
Dynamically Populating a Control

Christian Wenz

Overview

The DynamicPopulate control in the ASP.NET AJAX Control Toolkit calls a web service
(or page method) and fills the resulting value into a target control on the page, without a

page refresh. This tutorial shows how to set this up.

Steps

First of all, you need an ASP.NET Web Service which implements the method to be called
by DynamicPopulate. The web service class requires the ScriptService attribute which
is defined within Microsoft.Web.Script.Services; otherwise ASP.NET AJAX cannot
create the client-side JavaScript proxy for the web service which in turn is required by
DynamicPopulate.

The web method must expect one argument of type string, called contextKey, since the
DynamicPopulate control sends one piece of context information with each web service
call. The following web service returns the current date in a format represented by the

contextKey argument:

<%@ WebService Language="VB" Class="DynamicPopulate" %>

Imports System.Web

Imports System.Web.Services

Imports System.Web.Services.Protocols

Imports System.Web.Script.Services

<ScriptService()> _

Public Class DynamicPopulate

 Inherits System.Web.Services.WebService

 <WebMethod()> _

 Public Function getDate(ByVal contextKey As String) As String

 Dim myDate As String = ""

 Select Case contextKey

 Case "format1"

 myDate = String.Format("{0:MM}-{0:dd}-{0:yyyy}",

DateTime.Now)

 Case "format2"

 myDate = String.Format("{0:dd}.{0:MM}.{0:yyyy}",

DateTime.Now)

 Case "format3"

 myDate = String.Format("{0:yyyy}/{0:MM}/{0:dd}",

DateTime.Now)

 End Select

 Return myDate

 End Function

End Class

The web service is then saved as DynamicPopulate.vb.asmx. Alternatively, you could
implement the getDate() method as a page method within the actual ASP.NET page
with the DynamicPopulate control.

In the next step, create a new ASP.NET file. As always, the first step is to include the
ScriptManager in the current page to load the ASP.NET AJAX library and to make the
Control Toolkit work:

<asp:ScriptManager ID="asm" runat="server" />

Then, add a label control (for instance using the HTML control of the same name, or the
<asp:Label /> web control) which will later show the result of the web service call.

<label id="myDate" runat="server" />

An HTML button (as an HTML control, since we do not require a postback to the server)

will then be used to trigger the dynamic population:

<input type="button" id="Button1" runat="server" value="Load date

(m-d-y)" />

Finally, we need the DynamicPopulateExtender control to wire things up. The following

attributes will be set (apart from the obvious ones, ID and runat="server"):

 TargetControlID—where to put the result from the web service call
 ServicePath—path to the web service (omit if you want to use a page method)
 ServiceMethod—name of the web method or page method
 ContextKey—context information to be sent to the web service
 PopulateTriggerControlID—element which triggers the web service call
 ClearContentsDuringUpdate—whether to empty the target element during the

web service call

As you can see, the control requires some information but putting everything into place is
quite straight-forward. Here is the markup for the DynamicPopulateExtender control
in the current scenario:

<ajaxToolkit:DynamicPopulateExtender ID="dpe1" runat="server"

ClearContentsDuringUpdate="true"

 TargetControlID="myDate" ServicePath="DynamicPopulate.vb.asmx"

ServiceMethod="getDate"

 ContextKey="format1" PopulateTriggerControlID="Button1" />

Run the ASP.NET page in the browser and click on the button; you will receive the
current date in month-day-year format.

A click on the button retrieves the date from the server

