

Microsoft Dynamics™ AX

Posting to the Ledger

June 2008

POSTING

POSTING TO THE LEDGER 2

Table of Contents

Introduction .. 3

Ledger structure ... 3

High-level processes ... 3

Using the APIs .. 4

General Facts .. 4
Functionality provided ... 4

Object containment ... 5

API definitions .. 6
LedgerVoucherGroup::Construct .. 6
LedgerVoucher::newLedgerPost ... 6
LedgerVoucherObject::newVoucher.. 6
LedgerVoucherGroup.addLedgerVoucher ... 7
LedgerVoucher.addVoucher ... 7
LedgerVoucherTransObject::newCreateTrans .. 7
LedgerVoucher.addTrans .. 7
LedgerVoucher.end .. 7

Ledger Journal API to LedgerVoucher ... 8

Non Ledger Journal API to LedgerVoucher .. 9

Multiple entry non-ledger journal API to LedgerVoucher 10

3 POSTING TO THE LEDGER

 Introduction

Ledger is the ending point for all financial transactions. Posting to the ledger is the most critical API in
any ERP system. Failure to use the APIs properly will lead to inaccurate financial statements. Every
subsystem eventually needs to get their base transaction data into the ledger. This document
discusses the functionality and APIs for posting to the ledger.

Ledger structure

The Microsoft Dynamics AX ledger is defined in a manner very similar to manual accounting systems.
The ledger contains all adjustment amounts, dates, and related information for all ledger accounts.
Any transaction that originates in a subledger, such as a customer, vendor, bank, or fixed asset

transaction, eventually needs to adjust ledger accounts so that the transaction amounts can be
reported on financial statements.

The ledger entries are grouped by journal number and further grouped by voucher number. The
journal number is a unique number that identifies a group of ledger adjustments generated through
one posting. The adjustments within a journal number can be subgrouped by voucher number. The
voucher number could represent a single transaction or a group of related transactions, depending on

how the customer has set up their journals. While journal numbers must be unique, voucher numbers
may permit duplicates if set up to do so. The adjustments must balance against each other on both a
per voucher and journal number basis.

High-level processes

Ledger posting is never initiated directly by the end user. Instead, it is run by processes initiated by
the user. When the user posts a purchase order invoice or performs a task, such as inventory closing,
the ledger posting APIs are called to generate the required transaction in General ledger.

POSTING TO THE LEDGER 4

Using the APIs

General facts

 The primary classes are LedgerVoucherGroup, LedgerVoucher, LedgerVoucherObject and
LedgerVoucherTransObject.

 The public API for ledger posting is the LedgerVoucher class.

 All submodule transaction postings into G/L (ledgertrans) are required to use the API.

 All postings that spawn allocations, accruals, or reversals are supported.

 The ability to post intercompany transactions is provided through the use ledger voucher
groups.

 Handles 1..* vouchers in 1 run

Functionality provided

 User credential validation

 Voucher number validation

 Ledger period validation

 Account/Dimensions restriction validation

 Voucher balance validation

 Secondary amounts using stored exchange rates are calculated

 Transactions when posting in summary are combined

5 POSTING TO THE LEDGER

 TransactionLog (Audit trail) records are created.

Object containment

The premise of LedgerVoucher is that an instance of a class contains instances of other classes in a
hierarchical manner. This produces a single instance of LedgerVoucher that contains all the vouchers
and transactions to post on a per company, journal entry basis. LedgerVoucherGroup provides the
means to group LedgerVoucher objects into a single autonomous posting. This supports posting to

multiple companies or journal entries in a single transaction.

LedgerVoucher

LedgerVoucherObject

LedgerVoucherTransObject

-Contains1

*

-Contains1

-Grouped by voucher*

LedgerVoucherGroup

-Contains1

*

LedgerVoucher

LedgerVoucherObject

LedgerVoucherTransObject

-Contains1

*

-Contains1

-Grouped by voucher*

Multiple journal class structure Single journal class structure

 The LedgerVoucherGroup is an optional class for use when posting transactions for multiple
companies or journal entries. When the need is to post transactions in multiple companies, a
LedgerVoucherGroup object is instantiated.

 A LedgerVoucher object is created for each combination of company and journal entry.

 If multiple instances of LedgerVoucher are required due to multiple companies or journal
entries, each instance is added to the LedgerVoucherGroup.

