <name-of-your-edge-ubuntu-vm-here>
 User <your-user-name-on-your-edge-ubuntu-vm>
 HostName <edge-ubuntu-vm-ip-goes-here>
 IdentityFile c:\users\<your-user-name-on-Windows10>\.ssh\id_rsa

3. Press CTRL+S to save the config file.

4. Open a remote SSH session to your Ubuntu VM as previously done:

a. Press F1 or CTRL-Shift-P to specify a command, run Remote-SSH: Connect to SSH Host...,

and select your Ubuntu VM name in the list.

b. A SSH session to your Ubuntu VM is opening. Visual Studio Code will now continue to configure

it.

c. When prompted, type your passphrase for your SSH key and press ENTER.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 65

Once finished, and like before, you now see a SSH indicator in the bottom left corner, and you'll

be able to use Visual Studio Code as you would normally!

Configuring the Azure IoT Hub extension

You will install now set up your Azure account to manage IoT Hub resources from within Visual Studio Code.

Note For more information, see article USE VISUAL STUDIO CODE TO DEVELOP AND DEBUG MODULES FOR AZURE IOT EDGE104
..

Perform the following steps:

1. Open the command palette by selecting View > Command Palette.

2. In the command palette, search for and select Azure: Sign in. A browsing session opens. Follow the

prompts to sign in to your Azure account.

3. In the command palette again, search for and select Azure IoT Hub: Select IoT Hub. Follow the prompts

to select your Azure subscription, and then your IoT hub.

4. Open the explorer section of Visual Studio Code by either selecting the icon in the activity bar on the left,

or by selecting View > Explorer.

5. At the bottom of the explorer section, expand the collapsed Azure IoT Hub Devices menu. You should

see your IoT Edge device associated with the IoT hub that you selected through the command palette.

Let’s now configure your (remote) Linux development machine for the Open Enclave SDK.

Configuring your development environment for the Open Enclave SDK

The Open Enclave SDK requires a series of prerequisites to be fulfilled on your remote Linux development

machine before creating an Edge container project from Visual Studio Code.

Let’s see how to complete the configuration of your remote Linux development machine.

104 USE VISUAL STUDIO CODE TO DEVELOP AND DEBUG MODULES FOR AZURE IOT EDGE: https://docs.microsoft.com/en-us/azure/iot-edge/how-to-vs-

code-develop-module

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-vs-code-develop-module

66 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Perform the following steps:

1. From Visual Studio, open a remote SSH session to your Ubuntu VM:

a. Press F1 or CTRL-Shift-P to specify a command, run Remote-SSH: Connect to SSH Host...,

and select your DC-series VM name in the list.

A SSH session to your Ubuntu VM is opening. Visual Studio Code will now continue to configure

it.

b. When prompted, type your passphrase for your SSH key and press ENTER.

Once finished, you now see a SSH indicator in the bottom left corner, and you'll be able to use

Visual Studio Code as you would normally!

ET voila! Any Visual Studio Code operations you perform in this window will be executed in the

SSH environment, everything from editing and file operations, to debugging, using terminals, and

more.

2. Ensure that the requirements105 are met for the Open Enclave extension for Visual Studio Code:

a. From Visual Studio Code, click on Terminal > New Terminal to open a Bash prompt on the

Ubuntu VM.

b. Make sure that the Visual Studio Code Native Debug extension106 is installed. This should be

the case.

c. Install the required build components:

$ sudo apt update && sudo apt install -y build-essential cmake gcc-arm-linux-gnueabihf gcc-aarch64-
linux-gnu g++-arm-linux-gnueabihf g++-aarch64-linux-gnu gdb-multiarch python

105 Open Enclave extension for Visual Studio Code: https://marketplace.visualstudio.com/items?itemName=ms-iot.msiot-vscode-

openenclave#Requirements
106 Native Debug extension: https://marketplace.visualstudio.com/items?itemName=webfreak.debug

https://marketplace.visualstudio.com/items?itemName=ms-iot.msiot-vscode-openenclave#Requirements
https://marketplace.visualstudio.com/items?itemName=webfreak.debug

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 67

d. Install CMake 3.12 or above107, currently 3.15:

i. From the terminal console, remove the installed version if any:

$ sudo apt purge cmake

ii. Download the binary distribution archive file cmake-3.15.3.tar.gz, unpack it, and go to the

folder of cmake:

$ wget http://www.cmake.org/files/v3.15/cmake-3.15.3-Linux-x86_64.tar.gz
$ tar -xvzf cmake-3.15.3-Linux-x86_64.tar.gz
$ cd cmake-3.15.3-Linux-x86_64/

iii. Go to the folder of cmake and from there run the following commands:

$ sudo cp -r bin /usr/
$ sudo cp -r share /usr/
$ sudo cp -r doc /usr/share/
$ sudo cp -r man /usr/share/

iv. Go outside the folder of cmake and run the following commands:

$ cd ..
$ sudo rm -r cmake-3.15.3-Linux-x86_64
$ sudo rm cmake-3.15.3-Linux-x86_64.tar.gz

Verify the cmake version using the following command:

$ cmake --version

107 CMake download: https://cmake.org/download/

https://cmake.org/download/

68 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

3. Ensure that the requirements108 are met for the Azure IoT Edge extension for Visual Studio Code:

a. On your Linux development machine, for Edge Container projects, you will need to enable

cross-building. The container that you will build to hold your TEE-based module code must

match the operating system (OS) of the edge device (and target the underlying platform). (You

should keep in mind the difference between the development machine OS and the container OS.)

