

 Page 1 of 181

Microsoft Windows 10 Mobile and Microsoft Windows 10

with Lumia 950, Lumia 950 XL,

Lumia 550, Lumia 635, and Surface Pro 4

Common Criteria

Assurance Activities Report

Version 1.0

April 29, 2016

Prepared by:

Leidos Inc. (formerly Science Applications International Corporation)

https://www.leidos.com/commercialcyber/ate

Common Criteria Testing Laboratory

6841 Benjamin Franklin Drive

Columbia, MD 21046

Prepared for:

National Information Assurance Partnership

https://www.leidos.com/commercialcyber/ate

 Page 2 of 181

Common Criteria Evaluation and Validation Scheme

The Developer of the TOE:

 Microsoft Corporation

Corporate Headquarters

One Microsoft Way

Redmond, WA 98052-6399

The TOE Evaluation was Sponsored by:

Microsoft Corporation

Corporate Headquarters

One Microsoft Way

Redmond, WA 98052-6399

Evaluation Personnel:

Gary Grainger

Greg Beaver

Common Criteria Versions

¶ Common Criteria for Information Technology Security Evaluation Part 1: Introduction, Version

3.1, Revision 4, September 2012.

¶ Common Criteria for Information Technology Security Evaluation Part 2: Security Functional

Components, Revision 4, September 2012.

¶ Common Criteria for Information Technology Security Evaluation Part 3: Security Assurance

Components, Revision 4, September 2012.

Common Evaluation Methodology Versions

¶ Common Methodology for Information Technology Security Evaluation, Evaluation

Methodology, Version 3.1, Revision 4, September 2012.

Protection Profiles

1. Protection Profile for Mobile Device Fundamentals, Version 2.0, 17 September 2014

 Page 3 of 181

Table of Contents

1 Introduction .. 8

1.1 Evidence ... 8

1.2 Protection Profile.. 8

2 Security Functional Requirement Assurance Activities ... 8

2.1 Cryptographic Support (FCS) .. 8

2.1.1 Cryptographic Key Generation (FCS_CKM.1(1)) .. 8

2.1.2 Cryptographic Key Generation (WLAN) (FCS_CKM.1(2)) 15

2.1.3 Cryptographic Key Generation (WLAN) (FCS_CKM.1(3)) 18

2.1.4 Cryptographic Key Establishment FCS_CKM.2.1(1) .. 19

2.1.5 Cryptographic Key Distribution (WLAN) FCS_CKM.2.1(2) 24

2.1.6 Cryptographic Key Support (REK) FCS_CKM_EXT.1 .. 25

2.1.7 Cryptographic Key Random Generation (FCS_CKM_EXT.2) 27

2.1.8 Cryptographic Key Encryption Keys (FCS_CKM_EXT.3) 28

2.1.9 Cryptographic Key Destruction (FCS_CKM_EXT.4) ... 30

2.1.10 TSF Wipe (FCS_CKM_EXT.5) .. 32

2.1.11 Cryptographic Salt Generation (FCS_CKM_EXT.6) ... 34

2.1.12 Cryptographic Operation (FCS_COP.1(1)) .. 34

2.1.13 Hashing Algorithms (FCS_COP.1(2)) ... 48

2.1.14 Signature Algorithms (FCS_COP.1(3)) ... 50

2.1.15 Keyed Hash Algorithms (FCS_COP.1(4)) .. 53

2.1.16 Password-Based Key Derivation Functions (FCS_COP.1(5)) 54

2.1.17 Extended: HTTPS Protocol (FCS_HTTPS_EXT.1) ... 55

2.1.18 Initialization Vector Generation (FCS_IV_EXT.1) .. 56

2.1.19 Random Bit Generation (FCS_RBG_EXT.1) .. 56

2.1.20 Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1.1) 59

2.1.21 Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1.2) 60

2.1.22 Extended: Cryptographic Key Storage (FCS_STG_EXT.1) 60

2.1.23 Extended: Encrypted Cryptographic Key Storage (FCS_STG_EXT.2) 63

2.1.24 Extended: Integrity of encrypted key storage (FCS_STG_EXT.3) 64

 Page 4 of 181

2.1.25 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.1) ... 65

2.1.26 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.2) ... 68

2.1.27 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.3) ... 69

2.1.28 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.4) ... 70

2.1.29 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.5) ... 71

2.1.30 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.6) ... 71

2.1.31 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.7) ... 72

2.1.32 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.8) ... 73

2.1.33 Extended: TLS Protocol (FCS_TLSC_EXT.2.1) .. 73

2.1.34 Extended: TLS Protocol (FCS_TLSC_EXT.2.2) .. 76

2.1.35 Extended: TLS Protocol (FCS_TLSC_EXT.2.3) .. 77

2.1.36 Extended: TLS Protocol (FCS_TLSC_EXT.2.4) .. 78

2.1.37 Extended: TLS Protocol (FCS_TLSC_EXT.2.5) .. 79

2.1.38 Extended: TLS Protocol (FCS_TLSC_EXT.2.6) .. 79

2.1.39 Extended: TLS Protocol (FCS_TLSC_EXT.2.7) .. 80

2.1.40 Extended: TLS Protocol (FCS_TLSC_EXT.2.8) .. 81

2.2 User Data Protection (FDP) ... 81

2.2.1 Extended: Security Access Control (FDP_ACF_EXT.1.1) 81

2.2.2 Extended: Security Access Control (FDP_ACF_EXT.1.2) 84

2.2.3 Extended: Security Access Control (FDP_ACF_EXT.1.3) 84

2.2.4 Extended: Limitation of Bluetooth Device Access (FDP_BLT_EXT.1) 85

2.2.5 Extended: Protected Data Encryption (FDP_DAR_EXT.1) 86

2.2.6 Extended: Subset information flow control (FDP_IFC_EXT.1) 87

2.2.7 Extended: User Data Storage (FDP_STG_EXT.1) ... 89

2.2.8 Extended: Inter-TSF user data transfer protection (FDP_UPC_EXT.1) 90

2.3 Identification and Authentication (FIA) .. 92

2.3.1 Authentication failure handling (FIA_AFL_EXT.1) .. 92

2.3.2 Bluetooth Authorization and Authentication (FIA_BLT_EXT.1) 93

2.3.3 Bluetooth Authorization and Authentication (FIA_BLT_EXT.1.2) 95

2.3.4 Extended: Bluetooth Authentication (FIA_BLT_EXT.2)...................................... 96

2.3.5 Extended: Rejection of Duplicate Bluetooth Connections FIA_BLT_EXT.3 ... 97

 Page 5 of 181

2.3.6 Port Access Entity Authentication (FIA_PAE_EXT.1) ... 98

2.3.7 Extended: Password Management (FIA_PMG_EXT.1) .. 98

2.3.8 Extended: Authentication Throttling (FIA_TRT_EXT.1) 99

2.3.9 Protected Authentication Feedback (FIA_UAU.7) ... 100

2.3.10 Extended: Authentication for Cryptographic Operation (FIA_UAU_EXT.1) .. 100

2.3.11 Extended: Timing of Authentication (FIA_UAU_EXT.2) 102

2.3.12 Extended: Re-Authentication (FIA_UAU_EXT.3) ... 102

2.3.13 Extended: Validation of certificates (FIA_X509_EXT.1) 103

2.3.14 Extended: X509 certificate authentication (FIA_X509_EXT.2) 104

2.3.15 Extended: X509 certificate authentication (FIA_X509_EXT.2.3) 106

2.3.16 Extended: X509 certificate authentication (FIA_X509_EXT.2.4) 106

2.3.17 Extended: Request Validation of certificates (FIA_X509_EXT.3) 107

2.4 Security Management (FMT) .. 108

2.4.1 Extended: Management of Security Functions Behavior

(FMT_MOF_EXT.1.1) .. 108

2.4.2 Extended: Management of Security Functions Behavior

(FMT_MOF_EXT.1.2) .. 109

2.4.3 Extended: Specification of Management Functions (FMT_SMF_EXT.1) 110

2.4.4 Extended: Specification of Remediation Actions (FMT_SMF_EXT.2)............. 145

2.5 Protection of the TSF (FPT) .. 146

2.5.1 Extended: Anti-Exploitation Services (ASLR) (FPT_AEX_EXT.1) 146

2.5.2 Extended: Anti-Exploitation Services (ASLR) (FPT_AEX_EXT.1.3) 146

2.5.3 Extended: Anti-Exploitation Services (ASLR) (FPT_AEX_EXT.1.4) 147

2.5.4 Extended: Anti-Exploitation Services (Memory Page Permissions)

(FPT_AEX_EXT.2.1) .. 147

2.5.5 Extended: Anti-Exploitation Services (Memory Page Permissions)

(FPT_AEX_EXT.2.2) .. 148

2.5.6 Extended: Anti-Exploitation Services (Overflow Protection)

(FPT_AEX_EXT.3) ... 149

2.5.7 Extended: Anti-Exploitation Services (Overflow Protection)

(FPT_AEX_EXT.3.2) .. 149

2.5.8 Extended: Domain Isolation (FPT_AEX_EXT.4) ... 150

2.5.9 Application Processor Mediation (FPT_BBD_EXT.1) .. 152

 Page 6 of 181

2.5.10 Extended: Limitation of Bluetooth Profile Support (FPT_BLT_EXT.1) 153

2.5.11 Extended: Key Storage (FPT_KST_EXT.1)... 154

2.5.12 Extended: No Key Transmission (FPT_KST_EXT.2) ... 155

2.5.13 Extended: No Plaintext Key Export (FPT_KST_EXT.3) 156

2.5.14 Extended: Self-Test Notification (FPT_NOT_EXT.1) ... 157

2.5.15 Extended: Self-Test Notification (FPT_NOT_EXT.1.2) 157

2.5.16 Extended: Self-Test Notification (FPT_NOT_EXT.1.3) 159

2.5.17 Reliable Time Stamps (FPT_STM.1) ... 160

2.5.18 Extended: TSF Cryptographic Functionality Testing (FPT_TST_EXT.1) 161

2.5.19 Extended: TSF Integrity Testing (FPT_TST_EXT.2.1) ... 162

2.5.20 Extended: TSF Integrity Testing (FPT_TST_EXT.2.2) ... 164

2.5.21 Extended: Trusted Update: TSF Version Query (FPT_TUD_EXT.1) 164

2.5.22 Extended: Trusted Update Verification (FPT_TUD_EXT.2) 165

2.5.23 Extended: Trusted Update Verification (FPT_TUD_EXT.2.4) 167

2.5.24 Extended: Trusted Update Verification (FPT_TUD_EXT.2.5) 168

2.5.25 Extended: Trusted Update Verification (FPT_TUD_EXT.2.6) 169

2.5.26 Extended: Trusted Update Verification (FPT_TUD_EXT.2.7) 169

2.6 TOE Access (FTA) .. 170

2.6.1 Extended: TSF- and User-initiated locked state (FTA_SSL_EXT.1) 170

2.6.2 Default TOE Access Banners (FTA_TAB.1) ... 171

2.6.3 Extended: Wireless Network Access (FTA_WSE_EXT.1) 172

2.7 Trusted Path/Channels (FTP) .. 172

2.7.1 Extended: Trusted channel Communication (FTP_ITC_EXT.1) 172

3 Security Assurance Requirements ... 174

3.1 Class ADV: Development .. 174

3.1.1 ADV_FSP.1 Basic Functional Specification .. 174

3.2 Class AGD: Guidance Documents ... 175

3.2.1 AGD_OPE.1 Operational User Guidance ... 175

3.2.2 AGD_PRE.1 Preparative Procedures ... 176

3.3 Class ALC: Life-Cycle Support .. 176

 Page 7 of 181

3.3.1 ALC_CMC.1 Labeling of the TOE Assurance Activity .. 176

3.3.2 ALC_CMS.1 TOE CM Coverage Assurance Activity ... 177

3.3.3 Timely Security Updates (ALC_TSU_EXT) Assurance Activity 177

3.4 ATE_IND.1 Independent Testing Conformance ... 178

3.4.1 ATE_IND.1 Assurance Activity ... 178

3.4.2 Cryptographic Algorithm Validation Programming Testing................................. 179

3.5 Class AVA: Vulnerability Assessment .. 181

3.5.1 AVA_VAN.1 Assurance Activity ... 181

 Page 8 of 181

1 INTRODUCTION

This document presents assurance activity evaluation results of the Microsoft Windows 10 evaluation.

There are three types of assurance activities and the following is provided for each:

1. TOE Summary Specification (TSS)ðan indication that the required information is in the TSS

section of the Security Target

2. Guidanceða specific reference to the location in the guidance is provided for the required

information

3. Testða summary of the test procedure and result is provided for each required test activity.

This Assurance Activities Report contains sections for each functional class and family and sub-sections

addressing each of the SFRs specified in the Security Target.

