

Microsoft ASP.NET 2.0 Providers
Microsoft Corporation

March 2006

Introduction
Microsoft ASP.NET 2.0 includes a number of services that store state in databases and
other storage media. For example, the session state service manages per-user session
state by storing it in-process (in memory in the application domain of the host
application), in memory in an external process (the "state server process"), or in a
Microsoft SQL Server database, whereas the membership service stores user names,
passwords, and other membership data in Microsoft SQL Server or Microsoft Active
Directory.

These and other state management services in ASP.NET 2.0 use the provider model
pictured in Figure 1 to maximize storage flexibility. Providers abstract storage media in
much the same way that device drivers abstract hardware devices. The membership
service is equally at home using SQL Server or Active Directory, because ASP.NET 2.0
includes providers for each. Moreover, ASP.NET 2.0 can be extended with custom
providers to add support for Web services, Oracle databases, SQL Server databases with
custom schemas, and other media not supported by the built-in providers.

Figure 1. The ASP.NET 2.0 provider model

Table 1 lists the providers that are included with ASP.NET 2.0.

Table 1. ASP.NET 2.0 providers

Provider Type Built-In Provider(s)

Membership System.Web.Security.ActiveDirectoryMembershipProvider
System.Web.Security.SqlMembershipProvider

Role
management

System.Web.Security.AuthorizationStoreRoleProvider
System.Web.Security.SqlRoleProvider
System.Web.Security.WindowsTokenRoleProvider

Site map System.Web.XmlSiteMapProvider

Profile System.Web.Profile.SqlProfileProvider

Session state System.Web.SessionState.InProcSessionStateStore
System.Web.SessionState.OutOfProcSessionStateStore
System.Web.SessionState.SqlSessionStateStore

Web events System.Web.Management.EventLogWebEventProvider
System.Web.Management.SimpleMailWebEventProvider
System.Web.Management.TemplatedMailWebEventProvider
System.Web.Management.SqlWebEventProvider
System.Web.Management.TraceWebEventProvider
System.Web.Management.WmiWebEventProvider

Web Parts
personalization

System.Web.UI.WebControls.WebParts.SqlPersonalizationProvider

Protected
configuration

System.Configuration.DPAPIProtectedConfigurationProvider
System.Configuration.RSAProtectedConfigurationProvider

This whitepaper documents the design and operation of many of the built-in providers. It
supplements the providers' source code and contains helpful insights for developers
writing custom providers of their own.

The SQL Provider Database
Many of the Microsoft ASP.NET 2.0 providers are SQL providersproviders that persist
state in SQL Server (or SQL Server Express) databases. The SQL providers include
SqlMembershipProvider, SqlRoleProvider, SqlProfileProvider, SqlSessionStateStore,
SqlWebEventProvider, and SqlPersonalizationProvider. Each stores data using a
predefined schema. The Aspnet_regsql.exe tool that comes with ASP.NET 2.0 creates a
SQL Server database with a compatible schema. That database, which is named
aspnetdb by default, will hereafter be referred to as the SQL provider database or simply
the provider database.

Figure 2 shows the structure of the SQL provider database. Some of the tables are
provider-specific. The aspnet_Membership table, for example, is used exclusively by
SqlMembershipProvider, whereas the aspnet_Roles and aspnet_UsersInRoles tables are
used exclusively by SqlRoleProvider.

Figure 2. The SQL provider database

Other tables are not provider-specific, but instead exist for the benefit of multiple SQL
providers. The aspnet_Applications table is a great example. Many SQL providers
support scoping of data through the ApplicationName property, which is initialized from
the applicationName configuration attribute supported by many providers . For example,
websites that register membership providers with identical applicationName attributes
share membership data, whereas websites that register membership providers with
unique applicationNames do not. SQL providers that support ApplicationName scoping
do so by storing application IDs associated with the records that they create, and by
including those application IDs in queries performed on the SQL provider database.
Application IDs stored in aspnet_Membership, aspnet_Paths, and other provider-specific
tables refer to the aspnet_Applications table, which contains a list of extant application
IDs and the corresponding application names. Table 2 documents the schema of the
aspnet_Applications table. The provider database contains a stored procedure named
aspnet_Applications_CreateApplication that providers (or stored procedures) can call to
retrieve an application ID from the aspnet_Applications table, or to create a new one if
the specified application doesn't exist.

Table 2. The aspnet_Applications table

Column Name Column Type Description

ApplicationId uniqueidentifier Application ID

ApplicationName nvarchar(256) Application name

LoweredApplicationName nvarchar(256) Application name (lowercase)

Description nvarchar(256) Application description

aspnet_Users is another example of a table that's shared by SQL providers. It stores
core provider-agnostic information regarding users, including user names and user IDs.
SqlMembershipProvider stores membership-user data in the aspnet_Membership table,
but that table contains a UserId column that refers to the column of the same name in
aspnet_Users. Similarly, SqlRoleProvider stores data mapping users to roles in the
aspnet_UsersInRoles table, and that table contains both a UserId column referring to the
column of the same name in aspnet_Users, and a RoleId column referring to the column
of the same name in aspnet_Roles. Table 3 documents the schema of the aspnet_Users
table.

Table 3. The aspnet_Users table

Column Name Column Type Description

ApplicationId uniqueidentifier Application ID

UserId uniqueidentifier User ID

UserName nvarchar(256) User name

LoweredUserName nvarchar(256) User name (lowercase)

MobileAlias nvarchar(16) User's mobile alias (currently not used)

IsAnonymous bit 1=Anonymous user, 0=Not an anonymous
user

LastActivityDate datetime Date and time of last activity by this user

Developers are sometimes surprised to find that the aspnet_Users table's
UserName column contains alphanumeric identifiers (GUIDs) as well as string user
names. Records containing GUIDs for user names are created when
SqlProfileProvider or SqlPersonalizationProvider persists data on behalf of
anonymous users.

The SQL providers never access tables in the provider database directly. Instead, they
use stored procedures. When SqlMembershipProvider's CreateUser method is called, for
example, it calls a stored procedure named aspnet_Membership_CreateUser to add a
new membership user to the provider database. aspnet_Membership_CreateUser adds a

record representing that user to the aspnet_Membership table, another record
representing that user to the aspnet_Users table, and, if necessary, a record denoting a
new application to the aspnet_Applications table. The use of stored procedures hides the
database schema from the provider, which simplifies porting SQL providers to other
database types (for example, Oracle databases), and to SQL Server databases that
utilize custom schemas. Stored procedures that perform multistep updates typically use
database transactions to roll back changes if an error occurs before the last step is
completed. (There are a few cases in which providers manage transactions themselves
in order to support batch deletes.)

SQL Server Express
Rather than use a pre-existing SQL provider database, the Microsoft SQL providers are
equally happy to use a database managed by SQL Server Express, herafter referred to
as the express database.

Internally, the express database has the same schema as the SQL provider database.
The difference between the databases lies in how they're created. The SQL provider
database is created externally when you run Aspnet_regsql.exe or an equivalent tool.
The express database is created automatically the first time it's needed.

Each Microsoft SQL provider (with the exception of SqlSessionStateStore, which doesn't
support express databases) has logic built in to automatically create the express
database. The logic lives in a helper class named SqlConnectionHelper. Rather than
create SqlConnections from raw connection strings, Microsoft SQL providers pass
connection strings to SqlConnectionHelper.GetConnection, as follows:

SqlConnectionHolder holder = SqlConnectionHelper.GetConnection(
_sqlConnectionString, true);

SqlConnectionHelper.GetConnection parses the connection string and automatically
creates the express database if the connection string meets certain criteria, and if the
database doesn't already exist.

When a Microsoft SQL provider needs an actual SqlConnection, it extracts it from
the Connection property of the SqlConnectionHolder, as follows:

SqlCommand cmd = new SqlCommand("dbo.aspnet_Membership_CreateUser",
holder.Connection);

Similarly, it closes the connection by calling SqlConnectionHolder.Close.

The main purpose of the SqlConnectionHolder class is to simplify the security
model when SQL providers are used in a website with client impersonation

enabled. SqlConnectionHolder encapsulates logic that temporarily reverts the
thread identity to that of the current process identity or application impersonation
identity when connecting to SQL Server. As a result, SQL providers run with a
trusted subsystem model that doesn't require individual users to have access
rights to the provider database.

The default LocalSqlServer connection string in Machine.config is an excellent example
of a connection string that results in automatic creation of the express database:

data source=.\SQLEXPRESS;Integrated
Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User
Instance=true

The presence of User Instance=true and AttachDBFilename=|DataDirectory| cause
SqlConnectionHelper to conclude that the connection string targets SQL Server Express
and triggers the database's creation. (The presence of data source=.\SQLEXPRESS in
the connection string does not factor into the decision, because SqlConnectionHelper
supports non-default as well as default instances of SQL Server Express.) The
|DataDirectory| portion of the connection string specifies that the MDF file is located
inthe App_Data directory. SqlConnectionHelper derives the database name from the
MDF file name. It also creates an App_Data folder to hold the MDF if the folder doesn't
already exist.

When SqlConnectionHelper creates the express database, it sets SIZE to 10 (10 MB) and
FILEGROWTH to 50%. The database's sort order, case sensitivity, accent sensitivity, and
other locale-dependent settings are inherited from the default SQL Server Express
instance, which ensures that the database locale is consistent with that of the host
computer.

The extra overhead incurred by checking for the existence of the express database
before using it means that Microsoft SQL providers run marginally slower against
SQL Server Express than SQL Server. Hopefully, the small performance loss is
offset by the added convenience of automatically created express databases.

Membership Providers
Membership providers provide the interface between Microsoft ASP.NET's membership
service and membership data sources. ASP.NET 2.0 ships with two membership
providers:

• SqlMembershipProvider, which stores membership data in Microsoft SQL Server and
SQL Server Express databases

• ActiveDirectoryMembershipProvider, which retrieves membership data from Microsoft
Active Directory

The fundamental job of a membership provider is to manage the data regarding a site's
registered users, and to provide methods for creating users, deleting users, verifying
login credentials, changing passwords, and so on. The Microsoft .NET Framework's
System.Web.Security namespace includes a class named MembershipUser that defines
the basic attributes of a membership user, and that a membership provider uses to
represent individual users. It also includes a base class named MembershipProvider that
defines the basic characteristics of a membership provider. MembershipProvider is
prototyped as follows:

public abstract class MembershipProvider : ProviderBase
{
 // Abstract properties
 public abstract bool EnablePasswordRetrieval { get; }
 public abstract bool EnablePasswordReset { get; }
 public abstract bool RequiresQuestionAndAnswer { get; }
 public abstract string ApplicationName { get; set; }
 public abstract int MaxInvalidPasswordAttempts { get; }
 public abstract int PasswordAttemptWindow { get; }
 public abstract bool RequiresUniqueEmail { get; }
 public abstract MembershipPasswordFormat PasswordFormat { get; }
 public abstract int MinRequiredPasswordLength { get; }
 public abstract int MinRequiredNonAlphanumericCharacters { get; }
 public abstract string PasswordStrengthRegularExpression { get; }

 // Abstract methods
 public abstract MembershipUser CreateUser (string username,
 string password, string email, string passwordQuestion,
 string passwordAnswer, bool isApproved, object providerUserKey,
 out MembershipCreateStatus status);

 public abstract bool ChangePasswordQuestionAndAnswer
 (string username, string password,
 string newPasswordQuestion, string newPasswordAnswer);

 public abstract string GetPassword (string username,

 string answer);

 public abstract bool ChangePassword (string username,
 string oldPassword, string newPassword);

 public abstract string ResetPassword (string username,
 string answer);

 public abstract void UpdateUser (MembershipUser user);

 public abstract bool ValidateUser (string username,
 string password);

 public abstract bool UnlockUser (string userName);

 public abstract MembershipUser GetUser (object providerUserKey,
 bool userIsOnline);

 public abstract MembershipUser GetUser (string username,
 bool userIsOnline);

 public abstract string GetUserNameByEmail (string email);

 public abstract bool DeleteUser (string username,
 bool deleteAllRelatedData);

 public abstract MembershipUserCollection GetAllUsers
 (int pageIndex, int pageSize, out int totalRecords);

 public abstract int GetNumberOfUsersOnline ();

 public abstract MembershipUserCollection FindUsersByName
 (string usernameToMatch, int pageIndex, int pageSize,
 out int totalRecords);

 public abstract MembershipUserCollection FindUsersByEmail
 (string emailToMatch, int pageIndex, int pageSize,
 out int totalRecords);

 // Virtual methods
 protected virtual byte[] EncryptPassword (byte[] password);
 protected virtual byte[] DecryptPassword (byte[] encodedPassword);
 protected virtual void OnValidatingPassword
 (ValidatePasswordEventArgs e);

 // Events
 public event MembershipValidatePasswordEventHandler
 ValidatingPassword;
}

The following sections document the implementation of SqlMembershipProvider, which
derives from MembershipProvider.

SqlMembershipProvider
SqlMembershipProvider is the Microsoft membership provider for SQL Server databases.
It stores membership data using the schema documented in "Data Schema," and it uses
the stored procedures documented in "Data Access." All knowledge of the database
schema is hidden in the stored procedures, so porting SqlMembershipProvider to other
database types requires little more than modifying the stored procedures. (Depending
on the targeted database type, the ADO.NET code used to call the stored procedures
might have to change, too. The Microsoft Oracle .NET provider, for example, uses a
different syntax for named parameters.)

The ultimate reference for SqlMembershipProvider is the SqlMembershipProvider source
code, which is found in SqlMembershipProvider.cs. The sections that follow highlight key
aspects of SqlMembershipProvider's design and operation.

Provider Initialization
Initialization occurs in SqlMembershipProvider.Initialize, which is called one timewhen
the provider is loadedby ASP.NET. SqlMembershipProvider.Initialize's duties include:

• Initializing the various SqlMembershipProvider properties such as
EnablePasswordRetrieval and EnablePasswordReset from the corresponding
configuration attributes (enablePasswordRetrieval, enablePasswordReset, and so on).

• Performing common-sense checks on the property valuesfor example, throwing an
exception if PasswordFormat is "hashed" (MembershipPasswordFormat.Hashed) but
EnablePasswordRetrieval is true. (By definition, passwords can't be computed from
password hashes.)

• Throwing an exception if unrecognized configuration attributes remain after all
supported configuration attributes are processed.

SqlMembershipProvider.Initialize also reads the connection string identified by the
connectionStringName attribute from the <connectionStrings> configuration section,
and caches it in a private field. It throws a ProviderException if the attribute is empty or
nonexistent, or if the attribute references a nonexistent connection string.

Data Schema
SqlMembershipProvider stores membership data in the aspnet_Membership table of the
provider database. Each record in aspnet_Membership corresponds to one membership
user. Table 4 documents the aspnet_Membership table's schema.

Table 4. The aspnet_Membership table

Column Name Column Type Description

ApplicationId uniqueidentifier Application ID

UserId uniqueidentifier User ID

Password nvarchar(128) Password (plaintext, hashed, or
encrypted; base-64-encoded if
hashed or encrypted)

PasswordFormat int Password format (0=Plaintext,
1=Hashed, 2=Encrypted)

PasswordSalt nvarchar(128) Randomly generated 128-bit
value used to salt password
hashes; stored in base-64-
encoded form

MobilePIN nvarchar(16) User's mobile PIN (currently not
used)

Email nvarchar(256) User's e-mail address

LoweredEmail nvarchar(256) User's e-mail address
(lowercase)

PasswordQuestion nvarchar(256) Password question

PasswordAnswer nvarchar(128) Answer to password question

IsApproved bit 1=Approved, 0=Not approved

IsLockedOut bit 1=Locked out, 0=Not locked out

CreateDate datetime Date and time this account was
created

LastLoginDate datetime Date and time of this user's last
login

LastPasswordChangedDate datetime Date and time this user's
password was last changed

LastLockoutDate datetime Date and time this user was last
locked out

FailedPasswordAttemptCount int Number of consecutive failed
login attempts

FailedPasswordAttempt-
WindowStart

datetime Date and time of first failed login
if FailedPasswordAttemptCount is
nonzero

FailedPasswordAnswer-
AttemptCount

int Number of consecutive failed
password answer attempts

FailedPasswordAnswer-
AttemptWindowStart

datetime Date and time of first failed
password answer if

FailedPasswordAnswerAttemptCo
unt is nonzero

Comment ntext Additional text

The aspnet_Membership table has foreign-key relationships with two other provider
database tables: aspnet_Applications (see Table 2) and aspnet_Users (see Table 3). The
aspnet_Membership table's ApplicationId column references the column of the same
name in the aspnet_Applications table. (Although this column is not strictly necessary,
because the UserId can be used to derive the ApplicationId, the ApplicationId column
was added to the aspnet_Membership table to speed up queries and reduce the need to
join through to the aspnet_Users table.) aspnet_Membership's UserId column references
the column of the same name in the aspnet_Users table. A complete record for a given
membership user consists of data corresponding to that user's user ID in the
aspnet_Users table, and data corresponding to the same user ID in the
aspnet_Membership table. Stored procedures such as
aspnet_Membership_GetUserByName pull data from both tables to create
MembershipUser objects representing individual users.