To do so, on Ubuntu 16.04, run the followings:

$ sudo apt-get install -y qemu qemu qemu-system-misc qemu-user-static qemu-user binfmt-support
$ sudo mkdir -p /lib/binfmt.d
$ sudo sh -c 'echo :qemu-
arm:M::\\x7fELF\\x01\\x01\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x02\\x00\\x28\\x00:\\xff
\\xff\\xff\\xff\\xff\\xff\\xff\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\xfe\\xff\\xff\\xff:/usr/
bin/qemu-arm-static:F > /lib/binfmt.d/qemu-arm-static.conf'
$ sudo sh -c 'echo :qemu-
aarch64:M::\\x7fELF\\x02\\x01\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x02\\x00\\xb7\\x00:\
\xff\\xff\\xff\\xff\\xff\\xff\\xff\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\xfe\\xff\\xff\\xff:/
usr/bin/qemu-aarch64-static:F > /lib/binfmt.d/qemu-aarch64-static.conf'
sudo systemctl restart systemd-binfmt.service

b. Add your Linux user to the docker group. This will allow your user to connect and issue

commands to the Docker daemon:

$ sudo usermod -aG docker $USER

This command requires to log out and log back in so that your group membership is re-

evaluated. With your Ubuntu VM, you will need to restart the VM for changes to take effect.

Restart the Ubuntu VM and reopen a Bash terminal from Visual Studio Code.

c. To validate that your system is configured for cross-building, try testing the docker

containers that will be later needed in the build:

$ docker run arm32v7/ubuntu:xenial
$ docker run aarch64/ubuntu:xenial
$ docker run amd64/ubuntu:xenial

d. Install the Azure IoT EdgeHub Dev Tool109 (iotedgehubdev).

108 Open Enclave extension for Visual Studio Code: https://marketplace.visualstudio.com/items?itemName=ms-iot.msiot-vscode-

openenclave#Requirements
109 Iotedgehubdev: https://pypi.org/project/iotedgehubdev/

https://marketplace.visualstudio.com/items?itemName=ms-iot.msiot-vscode-openenclave#Requirements
https://pypi.org/project/iotedgehubdev/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 69

This tool provides a local development experience with a simulator for creating, developing,

testing, running, and debugging Azure IoT Edge modules and solutions.

$ sudo apt install pip-python
$ pip install --upgrade iotedgehubdev

2. Back in Visual Studio code, on the menu bar, install the Open Enclave extension for Visual Studio Code.

When prompted, click on Install.

3. Use the Microsoft Open Enclave: Check System Requirements command - commands can be

found using F1 or CTRL-Shift-P - to validate your system.

The command will query whether the required tools and the required versions are present on your

system. Any unmet requirements will be presented in a Visual Studio Code warning window.

Otherwise, you should see instead the message “System meets the requirements”.

Creating an Edge container C/C++ project

Perform the following steps:

1. Launch Visual Studio Code.

2. As already stated, the Visual Studio Code Remote - SSH extension let you use a remote Linux-based Azure

IoT Edge environment as your full-time development environment right from Visual Studio Code.

3. Use the Microsoft Open Enclave: New Open Enclave Solution command - commands can be

found using F1 or CTRL-Shift-P - to create your first new Azure IoT Edge Module project.

70 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

4. Specify the folder in which you want to create the application.

5. When invited to choose the option, create a Edge container project.

6. Provide a name for the host application/enclave, for example the default “EdgeOpenEnclave” name in our

illustration, and press ENTER to confirm.

7. Provide your image repository. An image repository includes the name of your container registry and

the name of your container image.

Your container image is prepopulated from the name you provided in the last step. Replace

localhost:5000 with the login server value from your Azure container registry, for example,

iotedge369.azure.io in our illustration, see section § Creating an Azure Container Registry in Appendix.

Prerequisites and additional configuration. You can retrieve the login server from the Overview page of

your container registry in the Azure portal.

The final image repository looks like <registry name>.azurecr.io/edgeopenenclave. For example, in our

illustration: iotedge369.azurecr.io/edgeopenenclave.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 71

A new solution will be created in the folder you've selected.

The solution will contain all the files and code that you need to deploy a working module to test on your Azure

IoT Edge device, or give you a starting point to customize it with your own business logic.

As such, that solution will contain both the host and enclave as well as the required EDL file. The solution

appears to somehow like the one in the previous activity, where the code that pertains to TEEs is mostly the

same. However, the host will include some code that implements the required Azure IoT Hub communication.

Once your new solution loads in the Visual Studio Code window, take a moment to familiarize yourself with the

files that it created:

• The .vscode folder contains a file called launch.json, which is used for debugging modules.

• The modules folder contains a folder for each module in your solution. Right now, that should only be

EdgeOpenEnclave, or whatever name you gave to the module in the above step #6. The EdgeOpenEnclave

folder contains both the host and enclave program code as well as the required EDL file.

The EDL file is as follows:

// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

enclave {
 from "openenclave/stdio.edl" import *;

 trusted {
 /* define ECALLs here. */

72 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

 public int ecall_handle_message([in, string] char *input_msg, [out, count=enclave_msg_size]
char *enclave_ms, unsigned int enclave_msg_size);
 };

 untrusted {
 /* define OCALLs here. */
 int ocall_log([in, string] char *msg);
 };
};

The program code appears to somehow like the one in the previous activity. However, the host will

include some code that implements the required Azure IoT Hub communication. As notice above, it also

contains the module metadata, and several Docker files.

