
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS DECEMBER 15, 2018 VOL 33 NO 13

Special Issue

 1318msdn_CoverTip_8x10.75.indd 1 1318msdn_CoverTip_8x10.75.indd 1 12/3/18 12:03 PM12/3/18 12:03 PM

http://www.devexpress.com/trial

 0818msdn_CoverTip_8x10.75.indd 2 0818msdn_CoverTip_8x10.75.indd 2 7/9/18 4:31 PM7/9/18 4:31 PM

http://www.devexpress.com/trial

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS DECEMBER 15, 2018 VOL 33 NO 13

Special Issue

Connect(); Special Issue
What’s Coming in
.NET Core 3.0
Scott Hunter. 6

What’s New in
Visual Studio 2019
Mads Kristensen.. 14

Collaborative Development
with Visual Studio Live Share
Julie Lerman. 18

ML.NET: The Machine Learning
Framework for .NET Developers
James McCaffrey.. 24

Accelerate AI Solutions with
Automated Machine Learning
Krishna Anumalasetty. 32

Deploy Your Code The Right Way
with Azure Pipelines
Micheal Learned and Andy Lewis.. 36

7 Tips and Tricks for
Azure App Service
Michael Crump.. 42

Exploring the
Xamarin.Forms Shell
David Ortinau.. 48

1318msdn_C1_v4.indd 1 12/6/18 11:21 AM

Faster Paths to
Amazing Experiences
 Infragistics Ultimate includes 100+ beautifully styled, high performance grids, charts, &
other UI controls, plus visual confi guration tooling, rapid prototyping, and usability testing.

Angular | JavaScript / HTML5 | ASP.NET | Windows Forms | WPF | Xamarin

Fastest grids & charts on the market for the Angular developer

The most complete Microsoft Excel and Spreadsheet solution for
creating dashboards and reports without ever installing Excel

An end-to-end design-to-code platform with Indigo.Design

Best-of-breed charts for fi nancial services

Infragistics Ultimate 18.2
New Release

To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588

Get started today with a free trial:
Infragistics.com/Ultimate

Untitled-2 2 11/28/18 2:15 PM

http://www.Infragistics.com/Ultimate

Faster Paths to
Amazing Experiences
 Infragistics Ultimate includes 100+ beautifully styled, high performance grids, charts, &
other UI controls, plus visual confi guration tooling, rapid prototyping, and usability testing.

Angular | JavaScript / HTML5 | ASP.NET | Windows Forms | WPF | Xamarin

Fastest grids & charts on the market for the Angular developer

The most complete Microsoft Excel and Spreadsheet solution for
creating dashboards and reports without ever installing Excel

An end-to-end design-to-code platform with Indigo.Design

Best-of-breed charts for fi nancial services

Infragistics Ultimate 18.2
New Release

To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588

Get started today with a free trial:
Infragistics.com/Ultimate

Untitled-2 3 11/28/18 2:15 PM

http://www.Infragistics.com/Ultimate

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue
in November by 1105 Media, Inc., 6300 Canoga Avenue,
Suite 1150, Woodland Hills, CA 91367. Periodicals
postage paid at Woodland Hills, CA 91367 and at
additional mailing offices. Annual subscription rates
payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in
U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12.
Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email
MSDNmag@1105service.com or call 866-293-3194 or
847-513-6011 for U.S. & Canada; 00-1-847-513-6011
for International, fax 847-763-9564. POSTMASTER: Send
address changes to MSDN Magazine, P.O. Box 2166,
Skokie, IL 60076. Canada Publications Mail Agreement
No: 40612608. Return Undeliverable Canadian Addresses
to Circulation Dept. or XPO Returns: P.O. Box 201,
Richmond Hill, ON L4B 4R5, Canada.

COPYRIGHT STATEMENT © Copyright 2018 by 1105
Media, Inc. All rights reserved. Printed in the U.S.A.
Reproductions in whole or part prohibited except by
written permission. Mail requests to "Permissions Editor,"
c/o MSDN Magazine, 2121 Alton Pkwy., Suite 240, Irvine,
CA 92606.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader's sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments in
the industry.

CORPORATE ADDRESS 1105 Media, Inc.
6300 Canoga Avenue, Suite 1150, Woodland Hills 91367
www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@Converge360.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International
Phone: 212-221-9595
E-mail: 1105reprints@parsintl.com
www.1105Reprints.com

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct.
Phone: (913) 685-1301;
Email: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
2121 Alton Pkwy., Suite240, Irvine, CA 92606
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
6300 Canoga Ave., Suite 1150, Woodland Hills, CA 91367
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

Chief Revenue Officer
Dan LaBianca

ART STAFF

Creative Director Jeffrey Langkau
Art Director Michele Singh
Senior Graphic Designer Alan Tao

PRODUCTION STAFF

Print Production Manager Peter B. Weller
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Office Manager & Site Assoc. James Bowling

CLIENT SERVICES & DEMAND GENERATION

General Manager & VP Eric Choi
Senior Director Eric Yoshizuru
Director, IT (Systems, Networks) Tracy Cook
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Project Manager, Lead Generation Marketing
Mahal Ramos

ENTERPRISE COMPUTING GROUP EVENTS

Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Mallory Bastionell
Senior Manager, Events Danielle Potts

Chief Executive Officer
Rajeev Kapur

Chief Financial Officer
Janet Brown

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Jennifer Mashkowski mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

DECEMBER 15, 2018 VOLUME 33 NUMBER 13

magazine

1318msdn_Masthead_v2_2.indd 2 12/6/18 8:58 AM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@Converge360.com
mailto:1105reprints@parsintl.com
http://www.1105Reprints.com
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105

Untitled-1 1 11/28/18 2:13 PM

http://services.leadtools.com

msdn magazine4

Microsoft Connect(); has emerged as one of the most important
and impactful developer-oriented events on the Microsoft calen-
dar. Since 2014, Microsoft has used Connect(); to evangelize its
growing cross-platform and open source software development
efforts, release important products like Visual Studio for Mac, and
articulate strategies in areas like artificial intelligence (AI) and the
Internet of Things.

This year Connect(); kicked off on Dec. 4, and the conference hit
on all these notes and more. On the open source front, Microsoft and
Docker announced the Cloud Native Application Bundle (CNAB)—
an open source, cloud-agnostic specification for packaging and
running distributed applications. Microsoft also announced the
open sourcing of Windows Presentation Foundation, Windows
Forms and the Windows UI XAML Library.

There was plenty of tool news on tap. Microsoft debuted Visual
Studio 2019 Preview, and revealed new capabilities like Visual Studio
Live Share for remote collaboration and Visual Studio IntelliCode,
which expands language support to XAML and C++ and leverages
AI for improved code insight. Also announced were the general
availability of .NET Core 2.2, and the release of the public preview
of .NET Core 3.0. Cross-platform development got a boost as well,
with the Xamarin.Forms 4.0 Public Preview and the general avail-
ability of Xamarin.Forms 3.4.

Of course, AI and machine learning (ML) have been a huge area
of focus at Microsoft. Connect(); this year provided a platform
for some key announcements, including the general availability

of Azure Machine Learning Service, which helps developers and
data scientists quickly build, train and deploy ML models. Also
released was the public preview of ML.NET, Microsoft’s open
source, cross-platform ML framework that helps developers
infuse AI into their .NET applications.

This special issue of MSDN Magazine is dedicated to helping
developers take full advantage of the tools and technologies fea-
tured at the Connect(); conference. Articles like Scott Hunter’s
“What’s Coming in .NET Core 3.0,” Julie Lerman’s “Collaborative
Development with Visual Studio Live Share” and Mads Kristensen’s
“What’s New in Visual Studio 2019” will help you get a jump on the
improvements to these flagship tools and frameworks.

DevOps has been a core message at Connect(); over the years
and is the focus of the article “Deploy Your Code the Right Way
with Azure Pipelines,” written by Micheal Learned and Andy
Lewis. And don’t miss the pair of features exploring ML. James
McCaffrey offers an introduction to the ML.NET framework,
while Krishna Anumalasetty explores the automated ML capabil-
ities of Azure Machine Learning and how they make AI accessible
to more organizations.

There’s more still, including David Ortinau’s article, “Exploring
the Xamarin.Forms Shell,” that shows exciting new capabilities
coming in Xamarin.Forms 4.0, and Michael Crumb’s productivity-
minded piece titled “7 Tips and Tricks for Azure App Service.”
Finally, be sure to check out our bonus Web feature from Kevin
Farlee, “Introducing Azure SQL Database Hyperscale,” which
explores the re-architected storage engine in the SQL database and
how it enables a highly scalable service tier for databases that adapt
to workloads on-demand (msdn.com/magazine/mt848637).

Connect(); is part of a larger conversation between Microsoft and
its developers. It’s an opportunity for Microsoft to articulate its vision,
and for developers to provide feedback that shapes the direction of
that vision going forward. Learn
more at microsoft.com/connectevent.

December Is for Developers

MICHAEL DESMONDEditor’s Note

© 2018 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Connect(); is part of a larger
conversation between Microsoft

and its developers.

1318msdn_DesmondEdNote_v1_4.indd 4 12/6/18 8:45 AM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://microsoft.com/connectevent
http://msdn.com/magazine/mt848637

NEW
v6.0

• Edit, process and print PDF 2.0 documents
• Create, fill-out and annotate PDF forms
 with Javascript support
• Fast and lightweight 64-bit components
• Universal Apps DLLs enable publishing
 C#, C++, CX or JS apps to Windows Store
• Plus a number of exciting features in v6.0

Create and Process PDFs in
.NET, COM/ActiveX and UWP

Complete Suite of PDF, XPS and
DOCX Components

• All your PDF processing, conversion and
 editing in a single package
• Combines Amyuni PDF Converter and PDF
 Creator for easy licensing, integration and
 deployment
• Includes our Microsoft WHQL certified
 PDF and DOCX printer driver
• Export PDF documents into other formats
 such as images, HTML5 or editable DOCX
• Import/Export XPS files using our native
 libraries

Other Developer Components from Amyuni

• Postscript to PDF Library: For document workflow applications that
 require processing of Postscript documents
• OCR Module: Free add-on to PDF Creator uses the Tesseract 3
 engine for accurate character recognition
• Javascript Engine: Integrate a full JS interpreter into your
 PDF processing applications
• USB Mobile Monitor: Mirror the display of your Windows or Linux
 system onto your Android device

High Performance PDF Printer
for Desktops and Servers

Print to PDF in a fraction of the
time needed with other tools. WHQL
certi�ed for all Windows platforms.
Version 6.0 updated for Server 2016.

Untitled-1 1 9/12/18 10:05 AM

http://www.amyuni.com

msdn magazine6

.NET Core 3.0 is the next major version of the .NET Core
platform. This article walks through the history of .NET Core and
demonstrates how it has grown from basic support for Web and
data workloads in version 1 to being able to run Web, desktop,
machine learning, containers, IoT and more in version 3.0.

.NET Core 1
The .NET Core journey began a few years ago, with version 1 in
2016, with the goal of building the first version of .NET that was
open source and cross-platform (Windows, macOS and Linux).
This was driven by customers who could only use frameworks
that were open source and by other customers who needed their
.NET applications to run on Linux servers. Because .NET Core is

cross-platform, it was designed so everything could be done from
the command line, without the need for an IDE. And learning
from the compatibility challenges of one globally installed .NET
Framework, it was designed with side-by-side support, including
shipping the framework as part of the application so the appli-
cation doesn’t depend on any framework being installed on the
machine. Version 1 shipped with new versions of ASP.NET and
Entity Framework (EF) and primarily targeted Web applications.

.NET Core 2
While version 1 got .NET running on new platforms, it supported
only a limited set of .NET APIs. In order to address this, we created
.NET Standard, which specified the APIs that any .NET runtime
must implement so that code and binaries can be shared across
.NET platforms and versions. With .NET Standard 2.0, we added
more than 20,000 APIs to the .NET Standard spec. Version 2 of
.NET Core shipped in June 2017 and included support for .NET
Standard 2.0, giving it access to those APIs. We also introduced
the Windows Compatibility Pack, which is a NuGet package that
includes many Windows-only APIs, such as System.Drawing,
System.DirectoryServices and more. ASP.NET Core 2.0 brought
Razor Pages and SignalR, two frameworks that were missing from
.NET Core 1.0. Entity Framework Core added support for lazy
loading, a popular feature from Entity Framework. .NET Core 2
also continued the push to make .NET one of the fastest full-stack
frameworks. The TechEmpower benchmark, which is run by an

. N E T

What’s Coming in
.NET Core 3.0
Scott Hunter

This article discusses technologies that are in preview.
All information is subject to change.

This article discusses:
•	.NET Core, versions 1, 2 and 3.0

•	ASP.NET Core

•	Entity Framework Core

•	.NET Standard 2.1

•	C# 8.0

Technologies discussed:
.NET Core, .NET Standard, C#

1318msdn_HunterCore_v3_6-10.indd 6 12/6/18 8:46 AM

7Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

independent company, lists .NET Core as No. 7 in raw plaintext
performance and No. 6 in the Fortunes test of Web and data per-
formance, beating Java servlet and Node.js (bit.ly/2PEE1l1).

.NET Core 3.0

.NET Core 3.0 is the next major version of the .NET Core platform.
It includes many exciting new features, such as support for Windows
desktop applications with Windows Forms (WinForms), Windows
Presentation Foundation (WPF) and Entity Framework 6. For Web
development it adds support for building client-side Web applica-
tions with C# using Razor Components (formerly known as Blazor).
And it includes support for C# 8.0 and .NET Standard 2.1.

We are adding support for Internet-of-Things (IoT) scenarios
with .NET Core 3.0. You’ll now be able to program hardware pins
(for controlling devices and reading sensor data) on the Raspberry
Pi and similar devices, and communicate via serial port on all
supported OSes (for example, with a Raspberry Pi or Arduino).
We’re also adding IoT device support for ARM64 in this release, to
complement the ARM32 capability that’s already in place.

.NET Core 3.0 will also fully support ML.NET, our open source
machine learning framework built for .NET developers. ML.NET
powers products like Azure Machine Learning, Windows Defender
and PowerPoint Design Ideas. Using ML.NET you can add many
popular machine learning scenarios to your apps like sentiment
analysis, recommendations, forecasting, image classification and
more. Learn more at bit.ly/2OLRGRQ.

We recently released the first preview of .NET Core 3.0. For more
information about .NET Core 3.0 and to try out the preview, see
aka.ms/netcore3preview1.

Desktop (WinForms and WPF) and Open Source
WinForms and WPF are two of the most popular .NET applica-
tion types and are used by millions of developers. .NET Core 3.0
adds support for WinForms and WPF, bringing Windows desk-
top development to .NET Core. .NET Core has always been about
open source, and both frameworks will be open source in GitHub
with the rest of .NET Core. For the first time ever, customers will
be able to see the open development of these frameworks and
can even help by filing issues, fixing bugs or helping develop new

features live in GitHub. WinUI XAML Library will also be open
sourced, and with XAML Islands you’ll be able to use these con-
trols in WinForms and WPF applications.

Many of the existing WinForms and WPF applications use
Entity Framework to access data, so Entity Framework 6 will also
be supported on .NET Core.

You might wonder why you’d want to build desktop applica-
tions on .NET Core. That’s easy: It will give you access to all the
advancements in .NET Core. You can build applications on the
latest version of the framework without having to install .NET
Core, and you can publish both your application and .NET Core
into a single .EXE. .NET Core was designed with side-by-side in
mind, so you can have multiple versions on a computer and appli-
cations can be locked to the version for which they were designed.
And because of this side-by-side nature, the APIs in .NET Core,
including WinForms and WPF, can be improved without the risk
of breaking applications.

ASP.NET Core 3
.NET Core 3.0 is not all about the desktop, however. There are lots
of exciting new features designed for the Web, as well. Let’s take a
look at a few of the features on which we’re working.

A common question from customers is how to have an RPC (as
in .NET Remoting and Windows Communication Foundation)
experience on .NET Core. We are contributing to the gRPC
(grpc.io) project to ensure gRPC will have first-class support for
.NET developers.

Earlier this year we started an experiment in client-side Web
development using .NET that we call Blazor. Blazor enables you
to write Web UI components that run directly in the browser on a
WebAssembly-based .NET runtime without writing a single line of
JavaScript. You author components using Razor syntax, which are
then compiled along with your code into normal .NET assemblies.

Figure 1 Client-Side Web Development with Blazor

Browser

WebAssembly
(mono.wasm)

.NET
(mscorlib.dll, System.Core.dll, ...)

App.dll.cs

.cshtml

Compile to .NET
Assemblies

Figure 2 Running UI Web Components on the Server Using
SignalR

Browser dotnet.exe

ASP.NET Core

Razor
Components

SignalR

For the first time ever,
customers will be able to see

the open development of these
frameworks and can even help
by filing issues, fixing bugs or
helping develop new features

live in GitHub.

1318msdn_HunterCore_v3_6-10.indd 7 12/6/18 8:46 AM

http://www.msdnmagazine.com
http://bit.ly/2OLRGRQ
http://aka.ms/netcore3preview1
http://bit.ly/2PEE1l1
http://www.grpc.io

msdn magazine8 .NET

The assemblies and the WebAssembly-based .NET runtime are
then downloaded into the browser and executed using only open
Web standards (no plug-ins or code transpilation required), as
shown in Figure 1.

Alternatively, the same components can be run on the server using
.NET Core, where all UI interactions and DOM updates are handled
over a SignalR connection, as shown in Figure 2. When the com-
ponents execute, they track what updates are required to the DOM
and send these updates to the browser over the SignalR connection
to be applied. UI events are sent to the server using the same con-
nection. This model has several advantages: The download size is
much smaller, your code is centralized on the server, and you get all
the features and performance benefits of running on .NET Core.

For .NET Core 3.0 we’re integrating the Blazor component model
into ASP.NET Core. We call this integrated component model
Razor Components. Razor Components enable a new era of com-
posable UIs with ASP.NET Core, and full-stack Web development
with .NET. Initially for .NET Core 3.0, Razor Components will
run on the server, either as standalone routable components or
used from Razor Pages and Views. The same components, how-
ever, can also be run client side on WebAssembly. In parallel with
the .NET Core 3.0 work, we’ll continue work on supporting Razor
Components on WebAssembly using the interpreter-based .NET
runtime, which we expect to ship in a subsequent release. Later,
we also plan to release support for full ahead-of-time compila-
tion of .NET code to WebAssembly, which will bring significant
improvements to runtime performance.

EF Core 3.0
LINQ is a beloved .NET feature that enables you to write database
queries without leaving your language of choice, taking advantage of
rich type information to get IntelliSense and compile-time type check-
ing. But LINQ also enables you to write a virtually unlimited number
of complicated queries, and that has always been a huge challenge for
LINQ providers. EF Core solves this in part by choosing what parts
of a query can be translated to SQL, and then executing the rest of
the query in memory. In some situations, this can be desirable, but
in many other cases it can result in very inefficient queries that aren’t
identified until an application is in production.

In EF Core 3.0 we’re planning to make deep changes to how our
LINQ implementation works and how we test it, in order to make it

more robust (for example, to avoid breaking queries in patch releases);
to enable it to translate more expressions correctly into SQL; to
have it generate efficient queries in more cases; and to prevent
very inefficient queries from going undetected until production.

We’ve been working on a Cosmos DB provider for EF Core, to
enable developers familiar with the EF programing model to easily
target Azure Cosmos DB as an application database. The goal is to
make some of the advantages of Cosmos DB—like global distribu-
tion, “always on” availability, elastic scalability and low latency—even
more accessible to .NET developers. The provider will enable most
EF Core features, like automatic change tracking, LINQ and value
conversions, against the SQL API in Cosmos DB.

Other features we intend to include in EF Core 3.0 are property
bag entities (entities that store data in indexed properties instead
of regular properties); the ability to reverse-engineer database
views into query types; and integration with new C# 8.0 features
like IAsyncEnumerable<T> support and nullable reference types.

We understand that porting to EF Core can require a significant
effort for many existing applications using previous versions of EF.
For that reason, we’re also porting EF 6 to work on .NET Core.

.NET Standard 2.1
When you adhere to the .NET Standard you can create libraries
that work on all implementations of .NET, not only .NET Core but
also Xamarin and Unity. In .NET Standard 1.x, we modeled only
APIs that were already common across the various implementa-
tions. With .NET Standard 2.0, we focused on making it easier to
port existing .NET Framework code to .NET Core, which resulted
in not only an additional 20,000 APIs, but also compatibility mode,
which enables you to reference .NET Framework libraries from
.NET Standard-based libraries without having to recompile them.
For both versions of the standard, there were almost no new com-
ponents as all the APIs were existing .NET APIs.

With .NET Standard 2.1, this has changed: We’ve added about
3,000 APIs that are mostly brand-new and were introduced as
part of the open source development of .NET Core. By adding
them to the standard, we’re bringing them to all implementations
of .NET Standard.

Among these new APIs are:
• �Span<T> In .NET Core 2.1 we added Span<T>, which is

an array-like type that allows representing managed and

For .NET Core 3.0 we’re
integrating the Blazor

component model into
ASP.NET Core. We call this

integrated component model
Razor Components.

We’ve been working on a
Cosmos DB provider for EF Core,

to enable developers familiar
with the EF programing model to
easily target Azure Cosmos DB

as an application database.

