

Microsoft Dynamics™ GP

Workflow Integration Guide
Release 10.0

Copyright Copyright © 2008 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into
a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written
permission of Microsoft Corporation. Notwithstanding the foregoing, the licensee of the software
with which this document was provided may make a reasonable number of copies of this
document solely for internal use.

Trademarks Microsoft, Microsoft Dynamics, Dexterity, Outlook , InfoPath, SharePoint server, Visual Studio,
SQL server, Windows, and Windows Server are either registered trademarks or trademarks of
Microsoft Corporation or its affiliates in the United States and/or other countries.

The names of actual companies and products mentioned herein may be trademarks or registered
marks - in the United States and/or other countries - of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted herein are fictitious. No association with
any real company, organization, product, domain name, e-mail address, logo, person, place, or
event is intended or should be inferred.

Intellectual property Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

Warranty disclaimer Microsoft Corporation disclaims any warranty regarding the sample code contained in this
documentation, including the warranties of merchantability and fitness for a particular purpose.

Limitation of liability The content of this document is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Microsoft Corporation. Microsoft
Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear
in this manual. Neither Microsoft Corporation nor anyone else who has been involved in the
creation, production or delivery of this documentation shall be liable for any indirect, incidental,
special, exemplary or consequential damages, including but not limited to any loss of anticipated
profit or benefits, resulting from the use of this documentation or sample code.

License agreement Use of this product is covered by a license agreement provided with the software product. If you
have any questions, please call the Great Plains Customer Assistance Department at 800-456-
0025 (in the U.S. or Canada) or +1-701-281-6500.

Publication date September 2008 -- Last updated September 4, 2008

W O R K F L O W I N T E G R A T I O N G U I D E i

Contents

Introduction ...2
What’s in this manual...2

Prerequisites...2

Symbols and conventions ..3

Product support ..3

What’s new in Workflow for Microsoft Dynamics GP 10.0..4

What to do next ...4

Part 1: Workflow Basics ..6

Chapter 1: Architecture .. 7
Architecture diagram ...7

Microsoft Office SharePoint Server ..8

Workflow server..8

Workflow type assembly ...10

Workflow clients ... 11

Chapter 2: Integration Types .. 15
Creating a new workflow ..15

Extending an existing workflow...16

Chapter 3: Sample Workflow Type .. 19
Workflow type sample overview..19

Workflow type sample files ...20

Installing the sample application..21

Installing the document type assembly...21

Installing eConnect Transaction Requester components ..22

Installing the Sales Lead web service...22

Updating the Dynamics Security Service..23

Installing the server workflow assembly ..25

Installing the document viewer ..27

Installing the client workflow assembly..28

Viewing the workflow type application..29

Chapter 4: Sample Workflow Extension .. 31
Workflow extension sample overview...31

Workflow extension sample files..32

Installing the purchase order integration sample ..32

Installing the web service extension sample...33

Installing the workflow extension sample ..34

Viewing the workflow extension sample ..36

Part 2: Creating a New Workflow ..38

Chapter 5: Designing a New Workflow ... 39

ii W O R K F L O W I N T E G R A T I O N G U I D E

C O N T E N T S

Is a workflow appropriate? ...39

Microsoft Dynamics GP client...39

Business logic...40

Data access ...40

Workflow server..41

Chapter 6: Dictionary Changes... 43
Tables ..43

Table security ...44

Command form...44

Window integration..46

Notifications ..48

Home Page integration ..51

List integration ..53

Application assembly...67

Chapter 7: Client Workflow Assembly... 69
Overview..69

Creating a Visual Studio project ...69

Creating a BusinessObjectKey ..70

Creating a form controller ...72

Creating a list controller...84

Creating a form factory ..91

Building the client workflow assembly ...95

Chapter 8: Web Service.. 97
Creating a document type ...97

Creating a web service ... 114

Securing the web service..125

Testing the web service ..132

Chapter 9: Server Workflow Assembly .. 135
Creating a Visual Studio project ...135

Creating a workflow type..137

Adding business logic ..149

Signing your server workflow assembly...154

Creating a document viewer ...155

Creating a workflow event subscription helper application..160

Building the assembly and application ...165

Chapter 10: Deploying the New Workflow ... 167
Installing the application ...167

Installing the workflow document type ..167

Installing the web service ..167

Installing the server workflow assembly ..169

Installing the client workflow assembly..171

Viewing the workflow..173

W O R K F L O W I N T E G R A T I O N G U I D E iii

C O N T E N T S

Part 3: Extending an Existing Workflow... 176

Chapter 11: Designing a Workflow Extension ... 177
Making data available to workflow ...177

Workflow extension assembly ..178

Data access ...178

Chapter 12: Web Service Extension .. 179
Creating a Visual Studio project ...179

Defining the extension data...180

Adding the web service event handler..181

Building the web service extension..182

Registering the web service extension ...183

Testing the web service extension ..184

Chapter 13: Workflow Extension Assembly .. 187
Creating a Visual Studio project ...187

Adding a resources file ..188

Adding the workflow extension code..189

Building the workflow extension ...192

Chapter 14: Deploying the Workflow Extension ... 193
Web service extension ..193

Adding assemblies to the global assembly cache ..193

Installation helper ...194

Registering the workflow extension ..195

Part 4: Dynamics Workflow Web Service.. 198

Chapter 15: Connecting to the Web Service ... 199
Web service URL ...199

Workflow web service proxy...200

Web service namespace..200

Creating a web service instance..200

Chapter 16: Using the Web Service ...203
Dynamics Workflow Web Service Reference ..203

Dynamics Workflow web service example ...203

Business object keys..204

BusinessObjectKey reference...205

Appendix .. 208

Appendix A: Troubleshooting...209
Resetting the workflow server ..209

Verifying authorization ..209

Appendix B: Debugging ..211
Debugging the client workflow assembly... 211

Debugging the server workflow assembly ...212

iv W O R K F L O W I N T E G R A T I O N G U I D E

C O N T E N T S

Appendix C: Changing Passwords..215

Glossary ... 217

Index ... 219

IN
T

R
O

D
U

C
T

IO
N

2 W O R K F L O W I N T E G R A T I O N G U I D E

Introduction
Welcome to Workflow for Microsoft Dynamics™ GP SDK. The workflow SDK
provides files, tools, and services that allow applications to customize the Microsoft
Dynamics GP workflow approval process. This documentation explains how to use
workflow to complete the following tasks:

• Create a new workflow type.
• Extend an existing workflow
• Interact with the Dynamics Workflow web service.

Before you begin installing and using workflow, take a few moments to review the
information presented here.

What’s in this manual

The Microsoft Dynamics GP Workflow Integration Guide is designed to give you an
in-depth understanding of how to create integrations for workflow. The manual
guides you through the steps to add a new workflow or extend an existing
workflow.

Information is divided into the following parts:

• Part 1, Workflow Basics describes the workflow architecture, the types of
workflow integrations you can create, and the sample workflow integration.

• Part 2, Creating a New Workflow describes how to build the components you
need to create a new approval workflow for a back-office document.

• Part 3, Extending an Existing Workflow describes how to build the compo-
nents you need to add new data fields to an existing workflow.

• Part 4, Dynamics Workflow Web Service describes how to connect to and use
the Dynamics Workflow web service from an external application.

To learn about installing Microsoft Dynamics GP Workflow, refer to the Workflow
Installation Guide. For additional information about configuring and managing
workflow for Microsoft Dynamics GP, see the Microsoft Dynamics GP Workflow
Administrator’s Guide.

Prerequisites

Before you begin developing with the Microsoft Dynamics GP Workflow SDK, you
should be familiar with the workflow administration. It is also assumed that you
have previous knowledge of the following:

• Knowledge about the Microsoft Dynamics GP approval workflow.

• Experience using Visual Studio.

• Experience using the C# programming language.

• Experience with Microsoft Dynamics GP Dexterity development.

• How to use Visual Studio Tools for Dynamics GP.

W O R K F L O W I N T E G R A T I O N G U I D E 3

I N T R O D U C T I O N

• How to create and use XSLT files.

• Experience using Web Services for Microsoft Dynamics GP and eConnect for
Microsoft Dynamics GP.

• How to use the Dynamics Security Service to update web service security roles.

• Experience using the Microsoft SQL Server™ Management Studio.

• Experience with Microsoft Internet Information Services (IIS) administration.

• You must have Visual Studio installed on the workflow server where you plan
to use the SDK.

If you need to improve your skills in any of these areas, consult any of the various
reference materials that discuss them.

Symbols and conventions

To help you use this documentation more effectively, we’ve included the following
symbols and conventions within the text to make specific types of information
stand out.

Product support
Microsoft Dynamics GP technical support can be accessed online or by telephone.
Go to www.microsoft.com/Dynamics and click the CustomerSource or
PartnerSource link, or call 888-477-7877 (in the US and Canada) or 701-281-0555.

Symbol Description

The light bulb symbol indicates helpful tips, shortcuts,
and suggestions.

Warnings indicate situations you should be aware of
when completing tasks.

Margin notes summarize
important information.

Margin notes call attention to critical information and
direct you to other areas of the documentation where
a topic is explained.

Convention Description

Part 2, Creating a New
Workflow

Bold type indicates a part name.

Chapter 1, “Architecture” Quotation marks indicate a chapter name.

Overview Italicized type indicates a section name.
using System.Xml; This font is used to indicate script examples.

Microsoft Office
SharePoint Server (MOSS)

Acronyms are spelled out the first time they’re used.

TAB or ALT+M Small capital letters indicate a key or a key sequence.

http://www.microsoft.com/Dynamics

I N T R O D U C T I O N

4 W O R K F L O W I N T E G R A T I O N G U I D E

What’s new in Workflow for Microsoft Dynamics GP
10.0

Microsoft Dynamics GP 10.0 Feature Pack 1 changes how Microsoft Dynamics GP
archives workflow history information. When a workflow completes, the workflow
history and tracking information for that document are stored in the Microsoft
Dynamics GP database. The components that the Feature Pack uses to store
workflow history are now available for use with all workflow types.

A key component of the Microsoft Dynamics GP Workflow archive is the
IDynamicsWorkflowHistory interface. The interface includes methods you use to
define how your workflow saves and retrieves workflow history. Refer to Chapter
9, “Server Workflow Assembly,” for more information about implementing the
IDynamicsWorkflowHistory interface.

What to do next

To begin learning about the Microsoft Dynamics GP Workflow, we recommend the
following steps:

1. Read Part 1, Workflow Basics
This will provide the appropriate background for developing integrations with
Microsoft Dynamics GP Workflow.

2. Install the sample files from the Microsoft Dynamics GP
Workflow SDK.
If you have not already done so, install all the files from the Microsoft Dynamics
GP Workflow SDK. The Microsoft Dynamics GP Workflow SDK contains
references and sample files that will help you to understand the materials
presented in this guide.

3. Install the sample application and sample workflow integration.
A sample application is included with the Microsoft Dynamics GP Workflow
SDK. This sample application demonstrates the techniques you will use as your
develop your own workflow integrations.

Refer to Chapter 3, “Sample Workflow Type,” for more information about
installing and using the sample application.

4. Continue reading the Workflow Integration Guide.
The remaining chapters in the Workflow Integration Guide will provide you
with information about creating integrations with Microsoft Dynamics GP
Workflow.

P
A

R
T

 1
: W

O
R

K
FLO

W
 B

A
S

IC
S

6 W O R K F L O W I N T E G R A T I O N G U I D E

Part 1: Workflow Basics
This portion of the documentation contains basic information you should know
before adding or extending a workflow. The following information is discussed:

• Chapter 1, “Architecture,” provides and overview of workflow and what
Workflow for Microsoft Dynamics GP provides.

• Chapter 2, “Integration Types,” describes the two types of workflow
integrations you can create.

• Chapter 3, “Sample Workflow Type,” describes the workflow type sample
included with the Microsoft Dynamics GP Workflow SDK. Details about
installing the sample and the components used to create it are provided.

• Chapter 4, “Sample Workflow Extension,” describes the workflow extension
sample included with the Microsoft Dynamics GP Workflow SDK. Details
about installing the extension sample and the components used to create it are
provided.

W O R K F L O W I N T E G R A T I O N G U I D E 7

C H A P T E R 1 A R C H I T E C T U R E

Chapter 1: Architecture
To create custom workflow solutions, you add and register components with the
Microsoft Dynamics GP Workflow framework. To understand how your
components combine with Microsoft Dynamics GP Workflow, it will be helpful to
understand the architecture of the workflow framework. Information about
workflow architecture is divided into the following sections:

• Architecture diagram
• Microsoft Office SharePoint Server
• Workflow server
• Workflow type assembly
• Workflow clients

Architecture diagram

Workflow is a process that automates routing a document to users responsible for
performing actions on that document. Microsoft Dynamics GP implements
Workflow using a framework that attaches workflow functionality to specific
Microsoft Dynamics GP documents. The following diagram shows the main
components of Microsoft Dynamics GP Workflow:

Workflow
web service

Office SharePoint
Server data

Windows Workflow
Foundation

SharePoint Security
groups

Microsoft Dynamics GP
 data

Update

Retrieve

Client
Computer

Server

Microsoft
Dynamics GP

Dynamics Security
Service

Workflow server

Dynamics GP

ISV

Workflow type assemblies

Microsoft Office
SharePoint Server

Dynamics GP

ISV

Dynamics GP

ISV

Client workflow
assemblies

Dynamics GP
web services

P A R T 1 W O R K F L O W B A S I C S

8 W O R K F L O W I N T E G R A T I O N G U I D E

You create a new workflow or extend an existing workflow by supplying
components that plug into the Microsoft Dynamics GP Workflow framework. The
shaded elements represent the components you use to customize Workflow.

Microsoft Office SharePoint Server

The Microsoft Dynamics GP Workflow server builds upon the workflow
capabilities provided by Microsoft Office SharePoint Server (MOSS). Currently,
Microsoft Dynamics GP uses MOSS to define and deploy an “approval” workflow
type. All the available workflows are based on this “approval” workflow type.

The Dynamics GP approval workflow is built from a generic Windows Workflow
Foundation schedule. The schedule controls what types of tasks a workflow can
perform and how those tasks are scheduled. Workflow uses MOSS to host the
workflow schedule. As a host, MOSS provides the runtime infrastructure for each
workflow instance and stores the data and history for each workflow instance.

You customize this generic Windows Workflow Foundation schedule by combining
it with workflow metadata. You create this metadata when you use the Microsoft
Dynamics Workflow web site to configure workflow preferences and approval
hierarchies. MOSS stores your selections as workflow metadata.

When Workflow runs, your configuration metadata is combined with the generic
workflow schedule to create the approval routing hierarchy for a specific Workflow
instance. Separating the workflow schedule from the configuration metadata allows
you to extend Workflow to other documents.

Workflow server

Workflow includes several components that you install on the same server as
Microsoft Office SharePoint Server (MOSS). The Workflow server component
allows client applications to initiate, monitor, and retrieve workflow information.

Workflow web service
The Workflow server component uses a web service to enable a client to initiate
workflow actions and retrieve workflow information. The web service’s web
methods allow you to interact with Workflow without having to learn Microsoft
Office SharePoint Server or the Windows Workflow Foundation.

Workflow components
The Workflow components behind the web service implement workflow business
logic, perform actions using MOSS, and retrieve workflow information from MOSS
and Microsoft Dynamics GP. To support a client’s workflow request, the Workflow
server components utilize the following resources:

• Workflow uses MOSS to store the workflow definitions. A workflow definition
contains the activities, schedule, and configuration information that control the
operation of workflow instances.

• Workflow uses MOSS to host the workflow process. For example, when you call
the SubmitForApproval web method in the Dynamics Workflow web service,
MOSS places the data for the workflow instance into a SharePoint list item and
starts a workflow instance that performs the SubmitForApproval actions
specified by the workflow metadata in the list item.

W O R K F L O W I N T E G R A T I O N G U I D E 9

C H A P T E R 1 A R C H I T E C T U R E

• Workflow uses MOSS to store information about each workflow instance.

• Workflow uses Microsoft .NET assemblies to define business objects. A business
object represents a Microsoft Dynamics GP documents. The business object
must be able to retrieve and update Microsoft Dynamics GP data.

• Workflow uses events to trigger actions by the business objects. When you
register your assembly with Workflow, you specify the events that your
business object handles.

Security
The Workflow server components provide a security framework for all workflows.
Workflow security uses the following components:

• Workflow secures access to the Workflow web service via membership in an
Office SharePoint Server group. You create and maintain these groups through
the Workflow SharePoint site. For additional information on creating and
maintaining Office SharePoint Server groups, refer to the Microsoft Dynamics
GP Workflow Administrator’s Guide.

• During installation, Microsoft Dynamics GP creates a SQL role named
DYNWORKFLOWGRP. This role provides access to the objects and tables on
the Microsoft Dynamics GP SQL Server that workflow uses to perform tasks.

To allow a new workflow to access the Microsoft Dynamics GP SQL database, you
grant DYNWORKFLOWGRP the appropriate permissions to access the SQL Server
objects or tables used by that workflow.

• When Workflow accesses resources, it uses the identity of the SharePoint web
site application pool or the Windows SharePoint Services Timer service. To
allow Workflow access to Microsoft Dynamics GP data and Microsoft
Dynamics GP Web Services, the account assigned to the application pool and
the Windows SharePoint Services Timer service must a member of the
DYNWORKFLOWGRP role on the Microsoft Dynamics GP SQL Server.

• To access Microsoft Dynamics GP web services, Workflow uses the Dynamics
Security Service (DSS) to ensure the user is authorized to perform the web
service task. During installation, the login account used by the SharePoint
application pool and Windows SharePoint Services Timer service is assigned
the Workflow Administrator role. This role is assigned the web service tasks
required by the existing Dynamics GP workflows that are available after
installation.

To use additional Dynamics GP web services, you may need to add tasks to the
Workflow Administrator role using the Dynamics Security Console. To learn how to
configure the Dynamics Security Service, review Security in the Web Services for
Microsoft Dynamics GP Installation and Administration Guide.

P A R T 1 W O R K F L O W B A S I C S

10 W O R K F L O W I N T E G R A T I O N G U I D E

Workflow type assembly

To use Workflow, the generic workflow schedule defined in MOSS must be
associated with specific Microsoft Dynamics GP business objects. For example, the
Purchase Order Approval workflow applies the generic approval workflow
schedule to Microsoft Dynamics GP Purchase Order documents. The association
between Workflow and a business object is called a Workflow type.

Microsoft Dynamics GP uses Microsoft .NET assemblies to define each Workflow
type. A Workflow type assembly provides the following capabilities:

• The Workflow type assembly provides metadata that uniquely identifies each
Workflow and its associated business object.

• The Workflow type assembly implements the IDynamicsWorkflow interface.
The interface ensures all Workflow types provide the required set of methods.

• The Workflow type assembly retrieves and updates Microsoft Dynamics GP
data for the business object associated with the workflow type.

• The Workflow type assembly implements the event handlers that cause a
workflow to react to actions performed by the user.

The ability to raise and handle events is a key Workflow capability. The Workflow
server uses events to notify subscribers when specific workflow events occur. The
subscriber implements an event handler for that event. The event handler retrieves
the Microsoft Dynamics GP document, executes business logic related to the
workflow event, and saves the Microsoft Dynamics GP document to the database.

To subscribe to an event, you must register your workflow type with the Workflow
server. New workflow types use the same registration process as the workflows
included with Microsoft Dynamics GP. You will learn more about this in Chapter
10, “Deploying the New Workflow.”.

Data management
When the workflow type assembly responds to an event, it must retrieve the
Microsoft Dynamics GP document for which a workflow action is being performed.
The workflow type assembly must also save any document changes to the
Microsoft Dynamics GP database.

Workflow does not mandate how to retrieve or update Microsoft Dynamics GP data
that is affected by workflow operations. The existing Dynamics GP workflows use
both Dynamics GP web services and direct database commands to perform data
access tasks.

When a workflow type assembly accesses web services or the Microsoft Dynamics
GP database, it uses the identity of the SharePoint web site application pool.

W O R K F L O W I N T E G R A T I O N G U I D E 11

C H A P T E R 1 A R C H I T E C T U R E

Document viewer
Each workflow type must supply a web-based document viewer. The document
viewer displays key information about a specified document. The architecture
diagram does not include the document viewer.

You access the document viewer when you click the Record ID link in the list of
documents found in the Workflow Documents tab of the Microsoft Dynamics
Workflow web site. You also use the document viewer when you click the “View
Document link in the email messages sent with some workflow notifications.

Workflow clients

The Architecture diagram shows a Microsoft Dynamics GP client being used to access
workflow. Workflow also supports a web client and a Microsoft Office Outlook
2007 email client. These clients use a Microsoft Office InfoPath form that allows a
workflow approver to approve or reject a document.

Microsoft Dynamics GP client
When creating a new workflow for a Microsoft Dynamics GP document, you must
add workflow support to the Microsoft Dynamics GP client. To support your new
workflow, several changes and additions are required in the Dexterity-based
application dictionary. Some of these changes implement core portions of the new
workflow. Other changes allow forms or lists you add to the Microsoft Dynamics
GP client to use the workflow client interface. For additional information about
adding to the application dictionary, see Chapter 6, “Dictionary Changes.”

Displays information from
the sales quote

document.

The link opens the specified
record in the document viewer.

P A R T 1 W O R K F L O W B A S I C S

12 W O R K F L O W I N T E G R A T I O N G U I D E

To allow a document to use a new workflow, you create a client workflow assembly
that implements the workflow client interface. The dictionary changes and client
workflow assembly allow a Microsoft Dynamics GP client form to display
workflow information and to initiate workflow actions.

The client workflow assembly also allow a Microsoft Dynamics GP list to display
workflow information and initiate workflow actions.

You will learn more about the client workflow assembly in Chapter 7, “Client
Workflow Assembly.”

SharePoint client
When Workflow for Dynamics GP is installed, the Microsoft Dynamics Workflow
web site is created. This web site is built on MOSS and can be accessed with
Microsoft Internet Explorer. The web site allows administrators to configure and
manage workflows. The Microsoft Dynamics Workflow site also allows users to
view and approve documents and batches that are assigned to them.

W O R K F L O W I N T E G R A T I O N G U I D E 13

C H A P T E R 1 A R C H I T E C T U R E

The following shows the SharePoint approval task for the Sales Quote approval
workflow.

Outlook client
When a document or batch is assigned to a user for approval, an e-mail message can
be sent to that approver. The e-mail message displays information about the
document or batch. The Edit this Task button allows the user to approve or reject
the document or batch.

14 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 15

Chapter 2: Integration Types
Microsoft Dynamics GP Workflow allows you to create a new workflow for back-
office documents or to extend an existing workflow. Information about both types
of workflow integration is contained in the following sections:

• Creating a new workflow
• Extending an existing workflow

Creating a new workflow

You can add Workflow support to back-office documents for Microsoft Dynamics
GP. If a document requires one or more individuals to review and approve a new or
updated document, it is a candidate to have workflow support added for it. For
detailed information about creating and deploying a new workflow, see Part 2,
Creating a New Workflow.

To integrate a back-office document with Workflow, you complete the following
tasks:

1. Make application dictionary changes.
Create or update the Microsoft Dynamics GP form that displays your
document. You modify the form to support the workflow process and to enable
the workflow client interface. For additional information about the dictionary
changes, see Chapter 6, “Dictionary Changes.”

2. Add workflow columns to the database.
Add columns required by workflow to the data table where you store your
document data. To learn about the data table change, see Tables on page 43 of
Chapter 6, “Dictionary Changes.”

3. Add a web service.
Create a web service that provides access to the new back-office document. For
additional information about creating a web service, see Chapter 8, “Web
Service.”

4. Create a client workflow assembly.
Create a .NET assembly for the Microsoft Dynamics GP client. The assembly
works with your Microsoft Dynamics GP form to display the workflow client
interface and to populate that interface with workflow information for the
current document. To learn about the client workflow assembly, see Chapter 7,
“Client Workflow Assembly.”

5. Create a server workflow assembly.
Create a .NET assembly for the Microsoft Dynamics GP server that defines your
workflow type. The server assembly retrieves and updates the document when
specified workflow events occur. For additional information about the server
workflow assembly, see Chapter 9, “Server Workflow Assembly.”

6. Create a document viewer.
Create a document viewer that displays key information from your back-office
document in the workflow web client. To learn about workflow document
viewers, see Creating a document viewer on page 155 of Chapter 9, “Server
Workflow Assembly.”

P A R T 1 W O R K F L O W B A S I C S

16 W O R K F L O W I N T E G R A T I O N G U I D E

7. Update the Dynamics Security Service.
Update security roles in the Dynamics Security Service that enable workflow
access to Microsoft Dynamics GP web services. For information about updating
the Dynamics Security Service, see Creating a workflow event subscription helper
application on page 160 of Chapter 9, “Server Workflow Assembly.”

8. Update Microsoft SQL server security
Give the DYNWORKFLOWGRP database role permission to access tables in the
Microsoft Dynamics GP database. Add tables to this role where you added
workflow information. For information about updating SQL server security, see
Table security on page 44 of Chapter 6, “Dictionary Changes.”

9. Deploy the server workflow assembly.
To add your new workflow, you must install and register your server assembly
on the server where you have installed MOSS and Workflow. For additional
information about deploying server workflow assembly, see Chapter 10,
“Deploying the New Workflow.”

10. Deploy the web service.
Install the new web service on the Web Services for Microsoft Dynamics GP
server. For information about installing the web service, see Chapter 10,
“Deploying the New Workflow.”

11. Deploy the client workflow assembly.
To enable the Microsoft Dynamics GP client to use your new workflow, install
your client dictionary changes and the client assembly on each of Microsoft
Dynamics GP client machine. You must also edit the Dynamics.exe.config file of
each client. For additional information about deploying the client workflow
assembly, see Chapter 10, “Deploying the New Workflow.”.

Extending an existing workflow

Microsoft Dynamics GP installs workflow support for several existing document
types. The existing workflow types are as follows:

If you have a Microsoft Dynamics GP integration that adds one or more data fields
to one of these Dynamics GP documents, use a workflow extension to add your
data to the existing workflow. For detailed information on extending an existing
workflow, see Part 3, Extending an Existing Workflow.

To extend an existing workflow, complete the following tasks:

1. Create a web service extension.
Create a web service extension that allows the Microsoft Dynamics GP web
service to retrieve data from your new data store. For information about the
web service extension, see Chapter 12, “Web Service Extension.”

Workflow type Microsoft Dynamics GP form

Purchase order approval Purchase Order Entry

Sales quote approval Sales Transaction Entry

Customer credit limit override approval Sales Transaction Entry

General ledger batch approval Batch Entry

Payables Management batch approval Payables Batch Entry

Receivables Management batch approval Receivables Batch Entry

W O R K F L O W I N T E G R A T I O N G U I D E 17

C H A P T E R 2 I N T E G R A T I O N T Y P E S

2. Create a workflow extension assembly.
Create a .NET assembly for the Microsoft Dynamics GP server that includes
your new data fields with the existing Workflow document. For additional
information, see Chapter 13, “Workflow Extension Assembly.”

3. Create an “installation helper” application.
Create a helper application that registers the workflow extension assembly. For
additional information, see Chapter 14, “Deploying the Workflow Extension.”

4. Deploy the workflow extension assembly.
To deploy a workflow extension assembly, install the workflow extension
assembly on the Workflow server. To register the assembly, install and run the
“installation helper.” For additional information about deploying a workflow
extension assembly, see Chapter 14, “Deploying the Workflow Extension.”

18 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 19

Chapter 3: Sample Workflow Type
Included with the Microsoft Dynamics GP Workflow SDK is a sample application
that demonstrates common techniques you will you use in your own workflow
integrations. The sample application integrates a new document type with
Microsoft Dynamics GP and uses workflow to approve changes to the document.
Information about the Microsoft Dynamics GP Workflow SDK sample application
is divided into the following sections:

• Workflow type sample overview
• Workflow type sample files
• Installing the sample application
• Installing the document type assembly
• Installing the Sales Lead web service
• Updating the Dynamics Security Service
• Installing eConnect Transaction Requester components
• Installing the server workflow assembly
• Installing the document viewer
• Installing the client workflow assembly
• Viewing the workflow type application

Workflow type sample overview

The Microsoft Dynamics GP Workflow SDK includes a sample application
(Develop.cnk) that integrates with Microsoft Dynamics GP. The Microsoft Dynamics
GP Workflow SDK also includes a collection of Visual Studio projects that allow the
sample application to integrate with Microsoft Dynamics GP Workflow.

The sample application includes a Lead Maintenance form used to track potential
customer leads. The sample uses workflow to approve the assignment of a
salesperson to a lead.

• Workflow ensures a specified approver reviews and approves the salesperson
initially assigned to a new lead.

• Workflow ensures an approver reviews changes to the salesperson assigned to a
lead. If the approver rejects the change, the lead is automatically reassigned to
the last approved salesperson.

Since leads are a new document type for Microsoft Dynamics GP, Web Services for
Microsoft Dynamics GP does not include web methods that retrieve them. To access
lead data, the Microsoft Dynamics GP Workflow SDK sample includes a Visual
Studio project that builds a Sales Lead web service. The Sales Lead web service
extends the Dynamics GP web services and provides the following capabilities:

• The Sales Lead web service allows workflow to retrieve individual lead
documents. The Workflow uses the web service GetByKey method to retrieve a
lead document whenever it needs lead data from the Microsoft Dynamics GP
database.

• The Sales Lead web service uses existing Dynamics Security Service roles to
secure access to the web service. This allows you to manage access to new web
service methods using the Dynamics Security Service.

P A R T 1 W O R K F L O W B A S I C S

20 W O R K F L O W I N T E G R A T I O N G U I D E

• The Sales Lead web service uses Microsoft Dynamics GP web service context
objects to specify how a web service call should be performed. For example, use
OrganizationKey property of the context object to specify the Microsoft
Dynamics GP company database that stores the lead document.

The SDK includes a Visual Studio project that builds a client workflow assembly.
The assembly adds workflow support to the Lead Maintenance and Lead list
created by the sample application.

The SDK includes a Visual Studio project that builds a server workflow assembly.
The assembly adds workflow approval support for lead documents. The project
includes a helper application that registers the new workflow type.

The server workflow assembly project also includes a document viewer that
displays a lead document in the Workflow web client.

Workflow type sample files

To demonstrate a workflow integration, the Microsoft Dynamics GP Workflow SDK
includes the files and Visual Studio projects needed to build and install the lead
sample application and workflow. These files are in an archive file named Samples.

The SDK’s workflow type sample includes the following files and Visual Studio
projects.

To install the SDK workflow type sample, extract the files and projects from the
archive. Extract the project folders to a workflow server with Visual Studio
installed. Use Visual Studio with the project solution files to build the sample’s
assembly and application files.

Category File or project name Description

GP client components Application.SampleIntegratingApp.dll A Visual Studio tools for Microsoft Dynamics GP assembly that allows
the client workflow assembly to work with the Lead Maintenance and
Lead List forms.

GP client components Develop.cnk A file that installs the Lead Maintenance sample application for
Microsoft Dynamics GP.

Web services Microsoft.Dynamics.GP.Samples,
SalesLeads.LeadGetByKey.xslt

An XSLT file that allows web services to retrieve Lead data using the
eConnect Transaction Requester.

Web services WSLead.sql A SQL script that inserts a record into the eConnect_Out_Setup table of
the TWO database.

Web services InstallSalesLeadSecurityMetadata A Visual Studio C# project. The project produces an application that
adds operations and tasks to the Dynamics Security Service for securing
the Leads web service.

Web services Microsoft.Dynamics.GP.Samples.
SalesLeads

A Visual Studio C# project. The project produces an assembly that
defines a Lead document type for use with web services and workflow.

Web services SampleSalesLeadWebService A Visual Studio C# web service project. The project produces a .asmx
file, and assembly that enables you to access lead data through a web
service.

Web services WebServiceTest A Visual Studio C# console application project. The project produces a
test application you can use to verify that the Sales Lead web service is
working.

Workflow WorkflowClientSample A Visual Studio C# project. The project produces an assembly that adds
workflow functionality to the Lead Maintenance and Lead List forms
created by the sample application.

Workflow WorkflowServerSample A Visual Studio C# project. The project that produces an assembly that
add the Microsoft Dynamics GP approval workflow to leads.

W O R K F L O W I N T E G R A T I O N G U I D E 21

C H A P T E R 3 S A M P L E W O R K F L O W T Y P E

Installing the sample application

To use the workflow sample application, you must first install the back-office
sample application. The sample application contains two forms to which workflow
support has been added: the Lead Maintenance form and the Lead list form.

To install the back-office sample application, complete the following procedure:

1. Install the sample application files.
Copy the Application.SampleIntegratingApp.dll, and Develop.cnk files to the
Microsoft Dynamics GP client install folder. The client install is typically in the
location:

C:\Program Files\Microsoft Dynamics\GP

2. Start Microsoft Dynamics GP
A message will be displayed asking whether you want to include new code.
Click Yes. When the Login window appears, log in as the System Administrator
(sa), or DYNSA.

You must log in as the System Administrator (sa) or DYNSA the first time after
installing the sample, so the application’s SQL tables will be properly created.

3. Log into the sample company.
Choose to log into the sample company, Fabrikam, Inc.

4. Verify the installation.
If the sample application was installed properly, the IG Sample toolbar will be
displayed in Microsoft Dynamics GP. You can open the Lead Maintenance form
by clicking its associated icon on the IG Sample toolbar.

For additional information about installing the back-office sample application, see
the Microsoft Dynamics GP Integration Guide that is included with Dexterity.

Installing the document type assembly

To use the web service to access the data associated with the back-office sample
application, you must install the .NET assembly that defines a lead.

To install the sample assembly that defines leads, complete the following
procedure:

1. Open the solution file with Visual Studio.
Open the solution file Microsoft.Dynamics.GP.Samples.SalesLeads.sln with
Visual Studio.

2. Verify References for the project.
Use Solution Explorer to verify the References. Reload any references that are
not able to find the specified .dll file.To reload a reference, browse to the
Dynamics GP web services “bin” folder, typically found in the following
location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

P A R T 1 W O R K F L O W B A S I C S

22 W O R K F L O W I N T E G R A T I O N G U I D E

3. Build the assembly.
From the Build menu, choose Build Solution. Visual Studio builds the assembly
in the project’s “\bin\debug” folder.

4. Copy the assembly to the web services server.
Copy the Microsoft.Dynamics.GP.Samples.SalesLeads.dll file to the server
where you installed Web Services for Microsoft Dynamics GP. Place the .dll in
the Dynamics GP web service “bin” folder, typically found in this location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

Installing eConnect Transaction Requester
components

The Sales Lead web service uses the eConnect Transaction Requester to retrieve
data from the Microsoft Dynamics GP database. To add your new document type to
the eConnect Transaction Requester, complete the following procedure:

1. Update the eConnect_Out_Setup table in the TWO database.
Copy the WSLead.sql file to your Dynamics GP data server. Open the
WSLead.sql file with Microsoft SQL Server Management Studio. From the
Query menu, choose Execute. The query adds a new entry to the
eConnect_Out_Setup table in the TWO database.

2. Install the XSLT file to the web server.
Copy the Microsoft.Dynamics.GP.Samples.SalesLeads.LeadGetByKey.xslt file to
the web server where you installed the Web Services for Microsoft Dynamics
GP. Place the file in the Dynamics GP web service “XSLT” folder, typically
found in this location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin\XSLT

Installing the Sales Lead web service

To enable access to the back-office sample application’s data, install a web service
that returns a specified lead document. To install the web service, complete the
following procedure:

1. Open the solution file with Visual Studio.
Open the SampleSalesLeadWebService.sln with Visual Studio.

2. Verify References for the project.
Use Solution Explorer to verify the References. Reload any references that are
not able to find the specified .dll file. To reload a reference, browse to the
Dynamics GP web services “bin” folder, typically found in the following
location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

3. Build the application.
From the Build menu, choose Build SampleSalesLeadWebService. Visual Studio
builds the web service SampleSalesLeadWebService.dll assembly in the
project’s “bin” folder.

W O R K F L O W I N T E G R A T I O N G U I D E 23

C H A P T E R 3 S A M P L E W O R K F L O W T Y P E

4. Install the web service file.
Copy the SampleSalesLeadWebService.asmx file to the server where you
installed Web Services for Microsoft Dynamics GP. Place the
SampleSalesLeadWebService.asmx file in the Dynamics GP web service
“WebServices” folder, typically found in this location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices

To help secure the web service, use the security properties of the
SampleSalesLeadWebService.asmx file to specify user access permissions. To
enable users of Microsoft Dynamics GP web services to also access this web
service, right-click the SampleSalesLeadWebService.asmx file, and choose
Properties. When the Properties window opens, click the Security tab, and then
click Add. In the Select Users, Computers, or Groups window, type
Authenticated Users into the Enter the object names to select box, and then click
OK. Mark the Allow check box for Read, and Read & Execute permissions.
Click OK to close the Properties window.

5. Install the web service assembly.
Copy the SampleSalesLeadWebService.dll assembly to the server where you
installed Web Services for Microsoft Dynamics GP. Place the
SampleSalesLeadWebService.dll assembly in the Dynamics GP web services
“bin” folder, typically found in this location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\bin

6. Test the web service (optional).
If you want to verify that the web service is working properly, you can use the
WebServiceTest sample. This is a console application that calls the Sales Lead
web service, retrieves a specified lead document, and then displays the name of
the lead.

Before you run the WebServiceTest sample, you might need to update the web
reference to use the URL of your Sales Lead web service. You might also need to
change the value supplied for the LeadKey Id.

Updating the Dynamics Security Service

To prevent unauthorized access of the Sales Lead web service, run the following
“security helper” application:

Microsoft.Dynamics.GP.Samples.InstallSalesLeadSecurityMetadata.exe

The sales lead “security helper” application adds three security operations and a
security task to the Dynamics Security Service. The application also assigns the new
security operations to the Dynamics Security Service Superuser role

To build and run this application, complete the following procedure:

1. Open the solution file with Visual Studio.
Open the following solution file:

Microsoft.Dynamics.GP.Samples.InstallSalesLeadSecurityMetadata.sln

P A R T 1 W O R K F L O W B A S I C S

24 W O R K F L O W I N T E G R A T I O N G U I D E

2. Verify References for the project.
Use Solution Explorer to verify the References. Reload any references that are
not able to find the specified .dll file. To reload a reference, browse to the
Dynamics GP web services “bin” folder, typically found in the following
location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

3. Build the application.
From the Build menu, choose Build Solution. Visual Studio builds the
application file and the application configuration file in the project’s
“\bin\debug” folder.

4. Install the application and application configuration files.
Find the following application and application configuration files:

Microsoft.Dynamics.GP.Samples.InstallSalesLeadSecurityMetadata.exe

Microsoft.Dynamics.GP.Samples.InstallSalesLeadSecurityMetadata.exe.config

Copy both files to the Dynamics GP web service “GPWebServices” folder,
typically found in this location:

C:\Program Files\Microsoft Dynamics\GPWebServices

5. Run the application.
Open a command prompt and change the working location to the folder where
you installed the “security helper” application.

The Dynamics Security Service uses Active Directory Application Mode (ADAM) to
store information about web service security roles, operations, and tasks. To run the
“security helper” application, you must be logged in as user who is an ADAM
administrator. If you run the “security helper” application using a login that is not an
ADAM administrator, ADAM will return a “System.UnauthorizedAccessException”
error. By default, the user who installed Dynamics GP web services is an ADAM
administrator. To add another user as an ADAM administrator, see the Web Services
Installation and Administration Guide.

Type the following command and press Enter:

Microsoft.Dynamics.GP.Samples.InstallSalesLeadSecurityMetadata.exe /load

To secure access to the Sales Lead web service, the helper application creates
three security operations, adds each operation to the “View Sales Leads” task,
and then adds the security operations to the Dynamics Security Service
Superuser role.

To verify that the security helper application succeeded, open the Dynamics
Security Console, expand the DynamicGPWebServices node, click Roles, click
the Superuser role, and then click Properties. The list of tasks and operations
should include operations named Get Leads List, Get Sales Lead, and Query
Sales Leads.

W O R K F L O W I N T E G R A T I O N G U I D E 25

C H A P T E R 3 S A M P L E W O R K F L O W T Y P E

To permit other Dynamics Security Service roles to access the Sales Lead web
service, use the Dynamics Security Console to assign the “View Sales Leads”
task to each role. Another option is to create additional helper applications that
update Dynamics Security Service roles. For example, the next section includes
an event subscription helper application that adds the “View Sales Leads”
security task to the Dynamics Security Service Workflow Administrator role.

Installing the server workflow assembly

To allow Microsoft Dynamics GP Workflow to manage the approval of salesperson
assignments on leads, you must install the server workflow assembly on your
workflow server.

You will also build and run the event subscription helper application that
subscribes to the workflow StatusChange event. The event subscription helper
application also demonstrates how a helper application can add the “View leads”
security task to the Dynamics Security Service Workflow Administrator role.

To install the server workflow assembly on the workflow server, complete the
following procedure:

1. Open the server workflow solution file.
Open WorkflowServerSample.sln file using Visual Studio.

2. Verify references for the project.
Use Solution Explorer to verify the References. Reload any references that are
not able to find the specified assembly. To reload a reference, look for the
assembly in one of the following locations:

C:\Program Files\Common Files\Microsoft Shared\Web Server

Extensions\12\ISAPI

C:\Program Files\Microsoft Dynamics\Workflow

C:\inetpub\wwwroot\wss\VirtualDirectories\<port#>\bin

For the port number, specify the port number of the web site where you
installed Workflow for Microsoft Dynamics GP.

3. Update the web reference.
Use Solution Explorer to expand the Web References folder. Right-click the
SalesLeadWebService and choose Properties. Update the URL property to
specify the location of the Sales Lead web service.

To update the web reference, right-click SalesLeadWebService, and choose
Update Web Reference.

P A R T 1 W O R K F L O W B A S I C S

26 W O R K F L O W I N T E G R A T I O N G U I D E

4. Update the app.config file
Use Solution Explorer to open the
Microsoft.Dynamics.Workflow.Sample.RegisterSalesLeads folder. Open the
App.config file. Verify that the value of the BusinessObjectsConfiguration key
in the appSetting section points to the location of the
DynamicsWorkflowEvents.config file. The DynamicsWorkflowEvents.config
file is typically found in the following location:

C:\inetpub\wwwroot\wss\VirtualDirectories\port#\bin\

The port number specifies the port associated with the web site where you
installed Workflow for Microsoft Dynamics GP.

5. Build the server workflow assembly and the event subscription
helper application.
From the Build menu, choose Build Solution. This creates the following files:

Microsoft.Dynamics.GP.Workflow.Samples.Server.dll

Microsoft.Dynamics.Workflow.Sample.RegisterSalesLeads.exe

Microsoft.Dynamics.Workflow.Sample.RegisterSalesLeads.exe.config

6. Install the assembly to the workflow server.
To install the workflow type assembly, copy the files from the Visual Studio
project’s “\bin\debug” folders to the following folders:

• Place the following files in the workflow installation folder:

Microsoft.Dynamics.GP.Workflow.Samples.Server.dll
Microsoft.Dynamics.Workflow.Sample.RegisterSalesLeads.exe
Microsoft.Dynamics.Workflow.Sample.RegisterSalesLeads.exe.config

The workflow installation folder is typically found in this location:

C:\Program Files\Microsoft Dynamics\Workflow.

• Place the following file in the “bin” folder of the virtual directory for the
Microsoft Dynamics GP Workflow web site:

Microsoft.Dynamics.GP.Workflow.Samples.Server.dll

The “bin” folder is typically found in this location:

C:\inetpub\wwwroot\wss\VirtualDirectories\port#\bin

You will need to know the port number you are using for the virtual direc-
tory that the Workflow web service was installed into.

7. Add the server workflow assembly to the global assembly cache.
On your workflow server, use Microsoft Windows Explorer to open the
Assembly folder. Typically, this will be the following:

C:\Windows\Assembly

Drag and drop your server workflow assembly file into the Assembly folder.