Scoping of Membership Data
Websites that register membership providers with identical applicationName attributes
share membership data, whereas websites that register membership providers with
unique applicationNames do not. To that end, SqlMembershipProvider records an
application ID in the ApplicationId field of each record in the aspnet_Membership table.
aspnet_Membership's ApplicationId field refers to the field of the same name in the
aspnet_Applications table, and each unique applicationName has a corresponding
ApplicationId in that table.

Data Access
SqlMembershipProvider performs all database accesses through stored procedures.
Table 5 lists the stored procedures that it uses.

Table 5. Stored procedures used by SqlMembershipProvider

Stored Procedure Description

aspnet_Membership_ChangePassword-
QuestionAndAnswer

Changes the specified user's
password question and answer.

aspnet_Membership_CreateUser Adds a new membership user to
the membership database.
Records the user in the
aspnet_Users and
aspnet_Membership tables and, if
necessary, adds a new application
to the aspnet_Applications table.

aspnet_Membership_FindUsersByEmail Retrieves records from
aspnet_Membership table with e-
mail addresses matching the

specified pattern and with the
specified application ID.

aspnet_Membership_FindUsersByName Retrieves records from
aspnet_Membership table with
user names matching the specified
pattern and with the specified
application ID.

aspnet_Membership_GetAllUsers Retrieves all users from the
aspnet_Membership table with the
specified application ID.

aspnet_Membership_GetNumberOfUsersOnline Gets the number of users currently
online (those whose last activity
dates.

aspnet_Membership_GetPassword Gets the specified user's password
data from the database. Used for
retrieving passwords with a user-
supplied password answer.

aspnet_Membership_GetPasswordWithFormat Gets the specified user's password
from the database. Used by the
provider to retrieve passwords for
performing password comparisons
(for example, when ValidateUser
needs to validate a password).

aspnet_Membership_GetUserByEmail Given an e-mail address and
application ID, retrieves the
corresponding record from the
aspnet_Membership table.

aspnet_Membership_GetUserByName Given a user name and application
ID, retrieves the corresponding
record from the
aspnet_Membership table.

aspnet_Membership_GetUserByUserId Given a user ID and application ID,
retrieves the corresponding record
from the aspnet_Membership
table.

aspnet_Membership_ResetPassword Resets the specified user's
password based on a password
answer.

aspnet_Membership_SetPassword Sets the specified user's password
to the password input to the
stored procedure.

aspnet_Membership_UnlockUser Restores login privileges for the
specified user by setting the user's

IsLockedOut bit to 0.

aspnet_Membership_UpdateUser Updates the user's last activity
date in the aspnet_Users table and
e-mail address, comment, is-
approved status, and last login
date in the aspnet_Membership
table.

aspnet_Membership_UpdateUserInfo Updates account locking data for
the specified user in the
aspnet_Users and
aspnet_Membership tables. Used
in conjunction with provider
methods that track bad password
and bad password-answer
attempts.

aspnet_Users_CreateUser Adds a user to the aspnet_Users
table. Called by
aspnet_Membership_CreateUser.

aspnet_Users_DeleteUser Deletes a user from the
aspnet_Membership table and
optionally from other SQL provider
tables, including aspnet_Users.

Stored procedure names are generally indicative of the SqlMembershipProvider methods
that call them. For example, applications call the membership service's
Membership.CreateUser method to register new users. Membership.CreateUser, in turn,
delegates to the CreateUser method of the default membership provider, which, in the
case of SqlMembershipProvider, validates the input parameters and calls
aspnet_Membership_CreateUser to register a new user.

Creating Membership Users
SqlMembershipProvider.CreateUser calls the stored procedure
aspnet_Membership_CreateUser to create new membership users. Before calling the
stored procedure, SqlMembershipProvider.CreateUser validates the input parameters,
encodes the password (and, if present, the password answer) provided to it, and fires an
OnValidatingPassword event. Then aspnet_Membership_CreateUser performs the
following tasks:

1. Calls the stored procedure aspnet_Applications_CreateApplication to convert the
application name passed to it (which comes from the provider's ApplicationName
property) into an application ID. If the application name already appears in the
aspnet_Applications table, aspnet_Applications_CreateApplication returns the
existing application ID. If the application name is not already present in the
aspnet_Applications table, aspnet_Applications_CreateApplication adds a new
application to aspnet_Applications and returns the application ID.

2. Calls aspnet_Users_CreateUser to insert a record representing the new user into the
aspnet_Users table.

3. Performs an optional check to ensure that the new user's e-mail address is unique
with respect to other registered e-mail addresses.

4. Updates the LastActivityDate field in the aspnet_Users table with the current time
and date.

5. Inserts a record representing the new user into the aspnet_Membership table.

aspnet_Membership_CreateUser performs all these steps within a transaction to ensure
that changes are committed as a group or not at all.

Deleting Membership Users
Applications call the membership service's Membership.DeleteUser method to delete
membership users. Membership.DeleteUser calls the default membership provider's
DeleteUser method, which takes a user name as input and also accepts a bool named
deleteAllRelatedData that specifies whether other data associated with the specified user
should be deleted in addition to membership data. "Other data" includes role data,
profile data (including anonymous profile datamore on this later), and Web Parts
personalization data.

SqlMembershipProvider.DeleteUser calls the stored procedure aspnet_Users_DeleteUser
to delete membership users. In addition to accepting a user name,
aspnet_Users_DeleteUser accepts a bit mask named @TablesToDeleteFrom that
specifies which provider database tables the user should be deleted from. If
deleteAllRelatedData is false, SqlMembershipProvider.DeleteUser passes a bit mask of 1,
prompting aspnet_Users_DeleteUser to delete the user only from the
aspnet_Membership table. However, if deleteAllRelatedData is true,
SqlMembershipProvider.DeleteUser passes a bit mask of 15 (binary 1111), prompting
aspnet_Users_DeleteUser to delete the specified user from the aspnet_Membership,
aspnet_UsersInRoles, aspnet_Profile, aspnet_PersonalizationPerUser, and aspnet_Users
tables. aspnet_Users_DeleteUser uses a database transaction to ensure that the
deletions are performed in whole or not at all.

Another little known fact is that Membership.DeleteUser can be used to clean up the
records that accrue in the aspnet_Users and aspnet_Profile tables when using the
anonymous identification feature to store profile data on behalf of anonymous users.
Simply call Membership.DeleteUser with deleteAllRelatedData set to true, and username
set to Request.AnonymousID. This deletes the anonymous user's data from the
aspnet_Profile table, and it deletes the base user record from aspnet_Users.

Validating Membership Users
Applications call the membership service's Membership.ValidateUser method to validate
membership usersthat is, to verify that a given user name and password corresponds to
a registered membership user. Membership.ValidateUser calls the default membership
provider's ValidateUser method, which returns true or false, indicating whether the user
name and password are valid.

SqlMembershipProvider.ValidateUser performs the following tasks:

1. Calls the stored procedure aspnet_Membership_GetPasswordWithFormat to retrieve
the user's password from the database. If the password is hashed or encrypted, it is
returned in encoded ("formatted") form; otherwise, it's returned as plaintext.

2. Encodes the password input to ValidateUser using the same encoding, if any, used to
encode the password retrieved in the previous step.

3. Compares the password retrieved from the database to the encoded input password.

4. If the passwords match, ValidateUser raises an
AuditMembershipAuthenticationSuccess Web event, increments a performance
counter that tracks successful logins, and returns true.

5. If the passwords don't match, ValidateUser raises an
AuditMembershipAuthenticationFailure Web event, increments a performance counter
that tracks failed logins, and returns false. It also calls
aspnet_Membership_UpdateUserInfo to update the aspnet_Membership table with
information about the failed login, so that the account can be locked if too many
failed logins occur within the time span indicated by the provider's
PasswordAttemptWindow property.

Account locking is a feature of SqlMembershipProvider that provides a safeguard against
password guessing. It is described in "Account Locking."

Password Protection
Applications that store user names, passwords, and other authentication information in a
database should never store passwords in plaintext, lest the database be stolen or
compromised. To that end, SqlMembershipProvider supports three storage formats
("encodings") for passwords and password answers. The provider's PasswordFormat
property, which is initialized from the passwordFormat configuration attribute,
determines which format is used:

• MembershipPasswordFormat.Clear, which stores passwords and password answers in
plaintext.

• MembershipPasswordFormat.Hashed (the default), which stores salted hashes
generated from passwords and password answers. The salt is a random 128-bit
value generated by the .NET Framework's RNGCryptoServiceProvider class. Each
password/password answer pair is salted with this unique value, and the salt is
stored in the aspnet_Membership table's PasswordSalt field. The result of hashing
the password and the salt is stored in the Password field. Similarly, the result of
hashing the password answer and the salt is stored in the PasswordAnswer field.

• MembershipPasswordFormat.Encrypted, which stores encrypted passwords and
password answers. SqlMembershipProvider encrypts passwords and password
answers using the symmetric encryption/decryption key specified in the
<machineKey> configuration section's decryptionKey attribute, and the encryption
algorithm specified in the <machineKey> configuration section's decryption attribute.
SqlMembershipProvider throws an exception if it is asked to encrypt passwords and
password answers, and if decryptionKey is set to Autogenerate. This prevents a
membership database containing encrypted passwords and password answers from
becoming invalid if moved to another server or another application.

Storing unsalted password hashes leaves password databases vulnerable to
dictionary attacks. SqlMembershipProvider salts password hashes as a hedge
against such attacks. However, the fact that SqlMembershipProvider stores salts in
the database alongside the password hashes means that the salt's effective key
space is a function not of the length of the salt, but of the number of salts in the
database. In other words, the more records the aspnet_Membership table
contains, the more secure the password hashes.

If desired, a custom membership provider could use an altogether different
strategy for storing saltsone whose security did not depend on the volume of
membership data. It could, for example, use the same randomly generated salt for
every hash, but protect the salt by storing it outside the databaseperhaps in an
ACLed registry key.

To provide additional protection against password hacking, SqlMembershipProvider also
supports user-configurable password strengths. CreateUser and other methods that
modify passwords (ChangePassword and ResetPassword) validate the passwords against
the provider's MinRequiredPasswordLength and MinRequiredNonAlphanumericCharacters
properties. SqlMembershipProvider defaults these properties to 7 and 1, respectively. In
addition, SqlMembershipProvider validates passwords against the regular expression, if
any, stored in the PasswordStrengthRegularExpression property, as follows:

if(PasswordStrengthRegularExpression.Length > 0)
{
 if(!Regex.IsMatch(password, PasswordStrengthRegularExpression))
 {
 status = MembershipCreateStatus.InvalidPassword;
 return null;
 }
}

The combination of non-plaintext password storage formats and user-configurable
password strengths enables SqlMembershipProvider to store passwords as securely as is
practically possible.

Account Locking
To guard against password guessing, SqlMembershipProvider supports the automatic
locking of accounts that incur suspicious activity. If, for a given user, the number of
consecutive invalid passwords or password answers submitted to methods such as
ValidateUser and GetPassword exceeds the value stored in the provider's
MaxInvalidPasswordAttempts property, and if the consecutive attempts occur within the

time period specified by the PasswordAttemptWindow property, SqlMembershipProvider
sets the corresponding IsLockedOut field in the aspnet_Membership table to 1. Further
logins by the affected user are disallowed until IsLockedOut is reset to 0 by calling the
provider's UnlockUser method. SqlMembershipProvider defaults
MaxInvalidPasswordAttempts to 5 and PasswordAttemptWindow to 10 (that is, 10
minutes).

As an example of how account locking is implemented, suppose a user submits a
password from a login page that uses a Login control to validate logins. Login controls
call Membership.ValidateUser. Membership.ValidateUser calls
SqlMembershipProvider.ValidateUser (assuming SqlMembershipProvider is the default
membership provider), which calls the private SqlMembershipProvider.CheckPassword
method to validate passwords. CheckPassword uses
aspnet_Membership_GetPasswordWithFormat to retrieve an encoded password. The
stored procedure checks the IsLockedOut bit of the record it retrieves from the
database, and returns an error code of 99 if IsLockedOut is set. The error code causes
CheckPassword to return false. That causes ValidateUser to return false, which in turn
prevents the user from logging ineven if the password he or she typed was valid.

How does an account become locked in the first place? Suppose the user types an
incorrect password into the login page. After ascertaining that the password is invalid,
CheckPassword calls the stored procedure aspnet_Membership_UpdateUserInfo to
update the corresponding record in the aspnet_Membership table. It passes in a bit flag
indicating an invalid password was submitted. Seeing the flag, the stored procedure
increments the failed password attempt count. If the count exceeds the maximum
specified by MaxInvalidPasswordAttempts, and if all the password failures occurred
within the time window specified by PasswordAttemptWindow, the stored procedure sets
IsLockedOut to 1, effectively locking the account until further notice. Thus, locking is
handled primarily at the database level, and it is largely opaque to the provider itself.

Differences Between the Published Source Code and the .NET
Framework's SqlMembershipProvider
The published source code for SqlMembershipProvider differs from the .NET Framework
version in the following respects:

• Declarative and imperative CAS demands were commented out. Because the source
code can be compiled standalone, and thus will run as user code rather than trusted
code in the global assembly cache, the CAS demands are not strictly necessary. For
reference, however, the original demands from the .NET Framework version of the
provider have been retained as comments.

• The performance counter and Web event code in ValidateUser has been commented
out, because the .NET Framework provider relies on internal helper classes to
manipulate these counters. For reference, the original code has been retained as
comments.

• The internal helper methods EncodePassword and UnEncodePassword have been
included in the accompanying source code. In the .NET Framework, these are
actually internal helper methods implemented by the base MembershipProvider type.

Role Providers
Role providers provide the interface between Microsoft ASP.NET's role management
service (the "role manager") and role data sources. ASP.NET 2.0 ships with three role
providers:

• SqlRoleProvider, which stores role data in Microsoft SQL Server and Microsoft SQL
Server Express databases

• AuthorizationStoreRoleProvider, which retrieves role information from Microsoft
Authorization Manager ("AzMan")

• WindowTokenRoleProvider, which retrieves role information from each user's
Microsoft Windows authentication token, and returns his or her group
membership(s).

The fundamental job of a role provider is to interface with data sources containing
containing role data mapping users to roles, and to provide methods for creating roles,
deleting roles, adding users to roles, and so on. The Microsoft .NET Framework's
System.Web.Security namespace includes a class named RoleProvider that defines the
basic characteristics of a role provider. RoleProvider is prototyped as follows:

public abstract class RoleProvider : ProviderBase
{
 // Abstract properties
 public abstract string ApplicationName { get; set; }

 // Abstract methods
 public abstract bool IsUserInRole (string username,
 string roleName);
 public abstract string[] GetRolesForUser (string username);
 public abstract void CreateRole (string roleName);
 public abstract bool DeleteRole (string roleName,
 bool throwOnPopulatedRole);
 public abstract bool RoleExists (string roleName);
 public abstract void AddUsersToRoles (string[] usernames,
 string[] roleNames);
 public abstract void RemoveUsersFromRoles (string[] usernames,
 string[] roleNames);
 public abstract string[] GetUsersInRole (string roleName);
 public abstract string[] GetAllRoles ();
 public abstract string[] FindUsersInRole (string roleName,
 string usernameToMatch);
}

The following sections document the implementation of SqlRoleProvider and
AuthorizationStoreRoleProvider, both of which derive from RoleProvider.

SqlRoleProvider
SqlRoleProvider is the Microsoft role provider for SQL Server databases. It stores role
data, using the schema documented in "Data Schema," and it uses the stored
procedures documented in "Data Access." All knowledge of the database schema is
hidden in the stored procedures, so that porting SqlRoleProvider to other database types
requires little more than modifying the stored procedures. (Depending on the targeted
database type, the ADO.NET code used to call the stored procedures might have to
change, too. The Microsoft Oracle .NET provider, for example, uses a different syntax for
named parameters.)