1318msdn_HunterCore_v3_6-10.indd 8 12/6/18 8:46 AM

Untitled-3 1 7/9/18 11:36 AM

http://www.devexpress.com/try

msdn magazine10 .NET

unmanaged memory in a uniform way and supports slicing
without copying. Span<T> is at the heart of most perfor-
mance-related improvements in .NET Core 2.1. Because it
allows managing buffers in a more efficient way, it can help
in reducing allocations and copying. If you want to learn
more about this type, be sure to read Stephen Toub’s excellent
article on Span<T> (msdn. com/ magazine/mt814808).

• �ValueTask and ValueTask<T> In .NET Core 2.1, the most
significant feature involved improvements in our fundamen-
tals to support high-performance scenarios (bit.ly/2HfIXob),
which also included making async/await more efficient.
ValueTask<T> already exists and allows you to return results
if the operation completed synchronously without having
to allocate a new Task<T>. With .NET Core 2.1, we’ve
improved this further, making it useful to have a correspond-
ing non-generic ValueTask that allows reducing allocations
even for cases where the operation has to be completed
asynchronously, a feature that types like Socket and Net-
workStream now utilize.

• �General Goodness Since .NET Core was open sourced,
we’ve added many small features across the base class librar-
ies, such as System.HashCode for combining hash codes or
new overloads on System.String. There are about 800 new
members in .NET Core and virtually all of them got added
in .NET Standard 2.1.

For more details, check out the .NET Standard 2.1 announce-
ment at bit.ly/2RCW2fX.

C# 8.0
C# 8.0 is the next version of C# and it improves the language in
several major ways. Nullable reference types help prevent null ref-
erence exceptions and promote null-safe coding practices. You
can opt in to the feature to get warnings when you assign null into
variables or parameters of, for example, type string. If you want
null, you have to say so by using a “string?” nullable reference type.

Async streams do for asynchronous streams of data what async/
await did for single asynchronous results. A new framework type
IAsyncEnumerable<T> is the async version of IEnumerable<T>,
and can likewise be foreach’ed over and yield return’ed:

public static async IAsyncEnumerable<T> FilterAsync<T>(
 this IAsyncEnumerable<T> source,
 Func<T, Task<bool>> predicate)
{
 await foreach (T element in source)
 {
 if (await predicate(element)) yield return element;
 }
}

Among other features, default interface member implemen-
tations enable interfaces to add new members without breaking

existing implementers. Switch expressions allow more concise
pattern matching, and patterns can be recursive, digging deeper
into tested values. For more details on C# 8.0 see aka.ms/csharp8.

How Will .NET Framework
and .NET Core Move Forward?
.NET Framework is the implementation of .NET that’s installed on
more than 1 billion machines and thus needs to remain as compati-
ble as possible. Because of this, it moves at a slower pace than .NET
Core. Even security and bug fixes can cause breaks in applications
because applications depend on the previous behavior. We’ll make
sure that .NET Framework always supports the latest networking
protocols, security standards and Windows features.

.NET Core is the open source, cross-platform, and fast-moving
version of .NET. Because of its side-by-side nature it can take
changes that we can’t risk applying back to .NET Framework. This
means that .NET Core will get new APIs and language features
over time that .NET Framework can’t.

If you have existing .NET Framework applications, you shouldn’t
feel pressured to move to .NET Core if you don’t need to take
advantage of any of .NET Core’s features. Both .NET Framework
and .NET Core will be fully supported; .NET Framework will
always be a part of Windows. Even inside of Microsoft we have
many large product lines that are based on .NET Framework and
will remain on .NET Framework. But moving forward, .NET Core
and .NET Framework will contain somewhat different features.

Wrapping Up
.NET Core 3.0 is scheduled to release in the second half of 2019.
It will have open source versions of WinForms and WPF for
Windows desktop development. Entity Framework 6 will be
included, as well. And ASP.NET Core, Entity Framework Core,
.NET Standard and C# will all receive significant updates. This
version of .NET Core should seriously be considered for new
.NET applications. For more information, see aka.ms/netcore3preview1.

We’re excited about the future of .NET and adding more work-
loads to .NET Core. I encourage you to try the preview of .NET
Core 3.0 and send us feedback. 	 n

Scott Hunter works for Microsoft as the director of Program Management for
.NET overseeing the runtime, frameworks, managed languages (C#, F#, VB.NET)
and .NET tooling. Before this Hunter was the CTO of several startups including
Mustang Software and Starbase, where he focused on a variety of technologies—
but programming the Web has always been his real passion.

Thanks to the following Microsoft technical experts for reviewing this article:
Ankit Asthana, Damian Edwards, Richard Lander, Immo Landwerth,
Beth Massi, Mads Torgersen

C# 8.0 is the next version of C#
and it improves the language in

several major ways.

.NET Core is the open source,
cross-platform and fast-moving

version of .NET.

1318msdn_HunterCore_v3_6-10.indd 10 12/6/18 8:46 AM

http://msdn.com/ magazine/mt814808
http://bit.ly/2HfIXob
http://bit.ly/2RCW2fX
http://aka.ms/csharp8
http://aka.ms/netcore3preview1

Americas: +1 903 306 1676 EMEA: +44 141 628 8900 Oceania: +61 2 8006 6987
sales@asposeptyltd.com

Untitled-3 1 6/7/18 1:14 PM

mailto:sales@asposeptyltd.com
https://downloads.aspose.com

Developer Training Conferences and Events

NEW IN 2019!
On-Demand Session
Recordings for One Year!

Get access to all sessions (not
including Hands-On Labs or
Workshops) at each show for a
year. Learn more at vslive.com.

networking

sessions

hands-on
labs

tracks

SUPPORTED BY PRODUCED BY

magazine

Choose VSLive! For:
✔ In-depth developer training
✔ Unparalleled networking
✔ World-class speakers
✔ Exciting city adventures

speakers

Untitled-1 2Untitled-1 2 11/27/18 10:58 AM11/27/18 10:58 AM

https://www.vslive.com

August 12-16, 2019

Microsoft HQ

Join our Visual Studio Live!

experts at the Mothership for

5 days of developer training

and special Microsoft perks

unique to our other show

locations. Plus, we are

adding the ever-so popular

full-day Hands-On Labs to

the agenda in Redmond for

the first time this year!

SAN DIEGO

September 29, 2019

Westin Gas Lamp

Head to the heart of the

San Diego Gaslamp District

with Visual Studio Live!

this Fall as we immerse

ourselves with all things

for developers, including

several workshops,

sessions and networking

opportunities to

choose from.

CHICAGO

October 6-10, 2019

Swissotel

Head to the Windy City

and join Visual Studio Live!

this October for 5 days

of unbiased, developer

training and bringing our

well-known Hands-On Labs

to the city for the first time.

ORLANDO

November 17-22,
2019

Royal Pacific Resort

at Universal

Visual Studio Live! Orlando is

a part of Live! 360, uniquely

offering you 6 co-located

conferences for one great

price! Stay ahead of the

current trends and advance

your career – join us for our

last conference of the year!

JOIN US IN 2019!

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

CONNECT WITH US

June 9-13, 2019

Hyatt Regency

Cambridge

Join Visual Studio Live!

for an amazing view of

Beantown, bringin g

our infamous speakers

for intense developer

training, Hands-On Labs,

workshops, sessions and

networking adventures to

the Northeast.

DALLAS

February 6-7, 2019

Microtek Training Center

Dallas

Want to learn more on

ASP.NET Core in the

Microsoft Cloud? Check

out Visual Studio Live!’s

upcoming Training Seminar

to expand your knowledge

and accelerate your career.

March 3-8, 2019

Bally’s Hotel & Casino

Visual Studio Live! kicks

off 2019 in the heart of Las

Vegas with 6 days of

hard-hitting Hands-On

Labs, workshops, 60+

sessions, expert speakers

and several networking

opportunities included!

Register to join us today!

REGISTER NOW!
vslive.com/lasvegas

REGISTER NOW!
vslive.com/dallas

REGISTER NOW!
vslive.com/microsofthq

DETAILS COMING SOON! DETAILS COMING SOON! DETAILS COMING SOON!

April 22-26, 2019

Hyatt Regency

For the first time in our

20-year history, Visual

Studio Live! is heading

down south to New Orleans

for intense developer

training, bringing our

hard-hitting sessions,

well-known coding

experts and unparalleled

networking to the Big Easy!

REGISTER NOW!
vslive.com/neworleans

REGISTER NOW!
vslive.com/boston

Virt
ual

Cla
ss

ro
om

Ava
ila

ble

vslive.com #VSLIVE

Untitled-1 3Untitled-1 3 11/27/18 10:58 AM11/27/18 10:58 AM

https://www.vslive.com
https://www.vslive.com/dallas
https://www.vslive.com/lasvegas
https://www.vslive.com/boston
https://www.vslive.com/neworleans
https://www.vslive.com/microsofthq
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com
https://www.vslive.com

msdn magazine14

Visual Studio 2019 introduces exciting improvements
and new features aimed at optimizing developer productivity and
team collaboration. Whether you’re using Visual Studio for the
first time or have been using it for years, you’ll benefit from fea-
tures that improve all aspects of the development lifecycle—from
smoother and more focused project creation to cloning from
repository workflows, to driving the maintainability and quality
of your code. Team and open source collaborative workflows are
improved, as well.

One of the goals of the Visual Studio team was to make the
upgrade to Visual Studio 2019 as seamless and simple as possible.
So you’ll find that there are no breaking changes in the format of
solution and projects files when you step up, and that your existing
code should open as expected.

There’s more good news. The extensibility APIs in Visual Studio
2019 remain relatively unchanged, which means that any extension
you use in Visual Studio 2017 can be updated with minimal effort
to support Visual Studio 2019. Many extensions have been updated

already, ensuring that they’re available to you for the preview
release. Updated extensions include Productivity Power Tools,
Web Essentials, VsVim and many other popular extensions on the
Visual Studio Marketplace today.

There are two other areas of particular interest to customers:
performance and reliability. We’ve been shipping preview builds
of new versions of Visual Studio for years, with updates more
recently being released on a quarterly basis. These previews give
you an early look at what’s coming so you can work with the pre-
view bits, and provide feedback to the Visual Studio product team.
They also help you start thinking about how the new capabilities
might impact you and your organization. Finally, these previews
provide us with valuable feedback about issues in various user
scenarios, as well as insight into how features might be tweaked
to deliver the highest-quality product.

So, let’s take a closer look at what you can expect to find in the
preview of Visual Studio 2019.

Easier to Launch Your Code
The first thing you’ll notice when you open Visual Studio 2019 is
the new Start window, shown in Figure 1. It presents you with
options to clone or check out code, open a project or solution,
open a local folder, or create a new project. Whether you’re new
to Visual Studio or new to coding, or have been coding and using
Visual Studio for years, these capabilities make getting to your
code faster and more focused than ever.

V IS UAL ST UD IO

What’s New in
Visual Studio 2019
Mads Kristensen

This article discusses:
•	New features and capabilities in Visual Studio 2019

•	Updates to the Visual Studio Debugger

•	UI enhancements and improved search functionality

Technologies discussed:
Visual Studio 2019, IntelliCode, CodeLens

1318msdn_KristensenVS19_v4_14-17.indd 14 12/6/18 8:49 AM

15Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

We’ve concentrated on improving
the time it takes to load solutions and
projects, whether these are small or
very large. Not only will solutions load
faster, they’ll do more of the work in the
background, preventing extended UI
delays and hangs during initialization.

It’s worth noting that it’s now pos-
sible to start a project by cloning
or checking out from source con-
trol directly from the Start window.
Bringing this feature front and center
to the Start window finally makes it
as simple as it should be.

When you create a new project,
Visual Studio will open a redesigned
project creation dialog. We received a
lot of feedback about the old project
dialog, so we optimized the experience
to give you powerful search and filter-
ing capabilities up front. This makes it
easier to discover the right template
for your new project. The same dialog is used on both the Start
window and inside Visual Studio.

Previous versions of Visual Studio made finding the right tem-
plate for your app challenging, with the hundreds of templates
shipped with Visual Studio, plus the thousands more made avail-
able for download by the community. The new dialog eases this task
by bringing the most popular templates forward, while making it
easy to browse templates and quickly filter them based on language,
platform and project type.

Now you open the project creation dialog and the focus is directly
in the search box, which filters the template list in real time as you type.
The project creation dialog has always had a search box, but it never
felt as natural, fast and convenient as it does in Visual Studio 2019.

More updates are coming to the project creation dialog, such as a
list of your most recently used templates and other enhancements.

Simplified UI
To increase productivity, Visual Studio contains several updates
to improve the UI and your experience, so you can focus on what
matters—your code. When Visual Studio opens, you’ll immediately
notice some changes from previous versions. One of the most visi-
ble changes is the updated blue theme with softened edges around
icons, toolbars and tool windows. This is the first major update to
the blue theme since its introduction in Visual Studio 2012 and is
a modernization of the interface. Similar updates to both the Light
and Dark themes are planned for a future update.

Another visible change is the top-level menu, which has been
moved up into the title bar, reclaiming vertical space to make room
for more code in your editor. This change optimizes available space
without changing how you navigate the IDE.

In future updates, expect to see additional subtle changes
designed to simplify the UI while bringing focus to your projects
and code documents.

A Better Search
The search feature, formerly known as Quick Launch, has been
completely rewritten to make it faster and more accurate. It even
provides a more forgiving search experience that can work with
spelling mistakes.

Whether you’re looking for commands, settings, installable
components or other useful things, the new search feature makes
it easier than ever to find what you’re looking for within the IDE.
Keyboard shortcuts are displayed next to search results for com-
mands, so they can be more easily memorized for future use, as
shown in Figure 2.

The new search helps speed things up by displaying results dynam-
ically as you type in your query. It also accommodates for spelling
mistakes and more natural language by using a fuzzy search algo-
rithm. Finally, the results displayed have been refreshed to provide
more relevant information, including any associated shortcuts for
the keyboard-driven developer.

Figure 1 The New Start Window

The extensibility APIs in
Visual Studio 2019 remain

relatively unchanged, which
means that any extension you

use in Visual Studio 2017 can be
updated with minimal effort to

support Visual Studio 2019.

1318msdn_KristensenVS19_v4_14-17.indd 15 12/6/18 8:49 AM

http://www.msdnmagazine.com

msdn magazine16 Visual Studio

Initially, you can search across menus, commands, options and
installable components. The Visual Studio team will continue to
expand on search accuracy and incorporate other search providers
to work toward providing a centralized search experience. You’ll
also notice that search has been moved up into the title bar, giving
it a more prominent position that’s easy to locate and out of the
way when not being used.

AI-Assisted IntelliCode
IntelliCode is a set of AI-assisted capabilities that improve devel-
oper productivity, with features like contextual IntelliSense, code
formatting and style rule inference. More improvements are in the
works, including focused reviews for your pull requests in future
updates. IntelliCode is an optional extension for both Visual Studio
2017 and 2019, and has received some major updates that make it
even better. You can download the updated IntelliCode extension at
aka.ms/vsintellicode. Read more about IntelliCode and its improvements
in the post on The Visual Studio Blog at aka.ms/vsicblog.

Until now, IntelliCode recommendations have been based on learn-
ing patterns from thousands of open source GitHub repos. But what
if you’re using code that isn’t in that set of repos? Perhaps you use a lot
of internal utility and base class libraries, or domain-specific libraries
that aren’t commonly used in open source code, and you’d like to see
IntelliCode recommendations for them, too. If you’re using C#, you
can have IntelliCode learn patterns from your code, so it can make
recommendations for things that aren’t in the open source domain.

When you open Visual Studio after installing the updated
IntelliCode extension, you’ll see a prompt that lets you know
about training on your code, and will direct you to the brand new
IntelliCode page to get started. You can
also find the new page under View | Other
Windows | IntelliCode. Once training is
done, it will let you know about the top
classes for which it found usage, so you
can just open a C# file and start typing
to try out the new recommendations.
The trained models are kept secured, so

only you and those who have been given your model’s sharing link
can access them. Your model and what it learns about your code
stay private to you.

Many developers have requested IntelliCode recommendations
for their favorite languages. With this update, Microsoft is excited
to add four more languages that can get AI-assisted IntelliSense
recommendations. C++ and XAML have been added in the exten-
sion for Visual Studio, while TypeScript/JavaScript and Java have
been added to Visual Studio Code.

CodeLens for Everyone
CodeLens has been a feature found only in Visual Studio Enterprise,
but that will change in an upcoming preview of Visual Studio 2019,
when it will also be available for the Community edition, likely in
2019. CodeLens shows the number of references a type or method
has, information about unit tests covering the method, and data
directly from Application Insights.

In addition, Microsoft has made CodeLens fully extensible, so
third-party extensions can start to add their own experiences on
top of it. CodeLens makes key information about your types easy
to find, while keeping you in the source code. Lenses for source
control history and IntelliTrace are still an Enterprise-only feature.

Code Cleanup
It can sometimes be easy to overlook an error, warning or suggestion
in your code, because it has scrolled out of view or the Error List
window isn’t visible. Those issues often aren’t caught until the next
time the project is built. On top of that, warnings and suggestions
based on code style rules from .editorconfig files or code analyz-
ers can go unnoticed and might not get caught until it’s time for a
code review before committing the code changes to source control.

Situations like these could be avoided if there were an always-
visible indicator showing when the code file contains errors,
warnings and suggestions. It would be even better if the available
code fixes provided to take care of the warnings and suggestions
could be applied to the whole code file—or even the project—in

one fell swoop.
That’s why Visual Studio 2019 has added

a document health indicator icon at the
bottom right side of the editor (it’s likely
to be relocated in a future update). The
icon is red, yellow or green, indicating the
health level of the code file or document.
Figure 3 shows how this looks.Figure 3 The Document Health Indicator

Figure 2 The New Search Feature

The project creation dialog
has always had a search box,

but it never felt as natural,
fast and convenient as it does

in Visual Studio 2019.

1318msdn_KristensenVS19_v4_14-17.indd 16 12/6/18 8:49 AM

http://aka.ms/vsintellicode
http://aka.ms/vsicblog

17Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

Right-clicking the indicator icon will show shortcuts for dealing
with any issues in the document, as well as run a full document-wide
cleanup process. The cleanup will format the code and apply any
code fixes suggested by the current settings, .editorconfig files or
Roslyn analyzers.

This is a huge productivity boost designed to help you write
more maintainable code faster, and to deal with issues earlier,
before they enter a code review. It’s important to note that this
feature is undergoing some UI work for future updates, but the
Visual Studio team decided to ship this early UI already in Preview
1 to maximize your productivity and hopefully get feedback from
you to make this capability even better.

Debugger Updates
Visual Studio 2019 aims to improve your productivity in everyday
tasks, reducing everyday friction. One of the new features helping
reduce that friction is the ability to search in the various Watch win-
dows (locals, auto and watch during debugging). You’ve probably
been there before, looking in the Watch window for a string among
a sea of values. Now, Visual Studio can do that looking for you!

In Figure 4 you can see a search for “pork,” which searches within
the watch names, values and type columns. When you search, the
software highlights any visible text matches and searches, based
on the depth of the search, through the window. You can navigate
through all found matches by using the Find next (F3) command.
One of the challenges with searching a watch is that the data rep-
resented can be recursive, or you simply have a very deep parent
chain. To get around this limitation, by default, we only search
three levels deep. If you don’t find something, you can just use the

Search Deeper button to search
through the next two levels. You
can also change the default search
depth in Tools | Options.

So, for the first time, you can
now easily search through arrays
of any kind to find just the item
you’re looking for. This has tradi-
tionally been a pain point where
you manually had to look at each
item in the array to pinpoint the
one you need. Now it’s as simple as
typing in the search string.

We’ve done a lot in this release
to improve performance. The Watch window and the other
debugging tool windows such as Locals and Call stack have all
undergone a redesign that allows them to load asynchronously.
Now many of the processes that ran on the UI thread in Visual
Studio run on a non-blocking background thread. The result is a
clear improvement in performance and fewer UI delays or hangs
while debugging.

Debugging has gotten better, too. In addition to improving the
responsiveness of the debugger, we’re continuing the work started
in Visual Studio 2017 to move memory-intensive components and
workloads into separate processes. With Visual Studio 2019, com-
ponents of the C++ debugger will run in a separate process, which
means large memory-hungry programs can be debugged without
Visual Studio running out of memory. And step debugging now
provides faster and smoother step-through code, making it the
best overall debugging experience yet.

A lot more improvements are coming to the debugger in future releas-
es, both in the terms of new features and performance improvements.

Wrapping Up
In addition to the features mentioned in this article, there are power-
ful new team collaboration capabilities that promise to revolutionize
developer interaction. Read more in Julie Lerman’s article, “Remote
Collaboration with Visual Studio Live Share,” in this issue.

The features described in this article are just a sampling of what’s
available in Visual Studio 2019 Preview 1. There are plenty more
fixes, tweaks and additional functionality beyond what you’ve read
about, including .NET Core 3 preview tooling, mobile develop-
ment, cross-platform C++ and Azure features.

The Visual Studio 2019 Preview was not yet feature complete
at the time of this writing, but it clearly shows the direction you
can expect the final version of the product to take. If you haven’t
already, now’s a good time to head over to visualstudio.com to down-
load the preview and try out these new features for yourself.	 n

Mads Kristensen is a senior program manager on the Visual Studio Extensibility
team. He is passionate about extension authoring, and over the years he’s written
some of the most popular extensions with millions of downloads.

Thanks to the following Microsoft technical experts for reviewing this article:
Gordon Hogenson, Rajen Kishna

Figure 4 Search Within a Watch Window

To increase productivity, Visual
Studio contains several updates

to improve the UI and your
experience, so you can focus on

what matters—your code.