• The .env file holds the credentials to your container registry. These credentials are shared with your Azure

IoT Edge device, i.e. your Ubuntu VM, so that it has access to pull the container images.

• The deployment.debug.template.json file and deployment.template.json file are templates that help you

create a deployment manifest (see section § Pushing the Azure IoT Edge module below).

A deployment manifest is a file that defines exactly which modules you want deployed on an edge device,

how they should be configured, and how they can communicate with each other and the cloud. The

template files use pointers for some values. When you transform the template into a true deployment

manifest, the pointers are replaced with values taken from other solution files. Locate the two common

placeholders in your deployment template:

o In the registryCredentials section, the address is auto filled from the information you

provided when you created the solution. However, the username and password reference the

variables stored in the .env file. This is for security, as the .env file is git ignored, but the

deployment template is not.

o In the EdgeOpenEnclave section, the container image isn't filled in even though you provided the

image repository when you created the solution. This placeholder points to the module.json file

inside the EdgeOpenEnclave folder.

If you go to that file, you'll see that the image field does contain the repository, but also a tag

value that is made up of the version and the platform(s) of the container.

You can iterate the version manually as part of your development cycle, and you select the

container platform using a switcher that we introduce later in this section.

Providing your registry credentials to the IoT Edge agent

The environment file stores the credentials for your container registry and shares them with the IoT Edge runtime.

The runtime needs these credentials to pull your container images onto the IoT Edge device.

On Visual Studio Code, the IoT Edge extension tries to pull your container registry credentials from Azure and

populate them in the environment file. You may see the following popup during the creation of the above

solution.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 73

Check to see if your credentials are already included. If not, add them now.

Perform the following steps:

• Open the .env file in your module solution.

iotedge369_USERNAME=
iotedge369_PASSWORD=

• Add the username and password values that you copied from your Azure container registry, i.e. the

values registry-username and registry-password, see section § Creating an Azure Container Registry

in Appendix. Prerequisites and additional configuration.

• Save your changes to the .env file.

Reviewing the generated host program code for the Azure IoT Edge module

As aforementioned, the host include some code that implements the required Azure IoT Hub communication.

This code simply receives messages and then passes them on. The pipeline functionality demonstrates here an

important concept in IoT Edge, which is how modules communicate with each other.

Each module can have multiple input and output queues declared in their code. The IoT Edge hub running on the

device routes messages from the output of one module into the input of one or more modules. The specific

language for declaring inputs and outputs varies between languages, but the concept is the same across all

modules.

Note For more information about routing between modules, see article DECLARE ROUTES110
..

The C code that comes with the project template uses the IoTHubModuleClient_LL module111 from the Azure IoT C

SDK:

• Open the main.c file, which is inside the folder modules/EdgeOpenEnclave/host.

• In the main.c file, find the IoTHubModuleClient_LL_SetInputMessageCallback function. The

IoTHubModuleClient_LL_SetInputMessageCallback112 function sets up an input queue callback to

receive incoming messages. Review this function call and see how it initializes an input queue callback

called InputQueue1Callback.

static int SetupCallbacksForModule(IOTHUB_MODULE_CLIENT_LL_HANDLE iotHubModuleClientHandle)
{
 int ret;

 if (IoTHubModuleClient_LL_SetInputMessageCallback(iotHubModuleClientHandle, "input1",
 InputQueue1Callback, (void*)iotHubModuleClientHandle) != IOTHUB_CLIENT_OK)

{
 printf("ERROR:

110 DECLARE ROUTES: https://docs.microsoft.com/en-us/azure/iot-edge/module-composition#declare-routes

111 IOTHUB_MODULE_CLIENT_LL.H: https://docs.microsoft.com/en-us/azure/iot-hub/iot-c-sdk-ref/iothub-module-client-ll-h

112 IOTHUBMODULECLIENT_LL_SETINPUTMESSAGECALLBACK(): https://docs.microsoft.com/en-us/azure/iot-hub/iot-c-sdk-ref/iothub-module-client-ll-

h/iothubmoduleclient-ll-setinputmessagecallback

https://docs.microsoft.com/en-us/azure/iot-edge/module-composition#declare-routes
https://docs.microsoft.com/en-us/azure/iot-hub/iot-c-sdk-ref/iothub-module-client-ll-h/iothubmoduleclient-ll-setinputmessagecallback
https://docs.microsoft.com/en-us/azure/iot-hub/iot-c-sdk-ref/iothub-module-client-ll-h/iothubmoduleclient-ll-setinputmessagecallback

74 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

 IoTHubModuleClient_LL_SetInputMessageCallback(\"input1\")..........FAILED!\r\n");
 ret = -1;
 }
 else
 {
 ret = 0;
 }

 return ret;
}

• Next, find the IoTHubModuleClient_LL_SendEventToOutputAsync function. The

IoTHubModuleClient_LL_SendEventToOutputAsync113 function processes received messages and sets

up an output queue to pass them along. Review this call and see that it initializes an output queue called

output1.