The ultimate reference for SqlRoleProvider is the SqlRoleProvider source code, which is
found in SqlRoleProvider.cs. The sections that follow highlight key aspects of
SqlRoleProvider's design and operation.

Provider Initialization
Initialization occurs in SqlRoleProvider.Initialize, which is called one timewhen the
provider is loadedby ASP.NET. SqlRoleProvider.Initialize processes the configuration
attributes applicationName, connectionStringName, and commandTimeout, and throws a
ProviderException exception if unrecognized configuration attributes remain.

SqlRoleProvider.Initialize also reads the connection string identified by the
connectionStringName attribute from the <connectionStrings> configuration section,
and caches it in a private field. It throws a ProviderException if the attribute is empty or
nonexistent, or if the attribute references a nonexistent connection string.

Data Schema
SqlRoleProvider persists roles in the aspnet_Roles table of the provider database. Each
record in aspnet_Roles corresponds to one role. The ApplicationId column refers to the
column of the same name in the aspnet_Applications table, and it is used to scope roles
by application. Table 6 documents the aspnet_Roles table's schema.

Table 6. The aspnet_Roles table

Column Name Column Type Description

ApplicationId uniqueidentifier Application ID

RoleId uniqueidentifier Role ID

RoleName nvarchar(256) Role name

LoweredRoleName nvarchar(256) Role name (lowercase)

Description nvarchar(256) Role description (currently unused)

SqlRoleProvider uses a separate table named aspnet_UsersInRoles to map roles to
users. The UserId column identifies a user in the aspnet_Users table, whereas the RoleId
column identifies a role in the aspnet_Roles table. The structure of this table, which is
documented in Table 7, lends itself to the types of queries performed by a role provider.
With a single query, for example, a role provider could select all the users belonging to a
given role, or all the roles assigned to a given user.

Table 7. The aspnet_UsersInRoles table

Column Name Column Type Description

UserId uniqueidentifier User ID

RoleId uniqueidentifier Role ID

Scoping of Role Data
Websites that register role providers with identical applicationName attributes share role
data, whereas websites that register role providers with unique applicationNames do
not. To that end, SqlRoleProvider records an application ID in the ApplicationId field of
each record in the aspnet_Roles table. aspnet_Roles' ApplicationId field refers to the
field of the same name in the aspnet_Applications table, and each unique
applicationName has a corresponding ApplicationId in that table.

Data Access
SqlRoleProvider performs all database accesses through stored procedures. Table 8 lists
the stored procedures that it uses.

Table 8. Stored procedures used by SqlRoleProvider

Stored Procedure Description

aspnet_Roles_CreateRole Adds a role to the
aspnet_Roles table and, if
necessary, adds a new
application to the
aspnet_Applications table.

aspnet_Roles_DeleteRole Removes a role from the
aspnet_Roles table. Optionally
deletes records referencing the
deleted role from the
aspnet_UsersInRoles table.

aspnet_Roles_GetAllRoles Retrieves all roles with the
specified application ID from
the aspnet_Roles table.

aspnet_Roles_RoleExists Checks the aspnet_Roles table
to determine whether the
specified role exists.

aspnet_UsersInRoles_AddUsersToRoles Adds the specified users to the
specified roles by adding them
to the aspnet_UsersInRoles
table.

aspnet_UsersInRoles_FindUsersInRole Queries the
aspnet_UsersInRoles table for
all users belonging to the
specified role whose user

names match the specified
pattern.

aspnet_UsersInRoles_GetRolesForUser Queries the
aspnet_UsersInRoles table for
all roles assigned to a specified
user.

aspnet_UsersInRoles_GetUsersInRoles Queries the
aspnet_UsersInRoles table for
all users belonging to the
specified role.

aspnet_UsersInRoles_IsUserInRole Checks the
aspnet_UsersInRoles table to
determine whether the
specified user belongs to the
specified role.

aspnet_UsersInRoles_RemoveUsersFromRoles Removes the specified users
from the specified roles by
deleting the corresponding
records from the
aspnet_UsersInRoles table.

Stored procedure names are generally indicative of the SqlRoleProvider methods that
call them. For example, applications call the role manager's Roles.CreateRole method to
create new roles. Roles.CreateRole, in turn, delegates to the CreateRole method of the
default role provider, which, in the case of SqlRoleProvider, validates the input
parameters, and calls aspnet_Roles_CreateRole to create a new role.

Creating Roles
SqlRoleProvider.CreateRole calls the stored procedure aspnet_Roles_CreateRole, which
performs the following tasks:

1. Calls aspnet_Applications_CreateApplication to retrieve an application ID (or create a
new one).

2. Verifies that the specified role doesn't already existthat is, that it's not already
defined in the aspnet_Roles table.

3. Inserts a record representing the new role into the aspnet_Roles table.

aspnet_Roles_CreateRole performs all these steps within a transaction to ensure that
changes are committed as a group or not at all.

Deleting Roles
Applications call the role manager's Roles.DeleteRole method to delete roles.
Roles.DeleteRole calls the default role provider's DeleteRole method, and passes in a flag
named throwOnPopulatedRole that indicates whether DeleteRole should throw an
exception if the role being deleted isn't emptythat is, if one or more users are assigned
to it.

SqlRoleProvider.DeleteRole calls the stored procedure aspnet_Roles_DeleteRole. The
stored procedure performs the following tasks:

1. Verifies that the role to be deleted exists.

2. If throwOnPopulatedRole is true, checks the aspnet_UsersInRoles table for records
containing the specified role ID, and returns an error code if the query turns up one
or more records.

3. Deletes all records containing the specified role ID from the aspnet_UsersInRole
table.

4. Deletes all records containing the specified role ID from the aspnet_Roles table.

aspnet_Roles_DeleteRole performs all these steps within a transaction to ensure that
changes are committed as a group or not at all.

Adding Users to Roles
Applications call the role manager's Roles.AddUserToRole, Roles.AddUserToRoles,
Roles.AddUsersToRole, or Roles.AddUsersToRoles method to add users to roles. These
methods, in turn, call the default role provider's AddUsersToRoles method.
SqlRoleProvider.AddUsersToRoles converts the arrays of user names and role names in
the parameter list into comma-delimited lists, and passes them to the stored procedure
aspnet_UsersInRoles_AddUsersToRoles.

aspnet_UsersInRoles_AddUsersToRoles validates the user names and role names passed
to it, by verifying their presence in the aspnet_Users and aspnet_Roles tables. Then, it
adds the specified users to the specified roles, by inserting one record into the
aspnet_UsersInRoles table for each user name/role name pair passed to it.

Removing Users from Roles
Applications call the role manager's Roles.RemoveUserFromRole,
Roles.RemoveUserFromRoles, Roles.RemoveUsersFromRole, or
Roles.RemoveUsersFromRoles method to remove users from roles. These methods, in
turn, call the default role provider's RemoveUsersFromRoles method.
SqlRoleProvider.RemoveUsersFromRoles converts the arrays of user names and role
names in the parameter list into comma-delimited lists, and passes them to the stored
procedure aspnet_UsersInRoles_RemoveUsersFromRoles.

aspnet_UsersInRoles_RemoveUsersFromRoles validates the user names and role names
passed to it, by verifying their presence in the aspnet_Users and aspnet_Roles tables.
Then, it removes the specified users from the specified roles, by deleting the
corresponding records from the aspnet_UsersInRoles table.

Differences Between the Published Source Code and the .NET
Framework's SqlRoleProvider
The published source code for SqlRoleProvider differs from the .NET Framework version
in one respect: Declarative and imperative CAS demands were commented out. Because
the source code can be compiled standalone, and thus will run as user code rather than
trusted code in the global assembly cache, the CAS demands are not strictly necessary.
For reference, however, the original demands from the .NET Framework version of the
provider have been retained as comments.

AuthorizationStoreRoleProvider
AuthorizationStoreRoleProvider is the Microsoft role provider for Microsoft Authorization
Manager data stores. Authorization Manager, also known as "AzMan," is a role-based
access control framework for Microsoft Windows applications.
AuthorizationStoreRoleProvider maps AzMan roles to the ASP.NET role manager, and it is
an alternative to SqlRoleProvider for organizations that don't wish to store role data in
databases. Because AzMan integrates with Active Directory,
AuthorizationStoreRoleProvider can be combined with
ActiveDirectoryMembershipProvider to employ Active Directory as the source for both
membership data and role data in ASP.NET applications. AuthorizationStoreRoleProvider
can also leverage AzMan's ability to store policy data in XML files and Active Directory
Application Mode (ADAM), a service introduced in Microsoft Windows Server 2003 that
supports application-specific views of Active Directory. For an overview of AzMan's
features and capabilities, and how to use them from managed code, see "Use Role-
Based Security in Your Middle Tier .NET Apps with Authorization Manager."

AuthorizationStoreRoleProvider doesn't support the full range of Authorization Manager
features, opting instead to support the subset of features that map directly to the
capabilities of the ASP.NET role manager. For example, AzMan allows tasks such as
"Approve purchase order" and "View salary history" to be associated with roles, and it
allows tasks to be subdivided into operations such as "View purchase order" and "Sign
purchase order." AuthorizationStoreRoleProvider exposes AzMan roles as role-manager
roles, but it does not expose (or otherwise use) information regarding tasks and
operations.

The ultimate reference for AuthorizationStoreRoleProvider is the
AuthorizationStoreRoleProvider source code, which is found in AuthStoreRoleProvider.cs.
The sections that follow highlight key aspects of AuthorizationStoreRoleProvider's design
and operation.

AzMan Data Stores
AuthorizationStoreRoleProvider doesn't maintain data stores of its own, instead relying
on AzMan data stores, which can be administered with tools such as the AzMan MMC
snap-in or, if AuthorizationStoreRoleProvider is the default role provider, the Web Site
Administration Tool that comes with ASP.NET. However, you can use the Web Site
Adminstration Tool for role management only if you use a membership provider (for
example, ActiveDirectoryMembershipProvider) as well. The Web Site Administration Tool
has no user interface for manipulating Windows user accounts directly.

Authorization Manager can store data in XML files, Active Directory, or ADAM containers.
AuthorizationStoreRoleProvider supports all three types of data stores. The
connectionStringName configuration attribute tells AuthorizationStoreRoleProvider where
AzMan data is stored. For example, the following connection string points
AuthorizationStoreRoleProvider to an XML policy file:

<connectionStrings>
 <add name="AzManConnectionString"
 connectionString="msxml://c:/websites/App_Data/roles/roles.xml" />
</connectionStrings>

By contrast, the following connection string points it to an ADAM container named
Contoso, on a remote server named ORION:

<connectionStrings>
 <add name="AzManConnectionString"
 connectionString="msldap://ORION/…
 CN=Contoso,OU=ContosoPartition,O=Contoso,C=US" />
</connectionStrings>

AuthorizationStoreRoleProvider is agnostic to the type of data store, because it uses the
Authorization Manager API to read and write role data.

Scoping of Role Data
AzMan data stores can be partitioned into applications and scopes, enabling one data
store to hold authorization data for multiple applications, and one application to hold
multiple sets of authorization settings. AuthorizationStoreRoleProvider supports both
forms of scoping through its ApplicatioName and ScopeName properties.

When AuthorizationStoreRoleProvider calls AzMan to open a data store, it passes in the
application name and scope name stored in the ApplicationName and ScopeName
properties, respectively. Thus, if the roles used by AuthorizationStoreRoleProvider are
defined in an AzMan application named Contoso, and a scope named Roles, then
matching applicationName and scopeName attributes should be included in the
provider's configuration. If no application name is specified,
AuthorizationStoreRoleProvider uses a default application name, which for a Web
application is the application's virtual directory. Because AzMan doesn't allow
applications with names like /, you should always explicitly set the applicationName for
AuthorizationStoreRoleProvider. If no scope name is specified,
AuthorizationStoreRoleProvider doesn't use a scope name when opening the data store.

AzMan Data Store Access
AzMan's features are exposed to applications through unmanaged COM interfaces such
as IAzAuthorizationStore, which represents AzMan data stores; IAzApplication, which
represents AzMan applications; IAzScope, which represents AzMan scopes; and IAzRole,
which represents AzMan roles. AuthorizationStoreRoleManager uses COM interop and
late binding to invoke AzMan methods exposed through these interfaces. Invocation
code is wrapped in helper methods named CallMethod (reproduced in Figure 3) and
CallProperty, which are used extensively by other AuthorizationStoreRoleProvider
methods. For example, AuthorizationStoreRoleProvider.CreateRole uses the following
code to call IAzScope.CreateRole or IAzApplication.CreateRole to create an AzMan role:

object[] args = new object[2];
args[0] = roleName;
args[1] = null;
object role = CallMethod(_ObjAzScope != null ?

 _ObjAzScope : _ObjAzApplication, "CreateRole", args);

_objAzScope and _objAzApplication contain references to AzMan scope and application
objects created when the provider was initialized. For details, refer to "Provider
Initialization."

Figure 3. AuthorizationStoreRoleProvider's CallMethod method
private object CallMethod(object objectToCallOn,
 string methodName, object[] args)
{
 if(HostingEnvironment.IsHosted && _XmlFileName != null) {
 InternalSecurityPermissions.Unrestricted.Assert();
 }

 try {
 using (new ApplicationImpersonationContext()) {
 return objectToCallOn.GetType().InvokeMember(methodName,
 BindingFlags.InvokeMethod | BindingFlags.Public |
 BindingFlags.Instance, null, objectToCallOn, args,
 CultureInfo.InvariantCulture);
 }
 } catch {
 throw;
 }
}

In Figure 3, note the provider's use of the internal ApplicationImpersonationContext
type. This ensures that the provider connects to the directory using either the current
process credentials, or the application impersonation credentials if an explicit username
and password were specified in the <identity> element. The provider never connects to
the AzMan policy store by using the credentials of an end user, even if user
impersonation is enabled.

Also, a quick note on the unrestricted assert: The provider normally will not work in
partially trusted ASP.NET applications, because of its reliance on COM interop to call
unmanaged code. However, if your policy store is in an XML file, then the provider relies
on file I/O CAS permissions as a surrogate security policy. This means you can use the
provider in partially trusted ASP.NET applications, provided that those applications have
CAS permissions to read the configured file path.

Provider Initialization
AuthorizationStoreRoleProvider initialization occurs in two stages.

Stage 1 initialization occurs in AuthorizationStoreRoleProvider.Initialize, which is called
one timewhen the provider is loadedby ASP.NET.
AuthorizationStoreRoleProvider.Initialize processes the configuration attributes

applicationName, scopeName, connectionStringName, and cacheRefreshInterval, and
throws an exception if unrecognized configuration attributes remain.

Stage 2 initialization is performed on a lazy, as-needed basis by a private
AuthorizationStoreRoleProvider helper method named InitApp, which is called by
CreateRole, DeleteRole, and other AuthorizationStoreRoleProvider methods prior to
carrying out the operations they're tasked with. InitApp performs the following tasks:

1. If the connection string referenced by connectionStringName contains an msxml://
prefix, InitApp converts the path into a fully qualified file-system path, verifies that
the file exists, and verifies that the provider has permission to access it. Then, it
caches the path name in a private field.

2. Uses reflection (through Activator.CreateInstance) to instantiate one of two versions
of an internal class named
Microsoft.Interop.Security.AzRoles.AzAuthorizationStoreClass representing AzMan. It
instantiates version 1.2 of that class if it exists, or version 1.0 if it does not.

3. Calls AzMan's IAzAuthorizationStore.Initialize method, passing in the connection
string retrieved from the configuration.

4. Calls AzMan's IAzAuthorizationStore.OpenApplication or
IAzAuthorizationStore.OpenApplication2 method (depending on which version of
AzAuthorizationStoreClass was loaded) with the application name stored in
ApplicationName to open an AzMan application (and create an application object).

5. If ScopeName is neither null nor empty, passes ScopeName to the
IAzApplication.OpenScope method of the application object created in the previous
step to open the specified scope (and create a scope object).

After InitApp has executed, AuthorizationStoreRoleProvider is fully initialized and ready
to do business. It caches references to the AzAuthorizationStoreClass application, and to
scope objects that it created in private fields for use in subsequent method calls. If any
of its initialization steps fail, InitApp responds by throwing a ProviderException.

Although AuthorizationStoreRoleProvider initializes AzMan only once, key methods such
as IsUserInRole and GetRolesForUser, which retrieve information regarding specific
users, call a private helper method named GetClientContext to initialize AzMan's client
context on every call. If the application employs Windows authentication,
GetClientContext initializes the client context from the user's Windows token. If forms
authentication is used instead, GetClientContext initializes the client context from the
forms-authentication user name. Initializing the client context from a Windows token is
faster, but the fact that GetClientContext abstracts the authentication type means that
AuthorizationStoreRoleProvider works equally well with Windows authentication and
forms authentication.