W O R K F L O W I N T E G R A T I O N G U I D E 27

C H A P T E R 3 S A M P L E W O R K F L O W T Y P E

8. Register the workflow schedule.
On the workflow server, open a command prompt and set the working
directory to the “Workflow” folder, typically found in this location:

C:\Program Files\Microsoft Dynamics\Workflow

Type the following command and press Enter.

Microsoft.Dynamics.Workflow.Install.RegisterSchedule.exe /ACTION=LOAD

/DATABASE=DYNAMICS /ASSEMBLY=Microsoft.Dynamics.GP.Workflow.Samples.Server

Leave the command prompt open for use with the following step.

9. Register the server workflow assembly.
From the command prompt that was opened in the previous step, type the
following command and press Enter.

Microsoft.Dynamics.Workflow.Install.ApplicationServer.exe /ACTION=LOAD

/ASSEMBLY=Microsoft.Dynamics.GP.Workflow.Samples.Server /CLASSES=

Microsoft.Dynamics.GP.Workflow.Samples.Server.LeadApprovalWorkflowSample

/COREPERFORMANCECOUNTERS=true /WORKFLOWPERFORMANCECOUNTERS=true

/DYNAMICSEVENTLOGSOURCES=true

10. Run the event subscription helper application.
Open a command prompt and set the working directory to the folder where
you installed the event subscription helper application.

To avoid creating duplicate event subscriptions, take care to run the event subscription
helper application one time. The application does not verify whether the specified event
handler exists and will create duplicate event handlers in the configuration file.

To add your event to the DynamicsWorkflowEvents.config file, use the
following command to run your event subscription helper application:

Microsoft.Dynamics.Workflow.Sample.RegisterSalesLeads.exe

For additional information about installing the subscription application, see
Installing the server workflow assembly in Chapter 10, “Deploying the New
Workflow.”

Installing the document viewer

Copy the Dynamics.Workflow.GP.Samples.SalesLeadViewer.aspx file to the
Microsoft Office SharePoint Server “layouts” folder. Typically, the folder is found in
the following location:

C:\Program Files\Common Files\Microsoft Shared\web server
extensions\12\templates\layouts

P A R T 1 W O R K F L O W B A S I C S

28 W O R K F L O W I N T E G R A T I O N G U I D E

Installing the client workflow assembly

To use workflow with the Lead Maintenance and Lead list forms, install the client
workflow assembly on a machine where you installed the sample application for
the Microsoft Dynamics GP client.

To install the assembly on a client machine, complete the following procedure:

1. Open the client workflow solution file.
Open Microsoft.Dynamics.GP.Workflow.Samples.Client.sln using Visual
Studio.

2. Verify references for the project.
Use Solution Explorer to verify the References. Reload any references that are
not able to find the specified .dll file.

3. Build the client workflow assembly
From the Build menu, choose Build Solution. This creates the
Microsoft.Dynamics.GP.Workflow.Samples.Client. dll in the project’s
“\bin\debug” folder.

4. Copy the assembly to the client machine.
Copy the Microsoft.Dynamics.GP.Workflow.Samples.Client. dll to the
Dynamics GP client directory, typically found at the following location:

C:\Program Files\Microsoft Dynamics\GP

5. Update the Dynamics.exe.config file.
On the client machine, use Microsoft Windows Explorer to open the Dynamics
GP client folder, typically found at the following location:

C:\Program Files\Microsoft Dynamics\GP

Make a backup copy of the Dynamics.exe.config file and store it in a safe
location.

Open the Dynamics.exe.config file. with a text editor and add the following two
entries to the <formFactories> node:

<add name=”Workflow-SalesLeads” productId=”3333” formId=”22000”

factoryType=”Microsoft.Dynamics.GP.Workflow.Samples.Client.LeadWorkflowFo

rmFactory,Microsoft.Dynamics.GP.Workflow.Samples.Client” />

<add name=”Workflow-SampleWorkflowStatus” productId=”3333” formId=”22002”

windowId=”22001”factoryType=”Microsoft.Dynamics.GP.Workflow.Samples.Clien

t.WorkflowStatusFormFactory,Microsoft.Dynamics.GP.Workflow.Samples.Client

” />

These entries create form factories that are used to add workflow actions to the
Lead Maintenance and Lead list forms. The form factories also verify the status
of the Sales Leads workflow when a user logs into Microsoft Dynamics GP.

W O R K F L O W I N T E G R A T I O N G U I D E 29

C H A P T E R 3 S A M P L E W O R K F L O W T Y P E

Viewing the workflow type application

After you complete all the steps to install the application, the web service, and the
workflow assemblies, open a command prompt and run iisreset.exe on your
workflow server and your Web Services for Microsoft Dynamics GP server.

Use Microsoft Internet Explorer to open the Microsoft Dynamics Workflow site.
Click Administration to view the Workflow List. Click Select Workflow Type to
Use. The list of Workflow Names includes the sample application’s Sales Lead
workflow.

Enable the Sales Lead workflow and click Save. Use the Microsoft Dynamics
Workflow Administration site to configure a simple workflow with a single
approver step. Open the Lead Maintenance form, create a new lead, assign a
salesperson, and click Save and Submit. Workflow makes the lead available to the
specified approver.

This is the workflow for
the sample application.

The workflow status of
the lead.

30 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 31

Chapter 4: Sample Workflow Extension
Included with the Microsoft Dynamics GP Workflow SDK is a sample application
that demonstrates how to extend an existing workflow. Information about the
sample workflow extension is divided into the following sections:

• Workflow extension sample overview
• Workflow extension sample files
• Installing the purchase order integration sample
• Installing the web service extension sample
• Installing the workflow extension sample
• Viewing the workflow extension sample

Workflow extension sample overview

The sample workflow extension consists of a Dexterity-based integration that
makes additional properties available for purchase order documents. These
additional properties are accessed through an additional window opened from the
Purchase Order Entry window. This additional window is shown in the following
illustration.

Purchase order documents can be accessed through the Dynamics GP web service.
A web service extension assembly makes the additional data from the sample
purchase order integration available for each purchase order document.

An approval workflow is available for purchase order documents. The sample
workflow extension makes the additional data values from this sample integration
available to the purchase order workflow. The data can be used by the workflow
administrator as they set up the approval steps for the workflow.

The additional data can also be made available in the business document summary
that is included with each workflow notification.

Data made available by
the workflow extension

can be used when
defining a workflow step.

P A R T 1 W O R K F L O W B A S I C S

32 W O R K F L O W I N T E G R A T I O N G U I D E

Workflow extension sample files

The Microsoft Dynamics GP Workflow SDK includes the files and Visual Studio
projects needed to build and install the sample purchase order workflow extension
for the sample purchase order integration. These files are in an archive file named
Samples.

The Samples archive contains the following files and Visual Studio projects for the
sample workflow extension:

Extract these files and projects from the archive.

Installing the purchase order integration sample

To use the purchase order integration sample, you must first install it for Microsoft
Dynamics GP. This sample application implements the data storage for the
additional purchase order data. It also provides the form used to access this data
from the Purchase Order Entry window.

To install the purchase order sample integration, complete the following procedure:

1. Install the sample application file.
Copy the POPAddOn.cnk file to the Microsoft Dynamics GP client install
folder. The client install is typically in the location:

C:\Program Files\Microsoft Dynamic\GP

2. Start Microsoft Dynamics GP.
A message will be displayed asking whether you want to include new code.
Click Yes. When the Login window appears, log in as the System Administrator
(sa) or DYNSA.

You must log in as the System Administrator (sa) or DYNSA the first time after
installing the sample, so the application’s SQL table will be properly created.

3. Log into the sample company.
Choose to log into the sample company, Fabrikam, Inc.

File Description

POPAddOn.cnk A file that installs the sample purchase order integration
for Microsoft Dynamics GP.

POExtension A Visual Studio C# project. This project produces a web
service extension assembly that provides access to the
additional data made available by the purchase order
sample integration.

ExtensionTest A Visual Studio C# project. This project is a test
application that verifies the web service extension is
working properly for purchase order documents.

POWorkflowExtension A Visual Studio C# project. This project produces the
workflow extension assembly that makes the additional
data from the purchase order integration available to the
purchase order workflow.

WFExtensionInstaller A Visual Studio C# project. This project produces an
installation helper application that registers the sample
workflow extension.

W O R K F L O W I N T E G R A T I O N G U I D E 33

C H A P T E R 4 S A M P L E W O R K F L O W E X T E N S I O N

4. Verify the installation.
If the sample application was installed properly, you should see an
“Additional” menu when you open the Purchase Order Entry window in
Microsoft Dynamics GP. This menu will contain a menu item you can use to
open the Purchase Order Add-On window.

Installing the web service extension sample

The web service extension allows the purchase order document to retrieve the
additional data from the sample purchase order integration. You must install the
.NET assembly that defines the web service extension. To do this, complete the
following procedure:

1. Open the solution file with Visual Studio.
Open the solution file POExtension.sln with Visual Studio.

2. Verify References for the project.
Use the Solution Explorer to verify the References. Reload any references that
are not able to find the specified .dll file. The needed assemblies are typically
found in the following location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

3. Build the assembly.
From the Build menu, choose Build Solution. Visual Studio builds the assembly
in the project’s “\bin\debug” folder.

4. Copy the assembly to the web services server.
Copy the POExtension.dll file to the server where you installed Web Services
for Microsoft Dynamics GP. Place the .dll in the Dynamics GP web service “bin”
folder, typically found in this location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

5. Make a backup of the BusinessObjectFile.config file.
You must add registration information to the BusinessObjectFile.config file for
the web service extension to be found. This file is in XML format. It is located in
the Dynamics GP web service “bin” folder, typically found in this location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

Make a copy of the BusinessObjectFile.config file. Store the backup copy in a
safe location.

6. Register the web service extension.
Using a text editor, open the BusinessObjectFile.config file. Locate the
dictionary entry for the Purchase Order document:

<DictionaryEntry>

<Key xsi:type="xsd:string">Microsoft.Dynamics.GP.PurchaseOrder</Key>

<Value xsi:type="BusinessObjectConfiguration">

P A R T 1 W O R K F L O W B A S I C S

34 W O R K F L O W I N T E G R A T I O N G U I D E

Add the following event registration to the end of this section:

<Event>

<EventName>Retrieved</EventName>

<EventHandlerType>

<Type>Microsoft.Dynamics.Common.BusinessObjectEventHandler</Type>

<Assembly>Microsoft.Dynamics.Common</Assembly>

</EventHandlerType>

<EventHandler>

<SoftwareVendor>MicrosoftDocumentation</SoftwareVendor>

<Type>POExtension.PurchaseOrderExtensionEventHandler</Type>

<StaticMethod>Retrieved</StaticMethod>

<Assembly>POExtension</Assembly>

<Execute>true</Execute>

</EventHandler>

</Event>

Save the changes to the file.

7. Reset IIS for the server running the Dynamics GP web service.
Perform an “iisreset” command to be sure the web service extension has been
loaded into memory.

8. Test the web service extension (optional).
If you want to verify that the web service extension is working properly, you
can use the ExtensionTest sample. This is a console application that calls the
Dynamics GP web service, retrieves the specified purchase order document,
and then displays the additional data added by the purchase order web service
extension.

Installing the workflow extension sample

The workflow extension makes the additional data from the purchase order
extension available to the purchase order workflow. You must install and register
the .NET assembly that defines the workflow service extension. To do this,
complete the following procedure:

1. Open the solution file with Visual Studio.
Open the solution file POWorkflowExtension.sln with Visual Studio.

2. Verify References for the project.
Use the Solution Explorer to verify the References. Reload any references that
are not able to find the specified .dll file. The following assemblies are
referenced from Dynamics GP Workflow.

• Microsoft.Dynamics.Common
• Microsoft.Dynamics.Common.Types
• Microsoft.Dynamics.Workflow
• Microsoft.Dynamics.Workflow.Controls

These assemblies are typically found in this location:

C:\Program Files\Microsoft Dynamics\Workflow

W O R K F L O W I N T E G R A T I O N G U I D E 35

C H A P T E R 4 S A M P L E W O R K F L O W E X T E N S I O N

The following additional assemblies for Dynamics GP Workflow must also be
referenced:

• Microsoft.Dynamics.Workflow.Common
• Microsoft.Dynamics.GP.WebServices.Proxy

These assemblies are typically found in the “bin” folder of the virtual directory
used by the Workflow web service:

C:\Inetpub\wwwroot\wss\VirtualDirectories\port#\bin

You will need to know the port number you are using for the virtual directory
that the Workflow web service is installed into.

3. Build the assembly.
From the Build menu, choose Build Solution. Visual Studio builds the assembly
in the project’s “\bin\debug” folder.

4. Add the workflow extension assembly to the global assembly
cache.
On the Workflow server, use Microsoft Windows Explorer to open the
Assembly folder. Typically, this will be in the following location:

C:\Windows\Assembly

Drag and drop the workflow extension assembly into the Assembly folder.

5. Add the web service extension assembly to the global assembly
cache.
The web service extension assembly (POExtension.dll) must also be added to
the global assembly cache so that it can be found by Workflow. Locate the
POExtension.dll assembly and drag it to the Assembly folder to add it to the
global assembly cache.

6. Locate the workflow extension installer application.
A “helper” application is needed to register the workflow extension assembly.
A compiled version of this application is found in the “\bin\debug” folder for
the WFExtensionInstaller project. Open the folder that contains the installer
application.

7. Edit the App.config file for the installer application.
The App.config file for the workflow extension installer application contains
the path needed to access a Workflow configuration file. Edit the setting in this
file to specify the path to the Workflow configuration file.

<add key ="BusinessObjectsConfigurationPath" value=

"C:\Inetpub\wwwroot\wss\VirtualDirectories\10072\bin\

DynamicsWorkflowEvents.config "/>

The standard path to the Workflow web service is shown above. You will need
to update the path to use the port number (likely something other than 10072)
that is being used for the Workflow web service.

Save the changes to the App.config file.

P A R T 1 W O R K F L O W B A S I C S

36 W O R K F L O W I N T E G R A T I O N G U I D E

8. Run the workflow extension installer.
The application will locate the DynamicsWorkflowEvents.config file, and add a
large entry to it that defines the necessary events for your workflow extension.

Viewing the workflow extension sample

You can see the additional properties made available by the workflow extension
when setting up a step for a purchase order workflow. The sample workflow
extension makes three additional properties from the purchase order integration
available.

You will also be able to see two of the additional properties that were added to the
summary document that is included in purchase order workflow notifications.

The additional properties
from the workflow

extension will appear in
this list.

P
A

R
T

 2
: C

R
E

A
T

IN
G

 A
 N

E
W

 W
O

R
K

FLO
W

38 W O R K F L O W I N T E G R A T I O N G U I D E

Part 2: Creating a New Workflow
This portion of the documentation describes how to build a new approval workflow
type for Microsoft Dynamics GP Workflow. The following information is discussed:

• Chapter 5, “Designing a New Workflow,” describes key design elements to
consider as you plan your new workflow type.

• Chapter 6, “Dictionary Changes,” describes changes required for a Dexterity-
based integration for Microsoft Dynamics GP so it can integrate with Microsoft
Dynamics GP Workflow.

• Chapter 7, “Client Workflow Assembly,” describes how to create a new .NET
assembly allows an integrated application to use Microsoft Dynamics GP
Workflow.

• Chapter 8, “Web Service,” describes how to create a new web service to retrieve
data used by the new workflow type.

• Chapter 9, “Server Workflow Assembly,” describes how to create a .NET
assembly that integrates with Microsoft Dynamics GP Workflow. The assembly
handles the workflow tasks and provides any business logic associated with
workflow events.

• Chapter 10, “Deploying the New Workflow,” describes how to install your new
workflow integration.

W O R K F L O W I N T E G R A T I O N G U I D E 39

Chapter 5: Designing a New Workflow
Several things must be considered when you are creating a new workflow type.
This portion of the documentation describes what you need to think about as you
create a new workflow type. It also describes how this design process was followed
for the sample workflow type included with the Workflow for Microsoft Dynamics
GP SDK. The following sections describe the process.

• Is a workflow appropriate?
• Microsoft Dynamics GP client
• Business logic
• Data access
• Workflow server

Is a workflow appropriate?

Workflow for Microsoft Dynamics GP implements a single workflow schedule. The
Dynamics GP approval workflow schedule automates the routing of documents
between specified individuals for their approval.

If you have a back-office document type that needs to be reviewed by one or more
individuals pending their approval, that document type is a candidate for having
workflow implemented.

For instance, the sample integrating application included with the Workflow for
Microsoft Dynamics GP SDK contains the Lead Maintenance form used to track
potential sales leads. Each lead is assigned to a salesperson. Since this assignment is
significant for each salesperson, the initial assignments or changes to assignments
should be approved by someone with proper authority. Implementing workflow for
the Lead documents is an ideal way to manage this approval process.

Microsoft Dynamics GP client

When implementing workflow for a document type in Microsoft Dynamics GP,
consider which windows and lists will have workflow support. Workflow support
can be implemented for the following areas:

• The maintenance or transaction window for the document
• Any inquiry windows for the document
• Any lists that display the document

The sample workflow type implements workflow support for the Lead
Maintenance window, as well as the Leads list. You will learn more about the details
of implementing workflow support for windows and lists in Chapter 6, “Dictionary
Changes,” and Chapter 7, “Client Workflow Assembly.”

P A R T 2 C R E A T I N G A N E W W O R K F L O W

40 W O R K F L O W I N T E G R A T I O N G U I D E

Business logic

When creating a new workflow, carefully consider how the business logic for the
document will be impacted by the workflow. Identify the data changes that require
review and approval. Your workflow implementation will need to handle cases like
the following:

• What action should be taken when a document or transaction is approved in
the workflow?

• What action should be taken when a document or transaction is rejected in the
workflow?

• Should the workflow require approval of new documents or only when specific
data fields are updated for the document?

• Should the document be validated before it is submitted to workflow?

• Should the window look or operate differently if workflow isn’t enabled?

If many cases, the business logic for the window in Microsoft Dynamics GP that
manages the document will need to be modified to support the workflow. This is
described in Window integration on page 46. The server component of the new
workflow will also implement business logic to support the workflow actions. This
is explained in Adding business logic on page 149.

For the Sales Lead sample workflow, the business logic in the Lead Maintenance
window was also modified to consider the workflow state. For instance, if the Sales
Lead workflow was enabled, a new lead document had to be submitted to
workflow using the “Save and Submit” button.

The server assembly for the sample workflow was coded to include the appropriate
business logic to support the Sales Lead workflow. For example, when the assigned
salesperson for a lead is approved in the workflow, the Approved Salesperson ID
that is stored with each lead is updated to the salesperson that was assigned.

Data access

To be used with Workflow for Microsoft Dynamics GP, a document must be
accessible through the Dynamics GP web service or through an additional web
service that runs in conjunction with the Dynamics GP web service. If a document
type for which you are implementing workflow isn’t accessible through the web
service, you must implement web service access for it. This process is described in
detail in Chapter 8, “Web Service.”

It’s important that you properly secure any web service you create to access additional data.
You want to limit data access only to authorized users.

The lead information for the sample integrating application is not available through
the Dynamics GP web service. This required that the Sales Lead web service had to
be created and installed alongside the Dynamics GP web service. The Dynamics
Security Service (included with Web Services for Microsoft Dynamics GP) is used to
secure the Sales Lead web service.

W O R K F L O W I N T E G R A T I O N G U I D E 41

C H A P T E R 5 D E S I G N I N G A N E W W O R K F L O W

Workflow server

After the originator submits a document to workflow, the Workflow server guides
the document through the approval process specified by the workflow’s
configuration. You will create several components that are used by the Workflow
server as it manages the documents through the processed defined by your new
workflow. Chapter 9, “Server Workflow Assembly,” describes in detail how you
will create these components for the Workflow server. The following are some of
the components you will build:

Server workflow assembly
The server workflow assembly defines the fundamental characteristics of your new
workflow, such as:

• The workflow’s name
• The properties available for filtering
• The data included in the summary document for the workflow’s notifications

Give careful consideration to these values as you define your new workflow type.

The server workflow assembly implements various handlers that perform the
processing required by the new workflow. For instance, one event handler manages
the processing that occurs when the workflow state for a document is changed. The
event handlers are where you will implement much of the business logic for your
new workflow type.

For example, in the sample Sales Lead workflow we want to approve changes to the
salesperson assigned to each lead document. If the approver rejects the change, we
want to be able to restore the prior salesperson assignment. To perform this process,
the server workflow assembly implements the following:

• When a new document is submitted, the assigned salesperson is copied to
another field that stores the last approved salesperson.

• When an originator submits a document for which the salesperson has been
changed, the data change is saved.

• If the approver approves the salesperson change, the last approved salesperson
field is updated with the new value and saved.

• If the approver rejects the change, the salesperson field is restored to the
previously approved value by using the value stored in the last approved
salesperson field.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

42 W O R K F L O W I N T E G R A T I O N G U I D E

Workflow history
The server workflow assembly retrieves and saves workflow history information.
To implement a server workflow assembly, you need to determine where to store
your workflow history and how to access that store. To archive workflow history,
choose one of the following:

• Microsoft Dynamics GP Workflow provides an archive that stores workflow
history information. You can save and retrieve your workflow history
information to that archive.

• Use the server workflow assembly to save and retrieve workflow history from a
data store outside Microsoft Dynamics GP. To use an external data store, your
server workflow assembly needs to access, update, and retrieve workflow
history data from that store.

Document viewer
The document viewer is another server component you will create for your
workflow type. It is an .aspx page used by SharePoint to display details about the
documents being managed by your workflow. When approvers use the web or
Outlook client to review the document, they will use the document viewer.

When defining the content that is shown for each document, be sure to include the data that
approvers will need to make the approval decision

W O R K F L O W I N T E G R A T I O N G U I D E 43

Chapter 6: Dictionary Changes
When creating a new workflow, several changes and additions are required in the
Dexterity-based application dictionary. Some of these changes implement core
portions of the new workflow. Other changes implement the client interface for the
workflow in Microsoft Dynamics GP.

When implementing the dictionary changes for the new workflow, try to limit the
impact on the application. If workflow isn’t installed or activated, your application
should operate essentially as it did before you made your dictionary changes.

Information about the needed dictionary changes is divided into the following
sections:

• Tables
• Table security
• Command form
• Window integration
• Notifications
• Home Page integration
• List integration
• Application assembly

Tables

Update table
definitions to contain
workflow information.

Fields that store the workflow approval status and workflow priority information
must be added to the main table (such as a master table) for the document to which
workflow is being implemented. Microsoft Dynamics GP has defined the following
global fields for this purpose:

If you have created card lists or transaction lists for the item for which you are
implementing workflow, you will need to add these global fields to the table
definitions to the temporary tables used for the lists.

Additional table fields may also be needed to support the business logic associated
with the workflow. This will depend on whether the workflow you’re
implementing needs to track additional information.

Global field Description

Workflow Approval Status A drop-down list field that defines the various workflow
approval states for the item. The possible values are:
Not Submitted
Submitted
Not Needed
Pending Approval
Pending Changes
Approved
Rejected
Ended
Not Activated
Deactivated

Workflow Priority A drop-down list field that defines the workflow priority
values for the item. The possible values are:
Low
Normal
High

P A R T 2 C R E A T I N G A N E W W O R K F L O W

44 W O R K F L O W I N T E G R A T I O N G U I D E

For the sample workflow integration, the workflow global fields were added to the
IG_Leads_MSTR table and the IG_Leads_List_TEMP table. The Approved
Salesperson ID field was also added to both of these tables. This is a new table field
that provides the storage for the Salesperson ID that was approved when the lead
was processed through the new workflow.

Table security

Add tables to the
workflow role.

The workflow engine in Office SharePoint Server must be able to access the
workflow information in the tables for your integration. The database role named
DYNWORKFLOWGRP is defined for databases in Microsoft Dynamics GP to allow
the workflow engine to access tables. You must add any tables for your integration
that contain workflow information to this database role. Typically, you will do this
using the same technique you use to add tables to DYNGRP role for your
integration.

For example, the sample workflow integration adds workflow data to the
IG_Leads_MSTR table, so this table must be added to the DYNWORKFLOWGRP
role. The IG_Setup_SQL_Tables procedure in the sample integration was modified
to add the table and auto-generated stored procedures to this role. The following is
the code that performs these steps:

local boolean result;

{Assign the IG_Leads_MSTR table to the DYNWORKFLOWGRP}

result = GrantAccess(physicalname(table IG_Leads_MSTR), false,

➥ "DYNWORKFLOWGRP", 'Intercompany ID' of globals) of form 'SQL Maintenance';

result = GrantAccess(physicalname(table IG_Leads_MSTR), true,

➥ "DYNWORKFLOWGRP", 'Intercompany ID' of globals) of form 'SQL Maintenance';

Command form

Update the command
form to retrieve and
store the new
workflow status.

The command form for an integration is opened immediately after the user logs
into Microsoft Dynamics GP. It remains open the entire time the application is
running. These characteristics make it the ideal place to retrieve and store the status
of the new workflow you are creating. Each Microsoft Dynamics GP client must call
out to the Workflow web service to determine whether the specific workflow is
enabled. The result of this call must be stored locally so that forms and lists can use
the workflow status information without having to request it repeatedly.

WorkflowStatus window
The initial workflow operations from the Microsoft Dynamics GP client are all
initiated using the form factory functionality provided by the Dexterity runtime.
This means that a window must be displayed to cause the form factory code to be
run. Each integrating application should implement its own modal dialog window
that will use the form factory to call the Workflow web service and determine the
status of the specific workflow.

The command form is a good place to implement this modal dialog window. The
form is always available, and the form can be used to store the results of the web
service call. A window named WorkflowStatus was added to the
Command_IG_Sample form for the sample integration. This is a modal window,
with the AutoOpen property set to false.

W O R K F L O W I N T E G R A T I O N G U I D E 45

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

The following code was added to the form pre script for the Command_IG_Sample
form to open the WorkflowStatus window and allow the form factory for this
window to be run. The force redraw is required to display the static text in the
window. After five seconds the window is closed and the login process proceeds as
normal.

local long delay;

open window WorkflowStatus;

Window_ForceRedraw(window WorkflowStatus);

{Sleep for 5 seconds}

delay = Timer_Sleep(5000);

{Close the window}

close window WorkflowStatus;

Workflow Enabled checkbox
The enabled or disabled status of the Lead Approval workflow must be stored by
the application. The Workflow Enabled global field is a checkbox that can be used
for this purpose. For the sample workflow implementation it was added to the
Dummy window for the Command_IG_Sample form. The workflow controller
code that runs in response to the form factory for the WorkflowStatus modal dialog
window will set the value of this checkbox field based on whether the Lead
Approval workflow is enabled.

Retrieving the workflow status needs to be performed only once when the user logs
in. Other areas of the integrations like maintenance windows and lists should use
the value of the Workflow Enabled checkbox to determine whether to display
workflow functionality. For example, the following script that is part of the
IG_Lead_Maintenance window checks the value of this field to find out whether to
configure the window for workflow.

if 'Workflow Enabled' of window Dummy of form Command_IG_Sample = true then

unlock '(L) Submit';

enable '(L) Submit';

else

{Workflow is not implemented or disabled}

lock '(L) Submit';

disable '(L) Submit';

end if;

P A R T 2 C R E A T I N G A N E W W O R K F L O W

46 W O R K F L O W I N T E G R A T I O N G U I D E

Window integration

Several changes are required to implement workflow functionality for a Dexterity-
based window. These changes made with Dexterity work together with the client
workflow controller to provide the workflow functionality. This section explains
the changes that must be made with Dexterity and provides an example for the
Lead Maintenance form in the sample integration.

Hidden fields
Add hidden window
fields needed for
workflow.

Several hidden fields are required to support workflow. The following is the list of
fields to be added:

WFGetInfo This field is global boolean field that signals the workflow controller
to retrieve workflow information for the current record. The run script statement is
used to cause the “validate” action to be performed by the workflow controller.

Workflow Approval Status This is a field from the main table for the item. It
stores the current workflow approval state for the record.

Workflow Priority This is a field from the main table for the item. It stores the
current workflow priority for the record.

ConfigureWindowForWorkflow This is a local integer field that has an
attached script to configure the window for use with workflow. The following is the
script for this field in the Lead Maintenance window of the sample workflow
integration:

if 'Workflow Enabled' of window Dummy of form Command_IG_Sample = true then

unlock '(L) Submit';

enable '(L) Submit';

else

{Workflow is not implemented or disabled}

lock '(L) Submit';

disable '(L) Submit';

end if;

RestartForm This is a local string field that has an attached script to perform a
restart form statement for the form. The script is run by the workflow controller
after the Save and Submit button is used to submit the current lead to the Lead
Approval workflow.

Several changes are
required to implement

workflow for a
maintenance window.

W O R K F L O W I N T E G R A T I O N G U I D E 47

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

Business logic
Revise business logic
in your application to
support the workflow.

It’s likely that the business logic for the Dexterity-based window will need to be
enhanced to support workflow functionality. The specific changes will depend on
how you decide the window will interact with the workflow features. To get ideas
about how the business logic for a window may change, examine the changes that
were made to the business logic of the Lead Maintenance window to support the
Lead Approval workflow. These changes include:

• Configuring the window based on whether workflow is enabled or disabled.
The configuration code is centralized in the change script for the
ConfigureWindowForWorkflow hidden field. This script is called from the
window pre script and the window activate script.

• Adding the Save and Submit button. This button is enabled only when the Lead
Approval workflow is active. When the user changes the Salesperson ID for a
lead, this button allows the user to save the current record and submit the
change to the workflow.

• Revised the code for the Save button. If the user is creating a new record or has
changed the Salesperson ID assigned to an existing record, they will be
prompted to use the Save and Submit button rather than the Save button. This
will submit the lead to the approval workflow.

• Revised the code for the Delete button. When workflow information is attached
to a record, the record should not be able to be deleted.

Workflow wrapper
Add code to keep the
workflow wrapper
synchronized with the
window content.

The workflow wrapper which surrounds the maintenance window must be kept
synchronized with the record being displayed in the window. This is done by
running the change script on the WFGetInfo hidden field on the window. Care is
required so the window and wrapper work together properly. Areas to keep in
mind are:

• The workflow wrapper must be updated each time a different record is being
displayed in the window. This requires changes in the code for any field that
can cause a different record to be displayed, such as the control field or the
browse buttons for the window. In the sample workflow integration, this block
of sanScript code is used in the browse buttons and control field to keep the
wrapper synchronized with the window.

{Display the workflow status information}

if 'Workflow Enabled' of window Dummy of form Command_IG_Sample = true

then

run script WFGetInfo;

end if;

• The workflow wrapper must be reset when the window is cleared, such as after
the user clicks Clear, Save, or Save and Submit.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

48 W O R K F L O W I N T E G R A T I O N G U I D E

Form-level procedures
Add form-level
procedures needed to
support workflow.

A form-level procedure must be added that can be called by the workflow
controller to update the priority for the current record. In the sample workflow
integration this procedure is named UpdateWorkflowPriority. The following is the
code in this procedure.

in string Lead_ID;

in integer Workflow_Priority;

'Lead ID' of table IG_Leads_MSTR = Lead_ID;

change table IG_Leads_MSTR;

if err() = OKAY then

{Set the workflow priority}

'Workflow Priority' of table IG_Leads_MSTR = Workflow_Priority;

{Save the updated record}

save table IG_Leads_MSTR;

end if;

Another form-level procedure is needed to open the maintenance window from a
workflow notification. This form-level procedure must have parameters that
specify which document to display when the window is opened. For the sample
workflow integration, this procedure is named OpenWindow, and is included in
the IG_Lead_Maintenance form. The following is the code in this procedure:

in string Lead_ID;

if isopen(form IG_Lead_Maintenance) = false then

open form IG_Lead_Maintenance;

'Lead ID' of window 'Lead Maintenance' of form IG_Lead_Maintenance =

➥ Lead_ID;

run script 'Lead ID' of window 'Lead Maintenance' of form

➥ IG_Lead_Maintenance;

else

{Is an existing record being displayed?}

if 'Display Existing Record' of window 'Lead Maintenance' = false then

open window 'Lead Maintenance';

'Lead ID' of window 'Lead Maintenance' of form IG_Lead_Maintenance =

➥ Lead_ID;

run script 'Lead ID' of window 'Lead Maintenance' of form

➥ IG_Lead_Maintenance;

end if;

end if;

Notifications

Enable client
notifications for the
new workflow.

Workflow can be configure to display notifications of workflow events within the
Microsoft Dynamics GP client. Notifications are the “toast” items that appear in the
lower-right corner of the application, notifying the user of a workflow event or task
they must perform. You will want these notifications to work for your workflow
integration as well.

A procedure trigger must be registered for the Get3rdPartyWorkflowAlertsInfo of
the syWorkflowWebservice form to allow your integration to be informed of
notification that should be displayed. The following is the trigger registration for
the sample workflow integration.

W O R K F L O W I N T E G R A T I O N G U I D E 49

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

l_result = Trigger_RegisterProcedure(script Get3rdPartyWorkflowAlertsInfo of

➥ form syWorkflowWebservice, TRIGGER_AFTER_ORIGINAL, script

➥ Workflow_ProcessDesktopNotification);

if l_result <> SY_NOERR then

warning "Procedure trigger registration for workflow notifications

➥ failed.";

end if;

The trigger processing procedure must have the following parameters:

in reference WS_Node;

in string WS_WFBOType;

in string WS_WFNotificationType;

out boolean fHighPriority;

out boolean bShowAlert;

out string sDexLink;

Because several third-party workflows will register triggers for the procedure
Get3rdPartyWorkflowAlertsInfo, your trigger processing procedure must find out
whether the specific third-party workflow notification is for your workflow. Use the
string passed in to the WS_WFBOType parameter to decide whether this
notification is for your workflow. If it’s not, the script should perform no action.

The following is the Workflow_ProcessDesktopNotification procedure for the
sample workflow integration. It is the trigger processing procedure that handles the
notifications for the sample workflow.

in reference WS_Node;

in string WS_WFBOType;

in string WS_WFNotificationType;

out boolean fHighPriority;

out boolean bShowAlert;

out string sDexLink;

local reference WS_ChildNode;

local reference WFBOKey, WFNode, KeyNode;

local string WS_WFSubject, WS_WFDescription, WS_WFComments, WS_GUIDKey;

local integer length;

local integer i;

local string sName;

local string Lead_ID;

{Is this our object?}

if WS_WFBOType = "Sales Lead" then

{Retrieve the details from the XML node for the document being processed}

{Extract the key information for the document}

try

WFBOKey = WS_Node.selectNodes(XPATH_BUSINESSOBJECTKEYQUERY of form

➥ syWorkflowWebservice);

else

{Consume all errors}

end try;

P A R T 2 C R E A T I N G A N E W W O R K F L O W

50 W O R K F L O W I N T E G R A T I O N G U I D E

{Look through each part of the key}

length = WFBOKey.length;

for i = 1 to length do

WFNode = WFBOKey.nextNode();

KeyNode = WFNode.selectSingleNode(NODE_NAME of form

➥ syWorkflowWebservice);

sName = KeyNode.text;

if sName = "LeadID" then

KeyNode = WFNode.selectSingleNode(NODE_PARTVALUE of form

➥ syWorkflowWebservice);

Lead_ID = KeyNode.text;

end if;

end for;

WS_ChildNode = WS_Node.selectSingleNode(NODE_SUBJECT of form

➥ syWorkflowWebservice);

if not empty(WS_ChildNode) then

WS_WFSubject = WS_ChildNode.text;

end if;

WS_ChildNode = WS_Node.selectSingleNode(NODE_DESCRIPTION of form

➥ syWorkflowWebservice);

if not empty(WS_ChildNode) then

WS_WFDescription = WS_ChildNode.text;

end if;

WS_ChildNode = WS_Node.selectSingleNode(NODE_COMMENTS of form

➥ syWorkflowWebservice);

if not empty(WS_ChildNode) then

WS_WFComments = WS_ChildNode.text;

end if;

WS_ChildNode = WS_Node.selectSingleNode(NODE_KEY_ID of form

➥ syWorkflowWebservice);

if not empty(WS_ChildNode) then

WS_GUIDKey = WS_ChildNode.text;

end if;

{Based on the type of notification, build the DexLink string}

{Tasks can be TEXT_INFORMATIONAL or TEXT_TASK}

if WS_WFNotificationType = TEXT_TASK of form syWorkflowWebservice then

sDexLink = HREF_DEXTERITY of form syHomePageXML + HREF_PRODUCT of form

➥ syHomePageXML + str(IG_PROD_ID) + HREF_SCRIPT of form syHomePageXML

➥ + "OpenWindow" + HREF_FORM of form syHomePageXML +

➥ technicalname(form IG_Lead_Maintenance) + HREF_ARGS of form

➥ syHomePageXML + "'" + Lead_ID + "'";

end if;

bShowAlert = true;

end if;

Notice that the procedure must extract information about the notification from the
WS_Node (an XML document) passed into the procedure. The key value or values
for the notification, as well as the subject, description, comments and node key
GUID are all retrieved from this XML document.

W O R K F L O W I N T E G R A T I O N G U I D E 51

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

Once the information about the notification has been retrieved, the procedure must
determine which type of notification is being displayed. The
WS_WFNotificationType parameter is set to either the TEXT_INFORMATIONAL
or TEXT_TASK constant defined in the syWorkflowWebservice form. The action
performed when the user clicks the “toast” that is displayed for the notification
depends on the notification type. The sDexLink string specifies the action. If it’s an
informational notification, the core Dynamics GP code will build the sDexLink
string to display a standard workflow notification dialog.

If the notification is a task notification, you must build the sDexLink string to
display the window that allows the user to perform the requested action. Typically,
this will be the window for which you are implementing workflow. The syntax
used for the sDexLink string is described in the Dexterity help file, in the topic for
the Shell_DisplayNotification() function.

Finally, the procedure sets the bShowAlert parameter to true. This tells the core
Microsoft Dynamics GP code to display the notification. If this isn’t your
notification, do not set this parameter value to false. You may prevent another
integrating application’s notifications from being displayed.

Home Page integration

Add Home Page
support for the new
workflow.

The Home Page for a user can contain the To Do section listing the actions the user
needs to perform. The user can configure the To Do section to contain workflow
tasks and workflow notifications. Your new workflow should add the appropriate
tasks to this section of the Home Page.

A procedure trigger must be registered for the Get3rdPartyWorkflowTaskInfo of
the syHomePageXML form to allow your integration to be informed when tasks
should be added to the To Do list on the home page. The following is the trigger
registration for the sample workflow integration.

l_result = Trigger_RegisterProcedure(script Get3rdPartyWorkflowTaskInfo of

➥ form syHomePageXML, TRIGGER_AFTER_ORIGINAL, script

➥ Workflow_AddTasksToHomePage);

if l_result <> SY_NOERR then

warning "Procedure trigger registration for adding To Do items failed.";

end if;

The trigger processing procedure must have the following parameters:

in reference WS_Node;

in string WS_BOType;

inout boolean fHighPriority;

inout boolean bAddTask;

inout string sDexLink;

Tasks and notifications for
your new workflow should
appear in the To Do section

of the Home Page.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

52 W O R K F L O W I N T E G R A T I O N G U I D E

Because several third-party workflows will register triggers for the procedure
Get3rdPartyWorkflowTaskInfo, your trigger processing procedure must find out
whether the specific third-party workflow task is for your workflow. Use the string
passed in to the WS_BOType parameter to decide whether this task is for your
workflow. If it’s not, the script should perform no action.

The following is the Workflow_AddTasksToHomePage procedure for the sample
workflow integration. It is the trigger processing procedure that handles adding
tasks for the sample workflow.

in reference WS_Node;

in string WS_BOType;

inout boolean fHighPriority;

inout boolean bAddTask;

inout string sDexLink;

local reference WFBOKey, WFNode, KeyNode;

local integer length;

local integer i;

local string sName;

local string Lead_ID;

{Is this our object?}

if WS_BOType = "Sales Lead" then

{Extract the key information for the document}

try

WFBOKey = WS_Node.selectNodes(XPATH_BUSINESSOBJECTKEYQUERY of form

➥ syWorkflowWebservice);

else

{Consume all errors}

end try;

{Look through each part of the key}

length = WFBOKey.length;

for i = 1 to length do

WFNode = WFBOKey.nextNode();

KeyNode = WFNode.selectSingleNode(NODE_NAME of form

➥ syWorkflowWebservice);

sName = KeyNode.text;

if sName = "LeadID" then

KeyNode = WFNode.selectSingleNode(NODE_PARTVALUE of form

➥ syWorkflowWebservice);

Lead_ID = KeyNode.text;

end if;

end for;

{Build up the link for the task}

sDexLink = HREF_DEXTERITY of form syHomePageXML + HREF_PRODUCT of form

➥ syHomePageXML + str(IG_PROD_ID) +

HREF_SCRIPT of form syHomePageXML + "OpenWindow" + HREF_FORM of form

➥ syHomePageXML + technicalname(form IG_Lead_Maintenance) +

➥ HREF_ARGS of form syHomePageXML + "'" + Lead_ID + "'";

{Indicate that the task should be added to the list}

bAddTask = true;

end if;

W O R K F L O W I N T E G R A T I O N G U I D E 53

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

Notice that the procedure must extract information about the workflow task from
the WS_Node (an XML document) passed into the procedure. The key value or
values for the document associated with the task are retrieved from this XML
document.

You must build the sDexLink string to display the window that allows the user to
perform the workflow task. Typically, this will be the window for which you are
implementing workflow. The syntax used for the sDexLink string is described in
the Dexterity help file, in the topic for the Shell_DisplayNotification() function.

Finally, the procedure sets the bAddTask parameter to true. This tells the core
Microsoft Dynamics GP code to add the task. If this isn’t your task, do not set this
parameter value to false. You may prevent another integrating application’s tasks
from being added to the list.

List integration

Numerous changes are needed to support workflow functionality from list in
Microsoft Dynamics GP. These changes made with Dexterity work together with
the client workflow controller to provide the workflow functionality for the list.
This section explains the changes that must be made with Dexterity and provides an
example for the Leads list in the sample integration.

Several additions and
changes are needed
to support workflow

for a list.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

54 W O R K F L O W I N T E G R A T I O N G U I D E

Constants
Define constants for
the workflow actions
and dialog callback in
the list.

Several constants must be added to the list object form when implementing
workflow. The first set of constants defines the workflow actions that can be
performed for the list items:

Another constant must be added to the list object form that specifies the fully-
qualified name of the form-level procedure to be called when the drop-dialog for
the workflow action has been closed. This constant must have the name
WFDIALOG_CALLBACK_PROC. The value of the constant must contain the fully-
qualified procedure name. For the Leads list in the workflow integration sample the
value following values are used:

Constant Name: WFDIALOG_CALLBACK_PROC
Value: WorkFlowDialogsReturn of form ListObj_Leads

Hidden fields
Add hidden fields
needed by the list to
support workflow.

Several hidden fields must be added to the State window for the list object. These
hidden fields are used to trigger processing in the workflow controller. They also
store information used by workflow as it processes items in the list. The following is
the list of fields to be added:

WFReturn This is a local integer field. It has the following change script attached,
which starts the processing of the workflow action the user has chosen.

local integer nAction;

{Retrieve the values from the drop-dialog window}

call GetReturnValues of form WorkflowDialogs,

nAction,

'(L) ChangeDaysToAct',

'(L) DaysToAct',

'Workflow Priority',

'(L) DelegateUser',

'(L) Comment';

{Important -- Notice that the constants for the action retrieved from the

workflow dialog are not the same as the constants for the commands for the

workflow actions.}

case nAction

in[WF_ACTION_APPROVE]

call ExecuteListAction of form syCardList, ACTION_WF_APPROVE of form

➥ ListObj_Leads, true, getmsg(11332); {Approve}

in[WF_ACTION_DELEGATE]

call ExecuteListAction of form syCardList, ACTION_WF_DELEGATE of form

➥ ListObj_Leads, true, getmsg(11378); {Delegate}

in[WF_ACTION_REJECT]

call ExecuteListAction of form syCardList, ACTION_WF_REJECT of form

➥ ListObj_Leads, true, getmsg(11379); {Reject}

Constant Value Description

ACTION_WF_APPROVE 100 The Approve action

ACTION_WF_SUBMIT 101 The Submit action

ACTION_WF_REQUESTCHANGE 102 The Request Change action

ACTION_WF_REJECT 103 The Reject action

ACTION_WF_DELEGATE 104 The Delegate action

W O R K F L O W I N T E G R A T I O N G U I D E 55

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

in[WF_ACTION_REQUESTCHANGE]

call ExecuteListAction of form syCardList, ACTION_WF_REQUESTCHANGE of

➥ form ListObj_Leads, true, getmsg(11381); {Request Change}

in[WF_ACTION_SUBMIT]

call ExecuteListAction of form syCardList, ACTION_WF_SUBMIT of form

➥ ListObj_Leads, true, getmsg(10496); {Submit}

end case;

ChangeDaysToAct This is a local checkbox field. It is used to change the
number of days allowed for a workflow task.