static IOTHUBMESSAGE_DISPOSITION_RESULT SendEnclaveResponse(IOTHUB_MODULE_CLIENT_LL_HANDLE
iotHubModuleClientHandle, char* messageBodyStr)
{
 IOTHUBMESSAGE_DISPOSITION_RESULT result;
 IOTHUB_CLIENT_RESULT clientResult;

 char* enclaveMessage = (char*)malloc(512 * sizeof(char));
 int enclaveResult = call_enclave(messageBodyStr, enclaveMessage, 512);
 if (enclaveResult != 0)
 {
 result = IOTHUBMESSAGE_ABANDONED;
 }
 else
 {
 // This message should be sent to next stop in the pipeline, namely "output1". What happens
 // at "outpu1" is determined by the configuration of the Edge routing table setup.
 MESSAGE_INSTANCE *messageInstance = CreateMessageInstance(enclaveMessage);
 if (NULL == messageInstance)
 {
 result = IOTHUBMESSAGE_ABANDONED;
 }
 else
 {
 printf("Sending message (%zu) to the next stage in pipeline\n",
 messagesReceivedByInput1Queue);

 clientResult = IoTHubModuleClient_LL_SendEventToOutputAsync(iotHubModuleClientHandle,
 messageInstance->messageHandle, "output1", SendConfirmationCallback,
 (void *)messageInstance);

 if (clientResult != IOTHUB_CLIENT_OK)
 {
 IoTHubMessage_Destroy(messageInstance->messageHandle);
 free(messageInstance);
 printf("IoTHubModuleClient_LL_SendEventToOutputAsync failed on sending msg#=%zu,
 err=%d\n", messagesReceivedByInput1Queue, clientResult);
 result = IOTHUBMESSAGE_ABANDONED;

113 IOTHUBMODULECLIENT_LL_SENDEVENTTOOUTPUTASYNC(): https://docs.microsoft.com/en-us/azure/iot-hub/iot-c-sdk-ref/iothub-module-client-

ll-h/iothubmoduleclient-ll-sendeventtooutputasync

https://docs.microsoft.com/en-us/azure/iot-hub/iot-c-sdk-ref/iothub-module-client-ll-h/iothubmoduleclient-ll-sendeventtooutputasync

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 75

 }
 else
 {
 result = IOTHUBMESSAGE_ACCEPTED;
 }
 }
 }

 free(enclaveMessage);
 return result;
}

• Now, open the deployment.template.json file.

• Find the modules property of the $edgeAgent desired properties. There should be two modules listed

here:

1. The first is SimulatedTemperatureSensor, which is included in all the templates by default to

provide simulated temperature data that you can use to test your modules.

2. The second is the EdgeOpenEnclave module that you created as part of this solution.

• At the bottom of the file, find the desired properties for the $edgeHub module.

One of the functions of the IoT Edge hub module is to route messages between all the modules in a

deployment. Review the values in the routes property:

1. The first route, i.e. EdgeOpenEnclaveToIoTHub, uses a wildcard character (*) to indicate any

messages coming from any output queues in the EdgeOpenEnclave module. These messages go

into $upstream, which is a reserved name that indicates IoT Hub.

2. The second route, i.e. sensorToEdgeOpenEnclave, takes messages coming from the

SimulatedTemperatureSensor module and routes them to the input1 input queue that you

saw initialized in the EdgeOpenEnclave code.

"$edgeHub": {
 "properties.desired": {
 "schemaVersion": "1.0",
 "routes": {
 "EdgeOpenEnclaveToIoTHub": "FROM /messages/modules/EdgeOpenEnclave/outputs/* INTO $upstream",
 "sensorToEdgeOpenEnclave": "FROM /messages/modules/tempSensor/outputs/temperatureOutput INTO
 BrokeredEndpoint(\"/modules/EdgeOpenEnclave/inputs/input1\")"
 },
 "storeAndForwardConfiguration": {
 "timeToLiveSecs": 7200
 }
}

Selecting your target architecture for the Azure IoT Edge module

Currently, Visual Studio Code can develop C# modules for Linux ARMv7-A, AArch64/ARMv8-A, and TrustBoxEdge

(LS1012a) devices.

You need to select which architecture you're targeting with each solution, because that affects how the Linux

container is built and runs.

76 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Proceed with the following steps:

1. Use Azure IoT Edge: Set Default Target Platform for Edge Solution - commands can be

found using F1 or CTRL-Shift-P -.

2. In the command palette, select the target architecture from the list of options. Select aarch64-qemu for

your Ubuntu VM. (If you were using an actual Scalys TrustBox Edge device, you would have selected here

trustboxedge-ls1012a instead.)

Building the Azure IoT Edge module

You've reviewed the module code for the host, and the deployment template to understand some key module

and deployment concepts. Now, you're ready to build the EdgeOpenEnclave container image.

As already noticed, and considering previous requirements, the underlying system used in Visual Studio Code to

build is CMake. For Azure IoT Edge projects, Ubuntu containers are used to configure and build. The build task will

invoke docker and leverage project dockerfiles.

To build the Azure IoT Edge Module, perform the following steps:

1. Right-click on modules/EdgeOpenEnclave/module.json.

2. Select Build IoT Edge Module Image.

3. You should see tasks configured to build for each target: ARMv7-A, AArch64/ARMv8-A, and

TrustBoxEdge(LS1012a).

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 77

4. Select aarch64-quemu for your Ubuntu VM. (If you were using an actual Scalys TrustBox Edge device, you

would have selected here trustboxedge-ls1012a instead.)

This “build” command starts two operations:

a. First, it creates a new folder in the solution called config that holds the full deployment manifest,

built out of information in the deployment template and other solution files.

b. Second, it runs docker build to build the container image based on the appropriate dockerfile

for your target architecture: i.e. Dockerfile.aarch64-qemu here.