 An instance of LedgerVoucherobject is created for each voucher to post and is added to the
LedgerVoucher instance. The transactions are grouped by voucher number for each set of
transactions that balance out as a single posting<c>. Most postings only require a single
voucher.

 A LedgerVoucherTransObject is instantiated for each transaction and is added to a
LedgerVoucherobject instance contained in the LedgerVoucher instance.

POSTING TO THE LEDGER 6

API definitions

The APIs are listed in the order they would be invoked. The LedgerVoucherGroup methods are the
only used when posting more than on journal entry.

LedgerVoucherGroup::Construct

This static method is called to instantiate an instance of the class. Only required when posting a group

of journal entries in one atomic posting.

LedgerVoucher::newLedgerPost

This static method is called to instantiate an instance of the class. This is always required since it
represents a journal entry and posting is done by journal entry.

Parameter Type Description

_detailSummary DetailSummary

Enum:

Post the ledger transaction individually (Detail) or summarized
(Summary).

_sysModule SysModule

Enum

The module the transactions are originating from.

_voucherSeriesCode String 8 The <c>NumberSequenceTable</c> id to use when creating a
voucher number.

_transactionLogType TransactionLogType

Enum

The type of transaction to specify when creating transaction log
entries; optional.

_transactionLogTxt String 25 The transaction text to appear on each posted transaction; optional.

_approveJournal boolean Set to true if the voucher needs to support approval requirements of
not checking for duplicate vouchers or removal of records from the
invoice register pool; optional.

_posting boolean Set to false if needing to support inventory requirement of being able
to post without a posting type; optional.

LedgerVoucherObject::newVoucher

The static method creates a new ledgerVoucherObject representing a new voucher. Depending

on the transaction type a number of parm methods may be called to set voucher values.

Parameter Type Description

_voucher Voucher The voucher number to identify and define the
object.

_transDate Transdate The transaction date for the voucher; optional.

_sysModule SysModule

Enum

The module the voucher is originating from;
optional.

_ledgerTransType LedgerTransType

Enum

The transaction type contained in the voucher;
optional.

_correction NoYes

Enum

Set to Yes if this voucher is correcting a related
voucher; optional.

_operationsTax Operationtax

Enum

The ledger type the voucher is posting into if it is
not the current ledger; optional.

7 POSTING TO THE LEDGER

_documentNum String 20 The document number of the transaction if the
value is to be brought into the ledger; optional.

_documentDate DocumentDate The document date of the transaction if the
value is to be brought into the ledger; optional.

_tmpVoucherMap Map Used when all voucher numbers are to be
continuous. The map contains all the temporary
voucher numbers that will be replaced; optional.

_acknowledgementDate AcknowledgementDate The date to acknowledge by when the

transaction requires an acknowledgement. Only a
requirement in some countries; optional.

LedgerVoucherGroup.addLedgerVoucher

The method adds the new LedgerVoucher to the instance of LedgerVoucherGroup

LedgerVoucher.addVoucher

The method adds the new LedgerVoucherObject to the instance of LedgerVoucher

LedgerVoucherTransObject::newCreateTrans

The static method creates a new LedgerVoucherTransObject representing a new transaction.

LedgerVoucher.addTrans

The method adds the new LedgerVoucherTransObject to the instance of LedgerVoucherObject

LedgerVoucher.end

The method launches the posting of the vouchers.

POSTING TO THE LEDGER 8

Ledger journal API to LedgerVoucher

Any module that implements a new journal will extend journal classes and forms required for the new
journal type. Extending the classes should provide the means to generate LedgerJournalTable and
LedgerJournalTrans records. Posting of the new journal type should be handled by the base classes.
The following is an example of the APIs used to post a journal.

Example:LedgerJournalCheckPost.postJournal

 ledgerVoucher = LedgerVoucher::newLedgerPost();

 if a ledgerJournalTable record was read

 validate the ledgerJournalTable record

 for each ledgerJournalTrans

 if a new voucher is needed

 LVO = LedgerVoucherObject::newVoucher();

 ledgerVoucher.addVoucher(LVO, …);

 for each account and amount to post on the ledgerJournalTrans

 // the method creates the necessary ledgerTrans records to post

 ok = this.postTrans();

 // post the vouchers after all ledgerJournalTrans records have been read

 ledgerVoucher.end();

9 POSTING TO THE LEDGER

Non-ledger journal API to LedgerVoucher

All sub module transactions that post using transaction data from tables other than
LedgerJournalTable and LedgerJournalTrans use these APIs to post.

