
Journal 9

Learn the discipline,
pursue the art, and
contribute ideas at
www.ArchitectureJournal.net
Resources you can
build on.

®

Bare Naked Languages
or What Not to Model

Domain-Specific
Modeling

Measuring Success with
Software Factories

A Foundation for the
Pillars of Software
Factories

A GSI’s Perspective of
Software Factories

The Perspective-Based
Architecture Method

Software Factories

Foreword	 1

by Simon Guest

Bare Naked Languages or What Not to Model	 2

by Jack Greenfield
Domain-specific languages (DSLs) are useful as stand-alone languages, but not everyone
knows when or when not to use them. Find out how you can fit DSLs into the software factories
methodology to build useful assets and avoid common pitfalls.

Domain-Specific Modeling	 10

by Steve Cook
The essence of DSLs is to simplify larger problems into smaller problems. Discover how special-
purpose DSLs can be applied within a software factory platform and authoring environment.

Measuring Success with Software Factories	 18

by Marcel de Vries
Building today’s software can be an inefficient one-off or project-at-a-time development
process. Learn how to gather the metrics necessary to “industrialize” software development for
predictability in addition to better productivity and quality.

A Foundation for the Pillars of Software Factories	 24

by Tom Fuller
Process strategies can help your organization overcome the problems that software developers
face today. Look at how to adopt production line methodologies to promote reusability and
use strategic processes like architecture-driven development.

A GSI’s Perspective of Software Factories	 29

by Steve Eadie
Increasing productivity while maintaining user satisfaction is a concern for companies of all
sizes. See how to make a Global Systems Integrator (GSI) take advantage of a software factory
approach to be more cost effective, even if the developer team is spread worldwide.

The Perspective-Based Architecture Method	 34

by Lewis Curtis and George Cerbone
Innovation requires making quick, cost-effective decisions for organizations, and aligning
new business solutions with IT environments increases complexity. Organize your strategic
thinking by using the PBA method, which supports high-quality decision making through
well-focused questions.

Contents

Resources you can build on. www.architecturejournal.net

Journal 9

TM

Dear Architect,
I would like to be the first to welcome you to Issue 9 of The Architecture Jour-
nal, the theme of which is “software factories.”
	 Henry Ford was one of the pioneers of building a factory that first used
a production line in the early 20th century. Much of his work was notable
because it led to higher production rates for workers and more inexpensive
products. Stepping forward almost a hundred years, and for many of the
same reasons, the term and application have now become part of daily vo-
cabulary in our industry.
	 One of the books that first popularized the thinking in this area is Software
Factories: Assembling Applications with Patterns, Models, Frameworks, and
Tools by Jack Greenfield, et al. (Wiley 2004). Building on the ideas outlined in
this book, we are incredibly fortunate to have coauthors Jack Greenfield and
Steve Cook lead off this issue of The Architecture Journal.
	 In his article, “Bare Naked Languages,” Jack explains how to fit domain-
specific languages (DSLs) into the software factories methodology and covers
some common pitfalls to avoid when using this approach. As part of Jack’s
article, we are also introducing a new feature in this issue. Many readers
have been asking for more information about the careers of well-known and
respected software architects. As well as having Jack write our lead article,
we had the chance to sit down with him and get the full details on his career,
which are outlined in a new, “Profile of an Architect” section. I hope you enjoy
his answers, and we look forward to suggestions about who you would like to
see profiled in upcoming issues.
	 Steve Cook’s article digs into the details of using DSLs to simplify larger
problems into smaller problems, including the application in a software fac-
tory platform. Marcel de Vries continues the software factories theme, provid-
ing a look at the reporting and warehouse capabilities necessary to determine
which aspects of product development need improvement.
	 Returning contributor to The Architecture Journal, Tom Fuller, looks at a
foundation for the pillars of software factories to promote reusability and other
strategic processes. Steve Eadie from EDS follows Tom’s article with a view of the
perspective of implementing software factories from a Global System Integrator
(GSI). Steve offers some thoughts about using software factories through the
lens of GSI, even with a development team that’s located all around the world.
	 Finally, Lewis Curtis and George Cerbone outline their thoughts around
a method for perspective-based architecture. This way of analyzing require-
ments is a technique that architects can use to “ask the right questions” for
projects in which they’re engaged.
	 In the spirit of Henry Ford’s innovation, I hope this issue of The Architecture
Journal helps you build software factories and production lines that enable
you to offer software in any shape, size, and even painted in any color—well,
as long as it’s black of course!

Founder
Arvindra Sehmi
Microsoft Corporation

Editor-in-Chief
Simon Guest
Microsoft Corporation

Microsoft Editorial Board
Gianpaolo Carraro
John deVadoss
Neil Hutson
Eugenio Pace
Mauro Regio
Javed Sikander
Philip Teale
Jon Tobey

Publisher
Marty Collins
Microsoft Corporation

Online Editors
Beat Schwegler
Kevin Sangwell

Design, Print, and Distribution
Fawcette Technical Publications
Terrence O’Donnell, Managing Editor
Michael Hollister, VP of Art and
Production
Gerry Guzman, Circulation Manager
Kathleen Sweeney Cygnarowicz,
Production Manager

The information contained in The Architecture Journal

(“Journal”) is for information purposes only. The material

in the Journal does not constitute the opinion of Microsoft

or Microsoft’s advice and you should not rely on any mate-

rial in this Journal without seeking independent advice.

Microsoft does not make any warranty or representation as

to the accuracy or fitness for purpose of any material in this

Journal and in no event does Microsoft accept liability of

any description, including liability for negligence (except for

personal injury or death), for any damages or losses (includ-

ing, without limitation, loss of business, revenue, profits, or

consequential loss) whatsoever resulting from use of this

Journal. The Journal may contain technical inaccuracies and

typographical errors. The Journal may be updated from time

to time and may at times be out of date. Microsoft accepts

no responsibility for keeping the information in this Journal

up to date or liability for any failure to do so. This Journal

contains material submitted and created by third parties. To

the maximum extent permitted by applicable law, Microsoft

excludes all liability for any illegality arising from or error,

omission or inaccuracy in this Journal and Microsoft takes no

responsibility for such third party material.

All copyright, trademarks and other intellectual property

rights in the material contained in the Journal belong, or are

licensed to, Microsoft Corporation. You may not copy, repro-

duce, transmit, store, adapt or modify the layout or content

of this Journal without the prior written consent of Microsoft

Corporation and the individual authors.

© 2006 Microsoft Corporation. All rights reserved.

®

� • Journal 9 • www.architecturejournal.net

Foreword

Simon Guest

� www.architecturejournal.net • Journal 9 •

Bare Naked Languages
or What Not to Model
by Jack Greenfield

If you have been involved in the Visual Studio community over the

last two years, you’re aware of the excitement around domain-spe-

cific languages (DSLs) in the Visual Studio community (see Resources).

DSLs are visual, powerful, and easy to use. More important, there are

compelling examples of DSLs already in use or under development,

including DSLs for defining work item types, object relational map-

pings, and service contracts.

	 Unfortunately, in all the excitement, we sometimes see people

misapplying the technology. The problem is not that the motivation

for using DSLs is poorly understood. On the contrary, the commu-

nity seems to clearly understand the benefits they offer over general-

purpose modeling languages like unified modeling language (UML),

which is gratifying, since we have devoted a lot of article, podcast,

panel, and keynote space to that topic over the last two years. Here is

a quick recap.

	 A general-purpose modeling language is designed to support the

development of models that serve primarily as documentation. Such

a language can describe any domain, but only imprecisely. The impre-

cision is a consequence of using generic abstractions, such as class,

activity, use case, or state. The use of such generic abstractions is what

makes a general-purpose modeling language broadly applicable. In the

case of UML the generic abstractions are defined using informal, natu-

ral language rather than formal or semiformal semantic, definition tech-

niques, such as translation, execution, or denotation. The combination

of generic abstractions and informal semantics prevent such a language

from describing any particular domain precisely.

	 A DSL, by contrast, is designed to describe precisely a specific domain,

such as a task, platform, or process. Instead of generic abstractions,

it uses concepts taken directly from the target domain. The precision

offered by such a language is further improved by defining its seman-

tics using either translation or execution. This level of formality is possi-

ble because the language designer knows how models based on the lan-

guage will be used for computation. Examples of the kinds of compu-

tations performed with DSL-based models include: generating code or

other artifacts; creating relationships among model elements and code

or other artifacts; validating relationships among model elements and

code or other artifacts; configuring a run-time component, such as a

Web server; and analyzing models and related code or other artifacts (for

example, computing the impact of a given change).

	 At least that’s the theory. The problem is that in practice peo-

ple don’t always seem to know when to use or not to use a DSL,

what to model, or how to develop a set of related models that can

be stitched together to support a development process. These prob-

lems can be avoided by building software factories, instead of bare

naked languages, which are DSLs that are not defined in the context

of software factories. A software factory usually supplies a variety of

reusable assets, including DSLs, to support software development.

More important, it helps developers build useful assets by placing

them in the context of a product architecture and a development

process for a specific type of deliverable.

When Not to Use DSLs
Let us look more closely at the most common pitfalls in applying DSL

technology. We see people using DSLs to solve problems that are not

well suited to modeling, such as problems that can be solved more

easily with other tools, or problems in poorly understood or rapidly-

evolving domains, where reusable patterns and practices have not yet

emerged or stabilized. For example, we have seen DSLs for entity rela-

tionship mapping and business application development become obso-

lete while they were still being developed because the platform tech-

nology underneath them was still evolving.

	 We also see people who are confused about what to model. This

confusion is usually manifested by scoping problems. The two most

common scoping problems are using a single DSL to capture informa-

tion about too many different kinds of things, or to capture too many

different kinds of information about the same thing, and factoring con-

cepts poorly among multiple DSLs. For example, we have seen one DSL

used to describe the decomposition of systems into collaborating ser-

vice-based components, and the messages exchanged by the compo-

nents, and the payloads carried by the messages, and the structure of

the component implementations, and the configuration of the compo-

nents for deployment.

	 Industry experience with patterns and aspects has clearly demon-

strated that tangling many different concerns in a single piece of code

creates problems. This principle applies to models as well as to code.

Summary
Domain-specific language (DSL) technology was intro-
duced at Microsoft as part of the software factories
methodology. While DSLs are useful as stand-alone
languages, placing them in the context of a software
factory makes them more powerful and helps avoid
some common pitfalls in applying the technology. This
article explains how DSLs fit into the software factories
methodology and how using the methodology can
help DSL developers avoid some common pitfalls.

DSLs in Software Factories

� • Journal 9 • www.architecturejournal.net

For example, I might want to change a message payload definition for

a component, while someone else changes the component implemen-

tation structure using the DSL described previously. We will face a com-

plex merge problem when we check in our changes because two differ-

ent concerns have been tangled in a single model. The problem is that

the model is poorly factored. A poorly factored model is like poorly fac-

tored code. It fails to separate concerns, making change difficult and

error prone. We can improve poorly factored models the same way we

improve poorly factored code, by refactoring to patterns that cleanly

separate pieces of code or concepts that represent different concerns. A

good clue that two concepts in a language represent different concerns

is that they change at different rates or for different reasons.

	 As for stitching models together to support a development pro-

cess, we see a lot of interest in the Visual Studio community, but not

many working examples based on DSLs. Object-oriented analysis and

design (OOA&D) popularized the idea of using a set of interrelated

models to span gaps in the development process, especially the gap

between requirements and design (see Resources). Unfortunately, it

never quite lived up to the promise, since the models involved were

merely documentation based on general-purpose modeling lan-

guages that only loosely described the requirements or the design.

Who are you, and where do you work?
I am Jack Greenfield. I work as an archi-
tect in the Enterprise Frameworks and
Tools (EFT) group in the Visual Stu-
dio Team System organization, which is
part of the server and tools business at
Microsoft.

Can you tell us a little about your career
at Microsoft?
When I joined EFT, the group was already
building the set of tools that we now
call the Distributed System Designers in
Visual Studio 2005 under the leadership
of Anthony Bloesch and Kate Hughes.
Keith Short saw the tools as a “down pay-
ment” on a vision of model-driven devel-
opment (MDD), where organizations
would use models as source artifacts for
automating application development,
not just as documentation.
	 EFT was a natural fit for the vision of
MDD presented in my book, which was
partially completed when I joined Micro-
soft. My vision was similar to Keith’s, in
seeking to leverage MDD, but it brought
a new twist into the picture by placing
MDD in the context of software prod-
uct line engineering, which emphasizes
the development of reusable assets sup-
porting a custom process for building
a specific type of deliverable. Keith and
I worked together to create a unified
vision and to describe it in the book. The
result was the methodology we now call
software factories.
	 While we were writing the book we
saw an opportunity to use the modeling
framework used by the Distributed Sys-

tem Designers as a basis for domain-spe-
cific languages (DSLs), which constitute an
important component of the methodol-
ogy. We put together a business case for
productizing the framework and for build-
ing tools to support it as the first step
toward implementing software factories.
	 We took the proposal to Eric Rud-
der, supported by a demo, and asked
for resources to build a team. We were
able to show that we had a good foun-
dation to build on. Eric agreed and pro-
vided the funding. We were fortunate
to be able to hire an all-star team led
by Steve Cook and Stuart Kent to do the
work. The result is what we now call the
DSL Tools, which were just released in the
Visual Studio SDK. Steve and Stuart also
joined us in writing the book, contrib-
uting chapters on language design and
implementation.
	 During that time, I also led an effort
to apply DSL technology to the tools
being developed for the Microsoft Busi-
ness Framework, working with a team
led by Steve Anonsen, Lars Hammer, and
Christian Heide-Damm. We used some
of the ideas from the book about model
references and model management on
that project. I also did a lot of speak-
ing, writing, and customer interviews to
evangelize software factories. Several
people helped us promote, refine, and
implement the methodology. Michael
Lehman, Mauro Regio, and Erik Gun-
valdson, in particular, were instrumen-
tal. Mauro and I are writing a new book
called Software Factories Applied that
shows how to build factories using the

prototypes he developed for HL7 and
UMM as examples.
	 We are now building additional prod-
ucts to support the software factories
vision. One of the most important steps
enabling our current work was Mike Kropp
becoming the product unit manager for
EFT and integrating it with the patterns and
practices group, another all-star cast led
by Wojtek Kozaczynski and Tom Hollander.
The merger of the two groups has put the
wood behind the arrow to build the vision.

What kind of advice would you give
to someone who wants to become an
architect?
Good question. In general, you do not
apply for a job as an architect; it just kind
of happens to you, and I think it hap-
pens because of the way you think, the
way you talk, and the kind of work you
do. For me, an architect is someone who
goes beyond the fine details of program-
ming and thinks about the big picture.
	 I like a description that was offered by
someone I met recently from the Nether-
lands: an architect mediates communica-
tion among people who think about end-
user concerns, people who think about
technology, and people who think about
the business case. They see how the thing

Profile of
an Architect–Jack Greenfield

(Profile continued on page 4)

DSLs in Software Factories

� www.architecturejournal.net • Journal 9 •

Also, the relationships between the models were defined only infor-

mally, with the goal of helping humans perform the transformations

between them by hand. Perhaps the most serious problem, however,

is that the gap between requirements and design must be spanned in

different ways for different types of applications. A lot of important

detail was lost as people tried to apply a one-size-fits-all approach

using generic models to complex problems.

	 Despite these shortcomings, the vision remains powerful, and we

see many people attempting to realize it in a variety of ways. Most

of them do it manually, some have developed DSL integrations, and

some have tried model-driven architecture (MDA) from the Object

Management Group (OMG). Of course, MDA never quite lived up to

the promise, either, as has been explained in several podcasts and

articles. I will recap briefly the reasons here to save you the effort

of looking them up. You can then refer to them if you like for more

detailed discussion (see Resources).

	 MDA emphasizes platform independence. In practice, platform

independence is not an absolute quality of a model. It’s a quality that

a model can have to varying degrees. For example, an entity rela-

tionship model may not depend on the features of a specific version

can come together in much the same
way that an architect in the construction
trade sees how a building comes together
to serve the needs of its users in an aes-
thetically pleasing way within the own-
er’s budget and schedule using available
building technologies.
	 At some point someone will say about
you, “he or she is our architect,” and that
is how you will know you are functioning
in that role. Over the last few years a lot
of good material has been written about
architecture and the role of the architect,
and an industry consensus regarding best
practices is emerging. In addition to devel-
opment and organizational skills, an archi-
tect needs to know how to find and apply
relevant research in product designs.

How do you keep up to date?
First, I spend a lot of time with folks inside
Microsoft. I have a lot of interactions with
other teams that help me see the bigger
picture and where my work fits within it.
I think being familiar with your compa-
ny’s products is one of the most impor-
tant obligations of an architect. Of course,
Microsoft is huge, and it is hard to get
your head around even a small chunk of
it, but the more you can learn the better.
	 From there, I tend to follow move-
ments in industry and academia, such as
the design patterns and agile develop-
ment movements. I read a lot of books
and articles by other folks who push the
envelope, such as Martin Fowler and
Rohan McAdam. On the academic side,
I follow the Software Engineering Insti-
tute (SEI), especially the work being done
by Linda Northrup, Len Bass, Paul Clem-
ents, and others on the practice of archi-
tecture, which contributed to the design
of software factories. I also stay in touch
with colleagues like Krzysztof Czarnecki

at Waterloo and Don Batory at Austin. I
also serve on conference program com-
mittees and peer review boards for jour-
nals, which give me opportunities to see a
lot of good papers. I also do my share of
speaking and writing to stay engaged in
the community.

Name the most important person you
have ever met and why?
Apart from sitting on Lyndon Johnson’s
knee as a five year old, the most impor-
tant person I have ever met has to be Bill
Gates. I have presented to Bill on a cou-
ple of occasions, sitting right across the
table from him. On every occasion he has
played the same kind of role, which was
to ask a lot of questions and then to point
us at related work taking place in other
parts of Microsoft. I think this really dem-
onstrates the point about knowing your
company. Bill is always concerned about
leveraging as much as possible of what
we are doing around the company.
	 Another person I would put on my
list is Steve Jobs. He is a charismatic and
visionary leader. He creates a tremendous
amount of excitement in people. It gave
me the feeling of doing something world
changing.

What is the one thing that you regret
most in your career?
I have done more than my share of things
that I would do differently in hindsight, but
the one thing I regret most is not a single
thing, but rather a trend or pattern that if
I could I would correct from the start. In
the past, I have often thought, “I can do
it!” and have just plowed ahead. Instead, I
should have stepped back and spent more
time working with others as part of a team.
	 It is hard to overemphasize the value
of being part of a team. No one has all

the cards as an individual. There have
been many times in my career when I
have held nine of the ten cards I needed
to win, but could not get the tenth card
without a team. Unless you work in a way
that brings out and synthesizes the con-
tributions of other people, you will not
have all the cards when you need them.
Thinking you can do it alone is an afflic-
tion that plagues many technically gifted
people. Look around some time and
notice how many B students who work
well with teams end up being more suc-
cessful than A students who know most
of the answers. It should be clear from
the number of people I have named in
this interview that the success of my work
depends on the work of many other peo-
ple and vice versa, and there are many
people who have made key contributions
to the software factories vision. Some of
them are named in the acknowledge-
ments in the first book, and a whole new
set will be named in the second book.

What does Jack Greenfield’s future
look like?
I want to see software factories change
the industry. This goal relates to the com-
ment I just made about teams. To have
industry-wide impact, software facto-
ries will have to be owned and devel-
oped by many people. Object orientation
emerged in the late 70s and early 80s, but
in the course of being scaled out to the
masses in the 90s a lot was lost along the
way. A lot of what we call object-oriented
code today is not object oriented—it just
happens to be written in an object-ori-
ented language. I think the same thing is
happening with service orientation.
	 The key to fixing these kinds of prob-
lems is changing software development
from a craft to an engineering disci-

(Profile continued from page 3)

DSLs in Software Factories

� • Journal 9 • www.architecturejournal.net

	 MDA relies on a single general-purpose modeling language: UML. I

have already explained the motivation for using DSLs rather than a gen-

eral-purpose modeling language like UML. A model-driven develop-

ment (MDD) methodology should use modeling languages that are

powerful enough to support application development in the real world.