As far as the latter are concerned, this will result in executing the following command:

$ docker build --rm -f "/home/philber/EdgeOpenEnclave/modules/EdgeOpenEnclave/Dockerfile.aarch64-
qemu" -t iotedge369.azurecr.io/edgeopenenclave:0.0.1-aarch64-qemu
"/home/philber/EdgeOpenEnclave/modules/EdgeOpenEnclave"

This process may take several minutes the first time but is faster the next time that you run the

commands.

78 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Pushing the Azure IoT Edge module to your container registry

At this stage, you're ready to build the EdgeOpenEnclave container image and push it to your container registry.

With the IoT tools extension for Visual Studio Code, this step also generates the deployment manifest based on

the information in the template file and the module information from the solution files.

Deploying your Edge Container project's enclave is easy as you will see now.

Perform the following steps:

1. Provide your container registry credentials to Docker so that it can push your container image to be

stored in your container registry:

a. Open the Visual Studio Code integrated terminal by selecting View > Terminal.

b. Sign into Docker with the Azure container registry credentials that you saved after creating the

registry, see section § Creating an Azure Container Registry in Appendix. Prerequisites and

additional configuration.

$ docker login -u <registry-username> -p <registry-password> <registry-login-server>

Note You may receive a security warning recommending the use of --password-stdin option. The --password-

stdin option prevents your password from appearing in the command line history. While that best practice is

recommended for production scenarios, it's outside the scope of this walkthrough. For more information, see article

DOCKER LOGIN114
.

Once you've logged into docker, you can log out (and remove your credentials from the system)

by:

$ docker logout <container-url>

Visual Studio Code now has access to your container registry, so it's time to turn the solution code into a

container image.

114 DOCKER LOGIN: https://docs.docker.com/engine/reference/commandline/login/#provide-a-password-using-stdin

https://docs.docker.com/engine/reference/commandline/login/#provide-a-password-using-stdin

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 79

2. Right-click on modules/EdgeOpenEnclave/module.json.

3. Select Build and Push IoT Edge Module Image.

4. You should see tasks configured to build for each target: ARMv7-A, AArch64/ARMv8-A, and

TrustBoxEdge(LS1012a).

5. Select aarch64-quemu for your Ubuntu VM. (If you were using an actual Scalys TrustBox Edge device, you

would have selected here trustboxedge-ls1012a instead.)

This “build and push” command starts three operations:

a. First, it creates a new folder in the solution called config that holds the full deployment manifest,

built out of information in the deployment template and other solution files.

b. Second, it runs docker build to build the container image based on the appropriate dockerfile

for your target architecture: i.e. Dockerfile.aarch64-qemu here.

c. Then, it runs docker push to push the image repository to your container registry, i.e.

iotedge369.azure.io.

As far as the latter are concerned, this will result in executing the following command:

$ docker build --rm -f "/home/philber/EdgeOpenEnclave/modules/EdgeOpenEnclave/Dockerfile.aarch64-
qemu" -t iotedge369.azurecr.io/edgeopenenclave:0.0.1-aarch64-qemu
"/home/philber/EdgeOpenEnclave/modules/EdgeOpenEnclave" && docker push
iotedge369.azurecr.io/edgeopenenclave:0.0.1-aarch64-qemu

80 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

This process may take several minutes the first time but is faster the next time that you run the

commands.

6. At this stage, the container image has been pushed to your container registry in Azure.

a. To further verify what the above build and push command did, go to the Azure portal at

https://portal.azure.com and navigate to your container registry.

b. In your container registry, select Repositories then edgeopenenclave.

https://portal.azure.com/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 81

Likewise, Azure IoT Edge deployment template files have been provided.

Perform the following steps:

1. Open the deployment.aarch64-quemu.json file in newly created config folder. The filename reflects the

target architecture, so it will be different if you chose a different architecture, for example for a real Scalys

TrustBox Edge device.

2. Notice that the two parameters that had placeholders now are filled in with their proper values:

a. The registryCredentials section has your registry username and password pulled from the

.env file.

b. The EdgeOpenEnclave has the full image repository with the name, version, and architecture tag

from the module.json file.

3. Open the module.json file in the EdgeOpenEnclave folder.

4. Change the version number for the module image. (The version, not the $schema-version.) For example,

increment the patch version number to 0.0.2 as though we had made a small fix in the module code.

Note Module versions enable version control and allow you to test changes on a small set of Azure IoT Edge

devices before deploying updates to production. If you don't increment the module version before building and pushing,

then you overwrite the repository in your container registry.

5. Save your changes to the module.json file.

6. Right-click the deployment.template.json file again, and select Build and Push IoT Edge Solution.

7. Open the deployment.aarch64-quemu.json file again. Notice that a new file wasn't created when you ran

the build and push command again. Rather, the same file was updated to reflect the changes. The

EdgeOpenEnclave image now points to the 0.0.2 version of the container.

8. To further verify what the build and push command did, in your container registry in Azure, select again

Repositories then edgeopenenclave. Verify that both versions of the image were pushed to the registry.

82 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

If you encounter errors when building and pushing your module image, it often has to do with Docker

configuration on your development machine. Use the following check list to review your configuration:

• Did you run the docker login command using the credentials that you copied from your container

registry? These credentials are different than the ones that you use to sign in to Azure.

• Is your container registry correct? Does it have your correct container registry name and your correct

module name? Open the module.json file in the modules/EdgeOpenEnclave/folder to check. The registry

value should look like <your registry name>.azurecr.io/edgeopenenclave.

