

Fighting Bots

Christian Wenz

Overview

Automated bots plaster weblogs and other websites with spam, submitting comment
forms without any user interaction. The NoBot control in the ASP.NET AJAX Control

Toolkit can help fight those bots.

Steps

One common approach to defeat bots is to use CAPTCHAs—Completely Automated Public
Turing test to tell Computers and Humans Apart. A Turing test was originally a test where
someone needed to decide whether a communication partner is a human or a machine.
In the web, a CAPTCHA usually consists of an image with some distorted letters on it. The
idea is that only a human can read the letters on the image, whereas OCR algorithms will
fail.
There are several advantages and disadvantages to this approach, but a discussion of
this is beyond the scope of this tutorial. There is however a control in the ASP.NET AJAX
Control Toolkit which provides a similar approach: NoBot. It is easier to overcome than a

CAPTCHA, but is very easy to use and fares extremely well on websites like blogs where
it is considered a success if most spam attempts are defeated, which the NoBot control
can do.

NoBot intercepts the postback of the current ASP.NET web form if at least one of these
conditions is met:

 The browser fails to solve a JavaScript puzzle (for instance when JavaScript is
deactivated)

 The user submitted the form to fast
 The client IP address submitted the form too often in a certain period of time.

In order to check for these conditions, the NoBot control requires these attributes (all of
them optional):

 ResponseMinimumDelaySeconds—minimum amount of seconds between

postbacks
 CutoffWindowSeconds—length of time interval in which postbacks from one IP

are measures
 CutoffMaximumInstances—maximum amount of seconds per time interval

The following markup demands that at least two seconds elapse between postbacks and
that there are only five postbacks or less within a 30 seconds interval:

<ajaxToolkit:NoBot ID="nb" runat="server"

CutoffMaximumInstances="5" CutoffWindowSeconds="30"

 ResponseMinimumDelaySeconds="2" />

Then—as usual—make sure to include the ScriptManager in the page so that the
ASP.NET AJAX library is loaded and the Control Toolkit can be used:

<asp:ScriptManager ID="asm" runat="server" />

Since most of the checks NoBot is doing occur on the server side, you need to check the
result of these validations. This can be done by calling NoBot’s IsValid() method. It has
one argument (as an out parameter/ByRef parameter) which is of type NoBotState. Its

string representation contains the reason when the check fails and Valid otherwise. The
following code outputs a message according to NoBot’s result:

<script runat="server">

 void Page_Load()

 {

 if (Page.IsPostBack)

 {

 NoBotState state;

 if (!nb.IsValid(out state))

 {

 Label1.Text = "Data refused (" +

HttpUtility.HtmlEncode(state.ToString()) + ")";

 }

 else

 {

 Label1.Text = "Data entered.";

 }

 }

 }

</script>

Finally, you need a form to submit—and a label element to output the message, and you
are done!

Your comment:

<asp:TextBox ID="TextBox1" runat="server" TextMode="MultiLine"

/>

<input type="submit" id="Submit1" runat="server" value="Submit

Form" />

<asp:Label ID="Label1" runat="server" />

When you run this script and deactivate JavaScript or submit the form within the first two
seconds or submit the form seven times within thirty seconds, you will get an error
message. However use this control wisely, since only about 90-95% of users have
JavaScript activated, therefore 5-10% of users will fail NoBot’s test.

This error message could have been caused by a bot