	 MDA assumes that only the same three kinds of models are needed

regardless of what is being modeled. One is called a computation-inde-

pendent model, one is called a platform-independent model, and one is

called a platform-specific model. This assumption is really another man-

ifestation of a generic approach. It does not make sense to define a spe-

cific set of models for a specific type of soft-

ware if the modeling language is not capable of

describing that type of software any differently

than it would describe some other type of soft-

ware. In practice, many different kinds of mod-

els are needed to describe any given piece of

software, and the kinds of models needed are

different for different types of software.

	 MDA focuses entirely on transformation.

From the platform-independent model, we

push a magic button that generates the plat-

form-specific model. From there, we push

another one to generate the code. Computer-

aided software engineering (CASE) demon-

strated in the late 1980s and early 1990s that

there are no magic buttons. MDA is trying to

go one better than CASE by relying on two of

them. In practice, transformation is usually the

last computation to be supported effectively

between two models or between a model

and code or other artifacts, simply because it

requires so much knowledge about the two

domains. Also, the engineering challenges of

managing changes to one or both of the arti-

facts are daunting. Long before transforma-

tion can be supported, other forms of model-

based computation are possible.

Best Practices for MDD
At this point, you may be wondering if there

are some best practices you could follow to

avoid these problems. Not only are there

best practices, there is a methodology that

embodies a set of integrated best practices

for MDD. I am talking about the methodol-

ogy we call software factories. If you have

been involved in the Visual Studio commu-

nity over the last two years, you are also aware

of the excitement around software factories.

If you’re not familiar with software factories,

their home page on the MSDN site is a good

starting point for finding more information

(see Resources). You may also have noticed

that DSLs and software factories are often

mentioned in the same breath, and you may

be wondering how they are related. Let us

look at the answer to that question.

of a database management system from a specific vendor, but it still

assumes the existence of a relational platform with certain capabilities.

I have yet to see a model that is truly independent of all assumptions

regarding the capabilities of the underlying computational platform.

	 MDA assumes that the world consists entirely of models. Of course,

we know that it contains many other types of artifacts manipulated

by many techniques and technologies other than modeling. A model-

driven development methodology should embrace those other tech-

niques and technologies and should explain how models integrate with

those other types of artifacts.

pline. A lot of people have said it cannot
be done, and for some time our indus-
try has been in a phase of focusing on
craftsmanship at the expense of devel-
oping and applying better engineering
practices. Unfortunately, craftsmanship
does not scale, and there is a tidal wave
coming, driven by changes in the global
economy, which will require approaches
that do scale.
	 I think the key to scaling up and scaling
out is to leverage experience, which is the
goal of software factories. In the simplest
terms a factory is experience codified and
packaged in such a way that others can
apply it. As much as I appreciate “following
design smells,” if you are still smelling your
way through the fifth or sixth Web appli-
cation something is wrong. You may smell
your way through a part of it, through
some new requirement or some new algo-
rithm, but by and large most of the work
we do is similar to work that has already
been done, and we need to get much bet-
ter at leveraging that experience. We are
getting there slowly but surely. If I can help
bring about transition, I will have achieved
my professional goals.

Jack Greenfield’s Résumé
Education
B.S. Physics, 1981; George Mason University;

GPA, 3.15/4.00

Graduate Course Work

1988, George Mason University

Continuing Education

1991, Oregon Graduate Institute

Experience
Microsoft Corporation – Redmond, WA

10/2002 – present: architect, enterprise

tools

Rational Software Corporation –

Redmond, WA

11/2000 – 7/2002: chief architect, practitioner

desktop group

Inline Software Corporation – Sterling, VA

5/1997 – 11/2000: chief technical officer

Objective Enterprise LLC – Reston, VA

4/1995 – 4/1997: principal

Personal Library Software Inc. –

Rockville, MD

6/1994 – 4/1995: manager, core technology

3/1994 – 6/1994: senior architect

NeXT Computer Inc. – Redwood City, CA

12/1992 – 3/1994: senior software engineer

3/1989 – 12/1992: software engineer

Micro Computer Systems Inc. –

Silver Spring, MD

10/1986 – 3/1989: senior architect

RDP Inc. – Manassas, VA

3/1986 – 10/1986: senior systems analyst

TransAmerican Computer Systems Inc. –

Fairfax, VA

6/1985 – 3/1986: senior software engineer

Business Management Systems Inc. –

Fairfax, VA

10/1981 – 6/1985: systems programmer/

analyst

Patents
Dynamic object communication protocol,

1994

Method for providing stand–in object, 1994

Method and apparatus for mapping objects

to multiple tables of a database, 1994

Method for associating data-bearing objects

with user interface objects, 1994

Systems and methods that synchronize data

with representations of the data, 2004

Partition-based undo of partitioned object

graph, 2005

Books
Software Factories: Assembling Applications

with Patterns, Models, Frameworks, and

Tools (Wiley 2004)

Software Factories Applied (Wiley 2007)

DSLs in Software Factories

� www.architecturejournal.net • Journal 9 •

	 In a nutshell, software factories is a methodology for creating

domain-specific development processes and custom development

environments to support them. A lot has been written about them, so

I am not going to take on the whole topic here. Instead, we will focus

only on how they relate to DSLs and how they address the problems

described previously.

	 Let us start our discussion of software factories by looking at

the root cause behind the pitfalls described previously. All of the

problems boil down to the desire for a universal solution technol-

ogy that can be applied to all problems. In the case of DSL tech-

nology, this desire manifests itself in the assumption that a DSL

is the best solution, no matter what the problem. This tendency,

which I call “the hammer syndrome,” is not unique to DSLs, of

course. It afflicts any technique or technology that has proven

useful for solving a frequently encountered class of problems.

What causes the hammer syndrome? Michael Jackson offers this

diagnosis (see Resources):

	 Because we don’t talk about problems, we don’t analyze or classify

them, and so we slip into the childish belief that there can be Universal

Development Methods, suitable for solving all problems.

	 Despite the marketing hype, we know that there cannot be a univer-

sal modeling language that describes every domain precisely enough to

support computation. By the same reasoning, we should also know that

a DSL cannot be the best solution to every problem. Given the power

and elegance of DSL technology, however, it’s easy to start thinking that

every problem looks like a nail.

	 If we could describe the classes of problems that DSLs are good

at solving, then we should be able to codify some guidance for using

them appropriately. But why stop there? Why not develop a systematic

way to analyze and classify problems? If we could describe frequently

encountered classes of problems, then we should be able to work on

developing techniques or technologies that are good at solving the

problems in each class. This approach is the basic thinking behind pat-

terns and frameworks. It is also the basic thinking behind software fac-

tories, which are based on the same underlying principles and assump-

tions as patterns and frameworks.

	 A factory describes one or more classes of problems that are

encountered frequently when building a specific type of deliverable,

such as a smart client, a mobile client, a Web client, a Web service, a

Web portal, or a connected system. These examples are horizontal,

meaning that they are based on specific technologies and architectural

styles. A software factory can also target vertical deliverables, such as

online auctions, commerce sites, banking portals, or even retail bank-

ing portals. As we shall see, the description of the frequently encoun-

tered classes of problems supplied by a factory identifies one or more

domains that may be candidates for DSLs.

	 Why target a specific type of deliverable? Why not use a generic

problem analysis and classification mechanism like an enterprise archi-

tecture framework (EAF)? There are several well-known EAFs, such as

the Zachmann Framework, the Open Group architecture framework

(TOGAF), and the pattern frame from Microsoft patterns and practices

(see Resources). As you might have already guessed from these examples,

EAFs are often expressed as grids with rows representing different levels

of abstraction and columns representing different aspects of the devel-

opment process.

	 The motivation for using a factory instead of an EAF is the same

as the motivation for using a DSL instead of a general-purpose

modeling language. Like a general-purpose modeling language, an

EAF is merely documentation that imprecisely describes almost any

deliverable. By contrast, a factory contains a schema that describes

a specific type of deliverable precisely enough to support many

useful forms of computation.

	 Clearly, different classes of problems are frequently encountered

when building different types of deliverables. A mobile client presents

different problems than a smart client, and a Web service presents dif-

ferent problems than a Web portal. Such contrasts do not mean that we

should think in terms of building two different DSLs, one for each type

of deliverable. We need to think more broadly than a single language

when dealing with problems as large as building an entire application,

to avoid the kinds of scoping problems described previously.

	 We should therefore think in terms of building two different facto-

ries. Those two factories may indeed contain two different DSLs. More

likely, however, each factory will contain multiple DSLs, since multiple

DSLs will be needed to support the development of the entire deliver-

able. How many of those DSLs will appear in both factories? The answer

would require a bit more analysis than space allows here, but we can

safely assume that there will be some DSLs in common, and some DSLs

unique to each factory. In other words, the differences between the two

factories will probably go beyond two different DSLs.

	 There will be many different DSLs and they will be integrated in dif-

ferent ways. The two factories will have different schemas. Also, because

a factory schema is not obliged to be rectangular, we can define as

many classes of problems as we need to accurately analyze a given type

of deliverable. Relationships between different classes of problems are

also easier to express, since they do not rely on adjacency between cells

arranged in rows and columns.

	 To develop a factory schema we analyze the deliverables of a given

type to identify and classify the problems we frequently encounter

when building them. We start by breaking down the problem of build-

ing a typical deliverable into smaller problems, and we continue until

the leaves of the tree are bite-sized problems dealing with just one part

of the deliverable, such as data contracts, service agents, workflows, or

forms. In practice, we often end up with multiple, bite-sized problems

working with different aspects of the same part, such as its structure, its

behavior, or its security policy. By decomposing the problem, we sepa-

rate concerns and identify discrete problems that can be worked rela-

tively independently.

Generalizing Problems
The next step is to generalize from specific problems encountered

when building several typical deliverables to classes of problems that

we can reasonably expect to encounter when building any deliverable

of the same type. The specifics will vary from one deliverable to the

next, of course, but the classes of problems will remain the same. The

specific services accessed will vary from one smart client to the next,

for example, but we can reasonably expect to encounter service access

problems when building any smart client.

	 Look more closely at the smart client example to see the kinds of

problems we can define. A smart client has a composite user interface

that displays multiple views. Each view reflects the state of some under-

lying model. The state of the view and the state of the model are syn-

chronized by a presenter. Changes in one view may affect another view

through events. Presenters collaborate by publishing and subscribing

to events, enabling scenarios like master detail, where the contents of a

DSLs in Software Factories

� • Journal 9 • www.architecturejournal.net

detail view, such as a form, track the selection in a master view, such as

a tree or list view.

	 Models, views, presenters, and events are grouped into modules

that can be loaded on demand. Smart clients also often interact

with databases through data access layers or with remote services

through service agents. These components can cache the results

of database or service interactions for efficiency or let an appli-

cation continue working offline when a database or service goes

offline, synchronizing changes when it comes back online. Secu-

rity is another key concern, as a smart client may interact with mul-

tiple databases or remote services using different authorization or

authentication mechanisms.

	 As the example suggests, a good way to find frequently encoun-

tered classes of problems for any deliverable type is to follow the archi-

tecture. We start with the largest components of the architecture and

break them down into smaller ones. We then identify the problems we

face in designing, implementing, testing, configuring, or changing each

component. The example also illustrates that different parts of a deliv-

erable present different kinds of problems in different phases of the life

cycle, and at different levels of abstraction. Building service interfaces

presents different kinds of problems than building service proxies, and

testing the data access classes presents different kinds of problems than

designing the business logic.

	 To put this discussion into the vocabulary of DSLs, we can think of

each class of problems as a problem domain. Building an entire deliv-

erable is a large problem domain containing many concerns. We

therefore decompose it into smaller problem domains until the leaves

of the tree are bite-sized problem domains that can be worked rela-

tively independently. For a smart client, these independent problem

domains might include:

•	 User interface design, consisting of view development, model devel-

opment, presenter development, and view integration

•	 Service design, consisting of contract design and service interface

construction

•	 Business logic construction, consisting of business logic workflow

and business logic classes

•	 Data access construction, consisting of service proxy construction

and data access classes

	 Some of these domains may be good candidates for DSLs.

	 This conclusion is important. We can now answer one of the questions

posed earlier: How do we know what to model? The first step in answer-

ing that question is to identify the type of deliverable we are trying to

build. A fundamental tenet of DSL technology is that a modeling lan-

guage must focus on a specific domain to provide precision. We cannot

focus on a specific domain outside the context of a specific type of deliv-

erable. The second step is to decompose the target deliverable type into

bite-sized problem domains that can be worked relatively independently.

	 A factory schema captures the results of this analysis in a comput-

able model that identifies those problem domains. (The factory schema

is a model based on a DSL supplied by the factory-authoring environ-

ment.) If we do a good job of defining the factory schema, then DSLs

developed for those problem domains will be scoped in a way that

effectively separates concerns.

	 Now we will look more closely at the factory schema to see

exactly how those problem domains are described, how DSLs map

onto them, and how they are organized in the factory schema in a

way that makes the DSLs easy to stitch together to support a devel-

opment process.

When to Use DSLs
Of course, DSLs are not the only choice of technology available, as

noted earlier. DSL-based designers are just one type of asset that can be

supplied by a factory. Other asset types include Visual Studio templates,

text generation templates (known as T4 templates in the DSL Tools),

recipes defined using the Guidance Automation Toolkit (GAT), code

snippets, documentation describing patterns and practices, class librar-

ies, and frameworks (see Resources).

	 We have already seen that different parts of a deliverable may pres-

ent different kinds of problems. Building them may therefore require

different techniques or technologies. For example, we might use .NET

framework classes and code snippets to build data access classes, but

we might use a wizard to expand a template that creates a starting

point for a service agent, and then complete the coding by hand using

guidance provided by documentation. Note that in this example, we are

not using any DSLs. It’s quite legitimate to build a factory that provides

only passive assets like patterns and practices.

	 We are now ready to look at another question posed earlier: How

do we know when to use or not to use a DSL? I will rephrase the ques-

tion based on this discussion. How do we know that we should use a

DSL, instead of some other type of asset, to solve the problems in a

given domain?

	 To answer that question, we need to look more closely at the

factory schema. We have already said that the factory schema is a

model designed to support computation, and that it describes one

or more problem domains representing the classes of problems that

are encountered frequently when building a specific type of deliv-

erable. We have also talked about decomposing large problem

domains into smaller ones that can be worked relatively indepen-

dently. We are now ready to put these ideas together to explain how

a factory schema works, and how it helps us determine when to use

or not to use a DSL.

	 A factory schema is a tree. Each node in the tree is called a view-

point. A viewpoint corresponds to a problem domain. The viewpoint at

the root of the tree corresponds to building an entire deliverable. The

viewpoints below the root are derived by decomposition. A viewpoint

describes its corresponding problem domain by describing the prob-

lems we may encounter and telling us how to solve them. It describes

the solutions in terms of activities we may perform, explaining how

to perform each activity, and how to recognize when the activity is

required. The activities are described in terms of the work products

they manipulate. Work products are the artifacts we build to produce a

deliverable. Finally, a viewpoint describes a set of assets supplied by the

factory to help us solve the problems we may encounter in the domain.

The assets are designed to support the activities, often by fully or par-

tially automating them.

	 Take the contract design viewpoint as an example. The work prod-

ucts are data contracts and message contracts. The activities include

creating or destroying a data contract; adding, removing, or modify-

ing data elements in a data contract; creating or destroying a mes-

sage contract; adding, removing, or modifying methods in a mes-

sage contract; and connecting data contracts to method arguments in

message contracts. The assets supplied by the factory for the contract

DSLs in Software Factories

� www.architecturejournal.net • Journal 9 •

design viewpoint include a DSL-based Contract Designer, including

a set of T4 templates for generating the contract implementations; a

set of documents explaining how to build a data contract and how to

build a message contract; a checklist for validating contract designs;

a set of common message exchange patterns; and a set of patterns

describing the message contracts and data contracts used by each

message-exchange pattern.

	 Clearly, this viewpoint was a good candidate for a DSL. We can

now codify some guidance regarding when to use or not to use a

DSL: A DSL should be used instead of some other type of asset when

it is the best mechanism available for supporting the activities of a

specific viewpoint.

Employ a Maturity Curve
This answer begs another question, of course. How do we know when a

DSL is the best mechanism available?

	 The best way I know to answer that question is with a maturity

curve. We start by making modest investments in simple assets for a

given viewpoint and then gradually increase our level of investment

over time, building increasingly sophisticated assets as we gain a deeper

understanding of the problem domain targeted by the viewpoint and

greater confidence that we have scoped and defined the viewpoint cor-

rectly. Then we place it correctly in the context of enclosing and neigh-

boring viewpoints as part of a factory schema.

	 At the low end of the maturity curve are simple assets like guidelines

and other unstructured documents that help the reader know what

to do and how to do it. After using and refining the documents, we

may decide to formalize them into patterns. Over time, we may decide

to implement the patterns as templates that can be instantiated rap-

idly using wizards or recipes developed with the GAT. At some point,

we may decide to replace the templates with class libraries delivered as

example code or as assemblies.

	 The class libraries, in turn, may become frameworks, servers, or

other platform components, as we connect the classes to form mech-

anisms that embody the underlying patterns. At this point, we have

reached the high end of the maturity curve, where DSLs are most

effective. We can use DSLs to wrap a framework, a server, or other

platform components. They are particularly effective when the meta-

data captured by the designer can be consumed directly by the

framework, a server, or other platform components, or used to gener-

ate configuration and completion code. DSLs are very good at solving

these kinds of problems:

•	 Providing a graphical editor for an existing XML document format

•	 Rapidly generating a tree view and form-based user interface

•	 Capturing information used to drive the generation of code or

other artifacts

•	 Expressing a solution in a form that is easier for people to

understand

•	 Describing abstractions that cannot be discovered easily from

the code

•	 Describing domains that are easy to represent diagrammatically,

such as flows, conceptual maps, or component wirings

	 In general, they are good at handling domains containing moderate

amounts of variability. On the one hand, using a DSL to configure a run

time that has a few simple variables with fixed parameter values would

be overkill. A form containing a few drop-down choices, check boxes, or

radio buttons would be a better choice. On the other hand, a DSL may

not be powerful enough to support the construction of complex proce-

dural logic. A conventional, textual programming language would be a

better choice.

	 It is also possible to use a DSL to implement a pattern language

without the assistance of a framework, a server, or other platform

components. One situation in which this approach makes sense is

generating from models based on the DSL to models based on less

abstract DSLs. For example, we might generate models describing

message contracts from models describing business collaborations.

Another situation in which this approach makes sense is generating

from models based on a DSL to code that effectively implements a

framework, a server, or other platform components. For example, we

might generate a device-independent platform used by high-level

code by generating services that run on a target device from a model

describing the device characteristics.

Supporting a Development Process
Of course, it sometimes makes sense to build a DSL without climbing

the maturity curve described previously. Building simple DSLs can be

quite inexpensive, and a small team may be able to rapidly refine their

understanding of a target domain by iterating over the definition and

implementation of a DSL. However, I would not recommend attempt-

ing to build a complex designer or attempting to deliver even a simple

designer into a large user base that requires significant training, such as

a field organization, without first making sure you understand the tar-

get domain and its relationships to enclosing and neighboring domains.

	 Some factories may consist of nothing more than documents

describing patterns and practices organized around the factory

schema. Other factories may have a DSL for every viewpoint. In prac-

tice, we tend to see a mix of asset types in the typical factory, with a

large number of viewpoints served by code-oriented assets, such as

patterns, templates and libraries, and a modest number of viewpoints,

usually the most stable and well understood, served by powerful DSL-

based designers.

	 We have addressed two of the three questions introduced ear-

lier. Can we answer the third? How do we stitch DSLs together to

support a development process? As it turns out, we have already

covered most of the ground required to answer that question.