1318msdn_KristensenVS19_v4_14-17.indd 17 12/6/18 8:49 AM

http://www.msdnmagazine.com
http://visualstudio.com

msdn magazine18

I hope I’m not embarrassing myself to express how
excited I am by Visual Studio Live Share! The first time I saw a
demonstration of an early preview, I immediately found an excuse
to use it in a live streaming session where Jeff Fritz and I worked on
a .NET Core project together, each on our own computer, nearly
400 miles apart.

Live sharing is not a screen-sharing session, of the sort I use
to help non-techie friends when they’re confounded by some
software on their computer. Jeff was coding on his computer in
Visual Studio in Windows while I worked on the same code on
my MacBook in Visual Studio Code. What he typed, deleted or
debugged, showed up in my code. Whatever I did to affect the
code appeared in Visual Studio on his machine. When he opened
a file in Visual Studio, that file opened up in Visual Studio Code

on my machine. Yet we had our own cursors, and could work both
together and independently.

Sounds magical? I thought so, too. So I have really dug in further
with my usual battery of “what-if ” questions and learned so much
more about this incredible new tool. Let’s take a look.

Under the Covers
Once you’ve authenticated for a session using either your Microsoft
or GitHub credentials, Live Share attempts to connect with other
developers in a peer-to-peer fashion, but will fall back to an Azure
relay if necessary. When collaborating with an external participant,
this happens through Azure and it does mean you need to be on
the Internet. To provide guests with full access to your solution,
without actually requiring you to upload any of your code, Live
Share communicates only the file system structure of your project
to others. When someone opens a file, it sends the file contents. As
changes are being made, it sends the character differences. When
debugging, it sends debug steps and debug state. Shared testing is
coming in the near future. Live Share collects that data coming
in and displays
it in your IDE.
It can respond
to a collabora-
tor opening files
and automati-
cally open that

V IS UAL ST UD IO

Collaborative
Development with
Visual Studio Live Share
Julie Lerman

Visual Studio Live Share is currently in preview. All information is
subject to change.

This article discusses:
•	Starting a Live Share collaboration session

•	Co-editing and co-debugging with other developers

•	Sharing localhost servers and terminals

•	Best practices for securely sharing your code

Technologies discussed:
Visual Studio Live Share, Visual Studio, Visual Studio Code Figure 1 The Live Share Button Lets You

Activate a New Live Share Session

1318msdn_LermanShare_v5_18-23.indd 18 12/6/18 8:58 AM

19Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

file in another’s IDE. But because you may want to edit different
files at the same time, you can disable that automatic file switching.

Collaboration Game Changer
This experience is so many times better than having a client show
me their code on a screen-share session in Skype. I live on a moun-
tainside with limited Internet speed, and the fact that Live Share
transmits only text file contents and minimal data when edits are
being made means sharing can be much faster than transmitting
entire screen images across the Internet. Moreover, when working
with others over Skype, I have to constantly ask, “Can you click on
this,” or, “Scroll to that,” or, “What happens if you change that code
on line … oh wait, can you open settings and get line numbers to
show?” Even if I use a tool that allows me to control their mouse,
such as LogMeIn, it’s cumbersome. There are always latency issues,
and working in someone else’s IDE is not always fun. They often
have things set up differently. Sometimes their color schemes
make it hard for me to see. Or their fonts are too small. All of
these things get in the way of smooth, effective collaboration. This
has been my experience for years collaborating with or coaching
developers and teams without having to get on a plane. I’m sure for
any of you with distributed teams, it all sounds much too familiar.

This is why I’m so excited by what Live Share can do. Whether
I’m doing code reviews, helping someone solve a “works on my
machine but not theirs” problem or doing pair programming
with someone, Live Share is an enormous game changer. And it’s
not just me having this reaction. You might find the #vsliveshare
hashtag on twitter to be entertaining as you scroll through tweets
by developers as they are first discovering it.

Live Share can be used with a wide variety of languages and plat-
forms. I’ve even used it with an old .NET
4 WinForms solution that uses VB.NET!
The language support is broader for VS
Code than Visual Studio, but in Visual
Studio you can use C#, VB.NET, F#, C++,
Python and more. Check out the Language
and Platform Support page at bit.ly/2Oqjds3.

But enough teasing—let’s take
a look at how to work with Live
Share. I’m going to demon-
strate using multiple instances of
Visual Studio on a single com-
puter so you can follow along if
you’d like without having to find a

collaborator right away. And it’s a great way to practice and explore
the features on your own.

Activating a Live Share Session
Live Share is currently available as an extension for Visual Studio
Code and Visual Studio 2017, although it will be a built-in feature
of Visual Studio 2019. As an extension, it’s still called a preview. I’ll
focus on the experience in Visual Studio 2017.

Live Share is, by default, associated with your Visual Studio login
and the extension adds indicators next to your login information
and avatar in the UI (see Figure 1). The Live Share button lets you
activate a session and requires that you already have your target
solution, project or folder open in Visual Studio. You can also ini-
tiate a session from the File menu. Once you click it, the text will
change from “Live Share” to “Sharing.”

The first time you activate Live Share in Visual Studio, it will alert
you to the fact that it’s defaulting to collaborating through a local
network connection and that you’ll be prompted to allow relevant
firewall settings. If you choose to deny opening those ports, it will
change its behavior to route all of the connections—even those on
the same network—through Azure instead. This is something you
can change as needed down the road.

Why would you need it for a local network connection? It turns
out that Live Share is already being widely adopted by teams that are
co-located. Imagine being able to help someone on your team with
a quick problem with only a minor interruption to your workflow.
When pair programming with someone, you’re usually both hov-
ering over one keyboard and one screen, and elbow room can be an
issue. When teams are mob programming, everyone’s looking at a
projected screen from one computer. Instead, you could sit side by
side (or across the hall or on another floor) and still work together
but with each developer looking at an IDE set up the way they like,
allowing each user to truly participate. When it’s time to switch hands
on a keyboard, although the action of physically moving into “driv-
er” position has a lot of merits, it’s a lot easier and again, nobody has
to work on an unfamiliar machine with an environment that might
be awkward for them.

After initiating the session, the very next thing you’ll see is a
yellow bar below the menu, as shown in Figure 2, telling you that
the invitation link has been copied to your clipboard so you can
share with any guests. This is a good reminder that the person

whose code is to be worked on is the one
who needs to initiate the session. You can’t
switch directions in the same way you may
be used to with screen sharing.

A “More info” link opens a window with
some Getting Started information about
Live Share.

Figure 3 Visual Studio Showing That It Has
Joined a Live Share Session with JL

Figure 2 The Information Bar Displayed upon Starting a Live Share Session

Live Share is currently available
as an extension for Visual Studio
2017, although it will be a built-in

feature of Visual Studio 2019.

1318msdn_LermanShare_v5_18-23.indd 19 12/6/18 8:58 AM

http://www.msdnmagazine.com
http://bit.ly/2Oqjds3

msdn magazine20 Visual Studio

Amazingly, you can invite up to five
people to your session. However, this can
be potentially chaotic, but you can control
who can interact with the code and who
can only view what’s happening. A sepa-
rate link makes the collaboration session
read-only to a guest.

The invitation link is a URL that you
can either paste into a browser or directly
into Visual Studio under the File | Join
Collaboration session menu option. If
you’re a guest using a browser, you’ll be brought to a Web page
showing the identity of the user that created the invitation and
a pop-up window prompting you to open the “Pick an app”
Windows interface. From there you can select either Visual Studio
or Visual Studio Code, and the chosen IDE will open and set up
the Live Share session. As a guest, you’ll see indicators next to your
account showing that you’ve joined a session with, in this case, “JL”
(see Figure 3). The solution, project or folder shared through the
link will be open in Solution Explorer. In my Solution Explorer, I
can see that the code that was relayed to my machine is temporar-
ily stored in a folder inside C:\Users\Julie\AppData\Local\Temp\.

Note that only the file structure and code
files have come across. When I look in
the temp folder, I see no .csproj or .sln
files. And building leaves no bin or debug
in the temp folder. Even if you change
the defaults and allow guests to trigger a
build, that build happens on the host. It’s all
about displaying the files on the guest, not
recreating the solution or projects.

On the Web page that opened from
the invitation link, there are also links for

guests to install the extension to either of these IDEs if they don’t
already have it. I like that it’s this simple and discoverable, so you
don’t need to send lots of instructions along with the link.

And as mentioned earlier, you don’t need to use the same OS or
IDE that initiates the session. I have both Visual Studio 2017 and
VS Code on my Windows machine. I’ll use Visual Studio 2017
as an invited collaborator. Notice that I’m playing both host and
guest. You can do this with multiple instances of Visual Studio or
VS Code on the same machine, which is a great way to get familiar
with Live Share. Note that currently there’s no Live Share extension
for Visual Studio for Mac. 	

Once connected, a guest machine will have some bling added
to its UI, including an icon, referred to as a badge, with the
initials of the host. That’s the blue circle in Figure 3. (I’ll explain
the ring around the circle shortly.) The Live Share button indicates
the guest has Joined a session. The Live Share button on my host
instance of Visual Studio has a “Sharing” dropdown similar to the
“Joined” dropdown in Figure 3. It also shows a prompt telling me
that a guest has joined the session and I can accept or reject this
connection. I’ve clicked OK to accept it. When using two instances
of Visual Studio on one computer, you can’t have two different
Visual Studio login identities, so I’ll be Julie Lerman with a blue
JL badge in both instances.

By default, the guest will follow the host wherever the host
wanders in the solution. So, if I open up the program.cs file in the
host instance, that file opens in the guest’s IDE. But if the guest
opens up a different file, that file won’t automatically open on any
other participant’s IDE. This behavior is controlled by actions
in the Live Share button dropdowns, as well as the badge. The
dropdowns—Joined or Sharing (Figure 4) both have a “Focus
Participants” option. When that’s selected, the other participants
will be notified that they’ll now follow the focus of that collabora-
tor. Notice the extra ring around the blue badge in Figure 3. This
indicates that this IDE is following the other collaborator. You can
click the badge to toggle the focus on and off. This is super handy
when your collaboration changes from, “Let’s work together on
the same file,” to, “Oh, wait, can you go check out a different file to
copy some text?”

But the dropdown and badge provide only session-specific
actions. The extension also adds a few dozen settings in Tools |
Options in a section called Live Share, as shown in Figure 5.

Another interesting aspect of the guest IDE is that if you right-
click on projects or files in Solution Explorer, you’ll see only one
item on the context menu—“Go to Git Changes.” In my case, this was

Figure 5 Controlling Live Share Behavior Using Settings in
Tools | Options

Figure 4 The Sharing Menu Dropdown
with Host-Specific Options

1318msdn_LermanShare_v5_18-23.indd 20 12/6/18 8:58 AM

Untitled-3 1Untitled-3 1 11/5/18 11:05 AM11/5/18 11:05 AM

http://www.docuvieware.com

msdn magazine22 Visual Studio

initially disabled. Right-clicking the solution in Solution Explorer
reveals a menu with options to add a file or folder, as well as modify,
debug and launch settings. The reason for the limited context menus
is, again, because the solution and project files aren’t available. So
Visual Studio treats these as simple files, not .NET projects.

Co-Editing with Your Collaborators
Anyone who has default (as opposed to read-only) access can edit
files. A host can add or rename folders and files in Solution Explorer.

The default editing behavior, whether by host or guest, begins
with mouse clicks to select text or a location in code. When a
participant moves their cursor, the other participants will see
a marker in their text. For example, in Figure 6, the guest,
Julie Lerman, notices a method beginning on line 22 that isn’t
even implemented and recommends refactoring it out. Host Julie
says, “Go for it!” The guest begins by clicking at the start of that
line, and a marker shows up in the other participants’ IDEs, as well
as the name of the user who performed the action. The name will
fade away, but the marker remains.

As the guest selects the four lines of the method, the other
users can see the selection expand in their own IDEs, along with
her name (see Figure 7).

And when she hits the delete key, the lines are also cut from the
other participants’ code.

When the host is using source control, the change also appears
as a change in Team Explorer.

That’s really the meat of co-editing. So, let’s move on to another
fun feature—co-debugging.

Co-Debugging
Earlier I mentioned that debugging steps and breakpoints are captured
and transmitted by Live Share. This is another cool feature to see in action.

When one participant sets a breakpoint, that breakpoint is auto
matically set across all the participant IDEs. If the host changes
the default setting (see Figure 5) to allow guests to debug, guests
can also trigger debugging on the host. Then each IDE will run
and stop at the breakpoints displaying available details. However,
viewing those details is up to each guest. One might have the
errors window open; another might prefer to hover over the break-
point code to view debug information.

This brings up the question of building projects or solutions. I
mentioned earlier that, by default, guests aren’t allowed to build. In
fact, the Visual Studio BUILD menu is removed from guest IDEs
during a sharing session, and to keep things secure by default, only
the host can build. In this case, the guest will display build output,
but on careful inspection, I noticed that the output was coming
from the host; that is, the build output was displaying the file paths
of the host. That’s because the build is happening on the host. If
you revisit Figure 5, you’ll see there’s an option to allow guests to
build. But if you enable that setting, you’ll need to begin a new ses-
sion for it to kick in on the guest machines. Debugging is the same.
By default, guests can’t trigger a debug session, but you can change
that setting on the host. Note that guests can’t skirt this limitation
and use command-line interface (CLI) commands to build or
debug. Remember, the projects are not on their computers. In a bit
I’ll tell you about using the Shared Terminal feature to share the
host’s terminal, which allows users to see and run command-line
commands on the host.

Debug actions, such as step or skip-over, are also relayed to col-
laborators. As you step through your code, they’re following along,
even if they’ve disabled follow mode (by clicking on the collabo-
rator badge to remove the ring around it, as shown in Figure 3).

Debugging can mean more than just stepping through code.
If you’re working in an ASP.NET Core project such as a Web site
or a Web API, you can share the server used by the host so that
guests can physically browse across the network or Internet to the
host’s server. I was a little confused by this at first because it seems a
little scary to think that my dev machine’s server would be accessi-
ble on the Internet. But the sharing is done using a secure SSH or
SSL tunnel. By default (and configurable), the server will be shared
automatically when you start debugging (F5) or run (Shift F5). If
you prefer to explicitly share servers, you can do so through the
Manage Shared Servers option on the host’s Sharing dropdown,
as shown in Figure 8.

It’s also possible to
explicitly share other
servers hosted on
TCP. For example, if
you have a SQL Server
available on TCP, you
could expose its port
and let your collabo-
rators connect to that
database. Read more
about shared servers,
as well as some pre-
cautions around this
feature at bit.ly/2FlWnlU.

Once the servers are
shared and the appli-
cation is running on
the host, guests can use
their Live Share drop-
down list to select the
View Shared Servers

Figure 7 All Participants Can See When Julie Lerman Selects Text

Figure 6 A Notation Appeared When a Participant Moved
Their Cursor to the Beginning of This Line

Figure 9 Exposing an Available Port for
Sharing Servers

Figure 8 Setting Up a Shared Server

1318msdn_LermanShare_v5_18-23.indd 22 12/6/18 8:58 AM

http://www.bit.ly/2FlWnlU

23Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

option. This displays a list of servers the host has shared. Figure 9
shows an interesting feature in action: Port 3358 is already in use
on my machine, so Live Share has enlisted an available port (3407)
to expose 3358 through on my machine.

As a guest, I chose Open in Browser and thought at first that
something was wrong because I got a 404 error: “No webpage
was found for the web address: http://localhost:3407/.” But that’s
because I was running a Web API and needed to navigate to the
proper URL—“http://localhost:3407/api/values.” Once I did, there
was the output from the API in my guest’s browser.

If you’re debugging a Console application, note that VS Code can
open up the console window in a guest session, but Visual Studio
2017 is not yet able to do that.

Shared Terminals, Too!
If you’re building .NET Core apps in Visual Studio 2017, you
may not be relying a lot on the .NET CLI or other command-line
tools. VS Code users are much more likely to be using the CLI, as
they don’t have all of the bells and whistles Visual Studio brings
to the table. However, if you are running terminal commands
in the context of writing, running or debugging your app, you
might also want to use the shared terminal feature to share the
console window among participants.

The host can share a read-only or read/write terminal from the
Sharing dropdown. This immediately opens a terminal window
on both host and guest machines. Note that if you’ve installed the
Whack Whack Terminal extension (bit.ly/2PuVDzu), which enables
an integrated terminal in Visual Studio 2017, Live Share will use
that instead. As the host types, the guests can see each keystroke
hitting their terminal window. If the guests have write access,
anything they type will show on the other participants’ termi-
nals. If a guest runs, for example, the “dotnet build” command,
the build will take place, although just like building from Visual
Studio, that happens on the host’s machine.

Yes, It’s Secure!
I’ve already noted a number of behaviors related to security. Hosts
and guests are validated using either their Microsoft or GitHub
credentials. Sessions are shared by default as editable, but there’s a
read-only invitation link to share, as well. When guests join a ses-
sion, the host is notified and can accept or reject that guest, as well
as kick a guest off any time. By default, guests can’t trigger builds
or debugging, and project and solution files aren’t even available
on a guest computer.

There are other security features that the host can control. You can:
• �Delay guests connecting to a shared session through the

“Require guest approval” setting under Authentication, as
shown in Figure 5. Think of this as a Skype lobby.

• �Control file access and visibility to a folder or project using
a file named .vsls.json, where you can specify which files
should be limited.

• �Control guest access even more strictly in an Active
Directory environment

These are all important considerations when employing Live
Share to collaborate in your small or large enterprise teams. You’ll

find more details about these features in the Security Features of
Live Share document at bit.ly/2AMyobo.

Ending a Session
The host can end a session from the Sharing dropdown and all of
the guests will be kicked out of the session (with a friendly notifica-
tion). The temp files will also get cleaned up on the guest machines.
Of course, guests can leave a session at any time and the host will
get a notification when that happens.

Interestingly, my Internet connection dropped during the session
(something odd with my router). Live Share responded with a no-
tification in the host system that the relay listener had gone offline
and that I should consider resharing when it came back online.

Live Share Has a Big Future!
Visual Studio Live Share is a “sea change” feature for developers
using Visual Studio and Visual Studio Code for a wide array of
use cases. Distributed teams are becoming more and more com-
mon, so the ability of team members to work together on code in
this way is extraordinary. But the benefits are not only for distrib-
uted teams, and there are so many other use cases—mentoring,
code reviews, teaching, helping with problems. I can’t tell you how
many times someone has asked me about a strange problem they
were having with their code and I responded that I really couldn’t
tell off the top of my head and would need to watch them debug
through it myself. Live Share can make this so easy to do now.
The docs even have a page with all types of use case ideas for you
(aka.ms/vsls-usecases). Some I hadn’t even thought of myself, such as
coding interviews. This beats a whiteboard interview every time—
and can also be done remotely!

A final thought—compared to sharing screens over Skype, the
minimal data transfer can offer significant benefits for developers
with slow or undependable Internet connections. My own Internet
speeds are limiting because I live in a rural location in the United
States. But this is a small inconvenience: usually means turning
off the camera when I’m using Skype for voice and screensharing.
But I’ve also mentored some developer friends in Lagos, Nigeria
(an amazing tech hub), and other parts of the world, where the
Internet connection is intermittent and, if I recall correctly, they
used their cell phones to relay Internet access to their computers.
For me, that really nails it—that not only does Live Share bring
enhanced productivity to developers in general, it can also be an
amazing game changer for developing communities.	 n

Julie Lerman is a Microsoft Regional Director, Microsoft MVP, software team
coach and consultant who lives in the hills of Vermont. You can find her presenting
on data access and other topics at user groups and conferences around the world.
She blogs at the thedatafarm.com/blog and is the author of “Programming Entity
Framework,” as well as a Code First and a DbContext edition, all from O’Reilly
Media. Follow her on Twitter: @julielerman and see her Pluralsight courses at
juliel.me/PS-Videos.

Thanks to the following Microsoft technical expert for reviewing this article:
Jonathan Carter

1318msdn_LermanShare_v5_18-23.indd 23 12/6/18 8:58 AM

http://www.msdnmagazine.com
http://www.bit.ly/2PuVDzu
http://bit.ly/2AMyobo
http://aka.ms/vsls-usecases
www.twitter.com/julielerman

msdn magazine24

The ML.NET library is a new open source collection of
machine learning (ML) code that can be used to create powerful
prediction systems. Many ML libraries are written in C++
with a Python API for easier programming. Examples include
scikit-learn, TensorFlow, CNTK and PyTorch. However, if you use
a Python-based ML library to create a prediction model, it’s not so
easy for a .NET application to use the trained model. Fortunately,
the ML.NET library can be used directly in .NET applications. And
because ML.NET can run on .NET Core, you can create predictive
systems for macOS and Linux, too.

A good way to see where this article is headed is to take a look
at the demo program in Figure 1. The demo creates an ML model
that predicts the annual income for a person based on their age, sex
and political leaning (conservative, moderate, liberal). Because the
goal is to predict a numeric value, this is an example of a regression
problem. If the goal had been to predict political leaning from age,
sex and income, it would be a classification problem.

The demo uses a set of dummy training data with 30 items.
After the model was trained, it was applied to the source data, and
achieved a root mean squared error of 1.2630. This error value is
difficult to interpret by itself and regression error is best used to
compare different models.