Example:InventPostPhysicalPeriodic.postledgerTrans

ledgerVoucher = LedgerVoucher::newLedgerPost();

transactionTxt = new TransactionTxt();

transactionTxt.setType();

transactionTxt.setVoucher();

// create a new voucher for posting the items together

ledgerVoucherObject = LedgerVoucherObject::newVoucher();

// assign the text to the voucher object and add to the voucher

ledgerVoucherObject.lastTransTxt(transactionTxt.txt());

ledgerVoucher.addVoucher(ledgerVoucherObject);

// if there is a header record to post loop through the lines and add a transaction

// to the voucher object for each record.

if (inventPostPhysicalTable)

{

 For each inventPostPhysicalTrans record to post

 {

 // use ledgerVoucher.findLedgerVoucherObject() to retrieve the last voucher object

 // added to the ledgerVoucher. This insures the correct voucher object is used when

 // creating the LedgerVoucherTransObject

 LVTO = LedgerVoucherTransObject::newCreateTrans(

 ledgerVoucher.findLedgerVoucherObject(), …);

 ledgerVoucher.addTrans(LVTO);

 }

}

// this completes the building of the ledgerVoucher.

// the call to end() will initiate the posting of the ledgerVoucher.

ledgerVoucher.end();

POSTING TO THE LEDGER 10

Multiple entry non-ledger journal API to LedgerVoucher

All sub modules using transaction data from tables other than LedgerJournalTable and
LedgerJournalTrans use these APIs to post when multiple journal entries are required.

Example:TaxWithhold.posttaxWithhold

ledgerVoucherGroup = LedgerVoucherGroup::construct();

For each record (<multiple posting table>)

 {

 // if intercompany the proper company context is required to

 // access values required during voucher creation

 changecompany(<company of transaction>)

 {

 For each record (<table containing records for the transaction>

 {

 if (<The criteria for a separate journal entry is met>)

 {

 // get the Number Sequence specified to generate a voucher number.

 numberSeqRef = <where number sequence is specified>

 numberSeq = NumberSeq::newGetVoucher(numberSeqRef);

 // This is the journal entry for the transaction for the current company

 LedgerVoucher = LedgerVoucher::newLedgerPost();

 // add the voucher to the group

 ledgerVoucherGroup.addLedgerVoucher(LedgerVoucher);

 }

 LVO = LedgerVoucherObject::newVoucher();

 // get the next voucher number and add it to the voucher

 LedgerVoucher.addVoucher(LVO, …);

 taxWithholdTransLedgerVoucher.findLedgerVoucherObject();

 // use ledgerVoucher.findLedgerVoucherObject() to retrieve the last voucher

 // object added to the ledgerVoucher. This insures the correct voucher object

 // is used when creating the LedgerVoucherTransObjec

 LVTO = LedgerVoucherTransObject::newCreateTrans(

 ledgerVoucher.findLedgerVoucherObject(), …);

 // add the transaction to the voucher

 LedgerVoucher.addTrans(LVTO);

 }

 }

}

// this completes the building of the ledgerVoucher.

// the call to end() will initiate the posting of the ledgerVoucherGroup.

ledgerVoucherGroup.end();

11 POSTING TO THE LEDGER

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the

date of publication. Because Microsoft must respond to changing market conditions, this document should not be interpreted to be a

commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of

publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS

TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of

this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means

(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of

Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject

matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this

document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft and the Microsoft Dynamics Logo are either registered trademarks or trademarks of Microsoft Corporation in the United

States and/or other countries.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

http://www.microsoft.com/dynamics

	Introduction
	Ledger structure
	High-level processes
	Using the APIs
	General facts
	Functionality provided
	Object containment
	API definitions
	LedgerVoucherGroup::Construct
	LedgerVoucher::newLedgerPost
	LedgerVoucherObject::newVoucher
	LedgerVoucherGroup.addLedgerVoucher
	LedgerVoucher.addVoucher
	LedgerVoucherTransObject::newCreateTrans
	LedgerVoucher.addTrans
	LedgerVoucher.end

	Ledger journal API to LedgerVoucher
	Non-ledger journal API to LedgerVoucher
	Multiple entry non-ledger journal API to LedgerVoucher

