[image: VS08_h_rgb.jpg][image: MS_logo_K]LINQ to SQL Beta 2 to RTM Breaking Changes
November 2007
For the latest information, please see www.microsoft.com/vstudio

Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

LINQ to SQL Beta 2 to RTM Breaking Changes
There have been changes to LINQ to SQL since Beta 2 that may affect applications you choose to upgrade. This document covers such changes but does not list new features that do not affect conversion of Beta 2 applications.
Table<T>.Add and .Remove renamed to .InsertOnSubmit and .DeleteOnSubmit
The methods on Table<T> for inserting and deleting rows from tables have been renamed to better convey that the updates are deferred until the call to DataContext.SubmitChanges. Note that these changes apply only to the methods on Table<T> and not EntitySet<T>.
	Beta 2 Name
	RTM Name

	Add
	InsertOnSubmit

	AddAll
	InsertAllOnSubmit

	Remove
	DeleteOnSubmit

	RemoveAll
	DeleteAllOnSubmit

We have also changed the members of ChangeSet to match these new names:
	Beta 2 Name
	RTM Name

	AddedEntities
	Inserts

	RemovedEntities
	Deletes

	ModifiedEntities
	Updates

Action Item
Rename references to these members to match the new names.
Table<T>.Attach changed to throw an exception if attached entity has not been detached
The purpose of Table<T>.Attach method is to let you make a DataContext aware of entities that are transferred from other tiers, usually through serialization/deserialization. These entities are typically retrieved using a different instance of the DataContext than the one used for making updates. Once the entities are attached, the DataContext can track their original state for update purposes as if they had been fetched initially by this DataContext. However, it is important to make sure that Attach is called only for detached instances obtained through deserialization. Attach is not intended for transferring entities from one live DataContext instance to another within the same process. If the DataContext instance used to retrieve an entity is live, there may be deferred loaders that effectively keep the entity attached to the DataContext. Unlike in Beta 2, an exception will now be thrown if Attach is called on a second DataContext instance for such an entity.
In RTM, we also more intelligently handle related entities linked to the entity being attached. They can be attached later for appropriate action.
Action Item
Be sure to call Attach only on entities that are not in scope of another live DataContext instance on this tier.
Partial initialization of entities within queries no longer allowed
The typical way to return data from a query is to select out the range variable you referenced in the from clause:
 var q = from c in db.Customers
 where Country == "USA"
 select c;

The query above constructs actual Customer entity objects and passes them on to you.
In Beta 2, the following type of query containing an explicit new Customer clause was also possible:
 var q = from c in db.Customers
 where Country == "USA"
 select new Customer { Name = c.Name, City = c.City };

This code seems fairly reasonable, projecting out the Name and City of a certain customer into a Customer object, but there are multiple problems you can encounter if you then try to use this object like a normal Customer object. First, the Customer object is only partially filled in, leaving many fields blank including the primary key field, CustomerID. Without the CustomerID field, the DataContext cannot persist changes you make to this Customer back to the database on SubmitChanges(). Even if the CustomerID field is loaded, any other missing fields will cause the optimistic concurrency checks to fail on update as the full set of original field values is required to use optimistic concurrency. In addition, after fetching this partially constructed Customer entity, the object will be stored in the entity cache and any future queries that need to materialize this entity will retrieve this partially constructed version instead of the full version.
To protect against all of these problems, we now throw an exception during query translation if the query contains a constructor call to a known entity class (non-entity classes may still be freely constructed). If you wish to project out a restricted set of result fields, the correct way to do so is to project into an anonymous type. This is done by saying select new {…} instead of select new Customer {...}. The object you get back is not of type Customer, so there are no changes to track, and the partial object will not end up in the entity cache:
 var q = from c in db.Customers
 where Country == "USA"
 select new { Name = c.Name, City = c.City };
Workaround
Replace entity constructors within query expressions with either non-entity type initializers (anonymous or nominal) or use the range variable from the from clause to get a complete entity.
OnValidate breaking changes
ChangeAction parameter added to OnValidate
OnValidate now has a parameter of type ChangeAction to indicate whether the change being validated was an Insert, Update, or Delete:
partial void OnValidate(System.Data.Linq.ChangeAction action);