• If you used a different name than default EdgeOpenEnclave for your module, is that name consistent

throughout the solution?

• You verified that the built container images are stored in your container registry, so it's time to deploy

them to a (virtual) Azure IoT Edge device.

If everything ran well, you verified that the built container images are stored in your container registry, so it's time

to deploy them to a (virtual) Azure IoT Edge device.

Deploying the Azure IoT Edge module to your actual Azure IoT Edge device

Make sure that your IoT Edge device is up and running.

To create a new deployment configuration based on the current settings in module.json, perform the following

steps:

1. Use Azure IoT Edge: Set Default Target Platform for Edge Solution - commands can be

found using F1 or CTRL-Shift-P - to create your first new Azure IoT Edge Module project.

2. Select aarch64-qemu for your Ubuntu VM. (If you were using an actual Scalys TrustBox Edge device, you

would have selected here trustboxedge-ls1012a instead.)

3. Right-click on deployment.template.json (or deployment.debug.template.json).

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 83

4. Select Generate IoT Edge Deployment Manifest. This will generate or replace the appropriate

deployment .JSON file in the config folder.

Once your deployment JSON file has been created in the config folder, you can deploy to an Azure Edge device.

Perform the following steps:

1. Navigate into to the config folder.

2. Right-click on the deployment.aarch64-quemu.json file. Do not use the deployment.template.json file,

which doesn't have the container registry credentials or module image values in it.

3. Select Create Deployment for Single Device or Create Deployment at Scale.

4. Select your Azure IoT Edge device and press ENTER.

84 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

5. Et voila! This is all what it takes to deploy your Azure IoT Edge module onto your actual device.

It may take a few minutes for both modules to start. The Azure IoT Edge runtime needs to receive its new

deployment manifest, pull down the module images from the container runtime, then start each new

module.

6. In the Azure IoT Hub extension in Visual Studio Code:

a. Expand the details for your Azure IoT Edge device, then expand the Modules list for your device.

b. Use the refresh button to update the device view until you see the tempSensor

(SimulatedTemperatureSensor) and EdgeOpenEnclave modules running on your device.

7. To further verify what the deployment command did against your Azure IoT Edge device:

o Go again to the Azure portal at https://portal.azure.com and navigate this time to your Azure IoT

Hub.

o In your Azure IoT Hub, select IoT Edge, your device in list, and then Set Modules.

o select again Repositories then edgeopenenclave. Verify that both versions of the image were

pushed to the registry.

https://portal.azure.com/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 85

This concludes the second illustration of this third module.

This also concludes this starter guide.

86 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Appendix. Prerequisites and additional

configuration

Setting up a core Azure IoT environment

To setup a core Azure IoT environment, perform the following four activities:

1. Create an Azure Container Registry.

2. Create an Azure IoT Hub.

3. Register an Azure IoT Edge device to your IoT hub.

4. Install and start the Azure IoT Edge runtime on your edge device.

Each activity is detailed in order in the next sections.

Creating an Azure Container Registry

In section § Building a TEE-based Linux module on an Edge ARM TrustZone device, you will build a TEE-based

module and create a container image from the related project files. Then you will push this image to a registry

that stores and manages your images. Finally, you will deploy your image from your registry to run on your IoT

Edge device.

You can use any Docker-compatible registry to hold your container images. Two popular Docker registry services

are Azure Container Registry115 and Docker Hub116. You will use here Azure Container Registry (ACR).

Azure Container Registry allows you to manage a Docker private registry in Azure where you can store and

manage your private Docker container images.

Perform the following steps:

Note For more information, see article QUICKSTART: CREATE A PRIVATE CONTAINER REGISTRY USING THE AZURE PORTAL117
.

1. Open a browser session and go to the Azure portal at https://portal.azure.com.

2. Sign in with your Azure account.

3. Select Create a resource > Containers > Container Registry.

115 Azure Container Registry: https://azure.microsoft.com/en-us/services/container-registry/

116 Docker Hub: https://www.docker.com/products/docker-hub

117 QUICKSTART: CREATE A PRIVATE CONTAINER REGISTRY USING THE AZURE PORTAL: https://docs.microsoft.com/en-us/azure/container-registry/container-

registry-get-started-portal

https://azure.microsoft.com/en-us/services/container-registry/
https://www.docker.com/products/docker-hub
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal
https://portal.azure.com/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 87

4. Specify the required settings.

Setting Description

Registry name Provide a unique name. The registry name must be unique within Azure and contain

5-50 alphanumeric characters. For example, iotedge369 in our illustration.

Subscription Select your subscription from the drop-down list if not already selected.

Resource group You can create a new resource group or use an existing one.

To create a new one, click on Create new and fill in the name you want to use. For

example, in our illustration, RG-IOTEDGE in our illustration.

To use instead an existing resource group, click on Use existing and select the

resource group from the dropdown list.

Location Choose a location close to you.

Admin user Set to Enable. If enabled, you can use the registry name as username and admin

user access key as password to docker login to your container registry, see section §

Providing your registry credentials to the IoT Edge agent.

SKU Select Basic. The Basic registry, which is a cost-optimized option for developers

learning about Azure Container Registry. For details on available service tiers, see

article AZURE CONTAINER REGISTRY SKUS118.

