

Utilizing State Oriented Communication for
Web Services Based on Business APIs
(BAPI) with Microsoft Visual Studio 2005
Summary
Some applications require stateful oriented communication. If these function modules
are published as Web services state oriented communication is supported for the server
side using HTTP sessions that can be used by .NET based Web services clients to
achieve consistency.
Instead of stateful communication SAP recommends to use SAP Enterprise Services
because they are using a stateless model and ensure consistency of the called backend
application.
This scenario however is applicable in a situation where no SAP Enterprise Services can
be used and where for example an existing stateful RFC communication is to be
replaced by a Web service based communication calling the same function modules.

Applies to
 SAP NetWeaver Application Server ABAP 6.40 SP21 or higher1
 Microsoft Visual Studio 2005

Contact
For feedback or questions you can contact the Collaboration Technology Support Center
via the .NET Technologies forum in the .NET interoperability area of SDN. Please check
the .NET interoperability area in SDN for any updates or further information.

Authors Bio
André Fischer works at SAP AG in the Strategic Alliance Microsoft Team.
He is also a member of the CTSC (Collaboration Technology Support
Center) that addresses various kinds of interoperability topics regarding SAP
and Microsoft solutions. André has specialized in single sign-on, SAP
Microsoft Active Directory integration, SAP Exchange Infrastructure BizTalk
integration and knowledge management Microsoft Windows integration.

Jürgen Daiberl works at Mircosoft Corp. as Technical Evangelist at the
Developer & Platform Evangelist Team in Redmond. Prior to his role in
Redmond he worked at the CTSC (Collaboration Technical Support Center)
in Walldorf / Germany, a joint staffed team between Microsoft and SAP. In
his current role he is responsible for the Interoperability between Microsoft
.NET and SAP NetWeaver on the Application level.

1 Please see SAP Note 1050075 - Adaptation of the cookie setting for stateful communication

Collaboration Technology Support Center - Microsoft - Collaboration Brief
November 2007

https://www.sdn.sap.com/irj/sdn/forum?forumID=64�
https://www.sdn.sap.com/irj/sdn/developerareas/dotnet�

This document is a common publication by SAP and Microsoft (“Co-Editors”) who have both contributed to
its content and retain respective rights therein.
The information contained in this document represents the current view of the Co-Editors on the issues
discussed as of the date of publication. Because the Co-Editors must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of the Co-Editors, and the Co-Editors
cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only.

NEITHER OF THE CO-EDITORS MAKES ANY WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS
TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of the Co-Editors.

Either Co-Editor may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from the respective Co-Editor(s), the furnishing of this document does not give you any license to
these patents, trademarks, copyrights, or other intellectual property.
Unless otherwise noted, any example companies, organizations, products, domain names, e-mail
addresses, logos, people, places and events depicted herein are fictitious, and no association with any real
company, organization, product, domain name, email address, logo, person, place or event is intended or
should be inferred.

 2007 Microsoft Corporation. All rights reserved.

 2005 SAP AG. All rights reserved. Microsoft, Windows, Outlook, and PowerPoint and other Microsoft
products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of Microsoft Corporation.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services
mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in
Germany and in several other countries all over the world. All other product and service names mentioned
are the trademarks of their respective companies. Data contained in this document serves informational
purposes only. National product specifications may vary.
The names of actual companies and products mentioned herein may be the trademarks of their respective
owners.

Contents

SUMMARY..1

APPLIES TO ...1

CONTACT..1

AUTHORS BIO...1

CONTENTS ...3

INTRODUCTION...4

SAP Enterprise Services using stateless communication ...4

Stateful BAPI calls using Web Services as an intermediate solution ..4

Remote Function Module using stateful communication..4

HOW­TO SECTION...5

Testing the function module..5

Create a web service from the function module SRT_TESTS_FB_SUM using the Web Service Creation
Wizard ..8

Get the WSDL from the web service...12

Creating a web service client using Visual Studio 2005 ...14

Making the web service stateful ..16

Retest the .NET web service client with the stateful web service..18

USING TRANSACTION COMMIT ... 19

How‐To Section External COMMIT...19

Develop a .NET application which handles external BAPI COMMITS...21

APPENDIX... 22

Source code SRT_TESTS_FB_SUM ..22

Source BAPI_TRANSACTION_COMMIT...23

Introduction
In some cases it is necessary having a session / state oriented communication between
applications. This can be because of aggregation of data for later or for handling multiple
transactions in one Web Service call. An example could be the external BAPI COMMIT
required by some BAPIs in contrast to SAP Enterprise Services that are using a
stateless programming model.