1.1 Evidence

[ST] Microsoft Windows 10 and Windows 10 Mobile Security Target, v0.09, April

12, 2016

[Mobile Guide] Microsoft Windows 10 Mobile Microsoft Windows 10 Common Criteria

Supplemental Admin Guidance V1.0, February 17, 2016

[TPM 2.0 Arch] Trusted Platform Module Library Part 1: Architecture, Family ñ2.0ò, Level

00, Revision 01.16, October 30, 2014

[TPM 2.0 Commands] Trusted Platform Module Library Part 3: Commands, Family ñ2.0ò, Level 00,

Revision 01.16, October 30, 2014

1.2 Protection Profile

[PP MDF] Protection Profile for Mobility Device Fundamentals, Version 2.0, 17 September

2014

2 SECURITY FUNCTIONAL REQUIREMENT ASSURANCE ACTIVITIES

This section describes the assurance activities associated with the SFRs defined in the ST and the results

of those activities as performed by the evaluation team. The assurance activities are derived from the

[PP MDF].

2.1 Cryptographic Support (FCS)

2.1.1 Cryptographic Key G eneration (FCS_CKM.1(1))

FCS_CKM.1(ASYM KA) corresponds to FCS_CKM.1(1) in the [PP MDF] protection profile.

 Page 9 of 181

2.1.1.1 TSS Assurance Activity

The TSF generates asymmetric cryptographic keys in accordance with a specified cryptographic key

generation algorithms.

Table 15 Types of Keys Used by Windows in section 6.2.1 Cryptographic Algorithms and Operations

identifies size and usage for keys. RSA keys can be 2048 or 3072 bits. The RSA keys are used for IPsec,

TLS, Wi-Fi, and health attestations as well as signed product updates (section 6.6.6 Windows and

Application Updates). Section 6.2.1 identifies the elliptical curves P-256, P-384, and P-521 for ECDSA

and ECDH. The ECDSA keys are used for IPsec traffic and peer authentication. ECDH keys are used

for TLS key establishment. DSA keys can be 2048 or 3072 bits. The DSA keys are used for IPsec and

TLS.

See also section 2.2.6 below and [ST] section 6.3.4 VPN Client regarding TOE support of IPsec.

2.1.1.2 Guidance Assurance Activities

Section 21 Managing Cryptographic Algorithms indicates that there is no global configuration necessary

for hashing algorithms, key generation schemes, or for key establishment schemes. The use of required

key generation schemes and key sizes is supported and global configuration is not needed.

The evaluator shall ensure that the TSS identifies the key sizes supported by the TOE. If the ST

specifies more than one scheme, the evaluator shall examine the TSS to verify that it identifies the

usage for each scheme.

The evaluator shall verify that the AGD guidance instructs the administrator how to configure the

TOE to use the selected key generation scheme(s) and key size(s) for all uses defined in this PP.

 Page 10 of 181

2.1.1.3 Test Activities (FIPS PUB 186-4 RSA Schemes)

Key Generation for FIPS PUB 186-4 RSA Schemes

Windows uses algorithm implementations validated under the Cryptographic Algorithm Validation

Program (CAVP) (http://csrc.nist.gov/groups/STM/cavp/index.html). [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP RSA certificates for Windows

10: 1802, 1783, 1784, and 1798 (http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html).

The relevant detail is reproduced and highlighted below.

1802 FIPS186-4:

Key Generation for FIPS PUB 186-4 RSA Schemes

The evaluator shall verify the implementation of RSA Key Generation by the TOE using the Key

Generation test. This test verifies the ability of the TSF to correctly produce values for the key

components including the public verification exponent e, the private prime factors p and q, the public

modulus n and the calculation of the private signature exponent d.

Key Pair generation specifies 5 ways (or methods) to generate the primes p and q. These include:

1. Random Primes:

¶ Provable primes

¶ Probable primes

2. Primes with Conditions:

¶ Primes p1, p2, q1,q2, p and q shall all be provable primes

¶ Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be probable

primes

¶ Primes p1, p2, q1,q2, p and q shall all be probable primes

To test the key generation method for the Random Provable primes method and for all the Primes with

Conditions methods, the evaluator must seed the TSF key generation routine with sufficient data to

deterministically generate the RSA key pair. This includes the random seed(s), the public exponent of

the RSA key, and the desired key length. For each key length supported, the evaluator shall have the

TSF generate 25 key pairs. The evaluator shall verify the correctness of the TSFôs implementation by

comparing values generated by the TSF with those generated from a known good implementation.

If possible, the Random Probable primes method should also be verified against a known good

implementation as described above. Otherwise, the evaluator shall have the TSF generate 10 keys

pairs for each supported key length nlen and verify:

¶ n = p*q

¶ p and q are probably prime according to Miller-Rabin tests,

¶ GCD(p-1,e) = 1,

¶ GCD(q-1,e) = 1,

¶ 2^16 <= e <= 2^256 and e is an odd integer,

¶ |p-q| > 2^(nlen/2 - 100),

¶ p >= squareroot(2)*(2^(nlen/2 -1)),

¶ q >= squareroot(2)*(2^(nlen/2 -1)),

¶ 2^(nlen/2) < d < LCM(p-1,q-1),

¶ e*d = 1 mod LCM(p-1,q-1).

http://csrc.nist.gov/groups/STM/cavp/index.html
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html

 Page 11 of 181

[RSASSA-PSS]: Sig(Gen): (2048 SHA(224 , 256 SaltLen(32) , 384 SaltLen(48) , 512

SaltLen(64))) (3072 SHA(224 , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

 Sig(Ver): (2048 SHA(1 SaltLen(20) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)

)) (3072 SHA(1 SaltLen(20) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

 SHA Val#2886

1783 FIPS186-4:

ALG[RSASSA-PKCS1_V1_5] SIG(gen) (2048 SHA(256 , 384 , 512)) (3072 SHA(256 , 384 ,

512))

 SIG(Ver) (1024 SHA(1 , 256 , 384 , 512)) (2048 SHA(1 , 256 , 384 , 512)) (3072 SHA(1 ,

256 , 384 , 512))

 SHA Val#2373

1784 FIPS186-4:

ALG[RSASSA-PKCS1_V1_5] SIG(Ver) (1024 SHA(1 , 256 , 384 , 512)) (2048 SHA(1 , 256

, 384 , 512)) (3072 SHA(1 , 256 , 384 , 512))

 SHA Val#2871

1798 FIPS186-4:

186-4KEY(gen): FIPS186-3_Fixed_e (10001) ;

PGM(ProbPrimeCondition): 2048 , 3072

PPTT:(C.3)

 SHA Val#2886 DRBG: Val# 868

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

RSA certificates for Windows 10 Mobile: 1888, 1887, 1871, and 1889

(http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html). The relevant detail is reproduced

and highlighted below.

1887 FIPS186-4:

[RSASSA-PSS]: Sig(Gen): (2048 SHA(224 , 256 SaltLen(32) , 384 SaltLen(48) , 512

SaltLen(64))) (3072 SHA(224 , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

Sig(Ver): (1024 SHA(1 SaltLen(20) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(62)

)) (2048 SHA(1 SaltLen(20) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64))) (3072

SHA(1 SaltLen(20) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

SHA Val#3047

1888 FIPS186-4:

ALG[RSASSA-PKCS1_V1_5] SIG(gen) (2048 SHA(256 , 384 , 512)) (3072 SHA(256 , 384 ,

512))

SIG(Ver) (1024 SHA(1 , 256 , 384 , 512)) (2048 SHA(1 , 256 , 384 , 512)) (3072 SHA(1 ,

256 , 384 , 512))

SHA Val#3047

1871 FIPS186-4:

ALG[RSASSA-PKCS1_V1_5] SIG(Ver) (1024 SHA(1 , 256 , 384 , 512)) (2048 SHA(1 , 256

, 384 , 512)) (3072 SHA(1 , 256 , 384 , 512))

http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html

 Page 12 of 181

SHA Val#3048

1889 FIPS186-4:

186-4KEY(gen): FIPS186-3_Fixed_e (10001) ;

PGM(ProbPrimeCondition): 2048 , 3072 PPTT:(C.3)

SHA Val#3047 DRBG: Val# 955

2.1.1.4 TSS Assurance Activity (ANSI X9.31 -1998 RSA Schemes)

Key Generation for ANSI X9.31-1998 RSA Schemes

The TSF does not implement ANSI X9.31-1998 RSA schemes, and therefore this assurance activity is

not applicable.

2.1.1.5 Test Activities (ECC and FCC Schemes)

Key Generation for Elliptic Curve Cryptography (ECC)

If the TSF implements the ANSI X9.311998 scheme, the evaluator shall check to ensure that the TSS

describes how the keypairs are generated. In order to show that the TSF implementation complies

with ANSI X9.311998, the evaluator shall ensure that the TSS contains the following information:

¶ The TSS shall list all sections of the standard to which the TOE complies;

¶ For each applicable section listed in the TSS, for all statements that are not "shall" (that is,

"shall not", "should", and "should not"), if the TOE implements such options it shall be

described in the TSS. If the included functionality is indicated as "shall not" or "should not" in

the standard, the TSS shall provide a rationale for why this will not adversely affect the

security policy implemented by the TOE;

¶ For each applicable section of Appendix B, any omission of functionality related to "shall" or

ñshouldò statements shall be described.

Key Generation for Elliptic Curve Cryptography (ECC)

¶ FIPS 186-4 ECC Key Generation Test

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall require the

implementation under test (IUT) to generate 10 private/public key pairs. The private key shall

be generated using an approved random bit generator (RBG). To determine correctness, the

evaluator shall submit the generated key pairs to the public key verification (PKV) function of

a known good implementation.

¶ FIPS 186-4 Public Key Verification (PKV) Test

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall generate 10

private/public key pairs using the key generation function of a known good implementation

and modify five of the public key values so that they are incorrect, leaving five values

unchanged (i.e., correct). The evaluator shall obtain in response a set of 10 PASS/FAIL

values.

 Page 13 of 181

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP ECDSA certificates for

Windows 10: 706 (http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html). The

relevant detail is reproduced and highlighted below.

706 FIPS186-4:

PKG: CURVES(P-256 P-384 P-521 ExtraRandomBits)

SigGen: CURVES(P-256: (SHA-256) P-384: (SHA-384) P-521: (SHA-512)

SigVer: CURVES(P-256: (SHA-256) P-384: (SHA-384) P-521: (SHA-512))

SHS: Val#2886

DRBG: Val# 868

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

RSA certificates for Windows 10 Mobile: 760. The relevant detail is reproduced and highlighted below.

760 FIPS186-4:

PKG: CURVES(P-256 P-384 P-521 ExtraRandomBits)

SigGen: CURVES(P-256: (SHA-256) P-384: (SHA-384) P-521: (SHA-512)

SigVer: CURVES(P-256: (SHA-256) P-384: (SHA-384) P-521: (SHA-512))

SHS: Val#3047

DRBG: Val# 955

Key Generation for Finite-Field Cryptography (FFC)

http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html

 Page 14 of 181

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP DSA certificates for

Windows 10: 983 (http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.htm). The relevant

detail is reproduced and highlighted below.

983 FIPS186-4:

PQG(gen)PARMS TESTED: [(2048,256)SHA(256); (3072,256) SHA(256)]

PQG(ver)PARMS TESTED: [(2048,256) SHA(256); (3072,256) SHA(256)]

Key Pair: [(2048,256) ; (3072,256)]

SIG(gen)PARMS TESTED: [(2048,256) SHA(256); (3072,256) SHA(256);]

Key Generation for Finite-Field Cryptography (FFC)

The evaluator shall verify the implementation of the Parameters Generation and the Key Generation

for FFC by the TOE using the Parameter Generation and Key Generation test. This test verifies the

ability of the TSF to correctly produce values for the field prime p, the cryptographic prime q

(dividing p-1), the cryptographic group generator g, and the calculation of the private key x and

public key y.

The Parameter generation specifies 2 ways (or methods) to generate the cryptographic prime q and

the field prime p:

Cryptographic and Field Primes:

¶ Primes q and p shall both be provable primes

¶ Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

Cryptographic Group Generator:

¶ Generator g constructed through a verifiable process

¶ Generator g constructed through an unverifiable process.

The Key generation specifies 2 ways to generate the private key x:

Private Key:

¶ len(q) bit output of RBG where 1 <=x <= q-1

¶ len(q) + 64 bit output of RBG, followed by a mod q-1 operation where 1<= x<=q-1.

The security strength of the RBG must be at least that of the security offered by the FFC parameter

set.

To test the cryptographic and field prime generation method for the provable primes method and/or

the group generator g for a verifiable process, the evaluator must seed the TSF parameter generation

routine with sufficient data to deterministically generate the parameter set.

For each key length supported, the evaluator shall have the TSF generate 25 parameter sets and key

pairs. The evaluator shall verify the correctness of the TSFôs implementation by comparing values

generated by the TSF with those generated from a known good implementation. Verification must also

confirm

¶ g != 0,1

¶ q divides p-1

¶ g^q mod p = 1

¶ g^x mod p = y

for each FFC parameter set and key pair.

http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.htm

 Page 15 of 181

SIG(ver)PARMS TESTED: [(2048,256) SHA(256); (3072,256) SHA(256)]

SHS: Val# 2886

DRBG: Val# 868

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

DSA certificates for Windows 10 Mobile: 1024. The relevant detail is reproduced and highlighted

below.