Given a good factory schema that decomposes the problem of

building a specific type of deliverable into relatively independent

viewpoints, the next step is to discover relationships between the

viewpoints.

	 We start by looking at how the work products in one viewpoint

relate to the work products in other viewpoints. Since we are working

with DSL-based viewpoints, the work products are defined in terms of

model elements on diagrams. There are many ways in which they can

relate. Here are just a few:

•	 Work products in one viewpoint may provide details about work

products in another. For example, a class diagram may provide

details about the implementation of an application described in a

system diagram.

•	 Work products in one viewpoint may use work products in another.

For example, a business collaboration diagram may use message

types defined in a contract design diagram.

DSLs in Software Factories

� • Journal 9 • www.architecturejournal.net

•	 Work products in one viewpoint may be wholly or partially

derived from work products in another. For example, a business

collaboration diagram may be partially derived from a use case

on a use diagram.

•	 Two viewpoints may provide different information about the same

work products. For example, a class diagram describes the struc-

ture of a group of classes, while a sequence diagram describes their

behavior in terms of interactions.

•	 Work products in one viewpoint may describe the relationship

between work products in others. For example, a deployment dia-

gram contains elements that describe the relationship between an

element in a logical, data-center diagram and one or more ele-

ments in a system diagram.

	 Once we have relationships between viewpoints based on work

products, the next step is to look at how activities in the related view-

points affect each other. For example, take the relationship between the

logical data-center diagram, the deployment diagram, and the system

diagram. In the system design viewpoint supported by the system dia-

gram, the primary activity is configuring systems, applications, and end-

points. In the logical, data-center design viewpoint supported by the

logical, data-center diagram the primary activity is describing logical

host types and their configurations and settings. In the deployment dia-

gram the primary activity is mapping systems onto logical host types.

	 The relationships between the viewpoints support an activity that

combines these activities to form a workflow called design for deploy-

ment, where a solutions architect configures systems, then maps the

system configurations onto logical host types captured by an infra-

structure architect in a trial deployment, and then validates the trial

deployment to see if the system configurations will deploy into the

data center correctly.

	 We can now see how DSLs fit into the larger picture of software

factories. We introduced DSLs at Microsoft to support the Soft-

ware Factory methodology, and the technologies are highly com-

plementary. A factory schema breaks a large problem domain into

smaller ones. The viewpoints at the leaves of the schema target rel-

atively independent components or aspects of the target deliver-

able type. Some of the viewpoints may be candidates for DSLs from

day one. Others may start with assets further down the maturity

curve and gradually evolve toward DSLs over time as experience is

gained. Some may remain volatile and challenging, relying on rela-

tively unsophisticated assets, such as documentation, for the life of

the factory.

	 DSLs that target the factory viewpoints will be well scoped, if the

factory is well designed, and will have well-defined relationships to

other DSLs that make it easy to stitch them together to support devel-

opment processes. At some point, we may offer technology that gen-

erates DSL integration code from the factory schema, and run-time

technology that supports the generated integrations.

	 The next time someone asks you to build an isolated DSL for a

broad domain like banking applications, ask them what aspect of bank-

ing they want you to target. When you get a blank stare in response,

you will know that what they really need is a factory that breaks the

domain into bite-sized nuggets, some of which may be supported by

DSLs and some of which may be supported by other types of assets, not

a bare naked language. •

Resources

MSDN

Enterprise Solution Patterns Using Microsoft .NET

Microsoft Patterns & Practices

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnpatterns/html/esp.asp

MSDN – Microsoft Visual Studio Developer Center

Domain-Specific Language Tools

http://msdn.microsoft.com/vstudio/DSLTools/

Guidance Automation Extensions and Guidance Automation Toolkit

http://msdn.microsoft.com/vstudio/teamsystem/workshop/gat/default.aspx

Jack Greenfield’s Blog

http://blogs.msdn.com/jackgr/archive/2006/01/22/502645.aspx

Software Factories

http://msdn.microsoft.com/vstudio/teamsystem/workshop/sf/default.aspx

Object-Oriented Analysis and Design with Applications, 2nd Edition, Grady

Booch (Addison-Wesley Professional 1993)

OMG

OMG Model-Driven Architecture

www.omg.org/mda/

The Open Group

Architecture Forum

www.opengroup.org/togaf/

Problem Frames: Analyzing and Structuring Software Development

Problems, Michael Jackson (Addison-Wesley Professional 2000)

Software Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools

Jack Greenfield, et al. (Wiley 2004)

Wikipedia

Enterprise Architecture

http://en.wikipedia.org/wiki/Enterprise_Architecture

The Zachman Institute for Framework Advancement

www.zifa.com

About the Author

Jack Greenfield is an architect for enterprise frameworks and tools at

Microsoft. He was previously chief architect, practitioner desktop group, at

Rational Software Corporation, and founder and CTO of InLine Software

Corporation. At NeXT Computer he developed the enterprise objects

framework, now a part of Web objects form Apple Computer. A well

known speaker and writer, he is a coauthor of the best-selling and award-

winning book Software Factories: Assembling Applications with Patterns,

Models, Frameworks and Tools, with Keith Short, Steve Cook, and Stuart

Kent. Jack has also contributed to UML, J2EE, and related OMG and JSP

specifications. He holds a B.S. in Physics from George Mason University.

10 www.architecturejournal.net • Journal 9 •

Domain-Specific
Modeling
by Steve Cook

The DSL pattern has three primary components (see Figure 1).

First, there is the model that the DSL user creates to represent

the problem. This model might be a textual expression, as in the

cases cited earlier in the article summary, or it might be an anno-

tated diagram. Second, there is a platform that will be used to exe-

cute the solution to the problem at hand. In the case of HTML, this

platform will be a Web browser; in the case of SQL, a database; and

in the case of a regular expression, a text editor or programming

environment. Third, there is a method to integrate the language

expression into the platform to configure it to the problem at hand.

	 There are two primary means of integration: interpretation and

generation. With interpretation, part of the platform itself is dedicated

to recognizing expressions in the DSL and executing their intent. With

generation, a separate procedure is used to convert the DSL expres-

sion into something that the platform recognizes natively. You can

also see the use of hand-crafted techniques (see Figure 1). A particular

model will inevitably only represent one aspect of the problem to be

solved, and other techniques must be used to solve the rest of it.

	 In recent decades model-driven techniques have been proposed

widely as a means to increase the efficiency of software develop-

ment. Under names such as structured, object-oriented, or analysis

and design, the idea is to draw a diagram that represents an aspect

of the system under construction, and to use that diagram directly to

help generate or implement that system. Such was the vision behind

Computer Aided Software Engineering (CASE) tools, promoted by

many vendors during the 1980s, and more recently model-driven

architecture, promoted by the Object Management Group.

	 On closer inspection, we can see that model-driven develop-

ment is exactly a case of the DSL pattern. The model is an expression

in the domain-specific language, this time a modeling language; the

platform is the execution platform for the system under construc-

tion; and the integration step is a code generator that transforms the

model into code that executes on the platform.

	 Although it is definitely an application of the DSL pattern, CASE

was not a great success. If we try to analyze why, we can identify two

primary reasons. First, the models were not a particularly pleasant or

convenient expression of the problem at hand. Working program-

mers would not necessarily recognize that the alternative expression

of the problem manifested in the diagrammatic models was any bet-

ter than simply writing the code in a general-purpose language, and

therefore would resist the introduction of these techniques. Second,

Summary
Domain-specific languages (DSLs) are special-purpose
languages designed to solve a particular range of
problems. DSLs are nothing new. Common examples
are: HTML, designed for representing the layout of
Web pages; SQL, designed for querying and updating
databases; and regular expressions, designed for find-
ing and extracting particular patterns in textual strings.
The essence of a DSL is that it makes a large problem
smaller. Without HTML, the problem of rendering Web
pages with more or less equivalent appearance on
millions of screens connected to different kinds of PCs
would be insurmountable. Without SQL, the problem
of allowing multiple concurrent users to establish,
query, and combine large lists of data would be a mas-
sive programming task. Without regular expressions,
searching for substrings within text would involve writ-
ing a complicated program. There is a pattern here:
to turn large problems into small problems, identify a
language that efficiently expresses that class of prob-
lems, and apply the pattern to connect expressions in
the language into the final environment in which the
problem is to be solved. Given that we are confronted
daily with large problems to solve, let’s look at how we
can harness this idea in practice.

Figure 1 The DSL pattern

Model

Integrate

Platform

Configure

Hand-crafted
techniques

Applying a DSL Pattern

11 • Journal 9 • www.architecturejournal.net

a lot of code was generated to bridge the abstraction gap between

the models and the execution platform. Any mistakes or inefficien-

cies in this generation step would tend to be corrected not by fixing

the generator but by fixing the generated code, thereby breaking

the link between the model and the solution and rendering the pat-

tern inoperative.

	 We may derive some important conclusions from this analy-

sis. First, it’s important for the meaning of the models to be readily

apparent to people familiar with the domain. The language must be

designed carefully to fit the intended purpose. We will return to this

topic later. Second, to successfully deploy such approaches it is very

important to win the hearts and minds of working developers, so they

can see that the pattern or tool will help them to get their work done

and will adopt it. Finally, the generation process must be efficient, and

it must be straightforward to remedy errors in it and to customize it.

	 An increasingly important motivation for considering the use of

DSLs is the sheer diversity and interconnectedness of today’s sys-

tems. Like it or not, any system of significant size involves a com-

bination of many different kinds of technologies and representa-

tions: programming languages, scripting languages, data defini-

tion and representation langua ges, con-

trol and configuration languages, and

so on. Given a particular feature in the

requirements of the system to be built

and deployed, it is quite unavoidable

for different aspects of that feature to

be scattered across all of these differ-

ent technologies and representations.

This problem cannot possibly be solved

by individual improvements in any of

these different technologies—it must be

addressed in a holistic way, by finding a

level of representation that spans all of

the implementation components and

technologies. The DSL pattern provides a

means to do this.

	 The benefits of DSLs can be con-

siderable. DSLs can enable much bet-

ter communication with stakeholders than lower-level technolo-

gies. Changes in requirements can be represented by changes in the

model, and thereby implemented rapidly. Changes in the technolog-

ical platform can be incorporated by manipulating the integration

step of the pattern, leaving the modeled representation unchanged.

The volume of code to maintain is smaller, and bugs in the gener-

ated code can be fixed by fixing the code generator.

	 These benefits do not come for nothing. To achieve them

requires tooling up for the pattern. Implementing a DSL from

scratch, whether textual or graphical, is a major enterprise and not

to be undertaken lightly. To alleviate these costs is the objective of

an emerging category of tools called language workbenches. A lan-

guage workbench is a set of tools that are targeted specifically at

the creation and deployment of new DSLs into existing develop-

ment environments. Language development is itself a domain that

is highly amenable to the application of the DSL pattern—and so a

crucial aspect of a language workbench is that it is bootstrapped—

that is built using itself. An example language workbench is the DSL

Tools, part of the Visual Studio SDK, which enables the rapid devel-

opment of graphical DSLs integrated into Visual Studio 2005. We’ll

take a more detailed look at the DSL Tools later.

Kinds of DSL
A domain is a subject area or area of concern to a particular set of

stakeholders in the system. Domains might be horizontal, technical

domains, such as user-interface, data persistence, communication,

or authentication. Or they might be vertical, business domains, such

as insurance, telephony, or retail. Domains can overlap. Domains can

be parts of other domains. A domain is bounded by the concerns of

its stakeholders, and as these concerns evolve, so does the domain.

Hence, domains are dynamic. When stakeholders see expressions or

models in the language, they must immediately recognize them as

directly expressive, useful, relevant, and empowering.

	 Languages may be textual, diagrammatic, or a combination. Mod-

ern high-performance personal computers with bitmapped displays

are well equipped to implement diagrammatic languages, which are

often much more expressive in relatively nontechnical domains than

textual languages. As they say, “a picture is worth a thousand words.”

Figure 2 The customization pit

?

DSL area

Figure 3 The customization staircase

Platform

Modify
generators

Double
derived

Custom
hooks

Applying a DSL Pattern

12 www.architecturejournal.net • Journal 9 •

	 Whether textual, diagrammatic, or a combination, a DSL must

be implemented to make it useful. Implementing a DSL means

building a tool that allows users to edit expressions or models in

the language. Such a tool would not normally stand alone. Because

a DSL typically addresses only a portion of the entire problem at

hand, the DSL tool must be tightly integrated into the develop-

ment environment.

Integrating the DSL
Figure 1 shows that the language must be integrated into the plat-

form. One aspect of this integration is that the expressions in the

language—models—must be converted into a form that is execut-

able by the platform. This aspect is straightforward if the platform

is designed to directly interpret the models. More commonly, how-

ever, it is necessary to transform the models into a form that can be

interpreted. Typically, this transformation involves the generation of

code that can be compiled and linked into an executable that runs

against the platform.

	 An important advantage of interpreting models directly is that

no compilation step is required, which makes it straightforward to

deploy new models and to remove old ones, even in the context of a

running system. Code generation on the other hand has advantages,

especially early in the evolution of a DSL:

•	 It is simple to implement.

•	 Existing mechanisms for compiling, linking, and debugging the

code can be used.

•	 It is straightforward to customize the generated code, and thus

extend the scope of the DSL.

	 It is important that a DSL should be customizable. Figure 2

illustrates what can happen with a noncustomizable DSL. The

scope of solutions that can be addressed by using the DSL forms

in an area called the customization pit. Although it is simple to use

the language to solve problems in this area, as soon as it is neces-

sary to step outside of this area, users encounter an insurmount-

able cliff because they would have to modify the platform itself,

which is not often feasible. Modification might be acceptable with

a mature DSL in a mature domain, but in other cases it can be a

major obstacle to success.

	 With a code-generation approach, it is straightforward and

highly desirable to turn this cliff into a staircase, which is eased

Figure 4 A starting solution for component models

Applying a DSL Pattern

13 • Journal 9 • www.architecturejournal.net

greatly by the abstraction facilities offered by modern general-pur-

pose programming languages, especially static type checking, inher-

itance, virtual functions, and partial classes (see Figure 3). The lat-

ter are a particular useful feature of the C# language that allows

the definition of a class to be spread across multiple files, which are

compiled and linked together into a single class definition. This def-

inition makes it simple to generate part of a class and write the rest

by hand, and if subsequent regeneration is needed, then the hand-

written part is preserved without any difficulty.

	 Note that such facilities were not widely available in mainstream

languages during the 1980s, which meant that it was much harder to

engineer this kind of customizability into CASE tools.

	 The first step of the staircase can be enabled by inserting explicit

customization hooks into the DSL itself. When one of these hooks is

enabled, then instead of generating complete code a stub is gener-

ated that requires the user to handwrite some code that completes

the program. If they do this incorrectly, the compiler’s error mes-

sages will tell them how to correct what they did.

	 The second step of the staircase can be enabled by generating

code in a “double-derived” pattern. Instead of a single class, a pat-

tern of two classes is generated. The base class contains all of the

generated method definitions as virtual functions; the derived class

contains no method definitions but is the one that is instantiated,

which allows the user, in a partial class, to override any of the gen-

erated functions with their own version. Of course the use of virtual

functions incurs a run-time penalty, but usually the benefit of cus-

tomizability outweighs this cost.

	 The third step of the staircase is enabled by making the code

generators themselves available for substitution. This availability

might be used when retargeting the language onto a new platform,

or adding major feature areas, or fixing bugs in the generators.

	 The final step of the staircase is to modify the platform itself,

which as already noted is not often a feasible option.

	 Referring back to the DSL pattern introduced in Figure 1, there

may be certain kinds of platform configuration that do not require

the full power of a DSL. For example, there may be just a few config-

uration options that can be input using a simple form or wizard. Or

perhaps the configuration of the solution requires the selection of

features from a list, much as the installation of a software package

often involves the selection of which features the user wants to have.

In such simple cases the full power of a DSL is unnecessary. DSLs

come into their own to configure aspects of the solution that involve

significant complexity and validation in their own right, in which case

the features described in this article can be used to create the DSLs

cheaply and effectively.

Validation and Error Handling
A key advantage of the DSL pattern is that the model can be vali-

dated before integrating it into the platform. Constraints on how

design elements may be connected and named can be enforced at

the level of the model, which can catch many kinds of errors much

earlier than would otherwise be the case. For example, architectural

design rules such as layering, avoiding circularity of dependencies,

consistency of user interaction, or ensuring that the design matches

the limitations of the implementation can be enforced.

	 Validation can be either hard or soft. Hard validation means

that the user, creating a model, is simply unable to create an invalid

model by the way that the modeling tool responds to interactions.

Soft validation is run in a batch, often when the model is saved or

prior to code generation, or on explicit request, and will report

errors to the user and refer them to the source of the error. Soft vali-

dations are typically cheaper to implement, but hard validations can

add significantly to the productivity of the user experience.

Forward and Reverse Generation
It is frequently proposed that a model should be automatically gen-

erated from a solution, that is, that code generation should also

work in reverse. This proposal is often called “reverse engineering”

and is a feature claimed by several CASE tools.

	 In reality, you can only extract a model from code if the model is

little more than a diagram of the code. That extraction can be use-

ful—it’s what sequence diagrams, for example, were invented for—

but it is not the approach we are addressing with DSLs. A good DSL

is close to the domain model and comprehensible in the terms of

the domain. The templates that transform the model to software are

created by the developers in that domain, capturing their expertise

in developing software in that domain. This approach is very differ-

ent from the typical “round-trip” tool, where there is only one way,

or a very few ways, of mapping a model to code.

	 Extracting just one design aspect from the code of a system can-

not be done unless that aspect has been kept carefully separate, and

the code is marked in such a way that the aspect can be extracted. In

practice, facilities of this kind are normally intended to allow model-

driven development and hand-written development to be seam-

lessly mixed, so that when code has been generated, developers can

modify this code by hand, and the result can be transformed back

into the model to keep the model synchronized with the code.

	 By far the easiest solution to this problem is to keep the gener-

ated and hand-written code physically separate by using facilities

such as partial classes, as already explained. It can also be conve-

nient to generate “starter” code intended to be customized by hand;

in this case the code generator must avoid overwriting such code in

later generation steps. If elements of the model have been changed

sufficiently to cause the hand-customizations to be rendered syn-

tactically incorrect, then this rendering will be picked up by the

compiler; and since this is by far the most common case, caused by

events such as changing names and structures, there is a lot of mile-

age in this simple approach.

	 Instead of using partial classes, the generated code can be

marked using comments that can be read by the code generator and

that delimit generated code from hand-written code. This approach

separates the two areas of code effectively at the cost of including

machine-readable comments that can reduce the human readability

of code.

	 A more ambitious approach relies on the structure of the code

and the model being extremely similar, either because the model

is a very direct representation of the code, or because the code is

“An increasingly important motivation

for considering the use of DSLs is the

sheer diversity and interconnectedness

of today’s systems”

Applying a DSL Pattern

14 www.architecturejournal.net • Journal 9 •

structured by a very specific and constrained pattern. In such cases

a model can be extracted by parsing the code, and the hand-writ-

ten and generated areas distinguished by the basic structure. Even

in these cases, though, there can be considerable ambiguity about

what is intended at the level of the model when particular changes

are made to the code. Making reverse synchronization work effec-

tively for such cases typically incurs a much higher implementation

cost for the tooling than the simpler forward-only approach.

Using DSL Tools to Build a DSL
The DSL Tools constitute a component of the Visual Studio 2005

SDK that makes it straightforward to implement a DSL, or in other

words to build a domain-specific modeling tool. With the DSL

Tools, the DSL author defines the concepts of the language, the

shapes used to render those concepts on the diagrammatic edit-

ing surface, and the various ancillary components that are used to

load and save the model to integrate the new tool into Visual Stu-

dio and to generate code and other artifacts from the models cre-

ated using the tool.