SAP Enterprise Services using stateless communication

SAP Enterprise Services are based on a harmonized object model and are subject to
strict governance. Every SAP Enterprise Service (in contrast to a RFC or a Web service
based on a RFC) is a atomic transaction that leaves the database of the business
application in a consistent state. Therefore it is not the responsibility of the consumer to
ensure data consistency on the backend called.
This is not the case if a stateful model is used. Here it is the responsibility of the
consumer to make sure that the calls to the backend are made in a consistent way. In
principal the developer is even able to perform several calls to different BAPIs and RFCs
thereby creating a LUW that spans the complete backend or even several backend
systems. The developer therefore has to know the programming model used in the
backend system(s) which makes an implementation more complicated and error prone.

Therefore SAP has decided to go for a stateless programming model in its eSOA-
strategy. If SAP Enterprise Services are used the burden of responsibility to ensure data
consistency is not left to the developer any more even if the Enterpise Service iself calls
different systems in the backend.

In the long term SAP therefore strongly recommends only to use stateless Enterprise
Services as interfaces to communicate with SAP NetWeaver rather than calling simple
web services based on BAPIs.

Stateful BAPI calls using Web Services as an intermediate solution

If however it is necessary to deal with existing BAPI/RFC interfaces that are published
as Web services this Collaboration Brief will show how to setup a session / state
oriented communication with the SAP system. For demonstration purposes the Remote
Function Module SRT_TESTS_FB_SUM is chosen. In addition you can find an example
how to use session / state oriented communication in order to handle external BAPI
COMMITs.

Remote Function Module using stateful communication

The Remote Function Module SRT_TESTS_FB_SUM accepts an input parameter P1 of
type I and will return parameter RESULT of type I that contains the sum of P1 and the
value of the global variable GL_SUM. The value of GL_SUM is initially zero.
If you call this RFC again from the same session, the variable GL_SUM will remember
the entry from the previous call and will add the value of P1 to the value of RESULT that

has been returned the last time. Technically, this is achieved by using a global variable
GL_SUM for the storage.

How-To Section
Testing the function module

1. Test the Function Module (F8) and enter an integer value for the P1 parameter.
The number 2 is used in the example.

2. You get an export parameter – RESULT that contains the sum of P1 and the
value of the export parameter from the last call. (pretty straightforward).

3. Hit Back (F3) twice to take you back to the Test Function Module: Initial Screen.

4. Execute (F8) the function module again.

5. You should now the value 4 as a result. The reason is that we are using a global
variable of this function group in this function module that will grow by P1.

If you leave the test function screens (F3) the value of global variable entries are then
gone and you will start again with the initial value 0.

Create a web service from the function module SRT_TESTS_FB_SUM using
the Web Service Creation Wizard

1. Start transaction SE37 and enter the name of the function module
SRT_TESTS_FB_SUM and press the Display button (F7).

2. Begin the Web service creation by choosing Utilities -> More Utilities -> Create

Web Service -> From the Function Module

3. The Web Service Wizard screen appears. The list on the left-hand side shows
your progress in the wizard. Choose ‘Continue’.

4. Enter ‘zvi_srt_tests_fb_sum’ as name for the Virtual Interface (VI). Enter a short
description, such as ‘Virtual Interface for RFM SRT_TESTS_FB_SUM’. Check
the checkbox ‘Name Mapping’. The ‘Endpoint Type’ is ‘Function Module’ and
choose ‘Continue’.

5. On the next screen you specify the object that is to be exposed as a Web service

in accordance with the endpoint type that you selected before. Accept the
suggested function module ‘SRT_TESTS_FB_SUM’ and choose ‘Continue’

6. Now create the Web Service Definition that references the VI you just created.
Enter ‘zwsd_srt_tests_fb_sum’ as name of the definition and a short description
such as ‘Web Service Definition for for RFM SRT_TESTS_FB_SUM’. From the
list of available profiles choose ‘Basic Authorization’, and then choose ‘Continue’.

7. Finally, you release the Web service definition for the SOAP runtime. The VI ,
WSD and configuration are created. Choose ‘Complete’.

8. Choose Local Object. For the package choose $TMP.

9. Press ‘Save’.

Get the WSDL from the web service

1. Start transaction WSADMIN. (Web Service Administrator for SOAP Runtime) and
select the newly created Web Service ‘zwsd_srt_tests_fb_sum’.

2. Expand the node zwsd_srt_tests_fb_sum and select the Web Service Definition.
From the menue choose Web Service -> WSDL.

3. The ‘Settings for WSDL Generation’ popup tells you that there are two styles of
WSDL supported: ‘Document Style’ and ‘RPC Style’. Choose ‘Document Style’
and then ‘OK’

4. You are prompted to enter the credentials to log on to the SAP NetWeaver

Application Server.