1024 FIPS186-4:

PQG(gen)PARMS TESTED: [(2048,256)SHA(256); (3072,256) SHA(256)]

PQG(ver)PARMS TESTED: [(2048,256) SHA(256); (3072,256) SHA(256)]

Key Pair: [(2048,256) ; (3072,256)]

SIG(gen)PARMS TESTED: [(2048,256) SHA(256); (3072,256) SHA(256);]

SIG(ver)PARMS TESTED: [(2048,256) SHA(256); (3072,256) SHA(256)]

SHS: Val# 3047

DRBG: Val# 955

2.1.2 Cryptographic Key Generation (WLAN) (FCS_CKM.1(2))

FCS_CKM.1(WLAN384) corresponds to FCS_CKM.1(2) in the [PP MDF] protection profile.

2.1.2.1 TSS Assurance Act ivity

The evaluator shall verify that the TSS describes how the primitives defined and implemented by this

PP are used by the TOE in establishing and maintaining secure connectivity to the wireless clients.

[ST] Section 6.2.1 Cryptographic Algorithms and Operations describes TOE use of FIPS-Approved

algorithm primitives (search ñWindows uses FIPS Approved algorithmsò). Section 6.2.7 Networking

covers the native implementation of IEEE 802.11-2012.

[ST] Section 6.2.1 Cryptographic Algorithms and Operations identifies compliance for FIPS-Approved

algorithms (search ñFIPS validated mode is required according to the administrative guidanceò). Section

6.2.7 Networking describes Wi-Fi Alliance certification (WPA2 and Wi-Fi CERTIFIED

interoperability). See Wi-Fi Alliance certificates (http://www.wi-fi.org/certification):

¶ Microsoft Surface Pro 4: WFA62456 (http://www.wi-fi.org/content/search-

page?keys=%22Surface%20Pro%204%22)

¶ Microsoft Lumia 950: WFA61269 (http://www.wi-fi.org/content/search-page?keys=WFA61269)

¶ Microsoft Lumia 950 XL: WFA62036 (http://www.wi-fi.org/content/search-

page?keys=WFA62036)

The TSS shall also provide a description of the developerôs method(s) of assuring that their

implementation conforms to the cryptographic standards; this includes not only testing done by the

developing organization, but also any third-party testing that is performed (e.g. WPA2 certification).

The evaluator shall ensure that the description of the testing methodology is of sufficient detail to

determine the extent to which the details of the protocol specifics are tested.

http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm#2886
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#868
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm#3047
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#955
http://www.wi-fi.org/certification
http://www.wi-fi.org/content/search-page?keys=%22Surface%20Pro%204%22
http://www.wi-fi.org/content/search-page?keys=%22Surface%20Pro%204%22
http://www.wi-fi.org/content/search-page?keys=WFA61269
http://www.wi-fi.org/content/search-page?keys=WFA62036
http://www.wi-fi.org/content/search-page?keys=WFA62036

 Page 16 of 181

¶ Microsoft Lumia 550: WFA62049 (http://www.wi-fi.org/content/search-page?keys=WFA62049)

¶ Lumia 635: WFA54130, WFA54131, and WFA56520 (http://www.wi-fi .org/content/search-

page?keys=Lumia%20635)

The ñmodel numberò in WFA certificates is additional information, which could be used to identify the

product. This varies from vendor to vendor based on their business. Some vendors will have different

label for product and model number while others use the same for both. Microsoft uses either the name

of the device or the name of the adapter on the device for the Windows mobile devices in [ST].

ST Section 6.2.7 Networking states that the TOE devices have received WPA2 certification.

The Wi-Fi Alliance web site describes the testing program (http://www.wi-fi.org see Programs). Wi-Fi

alliance certification provides sufficient detail of protocol testing.

Additionally, Microsoft provides guidelines for testing hardware and software for Windows 10 and

Windows 10 Mobile (https://msdn.microsoft.com/ en-us/ library/ windows/ hardware/ mt269770

(v=vs.85).aspx). Microsoft provides the Windows Hardware Lab Kit, which is documented online

(https://msdn.microsoft.com/ en-us/ library/ windows/ hardware/ dn930814 (v=vs.85).aspx). The

information online includes tests that verify successful completion for 802.11. The link

https://msdn.microsoft.com/ en-us/ library/ windows/ hardware/ jj123746.aspx provides Microsoft tests

of devices that have been certified as Wi-Fi Alliance compliant. Two requirements for this test, Device-

.Network.WLAN.Base.PassWiFiAllianceCertification and Device.Network.WLAN.CSBBase.PassWiFi-

AllianceCertification must be present to verify this information. This testing includes over 30 different

test suites, including roaming tests, scan tests, stress tests, FIPS association tests, standby tests, Dot11W

tests, and wake tests along with over variances.

For instance, the WiFi Direct Performance Tests include GoNegotiation PeerFinder, Invitation

PeerFinder, and JoinExistingGo WFDPlatform tests. Each of these tests includes information on the

prerequisites and details on running the test (e.g. - https://msdn.microsoft.com/ en-us/ library/ windows/

hardware/ dn293766.aspx).

The Surface Pro 4 was Wi-Fi-Certified on October 30, 2015, with the Certification ID WFA62456. This

included the model number 1724. Under this certification, testing was done for:

¶ Security

o WPA ï Enterprise, Personal,

o WPA2 ï Enterprise, Personal,

o EAP Type(s)

Á EAP-TLS,

Á and other protocols

¶ Wi-Fi CERTIFIED a

¶ Wi-Fi CERTIFIED b

¶ Wi-Fi CERTIFIED g

¶ Wi-Fi CERTIFIED n

¶ Wi-Fi CERTIFIED ac

The Lumia 950 was Wi-Fi-Certified on July 23, 2015, with the Certification ID WFA61269. This

included the model number RM-1104. Under this certification, testing was done for:

¶ Security

o WPA ï Enterprise, Personal,

http://www.wi-fi.org/content/search-page?keys=WFA62049
http://www.wi-fi.org/content/search-page?keys=Lumia%20635
http://www.wi-fi.org/content/search-page?keys=Lumia%20635
http://www.wi-fi.org/
https://msdn.microsoft.com/en-us/library/windows/hardware/mt269770(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt269770(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn930814(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/jj123746.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn293766.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn293766.aspx

 Page 17 of 181

o WPA2 ï Enterprise, Personal,

o EAP Type(s)

Á EAP-TLS,

Á and other protocols

¶ Wi-Fi CERTIFIED a

¶ Wi-Fi CERTIFIED b

¶ Wi-Fi CERTIFIED g

¶ Wi-Fi CERTIFIED n

The Lumia 950 XL was Wi-Fi-Certified on September 8, 2015, with the Certification ID WFA62036.

This included the model number RM-1116. Under this certification, testing was done for:

¶ Security

o WPA ï Enterprise, Personal,

o WPA2 ï Enterprise, Personal,

o EAP Type(s)

Á EAP-TLS,

Á and other protocols

¶ Wi-Fi CERTIFIED a

¶ Wi-Fi CERTIFIED b

¶ Wi-Fi CERTIFIED g

¶ Wi-Fi CERTIFIED n

The Lumia 550 was Wi-Fi-Certified on September 08, 2015, with the Certification ID WFA62049. This

included the model number RM-1127. Under this certification, testing was done for:

¶ Security

o WPA ï Enterprise, Personal,

o WPA2 ï Enterprise, Personal,

o EAP Type(s)

Á EAP-TLS,

Á and other protocols

¶ Wi-Fi CERTIFIED b

¶ Wi-Fi CERTIFIED g

¶ Wi-Fi CERTIFIED n

The Lumia 635 was Wi-Fi-Certified three times on April 8 (two models) and September 29, 2014, with

the Certification IDs WFA54130, WFA54131, and WFA56520. This included the model numbers RM-

974, RM-975, and RM-1078. Under this certification, testing was done for:

¶ Security

o WPA ï Enterprise, Personal,

o WPA2 ï Enterprise, Personal,

o EAP Type(s)

Á EAP-TLS,

Á and other protocols

¶ Wi-Fi CERTIFIED b

¶ Wi-Fi CERTIFIED g

¶ Wi-Fi CERTIFIED n

 Page 18 of 181

2.1.2.2 Guidance Assurance Activities

None defined.

2.1.2.3 Test Activities

The evaluator followed the above steps to connect the TOE to the access point. The evaluator analyzed

the packets without control value 0x4208 and verified that they contained ASCII-readable text.

2.1.3 Cryptographic Key Generation (WLAN) (FCS_CKM.1(3))

FCS_CKM.1(WLAN704) corresponds to FCS_CKM.1(3) in the [PP MDF] protection profile.

2.1.3.1 TSS Assurance Activity

The cryptographic primitives will be verified through assurance activities specified elsewhere in this

PP. The evaluator shall verify that the TSS describes how the primitives defined and implemented by

this PP are used by the TOE in establishing and maintaining secure connectivity to the wireless

clients.

Section 6.2.7 Networking states that Windows (that is, Windows 10 and Windows 10 Mobile) has a

native implementation of IEEE 802.11ac-2013 to provide secure wireless local area networking (Wi-Fi).

The evaluator shall also perform the following test using a packet sniffing tool to collect frames

between a wireless access point and TOE:

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN

sniffer to sniff only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should

also be configured to filter on the MAC address of the TOE and/or access point.

Step 2: The evaluator shall configure the TOE to communicate with the access point using IEEE

802.11-2012 and a 256-bit (64 hex values 0-9 or a-f) pre-shared key, setting up the connections as

described in the operational guidance. The pre-shared key is only used for testing.

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and access

point, and allow the TOE to authenticate, associate and successfully complete the 4-way handshake

with the access point.

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect

the TOE from the access point and stop the sniffer.

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark

captures) and derive the PTK from the 4-way handshake frames and pre-shared key as specified in

IEEE 802.11-2012.

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between

the access point and TOE after the 4-way handshake successfully completed, and without the frame

control value 0x4208 (the first 2 bytes are 08 42). The evaluator shall use the PTK to decrypt the data

portion of the packet as specified in IEEE 802.11-2012, and shall verify that the decrypted data

contains ASCII-readable text.

Step 7: The evaluator shall repeat Step 7 for the next 2 data frames between the TOE and access

point, and without frame control value 0x4208.

 Page 19 of 181

Windows uses PRF-704 to generate AES 256-bit keys, which uses the Windows RBG. Windows

complies with the IEEE 802.11ac-2013 standard and interoperates with other devices that implement the

standard.

The TSS shall also provide a description of the developerôs method(s) of assuring that their

implementation conforms to the cryptographic standards; this includes not only testing done by the

developing organization, but also any third-party testing that is performed (e.g. WPA2 certification).

The evaluator shall ensure that the description of the testing methodology is of sufficient detail to

determine the extent to which the details of the protocol specifics are tested.

Section 2.1.2.1 above covers Microsoftôs test methods and certifications for wireless communication. In

particular, the following Wi-Fi Alliance certificates include WPA2 Enterprise and Personal:

¶ WFA62456 for Surface Pro 4

¶ WFA61269 for Lumia 950

¶ WFA62036 for Lumia 950 XL

¶ WFA62049 for Lumia 550

¶ WFA54130, WFA54131, and WFA56520 for Lumia 635

The underlying HMAC, SHA-384, and DRBG cryptographic algorithms are CAVP validated.

2.1.3.2 Guidance Assurance Activities

None defined.

2.1.3.3 Test Activities

The evaluator connected the TOE to an access point and verified that is advertises 00-0F-AC:12 as a

supported AKM suite and 00-0F-AC:10 as a supported cipher suite.

2.1.4 Cryptographic Key E stablishment FCS_CKM.2.1(1)

FCS_CKM.2(ASYM AU) corresponds to FCS_CKM.2(1) in the [PP MDF] protection profile.

2.1.4.1 TSS Assurance Activity

The evaluator shall ensure that the supported key establishment schemes correspond to the key

generation schemes identified in FCS_CKM.1.1(1). If the ST specifies more than one scheme, the

evaluator shall examine the TSS to verify that it identifies the usage for each scheme.

The evaluator shall also perform the following test:

Step 1 - The evaluator shall use a packet sniffing tool between the wireless access point and TOE. The

evaluator shall turn on the sniffing tool and successfully connect the TOE to the access point.

Step 2 ï The evaluator shall verify the TOE advertises 00-0F-AC:12 as a supported Authentication

and Key Management (AKM) suite and either 00-0F-AC:9 or 00-0F-AC:10 as a supported cipher

suite in capture 802.11 beacon and probe response messages.

 Page 20 of 181

The key establishment schemes identified in FCS_CKM.2(ASYM AU) (PP: FCS_CKM.2(1))

correspond to the key generation schemes identified in FCS_CKM.1(ASYM KA) (PP:

FCS_CKM.1.1(1)): RSA, ECC, and FFC schemes. See section 2.1.1.1 above regarding key usage.

2.1.4.2 Guidance Assurance Activities

The evaluator shall verify that the AGD guidance instructs the administrator how to configure the

TOE to use the selected key establishment scheme(s).

[Mobile Guide] Section 21 Managing Cryptographic Algorithms indicates that there is no global

configuration necessary for hashing algorithms, key generation schemes, or for key establishment

schemes. The use of required key generation schemes and key sizes is supported and global

configuration is not needed.

2.1.4.3 Test Activities (SP800-56A)

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

Key Establishment Schemes

The evaluator shall verify the implementation of the key establishment schemes supported by the TOE

using the applicable tests below.