	 To start creating a DSL, the author creates a new Visual Studio

project, selecting the Visual Studio template Domain Specific Lan-

guage Designer. A wizard offers a choice of starting points that

provide complete working languages for authors to modify to

their needs, rather than having to start from scratch. After select-

ing the Component Models starting point and defining a few basic

parameters, the author is placed into a Visual Studio solution (see

Figure 4).

	 The central area of the screen consists of a diagram divided

into two parts, labeled Classes and Relationships and Diagram Ele-

ments. Contained in these areas are shapes that represent the

constituents of the definition of a DSL. The Classes and Relation-

ships define the concepts that the DSL represents, which in this

case are Components, Ports, and Connections. The Diagram Ele-

ments define the shapes that will appear in the diagram of the

resulting modeling tool.

Figure 5 Testing the component DSL

“To design a DSL, it is crucial to have the

involvement of the domain experts because

very often the basic inspiration for a DSL

will be found on their whiteboards”

Applying a DSL Pattern

15 • Journal 9 • www.architecturejournal.net

	 The other parts of the screen are arranged as follows: on the left

is the Toolbox, containing elements that can be dragged onto the

diagram to create new classes, relationships, diagram elements, and

so on. At the top right is the DSL Explorer, which offers a tree-struc-

tured view of the complete language definition. This view shares an

area of the screen with other Visual Studio windows including the

Solution Explorer, Class View, and Team Explorer. At the lower right

is the Properties browser, which offers a detailed drill-in to the prop-

erties of the element selected currently on the diagram or the DSL

Explorer. Within Visual Studio, users can arrange all of these win-

dows to their taste, including undocking them and distributing them

across multiple displays.

	 The solution shown in Figure 4, which you will recall was offered

as a starting-point for the DSL author, defines a complete work-

ing language. Two steps are required to see it working. The first

step is to generate all of the code and configuration files needed to

make the tool, which is done by clicking Transform All Templates in

the Solution Explorer. The second step is to press the F5 key, which

builds and registers the solution and launches a second copy of

Visual Studio to test the DSL. Figure 5 shows the result of opening a

file called Test.comp and using the Toolbox to add a couple of com-

ponents to the diagram.

	 At this point, authors have many options for how to modify and

extend the language. They can delete unwanted parts of the lan-

Figure 6 Swimlanes added to the DSL definition

Applying a DSL Pattern

16 www.architecturejournal.net • Journal 9 •

guage definition. They can add new domain classes and relationships

or add properties to existing domain classes and relationships, to

represent additional concepts. They can add new shapes and connec-

tors to extend and alter the way that the language’s concepts are dis-

played diagrammatically to its users. They can create code generators

that transform a model built using the language into code or config-

uration data. They can create new validation rules to represent the

domain’s constraints. They can customize the language, through its

extension points, to offer different kinds of user-interface options for

the model builder such as forms, wizards, or text editors.

	 Let us look at how to create a simple extension to the component

modeling tool (see Figure 6). We will add “swimlanes” to the tool, to

represent architectural layers. These layers can be used to represent

design constraints, such as restricting a component to communicate

only with components in adjacent layers.

	 First, we add the concept of a layer to the domain model. This con-

cept is involved in two relationships: a single ComponentModel con-

tains any number of layers, and a Component refers to the layer with

which it is associated. The domain class Layer is made a subclass of

NamedElement so that it acquires a name property. Then we drag a

swimlane off the Toolbox into the diagram area, call it LayerSwimlane,

and give it a NameDecorator in which to display the name of the layer.

We use the DSL Details tool to declare that a ComponentShape has

a layer as its parent and specify how to merge a component into the

model when it is dropped onto a layer. Finally, we associate the Layer

domain class with the LayerSwimlane shape using the Diagram Element

Map tool. These concepts and relationships are shown in Figure 6.

	 At this point, the designer can be regenerated and tested. Once

again, click Transform All Templates, followed by pressing the F5 key,

which launches a second copy of Visual Studio. Now the component

modeling language has swimlanes, and when components are placed

in a swimlane, they get associated automatically with the correspond-

ing layer (see Figure 7).

	 At this point, the language author can define new validation con-

straints that will ensure, for example, that each component only com-

municates with a component in an adjacent layer. This approach can be

done by means of validation methods defined on partial classes for the

relevant domain classes—Component, in the example. Using the DSL

Tools, validation methods can be defined that implement the validation

logic. All of the calling and error-reporting logic is implemented by the

language framework. The warning resulting from implementing such a

validation can also be seen in Figure 7.

Figure 7 Component DSL with swimlanes and validation

Applying a DSL Pattern

17 • Journal 9 • www.architecturejournal.net

Designing a DSL
Domain-specific modeling has been applied successfully in numer-

ous domains, including mobile telephony, automotive-embedded

devices, software-defined radio, financial applications, industrial

automation, workflow, Web applications, and others. Several inter-

esting case studies from various vendors can be found at the DSM

Forum Web site (see Resources).

	 To design a DSL, it is crucial to have the involvement of the domain

experts because very often the basic inspiration for a DSL will be

found on their whiteboards. They will sketch out the way that they

think about the important problems in their domain, often using

diagrams consisting of shapes connected by lines of various kinds.

Working with the DSL developers, these ideas can be translated into

domain models mapped to shape models that can be implemented

using the DSL Tools.

	 A fundamentally important aspect of the design of a domain

model is its set of validation constraints. For example, it is likely to

be necessary that various names are unique within their context, so

that elements can be identified uniquely. Also there might be exis-

tence constraints; for example, if part of the model represents a map-

ping or transformation, there must be things at either end. There

might be topological constraints, such as the presence or absence of

cycles. These constraints must be identified and implemented because

to generate code or otherwise implement the model into its envi-

ronment, it must be valid. As noted earlier, constraints can be imple-

mented either as hard validations that are implicit in the tool’s user

interface or soft constraints that are run as a batch when the model is

opened, saved, code generation is attempted, or on explicit request.

	 To create the code generators, it is first necessary to have a

complete, working, tested implementation of the desired tar-

get code. This code must be analyzed to determine which parts

of it can be derived from elements in the model and what kinds

of patterns must be applied to do this derivation. Sometimes this

will require the target code to be refactored to simplify or clar-

ify these patterns. Note that refactoring is a transformation of the

code that preserves its behavior, while restructuring it to make

it easier to generate or modify. For refactoring to be successful

it is necessary to have a suite of tests, which the code must pass

before and after refactoring.

	 Also note that the generators need to operate over only valid

models. It should not be necessary to implement the generators

defensively so that they also handle invalid models because only

valid models should be used as a source for code generation.

	 At this stage it is also important to consider the customization

options that will be offered for the language. If there are places in

the code where the user will be required to handwrite their own

logic, these places must be identified, and suitable techniques must

be used to make it easy for the user to complete their coding task,

such as generating a call to a nonexistent function. It may also be

useful to generate starting stubs for the user to fill in. It is also often

useful to provide more general customization techniques for allow-

ing unforeseen modifications, such as the double-derived technique

discussed earlier.

	 When designing the diagrammatic structure of a DSL, it can be use-

ful to take inspiration from the conventions established by the Unified

Modeling Language (UML). For example, if there is an inheritance-like

concept in the DSL, it would probably be perverse to represent it other

than using an open triangle pointing at the more general element. For

this reason, the starting languages offered by the DSL Tools are based

diagrammatically on those of UML, although they use simpler underly-

ing domain models. In our experience, the popularity of UML lies pri-

marily in the fact that it offers a standard set of diagrammatic conven-

tions, and not in the details of how these conventions are implemented.

	 Another approach to designing a DSL, for users who already have

a UML tool, is to use UML itself as a starting point. By decorating

the UML elements with stereotypes and tagged values, their mean-

ings can be modified to correspond more directly to the desired

domain. This approach can be successful in domains that are close

to the intended meaning of the UML elements, but does make the

creation of code generators and validation tools considerably more

complicated than the simpler approach of designing a purpose-built

domain model for the desired language.

DSLs and Software Factories
Although DSLs can be useful as a stand-alone tool, especially in very

constrained domains, their use is most compelling as part of a com-

plete software factory. You may think of a DSL as a software power

tool, which is put together with other tools, guidance, and automa-

tion to constitute a complete factory. The software factories vision is

explained by other articles in this issue, and in the popular book by

Greenfield and Short (see Resources).

	 When a DSL is deployed as part of a factory, it must be integrated

deeply with the other factory components. For example, menus and

other UI gestures within the language may launch tools and actions

associated with other parts of the factory. Conversely, menus and

gestures within other parts of the factory might launch, or otherwise

interact with, the DSL. In consequence, the entire factory should

appear to its users as a seamless whole, intended for solving the

user’s problem, rather than a ragbag of loosely-integrated tools.

	 To enable these integrations, it is important for the DSL to offer

powerful, dynamic integration points, such as the ability to run (and

undo) commands that act on the model and its associated arti-

facts, the generation of simple APIs for interacting with the mod-

els, and the serialization of models in XML files that enable process-

ing by readily-available tools. All of these factors have been taken

into account in designing the DSL Tools, which are part of the overall

software factory platform and authoring environment. •

Resources

Domain-Specific Modeling (DSM) Forum

www.dsmforum.org

Software Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools

Jack Greenfield, et al. (Wiley 2004)

About the Author

Steve Cook is a software architect in the enterprise frameworks and

tools group at Microsoft. He is one of the designers of the Domain-

Specific Language Tools in the Visual Studio SDK. Previously he was a

distinguished engineer at IBM and represented them in the specification

of UML 2.0. He has worked in the IT industry for more than 30 years, as

architect, programmer, consultant, author, researcher, and teacher. He is

a member of the editorial board of the Software and Systems Modeling

journal, a fellow of the British Computer Society, and holds an honorary

doctor of science degree from De Montford University.

18 www.architecturejournal.net • Journal 9 •

Measuring Success
with Software Factories
by Marcel de Vries

Building software today is hard. Systems get more complex and

larger every day. We face rapidly changing technology while try-

ing to keep pace with the demands of business customers who want

us to write more software better and faster. Is it really possible to be

more productive while producing better quality software? Can greater

productivity be sustained across maintenance and upgrades without

degraded quality or significant rewriting?

	 Many of these problems arise because we learn too little from the

projects we have done. Few teams regularly reuse solutions or keep

track of the things that went well and the things that went wrong. As a

result, there is not enough knowledge transfer between projects. Les-

sons already learned are relearned by new developers. Since most proj-

ects fail to deliver on time and within budget, we can see that we also

have a predictability problem.

	 It is possible to build software on time, within budget, and with ade-

quate quality. However, there must be an organizational awareness that

the current approach to building software is grossly inefficient. With-

out awareness of existing problems there will be no drive to improve.

To start building software systems predictably, we must make a cultural

change. We need to make it easier for practitioners to know what to do,

when to do it, why to do it, and how to do it—and we must automate

more of the rote and/or menial aspects of their work.

	 What we are talking about is industrializing software development,

applying techniques long proven in other industries to our own industry,

in the hope of making things better for our customers and ourselves.

Quality and Productivity Measures
As it turns out, the factory schema provides a useful mechanism for

organizing metrics. Since each viewpoint targets a specific aspect of the

software-development process, we can use viewpoints to define tar-

geted measures of productivity and quality. Using those measures, we

can gather data for specific aspects of the software-development pro-

cess. By analyzing the data, we can then determine which viewpoints

need to improve, how to improve them, and what we can gain by

improving them.

	 To implement this approach, we need a way to express product

size, time and budget spent, and product quality to be able to quan-

tify predictability, productivity, and quality for each viewpoint. By mea-

suring each viewpoint, as well as overall factory performance, we can

determine how each viewpoint affects overall factory performance, and

therefore how much to invest in better supporting a given viewpoint.

	 For example, we might provide simple guidelines for viewpoints that

do not significantly affect overall efficiency, and sophisticated domain-

specific language (DSL)–based designers for viewpoints that do. This

Summary
Software factories and Visual Studio Team System
(VSTS) can be used together to improve quality, pre-
dictability, and productivity of software projects. Using
the VSTS data warehouse and reporting capabilities,
the software factory builder can determine reliably
which aspects of product development need improve-
ment and how to modify the software factory to
improve them. The author assumes you already know
software factory nomenclature and concepts like view-
points, views, factory schema, and factory template.

Figure 1 An area definition that reflects viewpoints

Software Factories

19 • Journal 9 • www.architecturejournal.net

process helps us get the best return on investment in terms of predict-

ability, productivity, and quality. It helps us compare the results to the

goals set initially before we started factory development.

	 One of the aspects of software development we need to improve is

productivity. However, to quantify productivity we need a metric that

we can use to express productivity in terms of software product volume

built in a span of time. When we are able to predict the size of the sys-

tem and to measure product-size growth during development, we can

better predict the time required to complete the project, and we can

measure productivity in terms of hours spent per unit of product size.

By measuring the growth and size, we are able to identify differences

between the actual and planned values and to start analyzing and man-

aging the differences when they become apparent.

	 At this point, you may be wondering how we can predict product

size and growth with enough accuracy to make this kind of measure-

ment and analysis useful. It certainly does not seem possible if we are

developing arbitrary applications one project at a time. If we are using

a software factory, however, we have two advantages that significantly

improve predictability.

	 First, we are developing a member of a specific family of products

with known characteristics, not just an arbitrary application. Because a

factory allows us to describe a product family and its salient features—

and more importantly to refine that description as experience is gained

over the course of multiple projects—we know much more about an

application being developed using a factory than we do about an arbi-

trary application.

	 Second, we are developing the application by applying prescrip-

tive guidance supplied by the factory. By standardizing the way we do

some things, a factory tends to remove gratuitous variation from the

development process, making it much more likely that product size and

growth will follow similar patterns from one application to the next.

Quantification Standard
If we want a metric that can help us express size and productivity, we

need an objective quantification. This objective quantification can be

accomplished by using a method that is standardized. One of those

methods is functional size measurement as defined in the ISO 24570

standard. This ISO standard uses function points as a way to express the

size of the software system based on functional specifications. It spec-

ifies a method to measure functional size of software, gives guidelines

on how to determine the components of functional size of software,

specifies how to calculate the functional size as a result of the method,

and gives guidelines for the application of the method. These function

points can be considered as a “gross metric” to determine the size of a

system and to estimate effort and schedule. During development this

metric can be used to determine whether the project requires more or

less work relative to other similar projects.

	 Function-point analysis leverages the knowledge of building data-

base-oriented applications and can be applied whenever we build a sys-

tem that uses data manipulation in a database. Function points are calcu-

lated around the knowledge of the number of estimated tables our appli-

cation will have and the number of data-manipulating functions as data

retrieval and data update functions. From this result we can calculate the

number of function points that expresses the size of our product.

	 Once we have expressed our estimated product size, we can learn

how much time it takes to implement one function point or even use

historical data already available to make predictions on how much time

it should cost to implement a function point. A software factory can

influence the time spent to implement a function point (productivity),

the number of defects per function point (quality), and the accuracy of

our estimations.

	 For example, suppose we applied function-point analysis and deter-

mined that the system we are going to build has an estimated size of

500 function points. As we start building this system, we can determine

that it takes 6500 hours to build. From that result we can express our

productivity as 13 hours (h)/function point (fp).

	 If we also keep track of the defects we found in the product dur-

ing development, user acceptance test, and production, we can also

express that number as a quality metric. Suppose we found 500 bugs

during development, 50 during the acceptance test, and 5 after going

into production. We could express this calculation as having 1 defect/fp

during development, 0.1 defect/fp at acceptance test, and 0.01 defect/

fp in production.

	 It gets really interesting when many of these defects can be traced

back to a specific viewpoint of your factory. From that discovery we

learn that the viewpoint has a high contribution to the overall num-

ber of defects, and we can focus our attention and analyze what might

need improvement within this viewpoint. From this kind of analysis, we

can determine which viewpoints to improve and how to improve them

to reduce the number of defects the next time the factory is used.

	 The great thing about having a quantification of the number of

defects against a metric such as function points is that we now can set

goals for the improvements we want to achieve by our investments. For

example, I want the number of defects/function point to go down by 20

percent for the “front-end applications” viewpoint. Performing defect

and function-point analysis on a per-viewpoint basis gives us a pow-

erful tool for improving our product development process because it

helps us determine where the bottlenecks lie, and therefore where to

invest and how to invest to obtain better results.

	 When we start using function points, we can initially use historical

data from surrounding organizations found in the literature to do our

first estimations. Historical data is useful because it accounts for organi-

zational influences, both recognized and unrecognized. The same idea

applies to the use of historical data within the software factory. Indi-

Figure 2 Team Foundation Server’s data warehouse architecture

Reporting warehouse

Reporting warehouse
Object model

SQL Server
reporting
services

Excel

Custom
reporting

Test/build
adapter

Work item
adapter

Version
control
adapter

Custom
adapter

Build
database

Work item
tracking

Source
code

control

Custom
tool

Software Factories

20 www.architecturejournal.net • Journal 9 •

vidual projects developed using a software factory will share a lot with

projects developed using the same software factory. Even if we do not

have historical data from past projects, we can collect data from our

current project and use it as a basis for estimating the remainder of our

project. Our goal should be to switch from using organizational data

or industry average data to factory data and project data as quickly as

possible (see Resources).

Apply Visual Studio Team System
Now consider how to enable our product development team to use the

factory to create the required work products. This ability starts with a

development environment that supports the whole product life cycle

from birth to discontinuation, such as Visual Studio Team System (VSTS).

Using VSTS is a key to enabling our product development teams to

benefit from the approach described previously.

	 Currently, VSTS does not understand software factories. However,

because VSTS is so configurable and extendible, we can set it up manu-

ally to support a software factory by mapping various parts of the fac-

tory schema onto various configuration elements or extension points.

	 Recall that a software factory contains a schema that describes its

organization. The factory schema defines a set of interrelated view-

points, and each viewpoint describes related work products, activities,

and assets for users in a specific role. We can use this information to

configure VSTS for developing applications.

	 A viewpoint can be mapped to a concept that VSTS calls an area

in one or more iterations. The role associated with a viewpoint can be

mapped to one or more VSTS project roles. In practice, multiple view-

point roles will probably be mapped to a single VSTS project role. The

activities defined by a viewpoint can be added as work items in those

areas at project creation, and directly assigned to the appropriate role.

They can also be documented by customizing the process guidance,

and custom work items can be created to track them and to link them

to work products.

	 Content assets, such as guidelines, patterns, and templates can be

added to the project portal document libraries. Executable assets, such

as tools and class libraries, can be placed in the version control system.

To measure and improve the performance of our factory, we can add

metrics to the VSTS data warehouse.

	 The keys to configuring VSTS are the Project Creation wizard and

the process template. The Project Creation wizard is a tool for creat-

ing projects in Team Foundation Server. It uses a file selected by the

user called a process template to configure the server for the project.

The template contains several sections, each describing the way a spe-

cific part of the server will be configured. With the process template, for

example, we can define work item types, areas, iterations, and roles and

assign the appropriate rights to each role; customize version control; set

up the project portal; and do many other things to customize the devel-

opment environment and the development process.

Figure 3 The structure of a measurement construct

Numerical thresholds,
targets, and limits used
to determine the need
for action or investigation

Information
need

Decision
criteria Indicator

Analysis
model

Derived
measure

Derived
measure

Measurement
function

Base measure Base measure

Measurement
method

Attribute Attribute

Estimate or evaluation that
provides a basis for decision making

Algortithm combining measures
and decision criteria

Quantity defined as a function
of two or more measures

A measure of a single attribute
by a specific method

Operations quantifying an attribute
against a scale

Property relevant to information needs

Algorithm combining two or more
base measures

Measurement
method

Software Factories

21 • Journal 9 • www.architecturejournal.net

Process Configuration
VSTS uses work items to track the work that needs to be done to create

a given product. Work items describe the work that needs to be done,

identify the party accountable for that work at a given point in time, and

can be of different types designed to describe different kinds of work.

For example, a bug can be described by a work item of type Defect that

contains information pertinent to fixing a bug, such as the description

of the bug, reproduction steps, estimated time to analyze or fix the bug,

and so on. Work item types are created or modified by changing the

XML definitions loaded into the server and used at the time the project

is created. They can also be modified after project setup.