DaysToAct This is a local integer field. It specifies the new number of days to act
on a workflow task.

Workflow Priority This global field tracks the priority for the current workflow
item being processed.

DelegateUser This is a local string field based on the global datatype STR255. It
specifies the user to whom a workflow task is being delegated.

Comment This is a local text field with a keyable length of 1500. It stores the
comment supplied for the workflow action.

wfResetWorkflowHandler This is a global boolean field.

WFTransferInitiate This is a local integer field used to start the process of
adding workflow items to be processed.

WFTransfer This is a local boolean field used to transfer a single workflow item
to be processed.

WFTransferComplete This is a local integer field used to indicate that the
process of adding workflow items to be processed is complete.

WFVerifySuccess This is a local boolean field.

ActionStatusID This is a global string field.

DateString This is a local string with keyable length 20. It stores a date value
used in internal processing for workflow.

TimeString This is a local string with keyable length 20. It stores a time value
used in internal processing for workflow.

Attached tables
Attach tables needed
for the workflow.

The following tables must be attached to the list object form:

• syListActionStatusHdr
• syListActionStatusLine

These tables provide access to the message bar status information that must be
updated when an error occurs as a workflow item is processed for the list.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

56 W O R K F L O W I N T E G R A T I O N G U I D E

Action Pane
Defined the commands
for the workflow
actions.

A new group containing workflow actions must be added to the Action Pane for
your list. This group is typically named “Approval” and contains the various
workflow actions. The following table lists the commands you will need to create
for the workflow actions:

The commands that are of the type Script will each have a script attached that
performs the specified action. The following is an example of this script from the
Approve command in the sample integration:

call OpenWindowFromList of form WorkflowDialogs,

WF_ACTION_APPROVE,

IG_PROD_ID,

WFDIALOG_CALLBACK_PROC;

Notice that it passes a constant for the workflow action to approve, the product ID
for the product that is implementing the workflow, and the constant for the drop-
dialog callback procedure.

The constant for the workflow action to perform corresponds to one of the
following constants:

These constants are not the same as those that you created for your list actions. Later, you
will re-map the workflow actions for your list to these constants.

Command Names Type Image Button Type

CL_ApprovalGroup Display Name: Approval
Tooltip: Approval

Command List Type: Icon
Normal Image: Workflow

N/A

Approve Display Name: Approve
Tooltip: Approve

Script Type: Icon
Normal Image: Approve

Drop Dialog

Delegate Display Name: Delegate
Tooltip: Delegate

Script Type: Icon
Normal Image: Delegate

Drop Dialog

Reject Display Name: Reject
Tooltip: Reject

Script Type: Icon
Normal Image: Reject

Drop Dialog

RequestChange Display Name: Request Change
Tooltip: Request Change

Script Type: Icon
Normal Image: ChangeRequest

Drop Dialog

Submit Display Name: Submit
Tooltip: Submit

Script Type: Icon
Normal Image: Submit

Drop Dialog

Constant Description

WF_ACTION_APPROVE The Approve action

WF_ACTION_DELEGATE The Delegate action

WF_ACTION_REJECT The Reject action

WF_ACTION_REQUESTCHANGE The Request Change action

WF_ACTION_SUBMIT The Submit action

W O R K F L O W I N T E G R A T I O N G U I D E 57

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

Add the workflow
actions to the Action
Pane.

The commands for the workflow actions must be added to the Action Pane. This is
done in the CreateListRibbonData procedure for the list. The following is a portion
of this procedure from the Leads list in the sample workflow integration. It adds the
Approval group and the workflow items for it.

{Approval group -- for workflow}

increment nGroupSeq;

nCmdID = resourceid(command CL_ApprovalGroup);

nStatus = AddGroup(nListDictID, nListID, LIST_PRIMARYVIEWID, nGroupSeq,

nCmdDictID, nCmdFormID, nCmdID,

""{caption},

true{visible}) of form syListViewCmdBarObj;

{--- add default commands to the Approval group ---}

nSeq = 0;

nParentDictID = nCmdDictID;

nParentFormID = nCmdFormID;

nParentCmdID = nCmdID;

nCmdDictID = IG_PROD_ID;

nCmdFormID = resourceid(form ListObj_Leads);

{ Submit }

increment nSeq;

nStatus = AddCommand(nListDictID, nListID, LIST_PRIMARYVIEWID,

nParentDictID, nParentFormID, nParentCmdID,

nSeq,

nCmdDictID, nCmdFormID, resourceid(command Submit),

LISTACTIONPRIORITY_PRIMARY,

LISTACTIONBTNSIZE_LARGE,

""{caption},

true{visible}) of form syListViewCmdBarObj;

{ Approve }

increment nSeq;

nStatus = AddCommand(nListDictID, nListID, LIST_PRIMARYVIEWID,

nParentDictID, nParentFormID, nParentCmdID,

nSeq,

nCmdDictID, nCmdFormID, resourceid(command Approve),

LISTACTIONPRIORITY_SECONDARY,

LISTACTIONBTNSIZE_SMALL,

""{caption},

true{visible}) of form syListViewCmdBarObj;

{ Reject }

increment nSeq;

nStatus = AddCommand(nListDictID, nListID, LIST_PRIMARYVIEWID,

nParentDictID, nParentFormID, nParentCmdID,

nSeq,

nCmdDictID, nCmdFormID, resourceid(command Reject),

LISTACTIONPRIORITY_SECONDARY,

LISTACTIONBTNSIZE_SMALL,

""{caption},

true{visible}) of form syListViewCmdBarObj;

P A R T 2 C R E A T I N G A N E W W O R K F L O W

58 W O R K F L O W I N T E G R A T I O N G U I D E

{ Request Change }

increment nSeq;

nStatus = AddCommand(nListDictID, nListID, LIST_PRIMARYVIEWID,

nParentDictID, nParentFormID, nParentCmdID,

nSeq,

nCmdDictID, nCmdFormID, resourceid(command RequestChange),

LISTACTIONPRIORITY_SECONDARY,

LISTACTIONBTNSIZE_SMALL,

""{caption},

true{visible}) of form syListViewCmdBarObj;

{ Delegate }

increment nSeq;

nStatus = AddCommand(nListDictID, nListID, LIST_PRIMARYVIEWID,

nParentDictID, nParentFormID, nParentCmdID,

nSeq,

nCmdDictID, nCmdFormID, resourceid(command Delegate),

LISTACTIONPRIORITY_SECONDARY,

LISTACTIONBTNSIZE_SMALL,

""{caption},

true{visible}) of form syListViewCmdBarObj;

Register the workflow
actions for the Action
Pane.

The new commands you create must be registered for the Action Pane. This is done
in the RegisterCommands procedure for the list. The following is a portion of the
RegisterCommands procedure for the Leads list in the sample integration. It
registers the command list and commands for the workflow integration.

{ Approvals }

List_RegisterGroup(list_object, command CL_ApprovalGroup) of form syListObj;

List_RegisterAction(list_object, command Submit, LISTCMDTYPE_MULTISELECT,

➥ ACTION_WF_SUBMIT) of form syListObj;

List_RegisterAction(list_object, command Approve, LISTCMDTYPE_MULTISELECT,

➥ ACTION_WF_APPROVE) of form syListObj;

List_RegisterAction(list_object, command Reject, LISTCMDTYPE_MULTISELECT,

➥ ACTION_WF_REJECT) of form syListObj;

List_RegisterAction(list_object, command RequestChange,

➥ LISTCMDTYPE_MULTISELECT, ACTION_WF_REQUESTCHANGE) of form syListObj;

List_RegisterAction(list_object, command Delegate, LISTCMDTYPE_MULTISELECT,

➥ ACTION_WF_DELEGATE) of form syListObj;

Define the access rules
for the new workflow
actions.

The access for the new commands must also be updated in the
CheckActionAccessForRecord procedure for the list. The following is the updated
version of this procedure for the Leads list in the sample workflow integration. The
script contains entries for the workflow actions to control the conditions under
which they are enabled or disabled.

in ListObjState list_object;

in integer nActionCmdTag;

out integer nAccessStatus;

nAccessStatus = LISTACTIONACCESS_COUNT_NEUTRAL;

if nActionCmdTag = Command_GetTag(command DeleteLead) then

nAccessStatus = LISTACTIONACCESS_COUNT_FOR;

elseif nActionCmdTag = Command_GetTag(command EditLead) then

nAccessStatus = LISTACTIONACCESS_COUNT_FOR;

W O R K F L O W I N T E G R A T I O N G U I D E 59

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

elseif nActionCmdTag = Command_GetTag(command ViewLead) then

nAccessStatus = LISTACTIONACCESS_COUNT_FOR;

elseif nActionCmdTag = Command_GetTag(command QualifyLead) then

{Examine whether the lead is already qualified}

if 'Qualified Lead' of table (list_object:'Table Reference') = 1 then

{Lead has not been qualifed}

nAccessStatus = LISTACTIONACCESS_COUNT_FOR;

else

{Lead has already been qualified, so disable that action}

nAccessStatus = LISTACTIONACCESS_COUNT_AGAINST;

end if;

elseif nActionCmdTag = Command_GetTag(command Submit) then

{Check for the 'not submitted' state, and that the Salesperson ID and

Approved Salesperson ID don't match}

if 'Workflow Approval Status' of table(list_object:'Table Reference') =

➥ WF_APPROVAL_STATUS_NOTSUBMITTED then

{Lead has not been submitted.}

nAccessStatus = LISTACTIONACCESS_COUNT_FOR;

else

{Lead is in some other workflow state, so it shouldn't be submitted.}

nAccessStatus = LISTACTIONACCESS_COUNT_AGAINST;

end if;

if 'Salesperson ID' of table(list_object:'Table Reference') =

➥ 'Approved Salesperson ID' of table(list_object:'Table Reference') then

{Salesperson ID and Approved Salesperson ID match, so no need to

approve.}

nAccessStatus = LISTACTIONACCESS_COUNT_AGAINST;

end if;

elseif nActionCmdTag = Command_GetTag(command Approve) then

{Check for the Pending Approval state}

if 'Workflow Approval Status' of table(list_object:'Table Reference') =

➥ WF_APPROVAL_STATUS_PENDINGAPPROVAL then

{Lead is waiting for approvoal.}

nAccessStatus = LISTACTIONACCESS_COUNT_FOR;

else

{Some other state, so count against}

nAccessStatus = LISTACTIONACCESS_COUNT_AGAINST;

end if;

elseif nActionCmdTag = Command_GetTag(command Reject) then

{Check for the Pending Approval state}

if 'Workflow Approval Status' of table(list_object:'Table Reference') =

➥ WF_APPROVAL_STATUS_PENDINGAPPROVAL then

{Lead is waiting for approvoal.}

nAccessStatus = LISTACTIONACCESS_COUNT_FOR;

else

{Some other state, so count against}

nAccessStatus = LISTACTIONACCESS_COUNT_AGAINST;

end if;

elseif nActionCmdTag = Command_GetTag(command RequestChange) then

{Check for the Pending Approval state}

if 'Workflow Approval Status' of table(list_object:'Table Reference') =

➥ WF_APPROVAL_STATUS_PENDINGAPPROVAL then

{Lead is waiting for approvoal.}

nAccessStatus = LISTACTIONACCESS_COUNT_FOR;

else

P A R T 2 C R E A T I N G A N E W W O R K F L O W

60 W O R K F L O W I N T E G R A T I O N G U I D E

{Some other state, so count against}

nAccessStatus = LISTACTIONACCESS_COUNT_AGAINST;

end if;

elseif nActionCmdTag = Command_GetTag(command Delegate) then

{Check for the Pending Approval state}

if 'Workflow Approval Status' of table(list_object:'Table Reference') =

➥ WF_APPROVAL_STATUS_PENDINGAPPROVAL then

{Lead is waiting for approvoal.}

nAccessStatus = LISTACTIONACCESS_COUNT_FOR;

else

{Some other state, so count against}

nAccessStatus = LISTACTIONACCESS_COUNT_AGAINST;

end if;

end if;

Hide or show the
actions, based on
whether the workflow
is enabled.

The commands and command list for the workflow actions should be visible in the
Action Pane only when the workflow is enabled. The Initialize procedure for the list
can be used to find out the state of the workflow, and then enable or disable the
commands appropriately. The following is a portion of the Initialize procedure for
the Leads list in the sample workflow integration. It queries the status of the Lead
Approval workflow and enables or disables the workflow actions based on the
result.

{Find whether the actions for workflow should be enabled}

if 'Workflow Enabled' of window Dummy of form Command_IG_Sample = false then

hide command CL_ApprovalGroup;

hide command Approve;

hide command Submit;

hide command RequestChange;

hide command Reject;

hide command Delegate;

disable command CL_ApprovalGroup;

disable command Approve;

disable command Submit;

disable command RequestChange;

disable command Reject;

disable command Delegate;

else

show command CL_ApprovalGroup;

show command Approve;

show command Submit;

show command RequestChange;

show command Reject;

show command Delegate;

enable command CL_ApprovalGroup;

enable command Approve;

enable command Submit;

enable command RequestChange;

enable command Reject;

enable command Delegate;

end if;

W O R K F L O W I N T E G R A T I O N G U I D E 61

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

Add code to peform
the workflow actions.

To process the new workflow actions, the ExecuteAction procedure must be
updated. In the Leads list for the sample workflow integration the following case
was added to the ExecuteAction procedure:

in [ACTION_WF_APPROVE of form ListObj_Leads, ACTION_WF_SUBMIT of form

ListObj_Leads, ACTION_WF_REQUESTCHANGE of form ListObj_Leads,

ACTION_WF_REJECT of form ListObj_Leads, ACTION_WF_DELEGATE of form

ListObj_Leads]

call WFActionForList of form ListObj_Leads, list_object, nAction;

This code in the ExecuteAction procedure calls the new WFActionForList
procedure that actually starts the process of performing a workflow action for a list.
This new procedure is shown below. The procedure processes each marked item,
updating its state and keeping track of any errors that occur. The workflow actions
are processed as a group by the workflow engine in SharePoint.

inout ListObjState list_object;

in long nAction;

local long nErrStatus;

local integer nSuccessCount = 0;

local integer nFailureCount = 0;

local string message;

local integer err_num;

local boolean first_row;

local Ord n;

local ListStatusLineUserDefData Data;

{Get the first row that is marked}

{get first table(list_object:TableRef1) by number list_object:Index;}

get first table(list_object:TableRef1) by number 1;

first_row = true;

while err() = OKAY do

{Read the record for the lead--in case the data in the list is stale}

'Lead ID' of table IG_Leads_MSTR = 'Lead ID' of

➥ table(list_object:TableRef1);

change table IG_Leads_MSTR;

{Clear the message and error number for the current record}

clear message;

clear err_num;

case err()

in [MISSING]

err_num = err();

message = "Record for " + 'Lead ID' of

➥ table(list_object:TableRef1) + " was deleted by another user";

in [LOCKED]

err_num = err();

message = "Record for " + 'Lead ID' of

➥ table(list_object:TableRef1) +

➥ " was locked and could not be updated.";

in [OKAY]

{Check the workflow status of the document first to see if it

P A R T 2 C R E A T I N G A N E W W O R K F L O W

62 W O R K F L O W I N T E G R A T I O N G U I D E

should be processed.}

case nAction

in[ACTION_WF_APPROVE, ACTION_WF_DELEGATE, ACTION_WF_REJECT,

➥ ACTION_WF_REQUESTCHANGE]

if 'Workflow Approval Status' of table IG_Leads_MSTR <>

➥ WF_APPROVAL_STATUS_PENDINGAPPROVAL then

err_num = 1001;

message = "You can’t approve, delegate, reject, or

➥ request a change for this lead until it has a status

➥ of Pending Approval.";

end if;

in[ACTION_WF_SUBMIT]

case 'Workflow Approval Status' of table IG_Leads_MSTR

in[WF_APPROVAL_STATUS_NOTACTIVATED,

WF_APPROVAL_STATUS_NOTSUBMITTED,

WF_APPROVAL_STATUS_PENDINGCHANGES,

WF_APPROVAL_STATUS_REJECTED,

WF_APPROVAL_STATUS_WORKFLOWENDED,

WF_APPROVAL_STATUS_DEACTIVATED]

'Workflow Approval Status' of table IG_Leads_MSTR =

➥ WF_APPROVAL_STATUS_SUBMITTED;

else

err_num = 1002;

message = "This lead has already been submitted.";

end case;

end case;

if err_num <> 0 then

{An error was logged, so don't update the IG_Leads_MSTR table

or submit to workflow}

release table IG_Leads_MSTR;

else

{No errors, so continue processing the current row}

'Workflow Priority' of table IG_Leads_MSTR =

➥ 'Workflow Priority' of window State;

save table IG_Leads_MSTR;

ActionStatusID of window State = list_object:ActionStatusID;

{These values will be used by the workflow list controller}

'Lead ID' of window State = 'Lead ID' of

➥ table(list_object:TableRef1);

'(L) DateString' of window State =

➥ str(GetActionStatusDate(list_object) of form syListObj);

'(L) TimeString' of window State =

➥ str(GetActionStatusTime(list_object) of form syListObj);

if first_row = true then

{Start the workflow processing}

first_row = false;

{Need to specify the workflow action to take using the

Dynamics GP constants}

{This case statement re-maps the list actions to those

constants}

W O R K F L O W I N T E G R A T I O N G U I D E 63

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

case nAction

in [ACTION_WF_SUBMIT]

'(L) WFTransferInitiate' of window State =

➥ integer(WF_ACTION_SUBMIT);

in [ACTION_WF_APPROVE]

'(L) WFTransferInitiate' of window State =

➥ integer(WF_ACTION_APPROVE);

in [ACTION_WF_DELEGATE]

'(L) WFTransferInitiate' of window State =

➥ integer(WF_ACTION_DELEGATE);

in [ACTION_WF_REJECT]

'(L) WFTransferInitiate' of window State =

➥ integer(WF_ACTION_REJECT);

in [ACTION_WF_REQUESTCHANGE]

'(L) WFTransferInitiate' of window State =

➥ integer(WF_ACTION_REQUESTCHANGE);

end case;

run script '(L) WFTransferInitiate' of window State;

end if;

{Run this script once for each successful update to tell the

workflow controller to collect this information it needs}

run script '(L) WFTransfer' of window State;

if '(L) WFTransfer' of window State = false then

{You can’t approve, delegate, reject, or request a

change for this document because you are not an

assigned approver.}

err_num = 9496;

message = getmsg(9496);

end if;

end if;

end case;

{ Log errors that were encountered }

if err_num <> 0 then

increment nFailureCount;

n = ActionStatus_LogError(list_object:ActionStatusID, n+1, message,

➥ err_num,

'Lead ID' of table(list_object:'TableRef1'), Data) of form syListObj;

else

increment nSuccessCount;

end if;

{Get the next row that is marked}

get next table(list_object:TableRef1) by number list_object:Index;

if err() = EOF then

{Tell the workflow controller that processing is finished.}

case nAction

in [ACTION_WF_SUBMIT]

'(L) WFTransferComplete' of window State =

➥ integer(WF_ACTION_SUBMIT);

in [ACTION_WF_APPROVE]

'(L) WFTransferComplete' of window State =

➥ integer(WF_ACTION_APPROVE);

in [ACTION_WF_DELEGATE]

P A R T 2 C R E A T I N G A N E W W O R K F L O W

64 W O R K F L O W I N T E G R A T I O N G U I D E

'(L) WFTransferComplete' of window State =

➥ integer(WF_ACTION_DELEGATE);

in [ACTION_WF_REJECT]

'(L) WFTransferComplete' of window State =

➥ integer(WF_ACTION_REJECT);

in [ACTION_WF_REQUESTCHANGE]

'(L) WFTransferComplete' of window State =

➥ integer(WF_ACTION_REQUESTCHANGE);

end case;

run script '(L) WFTransferComplete' of window State;

end if;

end while;

{Indicate that the processing is complete}

nErrStatus = ActionStatus_LogActionComplete(list_object:ActionStatusID,

nSuccessCount, nFailureCount) of form syListObj;

call List_MultiSelectActionCompleteEvent of form syListObj, list_object;

Columns
Add additional
columns to the list to
display workflow
information.

Some additional columns containing workflow information must be added to the
list. These columns are added, but not visible by default. You may want to make an
additional view for the list to show the workflow columns. The following columns
were added for the Leads list in the sample workflow integration:

• Approved Salesperson ID
• Workflow Approval Status
• Workflow Priority

The following is a portion of the CreateListColumnData procedure for the Leads list
in the sample workflow integration. It adds the columns needed for workflow to the
list.

{--- Approved Salesperson ID ---}

increment nSeq;

nStatus = CreateDefaultColumn(

nListDictID,

nListID,

nSeq,

resourceid(field 'Approved Salesperson ID'),

COLSORTORDER_NONE{sort order},

false{visible},

250{width},

0,

0, 0, { no format field }

0, {token ID}

0{sort seq}) of form syListViewColObj;

{--- Workflow Approval Status ---}

increment nSeq;

nStatus = CreateDefaultColumn(

nListDictID,

nListID,

nSeq,

resourceid(field 'Workflow Approval Status'),

COLSORTORDER_NONE{sort order},

false{visible},

W O R K F L O W I N T E G R A T I O N G U I D E 65

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

250{width},

0,

0, 0, { no format field }

0, {token ID}

0{sort seq}) of form syListViewColObj;

{--- Workflow Priority ---}

increment nSeq;

nStatus = CreateDefaultColumn(

nListDictID,

nListID,

nSeq,

resourceid(field 'Workflow Priority'),

COLSORTORDER_NONE{sort order},

false{visible},

250{width},

0,

0, 0, { no format field }

0, {token ID}

0{sort seq}) of form syListViewColObj;

Define the names for
the new workflow
columns.

The GetColumnName procedure for the list must also be updated to include the
names of the columns used for workflow. The following is a portion of this
procedure for the Leads list in the sample workflow integration. This portion of the
case statement returns the names for the new columns added for workflow.

in [resourceid('Approved Salesperson ID' of table IG_Leads_MSTR)]

set sColName to "Approved Salesperson ID";

in [resourceid('Workflow Approval Status' of table IG_Leads_MSTR)]

set sColName to "Workflow Status";

in [resourceid('Workflow Priority' of table IG_Leads_MSTR)]

set sColName to "Workflow Priority";

Update the Refresh
procedure to display
the workflow icon for
list items.

The Icon column of the list must also be updated to indicate when workflow
information is attached to the specific row. The Icon column is updated in the
Refresh procedure for the list. Updating this column typically involves executing
pass-through SQL to update the temporary table used for the list. The following is a
portion of the Refresh procedure for the Leads list in the sample workflow
integration. It uses the SQL statement shown to update the InfoValue column of the
list to the appropriate value if workflow information is attached for that record.

{Update the status column for workflow}

{Basic SQL statement used:

update LISTTEMP

set InfoValue = InfoValue + INFO_VALUE_WORKFLOWPRESENT

where Workflow_Approval_Status > 1

}

SQLCommand = "update " + ListTempTable

+ " set " + ListTempTable + "." + InfoValueField + " = " +

ListTempTable + "." + InfoValueField + " + " +

str(InfoValueWorkflowPresent) + " where " + ListTempTable + "." +

WorkflowApprovalStatusField + " > 1";

P A R T 2 C R E A T I N G A N E W W O R K F L O W

66 W O R K F L O W I N T E G R A T I O N G U I D E

Form-level procedures
Add form-level
procedures needed for
the list to support
workflow.

Several additional procedures must be added to the list object form to support
workflow operations. The following procedures must be added:

WFRequestReturn This procedure is called when the workflow action being
performed by the list encounters an error. The procedure finds the correct records
that will be displayed in the message bar, and adds information for the error that
occurred.

in ActionStatusID nActionStatusID;

in string LeadID;

in string sDate;

in string sTime;

in string sErr;

local syListActionStatusHdrState HdrObj;

local syListActionStatusLineState LineObj;

local integer nStatus;

local date dt;

local time tm;

local ListStatusLineUserDefData UserDefData;

if empty(nActionStatusID) then

abort script;

end if;

nStatus = Create(HdrObj, LineObj, table syListActionStatusHdr, table

➥ syListActionStatusLine, nActionStatusID, MODE_CHG) of form

➥ syListActionStatusObj;

if nStatus = OKAY then

{Validate the date and time to make sure we have the correct button press}

call GetDateAndTime of form syListActionStatusObj, HdrObj, dt, tm;

if str(dt) = sDate and str(tm) = sTime then

{Decrement the success count, increment the failure count on the hdr

and write a new line.}

call SetSuccessCount of form syListActionStatusObj, HdrObj,

➥ (GetSuccessCount(HdrObj)of form syListActionStatusObj - 1);

call SetFailureCount of form syListActionStatusObj,

➥ HdrObj,(GetFailureCount(HdrObj)of form syListActionStatusObj + 1);

nStatus = CommitHeader(HdrObj) of form syListActionStatusObj;

if nStatus = OKAY then

{Add new line}

call AddNewLine of form syListActionStatusObj,

LineObj,

nActionStatusID,

0,

sErr,

0,

LeadID,

UserDefData;

nStatus = CommitLine(LineObj) of form syListActionStatusObj;

W O R K F L O W I N T E G R A T I O N G U I D E 67

C H A P T E R 6 D I C T I O N A R Y C H A N G E S

assert OKAY=nStatus;

end if;

end if;

end if;

WorkFlowDialogsReturn This procedure is called after the user has chosen a
workflow action from the drop-dialog, and the drop-dialog has been closed. The
procedure starts the processing for the items marked in the list.

run script '(L) WFReturn' of window State;

Application assembly

Create the application
assembly that allows
the client workflow
controller to interact
with the integrating
dictionary.

After the dictionary changes have been made, you will create an application
assembly that allows the client workflow controller to access these dictionary
resources. Do this using the Dictionary Assembly Generator (DAG.exe) included
with the Visual Studio Tools SDK. The following example shows the basic
command used to create the application assembly for the sample workflow
integration:

dag.exe 3333 "c:\Program Files\Microsoft Dynamics\GP\Dynamics.set" /M

This creates an assembly named Application.SampleIntegratingApp.dll that you
will ship with your client workflow controller. It also creates an XML file that is
named Application.SampleIntegratingApp.xml, which is used by IntelliSense in
Visual Studio. You will use this XML file as you’re developing your client workflow
controller, but you won’t ship the XML file to customers.

Refer to the Visual Studio Tools for Microsoft Dynamics GP Programmer’s Guide for
details about creating an application assembly.

68 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 69

Chapter 7: Client Workflow Assembly
The client workflow assembly is a Microsoft .NET assembly that enables Dexterity-
based Microsoft Dynamics GP forms to interact with the Workflow server.
Information about the client workflow assembly is described in the following
sections:

• Overview
• Creating a Visual Studio project
• Creating a BusinessObjectKey
• Creating a form controller
• Creating a list controller
• Creating a form factory
• Building the client workflow assembly

Overview

The client workflow assembly is a Visual Studio Tools for Microsoft Dynamics GP
integration that adds the following workflow capabilities:

• Adds the workflow message bar, workflow controls, and workflow history bar
to a Microsoft Dynamics GP form.

• Subscribes to workflow events raised by the Microsoft Dynamics GP form or
list. Event handlers perform actions based on user interaction with the form or
list.

• Uses the Workflow web service to initiate actions, retrieve workflow
information, and provide the user with updated workflow status information.

Creating a Visual Studio project

Create a new Visual
Studio project.

The client workflow assembly is a Microsoft .NET assembly you create using Visual
Studio. The assembly works with Microsoft Dynamics GP forms or lists to provide
workflow functionality.

To create a client workflow assembly, complete the following steps:

1. Create a new project.
Open Visual Studio. From the File menu, select File >> New >> Project. In the
New Project window, select Visual C# as the Project type. In Templates, select
Class Library from the list of Visual Studio installed templates.

Enter a name for the client workflow assembly. Review the Location and
Solution Name, and click then OK.

2. Delete the Class1.cs file from the project.
Visual Studio creates a default class file named Class1.cs. From the View menu,
select Solution Explorer. In Solution Explorer, delete Class1.cs from your
project.

If a dialog window opens asking whether to delete the file, click OK.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

70 W O R K F L O W I N T E G R A T I O N G U I D E

3. Add references to the project.
From the Project menu, select Add References. The Add References window
opens. Click the .NET tab. Hold the Ctrl key and select the following
assemblies:

• System.Windows.Forms
• System.Drawing.

Click OK.

From the Project menu, select Add References. The Add References window
opens. Click the Browse tab. Navigate to the Microsoft Dynamics GP client
folder, typically found at the following location:

C:\Program Files\Microsoft Dynamics\GP

Hold the Ctrl key and click the following .dll files:

• Application.Dynamics.dll
• Microsoft.Dexterity.Bridge.dll
• Microsoft.Dexterity.Shell.dll
• Microsoft.Dynamics.Common.dll
• Microsoft.Dynamics.GP.Workflow.Client.dll
• Microsoft.Dynamics.Workflow.Common.dll

Click OK.

4. Set Reference properties
From Solution Explorer, expand the list of Reference and select all the
References. In Properties, set Copy Local to False.

Creating a BusinessObjectKey

Add a
BusinessObjectKey
class to the project.

Each document you submit to workflow must have a unique ID. To identify your
document, create a class that specifies a key that uniquely identifies individual
documents. To ensure workflow can retrieve with your document, your key class
must inherit from the Microsoft.Dynamics.Workflow.Common.BusinessObjectKey
class.

A BusinesObjectKey is a general-purpose class for specifying the key values for any
document type in Microsoft Dynamics GP. A BusinessObjectKey is composed of one
or more KeyPart objects, each of which represent one segment of the key for the
business document. For additional information on the BusinessObjectKey class,
refer to Business object keys of Chapter 16, “Using the Web Service.”

W O R K F L O W I N T E G R A T I O N G U I D E 71

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

To create a key class for your business document, complete the following steps:

1. Create a class.
From the Project menu, choose Add Class. Select Class from the Add New Item
window. Enter a name for your class and click Add. Visual Studio creates and
opens a new class file. The following code sample shows the creation of a class
named LeadBusinessObjectKey.

public class LeadBusinessObjectKey

{

}

2. Add namespace references.
Add using statements to provide convenient access to the classes and methods
needed for this class. Include the following:

• Microsoft.Dynamics.Workflow.Common

3. Inherit from the BusinessObjectKey class.
Your class must inherit from the BusinessObjectKey class. The following code
sample shows the LeadBusinessObjectKey inherits from BusinessObjectKey.

public class LeadBusinessObjectKey : BusinessObjectKey

{

}

4. Add data members that label your key values.
You need to provide a name for each segment of your document key. Use the
database column name that the key segment value corresponds to. The
following sample uses LeadID for lead documents.

private const string leadIdKeyName = "LeadID";

5. Add methods that create and retrieve the KeyParts.
Your key class must be able to store values that uniquely identify your business
document. Store the values in the base class KeyParts collection. Use the strings
you created earlier to name each KeyPart.

The following sample code creates two constructors. The first creates an empty
KeyPart, gives the KeyPart a name, and adds the KeyPart to the base class
KeyParts collection.

// Create an empty LeadBusinessObject key

public LeadBusinessObjectKey() : base()

{

KeyParts.Add(new KeyPart<string>(leadIdKeyName, string.Empty));

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

72 W O R K F L O W I N T E G R A T I O N G U I D E

The second constructor also creates a KeyPart and adds it to the KeyPart
collection. This constructor allows the value of the KeyPart to be set when it is
created.

// Create a LeadBusinessObject key that identifies a specific Sales Lead

public LeadBusinessObjectKey(string leadId) : base()

{

KeyParts.Add(new KeyPart<string>(leadIdKeyName, leadId));

}

The following sample code creates a class property that updates or retrieves the
value from the LeadID KeyPart.

// Property that uniquely identifies a specific sales lead

public string LeadId

{

get

{

return ((KeyPart<string>)KeyParts[0]).PartValue;

}

set

{

((KeyPart<string>)KeyParts[0]).PartValue = value;

}

}

6. Save your class.

Creating a form controller

Add a form controller
class to the project.

A workflow form controller is a class that responds to Microsoft Dynamics GP client
events, manages communication with the Dynamics Workflow web service, and
adds the workflow message bar, workflow controls, and workflow history bar to the
Microsoft Dynamics GP client window. You create a separate form controller class
for each Microsoft Dynamics GP form for which workflow is being implemented.

To create a new form controller, you need to complete the following tasks:

• Create the class.
• Add static data fields.
• Add the base class and helper methods.
• Add VS Tools event handlers.
• Add client workflow event handlers.
• Add properties.

Create the class
To create the form controller class, complete the following steps:

1. Create the class.
From the Visual Studio Project menu, choose Add Class. Select Class from the
Add New Item window. Enter a name for your class and click Add.

W O R K F L O W I N T E G R A T I O N G U I D E 73

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

The following sample code sample shows the creation of class named
LeadWorkflowController.

class LeadWorkflowController

{

}

2. Add references to the required assemblies.
The form controller accesses many of the workflow fields and resources you
include with application you integrated with Microsoft Dynamics GP. Add a
reference to the application assembly you created. For information about
creating an application assembly, see Application assembly on page 67.

From the Project menu, select Add References. The Add References window
opens. Click the Browse tab. Browse to the Microsoft Dynamics GP folder,
typically found in the following location:

C:\Program Files\Microsoft Dynamics\GP

Select your application assembly. For example, the lead sample application
adds a reference to the Application.SampleIntegratingApp.dll file. Click OK.

3. Add namespace references.
Add using statements to provide convenient access to the classes and methods
needed for this class. Include the following:

• Microsoft.Dynamics.Workflow.Common
• Microsoft.Dexterity.Applications
• Microsoft.Dexterity.Applications.DynamicsDictionary
• Microsoft.Dynamics.Common
• Microsoft.Dynamics.GP.Workflow
• Microsoft.Dynamics.Workflow
• Microsoft.Dexterity.Applications.SampleIntegratingAppDictionary

Replace the Microsoft.Dexterity.Applications.SampleIntegratingAppDictionary
namespace with the namespace from your application assembly

4. Inherit from ApprovalWorkflowController<> class.
Your workflow list controller class must inherit from the abstract base class:

Microsoft.Dynamics.GP.Workflow.ApprovalWorkflowController<WorkflowWrapper>

The following sample code creates a LeadWorkflowController class that inherits
from the ApprovalWorkflowController class.

class LeadWorkflowController :

ApprovalWorkflowController<WorkflowWrapper>

{

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

74 W O R K F L O W I N T E G R A T I O N G U I D E

5. Implement the abstract base class.
Your form controller must implement all of the methods and properties
specified by the ApprovalWorkflowController<> class.

To implement the method and properties of the abstract base class, right click
ApprovalWorkflowController<WorkflowWrapper> and choose Implement Abstract
Class. Visual Studio will add the abstract base class methods and properties to your
class.

Add static data fields
Add data fields to the
class.

Now that you have created a new controller class, you must define the controllers
data fields. You need static data members for the following:

• This controller class
• Your Microsoft Dynamics GP client form
• A workflow wrapper object
• Your workflow name

The workflow name must match the name that was specified in the workflow attribute of the
workflow server class. If the names are not identical, the client will not be able to attach the
workflow to your document. To learn more about naming your workflow, see Creating a
workflow type on page 137.

The following sample code adds the required static data fields to the controller
class. The leadMaintenanceForm is populated with a reference to the Lead
Maintenance form. The LeadWorkflowName contains the workflow name.

private static LeadWorkflowController controller;

private static IgLeadMaintenanceForm leadMaintenanceForm =

Microsoft.Dexterity.Applications.SampleIntegratingApp.

Forms.IgLeadMaintenance;

private static WorkflowWrapper workflowWrapper;

// Make the workflow name public so it can be used by other objects that

// specify the workflow name

public static string LeadWorkflowName =

"Sample Salesperson Approval Workflow";

Add base class and helper methods
Add required methods
to the class.

To control the behavior of your controller, implement the base class methods and
any other methods needed to support your workflow client. The following
represent a minimum set of methods you will need to implement.

W O R K F L O W I N T E G R A T I O N G U I D E 75

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

Create The base class requires you to provide a Create method. The Create
method instantiates your form controller and attaches a workflow wrapper. The
workflow wrapper adds the workflow message bar, workflow controls, and
workflow history bar to your Microsoft Dynamics GP form. The following sample
code implements the Create method for the lead sample application:

public static void Create(WorkflowWrapper wrapper)

{

workflowWrapper = wrapper;

if (LeadWorkflowController.controller == null)

{

LeadWorkflowController.controller = new LeadWorkflowController();

}

controller.Initialize(workflowWrapper);

}

SubscribeToApplicationEvents The base class requires you to override the
SubscribeToApplicationEvents method. This method identifies Dynamic GP events
that require action. These events are Visual Studio Tools events. The method must
supply an event handler for each of the specified events.

To learn more about Visual Studio Tools events, refer to the Visual Studio Tools for
Microsoft Dynamics GP Programmers Guide.

The following sample code for the Lead Maintenance form controller verifies that
workflow is active, subscribes to three form events, and specifies the event handler
for each event:

protected override void SubscribeToApplicationEvents()

{

// Determine whether the workflow is active

if (SampleIntegratingApp.Forms.CommandIgSample.Dummy.

WorkflowEnabled.Value == true)

{

// If workflow is enabled, set the indicator flag on the Command form to

// true. The value of the flag enables the form's Save and Submit button

SampleIntegratingApp.Forms.CommandIgSample.Dummy.

WorkflowEnabled.Value = true;

// Subscribe to application events and associate a handler for each event

leadMaintenanceForm.LeadMaintenance.LocalSubmit.ClickAfterOriginal +=

new System.EventHandler(LocalSubmit_ClickAfterOriginal);

leadMaintenanceForm.LeadMaintenance.WfGetInfo.ValidateAfterOriginal +=

new System.EventHandler(WfGetInfo_ValidateAfter);

leadMaintenanceForm.LeadMaintenance.OpenAfterOriginal +=

new System.EventHandler(LeadMaintenance_OpenAfterOriginal);

}

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

76 W O R K F L O W I N T E G R A T I O N G U I D E

RetrieveSalesLeadTracking When the form loads a document, you need to
retrieve workflow history information associated with that document. To retrieve
and store this information, add a “helper” method that retrieves the document’s
workflow history from the server and adds the history information to the form
controller’s tracking information.

For the Lead Maintenance form, this “helper” method was named
RetrieveSalesLeadTracking. You can choose a different name when you create a
“helper” method for your document.

The LeadWorkflowController example calls RetrieveSalesLeadTracking in the event handler
that updates the workflow message bar, workflow controls, and workflow history bar. The
event occurs when new document opens in the Lead Maintenance form.

Add the history information to the controller’s workflow wrapper TrackingInstance
collection. This allows the document’s history information to display in the
Workflow History Tracking Tree.

The following sample code uses a workflow agent to retrieve the workflow history
associated with the current lead document. The workflow agent is a “helper” class
that you can use to work with the Dynamics GP Workflow web service. The history
information populates the tracking history object. To display the history
information, the history object is added to the form controller’s workflow wrapper.

private void RetrieveSaleLeadTracking()

{

// Only retrieve tacking information if the current business object

// is not null

if (CurrentBusinessObject != null)

{

// Create a new workflow agent object

WorkflowAgent workflowAgent = WorkflowHelper.GetWorkflowAgent();

// Initialize a tracking object to null

Tracking currentTracking = null;

try

{

// Retrieve tracking information for the current sales lead

System.Collections.ObjectModel.

Collection<Tracking> trackingsList;

trackingsList =

workflowAgent.GetTrackingInformation(

CurrentBusinessObject.Key,WorkflowHelper.

GetAssociationKey(WorkflowName));

W O R K F L O W I N T E G R A T I O N G U I D E 77

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

// Populate the tracking object with the results from the server

foreach (Tracking tracking in trackingsList)

{

if (currentTracking == null)

{

currentTracking = tracking;

}

else

{

if (tracking.TimeTracking.Start.CompareTo(

currentTracking.TimeTracking.Start) > 0)

{

currentTracking = tracking;

}

}

}

}

catch

{

// If the call fails, set tracking info to null so the Workflow

// History Tracking Tree is not displayed. Do not report this

// as an error.

workflowWrapper.TrackingInstance = null;

}

// Populate the workflow wrapper for the window with tracking

// information. This will cause the Workflow History Tracking Tree

// to be available in the Workflow History bar.

workflowWrapper.TrackingInstance = currentTracking;

}

else

{

// If the current business object is empty, set tracking info to

// null so the Workflow History Tracking Tree is not displayed.

workflowWrapper.TrackingInstance = null;

}

}

Add VS Tools event handlers
Add the event handlers
that add workflow
functionality to the
form.

In the SubscribeToApplicationEvents method you specified event handlers for form
events. You must now implement these event handlers. These event handlers add
workflow functionality to your Microsoft Dynamics GP form.

To add workflow to your form, you must implement event handlers that perform
the following tasks:

• Update the workflow message bar, workflow controls, and history bar when
the form loads a new document.

• Open the workflow submit dialog window. The workflow submit dialog
window allows an approver to approve, reject, request changes or delegate the
current document.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

78 W O R K F L O W I N T E G R A T I O N G U I D E

The following sample code implements an event handler that updates the workflow
controller when a lead document is opened in the Lead Maintenance window. This
event handler runs when the run script statement is used for the WFGetInfo hidden
field in the Lead Maintenance window. This is one of the hidden fields that was
added to support workflow.

Notice how the event handler updates the controller business document, updates
the workflow message bar, workflow controls, and workflow history bar, and calls
the RetrieveSalesLeadTracking method to load the document’s workflow history.

void WfGetInfo_ValidateAfter(object sender, EventArgs e)

{

ResetWrapperDisplay();

// Populate the business object with the current record using the

// key for the object

SetCurrentBusinessDocument(BusinessObjectKey);

if (CurrentBusinessObject != null)

{

// Use the base class method to get and display the workflow data

DisplayWorkflowState();

// If this is an existing sales lead, populate and display

// the Workflow History Tracking Tree

if (IsNew == false)

{

RetrieveSaleLeadTracking();

}

}

}

The following sample opens the workflow submit dialog window when an
approver clicks one of the buttons in the workflow controls. Notice how the event
handler validates the workflow status before displaying the dialog window.

void LocalSubmit_ClickAfterOriginal(object sender, EventArgs e)

{

if (ApprovalWorkflowStatus !=

(short)GPApprovalWorkflowStatusValue.PendingApproval)

{

DisplaySubmitDialog();

}

}

You may need to clear the workflow controllers data cache to force the controller to
retrieve updated workflow information for a document. The following code sample
resets the controller’s data cache when the Lead Maintenance window is updated.

void LeadMaintenance_OpenAfterOriginal(object sender, EventArgs e)

{

ResetWrapperDisplay();

}

W O R K F L O W I N T E G R A T I O N G U I D E 79

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

Client workflow event handlers
Add client event
handlers to the class.