Cache Refresh
InitApp uses a Boolean flag named _InitAppDone to avoid redundant execution.
Successful execution of InitApp sets _InitAppDone to true. The next time InitApp is
called, it returns without doing anything, unless AzMan's
IAzAuthorizationStore.UpdateCache method hasn't been called recentlythat is, within the
time window specified through the provider's CacheRefreshInterval property. In that
case, InitApp refreshes the AzMan cache from the underlying data store, by calling

UpdateCache on AzMan. CacheRefreshInterval defaults to 60 (minutes), meaning that,
by default, it could be up to an hour before changes made to role definitions and
assignments in the data store propagate to AzMan (and therefore to
AuthorizationStoreRoleProvider). If desired, you can change the cache refresh interval,
by using the cacheRefreshInterval configuration attribute.

The set accessors for AuthorizationStoreRoleProvider's ApplicationName and ScopeName
properties set _InitAppDone to false. Therefore, changing these property values at run-
time refreshes the cache, regardless of the value of CacheRefreshInterval (or how much
time has elapsed since the last call to AzMan's UpdateCache method).

Creating Roles
Applications call the role manager's Roles.CreateRole method to create new roles.
Roles.CreateRole calls the default role provider's CreateRole method.
AuthorizationStoreRoleProvider.CreateRole uses the helper method CallMethod to call
AzMan's CreateRole method, allowing the .NET run-time to marshal the managed string
containing the role name into a COM-compatible string, as follows:

object[] args = new object[2];
args[0] = roleName;
args[1] = null;
object role = CallMethod(_ObjAzScope != null ?
 _ObjAzScope : _ObjAzApplication, "CreateRole", args);

In this example (and many others like it), CallMethod calls the specified method on the
application object created by InitApp if the provider lacks a ScopeName, or on the scope
object created by InitApp if the provider has a ScopeName.

Following a successful call to AzMan's CreateRole method,
AuthorizationStoreRoleProvider.CreateRole calls CallMethod again to call Submit on the
AzMan role object returned by the previous call, and to commit the new role to the data
store. Then, it calls Marshal.FinalReleaseComObject to release the role object.

Deleting Roles
Applications call the role manager's Roles.DeleteRole method to delete roles.
Roles.DeleteRole, in turn, calls the default role provider's DeleteRole method. If the third
parameter (throwOnPopulatedRole) passed to DeleteRole is true,
AuthorizationStoreRoleProvider.DeleteRole calls
AuthorizationStoreRoleProvider.GetUsersInRole to determine whether the role is empty,
and throws a ProviderException if it's not. Then it calls AzMan's DeleteRole and Submit
methods to delete the role from the data store.

Adding Users to Roles and More
Other AuthorizationStoreRoleProvider methods do as CreateRole and DeleteRole, using
CallMethod and CallProperty to delegate to AzMan methods. For example,
AuthorizationStoreRoleProvider.AddUsersToRoles first iterates through the array of role
names passed to it, calling AzMan's OpenRole method to validate each role and convert

it into an AzMan role object. Then, it iterates through all the user names input to it,
calling AzMan's AddMemberName method repeatedly to add the users to the roles, and
finishes up by calling Submit on each AzMan role object.

Differences Between the Published Source Code and the .NET
Framework's AuthorizationStoreRoleProvider
The source code for the AuthorizationStoreRoleProvider is being released unchanged.
This means you will not be able to compile it in its current state, because it contains
calls to internal helper methods. However, you can reference the source code to see
exactly how the provider maps role manager calls to AzMan.

Site Map Providers
Site map providers provide the interface between Microsoft ASP.NET's data-driven site-
navigation features and site map data sources. ASP.NET 2.0 ships with one site map
provider: XmlSiteMapProvider, which reads site maps from XML site map files.

The fundamental job of a site map provider is to read site map data from a data source
and build an upside-down tree of SiteMapNode objects (see Figure 4), and to provide
methods for retrieving nodes from the site map. Each SiteMapNode in the tree
represents one node in the site map. SiteMapNode properties such as Title, Url,
ParentNode, and ChildNodes define the characteristics of each node, and allow the tree
to be navigated up, down, and sideways. A single site map can be managed by one or
several providers. Site map providers can form a tree of their own, linked together by
their ParentProvider properties, with each provider in the tree claiming responsibility for
a subset of the site map. A SiteMapNode's Provider property identifies the provider that
"owns" that node.

Figure 4. Site map structure

The Microsoft .NET Framework's System.Web namespace includes a class named
SiteMapProvider that defines the basic characteristics of a site map provider. It also
contains a SiteMapProvider-derivative named StaticSiteMapProvider that provides
default implementations of most of SiteMapProvider's abstract methods, and that
overrides key virtuals to provide functional, even optimized, implementations. Providers
that derive from StaticSiteMapProvider require considerably less code than providers
derived from SiteMapProvider. StaticSiteMapProvider is prototyped as follows:

public abstract class StaticSiteMapProvider : SiteMapProvider
{

 public abstract SiteMapNode BuildSiteMap();
 protected virtual void Clear() {}
 protected internal override void AddNode(SiteMapNode node,
 SiteMapNode parentNode) {}
 protected internal override void RemoveNode(SiteMapNode node) {}
 public override SiteMapNode FindSiteMapNode(string rawUrl) {}
 public override SiteMapNode FindSiteMapNodeFromKey(string key) {}
 public override SiteMapNodeCollection
 GetChildNodes(SiteMapNode node) {}
 public override SiteMapNode GetParentNode(SiteMapNode node) {}
}

One of the key features of a site map provider is security trimming, which restricts the
visibility of site map nodes, based on users' role memberships. The SiteMapProvider
class contains built-in support for security trimming. SiteMapProvider implements a
Boolean read-only property named SecurityTrimmingEnabled, which indicates whether
security trimming is enabled. Furthermore, SiteMapProvider's Initialize method initializes
this property from the provider's securityTrimmingEnabled configuration attribute.
Internally, SiteMapProvider methods that retrieve nodes from the site map call the
provider's virtual IsAccessibleToUser method to determine whether nodes can be
retrieved. All a derived class has to do to support security trimming is initialize each
SiteMapNode's Roles property with an array of role names identifying users that are
permitted to access that node, or with * if everyone (including unauthenticated users
and users who enjoy no role memberships) is permitted.

The default implementation of SiteMapProvider.IsAccessibleToUser makes use of
the URL and file authorization checks built into ASP.NET. Consequently, a site map
provider with security trimming enabled frequently needs only * in the roles
attribute for the site map's root <siteMapNode>. Explicitly specifying the roles
attribute for other nodes is necessary only for nodes that don't have a URL (or
whose URL targets a destination outside the application's directory hierarchy), and
for nodes whose visibility you wish to expand beyond the boundaries that URL and
file authorization would normally allow.

The following section documents the implementation of XmlSiteMapProvider, which
derives from StaticSiteMapProvider.

XmlSiteMapProvider
XmlSiteMapProvider is the Microsoft XML site map provider. It reads site map data from
XML files that utilize the schema documented in "Data Schema." It includes localization
support that enables localized node titles and descriptions to be loaded from resources
(see "Localization"), and it supports security trimming. (Other than flowing its own

SecurityTrimmingEnabled property down to child instances of XmlSiteMapProvider, and
including logic to parse comma-delimited or semicolon-delimited lists of role names into
string arrays, XmlSiteMapProvider doesn't do anything special to support security
trimming; that support comes by inheritance from StaticSiteMapProvider and
SiteMapProvider.) It also employs a mechanism for automatically refreshing the site map
if the site map file changes (see "Refreshing the Site Map").

The ultimate reference for XmlSiteMapProvider is the XmlSiteMapProvider source code,
which is found in XmlSiteMapProvider.cs. The sections that follow highlight key aspects
of XmlSiteMapProvider's design and operation.

Provider Initialization
Initialization occurs in XmlSiteMapProvider.Initialize, which is called one timewhen the
provider is loadedby ASP.NET. XmlSiteMapProvider.Initialize processes the siteMapFile
configuration attribute (if present), and converts it into an object representing the
virtual path to the site map file. Then, after deferring to the base class's Initialize
method to process other attributes such as securityTrimmingEnabled,
XmlSiteMapProvider.Initialize throws a ProviderException if unrecognized configuration
attributes remain.

Data Schema
XmlSiteMapProvider reads site map data from XML files structured like the one in Figure
5. Each <siteMapNode> element defines one node in the site map, and can include the
following attributes:

• title, which specifies the text displayed for the node in a navigation UI

• description, which provides descriptive text that may be shown in a navigation UI
(for example, when the cursor hovers a node)

• url, which identifies the target of the link

• roles, which specifies which roles the node is visible to in a navigation UI when
security trimming is enabled

• resourceKey, which specifies a resource key used to load localized text from
localization resources

Site map files must contain a root element named <siteMap>, and the <siteMap>
element can contain only one root <siteMapNode>.

Figure 5. Sample site map file
<siteMap>
 <siteMapNode title="Home" description="Home" url="~/default.aspx">
 <siteMapNode title="Products" description="Our products"
 url="~/Products.aspx" roles="*">
 <siteMapNode title="Hardware" description="Hardware choices"
 url="~/Hardware.aspx" />
 <siteMapNode title="Software" description="Software choices"
 url="~/Software.aspx" />

 </siteMapNode>
 <siteMapNode title="Services" description="Services we offer"
 url="~/Services.aspx" roles="*">
 <siteMapNode title="Training" description="Training classes"
 url="~/Training.aspx" />
 <siteMapNode title="Consulting"
 description="Consulting services"
 url="~/Consulting.aspx" />
 <siteMapNode title="Support" description="Supports plans"
 url="~/Support.aspx" />
 </siteMapNode>
 <siteMapNode title="Members Only" description="Premium content"
 url="~/Members.aspx" roles="Members,Administrators">
 <siteMapNode title="Account Management"
 description="Manage your account"
 url="~/MembersOnly/Accounts.aspx" />
 <siteMapNode title="Discussion Forums"
 description="Converse with other members"
 url="~/MembersOnly/Forums.aspx" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

A <siteMapNode> element may also include a provider attribute that delegates
responsibility for that node and its children to another provider. The provider attribute is
not valid if the <siteMapNode> element contains other attributes. In addition, a
<siteMapNode> element can contain a siteMapFile attribute pointing to another site map
file. That attribute, too, is valid only in the absence of other attributes.

XmlSiteMapProvider doesn't validate XML site map files against an XML schema. Instead,
the schema is implicit in XmlSiteMapProvider's reading and handling of site map data.
For example, the following code checks for a root <siteMap> element, and throws an
exception if the element doesn't exist:

XmlNode node = null;
foreach (XmlNode siteMapNode in document.ChildNodes) {
 if (String.Equals(siteMapNode.Name, "siteMap",
 StringComparison.Ordinal)) {
 node = siteMapNode;
 break;
 }
}

if (node == null)
 throw new ConfigurationErrorsException(SR.GetString(

 SR.XmlSiteMapProvider_Top_Element_Must_Be_SiteMap), document);

XmlSiteMapProvider uses an XmlTextReader to read the site map file, and then wraps
the nodes in an XmlDocument for easy navigation as it builds the site map in memory.

Building the Site Map
The heart of XmlSiteMapProvider is its BuildSiteMap method, which is called by ASP.NET
when it needs the site map from the provider. Because BuildSiteMap is called many
times over the provider's lifetime, XmlSiteMapProvider.BuildSiteMap contains logic for
building the site map from the XML site map file the first time BuildSiteMap is called, and
for returning the existing site map in subsequent calls.

XmlSiteMapProvider.BuildSiteMap reads the site map from the file specified through the
siteMapFile configuration attribute, and builds an in-memory tree of SiteMapNode
objects. Before building the site map, BuildSiteMap performs a series of validation
checks on the site map data, making sure, for example, that it contains a root
<siteMap> element, and that <siteMap> contains one (and only one) <siteMapNode>
element. BuildSiteMap also checks the <siteMap> element for an enableLocalization
attribute and, if present, initializes its own EnableLocalization property (inherited from
SiteMapProvider) accordingly.

To convert XML nodes into SiteMapNodes, and to build the SiteMapNode tree,
BuildSiteMap creates an instance of System.Collections.Queue, adds the root XML
<siteMapNode> to the queue, and calls a method named ConvertFromXmlNode. With
help from helper methods such as GetNodeFromProvider, GetNodeFromSiteMapFile,
GetNodeFromXmlNode, and AddNodeInternal, ConvertFromXmlNode walks the XML site
map from top to bottom, converting XML nodes into SiteMapNodes, and adding them to
the tree. The SiteMapNode reference returned by ConvertFromXmlNode represents the
SiteMapNode at the top of the tree (the root SiteMapNode). That reference is returned
by BuildSiteMap to hand the site map off to ASP.NET. The GetNodeFromProvider and
GetNodeFromSiteMapFile methods enable XmlSiteMapProvider to link one site map to
other site maps managed by separate instances of SiteMapProviders.

As it converts XML nodes into SiteMapNodes, XmlSiteMapProvider verifies that each
SiteMapNode's Url and Key properties are unique with respect to other SiteMapNodes.
For nodes that have URLs assigned to them, XmlSiteMapProvider sets Key equal to Url.
For nodes that do not have URLs assigned to them, XmlSiteMapProvider sets Key to a
randomly generated GUID. XmlSiteMapProvider also verifies that node URLs are
application-relative, and that they don't contain URL-encoded charactersa sign of
malformed (and potentially dangerous) URLs.

Refreshing the Site Map
Early in its lifetime, BuildSiteMap calls a helper method named GetConfigDocument that
registers an event handler named OnConfigFileChange to be called if, and when, the site
map file changes:

_handler = new FileChangeEventHandler(this.OnConfigFileChange);
HttpRuntime.FileChangesMonitor.StartMonitoringFile

 (_filename, _handler);

If the site map file changes, OnConfigFileChange notifies the parent provider (if any),
and then calls the Clear method inherited from StaticSiteMapProvider to clear the site
map, as follows:

private void OnConfigFileChange(Object sender, FileChangeEvent e) {
 // Notifiy the parent for the change.
 XmlSiteMapProvider parentProvider =
 ParentProvider as XmlSiteMapProvider;
 if (parentProvider != null) {
 parentProvider.OnConfigFileChange(sender, e);
 }
 Clear();
}

The next time ASP.NET calls BuildSiteMap, XmlSiteMapProvider rebuilds the site map.
Consequently, changing the site map file at run-time causes XmlSiteMapProvider to
refresh the site map. The change is visible in TreeViews, Menus, or other controls that
render navigation UIs from the site map.

XmlSiteMapProvider cancels the file-change monitor at dispose time, as follows:

protected virtual void Dispose(bool disposing) {
 if (_handler != null) {
 Debug.Assert(_filename != null);
 HttpRuntime.FileChangesMonitor.StopMonitoringFile
 (_filename, _handler);
 }
}

This simple bit of housekeeping prevents an active file-change monitor from referencing
an event handler that no longer exists.

Localization
As an aid in localizing navigation UIs for users around the world, XmlSiteMapProvider
offers built-in support for loading node titles and descriptions from string resources. For
an excellent overview of how to localize site maps, see "How to Localize Site Map Data."

XmlSiteMapProvider supports two types of localization expressions: implicit and explicit.
Implicit expressions use resourceKey attributes to specify the root names of localization
resources. The provider is responsible for parsing the localization expressions, whereas
SiteMapNode performs the actual resource lookups at runtime (more on this in a
moment). Root names are combined with attribute names to generate fully qualified
resource names. The following node definition loads values for title and description from

string resources named HomePage.title and HomePage.description in RESX files named
Web.sitemap.culture.resx, where culture is a culture identifier such as fr or en-us:

<siteMapNode resourceKey="HomePage" title="Home"
 description="My home page" url="~/Default.aspx">

The default title and description are used if the resource manager can't find a RESX with
the appropriate culturefor example, if the requested culture is fr, but the application
contains RESX files only for de and us. The current culturethe one that determines which
RESX resources are loaded fromis determined by the CurrentThread.CurrentUICulture
property. The value of that property can be set programmatically; or, it can be
declaratively initialized to the culture specified in each HTTP request's Accept-Language
header, by setting UICulture to auto in an @ Page directive, or by setting uiCulture to
auto in a <globalization> configuration element.