	 Work items can be linked to a so-called area of a project and to an

iteration. Areas provide a way to book the work on a specific part of

the solution that is of interest when we want to run reports on the data

accumulated in the data warehouse. Areas in VSTS closely match the

concept of viewpoints in a software factory, as both represent areas of

interest or concern.

	 When we map areas of interest in tracking a work item to our factory

viewpoints, we can use these metrics to provide the productivity and

quality measures for specific viewpoints.

	 One very good starting point in defining viewpoints for a factory is

a set of common viewpoints that tends to appear in many factories. Two

of those common viewpoints that prove particularly useful in configur-

ing VSTS are System Engineering and Project Engineering. In the Sys-

tem Engineering area we can make a subtree containing the architec-

tural viewpoints that describe salient parts of our system. This descrip-

tion will help us identify which parts of the system have the most sig-

nificant impact on productivity (time spent) and quality (number of

defects). The Project Engineering area is also interesting because it can

help us find anomalies in the way activities have been formalized in the

project, and it can help us decide whether or not to improve the pro-

cess definition at certain points. Figure 1 shows an example of areas and

iterations that reflects the schema for a simple factory that builds ser-

vice-oriented administrative applications with multiple front ends.

	 The area tree can become pretty deep if we try to incorporate every

viewpoint defined by our factory. It is very important that we do not

explode the tree into many different levels. Keep in mind that it needs

to be very simple, allowing team members to easily identify the areas

to which work items should be linked. The more deeply nested the tree,

the harder it becomes to find the right area for a given work item. If it

becomes too hard, developers will simply book work items near the root

of the hierarchy, defeating the purpose of creating a deeply-nested tree.

	 The Team System data warehouse keeps track of all kinds of infor-

mation about the development of the solution. One section of the

data warehouse holds information about work items, which is interest-

ing from a factory perspective, as described earlier. Other sections hold

information about tests, daily builds, and other VSTS features. The data

warehouse can be extended in two ways to support measurement.

	 First, we can change the fields kept in the warehouse for a specific

work item type by modifying the work item type definition, either by

Figure 4 Base and derived measures for software size growth

Indicators

Derived measures

Measurement
function

Base measures

Measurement
method

Attributes

Measurement
method

Software
size growth

Analysis model

Repeat per
language

Actual
function points

SLOC for
language X

SLOC per FP
for language X

Count
SLOC

Source lines
of code (SLOC)

Language
expressiveness

table

Planned versus actual function
points ratio over time

Compute ratio from planned
and actuals

Planned
function
points

Derived and base
measures for
planned function
points

Divide the total SLOCs by
SLOC per FP for a specific
programming language

Derive from language
expressiveness table

Software Factories

22 www.architecturejournal.net • Journal 9 •

changing the fields it contains or by adding the fields to new facts or

dimensions in the warehouse. When a field is marked as reportable in

the work item type definition, it will be added dynamically to the data

warehouse. Of course, if we want to show reports on these additional

fields, we will also need to create reports for the data and upload them

to the reporting server to make them accessible to other team members.

	 Second, we can incorporate data generated by custom tools. If our

factory provides custom tools that generate data, and we want to use

the data in the data warehouse, we can add a custom data warehouse

adapter to the Team Foundation Server (see Figure 2).

	 For example, to measure the size of each solution in terms of num-

ber of lines of code, build a custom tool that counts the lines of code in

a file and a custom data warehouse adapter. Also add a step to the daily

build that runs the custom tool over the sources in the current solution

and places the result in a file. The custom data warehouse adapter then

picks up the information from the file and makes calls to the data ware-

house object model provided by Team System to add the information to

the data warehouse. Custom data can be viewed using custom reports.

Using Measurement Constructs
So far, we have looked at how to define a factory, how to refine a fac-

tory using measurement and analysis, and how to configure VSTS

to support a software factory. Before we can put all these insights

together to build and refine software factories with VSTS, we need to

know one more thing—how to collect the right information.

	 What we need are formal definitions of the relationships between

the things we are measuring and the information we need to support

refinement. Those definitions are called measurement constructs. Mea-

surement constructs are combinations of base measures, derived mea-

sures, and indicators. A measurement construct describes an informa-

tion need, the relevant entities and attributes, the base and derived

measures, the indicators, and the data collection procedure.

	 A base measure captures information about a single attribute of

some software entity using a specified measurement method. A base

measure is functionally independent of all other measures. A derived

measure is defined as a function of two or more base and/or derived

measures. A derived measure captures information about more than

one attribute. An indicator is a measure that provides an estimate or

evaluation by applying an analysis model to one or more base and/or

derived measures to address specified information needs. Indicators

are the basis for measurement analysis and decision making. Additional

rules, models, and decision criteria may be added to the base measures,

the derived measures, and the indicators. Figure 3 illustrates the struc-

tures of a measurement construct (see Resources).

	 Key terms on software measures and measurement methods have

been defined in ISO/IEC 15939 on the basis of the ISO international

vocabulary of metrology. The terms used in this discussion are derived

from ISO 15939 and Practical Software Measurement (see Resources).

	 Use these steps to define a measurement construct that we can add

to our Team Foundation Server data warehouse.

1.	 Define and categorize information needs. To ensure that we

measure the information we need, we must understand clearly

our information needs and how they relate to the information we

measure. Experience shows that most information needs in soft-

ware development can be grouped into one of the seven catego-

ries defined by ISO 15939: schedule and progress, resources and

cost, product size and stability, product quality, process perfor-

mance, technology effectiveness, and customer satisfaction. An

example of an information need in the product size and stability

category might be: “Evaluate the size of a software product to esti-

mate the original budget.”

		 These information needs can be used to measure the properties

of a specific viewpoint in a software factory. They must be prioritized

to ensure that the measurement program focuses on the needs with

the greatest potential impact on the objectives we have defined. As

described earlier, our primary objective is usually to identify the vie-

wpoints whose improvement will yield the best return on our invest-

ments. Since viewpoints can nest, we can often roll up measurements

to higher-level viewpoints. For example, if we had a User Inter-

face viewpoint containing viewpoints like Web Part Development

and User Authorization, we might roll up the customer satisfaction

measurements from specific Web parts to the User Interface level.

2.	 Define entities and attributes. The entities relevant to the infor-

mation need, “Evaluate the size of a software product to appraise

the original budget estimate,” for example, might be a development

plan or schedule, and a base-lined set of source files. The attribu-

tes might be function points planned for completion each period,

source lines of code, and a language expressiveness table for the

programming languages used.

3.	 Define base measures and derived measures. Specifying the

range and/or type of values that a base measure may take on helps

to verify the quality of the data collected. In our example we have

two base measures, the estimated size of the software product and

the actual size. The scale for both base measures will range from

zero to infinity. A derived measure captures information about more

than one attribute (see Figure 4).

4.	 Specify the indicators. To use an indicator correctly, its users must

understand the relationship between the measure on which it is

based and the trends it reveals. The measurement construct should

therefore provide this information for each indicator: guidelines for

analyzing the information, for our example we might provide an

analysis guideline like “Increasing software size growth ratio indica-

tes increasing risk to achieving cost and schedule budgets.”; guide-

lines for making decisions based on the information, for our example

we might provide a decision-making guideline like, “Investigate

when the software size growth ratio has a variance of greater than

20 percent.”; and an illustration of interpreting the indicator, for our

example we might provide an illustration (see Figure 5) and describe

Figure 5 Graphical representation of a planned-versus-actual indicator

for software growth

4000

3000

2000

1000

0

Software Factories

23 • Journal 9 • www.architecturejournal.net

it like this: “The indicator seems to suggest that the project produc-

tion rate is ahead of schedule. However, after further investigation,

it turns out that the actual size of one item was larger than planned

because of missing requirements that were not identified until initial

testing. Resource allocations, schedules, budgets, and test schedules

and plans are impacted by this unexpected growth.”

5.	 Define the data-collection procedure. Now that we know how to

relate the base measures to the information needs, we must define

the data-collection procedure. The data-collection procedure speci-

fies the frequency of data collection, the responsible individual, the

phase or activity in which the data will be collected, verification and

validation rules, the tools used for data collection, and the reposi-

tory for the collected data.

Add Constructs to the Data Warehouse
As described, each measurement construct needs to define at least the

information needs, the entities and attributes, the base measures and

derived measures, the indicators, and a data-collection procedure. To

map this to the Team System data warehouse, we need to determine

how to obtain the required information, either by modifying work item

type definitions to add fields and to mark them as facts or dimensions,

or by building a custom tool and a custom data warehouse adapter that

collects data produced by the tool. We also need to determine how

to display the indicators, usually by creating custom SQL Server 2005

report server reports.

	 When we have mapped our factory onto VSTS, we can start using it

to build solutions. It will guide our team in building the solutions, and it

will provide us with information based on the measurement constructs

we have defined and implemented.

	 Once we have a baseline in place with initial data, we can run a con-

tinuous software factory development loop that analyzes the perfor-

mance of each viewpoint, uses that information to determine what

to improve, build the improvements, and then repeats the process.

This virtuous cycle can be used to target a variety of measures. A key

part of this process is estimating the cost of making a given improve-

ment, estimating the gain in productivity likely to result from making

the improvement, and estimating whether or not the results justify the

investment. After implementing the improvement and incorporating it

into the factory, we can measure whether or not it met the goals we set

in terms of the reduction in hours/function point (see Figure 6).

	 The motivation for this discussion is a desire to change the grossly

inefficient way we build software today with “one-off” or project-at-a-

time development. Our customers see that we struggle to deliver proj-

ects on time, within budget, and with the expected features. We can

help ourselves and our industry as a whole by capturing the knowledge

we gain from experience and transferring it to other projects using soft-

ware factories. We learned how to define a factory and how to measure

its performance in terms of productivity and quality. By quantifying the

sizes of the products we build, measuring the time spent to build them,

and registering the number of defects found, we can describe the per-

formance of our factories.

	 The mapping from the factory schema to VSTS is done using the

customization and extensibility points in VSTS. We can set up VSTS by

placing the assets identified by the factory schema in the version con-

trol repository or the Team Foundation Server portal. We can use the

portal to provide process guidance for activities described by the fac-

tory schema. We can use the Project Creation wizard to arrange the ini-

tial setup of our factory, and we can use feature modeling to create a

mapping to define forms to add to the wizard. A large portion of the

initial project is done using the process templates, and we can modify

the templates to support our factories.

	 By implementing measurement constructs in the VSTS data ware-

house, we can gather metrics that describe software factory perfor-

mance in terms of productivity and quality. Over time we can use these

metrics to constantly improve our factories and to gain not only produc-

tivity and quality, but also to gain predictability by removing excess or

gratuitous variability. The result of implementing software factories with

VSTS is more successful projects and greater customer satisfaction. •

Calibrate
historical data

Measure
project data

Map project
data to

viewpoints

Analyze data
per viewpoint

Indentify
viewpoints for
improvement

Define
improvements

Build
improvements

Use improved
factory

Analyze
improvements

Figure 6 An iteration loop for factory development

Resources

International Organization for Standardization and International

Electrotechnical Commission ISO/IEC

www.standardsinfo.net/isoiec/

Practical Software Measurement: Objective Information for Decision

Makers, John McGarry et al. (Addison Wesley Professional 2002)

Software Estimation: Demystifying the Black Art, Steve McConnell

(Microsoft Press 2006)

Software Factories: Assembling Applications with Patterns, Models,

Frameworks and Tools, Jack Greenfield et al. (Wiley 2004)

About the Author

Marcel de Vries is an IT architect at Info Support in the Netherlands

and Visual Studio Team System MVP. Marcel is the lead architect for

the Endeavour software factory targeted at the creation of service-

oriented enterprise administrative applications used at many large

enterprise customers of Info Support. Marcel is a well-known speaker

on local events in the Netherlands including developer days and Tech-

Ed Europe. He also works part time as trainer for the Info Support

knowledge center. Contact Marcel at marcelv@infosupport.com, and

you can read his blog at http://blogs.infosupport.com/marcelv.

24 www.architecturejournal.net • Journal 9 •

A Foundation for
the Pillars of
Software Factories
by Tom Fuller

The most valuable artifacts that any architect can produce are those

that can be applied across numerous problem domains. This ver-

satility is why patterns, frameworks, guidelines, reference models,

and automation tools are core deliverables from any process itera-

tion. Delivery strategies that focus on architecture must extract and

apply proven techniques for solving challenging application problems.

Architects will typically be embedded at the project level but remain

knowledgeable of enterprise scope. Over time, the collection of these

extracted best practices forms a library for other teams to use as they

compose their solutions.

	 It is immediately evident that the software factory pillars and the

delivery goals of an architecture-driven process are in sync. Using stan-

dards-based deliverables, like software factory schemas and pattern

languages, to group and describe your enterprise architecture compo-

nents can take your enterprise architecture to the next level. Capturing

reusable artifacts with these templates gives your organization a con-

sistent way to deliver reusability. The methodology will then extend

beyond the construction and delivery of the product and focus on

post-delivery return on investment measurement, education, and the

long-term road map for these deliverables.

	 Introducing architectural guidance within any software develop-

ment life cycle will improve the overall effectiveness. It is this process

and delivery shift that is at the heart of the software manufacturing rev-

olution. This article explains how to use an architecture-driven process

and the software factory pillars to change how you structure teams and

deliver solutions. The goals here are to explain what it means to use

that process and what type of expected deliverables result from each

transition phase of the software development life cycle. Additionally,

the article will explain the benefits of intentional discovery, implemen-

tation, and measurement of reusable architecture.

Managing Increased Complexity
Anyone who has worked in the software industry will tell you that

developing business productivity software is very challenging. Often,

companies become overwhelmed by the lack of consistency and

bloated costs that typical software cycles create. There are four syn-

dromes that contribute to this increased difficulty:

•	 The moving-target syndrome: This syndrome is an unavoidable aspect

in the software industry. There will always be a constant evolution of

frameworks, patterns, strategies, and technologies. This continuum

will often make your effective solution today an ineffective one at

some point in the future.

•	 The perfect-storm syndrome: It is always difficult for any company

to find the right number of developers, at the right time, with the

appropriate vision and budget. If any one of these items is not correct

the solution will suffer and can potentially become ineffective.

•	 The Goldilocks syndrome: One of the joys in solving logical problems

is discovering the most innovative and efficient solution for a tech-

nical problem. However, this delivery rarely considers the right solu-

tion based on cost. As a result, many solutions are overengineered or

underengineered. Very often this engineering is a matter of perspec-

tive, and striking a balance between the best solution and the right

solution is challenging.

•	 Grandpa’s favorite-chair syndrome: It is in our nature to gravitate

toward things that we understand. That is why software is often archi-

tected to avoid as much change as possible. The limited risk that

comes from using code that has already been proven to work is

immeasurable. This approach will result in solutions that are added to

in unnatural ways.

	 Adding to this complexity is the migration from consolidated,

monolithic applications to highly-scalable, distributed systems. As the

strategy has changed (see Figure 1), so has the focus. Today we need to

find an even higher level of abstraction than objects or components. It

is based on this need that we introduced repeatable architecture pat-

terns and frameworks. The all-important transition to an architecture-

driven process is a catalyst for the discovery and publication of these

reusable artifacts.

	 Software is not the first industry to see its output increase in com-

plexity over time. It only takes a moment to consider how much more

Summary
The complexity involved in designing and develop-
ing solutions has increased dramatically over the past
30 years. As your application portfolio evolves, there
are process strategies that can help your organization
overcome the problems that plague software devel-
opment today. Promoting reusability by adopting
production line methodologies will ensure broader
success of the systems delivered using these processes.
Reusability rarely happens by accident, and using
strategic processes like architecture-driven develop-
ment will make discovery of reusable components an
intentional step as opposed to an opportunistic one.

Four Pil lars of Software Factories

25 • Journal 9 • www.architecturejournal.net

complicated current automotive or construction deliverables are now

versus 50 years ago. How have these industries managed to meet the

high demand for their increasingly complex product? The answer lies in

the shift away from pure craftsmanship and toward manufacturing in

both instances. By capturing and repeating best practices for building

well-known aspects, the limited resources available for development

are able to focus on those things that are truly unique.

	 Based on the preceding information, it is clear that the software

industry is faced with a similar dilemma. The complexity has increased,

and at the same time the demand has skyrocketed. The concept of soft-

ware manufacturing is not a new idea. In fact, there are many well-

respected software engineers that have been giving it thought since the

late 1970s. However, until recently most of the frameworks, patterns,

and strategies were still very immature.

	 We stand at the cusp of a major revolution in how business produc-

tivity software is delivered. As businesses begin to use architecture to

drive their delivery of software they will find ways to isolate consistent

portions of their enterprise applications and capture them in a way that

can be reapplied through automation. These concepts provide the best

chance to date to help deliver quality software while managing all of

the inherent complexity that comes with it.

Define the Vision/Scope for All Process Iterations
One of the first steps for any organization interested in moving to an

architecture-driven process is to define the vision and scope for the

enterprise architecture. Without this definition, it becomes almost impos-

sible for solution architects to make good decisions about where and

when to introduce architectural patterns. You might think that service-

oriented architecture (SOA) is an example of the vision for your enterprise

architecture. In reality, SOA is an example of a delivery strategy that can

help you to adhere to the vision for your enterprise architecture.

	 A vision statement should be concise and devoid of any implemen-

tation biases. The vision statement should “paint a picture” of where the

architecture team wants the applications to evolve to. Here are some

examples that could be used to help focus the architecture team as

solutions are being delivered using architecture:

•	 All application deliverables will focus on quality through embrac-

ing and extending proven enterprise architecture artifacts. Over time,

new solutions should be built completely through composition and

customization of enterprise architecture frameworks.

•	 All application deliverables will efficiently use resources within the

enterprise infrastructure to solve business productivity demands.

Using tailored tools and processes, 75 percent of a custom application

will be constructed, tested, and deployed automatically.

	 The scope of your enterprise architecture is separate from the vision.

What needs to be considered when defining the scope of the enterprise

architecture is whether or not the practices and patterns that are being

managed by the solution architects are within specific technology dis-

ciplines, business areas, or application styles. The broader the scope the

more challenging it is to manage complexity. However, if the scope is

too narrow, you will risk decreasing the impact your architecture pat-

terns can have. The best way to manage scope is to determine a group-

ing strategy based on variation. For example, the strategies and pat-

terns of the engineering and infrastructure group may be very differ-

ent than those of the application-delivery group. As long as there is a

shared strategy for how to consistently apply those patterns, managing

them separately is acceptable, which starts to show the reason vision

and scope for enterprise architecture are so important.

	 In most, if not all, organizations it takes a combination of people

with different spheres of concern to deliver applications successfully. If

the burden of managing the architecture vision and scope is not shared,

then the leadership and direction will become fragmented and incon-

sistent. Other strategists in the organization will spend less time debat-

ing issues if synergies are found between the various scoping groups.

This synergy is without a doubt one of the most important steps in

starting to build architecturally sound applications.

Building Your Assembly Line
An architecture-driven process is focused primarily on shifting the con-

trol for delivering solutions to the architecture team. Specifically, the

solution architect that is embedded in the delivery team will be respon-

sible for determining how quickly an application can move through

the phases of development. This determination is primarily in an effort

to work on strategically delivering applications more efficiently in the

future. So how then do solution architects “prove their worth” within

each of these iterations? This value is where software factories and pro-

duction line delivery of applications is key. The architecture team is

working constantly to construct and improve on the software assembly

line within one of the predefined enterprise architecture scope groups.

	 The key components of a software factory or product line are all

focused on one key goal: abstract those portions of the application that

do not vary, and guide the creation of variants by using pragmatic con-

straints. Here are the four core pillars of the software factory initiative

(see Resources):

1.	 Software product lines: Architects must focus on how to find those

portions of an application that can be abstracted because they are

consistent. Once they are discovered they should be delivered ahead

of the products that will use them. This approach promotes an inten-

tional step of finding and delivering reusability. In all likelihood these

assets will fall in line with the scoping groups defined for your enter-

prise architecture.