Add event handlers that respond to a workflow action that a user performs using
the form. The workflow form controller responds to workflow events that originate
with the form. You will add code to these events to keep the Dynamics GP window
in the proper state after the user has performed a workflow operation. The
following table lists the client workflow events:

The following sample codes shows how to override the base class event handlers
for each of these workflow events.

OnSubmitted Notice how the event handler updates the controller’s workflow
priority property, calls a Dexterity procedure to save the priority setting, and clears
the Lead Maintenance window.

// When a lead assignment is submitted, update the workflow priority value,

// save that change and restart the Lead Maintenance form

protected override void OnSubmitted(string comment, int? daysToAct,

short priority)

{

WorkflowPriority = priority;

Microsoft.Dexterity.Applications.SampleIntegratingApp.Forms.

IgLeadMaintenance.Procedures.UpdateWorkflowPriority.

Invoke(this.CurrentBusinessObject.Key.KeyParts[0].

GetPartValueAsString(), priority);

Microsoft.Dexterity.Applications.SampleIntegratingApp.

Forms.IgLeadMaintenance.LeadMaintenance.LocalRestartForm.

RunValidate();

}

OnApproved Notice how the event handler updates the controller’s workflow
priority property, calls a Dexterity procedure to save the priority setting, and clears
the Lead Maintenance window.

// When a lead assignment is approved, update the workflow priority value,

// save that change and restart the Lead Maintenance form

protected override void OnApproved(string comment, int? daysToAct, short

priority)

{

WorkflowPriority = priority;

Microsoft.Dexterity.Applications.SampleIntegratingApp.Forms.

IgLeadMaintenance.Procedures.UpdateWorkflowPriority.

Invoke(this.CurrentBusinessObject.Key.KeyParts[0].

GetPartValueAsString(), priority);

Event Description

OnSubmitted The originator submits the document to
workflow for approval.

OnApproved The approver clicks the Approved button on the
workflow controls.

OnRequestedChange The approver clicks the Request Change button
on the workflow controls.

OnDelegated The approver clicks the Delegate button on the
workflow controls.

OnRejected The approver clicks the Reject button on the
workflow controls.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

80 W O R K F L O W I N T E G R A T I O N G U I D E

Microsoft.Dexterity.Applications.SampleIntegratingApp.Forms.

IgLeadMaintenance.LeadMaintenance.LocalRestartForm.RunValidate();

}

OnRequestedChange Notice how the event handler updates the controller’s
workflow priority property, calls a Dexterity procedure to save the priority setting,
and clears the Lead Maintenance window.

// When additional information is requested, update the workflow priority

// value, save that change and restart the Lead Maintenance form

protected override void OnRequestedChange(string comment, short priority)

{

WorkflowPriority = priority;

Microsoft.Dexterity.Applications.SampleIntegratingApp.Forms.

IgLeadMaintenance.Procedures.UpdateWorkflowPriority.

Invoke(this.CurrentBusinessObject.Key.KeyParts[0].

GetPartValueAsString(), priority);

Microsoft.Dexterity.Applications.SampleIntegratingApp.Forms.

IgLeadMaintenance.LeadMaintenance.LocalRestartForm.RunValidate();

}

OnDelegated Notice how the event handler updates the controller’s workflow
priority property, calls a Dexterity procedure to save the priority setting, and clears
the Lead Maintenance window.

// When a lead assignment is delegated, update the workflow priority value,

// save that change and restart the Lead Maintenance form

protected override void OnDelegated(string comment, short priority, string

delegateToUser)

{

WorkflowPriority = priority;

Microsoft.Dexterity.Applications.SampleIntegratingApp.Forms.

IgLeadMaintenance.Procedures.UpdateWorkflowPriority.Invoke(

this.CurrentBusinessObject.Key.KeyParts[0].GetPartValueAsString(),

priority);

Microsoft.Dexterity.Applications.SampleIntegratingApp.Forms.

IgLeadMaintenance.LeadMaintenance.LocalRestartForm.RunValidate();

}

OnRejected Notice how the event handler calls a Dexterity procedure to clear
the Lead Maintenance window.

When rejecting a document, the approver cannot change the workflow priority. As a result,
the workflow controller does not need to update the workflow priority.
// When a lead assignment is rejected, restart the Lead Maintenance form

protected override void OnRejected(string comment)

{

Microsoft.Dexterity.Applications.SampleIntegratingApp.Forms.

IgLeadMaintenance.LeadMaintenance.LocalRestartForm.RunValidate();

}

W O R K F L O W I N T E G R A T I O N G U I D E 81

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

Add properties
Add the required
properties to the class.

The ApprovalWorkflowController<WorkflowWrapper> abstract base class
requires you to override the following properties in your workflow controller:

The following sample code shows how these required properties were
implemented for the Lead Maintenance form controller. Notice how the
ApprovalWorkflowStatus, BusinessObjectKey, Edited, IsNew, and
WorkflowPriority properties use the Lead Maintenance form to store the property
value.

// Returns the workflow status for a Sales Lead

protected override short ApprovalWorkflowStatus

{

get

{

short statusValue;

// Get the workflow approval status from the form

string status = Microsoft.Dexterity.Applications.

SampleIntegratingApp.Forms.IgLeadMaintenance.

LeadMaintenance.WorkflowApprovalStatus.Value.ToString();

// Set the status value for the return value

// If status is empty return as Not Submitted otherwise return the

// current status value

if (string.IsNullOrEmpty(status))

{

statusValue = (short)GPApprovalWorkflowStatusValue.NotSubmitted;

}

else if (status == "0")

{

statusValue = (short)GPApprovalWorkflowStatusValue.Unknown;

}

Property Description

ApprovalWorkflowStatus Returns an integer that represents workflow status associated with
the current business document. The integer value is from the
WorkflowApprovalStatus enumeration.

BusinessObjectKey Returns a business object key that uniquely identifies the current
business document.

DisplayOnlyWrapper A boolean value that specifies whether the controller displays the
window’s workflow wrapper but does not allow a user to perform
workflow operations. Typically, the value of this property is set to
False.

Edited A boolean value that specifies whether the document has been
changed.

IsNew A boolean value that specifies whether the document is a new
document.

SynchronousServiceCall
Success

A boolean value that specifies whether the last synchronous call to
the Workflow web service succeeded or failed.

WorkflowName Returns a string value that specifies the workflow associated with
this workflow controller.

WorkflowPriority An integer value that represents the workflow priority. The integer
value is from the Priority enumeration.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

82 W O R K F L O W I N T E G R A T I O N G U I D E

else

{

statusValue = Convert.ToInt16(status);

}

return statusValue;

}

}

// The LeadBusinessObjectKey that uniquely identifies the Sales Lead

protected override BusinessObjectKey BusinessObjectKey

{

get { return new LeadBusinessObjectKey(

Microsoft.Dexterity.Applications.SampleIntegratingApp.

Forms.IgLeadMaintenance.LeadMaintenance.LeadId.Value); }

}

// Controls whether to display only the workflow wrapper

protected override bool DisplayOnlyWrapper

{

get { return false; }

}

// Specifies whether the lead information in the Lead Maintenance form has

// been changed

protected override bool Edited

{

get {

return Microsoft.Dexterity.Applications.SampleIntegratingApp.

Forms.IgLeadMaintenance.LeadMaintenance.IsChanged; }

}

// Specifies whether the lead in the Lead Maintenance form is a new lead

protected override bool IsNew

{

get

{

if (Microsoft.Dexterity.Applications.SampleIntegratingApp.Forms.

IgLeadMaintenance.LeadMaintenance.DisplayExistingRecord == false)

{

return true;

}

else

{

return false;

}

}

}

W O R K F L O W I N T E G R A T I O N G U I D E 83

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

// Specifies whether a synchronous web service call has succeeded or failed

// For this example, we always return true

protected override bool SynchronousServiceCallSuccess

{

get

{

return true;

}

// Set is required by the abstract base class but this class does not

// support changes to this property

set

{

}

}

// Specifies the name of the workflow

protected override string WorkflowName

{

get

{

return LeadWorkflowName;

}

}

// Specifies the workflow priority of the specified lead

protected override short WorkflowPriority

{

get

{

return Microsoft.Dexterity.Applications.SampleIntegratingApp.

Forms.IgLeadMaintenance.LeadMaintenance.WorkflowPriority;

}

set

{

Microsoft.Dexterity.Applications.SampleIntegratingApp.

Forms.IgLeadMaintenance.LeadMaintenance.WorkflowPriority.

Value = value; ;

}

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

84 W O R K F L O W I N T E G R A T I O N G U I D E

Creating a list controller

Add a list controller
class to the project.

A workflow list controller is a class that responds to Microsoft Dynamics GP client
events, and manages communication with the Dynamics Workflow web service for
a Microsoft Dynamics GP list. You create a separate form controller class for each
Microsoft Dynamics GP list for which workflow is being implemented.

To create a new form controller, you need to complete the following tasks:

• Create the class.
• Add static data fields.
• Add the base class and helper methods.
• Add VS Tools event handlers.
• Add client workflow event handlers.
• Add properties.

Create the class
To create the list controller class, complete the following steps:

1. Create a class.
From the Visual Studio Project menu, choose Add Class. Select Class from the
Add New Item window. Enter a name for your class and click Add.

The following code sample shows the creation of a class named
LeadListWorkflowController, which is the list controller for the Leads list in the
sample integration.

class LeadListWorkflowController

{

}

2. Add references to the required assemblies.
The list controller accesses many of the workflow fields and resources you
included with the application you integrated with Microsoft Dynamics GP. Add
a reference to the application assembly you created.

From the Project menu, select Add References. The Add References window
opens. Click the Browse tab. Browse to the Microsoft Dynamics GP client folder,
typically found in the following location:

C:\Program Files\Microsoft Dynamics\GP

Select your application assembly. For example, the lead sample application
includes a reference to the Application.SampleIntegratingApp.dll file. Click
OK.

3. Add namespace references.
Add using statements to provide convenient access to the classes and methods
needed for this class. Include the following:

• System.Collections.ObjectModel
• Microsoft.Dynamics.Workflow.Common
• Microsoft.Dexterity.Applications

W O R K F L O W I N T E G R A T I O N G U I D E 85

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

In the using statement for the sample application, you can assign the
namespace an alias. The following sample code shows how to assign App to the
Microsoft.Dexterity.Applications namespace:

using App = Microsoft.Dexterity.Applications;

In the following code samples, App refers to the namespace of the
Application.SampleIntegratingApp application assembly.

4. Inherit from the ListWorkflowController class.
Your workflow list controller class must inherit from the following abstract
base class:

Microsoft.Dynamics.GP.Workflow.ListWorkflowController

The following sample code example creates a new LeadListWorkflowController
class that inherits from the ListWorkflowController class.

class LeadListWorkflowController : ListWorkflowController

{

}

5. Implement the abstract base class.
Your list controller must implement all of the methods and properties specified
by the ListWorkflowController class.

To implement the methods and properties of the abstract base class, right click
ListWorkflowController and choose Implement Abstract Class. Visual Studio adds
the abstract base class methods and properties to your class.

Add static data fields
Now that you have created a new list controller class, you must define the
controller’s data fields. You need a static data member that stores an instance of
your controller class.

The following sample code sample adds the required static data field to the list
controller class:

private static LeadListWorkflowController controller;

P A R T 2 C R E A T I N G A N E W W O R K F L O W

86 W O R K F L O W I N T E G R A T I O N G U I D E

Add the base class methods
To control the behavior of your list controller, implement the base class methods
and any other methods needed to support your workflow for the list. The following
represent a minimum set of methods.

Create The Create method instantiates the list controller when your list is opened.
The following sample code implements the Create method for the lead list
controller. Notice how the method ends by calling the Initialize method of the base
class:

public static void Create()

{

if (LeadListWorkflowController.controller == null)

{

LeadListWorkflowController.controller =

new LeadListWorkflowController();

}

controller.Initialize();

}

SubscribeToApplicationEvents The abstract base class requires the list
controller to override the SubscribeToApplicationEvents method. This method
identifies the Dynamic GP events for the list that require action. The method must
supply an event handler for each of the specified events.
SubscribeToApplicationEvents is automatically invoked during the creation of the
controller.

The events are all Visual Studio Tools events. These events occur when a user’s
actions invoke the Dexterity procedures you added to support workflow
functionality.

The following sample code verifies that workflow is active, subscribes to four
events, and specifies the event handler for each event.

protected override void SubscribeToApplicationEvents()

{

// Create a reference to the client application stateWindow

App.SampleIntegratingAppDictionary.ListObjLeadsForm.StateWindow

stateWindow = App.SampleIntegratingApp.Forms.ListObjLeads.State;

// Specify the event handlers for stateWindow events

stateWindow.WfResetWorkflowHandler.ValidateAfterOriginal +=

new EventHandler(WfResetWorkflowHandler);

stateWindow.LocalWfTransferInitiate.ValidateAfterOriginal +=

new EventHandler(TransferInitiateHandler);

stateWindow.LocalWfTransfer.ValidateAfterOriginal +=

new EventHandler(TransferHandler);

stateWindow.LocalWfTransferComplete.ValidateAfterOriginal +=

new EventHandler(TransferCompleteHandler);

}

W O R K F L O W I N T E G R A T I O N G U I D E 87

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

TransmitSubmissionResultToApplication The abstract base class requires
your list controller to override the TransmitSubmissionResultToApplication
method. When a workflow operation is performed for the documents marked in the
list, this method is called once for each document that encounters a workflow error.
The code in this method invokes a Dexterity form procedure to the log the error for
display by the list.

protected override void TransmitSubmissionResultToApplication(

AsyncCallbackUserState asyncCallbackUserState,

Microsoft.Dynamics.Workflow.Common.BusinessObjectKey key,

string errorMessage)

{

// Create a LeadBusinessObjectKey that identifies the sales lead

LeadBusinessObjectKey leadKey = (LeadBusinessObjectKey)key;

// Call the forms WfRequestReturn procedure and pass the information

// received from workflow This allows the client form to reflect

// whether workflow succeeded or failed for each Sales Lead

App.SampleIntegratingApp.Forms.ListObjLeads.Procedures.

WfRequestReturn.Invoke(asyncCallbackUserState.

ApplicationAsyncCallbackId,

leadKey.LeadId,

asyncCallbackUserState.ApplicationAsyncCallbackDate,

asyncCallbackUserState.ApplicationAsyncCallbackTime,

errorMessage);

}

Add VS Tools event handlers
In the SubscribeToApplicationEvents method, you specify event handlers for list
events. You must now implement these event handlers. The event handlers add
workflow functionality to your Microsoft Dynamics GP list.

The following sample code implements an event handler that forces the list
controller to refresh its data cache. This forces the Dynamics GP client to reload the
document’s current workflow information.

private void WfResetWorkflowHandler(object sender, EventArgs args)

{

ResetController();

}

The next three event handlers respond to events raised by the Dexterity
WFActionForList procedure that was added to the list. For more information about
this procedure, refer to List integration on page 53.

The TransferInitiate event occurs once and indicates that a workflow action was
selected. The TransferInitiateHandler uses the SetTargetedAction method to specify
the workflow action to perform.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

88 W O R K F L O W I N T E G R A T I O N G U I D E

In the following sample code, the event handler retrieves the value of the
WFTransferInitiate hidden field from the list to specify the selected workflow
action. The event handler also retrieves the value of the ActionStatusID, DateString,
and TimeString hidden fields from the list.

// The application uses this event to initiate the approval workflow

// for Sales Leads

private void TransferInitiateHandler(object sender, EventArgs args)

{

SetTargetedAction(

(GPWorkflowAction)(App.SampleIntegratingApp.Forms.ListObjLeads.State.

LocalWfTransferInitiate.Value),

App.SampleIntegratingApp.Forms.ListObjLeads.State.ActionStatusId,

App.SampleIntegratingApp.Forms.ListObjLeads.State.LocalDateString,

App.SampleIntegratingApp.Forms.ListObjLeads.State.LocalTimeString);

}

The TransferHandler event occurs for each document in the list that was marked.
The TransferHandler event handler adds the records to the list controller’s
collection.

The following sample code adds leads to the list controller collection. To perform
the workflow action, the controller submits this collection of leads to the Dynamics
GP Workflow web service. Notice how the event handler sets a value on the form to
signal whether the entry was successfully added to the collection.

private void TransferHandler(object sender, EventArgs args)

{

bool transferSucceeded = AddEntryForTargetedAction();

App.SampleIntegratingApp.Forms.ListObjLeads.State.LocalWfTransfer.Value =

transferSucceeded;

}

The TransferComplete event occurs once and initiates the processing of the list
documents that were marked. The TransferCompletedHandler event handler sends
the completed collection to workflow to be processed.

The following sample code shows how to use the InvokeTargetedAction method to
have the Workflow web service perform the specified action on the collection of
leads that was assembled by the TransferHandler event handler.

void TransferCompleteHandler(object sender, EventArgs e)

{

InvokeTargetedAction();

}

W O R K F L O W I N T E G R A T I O N G U I D E 89

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

Add properties
The ListWorkflowController abstract base class requires you to override the
following properties in your list controller:

The following sample code shows how to implement the required properties.
Notice how the ActionComment, ActionDaysToAct, ActionDelegateToUser,
ActiveWorkflowNames, BusinessObjectKey, and SynchronousServiceCallSuccess
use fields on the ListObjLeads or CommandIgSample forms to store the property
value. To identify its workflow, the list controller’s WorkflowName property uses
the static LeadWorkflowName data member from the LeadWorkflowController
class.

// The comment entered in the drop down dialog

protected override string ActionComment

{

get

{

return App.SampleIntegratingApp.Forms.

ListObjLeads.State.LocalComment;

}

}

// The number of days to act entered in the drop down dialog

protected override int? ActionDaysToAct

{

get

{

return GPClientHelper.ConvertDaysToActValue(

App.SampleIntegratingApp.Forms.ListObjLeads.

State.LocalChangeDaysToAct,

App.SampleIntegratingApp.Forms.ListObjLeads.State.LocalDaysToAct);

}

}

Property Description

ActionComment A string that specifies the comment the approver entered in the
workflow submit dialog window.

ActionDaysToAct An integer that represents the number of days the approvers
entered in the workflow submit dialog window.

ActionDelegateToUser A string that specifies the user that the approver selects as an
alternate approver.

ActiveWorkflowNames A collection of strings that specify the workflows available for the
current document type.

BusinessObjectKey A business object key that uniquely identifies the business
document.

SynchronousServiceCall
Success

A boolean value the specifies whether the last Workflow web
service call succeeded.

WorkflowName A string that identifies the specific workflow associated with the list
controller.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

90 W O R K F L O W I N T E G R A T I O N G U I D E

// The user selected in the drop down dialog that identifies the person

// selected as an alternate approver

protected override string ActionDelegateToUser

{

get

{

return App.SampleIntegratingApp.Forms.ListObjLeads.State.

LocalDelegateUser;

}

}

// A collection of strings indicating the enabled workflows for the

// current type

protected override System.Collections.ObjectModel.Collection<string>

ActiveWorkflowNames

{

get

{

Collection<string> activeWorkflowNames = new Collection<string>();

if (App.SampleIntegratingApp.Forms.CommandIgSample.Dummy.

WorkflowEnabled.Value == true)

{

activeWorkflowNames.Add(WorkflowName);

}

return activeWorkflowNames;

}

}

// The BusinessObjectKey that specifies a Lead

protected override Microsoft.Dynamics.Workflow.Common.BusinessObjectKey

BusinessObjectKey

{

get

{

LeadBusinessObjectKey leadKey = new LeadBusinessObjectKey(

App.SampleIntegratingApp.Forms.ListObjLeads.State.LeadId);

return leadKey;

}

}

// Passes the success or failure status for synchronous web service calls

// back to state window of the current form

protected override bool SynchronousServiceCallSuccess

{

get

{

return App.SampleIntegratingApp.Forms.ListObjLeads.State.

LocalWfVerifySuccess;

}

W O R K F L O W I N T E G R A T I O N G U I D E 91

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

set

{

App.SampleIntegratingApp.Forms.ListObjLeads.State.

LocalWfVerifySuccess.Value = value;

}

}

// The name of the workflow for sales lead approvals

protected override string WorkflowName

{

get

{

return LeadWorkflowController.LeadWorkflowName;

}

}

Creating a form factory

Add form factory
classes to the project.

A form factory is Microsoft .NET managed code that runs immediately before a
Dexterity window is created. A form factory can be used for many purposes, such
as adding managed code controls to the window.

To add workflow functionality, you create form factories for each form or list that
use your workflow. A workflow form factory performs the following tasks:

• Determines whether a specified workflow is active.

• Creates the workflow controller class for the form or list.

Create the form factory classes
You create a separate form factory class for each form or list controller that you
implement. Add your form factory classes to your existing client workflow
assembly project.

To create a form factory class, complete the following steps:

1. Create a class.
From the Visual Studio Project menu, choose Add Class. Select Class from the
Add New Item window. Enter a name for your class and click Add. To add
additional form factory classes, repeat this step or manually add the class to the
file and namespace created by Visual Studio.

The following sample code shows the creation of the
LeadWorkflowFormFactory class and the WorkflowStatusFormFactory class:

class LeadWorkflowFormFactory

{

}

class WorkflowStatusFormFactory

{

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

92 W O R K F L O W I N T E G R A T I O N G U I D E

2. Add namespace references.
Add using statements to provide convenient access to the classes and methods
needed for this class. Include the following:

• Microsoft.Dexterity.Shell
• Microsoft.Dynamics.GP.Workflow
• Microsoft.Dynamics.Workflow
• Microsoft.Dynamics.Workflow.Common
• Microsoft.Dexterity.Applications

3. Inherit from the FormFactory class.
Your form factory must inherit from the Microsoft.Dexterity.Shell.FormFactory
class.

The following code sample adds inheritance to the LeadWorkflowFormFactory,
and the WorkflowStatusFormFactory class:

class LeadWorkflowFormFactory : FormFactory

{

}

class WorkflowStatusFormFactory : FormFactory

{

}

4. Override the base class CreateDexForm method.
To add workflow functionality to a standard Dexterity window, you must
override the CreateDexForm method. Your override must determine whether
your workflow is active, and create the workflow controller for the window.

The following sample code creates a form factory class for the sample
application’s Lead Maintenance form. The form factory overrides the
CreateDexForm method.

Notice how the form factory checks the value of the WorkflowEnabled field of
the CommandIgSample form. This value indicates whether the workflow for
leads is active. If the workflow is active, the form factory creates a workflow
wrapper passes it to a new instance of the LeadWorkflowController. It then
returns the wrapper. These steps add the workflow message bar, workflow
controls, and workflow history bar to Lead Maintenance window. It also
attaches the workflow controller to the window.

class LeadWorkflowFormFactory : FormFactory

{

protected override DexForm CreateDexForm(string name,

DexWindowType windowType,

FormFlags flags,

WindowState windowState,

System.Drawing.Size minClientSize,

System.Drawing.Size clientSize,

bool hResizeable,

bool vResizeable,

short productId,

short formId,

W O R K F L O W I N T E G R A T I O N G U I D E 93

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

short windowId,

bool modified)

{

// Determine whether workflow is enabled for the company

// If workflow is enabled, add the workflow wrapper to the form

// If workflow is not enabled, do not add the workflow wrapper

if(SampleIntegratingApp.Forms.CommandIgSample.Dummy.

WorkflowEnabled.Value == true)

{

WorkflowWrapper wrapper = new WorkflowWrapper();

LeadWorkflowController.Create(wrapper);

return wrapper;

}

else

{

return base.CreateDexForm(name, windowType,

flags, windowState,minClientSize, clientSize,

hResizeable, vResizeable,productId, formId, windowId,

modified);

}

}

}

5. Override the base class CreateDexDialogForm method.
To add a form factory to a modal Dexterity window, override the
CreateDexDialogForm method. Use this override to determine whether your
workflow is active, store that workflow status on the command form, and create
a workflow controller for your list.

The following sample code creates a form factory for a Dexterity modal
window. To add workflow to a list, you cannot use a client open event to
execute the form factory. To execute a form factory for the list, the sample code
uses a Sample Integrating App dialog window that runs when Microsoft
Dynamics GP starts. Since the dialog window executes the form factory,
override the base class CreateDexDialogForm method.

Notice how the form factory determines whether the workflow is enabled. The
WorkflowAgent allows you to check the status of a specified workflow. In this
example, a WorkflowAssociationKey is created and uses the WorkflowName
property from the controller class to identify the workflow. The form factory
stores the status in the WorkflowEnabledField of the CommandIgSample form.
This value can be used by other form factories like the previous
LeadWorkflowFormFactory.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

94 W O R K F L O W I N T E G R A T I O N G U I D E

If the workflow is enabled, a workflow controller is created for the Lead list.
This allows the list to display the workflow controls and complete workflow
actions. The method ends by allowing the dialog window to display.

class WorkflowStatusFormFactory : FormFactory

{

protected override DexDialogForm CreateDexDialogForm(string name,

DexWindowType windowType,

FormFlags flags,

WindowState windowState,

System.Drawing.Size minClientSize,

short productId,

short formId,

short windowId,

bool modified)

{

// Create a workflow agent object

WorkflowAgent workflowAgent = WorkflowAgent.CreateInstance(

GPClientHelper.GetWorkflowServiceUrl());

try

{

// Create a workflow association key using this controller's

// WorkflowName property. Use the key with the workflow agent

// to determine whether the named workflow is activated or

// deactivated

WorkflowAssociationKey wfAssocKey = WorkflowHelper.

GetAssociationKey(LeadWorkflowController.

LeadWorkflowName);

bool isEnabled = workflowAgent.IsWorkflowEnabled(wfAssocKey);

// If workflow is enabled, set the indicator flag on the

// Command form to true. If workflow is not enabled, set the

// indicator flag on the Command form to false. The Lead List

// form checks the value of the Command form's WorkflowEnabled

// flag to determine whether to enable or disable the Lead List

// form's workflow buttons

if (isEnabled == true)

{

SampleIntegratingApp.Forms.

CommandIgSample.Dummy.WorkflowEnabled.Value = true;

// If the workflow is enabled, instantiate a

// LeadListWorkflow controller object

LeadListWorkflowController.Create();

}

else

{

SampleIntegratingApp.Forms.

CommandIgSample.Dummy.WorkflowEnabled.Value = false;

}

}

W O R K F L O W I N T E G R A T I O N G U I D E 95

C H A P T E R 7 C L I E N T W O R K F L O W A S S E M B L Y

catch (Exception err)

{// If an error occurs, indicate that workflow is not enabled

SampleIntegratingApp.Forms.

CommandIgSample.Dummy.WorkflowEnabled.Value = false;

}

return base.CreateDexDialogForm(name, windowType, flags,

windowState, minClientSize, productId, formId, windowId,

modified);

}

}

Building the client workflow assembly

Build the client
workflow assembly.

Open your Visual Studio client workflow assembly solution. From the Build menu,
choose Build. Visual Studio builds your client workflow assembly and places the
assembly file in the project’s “\bin\debug” folder.

When you deploy your workflow solution, you must install the client workflow
assembly to the install folder of your Microsoft Dynamics GP client. For more
information about deploying the client workflow assembly, see Installing the client
workflow assembly on page 171.

96 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 97

Chapter 8: Web Service
Microsoft Dynamics GP Workflow uses Web Services for Microsoft Dynamics GP to
retrieve documents. You must also use the Dynamics GP web service to access
documents for any new workflow type you create. The following sections describe
how to create a new web service that builds upon the Web Services for Microsoft
Dynamics GP platform, and is suitable for use with workflow.

• Creating a document type
• Creating a web service
• Securing the web service
• Testing the web service

Creating a document type

Create an assembly for
your business
document.

To use a web service to retrieve your document, first create .NET assembly that
represents your business document. To work with Web Services for Microsoft
Dynamics GP, your assembly must include the following three classes.

Create a Visual Studio project
To create a .NET assembly to represent your document, create a new Visual Studio
project. To create the project, complete the following procedure:

1. Create a new project.
Open Visual Studio. From the File menu, select File >> New >> Project. In the
New Project window, select Visual C# in the Project types list. In Templates,
select Class Library in the list of Visual Studio installed templates.

Enter a name for your project. Review the Location and Solution Name, and
then click OK.

2. Delete the Class1.cs file from the project.
Visual Studio creates a default class file named Class1.cs. From the View menu,
choose Solution Explorer. In Solution Explorer, delete Class1.cs from your
project.

If a dialog window opens asking whether to delete the file, click OK.

Class Description

Document type The class that defines your business document data. It
contains properties you populate to create the document.

Summary An object that contains only the most important details of the
document type.

Criteria An object that contains the restrictions that define what is to be
returned from a GetList method in the Dynamics GP web
service.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

98 W O R K F L O W I N T E G R A T I O N G U I D E

3. Add references to the project.
Open the Project menu and choose Add References. The Add References
window opens. Click the Browse tab and navigate to the Dynamics GP web
services “bin” folder, typically found in the following location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

Select the following assemblies and click OK:

• Microsoft.Dynamics.Common.dll
• Microsoft.Dynamics.Common.Types.dll
• Microsoft.Dynamics.GP.BusinessLogic.dll

Create the document type class
The first part of the assembly is a class that defines the data members of your back-
office document. This class allows the web service to create objects that represent
your document.

Add a class to the
project that describes
the document.

To create a document type class, complete the following steps:

1. Create a class.
From the Visual Studio Project menu, choose Add New Item. Select Class from
the list of Templates in the Add New Item window. Enter a name for your class
and click Add. Visual Studio adds a class to your namespace.

The following sample code shows the creation of the Lead class that defines the
lead document type for the sample application.

using System;

using System.Collections.Generic;

using System.Text

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

class Lead

{

}

}

2. Add namespace references.
Add using statements to provide convenient access to the classes and methods
needed for this class. Include the following:

• System.Runtime.InteropServices
• System.Xml.Serialization
• Microsoft.Dynamics.Common
• Microsoft.Dynamics.GP

W O R K F L O W I N T E G R A T I O N G U I D E 99

C H A P T E R 8 W E B S E R V I C E

3. Add class attributes.
Web Services for Microsoft Dynamics GP expects two attributes. You must add
an attribute that makes the class serializable. You must also provide a GUID
attribute that uniquely identifies your class. To generate a GUID for your class,
open the Visual Studio Tools menu and choose Create GUID.

The following sample code adds the required attributes to the Lead class from
the sample application.

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

[Serializable]

 [GuidAttribute("2852BB26-3BA8-4663-9613-033327D7F3C2")]

class Lead

{

}

}

4. Inherit from the BusinessObject class.
To leverage the existing Dynamics GP web services platform, have your class
inherit from the Microsoft.Dynamics.Common.BusinessObject class. The
BusinessObject class is the base class used by all back-office documents in Web
Services for Microsoft Dynamics GP. Also, make your class public.

The following sample code adds the BusinessObject base class the Lead class.

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

[Serializable]

 [GuidAttribute("2852BB26-3BA8-4663-9613-033327D7F3C2")]

public class Lead : BusinessObject

{

}

}

5. Add the class data members.
Add private data members that represent the data from your document. To add
money or date fields, use the classes supplied by Web Services for Microsoft
Dynamics GP.

The following sample code adds the data members for lead documents. Notice
how the Potential Revenue amount uses the Dynamics GP web services
MoneyAmount and the date fields use the System.DateTime class. The
potentialRevenue data member is not private. This allows the Currency and
DecimalDigit properties of potentialRevenue to be updated.

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

[Serializable]

 [GuidAttribute("2852BB26-3BA8-4663-9613-033327D7F3C2")]

public class Lead : BusinessObject

{

private LeadKey key;

private string name;

P A R T 2 C R E A T I N G A N E W W O R K F L O W

100 W O R K F L O W I N T E G R A T I O N G U I D E

private string salespersonID;

private string city;

private string state;

private string zip;

private string address1;

private string address2;

private string phone1;

private string phone2;

private string fax;

private LeadCategory? leadBusinessCategory;

private string country;

private string contact;

MoneyAmount potentialRevenue;

private bool? qualifiedLead;

private string leadSource;

private DateTime qualificationDate;

private string workflowApprovalStatus;

private string workflowPriority;

private string approvedSalespersonID;

private DateTime modifiedDate;

}

}

6. Add a class property for each data member.
Add a class property that provides access to each data field. The property
allows you to set or retrieve the value of each data field.

The following sample code adds properties for leads:

public LeadKey Key

{

get{return key;}

set{key = value;}

}

public string Name

{

get{return name;}

set{name = value;}

}

public string SalespersonID

{

get{return salespersonID;}

set{salespersonID = value;}

}

public string City

{

get{return city;}

set{city = value;}

}

public string State

{

get{return state;}

set{state = value;}

}

W O R K F L O W I N T E G R A T I O N G U I D E 101

C H A P T E R 8 W E B S E R V I C E

public string Zip

{

get{return zip;}

set{zip = value;}

}

public string Address1

{

get{return address1;}

set{address1 = value;}

}

public string Address2

{

get{return address2;}

set{address2 = value;}

}

public string Phone1

{

get{return phone1;}

set{phone1 = value;}

}

public string Phone2

{

get{return phone2;}

set{phone2 = value;}

}

public string Fax

{

get{return fax;}

set{fax = value;}

}

public LeadCategory? LeadBusinessCategory

{

get{return leadBusinessCategory;}

set{leadBusinessCategory = value;}

}

public string Country

{

get{return country;}

set{country = value;}

}

public string Contact

{

get{return contact;}

set{contact = value;}

}

public MoneyAmount PotentialRevenue

{

get{return potentialRevenue;}

set{potentialRevenue = value;}

}

public bool? QualifiedLead

{

get{return qualifiedLead;}

set{qualifiedLead = value;}

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

102 W O R K F L O W I N T E G R A T I O N G U I D E

public string LeadSource

{

get{return leadSource;}

set{leadSource = value;}

}

public DateTime QualificationDate

{

get{return qualificationDate;}

set{qualificationDate = value;}

}

public string WorflowApprovalStatus

{

get{return workflowApprovalStatus;}

set{workflowApprovalStatus = value;}

}

public string WorkflowPriority

{

get{return workflowPriority;}

set{workflowPriority = value;}

}

public string ApprovedSalespersonID

{

get{return approvedSalespersonID;}

set{approvedSalespersonID = value;}

}

public DateTime ModifiedDate

{

get{return modifiedDate;}

set{modifiedDate = value;}

}

7. Add a class constructor.
Create a class constructor. The constructor should initialize any data fields that
cannot by null.

The following sample code shows the constructor for the Lead class. Notice
how the Key and PotentialRevenue properties are initialized.

// Constructor

public Lead()

{

Key = new LeadKey();

PotentialRevenue = MoneyAmount.GetInstance(0m, "USD", 2);

}

8. Save the class.

W O R K F L O W I N T E G R A T I O N G U I D E 103

C H A P T E R 8 W E B S E R V I C E

Create a key class
Add a class to the
project that defines a
document key.

Web Services for Microsoft Dynamics GP uses key objects to identify specific
documents. To use your documents with web services, you must create a key class
for your document type class.

To add a key class to the project, complete the following steps:

1. Create a class.
Add a public class to the namespace and file of the document type class you
created.

The following sample code adds a LeadKey class:

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

[Serializable]

 [GuidAttribute("2852BB26-3BA8-4663-9613-033327D7F3C2")]

public class Lead : BusinessObject

{

...

}

public class LeadKey

{

}

}

2. Add the serializable class attribute.
Since the key will be used with web services, add the Serializable attribute.

[Serializable]

public class LeadKey

{

}

3. Inherit from the ReferenceKey class.
To allow the key to be used with the Dynamics GP web service, it must inherit
from the Microsoft.Dynamics.GP.ReferenceKey class.

[Serializable]

public class LeadKey : ReferenceKey

{

}

4. Add a constructor that defines your document key.
The Reference Key class uses a properties list to store keys as Name and Value
pairs. To specify a document, you create property objects that contain the data
that identifies a document.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

104 W O R K F L O W I N T E G R A T I O N G U I D E

The following sample code shows a constructor for the LeadKey class. Notice
how a Property object is created, initialized, and added to the ReferenceKey
properties list.

[Serializable]

public class LeadKey : ReferenceKey

{

// Constructor

public LeadKey()

{

Property id = String.Empty;

properties.Add(id);

}

}

5. Add a class property that set or retrieves a key value.
Implement a class property that sets or retrieves the value of each Property
object in the properties list.

The following sample code adds an Id property that sets or retrieves the value
of the first element in the properties list.

[Serializable]

public class LeadKey : ReferenceKey

{

// Constructor

public LeadKey()

{

Property id = String.Empty;

properties.Add(id);

}

// Id Property that specifies a sales lead document

public string Id {

get { return properties[0]; }

set { properties[0] = value; }

}

}

6. Add a GetInstance method.
Add a static GetInstance method that returns individual instances of your key
class.

[Serializable]

public class LeadKey : ReferenceKey

{

// Constructor

public LeadKey()

{

Property id = String.Empty;

properties.Add(id);

}

W O R K F L O W I N T E G R A T I O N G U I D E 105

C H A P T E R 8 W E B S E R V I C E

// Id Property that specifies a sales lead document

public string Id {

get { return properties[0]; }

set { properties[0] = value; }

}

public static LeadKey GetInstance()

{

return new LeadKey();

}

}

7. Save the class.

Enumerations
If your document type uses any custom enumerations, you must define those
enumerations for the web service.

The following code sample adds the LeadCategory enumeration to match what is
defined in the Lead Maintenance form. Notice how the enumeration also requires
the Serializable attribute. In addition, each enumeration member requires an
XmlEnum attribute that specifies an XML value to use with the web service. The
value of RealEstate is set to one, this causes the enumeration values to match what
is defined in the Lead Maintenance form.

[Serializable]

public enum LeadCategory

{

[XmlEnum("RealEstate")]

RealEstate = 1,

[XmlEnum("Wholesale")]

Wholesale,

[XmlEnum("Retail")]

Retail,

[XmlEnum("Contractor")]

Contractor,

[XmlEnum("Educational")]

Educational,

[XmlEnum("Media")]

Media,

[XmlEnum("Software")]

Software,

[XmlEnum("Restaurant")]

Restaurant

}

An enumeration can be added in any of the project files but must be in the same
namespace as your document type class.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

106 W O R K F L O W I N T E G R A T I O N G U I D E

Create a summary class
Add a class to the
project that describes a
document summary.

To retrieve the most critical data for a document, Dynamics GP web services uses a
Summary class. The class contains a limited number of data fields. The fields are
specifically selected to provide a reviewer critical information about a document.

To add a Summary class to your project, complete the following steps:

1. Create a class.
Open the Visual Studio Project menu and choose Add Class. Select Class for the
list of Templates in the Add New Item window. Enter a name for your class and
click Add. Visual Studio adds a class to your namespace.

The following sample code shows a the LeadSummary class from the sample
application:

using System;

using System.Collections.Generic;

using System.Text;

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

// The lead summary class contains critical data values from a lead

// The class allows lists of data summary objects to be retrieved

public class LeadSummary

{

}

}

2. Add namespace references.
Add using statements to provide convenient access to the classes and methods
needed for this class. Include the following:

• Microsoft.Dynamics.Common

3. Add the serializable class attribute.
Add a class attribute specifying the class is serializable.

using System;

using System.Collections.Generic;

using System.Text;

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

// The lead summary class contains critical data values from a lead

// The class allows lists of data summary objects to be retrieved

[Serializable]

public class LeadSummary

{

}

}

W O R K F L O W I N T E G R A T I O N G U I D E 107

C H A P T E R 8 W E B S E R V I C E

4. Inherit from the BusinessObject class.
All web services summary classes inherit from the
Microsoft.Dynamics.Common.BusinessObject class.

The following sample code adds inheritance to the LeadSummary class:

using System;

using System.Collections.Generic;

using System.Text;

using Microsoft.Dynamics.Common;

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

// The lead summary class contains key data values from a lead

// The class allows lists of data summary objects to be retrieved

[Serializable]

public class LeadSummary : BusinessObject

{

}

}

5. Add the class data members.
Add a private data field for each of the data fields you selected from your back-
office document that you want included in the summary.

The following sample code defines the data fields for a lead summary object:

[Serializable]

public class LeadSummary : BusinessObject

{

private LeadKey key;

private string name;

private string salespersonID;

private LeadCategory leadCategory;

private bool qualifiedLead;

private string leadSource;

private DateTime modifiedDate;

}

6. Add a class property for each data member.
Add a class property that allows you to set or retrieve the value of each data
field.

[Serializable]

public class LeadSummary : BusinessObject

{

private LeadKey key;

private string name;

private string salespersonID;

private LeadCategory leadCategory;

private bool qualifiedLead;

private string leadSource;

private DateTime modifiedDate;

P A R T 2 C R E A T I N G A N E W W O R K F L O W

108 W O R K F L O W I N T E G R A T I O N G U I D E

public LeadKey Key

{

get{return key;}

set{key = value;}

}

public string Name

{

get{return name;}

set{name = value;}

}

public string SalespersonID

{

get{return salespersonID;}

set{salespersonID = value;}

}

public LeadCategory LeadCategory

{

get{return leadCategory;}

set{leadCategory = value;}

}

public bool QualifiedLead

{

get{return qualifiedLead;}

set{qualifiedLead = value;}

}

public string LeadSource

{

get{return leadSource;}

set{leadSource = value;}

}

public DateTime ModifiedDate

{

get{return modifiedDate;}

set{modifiedDate = value;}

}

}

7. Add a constructor.
Supply a constructor that initializes data members that cannot be null.

The following sample code initializes the Key property of the LeadSummary
class. Notice how the constructor creates an empty LeadKey to initialize the
LeadSummary’s Key property.

// Constructor

// Initialize the Key object member

public LeadSummary()

{

Key = new LeadKey();

Key.Id = "";

}

W O R K F L O W I N T E G R A T I O N G U I D E 109

C H A P T E R 8 W E B S E R V I C E

8. Add a GetInstance method.
Web Services for Microsoft Dynamics GP requires a static GetInstance method
that instantiates your summary object.

The following sample code adds a GetInstance method for the LeadSummary
class.

// Instantiates a LeadSummary object

public static LeadSummary GetInstance()

{

return new LeadSummary();

}

Create a list class
Add a List class to the
project.

In Web Services for Microsoft Dynamics GP, the web service GetList method
returns a list of summary objects that match a specified criteria. To ensure your web
service’s GetList method returns your summary documents, create a class that
represents a list of your summary documents.

Add the class to the file and namespace where you created you summary class. Web
services names each list class as:

ArrayOf<type name>

Where type name represents the class name of your summary class.

Your List class must also inherit from the System.Collections.Generics.List<> class.
When you inherit from the List<> class, you must specify the type of the list.

// Class that encapsulates the Lead List return type

public class ArrayOfLeadSummary : List<LeadSummary>

The following sample code creates an ArrayOfLeadSummary class. Notice how
base class declaration specifies the LeadSummary type. Since the list class uses the
base class to perform its actions, it requires no additional fields, properties, or
methods.

// Class that encapsulates the Lead List return type

public class ArrayOfLeadSummary : List<LeadSummary>

{

public ArrayOfLeadSummary()

{

}

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

110 W O R K F L O W I N T E G R A T I O N G U I D E

Create a criteria class
Add a criteria class to
the project that
enables data queries.

To enable GetList methods, you supply a criteria object that allows one or more
summary objects to be retrieved. The properties of the criteria class allow you to
specify ranges that will be used when documents are returned from the database.
The web service GetList method returns summary objects for each document that
meets the specified criteria.

The lead sample application does not implement the GetList method for leads.