SP800-56A Key Establishment Schemes

The evaluator shall verify a TOE's implementation of SP800-56A key agreement schemes using the

following Function and Validity tests. These validation tests for each key agreement scheme verify

that a TOE has implemented the components of the key agreement scheme according to the

specifications in the Recommendation. These components include the calculation of the DLC

primitives (the shared secret value Z) and the calculation of the derived keying material (DKM) via

the Key Derivation Function (KDF). If key confirmation is supported, the evaluator shall also verify

that the components of key confirmation have been implemented correctly, using the test procedures

described below. This includes the parsing of the DKM, the generation of MACdata and the

calculation of MACtag.

Function Test

The Function test verifies the ability of the TOE to implement the key agreement schemes

correctly. To conduct this test the evaluator shall generate or obtain test vectors from a known

good implementation of the TOE supported schemes. For each supported key agreement

scheme-key agreement role combination, KDF type, and, if supported, key confirmation role-

key confirmation type combination, the tester shall generate 10 sets of test vectors. The data

set consists of one set of domain parameter values (FFC) or the NIST approved curve (ECC)

per 10 sets of public keys. These keys are static, ephemeral or both depending on the scheme

being tested.

The evaluator shall obtain the DKM, the corresponding TOEôs public keys (static and/or

ephemeral), the MAC tag(s), and any inputs used in the KDF, such as the Other Information

field OI and TOE id fields.

 Page 21 of 181

If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain only the

public keys and the hashed value of the shared secret.

The evaluator shall verify the correctness of the TSFôs implementation of a given scheme by

using a known good implementation to calculate the shared secret value, derive the keying

material DKM, and compare hashes or MAC tags generated from these values.

If key confirmation is supported, the TSF shall perform the above for each implemented

approved MAC algorithm.

Validity Test

The Validity test verifies the ability of the TOE to recognize another partyôs valid and invalid

key agreement results with or without key confirmation. To conduct this test, the evaluator

shall obtain a list of the supporting cryptographic functions included in the SP800-56A key

agreement implementation to determine which errors the TOE should be able to recognize.

The evaluator generates a set of 24 (FFC) or 30 (ECC) test vectors consisting of data sets

including domain parameter values or NIST approved curves, the evaluatorôs public keys, the

TOEôs public/private key pairs, MACTag, and any inputs used in the KDF, such as the other

info and TOE id fields.

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes

invalid key agreement results caused by the following fields being incorrect: the shared secret

value Z, the DKM, the other information field OI, the data to be MACed, or the generated

MACTag. If the TOE contains the full or partial (only ECC) public key validation, the

evaluator will also individually inject errors in both partiesô static public keys, both partiesô

ephemeral public keys and the TOEôs static private key to assure the TOE detects errors in the

public key validation function and/or the partial key validation function (in ECC only). At least

two of the test vectors shall remain unmodified and therefore should result in valid key

agreement results (they should pass).

The TOE shall use these modified test vectors to emulate the key agreement scheme using the

corresponding parameters. The evaluator shall compare the TOEôs results with the results

using a known good implementation verifying that the TOE detects these errors.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP KAS certificates for

Windows 10: 64 (http://csrc.nist.gov/groups/STM/cavp/documents/keymgmt/kasnewval.html). The

relevant detail is reproduced and highlighted below.

64 FFC: (FUNCTIONS INCLUDED IN IMPLEMENTATION: DPG DPV KPG Partial

Validation) SCHEMES [dhEphem (KARole(s): Initiator / Responder)

(FB: SHA256) (FC: SHA256)]

[dhOneFlow (KARole(s): Initiator / Responder) (FB: SHA256) (FC: SHA256)] [dhStatic (

No_KC < KARole(s): Initiator / Responder>) (FB: SHA256 HMAC) (FC: SHA256 HMAC)]

SHS Val#2886 DSA Val#983 DRBG Val#868

ECC: (FUNCTIONS INCLUDED IN IMPLEMENTATION: DPG DPV KPG Partial

Validation Key Regeneration) SCHEMES [EphemeralUnified (No_KC < KARole(s): Initiator

/ Responder>) (EC: P-256 SHA256 HMAC) (ED: P-384 SHA384 HMAC) (EE: P-521

http://csrc.nist.gov/groups/STM/cavp/documents/keymgmt/kasnewval.html

 Page 22 of 181

HMAC (SHA512, HMAC_SHA512)))]

[OnePassDH (No_KC < KCRole(s): Initiator Responder>) (EB:) (EC: P-

256 SHA256 HMAC) (ED: P-521 SHA384 HMAC) (EE: P-521 HMAC (SHA512,

HMAC_SHA512))]

[StaticUnified (No_KC < KARole(s): Initiator / Responder>) (EC: P-256 SHA256 HMAC) (

ED: P-384 SHA384 HMAC) (EE: P-521 HMAC (SHA512, HMAC_SHA512))]

SHS Val#2886 ECDSA Val#706 DRBG Val#868

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

KAS certificates for Windows 10 Mobile: 72. The relevant detail is reproduced and highlighted below.

72 FFC: (FUNCTIONS INCLUDED IN IMPLEMENTATION: DPG DPV KPG Partial

Validation) SCHEMES [dhEphem (KARole(s): Initiator / Responder)

(FB: SHA256) (FC: SHA256)]

[dhOneFlow (KARole(s): Initiator / Responder) (FB: SHA256) (FC: SHA256)] [dhStatic (

No_KC < KARole(s): Initiator / Responder>) (FB: SHA256 HMAC) (FC: SHA256 HMAC)]

SHS Val#3047 DSA Val#1024 DRBG Val#955

ECC: (FUNCTIONS INCLUDED IN IMPLEMENTATION: DPG DPV KPG Partial

Validation Key Regeneration) SCHEMES [EphemeralUnified (No_KC < KARole(s): Initiator

/ Responder>) (EC: P-256 SHA256 HMAC) (ED: P-384 SHA384 HMAC) (EE: P-521

HMAC (SHA512, HMAC_SHA512)))]

[OnePassDH (No_KC < KARole(s): Initiator / Responder>) (EB:) (EC: P-

256 SHA256 HMAC) (ED: P-521 SHA384 HMAC) (EE: P-521 HMAC (SHA512,

HMAC_SHA512))]

[StaticUnified (No_KC < KARole(s): Initiator / Responder>) (EC: P-256 SHA256 HMAC) (

ED: P-384 SHA384 HMAC) (EE: P-521 HMAC (SHA512, HMAC_SHA512))]

SHS Val#3047 ECDSA Val#760 DRBG Val#955

2.1.4.4 TSS Assurance Activity

SP800-56B Key Establishment Schemes

SP800-56B Key Establishment Schemes

The evaluator shall verify that the TSS describes whether the TOE acts as a sender, a recipient, or

both for RSA-based key establishment schemes.

[ST] section 6.2.1 Cryptographic Algorithms and Operations states when Windows needs to establish an

RSA-based shared secret key it can act both as a sender or recipient.

SP800-56B Key Establishment Schemes

The evaluator shall ensure that the TSS describes how the TOE handles decryption errors. In

accordance with NIST Special Publication 800-56B, the TOE must not reveal the particular error that

occurred, either through the contents of any outputted or logged error message or through timing

http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3047
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsanewval.html#1024
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#955
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.html#3047
http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html#760
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html#955

 Page 23 of 181

variations.

[ST] section 6.2.1 Cryptographic Algorithms and Operations states any decryption errors which occur

during key establishment are presented to the user at a highly abstracted level, such as a failure to

connect.

2.1.4.5 Guidance Assurance Activities (SP800-56B)

SP800-56B Key Establishment Schemes

None defined.

2.1.4.6 Test Activities (SP800-56B)

SP800-56B Key Establishment Schemes

If the TOE acts as a sender, the following assurance activity shall be performed to ensure the proper

operation of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good

implementation of the TOE supported schemes. For each combination of supported key

establishment scheme and its options (with or without key confirmation if supported, for each

supported key confirmation MAC function if key confirmation is supported, and for each

supported mask generation function if KTS-OAEP is supported), the tester shall generate 10

sets of test vectors. Each test vector shall include the RSA public key, the plaintext keying

material, any additional input parameters if applicable, the MacKey and MacTag if key

confirmation is incorporated, and the outputted ciphertext. For each test vector, the evaluator

shall perform a key establishment encryption operation on the TOE with the same inputs (in

cases where key confirmation is incorporated, the test shall use the MacKey from the test

vector instead of the randomly generated MacKey used in normal operation) and ensure that

the outputted ciphertext is equivalent to the ciphertext in the test vector.

If the TOE acts as a receiver, the following assurance activities shall be performed to ensure the

proper operation of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good

implementation of the TOE supported schemes. For each combination of supported key establishment

scheme and its options (with our without key confirmation if supported, for each supported key

confirmation MAC function if key confirmation is supported, and for each supported mask generation

function if KTS-OAEP is supported), the tester shall generate 10 sets of test vectors. Each test vector

shall include the RSA private key, the plaintext keying material (KeyData), any additional input

parameters if applicable, the MacTag in cases where key confirmation is incorporated, and the

outputted ciphertext. For each test vector, the evaluator shall perform the key establishment

decryption operation on the TOE and ensure that the outputted plaintext keying material (KeyData) is

equivalent to the plaintext keying material in the test vector. In cases where key confirmation is

incorporated, the evaluator shall perform the key confirmation steps and ensure that the outputted

MacTag is equivalent to the MacTag in the test vector.

 Page 24 of 181

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CVL certificates for Windows 10:

576 (http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html). The

relevant detail is reproduced and highlighted below.

576 RSADP: (Mod2048)

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

CVL certificates for Windows 10 Mobile: 663. The relevant detail is reproduced and highlighted below.

663 RSADP: (Mod2048)

SP800-56B Key Establishment Schemes

If KTS-OAEP is supported, the evaluator shall create separate contrived ciphertext values that trigger

each of the three decryption error checks described in NIST Special Publication 800-56B section

7.2.2.3, ensure that each decryption attempt results in an error, and ensure that any outputted or

logged error message is identical for each. If KTS-KEM-KWS is supported, the evaluator shall create

separate contrived ciphertext values that trigger each of the three decryption error checks described

in NIST Special Publication 800-56B section 7.2.3.3, ensure that each decryption attempt results in an

error, and ensure that any outputted or logged error message is identical for each.

[ST] does not claim Key Transport Scheme with Optimal Asymmetric Encryption Padding support.

2.1.5 Cryptographic Key Distribution (WLAN) FCS_CKM.2.1(2)

FCS_CKM.2(GTK) corresponds to FCS_CKM.2(2) in the [PP MDF] protection profile.

2.1.5.1 TSS Assurance Activity

The evaluator shall check the TSS to ensure that it describes how the GTK is unwrapped prior to

being installed for use on the TOE using the AES implementation specified in this PP.

[ST] Section 6.2.7 Networking describes AES Key Wrap in accordance with NIST SP 800-38F using

KW mode. (Search ñWindows implements key wrapping and unwrappingò.) In addition, Section 6.2.8

SFR Mapping provides a link to Windowsô native implementation of IEEE 802.11

(http://msdn.microsoft.com/en-us/library/windows/hardware/ff556022(v=vs.85).aspx).

2.1.5.2 Guidance Assurance Activities

None defined.

2.1.5.3 Test Activities

The evaluator shall also perform the following test using a packet sniffing tool to collect frames

between a wireless access point and TOE (which may be performed in conjunction with the assurance

activity for FCS_CKM.1.1(2):

http://csrc.nist.gov/groups/STM/cavp/documents/components/componentnewval.html
http://msdn.microsoft.com/en-us/library/windows/hardware/ff556022(v=vs.85).aspx

 Page 25 of 181

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN

sniffer to sniff only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should

also be configured to filter on the MAC address of the TOE and/or access point.

Step 2: The evaluator shall configure the TOE to communicate with the access point using IEEE

802.11-2012 and a 256-bit (64 hex values 0-9 or a-f) pre-shared key, setting up the connections as

described in the operational guidance. The pre-shared key is only used for testing.

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and access

point, and allow the TOE to authenticate, associate and successfully complete the 4-way handshake

with the access point.

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect

the TOE from the access point and stop the sniffer.

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark

captures) and derive the PTK and GTK from the 4-way handshake frames and pre-shared key as

specified in IEEE 802.11-2012.

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between

the access point and TOE after the 4-way handshake successfully completed, and with the frame

control value 0x4208 (the first 2 bytes are 08 42). The evaluator shall use the GTK to decrypt the data

portion of the selected packet as specified in IEEE 802.11-2012, and shall verify that the decrypted

data contains ASCII-readable text.

Step 7: The evaluator shall repeat Step 7 for the next 2 data frames with frame control value 0x4208.

The evaluator followed the above steps to connect the TOE to the access point. The evaluator analyzed

the packets with control value 0x4208 and verified that they contained ASCII-readable text.

2.1.6 Cryptographic Key Support (REK) FCS_CKM_EXT.1

2.1.6.1 TSS Assurance Activity

The evaluator shall review the TSS to determine that a REK is supported by the product, that the TSS

includes a description of the protection provided by the product for a REK, and that the TSS includes

a description of the method of generation of a REK.

[ST] section 6.2.4 Encrypting the Device with BitLocker identifies the Storage Primary Seed (SPS) in

the Trusted Platform Module (TPM) as the REK. The TPM generates the SPS using the TPM RBG as

described in section 6.2.4.