5. Click on Create to deploy the container registry instance.

118 Azure Container Registry SKUs: https://docs.microsoft.com/en-us/azure/container-registry/container-registry-skus

https://docs.microsoft.com/en-us/azure/container-registry/container-registry-skus

88 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

6. After your container registry is created, browse to it, and then select Access keys under Settings.

7. Make a note of the values for Login server (iotedge369.azurecr.io in our illustration), Username

(iotedge369 in our illustration) and Password and save them somewhere convenient. You use these

values throughout this module to provide access to your container registry. These values will be

respectively referred as to registry-login-server, registry-username, and registry-password.

Creating an Azure IoT Hub

Perform the following steps:

Note For more information, see article CREATE AN IOT HUB USING THE AZURE PORTAL119
.

1. Still from the Azure portal at https://portal.azure.com, in the left pane, select Create a resource. Search

for “IoT Hub” in the Search the Marketplace search bar.

2. Select Create.

119 CREATE AN IOT HUB USING THE AZURE PORTAL: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://portal.azure.com/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 89

3. Specify the required settings.

Setting Description

Subscription Select your subscription from the drop-down list if not already selected.

Resource Group You can create a new resource group or use an existing one.

To create a new one, click on Create new and fill in the name you want to use.

To use instead an existing resource group, like the previous resource group, click on

Use existing and select the resource group from the dropdown list.

We recommend that you use the same resource group for all the test resources that

you create for your Azure IoT platform as part of this walkthrough. For example, RG-

IOTEDGE in our illustration.

Region This is the region in which you want your hub to be located. Select the location

closest to you from the dropdown list.

IoT Hub Name Specify a name for your Azure IoT Hub, for example iothub369 in our illustration.

This name must be globally unique. If the name you enter is available, a green check

mark appears.

4. Click on Next: Size and scale to continue creating your Azure IoT Hub.

90 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

5. Specify the required settings.

Setting Description

Pricing and scale tier Specify the tier to use. You can choose from several tiers depending on how many

features you want and how many messages you send through your solution per day.

The free level of Azure IoT Hub works for this guide. If you've used Azure IoT Hub in

the past and already have a free hub created, you can use that Azure IoT hub. Keep

in mind that each subscription can only have one free IoT hub. Select F1: Free tier or

S1: Standard tier for the pricing tier.

Number of F1|S1 IoT Hub units Specify the number of units. The number of messages allowed per unit per day

depends on your hub's pricing tier. You don’t need more than one unit for this

guide.

Device-to-cloud partition Specify the number of partitions. This property relates the device-to-cloud messages

to the number of simultaneous readers of the messages. Most Azure IoT Hubs only

need four partitions, you can keep it by default.

6. Select Review + Create to review your choices.

7. If validation has passed, click on Create to create your new Azure IoT hub. Creating the hub takes a few

minutes.

This is it! Your Azure IoT Hub is ready, let’s now set up and connect our edge device to our hub.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 91

Registering an Azure IoT Edge device to your Azure IoT hub

Let’s now create a device identity for your Azure IoT Edge device on your Azure IoT Hub so that it can

communicate with your Azure IoT hub. The device identity lives in the cloud, and you use a unique device

connection string to associate a physical device to a device identity.

Note For more information, see article REGISTER A NEW AZURE IOT EDGE DEVICE FROM THE AZURE PORTAL120
.

To manually create a device identity, perform the following steps:

1. From Azure portal, search for “IoT Hub” in the search bar and select your IoT Hub.

2. Click on IoT Edge under Automatic Device Management.

3. Select Add an IoT Edge Device.

120 REGISTER A NEW AZURE IOT EDGE DEVICE FROM THE AZURE PORTAL: https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device-portal

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device-portal

92 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

4. Specify the required settings. Enter a unique Device ID, for example, EdgeUbuntuVM in our illustration,

and then click on Save.

5. Now click on the newly created device in the list of Azure IoT Edge devices.

You should look out for Primary Connection String. This value is the device connection string. You'll use

this connection string to connect your actual device, and thus configure for that purpose the Azure IoT

Edge runtime in the next section on your Azure IoT Edge device, save it.

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 93

It should look like this:

HostName=YourIoTHubName.azure-
devices.net;DeviceId=SimulatedDevice;SharedAccessKey={YourSharedAccessKey}

Make a note of it. It will be further referred as to the string your_iothub_edge_connection_string.

Now we are all set! Let’s now configure your actual (virtual) Azure IoT Edge device.

Installing and starting the Azure IoT Edge runtime on your device

The Azure IoT Edge runtime is deployed on all Azure IoT Edge devices. It has three components:

1. The Azure IoT Edge security daemon121 starts each time an Azure IoT Edge device boots and bootstraps

the device by starting the IoT Edge agent.

2. The Azure IoT Edge agent facilitates deployment and monitoring of modules on the Azure IoT Edge

device, including the IoT Edge hub.

3. The Azure IoT Edge hub manages communications between modules on the Azure IoT Edge device, and

between the device and your Azure IoT Hub.

During the runtime configuration, you provide a device connection string.

A real edge device can typically be the Scalys TrustBox Edge122 device, which is an Industrial grade, tamper-

resistant secured Azure IoT Edge device optimized for confidential computing using TEEs.

However, as mentioned earlier, for the sake of this guide, and to lessens the barrier for this walkthrough, not

requiring some specific hardware, you will use instead an Ubuntu VM in Azure to act as your IoT Edge device,

which allows you to quickly create a test machine with all prerequisites installed and then delete it when you're

finished with this guide.