5. The browser opens the URL that contains the WSDL of the Web service, in this
case
http://msctscecc.msctsc.sap.corp:8000/sap/bc/srt/rfc/sap/zwsd_srt_tests_fb_sum
?sap-client=000&wsdl=1.1

Creating a web service client using Visual Studio 2005

1. Start Visual Studio to create a console application. From the menue select File ->
New -> Project.

2. In the ‘New Project’ window select ‘console application’. Choose
Call_zwsd_srt_tests_fb_sum as the name and the solution name for this project
and press OK.

3. In the Solution Explorer choose the project ‘Call_zwsd_srt_tests_fb_sum’ and
press the right mouse button. In the context menue choose ‘Add Web
Reference’.

4. In the ‘Add Web Reference’ window enter the URL of the WSDL and press ‘Go’.

5. You are now prompted to enter your credentials for the SAP NetWeaver
Application server.

6. The ‘Add Web Reference’ window now shows the methods of the web service.
Change the Web reference name to zwsd_srt_tests_fb_sum and press the ‘Add
Reference’ button.

7. Paste the coding of the class …

8. Start the console application in debug mode

The Results are the same! The sum does not grow. Why? Web Services are stateless.

Making the web service stateful
1. Open the Object Navigator (SE80), choose ‘Local Objects’ and display your own

objects. Choose $TMP / <your user> -> Enterprise Services -> Web Service
Library -> Web Services Definitions.

a. EDIT ‘zwsd_srt_tests_fb_sum’
b. Select the Feature Session-Oriented Communication by clicking on the

checkbox Select Feature
c. Click on Save. Click on Check Click on the Activate button.
d. You will see the status of the Web Service Definition becomes active

2. Start transaction ‘WSCONFIG’ and enter the name of the Web service definition
‘zwsd_srt_tests_fb_sum‘ and press enter. Mark your Web service
(‘ZWSD_SERIES_TESTXX’). Then choose ‘Change’.

3. Click Check (Ctrl+F2) You should see a message that Web Service configuration
is consistent

4. Click Save (Ctrl+S) When prompted use the same Customizing Transport
Request Click Back (F3)

5. You should now have a Green Light

Retest the .NET web service client with the stateful web service
We will now retest the web service.

1. First we will update the web reference of our project.

2. Rebuild the application and start in debug mode.

3. The result is now the same as we could observe it when testing the function
module.

Using Transaction Commit
As mentioned in the introduction session / state oriented communication can also be
used for calling BAPIs via Web Service which require an external BAPI TRANSACTION
COMMIT. An example of such a BAPI is BAPI_EXCHANGERATE_CREATE, if you take
a look to the documentation you will see that this BAPI requires an external COMMIT.

How-To Section External COMMIT
Create the Web Service

1. Start transaction SE80, go to Repository Browser, and open Enterprise
Services. Right-click on Enterprise Services and choose Create.

2. The Web Service Creation Wizard starts, at the first screen click Continue. On

the next screen specify a name for the Service Definition and a Short Text and
choose as Endpoint Type BAPI.

3. On the next screen choose BC as Application and ExchangeRate as BAPI

4. Mark the method Create in the list and add the BAPI Transaction

Commit/Rollback

5. Afterwards finish the Web Service Creation Wizard as described in the section
Create a web service from the function module SRT_TESTS_FB_SUM using the
Web Service Creation Wizard. For information on how to get the WSDL see Get
the WSDL from the web service, for information on how to make the Web Service
stateful see Making the web service stateful.

Develop a .NET application which handles external BAPI COMMITS
The development of the .NET application is the same as described in chapter Creating a
web service client using Visual Studio 2005.
The following code snippet shows how to handle the BAPI_TRANSACTION_COMMIT in
.NET, the complete code can be found in the Appendix.

CookieContainer cookie = new CookieContainer();
z_Create_ExchangeRatesService.z_Create_ExchangeRatesService _proxy
 = new z_Create_ExchangeRatesService.z_Create_ExchangeRatesService();
_proxy.Credentials =

new NetworkCredential(Properties.Settings.Default.SAPUser,
Properties.Settings.Default.SAPPassword);

_proxy.CookieContainer = cookie;
_proxy.ExchangeRateCreate("X",

"000",
newData,
"X",
out strRateTypeOut,
out bapiReturn,
out strCurrTo);

_proxy.BapiServiceTransactionCommit("");

Appendix
Source code SRT_TESTS_FB_SUM
using System;
using System.Net;
using System.Collections.Generic;
using System.Text;
using System.Web.Services.Protocols;
using System.Web.Services;

namespace Call_zwsd_srt_tests_fb_sum
{
 class Program
 {
 static void Main(string[] args)
 {

 try
 {
 //Sample Project for calling WS in SAP and writing data

 int P1 = 2;
 int result = 0;