The evaluator shall verify that the description of the protection of a REK describes how any reading,

import, and export of that REK is prevented. (For example, if the hardware protecting the REK is

 Page 26 of 181

removable, the description should include how other devices are prevented from reading the REK.)

[ST] Section 6.2.3 Trusted Platform Module states ñThe TPM also provides protections that prevent the

export of TPM keys and cryptographic data, such as the SPS and SRK.ò Specifically, section 6.2.3

Trusted Platform Module states: ñLike other cryptographic data within the TPM, the private portion of a

key created in a TPM is never exposed to any other component, software, process, or user.ò In addition,

section 6.2.4 Encrypting the Device with BitLocker states: ñé the REK is isolated from operating

system and applications, thus preventing reading and exporting the plaintext representation of the REK.ò

[TPM 2.0 Arch] specifies a TPM uses the SPS to derive Storage Root Keys (SRK) (section 14.3.4) and

the TPM never stores a Primary Seed off the TPM in any form (section 14.1).

The evaluator shall verify that the TSS describes how encryption/decryption/derivation actions are

isolated so as to prevent applications and system-level processes from reading the REK while

allowing encryption/decryption/derivation by the key.

[TPM 2.0 Arch] specifies TPM processor, volatile memory, and persistent storage are isolated from

platform hardware and software (section 9.3). Consequently, Windows can only access TPM services

through the well-defined APIs provided by the TPM. [TPM 2.0 Arch] states the TPM never stores a

Primary Seed off the TPM in any form.

If ñhardware-isolatedò is selected and REK(s) are isolated from the rich OS by a separate processor

execution environment, the evaluator shall verify that the description includes how the rich OS is

prevented from accessing the memory containing REK key material, which software is allowed access

to the REK, how any other software in the execution environment is prevented from reading that key

material, and what other mechanisms prevent the REK key material from being written to shared

memory locations between the rich OS and the separate execution environment.

The TOE in the evaluated configuration conform to TPM standard 2.0 as identified in [ST] section 1.1

Security Target, TOE, and Common Criteria (CC) Identification. [TPM 2.0 Arch] specifies TPM

processor, volatile memory, and persistent storage are isolated from platform hardware and software

(section 9.3). Consequently, Windows can only access TPM services through the well-defined APIs

provided by the TPM. [TPM 2.0 Arch] states the TPM never stores a Primary Seed off the TPM in any

form.

If key derivation is performed using a REK, the evaluator shall ensure that the TSS description includes a

description of the key derivation function and shall verify the key derivation uses an approved derivation

mode and key expansion algorithm according to SP 800-108. (Additional key expansion algorithms are

defined in other NIST Special Publications.)

[ST] Section 6.2.4 Encrypting the Device with BitLocker states the TPM generates the SRK during

initialization. [TPM 2.0 Arch] section 11.4.8 describes SRK generation from the SPS, since the SRK is a

Primary Key.

 Page 27 of 181

The evaluator shall verify that the generation of a REK meets the FCS_RBG_EXT.1.1 and

FCS_RBG_EXT.1.2 requirements:

¶ If REK(s) is/are generated on-device, the TSS shall include a description of the generation

mechanism including what triggers a generation, how the functionality described by

FCS_RBG_EXT.1 is invoked, and whether a separate instance of the RBG is used for REK(s).

¶ If REK(s) is/are generated off-device, the TSS shall include evidence that the RBG meets

FCS_RBG_EXT.1.2. This will likely a second set of RBG documentation equivalent to the

documentation provided for the RBG assurance activities. In addition, the TSS shall describe

the manufacturing process that prevents the device manufacturer from accessing any REKs.

[ST] Section 6.2.4 Encrypting the Device with BitLocker states SPS is created as part of the BitLocker

initialization process. Windows causes the TPM to generate the SPS.

The second bullet does not apply, since Windows causes the TPM to generate the SPS.

2.1.6.2 Guidance Assurance Activities

None defined.

2.1.6.3 Test Activities

None defined.

2.1.7 Cryptographic Key Random Generation (FCS_CKM_EXT.2)

FCS_CKM_EXT.2(128) and FCS_CKM_EXT.2(256) corresponds to FCS_CKM_EXT.2 in the [PP

MDF] protection profile.

2.1.7.1 TSS Assurance Activity

The evaluator shall review the TSS to determine that it describes how the functionality described by

FCS_RBG_EXT.1 is invoked to generate DEKs. The evaluator uses the description of the RBG

functionality in FCS_RBG_EXT.1 or documentation available for the operational environment to

determine that the key size being requested is identical to the key size and mode to be used for the

encryption/decryption of the data.

[ST] section 6.2.6 Protecting Data with DPAPI states the Windows RBG (as described by

FCS_RBG_EXT.1) generates a DPAPI Master Secret which is used as input into an AES function along

with an initialization vector and encryption key, both of which are based on the userôs password, to

generate the encrypted DPAPI Master Secret. The DPAPI Master Secret is a kind of DEK and the

password-based encryption key, which protects the DPAPI Master Secret, is a kind of KEK.

[ST] sections 6.2.4 Encrypting the Device with BitLocker, 6.2.5 Key Storage, and 6.2.6 Protecting Data

with DPAPI describe how Windows uses key and data encryption. The following list summarizes the

key hierarchy and identifies the type (KEK or DEK) of each key.

 Page 28 of 181

1. TPM Storage Primary Seed is the REK, which derives the Storage Root

2. TPM Storage Root Key is a KEK, which encrypts intermediate keys.

3. Intermediate keys are KEKs, which encrypt Volume Master Key (VMK)

4. Volume Master Key is KEK, which encrypt partition Full Volume Encryption Key (FVEK), which

is DEK.

5. DPAPI provides encryption of software-based key storage in addition to BitLocker

a. DPAPI password-based encryption key is a KEK, which encrypts the DPAPI Master Secret

b. The DPAPI Master Secret is a KEK, which encrypts data encryption keys

c. Data encryption keys are DEKs, which encrypt key storage (one data encryption key per

user)

FCS_CKM_EXT.2(128) and FCS_CKM_EXT.2(256) apply to the following DEKs: FVEK, DPAPI and

data encryption key (one per user).

[ST] Section 6.2.4 Encrypting the Device with BitLocker indicates that the administrator configures

BitLocker to use either a 128-bit or 256-bit FVEK for Windows 10. The FVEK for Windows 10 Mobile

is always 128 bits.

[Mobile Guide] describes managing Windows 10 volume encryption in section 7 Managing Volume

Encryption. The section and documentation for manage-bde covers parameter ñencryptionmethod,ò

which sets AES key size. (See http://technet.microsoft.com/en-us/library/ff829849(v=ws.10).aspx.) By

default AES128 encryption is used by the manage-bde command when enabling BitLocker for Windows

10 ï the AES256 algorithm should be used instead. In addition, [Mobile Guide] describes how to

configure the TPM, PIN authorization factor, and Enhanced PIN capabilities that must be used in the

evaluated configuration.

DPAPI data encryption keys are 256-bit keys.

2.1.7.2 Guidance Assurance Activities

None defined.

2.1.7.3 Test Activities

None defined.

2.1.8 Cryptographic Key Encryption Keys (FCS_CKM_EXT.3)

2.1.8.1 TSS Assurance Activity

The evaluator shall examine the key hierarchy TSS to ensure that the formation of all KEKs is

described and that the key sizes match that described by the ST author.

The evaluator shall review the TSS to verify that it contains a description of the PBKDF use to derive

KEKs. This description must include the size and storage location of salts. This activity may be

performed in combination with that for FCS_COP.1(5).

http://technet.microsoft.com/en-us/library/ff829849(v=ws.10).aspx

 Page 29 of 181

See section 2.1.7.1 above in Cryptographic Key Random Generation (FCS_CKM_EXT.2) for a

summary of the key hierarchy. Table 1 below summarizes the sizes of KEKs. See 2.1.18.1 below in

Initialization Vector Generation (FCS_IV_EXT.1) for cipher modes.

[ST] section 6.2.6 Protecting Data with DPAPI describes the PBKDF2 function that takes a result of a

one-way function computation of the userôs password to generate the password encryption key that

protects the DPAPI Master Secret (a kind of KEK). Section 6.2.1 Cryptographic Algorithms and

Operations includes PBKDF details. (Search ñThe HMAC function forms the basisò.) Section 6.2.6

states Windows will also combine the DPAPI Master Secret along with a salt value which will be used

as an encryption key to protect user data, such as a private key. The salt value is stored with the Master

Secret.

If the KEK is generated, the evaluator shall review the TSS to determine that it describes how the

functionality described by FCS_RBG_EXT.1 is invoked. The evaluator uses the description of the

RBG functionality in FCS_RBG_EXT.1 or documentation available for the operational environment

to determine that the key size being requested is identical to the key size and mode to be used for the

encryption/decryption of the data.

Based on the check made for FCS_CKM_EXT.2 above, FCS_CKM_EXT.3 applies to the following

KEKs: Storage Primary Seed (also REK), Storage Root Key, intermediate keys, VMK, password-based

encryption key, DPAPI Master Secret, Device User Credential Keys, and Userôs public/private key

pairs. [ST] sections 6.2.4 Encrypting the Device with BitLocker, 6.2.6 Protecting Data with DPAPI, and

6.4.1 Protecting User Data identify the size and formation method of each KEK. Table 1 summarizes the

size and formation method information.

Table 1 KEK Formation Method and Key Size

KEK Formation Method Size

Storage Primary Seed TPM RBG 256

Storage Root Key TPM RSA 2048

Intermediate Keys XOR (Enhanced PIN) and RBG 256

VMK RBG 256

DPAPI password-based encryption key PBKDF2 from passphrase 256

DPAPI Master Secret RBG At least 256

Device User Credential Keys RBG 256

Userôs public/private key pairs RSA key generation 2048

NIAP TD0038 accommodates use of a REK with key strength of 112 bits (for example, a 2048-bit RSA

key). In this case, the strengths of keys in a chain are not non-increasing. The security strength of a chain

is limited by the key with the least strength and not necessarily the last key in the chain. Thus, security

strength of data encryption is limited by the strengths of the Storage Root Key, FVEK, Enhanced PIN,

and password, since all other keys are at least 256 bits.

 Page 30 of 181

If the KEK is formed from a combination, the evaluator shall verify that the TSS describes the method

of combination and that this method is either an XOR, a KDF, or encryption. If a KDF is used, the

evaluator shall ensure that the TSS description includes a description of the key derivation function

and shall verify the key derivation uses an approved derivation mode and key expansion algorithm

according to SP 800-108. (Additional key expansion algorithms are defined in other NIST Special

Publications.)

[ST] section 6.2.4 Encrypting the Device with BitLocker states that the FVEK and intermediate keys are

all generated by the Windows RBG or by combining intermediate keys as described in

FCS_CKM_EXT.3.

2.1.8.2 Guidance Assurance Activities

None defined.

2.1.8.3 Test Activities

None defined.

2.1.9 Cryptographic Key Destruction (FCS_CKM_EXT.4)

2.1.9.1 TSS Assurance Activity

The evaluator shall check to ensure the TSS lists each type of plaintext key material (DEKs, software-

based key storage, KEKs, trusted channel keys, passwords, etc.) and its origin and storage location.

[ST] section 6.2.5 Key Storage discusses the key material. ñThe encrypted FVEK, VMK, and

Intermediate Key are stored on disk as metadata on the storage volume, however the metadata is stored

outside of the mounted NTFS volume and so these are never transmitted outside the device, which the

boundary of the cryptographic module in this evaluation.ò

Section 6.2.1 Cryptographic Algorithms and Operations lists public, private, and secret keys used for

TLS, and Wi-Fi in Table 15 Types of Keys Used by Windows. Windows stores persistent public,

private, and secret keys in the NTFS file system as described in section 6.2.5. Storage protection

includes DPAPI protection as referenced in section 6.2.5 and described in section 6.2.6 Protecting Data

with DPAPI.

See also section 2.2.6 below and [ST] section 6.3.4 VPN Client regarding TOE support of IPsec.

Section 6.2.4 Encrypting the Device with BitLocker states that the unencrypted VMK is zeroized after it

is (1) used to encrypt the FVEK and (2) encrypted by an intermediate key.

The evaluator shall verify that the TSS describes when each type of key material is cleared (for

example, on system power off, on wipe function, on disconnection of trusted channels, when no longer

needed by the trusted channel per the protocol, when transitioning to the locked state, and possibly

including immediately after use, while in the locked state, etc.).

 Page 31 of 181

The evaluator shall also verify that, for each type of key, the type of clearing procedure that is

performed (cryptographic erase, overwrite with zeros, overwrite with random pattern, or block erase)

is listed. If different types of memory are used to store the materials to be protected, the evaluator

shall check to ensure that the TSS describes the clearing procedure in terms of the memory in which

the data are stored (for example, "secret keys stored on flash are cleared by overwriting once with

zeros, while secret keys stored on the internal persistent storage device are cleared by overwriting

three times with a random pattern that is changed before each write"). For block erases, the evaluator

shall also ensure that the block erase command used is listed and shall verify that the command used

also addresses any copies of the plaintext key material and that may be created in order to optimize the

use of flash memory.