1. Create a class.
From the Visual Studio Project menu, choose Add Class. Select Class from the
list of Templates in the Add New Item window. Enter a name for your class and
click Add. Visual Studio adds the class to your namespace.

using System;

using System.Collections.Generic;

using System.Text;

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

public class LeadCriteria

{

}

}

2. Add namespace references.
Add using statements to provide convenient access to the classes and methods
needed for this class. Include the following:

• Microsoft.Dynamics.Common

3. Add the serializable class attribute.
Add a class attribute that specifies the class is serializable.

using System;

using System.Collections.Generic;

using System.Text;

using Microsoft.Dynamics.Common;

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

[Serializable]

public class LeadCriteria

{

}

}

W O R K F L O W I N T E G R A T I O N G U I D E 111

C H A P T E R 8 W E B S E R V I C E

4. Inherit from the Criteria class.
All web services criteria classes inherit from the
Microsoft.Dynamics.Common.Criteria class. The following code sample shows
a criteria class for leads.

using System;

using System.Collections.Generic;

using System.Text;

using Microsoft.Dynamics.Common;

namespace Microsoft.Dynamics.GP.Samples.SalesLeads

{

[Serializable]

public class LeadCriteria : Criteria

{

}

}

5. Add the class data members.
The criteria object allows a web service GetList web method to return a list of
summary objects. To allow web method users to query your summary object
data, add Restriction objects for each of your summary class’s data members.

The following sample code adds Restriction objects for the LeadCriteria class.
Notice how the type of each object corresponds to the data type of the
LeadSummary object’s fields. For more information on Restriction objects, refer
to the Web Service Programmers Guide.

[Serializable]

public class LeadCriteria : Criteria

{

private LikeRestriction<string> id;

private LikeRestriction<string> name;

private LikeRestriction<string> salespersonID;

private LikeRestriction<LeadCategory?> leadCategory;

private Restriction<bool?> qualifiedLead;

private LikeRestriction<string> leadSource;

private BetweenRestriction<DateTime?> modifiedDate;

}

6. Add a class property for each data member.
Add class properties that set or retrieve the value of each data field.

[Serializable]

public class LeadCriteria : Criteria

{

private LikeRestriction<string> id;

private LikeRestriction<string> name;

private LikeRestriction<string> salespersonID;

private LikeRestriction<LeadCategory?> leadCategory;

private Restriction<bool?> qualifiedLead;

private LikeRestriction<string> leadSource;

private BetweenRestriction<DateTime?> modifiedDate;

P A R T 2 C R E A T I N G A N E W W O R K F L O W

112 W O R K F L O W I N T E G R A T I O N G U I D E

public LikeRestriction<string> Id

{

get{return id;}

set{id = value;}

}

public LikeRestriction<string> Name

{

get{return name;}

set{name = value;}

}

public LikeRestriction<string> SalespersonID

{

get{return salespersonID;}

set{salespersonID = value;}

}

public LikeRestriction<LeadCategory?> LeadCategory

{

get{return leadCategory;}

set{leadCategory = value;}

}

public Restriction<bool?> QualifiedLead

{

get{return qualifiedLead;}

set{qualifiedLead = value;}

}

public LikeRestriction<string> LeadSource

{

get{return leadSource;}

set{leadSource = value;}

}

public BetweenRestriction<DateTime?> ModifiedDate

{

get{return modifiedDate;}

set{modifiedDate = value;}

}

}

7. Add a constructor.
Use the constructor to perform any initialization required for your class.

// Constructor

public LeadCriteria()

{

}

W O R K F L O W I N T E G R A T I O N G U I D E 113

C H A P T E R 8 W E B S E R V I C E

8. Override the BuildArrays method.
The Criteria base class requires you to override the BuildArrays method to
specify the columns from the database table that correspond to your private
data fields. You also build two arrays and add all your private data fields to
each array.

The following sample code shows this for the lead criteria.

// Implements the required method from the Criteria base class.

// The class specifies the columns used to query summary data from the

// specified table. It specifies the restrictions that are supported by

// the criteria object.

protected override void BuildArrays()

{

columns = new string[] { "LeadID", "LeadName", "SLPRSNID",

"LeadBusinessCategory", "QualifiedLead", "LeadSource",

"DEX_ROW_TS" };

restrictions = new Restriction[] { Id, Name, SalespersonID,

LeadCategory, QualifiedLead, LeadSource, ModifiedDate };

convertToUpperCaseRestriction = new Restriction[] { Id, Name,

SalespersonID, LeadCategory, QualifiedLead, LeadSource,

ModifiedDate };

}

9. Override the GetWhereClause method.
You must also override the base class GetWhereClause method to perform
adjustments that allow the GetList method to query data from the database.

The following sample code changes the value of the QualifiedLead property to
use the boolean values stored in the IG001 table.

// Generates the Where clause for a query

public override string GetWhereClause()

{

StringBuilder whereClause = new StringBuilder(base.GetWhereClause());

// The QualifiedLead specifier is a bool field but uses the

// values 1 and 2 instead of 0 and 1. The query values need to be

// updated to reflect this difference in the data.

if (QualifiedLead != null)

{

if (QualifiedLead.EqualValue == true)

{

whereClause.Replace("QualifiedLead = 1", "QualifiedLead = 2");

whereClause.Replace("QualifiedLead = 0", "QualifiedLead = 1");

}

if (QualifiedLead.EqualValue == false)

{

whereClause.Replace("QualifiedLead = 0", "QualifiedLead = 1");

whereClause.Replace("QualifiedLead <> 1",

"QualifiedLead <> 2");

}

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

114 W O R K F L O W I N T E G R A T I O N G U I D E

return whereClause.ToString();

}

Build the document assembly
Build the document
assembly.

Open the Visual Studio Build menu, and Choose Build. Visual Studio builds your
document assembly and places it in the project’s “\bin\debug” folder.

Creating a web service

Create a new web
service for your
business document.

To use the Dynamics GP web service to retrieve new types of back-office
documents, add a new web service that implements a GetByKey web method for
your back-office document. Web Services for Microsoft Dynamics GP provides a
framework you will use to add your new web service and web method.

Update eConnect
Add your document to
eConnect.

The Dynamics GP web service relies on eConnect to retrieve data from a Dynamics
GP database. eConnect is a collection of tools, components, and interfaces that allow
applications to programmatically interact with Microsoft Dynamics GP.

eConnect provides the Transaction Requester to retrieve data for specified types. To
retrieve a new types of data, you must define the data to return. eConnect supplies a
table named eConnect_Out_Setup in each company database where you define the
data for your type.

The DOCTYPE column of the eConnect_Out_Setup table contains the name of the
document type. To work with the Dynamics GP web service, the entry in the
DOCTYPE column must start with WS followed by the name of the class you
created to define your document type.

The Transaction Requester requires you to specify the table to retrieve data from. It
also requires you to specify the index column or columns for the table. You can
perform a SQL join to include data from other tables. The transaction requester also
requires you to specify the data columns you want to retrieve data from.

The following table describes the columns of the eConnect_Out_Setup table used
with lead documents. The eConnect_Out_Setup table contains a number of
additional columns that allow you to support more complex documents. For more
information on eConnect and the Transaction Requester, see the Microsoft
Dynamics GP eConnect Programmer’s Guide

Column name Description

DOCTYPE Identifies the service.

TABLENAME Name of the table in the SQL Server database

ALIAS Alias name for DOCTYPE which is used in the output XML
document.

MAIN Specifies whether this record is associated with the primary table or
a child table.

INDEX1-15 Specifies the column name of the primary index for the specified
table.

INDEXCNT Specifies the number of index columns used with the table’s index.

DATACNT Specifies the number of data columns that are used by the
document.

DATA1-180 Specifies the names of the data columns that you want to appear in
the XML document.

W O R K F L O W I N T E G R A T I O N G U I D E 115

C H A P T E R 8 W E B S E R V I C E

The following SQL script sample updates the eConnect_Out_Setup to retrieve lead
data from the sample application. Notice how it populates the DOCTYPE with
WSLead and it populates INDEX1 with LeadID column name. Also notice how
DATA1-23 specify the remaining column names from the IG001 table.

INSERT INTO dbo.eConnect_Out_Setup

(DOCTYPE,TABLENAME,ALIAS,MAIN,INDEX1,INDEXCNT,DATACNT,DATA1,DATA2,DATA3,

DATA4,DATA5,DATA6,DATA7,DATA8,DATA9,DATA10,DATA11,DATA12,DATA13,DATA14,

DATA15,DATA16,DATA17,DATA18,DATA19,DATA20,DATA21,DATA22,DATA23)

VALUES('WSLead','IG001','Lead',1,'LeadID',1,23,'LeadName','SLPRSNID','CITY',

'STATE','ZIP','ADDRESS1','ADDRESS2','PHONE1','PHONE2','FAX',

'LeadBusinessCategory','COUNTRY','CONTACT','PotentialRevenue',

'QualifiedLead','LeadSource','QualificationDate','LeadPassword','NOTEINDX',

'Workflow_Approval_Status','Workflow_Priority','Approved_Salesperson_ID',

'DEX_ROW_TS')

Create an XSLT file
Create an XSLT file for
your business
document.

The Dynamics GP web service platform will use the eConnect Transaction
Requester to retrieve the data for your document. When the data is retrieved, it is
represented as XML. The XML data nodes are identified by column names from the
Dynamics GP data table.

When you created your document assembly, you added data fields and properties
that represent the data from your back-office document. Since the web service
returns an instance of your document object, you need to transform the XML
returned by eConnect into an instance of your business document type.

The Dynamics GP web service platform performs the transform, but requires an
XSLT file that maps the eConnect fields to your document type’s properties.

To create an XSLT file, complete the following steps.

1. Create an XSLT file.
Start Visual Studio. From the File menu choose New >> File. In the New File
window, select XSLT File and click Open. Visual Studio creates a file that
contains the following:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<body>

<!--

This is an XSLT template file. Fill in this area with the

XSL elements which will transform your XML to XHTML.

-->

</body>

</html>

</xsl:template>

</xsl:stylesheet>

P A R T 2 C R E A T I N G A N E W W O R K F L O W

116 W O R K F L O W I N T E G R A T I O N G U I D E

2. Edit the XSLT in the file.
Remove the existing xsl:template node. Your XSLT should match the following
sample.

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

</xsl:stylesheet>

3. Add the Dynamics GP namespaces.
Add the namespaces to the xsl:stylesheet node that Dynamics GP web services
use to transform eConnect data.

The following code sample adds these namespaces to the xsl:stylesheet node
that Visual Studio created.

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:ms ="urn:schemas-microsoft-com:xslt"

xmlns:gpxslt="uri://GreatPlainsTransformLibrary"

xmlns:gputil="urn:Microsoft.Dynamics.GP.TransformUtilities"

xmlns:mbs="http://schemas.microsoft.com/dynamics/2006/01"

version="1.0">

</xsl:stylesheet>

4. Import the StandardLibrary.
To use the same XSLT templates and definitions that the Dynamics GP web
service use, import Microsoft Dynamics GP XSLT StandardLibrary. Notice how
the following XSLT sample uses an xsl:import node to add the library.

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:ms ="urn:schemas-microsoft-com:xslt"

xmlns:gpxslt="uri://GreatPlainsTransformLibrary"

xmlns:gputil="urn:Microsoft.Dynamics.GP.TransformUtilities"

xmlns:mbs="http://schemas.microsoft.com/dynamics/2006/01"

version="1.0">

<xsl:import href="Microsoft.Dynamics.GP.StandardLibrary.xslt"/>

</xsl:stylesheet>

W O R K F L O W I N T E G R A T I O N G U I D E 117

C H A P T E R 8 W E B S E R V I C E

5. Add the eConnect template.
Add the templates you will use with your document type. This allows your
XSLT to work with the document as it is produced by the eConnect Transaction
Requester. The web service framework requires you to specify the following
template.

<xsl:template match = "root/eConnect">

<xsl:apply-templates />

</xsl:template>

6. Add a document template.
Add a template that specifies the name of your specific document type.

The following sample adds a template for the Lead type used in the sample
application. In the XSLT, “Lead” corresponds to the value supplied as ALIAS in
the eConnect_Out_Setup table.

<xsl:template match = "root/eConnect">

<xsl:apply-templates />

</xsl:template>

<xsl:template match ="Lead">

</xsl:template>

7. Add the document node.
Add a node to the template that specifies your document type. The following
sample adds a node for a Lead document. Notice how the node is the name of
the class that defines the document.

<xsl:template match ="Lead">

<Lead>

</Lead>

</xsl:template>

8. Add property nodes.
Add nodes to the document that specify the name of each property in your
document class. The following sample adds a node for each of the properties in
the Lead class. Each property is added as a child of the Lead node that was
added in the previous step.

<xsl:template match ="Lead">

<Lead>

<Key>

<Id>

</Id>

</Key>

<Name>

</Name>

<SalespersonID>

</SalespersonID>

<City>

P A R T 2 C R E A T I N G A N E W W O R K F L O W

118 W O R K F L O W I N T E G R A T I O N G U I D E

</City>

<State>

</State>

<Zip>

</Zip>

<Address1>

</Address1>

<Address2>

</Address2>

<Phone1>

</Phone1>

<Phone2>

</Phone2>

<Fax>

</Fax>

<LeadBusinessCategory>

</LeadBusinessCategory>

<Country>

</Country>

<Contact>

</Contact>

</PotentialRevenue>

<QualifiedLead>

</QualifiedLead>

<LeadSource>

</LeadSource>

<QualificationDate>

</QualificationDate>

<WorflowApprovalStatus>

</WorflowApprovalStatus>

<WorkflowPriority>

</WorkflowPriority>

<ApprovedSalespersonID>

W O R K F L O W I N T E G R A T I O N G U I D E 119

C H A P T E R 8 W E B S E R V I C E

</ApprovedSalespersonID>

<ModifiedDate>

</ModifiedDate>

</Lead>

</xsl:template>

9. Add values to each property node.
To complete the XSLT transform, populate each property node with a value
retrieved by the eConnect Transaction Requester. The eConnect Transaction
Requester uses the column name from the Dynamics GP source table to label
each data element it retrieves. Use the column name to specify the eConnect
Transaction Requester data value that populates each of your document’s
properties.

Add an <xsl:value-of /> XSLT node to each property nodes you added in the
previous step. In the <xsl:value-of /> XSLT node, use the select=”column name”
attribute to specify the eConnect Transaction Requester column name. The
following sample shows how to populate the Name property. LeadName is the
column name from the IG001 table that stores the name of a lead.

<Name>

<xsl:value-of select="LeadName"/>

</Name>

10. Save the XSLT file.
After completing the map, save the XSLT file. Dynamics GP web service
conventions require you to name the file with the following format:

<document type><operation>.xslt

For example, LeadGetByKey.xslt indicates the file contains the XSLT transform
map for Lead documents and the GetByKey web method.

The following sample shows a complete XSLT transform map for the
GetLeadByKey web method. This example maps columns from the IG001 table that
was created for the Lead Maintenance sample application to the properties of the
Lead document.

As you review the XSLT, notice the following features of the XSLT:

• The template includes two <xsl:variable /> nodes. These nodes add the
“isocode” and “decimaldigits” variables from the StandardLibrary. These
variables supply values for the PotentialRevenue property. PotentialRevenue is
a MoneyAmount that requires you to supply Currency and DecimalDigits
values.

• The LeadBusinessCategory node uses <xsl:choose \> to convert the
enumeration integer value found in the database to the corresponding
LeadBusinessCategory enumeration string value.

• The QualifiedLead property maps the integer value retrieved from the database
to the correponding boolean value.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

120 W O R K F L O W I N T E G R A T I O N G U I D E

• The XSLT tests the date value mapped to the ModifiedDate property. The test
ensures the value is not empty. The ModifiedDate is only populated if the
DEX_ROW_TS value is not equal to the Microsoft Dynamics GP default date.

<xsl:template match ="Lead">

<xsl:variable name="isocode">

<xsl:value-of select="gputil:LocalCurrency(

/root/mbs:Context/mbs:OrganizationKey/mbs:Id)"/>

</xsl:variable>

<xsl:variable name="decimaldigits"

select="gputil:CurrencyDecimalDigits($isocode)" />

<xsl:template match ="Lead">

<Lead>

<Key>

<Id>

<xsl:value-of select="LeadID"/>

</Id>

</Key>

<Name>

<xsl:value-of select="LeadName"/>

</Name>

<SalespersonID>

<xsl:value-of select="SLPRSNID"/>

</SalespersonID>

<City>

<xsl:value-of select="CITY"/>

</City>

<State>

<xsl:value-of select="STATE"/>

</State>

<Zip>

<xsl:value-of select="ZIP"/>

</Zip>

<Address1>

<xsl:value-of select="ADDRESS1"/>

</Address1>

<Address2>

<xsl:value-of select="ADDRESS2"/>

</Address2>

<Phone1>

<xsl:value-of select="PHONE1"/>

</Phone1>

<Phone2>

<xsl:value-of select="PHONE2"/>

</Phone2>

<Fax>

<xsl:value-of select="FAX"/>

</Fax>

<LeadBusinessCategory>

<xsl:choose>

<xsl:when test="LeadBusinessCategory=1">RealEstate</xsl:when>

<xsl:when test="LeadBusinessCategory=2">Wholesale</xsl:when>

<xsl:when test="LeadBusinessCategory=3">Retail</xsl:when>

<xsl:when test="LeadBusinessCategory=4">Contractor</xsl:when>

<xsl:when test="LeadBusinessCategory=5">Educational</xsl:when>

<xsl:when test="LeadBusinessCategory=6">Media</xsl:when>

W O R K F L O W I N T E G R A T I O N G U I D E 121

C H A P T E R 8 W E B S E R V I C E

<xsl:when test="LeadBusinessCategory=7">Software</xsl:when>

<xsl:when test="LeadBusinessCategory=8">Restaurant</xsl:when>

</xsl:choose>

</LeadBusinessCategory>

<Country>

<xsl:value-of select="COUNTRY"/>

</Country>

<Contact>

<xsl:value-of select="CONTACT"/>

</Contact>

<PotentialRevenue>

<Currency>

<xsl:value-of select="$isocode"/>

</Currency>

<Value>

<xsl:value-of select="PotentialRevenue"/>

</Value>

<DecimalDigits>

<xsl:value-of select="$decimaldigits"/>

</DecimalDigits>

</PotentialRevenue>

<QualifiedLead>

<xsl:choose>

<xsl:when test="QualifiedLead=1">0</xsl:when>

<xsl:when test="QualifiedLead=2">1</xsl:when>

</xsl:choose>

</QualifiedLead>

<LeadSource>

<xsl:value-of select="LeadSource"/>

</LeadSource>

<QualificationDate>

<xsl:value-of select="QualificationDate"/>

</QualificationDate>

<WorflowApprovalStatus>

<xsl:value-of select="Workflow_Approval_Status"/>

</WorflowApprovalStatus>

<WorkflowPriority>

<xsl:value-of select="Workflow_Priority"/>

</WorkflowPriority>

<ApprovedSalespersonID>

<xsl:value-of select="Approved_Salesperson_ID"/>

</ApprovedSalespersonID>

<xsl:if test="gputil:IsNotGreatPlainsDefaultDate(DEX_ROW_TS)">

<ModifiedDate>

<xsl:value-of select="DEX_ROW_TS"/>

</ModifiedDate>

</xsl:if>

</Lead>

</xsl:template>

P A R T 2 C R E A T I N G A N E W W O R K F L O W

122 W O R K F L O W I N T E G R A T I O N G U I D E

Create a web service
To retrieve a lead document, create a new web service that implements the
GetLeadByKey web method. The web method will use the previous eConnect and
XSLT changes to retrieve a lead document.

Use Visual Studio to
create a web service
application.

1. Create a new project.
Open Visual Studio. From the File menu, select New >> Project. In the New
Project window, click Visual C# from the Project types list. Select Web in the
Project types list. Select ASP.NET Web Service Application from the Templates
list. Enter a Name for your web service, specify a Location, and then click OK.

The following sample code shows the default web service that Visual Studio
creates:

using System;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

/// <summary>

/// Summary description for Service1

/// </summary>

[WebService(Namespace = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

public class Service : System.Web.Services.WebService

{

[WebMethod]

public string HelloWorld()

{

return "Hello World";

}

}

2. Add references to the project.
Open the Project menu and choose Add References. The Add References
window opens. Click the Browse tab and browse to the Microsoft Dynamics GP
web service “bin” folder, typically found in the following location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\bin

Select the following assemblies and click OK:

• Microsoft.Dynamics.Common.dll
• Microsoft.Dynamics.Common.Types.dll
• Microsoft.Dynamics.GP.BusinessLogic.dll

Also add a reference to your document assembly. The following is the
document assembly created for lead documents.

• Microsoft.Dynamics.GP.Samples.SalesLeads.dll

W O R K F L O W I N T E G R A T I O N G U I D E 123

C H A P T E R 8 W E B S E R V I C E

3. Add namespace references.
From Solution Explorer, right click the .asmx file and select View Code. Add
using statements to provide convenient access to the classes and methods
needed for this class. Include the following:

• Microsoft.Dynamics.Common
• Microsoft.Dynamics.GP

Add an additional using statement for your document type namespace. The
following example is the namespace of the lead document assembly used by the
sample application.

• Microsoft.Dynamics.GP.Samples.SalesLeads

4. Edit the web service.
Update the WebService and WebServiceBinding attributes to reflect your
namespace and profile information. Delete the HelloWorld web method. Your
code should resemble the following:

using System;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using Microsoft.Dynamics.Common;

using Microsoft.Dynamics.GP;

using Microsoft.Dynamics.GP.Samples.SalesLeads;

/// <summary>

/// Summary description for Service1

/// </summary>

[WebService(Namespace = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

public class Service : System.Web.Services.WebService

{

}

5. Add a web method.
Add a new public web method to the web service. For workflow you need a
single GetByKey web method. The method returns a single instance of a back-
office document. Add the WebMethod attribute to the method.

The method should accept two parameters:

Parameter Description

key An instance of an object that uniquely identifies a business
document.

context A Web Services for Microsoft Dynamics GP Context object that
has properties that specify how to execute a web service
request.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

124 W O R K F L O W I N T E G R A T I O N G U I D E

The following sample code adds a GetByKey web method for leads. Notice how
it takes a LeadKey object to specify the lead to be retrieved.

[WebMethod]

public Lead GetLeadByKey(LeadKey leadKey, Context context)

{

}

6. Use the business service to retrieve the document.
To use the eConnect and XSLT pieces you added to the Dynamics GP web
service platform, create an instance of the GreatPlainsBusinessService. Use the
business service GetByKey method to retrieve a specific document. You must
provide the three parameters to the GetByKey method:

The business service GetByKey method will return a generic business object.
Cast the object to the document type your web method returns. Return the
object from your web method.

If an error occurs, catch the error, convert it to a SOAP exception and return the
exception to the caller of the web method.

The following sample code uses the GreatPlainsBusinessService to retrieve a
Lead.

[WebMethod]

public Lead GetLeadByKey(LeadKey leadKey, Context context)

{

try

{

// Instantiate the GreatPlainsBusinessService. Use the service's

// GetByKey method to retrieve a specified sales lead.

GreatPlainsBusinessService service =

GreatPlainsBusinessService.GetInstance();

Lead salesLead =

(Lead)service.GetByKey(leadKey, context, typeof(Lead));

return salesLead;

}

catch (BusinessException err)

{

throw ExceptionManager.ConvertBusinessToSoapException(err);

}

}

7. Build the web service
From the Build menu, choose Build. Visual Studio builds the web service .asmx
file and its code-behind assembly. Visual Studio places the assembly in the
“bin” folder of the project.

Parameter Description

key Use the key parameter that was sent to the web method.

context Use the context object that was sent to the web method.

type Specify the type of the object. This will be the name of the
class you created to define your business document.

W O R K F L O W I N T E G R A T I O N G U I D E 125

C H A P T E R 8 W E B S E R V I C E

Securing the web service

Create an application
that updates the
Dynamics Security
Service.

When you add your web service to the Web Services for Microsoft Dynamics GP
platform, security for your web service will be managed by the Dynamics Security
Service.

To allow users to access your web service you must add operations and tasks to the
Dynamics Security Service that provide access to specified security roles. To add
this security information, create an application that uses the Dynamics Security
Service to create the security tasks and operations. You will run this application
when you install your web service on the Web Services for Microsoft Dynamics GP
server.

The “security helper” application performs several tasks. The application creates
security operations and tasks in the Dynamics Security Service. It assigns the tasks
and operations to the Superuser role. If you need to remove your web service, the
application should be able to remove your security operations and tasks from the
Dynamics Security Service.

Create a Visual Studio project
The application requires you to create a new Visual Studio project. To create the
project, complete the following steps:

1. Create a new project.
Open Visual Studio. From the File menu, select File >> New >> Project. In the
New Project window, choose Visual C# from the Project types list. In
Templates, select Console Application from the list of Visual Studio installed
templates.

Enter a name for your project. Review the Location and Solution Name and
click OK.

2. Delete the Class1.cs file from the project.
Visual Studio creates a project that contains a file named Class1.cs. From the
View menu, choose Solution Explorer. In Solution Explorer, delete Class1.cs
from your project.

3. Add references to the project.
From the Project menu, choose Add References. The Add References window
opens. Click the .NET tab. Select the following assemblies and click OK:

• System.Configuration
• System.EnterpriseServices
• System.Web.Services

From the Project menu, choose Add References. The Add References window
opens. Click the Browse tab and navigate to the Dynamics GP web services
“bin” folder, typically found in the following location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

Select the following assembly and click OK:

• Microsoft.Dynamics.Security.dll

P A R T 2 C R E A T I N G A N E W W O R K F L O W

126 W O R K F L O W I N T E G R A T I O N G U I D E

4. Create the security context and key objects.
A “security helper” application requires a security context object and several
types of object keys. For example, the “security helper” application for the Sales
Lead sample web service uses the following objects.

private SecurityContext securityContext;

private ApplicationKey appKey;

private OperationKey opKey;

private OperationKey getByKeyOpKey;

private OperationKey getListOpKey;

private TaskKey taskKey;

private RoleKey roleKey;

To populate the security context and object keys, add an initialization method
to your application. The following code examples show how to use an
initialization method to instantiate the required objects.

Create a security
context object.

Create a SecurityContext object and specify the Web Services for Microsoft
Dynamics GP application.

To specify Web Services for Microsoft Dynamics GP, use this same application key
GUID in your security context object.

securityContext = new SecurityContext();

appKey = new ApplicationKey();

appKey.Id = "25cc1a21-2cc4-4b13-a1c8-eea186fb688a";

securityContext.ApplicationKey = appKey;

Create the operation
keys.

Create a new operation key for each of your security operations. The following
code example creates a basic operation key. The examples includes a GUID that
was generated to uniquely identify this operation.

opKey = new OperationKey();

opKey.Id = "E5EA3889-BFFC-4817-AC06-E818AAFD0B13";

Create an operation key for each of your web service web methods. The Id of
each operation key must include the GUID value from the GUIDAttribute of
your web service document class. To uniquely identify each operation, append
“GetByKey” and “GetList” to the GUID value.

Web services requires the key Ids to include “GetByKey” or “GetList”. If you do not
include these in your key Id, you will not be able to access your data.

The following code example creates OperationKeys for the Sales Lead web
service. Notice how the operation key Id uses the GUID from the lead
document class followed by the name of the operation.

// Create a key for a Get by Key operation

// Use the GUID attribute of the type to identify the operation

getByKeyOpKey = new OperationKey();

getByKeyOpKey.Id = "2852BB26-3BA8-4663-9613-033327D7F3C2GetByKey";

// Create a key for the Get List operation

// Use the GUID attribute of the type to identify the operation

getListOpKey = new OperationKey();

getListOpKey.Id = "2852BB26-3BA8-4663-9613-033327D7F3C2GetList";

W O R K F L O W I N T E G R A T I O N G U I D E 127

C H A P T E R 8 W E B S E R V I C E

Create a task key. A task in the Dynamics Security Service is an object that contains other security
objects. A task object allows you to bundle related operations into a single
object that can be assigned to a security role.

The following code example creates a key for a task. The example includes a
GUID that was generated to uniquely identify this task.

taskKey = new TaskKey();

taskKey.Id = "A33871C6-8393-4040-803D-FA1EF7306136";

The example of the subscription helper application for sales leads uses the Id of this task
to add sales lead web service access to the Dynamics Security Service workflow
administrator role.

Create a role key. Create a role key that specifies the Dynamics Security Service role that will be
assigned the new operations and tasks.

The following code example creates a role key that specifies the Dynamics
Security Service Superuser. Use this GUID whenever you need to identify the
Superuser role.

roleKey = new RoleKey();

// The following GUID value identifies the Superuser role

roleKey.Id = "e18b321a-9548-48fb-b75a-dee0a618ddaa";

5. Create the security operations.
Instantiate an OperationService object. OperationService provides an interface
with the Dynamics Security Service that allows you to create operations.

// Instantiate the OperationService object that enables you to work with /

// the Microsoft Dynamics Security service.

OperationService opService = OperationService.GetInstance();

Instantiate an Operation object for each operation you want to add. The
following code example creates an array of three Operation objects.

// Create a security operation object for each operation you

// want to enable.

Microsoft.Dynamics.Security.Operation[] leadOps = new Operation[3];

Populate the Operation objects with the keys, a name, and a brief description.

// Populate a security object that enables a query operation for

// sales leads.

leadOps[0] = Microsoft.Dynamics.Security.Operation.GetInstance();

leadOps[0].Key = opKey;

leadOps[0].Name = "Query Sales Leads";

leadOps[0].Description = "Privilege to query sales leads";

// Populate a security object that enables a GetByKey operation for

// sales leads.

leadOps[1] = Microsoft.Dynamics.Security.Operation.GetInstance();

leadOps[1].Key = getByKeyOpKey;

leadOps[1].Name = "Get Sales Lead";

leadOps[1].Description = "Privilege to view a sales lead";

P A R T 2 C R E A T I N G A N E W W O R K F L O W

128 W O R K F L O W I N T E G R A T I O N G U I D E

// Populate a security object that enables a GetList operation.

leadOps[2] = Microsoft.Dynamics.Security.Operation.GetInstance();

leadOps[2].Key = getListOpKey;

leadOps[2].Name = "Get Leads List";

leadOps[2].Description = "Privilege to view sales leads";

Use the CreateOperation method of the OperationService to add your new
operations to the Dynamics Security Service. If the specified operation already
exists, use the UpdateOperation method to update that operation.

foreach (Operation op in leadOps)

{

try

{

// If the operation exists, update the existing operation.

opService.UpdateOperation(securityContext, op);

}

catch (NonExistentSecurityObjectException)

{

// If the operation does not exist, add the operation to the

// security service.

opService.CreateOperation(securityContext, op);

}

}

6. Create a security task object.
Create a security task object that includes your security operations. Instantiate a
task object, and then populate that object with the task key, a name, and a brief
description. To specify the operations that the task includes, add the security
operation objects to the operations list of the task object. To add the task to the
Dynamics Security Service, use the CreateTask method of the TaskService
object.

The following code example creates the “View Sales Leads” security task and
adds it to the Dynamics Security Service. Notice how the three previously
created security operations are added to this task object.

// Instantiate the TaskService object that enables you to work with the

// Microsoft Dynamics Security service.

TaskService taskService = TaskService.GetInstance();

// Create a task object for sales leads.

// Populate the task object with the new sales lead security objects.

object.Task task = Task.GetInstance();

task.Key = taskKey;

task.Name = "View Sales Leads";

task.Description = "View Sales Leads";

task.Operations.Add(opKey);

task.Operations.Add(getByKeyOpKey);

task.Operations.Add(getListOpKey);

W O R K F L O W I N T E G R A T I O N G U I D E 129

C H A P T E R 8 W E B S E R V I C E

// Create or update the task.

try

{

// If the task already exists, update the existing task object.

taskService.UpdateTask(securityContext, task);

}

catch (NonExistentSecurityObjectException)

{

// If the task does not exist, add the task object to

// security service.

taskService.CreateTask(securityContext, task);

}

7. Add the security operations to the Superuser role.
To ensure visibility and access to the new security operations, add each
operation to the Superuser role. Create a Role object and add the new security
operations to the operations list of the Role object. Use the UpdateRole method
of the RoleService object to add the operations to the Superuser role.

// Instantiate the RoleService object that enables you to work with the

// Microsoft Dynamics Security service.

RoleService roleService = RoleService.GetInstance();

// Instantiate a role object that represents the web service security

// Superuser role.

Role role = roleService.GetRole(securityContext, roleKey);

// Only add a security operation object to the role if that object is not

// already assigned to that role.

bool newOpAdded = false;

foreach (Operation newOp in leadOps)

{

if (role.Operations.BinarySearch(newOp.Key) < 0)

{

role.Operations.Add(newOp.Key);

newOpAdded = true;

}

}

// Only update the security service when an operation is

// added to the role object.

if (newOpAdded == true)

{

roleService.UpdateRole(securityContext, role);

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

130 W O R K F L O W I N T E G R A T I O N G U I D E

8. Create an application configuration file.
To update the Dynamics Security Service, your “security helper” application
requires configuration parameters from your Web Service for Microsoft
Dynamics GP installation. One way to retrieve the required parameters is to
copy the contents of an existing web service configuration file into the
configuration file for the “security helper” application.

For example, the following Web Services for Microsoft Dynamics GP
installation configuration file contains the required parameters:

Microsoft.Dynamics.GP.InstallSystemSecurityMetadata.exe.config

The configuration file is typically found in the following location:

C:\Program Files\Microsoft Dynamics\GPWebServices

The following code example copies the contents of the web service installation
configuration file into the application configuration file of the “security helper”
application.

To run the “security helper” application, the executable file and the application
configuration file must be in the same folder as the specified configuration file.

// Copy the contents of the

// Microsoft.Dynamics.GP.InstallSystemSecurityMetadata.exe.config file

// to this application's configuration file.

ExeConfigurationFileMap fileMap = new ExeConfigurationFileMap();

fileMap.ExeConfigFilename =

"Microsoft.Dynamics.GP.InstallSystemSecurityMetadata.exe.config";

Configuration config =

ConfigurationManager.OpenMappedExeConfiguration(fileMap,

ConfigurationUserLevel.None);

config.SaveAs("Microsoft.Dynamics.GP.Samples.InstallSalesLeadSecurityMeta

data.exe.config");

9. Removing operations from the Dynamics Security Service.
To support an uninstall of your web service, your “security helper” application
should remove your security tasks and operations from the Dynamics Security
Service. To remove your Dynamics Security Service changes, you must supply
the same security context, operation key, task key, and role key GUID values
that you used to add them to the Dynamics Security Service.

To remove the tasks and operations, reverse the order in which they were
originally installed. The following sample code removes the security operations
and tasks that were added for the Sales Lead sample web service.

// Remove the specified security operations from the Superuser role.

// Create an array of the operation key objects used by the sales lead

// web service.

OperationKey[] opKeys = new OperationKey[3];

opKeys[0] = opKey;

opKeys[1] = getByKeyOpKey;

opKeys[2] = getListOpKey;

W O R K F L O W I N T E G R A T I O N G U I D E 131

C H A P T E R 8 W E B S E R V I C E

// Instantiate the RoleService object that enables you to work with the

// Microsoft Dynamics Security service.

// Instantiate a role object that represents the web service security

// Superuser role.

RoleService roleService = RoleService.GetInstance();

Role role = roleService.GetRole(securityContext, roleKey);

// Only remove the security operation from the role if it has been

// assigned to the Superuser role.

bool opRemoved = false;

foreach (OperationKey key in opKeys)

{

if (role.Operations.BinarySearch(key) >= 0)

{

role.Operations.Remove(key);

opRemoved = true;

}

}

// Only update the security service when an operation is

// removed from the role object.

if (opRemoved == true)

{

roleService.UpdateRole(securityContext, role);

}

// Remove the sales lead security task.

// Instantiate a TaskService object that enables you to work with the

// Microsoft Dynamics Security service.

TaskService taskService = TaskService.GetInstance();

try

{

// Delete the specified task

taskService.DeleteTask(securityContext, taskKey);

}

catch (NonExistentSecurityObjectException)

{

// If the task does not exist, no action is needed.

// Trap the error and continue.

}

// Remove the three sales lead security operations.

// Instantiate the OperationService object that enables you to work

// with the Microsoft Dynamics Security service.

OperationService opService = OperationService.GetInstance();

foreach (OperationKey key in opKeys)

{

try

{

opService.DeleteOperation(securityContext, key);

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

132 W O R K F L O W I N T E G R A T I O N G U I D E

catch (NonExistentSecurityObjectException)

{

// If the operation does not exist, no action is needed.

// Trap the error and continue.

}

}

10. Build the application.
From the Visual Studio Build menu, choose Build. Visual Studio builds the
application and the application configuration file. Visual Studio places both
files in the project “\bin\debug” folder.

Testing the web service

It is a good idea to test the web service to ensure you can use it to retrieve sales lead
documents. You can test the web service with a console application that uses the
GetLeadByKey web method to retrieve a specified lead document.

The following C# example tests the Sale Lead web service. The application requires
you to supply a web reference to the Sales Lead web service. If the web service is
working, the application retrieves the document with the Lead ID value of “1001”
and displays the name of that lead.

using System;

using System.Collections.Generic;

using System.Text;

using System.Windows.Forms;

using WebServiceTest.SalesLeadWebService;

namespace WebServiceTest

{

class Program

{

static void Main(string[] args)

{

CompanyKey companyKey;

Context context;

LeadKey leadKey;

Lead lead;

// Create an instance of the sales lead web service

SampleSalesLeadWebService wsSalesLeads =

new SampleSalesLeadWebService();

// Be sure the default credentials are used

wsSalesLeads.UseDefaultCredentials = true;

// Create a context object with which to call the web service

context = new Context();

// Specify which company to use (sample company)

companyKey = new CompanyKey();

companyKey.Id = (-1);

W O R K F L O W I N T E G R A T I O N G U I D E 133

C H A P T E R 8 W E B S E R V I C E

// Set up the context object

context.OrganizationKey = (OrganizationKey)companyKey;

context.CultureName = "en-US";

// Create a sales lead key to specify the sales lead

leadKey = new LeadKey();

leadKey.Id = "1001";

// Retrieve the sales lead object

lead = wsSalesLeads.GetLeadByKey(leadKey, context);

// Display the customer name property from the sales lead object

MessageBox.Show("Customer name: " + lead.Name);

}

}

}

134 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 135

Chapter 9: Server Workflow Assembly
The Server Workflow Assembly is a Microsoft .NET assembly that creates a
workflow type for a document in Microsoft Dynamics GP. Information about the
Server Workflow Assembly is described in the following sections:

• Creating a Visual Studio project
• Creating a workflow type
• Adding business logic
• Signing your server workflow assembly
• Creating a document viewer
• Creating a workflow event subscription helper application
• Building the assembly and application

Creating a Visual Studio project

Create a new server
workflow assembly.

The Server Workflow Assembly is a Microsoft .NET assembly you create using
Visual Studio. The assembly works with the Microsoft Dynamics GP workflow
server to add workflow approval to your back-office document.

To create a Server Workflow Assembly, complete the following steps:

1. Create a new project.
Open Visual Studio. From the File menu, select File >> New >> Project. In the
New Project window, select Visual C# from the Project types tree. In Templates,
choose Class Library from the list of Visual Studio installed templates.

Enter a name for your assembly. Review the Location and Solution Name, and
then click OK.

2. Delete the Class1.cs file from the project.
Visual Studio creates a default class file named Class1.cs. From the View menu,
select Solution Explorer. In Solution Explorer, delete Class1.cs from your
project.

If a dialog window opens asking whether to delete the file, click OK.

3. Add references to the project.
From the Project menu, select Add References. The Add References window
opens. Click the .NET tab. Select the following assembly and click OK:

• System.Windows.Forms

From the Project menu, select Add References. The Add References window
opens. Click the Browse tab. Navigate to the SharePoint server “ISAPI” folder,
typically found in the following location:

C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions
\12\ISAPI

Select the following .dll file and click OK:

• Microsoft.SharePoint.dll

P A R T 2 C R E A T I N G A N E W W O R K F L O W

136 W O R K F L O W I N T E G R A T I O N G U I D E

From the Project menu, select Add References. The Add References window
opens. Click the Browse tab. Browse to the Microsoft Dynamics GP Workflow
folder. Typically, the folder is in the following location:

C:\Program Files\Microsoft Dynamics\Workflow

Select the following .dll files and click OK:

• Microsoft.Dynamics.Common.dll
• Microsoft.Dynamics.Common.Types.dll
• Microsoft.Dynamics.GP.Formatters.dll
• Microsoft.Dynamics.GP.Workflow.dll
• Microsoft.Dynamics.Workflow.dll
• Microsoft.Dynamics.Workflow.Common.dll
• Microsoft.Dynamics.Workflow.Controls.dll

From the Project menu, select Add References. The Add References window
opens. Click the Browse tab. Navigate to the SharePoint folder, typically found
in this location:

C:\inetpub\wwwroot\wss\VirtualDirectories\<port#>\bin

For the port number, specify the port number of the web site where you
installed Microsoft Dynamics GP Workflow. Select the following .dll file and
click OK:

• Microsoft.Dynamics.GP.Workflow.Pages.dll

If you will use Web Services for Microsoft Dynamics GP with your workflow, include a
reference to the Microsoft.Dynamics.GP.WebServices.Proxy.dll that is also found in this
SharePoint folder.

Add a web reference to
the web service.

4. Add a web reference
If you use any web service other than Web Services for Microsoft Dynamics GP
to access document data, you must add a web reference to the web service.
From the Visual Studio Project menu, choose Add Web Reference. The Add Web
Reference Window will open. Enter the URL of your web service and click Go.
Enter a name in the Web reference name field and click Add Reference.

If you set the URL Behavior property of your web reference to Dynamic, Visual
Studio stores the web reference URL in an assembly configuration file. Visual
Studio name the file using the following format:

<Assembly name>.dll.config

Assembly name will be the name you gave your project. For example, the lead
server workflow assembly sample includes a configuration file named:

Microsoft.Dynamics.GP.Workflow.Samples.Server.dll.config

The configuration file is an XML document that contains parameters for the
assembly. When you install your workflow server assembly, you must also
include the assembly configuration file.

W O R K F L O W I N T E G R A T I O N G U I D E 137

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

To update your assembly and use another web server, change the URL in the
configuration file. When the assembly loads, it will use the URL in the
configuration file to find the web service.

The following sample shows the contents of an assembly configuration file that
contains the web reference URL:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<configSections>

<sectionGroup name="applicationSettings"

type="System.Configuration.ApplicationSettingsGroup, System,

Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089" >

<section name="Properties.Settings"

type="System.Configuration.ClientSettingsSection, System,

Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"

requirePermission="false" />

</sectionGroup>

</configSections>

<applicationSettings>

<Properties.Settings>

<setting name="Microsoft_Dynamics_GP_Workflow_Samples_

SalesLeadWebService_SampleSalesLeadWebService"

serializeAs="String">

<value>http://localhost:8080/DynamicsGPWebServices

/SampleSalesLeadWebService.asmx</value>

</setting>

</Properties.Settings>

</applicationSettings>

</configuration>

Creating a workflow type

Add a class to the
project that defines
your workflow type.

A workflow type is a .NET class that enables workflow functionality for a specified
business document. The class includes properties, methods, and interfaces that
enable Microsoft Dynamics GP workflow to retrieve and update individual
documents.

To implement a new workflow type, use Visual Studio to add a class to your .NET
assembly. Open the Project menu, choose Add Class. From the Add New Item
window, select Class. Enter a name for your class and click Add. Visual Studio
creates and opens a new class file. Add the following using statements:

using Microsoft.Dynamics.Workflow;

using Microsoft.Dynamics.Workflow.Controls;

using Microsoft.Dynamics.Workflow.Common;

using Microsoft.Dynamics.Common;

using Microsoft.SharePoint;

using GPWorkflow = Microsoft.Dynamics.GP.Workflow;

using SalesLeadWebService;

using System.Collections.ObjectModel;

using Microsoft.Dynamics.Workflow.Approval;

P A R T 2 C R E A T I N G A N E W W O R K F L O W

138 W O R K F L O W I N T E G R A T I O N G U I D E

The sample code uses GPWorkflow as an alias for the
Microsoft.Dynamics.GP.Workflow namespace. SalesLeadWebService refers to the
web service that retrieves lead information for the sample workflow type from the
Microsoft Dynamics GP SQL server.

Make the new class public:

public class LeadApprovalWorkflowSample

{

}

Add the
DynamicsWorkflow
attribute.