namespace System.Data.Linq
{
 public enum ChangeAction
 {
 None = 0,
 Delete,
 Insert,
 Update
 }
}
Action Item
Add a parameter named action of type ChangeAction to any OnValidate implementations you have.
OnValidate no longer called on “one” table when “many” membership changes
In a one-to-many relationship such as Customers to Orders, the information about which Customer a given Order is associated with is stored in the Orders table, not the Customers table. Therefore, when an Order is added or removed from an EntitySet, or when Order.Customer is set directly, OnValidate is no longer called on the Customers table, only on the Orders table.
Action Item
Consider moving logic relevant to validating orders from the Customer’s OnValidate implementation into the Orders table’s OnValidate implementation.
Deleting an entity now removes it from EntitySets / 1:1 relationships
In Beta 2, when you deleted an entity from its table, you also had to manually remove the entity from any EntitySets and deferred 1:1 relationships in which the entity was a member to maintain the consistency of your object graph. This cleanup is now done automatically during DeleteOnSubmit.
Action Item
Remove code that manually fixes up orphaned EntitySet or deferred 1:1 references in your object graph caused by DeleteOnSubmit.
Visual Basic String = Nothing and String <> Nothing fixes
Beta 2 has incorrect SQL translations for some Visual Basic string comparisons.
In Visual Basic, if you have a String variable s, testing s = Nothing is equivalent to testing s = “”. In LINQ to SQL, this should be translated as WHERE [t0].[s] = “” to maintain equivalent semantics. This was instead getting translated to [t0].[s] IS NULL. An equivalent mistranslation was occurring for s <> Nothing.
Action Item
Check your Visual Basic code that tests database string values to be sure that you use s = Nothing or s = “” when you want to test for empty string and s Is Nothing when you want to test for NULL.
Connection strings no longer persist plaintext passwords
When the connection string provided to a DataContext contains a plaintext password, it is saved until either a query is executed, causing the connection to open, or CreateDatabase is called to generate a database from the mapping schema. The password is then removed from the cached connection string to help prevent it from becoming exposed to a malicious user. Once the password has been removed, you may no longer call DatabaseExists, DeleteDatabase or CreateDatabase, as these require connecting again to the master catalog, but you may continue to query the database you’ve opened.
Because you cannot call DeleteDatabase after a query has been executed, it is now invalid to do this:
 DataContext ctxt = new DataContext("Server=Srv;User=A;Password=B");
 Customer c = ctxt.Customers.First();
 ctxt.DeleteDatabase();
 ctxt.CreateDatabase();

However, the following pattern still works because the password is not stripped out until the call to CreateDatabase that sets up the main connection:
 DataContext ctxt = new DataContext("Server=Srv;User=A;Password=B");
 if (ctxt.DatabaseExists())
 ctxt.DeleteDatabase();
 ctxt.CreateDatabase();
 Customer c = ctxt.Customers.First();
Workaround
Either cache the connection string securely yourself and create a new DataContext when you need to call DeleteDatabase/DatabaseExists, or refactor your code to ensure that DeleteDatabase/DatabaseExists operations are performed before you execute a query or run CreateDatabase.
Code-gen breaking changes for SQLMetal and O/R Designer
Besides the LINQ to SQL runtime breaking changes above, there have also been some changes made to the code generation that are worth calling out as they will affect the meaning of your generated classes after you regenerate them for RTM.
Please do not try to use the list below to manually convert the .CS files generated by SQLMetal or the O/R Designer from Beta 2 to RTM. There have been many minor bug fixes to the code generation that you will not obtain if you do not regenerate these .CS files after updating to RTM.
XML columns now map to XElement by default
The default mapping for XML database columns had previously been XDocument, but this default has been changed to XElement. This was done due to a change to XDocument since Beta 2 to not implement IXmlSerializable, thus preventing XML serialization of XDocuments. Mapping XML columns to XDocument is otherwise still supported and you may modify the DBML or the O/R Designer surface to continue to map these columns manually to XDocument if you wish.
Workaround
Manually map XML columns to XDocument in DBML or O/R Designer or modify code referencing field to use XElement instead.
Visual Basic code-gen for String columns modified to catch property changes between Nothing and empty string
The code generated to determine whether a property setter is actually making a field change was incorrect for Visual Basic when the column was of type String. The Visual Basic code had used the = operator to compare the new value coming into the property setter with the current value to determine whether to mark the field changed and call the OnPropertyChanged partial method. As the = operator in Visual Basic considers an empty string and the value Nothing to be equivalent, it was not possible to change the value of the database field from NULL to “” or vice versa in Visual Basic. The code-gen now uses System.Equals to do the comparison, allowing the same changes in Visual Basic as in C#.
Action Item
Be sure that none of your code had relied on the fact that Nothing and “” were considered equivalent in entity property setters.
OnCreated now called after EntitySets are initialized
As part of the Initialize method generated for each entity, the OnCreated partial method is now invoked after any EntitySets are initialized, instead of before. This lets you add logic to your OnCreated implementation that can operate on the newly initialized EntitySets.
Action Item
Remove any logic from your OnCreated implementation that relied on the EntitySets not being initialized yet.
image1.jpeg
Micrpsoft“‘ .
D VisLal Studio 2008

image2.png
Micresoft