The demo concludes by using the trained model to predict
the annual income for a 40-year-old male with a conservative
political leaning. The predicted income is $72,401.38. The demo in
Figure 1 was written using the ML.NET legacy approach, which
is a good way for beginners to get a feel for ML.NET. In the sec-
ond half of this introductory article, I’ll discuss a newer approach
that’s somewhat more difficult to grasp but is the better approach
for new development.

This article assumes you have intermediate or better program-
ming skill with C#, but doesn’t assume you know anything about
the ML.NET library. The complete code and data for the demo
program are presented in this article and are also available in
the accompanying file download. As I’m writing this article, the
ML.NET library is still in preview mode and is being developed

MACH INE L E AR NING

ML.NET: The Machine
Learning Framework for
.NET Developers
James McCaffrey

The ML.NET library is still in preview. All information is subject
to change.

This article discusses:
•	The demo program and data

•	Creating and training the model

•	Saving and evaluating the model

•	Using the trained model

•	The new ML.NET API approach

Technologies discussed:
ML.NET, Visual Studio 2017, .NET Framework, .NET Core

Code download available at:
msdn.com/magazine/1318magcode

1318msdn_McCaffreyMLNET_v3_24-30.indd 24 12/6/18 8:46 AM

http://www.msdn.com/magazine/1318magcode

25Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

very quickly, so some of the information presented here may have
changed a bit by the time you’re reading this.

The Demo Program
To create the demo program, I launched Visual Studio 2017. The
ML.NET library will work with either the free Community Edition
or one of the commercial editions of Visual Studio 2017. The
ML.NET documentation states that Visual Studio 2017 is required,
and in fact I couldn’t get the demo program to work with Visual
Studio 2015. I created a new C# console application project and
named it IncomePredict. The ML.NET library will work with either
a classic .NET Framework or a .NET Core application type.

After the template code loaded, I right-clicked on file Program.cs
in the Solution Explorer window and renamed the
file to IncomeProgram.cs, and I allowed Visual
Studio to automatically rename class Program for
me. Next, in the Solution Explorer window, I right-
clicked on the IncomePredict project and selected
the Manage NuGet Packages option. In the NuGet
window, I selected the Browse tab and then entered
“ML.NET” in the Search field. The ML.NET library
is housed in the Microsoft.ML package. I selected
the latest version (0.7.0) and clicked the Install but-
ton. After a few seconds Visual Studio responded
with a “successfully installed Microsoft.ML 0.7.0
to IncomePredict” message.

At this point I did a Build | Rebuild Solution
and got a “supports only x64 architectures” error
message. In the Solution Explorer window, I right-
clicked on the IncomePredict project, and selected
the Properties entry. In the Properties window, I
selected the Build tab on the left, then changed the
Platform Target entry from “Any CPU” to “x64.” I
also made sure that I was targeting the 4.7 version
of the .NET Framework. With earlier versions of
the Framework I got an error related to one of the

math library dependencies. I again did a Build | Rebuild Solution
and was successful. When working with preview-mode libraries
such as ML.NET, you should expect quite a few hiccups like this.

The Demo Data
After creating the skeleton of the demo program, the next step is
to create the training data file. The data is presented in Figure 2.
If you’re following along, in the Solution Explorer window, right-
click on the IncomePredict project and select Add | New Folder
and name the folder “Data.” Placing your data in a folder named
Data isn’t required but it’s a standard practice. Right-click on the
Data folder and select Add | New Item. From the new item dialog
window, select the Text File type and name it PeopleData.txt.

Copy the data from Figure 2 and paste it into the editor window,
being careful not to have any extra trailing blank lines.

The 30-item dataset is artificial. The first column is a person’s age.
The second column indicates sex and is pre-encoded as male = -1 and
female = +1. The ML.NET library has methods to encode text data,
so the data could’ve used “male” and “female.” The third column is
annual income to predict, with values divided by 10,000. The last col-
umn specifies the political leaning (conservative, moderate, liberal).

Because the data has three predictor variables (age, sex, politic),
it’s not possible to display it in a two-dimensional
graph. But you can get a good idea of the structure
of the data by examining the graph of just age
and annual income in Figure 3. The graph shows
that age by itself can’t be used to get an accurate
prediction of income.

After you create the training data in a Data folder,
you should create a folder named Models to hold
the saved model because the demo code assumes
a Models folder exists.

The Program Code
The complete demo code, with a few minor edits to
save space, is presented in Figure 4. After the tem-
plate code loaded into Visual Studio, at the top of
the Editor window I removed all namespace refer-
ences and replaced them with the ones shown in the
code listing. The various Microsoft.ML namespaces
house all ML.NET functionality. The Threading.
Tasks namespace is needed to save or load a trained
ML.NET legacy model to file.

Notice that most of the namespaces have a “Legacy”
identifier. The demo program uses what’s called the

48, +1, 4.40, liberal
60, -1, 7.89, conservative
25, -1, 5.48, moderate
66, -1, 3.41, liberal
40, +1, 8.05, conservative
44, +1, 4.56, liberal
80, -1, 5.91, liberal
52, -1, 6.69, conservative
56, -1, 4.01, moderate
55, -1, 4.48, liberal
72, +1, 5.97, conservative
57, -1, 6.71, conservative
50, -1, 6.40, liberal
80, -1, 6.67, moderate
69, +1, 5.79, liberal
39, -1, 9.42, conservative
68, -1, 7.61, moderate
47, +1, 3.24, conservative
18, +1, 4.29, liberal
79, +1, 7.44, conservative
44, -1, 2.55, liberal
52, +1, 4.71, moderate
55, +1, 5.56, liberal
76, -1, 7.80, conservative
32, -1, 5.94, liberal
46, +1, 5.52, moderate
48, -1, 7.25, conservative
58, +1, 5.71, conservative
44, +1, 2.52, liberal
68, -1, 8.38, conservative

Figure 2 People Data

Figure 1 ML.NET Legacy Demo Program in Action

The ML.NET library will work
with either the free Community

Edition or one of the commercial
editions of Visual Studio 2017.

1318msdn_McCaffreyMLNET_v3_24-30.indd 25 12/6/18 8:46 AM

http://www.msdnmagazine.com

msdn magazine26 Machine Learning

pipeline API, which is simple and effective. The ML.NET team is
adding a new, more flexible API, which I’ll discuss shortly.

The program defines a nested class named IncomeData that
describes the internal structure of the training data. For example,
the first column is:

[Column("0")]
public float Age;

Notice that the age field is declared type float rather than type
double. In most ML systems, type float is the default numeric type
because the increase in precision you get from using type double
is rarely worth the resulting memory and performance penalty.
Predictor field names can be specified using the ColumnName
attribute. They’re optional and can be whatever you like, for exam-
ple [ColumnName(“Age”)].

The demo program defines a nested class named IncomePre-
diction to hold model predictions:

public class IncomePrediction {
 [ColumnName("Score")]
 public float Income;
}

The column name “Score” is required but, as shown, the associ-
ated string variable identifier doesn’t have to match.

Creating and Training the Model
The demo program sets up an untrained ML model using these
statements:

var pipeline = new LearningPipeline();
string dataPath = "..\\..\\Data\\IncomeData.txt";
pipeline.Add(new TextLoader(dataPath).
 CreateFrom<IncomeData>(separator: ','));

You can think of a LearningPipeline object as a meta container
that holds the training data and a training algorithm. This para-
digm is quite a bit different from those used by other ML libraries.
Next, the pipeline performs some data manipulation:

pipeline.Add(new ColumnCopier(("Income", "Label")));
pipeline.Add(new CategoricalOneHotVectorizer("Politic"));
pipeline.Add(new ColumnConcatenator("Features", "Age",
 "Sex", "Politic"));

The legacy version of ML.NET requires that the column that
holds the values to predict be identified as “Label” so the Column-
Copier method creates an in-memory duplicate of the Income
column. An alternative approach is to simply name the Income
column as Label in the class definition that defines the structure
of the training data.

The trainer only works with numeric data so the text values of
the Politic column must be converted to integers. The Categorical
OneHotVectorizer method converts “conservative,” “moderate,”
and “liberal” to (1, 0, 0), (0, 1, 0), and (0, 0, 1). An alternative approach
is to manually pre-encode text data.

The ColumnConcatenator method combines the three predictor
columns into a single column named Features. This naming scheme
is required. The training algorithm is added to the pipeline, and the
model is trained like so:

var sdcar = new StochasticDualCoordinateAscentRegressor();
sdcar.MaxIterations = 1000;
sdcar.NormalizeFeatures = NormalizeOption.Auto;
pipeline.Add(sdcar);
var model = pipeline.Train<IncomeData, IncomePrediction>();

Stochastic dual coordinate ascent is a relatively simple algo-
rithm for training a linear-form regression model. Other legacy

regression trainers include FastForestRegressor, FastTreeRegressor,
GeneralizedAdditiveModelRegressor, LightGbmRegressor, Online-
GradientDescentRegressor and OrdinaryLeastSquaresRegressor.
Each of these has strengths and weaknesses so there’s no one best
algorithm for a regression problem. Understanding the differences
between each type of regressor and classifier is not trivial and
requires quite a bit of poring through documentation.

Once the pipeline object has been set up, training the model is
a one-statement operation. If you refer back to the output shown
in Figure 1, you’ll notice that the Train method does a lot of
behind-the-scenes work for you. Because the pipeline uses auto-
matic normalization, the trainer analyzed the Age and Income
columns and decided that they should be scaled using min-max
normalization. This converts all age and income values to values
between 0.0 and 1.0 so that relatively large values (such as an age
of 52) don’t overwhelm smaller values (such as an income of 4.58).
Normalization usually, but not always, improves the accuracy of
the resulting model.

The Train method also uses L1 and L2 regularization, which is
another standard ML technique to improve the accuracy of a model.
Briefly, regularization discourages extreme weight values in the
model, which in turn discourages model overfitting. To reiterate,
ML.NET does all kinds of advanced processing, without you having
to explicitly configure parameter values. Nice!

Saving and Evaluating the Model
After the regression model has been trained, it’s saved to disk like so:

string modelPath = "..\\..\\Models\\IncomeModel.zip";
Task.Run(async () =>
{
 await model.WriteAsync(modelPath);
}).GetAwaiter().GetResult();

The code assumes the existence of a directory named Model that’s
two levels above the program executable. An alternative is to hard
code the path. Because the WriteAsync method is asynchronous,

Figure 3 Income Data

20 300 10
0.00

50

1.00

60 70 80

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

In
co

m
e

x
10

,0
00

40
Age

Age vs. Income

90

1318msdn_McCaffreyMLNET_v3_24-30.indd 26 12/6/18 8:46 AM

27Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

it’s not so easy to call it. There are several approaches you can use.
The approach I prefer is the wrapper technique shown. The lack of
a non-async method to save an ML.NET model is a bit surprising,
even for a library that’s in preview mode.

The model is evaluated with these statements:
var testData = new TextLoader(dataPath).
 CreateFrom<IncomeData>(separator: ',');
var evaluator = new RegressionEvaluator();
var metrics = evaluator.Evaluate(model, testData);
double rms = metrics.Rms;
Console.WriteLine("Model root mean squared error = " +
 rms.ToString("F4"));

In most ML scenarios you’d have two data files—one used just
for training, and a second test dataset used only for model evalu-
ation. For simplicity, the demo program reuses the single 30-item
data file for model evaluation.

The Evaluate method returns an aggregate object that holds
the root mean squared value for the trained model applied to
the test data. Other metrics returned by a regression evaluator
include R-squared (the coefficient of determination) and L1 (sum
of absolute errors).

For many ML problems, the most useful metric is prediction
accuracy. There’s no inherent definition of accuracy for a regression
problem because you must define what it means for a prediction
to be correct. The usual approach is to write a custom function
where a predicted value is counted as correct if it’s within a given
percentage of the true value in the training data. For example, if
you set the delta percentage to 0.10 and if a true income value is
6.00, a correct prediction is one between 5.40 and 6.60.

Using the Trained Model
The demo program predicts the annual income for a 40-year-old
conservative male like so:

Console.WriteLine("Income for age 40 conservative male: ");
IncomeData newPatient = new IncomeData() { Age = 40.0f,
 Sex = -1f, Politic = "conservative" };
IncomePrediction prediction = model.Predict(newPatient);
float predIncome = prediction.Income * 10000;
Console.WriteLine("Predicted income = $" +
 predIncome.ToString("F2"));

Notice that the numeric literals for age and sex use the “f ” modifier
because the model is expecting type float values. In this example, the
trained model was available because the program just finished train-
ing. If you wanted to make a prediction from a different program, you’d
load the trained model using the ReadAsync method along the lines of:

PredictionModel<IncomeData, IncomePrediction> model = null;
Task.Run(async () =>
{
 model = await PredictionModel.ReadAsync<IncomeData,
 IncomePrediction>(modelPath);
}).GetAwaiter().GetResult();

After loading the model into memory, you’d use it by calling the
Predict method as shown earlier.

Figure 4 ML.NET Legacy Example Program

using System;
using Microsoft.ML.Runtime.Api;
using Microsoft.ML.Legacy;
using Microsoft.ML.Legacy.Data;
using Microsoft.ML.Legacy.Transforms;
using Microsoft.ML.Legacy.Trainers;
using Microsoft.ML.Legacy.Models;
using System.Threading.Tasks;
// Microsoft.ML 0.7.0 Framework 4.7 Build x64

namespace IncomePredict
{
 class IncomeProgram
 {
 public class IncomeData {
 [Column("0")] public float Age;
 [Column("1")] public float Sex;
 [Column("2")] public float Income;
 [Column("3")] public string Politic;
 }

 public class IncomePrediction {
 [ColumnName("Score")]
 public float Income;
 }

 static void Main(string[] args)
 {
 Console.WriteLine("Begin ML.NET demo run");
 Console.WriteLine("Income from age, sex, politics");
 var pipeline = new LearningPipeline();

 string dataPath = "..\\..\\Data\\PeopleData.txt";
 pipeline.Add(new TextLoader(dataPath).
 CreateFrom<IncomeData>(separator: ','));

 pipeline.Add(new ColumnCopier(("Income", "Label")));
 pipeline.Add(new CategoricalOneHotVectorizer("Politic"));
 pipeline.Add(new ColumnConcatenator("Features", "Age",

 "Sex", "Politic"));
 var sdcar = new StochasticDualCoordinateAscentRegressor();
 sdcar.MaxIterations = 1000;
 sdcar.NormalizeFeatures = NormalizeOption.Auto;
 pipeline.Add(sdcar);
 // pipeline.N

 Console.WriteLine("\nStarting training \n");
 var model = pipeline.Train<IncomeData, IncomePrediction>();
 Console.WriteLine("\nTraining complete \n");

 string modelPath = "..\\..\\Models\\IncomeModel.zip";
 Task.Run(async () =>
 {
 await model.WriteAsync(modelPath);
 }).GetAwaiter().GetResult();

 var testData = new TextLoader(dataPath).
 CreateFrom<IncomeData>(separator: ',');
 var evaluator = new RegressionEvaluator();
 var metrics = evaluator.Evaluate(model, testData);
 double rms = metrics.Rms;
 Console.WriteLine("Root mean squared error = " +
 rms.ToString("F4"));

 Console.WriteLine("Income age 40 conservative male: ");
 IncomeData newPatient = new IncomeData() { Age = 40.0f,
 Sex = -1f, Politic = "conservative" };
 IncomePrediction prediction = model.Predict(newPatient);
 float predIncome = prediction.Income * 10000;
 Console.WriteLine("Predicted income = $" +
 predIncome.ToString("F2"));

 Console.WriteLine("\nEnd ML.NET demo");
 Console.ReadLine();
 } // Main
 } // Program
} // ns

For many ML problems,
the most useful metric is

prediction accuracy.

1318msdn_McCaffreyMLNET_v3_24-30.indd 27 12/6/18 8:46 AM

http://www.msdnmagazine.com

Untitled-1 2 11/1/18 11:26 AM

http://demos.textcontrol.com

Untitled-1 3 11/1/18 11:26 AM

http://demos.textcontrol.com

msdn magazine30 Machine Learning

The New ML.NET API Approach
The legacy pipeline approach is simple and effective, and it provides
a consistent interface for using the ML.NET classifiers and regres-
sors. But the legacy approach has some architectural characteristics
that limit the library’s extensibility so the ML.NET team has created
a new, more flexible approach, which is best explained by example.

Suppose you have the exact same dataset—age, sex, income,
politics. And suppose you want to predict political leaning from
the other three variables. A demo program to create a classifier
using the new ML.NET API approach is presented in Figure
5. This program uses a hybrid combination of old style and new

style and is intended to create a bridge between the two. Let me
emphasize that the latest code examples in the ML.NET docu-
mentation will provide you with more sophisticated, and in some
cases better, techniques.

At a very high level, many ML tasks have five phases: load and
transform training data into memory, create a model, train the
model, evaluate and save the model, use the model. Both the
legacy and new ML.NET APIs can perform these operations, but
the new approach is clearly superior (in my opinion, anyway) for
realistic ML scenarios in a production system.

A key feature of the new ML.NET API is the MLContext class.
Notice that the ctx object is used when reading the training data,
when creating the prediction model and when making a prediction.

Although it’s not apparent from the code, another advantage of the
new API over the legacy approach is that you can read training data
from multiple files. I don’t encounter this scenario often, but when I
do, the ability to read multiple files is a huge time-saver.

Another feature of the new API is the ability to create prediction
models in two different ways, called static and dynamic. The static
approach gives you full Visual Studio IntelliSense capabilities during
development. The dynamic approach can be used when the struc-
ture of your data must be determined at run time.

Wrapping Up
If you’ve gone through this article and run and understood the
relatively simple demo code, your next step should be to take a
full plunge into the new ML.NET API. Unlike many open source
projects that have weak or skimpy documentation, the ML.NET
documentation is excellent. I can recommend the examples at
bit.ly/2AVM1oL as a great place to begin.

Even though the ML.NET library is new, its origins go back
many years. Shortly after the introduction of the Microsoft .NET
Framework in 2002, Microsoft Research began a project called
TMSN (“text mining search and navigation”) to enable software
developers to include ML code in Microsoft products and tech-
nologies. The project was very successful, and over the years grew
in size and usage internally at Microsoft. Somewhere around 2011
the library was renamed to TLC (“the learning code”). TLC is
widely used within Microsoft and is currently in version 3.10. The
ML.NET library is a descendant of TLC, with Microsoft-specific
features removed. I’ve used both libraries and, in many ways, the
ML.NET child has surpassed its parent.

This article has just scratched the surface of the ML.NET
library. An interesting and powerful new capability of ML.NET is
the ability to consume and use deep neural network models created
by other systems, such as PyTorch and CNTK. The key to this
interoperability is the Open Neural Network Exchange (ONNX)
standard. But that’s a topic for a future article.	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several key Microsoft products, including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jamccaff@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Ankit Asthana, Chris Lauren, Cesar De la Torre Llorente, Beth Massi,
Shahab Moradi, Gal Oshri, Shauheen Zahirazami

using System;
using Microsoft.ML;
using Microsoft.ML.Runtime.Api;
using Microsoft.ML.Runtime.Data;
using Microsoft.ML.Transforms.Conversions;
// Microsoft.ML 0.7.0 Framework 4.7 Build x64

namespace PoliticPredict
{
 class PoliticProgram
 {
 public class PoliticData {
 [Column("0")] public float Age;
 [Column("1")] public float Sex;
 [Column("2")] public float Income;
 [Column("3")]
 [ColumnName("Label")]
 public string Politic;
 }

 public class PoliticPrediction {
 [ColumnName("PredictedLabel")]
 public string PredictedPolitic;
 }

 static void Main(string[] args)
 {
 var ctx = new MLContext(seed: 1);
 string dataPath = "..\\..\\Data\\PeopleData.txt";

 TextLoader textLoader =
 ctx.Data.TextReader(new TextLoader.Arguments()
 {
 Separator = ",", HasHeader = false,
 Column = new[] {
 new TextLoader.Column("Age", DataKind.R4, 0),
 new TextLoader.Column("Sex", DataKind.R4, 1),
 new TextLoader.Column("Income", DataKind.R4, 2),
 new TextLoader.Column("Label", DataKind.Text, 3)
 }
 });

 var data = textLoader.Read(dataPath);

 var est = ctx.Transforms.Categorical.MapValueToKey("Label")
 .Append(ctx.Transforms.Concatenate("Features", "Age",
 "Sex", "Income"))
 .Append(ctx.MulticlassClassification.Trainers
 .StochasticDualCoordinateAscent("Label", "Features",
 maxIterations: 1000))
 .Append(new KeyToValueEstimator(ctx, "PredictedLabel"));

 var model = est.Fit(data);

 var prediction = model.MakePredictionFunction<PoliticData,
 PoliticPrediction>(ctx).Predict(
 new PoliticData() {
 Age = 40.0f, Sex = -1.0f, Income = 8.55f
 });
 Console.WriteLine("Predicted party is: " +
 prediction.PredictedPolitic);
 Console.ReadLine();
 } // Main
 } // Program
} // ns

Figure 5 Classification Example Code Listing

1318msdn_McCaffreyMLNET_v3_24-30.indd 30 12/6/18 8:46 AM

mailto:jamccaff@microsoft.com
http://bit.ly/2AVM1oL

Americas: +1 903 306 1676 EMEA: +44 141 628 8900 Oceania: +61 2 8006 6987
sales@asposeptyltd.com

Untitled-3 1 6/7/18 1:15 PM

mailto:sales@asposeptyltd.com
https://downloads.groupdocs.com

msdn magazine32

Machine learning (ML) is being used in a wide range of
applications, from autonomous cars and credit card fraud detec-
tion to predictive maintenance in manufacturing and beyond.