Add the DynamicsWorkflow attribute to your class. The DynamicsWorkflow
attribute requires a GUID and a name that uniquely identify your workflow. Also,
you can use the DynamicsWorkflow attribute to enable Microsoft Dynamics GP
desktop alerts for your workflow.

To create the GUID, open the Tools menu in Visual Studio and choose Create GUID.
Copy the GUID value from the Create GUID dialog window into your
DynamicsWorkflow attribute. Since the GUID in the attribute is a string, replace the
open and close braces with double quotes and convert any lowercase letter
characters to uppercase.

The name you supply the DynamicsWorkflow attribute must be the same name you use as
the WorkflowName property in your Client workflow assembly. If they are not identical,
your workflow will not run.

Your DynamicsWorkflow attribute should resemble the following sample code:

[DynamicsWorkflow(

"42614BD0-D17A-4284-917F-73EBD19509C3",

"Sample Salesperson Approval Workflow",

ApplicationSupportsDesktopAlerts = true)]

public class LeadApprovalWorkflowSample

Inherit from the
ApprovalWorkflow
class.

All Server workflow assemblies must inherit from the following class:

Microsoft.Dynamics.GP.Workflow.ApprovalWorkflow

Add the workflow
interfaces.

In addition, the Server workflow class must implement the following interfaces:

• Microsoft.Dynamics.Workflow.IDynamicsWorkflow
• Microsoft.Dynamics.Workflow.IDynamicsWorkflowHistory

W O R K F L O W I N T E G R A T I O N G U I D E 139

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

Your class should resemble the following sample code:

[DynamicsWorkflow(

"42614BD0-D17A-4284-917F-73EBD19509C3",

"Sample Salesperson Approval Workflow",

ApplicationSupportsDesktopAlerts = true)]

public class LeadApprovalWorkflowSample :

GPWorkflow.ApprovalWorkflow,

IDynamicsWorkflow,

IDynamicsWorkflowHistory

{

}

From the File menu, choose Save All, and then Exit to close Visual Studio.

Add a resources file
Add a resource file to
the project.

The next step is to add a resources file that defines values for your workflow type.
To use the resources file, your workflow assembly’s default namespace must be
blank. Visual Studio will not allow you to set the default namespace to blank, so
you must manually edit your project file.

1. Edit your project file.
Open Windows Explorer and navigate to the project file for your server
workflow assembly. Open your .csproj file with Notepad.

2. Delete the root namespace value.
Search the XML to locate the <RootNamespace> element. Remove the value of
the element. The XML should be as follows:

<RootNamespace></RootNamespace>

3. Save your changes.
From the File menu, choose Save. Close Notepad.

Reopen your server workflow assembly project with Visual Studio. From the
Project menu, choose Add New Item. In the Add New Item dialog window, select
Resources File from the Templates list. Enter a name for your resources file and
click Add.

The name of the resources file must match the name of your server workflow assembly. If the
names do not match, your server workflow assembly will not run.

Add the required
names and values to
the resource file.

Open the resources file. To enable the Microsoft Dynamics Workflow site to display
information about this workflow, enter the following names and values to the
resource file:

Name Value

BusinessObjectKey<GUID> Enter a type name.

Category<GUID> Enter Approval.

DisplayName<GUID> Enter a brief descriptive phrase.

GroupName<GUID> Enter a name for the group.

ShortDisplayName<GUID> Enter a name value.

WorkflowType<GUID> Enter a brief descriptive phrase.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

140 W O R K F L O W I N T E G R A T I O N G U I D E

Each name requires you to append your workflow GUID value. Use the GUID
value from the DynamicsWorkflow attribute of your workflow server class. The
following code sample demonstrates the name for the Category.

Category42614BD0D17A4284917F73EBD19509C3

Notice how the GUID matches the value from the DynamicsWorkflow attribute in
the previous sample code.

Add filterable
properties to the
resource file.

Add resource file entries for the display names of the filterable properties of the
workflow. Filterable properties allow you to specify the types of documents that
require approval. In the name field, enter a value that uniquely identifies each
resource value. The names of these resources do not require GUID values. In the
value field, enter the text to display in the list boxes of the Configure Workflow Step
page of the Microsoft Dynamics Workflow Administration site.

Adding the filterable properties to a resource file allows you to supply localized values for
each property. For more information about how to use resource files to support localization,
see the .NET Framework Developer’s Guide.

The following example shows the resources added for leads.

W O R K F L O W I N T E G R A T I O N G U I D E 141

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

Add the event
handlers.

Add an event handler
The Workflow server raises an event when a specified action occurs. To associate
business logic with that event, add an event handler to your workflow class. The
following table lists the events that the workflow server raises:

For example, you use workflow to approve or reject changes to the salesperson
assigned to a sales document. To identify when a reviewer in the workflow process
approves or rejects a salesperson change, implement an event handler for the
StatusChanged event. The StatusChanged event handler allows you to implement
business logic when a specific status change occurs. Common workflow status
changes include Submitted, Pending Approval, Pending Changes, Approved, or
Rejected.

After you complete your server workflow assembly, create an event subscription
that associates your event handler with the event that the workflow server raises.
For information about how to subscribe to a workflow event, see Creating a workflow
event subscription helper application on page 160.

Workflow Event Description

BusinessObjectChanged Occurs when the business document being managed by workflow
has changed.

StatusChanged Occurs at each point in the life of a workflow instance where the
status changes on the workflow server. This may or may not match
the workflow status stored by a workflow client.

StepCompleted Occurs when a workflow step completes.

TaskCompleted Occurs when a task is competed due to the action of an approver.

TaskCreated Occurs when a new task is created.

TaskDeleted Occurs when a task is deleted because approval is no longer
required.

TaskRolledBack Occurs each time actions is taken on a task by a user who does not
have sufficient privileges to perform the action.

TasksEscalated Occurs after a collection of tasks is escalated.

WorkflowCompleted Occurs when a workflow instance successfully completes

WorkflowDeactivated Occurs when a workflow is deactivated. This event causes all
running workflow instances to be deactivated.

WorkflowError Occurs when the Workflow server throws an exception.

WorkflowStarted Occurs when a business document is submitted for approval.

P A R T 2 C R E A T I N G A N E W W O R K F L O W

142 W O R K F L O W I N T E G R A T I O N G U I D E

The following code sample creates a StatusChanged event handler for lead
documents. To implement the event handler, the sample adds a method named
OnStatusChanged to the workflow class that was created earlier. The
OnStatusChanged method responds whenever the workflow server raises a
StatusChanged event for a lead. In this example, the event handler creates an object
that contains the business logic for leads.

public static void OnStatusChanged(object sender,

WorkflowStatusChangedEventArgs args)

{

try

{

GPWorkflowSampleEventHandlers eventHandler = new

GPWorkflowSampleEventHandlers();

eventHandler.OnStatusChanged(sender, args);

}

catch (Exception ex)

{

throw ex;

}

}

Add a resource handler
To simplify the retrieval of values from the resource file, add a method that retrieves
a resource value from the assembly. The method should use the name of the
resource to specify the value to retrieve. Use culture settings to support localization
of the resources. The following code example uses the
Microsoft.Dynamics.Common.ResourceHelper class to retrieve resource strings
from the workflow sample assembly.

private static string GetString(string resourceId, CultureInfo cultureInfo)

{

return Microsoft.Dynamics.Common.ResourceHelper.GetString(

resourceId,

Assembly.GetAssembly(typeof(LeadApprovalWorkflowSample)),

cultureInfo

);

}

Implement the
IDynamicsWorkflow
interface.

Add the IDynamicsWorkflow interface
To integrate with Microsoft Dynamics GP workflow, your server workflow class
must implement the IDynamicsWorkflow interface. The IDynamicsWorkflow
interface defines the methods the Microsoft Dynamics GP Workflow server uses to
retrieve information about your workflow.

To add the interface members to your class, right-click IDynamicsWorkflow and choose
Implement Interface. Visual Studio adds the required interface members to your class. To
define your workflow type, add code to each method that provides information about your
document.

W O R K F L O W I N T E G R A T I O N G U I D E 143

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

The IDynamicsWorkflow interface requires you to implement the following
methods:

• GetAvailableFilterableProperties
• GetBusinessObject
• GetOrganizationName
• GetSummaryInformation
• GetViewerName

GetAvailableFiterableProperties The following code sample implements the
GetAvailableFilterableProperties method. This method defines the configuration
fields you use to specify documents that require approval. To add a filterable
property, you must supply the following information:

• The owner GUID. This GUID identifies the workflow class that contains these
properties.

• A string value specifying the property name. Typically this is the property name
from the object that is retrieved using the web service. For some data types,
such as decimals, you can include a modifier that returns just the value.

• The display name for the property.

The following sample code specifies the filterable properties for leads. To identify
the owner Id, the sample uses the GUID from the DynamicsWorkflow attribute that
you added to the LeadApprovalSampleWorkflow class. To identify each property,
the sample uses a string that matches the name of the corresponding property of the
web service Lead class. To retrieve the display name, use the GetString method you
added earlier to retrieve the appropriate display value from the resource file.

public IList<FilterableProperty> GetAvailableFilterableProperties(

CultureInfo cultureInfo)

{

IList<FilterableProperty> properties = new List<FilterableProperty>();

// Specify the owner

Guid ownerId = new Guid("42614BD0-D17A-4284-917F-73EBD19509C3");

// Add a string property for the id

// Retrieve the display name from the resource file

properties.Add(new StringFilterableProperty(ownerId,

"Key.Id", GetString("Lead_Key_Id", cultureInfo)));

// Add a string property for the salesperson

// Retrieve the display name from the resource file

properties.Add(new StringFilterableProperty(ownerId, "SalespersonID",

GetString("Lead_Salesperson", cultureInfo)));

// Add a number property for revenue

// Retrieve the display name from the resource file

properties.Add(new NumberFilterableProperty(ownerId,

"PotentialRevenue.Value",

GetString("Lead_PotentialRevenue", cultureInfo)));

// Add a date property

// Retrieve the display name from the resource file

P A R T 2 C R E A T I N G A N E W W O R K F L O W

144 W O R K F L O W I N T E G R A T I O N G U I D E

properties.Add(new DateFilterableProperty(ownerId, "QualificationDate",

GetString("Lead_QualificationDate", cultureInfo)));

// Add an enumerated property for the lead category

// The second parameter must match the property name from the object

// Retrieve the display values from the resource file

EnumeratedFilterableProperty enumProperty = new

EnumeratedFilterableProperty(ownerId, "LeadBusinessCategory",

"Category");

enumProperty.EnumType = typeof(SalesLeadWebService.LeadCategory);

enumProperty.DisplayNames.Add(

(int)SalesLeadWebService.LeadCategory.Contractor,

GetString("Lead_BusinessCategory_Contractor", cultureInfo));

enumProperty.DisplayNames.Add(

(int)SalesLeadWebService.LeadCategory.Educational,

GetString("Lead_BusinessCategory_Educational", cultureInfo));

enumProperty.DisplayNames.Add(

(int)SalesLeadWebService.LeadCategory.Media,

GetString("Lead_BusinessCategory_Media", cultureInfo));

enumProperty.DisplayNames.Add(

(int)SalesLeadWebService.LeadCategory.RealEstate,

GetString("Lead_BusinessCategory_RealEstate", cultureInfo));

enumProperty.DisplayNames.Add(

(int)SalesLeadWebService.LeadCategory.Restaurant,

GetString("Lead_BusinessCategory_Restaurant", cultureInfo));

enumProperty.DisplayNames.Add(

(int)SalesLeadWebService.LeadCategory.Retail,

GetString("Lead_BusinessCategory_Retail", cultureInfo));

enumProperty.DisplayNames.Add(

(int)SalesLeadWebService.LeadCategory.Software,

GetString("Lead_BusinessCategory_Software", cultureInfo));

enumProperty.DisplayNames.Add(

(int)SalesLeadWebService.LeadCategory.Wholesale,

GetString("Lead_BusinessCategory_Wholesale", cultureInfo));

properties.Add(enumProperty);

// Add a boolean property for qualified leads

// The second parameter must match the property name from the object

// Retrieve the display values from the resource file

EnumeratedFilterableProperty boolProperty = new

EnumeratedFilterableProperty(ownerId, "QualifiedLead",

"Qualified Lead");

boolProperty.EnumType = typeof(bool);

boolProperty.DisplayNames.Add(0, GetString("Bool_False", cultureInfo));

boolProperty.DisplayNames.Add(1, GetString("Bool_True", cultureInfo));

properties.Add(boolProperty);

return properties;

}

W O R K F L O W I N T E G R A T I O N G U I D E 145

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

GetBusinessObject Your workflow type must be able to retrieve a specified
document. The following code sample retrieves a specified lead. Notice how a
LeadKey object is created to identify the lead. The sample uses the Microsoft
Dynamics GP web service context object to specify the company and currency
information.

The sample also uses SharePoint elevation of privileges to retrieve the specified
record. Elevation of privileges causes the DynamicsGPWorkflow application pool
identity to be used when the sample Sales Lead web service is called. During
installation, you assigned this login to the Workflow Administrator role in the
Dynamics Security Service.

public object GetBusinessObject(BusinessObjectKey businessObjectKey,

Microsoft.Dynamics.Common.OrganizationKey organizationKey)

{

Lead lead = null;

LeadKey leadKey = new LeadKey();

// Instantiate the sample web service for sales leads

SampleSalesLeadWebService leadWebService =

new SampleSalesLeadWebService();

leadWebService.UseDefaultCredentials = true;

// Use the lead key to specify the sales lead

leadKey.Id = businessObjectKey.GetKeyPartValue<string>("LeadID");

// Create context object for use with the web service

SalesLeadWebService.Context context = new SalesLeadWebService.Context();

// Populate the context object's properties

SalesLeadWebService.CompanyKey companyKey =

new SalesLeadWebService.CompanyKey();

companyKey.Id =

((Microsoft.Dynamics.Common.CompanyKey)organizationKey).Id;

context.OrganizationKey = companyKey;

context.CurrencyType = SalesLeadWebService.CurrencyType.Transactional;

try

{

// Utilize SharePoint elevation of privileges to retrieve the

// specified sales lead

SPSecurity.RunWithElevatedPrivileges(

new SPSecurity.CodeToRunElevated(delegate()

{

// Use the web service to retrieve the specified sales lead

lead = leadWebService.GetLeadByKey(leadKey, context);

}));

}

catch (Exception ex)

{

throw ex;

}

return lead;

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

146 W O R K F L O W I N T E G R A T I O N G U I D E

GetOrganizationName To identify the Microsoft Dynamics GP company the
workflow type is accessing, implement a GetOrganizationName method. Notice
how the method takes an organization key argument and uses a base class method
to return the company name.

public string GetOrganizationName(Microsoft.Dynamics.Common.OrganizationKey

organizationKey)

{

return GetCompanyName(organizationKey);

}

GetSummaryInformation The workflow type also retrieves a summary
version of a specified business document. A summary document is an abbreviated
version that contains important fields from the document. Summary information is
also included with workflow notifications.

The following code sample retrieves the business document and populates the
BusinessSummaryObjectInformation with details of the lead document:

// Returns a summary object for a specified Sales Lead

public BusinessObjectSummaryInformation

GetSummaryInformation(BusinessObjectKey businessObjectKey,

object businessObject, Microsoft.Dynamics.Common.OrganizationKey

organizationKey, CultureInfo cultureInfo)

{

BusinessObjectSummaryInformation summaryInfo =

new BusinessObjectSummaryInformation();

// Cast the businessObject parameter to a Sales Lead.

SalesLeadWebService.Lead lead = (SalesLeadWebService.Lead)businessObject;

// Populate the summary info object with the Sales Lead ID

summaryInfo.RecordId = new SummaryInformation("LeadSummaryRecordId",

businessObjectKey.VisibleId, 0, "LeadSummaryRecordId");

// Add summary information values for the current Sales Lead

summaryInfo.SummaryInformation.Add(new SummaryInformation("LeadName",

lead.Name, 1, "Name"));

summaryInfo.SummaryInformation.Add(new SummaryInformation("LeadContact",

lead.Contact, 2, "Contact"));

summaryInfo.SummaryInformation.Add(new SummaryInformation("LeadCity",

lead.City, 3, "City"));

return summaryInfo;

}

GetViewerName The server workflow assembly specifies a web page that can
be used to display the business document. This viewer is used by a workflow web
client to display the business document information. The following code sample
specifies the file name of an .aspx file that displays a lead.

public string GetViewerName()

{

return "Dynamics.Workflow.GP.Samples.SalesLeadViewer.aspx";

}

W O R K F L O W I N T E G R A T I O N G U I D E 147

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

Implement the
IDynamicsWorkflow
History interface.

Add the IDynamicsWorkflowHistory interface
To integrate with Microsoft Dynamics GP workflow, your class must implement the
IDynamicsWorkflowHistory interface. The IDynamicsWorkflowHistory interface
defines the methods that the Microsoft Dynamics GP Workflow server uses to save,
or retrieve workflow history information.

To add the IDynamicsWorkflowHistory interface, you must first install Service Pack 3 or
later for Workflow for Microsoft Dynamics GP. If you use an earlier version of workflow,
you cannot add the IDynamicsWorkflowHistory interface to your class.

The IDynamicsWorkflowHistory interface requires the following methods:

• FindAllTrackingHistory
• FindAllWorkflowHistory
• SaveWorkflowHistory
• SaveWorkflowTrackingHistory

The IDynamicsWorkflowHistory interface allows you to choose how your
workflow type stores workflow history. Use one of the following techniques.

• Use the Microsoft Dynamics GP archive. The approval workflow base class
includes methods you can use to save or retrieve workflow history information.
Your workflow history is included in the same archive as the Microsoft
Dynamics GP workflow. The sample code that follows demonstrates how to
use the base class methods.

• Add code to the methods that save or retrieve workflow history from a
specified data store. The interface enables you to use a data or file store that
resides outside of Microsoft Dynamics GP.

FindAllTrackingHistory Implement a pair of overloaded methods that retrieve
the workflows associated with the specified document. The following code sample
shows how to use the FindAllTrackingHistory methods from the
ApprovalWorkflow base class to retrieve the workflows associated with the
document.

Collection<TrackingHistory> IDynamicsWorkflowHistory.FindAllTrackingHistory(

Guid WorkflowSetupID,

Guid WorkflowImplementationID)

{

return FindAllTrackingHistory(WorkflowSetupID, WorkflowImplementationID);

}

Collection<TrackingHistory> IDynamicsWorkflowHistory.FindAllTrackingHistory(

BusinessObjectKey businessObjectKey,

Microsoft.Dynamics.Common.OrganizationKey organizationKey)

{

return FindAllTrackingHistory(businessObjectKey, organizationKey);

}

P A R T 2 C R E A T I N G A N E W W O R K F L O W

148 W O R K F L O W I N T E G R A T I O N G U I D E

FindAllWorkflowHistory Implement a pair of overloaded methods that
retrieve information about the individual steps associated with each workflow for a
document. The following code sample uses the FindAllWorkflowHistory methods
from the ApprovalWorkflow base class to retrieve history information for each
workflow that is associated with the document.

Collection<WorkflowHistory> IDynamicsWorkflowHistory.FindAllWorkflowHistory(

BusinessObjectKey businessObjectKey,

Microsoft.Dynamics.Workflow.WorkflowAssociationKey associationKey)

{

return FindAllWorkflowHistory(businessObjectKey, associationKey);

}

Collection<WorkflowHistory> IDynamicsWorkflowHistory.FindAllWorkflowHistory(

Guid wfCorrelationID,

int OrgID)

{

return FindAllWorkflowHistory(wfCorrelationID, OrgID);

}

SaveWorkflowHistory Implement a method that saves the workflow history
for the document. The following code sample shows how to use the
SaveWorkflowHistory method from the ApprovalWorkflow base class to save
workflow history information associated with the document.

void IDynamicsWorkflowHistory.SaveWorkflowHistory(Guid wfCorrelationID,

BusinessObjectKey businessObjectKey,

Microsoft.Dynamics.Workflow.WorkflowAssociationKey associationKey,

System.Collections.ObjectModel.Collection<WorkflowHistory>

workflowHistory)

{

SaveWorkflowHistory(wfCorrelationID,

businessObjectKey,

associationKey,

workflowHistory);

}

SaveWorkflowTrackingHistory Implement a method that saves information
about the workflow instance and the document. The following code sample uses the
SaveWorkflowTrackingHistory method of the ApprovalWorkflow base class to
save information about the current workflow.

void IDynamicsWorkflowHistory.SaveWorkflowTrackingHistory(

Guid dynamicsWorkflowID,

Microsoft.Dynamics.Workflow.Approval.TrackingHistory trackingHistory)

{

SaveWorkflowTrackingHistory(dynamicsWorkflowID, trackingHistory);

}

W O R K F L O W I N T E G R A T I O N G U I D E 149

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

Adding business logic

Add a class for the
event handlers.

The server workflow assembly allows you to add custom business logic to a
workflow event. To create a class for your workflow business logic, open the Visual
Studio Project menu and choose Add Class. Select Class from the Templates list in
the Add New Item window. Enter a name for your class, and then click Add.

Inherit from the
EventHandlerImpleme
ntation class.

Your new class must inherit from the
Microsoft.Dynamics.GP.Workflow.EventHandlerImplementation class. Add
methods and properties to the class that implement the business logic for the event.

For example, lead documents require approval when the assigned salesperson
changes. The event handler must perform three operations:

• Always update the data table to save the new workflow status.

• If the approver approves the change, update the field that saves the current
salesperson as the approved salesperson.

• If the approver rejects the change, update the salesperson to be the value of the
last approved salesperson.

The following code sample implements the event handler operations for the lead
workflow example. Notice the use of the Sales Lead web service to retrieve existing
lead data. Also, notice how the Update method of the
EventHandlerImplementation base class uses database parameters, database
connections, and SQL statements to save changes to the database.

class GPWorkflowSampleEventHandlers : EventHandlerImplementation

{

// Implement a method to perform the status change to a lead

// Always update the Workflow_Approval_Status field to reflect the change

// that has occurred

internal void OnStatusChanged(object sender,

WorkflowStatusChangedEventArgs args)

{

try

{

// Retrieve the company and business object keys

Microsoft.Dynamics.Common.CompanyKey companyKey =

(Microsoft.Dynamics.Common.CompanyKey)args.

DynamicsActivationArgs.OrganizationKey;

ActivationArgs activationArgs = args.DynamicsActivationArgs;

BusinessObjectKey businessObjectKey =

args.DynamicsActivationArgs.

BusinessObjectSubmissionInformation.BusinessObjectKey;

// Retrieve the object Id

string leadId =

businessObjectKey.GetKeyPartValue<string>("LeadID");

// Create a SQL statement to perform the operation

string updateLead = "UPDATE IG001 SET Workflow_Approval_Status =

@Workflow_Approval_Status WHERE LeadID = @LeadID";

P A R T 2 C R E A T I N G A N E W W O R K F L O W

150 W O R K F L O W I N T E G R A T I O N G U I D E

// Get the connection to GP database

DbProviderFactory dbFactory =

Connection.GetInstance().DbProviderFactory;

// Create parameters for the SQL statement

Collection<DbParameter> parameters =

new Collection<DbParameter>();

// Create a parameter for the field name

// The parameter value argument should be the integer equivalent

// of the current WorkflowApprovalStatus enum value

DbParameter fieldParam = CreateDbParameter(dbFactory,

"@Workflow_Approval_Status",

DbType.String, ParameterDirection.Input,

((int)args.WorkflowApprovalStatus).ToString());

parameters.Add(fieldParam);

// Create a parameter for the Id

DbParameter leadParam = CreateDbParameter(dbFactory, "@LeadID",

DbType.String, ParameterDirection.Input, leadId);

parameters.Add(leadParam);

// Perform the database operation

Update(companyKey, updateLead, parameters);

// If the status is approved or pending approval, update the

// Approved_Salesperson_ID to the value of SLSPRSNID

WorkflowApprovalStatus approved =

WorkflowApprovalStatus.Approved;

WorkflowApprovalStatus rejected =

WorkflowApprovalStatus.Rejected;

if (args.WorkflowApprovalStatus.Equals(approved))

{

ApproveSalespersonChange(companyKey, leadId);

}

// If the status is rejected, update the SLPRSNID to the value of

// the Approved_Salesperson_ID. This rollsback the proposed change

// to the last approved salesperson value.

else if (args.WorkflowApprovalStatus.Equals(rejected))

{

RejectSalespersonChange(companyKey, leadId);

}

else

{

// no op

}

}

catch (Exception ex)

{

throw ex;

}

}

W O R K F L O W I N T E G R A T I O N G U I D E 151

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

// Creates a database parameter object that can be used by the Update

// statements

private DbParameter CreateDbParameter(DbProviderFactory factory,

string paramName,

DbType paramType,

ParameterDirection paramDirection,

object paramValue)

{

// Instantiate a Db parameter object

DbParameter parameter = factory.CreateParameter();

// Populate the object properties

parameter.ParameterName = paramName;

parameter.DbType = paramType;

parameter.Direction = paramDirection;

parameter.Value = paramValue;

// return the parameter object

return parameter;

}

// The approver accepted the salesperson change

// Update the Approved_Salesperson_ID field to be the value of the

// SLPRSNID field

private void ApproveSalespersonChange(

Microsoft.Dynamics.Common.CompanyKey compKey,

string leadId)

{

SalesLeadWebService.CompanyKey companyKey;

SalesLeadWebService.Context context;

// Create an instance of the web service

SampleSalesLeadWebService wsSampleService =

new SampleSalesLeadWebService();

// Make sure that default credentials are being used

wsSampleService.UseDefaultCredentials = true;

// Create a context with which to call the web service

context = new SalesLeadWebService.Context();

// Specify which company to use (lesson company)

companyKey = new SalesLeadWebService.CompanyKey();

companyKey.Id = (-1);

// Set up the context

context.OrganizationKey =

(SalesLeadWebService.OrganizationKey)companyKey;

context.CultureName = "en-US";

// Create a lead key object to specify the lead to retrieve

LeadKey myLeadKey = new LeadKey();

myLeadKey.Id = leadId;

P A R T 2 C R E A T I N G A N E W W O R K F L O W

152 W O R K F L O W I N T E G R A T I O N G U I D E

try

{

// use the web service to retrieve the specified lead object

Lead myLead = wsSampleService.GetLeadByKey(myLeadKey, context);

// Create a SQL statement to perform the operation

string updateLead = "UPDATE IG001 SET Approved_Salesperson_ID =

@Approved_Salesperson_ID WHERE LeadID = @LeadID";

// Get the connection to GP database

DbProviderFactory dbFactory =

Connection.GetInstance().DbProviderFactory;

// Create parameters for the SQL statement

Collection<DbParameter> parameters =

new Collection<DbParameter>();

// Create a parameter for the field name

// The parameter value argument should be the integer equivalent

// of the current WorkflowApprovalStatus enum value

DbParameter fieldParam = CreateDbParameter(dbFactory,

"@Approved_Salesperson_ID",

DbType.String,

ParameterDirection.Input,

myLead.SalespersonID);

parameters.Add(fieldParam);

// Create a parameter for the Id

DbParameter leadParam = CreateDbParameter(dbFactory,

"@LeadID", DbType.String, ParameterDirection.Input, leadId);

parameters.Add(leadParam);

// Perform the database operation

Update(compKey, updateLead, parameters);

}

catch (Exception err)

{

throw err;

}

}

// The approver rejected the salesperson change

// Update the SLPRSNID field to be the value of the

// Approved_Salesperson_ID field

private void RejectSalespersonChange(Microsoft.Dynamics.Common.CompanyKey

compKey, string leadId)

{

SalesLeadWebService.CompanyKey companyKey;

SalesLeadWebService.Context context;

// Create an instance of the web service

SampleSalesLeadWebService wsSampleService =

new SampleSalesLeadWebService();

W O R K F L O W I N T E G R A T I O N G U I D E 153

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

// Make sure that default credentials are being used

wsSampleService.UseDefaultCredentials = true;

// Create a context with which to call the web service

context = new SalesLeadWebService.Context();

// Specify which company to use (lesson company)

companyKey = new SalesLeadWebService.CompanyKey();

companyKey.Id = (-1);

// Set up the context

context.OrganizationKey =

(SalesLeadWebService.OrganizationKey)companyKey;

context.CultureName = "en-US";

// Create a lead key object to specify the lead to retrieve

LeadKey myLeadKey = new LeadKey();

myLeadKey.Id = leadId;

try

{

// Use the web service to retrieve the specified lead object

Lead myLead = wsSampleService.GetLeadByKey(myLeadKey, context);

// If the ApprovedSalespersonID is not empty, change SalespersonID

// to the value of ApprovedSalespersonID. This rolls back the

// salesperson change to the last approved salesperson.

if(myLead.ApprovedSalespersonID.Length > 0)

{

// Create a SQL statement to perform the operation

string updateLead = "UPDATE IG001 SET SLPRSNID =

@SLPRSNID WHERE LeadID = @LeadID";

// Get the connection to GP database

DbProviderFactory dbFactory =

Connection.GetInstance().DbProviderFactory;

// Create parameters for the SQL statement

Collection<DbParameter> parameters =

new Collection<DbParameter>();

// Create a parameter for the field name

// The parameter value argument should be the integer

// equivalent of the current WorkflowApprovalStatus enum value

DbParameter fieldParam = CreateDbParameter(dbFactory,

"@SLPRSNID",

DbType.String,

ParameterDirection.Input,

myLead.ApprovedSalespersonID);

parameters.Add(fieldParam);

P A R T 2 C R E A T I N G A N E W W O R K F L O W

154 W O R K F L O W I N T E G R A T I O N G U I D E

// Create a parameter for the Id

DbParameter leadParam = CreateDbParameter(dbFactory,

"@LeadID",

DbType.String,

ParameterDirection.Input,

leadId);

parameters.Add(leadParam);

// Perform the database operation

Update(compKey, updateLead, parameters);

}

}

catch (Exception err)

{

throw err;

}

}

}

Signing your server workflow assembly

Add a strong name key
to the project.

Add a strong name key to your project. The strong name key ensures your assembly
is uniquely named and allows the .NET framework to ensure the assembly has not
been changed. To provide a strong name key, use Visual Studio to sign your server
workflow assembly.

In addition, the server workflow assembly must be added to the workflow server’s
global assembly cache (GAC). The GAC requires your assembly to be signed using
a strong name key. Signing will create a strong name key (.snk) file for your
assembly. To sign your server workflow assembly, use the following procedure.

1. Open the Visual Studio Project Designer.
With your project node selected in Solution Explorer, open the Project menu,
choose Properties (or right-click the project node in Solution Explorer, and click
Properties).

2. In the Project Designer, click the Signing tab.

W O R K F L O W I N T E G R A T I O N G U I D E 155

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

3. Select the Sign the assembly check box.
Specify an existing key file. In the Choose a strong name key file drop-down
list, select <Browse...>.

To enable development and testing, use the signing procedure to create a temporary
strong name key. When prompted with the Choose a strong name key file drop-down
list, select <New> and create a new strong name key.

4. Select the key file.
In the Select File dialog box, navigate to your key file or enter its path in the File
name box. Click Open to select it.

Visual Studio creates the strong name key and adds the .snk file to your server
workflow assembly project.

Creating a document viewer

Add a web page to the
project that serves as a
document viewer.

The Microsoft Dynamics Workflow site and other web based workflow clients
provide links that allow you to view the workflow document. The link opens a
SharePoint web page that displays information from the business document. To
create the link’s URL, workflow calls the IDynamicsWorkflow.GetViewerName
method from the server workflow assembly.

When you create a new workflow, you must create a web page that displays data
from your document. To simplify the development of the viewer, use the same
viewer base class as the document viewers of the existing Dynamics GP workflows.

The filename of your document viewer must match the name specified by your
GetViewerName method. If they are not identical, the links to your document viewer will
create errors when you try to view the document.

The following example is the lead document viewer from the SDK sample
application:

P A R T 2 C R E A T I N G A N E W W O R K F L O W

156 W O R K F L O W I N T E G R A T I O N G U I D E

Include the document viewer in the Visual Studio solution of your server workflow
assembly. To create a new document viewer, complete the following steps:

1. Create a Layouts folder.
In the Visual Studio Solution Explorer, right-click your workflow server class.
Choose Add >> New Folder from the menu. Name the folder Layouts.

2. Add a file to the Layouts folder.
In Solution Explorer, right-click the Layouts folder you created. Choose Add >>
New Item. Select HTML Page from the Templates presented by the Add New
Item window. Enter a name for your file and click Add.

3. Rename the file.
In Solution Explorer, right-click the HTML file you created and choose Rename.
Enter the name of your document viewer. Your document viewer must be a
.aspx file. Press Enter to save your filename.

4. Edit the file.
Open the file you created. Delete all file contents.

With the file renamed and empty, you can begin to build your document viewer.
Your document viewer uses the same basic structure as the viewers for the existing
Dynamics GP workflows.

<%@ Page Language="C#" MasterPageFile="DynamicsWorkflow.master"

Inherits="Microsoft.Dynamics.GP.Workflow.DocumentViewer,Microsoft.Dynamics.G

P.Workflow.Pages,Culture=neutral" EnableSessionState="false"

AutoEventWireup="true"%>

<%@ Register TagPrefix="Dynamics" Namespace="Microsoft.Dynamics.GP.Workflow"

Assembly="Microsoft.Dynamics.GP.Workflow.Pages, Version=10.0.0.0,

Culture=neutral" %>

<%@ Register Tagprefix="DynCommon"

Namespace="Microsoft.Dynamics.Workflow.Common"

Assembly="Microsoft.Dynamics.Workflow.Common, Version=10.0.0.0,

Culture=neutral"%>

<%@ Register Tagprefix="GPProxy" Namespace="Microsoft.Dynamics.GP.Proxy"

Assembly="Microsoft.Dynamics.GP.WebServices.Proxy, Version=10.0.0.0,

Culture=neutral"%>

<%@ Import Namespace="Microsoft.Dynamics.Workflow" %>

<%@ Import Namespace="Microsoft.Dynamics.GP.Workflow" %>

<%@ Register Tagprefix="SharePoint"

Namespace="Microsoft.SharePoint.WebControls" Assembly="Microsoft.SharePoint,

Version=12.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>

<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"

Assembly="Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,

PublicKeyToken=71e9bce111e9429c" %>

<script runat="server">

</script>

<asp:Content ID="Content3" ContentPlaceHolderID="PlaceHolderPageImage"

runat="server">

<SharePoint:ViewIcon Width="145" Height="54"

Src="/_layouts/images/generic.png" runat="server"/>

</asp:Content>

W O R K F L O W I N T E G R A T I O N G U I D E 157

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

<asp:Content ID="Content1" ContentPlaceHolderId="PlaceHolderMain"

runat="server">

<div runat="server" id="HelpTextSection" class="ms-standard-header

dyn-section-overview-title">

<h3 runat="server" id="WorkflowTypeLabel" />

</div>

</asp:Content>

The following sample code adds methods to the documents script node. When the
page loads, it stores the Id of the lead. The page overrides the base class
GetBusinessObjectKey to return a BusinessObjectKey that uniquely identifies the
current lead. The CurrentDocument property provides access to the data in the
business document. This <script> node is appended to the .aspx file from the
previous sample code.

<script runat="server">

private string leadId;

void Page_Load(Object sender, EventArgs e)

{

if (!this.IsPostBack)

{

leadId = this.CurrentDocument.Key.Id;

}

}

protected override Microsoft.Dynamics.Workflow.Common.

BusinessObjectKey GetBusinessObjectKey()

{

if (string.IsNullOrEmpty(this.Request.Params["LeadID"]))

{

DisplayInvalidParametersMessage();

}

Microsoft.Dynamics.Workflow.Common.BusinessObjectKey key =

Microsoft.Dynamics.Workflow.Common.

BusinessObjectKey.CreateInstance();

key.KeyParts.Add(new KeyPart<string>("LeadID",

this.Request.Params["LeadID"]));

return key;

}

public SalesLeadWebService.Lead CurrentDocument

{

get

{

return (SalesLeadWebService.Lead)this.BusinessObject;

}

}

</script>

P A R T 2 C R E A T I N G A N E W W O R K F L O W

158 W O R K F L O W I N T E G R A T I O N G U I D E

The following sample code adds a table to web page <div> element. The table
displays several fields containing lead data. Notice how the CurrentDocument
property is used to access the specific data fields from the lead document. The
<div> node completes the .aspx file that was used in the previous code examples.

<div runat="server" id="HelpTextSection" class="ms-standard-header

dyn-section-overview-title">

<h3 runat="server" id="WorkflowTypeLabel" />

 <table class="ms-descriptiontext dyn-section-overview-extended"

align=left>

<tr>

<td style="width: 150px">

<asp:Literal ID="Literal3" runat="server" Text="Lead Name:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.Name%>

</td>

</tr>

<tr>

<td style="width: 150px">

<asp:Literal ID="Literal1" runat="server" Text="Lead Id:">

</asp:Literal>

</td>

<td>

<%=leadId %>

</td>

<td style="width: 150px">

<asp:Literal ID="Literal2" runat="server" Text="Category:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.LeadBusinessCategory%>

</td>

</tr>

<tr>

<td style="width: 150px">

<asp:Literal ID="Literal4" runat="server" Text="Potential Revenue:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.PotentialRevenue.Value.ToString("C")%>

</td>

<td style="width: 150px">

<asp:Literal ID="Literal15" runat="server" Text="Qualified Lead:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.QualifiedLead%>

</td>

</tr>

W O R K F L O W I N T E G R A T I O N G U I D E 159

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

<tr>

<td style="width: 150px">

<asp:Literal ID="Literal8" runat="server" Text="Source:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.LeadSource%>

</td>

</tr>

<tr></tr>

<tr></tr>

<tr></tr>

<tr>

<td style="width: 150px">

<asp:Literal ID="Literal5" runat="server"

Text="Contact Information:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.Contact%>

</td>

</tr>

<tr>

<td style="width: 150px">

<asp:Literal ID="Literal7" runat="server" Text="Address 1:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.Address1%>

</td>

<td style="width: 150px">

<asp:Literal ID="Literal9" runat="server" Text="Address 2:">

</asp:Literal></td><td><%=this.CurrentDocument.Address2%>

</td>

</tr>

<tr>

<td style="width: 150px">

<asp:Literal ID="Literal11" runat="server" Text="City:">

</asp:Literal></td><td><%=this.CurrentDocument.City%>

</td>

<td style="width: 150px">

<asp:Literal ID="Literal12" runat="server" Text="State:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.State%>

</td>

</tr>

P A R T 2 C R E A T I N G A N E W W O R K F L O W

160 W O R K F L O W I N T E G R A T I O N G U I D E

<tr>

<td style="width: 150px">

<asp:Literal ID="Literal13" runat="server" Text="Zip:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.Zip%>

</td>

</tr>

<tr></tr>

<tr></tr>

<tr></tr>

<tr>

<td style="width: 250px">

<asp:Literal ID="Literal14" runat="server" Text="Assigned

salesperson:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.SalespersonID%>

</td>

</tr>

<tr>

<td style="width: 250px">

<asp:Literal ID="Literal6" runat="server" Text="Approved

salesperson:">

</asp:Literal>

</td>

<td>

<%=this.CurrentDocument.ApprovedSalespersonID%>

</td>

</tr>

</table>

</div>

Creating a workflow event subscription helper
application

Create an application
that performs the
workflow event
subscription.

To perform your workflow business logic, your workflow type subscribes to events
raised by the workflow server. You subscribe to the specific events for which you
have added business logic. For example, the lead sample workflow has business
logic for the StatusChanged event, so it must subscribe to that event.

When you subscribe to a workflow event, you associate the workflow event with an
event handler in your server workflow assembly. The
DynamicsWorkflowEvents.config file contains all of the workflow subscriptions for
your Workflow server. To create a new subscription, you must add your workflow
event and event handler to the DynamicsWorkflowEvents.config file.

The workflow framework provides a WorkflowEventManager that you will use to
add subscriptions to the DynamicsWorkflowEvents.config file. To use the
WorkflowEventManager, create an executable that uses the
WorkflowEventManager. You must run this application when you install your
workflow server assembly on the Microsoft Dynamics GP Workflow server.

W O R K F L O W I N T E G R A T I O N G U I D E 161

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

Create a Visual Studio project
To create the application to subscribe to workflow events, create a new Visual
Studio project. You can create the project as a separate solution or add it to your
server workflow assembly solution.

To create the project, complete the following steps:

1. Create a new project.
To create a subscription application, add a new Visual Studio project to your
server workflow assembly solution. In Visual Studio, open the File menu and
choose New >> Project. From the New Project window, select the desired
project type from the list of templates. Enter a name and specify a project
location. In the Solution list, select Add to Solution. Click OK.

2. Add references to the project.
From the Project menu, select Add References. The Add References window
opens. Click the Browse tab. Navigate to the Microsoft Dynamics GP
“Workflow” folder, typically found in the following location:

C:\Program Files\Microsoft Dynamics\Workflow

Select the following .dll file and click OK:

• Microsoft.Dynamics.GP.Workflow.dll

Also, add a reference to your server workflow assembly project. From the
Project menu, choose Add References. The Add References window opens.
Click the Projects tab. Select your server workflow assembly project from the
Project Name list. Click OK.

Open the class file
The following code sample shows the class Visual Studio creates for a console
application.

class Program

{

static void Main(string[] args)

{

}

}

Add the following using statements. Include the namespace of your server
workflow assembly. Notice how the following code sample adds the namespace of
the Microsoft.Dynamics.GP.Workflow.Samples.Server assembly created for the
lead sample workflow.

using Microsoft.Dynamics.Workflow;

using Microsoft.Dynamics.GP.Workflow.Samples.Server;

P A R T 2 C R E A T I N G A N E W W O R K F L O W

162 W O R K F L O W I N T E G R A T I O N G U I D E

Use the DynamicsWorkflowEventManager
To update the DynamicsWorkflowEvents.config file with a new subscription,
instantiate the Microsoft.Dynamics.Workflow.WorkflowEventManager object and
use its RegisterEventHandler method. The RegisterEventHandler method requires
you to supply the following parameters:

The following code sample uses the RegisterEventHandler to create a subscription
to the StatusChanged event for the lead sample application. Notice how the
targeted workflow is specified by namespace, type name, and the name of the event
handler method.

// Create an new event handler in the DynamicsWorkflowEvent

// configuration file.

WorkflowEventManager.RegisterEventHandler(

WorkflowEvent.StatusChanged,

DynamicsWorkflow.FindByName("Sample Salesperson Approval Workflow"),

"GPWorkflowSample",

typeof(LeadApprovalWorkflowSample),

"OnStatusChanged");

Add installation tasks
You run your event subscription helper application when you install your server
workflow assembly on the Workflow for Dynamics GP server. You may want to use
the application to perform other routine installation tasks.

For example, the Microsoft Dynamics GP Workflow SDK sample application uses a
web service to retrieve lead documents. To authorize workflow to use the web
service, the appropriate Dynamics Security Service operations and tasks must be
added to the Workflow Administrator role. To learn more about creating Dynamics
Security Service tasks, see Securing the web service of Chapter 8, “Web Service.”

Parameter Description

WorkflowEvent An enumeration value that specifies the
workflow event. The WorkflowEvent
eunumeration contains the following:
WorkflowStarted
StatusChanged
TaskCreated
TaskCompleted
TasksEscalated
TaskDeleted
TaskRolledBack
StepCompleted
WorkflowError
WorkflowCompleted
WorkflowDeactivated
BusinessObjectChanged

DynamicsWorkflow The workflow class that handles the specified
event.

SoftwareVendor A string that identifies the company that created
the workflow class.

Type Specifies the class that contains the
subscription’s event handler.

MethodName A string that specifies the name of the event
handler.

W O R K F L O W I N T E G R A T I O N G U I D E 163

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

To perform this additional task, add a method to your event subscription helper
application that updates the Dynamics Security Service. Use this method to update
the Dynamics Security Service Workflow Administrator role.