Explicit expressions don't rely on resourceKey attributes; instead, they use explicit
resource names. In the following example, the node title comes from the resource
named HomePageTitle in NavResources.culture.resx, whereas the node description
comes from the resource named HomePageDesc (also in NavResources.culture.resx):

<siteMapNode title="$resources:NavResources,HomePageTitle,Home"
 description="$resources:NavResources,HomePageDesc,My home page"
 url="~/Default.aspx">

Once more, the current culture is defined by the value of
CurrentThread.CurrentUICulture.

SiteMapNode performs the bulk of the work in loading node titles and descriptions from
resources. All XmlSiteMapProvider has to do is parse out the resource keysexplicit and
implicitand pass them to SiteMapNode's constructor, as follows:

node = new SiteMapNode(this, key, url, title, description, roleList,
 attributeCollection, resourceKeyCollection, resourceKey);

For a node that uses an implicit expression, XmlSiteMapProvider passes the resource key
in resourceKey. For a node that uses explicit expressions, XmlSiteMapProvider passes a
collection of resource keys in resourceKeyCollection. Each item in the collection is either
an attribute name/class name pair (for example, title and NavResources) or an attribute
name/key name pair (for example, title and HomePageTitle). The parsing of explicit
resource keys is handled by the private XmlSiteMapProvider.HandleResourceAttribute
method, which is called by XmlSiteMapProvider.GetNodeFromXmlNode.

After the resource keys are provided to SiteMapNode's constructor, SiteMapNode
handles the task of loading the resources. The key code is contained in the get accessors
for SiteMapNode's Title and Description properties, which include logic for loading

property values from string resources when implicit or explicit resource keys are
provided.

Differences Between the Published Source Code and the .NET
Framework's XmlSiteMapProvider
The published source code for XmlSiteMapProvider and StaticSiteMapProvider differs
from the .NET Framework versions in the following respects:

• Declarative and imperative CAS demands were commented out. Because the source
code can be compiled standalone, and thus will run as user code rather than trusted
code in the global assembly cache, the CAS demands are not strictly necessary. For
reference, however, the original demands from the .NET Framework version of the
provider have been retained as comments.

• The automatic reloading of site map data based on file-change monitoring was
commented out, because the implementation depends on some internal unmanaged
code helpers.

The standalone version of XmlSiteMapProvider supports linking only to child providers
that are instances of the standalone version of XmlSiteMapProvider. The version of the
provider that ships in the .NET Framework can be linked to child providers of any
arbitrary type that implements SiteMapProvider.

Session State Providers
Session state providers provide the interface between Microsoft ASP.NET's session state
module and session state data sources. ASP.NET 2.0 ships with three session state
providers:

• InProcSessionStateStore, which stores session state in memory in the ASP.NET
worker process

• OutOfProcSessionStateStore, which stores session state in memory in an external
state server process

• SqlSessionStateStore, which stores session state in Microsoft SQL Server and
Microsoft SQL Server Express databases

Core ASP.NET session state services are provided by
System.Web.SessionState.SessionStateModule, instances of which are referred to as
session state modules. Session state modules encapsulate session state in instances of
System.Web.SessionState.SessionStateStoreData, allocating one SessionStateStoreData
per session (per user). The fundamental job of a session state provider is to serialize
SessionStateDataStores to session state data sources, and deserialize them on demand.
SessionStateDataStore has three properties that must be serialized in order to hydrate
class instances:

• Items, which encapsulates a session's non-static objects

• StaticObjects, which encapsulates a session's static objects

• Timeout, which specifies the session's timeout (in minutes)

Items and StaticObjects can be serialized and deserialized easily enough, by calling their
Serialize and Deserialize methods, respectively. The Timeout property is a simple
System.Int32, and it is therefore also easily serialized and deserialized.

The .NET Framework's System.Web.SessionState namespace includes a class named
SessionStateStoreProviderBase that defines the basic characteristics of a session state
provider. SessionStateStoreProviderBase is prototyped as follows:

public abstract class SessionStateStoreProviderBase : ProviderBase
{
 public abstract void Dispose();

 public abstract bool SetItemExpireCallback
 (SessionStateItemExpireCallback expireCallback);

 public abstract void InitializeRequest(HttpContext context);

 public abstract SessionStateStoreData GetItem
 (HttpContext context, String id, out bool locked,
 out TimeSpan lockAge, out object lockId,
 out SessionStateActions actions);

 public abstract SessionStateStoreData GetItemExclusive
 (HttpContext context, String id, out bool locked,
 out TimeSpan lockAge, out object lockId,
 out SessionStateActions actions);

 public abstract void ReleaseItemExclusive(HttpContext context,
 String id, object lockId);

 public abstract void SetAndReleaseItemExclusive
 (HttpContext context, String id, SessionStateStoreData item,
 object lockId, bool newItem);

 public abstract void RemoveItem(HttpContext context,
 String id, object lockId, SessionStateStoreData item);

 public abstract void ResetItemTimeout(HttpContext context,
 String id);

 public abstract SessionStateStoreData CreateNewStoreData
 (HttpContext context, int timeout);

 public abstract void CreateUninitializedItem
 (HttpContext context, String id, int timeout);

 public abstract void EndRequest(HttpContext context);
}

Three of the most important methods in a session state provider are GetItem,
GetItemExclusive, and SetAndReleaseItemExclusive. The first two are called by
SessionStateModule to retrieve a session from the data source. If the requested page
implements the IRequiresSessionState interface (by default, all pages implement
IRequiresSessionState), SessionStateModule's AcquireRequestState event handler calls
the session state provider's GetItemExclusive method. The word "Exclusive" in the
method name means that the session should be retrieved only if it's not currently being
used by another request. If, on the other hand, the requested page implements the
IReadOnlySessionState interface (the most common way to achieve this is to include an
EnableSessionState="ReadOnly" attribute in the page's @ Page directive),
SessionStateModule calls the provider's GetItem method. No exclusivity is required here,
because overlapping read accesses are permitted by SessionStateModule.

In order to provide the exclusivity required by GetItemExclusive, a session state
provider must implement a locking mechanism that prevents a given session from being
accessed by two or more concurrent requests requiring read/write access to session
state. That mechanism ensures the consistency of session state, by preventing
concurrent requests from overwriting each other's changes. The locking mechanism
must work even if the session state data source is a remote resource shared by several
Web servers.

SessionStateModule reads sessions from the data source at the outset of each request,
by calling GetItem or GetItemExclusive from its AcquireRequestState handler. At the end
of the request, SessionStateModule's ReleaseRequestState handler calls the session
state provider's SetAndReleaseItemExclusive method to commit changes to the data
source, and release locks held by GetItemExclusive. A related method named
ReleaseItemExclusive exists so that SessionStateModule can time out a locked session
by commanding the session state provider to release the lock.

The following section documents the implementation of SqlSessionStateStore, which
derives from SessionStateStoreProviderBase.

SqlSessionStateStore
SqlSessionStateStore is the Microsoft session state provider for SQL Server databases. It
stores session data using the schema documented in "Data Schema," and it uses the
stored procedures documented in "Data Access." All knowledge of the database schema
is hidden in the stored procedures, so that porting SqlSessionStateStore to other
database types requires little more than modifying the stored procedures. (Depending
on the targeted database type, the ADO.NET code used to call the stored procedures
might have to change, too. The Microsoft Oracle .NET provider, for example, uses a
different syntax for named parameters.)

SqlSessionStateStore is alone among SQL providers, in that it doesn't use the provider
database. Instead, it uses a separate session state database whose name (by default) is
ASPState. The session state database can be created by running Aspnet_regsql.exe with
an -ssadd switch. The session state database can be stored either in tempdb (which will
not survive a server restart), or in a custom database (for example, ASPState) that will
survive a server restart. Both persistence options can be exercised using
Aspnet_regsql.exe's –sstype switch.

SqlSessionStateStore supports a key scalability feature of ASP.NET 2.0 known as session
state partitioning. By default, all sessions for all applications are stored in a single SQL
Server database. However, developers can implement custom partition resolversclasses
that implement the IPartitionResolver interfaceto partition sessions into multiple
databases. Partition resolvers convert session IDs into database connection strings;
before accessing the session state database, SqlSessionStateStore calls into the active
partition resolver to get the connection string it needs. One use for custom partition
resolvers is to divide session state for one application into two or more databases.
Session state partitioning helps ASP.NET applications scale out horizontally, by
eliminating the bottleneck of a single session state database. For an excellent overview
of how partitioning works, and how to write custom partition resolvers, see “Fast,
Scalable, and Secure Session State Management for Your Web Applications” In the
September 2005 issue of MSDN Magazine.

The ultimate reference for SqlSessionStateStore is the SqlSessionStateStore source
code, which is found in SqlStateClientManager.cs. The sections that follow highlight key
aspects of SqlSessionStateStore's design and operation.

Provider Initialization
Initialization occurs in SqlSessionStateStore.Initialize, which is called when the provider
is loaded by SessionStateModule. The version of Initialize that's called isn't the one

inherited from ProviderBase, but a special one defined in SessionStateStoreProviderBase
that receives an IPartitionResolver parameter. If a custom partition resolver is registered
(registration is accomplished by including a partitionResolverType attribute in the
<sessionState> configuration element), that parameter references a custom partition
resolver. Otherwise, it's set to null, indicating the absence of a custom partition resolver.
SqlSessionStateStore caches the reference (null or not) in a private field named
_partitionResolver.

The Initialize method called by SessionStateModule then calls the Initialize method
inherited from ProviderBase. This method calls base.Initialize, and then delegates to a
private helper method named OneTimeInit. If _partitionResolver is null, OneTimeInit
creates a SqlPartitionInfo object, and caches a reference to it in a private static field.
(SqlPartitionInfo essentially wraps a database connection string, and is used when the
connection string used to access the session state database won't change over time.)
However, if _partitionResolver is not null, then OneTimeInit sets a static private field
named s_usePartition to true, creates a new PartitionManager object (note that this is an
internal type) to encapsulate the partition resolver, and stores a reference to the
PartitionManager in another private static field. Whenever SqlSessionStateStore needs
to access the session state database, it calls the helper method GetConnection, which
retrieves a connection targeting the proper session state database, using the partition
resolver, if present, to acquire the connection. GetConnection also includes pooling logic,
allowing session state database connections to be pooled when circumstances permit.

Initialize's final task is to register a handler for the DomainUnload event that fires when
the host application domain unloads. The handlerOnAppDomainUnloadperforms cleanup
duties by calling Dispose on the SqlPartitionInfo or PartitionManager object.

Data Schema
SqlSessionStateStore stores session data in the ASPStateTempSessions table of the
session state database. Each record in ASPStateTempSessions holds the serialized
session state for one session, and the auxiliary data that accompanies that session.
Table 9 documents the ASPStateTempSessions table's schema.

Table 9. The ASPStateTempSessions table

Column Name Column Type Description

SessionId nvarchar(88) Session ID + application ID

Created datetime Date and time session was created (UTC)

Expires datetime Date and time session expires (UTC)

LockDate datetime UTC date and time session was locked

LockDateLocal datetime Local date and time session was locked

LockCookie int Lock ID

Timeout int Session timeout in minutes

Locked bit 1=Session locked, 0=Session not locked

SessionItemShort varbinary(7000) Serialized session state (if <= 7,000
bytes)

SessionItemLong image Serialized session state (if > 7,000 bytes)

Flags int Session state flags (1=Uninitialized
session)

Serialized session state is stored in binary form in the SessionItemShort and
SessionItemLong fields. Sessions that serialize to a length of 7,000 bytes or less are
stored in SessionItemShort, whereas sessions that serialize to a length of more than
7,000 bytes are stored in SessionItemLong. (Storing "short" sessions in a varbinary field
offers a performance advantage, because the data can be stored in the table row, rather
than externally in other data pages.) The Expires field is used to clean up expired
sessions, as described in "Session Expiration." The Locked, LockDate, LockDateLocal,
and LockCookie fields are used to lock concurrent accesses to a session.
SqlSessionStateStore's locking strategy is described in "Serializing Concurrent Accesses
to a Session."

In addition to scoping data by user, SqlSessionStateStore scopes data by application, so
that multiple applications can store sessions in one session state database. To that end,
the session state database contains an ASPStateTempApplications table that records
application names and application IDs. Application names are not explicitly specified as
they are for other providers; instead, SqlSessionStateStore uses the website's IIS
metabase path as the application name. Application IDs are hashes generated from
application names by the stored procedure GetHashCode. (SqlSessionStateStore differs
in this respect, too, from other SQL providers, which use randomly generated GUIDs as
application IDs.) Table 10 documents the schema of the ASPStateTempApplications
table.

Table 10. The ASPStateTempApplications table

Column Name Column Type Description

AppId int Application ID

AppName char(280) Application name

Curiously, the ASPStateTempSessions table lacks an AppId column linking it to
ASPTempStateApplications. The linkage occurs in ASPStateTempSessions's SessionId
field, which doesn't store just session IDs. It stores session IDs with application IDs
appended to them. The statement
cmd.Parameters[0].Value = id + _partitionInfo.AppSuffix; // @id

in SqlSessionStateStore.DoGet (discussed in "Reading Sessions from the Database") is
one example of how SqlSessionStateStore generates the session ID values input to
database queries.

Data Access
SqlSessionStateStore performs all database accesses through stored procedures. Table
11 lists the stored procedures that it uses.

Table 11. Stored procedures used by SqlSessionStateStore

Stored Procedure Description

CreateTempTables Creates the ASPStateTempSessions and
ASPStateTempApplications tables; called
during setup, but not called by
SqlSessionStateStore.

DeleteExpiredSessions Used by SQL Server Agent to remove
expired sessions.

GetHashCode Hashes an application name and returns
the hash; called by TempGetAppID.

GetMajorVersion Returns SQL Server's major version
number.

TempGetAppID Converts an application name into an
application ID; queries the
ASPStateTempApplications table and
inserts a new record if necessary.

TempGetStateItem Retrieves read-only session state from the
database (ASP.NET 1.0; ASP.NET 1.1/SQL
Server 7).

TempGetStateItem2 Retrieves read-only session state from the
database (ASP.NET 1.1).

TempGetStateItem3 Retrieves read-only session state from the
database (ASP.NET 2.0).

TempGetStateItemExclusive Retrieves read/write session state from
the database (ASP.NET 1.0; ASP.NET
1.1/SQL Server 7).

TempGetStateItemExclusive2 Retrieves read/write session state from
the database (ASP.NET 1.1).

TempGetStateItemExclusive3 Retrieves read/write session state from
the database (ASP.NET 2.0).

TempGetVersion Marker whose presence indicates to
ASP.NET 2.0 that the session state
database is ASP.NET 2.0-compatible.

TempInsertStateItemLong Adds a new session, whose size is >
7,000 bytes, to the database.

TempInsertStateItemShort Adds a new session, whose size is <=
7,000 bytes, to the database.

TempInsertUninitializedItem Adds a new uninitialized session to the
database in support of cookieless
sessions.

TempReleaseStateItemExclusive Releases a lock on a session; called when
ASP.NET determines that a request has

timed out and calls the provider's
ReleaseItemExclusive method.

TempRemoveStateItem Removes a session from the database
when the session is abandoned.

TempResetTimeout Resets a session's timeout by writing the
current date and time to the
corresponding record's Expires field.

TempUpdateStateItemLong Updates a session whose size is > 7,000
bytes.

TempUpdateStateItemLongNullShort Updates a session whose old size is <=
7,000 bytes, but whose new size is >
7,000 bytes.

TempUpdateStateItemShort Updates a session whose size is <= 7,000
bytes.

TempUpdateStateItemShortNullLong Updates a session whose old size is >
7,000 bytes, but whose new size is <=
7,000 bytes.

Some of the stored procedures exist in different versions (for example,
TempGetStateItem, TempGetStateItem2, and TempGetStateItem3), in order to support
different versions of ASP.NET and different versions of SQL Server. ASP.NET 2.0 uses
the "3" versions of these stored procedures, and it never calls the old versions. The
older stored procedures are retained to allow ASP.NET 1.1 servers to use the same
session state database as ASP.NET 2.0.

Many of the stored procedures used by SqlSessionStateStore have "Temp" in their
names for historical reasons. In ASP.NET 1.0, SQL Server session state was always
stored in tempdb, and "Temp" in a stored procedure name indicated that the
stored procedure targeted the tempdb database. ASP.NET's reliance on tempdb
changed in version 1.1, when InstallPersistSqlState.sql appeared, offering
administrators the option of storing SQL Server session state in a conventional
database. The names of the stored procedures remained the same, so that one
source code base could target both temporary and persistent session state
databases.