But there’s a problem. Building ML solutions is complex and
requires highly skilled personnel with Ph.D.s in mathematics or
other quantitative fields. The demand for data scientists has out-
paced supply, inhibiting adoption of ML among enterprises. Many
companies have vast stores of data, yet they’re unable to employ
predictive analytics to improve business decision making and
achieve success.

The automated ML capability in Azure Machine Learning is
designed to overcome these obstacles and make AI more accessi-
ble to every developer and every organization. In this article, I’ll
show how automated ML can be used to quickly build an energy
demand forecasting solution.

The Machine Learning Lifecycle
Look at the data science lifecycle process shown in Figure 1. It
breaks the lifecycle into four stages: Business Understanding, Data
Acquisition & Understanding, Modeling, Deployment. Every ML
solution should start with the business problem you’re working
to solve—that is, the Business Understanding stage. Next, you ac-
quire and explore the data—the Data Acquisition & Understanding
step—to bring in the raw data that may be in various data sources
in different formats. Ingesting, exploring, and de-duping are some
of the activities in Data Acquisition & Understanding.

The Modeling stage has three steps, starting with the feature-
engineering process. Here you may transform the data into new
features and generate entirely new features. Features are the predic-
tors that influence prediction. An easy way to understand features is
to take the example of estimating a house price, which is influenced
by the size and location of the house, the number of bedrooms, and
other factors. So, if you’re generating an ML model to predict a house
value, these factors are the features.

Next comes the model training process (in the Modeling stage)
where you build ML models by applying many different algorithms and
hyperparameters to the dataset. This process involves evaluating the
different models you’ve built to choose the one that works best for the
current application. From there, you test and finally deploy the model
into production, where it’s used to run predictions from the new data.

Once in the Deployment stage, you must monitor the model
for drifts, retraining it periodically when drifts reach a certain
threshold or when new data makes clear that the model isn’t per-
forming to expectation.

Now, let’s see how automated ML helps build an ML model. The
first step is to install the set of Azure Machine Learning Python

MACH INE L E AR NING

Accelerate AI Solutions
with Automated
Machine Learning
Krishna Anumalasetty

This article discusses:
•	The stages of the data science lifecycle process and how it maps

to automated ML

•	Building an energy demand forecasting app using data from
publicly available sources

•	Accelerating AI by automating feature engineering, algorithm
selection and hyperparameter tuning

•	Configuring automated ML and training models to generate a
leaderboard of the most effective models

Technologies discussed:
Automated Machine Learning, Azure Machine Learning Service,
Azure Cloud Compute

1318msdn_AnumaML_v4_32-35.indd 32 12/6/18 8:43 AM

33Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

libraries. Automated ML libraries are included and part of Azure
ML libraries and will be used in your ML scripts.

As a developer, if you’re familiar with languages such as C# or
Java, you should be able to get up to speed in Python in no time.
You can install the Azure ML SDK, which includes automated ML
libraries on your computer, however, for simplicity we’ll use Azure
Notebooks, which is an Azure service to host Jupyter Notebooks.
Jupyter Notebook is an interactive notebook environment pop-
ular with data scientists for ML solution development. You can
learn more about using Jupyter Notebooks from Frank La Vigne’s
Artificially Intelligent column in the February 2018 issue of MSDN
Magazine (msdn.com/magazine/mt829269).

Automated ML libraries are free to use and come pre-installed
on the Azure Notebooks service, eliminating the need for a setup
process. Sign in to Azure Notebooks using your Microsoft
Account. If you already have an Azure Subscription, you can use
the Azure Active Directory (Azure AD) account (which may be
the same as your corporate credentials if your organization federated
with Azure AD).

Use your Azure subscription ID to setup an ML workspace that
you can share and collaborate with your teammates either through
the Azure Portal, or through the API, like so:

ws = Workspace.create(name = "energy_ml_ws",
 subscription_id = "<azure_subscription_id>",
 resource_group = "energy_ml_rg",
 location = "eastus",
 create_resource_group = True,
 exist_ok = True)

Energy Demand Forecasting
With workspace creation complete, let’s work on the business prob-
lem—an energy demand forecasting example that features time
series data. Time series forecasting is the task of predicting future
values in a time-ordered sequence of observations. It’s a common
problem and has applications in many industries. For example,
retail companies need to forecast future product sales so they can

organize their supply chains to meet
demand. Similarly, package deliv-
ery companies need to estimate the
demand for their services so they
can plan workforce requirements
and delivery routes ahead of time.
In many cases, the financial impact
due to inaccurate forecasts can be
significant, making forecasting a
business-critical activity.

This is certainly true for energy
utilities, which must maintain a
fine balance between the energy
consumed on the grid and the
energy supplied to it. Purchase
too much power and the operator
must store the excess energy, which
is expensive. Purchase too little and
it can lead to blackouts, leaving cus-
tomers in the dark. Grid operators
can make short-term decisions to

manage energy supply to the grid and keep the load in balance, but
an accurate forecast of energy demand is essential for operators to
make these decisions with confidence.

Data Acquisition
Let’s walk through how you can use ML to build an energy demand
forecasting solution. There’s a public dataset available from the New
York Independent System Operator (NYISO), which operates the
power grid for New York State. The dataset has hourly power
demand data for New York City over a period of five years.

The NYISO dataset has a timestamp and energy demand in
MWh at hourly increments from 2012 to 2017. To inspect and
explore the data, let’s first read the data that’s in Azure Blob Storage
into a Pandas dataframe. Pandas dataframes are popular with the
ML community and offer an easy way to manipulate data. Here’s
the code for the import:

import pandas as pd
demand = pd.read_csv(
 "https://antaignitedata.blob.core.windows.net/antaignitedata/nyc_demand.csv",
 parse_dates=['timeStamp'])

Let’s print the first few rows of the data by invoking the head
method on the dataframe, which prints the top few rows and pro-
duces a simple table with timestamps and energy demand values.
If I plot the chart of energy demand over a week in July 2017, it
results in a line chart that shows fluctuating hourly values over
the course of seven days. For this I use matplotlib, a library that
helps easily plot charts within Jupyter Notebook. Here’s the code:

plt_df = demand.loc[(demand.timeStamp>'2016-07-01') & (demand.
timeStamp<='2016-07-07')]
plt.plot(plt_df['timeStamp'], plt_df['demand'])
plt.title('New York City power demand over one week in July 2017')
plt.xticks(rotation=45)
plt.show()

Of course, weather has a direct impact on energy consumption. On
a hot day, use of air conditioning will significantly increase demand
for electricity. So an additional dataset containing hourly weather
conditions in New York City over the same time period can be used

Figure 1 Data Science Lifecycle Process

Customer
Acceptance

Scoring,
Performance

Monitoring, Etc.

Start Business
Understanding

Data
Acquisition &

Understanding
Modeling

Deployment End

Feature
Engineering

Model
Training

Model
Evaluation

Transform, Binning
Temporal, Text, Image

Feature Selection

Algorithms, Ensemble
Parameter Tuning

Retraining
Model Management

Cross Validation
Model Reporting

A/B Testing

Data
Source

Pipeline

Environment

Wrangling,
Exploration &

Cleaning

On-Premises vs Cloud
Database vs Files

Streaming vs Batch
Low vs High Frequency

On-Premises vs Cloud
Database vs Data Lake vs ...
Small vs Medium vs Big Data

Structured vs Unstructured
Data Validation vs Cleanup
Visualization

Intelligent
Applications

Web
Services

Model
Store

1318msdn_AnumaML_v4_32-35.indd 33 12/6/18 8:43 AM

http://www.msdnmagazine.com
http://msdn.com/magazine/mt829269

msdn magazine34 Machine Learning

to improve prediction. I can access weather data from darksky.net. Now,
I’ll read the weather dataset into a dataframe and augment the NYISO
dataset with weather data by merging the two datasets, using this code:

weather = pd.read_csv(
 "https://antaignitedata.blob.core.windows.net/antaignitedata/nyc_weather.csv",
 parse_dates=['timeStamp'])
df = pd.merge(demand, weather, on=['timeStamp'], how='outer')

The resulting merged dataset will look something similar to
the table in Figure 2, effectively adding weather information—
precipitation and temperatures—to the NYISO dataset. To see the
first few rows of the data, invoke the head method on the dataframe.

Modeling
Now we come to the modeling step, which involves three disci-
plines: feature engineering, model training and model evaluation.
This is where data scientists spend most of their time, and it’s where
automated ML can really help simplify things.

The dataset I’m using is time series data, which requires me to
generate features. Typical features for time series data are date time
features, lag features and window features. To keep things simple,
I won’t go into lag features or window features. Automated ML
automatically generates date time features, eliminating the need to
manually generate these. It also performs many data preprocess-
ing tasks. For example, automated ML can impute missing values
in the dataset. If I inspect the dataset further I’ll find that there
are a few missing rows in the dataset and a few missing values, as
well. In the following code, you can see that row 49175 contains a
missing value, indicated by “nan,” which stands for “not a number”:

df.iloc[49175].values

Output of the line is as follows:
array([Timestamp('2017-08-11 01:00:00'), nan, 0.0, 69.26], dtype=object)

Next, I need to split the dataset into a training dataset and a test
dataset. The training dataset is used to build the model. Once trained,
I need to test the model using the test dataset to evaluate the perfor-
mance and to ensure the model is satisfactory before deployment. The
splitting can be random, but in the case of energy consumption data
where there’s seasonality, I would want to split the dataset strategically.
A small portion of training dataset is set aside as a validation dataset.
Training dataset is used to train the model. Validation dataset is used
to generalize the model so that the model isn’t
overfitted with the training data. This helps
to make sure the model also performs well
on new data and not just on the training data.

Now, the column that I’m working to pre-
dict is demand. I move the demand values
into its own vector “y,” which is called the
label column. I’m setting aside as my test
dataset any data that’s newer than July 1,
2017. All data that’s older than July 1, 2017, is
the training data. The code here shows this:

train, test = (df.loc[df['timeStamp']<'2016-07-01'],
 df.loc[df['timeStamp']>='2016-07-01'])

The data that was read into the dataframe has the features and
label (the column I’m trying to predict). I need to move the label
column into its own vector y, like so:

X = train.drop(['demand'], axis=1)
y = train['demand']
y = y.values

Set aside a validation dataset within the train dataset. With
timeseries data, the validation dataset is typically for a specific
period. Here’s how the split is done:

split_index = int(X.shape[0] * 0.9)
X_train = X[0:split_index]
y_train = y[0:split_index]
X_validation = X[split_index+1:]
y_validation = y[split_index+1:]

The feature engineering part of the Modeling has been completed.

Model Training
The next choice a user faces is deciding which algorithm works for
the dataset. Complexity can be a problem here as there are many
algorithms to choose from, including support vector machine
(SVM), lasso regression, ridge regression and more. What’s more,
each algorithm has hyperparameters that must be tuned. Hyper-
parameters for each of the algorithms can be an infinite set, which
means the combination of algorithms and hyperparameters is
itself infinite. So, theoretically you would need to build an infinite
number of models to find the best one.

Users combine features, learners (algorithms) and hyperparame-
ters to build multiple models for a given business problem, so they
can ultimately find one that yields optimal accuracy. Building many
models and evaluating them is a manual, time-consuming and
tedious task that can take weeks or even months. On top of that you
need to maintain the solutions and the models that are deployed. As
data evolves, you need to periodically perform the model building
process again. Building a single model involves the tasks of feature
engineering, algorithm selection and hyperparameter tuning.
To get a good performing model, you need to build and evaluate
several models and perform these tedious tasks repeatedly.

For those that are experienced in data science, automated ML
simplifies and eliminates manual processing by performing fea-
ture engineering, algorithm and hyperparameter selection, and
tuning for you to improve productivity and save time. For new
data scientists, the abstraction of algorithm selection and hyper-
parameter tuning simplifies the complexity and helps you build
ML solutions quickly.

As a user I would like to save all the ML models I’ve created,
as well as the history of all the training
jobs, so I have a record of how I got here
and can refer back to it when needed. To
do this, let’s create a project folder where
all the artifacts get stored, and an experi-
ment object to associate all the run history
of automated ML training jobs. First,
I create a project folder to store all the
project-related files, like so:
project_folder =
 './sample_projects/automl-energydemandforecasting'

Figure 2 Energy Demand Dataset Merged
with Weather Dataset

Training dataset is used to train
the model.

1318msdn_AnumaML_v4_32-35.indd 34 12/6/18 8:43 AM

http://darksky.net

35Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

Then, I’ll choose a name for the run history container in the
workspace, with this code:

experiment_name = 'energy_ml_exp'

Next, I’ll create an experiment object and associate it with the
workspace. Here’s the code:

experiment=Experiment(ws, experiment_name)

From there, automated ML needs only two steps to build the
models before I configure the AutoMLConfig object and run the
experiment. Figure 3 shows the conceptual representation of
automated ML.

Now, let’s configure the automated ML settings and submit an
automated ML experiment. Here’s the code:

automl_config_local = AutoMLConfig(task = 'regression',
 debug_log = 'automl_errors.log',
 primary_metric = 'spearman_correlation',
 iterations = 150,
 X = X_train,
 y = y_train,
 X_valid = X_validation,
 y_valid = y_validation,
 preprocess = True,
 path=project_folder)

Notice in the config settings that I set iterations = 150. Because I
set the number of iterations to 150, automated ML will generate 150
different combinations of algorithms and hyperparameters, which
culminate into 150 different models. Automated ML itself uses an
ML model that was trained with millions of pipelines. Using Matrix
factorization techniques, automated ML generates the algorithms
and hyperparameter combinations in an intelligent way, leading
to much faster convergence on an optimal model. Also, setting
preprocess = True triggers automated ML to perform a data prepro-
cessing and feature engineering tasks. This includes generating the
date time features, imputing missing values, converting categorical
values into one hot encoding, and the like—all of which eliminate
the need for a data scientist to do these manually.

Now you can complete the second step, which is submitting the
automated ML experiment, like so:

local_run = experiment.submit(automl_config_local, show_output=True)

At this point automated ML generates a set of algorithm and
hyperparameter combinations. Training of the models is done
on Azure Virtual Machine managed by Azure Notebooks service.
Automated ML gives you the choice of running the model train-
ing jobs on your local computer, or in Azure Cloud to scale up and
scale out as needed for additional performance. You can run these
iterations in parallel on a cluster. You can monitor the progress of
the runs in Azure Portal, or in the Jupyter Notebook through the
widget extension that comes with the SDK. Automated ML evalu-
ates the generated models based on your criteria, and can render a
leaderboard that shows the models in order of performance.

You can also review a variety of charts for each of the models and
inspect different metrics to help make decisions. In cases where
accuracy is extremely important, you can further tune the gener-
ated model manually to improve its performance.

All the models generated by automated ML are stored in durable
storage in Azure, as a serialized python object in a format called PKL.

Model Evaluation and Testing
Now that automated ML has generated a high-quality model, let’s
use it to run predictions on the test data that was set aside. First,
I need to select the best model from all the models that were
generated, using the following code:

best_run, fitted_model = local_run.get_output()
print(best_run)
print(fitted_model)

That yields the following code, describing the best model gen-
erated by automated ML:

Run(Experiment: enery_ml_exp, Id: AutoML_dc619226-fbdb-41e6-872c-6c59ab2b5209_1,
 Type: None, Status: Completed) Pipeline(memory=None, steps=[('datatransformer',
 DataTransformer(logger=None, task=None)), ('sparsenormalizer',
 <automl.client.core.common.model_wrappers.SparseNormalizer object at
 0x7f7f87ee3828>), ('decisiontreeregressor',
 DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=0.2,
 max_leaf_node... min_weight_fraction_leaf=0.0, presort=False,
 random_state=None, splitter='best'))])

Notice that though I’ve been calling these models, they are in fact
pipelines that include all the preprocessing transformation through
which the data must go. Now let’s test the model by running pre-
dictions on the test data to produce a charted comparison of actual
data against predicted data. Use the following code:

x_test = test.drop(['demand'], axis=1)
y_test = test['demand']
y_pred_test = fitted_model.predict(x_test)
y_residual_test = y_test - y_pred_test

plt.plot(x_test['timeStamp'], y_test, label='Actual')
plt.plot(x_test['timeStamp'], y_pred_test, label="Predicted")
plt.xticks(rotation=90)
plt.title('Actual demand vs predicted for test data ')
plt.legend()
plt.show()

With a little more feature engineering and the use of lag features,
this model can be improved even further. Moving forward, we can
expect automated ML to evolve to automate more and more areas
of feature engineering, including lag feature generation.

Wrapping Up
Automated ML lets you build an ML model with just a few simple steps.
We’re in the early stages of making ML model building accessible to
developers to truly democratize AI. You can find many more samples
and tutorials of using automated ML at aka.ms/AutomatedMLDocs.	 n

Krishna Anumalasetty has been working as a program manager in Azure
and cloud services for the last seven years, with four of those in ML and AI.
Anumalasetty is the program manager that incubated automated ML as part
of the AI stack in Azure. He has worked on enabling enterprise excellence capa-
bilities, such as encryption @REST data protection, VNET capabilities, hybrid
scenarios with on-premises connectivity, Azure Active Directory integration
and more. He is currently working on enriching the automated ML capabilities
with deep learning.

Thanks to the following Microsoft technical experts for reviewing this article:
Sujatha Sagiraju, Bharat Sandhu

Figure 3 Conceptual Automated Machine Learning Diagram

Automated ML

Configure Automated ML

• Data Pre-Process
• Budget - Time/Compute
• Etc.

Data High-Quality Machine
Learning Model

1318msdn_AnumaML_v4_32-35.indd 35 12/6/18 8:43 AM

http://www.msdnmagazine.com
http://aka.ms/AutomatedMLDocs

msdn magazine36

Modern applications are increasingly complex systems
that involve multiple technology stacks and cloud-native services.
Orchestrating an automated release pipeline for these systems can
be challenging. Azure Pipelines provides powerful, easy-to-use
continuous integration (CI) and continuous delivery (CD) services
you can use to build and test your app and then deploy to your
intended targets. In this article, we’ll provide an overview of the key
concepts of Azure Pipelines and discuss deployment scenarios for
various Azure services. We’ll also walk through a detailed scenario
for creating a pipeline for a .NET Core app that targets Docker
containers in Azure Kubernetes Service (AKS). Finally, we’ll show
you the next generation of CI/CD in which your YAML pipeline
is configured as part of your code.

Azure Pipelines provides flexibility for configuring your build and
release workflows. You can choose from multiple version control provid-
ers such as GitHub, Azure Repos, Bitbucket and Subversion. Most lan-
guages and application frameworks are supported, including .NET, Java,

JavaScript, Python, PHP, Ruby, Xcode, C++ and Go. You can create pipe-
lines that deploy anywhere, including any cloud provider or on-premises
deployment target. You can use any package management repository
such as NuGet, npm, and Maven to produce and consume packages.
Azure Pipelines allows you to configure and customize your CI/CD
solution to fit virtually any scenario. Built-in pipeline tasks, third-party
tasks, custom tasks, and file-based or inline PowerShell and Bash
scripting all help you build workflows for your pipelines. Templates
provide you with an easy way to quickly group and reuse a set of tasks.

Azure Pipelines Key Concepts
In Azure Pipelines you define build (CI) and release (CD) work-
flows for your apps. These workflows provide a framework for
orchestrating and automating your release pipelines. A typical sce-
nario is for your CI build pipeline to pull code from your version
control repository, compile the code, run tests and other analysis
processes, and finally publish artifacts, such as files, binaries, and
executables. A CD release pipeline is automatically triggered and
uses the published artifacts as the deployment payload for testing
and production environments. Azure Pipelines allows you to create
simple or complex CI/CD pipelines to deploy your apps to a wide
range of deployment targets, including a variety of Azure services
such as Web servers and databases. You define various stages of a
release pipeline such as Dev, QA and Production. It’s important
to note that build and release pipelines are flexible, and you can
define pretty much any workflow you want with them.

MICROS OF T A ZUR E

Deploy Your Code
the Right Way with
Azure Pipelines
Micheal Learned and Andy Lewis

This article discusses:
•	Continuous integration and continuous delivery

•	Configuration as code

•	Azure deployment

Technologies discussed:
Azure Pipelines, Azure Kubernetes Service, YAML

1318msdn_LearnedPipe_v5_36-41.indd 36 12/6/18 8:55 AM

37Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

Agents are Windows, Linux, and macOS machines (or containers)
that run the jobs in your build and release pipelines. You can install and
self-host your agents on physical or virtual machines (VMs) either
on-premises or in the cloud (for example, Azure). Or to save yourself
time, you can use Microsoft-hosted Linux, macOS and Windows agents.
For open source projects, we provide up to 10 parallel Microsoft-hosted
jobs for free (see the links at the end of this article for details).

Build and release tasks are the basic building blocks of
your pipelines. They’re packaged scripts that do the work in your
pipeline. Azure Pipelines comes with many common tasks for per-
forming actions to build, test, package and deploy code. You can
deeply customize your process with tasks that support file-based or
inline Bash, PowerShell, and Python scripts. You can even run your
Windows batch file scripts. You can use tasks provided by Azure
Pipelines, leverage third-party tasks from Visual Studio Market-
place and, if necessary, create your own custom tasks.

Build and release templates provide reusable patterns to
help you quickly configure CI/CD for common scenarios such
as building an Android app or deploying an Azure Web app.
A template is essentially a pre-defined collection of tasks with
parameters preset to meet the needs of common app types and tar-
gets. You can customize the templates and even put your custom
workflows into reusable templates to support the specific needs
of your organization.