Before you add code to this method, you must first add several new reference to
your project. From the Visual Studio Project menu, choose Add References. Click
the .NET tab and select the following assembly, and then click OK:

• System.Web.Services.dll

From the Project menu, choose Add References. Click the Browse tab. Browse to the
“Workflow” folder, typically found in the following location:

C:\Program Files\Microsoft Dynamics\Workflow

Add the following .dll files:

• Microsoft.Dynamics.Workflow.dll
• Microsoft.Dynamics.Security.AdminServices.Proxy.dll

You also need to add the following using statements.

using System.Collections;

using Microsoft.Dynamics.Security.AdminServices.Proxy;

using System.Web.Services.Protocols;

The following code sample adds the Dynamics Security Service task that was
created during the installation of the web service to the Workflow Administrator
role. Notice how GUID values are used to specify the application, the workflow
administrator role, and the “View leads” task.

The code sample contains a URL for the Dynamics Security Service. The URL assumes the
Dynamics Security Service is installed on this server. To provide greater flexibility, add a
key to the application configuration file that specifies the URL. This allows you to update the
Dynamics Security Service where ever it is installed.

// Method adds the View leads task to the workflow admin role

static void AddDSSOperation()

{

DynamicsSecurityAdminService securityService =

new DynamicsSecurityAdminService();

securityService.Url =

@"http://localhost:49152/DynamicsAdminService.asmx";

securityService.UseDefaultCredentials = true;

SecurityContext securityContext = new SecurityContext();

ApplicationKey appKey = new ApplicationKey();

appKey.Id = "25cc1a21-2cc4-4b13-a1c8-eea186fb688a";

securityContext.ApplicationKey = appKey;

// Use a role key to specify the workflow administrator role

// The GUID value identifies the workflow admin

RoleKey roleKey = new RoleKey();

roleKey.Id = "196871c6-984c-4021-ab5d-424fda14b083";

Role role = securityService.GetRoleByKey(roleKey, securityContext);

P A R T 2 C R E A T I N G A N E W W O R K F L O W

164 W O R K F L O W I N T E G R A T I O N G U I D E

// Create a task key

// Specify the GUID that uniquely identifies the View Leads task

TaskKey taskKey = new TaskKey();

taskKey.Id = "A33871C6-8393-4040-803D-FA1EF7306136";

// Create an arraylist of task keys from the role's existing task keys

ArrayList taskList = new ArrayList();

foreach(TaskKey t in role.Tasks)

{

taskList.Add(t);

}

// Add the task key for the View Leads task

taskList.Add(taskKey);

// Replace the role's existing array with the array that contains

// the View Leads task key

role.Tasks = (TaskKey[])taskList.ToArray(typeof(TaskKey));

// Update the workflow admin role to include the new task

securityService.UpdateRole(role, securityContext);

}

To run this method, call the AddDSSOperation method from the console
application’s Main method.

class Program

{

static void Main(string[] args)

{

try

{

// Subscribe to the Status Changed event

WorkflowEventManager.RegisterEventHandler(

WorkflowEvent.StatusChanged,

DynamicsWorkflow.FindByName(

"Sample Salesperson Approval Workflow"),

"GPWorkflowSample",

typeof(LeadApprovalWorkflowSample),

"OnStatusChanged");

// Update the Dynamics Security Service

AddDSSOperation();

}

catch (Exception ex)

{

Console.WriteLine("Error completing administrative tasks");

Console.WriteLine("Error Message: " + ex.Message);

Console.WriteLine("Stack Trace: " + ex.StackTrace);

Console.WriteLine("Press any key to quit");

Console.ReadLine();

}

}

}

W O R K F L O W I N T E G R A T I O N G U I D E 165

C H A P T E R 9 S E R V E R W O R K F L O W A S S E M B L Y

Create an application configuration file
Add an application
configuration file to the
project.

To update the DynamicsWorkflowEvents.config file, you need to supply the file
path to that configuration file. Use an application configuration file to store this file
path.

To create an application configuration file, open the Project menu and choose Add
New Item. Select Application Configuration File from the Add New Item window
Templates list. Click Add.

From Solution Explorer, open the App.config file. The file contains an empty
configuration.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

</configuration>

In <configuration> add an <appSettings> node that adds a
BusinessObjectConfigurationPath key. The key value specifies the file path to the
DynamicsWorkflowEvents.config file. Typically, this will be in the following
location:

C:\Inetpub\wwwroot\wss\VirtualDirectories\port#\bin\DynamicsWorkflowEve
nts.config

You need to supply the port number where you installed Dynamics GP Workflow
web service.

The following code sample shows an application configuration file with a key that
specifies the location of the DynamicsWorkflowEvents.config file.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key ="BusinessObjectsConfigurationPath"

value = "C:\Inetpub\wwwroot\wss\VirtualDirectories\10072\bin\

DynamicsWorkflowEvents.config" />

</appSettings>

</configuration>

Building the assembly and application

Build the assembly and
the subscription
application.

Use Visual Studio to build your server workflow assembly and your subscription
application. Open your solution file with Visual Studio. From the Visual Studio
Build menu, choose Build Solution. Visual Studio builds your server workflow
assembly and your subscription application. Visual Studio places the assembly and
application in the “\bin\debug” folder of each project.

166 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 167

Chapter 10: Deploying the New Workflow
After building the components for the new workflow, you must deploy each
component. The following sections contain instructions for deploying and
registering your workflow components:

• Installing the application
• Installing the workflow document type
• Installing the web service
• Installing the server workflow assembly
• Installing the client workflow assembly
• Viewing the workflow

Installing the application

Install the back-office
application.

Install your back-office application for Microsoft Dynamics GP. Add your
application install files to the Dynamics GP client folder, typically found at the
following location:

C:\Program Files\Microsoft Dynamics\GP

Install your back-office application using your normal install procedure. When
installation is complete, close and reopen the Microsoft Dynamics GP client to
verify the success of your back-office application installation.

Installing the workflow document type

Install the new
document type
assembly.

Install the assembly that defines your document type. Place the file in the Web
Services for Microsoft Dynamics GP “bin” folder, typically found in the following
location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\bin

Installing the web service

Install the web service. To install a new web service, you must place your web service files into several
locations on the server where you installed Web Services for Microsoft Dynamics
GP.

Update the eConnect Transaction Requester
Add your document type to eConnect_Out_Setup table in the company database.
Typically, you will run a SQL script that inserts your document type into the
eConnect_Out_Setup table. To see an example of a SQL script that adds a document
type to the eConnect Transaction Requester, refer to Creating a web service on
page 114

Install the XSLT file
Install your XSLT file to the Dynamics GP web services “XSLT” folder, typically
found in the following location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\bin\XSLT

P A R T 2 C R E A T I N G A N E W W O R K F L O W

168 W O R K F L O W I N T E G R A T I O N G U I D E

Install the web service
Install your web service .asmx file to the Dynamics GP web service “WebServices”
folder, typically found in the following location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices

To help secure your web service, use the security properties of the .asmx file to
specify access permissions. Add the names of users or groups that use your web
service to the access list of your .asmx file.

For example, you typically want your web service to be accessed by the same users
as the Microsoft Dynamics GP web services. To change your .asmx file security
settings, right-click that file, and choose Properties. When the Properties window
opens, click the Security tab, and then click Add. From the Select Users, Computers,
or Groups window, type Authenticated Users into the Enter the object names to
select box, and then click OK. Mark the Allow check box for the Read and Read &
Execute permissions. Click OK to close the Properties window. Repeat these steps
for any other users or groups that you want to access your web service.

Place your web service code-behind file in the “bin” folder, typically in the
following location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\bin

Secure the web service
Place your web service security metadata helper application in the Dynamics GP
web services “GPWebServices” folder, typically found in the following location:

C:\Program Files\Microsoft Dynamics\GPWebServices

To add new security operations and tasks to roles in the Dynamics Security Service,
run your web service security metadata helper application.

The Dynamics Security Service uses Active Directory Application Mode (ADAM) to store
information about web service security roles, operations, and tasks. To allow the security
metadata helper application to add operations and tasks to ADAM, you must be logged in as
user who is an ADAM administrator. If you run the security metadata helper application
using a login that in not an ADAM administrator, ADAM will return a
“System.UnauthorizedAccessException” error. By default, the user who installed Dynamics
GP web services is an ADAM administrator. To add another user as an ADAM
administrator, see the Web Services Installation and Administration Guide.

Use the Dynamics Security Console to add your new security tasks and operations
to the appropriate Dynamics Security Service roles.

W O R K F L O W I N T E G R A T I O N G U I D E 169

C H A P T E R 1 0 D E P L O Y I N G T H E N E W W O R K F L O W

Installing the server workflow assembly

Install the server
workflow assembly
and assembly
configuration file.

You must install the server workflow assembly, the server workflow assembly
configuration file, and the event subscription helper application on the server
where you installed Microsoft Dynamics GP Workflow.

Before installing the server workflow assembly configuration file, be sure the file contains the
URL of the web service you will use with your server workflow assembly.

Install your server workflow assembly, and server workflow assembly
configuration file to the following folders:

• The workflow folder, typically found at the following location:

C:\Program Files\Microsoft Dynamics\Workflow.

• The Dynamics GP web services “bin” folder, typically found in the following
location:

C:\inetpub\wwwroot\wss\VirtualDirectories\port#\bin

You must supply the port number where you installed the Microsoft Dynamics
Workflow web service.

Add the assembly to the Global Assembly Cache
Add the server
workflow assembly to
the global assembly
cache.

You must also install your server workflow assembly into the global assembly
cache (GAC). You can add your assembly .dll file to the global assembly cache by
dragging the .dll file to the appropriate directory, or by using the Gacutil Tool.

If you want to drag the file, open a second instance of Microsoft Windows Explorer.
In the new Windows Explorer, open the “Assembly” folder, typically found in the
following location:

C:\Windows\Assembly

Drag and drop your server workflow assembly into the Assembly folder.

To use the Gacutil Tool, complete the following procedure.

1. Open the Visual Studio Command Prompt.
In the Program Group for Microsoft Visual Studio, point to Visual Studio Tools
and choose Visual Studio Command Prompt. A command prompt will be
displayed.

2. Change the working location to the folder where you placed your
server workflow assembly.
Using the command prompt, change the working location to the Dynamics GP
web service “Workflow” folder, typically found in the following location:

C:\Program Files\Microsoft Dynamics\Workflow

P A R T 2 C R E A T I N G A N E W W O R K F L O W

170 W O R K F L O W I N T E G R A T I O N G U I D E

3. Use the Gacutil Tool to load the assembly in the global assembly
cache.
Use the following command to add your server workflow assembly to the
global assembly cache:

gacutil -I "c:\Program Files\Microsoft Dynamics\Workflow\

ServerWorkflowAssembly.dll"

Replace ServerWorkflowAssembly with the name of your assembly.

Register the workflow
To add your workflow to your Microsoft Dynamics GP Workflow server, you
register your workflow assembly and workflow type with the Workflow server.
Before using the following registration commands, verify that the specified
workflow assembly has been installed in the “Workflow” folder:

C:\Program Files\Microsoft Dynamics\Workflow

When using the following registration utilities, the filename specified by /ASSEMBLY=
parameter should not include the file extension. For example, use
Microsoft.Dynamics.GP.Workflow.Samples.Server to represent an assembly named
Microsoft.Dynamics.GP.Workflow.Samples.Server.dll.

Register the workflow
schedule.

Use Microsoft.Dynamics.Workflow.Install.RegistrationSchedule.exe to register
your workflow type with Microsoft Dynamics GP Workflow server. Open a
command prompt and set the working directory to the “Workflow” folder:

C:\Program Files\Microsoft Dynamics\Workflow

Enter the following command. In the /ASSEMBLY parameter, use the name of your
server workflow assembly. Press Enter.

Microsoft.Dynamics.Workflow.Install.RegisterSchedule.exe /ACTION=LOAD

/DATABASE=DYNAMICS /ASSEMBLY=AssemblyName

Register the workflow
assembly.

Use Microsoft.Dynamics.Workflow.Install.ApplicationServer.exe to register your
new workflow with the workflow server.

Enter the following command. For the /ASSEMBLY parameter, specify the name of
your workflow assembly. For the /CLASSES parameter, specify the name of your
workflow type. Press Enter.

Microsoft.Dynamics.Workflow.Install.ApplicationServer.exe /ACTION=LOAD

/ASSEMBLY=AssemblyName /CLASSES=WorkflowType /COREPERFORMANCECOUNTERS=true

/WORKFLOWPERFORMANCECOUNTERS=true /DYNAMICSEVENTLOGSOURCES=true

To simplify installation, create a batch file that contains the preceding commands.

Install the subscription
application.

Install the subscription application
Install the application and the application configuration files to the workflow
“Workflow” folder, typically found in the following location:

C:\Program Files\Microsoft Dynamics\Workflow.

W O R K F L O W I N T E G R A T I O N G U I D E 171

C H A P T E R 1 0 D E P L O Y I N G T H E N E W W O R K F L O W

Subscribe to the workflow events
Execute the
subscription
application.

You created an event subscription helper application that adds your workflow
event handlers to the DynamicsWorkflowEvents.config file. You may also use the
application to add web service operations to the Workflow Administrator role in
the Dynamics Security Service. To complete these two steps, use the following
procedure to run your subscription application.

1. Open a Command Prompt.
From the Start menu, open Programs >> Accessories >> Command Prompt. A
command prompt will be displayed.

2. Change the working location to the folder where you placed your
subscription application.
Using the command prompt, change the working location to the “Workflow”
folder, typically found in the following location:

C:\Program Files\Microsoft Dynamics\Workflow

3. Run your subscription application.
Use the following command to run your subscription application:

SubscriptionApplication.exe

Replace SubscriptionApplication with the name of your application.

If you also use the event subscription helper application to update Dynamics Security
Service roles, you must ensure the web service security application has been installed
and run. The event subscription helper application cannot update roles until the
security operations and tasks have been added to the Dynamics Security Service.

Install the document viewer
Install the document viewer you created in the SharePoint “Layouts” folder,
typically found in the following location:

C:\Program Files\Common Files\Microsoft Shared\web server
extensions\12\templates\layouts

Installing the client workflow assembly

Install the client
workflow assembly
with the Microsoft
Dynamics GP client.

To install the client workflow assembly, you must place the assembly in the install
folder of the Microsoft Dynamics GP client and add entries to the Dynamics GP
client’s Dynamics.exe.config configuration file.

You must install your client workflow assembly on every Microsoft Dynamics GP client
that requires access to workflow.

Install the assembly
Copy your client workflow assembly to the Dynamic GP client folder on the
Dynamics GP client machine. Typically, the folder is in the following location:

C:\Program Files\Microsoft Dynamics\GP

P A R T 2 C R E A T I N G A N E W W O R K F L O W

172 W O R K F L O W I N T E G R A T I O N G U I D E

Register the client workflow assembly
Add the form factory
registration to the
client configuration
file.

To enable workflow on the Microsoft Dynamics GP client, you must register your
form factory or factories with the client. Use the following procedure to register the
form factories in your client workflow assembly with the Microsoft Dynamics GP
client.

1. Backup the Dynamics.exe.config file.
Browse to the Dynamics GP client folder, typically in the following location:

C:\Program Files\Microsoft Dynamics\GP

Make a copy of the Dynamics.exe.config file. Store the back up copy in a safe
location.

2. Edit the Dynamics.exe.config file.
Open the Dynamics.exe.config file in a text editor.

3. Add your form factory registrations.
The Dynamics.exe.config file contains a formFactories node that contains the
existing form factory registrations for Dynamics GP. To register your form
factory, you must add the following information:

You add a form factory for each Microsoft Dynamics GP client form that your
client workflow assembly supports. The following code sample adds a form
factory for the sample application Lead Maintenance form and the modal
dialog window. Notice how the factoryType specifies the fully-qualified name
of the form factory class followed by the name of the client workflow assembly.

<add name="Workflow-SalesLeads" productId="3333" formId="22000"

factoryType="Microsoft.Dynamics.GP.Workflow.Samples.Client.LeadWorkflowFo

rmFactory,Microsoft.Dynamics.GP.Workflow.Samples.Client" />

<add name="Workflow-SampleWorkflowStatus" productId="3333" formId="22002"

windowId="22001"

factoryType="Microsoft.Dynamics.GP.Workflow.Samples.Client.WorkflowStatus

FormFactory,Microsoft.Dynamics.GP.Workflow.Samples.Client" />

Parameter Description

name A name that uniquely identifies the workflow.

productId Specifies the product Id of the form associated with the form
factory.

formId Specifies the resource Id of the form associated with the form
factory.

windowId Specifies the resource Id of the window associated with the
form factory.

factoryType Specifies the form factory class and the name of the client
workflow assembly that contain the form factory class.

W O R K F L O W I N T E G R A T I O N G U I D E 173

C H A P T E R 1 0 D E P L O Y I N G T H E N E W W O R K F L O W

Viewing the workflow

Verify the workflow is
installed.

Before viewing your workflow, open the Start menu on the server where you
installed your web service. Choose Run and enter “iisreset”.

Open the Microsoft Dynamics Workflow web site. Click Administration. From the
Workflow List, click Select Workflow Type to Use. When Select Workflow Types to
Use opens, you should see your workflow in the list of Workflow Names.

174 W O R K F L O W I N T E G R A T I O N G U I D E

P
A

R
T

 3
: E

X
T

E
N

D
IN

G
 A

N
 E

X
IS

T
IN

G
 W

O
R

K
FLO

W

176 W O R K F L O W I N T E G R A T I O N G U I D E

Part 3: Extending an Existing
Workflow
This portion of the documentation describes how to extend an existing workflow. If
you have created an integration for one of the document types in Microsoft
Dynamics GP that has a workflow defined for it, you may want the data for your
integration to be accessible to the workflow. The following topics describes how to
extend an existing workflow:

• Chapter 11, “Designing a Workflow Extension,” describes a workflow
extension and the things you should consider when you are creating one.

• Chapter 12, “Web Service Extension,” explains how to create a web service
extension so that additional data from your Microsoft Dynamics GP integration
will be available for the workflow extension.

• Chapter 13, “Workflow Extension Assembly,” describes how to create the
workflow extension assembly. This assembly makes the data from an
integrating application available to be used with an existing workflow.

• Chapter 14, “Deploying the Workflow Extension,” explains how to create an
installation helper application and use it to deploy a workflow extension.

W O R K F L O W I N T E G R A T I O N G U I D E 177

Chapter 11: Designing a Workflow Extension
If you have created an integration for one of the document types in Microsoft
Dynamics GP that has a workflow defined for it, you may want the data for your
integration to be accessible to the workflow. This portion of the documentation
describes how to create a workflow extension for an existing workflow. The
workflow extension allows this additional data from the integrating application to
be used in a workflow. The following topics are discussed:

• Making data available to workflow
• Workflow extension assembly
• Data access

Making data available to workflow

If you have an integration for Microsoft Dynamics GP that works with one of the
documents that can have workflow defined for it, you may want the data for your
integration to be available to that workflow. For instance, the following sample
integration created with Dexterity manages additional data for each purchase order
document in Microsoft Dynamics GP.

When you make data from your integration available to workflow, the data can be
used by the workflow administrator as they set up the approval steps for the
workflow.

The additional data can also be made available in the business document summary
that is included with each workflow notification.

This integrating application
tracks additional data for each

purchase order document.

Data made available by
the workflow extension

can be used when
defining a workflow step.

P A R T 3 E X T E N D I N G A N E X I S T I N G W O R K F L O W

178 W O R K F L O W I N T E G R A T I O N G U I D E

Workflow extension assembly

The workflow extension assembly is a separate assembly that you will create and
register with the Dynamics workflow. It defines the additional properties that you
are making available to an existing workflow. It also defines the data that you want
to have included in the summary document for the workflow notification.

Carefully consider what specific data values you want to make available to use with
an existing workflow. Limit the number of values you add to those that make sense
to use when defining steps for the workflow. A different set of data values may be
appropriate for the summary document included with the workflow notification.

The sample purchase order integration included with the Microsoft Dynamics GP
Workflow SDK makes the following additional properties available for use when
creating workflow steps:

• SampleInt -– an integer value
• SampleString – a string value
• SampleCurrency – a currency (decimal) value

You will learn about creating a workflow extension assembly in Chapter 13,
“Workflow Extension Assembly,” which describes the process in detail.

Data access

Your Microsoft Dynamics GP integration will use the standard techniques
described in the Microsoft Dynamics GP Integration Guide to store the additional
data and keep it synchronized with the corresponding documents in the accounting
system.

The workflow extension assembly you create must be able to access the data for
your Microsoft Dynamics GP integration. Since each workflow uses the Dynamics
GP web service to access data for the core Dynamics GP documents, any additional
data for those documents will also be accessed through this web service. The web
service extension capability of the Dynamics GP web service is used to make the
additional data from your integration available with the core web service document
accessed by Microsoft Dynamics Workflow.

The sample purchase order integration included with the Microsoft Dynamics GP
Workflow SDK adds an Extension object to the ExtensionList for each purchase
order document. The Extension object contains the data values the extension is
making available to workflow.

You will learn about creating a web service extension that can be used with
workflow in Chapter 12, “Web Service Extension.” Detailed information about
using web service extensions for the Microsoft Dynamics GP web service can be
found in the Microsoft Dynamics GP Web Service Programmer’s Guide.

W O R K F L O W I N T E G R A T I O N G U I D E 179

C H A P T E R 1 2 W E B S E R V I C E E X T E N S I O N

Chapter 12: Web Service Extension
To make an integrating application’s data accessible to a workflow, you must add
the data as an extension for the corresponding document in the Microsoft Dynamics
GP web service. The information provided in this documentation describes the
essential steps required to add an integrating application’s data to the
corresponding document in the Dynamics GP web service.

In a full web service integration, you would likely implement additional web
service events in addition to the “Retrieved” event that is used by your workflow
extension to retrieve data for the workflow. Detailed information about using web
service extensions for the Microsoft Dynamics GP web service can be found in the
Microsoft Dynamics GP Web Service Programmer’s Guide.

Information about creating a web service extension for use with a workflow
extension is divided into the following sections:

• Creating a Visual Studio project
• Defining the extension data
• Adding the web service event handler
• Building the web service extension
• Registering the web service extension
• Testing the web service extension

Creating a Visual Studio project

The web service extension assembly is a Microsoft .NET assembly that you create
using Visual Studio. The assembly works with the Web Services for Microsoft
Dynamics GP installation to make additional data available with documents
retrieved through the web service.

To create a web service extension assembly, complete the following steps:

1. Create a new project.
Open Visual Studio. From File menu, select File >> New >> Project. In the New
Project window, select Visual C# as the project type. In Templates, select Class
Library from the list of Visual Studio installed templates.

Enter a name for the web service extension assembly. Review the Location and
Solution Name, and then click OK.

2. Add references to the Dynamics GP web service assemblies.
Add references to the following assemblies from the “Bin” folder for the
Dynamics GP web service.

• Microsoft.Dynamics.Common
• Microsoft.Dynamics.Common.Types
• Microsoft.Dynamics.GP.BusinessLogic

These assemblies are typically found in this location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

P A R T 3 E X T E N D I N G A N E X I S T I N G W O R K F L O W

180 W O R K F L O W I N T E G R A T I O N G U I D E

3. Add namespace references.
Add using statements to provide convenient access to the classes and methods
needed for the web service extension assembly. Include the following:

• Microsoft.Dynamics.Common
• Microsoft.Dynamics.GP
• System.Data.SqlClient
• System.Xml

4. Specify the name for the namespace.
In the code for the class library, specify the name for the namespace. Use a name
that indicates who created the web service extension or what type of extended
data is being made available. In the example included with the Workflow SDK,
the namespace “POExtension” is used.

Defining the extension data

You will add a class defined in the web service extension code to indicate what
additional data you want to add to the main document in the Dynamics GP web
service. For this sample, three additional properties were added to a purchase order
document. The following is the PurchaseOrderExtension class that defines these
properties for the sample web service extension:

public class PurchaseOrderExtension

{

private string sampleString;

private int sampleInt;

private decimal sampleCurrency;

public PurchaseOrderExtension() { }

public PurchaseOrderExtension(string StringValue, int IntValue,

decimal CurrencyValue)

{

this.SampleCurrency = CurrencyValue;

this.sampleInt = IntValue;

this.sampleString = StringValue;

}

public decimal SampleCurrency

{

get { return sampleCurrency; }

set { sampleCurrency = value; }

}

public int SampleInt

{

get { return sampleInt; }

set { sampleInt = value; }

}

public string SampleString

{

get { return sampleString; }

set { sampleString = value; }

}

}

W O R K F L O W I N T E G R A T I O N G U I D E 181

C H A P T E R 1 2 W E B S E R V I C E E X T E N S I O N

The PurchaseOrderExtension object will be serialized and added as an XML
fragment for the Extension object in the Dynamics GP web service. The web service
extension for your integration should follow this same basic pattern.

Adding the web service event handler

The web service event handler is a static class containing methods that respond to
requests from the Dynamics GP web service each time a web service operation is
performed. For the workflow extension, you must implement the “Retrieved” event
handler. The event handler for the web service extension used with workflow must
retrieve the integrating application’s data that corresponds to the main document.
The event handler creates and populates the object defined in the previous section.
Then it attaches that data to the Extension object. Finally, the Extension object is
added to the collection of Extension objects that are included with the document.

The following is the event handler for the sample web service extension. Notice that
the class is defined as static. The “Retrieved” static method will be called each time
a purchase order document is retrieved from the web service. The event handler
retrieves information from the “POPAddOn” table defined by the sample
integration. This data is used to populate the purchaseOrderExtension object, which
is added to the Extensions collection and returned with the purchase order
document.

The extension was given the name “POAddOn” when it was added to the Extensions
collection. This name will be needed when the workflow extension assembly is created.

public static class PurchaseOrderExtensionEventHandler

{

public static void Retrieved(object sender, BusinessObjectEventArgs e)

{

PurchaseOrder purchaseOrder;

Connection connection;

if (e.BusinessObject.GetType() == typeof(PurchaseOrder))

{

purchaseOrder = (PurchaseOrder)e.BusinessObject;

// Get the connection to the database for the current company

connection = Connection.GetInstance();

// The SQL command to retrieve the additional Purchase Order

// information

string selectCommand = "SELECT SampleString, SampleInteger,

SampleCurrency FROM POPAddOn WHERE PONUMBER='" +

purchaseOrder.Key.Id + "'";

SqlDataAdapter adapter = new SqlDataAdapter(selectCommand,

(SqlConnection)connection.GetConnection(

e.Context.OrganizationKey));

DataTable table = new DataTable();

adapter.Fill(table);

if (table.Rows.Count > 0)

{

// Get the data from the SQL result

P A R T 3 E X T E N D I N G A N E X I S T I N G W O R K F L O W

182 W O R K F L O W I N T E G R A T I O N G U I D E

PurchaseOrderExtension purchaseOrderExtension = new

PurchaseOrderExtension(

table.Rows[0].ItemArray[0].ToString(),

Convert.ToInt32(table.Rows[0].ItemArray[1]),

Convert.ToDecimal(table.Rows[0].ItemArray[2]));

// Build the Extension object to return from the web service

Extension poExtension = new Extension("POAddOn",

purchaseOrderExtension);

// Add the extension to the Purchase Order object

e.BusinessObject.Extensions.Add(poExtension);

}

}

}

}

This completes the code required for the web service extension assembly.

Building the web service extension

An additional step is required before you build the web service extension assembly.
When used with a workflow extension, a copy of the web service extension
assembly must be added to the global assembly cache (GAC). To do this, the web
service extension assembly must be compiled using a strong name key.

To specify a strong name key, display the properties for the web service extension
project. Select the Signing tab and mark the “Sign the assembly” check box. You can
generate a strong name key (.snk) file at the point, or use a .snk file you previously
created.

It’s a good idea to use the same .snk file for the projects in your web service extension and
workflow extension.

You can now build the web service extension assembly. The completed web service
extension assembly should be copied to the same location as the other assemblies
for the Dynamics GP web service. Typically, this will be the following:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

Specify the .snk file to be
used when building the

web service extension
assembly.

W O R K F L O W I N T E G R A T I O N G U I D E 183

C H A P T E R 1 2 W E B S E R V I C E E X T E N S I O N

Registering the web service extension

To have events for the Dynamics GP web service be run, they must be registered.
The file named BusinessObjectFile.config contains the registrations for all of the
additional events that are run by the Dynamics GP web service. This file is in XML
format. It is located in the Dynamics GP web service “bin” folder, typically found in
this location:

C:\Program Files\Microsoft Dynamics\GPWebServices\WebServices\Bin

You will add an entry to this file so that the “retrieved” event for the web service
document to which you added additional data will retrieve that data.

Refer to the Microsoft Dynamics GP Web Service Programmer’s Guide for complete details
about registering a web service extension.

DictionaryEntry elements
The BusinessObjectFile.config contains one <DictionaryEntry> element for each
web service object that can have events registered for it. For convenience, the entries
are in alphabetical order so they can be found more easily.

Not all objects have <DictionaryEntry> entries in this configuration file. For
instance, the Batch object isn’t included in the default version of this file. If you are
extending the batch workflows and have a web service extension for the Batch
object, you will need to add a <DictionaryEntry> element for it. The easiest way to
do this is by copying an existing element.

The <Key> for the <DictionaryEntry> element is the complete name of the business
object. The complete name has the prefix Microsoft.Dynamics.GP, followed by the
name of the object. The name of the object corresponds to the class name you see in
the Dynamics GP Web Service Reference. As an example, the complete name for the
purchase order object is: Microsoft.Dynamics.GP.PurchaseOrder.

Event elements
A <DictionaryEntry> element will have one or more <Event> elements, each
describing an event for the business object. Each <Event> element has the
following:

EventName The name of the event being registered. This corresponds to one of
the events listed in the Microsoft Dynamics GP Web Service Programmer’s Guide.

EventHandlerType Specifies the type of event handler needed for the event.

SoftwareVendor Identifies who added the event.

Type The qualified name that indicates the namespace and static class containing
the event handler method for the event.

StaticMethod The name of the static method that will be run for the event. The
signature for this static method must be appropriate for the type of event.

Assembly The name of the web service extension assembly that contains the
static method for the event.

Execute A boolean value that allows an event to be turned on or off. The value
must be set to true for an event to be processed.

P A R T 3 E X T E N D I N G A N E X I S T I N G W O R K F L O W

184 W O R K F L O W I N T E G R A T I O N G U I D E

Example
The following example is the web service event registration for the sample web
service extension. This web service extension works with purchase order
documents, so entry in the BusinessObjectFile.config will be added to this section:

<DictionaryEntry>

<Key xsi:type="xsd:string">Microsoft.Dynamics.GP.PurchaseOrder</Key>

<Value xsi:type="BusinessObjectConfiguration">

The following is the registration for the “Retrieved” event for the purchase order
document.

<Event>

<EventName>Retrieved</EventName>

<EventHandlerType>

<Type>Microsoft.Dynamics.Common.BusinessObjectEventHandler</Type>

<Assembly>Microsoft.Dynamics.Common</Assembly>

</EventHandlerType>

<EventHandler>

<SoftwareVendor>MicrosoftDocumentation</SoftwareVendor>

<Type>POExtension.PurchaseOrderExtensionEventHandler</Type>

<StaticMethod>Retrieved</StaticMethod>

<Assembly>POExtension</Assembly>

<Execute>true</Execute>

</EventHandler>

</Event>

Be sure that the static method and assembly names match the names that you used
when you created the web service extension assembly.

Testing the web service extension

It’s a good idea to test the web service extension before you use it with a workflow
extension. You can do this using a standard web service call to the Dynamics GP
web service to retrieve a document for which you have added additional data. The
data you added should be included in the Extensions collection for the document
you retrieved.

You should use the “iisreset” command to be sure that your web service extension has been
loaded into memory.

The following C# example tests the sample web service extension. It retrieves a
purchase order document, and then looks through the Extensions collection to find
out whether an extension with the name “POAddOn” has been added. If it has, the
XML fragment containing the extension data is displayed.

using System;

using System.Collections.Generic;

using System.Text;

using System.Windows.Forms;

using ExtensionTest.DynamicsGPService;

namespace ExtensionTest

{

class Program

{

W O R K F L O W I N T E G R A T I O N G U I D E 185

C H A P T E R 1 2 W E B S E R V I C E E X T E N S I O N

static void Main(string[] args)

{

CompanyKey companyKey;

Context context;

PurchaseTransactionKey purchaseOrderKey;

PurchaseOrder purchaseOrder;

Extension[] extensions;

// Create an instance of the web service

DynamicsGP wsDynamicsGP = new DynamicsGP();

// Be sure the default credentials are used

wsDynamicsGP.UseDefaultCredentials = true;

// Create a context with which to call the web service

context = new Context();

// Specify which company to use (sample company)

companyKey = new CompanyKey();

companyKey.Id = (-1);

// Set up the context object

context.OrganizationKey = (OrganizationKey)companyKey;

context.CultureName = "en-US";

// Create a purchase transaction key to specify the purchase order

purchaseOrderKey = new PurchaseTransactionKey();

purchaseOrderKey.Id = "PO2074";

// Retrieve the purchase order object

purchaseOrder = wsDynamicsGP.GetPurchaseOrderByKey(

purchaseOrderKey, context);

// Get the extensions

extensions = purchaseOrder.Extensions;

// Look at the extension objects

foreach (Extension ex in extensions)

{

if (ex.ExtensionId == "POAddOn")

{

// Display the purchase order object's extension inner XML

MessageBox.Show(ex.DocExtension.InnerXml);

}

}

}

}

}

186 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 187

Chapter 13: Workflow Extension Assembly
The workflow extension assembly makes the data from an integrating application
available to be used with an existing workflow. Information about creating a
workflow extension assembly is divided into the following sections:

• Creating a Visual Studio project
• Adding a resources file
• Adding the workflow extension code
• Building the workflow extension

Creating a Visual Studio project

The workflow extension assembly is a Microsoft .NET assembly that you create
using Visual Studio. The assembly works with the Microsoft Dynamics GP
Workflow installation to make additional data available to an existing workflow.

To create a workflow extension assembly, complete the following steps:

1. Create a new project.
Open Visual Studio. From File menu, select File >> New >> Project. In the New
Project window, select Visual C# as the project type. In Templates, select Class
Library from the list of Visual Studio installed templates.

Enter a name for the workflow extension assembly. Review the Location and
Solution Name, and then click OK.

2. Add references to the required assemblies.
Add references to the following assemblies used for Dynamics GP Workflow.

• Microsoft.Dynamics.Common
• Microsoft.Dynamics.Common.Types
• Microsoft.Dynamics.Workflow
• Microsoft.Dynamics.Workflow.Controls

These assemblies are typically found in this location:

C:\Program Files\Microsoft Dynamics\Workflow

Add references to the following additional assemblies used for Dynamics GP
Workflow:

• Microsoft.Dynamics.Workflow.Common
• Microsoft.Dynamics.GP.WebServices.Proxy

These assemblies are typically found in the “bin” folder of the virtual directory
used by the Workflow web service:

C:\Inetpub\wwwroot\wss\VirtualDirectories\port#\bin

You will need to know the port number you are using for the virtual directory
that the Workflow web service is installed into.

P A R T 3 E X T E N D I N G A N E X I S T I N G W O R K F L O W

188 W O R K F L O W I N T E G R A T I O N G U I D E

Finally, add a reference to the web service extension assembly containing the
class that defines the extended data. For the sample web service extension this
is a reference to the POExtension assembly.

3. Add namespace references.
Add using statements to provide convenient access to the classes and methods
needed for the workflow extension assembly. Include the following:

• Microsoft.Dynamics.Workflow
• Microsoft.Dynamics.Workflow.Common
• Microsoft.Dynamics.Workflow.Controls
• Microsoft.Dynamics.GP.Proxy
• System.Globalization
• System.Reflection

You will also want to add a using statement that references the web service
extension assembly. For the sample workflow extension, this is a reference to
the POExtension assembly.

4. Save and close the solution.
Save all of the files and close the solution.

5. Manually edit the project file.
To make the workflow extension assembly work properly, you must manually
edit the project file used for the extension. Use a text editor such as Notepad to
open the project (.csproj) file you just created.

Locate the <RootNamespace> element, and remove any value from it so that it
appears in the file as:

<RootNamespace></RootNamespace>

Save the changes to the file and then re-open the solution in Visual Studio.

Adding a resources file

The names of the values made available to the workflow through the workflow
extension assembly are stored in a resources file. To add a resource file to the
project, complete the following procedure.

1. Add a resources file.
Choose Add Component from the Project menu. In the list of templates, choose
Resources File.

2. Name the resources file.
The resources file name must exactly match the name of the workflow extension
assembly (with exception of the file extension). For example, the sample
workflow extension assembly is named POWorkflowExtension.dll, so the
resources file is named POWorkflowExtension.resx.

Click Add to add the file to the project.

W O R K F L O W I N T E G R A T I O N G U I D E 189

C H A P T E R 1 3 W O R K F L O W E X T E N S I O N A S S E M B L Y

3. Add content to the resources file.
Open the resources file and add an entry for each data item you want to make
available to workflow through the workflow extension. The Name uniquely
identifies the item, while the Value indicates the name that will be displayed for
the item. The following illustration shows the resources file defined for the
sample workflow extension.

Save the changes to the resources file.

Adding the workflow extension code

The code for the workflow extension is defined in a single public class. You will
implement three handler methods in this class to do the following:

• Return available properties from your workflow extension.

• Return the base business object with the additional information added by the
web service extension.

• Return information about the new properties you are making available, for use
in a summary document for the business object.

The main class will look like the following example:

public class WorkflowExtension

{

}

GetAvailableProperties
This method returns all of the property values you want your workflow extension
to make available to the workflow. These properties will be available to use when
defining workflow steps.

The property definitions use a GUID value to define which extension defined them.
You will need to generate your own GUID value for the properties that you are
adding. Do this using a tool such as GUIDGen, which is included with Visual
Studio.

The following example is the GetAvailableProperties method defined for the
sample workflow extension. It defines a GUID that will be used to identify which
extension added the additional properties. Each new property must include the
following:

P A R T 3 E X T E N D I N G A N E X I S T I N G W O R K F L O W

190 W O R K F L O W I N T E G R A T I O N G U I D E

• The owner GUID

• A string value specifying how the property is accessed. Typically this is the
property name in the class defined for the web service extension. For some data
types, such as decimals, it can include a modifier to return just the value.

• The display name for the property. This value is retrieved from the resources
file defined earlier.

The GetAvailableProperties method uses a private helper method named
GetString() to retrieve information from the resource file. This helper method is also
shown below.

public static void GetAvailableProperties(object sender,

GetAvailablePropertiesEventArgs args)

{

Guid ownerId = new Guid("1D4F9BFB-2138-4794-9F8A-CB87BD346379");

// Add the SampleString property

args.Properties.Add(new StringFilterableProperty(ownerId, "SampleString",

GetString("PurchaseOrder_SampleString", args.CultureInfo)));

// Add the SampleCurrency property

args.Properties.Add(new NumberFilterableProperty(ownerId,

"SampleCurrency", GetString("PurchaseOrder_SampleCurrency",

args.CultureInfo)));

// Add the SampleInt property

args.Properties.Add(new NumberFilterableProperty(ownerId, "SampleInt",

GetString("PurchaseOrder_SampleInt", args.CultureInfo)));

}

private static string GetString(string resourceId, CultureInfo cultureInfo)

{

return Microsoft.Dynamics.Common.ResourceHelper.GetString(resourceId,

Assembly.GetAssembly(typeof(WorkflowExtension)), cultureInfo);

}

GetBusinessObject
This method returns the base business object along with the additional information
added by the web service extension. This method also uses a GUID value to identify
which workflow extension is adding to the workflow. You can use the same GUID
value that you created for the additional properties.

The following is the GetBusinessObject method for the sample workflow extension.
It is adding to the Purchase Order workflow, so it is retrieving the ID of the
workflow by using the workflow name. Use the following names when looking up
the workflow:

• Dynamics GP Purchase Order Approval Workflow
• Dynamics GP Sales Quote Approval Workflow
• Dynamics GP Customer Credit Limit Override Approval Workflow
• Dynamics GP Payables Batch Approval Workflow
• Dynamics GP Receivables Batch Approval Workflow
• Dynamics GP General Ledger Batch Approval Workflow

W O R K F L O W I N T E G R A T I O N G U I D E 191

C H A P T E R 1 3 W O R K F L O W E X T E N S I O N A S S E M B L Y

The GetBusinessObject method uses a private helper method named
GetPOExtension to retrieve the additional purchase order extension information
that is being made available to the workflow. This private method is also shown
below.

public static void GetBusinessObject(object sender,

GetBusinessObjectEventArgs args)

{

// Need to define ownership of the object added

Guid ownerId = new Guid("1D4F9BFB-2138-4794-9F8A-CB87BD346379");

Guid primaryObjectId = DynamicsWorkflow.FindByName(

"Dynamics GP Purchase Order Approval Workflow").Key.Id;

PurchaseOrder purchaseOrder =(PurchaseOrder)args.Objects

[primaryObjectId];

args.Objects.Add(ownerId, GetPOExtension(purchaseOrder));

}

private static POExtension.PurchaseOrderExtension

GetPOExtension(PurchaseOrder purchaseOrder)

{

// Retrieve the Purchase Order Extension from the purchase order document

foreach (Extension extension in purchaseOrder.Extensions)

{

if (extension.ExtensionId == "POAddOn")

{

Microsoft.Dynamics.Common.Extension e = new

Microsoft.Dynamics.Common.Extension();

e.ExtensionId = "POAddOn";

e.DocExtension = extension.DocExtension;

e.Deserialize(typeof(POExtension.PurchaseOrderExtension));

return (POExtension.PurchaseOrderExtension)e.Obj;

}

}

return null;

}

GetSummaryInformation
The GetSummaryInformation method returns display information for the
additional properties being added to a workflow. This information will be included
in summary documents for the workflow, which are available with the workflow
notification. The values defined in the GetSummaryInformation method are the
only ones added to the summary information for the workflow document.

The following is the GetSummaryInformation method defined in the sample
workflow extension. It adds the integer and string values from the workflow
extension to the summary information for the purchase order document. The
GetSummaryInformation method uses the same GetString() helper method that the
GetAvailableProperties method does.

public static void GetSummaryInformation(object sender,

GetSummaryInformationEventArgs args)

{

POExtension.PurchaseOrderExtension poExt = GetPOExtension(

(PurchaseOrder)args.BusinessObject);

int priority = args.SummaryInformation.SummaryInformation.Count + 1;

P A R T 3 E X T E N D I N G A N E X I S T I N G W O R K F L O W

192 W O R K F L O W I N T E G R A T I O N G U I D E

args.SummaryInformation.SummaryInformation.Add(new

SummaryInformation("SampleInt", poExt.SampleInt.ToString(), priority++,

GetString("PurchaseOrder_SampleInt", args.CultureInfo)));

args.SummaryInformation.SummaryInformation.Add(new

SummaryInformation("SampleString", poExt.SampleString, priority++,

GetString("PurchaseOrder_SampleString", args.CultureInfo)));

}

Building the workflow extension

An additional step is required before you build the workflow extension assembly.
The workflow extension assembly must be added to the global assembly cache
(GAC). To do this, the workflow extension assembly must be compiled using a
strong name key.

To specify a strong name key, display the properties for the workflow extension
project. Select the Signing tab and mark the “Sign the assembly” check box. You can
generate a strong name key (.snk) file at the point, or use a .snk file you previously
created.

It’s a good idea to use the same .snk file for the projects in your web service extension and
workflow extension.

You can now build the workflow extension assembly.

Specify the .snk file to be
used when building the

web service extension
assembly.

W O R K F L O W I N T E G R A T I O N G U I D E 193

Chapter 14: Deploying the Workflow Extension
Deploying a workflow extension assembly is a multi-step process. To make the
process easier, you will create a “helper” application that will register your
workflow extension with the Microsoft Dynamics GP Workflow. Information about
deploying a workflow extension is contained in the following sections:

• Web service extension
• Adding assemblies to the global assembly cache
• Installation helper
• Registering the workflow extension

Web service extension

The web service extension assembly should be deployed and operating properly
before you attempt to deploy the workflow extension. Refer to Building the web
service extension on page 182 and Registering the web service extension on page 183 for
details abut deploying the web service extension that you will be using with your
workflow extension.