Reading Sessions from the Database
To retrieve a session from the session state data source, SessionStateModule calls the
default session state provider's GetItem or GetItemExclusive method. The former is
called for pages that implement the IReadOnlySessionState interface (pages that read

session state, but do not write it), whereas the latter is called for pages that implement
IRequiresSessionState (indicating that they both read and write session state). Both
GetItem and GetItemExclusive delegate to a private helper method named DoGet.
GetItem passes false in DoGet's third parameter, indicating that exclusivity is not
required. GetItemExclusive passes in true.

SqlSessionStateStore.DoGet retrieves the session from the database, or returns locking
information if the session is locked because it's being used by a concurrent request. It
begins by calling GetConnection to get a connection to the session state database. Then,
it calls one of two stored procedures: TempGetStateItem3 if the third parameter passed
to DoGet is false (that is, if DoGet was called by GetItem), or
TempGetStateItemExclusive3 if the third parameter is true (if DoGet was called by
GetItemExclusive).

What happens when the stored procedure returns depends on whether the requested
session is currently locked. If the session isn't locked, DoGet extracts the serialized
session state from the SessionItemShort or SessionItemLong field, deserializes the
session state into a SessionStateStoreData object, and returns it. However, if the
session is locked, DoGet returns null, but uses the out parameters locked and lockAge to
inform SessionStateModule that the session is locked and how long the lock has been
active. Lock age is used by SessionStateModule to forcibly release a lock if the lock is
held for too long.

How SqlSessionStateStore computes a lock's age depends on the version of SQL
Server it's running against. For SQL Server 2000 and higher, SqlSessionStateStore
uses T-SQL's DATEDIFF to compute the lock age in SQL Server. For SQL Server 7,
SqlSessionStateStore reads the lock date from the database and subtracts it from
DateTime.Now to compute the lock's age. The downside to the DateTime.Now
approach is that lock age is computed incorrectly if the Web server and database
server are in different time zones. It also introduces daylight saving time issues
that can adversely affect lock age computations.

Writing Sessions to the Database
To save a session to the session state data source, SessionStateModule calls the default
session state provider's SetAndReleaseItemExclusive method.
SqlSessionStateStore.SetAndReleaseItemExclusive serializes the SessionStateStoreData
passed to it, taking care to call SqlSessionStateStore.ReleaseItemExclusive to release
the lock (if any) on the session if the serialization attempt fails.

Next, SqlSessionStateStore.SetAndReleaseItemExclusive calls GetConnection to get a
database connection. Then, it checks the newItem parameter passed to it, to determine
whether the session being saved is a new session or an existing session. If newItem is
true, indicating that the session has no corresponding row in the database,
SetAndReleaseItemExclusive calls the stored procedure TempInsertStateItemShort or

TempInsertStateItemLong (depending on the size of the serialized session) to record the
session in a new row in the session state database. If newItem is false, indicating that
the database already contains a row representing the session,
SetAndReleaseItemExclusive calls one of the following stored procedures to update that
row:

• TempUpdateStateItemShort if the serialized session contains 7,000 or fewer bytes,
and if it formerly contained 7,000 or fewer bytes also

• TempUpdateStateItemLong if the serialized session contains more than 7,000 bytes,
and if it formerly contained more than 7,000 bytes also

• TempUpdateStateItemLongNullShort if the serialized session contains more than
7,000 bytes, but it formerly contained 7,000 or fewer bytes

• TempUpdateStateItemShortNullLong if the serialized session contains 7,000 or fewer
bytes, but it formerly contained more than 7,000 bytes

The "Null" versions of these stored procedures nullify the field containing the old session
data before recording new session data in SessionItemShort or SessionItemLong.

Serializing Concurrent Accesses to a Session
SqlSessionStateStore employs a locking strategy that relies on fields in the session state
database and the stored procedures that access them. The following is a synopsis of how
it works.

When SessionStateModule calls GetItem to retrieve a session from the database,
SqlSessionStateStore calls the stored procedure TempGetStateItem3. The stored
procedure does no locking of its own, but checks the Locked field of the corresponding
record before deciding what to return. If Locked is 0, indicating that the session isn't
locked, TempGetStateItem3 returns the serialized session data through the @itemShort
output parameter if the session is stored in the SessionItemShort field, or as a query
result if the session is stored in the SessionItemLong field. If Locked is not 0, however,
TempGetStateItem3 returns no session state. Instead, it uses the output parameters
named @locked, @lockAge, and @lockCookie, to return a nonzero value indicating that
the session is locked, the lock age, and the lock ID, respectively. SessionStateModule
responds by retrying the call to GetItem at half-second intervals until the lock is
removed.

How does a record become locked in the first place? That happens in
TempGetStateItemExclusive3, which is called when SessionStateModule calls
SqlSessionStateStore's GetItemExclusive method. If called to retrieve a session that's
already locked (Locked=1), TempGetStateItemExclusive3 behaves much like
TempGetStateItem3. But, if called to retrieve a session that isn't locked (Locked=0),
TempGetStateItemExclusive3 sets LockDate and LockDateLocal to the current time,
returns 0 through the @locked parameterindicating that the session wasn't locked when
the read occurredand returns the serialized session. It also sets the record's Locked field
to 1, effectively locking the session and preventing subsequent calls to
TempGetStateItem3 or TempGetStateItemExclusive3 from returning sessions until
Locked is reset to 0.

Locked is reset to 0 by all of the stored procedures called by SqlSessionStateStore's
SetAndReleaseItemExclusive method to write a session to the database.

TempUpdateStateItemShort, reproduced in Figure 6, is one example. A session can also
be unlocked with the stored procedure TempReleaseStateItemExclusive, which is called
by SqlSessionStateStore's ReleaseItemExclusive method. SessionStateModule calls that
method to forcibly release a lock if repeated attempts to retrieve the session don't
succeed. Figure 7 shows the relevant code in SessionStateModule.

Figure 6. TempUpdateStateItemShort
CREATE PROCEDURE [dbo].[TempUpdateStateItemShort]
 @id tSessionId,
 @itemShort tSessionItemShort,
 @timeout int,
 @lockCookie int
AS
 UPDATE [ASPState].dbo.ASPStateTempSessions
 SET Expires = DATEADD(n, Timeout, GETUTCDATE()),
 SessionItemShort = @itemShort,
 Timeout = @timeout,
 Locked = 0 /* Unlock the session! */
 WHERE SessionId = @id AND LockCookie = @lockCookie
 RETURN 0

Figure 7. SessionStateModule code for timing out locks
if (_rqReadonly) {
 _rqItem = _store.GetItem(_rqContext, _rqId, out locked,
 out lockAge, out _rqLockId, out _rqActionFlags);
}
else {
 _rqItem = _store.GetItemExclusive(_rqContext, _rqId, out locked,
 out lockAge, out _rqLockId, out _rqActionFlags);
}

// We didn't get it because it's locked....
if (_rqItem == null && locked) {
 if (lockAge >= _rqExecutionTimeout) {
 /* Release the lock on the item, which is held
 by another thread*/
 _store.ReleaseItemExclusive(_rqContext, _rqId, _rqLockId);
 }
 isCompleted = false;
 PollLockedSession();
}

Supporting Cookieless Sessions
ASP.NET supports two different types of sessions: cookied and cookieless. The terms
"cookied" and "cookieless" refer to the mechanism used to round-trip session IDs
between clients and Web servers. Cookied sessions round-trip session IDs in HTTP
cookies, whereas cookieless sessions embed session IDs in URLs using a technique
known as "URL munging."

In order to support cookieless sessions, a session state provider must implement a
CreateUninitializedItem method that creates an uninitialized session. When a request
arrives, and session state is configured with the default settings for cookieless mode (for
example, when the <sessionState> configuration element contains cookieless="UseUri"
and regenerateExpiredSessionId="true" attributes), SessionStateModule creates a new
session ID, munges it onto the URL, and passes it to CreateUninitializedItem.
Afterwards, a redirect occurs, with the munged URL as the target. The purpose of calling
CreateUninitializedItem is to allow the session ID to be recognized as a valid ID after the
redirect. (Otherwise, SessionStateModule would think that the ID extracted from the
URL after the redirect represents an expired session, in which case it would generate a
new session ID, which would force another redirect and result in an endless loop.) If
sessions are cookied rather than cookieless, the provider's CreateUninitializedItem
method is never called.

SqlSessionStateStore supports cookied and cookieless sessions. Its
CreateUninitializedItem method calls TempInsertUninitializedItem, which adds a row to
the session state database, and flags it as an uninitialized session by setting the Flags
field to 1. The flag is reset to 0 when the session is retrieved from the database by
TempGetStateItem3 or TempGetStateItemExclusive3, following a redirect.

Session Expiration
Each session created by ASP.NET has a timeout value (by default, 20 minutes)
associated with it. If no accesses to the session occur within the session timeout, the
session is deemed to be expired, and it is no longer valid.

SqlSessionStateStore uses the Expires field of the ASPStateTempSessions table to
record the date and time that each session expires. All stored procedures that read or
write a session set the Expires field equal to the current date and time plus the session
timeout, effectively extending the session's lifetime for another full timeout period.

SqlSessionStateStore doesn't actively monitor the Expires field. Instead, it relies on an
external agent to scavenge the database and delete expired sessionssessions whose
Expires field holds a date and time less than the current date and time. The ASPState
database includes a SQL Server Agent job that periodically (by default, every 60
seconds) calls the stored procedure DeleteExpiredSessions to remove expired sessions.
DeleteExpiredSessions uses the following simple DELETE statement to delete all
qualifying rows from the ASPStateTempSessions table:

DELETE [ASPState].dbo.ASPStateTempSessions WHERE Expires < @now

SessionStateModule doesn't fire Session_End events when SqlSessionStateStore is the
default session state provider, because SqlSessionStateStore doesn't notify it when a
session expires.

If an application abandons a session by calling Session.Abandon, SessionStateModule
calls the provider's RemoveItem method. SqlSessionStateStore.RemoveItem calls the
stored procedure TempRemoveStateItem to delete the session from the database.

Differences Between the Published Source Code and the .NET
Framework's SqlSessionStateStore
The published source code for SqlSessionStateStore differs from the .NET Framework
version in the following respects:

• Some imperative CAS checks were commented out. Because the source code can be
compiled standalone, and thus will run as user code rather than trusted code in the
global assembly cache, the CAS checks are not necessary.

• Calls to performance counters were commented out, because the .NET Framework
provider relies on internal helper classes for manipulating these counters. For
reference, the original code has been retained as comments.

• The published version does not support the use of multiple database partitions,
because the .NET Framework provider uses a number of internal classes to
implement this functionality. However, the published version contains commented
code, so that you can see how the .NET Framework provider supports multiple
database partitions.

• Some internal helper methods used by the .NET Framework provider for serializing
and deserializing session data have been cloned in the published provider.

Profile Providers
Profile providers provide the interface between Microsoft ASP.NET's profile service and
profile data sources. ASP.NET 2.0 ships with one profile provider: SqlProfileProvider,
which stores profile data in Microsoft SQL Server and Microsoft SQL Server Express
databases.

The fundamental job of a profile provider is to write profile property values supplied by
ASP.NET to a persistent profile data source, and to read the property values back from
the data source when requested by ASP.NET. The Microsoft .NET Framework's
System.Web.Profile namespace includes a class named ProfileProvider that defines the
basic characteristics of a profile provider. ProfileProvider is prototyped as follows:

public abstract class ProfileProvider : SettingsProvider
{
 public abstract int DeleteProfiles
 (ProfileInfoCollection profiles);

 public abstract int DeleteProfiles (string[] usernames);

 public abstract int DeleteInactiveProfiles
 (ProfileAuthenticationOption authenticationOption,
 DateTime userInactiveSinceDate);

 public abstract int GetNumberOfInactiveProfiles
 (ProfileAuthenticationOption authenticationOption,
 DateTime userInactiveSinceDate);

 public abstract ProfileInfoCollection GetAllProfiles
 (ProfileAuthenticationOption authenticationOption,
 int pageIndex, int pageSize, out int totalRecords);

 public abstract ProfileInfoCollection GetAllInactiveProfiles
 (ProfileAuthenticationOption authenticationOption,
 DateTime userInactiveSinceDate, int pageIndex,
 int pageSize, out int totalRecords);

 public abstract ProfileInfoCollection FindProfilesByUserName
 (ProfileAuthenticationOption authenticationOption,
 string usernameToMatch, int pageIndex, int pageSize,
 out int totalRecords);

 public abstract ProfileInfoCollection
 FindInactiveProfilesByUserName (ProfileAuthenticationOption
 authenticationOption, string usernameToMatch,

 DateTime userInactiveSinceDate, int pageIndex,
 int pageSize, out int totalRecords);
}

A ProfileProvider-derived class must also implement the abstract methods and properties
defined in System.Configuration.SettingsProvider, which is prototyped as follows:

public abstract class SettingsProvider : ProviderBase
{
 // Properties
 public abstract string ApplicationName { get; set; }

 // Methods
 public abstract SettingsPropertyValueCollection
 GetPropertyValues (SettingsContext context,
 SettingsPropertyCollection properties);

 public abstract void SetPropertyValues(SettingsContext context,
 SettingsPropertyValueCollection properties);
}

The two most important methods in a profile provider are the GetPropertyValues and
SetPropertyValues methods inherited from SettingsProvider. These methods are called
by ASP.NET to read property values from the data source, and write them back. Other
profile provider methods play a lesser role, by performing administrative functions such
as enumerating and deleting profiles.

When code executing within a request reads a profile property, ASP.NET calls the default
profile provider's GetPropertyValues method. The context parameter passed to
GetPropertyValues is a dictionary of key/value pairs containing information about the
context in which GetPropertyValues was called. It contains the following keys:

• UserName - User name or user ID of the profile to read.

• IsAuthenticated - Indicates whether the requestor is authenticated.

The properties parameter contains a collection of SettingsProperty objects representing
the property values ASP.NET is requesting. Each object in the collection represents one
of the properties defined in the <profile> configuration section. GetPropertyValues's job
is to return a SettingsPropertyValuesCollection supplying values for the properties in the
SettingsPropertyCollection. If the property values have been persisted before, then
GetPropertyValues can retrieve the values from the data source. Otherwise, it can return
a SettingsPropertyValuesCollection that instructs ASP.NET to assign default values.

SetPropertyValues is the counterpart to GetPropertyValues. It's called by ASP.NET to
persist property values in the profile data source. Like GetPropertyValues, it's passed a
SettingsContext object containing a user name (or ID), and a Boolean indicating
whether the user is authenticated. It's also passed a SettingsPropertyValueCollection

containing the property values to be persisted. The format in which the data is
persistedand the physical storage medium that it's persisted inis up to the provider.
Obviously, the format in which SetPropertyValues persists profile data must be
understood by the provider's GetProfileProperties method.

Profile property values are inherently scoped by user. For authenticated users, each set
of persisted profile property values is accompanied by a user ID that uniquely identifies
an authenticated user. For anonymous users, each set of persisted profile property
values is accompanied by an anonymous user ID assigned by ASP.NET's anonymous
identification service.

The following section documents the implementation of SqlProfileProvider, which derives
from ProfileProvider.

SqlProfileProvider
SqlProfileProvider is the Microsoft profile provider for SQL Server databases. It stores
profile data, using the schema documented in "Data Schema," and it uses the stored
procedures documented in "Data Access." All knowledge of the database schema is
hidden in the stored procedures, so that porting SqlProfileProvider to other database
types requires little more than modifying the stored procedures. (Depending on the
targeted database type, the ADO.NET code used to call the stored procedures might
have to change, too. The Microsoft Oracle .NET provider, for example, uses a different
syntax for named parameters.)

The ultimate reference for SqlProfileProvider is the SqlProfileProvider source code, which
is found in SqlProfileProvider.cs. The sections that follow highlight key aspects of
SqlProfileProvider's design and operation.

Provider Initialization
Initialization occurs in SqlProfileProvider.Initialize, which is called one timewhen the
provider is loadedby ASP.NET. SqlProfileProvider.Initialize processes the
applicationName, connectionStringName, and commandTimeout configuration attributes,
and throws a ProviderException if unrecognized configuration attributes remain. It also
reads the connection string identified by the connectionStringName attribute from the
<connectionStrings> configuration section, and caches it in a private field, throwing a
ProviderException if the attribute is empty or nonexistent, or if the attribute references a
nonexistent connection string.

Data Schema
SqlProfileProvider stores profile data in the aspnet_Profile table of the provider database.
Each record in aspnet_Profile corresponds to one user's persisted profile properties.
Table 12 documents the aspnet_Profile table's schema.