Service connections provide a secure mechanism for con-
necting external services to Azure Pipeline tasks. These external
services can include your Azure subscriptions, Jenkins or other CI
systems, and remote services such as file servers, to name just a few.
A typical scenario is to create an Azure Resource Manager (ARM)
service connection to enable Azure Pipelines to deploy your apps
to various Azure service targets, such as Web Apps, Azure Virtual
Machines, Azure SQL Database or any other resource in your
Azure subscriptions.

Azure Deployment Targets
Azure provides a variety of services that serve as deployment targets
for your apps. App Service, Windows or Linux virtual machines,
containers, and many other Azure services are valid deployment
targets. Docker containers can be used with App Service, VMs and
with Kubernetes via AKS.

Virtual machines (Linux and Windows) are common deploy-
ment targets for a wide range of apps. Azure Pipelines supports VMs
as deployment targets in Azure, on-premises or even on other cloud
providers. You install and configure a deployment agent on your
VMs, and then you can hook up Azure Pipelines deployments to your
VMs. Agents and Azure Pipelines communicate over asymmetric
encryption and HTTPS to provide a secure deployment approach.
Deployment groups allow you to organize the servers that host your
app. Each node in the deployment group hosts an Azure Pipelines
agent, and you can deploy to them. One example for the use of
deployment agents is to deploy Web app code to a group of Web
servers. You can also install agents on physical machines and use
Azure Pipelines to deploy to them with similar patterns.

App Service is an Azure service that allows you to host appli-
cations in the language of your choice without having to manage

infrastructure, and you can run APIs, mobile back ends, Web
Apps and serverless code. Web App for containers allows you to
run containerized applications on Windows and Linux. There are
many ways to deploy apps to App Service, including with Azure
Pipelines. You can use existing Azure Pipelines templates to quickly
build a CD pipeline for your app. The App Service Deploy task
provides a variety of standard features such as deploying to spe-
cific App Service slots, overriding config values at deploy time and
executing customs scripts.

AKS provides an Azure-based Kubernetes management service
that allows you to deploy and manage containerized applications
easily. AKS removes the administration overhead for managing
complex container orchestration and simplifies container man-
agement by handling health monitoring and maintenance for you.
Azure manages Kubernetes masters, and you manage and pay only
for the agents. AKS integrates with Azure Container Registry to
provide a fully managed container solution.

Azure services and infrastructure can be deployed with tem-
plates to provide infrastructure as code (IaC), which yields many
benefits such as leveraging version control, CI/CD and automating
the deployment of the infrastructure for your apps. ARM tem-
plates provide a declarative JSON approach for deploying Azure
infrastructure. You can define your networks, security groups, load
balancers, AKS and many other Azure infrastructure components
with ARM templates.

Azure Pipelines provides support for deploying ARM templates
with the Azure Resource Group Deployment task. The task allows
you to create pipelines that leverage ARM templates to deploy
Azure services to your subscriptions. The task provides several use-
ful configuration options such as the ability to validate templates
to prevent errors, deploy in incremental mode to avoid impacting
existing Azure resources, and handle creating or updating existing
resource groups.

SQL Server is a database deployment target that comes in two
forms in Azure. SQL Server can be self-hosted, and Azure SQL
Database is an Azure service for Database as a Service (DBaaS) that
allows you to use SQL Server without managing infrastructure.

Azure services and infrastructure
can be deployed with templates

to provide infrastructure as
code (IaC), which yields many
benefits such as leveraging
version control, CI/CD and

automating the deployment of
the infrastructure for your apps.

1318msdn_LearnedPipe_v5_36-41.indd 37 12/6/18 8:55 AM

http://www.msdnmagazine.com

msdn magazine38 Microsoft Azure

Azure Pipelines can deploy to both forms
of SQL Server. SQL Server provides several
options for deploying schema changes with
tasks such as support for dacpac, executing
scripts with the sqlcmd utility and using
third-party services with Redgate tooling.

Example: Deploy a .NET Core App
to an AKS Container Target
.NET Core is a cross-platform (Windows,
Linux and macOS) development platform
for building device, cloud and Internet of
Things (IoT) applications. .NET core is main-
tained and supported by Microsoft, RedHat
and the .NET community. AKS is a managed
Kubernetes service for Azure. Kubernetes simplifies the use of
containers. You can create a CI/CD pipeline with Azure Pipelines
targeting AKS with Docker containers. ARM templates are used to
represent the Azure infrastructure, such as AKS and a container
registry. Docker images are used to containerize an ASP.NET Web
App. This is a moderately complex pipeline, so to help you get started
quickly, you’ll find a detailed walk-through that automates the
creation of the CI/CD pipeline for this scenario at bit.ly/2T9Y0pT.

An ASP.NET Core Web app is stored in Azure Repos in this
example. The ARM templates represent the AKS cluster and the
container registry. Using IaC this way allows you to deploy the
Azure infrastructure alongside the application, therefore you’re
able to manage the Azure Resources and the application in a
single CI/CD pipeline. Figure 1 is a view of the basic structures
in Azure Repos.

The Build pipeline for this scenario con-
tains several steps. You can name the tasks with
descriptive labels. Figure 2 shows a set of tasks
for setting up a containerized ASP.NET Core
app that targets an AKS cluster.

Get Sources is the first step in the build
process. The ASP.NET Core App and the ARM
templates are fetched from Azure Repos and
brought to the build agent. Cloud-hosted
agents keep you from having to manage infra
structure for executing pipelines.

Creating an Azure Container Registry
is the next step in the build process. The reg-
istry stores and manages Docker images. The
next few steps build and publish the Docker

image, which in this case contains an ASP.NET Core application.
This build step uses an Azure Resource Group Deployment task to
deploy an ARM template, which represents the container registry.
This task is an example of the flexibility of Azure Pipelines as you’re
able to execute a deployment task to set up the registry as part of
the build process. The ARM deployment task is set to “incremental
mode” by default, so if the container registry already exists, it won’t
get created again on subsequent build runs.

Docker tasks are used to build and publish Docker images to
the container registry. This step containerizes the ASP.NET Core
app. Using an immutable infrastructure with a portable container
for the app enables deployment of the container to a wide variety
of targets on Windows, most Linux distros and macOS. In this
scenario, the container is targeting AKS in Azure.

Helm Charts provide the packaging format for Kubernetes
that make it easy to define, version and install
Kubernetes applications. Helm, a Kubernetes
package manager, is installed on the build agent
with the Helm tool installer task. The package
and deploy Helm Charts task archives the chart
on this step so that the Helm Charts end up
published as build artifacts.

Copy ARM templates, which is a Copy
task, copies the templates to a staging direc-
tory on the build agent. ARM templates are
JSON files that represent Azure resources. The
ARM template here represents the Kubernetes
cluster resource. The ARM templates are
stored in Azure Repos, but you can optionally
use another version control provider, such as
GitHub, for your pipelines.

Publish Build Artifacts is a task that copies
the contents of the staging directory to Azure
Pipelines. You can store the artifacts on a file share
somewhere, but Azure Pipelines are convenient
and require no additional set up. The artifacts,
in this case, are the ARM templates and the
Kubernetes package produced by Helm Charts.

After the build pipeline executes, the release
pipeline consumes the artifacts from your build Figure 2 Build Pipeline with Docker and AKS

Figure 1 ASP.NET Core App and ARM
Templates

1318msdn_LearnedPipe_v5_36-41.indd 38 12/6/18 8:55 AM

http://bit.ly/2T9Y0pT

39Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

pipeline and deploys the solution. Figure 3 shows the various steps
in the release pipeline.

The Azure Resource Group Deployment task is the first step
in the release pipeline. This task consumes the AKS ARM template
and is the artifact used to deploy the AKS cluster. The ARM template
artifacts are available for the release pipeline here because the tem-
plates were published as artifacts as part of the build pipeline run.

PowerShell tasks can be used in any build and release pipeline.
The PowerShell task here uses the setvariable logging command
to initialize some persistent variables so that key bits of common
data can be accessed by the subsequent Helm tasks. In this case
the script accesses deployment outputs that were created by the
previous ARM deployment task. Specifically, variables are set for
later use for application routing and Application Insights:

$deploymentOutputs=(ConvertFrom-Json '$(deploymentOutputs)')
$applicationRoutingZone=$deploymentOutputs.applicationRoutingZone.value
$aiKey=$deploymentOutputs.aiKey.value
Write-Host "##vso[task.setvariable
 variable=applicationRoutingZone;]$applicationRoutingZone"
Write-Host "##vso[task.setvariable variable=aiKey;]$aiKey"

Helm tasks orchestrate the final three steps of
the release process. The Helm tool installer ensures
the agent installs the latest version of the Kubernetes
package manager, which includes prerequisites such
as Kubectl, the command-line tool for Kubernetes.
Helm init and Helm upgrade commands are exe-
cuted to deploy the application to Kubernetes. Once
the release pipeline executes, the ASP.NET Core
application is deployed to a Kubernetes cluster,
and the application is accessible via URL.

As an option to quickly get started, Azure
DevOps Projects can help you automate the cre-
ation of a CI/CD pipeline like the one described
earlier, especially if you’re not familiar with deploy
ing to Azure services. You use a wizard-driven
experience from the Azure portal to choose from
a variety of application frameworks and deploy-
ment targets. In a few simple steps, you can create

a fully functional CI/CD pipeline that builds and deploys your
code to various Azure services, such as App Service, VMs, AKS
and SQL Database. DevOps Projects allow you to bring your own
code or use any of several provided sample applications. You can
use DevOps Projects to create a pipeline in Azure Pipelines, and
then use that pipeline as a reference architecture for how to do CI/
CD for specific application frameworks and Azure service deploy-
ment targets. You can also further customize the pipelines. Azure
DevOps Projects also creates additional Azure resources such
as Application Insights resources for monitoring and an Azure
Portal-based dashboard. Azure DevOps Projects documentation
can be found at bit.ly/2B7XnpJ.

Config as Code in a YAML Pipeline
In the previous example, you saw how you can use the Azure Portal
to generate an end-to-end build pipeline that creates and then feeds
artifacts into a release pipeline. The types of pipelines the Azure Portal
generates are called “designer pipelines”; these are the drag-and-drop

pipelines. This year we introduced a
new kind of pipeline you can define in
your source code: a YAML pipeline.

The most obvious advantages of a
YAML pipeline come from the fact
that the workflow lives in your code.
You can branch, diff and merge
changes to your business logic. If
you think that’s cool, wait until the
next time someone changes your
pipeline and causes a build break or
an unexpected outcome. As painful
as this scenario can be, you’ll find
relief in the fact that you can spot,
track and fix the problem just like
any other bug in your code!

If your repo contains an
azure-pipelines.yml file at the
root level, then when you go to

Figure 3 Release Pipeline for .NET Core App and Kubernetes

Figure 4 A Basic ASP.NET Core YAML Pipeline in a Sample App Repo

1318msdn_LearnedPipe_v5_36-41.indd 39 12/6/18 8:55 AM

http://www.msdnmagazine.com
http://bit.ly/2B7XnpJ

msdn magazine40 Microsoft Azure

create the pipeline, the system picks up the file. You can fork one of our
sample app repos to see this in action at aka.ms/get-started-yaml-pipeline.
Figure 4 shows a basic ASP.NET Core YAML pipeline. If your GitHub
repo doesn’t already have an azure-pipelines.yml file in it, then when
you create a new pipeline, the system analyzes the code in your repo
and then suggests the kind of pipeline you need, as shown in Figure 5.

To help you migrate from designer pipelines
and learn how to adapt them to YAML, tools
and information are provided. When you edit
your designer pipeline, select a task, and then
select View YAML, as shown in Figure 6.

In some cases, you can use this snippet
directly. Sometimes (for example if your
task uses process parameters, usually gener-
ated by a template), you’ll need to manually
adjust the YAML.

There’s also a VS Code extension in preview
at aka.ms/azure-pipelines-vscode. It’s powered by a
language server in case you want to build
pre-commit hook tools. Find out more at
aka.ms/azure-pipelines-language-server.

To learn more about what you can do with
YAML, see aka.ms/azure-pipelines-yaml-schema and
aka.ms/azure-pipelines-task-reference.

Scripts are a very common way to handle CI
and CD workflows in code. YAML pipelines
are designed to make it as easy as possible for
you to integrate scripts wherever you like, in
as portable a way as possible. As you get up to
speed in YAML, you’ll probably notice both
task-centric and script-centric approaches.
The decision about which approach to use
really comes down to your personal preference.

For simple tasks, you can use a generic
cross-platform script:

steps:
- script: echo This is pipeline $(System.DefinitionID)

You can explicitly run a PowerShell or Bash
Script. Bash scripts have the advantage of
being runnable on multiple platforms. See
Figure 7 for an example. To learn more, see
aka.ms/cross-platform-scripts.

If your team doesn’t need the stages and approval options pro-
vided by a designer release pipeline, then you can build, test and
deploy all within a single YAML pipeline, as shown in Figure 8.

This example works for Linux and Windows Web apps. To
adapt it for Windows, just add and remove the relevant comments
to change the Microsoft-hosted pool you’re using, and to set the
TakeAppOfflineFlag parameter to true to take the app offline before
deployment to avoid a file-in-use error on your Web app .DLL file.

Service connections (formerly “endpoints”) can be a tricky
part of the process to set up. The following parameters are how
you specify the target for your Web app:

azureSubscription: 'YourSubscription'

and
WebAppName: 'your-webapp'

These parameters refer to fields in an Azure Resource Manager
service connection. See aka.ms/azure-pipeline-service-connection.

Wrapping Up
Getting started with Azure Pipelines is free. Azure Pipelines provides
various free usage tiers for a certain number of monthly minutes

trigger:
 batch: true
 branches:
 include:
 - master
steps:
- bash: |
 echo "Hello world from $AGENT_NAME running on $AGENT_OS"
 case $BUILD_REASON in
 "Manual") echo "$BUILD_REQUESTEDFOR manually queued the build." ;;
 "IndividualCI") echo "This is a CI build for $BUILD_REQUESTEDFOR." ;;
 "BatchedCI") echo "This is a batched CI build for $BUILD_REQUESTEDFOR." ;;
 *) $BUILD_REASON ;;
 esac
 displayName: Hello world

Figure 7 YAML Pipeline with a Bash Script That Can Run on
Linux, macOS and Windows Agents

Figure 6 After You Select a Task in the Designer You Can View the YAML

Figure 5 Azure Pipelines Looks at Your Code and Suggests a Template for Your
YAML Pipeline

1318msdn_LearnedPipe_v5_36-41.indd 40 12/6/18 8:55 AM

http://aka.ms/get-started-yaml-pipeline
http://aka.ms/azure-pipelines-vscode
http://aka.ms/azure-pipelines-language-server
http://aka.ms/azure-pipelines-yaml-schema
http://aka.ms/azure-pipelines-task-reference
http://aka.ms/cross-platform-scripts
http://aka.ms/azure-pipeline-service-connection

msdnmagazine.com
dtSearch.com 1-800-IT-FINDS

 The Smart Choice for Text Retrieval®

since 1991

dtSearch’s document filters support:
• popular file types
• emails with multilevel attachments
• a wide variety of databases
• web data

Developers:
• APIs for .NET, C++ and Java; ask about

new cross-platform .NET Standard SDK
with Xamarin and .NET Core

• SDKs for Windows, UWP, Linux, Mac,
iOS in beta, Android in beta

• FAQs on faceted search, granular data
classification, Azure and more

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional enterprise and

developer evaluations

Over 25 search options including:
• efficient multithreaded search
• easy multicolor hit-highlighting
• forensics options like credit card search

Instantly Search
Terabytes

®

and parallel jobs. Additional jobs and minutes can be purchased
for a monthly fee. Open source projects receive multiple free par-
allel jobs. You can find more information about Azure Pipelines
pricing at aka.ms/azure-pipelines-pricing.

Deploying your apps to Azure with Azure Pipelines allows you
to create reusable CI/CD patterns and reliably automate each
step of your deployments. You can create pipelines in multiple
ways, use simple or complex workflows, and deploy securely
to a wide range of deployment targets. Azure DevOps Projects
provide automation for Azure Pipelines to help you quickly
get started with deploying your apps to Azure services. YAML
pipelines allow you to create configuration-as-code patterns that
yield many benefits. To learn more, see aka.ms/sign-up-for-azure-pipelines,
aka.ms/azure-devops-project and aka.ms/learn-azure-pipelines.	 n

Micheal Learned has spent more than 20 years working on software engineering
projects inside and outside of Microsoft. Learned spends his time focused on family,
friends, and all things DevOps and Cloud. You can reach him via Twitter: @mlhoop.

Andy Lewis writes about various things Azure DevOps, including version control
and CI/CD pipelines. At Microsoft he’s served customers of Windows, Office and
Developer Division. Lewis has designed and developed content, multimedia, and apps
for a wide range of audiences at IBM, Borland, Intuit, SAS Institute, and Microsoft.

Thanks to the following Microsoft technical experts for reviewing this article:
Jason Conner, Matt Cooper

Build, test and deploy in a YAML pipeline

pool:
 vmImage: 'ubuntu-16.04'
 # replace the hosted Ubuntu pool above with the Windows pool below if
 # you want to deploy to a Windows web app
 # vmImage: 'vs2017-win2016'

variables:
 buildConfiguration: 'Release'

trigger:
- master

steps:
- script: |
 dotnet build --configuration $(buildConfiguration)
 dotnet test dotnetcore-tests --configuration $(buildConfiguration) --logger trx

- task: PublishTestResults@2
 inputs:
 testRunner: VSTest
 testResultsFiles: '**/*.trx'

- task: DotNetCoreCLI@2
 inputs:
 command: publish
 publishWebProjects: True
 arguments: '--configuration $(BuildConfiguration)
 --output $(Build.ArtifactStagingDirectory)'
 zipAfterPublish: True

- task: AzureRmWebAppDeployment@3
 inputs:
 azureSubscription: 'YourSubscription'
 WebAppName: 'your-webapp'
 Package: $(Build.ArtifactStagingDirectory)/**/*.zip
 # Uncomment the attribute below if you are deploying to a Windows Web app
 # TakeAppOfflineFlag: true

Figure 8 Build, Test and Deploy from a YAML Pipeline That
Lives in Your Codebase

1318msdn_LearnedPipe_v5_36-41.indd 41 12/6/18 8:55 AM

http://www.dtSearch.com
http://www.msdnmagazine.com
http://aka.ms/azure-pipelines-pricing
http://aka.ms/sign-up-for-azure-pipelines
http://aka.ms/azure-devops-project
http://aka.ms/learn-azure-pipelines
www.twitter.com/mlhoop

msdn magazine42

Azure Tips and Tricks (azuredev.tips) is a series that I created a
year ago where I document my favorite secrets, shortcuts and handy
features using Azure. I quickly came to appreciate the value of short
and straight-to-the-point guidance for common scenarios that
developers face every day. Over the last year I’ve gone from just a
few posts to more than 150 tips spanning the entire Azure platform.

For this special edition of MSDN Magazine focused on the
Microsoft Connect(); 2018 conference, I pulled together a collection
of the seven most popular and valuable tips related to Azure App
Service. These tips include working with files in the console, setting
up staging environments and swapping between them, and routing
traffic to different versions of your app to “Test in Production.” I’ll
also cover how you can implement performance testing, adopt best
practices for App Settings in Azure App Service, and clone a Web
app that’s especially helpful if you have customers all over the world.

Working with Files in Azure App Service
In this tip I’ll look at the files inside an Azure App Service Web site
that allows you to easily manage your Web app environment without
leaving the Azure Portal. To begin, go to the Azure Portal and select an
App Service that you’ve already created and click on Console under
Development Tools. This brings up a command prompt from where
you can work with your Azure App Service (see Figure 1).

As you can see in Figure 1, the prompt starts in D:\home\site\
wwwroot. From here I can enter “dir” to see a current directory
listing, as shown in Figure 2.

I can perform basic commands here and use the command “type
<filename>” to display the output of a file to the screen. You can
create directories and rename files, but keep in mind that this is
a sandbox environment. Some commands that require elevated
permissions may not work from the Console inside of Azure App
Service. For a list of available commands from the prompt, just
type “help” in the console window.

Visual Studio Code Experience
There’s another option under Development Tools in the Azure App
Service Portal called App Service Editor. You can find this item
located just two spots down from the Console item that I described
in the previous tip. Click App Service Editor and select a file, and
you’ll see a screen similar to the image in Figure 3.

If you’re familiar with Visual Studio Code, you’ll find yourself
right at home as you explore, search and manage Git. The App

A ZURE

7 Tips and Tricks for
Azure App Service
Michael Crump

This article discusses:
•	Learn how to work with Deployment Slots in Azure App Service

•	Learn how to perform load testing of your Web app in Azure App
Service

•	Discover the powerful logging and error diagnostic capabilities
built into Azure App Service

Technologies discussed:
Azure Portal, Azure App Service, ASP.NET MVC

1318msdn_CrumpTips_v4_42-47.indd 42 12/6/18 8:45 AM

http://azuredev.tips

43Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

Service Editor also makes it easy to add, edit, or delete files, and
just like in Visual Studio Code, you can modify your settings
and even change your theme. You can also take advantage of the
output window to review the Application Logs associated with
your app service.