 CookieContainer cookie = new CookieContainer();

zwsd_srt_tests_fb_sum.zwsd_srt_tests_fb_sumService _proxy1 = new
Call_zwsd_srt_tests_fb_sum.zwsd_srt_tests_fb_sum.zwsd_srt_tests_
fb_sumService();

 _proxy1.Credentials = new NetworkCredential("myuser",

"secret pwd");
 _proxy1.CookieContainer = cookie;
 result = _proxy1.SrtTestsFbSum(P1, true);
 Console.WriteLine(result);

 cookie = _proxy1.CookieContainer;
 zwsd_srt_tests_fb_sum.zwsd_srt_tests_fb_sumService _proxy2 =

new
Call_zwsd_srt_tests_fb_sum.zwsd_srt_tests_fb_sum.zwsd_srt_te
sts_fb_sumService();

 _proxy2.Credentials = new NetworkCredential("myuser",

"secret pwd");
 _proxy2.CookieContainer = cookie;
 result = _proxy2.SrtTestsFbSum(P1, true);
 Console.WriteLine(result);
 Console.WriteLine("Finish");
 string response = Console.ReadLine();
 }

 catch (SoapException exc)
 {
 Console.WriteLine("Exception thrown");
 throw exc;
 string response = Console.ReadLine();
 }

 }
 }
}

Source BAPI_TRANSACTION_COMMIT
using System;
using System.Net;
using System.Collections.Generic;
using System.Text;
using System.Web.Services.Protocols;
using System.Web.Services;

namespace SAP_WebService_Calls
{
 class CreateEXRates
 {
 static void Main(string[] args)
 {
 try
 {
 //Sample Project for calling WS in SAP and writing data
 z_Create_ExchangeRatesService.Bapiret2 bapiReturn =

new z_Create_ExchangeRatesService.Bapiret2();
 z_Create_ExchangeRatesService.Bapi10930 newData =

new z_Create_ExchangeRatesService.Bapi10930();
 newData.ExchRate = 1.112M;
 newData.ExchRateV = 0.0M;
 newData.FromCurr = "EUR";
 newData.FromFactor = 1;
 newData.FromFactorV = 0;
 newData.RateType = "M";
 newData.ToCurrncy = "USD";
 newData.ToFactor = 1;
 newData.ToFactorV = 0;
 newData.ValidFrom = "2007-10-01";
 string strRateTypeOut = "";
 string strCurrTo = "";
 CookieContainer cookie = new CookieContainer();

 z_Create_ExchangeRatesService.z_Create_ExchangeRatesService

 _proxy = new
 z_Create_ExchangeRatesService.z_Create_ExchangeRatesService();

 _proxy.Credentials =
new NetworkCredential(Properties.Settings.Default.SAPUser,

Properties.Settings.Default.SAPPassword);
 _proxy.CookieContainer = cookie;
 _proxy.ExchangeRateCreate("X",

"000",
newData,
"X",
out strRateTypeOut,
out bapiReturn,
out strCurrTo);

 _proxy.BapiServiceTransactionCommit("");
 Console.WriteLine("Finish");
 string response = Console.ReadLine();
 }
 catch (SoapException exc)
 {
 throw exc;
 }
 }
 }

}

	Summary
	Applies to
	Contact
	Authors Bio
	Contents
	Introduction
	SAP Enterprise Services using stateless communication
	Stateful BAPI calls using Web Services as an intermediate solution
	Remote Function Module using stateful communication

	How-To Section
	Testing the function module
	Create a web service from the function module SRT_TESTS_FB_SUM using the Web Service Creation Wizard
	1. Start transaction SE37 and enter the name of the function module SRT_TESTS_FB_SUM and press the Display button (F7).
	2. Begin the Web service creation by choosing Utilities -> More Utilities -> Create Web Service -> From the Function Module
	3. The Web Service Wizard screen appears. The list on the left-hand side shows your progress in the wizard. Choose ‘Continue’.

	Get the WSDL from the web service
	Creating a web service client using Visual Studio 2005
	Making the web service stateful
	Retest the .NET web service client with the stateful web service

	Using Transaction Commit
	How-To Section External COMMIT
	Create the Web Service
	1. Start transaction SE80, go to Repository Browser, and open Enterprise Services. Right-click on Enterprise Services and choose Create.

	Develop a .NET application which handles external BAPI COMMITS

	Appendix
	Source code SRT_TESTS_FB_SUM
	Source BAPI_TRANSACTION_COMMIT
	}