Table 12. The aspnet_Profile table

Column Name Column Type Description

UserId uniqueidentifier ID of the user to which this profile data
pertains

PropertyNames ntext Names of all property values stored in

this profile

PropertyValuesString ntext Values of properties that could be
persisted as text

PropertyValuesBinary image Values of properties that were
configured to use binary serialization

LastUpdatedDate datetime Date and time this profile was last
updated

The aspnet_Profile table has a foreign-key relationship with one other provider database
table: aspnet_Users (see Table 1-3). The aspnet_Profile table's UserId column
references the column of the same name in the aspnet_Users table, and it is used to
scope profile data by user.

Additional Scoping of Profile Data
In addition to scoping profile data by user, SqlProfileProvider supports scoping by
application name. Websites that register profile providers with identical applicationName
attributes share profile data, whereas websites that register profile providers with
unique applicationNames do not. Scoping by user name (or user ID) is facilitated by the
user ID recorded with each set of persisted profile properties, whereas scoping by
application name is facilitated by the application ID accompanying each user ID in the
aspnet_Users table.

Data Access
SqlProfileProvider performs all database accesses through stored procedures. Table 13
lists the stored procedures that it uses.

Table 13. Stored procedures used by SqlProfileProvider

Stored Procedure Description

aspnet_Profile_DeleteInactiveProfiles Deletes profile data from the
aspnet_Profile table for users
whose last activity dates in the
aspnet_Users table fall on or
before the specified date.

aspnet_Profile_DeleteProfiles Deletes profile data from the
aspnet_Profile table for the
specified users.

aspnet_Profile_GetNumberOfInactiveProfiles Queries the aspnet_Profile table
to get a count of profiles whose
last activity dates (in the
aspnet_Users table) fall on or
before the specified date.

aspnet_Profile_GetProfiles Retrieves profile data from the
aspnet_Profile table for users
who match the criteria input to

the stored procedure.

aspnet_Profile_GetProperties Retrieves profile data for the
specified user.

aspnet_Profile_SetProperties Saves profile data for the
specified user.

Stored procedure names are generally indicative of the SqlProfileProvider methods that
call them. For example, ASP.NET calls the default profile provider's GetPropertyValues
and SetPropertyValues methods to read and write profile data, and these methods in
turn call the stored procedures named aspnet_Profile_GetProperties and
aspnet_Profile_SetProperties, respectively.

Saving Profile Property Values
ASP.NET calls the default profile provider's SetPropertyValues method to persist profile
properties for a given user. SqlProfileProvider.SetPropertyValues performs the following
actions:

1. Extracts the user name and a value indicating whether the user is authenticated,
from the SettingsContext parameter passed to it.

2. Formats the property values for saving, by iterating through the items in the
SettingsPropertyValuesCollection passed to it, and initializing three variables—
names, values, and buf—with the values to be written to the database. (For more
information about the format of these variables, see "Persistence Format.")

3. Calls the stored procedure aspnet_Profile_SetProperties to write names, values, and
buf to the PropertyNames, PropertyValuesString, and PropertyValuesBinary fields of
the provider database, respectively.

SqlProfileProvider.SetPropertyValues delegates the task of initializing names, values, and
buf from the SettingsPropertyValuesCollection input to it, to a helper method named
PrepareDataForSaving. That method employs the following logic:

1. Checks the property values in the collection, and returns without doing anything if
none of the property values are dirty, or if the collection contains dirty property
values, but the user is not authenticated and none of the dirty property values have
allowAnonymous attributes equal to true. This optimization prevents round-tripping
to the database in cases where no data has changed.

2. Iterates through the collection, skipping property values lacking allowAnonymous
attributes equal to true if the user is not authenticated, as well as property values
that are not dirty and whose UsingDefaultValue property is true. In the first case, it
is the responsibility of the provider to enforce the distinction between anonymous
and authenticated use of profile properties. SqlProfileProvider does so by simply
ignoring any profile properties that have not been marked with the allowAnonymous
attribute when the current user is anonymous. The second case is a bit more subtle.
A profile property can be assigned a default value in the profile definition.
Alternatively, a profile property value may have been fetched from the database but
never modified in code. If the profile property is using the default value from the
profile definition, then the provider avoids the overhead of serializing it, as well as

the storage overhead of storing the value in the database. After all, the value can
always be reconstituted from the defaultValue attribute in the profile definition.

3. Processes the remaining property values in the SettingsPropertyValueCollection, by
appending each property's SerializedValue property to any data already in values or
buf. String SerializedValues are appended to values, whereas non-string
SerializedValues are appended to buf. In either case, information denoting where
SerializedValue was stored is written to names. As an optimization, if it finds that a
property value's Deserialized property is true and it's PropertyValue property is null,
the helper method doesn't record SerializedValue at all; instead, it simply records a
length of -1 for that property value in names.

When called by SqlProfileProvider.SetPropertyValues, aspnet_Profile_SetProperties
performs the following actions:

1. Calls the stored procedure aspnet_Applications_CreateApplication to convert the
application name input to it into an application ID.

2. Queries the aspnet_Users table to convert the user name input to it into a user ID. If
the query returns no records, aspnet_Profile_SetProperties calls
aspnet_Users_CreateUser to add the user to the aspnet_Users table and return a
user ID.

3. Updates the user's last activity date in the aspnet_Users table with the current date
and time.

4. Either updates an existing record in the aspnet_Profile table if an entry for the
specified user already exists, or inserts a new one.

aspnet_Profile_SetProperties performs all these steps within a transaction, to ensure
that changes are committed as a group or not at all.

Loading Profile Property Values
ASP.NET calls the default profile provider's GetPropertyValues method to retrieve profile
properties for a given user. SqlProfileProvider.GetPropertyValues performs the following
actions:

1. Creates an empty SettingsPropertyValueCollection to hold the
SettingsPropertyValues that will ultimately be returned to ASP.NET.

2. Extracts the user name from the SettingsContext parameter passed to it.

3. Iterates through the SettingsPropertyCollection passed to it and, for each
SettingsProperty it finds, adds a corresponding SettingsPropertyValue to the
SettingsPropertyValueCollection created in the first step. If a SettingsProperty lacks a
serializeAs attribute, SqlProfileProvider.GetPropertyValues sets the SerializeAs
property of the corresponding SettingsPropertyValue to SettingsSerializeAs.String if
the property value is a string or primitive, or to SettingsSerializeAs.Xml if the
property value is of any other type.

4. Calls the stored procedure aspnet_Profile_GetProperties to retrieve the user's profile
data from the provider database. SqlProfileProvider.GetPropertyValues copies the
data returned by the stored procedure into variables named names, values, and buf.
(For more information about the format of these variables, see "Persistence
Format.")

5. Parses the data stored in names, values, and buf, and uses it to initialize the
SettingsPropertyValues.

6. Returns the SettingsPropertyValuesCollection containing the initialized
SettingsPropertyValues to ASP.NET.

SqlProfileProvider.GetPropertyValues delegates the task of parsing the data retrieved
from the database and using it to initialize the SettingsPropertyValues, to a helper
method named ParseDataFromDB. That method decomposes the names array into items
denoting the names and locations of profile properties. For each item in names,
ParseDataFromDB retrieves the corresponding property value from values or buf, and
writes it to the SerializedValue property of the corresponding SettingsPropertyValue. As
an optimization, if the length recorded for a profile property in names is –1, and the
property represents a reference type (as opposed to a value type), the helper method
sets the corresponding SettingsPropertyValue's PropertyValue property to null and the
Deserialized property to true, effectively returning a null property value to ASP.NET.

When called by SqlProfileProvider.GetPropertyValues, aspnet_Profile_GetProperties
performs the following actions:

1. Queries the aspnet_Applications table to convert the application name input to it into
an application ID.

2. Queries the aspnet_Users table to convert the user name input to it into a user ID.

3. Queries the aspnet_Profile table for the PropertyNames, PropertyValuesString, and
PropertyValuesBinary fields for the specified user.

4. Updates the user's last activity date in the aspnet_Users table with the current date
and time.

If anything goes wrong along the wayif, for example, the application ID input to the
stored procedure is invalidaspnet_Profile_GetProperties return no records, indicating
that no profile data exists for the specified user.

Persistence Format
SqlProfileProvider persists profile properties in three fields of the aspnet_Profile table:
PropertyNames, PropertyValuesString, and PropertyValuesBinary. The following is a
synopsis of what's stored in each field:

• PropertyNames holds a string value containing information about the profile property
values present in the PropertyValuesString and PropertyValuesBinary fields. The
string holds a colon-delimited list of items; each item denotes one property value,
and it is encoded in the following format:

Name:B|S:StartPos:Length

Name is the property value's name. The second parameter, which is either B (for
"binary") or S (for "string"), indicates whether the corresponding property value is
stored in the PropertyValuesString field (S) or the PropertyValuesBinary field (B).
StartPos and Length indicate the starting position (0-based) of the corresponding
property value within these fields, and the length of the data, respectively. A length
of -1 indicates that the property is a reference type, and that its value is null.

• PropertyValuesString stores profile property values persisted as strings. This includes
property values serialized by the .NET Framework's XML serializer, and property
values serialized using string type converters. The "S" values in the PropertyNames
field contain the offsets and lengths needed to decompose PropertyValuesString into
individual property values.

• PropertyValuesBinary stores profile property values persisted in binary formatthat is,
profile properties that were serialized using the .NET Framework's binary serializer.
The "B" values in the PropertyNames field contain the offsets and lengths needed to
decompose PropertyValuesBinary into individual property values.

Note that profile providers are not required to persist data in this format or any other
format. The format in which profile data is stored is left to the discretion of the person or
persons writing the provider.

Differences Between the Published Source Code and the .NET
Framework's SqlProfileProvider
The published source code for SqlProfileProvider differs from the .NET Framework
version in the following respects:

• Declarative and imperative CAS checks were commented out. Because the source
code can be compiled standalone, and thus will run as user code rather than trusted
code in the global assembly cache, the CAS checks are not necessary.

• Calls to internal helper methods that integrate with ETW tracing have been
commented out in the published version.

• The internal helper methods for packaging data and unpacking data have been
cloned into the published provider, so that you can see the logic that is used in the
ParseDataFromDB and PrepareDataForSaving methods.

• Because the standalone provider compiles into a regular assembly, in partial trust
applications you will be able to use only string serialization or XML serialization.
Binary serialization requires a specific permission assertion
(SecurityPermission.SerializationFormatter) that has been commented out in the
code for the cloned versions of ParseDataFromDB and PrepareDataForSaving.

Web Event Providers
Web event providers provide the interface between Microsoft ASP.NET's health
monitoring subsystem and data sources for the events ("Web events") fired by that
subsystem. ASP.NET 2.0 ships with the following Web event providers:

• EventLogWebEventProvider, which logs Web events in the Windows event log.

• SqlWebEventProvider, which log Web events in Microsoft SQL Server and Microsoft
SQL Server Express databases.

• SimpleMailWebEventProvider and TemplatedMailWebEventProvider, which respond to
Web events by sending e-mail.

• TraceWebEventProvider, which forwards Web events to diagnostics trace.

• WmiWebEventProvider, which forwards Web events to the Microsoft Windows
Management Instrumentation (WMI) subsystem.

The Microsoft .NET Framework's System.Web.Management namespace includes a class
named WebEventProvider that defines the basic characteristics of a Web event provider.
It also contains a WebEventProvider-derivative named BufferedWebEventProvider that
adds buffering support. SqlWebEventProvider derives from BufferedWebEventProvider
and improves performance by "batching" Web events and committing them to the
database en masse. BufferedWebEventProvider is prototyped as follows:

public abstract class BufferedWebEventProvider : WebEventProvider
{
 // Properties
 public bool UseBuffering { get; }
 public string BufferMode { get; }

 // Virtual methods
 public override void Initialize (string name,
 NameValueCollection config);
 public override void ProcessEvent (WebBaseEvent raisedEvent);
 public override void Flush ();

 // Abstract methods
 public abstract void ProcessEventFlush (WebEventBufferFlushInfo
 flushInfo);
}

The following section documents the implementation of SqlWebEventProvider.

SqlWebEventProvider
SqlWebEventProvider is the Microsoft Web event provider for SQL Server databases. It
logs Web events in the provider database, using the schema documented in "Data

Schema," and it uses the stored procedure documented in "Data Access." Knowledge of
the database schema is hidden in the stored procedure, so that porting
SqlWebEventProvider to other database types requires little more than modifying the
stored procedure. (Depending on the targeted database type, the ADO.NET code used to
call the stored procedure might have to change, too. The Microsoft Oracle .NET provider,
for example, uses a different syntax for named parameters.)

The ultimate reference for SqlWebEventProvider is the SqlWebEventProvider source
code, which is found in SqlWebEventProvider.cs. The sections that follow highlight key
aspects of SqlWebEventProvider's design and operation.

Provider Initialization
Initialization occurs in SqlWebEventProvider.Initialize, which is called one timewhen the
provider is loadedby ASP.NET. SqlWebEventProvider.Initialize processes the
connectionStringName and maxDetailsEventLength configuration attributes. Then, it
calls base.Initialize to process other supported configuration attributes such, as
useBuffering, and throw an exception if unrecognized configuration attributes remain.

SqlWebEventProvider.Initialize reads the connection string identified by the
connectionStringName attribute from the <connectionStrings> configuration section,
and caches it in a private field. It throws a ConfigurationErrorsException if the attribute
is empty or nonexistent, if the attribute references a nonexistent connection string, or if
the connection string doesn't use integrated security.

Data Schema
SqlWebEventProvider logs Web events in the aspnet_WebEvents_Events table of the
provider database. Each record in aspnet_ WebEvents_Events corresponds to one Web
event. Table 14 documents the aspnet_ WebEvents_Events table's schema.

Table 14. The aspnet_WebEvent_Events table

Column Name Column Type Description

EventId char(32) Event ID (from
WebBaseEvent.EventId)

EventTimeUtc datetime UTC time at which the event was fired
(from WebBaseEvent.EventTimeUtc)

EventTime datetime Local time at which the event was
fired (from WebBaseEvent.EventTime)

EventType nvarchar(256) Event type (for example,
WebFailureAuditEvent)

EventSequence decimal(19,0) Event sequence number (from
WebBaseEvent.EventSequence)

EventOccurrence decimal(19,0) Event occurrence count (from
WebBaseEvent.EventOccurrence)

EventCode int Event code (from
WebBaseEvent.EventCode)

EventDetailCode int Event detail code (from
WebBaseEvent.EventDetailCode)

Message nvarchar(1024) Event message (from
WebBaseEvent.EventMessage)

ApplicationPath nvarchar(256) Physical path of the application that
generated the Web event (for
example, C:\Websites\MyApp)

ApplicationVirtualPath nvarchar(256) Virtual path of the application that
generated the event (for example,
/MyApp)

MachineName nvarchar(256) Name of the machine on which the
event was generated

RequestUrl nvarchar(1024) URL of the request that generated the
Web event

ExceptionType nvarchar(256) If the Web event is a
WebBaseErrorEvent, type of exception
recorded in the ErrorException
property; otherwise, DBNull

Details ntext Text generated by calling ToString on
the Web event

aspnet_WebEvents_Events is a stand-alone table that has no relationships with other
tables in the provider database. Many of its fields are filled with values obtained from
WebBaseEvent properties of the same name. ApplicationPath, ApplicationVirtualPath,
and MachineName contain values obtained from the Web event's ApplicationInformation
property. For details of how values are generated for all aspnet_WebEvents_Events
fields, see the SqlWebEventProvider.FillParams method in SqlWebEventProvider.cs.

Data Access
SqlWebEventProvider performs all database accesses through the stored procedure
named aspnet_WebEvent_LogEvent (Table 15). That stored procedure is a simple one
consisting of a single INSERT statement that initializes the fields of the new record with
the input parameters generated by SqlWebEventProvider.FillParams.

Table 15. Stored procedure used by SqlWebEventProvider

Stored Procedure Description

aspnet_WebEvent_LogEvent Records a Web event in the
aspnet_WebEvents_Events table.