Kudu Diagnostic Console
No App Service tutorial is complete without mentioning Kudu
Diagnostic Console. You can access it from within the App
Service Editor by going to your app and then clicking Open Kudu
Console, or by looking for the Advanced Tools option under
Development Tools.

To navigate or type in a command, just click on the folder name.
You can easily manipulate files from here, but I personally like the
App Service Editor better for that functionality. I primarily use the
Kudu Diagnostic Console to easily discover and work with the
REST API and work with the Process explorer.

Creating a Deployment Slot
Let’s move on from the wonders of the App Service Editor to
explore how to streamline testing of Web apps in production with
Azure App Service. I’ll start with a look at deployment slots, an
enormously useful feature that lets you deploy different versions
of your Web app to different URLs. You can then test a specific ver-
sion of your app and swap content and configuration between slots.

Start by going to the Azure Portal and selecting an existing
App Service that you have running and under Deployment click
Deployment Slots. Then click on the Add Slots button. Enter a
descriptive name such as staging, then use an existing configu-
ration source, as shown in Figure 4. For this example I’ll use a
“production” Web app—the cool quiz application (github.com/mbcrump/
jsQuizEngine) that’s already deployed.

Once that’s done, go back to Deployment Slots to see the status,
which should read “Running.” Click on the new staging site that was

just created. You’ll notice that it has
appended the word staging. You’ll
also notice that there’s a new site
at yoursitename-staging.azurewebsites.net.

Let’s say you need to push a new
version of the existing quiz appli-
cation to this staging slot. Go to
Deployment Center and select
External and enter the following
URL into the text box: github.com/
mbcrump/jsQuizEngine.git. Click
OK. You may find that you need
to click Sync to make the changes
take effect. A check mark should
appear once the process has suc-
cessfully completed.

Wait a couple minutes for your
code to be pulled down from Git,
then go to the new URL of your
site. You can find the URL on your
overview page. In my case it’s at my-

quizapplication-staging.azurewebsites.net. You should now see your
new Web site, with jsQuizEngine version 2 displayed in large font.

At this point, I could return to the original app service that I cre-
ated and swap between the two sites that I now have. For example,
I might want to move the staging site over to the production site,
and vice versa. The benefit of this is that your users won’t experience

Volume in drive D is Windows
Volume Serial Number is FE33-4717

 Directory of D:\home\site\wwwroot

09/21/2017 08:35 PM <DIR> .
09/21/2017 08:35 PM <DIR> ..
09/20/2017 09:03 PM <DIR> css
09/20/2017 09:03 PM 5,351 Default.html
09/20/2017 09:03 PM <DIR> js
09/20/2017 09:03 PM 1,950 jsQuizEngine.sln
09/20/2017 09:03 PM 304 jsQuizEngine.userprefs
09/20/2017 09:03 PM 31,744 jsQuizEngine.v12.suo
09/20/2017 09:03 PM <DIR> PrecompiledWeb
09/20/2017 09:03 PM <DIR> quiz
 4 File(s) 39,349 bytes
 7 Dir(s) 1,072,893,952 bytes free

Figure 2 The wwwroot Directory Listing

The benefit of this is that
your users won’t experience

downtime while you tinker, and
you can continue working in

your preferred space until ready
to move to production.

Figure 1 The Console Inside Azure App Service

1318msdn_CrumpTips_v4_42-47.indd 43 12/6/18 8:45 AM

http://www.msdnmagazine.com
http://github.com/mbcrump/jsQuizEngine
http://github.com/mbcrump/jsQuizEngine
http://yoursitename-staging.azurewebsites.net

msdn magazine44 Azure

downtime while you tinker, and you can continue working in your
preferred space until ready to move to production.

Test Web Apps in Production
In this tip, I’ll look at a feature called Testing in Production, which
does exactly what it says. Not scary at all! But hold up. If you’re not
familiar with deployment slots, you’ll want to look at the previous
tip before you dive in.

To get started with this feature, go to the Azure Portal and
select App Service and under Development Tools click Testing in
Production. The first thing you’ll see is the title Static Routing and

you’ll notice two options
that are for a deployment
slot name and traffic per-
centage (to which you’ll
want to route).

What is Static Routing?
It’s a feature of deployment
slots that lets you control
how traffic is distributed
between your produc-
tion and other slots. This
is useful if you want to try

out a new change with a reduced
number of requests and then gradu-
ally increase the number of requests
that get the new behavior.

You’ll want to split the traffic to
your site into two groups to test
the new site and see if customers
like it. Because this is just a demo,
you’ll want to send a large number
of folks to the staging site as shown
in Figure 5.

Now keep in mind that you
have two versions of your site. One
that’s production and one in stag-
ing. They’re identical except that
the staging site includes text in a
large font that reads “jsQuizEngine
version 2.” You don’t want to swap
these sites, rather you just want to
distribute traffic between them.

You can test this by going to the production URL and con-
stantly refreshing the site until the staging site is shown with the
production URL.

What happens when the user leaves the site? By default, a cookie
keeps track of the event. You can find this cookie yourself by
bringing up the developer tools and looking for the cookie called
“x-ms-routing-name.”

You could actually force the old production site by setting the
x-ms-routing-name cookie to self or providing it in the URL query
string, such as http://myquizapplication.azurewebsites.net/?x-
ms-routing-name=self. You could even use the URL to let your
users test different versions of your site. For example, I could use
http://myquizapplication.azurewebsites.net/?x-ms-routing-name=stag-
ing to let users try my new Web site before I push it live. This is very
neat stuff, folks!

Load Test Web Apps
Next, let’s look at a simple and quick way to perform load testing
of Web apps. Load Testing allows you to gauge your Web app’s
performance and determine if it can handle increased traffic
during peak times. Log into your Azure account and go to the App
Service you created and look under Development Tools. You’ll see
Performance Test there.

Inside the blade, select New to see the Configure Test option,
which you can leave at the default setting of Manual Test or change
to Visual Studio Web Test. The main difference between the two:
Visual Studio Web Test lets you select multiple URLs and even use

In this tip, I’ll look at a feature
called Testing in Production,

which does exactly what it says.

What’s Static Routing? It’s a
feature of deployment slots

that lets you control how traffic
is distributed between your
production and other slots.

Figure 3 The App Service Editor

Figure 4 Adding a Deployment Slot

1318msdn_CrumpTips_v4_42-47.indd 44 12/6/18 8:45 AM

ASP.NET Core in the
Microsoft Cloud

Two Hot Topics in Two Days
> February 6: ASP.NET Core with Azure DevOps
> February 7: ASP.NET Core Microservices with Docker, K8s, and AKS

VSLIVE.COM/DALLAS

February 6 - 7, 2018

Dallas, Texas

REGISTER TODAY!
Use Promo Code MSDN

TOP REASONS TO JOIN US IN DALLAS

In-Depth Training Networking FlexibilityTwo Hot Topics
in Two Days

Vi
rtu

al

Cl
as
sro

om

Av
ail
ab
le

TRAINING SEMINAR

Untitled-4 1 11/26/18 11:55 AM

https://www.vslive.com/dallas

msdn magazine46 Azure

an HTTP Archive file (such as one
created by Fiddler). For this walk-
through, use the setting Manual
Test and select a name and location,
making sure you leave the defaults
at 250 users for five minutes.

Imagine this use-case scenario.
You have a Web app presenting an
item for sale, with an upcoming pro-
motion that last year resulted in 175
users being connected for five min-
utes. Users complained then that
the site was slow, so you’re anxious
to improve customer satisfaction
by reducing the page load time. To
help do this, you test your Web app
with a heightened load of 250 (or
even 2,500) users for five minutes.

Run the test and you’ll be pre-
sented with data such as successful
and failed requests, performance
under load, and more. For the sce-
nario I ran, the average response time decreased, while requests
per second increased. If I had chosen a larger time window, I’d
probably have more detail to help locate where I could improve
the performance of the Web app. You may also want to check out
the Status Message panel for additional information about the test.

I was able to do this without writing code and with just a couple
of clicks in the portal. Just keep in mind that there is a charge for
performing a load test in terms of virtual users.

Working with App Settings
Here’s a trick to take advantage of App Settings to store a Key/Value
pair securely in Azure and access it in your Web app.

App Settings are used to store configurable items without mak-
ing any changes to the code. The key-value pairs are stored behind
the scenes in a configuration store, which is nice because sensitive
information never shows up in a web.config file or wherever else
you store secrets. In order to take advantage of this, you must log
into your Azure account and go to the App Service you created.
Look under Settings to see Application Settings.

Let’s add an App Setting in Azure, with the key of Environment
and the value set to Staging. Open or create an ASP.NET MVC

app (for example) and modify the appSettings section of the web.
config file to add the Environment key/value pair as shown here:

<appSettings>
 <add key="webpages:Version" value="3.0.0.0" />
 <add key="webpages:Enabled" value="false" />
 <add key="Environment" value="Production" />
</appSettings>

Now it’s in the Web configuration section of the app. In order
to see the value, you need to add it to a page inside of your app to
display the value for this example.

Using ASP.NET MVC, navigate to your appname/Views/Home/
Index.cshtml file and add the following using statement followed
by a call to ConfigurationManager:

@using System.Configuration
@{
 ViewBag.Title = "Home Page";
}

<div class="jumbotron)
 <h1>Testing App Settings</h1>
 @ConfigurationManager.AppSettings["Environment"]
</div>

If you run the application locally, you’ll see Production as it’s
coming from the web.config file, but if you run it inside Azure,
you’ll see Staging as it’s coming from the App Settings configura-
tion store located in Azure. Neat stuff !

You may have noticed Connection Strings visible right below
the App Settings option and wondered when to use it. A general
rule of thumb is to use Connection Strings for database connection
strings and App Settings for key-value pair application settings. If
you examine your web.config file, you’ll see that there’s also a sec-
tion for connectionStrings, just as there’s a section for appSettings.

Cloning Web Apps
Cloning is the ability to clone an existing Web App to a newly cre-
ated app that’s often in a different region. This enables customers to
deploy a number of apps across different regions quickly and easily.

A general rule of thumb is to
use Connection Strings for

database connection strings and
App Settings for key-value pair

application settings.

Figure 5 Adjusting the Static Routing Traffic Percentage for the Staging Site

1318msdn_CrumpTips_v4_42-47.indd 46 12/6/18 8:45 AM

47Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

For instance, a company might have an existing Web app in the West
U.S. region, and would like to clone the app to the East U.S. region
to reduce latency and improve performance for users in that area.

To do this, log into your Azure account and go to the App
Service you created and under Development Tools click Clone
App. Enter the following information:

• �App Name: Make sure to use something unique as this site
will live in something.azurewebsites.net

• �Resource Group: Create a new group or use an existing one
• �App Service Plan/Location: This is a good time to associate

a new plan that will determine the location, features, cost
and compute resources associated with your app

Besides changing the location, this is also a great time to determine
the required app service plan. You might not need all the horse-
power to serve this site if you expect very low traffic in that region.

• �Clone Settings: This will copy the content and certificates
of your app into a newly created application—you can also
copy things like App Settings, Connection Strings, Deploy-
ment Source and Custom Domains

• �Application Insights: Enable this service to help you detect
and diagnose issues and more with .NET apps

Finally, there’s Automation Options, which brings you to the Azure
Resource Manager templates that are so valuable. Learn more about
Azure Resource Manager templates at bit.ly/2RTVfri.

Azure Resource Manager enables you to work with the resources
in your solution as a group. You can deploy, update or delete all
the resources for your solution in a single, coordinated operation.
You use a template for deployment, and that template can work
for different environments such as testing, staging and production.
Resource Manager provides security, auditing and tagging fea-
tures to help you manage your resources after deployment. Read
more at bit.ly/2Pv9aY5.

Once everything is set up, press Create and you’ll see Deploy-
ment in Progress overlay on the screen. You can click on it while
deploying to see details such as status, duration of deployment,
location and more.

Working with Log Stream
Log Stream is the ability to see logging information in real time (or
as close to it as possible). You can do this using the Azure Portal or
through some of the CLI tooling such as PowerShell or BASH. To
take advantage of this, log into your Azure account, go to your App
Service and open the Log Stream item under Monitoring. You’ll see

that most of the Application logs are switched off. To turn them on,
you’ll need to go to the Diagnostic logs setting in the same panel.

Here you’ll see the following options:
• �Application Logging allows you to collect diagnostic traces

from your Web code. This is required for the streaming log
feature and turns itself off after 12 hours.

• �Application Logging (Blob) produces logs that are col-
lected in the blob container specified under Storage Settings.

• �Web server logging gathers diagnostic information for
your Web server.

• �Detailed error messages gathers detailed error messages
from your Web app.

• �Failed request tracing gathers diagnostic information on
failed requests.

You can easily change options such as the physical disk size of log files
that Azure will store, as well as the number of days to keep the log files
in retention. You can also download the log files via FTP and FTPS.

Go ahead and turn Application Logging(Filesystem) to On and
the Level to Info and press save. Go back and click on the Log Stream
setting and visit your Web page (that’s hosted on *.azurewebsites.net).
You should see a log. If you look at the first couple of lines, you’ll
see a ReadyForRequest on port 80, followed by a request from our
Web browser that includes pulling down the favicon.ico file (which
is the only image being sent down).

Add Trace Logging in Code
Using the ASP.NET MVC app from earlier, navigate to your
appname/Controllers/HomeController.cs file (or wherever you’d
like to test this functionality) and add the following line:

System.Diagnostics.Trace.WriteLine("Entering the About View");

Head back over to Diagnostic logs and ensure the Application
Logging (Filesystem) Level is set to Verbose, then press save since
we just used a WriteLine command. Switch back over to the Log
Stream option and trigger the error by opening the site and navi-
gating to the About page. Review the Application Log after it calls
your Trace.WriteLine command. You should see the message “Enter-
ing the About View” that was specified in the Trace.WriteLine call.

Wrapping Up
Today you learned a number of tricks in Azure App Service that
can help you be more productive. But this article barely scratches
the surface of the things you can do. Over the past year I’ve com-
piled a library of valuable tips, tricks and secrets that cover such
things as using .NET Core, Application Insights for rich analytics,
user authentication and more. If you liked what you saw in this ar-
ticle, go check out the entire collection of Azure App Service tips
at azuredev.tips, or visit videos.azuredev.tips to view short videos of many
of these tips and tricks.	 n

Michael Crump works at Microsoft on the Azure platform and is a coder, blogger
and international speaker of various cloud development topics. He’s passionate about
helping developers understand the benefits of the cloud in a no-nonsense way. You
can reach him on Twitter: @mbcrump or by following his blog at michaelcrump.net.

Thanks to the following Microsoft technical expert for reviewing this article:
Cecil Phillip

You can easily change options
such as the physical disk size of
log files that Azure will store, as
well as the number of days to
keep the log files in retention.

1318msdn_CrumpTips_v4_42-47.indd 47 12/6/18 8:45 AM

http://www.msdnmagazine.com
http://bit.ly/2RTVfri
http://bit.ly/2Pv9aY5
http://azurewebsites.net
http://videos.azuredev.tips
http://azuredev.tips
http://www.Twitter.com/mbcrump
http://michaelcrump.net

msdn magazine48

Xamarin.Forms is a favored toolkit for cross-platform
developers who love XAML and C#, because it maximizes code
sharing while also providing full access to all the native platform
APIs and UI controls. This capability comprises technologies and
concepts that can be both exhilarating and confusing when you’re
getting started. The truth is that some developers find it frustrat-
ing at the outset. You chose Xamarin to be productive, and the
last thing you want to encounter is unwanted hassle. This year at
Connect(); we’re thrilled to introduce Xamarin.Forms Shell, a new
default starting point for mobile application development that
reduces complexity and increases productivity.

As the name suggests, Shell is fundamentally a container that
takes care of the basic UI features that every application needs, so
you can focus on the core work of your application. Existing iOS
and Android applications can also easily adopt Shell and benefit
immediately from the improvements to navigation, UI performance
and extensibility. Shell offers the following benefits:

• �A single place to describe the visual structure of applications
• �A common navigation UI and omnipresent navigation

service with deep linking
• �An integrated search handler to improve the overall in-app

search experience

• �An extensible-by-default philosophy to add more versatil-
ity and flexibility

The App
At the beginning of every project, someone sketches out the
structure of the application for you to build (and hopefully not
just in their head). Sometimes it’s provided in a design comp,
and sometimes it’s just penciled in on paper. Shell makes it super
easy to take that content and translate it into a running applica-
tion container that’s ready for anyone to populate with content
and functionality.

In this article, I’ll use the example of a mobile shopping applica-
tion called Tailwind Traders. This is a new reference application the
team has made to demonstrate how you can use Xamarin.Forms
Shell, Azure, Cognitive Services, and several other features and ser-
vices. Take a look at the design comps provided by our awesome
design team, shown in Figure 1.

As you can see from the displayed screens, the app provides
all the obvious functionality you need, including login and regis-
tration flow, a browsing experience with product categories and
search, and a checkout flow. This app also leverages the device
camera and the power of the Azure Custom Vision API to identify
products in real time.

The Quick Start
Let’s quickly scaffold out this application using Shell. Open Visual
Studio 2019 and start a new cross-platform application with Xamarin.
Forms. For the purpose of this article and to understand the power
of Shell, let’s start with a Blank project and build up the structure of
the Tailwind Traders app.

Once the project files are generated, open the App.xaml.cs and
notice that MainPage is set to a new Shell instance. (You can down-
load Shell templates from aka.ms/xf-shell-templates.) Structurally, this

CROS S -PL AT FOR M DEV ELOP M E NT

Exploring the
Xamarin.Forms Shell
David Ortinau

This article discusses:
•	How to describe the visual structure of your application in a

single file

•	Enabling navigation via URI routing

•	Using a flyout, bottom tabs and top tabs

•	Styling and customizing via templates

Technologies discussed:
Xamarin.Forms Shell

1318msdn_OrtinauXamarin_v3_48-56.indd 48 12/6/18 8:47 AM

http://aka.ms/xf-shell-templates

49Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

is the only difference from a typ-
ical Xamarin.Forms application
that you may have seen in the past.
Here’s the code:

namespace TailwindTraders.Mobile
{
 public partial class App
 {
 public App()
 {
 InitializeComponent();

 MainPage = new AppShell();
 }
 }
}

Open the AppShell.xaml in the
root of your .NET Standard library
project, as shown in Figure 2.

Let’s break down the pieces of
this file. A Shell consists of three
hierarchical elements: ShellItems,
ShellSections and ShellContent.
Every ShellContent is a child of a
ShellSection, which is a child of a ShellItem—all parts of the Shell. None
of these by themselves represent the UI, but rather the organization of
your application’s architecture. Shell takes these items and produces the
appropriate navigation UI for the platform it’s running on:

• �ShellItem: The top-level structure of the application rep-
resented by an item in the flyout. Can contain multiple
ShellSections.

• �ShellSection: A grouping of the application content, which
is navigable by bottom tabs. Can contain one or more Shell-
Contents, with multiple ShellContents navigable by top tabs.

• �ShellContent: The ContentPages of your application.
I can use these three elements to describe the visual structure of

the Tailwind Traders mobile application. Ignoring the login and
registration flow, I’ll add several ShellItems to host content, rep-
resented with a flyout menu on the left.

Why not use names like FlyoutItem, BottomTab, TopTab for
Shell concepts? Our team at Microsoft has had many discussions
about this and feels that Xamarin.Forms caters to known and
future platforms that sometimes don’t share the exact concepts of
tabs or menus. By keeping the nomenclature abstract, we let you
decide through styling and templates if these elements should be
represented consistently across divergent platforms, or if they
should adhere to each platform’s design aesthetic. Of course, your
feedback is always welcome in these matters!

Figure 3 provides an example. Here you see a menu in the flyout
(the lower two-thirds of the UI), which is populated automatically
by ShellItems. This allows you to navigate to the different areas
of your application. In addition to those items, you can explicitly
add menu items that aren’t associated with a ShellItem. The flyout
header at the top (the two buttons) presents special content that
consists of anything you wish to present in that space. To declare a
custom FlyoutHeader within the Shell.xaml, use this code:

<Shell.FlyoutHeader>	<local:FlyoutHeader />	 </Shell.FlyoutHeader>

The header element allows you to control how it behaves when
users scroll the display. There are three options:

• �Fixed: The header remains fixed while the content below scrolls.
• �Scroll: Scrolls with the menu items.
• �CollapseOnScroll: Collapses in a parallax fashion as you scroll.

To adjust this behavior, set the FlyoutHeaderBehavior property
on your Shell to the desired value just previously detailed. For now,
we’ll keep it fixed with the following code:

<Shell
 x:Class="TailwindTraders.Mobile.Features.Shell.Shell"
 FlyoutHeaderBehavior="Fixed"	
 ...	
 >	
 ...	
</Shell>

Next, let’s set up the content. Looking at the design, I can see that
there’s a home screen, a series of product categories, a profile and,
finally, a logout screen. Let’s start with the home screen, with the
following XAML code:

<ShellItem Title="Home">
 <ShellSection>
 <ShellContent>
 <local:HomePage />
 </ShellContent>
 </ShellSection>
</ShellItem>

<?xml version="1.0" encoding="UTF-8"?>
<Shell xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:TailwindTraders"
 RouteHost="tailwindtraders.com"
 RouteScheme="app"
 FlyoutBehavior="Disabled"
 Title="TailwindTraders"
 x:Class=" TailwindTraders.AppShell">

 <ShellItem>
 <ShellSection>
 <ShellContent>
 <local:MainPage/>
 </ShellContent>
 </ShellSection>
 <ShellItem>

</Shell>

Figure 2 A Single Page Shell.xaml

Figure 1 Design Comps for Tailwind Traders Sample App

1318msdn_OrtinauXamarin_v3_48-56.indd 49 12/6/18 8:47 AM

http://www.msdnmagazine.com

msdn magazine50 Cross-Platform Development

Breaking down this XAML from the
inside out, I’ve added the HomePage to
the app, which will be the first Content-
Page to launch, because it’s the first content
declared in the shell file. This is the same
ContentPage type you use in your existing
Xamarin.Forms applications, now hosted
within a Shell context.