Adding assemblies to the global assembly cache

Both the workflow extension assembly and the web service extension assembly
must be added to the global assembly cache (GAC). You can add your assembly to
the global assembly cache by dragging the .dll file to the appropriate folder, or by
using the Gacutil Tool.

To to add the file by dragging, open an instance of Microsoft Windows Explorer. In
the new Windows Explorer, open the folder C:\Windows\Assembly. Drag the
workflow extension assembly and the web service extension assembly to the
Assembly folder.

To use the Gacutil Tool, use the following procedure.

1. Open the Visual Studio Command Prompt.
In the Program Group for Microsoft Visual Studio, point to Visual Studio Tools
and choose Visual Studio Command Prompt. A command prompt will be
displayed.

2. Specify the working location.
Using the command prompt, change the working location to the folder where
you have created the workflow extension assembly or the web service extension
assembly.

3. Use the Gacutil Tool to load the assembly in the global assembly
cache.
Use the following command to add your server workflow assembly to the
global assembly cache:

gacutil -I <Complete Path>

Replace <Complete Path> with the complete path and filename of the assembly
you are adding to the global assembly cache.

P A R T 3 E X T E N D I N G A N E X I S T I N G W O R K F L O W

194 W O R K F L O W I N T E G R A T I O N G U I D E

Installation helper

The registration for a workflow extension is complex. To help with this process, you
will create an “installation helper.” This is a command-line application that you will
use to register the workflow extension.

To create the installation helper application, complete the following steps:

1. Create a new project.
Open Visual Studio. From File menu, select File >> New >> Project. In the New
Project window, select Visual C# as the project type. In Templates, select
Console Application from the list of Visual Studio installed templates.

Enter a name for the application. Review the Location and Solution Name, and
then click OK.

2. Add references to the required assemblies.
Add a reference to the following assembly used for Dynamics GP Workflow:

• Microsoft.Dynamics.Workflow

This assembly is typically found in the location:

C:\Program Files\Microsoft Dynamics\Workflow

Also, add a reference to the workflow extension assembly that you want to
register with workflow.

3. Add a namespace reference.
Add a using statement to provide convenient access to the classes and methods
in the following assembly:

• Microsoft.Dynamics.Workflow

4. Add the Register method.
The Register method is a static method that performs the registration for the
workflow extension. Add this method to the main class for the command line
application. The following example shows this method used to register the
sample workflow extension.

static void Register()

{

WorkflowEventManager.RegisterStepConditionExtension(

DynamicsWorkflow.FindByName("Dynamics GP Purchase Order Approval

Workflow"),

"Sample",

typeof(WorkflowExtension));

}

Notice that the workflow the extension is to be used with is retrieved based on
its name. Use one of the following values to specify the workflow you are
extending:

W O R K F L O W I N T E G R A T I O N G U I D E 195

C H A P T E R 1 4 D E P L O Y I N G T H E W O R K F L O W E X T E N S I O N

• Dynamics GP Purchase Order Approval Workflow
• Dynamics GP Sales Quote Approval Workflow
• Dynamics GP Customer Credit Limit Override Approval Workflow
• Dynamics GP Payables Batch Approval Workflow
• Dynamics GP Receivables Batch Approval Workflow
• Dynamics GP General Ledger Batch Approval Workflow

The second parameter to the RegisterStepConditionExtension method is a
string that identifies who is registering the workflow extension.

5. Add code to the Main method.
In the Main method for the application, add a call to the Register() method you
just created.

static void Main(string[] args)

{

Register();

}

6. Build the application.
Choose Build Solution to build the installation application.

7. Add an application configuration file.
To work properly, the installation helper application must have an application
configuration (app.config) file that specifies where a workflow configuration
file is located.

You can use Visual Studio to add an application configuration file. To to this,
choose Add New Item in Project menu. In the list of available templates, choose
Application Configuration File. Name the file App.config and click Add.

Use the editor in Visual Studio to make the App.config file look like the
following:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key ="BusinessObjectsConfigurationPath" value =

"C:\Inetpub\wwwroot\wss\VirtualDirectories\10072\bin\

DynamicsWorkflowEvents.config "/>

 </appSettings>

</configuration>

The standard path to the Workflow web service is shown in this example. You
will need to update the path to use the port number (likely something other
than 10072) that is being used for the Workflow web service.

Registering the workflow extension

To register your workflow extension, locate and run the installation helper
application you created. This application will locate the
DynamicsWorkflowEvents.config file, and add a large entry to it that defines the
necessary events for your workflow extension. This config file can be found in the
location specified by the App.config file used by the installation helper.

196 W O R K F L O W I N T E G R A T I O N G U I D E

P
A

R
T

 4
: D

Y
N

A
M

IC
S

 W
O

R
K

FLO
W

 W
E

B
 S

E
R

V
IC

E

198 W O R K F L O W I N T E G R A T I O N G U I D E

Part 4: Dynamics Workflow Web
Service
This portion of the documentation describes how to connect to and use the
Dynamics Workflow web service from an external application. The following topics
are discussed:

• Chapter 15, “Connecting to the Web Service,” explains how to create a
connection to the Dynamics Workflow web service.

• Chapter 16, “Using the Web Service,” provides techniques and examples that
will be helpful as you use the Dynamics Workflow web service.

W O R K F L O W I N T E G R A T I O N G U I D E 199

Chapter 15: Connecting to the Web Service
To perform actions with the Microsoft Dynamics Workflow web service from an
external application, your application must create a connection to it.

If you are accessing the Dynamics Workflow web service through the client workflow
controller, be sure to use the client “helper” assembly to access the web service, rather than
the techniques described here.

The following topics describe how to connect to this web service:

• Web service URL
• Workflow web service proxy
• Web service namespace
• Creating a web service instance

Web service URL

The Dynamics Workflow web service is accessible through a standard web browser.
Simply supply the URL to the WorkflowService.asmx file that defines the web
service interface. This web service is installed into the same location as several web
services used by Office SharePoint Server. By default, the URL to this file will be:

http://machine_name:port/_vti_bin/WorkflowService.asmx

You will need to substitute the machine name and the port number for your Office
SharePoint Server installation. When you view this file, you will see a list of the
operation (web methods) available in the service. This is shown in the following
illustration.

Click the individual operations to see the SOAP messages that are sent when the
operations are performed and results are returned. For most web services, you
would be able to click Service Description to see the entire Web Service Description
Language (WSDL) file that completely describes the web service. Because the
Dynamics Workflow web service is installed in the same location as several Office
SharePoint Server web services, security restrictions will prevent the WSDL from
being displayed. This means the best way to access the Dynamics Workflow web
service is to use a proxy assembly, which is described in the next section.

P A R T 4 D Y N A M I C S W O R K F L O W W E B S E R V I C E

200 W O R K F L O W I N T E G R A T I O N G U I D E

Workflow web service proxy

To access the Dynamics Workflow web service, you will use a proxy assembly. This
assembly is named Microsoft.Dynamics.Workflow.Proxy.dll, and is found in the
Microsoft Dynamics GP installation folder. You will create a reference in your
Visual Studio project to access this proxy assembly. This will provide access to a set
of methods that closely match those described in the Dynamics Workflow web
service WSDL document.

You will need to include the web service proxy assembly with your application that
accesses the Dynamics Workflow web service.

Web service namespace

In Visual Studio, the classes defined in the Dynamics Workflow proxy assembly
will be added to a separate namespace in the project. To make it easier to reference
the classes, methods, and enumerations from the Dynamics Workflow web service,
you will want to add this namespace to your application code. For instance, the
following C# statement will add this namespace to the current application.

using Microsoft.Dynamics.Workflow.Proxy;

Adding the using statement will keep you from having to fully-qualify the classes,
methods, and enumerations you refer to in the Dynamics Workflow web service
proxy.

Creating a web service instance

After you have created a reference to the Dynamics Workflow proxy assembly, you
will create an instance of the service so you can access the web service methods. The
“DynamicsWorkflow” class in the proxy assembly represents the base web service.
You will create an instance of this class that will provide access to the web service
methods.

Create a reference to the
Microsoft.Dynamics.Workflow.Proxy.dll
to allow access the Dynamics Workflow

web service.

W O R K F L O W I N T E G R A T I O N G U I D E 201

C H A P T E R 1 5 C O N N E C T I N G T O T H E W E B S E R V I C E

The following example shows the C# code required to create an instance of the
Dynamics Workflow web service.

// Create an instance of the web service

DynamicsWorkflow wsWorkflow = new DynamicsWorkflow();

The web service instance also provides access to properties that control how the
web service is called. For instance, when accessing the Dynamics Workflow web
service you can specify that the current user’s login credentials will be used for the
web service call. The following C# code shows how this is done for a project created
in Visual Studio.

// Be sure that default credentials are being used

wsWorkflow.UseDefaultCredentials = true;

The web service instance also specifies the URL of the web service to be accessed.
You will use the URL of the Dynamics Workflow web service for your workflow
installation. The following C# code shows how the URL is specified.

// Specify the URL used to access the Workflow web service

wsWorkflow.Url = "http://WorkflowServer:10072/_vti_bin/WorkflowService.asmx";

You will need to substitute the server name and port number that are appropriate
for your workflow installation.

202 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 203

Chapter 16: Using the Web Service
This portion of the documentation provides information you will need when using
the Dynamics Workflow web service. The following topics are discussed:

• Dynamics Workflow Web Service Reference
• Dynamics Workflow web service example
• Business object keys
• BusinessObjectKey reference

Dynamics Workflow Web Service Reference

The Dynamics Workflow Web Service Reference is an online help file that provides
detailed information about the commonly-used methods, classes, and enumerations
available in the Dynamics Workflow web service proxy assembly. Use this
comprehensive reference as you learn about the object model for the Dynamics
Workflow web service. The links in the help file make it easy to browse through the
properties of an object and see the other objects related to it.

Dynamics Workflow web service example

The following is a basic example that demonstrates how to access the Dynamics
Workflow web service through the web service proxy assembly. This C# example
retrieves all of the workflow tasks for the current user and displays them in a
dialog. Notice how the example creates an instance of the web service from the
proxy assembly, and then specifies the URL of the Dynamics Workflow web service
to access.

using System;

using System.Collections.Generic;

using System.Text;

using System.Windows.Forms;

using Microsoft.Dynamics.Workflow.Proxy;

namespace WorkflowWebServiceSample

{

class Program

{

static void Main(string[] args)

{

CompanyKey companyKey;

WorkflowTask[] tasks;

// Create an instance of the web service

DynamicsWorkflow wsWorkflow = new DynamicsWorkflow();

// Specify the URL used to access the Workflow web service

wsWorkflow.Url =

"http://WorkflowServer:10072/_vti_bin/WorkflowService.asmx";

// Be sure that default credentials are being used

wsWorkflow.UseDefaultCredentials = true;

// Create the company key for the sample company

companyKey = new CompanyKey();

companyKey.Id = (-1);

P A R T 4 D Y N A M I C S W O R K F L O W W E B S E R V I C E

204 W O R K F L O W I N T E G R A T I O N G U I D E

// Get tasks for this user, including completed tasks

tasks = wsWorkflow.GetTasksForCurrentUser(companyKey, true);

// Display the list of tasks

StringBuilder taskList = new StringBuilder();

foreach (WorkflowTask t in tasks)

{

taskList.AppendLine(t.AssignedTo + " -- " + t.Description);

}

MessageBox.Show(taskList.ToString());

}

}

}

Business object keys

Several of the methods available for the Dynamics Workflow web service require
identifying a specific document in Microsoft Dynamics GP for which an action is
being performed. The various types of documents will have different keys that are
used to uniquely identify each document. The Dynamics Workflow web service has
the BusinessObjectKey class, which is a general-purpose class for specifying the
key values for any document type in Microsoft Dynamics GP.

A BusinessObjectKey is composed of one or more KeyPart objects, each of which
represent one segment of the key for the business document. Each KeyPart object
has the following properties:

Name This identifies the segment of the key. For Microsoft Dynamics GP
documents, its value will typically be the name of the database column that the key
segment value corresponds to.

PartValue This is the actual value of the key segment. Its datatype will vary,
depending on the type of data used for the key segment. The Dynamics Workflow
web service defines several KeyPart classes, one for each datatype that can be used
for a key segment. For example, the KeyPartOfString class is used for key segments
that have a string datatype.

An appropriate KeyPart object must be created and its value specified for each
segment of the key that uniquely identifies a Microsoft Dynamics GP document.
The KeyPart objects are then assembled by adding them to the BusinessObjectKey
object that will be used for the Dynamics Workflow web service call.

For example, a Sales Order Processing document in Microsoft Dynamics GP uses
two key segments to uniquely identify the document. The first is the Document
Number, which corresponds to the “SOPNUMBE” column in the table that stores
the documents. The second is the Document Type, which specifies what type of
sales document (quote, invoice, etc.) is being referred to. This segment corresponds
to the “SOPTYPE” column in the table that stores the documents.

W O R K F L O W I N T E G R A T I O N G U I D E 205

C H A P T E R 1 6 U S I N G T H E W E B S E R V I C E

The following C# example shows how the BusinessObjectKey for the Sales Quote
QT4005 is created. Notice that KeyPart segments are created for each segment of the
key, and then assembled into the BusinessObjectKey.

BusinessObjectKey key;

KeyPart[] keyParts;

KeyPartOfString docNumber;

KeyPartOfString docType;

// Build the key for the Sales Quote QT4005

key = new BusinessObjectKey();

// Build the key parts

// Document number

docNumber = new KeyPartOfString();

docNumber.Name = "SOPNUMBE";

docNumber.PartValue = "QT4005";

// Document type

docType = new KeyPartOfString();

docType.Name = "SOPTYPE";

docType.PartValue = "Quote";

// Assemble the key parts

keyParts = new KeyPart[2];

keyParts[0] = docNumber;

keyParts[1] = docType;

// Add the key parts to the key

key.KeyParts = keyParts;

BusinessObjectKey reference

The following tables describe the BusinessObjectKey objects that are needed to refer
to specific Microsoft Dynamics GP documents that can be used with workflow. Use
this information if you need to manually create a BusinessObjectKey object to refer
to a document.

In most cases, you won’t need to manually create a BusinessObjectKey object. It will be
available as a property in an existing workflow object, such as WorkflowTask.

General Ledger Batch document
A General Ledger Batch document is identified by the following key segments:

Segment name Type Value

BACHNUMB String The batch number

BCHSOURC String “GL_Normal” for general entry
“GL_Clearing” for clearing entry

CREATEDDATE DateTime A datetime value composed of the date
portion of the Created Date (CREATDDT)
column and the time portion of the Time
(TIME1) column for the row in the SY00500
table.

P A R T 4 D Y N A M I C S W O R K F L O W W E B S E R V I C E

206 W O R K F L O W I N T E G R A T I O N G U I D E

Payables Batch document
A Payables Batch document is identified by the following key segments:

Purchase Order document
A Purchase Order document is identified by the following key segment:

Receivables Batch document
A Receivables Batch document is identified by the following key segments:

Sales Order documents
A Sales Order document is identified by the following key segments:

Segment name Type Value

BACHNUMB String The batch number

BCHSOURC String “PM_Trxent” for payables transaction entry
“XPM_Cchecks” for computer checks
“PM_Payment” for manual payment

CREATEDDATE DateTime A datetime value composed of the date
portion of the Created Date (CREATDDT)
column and the time portion of the Time
(TIME1) column for the row in the SY00500
table.

Segment name Type Value

PoNumber String The purchase order document number

Segment name Type Value

BACHNUMB String The batch number

BCHSOURC String “RM_Sales” for transaction entry
“RM_Cash” for cash receipts

CREATEDDATE DateTime A datetime value composed of the date
portion of the Created Date (CREATDDT)
column and the time portion of the Time
(TIME1) column for the row in the SY00500
table.

Segment name Type Value

SOPNUMBE String The sales order document number

SOPTYPE String The sales order document type. The value
will be one of the following:
Quote
Order
Invoice
Return
Backorder
FulfillmentOrder

A
P

P
E

N
D

IX

208 W O R K F L O W I N T E G R A T I O N G U I D E

Appendix
The following appendixes are provided:

• Appendix A, “Troubleshooting,” describes how to handle problems that pre-
vent your integration from working properly.

• Appendix B, “Debugging,” provides advice on debugging the client workflow
assembly and the server workflow assembly.

• Appendix C, “Changing Passwords,” describes a process for updating your
workflow and SharePoint service when a password change occurs.

W O R K F L O W I N T E G R A T I O N G U I D E 209

Appendix A: Troubleshooting
You may encounter problems that prevent your workflow integration from
working properly. The following is a list of solutions to some problems you may
encounter.

• Resetting the workflow server
• Verifying authorization

Resetting the workflow server

While you develop and test your server and client workflow assemblies, the
Workflow server may perform slowly or display unexpected results on the
Dynamics GP client. To restore the workflow server, open the Start menu on the
Workflow server and choose Run. Enter iisreset and click OK.

The “iisreset” command flushes and rebuilds the caches used by MOSS and the
Dynamics Workflow web service. Rebuilding these caches can eliminate the slow
response times and errors.

Verifying authorization

If you encounter errors that indicate you are not authorized to view a document or
perform an action, ensure the login you are using has sufficient privileges. To view
workflow permissions, you need to review settings in Microsoft Dynamic GP
Workflow, SharePoint server, and Dynamics Security Service.

• To view Microsoft Dynamics GP privileges, log in with the credentials of the
Workflow administrator. Use Microsoft Internet Explorer to open the Microsoft
Dynamics Workflow site. Click Administration to view your active workflows.
To view the configuration of a specific workflow, click its name in the Workflow
Name column. Review the Configure Workflow settings and the Workflow Step
configuration to ensure the your login is identified as an originator, an
approver, or has been give read-only access to workflow information. If you
need to add your login, update the Configuration Settings and click Save.

A P P E N D I X A T R O U B L E S H O O T I N G

210 W O R K F L O W I N T E G R A T I O N G U I D E

• To view SharePoint settings, log in with the credentials of the Workflow admin-
istrator. Use Microsoft Internet Explorer to open the Microsoft Dynamics Work-
flow site. Click Site Actions >> Site Settings. In Users and Permissions, click
People and Groups. Check that People and Groups includes your login identity.
If it does not, click New and add it to the list.

• To view Dynamics Security Service permissions, open the Dynamics Security
Console. Expand the DynamicsGPWebService node and select Role Assign-
ments. Be sure your login is listed as a Member. If your login is not shown, click
Add. Also be sure the role assigned to your login provides web service access to
your workflow document.

For additional information about managing access to workflow, refer to the
Microsoft Dynamics GP Workflow Administrator’s Guide.

W O R K F L O W I N T E G R A T I O N G U I D E 211

Appendix B: Debugging
As you develop workflow integrations it is often useful to use Visual Studio to
debug your assemblies. The following sections describe how to use the Visual
Studio debugger to debug your client or server workflow assembly.

• Debugging the client workflow assembly
• Debugging the server workflow assembly

Debugging the client workflow assembly

While developing the client workflow assembly or to determine the cause of
unexpected results, it is often useful to see your client assembly running in the
Visual Studio debugger.

The following procedure assumes you have loaded the Microsoft Dynamics GP
client on the same machine where you are running Visual Studio. To debug the
client workflow assembly with Visual Studio, complete the following steps:

1. Open your client workflow assembly project with Visual Studio.
To debug, you need to work with a debug build of your client workflow
assembly. The debug build includes a .pdb file for your assembly. The .pdb file
contains the debug symbols that Visual Studio requires.

2. Set a breakpoint where you would like to begin viewing code
execution
In Visual Studio, open the file you wish to debug. Place the cursor on a line
where you would like to stop the code execution. Right-click and choose
Breakpoint >> Insert Breakpoint from the menu.

3. Start the Microsoft Dynamics GP client.
Start the Microsoft Dynamics GP client and login to the company you would
like to test.

4. Attach the Visual Studio debugger to the Microsoft Dynamics GP
client process.
From the Visual Studio Debug menu, choose Attach to Process. In the Attach to
Process window, set Transport to Default. In Qualifier, enter the name of the
machine running the Microsoft Dynamics GP client.

A P P E N D I X B D E B U G G I N G

212 W O R K F L O W I N T E G R A T I O N G U I D E

In the list of Available Processes, select Dynamics.exe. Click Attach. The
debugger will attach to the process and load the symbol file. If the symbol file
cannot be found, the debugger will prompt you to locate the .pdb file.

5. Use the Microsoft Dynamics GP client to initiate a workflow
action.
Perform an action with the Dynamics GP client that initiates workflow. When
the assembly reaches the point where you have set the breakpoint, the Visual
Studio debugger will stop execution.

6. Step through your code.
Use the F10 key to manually control the execution of your code. Use the F11 key
to step into method calls that are within your client workflow assembly.

Use the debugger’s Autos, Locals, and Watch windows to monitor the value of
individual objects and data members. This information can help you to
pinpoint the cause of unexpected results.

Debugging the server workflow assembly

While developing the server workflow assembly or to determine the cause of
unexpected results, it is often useful to see your server assembly running in the
Visual Studio debugger.

The following procedure assumes you have loaded Visual Studio on your Workflow
server. To use the Visual Studio debugger with the server workflow assembly
complete the following steps:

1. Open your server workflow assembly project with Visual Studio.
To debug, you need to work with a debug build of your server workflow
assembly. The debug build includes a .pdb file for your assembly. The .pdb file
contains the debug symbols that Visual Studio requires.

2. Set a breakpoint where you would like to begin viewing code
execution.
In Visual Studio, open the file you wish to debug. Place the cursor on a line
where you would like to stop the assembly. Right click and choose Breakpoint
>> Insert Breakpoint from the menu.

Select the Dynamics.exe
process of your Dynamics

GP client.

W O R K F L O W I N T E G R A T I O N G U I D E 213

A P P E N D I X B D E B U G G I N G

3. Be sure the workflow process is running.
Use the Microsoft Dynamics GP client to initiate a workflow action. This will
ensure the workflow service is running on the server.

4. Attach the Visual Studio debugger to the workflow server.
From the Visual Studio Debug menu, choose Attach to Process. In the Attach to
Process window, set Transport to Default. In Qualifier, select the name of the
machine where you are running the workflow server.

The Visual Studio debugger also allows you to do debugging on a remote server.
However, you must enable remote debugging on the server before attempting to attach
to the workflow server process. You also need to ensure the server is running a debug
assembly and you have access to the .pdb file for that assembly.

In the list of Available Processes, select w3wp.exe. Click Attach. The debugger
will attach to the process and load the symbol file. If the symbol file cannot be
found, the debugger will prompt you to locate the appropriate .pdb file.

5. Use the Microsoft Dynamics GP client to initiate a workflow
action.
Perform a Dynamics GP client action that uses your server workflow assembly.
When the assembly reaches the point where you have set the breakpoint, the
Visual Studio debugger will stop execution.

6. Step through your code.
Use the F10 key to manually control the execution of your server code. Use the
F11 key to step into method calls that are within your server assembly.

Use the debugger’s Autos, Locals, and Watch windows to monitor the value of
individual objects and data members. This information can help you to
pinpoint the cause of unexpected results.

Select the w3wp.exe
process of your workflow

server.

214 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 215

Appendix C: Changing Passwords
Microsoft Office SharePoint Server installs many services on the server. The
installer uses the same login credentials for each service.

You might encounter a situation that requires you to change the password of the
login credentials that all the SharePoint services use as a login identity. For example,
many companies have policies that expire login passwords after a specified period
of time. When the login expires, the user is prompted to create a new password.

It can be difficult to manually locate and update each SharePoint service that
requires the new password. To simplify the process, create a batch file that contains
the following script:

@echo off
rem other app pools
echo *** Updating app pool passwords
"%commonprogramfiles%\Microsoft Shared\Web server
extensions\12\BIN\Stsadm.exe" -o updateaccountpassword -userlogin %1 -
password %2 -noadmin
rem central admin
echo *** Updating Central Admin password
"%commonprogramfiles%\Microsoft Shared\Web server
extensions\12\BIN\Stsadm.exe" -o updatefarmcredentials -userlogin %1 -
password %2
rem ssp - new
echo *** Updating ssp password for new installs
"%commonprogramfiles%\Microsoft Shared\Web server
extensions\12\BIN\Stsadm.exe" -o editssp -title "SharedServices1" -ssplogin
%1 -ssppassword %2
rem ssp - upgrade
echo *** Updating ssp password for upgraded installs
"%commonprogramfiles%\Microsoft Shared\Web server
extensions\12\BIN\Stsadm.exe" -o editssp -title "Default Web Site" -ssplogin
%1 -ssppassword %2
rem osearch
echo *** Updating osearch password
"%commonprogramfiles%\Microsoft Shared\Web server
extensions\12\BIN\Stsadm.exe" -o osearch -farmserviceaccount %1 -
farmservicepassword %2
echo *** MANUAL UPDATE NEEDED. To update the password, visit the SSP Web
application page, click Search Settings, and then click Default Content
Access Account. rem spsearch
echo *** Updating spsearch password
"%commonprogramfiles%\Microsoft Shared\Web server
extensions\12\BIN\Stsadm.exe" -o spsearch -farmserviceaccount %1 -
farmservicepassword %2
echo *** Updating spsearch content access account
"%commonprogramfiles%\Microsoft Shared\web server
extensions\12\BIN\stsadm.exe" -o spsearch –farmcontentaccessaccount %1 -
farmcontentaccesspassword %2
rem restarting IIS
echo *** Doing soft restart of IIS
iisreset /noforce
echo on

You may need to modify the script to include the correct names of each SSP in your server
farm.

To run the batch file, open a command prompt and set the working directory to the
folder where you placed the batch file. Enter the following command. Substitute

A P P E N D I X C C H A N G I N G P A S S W O R D S

216 W O R K F L O W I N T E G R A T I O N G U I D E

FileName, DomainName\UserName and NewPassword with the batch filename,
identity, and password you want to use with your SharePoint services. Press Enter.

FileName.bat DomainName\UserName NewPassword

For additional information on changing passwords for service accounts in
SharePoint Server 2007 and in Windows SharePoint Services 3.0, search the
Knowledge Base articles available at the Microsoft Help and Support site.

W O R K F L O W I N T E G R A T I O N G U I D E 217

Glossary
Abstract base class

A class that cannot be instantiated directly
and is solely for the purpose of inheritance.
The class has abstract members that have no
implementation. The derived class supplies
the implementation of the base class
members. The abstract base class defines the
features of the derived class.

Application programming
interface (API)

A set of functions or features you access to
programmatically use or manipulate a
software component or application.

BusinessObjectKey
A class that Microsoft Dynamics GP
Workflow uses to identify a business
document.

Business Logic
A collection of rules that constrain and guide
the handling of business data.

Client workflow assembly
A Visual Studio Tools for Microsoft
Dynamics GP that adds workflow
functionality to a Dynamics GP form.

Criteria object
An object that contains the restrictions that
define what is to be returned from a GetList
method in the Dynamics GP web service.

eConnect
A collection of tools, components, and APIs
that provide programmatic integration with
Microsoft Dynamics GP.

Extension assembly
An assembly that contains the processing
code for a web service extension that is
extending one or more business objects for
the Dynamics GP web service.

Form factory
A Microsoft .NET managed code component
that runs immediately before a Dexterity
window is created. A form factory can be
used for many purposes, such as adding
managed code controls to the window.

Global Assembly Cache
A machine-wide cache that stores assemblies
that are shared by several applications on the
computer.

Interface
In C#, interface describes a group of related
behaviors that belong to a class

Microsoft Office SharePoint Server
Provides a host process for workflows.
Provides a data store for workflow definition
and for each active workflow instance.

Proxy
A special set of classes that will act as a
wrapper for the operations, objects, and
enumerations defined by the web service.

Server workflow assembly
A Microsoft .NET assembly that defines a
workflow type for a Microsoft Dynamics GP
document.

SOAP
Simple Object Access Protocol. The XML-
based protocol used to communicate with a
web service.

Summary object
An object that contains only the most
important details of the main object. For
example, the customer summary object
contains only the most important details of
the customer object. Summary objects are
retuned by the GetList methods in the
Dynamics GP web service.

Transaction Requester
An eConnect service that retrieves XML that
represents Microsoft Dynamics GP
documents.

Transform
The process of converting an input XML
document in an output XML document with
a different structure.

Web reference
A URL that points to the .asmx file that
defines the web service.

Web service
A software system that provides data and
services to other applications. Web services
use standard Internet transport protocols
such as Hypertext Transfer Protocol (HTTP)
and standard XML-based document formats
such as Simple Object Access Protocol
(SOAP) to exchange information.

Windows Workflow Foundation
A Microsoft technology for defining,
executing, and managing workflows.

Workflow
A package of functionality used to enable a
process that can be applied to documents
and list items. Workflow automates the
routing of documents to the person
responsible for working on the document.

Workflow definition
Contains the activities, schedule, and
configuration information that control the
operation of a workflow.

Workflow metadata
Configuration information that describes the
approval routing hierarchy for an individual
workflow.

Workflow schedule
Controls what types of tasks a workflow can
perform and how each task is scheduled.

XML
A text-based format that uses markup tags
(words surrounded by ‘<‘ and ‘>’) to
describe how a document is structured and
the data it contains.

XSLT
Extensible Sylesheet Language
Transformation is a language that
transforms an XML document into another
document that is different in form or
structure.

218 W O R K F L O W I N T E G R A T I O N G U I D E

W O R K F L O W I N T E G R A T I O N G U I D E 219

Index
A
abstract base class defined 217
action pane

commands 55
constants 56

Appendix 208-216
Appendix A, Troubleshooting

209-210
Appendix B, Debugging 211-213
Appendix C, Changing Passwords

215-216
application assembly, creating 67
application programming interface,

defined 217
ApplicationServer.exe, example 170
approval steps, adding properties with

workflow extension 31, 177
approval workflow, described 39
ApprovalWorkflow 138
ApprovalWorkflowController, required

properties 81
Architecture, chapter 7-13
architecture, diagram 7
archive, workflow history 41
assembly configuration, web reference

URL 136

B
business document summary, adding

data to with workflow extensions 31,
177

business logic
defined 217
described 40
server workflow assembly 148
window integration 46

BusinessObjectFile.config, described 183
BusinessObjectKey

client workflow assembly 70
defined 217
described 204
reference 205

BusinessService, described 124
BusinessSummaryObjectInformation 146

C
Changing Passwords, Appendix C

215-216
class, for web service extension 180
Client Workflow Assembly, chapter 69-95
client workflow assembly

create project 69
debugging 211
define key 70
defined 217
described 69
form controller class 72
form factory 91

client workflow assembly (continued)
installing 171
list controller class 83
workflow type sample 27

command form
described 44
workflow enabled checkbox 45
WorkflowStatus 44

Connecting to the Web Service, chapter
199-201

conventions, in documentation 3
CreateDexDialogForm, form factory

example 93
CreateDexForm, form factory example 92
Creating a New Workflow, part 38-173
credentials, for web service instance 201
criteria class

creating 109-114
described 109

criteria object, defined 217

D
data, for web service extension 180
data access

for workflow extensions 178
requirements 40

Debugging
Appendix B 211-213
client workflow assembly 211
server workflow assembly 212

Deploying the New Workflow, chapter
167-173

Deploying the Workflow Extension,
chapter 193-195

Designing a New Workflow, chapter
39-42

Designing a Workflow Extension, chapter
177-178

Dictionary Assembly Generator 67
Dictionary Changes, chapter 43-67
document summary, adding data to with

workflow extensions 31, 177
document summary class

creating 105-109
described 105

document type assembly
components 97
create a summary class 105
creating 97-114
criteria class 109
described 97
document type class 98
enumerations 105
installing 167
key class 102
list class 109

document type class, creating 98
document viewer

described 10, 155
installing 171
links 11

document viewer (continued)
workflow type sample 27

documentation, symbols and conventions
3

documents, specifying keys for 204
drop-down list fields, as filterable

properties 143
Dynamics Security Service

described 125
subscription application updates 162
workflow type sample install 23

Dynamics Workflow web service
see also workflow web service 2
documentation for 203
example 203
instance 200
namespace for 200
reference documentation 203
URL 199

Dynamics Workflow Web Service
Reference, described 203

DynamicsGPService.asmx 199
DynamicsWorkflow attribute 138
DynamicsWorkflowEventManager 161
DynamicsWorkflowEvents.config,

subscribing to workflow events 170
DYNWORKFLOWGRP

security group 9
table security 44

E
eConnect

defined 217
described 114
web service 114

eConnect Transaction Requester
see also transaction requester
columns 114
described 114
update query example 114
updating the eConnecct_Out_Setup

table 167
workflow type sample 22

enumerations, document type class 105
event handler, for web service events 181
EventHandlerImplementation 149
example, Dynamics Workflow web

service 203
examples, document viewer 156
existing workflows, listed 16
Extending an Existing Workflow, part

176-195
extension assembly, defined 217

F
filterable properties

implementing 143
resource entries 140
retrieving from a resource file 142

FindAllTrackingHistory 147
FindAllWorkflowHistory 147

I N D E X

220 W O R K F L O W I N T E G R A T I O N G U I D E

form controller
described 72
event handlers 77
fields 74
methods 74
properties 80

form factory
CreateDexDialogForm example 93
CreateDexForm example 92
creating 91-95
defined 217
described 91
parameters 172
registering in Dynamics.exe.config

171
tasks 91

form-level procedures
list integration 65
window integration 47

G
General Ledger Batch, BusinessObjectKey

for 205
GetAvailableFilterableProperties 143
GetAvailableProperties method, in

workflow extension assembly 189
GetBusinessObject 144
GetBusinessObject method, in workflow

extension assembly 190
GetOrganizationName 145
GetSummaryInformation 146
GetSummaryInformation method, in

workflow extension assembly 191
GetViewerName 146
global assembly cache

adding a server workflow assembly
169

adding web service extension
assembly 193

adding workflow extension assembly
193

defined 217
global fields, required 43
Glossary 217
GUIDs

creating a GUIDAttribute 98
generating for server workflow

assembly 138
generating for workflow extension

assembly 189
security application 125
server workflow assembly resources

file 139
subscription application 163

H
home page integration, configuring 51

I
IDynamicsWorkflow

described 142
GetAvailableFilterableProperties 143

IDynamicsWorkflow (continued)
GetBusinessObject 144
GetOrganizationName 145
GetSummaryInformation 146
GetViewerName 146
implementing 142-147

IDynamicsWorkflowHistory
described. 147
FindAllTrackingHistory 147
FindAllWorkflowHistory 147
implementing 147-148
SaveWorkflowHistory 148
SaveWorkflowTrackingHistory 148

iisreset command 209
installation helper, Visual Studio project

for 194
integrating applications

installing a new application 167
using with existing workflows 177

Integration Types, chapter 15-17
integrations

create a workflow 15
extend an existing workflow 16

interface defined 217

K
KeyPart

described 204
value of 204

keys, for business objects 204

L
light bulb symbol 3
list class

creating 109
described 109

list controller
described 83
fields 85
methods 85
properties 88
VS Tools event handlers 87
WFActionForList 87

list fields, as filterable properties 143
list integration

action pane 55
columns 64
constants 53
described 53
form-level procedures 65
hidden fields 54
tables 55

ListWorkflowController, required
properties 89

login credentials, for web service instance
201

M
margin notes 3
Microsoft Dynamics GP client, workflow

integration 11

Microsoft Dynamics GP workflows, listed
16

Microsoft Office SharePoint client, see
SharePoint client

Microsoft Office SharePoint Server
defined 217
described 8

Microsoft Outlook client, see Outlook
Microsoft.Dynamics.Workflow.Proxy.dll,

described 200

N
namespace, for Dynamics Workflow web

service proxy 200
notifications, described 48

O
Outlook, client 13

P
Payables Batch, BusinessObjectKey for

206
priority, updating 47
product support, for Workflow for

Microsoft Dynamics GP 3
proxy, defined 217
proxy assembly, for workflow web service

200
Purchase Order, BusinessObjectKey for

206

R
Receivables Batch, BusinessObjectKey for

206
Registration, form factory 171
RegistrationSchedule.exe, example 170
resources file

for workflow extension assembly 188
required entries for server workflow

assembly 139
Retrieved event handler, for web service

extension 181

S
Sales Lead web service, see web service
Sales Order, BusinessObjectKey for 206
Sample Workflow Extension, chapter

31-36
Sample Workflow Type, chapter 19-29
SaveWorkflowHistory 148
SaveWorkflowTrackingHistory 148
security

application pool identity 9
described 9
DYNWORKFLOWGRP 9
SharePoint groups 9
table security 44
web services 9

security application
configuration file 129
creating 124-133
described 125

W O R K F L O W I N T E G R A T I O N G U I D E 221

 I N D E X

security application (continued)
GUIDs 125
uninstall 130

Server Workflow Assembly, chapter
135-165

server workflow assembly
business logic 148
create workflow type 137-154
creating 135-165
debugging 212
defined 217
described 135
document viewer 155
events 141
IDynamicsWorkflow interface 142
installing 168
registering 170
resources file 139
signing 154
web reference 136
workflow type sample 25

server workflow assembly configuration,
installing 168

SharePoint, client 12
.snk file, described 182, 192
SOAP, defined 217
strong name key

for web service extension assembly
182

for workflow extension assembly 192
subscription application

configuration file 164
creating 160-165
Dynamics Security Service GUIDs

163
DynamicsWorkflowEventManager

161
example 163
execute 170
include installation tasks 162
installing 170

summary object, defined 217
support, for Workflow for Microsoft

Dynamics GP 3
symbols in documentation 3

T
tables, adding fields 43
technical support, for Workflow for

Microsoft Dynamics GP 3
testing

sales lead web service 132
web service extensions 184

transaction requester
see also eConnect Transaction

Requester
defined 217

transform
defined 217
eConnect XML 115

Troubleshooting
Appendix A 209-210
reset the server 209
verify authorization 209

U
URL, for workflow web service 199, 201
Using the Web Service, chapter 203-206

V
Visual Studio project

for clent workflow assembly 69
for document type 97
for server workflow assembly 135
for subscription application 160
for web service 121
for web service extension 179
for web service extension installation

helper 194
for web service security application

125
for workflow extension 187

W
warning symbol 3
web reference, defined 217
Web Service, chapter 97-133
web service

create asmx file 121
creating 114-124
creating an XSLT file 115-121
defined 217
eConnect changes 114
installing 167
installing new web service files 167
new web method 123
securing a new web service 168
security application 124
testing 132
XSLT map 115

web service event handler, for web service
extension 181

web service extension assembly
adding to global assembly cache 193
building 182
defining data for 180
event handler 181
location of 182

web service extensions
chapter 179-185
defining data for 180
registering 183
testing 184
using with workflow extensions 178,

179
Visual Studio project for 179
web service event handler 181

window integration
business logic 46
Dexterity 45
form-level procedures 47
hidden fields 46

window integration (continued)
workflow wrapper 47

Windows Workflow Foundation, defined
217

workflow
defined 217
support 3

Workflow Basics, part 6-29
workflow client

Microsoft Dynamics GP 11
Outlook 13
SharePoint 12

workflow clients, described 11-13
workflow definition, defined 217
workflow events, described 78
workflow extension assembly

adding to global assembly cache 193
building 192
chapter 187-192
code for 189
described 178, 187
resources file for 188

workflow extensions
accessing data 178
capabilities of 177
deploying 193
designing 177
installation helper 194
registering 195
Visual Studio project for 187
workflow approval steps 31, 177
workfow extension assembly 178

workflow history, archive options 41
workflow metadata

defined 217
described 8

workflow schedule
defined 217
described 8

workflow server, described 8-9
workflow subscription

described 160
DynamicsWorkflowEvents.config 160

workflow type
business logic 148
described 137
required base class 138
required interfaces 138
resource handler 142

workflow type sample
client workflow assembly 27
eConnect Transaction Requester 22
installing 20-28
installing the application 20
installing the document type

assembly 21
installing the document viewer 27
installing the web service 22
overview 19
sample files 20
server workflow assembly 25

I N D E X

222 W O R K F L O W I N T E G R A T I O N G U I D E

workflow type sample (continued)
updating the Dynamics Security

Service 23
viewing 28

workflow types
data management 10
described 9-11
document viewer 10
events 10
names of 190, 194
requirements 10

workflow web service
see also Dynamics Workflow web

service
described 8
proxy assembly 200
URL 199, 201

workflow wrapper, described 47
WorkflowEventManager 160
WorkflowStatus window 44
workfow type, event handler 141

X
XML

defined 217
eConnect documents 115

XSLT
creating 115
defined 217
example 119
installing 167
transform 115

	Copyright
	Contents
	Introduction
	What’s in this manual
	Prerequisites
	Symbols and conventions
	Product support
	What’s new in Workflow for Microsoft Dynamics GP 10.0
	What to do next

	Part 1: Workflow Basics
	Chapter 1: Architecture
	Architecture diagram
	Microsoft Office SharePoint Server
	Workflow server
	Workflow type assembly
	Workflow clients

	Chapter 2: Integration Types
	Creating a new workflow
	Extending an existing workflow

	Chapter 3: Sample Workflow Type
	Workflow type sample overview
	Workflow type sample files
	Installing the sample application
	Installing the document type assembly
	Installing eConnect Transaction Requester components
	Installing the Sales Lead web service
	Updating the Dynamics Security Service
	Installing the server workflow assembly
	Installing the document viewer
	Installing the client workflow assembly
	Viewing the workflow type application

	Chapter 4: Sample Workflow Extension
	Workflow extension sample overview
	Workflow extension sample files
	Installing the purchase order integration sample
	Installing the web service extension sample
	Installing the workflow extension sample
	Viewing the workflow extension sample

	Part 2: Creating a New Workflow
	Chapter 5: Designing a New Workflow
	Is a workflow appropriate?
	Microsoft Dynamics GP client
	Business logic
	Data access
	Workflow server

	Chapter 6: Dictionary Changes
	Tables
	Table security
	Command form
	Window integration
	Notifications
	Home Page integration
	List integration
	Application assembly

	Chapter 7: Client Workflow Assembly
	Overview
	Creating a Visual Studio project
	Creating a BusinessObjectKey
	Creating a form controller
	Creating a list controller
	Creating a form factory
	Building the client workflow assembly

	Chapter 8: Web Service
	Creating a document type
	Creating a web service
	Securing the web service
	Testing the web service

	Chapter 9: Server Workflow Assembly
	Creating a Visual Studio project
	Creating a workflow type
	Adding business logic
	Signing your server workflow assembly
	Creating a document viewer
	Creating a workflow event subscription helper application
	Building the assembly and application

	Chapter 10: Deploying the New Workflow
	Installing the application
	Installing the workflow document type
	Installing the web service
	Installing the server workflow assembly
	Installing the client workflow assembly
	Viewing the workflow

	Part 3: Extending an Existing Workflow
	Chapter 11: Designing a Workflow Extension
	Making data available to workflow
	Workflow extension assembly
	Data access

	Chapter 12: Web Service Extension
	Creating a Visual Studio project
	Defining the extension data
	Adding the web service event handler
	Building the web service extension
	Registering the web service extension
	Testing the web service extension

	Chapter 13: Workflow Extension Assembly
	Creating a Visual Studio project
	Adding a resources file
	Adding the workflow extension code
	Building the workflow extension

	Chapter 14: Deploying the Workflow Extension
	Web service extension
	Adding assemblies to the global assembly cache
	Installation helper
	Registering the workflow extension

	Part 4: Dynamics Workflow Web Service
	Chapter 15: Connecting to the Web Service
	Web service URL
	Workflow web service proxy
	Web service namespace
	Creating a web service instance

	Chapter 16: Using the Web Service
	Dynamics Workflow Web Service Reference
	Dynamics Workflow web service example
	Business object keys
	BusinessObjectKey reference

	Appendix
	Appendix A: Troubleshooting
	Resetting the workflow server
	Verifying authorization

	Appendix B: Debugging
	Debugging the client workflow assembly
	Debugging the server workflow assembly

	Appendix C: Changing Passwords

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