Processing Web Events
When a Web event is raised, the Web events subsystem calls the ProcessEvent method
of each Web event provider mapped to that event type. If buffering is not enabled,
SqlWebEventProvider.ProcessEvent records the Web event in the provider database, by

calling the helper method WriteToSQL. If buffering is enabled,
SqlWebEventProvider.ProcessEvent buffers the Web event by calling the base class's
ProcessEvent method. The following is the source code for
SqlWebEventProvider.ProcessEvent, with diagnostic code removed for clarity:

public override void ProcessEvent(WebBaseEvent eventRaised)
{
 if (UseBuffering) {
 base.ProcessEvent(eventRaised);
 }
 else {
 WriteToSQL(new WebBaseEventCollection(eventRaised),
 0, new DateTime(0));
 }
}

If buffering is enabled, the Web events subsystem calls the provider's ProcessEventFlush
method to flush buffered Web events. ProcessEventFlush's job is to read buffered Web
events from the event buffer, and commit them to the database.
SqlWebEventProvider.ProcessEventFlush calls WriteToSQL to log the buffered events. as
follows:

public override void ProcessEventFlush
 (WebEventBufferFlushInfo flushInfo)
{
 WriteToSQL(flushInfo.Events,
 flushInfo.EventsDiscardedSinceLastNotification,
 flushInfo.LastNotificationUtc);
}

SqlWebEventProvider.WriteToSQL contains the logic for recording Web events in the
provider database. WriteToSQL calls FillParams to generate the parameters written to
the database, and then calls the stored procedure aspnet_WebEvent_LogEvent to write
the parameters to the provider database. WriteToSql is capable of writing one Web
event or multiple Web events, and it contains built-in logic for delaying retries for at
least 30 seconds (or the number of seconds specified by the commandTimeout
configuration attribute) after a failed attempt to write to the database.

Differences Between the Published Source Code and the .NET
Framework's SqlWebEventProvider
The published source code for SqlWebEventProvider differs from the .NET Framework
version in the following respects:

• Declarative and imperative CAS checks were commented out. Because the source
code can be compiled standalone, and thus will run as user code rather than trusted
code in the global assembly cache, the CAS checks are not necessary.

• The published version includes a derived event type called MyWebBaseEvent that is
used for manipulating events in the provider. The .NET Framework provider uses the
base WebBaseEvent class directly, because the .NET Framework provider is able to
call internal WebBaseEvent methods.

Web Parts Personalization Providers
Web Parts personalization providers provide the interface between Microsoft ASP.NET's
Web Parts personalization service and personalization data sources. ASP.NET 2.0 ships
with one Web Parts personalization provider: SqlPersonalizationProvider, which stores
personalization data in Microsoft SQL Server and Microsoft SQL Server Express
databases.

The fundamental job of a Web Parts personalization provider is to provide persistent
storage for personalization statestate regarding the content and layout of Web Parts
pagesgenerated by the Web Parts personalization service. Personalization state is
represented by instances of System.Web.UI.WebControls.WebParts.PersonalizationState.
The personalization service serializes and deserializes personalization state, and
presents it to the provider as opaque byte arrays. The heart of a personalization
provider is a set of methods that transfer these byte arrays to and from persistent
storage.

The Microsoft .NET Framework's System.Web.UI.WebControls.WebParts namespace
includes a class named PersonalizationProvider that defines the basic characteristics of a
Web Parts personalization provider. PersonalizationProvider is prototyped as follows:

public abstract class PersonalizationProvider : ProviderBase
{
 // Properties
 public abstract string ApplicationName { get; set; }

 // Virtual methods
 protected virtual IList CreateSupportedUserCapabilities() {}
 public virtual PersonalizationScope DetermineInitialScope
 (WebPartManager webPartManager,
 PersonalizationState loadedState) {}
 public virtual IDictionary DetermineUserCapabilities
 (WebPartManager webPartManager) {}
 public virtual PersonalizationState LoadPersonalizationState
 (WebPartManager webPartManager, bool ignoreCurrentUser) {}
 public virtual void ResetPersonalizationState
 (WebPartManager webPartManager) {}
 public virtual void SavePersonalizationState
 (PersonalizationState state) {}

 // Abstract methods
 public abstract PersonalizationStateInfoCollection FindState
 (PersonalizationScope scope, PersonalizationStateQuery query,
 int pageIndex, int pageSize, out int totalRecords);
 public abstract int GetCountOfState(PersonalizationScope scope,
 PersonalizationStateQuery query);
 protected abstract void LoadPersonalizationBlobs

 (WebPartManager webPartManager, string path, string userName,
 ref byte[] sharedDataBlob, ref byte[] userDataBlob);
 protected abstract void ResetPersonalizationBlob
 (WebPartManager webPartManager, string path, string userName);
 public abstract int ResetState(PersonalizationScope scope,
 string[] paths, string[] usernames);
 public abstract int ResetUserState(string path,
 DateTime userInactiveSinceDate);
 protected abstract void SavePersonalizationBlob
 (WebPartManager webPartManager, string path, string userName,
 byte[] dataBlob);
}

The following section documents the implementation of SqlPersonalizationProvider,
which derives from PersonalizationProvider.

SqlPersonalizationProvider
SqlPersonalizationProvider is the Microsoft Web Parts personalization provider for SQL
Server databases. It stores personalization data, using the schema documented in "Data
Schema," and it uses the stored procedures documented in "Data Access." All knowledge
of the database schema is hidden in the stored procedures, so that porting
SqlPersonalizationProvider to other database types requires little more than modifying
the stored procedures. (Depending on the targeted database type, the ADO.NET code
used to call the stored procedures might have to change, too. The Microsoft Oracle .NET
provider, for example, uses a different syntax for named parameters.)

The ultimate reference for SqlPersonalizationProvider is the SqlPersonalizationProvider
source code, which is found in SqlPersonalizationProvider.cs. The sections that follow
highlight key aspects of SqlPersonalizationProvider's design and operation.

Provider Initialization
Initialization occurs in SqlPersonalizationProvider.Initialize, which is called one timewhen
the provider is loadedby ASP.NET. SqlPersonalizationProvider.Initialize processes the
description, applicationName, connectionStringName, and commandTimeout
configuration attributes, and throws a ProviderException if unrecognized configuration
attributes remain. It also reads the connection string identified by the
connectionStringName attribute from the <connectionStrings> configuration section,
and caches it in a private field, throwing a ProviderException if the attribute is empty or
nonexistent, or if the attribute references a nonexistent connection string.

Data Schema
Web Parts personalization state is inherently scoped by user name and request path.
Scoping by user name allows personalization state to be maintained independently for
each user. Scoping by path ensures that personalization settings for one page don't
affect personalization settings for others. The Web Parts personalization service also
supports shared state, which is scoped by request path, but not by user name. (When

the service passes shared state to a provider, it passes in a null user name.) When
storing personalization state, a provider must take care to key the data by user name
and request path, so that it can be retrieved using the same keys later. A provider must
also ensure that it stores user-scoped data separately from shared state.

SqlPersonalizationProvider persists per-user personalization state in the
aspnet_PersonalizationPerUser table of the provider database, and it persists shared
personalization state in the aspnet_PersonalizationAllUsers table. Tables 16 and 17
document the schemas of these two tables, respectively. State is persisted as a
serialized blob in the PageSettings field. The PathId and UserId fields store scoping data,
while LastUpdatedDate stores time stamps.

Table 16. The aspnet_PersonalizationPerUser table

Column Name Column Type Description

Id uniqueidentifier ID of this record

PathId uniqueidentifier ID of the virtual path to which this state
pertains

UserId uniqueidentifier ID of the user to which this state pertains

PageSettings image Serialized personalization state

LastUpdatedDate datetime Date and time state was saved

Table 17. The aspnet_PersonalizationAllUsers table

Column Name Column Type Description

PathId uniqueidentifier ID of the virtual path to which this state
pertains

PageSettings image Serialized personalization state

LastUpdatedDate datetime Date and time state was saved

The aspnet_PersonalizationPerUser and aspnet_PersonalizationAllUsers tables contain
columns named PathID that refer to the column of the same name in the aspnet_Paths
table (see Table 18). Each entry in the aspnet_Paths table defines one path (for
example, ~/MyPage.aspx) for which Web Parts personalization state has been saved.
Paths are defined in a separate table, because, for a given path, a personalization
provider may be asked to save two types of state: per-user and shared. In that case,
both the aspnet_PersonalizationPerUser and aspnet_PersonalizationAllUsers tables will
contain entries for the corresponding paths, and each entry will contain a PathId
referring to the same entry in aspnet_Paths.

Table 18. The aspnet_Paths table

Column Name Column Type Description

ApplicationId uniqueidentifier Application ID

PathId uniqueidentifier Path ID

Path nvarchar(256) Path name

LoweredPath nvarchar(256) Path name (lowercase)

The provider database contains a stored procedure named aspnet_Paths_CreatePath
that providers (or stored procedures) can call to retrieve a path ID from the
aspnet_Paths table, or to create a new one if the specified path doesn't exist.

Additional Scoping of Personalization Data
In addition to scoping personalization state by user name and path,
SqlPersonalizationProvider supports scoping by application name. Websites that register
personalization providers with identical applicationName attributes share Web Parts
personalization data, whereas websites that register personalization providers with
unique applicationNames do not. Due to the page-specific and control-specific nature of
personalization data, however, it usually doesn't make sense to use the same
applicationName for Web Parts personalization data across different websites.

In support of application-name scoping, SqlPersonalizationProvider records an
application ID in the ApplicationId field of each record in the aspnet_Paths table.
aspnet_Paths' ApplicationId field refers to the field of the same name in the
aspnet_Applications table, and each unique applicationName has a corresponding
ApplicationId in that table.

Data Access
SqlPersonalizationProvider performs all database accesses through stored procedures.
Table 19 lists the stored procedures that it uses.

Table 19. Stored procedures used by SqlPersonalizationProvider

Stored Procedure Description

aspnet_PersonalizationAd
ministration_DeleteAllStat
e

Deletes all records from aspnet_PersonalizationAllUsers
or aspnet_PersonalizationPerUser corresponding to the
specified application ID.

aspnet_PersonalizationAd
ministration_FindState

Retrieves profile data from
aspnet_PersonalizationAllUsers or
aspnet_PersonalizationPerUser meeting several input
criteria.

aspnet_PersonalizationAd
ministration_GetCountOfS
tate

Returns a count of records in the
aspnet_PersonalizationAllUsers table with path names
matching the specified pattern, or a count of records in
the aspnet_PersonalizationPerUser table meeting several
input criteria.

aspnet_PersonalizationAd
ministration_ResetShared
State

Resets shared state for the specified page, by deleting
the corresponding record from the
aspnet_PersonalizationAllUsers table.

aspnet_PersonalizationAd
ministration_ResetUserSta
te

Resets per-user state for the specified user and the
specified page, by deleting the corresponding record from
the aspnet_PersonalizationPerUser table. Can also delete

records, based on the user's last activity date if it falls on
or before the specified date.

aspnet_PersonalizationAll
Users_GetPageSettings

Retrieves shared state for the specified page from the
aspnet_PersonalizationAllUsers table.

aspnet_PersonalizationAll
Users_ResetPageSettings

Resets shared state for the specified page, by deleting
the corresponding record from the
aspnet_PersonalizationAllUsers table.

aspnet_PersonalizationAll
Users_SetPageSettings

Saves shared state for the specified page in the
aspnet_PersonalizationAllUsers table.

aspnet_PersonalizationPer
User_GetPageSettings

Retrieves per-user state for the specified page and the
specified user from the aspnet_PersonalizationPerUser
table.

aspnet_PersonalizationPer
User_ResetPageSettings

Resets per-user state for the specified page and the
specified user, by deleting the corresponding record from
the aspnet_PersonalizationPerUser table.

aspnet_PersonalizationPer
User_SetPageSettings

Saves per-user state for the specified page and the
specified user in the aspnet_PersonalizationPerUser table.

Stored procedure names are generally indicative of the SqlPersonalizationProvider
methods that call them. For example, ASP.NET calls the default Web Parts
personalization provider's SavePersonalizationBlob method to save personalization state,
and SavePersonalizationBlob, in turn, calls either
aspnet_PersonalizationPerUser_SetPageSettings to save per-user personalization state,
or aspnet_PersonalizationAllUsers_SetPageSettings to save shared personalization state,
depending on whether it's passed a user name.

Saving Per-User Personalization State
To save Web Parts personalization state for a given user and a given page, ASP.NET
calls the SavePersonalizationBlob method of the default Web Parts personalization
provider, passing in the user name, the path to the page, and a byte array containing
the serialized personalization state. SqlPersonalizationProvider.SavePersonalizationBlob
validates the input parameters and calls the stored procedure
aspnet_PersonalizationPerUser_SetPageSettings to write the information to the provider
database.

aspnet_PersonalizationPerUser_SetPageSettings performs the following actions:

1. Calls the stored procedure aspnet_Applications_CreateApplication to convert the
application name into an application ID, and to create an application record in the
aspnet_Applications table if one does not already exist.

2. Calls the stored procedure aspnet_Paths_CreatePath to convert the path into a path
ID, and to create a path record in aspnet_Paths if one does not already exist.

3. If the user name input to aspnet_PersonalizationPerUser_SetPageSettings doesn't
already exist in the aspnet_Users table, calls aspnet_Users_CreateUser to record a
new user and return a user ID.

4. Updates the user's last activity date in the aspnet_Users table with the current date
and time.

5. Either updates an existing record in the aspnet_PersonalizationPerUser table if an
entry for the specified user and specified path already exists, or inserts a new one.

Currently, neither SqlPersonalizationProvider.SavePersonalizationBlob nor
aspnet_PersonalizationPerUser_SetPageSettings uses transactions to ensure that all
changes (that is, creating a new application record, a new path record, and a new user
record) are committed to the database as a whole or not at all, leaving open the
possibility that the database could be left in an inconsistent state when all these records
need to be created for the very first time.

Loading Per-User Personalization State
To load Web Parts personalization state for a given user and a given page, ASP.NET calls
the LoadPersonalizationBlobs method of the default Web Parts personalization provider,
passing in the user name, the path to the page, and a reference to a byte array through
which serialized personalization state is returned.
SqlPersonalizationProvider.LoadPersonalizationBlobs validates the input parameters, and
calls the stored procedure aspnet_PersonalizationPerUser_GetPageSettings to read the
information from the provider database.

aspnet_PersonalizationPerUser_GetPageSettings performs the following actions:

1. Calls the stored procedure aspnet_Personalization_GetApplicationId to convert the
application name input to it into an application ID.

2. Queries the aspnet_Paths table to convert the path name input to it into a path ID.

3. Queries the aspnet_Users table to convert the user name input to it into a user ID.

4. Updates the user's last activity date in the aspnet_Users table with the current date
and time.

5. Queries the PageSettings column of the aspnet_PersonalizationPerUser table for the
serialized personalization state.

Saving Shared Personalization State
To save shared Web Parts personalization state for a given page, ASP.NET calls the
SavePersonalizationBlob method of the default Web Parts personalization provider,
passing in a null user name, the path to the page, and a byte array containing the
serialized personalization state. SqlPersonalizationProvider.SavePersonalizationBlob
validates the input parameters and, seeing the null user name, calls the stored
procedure aspnet_PersonalizationAllUsers_SetPageSettings to write the information to
the provider database.

aspnet_PersonalizationAllUsers_SetPageSettings performs the following actions:

1. Calls the stored procedure aspnet_Applications_CreateApplication to convert the
application name into an application ID.

2. Calls the stored procedure aspnet_Paths_CreatePath to convert the path into a path
ID.

3. Either updates an existing record in the aspnet_PersonalizationAllUsers table if an
entry for the specified path already exists, or inserts a new one.

Currently, neither SqlPersonalizationProvider.SavePersonalizationBlob nor
aspnet_PersonalizationAllUsers_SetPageSettings uses transactions to ensure that all
changes (that is, creating a new application record and a new path record) are
committed to the database as a whole or not at all, leaving open the possibility that the
database could be left in an inconsistent state when both of these records need to be
created for the very first time.

Loading Shared Personalization State
To load shared Web Parts personalization state for a given page, ASP.NET calls the
LoadPersonalizationBlobs method of the default Web Parts personalization provider,
passing in the path to the page, and a reference to a byte array through which serialized
personalization state is returned. SqlPersonalizationProvider.LoadPersonalizationBlobs
validates the input parameters and calls the stored procedure
aspnet_PersonalizationAllUsers_GetPageSettings to read the information from the
provider database.

aspnet_PersonalizationAllUsers_GetPageSettings performs the following actions:

1. Calls the stored procedure aspnet_Personalization_GetApplicationId to convert the
application name input to it into an application ID.

2. Queries the aspnet_Paths table to convert the path name input to it into a path ID.

3. Queries the PageSettings column of the aspnet_PersonalizationAllUsers table for the
serialized personalization state.

Differences Between the Published Source Code and the .NET
Framework's SqlPersonalizationProvider
The published source code for SqlPersonalizationProvider differs from the .NET
Framework version in one respect: Declarative and imperative CAS checks were
commented out. Because the source code can be compiled standalone, and thus will run
as user code rather than trusted code in the global assembly cache, the CAS checks are
not necessary.