For this design I only need to set a title,
but ShellItem also provides the FlyoutIcon
property, which lets you provide an image to
display on the left of the item. Icons may be
any Xamarin.Forms ImageSource.

Go ahead and run the app. On the home
page click the hamburger icon to open the fly-
out menu. Tapping this menu item navigates
you to the home screen (which is currently
the only screen). Let’s get to work adding
more to that.

Next, I’ll implement the product categories,
such as “Holiday decorations,” “Appliances”
and the like. I could add ShellItems for each of
them, but because the product category pages
are all the same page with different content,
I can be clever about it. I’ll use a simple MenuItem to navigate
to the same page and pass data via the CommandParameter to
avoid unnecessary duplication of pages. Here’s the code to add a
MenuItem in the Shell.xaml:

<Shell.MenuItems>	
 <MenuItem
 Command="{Binding ProductTypeCommand}"
 CommandParameter="1"
 Text="Holiday decorations" />	
</Shell.MenuItems>

A great feature of Shell is that it supports
data binding. In this case I have a “Command”
on a view model that can execute the navi-
gation. Just like ShellItems, MenuItems take
text and an icon. Also, just like ShellItems, I
can provide styling or even a custom template
to further customize the design by setting the
MenuItemTemplate property on the Shell.

I can add more menu items for each cat-
egory to complete the task. Figure 4 shows
the code for all the menu items, while Figure
5 shows the visual result in the flyout menu
of the app.

Adding More Pages
Let’s now add the Profile page from the
design to our app. Add a new ContentPage
to the project and then move back to the
Shell.xaml file. You could copy the XAML
(shown in Figure 4) used for the HomePage
and just replace it with the Profile page, but
you risk bogging down the application because
HomePage is created immediately during the
application startup. To avoid having all the

pages of the application loading at once, I use a data template, like so:
<ShellContent
 Title="Profile"
 ContentTemplate="{DataTemplate local:ProfilePage}" />

Rather than providing the ContentPage directly to the content prop-
erty of the ShellContent, I supply a data template. When the user navi-
gates to a screen, the Shell instantiates the requested page dynamically.

One thing to note with this treatment compared to the Home
Page is that I’ve omitted the ShellItem and ShellSection wrappers and

Figure 4 All the Menu Items

<?xml version="1.0" encoding="UTF-8" ?>
<Shell
 x:Class="TailwindTraders.AppShell"
 FlyoutHeaderBehavior="Fixed"
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:TailwindTraders.Views"
 Title="Tailwind Traders"
 x:Name="theShell"
 Route="tailwindtraders"
 RouteHost="microsoft.com"
 RouteScheme="app">

 <Shell.MenuItems>
 <MenuItem
 Command="{Binding ProductTypeCommand}"
 CommandParameter="1"
 Text="Holiday decorations" />

 <MenuItem
 Command="{Binding ProductTypeCommand}"
 CommandParameter="2"
 Text="Appliances" />

 <MenuItem
 Command="{Binding ProductTypeCommand}"
 CommandParameter="3"
 Text="Bathrooms" />

 <MenuItem

 Command="{Binding ProductTypeCommand}"
 CommandParameter="4"
 Text="Doors & Windows" />

 <MenuItem
 Command="{Binding ProductTypeCommand}"
 CommandParameter="5"
 Text="Flooring" />

 <MenuItem
 Command="{Binding ProductTypeCommand}"
 CommandParameter="6"
 Text="Kitchen" />

 <MenuItem
 Command="{Binding ProductTypeCommand}"
 CommandParameter="7"
 Text="Storage" />
 </Shell.MenuItems>

 <ShellItem Title="Home">
 <ShellSection>
 <ShellContent>
 <local:HomePage />
 </ShellContent>
 </ShellSection>
 </ShellItem>

</Shell>

Figure 3 Elements of the FlyoutMenu

1318msdn_OrtinauXamarin_v3_48-56.indd 50 12/6/18 8:47 AM

Untitled-1 1 1/5/18 1:11 PM

http://www.spreadsheetgear.com

magazine

SUPPORTED BY

March 3–8, 2019 Bally’s Hotel and Casino

PRODUCED BY

An Oasis of Education Dazzling in the Desert

Intense Developer
Training Conference
In-depth Technical Content On:

AI, Data and Machine Learning

Cloud, Containers and Microservices

Delivery and Deployment

Developing New Experiences

DevOps in the Spotlight

Full Stack Web Development

.NET Core and More

New This Year!
On-Demand Session Recordings Now Available

Get on-demand access for one full year to all keynotes

and sessions from Visual Studio Live! Las Vegas, including

everything Tuesday – Thursday at the conference.

Agenda
Available at
vslive.com/lasvegas

Untitled-5 2 11/26/18 1:05 PM

https://www.vslive.com/lasvegas

#VSLive

vslive.com/lasvegas

Hear From Your Peers!
See what past attendees had to say about Visual Studio Live!

Chiranjeevi Ashok Puvvula
Software Engineer, Ascend Learning

“This is my first time attending a VSLive! Event. I love it. I learned about

a lot of new technologies in the first few days. I plan to use these new

technologies to create what I want. I’ll definitely be back next year!”

Julian Piane
Senior Application Developer, The Archer Group

“My favorite part of VSLive! was having the ability to have in-person

conversations with MVP’s and fellow developers about not only

hard tech, but also about the industry as a whole.”

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

CONNECT WITH US

Katie Gray
Senior Lecturer, The University of Texas at Austin

“I have loved learning about all of the latest offerings in the Visual

Studio ecosystem from experts in the field. All of the sessions

provided candid information about what is new and what is

coming. It has also been great to network with fellow developers

to hear about what they are working on at their jobs.”

Use
Promo Code

MSDN

Register by January 11

& Save Up To $400!

Untitled-5 3 11/26/18 1:06 PM

https://www.vslive.com/lasvegas
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com

msdn magazine54 Cross-Platform Development

placed the title directly in the ShellContent.
This is much less verbose and the Shell knows
how to handle it for me by supplying the
required logical wrappers. It’s also important
to note that these wrappers don’t introduce
UI views to the tree. Shell is written with
rendering speed and memory consumption
in mind. The result of this is that the perfor-
mance impact on the Android OS is kept low
by hosting the same content and UI you cur-
rently have within this new Shell context. Of
course, you’re still ultimately responsible for
architecting the internals of your applications,
but Shell offers a great starting point.

Styling the Flyout
You can style aspects of Shell and the Flyout-
Menu just as you would any other XAML
element using CSS or XAML styling. What
if you wish to go further with how the fly-
out menu item appears? Looking back at
the design in Figure 3, the menu items are
bolder than the other shell items.

The display of menu items and shell items
are extensible by providing a DataTemplate to Shell. A MenuItem
is rendered in the flyout menu using the Shell’s MenuItemTemplate,
and a ShellItem is rendered using an ItemTemplate. To take full
control of how these look, set each property to a DataTemplate
containing a custom ContentView. Shell will provide the Title and
Icon bindable properties to the template BindingContext, as shown
in Figure 6. You can see the visual result in Figure 7.

In addition to customizing the item renderers, let’s add a nice
header to the flyout that includes a box with a label and two buttons
for quick access to camera features. As with the other templates, add
one for the FlyoutHeaderTemplate in the Shell.xaml file. The con-
tent can be any ContentView, so here use a StackLayout to vertically

position the child controls, as shown in the
code in Figure 8. Add some styling to get it
close to the design comp, and run the app to
see the result as shown in Figure 9. You can set
FlyoutHeaderBehavior in the Shell element to
determine if the header is fixed, or if it can scroll
or collapse when the user scrolls the screen.

Navigation
Now it’s time to implement the command that
navigates to the menu item pages. To do so,
I’ll use the new URI-based routing that Shell
introduces. URIs let users jump instantly to
any part of the application, and even provide
the ability to go backward without having to
create all the pages between the two points.
Let’s look at how this is accomplished.

First, I need to declare the routes, beginning
with the scheme and host for my app, like so:

<Shell
 Route="tailwindtraders"
 RouteHost="www.microsoft.com"
 RouteScheme="app"

Putting these pieces together into a URL I
end up with the following URI: app://www.

microsoft.com/tailwindtraders.
Each Shell element I’ve defined in the Shell file also takes a route

property, which I can later use to navigate programmatically. For
pages that aren’t represented by a Shell element I can explicitly
register a route. This is what I’ll do for those menu items added to
the flyout. Each of them will navigate to a ProductCategoryPage,
a page that displays a list of products for a specific category. Here’s
the route registration code:

Routing.RegisterRoute("productcategory", typeof(ProductCategoryPage));

Now I can declare the necessary routes in the constructor of the
Shell.cs, or anywhere that runs before the routes are called. Menu
items expose a command to implement the necessary navigation,
as you can see in this code:

public ICommand ProductTypeCommand { get; } =
 new Command<string>(NavigateToProductType);

private static void NavigateToProductType(string typeId)
 {
 (App.Current.MainPage as Xamarin.Forms.Shell).GoToAsync(
 $"app:///tailwindtraders/productcategory?id={typeId}", true);
 }

Another great benefit of Shell is that it has static navigation meth-
ods that are accessible from anywhere in the application. Gone are
the days of worrying if the navigation service was available, passing
it around from view to view models and adding navigation pages
to wrap everything. Now, you can grab a reference to the applica-
tion Shell, which is the MainPage of your application, accessible as
a property of App.Current. You can see this in the previous code
snippet. To execute the navigation, call the GoToAsync method,
passing in a valid URL as a ShellNavigationState. A ShellNaviga-
tionState may be constructed from a string or a URI. Look at the
code again, and you can see that GoToAsync also allows you to
supply only a string, and Shell will do the work to instantiate a
ShellNavigationState.

<Shell.ItemTemplate>
 <DataTemplate>
 <ContentView HeightRequest="32">
 <ContentView.Padding>
 <Thickness
 Left="32"
 Top="16" />
 </ContentView.Padding>
 <Label Text="{Binding Title}" />
 </ContentView>
 </DataTemplate>
</Shell.ItemTemplate>
<Shell.MenuItemTemplate>
 <DataTemplate>
 <ContentView HeightRequest="32">
 <ContentView.Padding>
 <Thickness
 Left="32"
 Top="16" />
 </ContentView.Padding>
 <Label Text="{Binding Text}" FontAttributes="Bold" />
 </ContentView>
 </DataTemplate>
</Shell.MenuItemTemplate>

Figure 6 Customizing the Item Template
for ShellItems in Shell.xaml

Figure 5 Flyout with All Menu Items

1318msdn_OrtinauXamarin_v3_48-56.indd 54 12/6/18 8:47 AM

55Dec. 15, 2018 / Connect(); Special Issuemsdnmagazine.com

Data can be passed between views and view mod-
els with querystring parameters. Shell will set those
values directly on the ContentPage or ViewModel
when you decorate the appropriate properties with
query property attributes, as shown in Figure 10.

The QueryProperty takes the public property
name (“TypeID” in this example) from your receiv-
ing class and the querystring parameter name (“id”
in this example) used in the URL.

Intercepting the Back Action
Intercepting Back action is a common requirement
in mobile app development, and it can be a challenge
with Xamarin.Forms. Shell remedies this problem,
by letting you hook into the navigation routing
before and after it’s completed to implement a
myriad of custom needs. Here’s an example of nav-
igation handling, first with XAML code assigning
an event handler:

<Shell 	 ...
 Navigating="Shell_Navigating"

And then the C# code for the event handler:
private void Shell_Navigating(object sender,
ShellNavigatingEventArgs e)
{
 if (// Some Boolean evaluation)
 {
 e.Cancel(); // Do not allow this navigation AND/OR do something else
 }
}

On an instance of Shell, add an event handler to the Navigating
event. In your codebehind, the ShellNavigatingEventArgs provides
the base details of the navigation, as shown in Figure 11.

Tabs, Tabs, Everywhere Tabs
The flyout menu is a popular UI pattern for navigation. As you
think about the hierarchy of content within your application,
the top or outermost level of navigation is the flyout menu.
From there, the next level of detail is the bottom tab. When you
don’t have a flyout present, the bottom tabs are generally con-
sidered to be the top level of navigation in an application. Then
within the bottom tabs, the next level of navigation would be
the top tabs. Beyond that you’re into single pages that push one
to another. This is an opinionated approach that Shell takes to
providing navigation UI.

Let’s start with bottom tabs. Each ShellSection within a single
ShellItem can be represented as a bottom tab when there’s more
than one. Here’s an example of XAML code producing bottom
tabs for an app:

<ShellItem Title="Bottom Tab Sample" Style="{StaticResource BaseStyle}">
 <ShellSection Title="AR" Icon="ia.png">
 <ShellContent ContentTemplate="{DataTemplate local:ARPage}"/>
 </ShellSection>
 <ShellSection Title="Photo" Icon="photo.png">
 <ShellContent ContentTemplate="{DataTemplate local:PhotoPage}"/>
 </ShellSection>
</ShellItem>

This code presents two ShellSections in a single ShellItem.
These ShellSections are represented in the UI as tabs at the bot-
tom of the screen. What about when you don’t need the flyout?

When there’s only one ShellItem, it can be hidden altogether by
setting the FlyoutBehavior to Disabled. Tabs can be styled using
the existing style options or by supplying a custom renderer.
Unlike the flyout menu items that can be customized data tem-
plates, the tabs are much more platform-specific. To style the

Figure 7 Images of Flyout Item Template Results

<Shell.FlyoutHeaderTemplate>
 <DataTemplate>
 <StackLayout HorizontalOptions="Fill" VerticalOptions="Fill"
 BackgroundColor="White" Padding="16">
 <StackLayout.Resources>
 <Style TargetType="Button">
 <Setter Property="BackgroundColor" Value="White" />
 <Setter Property="BorderColor" Value="#2F4B66" />
 <Setter Property="BorderWidth">2</Setter>
 <Setter Property="CornerRadius">28</Setter>
 <Setter Property="HeightRequest">56</Setter>
 <Setter Property="Padding">
 <Thickness
 Left="24"
 Right="24" />
 </Setter>
 </Style>
 </StackLayout.Resources>
 <Label FontSize="Medium" Text="Smart Shopping">
 <Label.Margin>
 <Thickness Left="8" />
 </Label.Margin>
 </Label>
 <Button Image="photo" Text="By taking a photo">
 <Button.Margin>
 <Thickness Top="16" />
 </Button.Margin>
 </Button>
 <Button Image="ia" Text="By using AR">
 <Button.Margin>
 <Thickness Top="8" />
 </Button.Margin>
 </Button>
 </StackLayout>
 </DataTemplate>
 </Shell.FlyoutHeaderTemplate>

Figure 8 FlyoutHeaderTemplate

1318msdn_OrtinauXamarin_v3_48-56.indd 55 12/6/18 8:47 AM

http://www.msdnmagazine.com

msdn magazine56 Cross-Platform Development

color of the tabs, use the style properties
of the Shell class for TabBar items, like so:

<Style x:Key="BaseStyle" TargetType="Element">
 <Setter Property=
 "Shell.ShellTabBarBackgroundColor"
 Value="#3498DB" />
 <Setter Property=
 "Shell.ShellTabBarTitleColor"
 Value="White" />
 <Setter Property=
 "Shell.ShellTabBarUnselectedColor"
 Value="#B4FFFFFF" />
 </Style>

Assigning the style class to the ShellItem
applies those colors to all tabs in that section.

Now let’s move on to top tabs. To have content
navigable from top tabs, add multiple ShellCon-
tent items within a single ShellSection. Styling
is applied just like the previous example for the
bottom tabs. Here’s the code:

<ShellItem Title="Store Home" Shell.
TitleView="Store Home"

 Style="{StaticResource BaseStyle}">
 <ShellSection Title="Browse Product">
 <ShellContent Title="Featured"
 ContentTemplate=
 "{DataTemplate local:FeaturedPage}" />
 <ShellContent Title="On Sale"
 ContentTemplate=
 "{DataTemplate local:SalePage}" />
 </ShellSection>
 </ShellItem>

The Roadmap
There’s plenty more to discover in Xamarin.Forms
Shell. I could continue on describing how to cus-
tomize the navigation bar, the back button, and
all about the very powerful search handler that
makes it easier than ever to add search to a page.
Those features and more are available now, and
will be documented as we approach stable release.

The Shell journey is just starting. We hear
loud and clear from Xamarin.Forms develop-
ers that you often need to make your iOS and
Android applications look mostly or exactly
the same. To address this, we plan to release
Material Shell, which is an implementation
of Shell that applies Google’s Material Design
styling as the starting point for all supported
controls. The controls are still native so there
are no performance or feature compromises.

Navigation transitions and segues are also on
the way. With transitions you can control how
one page animates to another (left-to-right,
right-to-left, crossfade, curl and more). Segues
are a declarative way to say, “When this button
action happens, execute this route.” It reduces

the need to write GoToAsync navigation code and expresses with
more clarity in XAML how things are connected. Blending transi-
tions and Material Shell together we can provide some additional
animations, such as the Hero animation where an element such as
an image icon transitions from one page seamlessly to another page.

Start Exploring Today
Xamarin.Forms Shell is available today in the preview of Xamarin.
Forms 4.0, which includes amazing new features like CollectionView,
CarouselView and the all-new Material Visual that makes it easier
than ever to start your Xamarin.Forms applications from a consis-
tent, common UI styling point instead of the platform-specific blank
point. Use your Visual Studio NuGet package manager to update to
version 4.0-pre1 by toggling the pre-release option.

To make things even easier, we’ve created an updated package of
project templates that unify on Shell and provide version 4.0-pre
by default. Download and install the templates from aka.ms/xf-shell-
templates. After you’ve done that, new Shell-powered templates will
be available when you create a new Xamarin.Forms project.

As the Visual Studio 2019 pre-release continues to evolve, so will
Xamarin.Forms 4.0 and Shell. We need your feedback. Let us know
your thoughts and experiences by visiting aka.ms/xf-4-feedback. 	 n

David Ortinau is a senior program manager for Mobile Developer Tools at
Microsoft, focused on Xamarin.Forms. A .NET developer since 2002, and versed
in a range of programming languages, Ortinau has developed Web, environmental
and mobile experiences for a wide variety of industries. After several successes with
tech startups and running his own software company, Ortinau joined Microsoft to
follow his passion: crafting tools that help developers create better app experiences.
When not at a computer or with his family, he’s galloping through the woods.

Thanks to the following Microsoft technical experts for reviewing this article:
David Britch, Jason Smith

[Preserve]
[QueryProperty("TypeID", "id")]
[XamlCompilation(XamlCompilationOptions.Compile)]
public partial class ProductCategoryPage : ContentPage
{
 private string _typeId;

 public ProductCategoryPage()
 {
 InitializeComponent();

 BindingContext = new ProductCategoryViewModel();
 }

 public string TypeID
 {
 get => _typeId;
 set => MyLabel.Text = value;
 }
}

Figure 10 Example of Query Attribute

Figure 11 ShellNavigatingEventArgs

Element Type Description
Current ShellNavigationState The URI of the current page.
Source ShellNavigatinState The URI representing where the

navigation originated.
Target ShellNavigationState The URI representing the

navigation destined.
CanCancel Boolean Property indicating if it’s possible to

cancel the navigation.
Cancel Boolean Method to cancel the requested

navigation.
Canceled Boolean Property indicating if the current

navigation was canceled.

Figure 9 Image of Flyout with Header

1318msdn_OrtinauXamarin_v3_48-56.indd 56 12/6/18 8:47 AM

http://aka.ms/xf-shell-templates
http://aka.ms/xf-shell-templates
http://aka.ms/xf-4-feedback

SUPPORTED BY

New This Year!
On-Demand Session Recordings Now Available

Get on-demand access for one full year to all

keynotes and sessions from Visual Studio Live! New

Orleans, including everything Tuesday – Thursday

at the conference.

PRODUCED BY

Intense Developer
Training Conference
In-depth Technical Content On:

AI, Data and Machine Learning

Cloud, Containers and Microservices

Delivery and Deployment

Developing New Experiences

DevOps in the Spotlight

Full Stack Web Development

.NET Core and More

magazine

Spice Up Your Coding Skills in the Bayou
April 22-26, 2019 | Hyatt Regency New Orleans

vslive.com/neworleans

#VSLive

Register by
February 22
& Save Up To

$400!

Untitled-6 1 10/31/18 4:14 PM

https://www.vslive.com/neworleans

Untitled-10 1 7/2/18 3:37 PM

http://www.telerik.com/msdn

	Back
	Print
	MSDN Magazine, December 15, 2018
	Cover Tip
	Front
	Back

	Contents
	Connect(); Special Issue
	What’s Coming in .NET Core 3.0
	What’s New in Visual Studio 2019
	Collaborative Development with Visual Studio Live Share
	ML.NET: The Machine Learning Framework for .NET Developers
	Accelerate AI Solutions with Automated Machine Learning
	Deploy Your Code The Right Way with Azure Pipelines
	7 Tips and Tricks for Azure App Service
	Exploring the Xamarin.Forms Shell