Figure 1 Time-phased trending in application architecture patterns

1950 1970 1990 2010

Minimal core
business
applications

Integrated
business
applications

Customer and
partner
applications

Batch

Rewrite

Rewrite

Terminal/host

Distributed computing

New
applications

New
applications

Early client
server

World Wide
Web

Web
services

Four Pil lars of Software Factories

26 www.architecturejournal.net • Journal 9 •

2.	 Guidance in context: There are a couple of levels of variability when it

comes to components within the software product line. One level is

that which can be automatically built “hands free.” These components

are usually very low level and require essentially no decision making

by the product-delivery team. The next level is that which can vary in

a controlled way, which is where guidance comes in. When a product

developer can choose from a set of constraints to build an application

component from a finite set of variations, the software factory should

support that. This variability is not the whole picture though. Also

consider the “in context” portion of this process. When you can pro-

vide context-sensitive guidance there are benefits to be gained from

providing something as simple as tailored help!

3.	 Architecture frameworks: Frameworks (often described using a fac-

tory schema) within your software factory provide a way to group all

of the building blocks that will be used by the product developers.

There are a number of components in any software deliverable that

are potentially reusable. The framework will capture and deliver best

practices in an effective way.

4.	 Model-driven development (MDD): Models provide a mechanism for

representing complicated software components using visual abstrac-

tions. This mechanism typically helps simplify the design, develop-

ment, and support of those components. Making models a critical

component of your software factory requires you to think differently

about design documentation. Models must always reflect the current

running code if they are to remain useful in the support and mainte-

nance of software. Historically that has not been the case, and MDD is

an effort to fix that shortcoming.

	 As an enterprise architecture proponent, each of these pillars is criti-

cally important. Every product that is delivered will look to extend and/

or consume numerous portions of the software factory. As a solution

architect these are the tools you bring to the table to help drive every

product toward well-established best practices. Without these tools

every product has to be built from scratch. This style is often referred to

as “one off” and is considered very inefficient.

	 As an enterprise matures in its architecture-driven practices so do the

components of the software factory. Collecting new enhancements and

delivering new versions of the factory components facilitates perpetual

innovation through the architecture team. The hardest part about tran-

sitioning toward an architecture-driven process and a software factory

approach is starting. We discussed previously the scope definition for the

enterprise architecture. Scope continues to be a basic element of concern

for all software factory deliverables. In the case of business productivity

applications economies of scope and scale can both be achieved:

•	 Economies of scope: To justify the cost of an architecture component

it has to be useful to a number of products. One strategy for identify-

ing components that exhibit economies of scope is to group products

based on implementation style. For example, if your applications will

be built using a distributed model focusing on Web services across

tiers, then it will be beneficial to build a factory component that can

help guide the delivery of a Web service. Very often these stereotypes

are common across every application. Another possible economy of

scope benefit is the delivery of enterprise services. If a large number

of applications depend on the same data or business subprocesses,

then it may be an ideal candidate for a services-based approach.

•	 Economies of scale: It is very rare to find circumstances where business

productivity applications can benefit from economies of scale. If a fac-

tory component is going to have an economy of scale your organization

will need to benefit from that component being created the same way

multiple times. An example could be enterprise data dictionaries that are

made available as part of every new data dictionary. If the component

can be reapplied “as is,” then it can be said to exhibit economies of scale.

	 Even when a solution architect is in control of the progress of product

delivery, it is still challenging to find reusable factory components. This

difficulty is especially true when you consider cost justification. A prod-

uct line methodology is required to discover factory components with

broad enough scope. When a factory product line phase is introduced,

the building blocks can be built, and the architecture team can get ahead

of the delivery curve. Without this methodology, there are always difficult

cost/benefit decisions that determine the architectural direction.

	 What eventually forms are two separate delivery teams focused on

completely different aspects of software. One team is responsible for envi-

sioning, designing, delivering, and training of reusable assets in the scoping

group. The other team(s) is responsible for learning, consuming, and giving

feedback on those components. The most important item to note in Fig-

ure 2 is that the product assembly line team must be given the opportunity

to get ahead of the product delivery teams. Once established, it becomes

easier to drive work through the feedback loop that will ensue. If the teams

begin too much work without a clear understanding of the foundation

then it will be impossible to avoid one-off project development.

	 This concept of grouping applications based on commonality into

product groups or families is a critical step in moving toward an archi-

tecture-driven process and software factory development. These prod-

uct families should have dedicated architecture resources and common

infrastructure. These families can also help provide consistency in the

patterns that are discovered and applied in an enterprise. Typically, the

context and forces will remain consistent within a product group. Archi-

tects are able to benefit from the lessons learned when applying these

solutions to similar application contexts. This consistency translates into

effectiveness within the architecture group.

	 It is impossible to talk about processes or reusability without men-

tioning agility. Does driving delivery through architecture create an agile

process? In the traditional sense, an architecture-driven process would

probably not be considered an agile process. However, if you are look-

ing at the fundamental goal of an agile process, architecture-driven pro-

Figure 2 The product line development approach

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Quarter 1

Product assembly line

Initial product line delivery | Support/collect feedback | Apply feedback | Support/collect feedback

Educate | Build product | Apply changes

Educate | Build product | Apply changes

Educate | Build product | Apply changes

Product A

Product B

Product C

Four Pil lars of Software Factories

27 • Journal 9 • www.architecturejournal.net

cesses and software factories do translate into higher productivity and

adaptability levels. Based on this fact, it is safe to say that driving a pro-

cess with architecture can foster agility in application delivery.

	 Always remember that developing a technical solution is simply

a series of refinements and abstractions. Depending on your frame

of reference you may be attempting to decompose or refine a busi-

ness problem, or you may be trying to design higher-level abstrac-

tions to demonstrate what low-level machine instructions should do

with user input. Developers and analysts will always struggle to find

the sweet spot when it comes to abstraction and refinement. Too much

refinement and time is wasted; too much abstraction and complexity is

increased—another application of the Goldilocks syndrome.

	 In the end, a business productivity application needs to be able to

respond to change. Rarely does a product team know the final pic-

ture of a solution during the initial release of an application. Embracing

change through planning for iterations is paramount to the success of

any delivery process. Architecture-driven processes naturally move the

product-family delivery team toward iterative development by intro-

ducing a feedback loop for the factory components.

	 Less code typically results in higher productivity. Architecture-

driven processes and software factories are built on the concept of

abstracting what is already known and guiding what varies, which is

a powerful strategy in managing complexity. Consistent and reusable

software combined with an up-front understanding that an application

will change is what being agile is all-about!

Prerequisites for an Architecture-Driven Process
There are a number of prerequisites before you can begin an architec-

ture-driven process, some have been mentioned previously, and others

are listed here as a sort of readiness checklist:

	

•	 A role on the project must be focused on the application architecture.

This role requires knowledge of existing enterprise architecture pat-

terns and being dedicated to helping deliver applications that meet

an enterprise architecture vision.

•	 A long-term vision for architecture of the enterprise should be estab-

lished. This vision will help to simplify decision making and support

making good decisions that will integrate well with the overall enter-

prise vision. This vision is articulated through enterprise architecture

road maps, business capability matrices, and enterprise framework

maturity models.

•	 Well-defined deliverables must be established for each of the tran-

sitions. These can include architecture strategy documents, pattern

templates, reusable component analysis reports, and an enterprise

architecture library.

•	 There must be agreement from the project sponsors that transitions

among phases cannot take place if the agreed-upon architecture

deliverables are not complete. Otherwise, the drive toward expedient

delivery can often short-circuit any architecture-driven effort.

•	 An agreed-upon strategy for resolving architectural anomalies should

exist before starting. This agreement will help to mitigate the risk of

becoming paralyzed by any lack of “buy in” for the enterprise archi-

tecture initiatives. Additionally, this risk-aware approach will help

avoid application teams succumbing to antipatterns to meet expedi-

ent delivery demands.

	 Once these prerequisites have been satisfied you can safely begin

delivering architecture-focused applications. The tactical introduction

of architecture deliverables will ensure that you take the time to proac-

tively build or consume reusable architectural components.

	 As applications are delivered in any organization, some type of deliv-

ery process must be followed. The high-level steps shown in Figure 3 rep-

resent those that are commonly found in all development life cycles. It is in

the transitions between these phases where architecture should become a

focus, and it is this focus that will help your enterprise transition away from

one-off and siloed application delivery and toward the cohesive develop-

ment of applications that adhere to an enterprise architecture vision.

	 Transition 1 (envisioning to detailed design): In this early phase of

the project it is critical to start looking for already existing architectural

assets (patterns, services, framework components, and guidelines) that

can be consumed by the new application. This search will bring to the

surface questions about availability, performance, and maturity of these

existing components. As an architect, the focus on reuse should help to

drive the initial architecture strategy documentation. Delivering a plan

that helps the application deliver a high-quality application that lever-

ages as much of the existing enterprise architecture as possible is how

you measure your success. Deliverables might include:

•	 Architecture strategy overview: an enterprise architecture component

consumption report, expected enterprise architecture variants, and

planned architecture pattern usage report

•	 Service-level change requests for existing components

•	 Recommendations for new enterprise architecture components

	 Transition 2 (detailed design to construction): Once the initial strat-

egy is in place the detailed design can be built to realize the high-level

architecture vision. Through a series of refinements, the architecture

strategy is either adopted or modified based on the context in which

it is applied, which is where the architect role on the project becomes

amplified. Helping the project team to make practical decisions about

Figure 3 Architecture-driven processes require architecture-focused

deliverables during every transition

High-level software
development life cycle

Construction

Envisioning/requirements
definition

Detailed
design

Stabilization/
deployment

Promotion of successful
patterns to enterprise

architecture library

Initial architecture
strategy documented

Post-implementation
analysis of reusable

architecture components

Architecture strategy
revisited (new

patterns extracted)

Four Pil lars of Software Factories

28 www.architecturejournal.net • Journal 9 •

the modifications to the enterprise architecture standards should be his

or her focus. In most cases the existing standards should be used as is

to avoid inconsistency and added complexity.

	 It is not always possible to use the existing architecture assets in

their current state, and revision requests are sure to be needed. There

are also new architectural patterns and styles that can be discovered

during this phase. Key deliverables during this transition include archi-

tectural component change requests, a new architectural pattern defi-

nition, recommendations for new enterprise architecture components,

and a revised architecture strategy overview.

	 Transition 3 (construction to stabilization): Once the application has

been built, the focus shifts to quality and post-implementation analysis.

To continue to gain widespread acceptance of the architecture patterns

being applied, the successes and failures should be documented and

communicated to the sponsors of the application. As the patterns being

used mature, the likelihood of failures diminishes. The goal here is to

show how much time was saved and how much quality was introduced

by the focus on architecture. Deliverables include a reusable, assets-

consumed overview; a change/extension cost analysis; and an existing

asset improvement report.

	 Transition 4 (stabilization to next iteration): An effort to communicate

best-of-breed solutions back to your company is a critical part of being

focused on improvement. Once the application has stabilized, the archi-

tect should go through an exercise that helps to educate the enterprise

to the new patterns and antipatterns discovered during this applica-

tion’s life cycle. Promoting best practices and cross-training other proj-

ect teams are the only ways to ensure perpetual knowledge growth

in your organization. The key deliverables in this phase are mainly for

enterprise education, and they include a revised, enterprise architecture

library catalog; a cross-team, architectural best practices session; and

training materials for new architectural patterns.

Taking the Next Step Toward Industrialization
Once an organization has practiced architecture-driven delivery and

considers the process mature, there are steps that can be taken to auto-

mate the delivery of applications. All of the architectural components

that are delivered as part of the product line are ideal candidates for

automation. These components will quickly go through a number of

iterations and their consistency will become clearer as the product line

team has to adapt to product-level variations.

	 Not until you understand these variations and establish the con-

straints should you remove the code completely from the product devel-

opers. Understanding what to abstract and automate is complicated

and requires some level of trial and error. Many code-generation tech-

niques appear on the surface to be beneficial, but always remember that

a developer’s confidence in generated code can be lost in an instant.

Managing this perception requires a partnership with product developers

through some process iterations and guided adoption of best practices.

	 This next step requires sophisticated tool support. These tools must

be capable of providing an open API for developing model-driven

tools, integrated wizards for guidance, and context-based capabilities

to seamlessly incorporate architecture best practices into the product

developers’ workspace. These tools have the ability to change the pro-

ductivity levels of application developers immensely.

	 Over time the percentage of well-known application components

will increase and in parallel so will the automation benefit. Architects

will always be attracted to automation for architecture components, but

be careful to first understand what it is that you are automating. Most

modern tools do a great job at creating separation between automated

tool output and custom code, but that separation does not fix the issue

of perception or accuracy.

	 To maintain momentum during product delivery you cannot solve

the same problems over and over. The cure comes in the form of cre-

ating and guiding consumption of codified architectural best prac-

tices. Adopting a process that is driven by architecture will shift appli-

cation delivery into a more proactive “prepare for the future” mindset.

With the increased complexity of and demand for business productiv-

ity applications comes a need to transition away from one-off develop-

ment. Most, if not all, engineering disciplines have learned this lesson

and will mimic the success of previous iterations. The application devel-

opment world is no different. An architecture-driven process will facili-

tate the collection of the key building blocks of productivity.

	 The seemingly unattainable goals of software industrialization are

quickly becoming a reality. The software factories movement makes

great strides in giving companies a way to measure the improvement or

value proposition for architecture. Once a repeatable artifact is discov-

ered its replayability and variability have to be evaluated before absorb-

ing the cost of building a guidance package or a designer. Discover-

ing consistency, increasing productivity, and embracing change are the

backbone of agility in application development. Combined, architec-

ture-driven delivery and software factories will help lead us toward the

next generation of software development. •
Resources
“Combine Patterns and Modeling to Implement Architecture-Driven
Development,”
www-128.ibm.com/developerworks/ibm/library/ar-mdd2/

Japan’s Software Factories: A Challenge to U.S. Management, Michael
Cusumano (Oxford University Press 1991)

Research Directions in Software Technology, Peter Wegner, “Conference
Proceedings, 3rd International Conference on Software Engineering”
(MIT Press 1978)

Software Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools, Jack Greenfield et al. (Wiley Publishing 2004)

Software Product Lines, Paul Clements and Linda Northrop (Addison-
Wesley Professinal 2002)

About the Author

Tom Fuller is CTO and senior SOA consultant at Blue Arch Solutions Inc.

(www.BlueArchSolutions.com) and an architectural consulting, training,

and solution provider based in Tampa, Florida. Tom was recently given the

Microsoft Most Valuable Professional (MVP) award in the Visual Developer

– Solution Architect discipline. He is also the current president of the

Tampa Bay chapter of the International Association of Software Architects

(IASA), holds a MCSD.NET certification, and manages a community

site dedicated to SOA, Web services, and Windows Communication

Foundation (formerly “Indigo”). He has a series of articles published

recently in The Architecture Journal, Active Software Professional Alliance,

and SQL Server Standard publications. Tom also speaks at many user

groups in the southeastern U.S. Visit www.SOApitstop.com for more

information, and contact Tom at tom.fuller@bluearchsolutions.com.

29 • Journal 9 • www.architecturejournal.net

A GSI’s Perspective
of Software Factories
by Steve Eadie

In today’s software development landscape the story of overruns,

defects, security holes, and project failures is all too common.

Software development is expensive and labor intensive, and we still

end up building one-off applications, hand-stitched with minimal

reuse. We already know how to exploit economies of scale to auto-

mate production; however, this exploitation does nothing for soft-

ware development. It is also possible to exploit economies of scope.

By reusing designs and components we can build many similar but

distinct systems.

	 Today there are a few universal needs in our changing landscape.

We have a need to deploy applications/solutions at an ever-increas-

ing pace with solutions that are growing evermore complex as our

clients demand richer features. We need to connect applications/

systems in increasingly unprecedented ways, master new technolo-

gies, and as always gain a competitive edge. We need to figure out

how to take a requirement and have it built into a quality system

anywhere on the planet with total confidence that our customers’

expectations of quality, cost, and reliability will be met. The business

drivers that are pushing us toward a paradigm shift are:

•	 Greater agility

•	 Faster time to market

•	 Greater productivity

•	 Better and sustainable quality

•	 Greater efficiency

•	 Reduced Complexity

	 Software factories attempt to address this paradigm shift.

Four Pillars of Software Factories
First, let us define software factories. Jack Greenfield of Microsoft

defines a software factory as: “a highly customized development envi-

ronment and technology platform supplying key artifacts and pro-

cesses to accelerate common life-cycle tasks for a specific type of solu-

tion or product” (see Resources).

	 Four “pillars” comprise a software factory: software product lines,

architecture frameworks, model-driven development, and guidance in

context. These pillars combine to become more than the sum of their

parts to propel us toward software industrialization (see Figure 1).

	 Software factories are not a new idea but are more the pulling

together of several initiatives under one roof and providing the tool-

ing for this methodology. Work has been done in the area of soft-

ware product lines by Paul Clements and Linda Northrop at the Soft-

ware Engineering Institute (SEI); model-driven development, specifically

Summary
With the growing expense and complications of build-
ing software, we are continually seeking to increase
our productivity while maintaining user satisfaction,
but that goal is a global concern that is valid to just
about any company of any size. How does a Global
Systems Integrator (GSI) manage to become more
agile and cost effective, while its developers may be
spread across many geographic regions? How does a
company know what it knows? And more importantly,
how does it leverage this knowledge in a consistent
way? These may seem like very strange questions and
ones that would make a smaller company do a quick
pulse check and wonder, “what’s the problem?” The
truth is that the larger the company, the more assets
are collected and the easier it becomes to overlook
these assets in a rush to solve a client’s problems. We
fail to build systems in a consistent manner. Although
we can take some amount of pride when a system is
delivered on budget and on time, how many projects
fail even though we know what we know? Let us look
at ways in which a GSI can take advantage of a soft-
ware factory approach.

Software
product lines

Architecture
frameworks

Model-driven
development

Guidance
in context

Figure 1 The four pillars of a software factory

Software Factor y Approach for a GSI

30 www.architecturejournal.net • Journal 9 •

domain-specific languages (DSL), by Microsoft; generative program-

ming by Krzysztof Czarnecki and Ulrich Eisenecker; architecture frame-

works from the Microsoft Patterns and Practices Group; and guidance

in context, using Microsoft’s Guidance Automation Toolkit (GAT).

	 A software product line as defined by Paul Clements and Linda

Northrop in their book, Software Product Lines (see Resources), is: “a set

of software-intensive systems sharing a common, managed set of fea-

tures that satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a

prescribed way” (see Resources).

	 They go on to tell us that software product lines are designed to

take economic advantage of commonality in systems. Product lines also

amortize the investment in core assets such as:

•	 Requirements and requirements analysis

•	 Domain modeling

•	 Software architecture and design

•	 Performance engineering

•	 Documentation

•	 Test plans, cases, and data

•	 Knowledge and skills

•	 Processes, methods, and tools

•	 Budgets, schedules, and work plans

•	 Components

	 There are three essential activities in fielding a product line: core

asset development and product development using those core assets,

and both of these are supported by the third activity—technical and

organizational management. The core assets can be existing mined

assets or assets built from scratch for the product line, the core assets

with associated processes for each asset along with production require-

ments, a product line scope, and a production plan that are then used

to build the product.

	 Architecture frameworks define viewpoints that identify and sep-

arate the key stakeholder concerns. They organize tools, process,

and content by that viewpoint. They relate and integrate life-cycle

phases, system components, and levels of abstraction. The archi-

tecture framework is also often described as the schema or process

framework for the software factory. This framework can be used to

guide the workflow and activities for the project until all of the activ-

ities are complete.

	 Model-driven development (MDD) is a technique to use meta-

data captured in models to automate software development tasks.

Modeling software has long been regarded as one of the best ways

to build a system, as it used to capture the intent of the system.