[ST] section 6.2.4 Encrypting the Device with BitLocker states: ñThe unencrypted VMKs are zeroized

after they are (1) used to encrypt the FVEK and (2) encrypted by an intermediate key. The other keys are

also zeroized from volatile memory in the process of generating the VMK. When Windows shuts down

normally or goes into hibernation, Windows will zeroize the FVEK as part of shutdown. In the event of

a system crash, the BitLocker Crash Dump Filter will zeroize the FVEK in order to prevent the FVEK

from being included in the crash dump file.ò

Section 6.2.5 Key Storage states: ñDestruction of keys/secrets imported into the secure key storage by

applications is conducted automatically by the modern application environment after the keys/secrets are

no longer in use.ò

ñPrivate keys are protected on disk using DPAPI and BitLocker encryption and access is restricted using

the Windows Discretionary Access Control Policy. When a Windows Store Application is deleted the

local private keys imported by that app are deleted. All private keys are destroyed when a wipe

operation is performed on a device. Local administrators can also perform a wipe on their Windows

device to destroy all the keys or secrets. The IT administrator can perform a wipe operation of the

enrolled device to destroy the keys.ò

Section 6.2.1 Cryptographic Algorithms and Operations addresses clearing of public, private, and secret

keys used for TLS and Wi-Fi in Table 15 Types of Keys Used by Windows. The keys are cleared as

specified in section 6.2.1. The description covers both persistent keys (that is, keys in non-volatile

memory) and ephemeral keys (that is, keys in volatile memory). Section 6.2.1 describes deleting

persistent keys in non-volatile flash and overwriting ephemeral keys in volatile memory. Windows does

not store plaintext keys in flash.

See also section 2.2.6 below and [ST] section 6.3.4 VPN Client regarding TOE support of IPsec.

2.1.9.2 Guidance Assurance Activities

None defined.

2.1.9.3 Test Activities

Assurance Activity Note: The following tests require the developer to provide access to a test

platform that provides the evaluator with tools that are typically not found on factory products.

 Page 32 of 181

For each software and firmware key clearing situation (including on system power off, on wipe

function, on disconnection of trusted channels, when no longer needed by the trusted channel per the

protocol, when transitioning to the locked state, and possibly including immediately after use, while in

the locked state) the evaluator shall repeat the following tests. Note that at this time hardware-bound

keys are explicitly excluded from testing.

Test 1: The evaluator shall utilize appropriate combinations of specialized operational environment

and development tools (debuggers, simulators, etc.) for the TOE and instrumented TOE builds to test

that keys are cleared correctly, including all intermediate copies of the key that may have been

created internally by the TOE during normal cryptographic processing with that key.

Cryptographic TOE implementations in software shall be loaded and exercised under a debugger to

perform such tests. The evaluator shall perform the following test for each key subject to clearing,

including intermediate copies of keys that are persisted encrypted by the TOE:

1. Load the instrumented TOE build in a debugger.

2. Record the value of the key in the TOE subject to clearing.

3. Cause the TOE to perform a normal cryptographic processing with the key from #1.

4. Cause the TOE to clear the key.

5. Cause the TOE to stop the execution but not exit.

6. Cause the TOE to dump the entire memory footprint of the TOE into a binary file.

7. Search the content of the binary file created in #4 for instances of the known key value from #1.

The test succeeds if no copies of the key from #1 are found in step #7 above and fails otherwise.

The evaluator shall perform this test on all keys, including those persisted in encrypted form, to ensure

intermediate copies are cleared.

The evaluator attached the TOE to a debugger and used a tool developed by the evaluation team to

create and clear an encryption key. The evaluator dumped memory before and after the key was cleared

and verified that no traces of the key remained and the memory was zeroized.

Test 2: In cases where the TOE is implemented in firmware and operates in a limited operating

environment that does not allow the use of debuggers, the evaluator shall utilize a simulator for the TOE

on a general purpose operating system. The evaluator shall provide a rationale explaining the

instrumentation of the simulated test environment and justifying the obtained test results.

N/AðThe TOE is not implemented in firmware.

2.1.10 TSF Wipe (FCS_CKM_EXT.5)

2.1.10.1 TSS Assurance Activity

The evaluator shall check to ensure the TSS describes how the device is wiped; and the type of

clearing procedure that is performed (cryptographic erase or overwrite) and, if overwrite is

 Page 33 of 181

performed, the overwrite procedure (overwrite with zeros, overwrite three or more times by a

different alternating pattern, overwrite with random pattern, or block erase).

[ST] section 6.3.2 Data at Rest Protection describes wiping the device by deleting the authorization

factors that unlock the device. (Search ñdecides to wipe the deviceò). The section covers how Windows

deletes the authorization factors. The clearing process is performed by first overwriting the metadata

with zeros followed by a read-verify. [ST] section 6.2.5 Key Storage adds that wiping destroys all

private keys and secrets.

If different types of memory are used to store the data to be protected, the evaluator shall check to ensure

that the TSS describes the clearing procedure in terms of the memory in which the data are stored (for

example, "data stored on flash are cleared by overwriting once with zeros, while data stored on the

internal persistent storage device are cleared by overwriting three times with a random pattern that is

changed before each write").

Windows stores persistent keys encrypted in flash memory as described in [ST] section 6.2.5 Key

Storage. (Search ñThe encrypted FVEK, VMK, and Intermediate Key are stored on diskò.) [ST] section

6.3.2 Data at Rest Protection indicates the BitLocker metadata (which includes the authorization factors

that unlock the device) is deleted from flash. The wiping of the BitLocker metadata from flash memory

is performed by first overwriting the metadata with zeros, followed by a read-verify.

[ST] section 6.2.1 Cryptographic Algorithms and Operations indicates that the TOE deletes persistent

keys by deleting the storage block. (Search ñwhen it is necessary to delete a persistent key from flash

memoryò.)

2.1.10.2 Guidance Assurance Activities

None defined.

2.1.10.3 Test Activities

Assurance Activity Note: The following test may require the developer to provide access to a test

platform that provides the evaluator with tools that are typically not found on consumer Mobile

Device products.

The evaluator shall perform one of the following tests. The test before and after the wipe command

shall be identical. This test shall be repeated for each type of memory used to store the data to be

protected.

Method 1 for File-based Methods:

Test: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall

create a user data (protected data or sensitive data) file, for example, by using an application. The

evaluator shall use a tool provided by the developer to examine this data stored in memory (for

example, by examining a decrypted files). The evaluator shall initiate the wipe command according to

the AGD guidance provided for FMT_SMF_EXT.1. The evaluator shall use a tool provided by the

developer to examine the same data location in memory to verify that the data has been wiped

 Page 34 of 181

according to the method described in the TSS (for example, the files are still encrypted and cannot be

accessed).

Method 2 for Volume-based Methods:

Test: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall create a

unique data string, for example, by using an application. The evaluator shall use a tool provided by the

developer to search decrypted data for the unique string. The evaluator shall initiate the wipe command

according to the AGD guidance provided for FMT_SMF_EXT.1. The evaluator shall use a tool provided

by the developer to search for the same unique string in decrypted memory to verify that the data has been

wiped according to the method described in the TSS (for example, the files are still encrypted and cannot

be accessed).

The evaluator encrypted the TOE and created and saved a file to long term storage. The evaluator

viewed the unencrypted content and initiated a wipe command. After the wipe, the evaluator viewed the

drive contents at the same offset that the file was stored and verified that the data was wiped and no

reference to it remained.

2.1.11 Cryptographic Salt Generation (FCS_CKM_EXT.6)

2.1.11.1 TSS Assurance Activity

The evaluator shall verify that the TSS contains a description regarding the salt generation, including

which algorithms on the TOE require salts. The evaluator shall confirm that the salt is generating

using an RBG described in FCS_RBG_EXT.1. For PBKDF derivation of KEKs, this assurance

activity may be performed in conjunction with FCS_CKM_EXT.3.2.

[ST] section 6.2.1 Cryptographic Algorithms and Operations states ñWhen Windows requires the use of

a salt it uses the Windows RBG.ò Windows uses salt to generate DPAPI keys protecting user data

(section 6.2.6 Protecting Data with DPAPI). [ST] section 6.2.8 SFR Mapping adds ñWhen Windows

needs to generate a salt for any kind of signature generation or key agreement, and to derive a key from

a passphrase, it uses the Windows random bit generator.ò

2.1.11.2 Guidance Assurance Activities

None defined.

2.1.11.3 Test Activities

None defined.

2.1.12 Cryptographic Operation (FCS_COP.1(1))

FCS_COP.1(SYM) corresponds to FCS_COP.1(1) in the [PP MDF] protection profile.

 Page 35 of 181

2.1.12.1 TSS Assurance Activity

None defined.

2.1.12.2 Guidance Assurance Activities

None defined.

2.1.12.3 Test Activities

Assurance Activity Note: The following tests require the developer to provide access to a test

platform that provides the evaluator with tools that are typically not found on factory products.

AES-CBC Tests

AES-CBC Known Answer Tests

There are four Known Answer Tests (KATs), described below. In all KATs, the plaintext, ciphertext,

and IV values shall be 128-bit blocks. The results from each test may either be obtained by the

evaluator directly or by supplying the inputs to the implementer and receiving the results in response.

To determine correctness, the evaluator shall compare the resulting values to those obtained by

submitting the same inputs to a known good implementation.

KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 plaintext

values and obtain the ciphertext value that results from AES-CBC encryption of the given plaintext

using a key value of all zeros and an IV of all zeros.

Five plaintext values shall be encrypted with a 128-bit all-zeros key, and the other five shall be

encrypted with a 256-bit all-zeros key.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt,

using 10 ciphertext values as input and AES-CBC decryption.

KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 key values

and obtain the ciphertext value that results from AES-CBC encryption of an all-zeros plaintext using

the given key value and an IV of all zeros. Five of the keys shall be 128-bit keys, and the other five

shall be 256-bit keys.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt,

using an all-zero ciphertext value as input and AES-CBC decryption.

KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply the two sets of key

values described below and obtain the ciphertext value that results from AES encryption of an all-

zeros plaintext using the given key value and an IV of all zeros. The first set of keys shall have 128

128-bit keys, and the second set shall have 256 256-bit keys. Key i in each set shall have the leftmost i

bits be ones and the rightmost N-i bits be zeros, for i in [1,N].

To test the decrypt functionality of AES-CBC, the evaluator shall supply the two sets of key and

ciphertext value pairs described below and obtain the plaintext value that results from AES-CBC

decryption of the given ciphertext using the given key and an IV of all zeros. The first set of

 Page 36 of 181

key/ciphertext pairs shall have 128 128-bit key/ciphertext pairs, and the second set of key/ciphertext

pairs shall have 256 256-bit key/ciphertext pairs. Key i in each set shall have the leftmost i bits be

ones and the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in each pair shall be the

value that results in an all-zeros plaintext when decrypted with its corresponding key.

KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply the set of 128

plaintext values described below and obtain the two ciphertext values that result from AES-CBC

encryption of the given plaintext using a 128-bit key value of all zeros with an IV of all zeros and

using a 256-bit key value of all zeros with an IV of all zeros, respectively. Plaintext value i in each set

shall have the leftmost i bits be ones and the rightmost 128-i bits be zeros, for i in [1,128].

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt,

using ciphertext values of the same form as the plaintext in the encrypt test as input and AES-CBC

decryption.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP AES certificates for Windows

10: 3476, 3497, 3498, and 3507 (http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html). The

relevant detail is reproduced and highlighted below.

3476 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3497 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verfication) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; IV Lengths Tested: (0 , 0) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3498 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3497

3507 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3497

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

AES certificates for Windows 10 Mobile: 3630, 3629, 3653, and 3652. The relevant detail is reproduced

and highlighted below.

3630 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

 Page 37 of 181

3629 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verification) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 256; Block Size(s): Full / Partial ; Msg

Len(s) Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3653 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3629

3652 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3629

AES-CBC Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 < i <=10.

The evaluator shall choose a key, an IV and plaintext message of length i blocks and encrypt the

message, using the mode to be tested, with the chosen key and IV. The ciphertext shall be compared to

the result of encrypting the same plaintext message with the same key and IV using a known good

implementation.

The evaluator shall also test the decrypt functionality for each mode by decrypting an i-block message

where 1 < i <=10. The evaluator shall choose a key, an IV and a ciphertext message of length i blocks

and decrypt the message, using the mode to be tested, with the chosen key and IV. The plaintext shall

be compared to the result of decrypting the same ciphertext message with the same key and IV using a

known good implementation.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP AES certificates for Windows

10: 3476, 3497, 3498, and 3507 (http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html). The

relevant detail is reproduced and highlighted below.

3476 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3497 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

 Page 38 of 181

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verfication) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; IV Lengths Tested: (0 , 0) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3498 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3497

3507 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3497

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

AES certificates for Windows 10 Mobile: 3630, 3629, 3653, and 3652. The relevant detail is reproduced

and highlighted below.

3630 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3629 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verification) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 256; Block Size(s): Full / Partial ; Msg

Len(s) Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3653 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3629

3652 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3629

 Page 39 of 181

AES-CBC Monte Carlo Tests

The evaluator shall test the encrypt functionality using a set of 200 plaintext, IV, and key 3-tuples. 100

of these shall use 128 bit keys, and 100 shall use 256 bit keys. The plaintext and IV values shall be

128-bit blocks. For each 3-tuple, 1000 iterations shall be run as follows:

Input: PT, IV, Key

for i = 1 to 1000:

if i == 1:

CT[1] = AES-CBC-Encrypt(Key, IV, PT)

PT = IV

else:

CT[i] = AES-CBC-Encrypt(Key, PT)

PT = CT[i-1]

The ciphertext computed in the 1000th iteration (i.e., CT[1000]) is the result for that trial. This result

shall be compared to the result of running 1000 iterations with the same values using a known good

implementation.