For that purpose, you should use the Microsoft-provided Azure IoT Edge on Ubuntu123 VM, which preinstalls

everything you need to run IoT Edge on a device. This virtual machine will install the latest Azure IoT Edge runtime

and its dependencies on startup and makes it easy to connect to your IoT Hub.

Note For instructions on how to run the Azure IoT Edge runtime on your own (virtual) device, see article INSTALL THE

AZURE IOT EDGE RUNTIME ON DEBIAN-BASED LINUX SYSTEMS124
.

Perform the following steps:

Note For instructions on how to run the Azure IoT Edge runtime on your own (virtual) device, see article INSTALL THE

AZURE IOT EDGE RUNTIME ON DEBIAN-BASED LINUX SYSTEMS125
.

121 Azure IoT Edge security manager: https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-security-manager
122 Scalys TrustBox Edge: https://scalys.com/trustbox-industrial/
123 Azure IoT Edge on Ubuntu: https://azuremarketplace.microsoft.com/marketplace/apps/microsoft_iot_edge.iot_edge_vm_ubuntu

124 INSTALL THE AZURE IOT EDGE RUNTIME ON DEBIAN-BASED LINUX SYSTEMS: https://docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-

edge-linux
125 INSTALL THE AZURE IOT EDGE RUNTIME ON DEBIAN-BASED LINUX SYSTEMS: https://docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-

edge-linux

https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-security-manager
https://scalys.com/trustbox-industrial/
https://azuremarketplace.microsoft.com/marketplace/apps/microsoft_iot_edge.iot_edge_vm_ubuntu
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-edge-linux
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-edge-linux
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-edge-linux
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-edge-linux

94 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

1. Still from the Azure portal at https://portal.azure.com, in the left pane, select Create a resource. Search

for “Azure IoT Edge on Ubuntu” in the Search the Marketplace search bar.

2. Click on Create and follow the wizard to deploy the VM.

3. Specify the required settings.

Setting Description

Subscription Select your subscription from the drop-down list if not already selected.

https://portal.azure.com/

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 95

Resource group You can create a new resource group or use an existing one.

To create a new one, click on Create new and fill in the name you want to use.

To use instead an existing resource group, like the previous resource group, click on

Use existing and select the resource group from the dropdown list.

We recommend that you use the same resource group for all the test resources that

you create for your Azure IoT platform as part of this walkthrough. For example, RG-

IOTEDGE in our illustration.

Virtual machine name Provide the VM a hostname (as a resource, which will be displayed in Azure). For

example, edge-ubuntu-vm in our illustration.

Region Select the Azure location where you want to deploy the VM.

Availability options Leave No infrastructure redundancy required selected. THIS IS FOR DEMO

PURPOSE ONLY

Image Leave Ubuntu Server 18.04 LTS + Azure IoT Edge runtime selected.

Size Leave Standard B1ms selected.

Username Specify a username for the privileged user account of the VM.

Authentication type Select SSH public key for stronger authentication to later remotely connect to your

VM.

SSH public key Specify a RSA public key in the single-line format beginning with “ssh-rsa” - you can

use instead the multi-line PEM format -. You can use the same key as the one

previously created for your DC-series VM

4. Select Networking.

5. In Select inbound ports, ensure SSH is selected. THIS IS FOR DEMO PURPOSE ONLY.

6. Click on Review + create.

96 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

7. Click on Create.

It may take a few minutes to create and start the new VM.

Once your Ubuntu VM is deployed, you need to provision it, i.e. connect it to your Azure IoT Hub. An Azure IoT

Edge device can be provisioned manually using a device connection string provided by your Azure IoT Hub or

automatically using the Device Provisioning Service (DPS), which is helpful when you have many devices to

provision. For the sake of simplicity here, you will provision your device, i.e. VM, manually (since you only deal with

a single device here).

 Building and Executing Trusted Execution Environment (TEE) based applications on Azure 97

To do so, you now need to configure your Ubuntu VM with the device connection string

your_iothub_edge_connection_string, you made a copy of in the previous section, which is of the form:

HostName=YourIoTHubName.azure-
devices.net;DeviceId=SimulatedDevice;SharedAccessKey={YourSharedAccessKey}

You can do this remotely without having to connect to the Ubuntu VM with the run command RunShellScript

feature via the Azure portal to execute: /etc/iotedge/configedge.sh
"<your_iothub_edge_connection_string>"

To do so, perform the following steps:

1. Select your newly created virtual machine resource from the Azure portal and click on Run

command under Operations.

2. Select RunShellScript.

3. Execute the script below via the command window with your device connection string:

/etc/iotedge/configedge.sh "<your_iothub_edge_connection_string>"

4. Click on Run.

5. Wait a few moments, and the screen should then provide a success message indicating the connection

string was set successfully.

98 Building and Executing Trusted Execution Environment (TEE) based applications on Azure

Copyright © 2019 Microsoft France. All right reserved.

Microsoft France

39 Quai du Président Roosevelt

92130 Issy-Les-Moulineaux

The reproduction in part or in full of this document, and of the associated trademarks and logos, without

the written permission of Microsoft France, is forbidden under French and international law applicable to

intellectual property.

MICROSOFT EXCLUDES ANY EXPRESS, IMPLICIT OR LEGAL GUARANTEE RELATING TO THE INFORMATION

IN THIS DOCUMENT.

Microsoft, Azure, Office 365, Microsoft 365, Dynamics 365 and other names of products and services are, or

may be, registered trademarks and/or commercial brands in the United States and/or in other countries.