Industry offering solution

fering solutionOffer

Business
utilities Business

utilities

BPO Frameworks

BPO business logic
Business logic

Business logic Business logic

Business Utilities Business Utilities
Business

Utilities
Network Platform

Business logic

Business Utilities

Network Platform

Business logic

Business Utilities

Network Platform

Business logic

Business Utilities

Network PlatformNetwork Platform

Business logic

Business logic Business logic

Business Utilities Business Utilities
Business
Utilities

Network Platform Network Platform

Business logic Business logic

Business Utilities Business Utilities
Business
Utilities

Network Platform Network Platform

Business logic Business logic

Business Utilities Business Utilities
Business
Utilities

Network Platform Network Platform

Business logic

Business logic Business logic

Business Utilities Business Utilities
Business
Utilities

Network Platform Network Platform

Business logic

Business logic Business logic

Business Utilities Business Utilities
Business
Utilities

Network Platform Network Platform

Industry frameworks
Industry business logic

Business logic
Business logic

Business
utilities

Reusable technical
components

Reusable technical
components

Reusable
technical

components

Reusable
technical

components

Industry Frameworks

Industry business logic

Industry
assets

Industry
assets

Industry
assets

Industry
assets

Industry
assets

Industry
assets

Industry
assets

Industry
assets

Application
assets

Application
assets

Application
assets

Application
assets

Application
assets

Application
assets

Application
assets

Application
assets

Problem
domain

viewpoint

Solution
domain

viewpoint

Test
viewpoint

Applications
architecture
viewpoint

Infrastructure
viewpoint

Orchestration
viewpoint

Design
viewpoint

Implementation
viewpoint

Deployment
viewpoint

Figure 2 Assembling a client solution from viewpoints

“Software factories are not a new idea

but are more the pulling together

of several initiatives under one roof

and providing the tooling for this

methodology”

Software Factor y Approach for a GSI

31 • Journal 9 • www.architecturejournal.net

However, models are often discarded and have been seen as sec-

ond-class citizens compared to code. In software factories models

are used to formally express the artifacts of a certain domain and to

capture the intent that tools can interpret to provide more advanced

forms of automation.

	 They can be used to create highly-focused, custom languages for

specific problems, platforms, or tasks. Metadata that is captured by

models is used to drive automation rather than referenced only once in

a while. In software factories MDD is handled using the domain-specific

language (DSL) toolkit. DSLs allow you to create a modeling environ-

ment that describes accurately the product being built and also ensures

a more accurate translation of the model by team members, which

translates into the code generated from that model.

	 Guidance in context is used to describe what to do and to provide

help in doing it. The guidance is partitioned for common use cases, and

is attached to steps in the process and to parts of the architecture. This

guidance is context sensitive, and it only appears when you need it.

Tooling such as GAT allows installable packages containing organized

sets of configurable guidance assets for common use cases. The guid-

ance also can have preconditions and postconditions to allow the work-

flow to vary subject to constraints.

What Does a Software Factory Mean to a GSI?
Now that we have established what it is, what does a software fac-

tory mean for a GSI? Pretty much we are in a time of offshore/best-

shore development, where the goal for large companies is to reduce

their costs to remain competitive. In reducing these costs the com-

pany will move their clients’ work across the globe—hopefully with-

out sacrificing quality. This transfer, however, is not always as easy as

it seems. Architects and industry experts are a scarce resource. It can

certainly be seen that there are not enough experts to go around. To

make the project successful, or to bail out of a project that is in trou-

ble, we deploy these experts to where the work is being done. This

deployment is not the best use of their time, since once the develop-

ment is under way they should be moving on to the next big thing on

the company’s horizon. Instead we find them hand holding a poten-

tially unfamiliar development team far away from home or the client.

	 Software factories are a way to capture that expert knowledge

and distill it so that it is available wherever the work is taking place.

Our architect’s requirements are baked into the integrated devel-

opment environment (IDE). We have guidance, best practices, and

reference implementations, test cases, and so on for the product

our development team is building. The development team not only

knows exactly what steps it has to take, but how and when to take

them. They also get the expertise gained from every product built

before using that particular factory, which adds up to quite a lot of

experts being sent to help a project.

	 A software factory can be viewed as a series of viewpoints, and at

each one of those viewpoints we can associate assets such as common

services, process, guidance, test plans, and so forth. For a GSI we have

these assets distributed among many teams across the globe, but by

pulling together the best of those assets to populate each viewpoint

our factory starts to take shape (see Figure 2).

	 Take a look at SharePoint Web Parts development, for example. It

is possible to capture all of a company’s knowledge on this site and

distill that into a factory by taking the best practices, guidance, ref-

erence implementations, and test cases and placing them within an

applicable viewpoint (the test viewpoint and test cases, for exam-

ple). Note that if these assets do not exist then they can be mined

by accurately mapping a current project and building up a first iter-

ation of the factory. Once built, the factory can then be tested on

subsequent projects and refined and extended through real-world

use. Subsequent iterations of the factory will be able to reduce pain

points in using the factory as well as mine rote tasks and automate

those tasks (see Figure 3).

Factories, Factories, Factories
Factories can be of two types, horizontal and vertical (see Figure 4).

Horizontal factories are those that help internally. They become the

helper factories, those that don’t target a specific industry but are

broader and in general can be consumed by many other factories—

for example, the Enterprise Framework Factory (EFx) by Jezz Santos

at Microsoft. A vertical factory, on the other hand, is targeted toward

an industry or domain—for example, finance, government, or health

care. An example of a vertical factory would be the HL7 Factory talked

about by Mauro Regio and Jack Greenfield from Microsoft in The

Architecture Journal 6 (see Resources).

	 It is also possible to capture industry knowledge in the viewpoints

as well. We could state that around 70–80 percent of any client’s base

needs in a given industry are the same, and that the 20–30 percent dif-

ference leads to customization of the solutions to meet the individual

customer’s needs. Your organization probably already uses industry-

level frameworks that capture the commonality among various busi-

nesses within a specific industry and handle the common portions of

this information. For example, if you have been working for a specific

Figure 3 The factory life cycle

Domain
knowledge

Solution
knowledge

Input

Factory
development

Provides feedback Product
development

Produces

Input

Produces

Factory schema
factory template

Work products

“It is not necessary to boil the ocean

when building your own factory. It

becomes more a process of building or

consuming highly-focused factories

and building them up into a larger

factory to meet the business needs of

your clients”

Software Factor y Approach for a GSI

32 www.architecturejournal.net • Journal 9 •

type of client such as the government for a number of years, you may

already have the necessary knowledge to capture the essence of a gov-

ernment application.

	 If you can capture the commonality of industries using their busi-

ness processes and the common enterprise components, variabil-

ity for a given client can be captured by mining their business rules.

To provide fit and alterability requires having the right parts to allow

configurable systems. Examples of these parts include common pro-

cesses, common services, data models, components, and objects. To

fit the customer, a system must also be extensible and interoperable

with existing systems. Thus, customizability in the fullest extent means

being configurable, extensible, open, and supporting interoperability

with legacy and other systems.

	 Once the commonality and variability are defined, a software factory

becomes the mechanism to deploy and execute them with high levels

of productivity. This mechanism enables a software consumer to rapidly

configure, adapt, and assemble independently developed, self-describ-

ing, location-independent components to produce families of similar

but distinct systems. Software factories would allow the workers in the

field—architects, developers, or testers—to consume assets in a more

prescribed way.

Where to Begin?
You are ready to start. Here is a check list of what you will need: com-

mon processes, common services, data models, components, objects,

patterns, models, and test plans, scripts, and data.

	 Identify where your current pain points are as a business. Do you

require a lot of SharePoint skills, or is VB6-to-.NET migration becoming

a challenge? Once you have identified this gap you can take a thin slice

of this pain point and start to build up a factory. Start collecting the

best practices for this area, and document what a group is doing while

building a product. For the V1 of this product you will just be collecting

factory assets. Once collected, tease out the areas of variability, and put

in place your recipe for building this type of product.

	 After you have completed this iteration of your factory, test it out

using the same team that built the V1 product. Is this iteration bet-

ter? What are the problems? What are the metrics? By building the fac-

tory in iterations your success rate is higher, and you do not have to

take a team away from delivering real work to find out if a factory-style

approach is right for you. Factories themselves are extendable, and any

enhancements to the factory would be handled by industry specialists.

This approach allows for versioned factories. With every product built

using the factory, the factory gets refined and improved.

Figure 4 A Software factory

Product line development

Product development

Software factory
schema

Variable assets

Fixed assets

Product specification

Extensible tools

Customized tools

Product implementation

Product line design

Architecture
development

Requirements
mapping

Product development
process

Product line
implementation

Asset provisioning

Asset packaging

Product line analysis

Product line
definition

Problem domain
scoping

Solution domain
scoping

Software Factor y Approach for a GSI

33 • Journal 9 • www.architecturejournal.net

	 Now that you have built a narrow, highly focused factory, now you

want to build a larger factory to encompass more of a specific indus-

try. Building a factory is no small task, but it need not be too onerous.

The Microsoft Patterns and Practices Group is providing software fac-

tories of their own, such as the Service Factory, the Mobile Client Fac-

tory, and the Smart Client Factory. There are also factories such as the

Project Glidepath Software Factory by Michael Lehman at Microsoft—

which is designed to help ISVs build, deliver, and market applications

for Windows Vista and the .NET Framework 3.0—and the EFx Archi-

tectural Framework Factory, which is a Microsoft Consulting Services

offering to provide a comprehensive architectural model for enter-

prise-strength, service-oriented applications and services. These fac-

tories can either be used “as is,” or they can be consumed by your own

industry-specific factory and tailored to your individual needs. You

can add your own factories to this recipe until you have covered the

scope of a particular industry.

	 As you can see, it is not necessary to boil the ocean when building

your own factory. It becomes more a process of building or consuming

highly-focused factories and building them up into a larger factory to

meet the business needs of your clients.

	 Success for a software factory can be gauged by strategic software

reuse through a well-managed, product-line approach that achieves

business goals listed previously. However, it is worth highlighting just

how a software factory would support these goals:

•	 We want simple, standard solutions. A software factory supports this

goal by creating the factory once and stamping out many products

from the template.

•	 Applications are designed and implemented faster; therefore, they can

go to market faster. Up to 80 percent of the work can be automated

by a software factory.

•	 Deliver the right industry and technology expertise, at the right price,

at the right place, and at the right time. Domain knowledge and

expertise is baked into the software factory; the experts are at hand

all the way through the development life cycle.

•	 High-quality applications/solutions are done right the first time. The

software factory is tried, tested, and proven.

•	 Deliver what the customer ordered. A software factory meets the

customers’ business needs sooner, with less risk, and by tailoring a

product as opposed to developing a custom project.

	 Software factories allow projects to jump-start from a well-defined

baseline. Teams know what to do and how to do it. They have trusted,

proven assets to help them do it quickly and correctly. This foundation

makes future maintenance easier, improves quality and consistency, and

also makes change impact easier to predict. New hires need less hand

holding, budgets and schedules are more accurate, and a factory cap-

tures knowledge for future use.

	 Software factories also attempt to address the fact that there are

just not enough architects to go around. Everyone gains by baking the

knowledge of the experts into a factory. The company gains by hav-

ing the experts working on the most important task, rather than hand

holding development teams. The development teams no longer have to

do so many rote and menial tasks; therefore, they are freed up to work

on more interesting and challenging tasks. Of course, do not forget that

clients gain by getting software built to their specifications, more rap-

idly, and within budget. •

Resources

Carnegie Mellon Software Engineering Institute

Software Product Lines

www.sei.cmu.edu/productlines

“Design and Implement a Software Factory,” The Architecture Journal,

Journal 6 (Microsoft Corporation 2006)

Generative Programming: Methods, Tools, and Applications, Krzysztof

Czarnecki and Ulrich W. Eisenecker (Addison-Wesley Professional 2000)

Jezz Santos – Enterprise Framework

The EFx Architectural Guidance Software Factory

http://blogs.msdn.com/jezzsa/articles/677177.aspx

MSDN

Microsoft Visual Studio Developer Center

Domain-Specific Language (DSL) Tools

http://lab.msdn.microsoft.com/teamsystem/workshop/dsltools

Visual Studio Team System Developer Center

Guidance Automation Extensions and Guidance Automation Toolkit

http://lab.msdn.microsoft.com/teamsystem/workshop/gat

Microsoft Corporation

gotdotnet codegallery

Patterns and Practices: Mobile Client Software Factory

http://practices.gotdotnet.com/projects/mobile

Patterns and Practices: Smart Client Software Factory

http://practices.gotdotnet.com/scbat

Web Service Software Factory Community

http://practices.gotdotnet.com/svcfactory

Project Glidepath

www.projectglidepath.net

Software Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools, Jack Greenfield et al. (Wiley 2004)

Software Product Lines: Practices and Patterns, Paul Clements and Linda

Northrop (Addison-Wesley Professional 2002)

About the Author

Steve Eadie is a software architect at EDS and is a graduate of the

EDS Top Gun Program at Microsoft—an intensive three-month

development program that seeks to develop the next wave of architects

skilled in delivering Microsoft technologies. Steve resides in the United

Kingdom, where he has responsibility for software factories and

domain-specific languages. His main interests include model-driven

development, software methodologies, software architecture, patterns,

and mobile computing.

34 www.architecturejournal.net • Journal 9 •

The Perspective-Based
Architecture Method
by Lewis Curtis and George Cerbone

Information technology has promoted a revolution in the modern

world, enabling organizations to operate at faster, more productive

levels. Automated collaboration software enables employees to work,

communicate, and innovate anywhere, at any time, with anyone. Auto-

mated analysis engines can store and apply complex algorithms to

large amounts of data from a variety of sources. Diverse organizations

can communicate and integrate at speeds thought impossible ten years

ago. Personal computers and mobile devices can enable ad hoc com-

munities requiring almost zero administration.

	 With these innovations come increased competitive expectations.

Markets that are used to innovating in the span of years are being chal-

lenged by newcomers that realize the power of innovating in weeks.

This increased pressure has created the need for “extreme time to mar-

ket” as businesses are forced by the marketplace to react more quickly to

changes. Businesses are expecting employees to multitask to levels never

before experienced in the workforce. Finally, as the Internet removes the

friction associated with integration, companies are expected to integrate

across geographic, lingual, political, and economic boundaries.

	 As organizational desires have grown and the technology sophisti-

cation has improved, IT architects are expected to make quick and cost-

effective decisions for the organization. As the velocity of new solu-

tions for the business increases, the complexity of aligning solutions with

existing, current, and projected IT environments has created a quagmire

drowning all who dare enter it. At the same time, business leaders are

discovering IT architectural decisions are often some of the most impor-

tant decisions impacting their organization, not just at the time that the

decision is made, but also impacting subsequent decisions and plans.

	 In response to this enormous complexity, IT architects have

developed terminology, techniques, methodologies, and processes

to help them organize and manage complex architectural designs.

Over the last 50 years these elements have significantly helped IT

professionals decompose complex behavior and determine when

and how to address specific issues and how to make and commu-

nicate decisions. Furthermore, a variety of quality checks and team

modeling structures have been developed to encourage more pre-

cise and efficient activity.

	 For example, one mechanism that architects have developed for

building reusable, decomposable structures is the design pattern.

Design patterns are leveraged to build a predictable, reusable, and reli-

able solution. Many patterns are intended to give answers to common

repeatable scenarios that we call answer patterns. The answer patterns

have generally promoted a more consistent, predictable, and shorter

time-to-market capability for many organizations.

Today’s Challenges
However, while methodologies, processes, and answer patterns have

significantly helped architectural efforts, many projects still fall far short

of expectations even when using the best architectural compositions.

Current models promote repeatable activity but not necessarily better

decisions. They focus on the process of decision making, not the inputs

or outputs. Existing methodologies and processes have addressed sev-

eral questions:

•	 When to make decisions?

•	 Who makes a decision?

•	 How to document decisions?

•	 How to decompose parts of a decision?

	 Answer patterns have focused on: what are common responses for

common scenarios?

	 These are important questions, and existing methodologies have

delivered good repeatable processes, communication methods, and

answer patterns. However, we have not focused on the important ques-

tions architects should answer when engaging in any project. We have

addressed the how, but not the what. Simply, if you don’t ask the right

questions, you will not look for the right answers. This situation is a crit-

ical weakness in IT architecture today. By focusing only on answer pat-

Summary
The Perspective-Based Architecture (PBA) method is
the result of over two years of field-based develop-
ment. PBA has included contributions, case studies,
and revisions from customers, international bod-
ies, and field teams. The ultimate goal of the PBA
method is to promote high-quality decision making,
which is accomplished through three stages contain-
ing structured, focused questions. Step one is a series
of questions capturing the perspective (what is your
environment and where is it going?). Step two exam-
ines the impact of alternatives or existing proposals
on the captured perspective (from step one). Step
three examines the impact of the final proposal on
the captured perspective (from step one). This simple
structure works with all processes and methodologies,
technologies, and documentation standards.

Perspective-Based Architecture Method

35 • Journal 9 • www.architecturejournal.net

terns and repeatable processes and methodologies, we have continu-

ally forced important projects to use designated answer patterns and

methodologies that fit a particular frame of thinking. When these auto-

mated activities fail to fit with the current reality, architects operate in

darkness, stumbling and experimenting to find the way to the light.

The solution to this problem lies in changing the frame that defines our

architectural thoughts.

	 The solution encompasses a new breed of architectural tools and

structures that focus on addressing these critical questions:

•	 What are good questions to ask when making good, discriminating

architectural decisions?

•	 How do I promote cohesive, well-thought-out decisions being con-

sidered on my project?

•	 How do I avoid common pitfalls when making architecture decisions?

	 Successful senior IT architects often possess three fundamental capa-

bilities when making decisions: knowledge, experience, and perspective.

	 Knowledge is the first area of development for any new IT archi-

tect. IT architects must possess a good fund of general knowledge

spanning many disciplines. They must study and analyze vigorously to

keep their knowledgebase as current and timely as possible.

	 Experience represents the second stage of an architect’s career.

Knowledge by itself does not an architect make. Architects attain expe-

rience observing best practices and pitfalls. Experience can be obtained

from firsthand activity or reusable, knowledge-based communication

from the experiences of others. Reusable experiences have been the

catalyst to promote repeatable solutions, design patterns, and consis-

tent architectural operations, which is the core source of answer pat-

terns. Answer patterns are an attempt to codify and transfer experience,

without the “pain” of firsthand discovery. Organizations have promoted

best practices as a technique to capture answer patterns and processes

of successful architects. While this technique has been very positive for

the community, the answer pattern structure and process can also pro-

mote confusion when professionals fail to find patterns working for

their specific engagement.

	 However, experience alone often isn’t enough to promote quality deci-

sion making and analysis. Inspired by the book Blink: The Power of Think-

ing Without Thinking by Malcolm Gladwell and one of the books Gladwell’s

book was based on, Simple Heuristics That Make Us Smart, we found highly

successful architects were able to make excellent analysis and architectural

decisions in a short amount of time. When examining these architects, we

found they often had equivalent levels of experience and knowledge as

teams of architects working on the problem for a much longer time.