The evaluator shall test the decrypt functionality using the same test as for encrypt, exchanging CT

and PT and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP AES certificates for Windows

10: 3476, 3497, 3498, and 3507 (http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html). The

relevant detail is reproduced and highlighted below.

3476 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3497 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verfication) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; IV Lengths Tested: (0 , 0) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3498 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3497

3507 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

 Page 40 of 181

Val#3497

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

AES certificates for Windows 10 Mobile: 3630, 3629, 3653, and 3652. The relevant detail is reproduced

and highlighted below.

3630 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3629 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verification) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 256; Block Size(s): Full / Partial ; Msg

Len(s) Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3653 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3629

3652 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3629

AES-CCM Tests

The evaluator shall test the generation-encryption and decryption-verification functionality of AES-

CCM for the following input parameter and tag lengths:

128 bit and 256 bit keys

Two payload lengths. One payload length shall be the shortest supported payload length,

greater than or equal to zero bytes. The other payload length shall be the longest supported

payload length, less than or equal to 32 bytes (256 bits).

Two or three associated data lengths. One associated data length shall be 0, if supported. One

associated data length shall be the shortest supported payload length, greater than or equal to

zero bytes. One associated data length shall be the longest supported payload length, less than

or equal to 32 bytes (256 bits). If the implementation supports an associated data length of 216

bytes, an associated data length of 216 bytes shall be tested.

 Page 41 of 181

Nonce lengths. All supported nonce lengths between 7 and 13 bytes, inclusive, shall be tested.

Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12, 14 and 16 bytes shall be tested.

To test the generation-encryption functionality of AES-CCM, the evaluator shall perform the

following four tests:

Test 1. For EACH supported key and associated data length and ANY supported payload,

nonce and tag length, the evaluator shall supply one key value, one nonce value and 10 pairs

of associated data and payload values and obtain the resulting ciphertext.

Test 2. For EACH supported key and payload length and ANY supported associated data,

nonce and tag length, the evaluator shall supply one key value, one nonce value and 10 pairs

of associated data and payload values and obtain the resulting ciphertext.

Test 3. For EACH supported key and nonce length and ANY supported associated data,

payload and tag length, the evaluator shall supply one key value and 10 associated data,

payload and nonce value 3-tuples and obtain the resulting ciphertext.

Test 4. For EACH supported key and tag length and ANY supported associated data, payload

and nonce length, the evaluator shall supply one key value, one nonce value and 10 pairs of

associated data and payload values and obtain the resulting ciphertext.

To determine correctness in each of the above tests, the evaluator shall compare the ciphertext with

the result of generation-encryption of the same inputs with a known good implementation.

To test the decryption-verification functionality of AES-CCM, for EACH combination of supported

associated data length, payload length, nonce length and tag length, the evaluator shall supply a key

value and 15 nonce, associated data and ciphertext 3-tuples and obtain either a FAIL result or a

PASS result with the decrypted payload. The evaluator shall supply 10 tuples that should FAIL and 5

that should PASS per set of 15.

Additionally, the evaluator shall use tests from the IEEE 802.11-02/362r6 document ñProposed Test

vectors for IEEE 802.11 TGiò, dated September 10, 2002, Section 2.1 AES-CCMP Encapsulation

Example and Section 2.2 Additional AES CCMP Test Vectors to further verify the IEEE 802.11-2007

implementation of AES-CCMP.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP AES certificates for Windows

10: 3476, 3497, 3498, and 3507 (http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html). The

relevant detail is reproduced and highlighted below.

3476 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3497 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

 Page 42 of 181

CMAC (Generation/Verfication) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; IV Lengths Tested: (0 , 0) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3498 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3497

3507 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3497

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

AES certificates for Windows 10 Mobile: 3630, 3629, 3653, and 3652. The relevant detail is reproduced

and highlighted below.

3630 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3629 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verification) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 256; Block Size(s): Full / Partial ; Msg

Len(s) Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3653 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3629

3652 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3629

 Page 43 of 181

AES-GCM Test

The evaluator shall test the authenticated encrypt functionality of AES-GCM for each combination of

the following input parameter lengths:

128 bit and 256 bit keys

Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128

bits, if supported. The other plaintext length shall not be an integer multiple of 128 bits, if

supported.

Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-

zero integer multiple of 128 bits, if supported. One AAD length shall not be an integer multiple

of 128 bits, if supported.

Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested.

The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples

for each combination of parameter lengths above and obtain the ciphertext value and tag that results

from AES-GCM authenticated encrypt. Each supported tag length shall be tested at least once per set

of 10. The IV value may be supplied by the evaluator or the implementation being tested, as long as it

is known.

The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-

tuples for each combination of parameter lengths above and obtain a Pass/Fail result on

authentication and the decrypted plaintext if Pass. The set shall include five tuples that Pass and five

that Fail.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs

to the implementer and receiving the results in response. To determine correctness, the evaluator

shall compare the resulting values to those obtained by submitting the same inputs to a known good

implementation.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP AES certificates for Windows

10: 3476, 3497, 3498, and 3507 (http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html). The

relevant detail is reproduced and highlighted below.

3476 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3497 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verfication) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

 Page 44 of 181

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; IV Lengths Tested: (0 , 0) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3498 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3497

3507 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3497

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

AES certificates for Windows 10 Mobile: 3630, 3629, 3653, and 3652. The relevant detail is reproduced

and highlighted below.

3630 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3629 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verification) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 256; Block Size(s): Full / Partial ; Msg

Len(s) Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3653 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3629

3652 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3629

XTS-AES Test

The evaluator shall test the encrypt functionality of XTS-AES for each combination of the following

input parameter lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a non-zero

 Page 45 of 181

integer multiple of 128 bits, if supported. One of the data unit lengths shall be an integer

multiple of 128 bits, if supported. The third data unit length shall be either the longest

supported data unit length or 216 bits, whichever is smaller.

using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain the ciphertext

that results from XTS-AES encrypt.

The evaluator may supply a data unit sequence number instead of the tweak value if the

implementation supports it. The data unit sequence number is a base-10 number ranging between 0

and 255 that implementations convert to a tweak value internally.

The evaluator shall test the decrypt functionality of XTS-AES using the same test as for encrypt,

replacing plaintext values with ciphertext values and XTS-AES encrypt with XTS-AES decrypt

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP AES certificates for Windows

10: 3476, 3497, 3498, and 3507 (http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html). The

relevant detail is reproduced and highlighted below.

3476 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3497 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verfication) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; IV Lengths Tested: (0 , 0) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3498 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3497

3507 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3497

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

AES certificates for Windows 10 Mobile: 3630, 3629, 3653, and 3652. The relevant detail is reproduced

and highlighted below.

3630 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3629 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

 Page 46 of 181

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verification) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 256; Block Size(s): Full / Partial ; Msg

Len(s) Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3653 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3629

3652 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3629

AES Key Wrap (AES-KW) and Key Wrap with Padding (AES-KWP) Test

The evaluator shall test the authenticated encryption functionality of AES-KW for EACH combination

of the following input parameter lengths:

128 and 256 bit key encryption keys (KEKs)

Three plaintext lengths. One of the plaintext lengths shall be two semi-blocks (128 bits). One

of the plaintext lengths shall be three semi-blocks (192 bits). The third data unit length shall be

the longest supported plaintext length less than or equal to 64 semi-blocks (4096 bits).

using a set of 100 key and plaintext pairs and obtain the ciphertext that results from AES-KW

authenticated encryption. To determine correctness, the evaluator shall use the AES-KW

authenticated-encryption function of a known good implementation.

The evaluator shall test the authenticated-decryption functionality of AES-KW using the same test as

for authenticated-encryption, replacing plaintext values with ciphertext values and AES-KW

authenticated-encryption with AES-KW authenticated-decryption.

The evaluator shall test the authenticated-encryption functionality of AES-KWP using the same test as

for AES-KW authenticated-encryption with the following change in the three plaintext lengths:

One plaintext length shall be one octet. One plaintext length shall be 20 octets (160 bits).

One plaintext length shall be the longest supported plaintext length less than or equal to 512

octets (4096 bits).

The evaluator shall test the authenticated-decryption functionality of AES-KWP using the same test as

 Page 47 of 181

for AES-KWP authenticated-encryption, replacing plaintext values with ciphertext values and AES-

KWP authenticated-encryption with AES-KWP authenticated-decryption.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP AES certificates for Windows

10: 3476, 3497, 3498, and 3507 (http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html). The

relevant detail is reproduced and highlighted below.

3476 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3497 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verfication) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; IV Lengths Tested: (0 , 0) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3498 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3497

3507 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3497

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

AES certificates for Windows 10 Mobile: 3630, 3629, 3653, and 3652. The relevant detail is reproduced

and highlighted below.

3630 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

3629 ECB (e/d; 128 , 192 , 256); CBC (e/d; 128 , 192 , 256); CFB8 (e/d; 128 , 192 , 256);

CFB128 (e/d; 128 , 192 , 256); CTR (int only; 128 , 192 , 256)

CCM (KS: 128 , 192 , 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0

- 32 (Nonce Length(s): 7 8 9 10 11 12 13 (Tag Length(s): 4 6 8 10 12 14 16)

CMAC (Generation/Verification) (KS: 128; Block Size(s): Full / Partial ; Msg Len(s) Min: 0

Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 192; Block Size(s): Full / Partial ; Msg Len(s)

Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16) (KS: 256; Block Size(s): Full / Partial ; Msg

Len(s) Min: 0 Max: 2^16 ; Tag Len(s) Min: 0 Max: 16)

GCM (KS: AES_128(e/d) Tag Length(s): 128 120 112 104 96) (KS: AES_192(e/d) Tag

Length(s): 128 120 112 104 96)

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

 Page 48 of 181

(KS: AES_256(e/d) Tag Length(s): 128 120 112 104 96)

IV Generated: (Externally) ; PT Lengths Tested: (0 , 1024 , 8 , 1016) ; AAD Lengths

tested: (0 , 1024 , 8 , 1016) ; 96BitIV_Supported

GMAC_Supported

XTS((KS: XTS_128((e/d) (f)) KS: XTS_256((e/d) (f))

3653 CCM (KS: 256) (Assoc. Data Len Range: 0 - 0 , 2^16) (Payload Length Range: 0 - 32 (

Nonce Length(s): 12 (Tag Length(s): 16)

AES Val#3629

3652 KW (AE , AD , AES-128 , AES-192 , AES-256 , FWD , 128 , 256 , 192 , 320 , 2048) AES

Val#3629

2.1.13 Hashing Algorithms (FCS_COP.1(2))

FCS_COP.1(HASH) corresponds to FCS_COP.1(2) in the [PP MDF] protection profile.

2.1.13.1 TSS Assurance Activity

The evaluator shall check that the association of the hash function with other TSF cryptographic

functions (for example, the digital signature verification function) is documented in the TSS.

[ST] associates hash functions with IKE and TLS (Section 6.2.1 Cryptographic Algorithms and

Operations (search ñas well as hashing functionsò)) as well as cryptographic services HMAC, RSA,

DSA, ECDSA, Diffie-Hellman, elliptic curve Diffie-Hellman, and Dual EC DRBG (Section 6.2.1

Cryptographic Algorithms and Operations (search ñHashing is usedò)).

2.1.13.2 Guidance Assurance Activities

The evaluator checks the AGD documents to determine that any configuration that is required to be

done to configure the functionality for the required hash sizes is present.

[Mobile Guide] Section 21 Managing Cryptographic Algorithms indicates that there is no global

configuration necessary for hashing algorithms, key generation schemes, or for key establishment

schemes. The use of required hashing algorithms, key generation schemes and key sizes is supported

and global configuration is not needed.

2.1.13.3 Test Activities

The TSF hashing functions can be implemented in one of two modes. The first mode is the

byteoriented mode. In this mode the TSF only hashes messages that are an integral number of bytes in

length; i.e., the length (in bits) of the message to be hashed is divisible by 8. The second mode is the

bitoriented mode. In this mode the TSF hashes messages of arbitrary length. As there are different

tests for each mode, an indication is given in the following sections for the bitoriented vs. the

byteoriented testmacs.

The evaluator shall perform all of the following tests for each hash algorithm implemented by the TSF

 Page 49 of 181

and used to satisfy the requirements of this PP.

Assurance Activity Note: The following tests require the developer to provide access to a test

platform that provides the evaluator with tools that are typically not found on factory products.

Short Messages Test Bitoriented Mode

The evaluators devise an input set consisting of m+1 messages, where m is the block length of the

hash algorithm. The length of the messages range sequentially from 0 to m bits. The message text

shall be pseudorandomly generated. The evaluators compute the message digest for each of the

messages and ensure that the correct result is produced when the messages are provided to the TSF.

Short Messages Test Bit-oriented Mode

The evaluators devise an input set consisting of m+1 messages, where m is the block length of the hash

algorithm. The length of the messages range sequentially from 0 to m bits. The message text shall be

pseudorandomly generated. The evaluators compute the message digest for each of the messages and

ensure that the correct result is produced when the messages are provided to the TSF.