PBA
method

Enterprise architectural
environment

IT security environment

Operational metrics

Resource
pressures

Provisioning, patch,
deployment systems

Dev/test environment

Financial pressures

Time pressures

IT environment

Tr
en

d
s

Requirements

Business environm
ent

Perspective-
based

architecture

Reusable
architectural

question
patterns

Perspective
capture

Impact from
alternative
proposals

Impact from
final proposal

Impact

Risk tolerance level

Instrumentation,
monitoring,
and troubleshooting
systems

Technical pressures

Operational processes

1) Question-driven architecture method
2) Compatible with other processes, methodologies

3) Living architecture method (evolving from customers, field,
partners, and so on)

Technology trends

Architectural design
trends

Solution trends

Business unit(s) trends

Corporate trends

Industry trends

General market trends

IT environment trends
in the market

Current corporate IT
environment trends

Competitive
landscape

Business unit(s)
objectives

Corporate policy
standards

Business metric
standards

Business process
standards

Industry
regulations/laws

Financial
environment
capital/operating
purchasing

Organizational
dynamics

Political
environment

Customer
market

Corporate
strategic goals

PBA
method

PBA
method

PBA
method

Currently utilized solution

Nonfunctional/systemic
quality requirements

Functional requirements

Project constraints
(time, money, and
resources)

Executive sponsor(s)

Stakeholders

Business metric requirements

Communication requirements

Impact

Compare

Other systems
(existing and
planned)

Corporate IT
standards

Data center
services

Physical facility capabilities

Recoverability systems

Figure 1 An overview of the PBA method

Perspective-Based Architecture Method

36 www.architecturejournal.net • Journal 9 •

	 So what was the difference? How are some architects able to pro-

duce higher levels of analysis and architectural proposals with the same

level of experience and knowledge? The answer was their perspective.

They often started with quality questions and viewed architectural deci-

sions from an ecosystem impact view rather than a technical capabil-

ity view. Because they often emphasized examining the impact of deci-

sions on an organization, they had refined their intuitive capability to

see impact patterns within a short amount of time. It was this finding

that inspired the study and development of a method that promoted

this capability in our architects.

	 Simply, perspective represents the frame of understanding an archi-

tect brings to an engagement. Perspective represents an architect’s

ability to understand the impact of his or her discriminating decisions

on the environment. This skill is the most challenging that an archi-

tect must attain. Most peer-respected IT architects demonstrate signif-

icant perspective-based skills. They operate with a more comprehen-

sive frame of understanding. Developing and organizing that frame of

understanding is the purpose of the PBA method (see Figure 1).

Introducing the PBA Method
Technology leaders making discriminating, mission-critical decisions for

their organizations understand the importance of a mature perspective.

Those who can see the larger picture and ask quality questions often

develop quality solutions for their organizations.

	 When Lewis’s grandfather led teams setting up satellite informa-

tion communication systems in Turkey and other precarious areas dur-

Figure 2 The PBA method’s question structure meta model

Pe
rs

p
ec

ti
ve

 c
ap

tu
re

Perspective capture
1

M

Perspective zone
1

M

Area

1 1 1 M
Perspective

capture
question

M M

Alternative
impact

question

Alternative
impact

question

Question rules for the
PBA method:

1) The question must be
applicable across
technologies,
methodologies, time,
vendors, processes, and
industries.

2) Each area question
must be focused for one
area only.

3) Each question must be
addressed to current
professional standards
for an IT architect.

Impact capture

Figure 3 The four core zones

PBA perspective capture

Requirements environment

IT environment

Business environment

Trends, forecasting

Figure 4 The requirements environment

PBA perspective capture

Requirements environment

IT environment

Business environment

Trends, forecasting

Currently utilized solution

Functional requirements

Systemic quality requirements

Project constraints

Stakeholders

Executive sponsors

Business metric requirements

Communication requirements

ing the Korean and Cold Wars, he faced monitoring and management

issues, significant security issues, scalability issues, operational pro-

cess issues, time pressures, and critical organization activities that were

dependent on the reliability of the systems. Lives depended on these

systems’ operation. The issues faced in this system are nothing new, but

the lessons learned are often forgotten, which is not unusual. In inter-

viewing professionals outside the field of information technology, we

found perspective is the most challenging and most desired attribute

for a seasoned professional.

	 Therefore, the Perspective-Based Architecture (PBA) method is

designed to be very simple. It does not care when you make a decision,

Figure 5 The business environment

PBA perspective capture

Requirements environment

IT environment

Business environment

Trends, forecasting

Corporate strategic goals

Customer market

Political environment

Organizational dynamics

Financial environment,
capital/operating budgets,

purchasing, and so on

Industry/business regulations,
laws, and so on

Business process standards

Business unit(s) metric
standards

Corporate business policy
standards

Business unit(s) objectives,
goals, and so on

Competitive landscape

Perspective-Based Architecture Method

37 • Journal 9 • www.architecturejournal.net

Focusing Question Areas

Organizations are expanding the scope of IT architectural
responsibility to more individuals. Here are some sample ques-
tions that are formulated correctly and organized for apply-
ing the PBA method specifically to address specific endeavors
proactively.

Requirements Zone: Functional Requirements
Attaining good functional requirements is often fundamental
toward arriving at any good solution. Working with customers
and field teams for the last two years, we found there are several
fundamental questions that must be answered no matter what
methodology, process, or technology is used and no matter for
which vendor (see Figure 9). We found also that by interviewing
retired IT professionals working on past projects, management
assumed they could always answer these fundamental questions.
Of course, the quality and depth of answers coming from IT archi-
tectural professionals varies widely.

1.	 Who will interact with this solution (people, systems, and
so on)?

2.	 How will these people and/or systems interact with this
solution?

3.	 What do these people and/or systems expect functionally and
to be observable from the solution?

4.	 Why do they want or need this specific functionally observable
behavior delivered?

5.	 How will these functional expectations evolve over time?
6.	 What is the expected functional lifespan of this solution?

Business Environment Zone: Political Environment
Political power is the influence and control by individuals or
groups to direct money, resources, time, strategy, and tactics
of an organization toward its desired goals. Understanding and
capitalizing on a political environment through executive spon-
sors and stakeholders using direct and indirect ethical influ-
encing capabilities represents important skills of a seasoned
corporate IT architect.
	 The political ecosystem represents a significant factor in
the success of any ongoing IT initiative. It is critical that archi-
tects carefully understand the political dynamics and make
decisions cohesive with that particular political landscape.
Architecture decisions influence and are influenced by politi-
cal forces within any organization. Here are some common
questions that should be addressed by the architecture team,
organized by section:

Perspective capture
1.	 Who are the significant political influencers in the orga-

nization?
2.	 Which political influencers could impact this solution?
3.	 What are the motivators of these political influencers?
4.	 Are there any political landscape issues that should be known?

Current or alternative impact
1.	 How do (or could) technology decisions of the current or alter-

native architecture design affect the political landscape?
2.	 How does (or could) the current or alternative architectural

development plan impact the political landscape?
3.	 How do (or could) the current or alternative architectural

deployment and transition plans affect the political landscape?
4.	 How does (or could) the process and role ownership model

for the current or alternative architectural decisions affect the
political landscape?

5.	 How will (or could) the executive sponsor(s) be affected by
this potentially altered political landscape from the current or
alternative architecture decisions?

Proposed impact
1.	 How does (or could) the proposed architectural development

plan impact the political landscape?
2.	 How do (or could) the proposed architectural deployment and

transition plans affect the political landscape?
3.	 How does (or could) the process and role ownership model for the

proposed architectural decisions affect the political landscape?
4.	 How will (or could) the executive sponsor(s) be affected by this

potentially altered political landscape from the proposed archi-
tecture decisions?

5.	 How do (or could) technology decisions of the proposed archi-
tecture design affect the political landscape?

IT Environment Zone: IT Management Systems
Most enterprise organizations have systems, processes, techniques,
staff, and so on to troubleshoot, conduct some sort of root-cause
analysis, and repair a solution’s system component when needed.
The need to reduce mean time to repair (MTTR) is crucial for a com-
pany to handle normal and abnormal exceptions in their day-to-day
activities. The solution must align itself well with the current and
forecasted troubleshooting and repair environment that organiza-
tions use to keep their IT operations successful:

Perspective capture
1.	 What systems and processes exist for troubleshooting and root-

cause analysis in the IT organization?
2.	 How are these systems and/or processes for troubleshooting and

root-cause analysis used in the IT organization?
3.	 What solutions are managed by these systems and processes for

troubleshooting and root-cause analysis?

Requirements Zone: Current Solution(s)
As IT reuse is vital for organizations, leveraging existing capabilities
is important as long as they align with the business’s tactical and/or
strategic goals. It is always important to understand what is cur-
rently providing any of the functional and/or nonfunctional needs
of the initiative:

Perspective capture
1.	 What systems currently provide any of the scoped functional

needs for the recognized stakeholders?
2.	 What is the architectural design of these systems?
3.	 When were these solutions designed and deployed?
4.	 Who designed and deployed these solutions?
5.	 Why were these solutions originally designed and deployed?
6.	 What is the general impact of these systems on the organization?

Trends, Forecasting Zone: Industry Vertical Directions/Trend(s)
While the general market directly impacts industry trends, these trends
dramatically impact the organization and the success of most IT solu-
tions. In other words, understanding industry trends is crucial toward
increasing the business viability of the solution being designed:

Perspective capture
1.	 What are the relevant industry vertical directions/trends?
2.	 Why are these vertical industry directions/trends significant for

the business?
3.	 How is the business addressing these vertical industry direc-

tions/trends?

Perspective-Based Architecture Method

38 www.architecturejournal.net • Journal 9 •

what your title is, how you document decisions, or what taxonomy you

use when examining an architecture. It can complement any structure

needed. Simply, the purpose was not to reinvent existing professional

structures but rather to complement current models, methods, and pro-

cesses to drive more successful projects (see Figure 2).

	 To organize the questions, the PBA method divides the perspective

into four broad zones: requirements; business environment; IT environ-

ment; and trends, forecasting (see Figure 3). Seasoned professionals will

notice the importance of forecasting and time, two areas often over-

looked in decision making. These zones by themselves are too broad for

question-structure organization. Therefore, each broad zone contains

many more focused areas of concern. This decomposition enables the

architect to differentiate focused areas more easily. Each focused area of

concern contains a number of questions for perspective capture, exam-

ining the impact from alternative proposals and examining the impact

of the final proposal.

	 While this method might appear complicated for some, it’s actually

quite simple. Common questions were grouped together by subject to

allow greater clarity and organizational understanding. (See the side-

bar, “Focusing Question Areas” for question area examples organized

by zone.)

	 The requirements zone represents common core questions and

areas of concern for the specific project being considered (see Figure 4).

Historically, this zone is where most architects have focused their time

and energy on these areas of concern:

•	 Current utilized solution(s)

•	 Functional requirements

•	 Systemic quality (nonfunctional) requirements

•	 Project constraints (time, resources, and money)

•	 Stakeholders for the solution

•	 Executive sponsor(s)

•	 Business metric requirements related to the solution

•	 Communication requirements for the solution and project team

	 The business environment zone represents critical questions for

the business. These sections focus on relevant parts for the opera-

tionally successful organization in the market (see Figure 5). This sec-

tion does not consider the IT environment; rather, it is entirely busi-

ness focused. The business environment must be addressed in the

language, taxonomy, and structure the business really uses for this

analysis to be successful. Focused areas of concern are:

	

•	 Corporate strategic goals

•	 Customer market

•	 Political environment

•	 Organizational dynamics

•	 Financial environment

•	 Industry business regulations/laws

•	 Business process standards

•	 Business unit(s) metric standards

•	 Corporate business policy standards

•	 Business unit(s) objectives

•	 Competitive landscape

	 The IT environment zone represents the operational IT structures,

processes, issues, and systems for all important technology activity for

the organization (see Figure 6). Similar to the business environment, IT

questions must be addressed using the language of IT. Focused areas of

concern are:

•	 IT recoverability systems

•	 IT operational time pressures

•	 IT operational processes

•	 IT operational resource pressures

•	 IT operational financial pressures

•	 IT physical facility capabilities

•	 IT data center services

•	 IT development/test environment

•	 IT operational technical pressures

•	 IT operational metrics

•	 Corporate IT standards

•	 IT provisioning, patch, and deployment systems

•	 Instrumentation, monitoring, and troubleshooting IT systems

•	 IT security environment

•	 IT operational risk tolerance level(s)

•	 Enterprise architecture environment

•	 Other systems in the IT environment (existing and planned)

Figure 6 The IT environment

PBA perspective capture

Requirements environment

IT environment

Business environment

Trends, forecasting

IT recoverability systems

IT operational time pressures

IT operational processes

IT operational
resource pressures

IT operational
financial pressures

IT physical facility capabilities

IT data center services

IT development/test
environment

IT operational
financial pressures

IT operational metrics

Corporate IT standards

Provisioning, patch, and
deployment systems

Instrumentation, monitoring,
and troubleshooting IT systems

IT security environment

IT operational
risk-tolerance level(s)

Enterprise architecture
environment

Other systems in
the IT environment

Perspective-Based Architecture Method

39 • Journal 9 • www.architecturejournal.net

Figure 7 The trends, forecasting environment

PBA perspective capture

Requirements environment

IT environment

Business environment

Trends, forecasting

Market IT operational trends

General market trends

Industry trends

Corporate trends

Business unit(s) trends

Current corporate IT
operational trends

Solution architecture trends

Infrastructure architecture
trends

Architecture design trends

Technology trends

	 The trends, forecasting zone considers the time dimension and rep-

resents future directions for the IT environment, business environment,

forecasted technologies/solutions, and architectural patterns relevant to

the current solution being considered by the architecture team (see Fig-

ure 7). Architects must be able to honestly and effectively forecast and

analyze trends properly. Focused areas of concern are:

•	 Current corporate IT operational trends

•	 Market IT operational trends

•	 General market business trends

•	 Applicable industry trends

•	 Specific corporate trends

•	 Specific business unit(s) trends

•	 Solution architecture trends

•	 Infrastructure architecture trends

•	 Architectural design trends

•	 Technology trends

The PBA Method Process
The PBA method is designed to be simple and align with most pro-

cesses being used today. The process involves capturing the perspec-

tive and then using that capture to understand the impact of various

architectural decisions (see Figure 8). Using the PBA method proactively

with your favorite design methodology or process helps promote better

decision making during the architectural design experience rather than

in hindsight. Let us take a look at the process.

	 Step one – capture the perspective. Each subarea has detailed

questions asking the architectural team to describe what they under-

stand specifically. An interesting feature of the PBA method is that

“I don’t know” is an acceptable answer. For areas where they do not

have answers, they write, “I (or we) do not know the answer.” This

feature enables the entire team to transparently understand the per-

spective more comprehensively, while being honest about areas of

uncertainty, and promotes cross-team collaboration and open com-

munications for critical engagements. With a unified collaborative

perspective capture, the team can begin examining the impact of

multiple proposals more effectively.

	 Step two – examine the impact of alternative proposals. This step

involves a series of structured impact questions for each subarea in the

perspective capture and focuses on alternative or existing proposals

(depending on the situation) and their impact on the captured perspec-

tive. Again, architects must document both what impact they under-

stand and what impact areas they are uncertain of.

	 Step three – Examine the impact of the final proposal. This step

involves a similar (to step two) series of structured impact questions,

except this step focuses on the final proposal. By using the same per-

spective capture (as in step one), the impact analysis promotes a

more balanced and open approach and drives decisions encourag-

ing best-fit models for the specific organization or business. While

answering the question areas, architects can use any tools, method-

ologies, or architectural processes needed for the project. Often, an

architect will use the information for comparison analysis and com-

municating decision justifications. Something we found more inter-

esting was that the structure promoted higher-quality decisions

aligning with the business, organizational structures, and trends

rather than merely promoting a favorite technology, product, or

technique. In other words, because architects had to address the

perspective from a more comprehensive viewpoint, their decisions

aligned much more effectively.

Figure 8 Process structure for the PBA method

Forecasted
trends

 Alternative
architectures

 Business
environment

Solution
requirements

IT
environment

Perspective
capture process

Current
environment

capture
document

Key
Data from any

process, methodology,
or structure

Impact of
proposed

architecture

Report,
documented

decisions/analysis
Analysis

stage Process

Impact
of alternative

proposals

Impact
of final

proposal

Impact of
alternative

architecture
choices

Final proposal
architecture

Perspective-Based Architecture Method

40 www.architecturejournal.net • Journal 9 •

Figure 9 Sample functional requirements area questions

PBA perspective capture

Requirements environment

Currently utilized solution

Functional requirements

How will these people
and/or systems interact
with this solution?

Systemic quality requirements

Project constraints

Stakeholders

Executive sponsors

Business metric requirements

Communication requirements

IT environment

Business environment

Trends, forecasting

Who will interact with
this solution? (people,
systems, and so on)

Why do they want or need
these specific, functionally
observable behaviors?

What do these people
and/or systems expect
functionally and observably
from the solution?

When do they want the
specific, functionally
observable behavior
delivered?

What is the expected
functional lifespan of this
solution?

How will these functional
expectations evolve over
time?

	 A common question for the process is: “Do step two and step

three need to be sequential?” Not at all. Architects can reverse

the order of step two and three or even conduct them in parallel,

depending on specific needs. The most important point is doing

step one first!

	 We found as organizations moved into their second project using

PBA, many perspective-based questions where already answered, or

they changed very little. The new project team operates with more

impact awareness moving toward decisions and analysis at a faster pace.

Architectural teams become incrementally more effective through this

continuous learning model.

Does It Work?
Working with Federated Systems Group under the direction of Brian

Derda, we conducted an unbiased case study program. It was con-

trolled by Federated Systems Group with architects from three differ-

ent companies working under very short deadlines. Using a Groove

collaboration workspace populated with material from the PBA

method, the team rapidly assembled high-quality strategic and tacti-

Resources

Blink: The Power of Thinking Without Thinking, Malcolm Gladwell (Little,

Brown and Company 2005)

Perspective-Based Architecture

The PBA Method

www.perspectivebasedarchitecture.com

Simple Heuristics That Make Us Smart, Gerd Gigerenzer, Peter M. Todd,

and the ABC Research Group, General editor: Stephen Stich, Rutgers

University (Oxford University Press 2000)

Skyscrapr

ARCast: Perspective-Based Architecture (from Microsoft and Federated)

www.skyscrapr.net/blogs/arcasts/default.aspx?ID=278

About the Authors

Lewis Curtis is an infrastructure architect evangelist for developer

and platform evangelism, east region, Microsoft Corporation. He

is a Microsoft Certified Architect in infrastructure and a member

of the MCA board of directors. Contact Lewis at lewis.curtis@

microsoft.com or at http://blogs.technet.com/lcurtis.

George Cerbone is an infrastructure architect evangelist for developer

and platform evangelism, financial services, Microsoft Corporation,

and a Microsoft Certified Architect in infrastructure. Contact George

at george.cerbone@microsoft.com or at his blog at http://blogs.msdn.

com/gerbone/.

cal analysis with better recommendations and decisions as evaluated

by both Federated Systems Group and Microsoft.

	 Furthermore, we found the PBA method promoted dialogue

between diverse organizations and companies, reduced confusion

between team members, and promoted a higher level of trust

with transparent analysis exposure. Finally, we discovered the PBA

method was very easy to learn, and teams began engaging with

this framework within a very short time frame (see Resources).

	 Successful and respected architects already implicitly use many of

these questions today in their architectural analysis to make good deci-

sions. The PBA method focuses on enabling architects to operate more

efficiently with a perspective-based framework. This efficiency is accom-

plished through a reusable question model with well-defined subject

areas encapsulated in a simple and easy-to-learn structure. Of course,

making difficult decisions often means answering challenging questions,

and while the structure is simple, the questions can be quite challenging.

	 Furthermore, the PBA method represents a living architecture

method. It grows, adapts, and evolves from field, international body,

customer, and partner participation. This approach is very different

from past architecture methodologies and processes.

	 Finally, it can work side by side with anything. The power of

the PBA method is its simplicity and focus. We invite you to become

involved in leveraging and evolving the PBA method (see Resources). •

“The PBA method is designed to be simple

and align with most processes being

used today”

No matter how you say the word

“Architecture”, you can now access

The Architecture Journal in 9 languages.

We are pleased to announce the public avail-

ability of many issues of The Architecture

Journal in several languages, including

English, Spanish, Brazilian Portuguese, French,

German, Russian, Simplified Chinese,

Japanese, and Korean.

To access localized versions of the Journal,

visit http://www.architecturejournal.net

and click on one of the languages

listed on the top bar to download

the PDF.

Now live at www.ArchitectureJournal.net!

098-106629	 Subscribe at: www.architecturejournal.net

®