Short Messages Test Byte-oriented Mode

The evaluators devise an input set consisting of m/8+1 messages, where m is the block length of the hash

algorithm. The length of the messages range sequentially from 0 to m/8 bytes, with each message being an

integral number of bytes. The message text shall be pseudorandomly generated. The evaluators compute

the message digest for each of the messages and ensure that the correct result is produced when the

messages are provided to the TSF.

Selected Long Messages Test Bit-oriented Mode

The evaluators devise an input set consisting of m messages, where m is the block length of the hash

algorithm. The length of the ith message is 512 + 99*i, where 1 Ò i Ò m. The message text shall be

pseudorandomly generated. The evaluators compute the message digest for each of the messages and

ensure that the correct result is produced when the messages are provided to the TSF.

Selected Long Messages Test Byte-oriented Mode

The evaluators devise an input set consisting of m/8 messages, where m is the block length of the hash

algorithm. The length of the ith message is 512 + 8*99*i, where 1 Ò i Ò m/8. The message text shall be

pseudorandomly generated. The evaluators compute the message digest for each of the messages and

ensure that the correct result is produced when the messages are provided to the TSF.

Pseudorandomly Generated Messages Test

This test is for byteoriented implementations only. The evaluators randomly generate a seed that is n bits

long, where n is the length of the message digest produced by the hash function to be tested. The

evaluators then formulate a set of 100 messages and associated digests by following the algorithm

provided in Figure 1 of [SHAVS]. The evaluators then ensure that the correct result is produced when the

messages are provided to the TSF.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP SHA certificates for

 Page 50 of 181

Windows 10: 2886 and 2871 (http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm). The

relevant detail is reproduced and highlighted below.

2886 SHA-1 (BYTE-only)

SHA-256 (BYTE-only)

SHA-384 (BYTE-only)

SHA-512 (BYTE-only)

2871 SHA-1 (BYTE-only)

SHA-256 (BYTE-only)

SHA-384 (BYTE-only)

SHA-512 (BYTE-only)

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

SHA certificates for Windows 10 Mobile: 3048 and 3047. The relevant detail is reproduced and

highlighted below.

3048 SHA-1 (BYTE-only)

SHA-256 (BYTE-only)

SHA-384 (BYTE-only)

SHA-512 (BYTE-only)

3047 SHA-1 (BYTE-only)

SHA-256 (BYTE-only)

SHA-384 (BYTE-only)

SHA-512 (BYTE-only)

2.1.14 Signature Algorithms (FCS_COP.1(3))

FCS_COP.1(SIGN) corresponds to FCS_COP.1(3) in the [PP MDF] protection profile.

2.1.14.1 TSS Assurance Activity

None defined.

2.1.14.2 Guidance Assurance Activities

None defined.

2.1.14.3 Test Activities

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

ECDSA Algorithm Tests

http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm

 Page 51 of 181

ECDSA FIPS 186-4 Signature Generation Test

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the

evaluator shall generate 10 1024-bit long messages and obtain for each message a public key

and the resulting signature values R and S. To determine correctness, the evaluator shall use

the signature verification function of a known good implementation.

ECDSA FIPS 186-4 Signature Verification Test

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the

evaluator shall generate a set of 10 1024-bit message, public key and signature tuples and

modify one of the values (message, public key or signature) in five of the 10 tuples. The

evaluator shall obtain in response a set of 10 PASS/FAIL values.

RSA Signature Algorithm Tests

Signature Generation Test

The evaluator shall verify the implementation of RSA Signature Generation by the TOE using

the Signature Generation Test. To conduct this test the evaluator must generate or obtain 10

messages from a trusted reference implementation for each modulus size/SHA combination

supported by the TSF. The evaluator shall have the TOE use their private key and modulus

value to sign these messages.

The evaluator shall verify the correctness of the TSFôs signature using a known good

implementation and the associated public keys to verify the signatures.

Signature Verification Test

The evaluator shall perform the Signature Verification test to verify the ability of the TOE to

recognize another partyôs valid and invalid signatures. The evaluator shall inject errors into

the test vectors produced during the Signature Verification Test by introducing errors in some

of the public keys e, messages, IR format, and/or signatures. The TOE attempts to verify the

signatures and returns success or failure.

The evaluator shall use these test vectors to emulate the signature verification test using the

corresponding parameters and verify that the TOE detects these errors.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP ECDSA certificates for

Windows 10: 706 (http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html). The

relevant detail is reproduced and highlighted below.

706 FIPS186-4:

PKG: CURVES(P-256 P-384 P-521 ExtraRandomBits)

SigGen: CURVES(P-256: (SHA-256) P-384: (SHA-384) P-521: (SHA-512)

SigVer: CURVES(P-256: (SHA-256) P-384: (SHA-384) P-521: (SHA-512))

SHS: Val#2886

DRBG: Val# 868

http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsanewval.html

 Page 52 of 181

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

RSA certificates for Windows 10 Mobile: 760. The relevant detail is reproduced and highlighted below.

760 FIPS186-4:

PKG: CURVES(P-256 P-384 P-521 ExtraRandomBits)

SigGen: CURVES(P-256: (SHA-256) P-384: (SHA-384) P-521: (SHA-512)

SigVer: CURVES(P-256: (SHA-256) P-384: (SHA-384) P-521: (SHA-512))

SHS: Val#3047

DRBG: Val# 955

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

RSA certificates for Windows 10: 1802, 1783, 1784, and 1798

(http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html). The relevant detail is reproduced

and highlighted below.

1802 FIPS186-4:

[RSASSA-PSS]: Sig(Gen): (2048 SHA(224 , 256 SaltLen(32) , 384 SaltLen(48) , 512

SaltLen(64))) (3072 SHA(224 , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

 Sig(Ver): (2048 SHA(1 SaltLen(20) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)

)) (3072 SHA(1 SaltLen(20) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

 SHA Val#2886

1783 FIPS186-4:

ALG[RSASSA-PKCS1_V1_5] SIG(gen) (2048 SHA(256 , 384 , 512)) (3072 SHA(256 , 384 ,

512))

 SIG(Ver) (1024 SHA(1 , 256 , 384 , 512)) (2048 SHA(1 , 256 , 384 , 512)) (3072 SHA(1 ,

256 , 384 , 512))

 SHA Val#2373

1784 FIPS186-4:

ALG[RSASSA-PKCS1_V1_5] SIG(Ver) (1024 SHA(1 , 256 , 384 , 512)) (2048 SHA(1 , 256

, 384 , 512)) (3072 SHA(1 , 256 , 384 , 512))

 SHA Val#2871

1798 FIPS186-4:

186-4KEY(gen): FIPS186-3_Fixed_e (10001) ;

PGM(ProbPrimeCondition): 2048 , 3072

PPTT:(C.3)

 SHA Val#2886 DRBG: Val# 868

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

RSA certificates for Windows 10 Mobile: 1888, 1887, 1871, and 1889. The relevant detail is reproduced

and highlighted below.

1887 FIPS186-4:

[RSASSA-PSS]: Sig(Gen): (2048 SHA(224 , 256 SaltLen(32) , 384 SaltLen(48) , 512

SaltLen(64))) (3072 SHA(224 , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html

 Page 53 of 181

Sig(Ver): (1024 SHA(1 SaltLen(20) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(62)

)) (2048 SHA(1 SaltLen(20) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64))) (3072

SHA(1 SaltLen(20) , 256 SaltLen(32) , 384 SaltLen(48) , 512 SaltLen(64)))

SHA Val#3047

1888 FIPS186-4:

ALG[RSASSA-PKCS1_V1_5] SIG(gen) (2048 SHA(256 , 384 , 512)) (3072 SHA(256 , 384 ,

512))

SIG(Ver) (1024 SHA(1 , 256 , 384 , 512)) (2048 SHA(1 , 256 , 384 , 512)) (3072 SHA(1 ,

256 , 384 , 512))

SHA Val#3047

1871 FIPS186-4:

ALG[RSASSA-PKCS1_V1_5] SIG(Ver) (1024 SHA(1 , 256 , 384 , 512)) (2048 SHA(1 , 256

, 384 , 512)) (3072 SHA(1 , 256 , 384 , 512))

SHA Val#3048

1889 FIPS186-4:

186-4KEY(gen): FIPS186-3_Fixed_e (10001) ;

PGM(ProbPrimeCondition): 2048 , 3072 PPTT:(C.3)

SHA Val#3047 DRBG: Val# 955

2.1.15 Keyed Hash Algorithms (FCS_COP.1(4))

FCS_COP.1(HMAC) corresponds to FCS_COP.1(4) in the [PP MDF] protection profile.

2.1.15.1 TSS Assurance Activity

The evaluator shall examine the TSS to ensure that it specifies the following values used by the HMAC

function: key length, hash function used, block size, and output MAC length used.

[ST] Table 13 HMAC Characteristics in Section 6.2.1 Cryptographic Algorithms and Operations

identifies the HMAC key length, hash function used, block size, and output MAC length used for each

algorithm.

2.1.15.2 Guidance Assurance Activities

None defined.

2.1.15.3 Test Activities

Assurance Activity Note: The following tests require the developer to provide access to a test

platform that provides the evaluator with tools that are typically not found on factory products.

For each of the supported parameter sets, the evaluator shall compose 15 sets of test data. Each set

shall consist of a key and message data. The evaluator shall have the TSF generate HMAC tags for

 Page 54 of 181

these sets of test data. The resulting MAC tags shall be compared to the result of generating HMAC

tags with the same key and IV using a known good implementation.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP HMAC certificates for

Windows 10: 2233 (http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html). The relevant

detail is reproduced and highlighted below.

2233 HMAC -SHA1 (Key Sizes Ranges Tested: KS<BS KS=BS KS>BS) SHS Val#2886

HMAC -SHA256 (Key Size Ranges Tested: KS<BS KS=BS KS>BS) SHS Val#2886

HMAC -SHA384 (Key Size Ranges Tested: KS<BS KS=BS KS>BS) SHS Val#2886

HMAC -SHA512 (Key Size Ranges Tested: KS<BS KS=BS KS>BS) SHSVal#2886

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

HMAC certificates for Windows 10 Mobile: 2381. The relevant detail is reproduced and highlighted

below.

2381 HMAC -SHA1 (Key Sizes Ranges Tested: KS<BS KS=BS KS>BS) SHS Val#3047

HMAC -SHA256 (Key Size Ranges Tested: KS<BS KS=BS KS>BS) SHS Val#3047

HMAC -SHA384 (Key Size Ranges Tested: KS<BS KS=BS KS>BS) SHS Val#3047

HMAC -SHA512 (Key Size Ranges Tested: KS<BS KS=BS KS>BS) SHSVal#3047

2.1.16 Password -Based Key Derivation Functions (FCS_COP.1(5))

FCS_COP.1(PBKD64) and FCS_COP.1(PBKDARM) correspond to FCS_COP.1(5) in the [PP MDF]

protection profile.

2.1.16.1 TSS Assurance Activity

The evaluator shall check that the TSS describes the method by which the password is first encoded

and then fed to the SHA algorithm. The settings for the algorithm (padding, blocking, etc.) shall be

described, and the evaluator shall verify that these are supported by the selections in this component

as well as the selections concerning the hash function itself.

[ST] section 6.2.1 Cryptographic Algorithms and Operations describes how Windows inputs a password

to the PBKDF (search ñtext string without any optional padding or blockingò). The HMAC functions

specified in FCS_COP.1.1(PBKD64) and FCS_COP.1(PBKDARM) are the same as the HMAC

functions specified in FCS_COP.1(HMAC) and consistent with the hash functions specified in

FCS_COP.1(HASH). Section 6.2.1 identifies SHA-512 as the function used by DPAPI.

The evaluator shall verify that the TSS contains a description of how the output of the hash function is

used to form the submask that will be input into the function and is the same length as the KEK as

specified in FCS_CKM_EXT.3.

http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html

 Page 55 of 181

[ST] section 6.2.1 Cryptographic Algorithms and Operations states that Windows implements SP 800-

132, with SHA-512 included in the list of hash functions. (Search óthe Windows implementation of SP

800-132ò.) Section 6.2.6 Protecting Data with DPAPI describes generating the encryption key from a

userôs password with PBKDF2 based on a one-way function (that is, HMAC identified in section 6.2.1).

For the NIST SP 800-132-based conditioning of the passphrase, the required assurance activities will

be performed when doing the assurance activities for the appropriate requirements

(FCS_COP.1.1(4)). If any manipulation of the key is performed in forming the submask that will be

used to form the KEK, that process shall be described in the TSS.

Section 6.2.6 Protecting Data with DPAPI describes how Windows uses the output of PBKDF2 to create

an initialization vector and encryption key for encrypting the DPAPI master secret

The evaluator shall verify that the iteration count for PBKDFs performed by the TOE comply with

NIST SP 800-132 by ensuring that the TSS contains a description of the estimated time required to

derive key material from passwords and how the TOE increases the computation time for password-

based key derivation (including but not limited to increasing the iteration count).

[ST] section 6.2.6 presents rationale that for Windows, the time needed to derive key material form

passwords is irrelevant to both online and offline attacks. Windows exceeds the iteration count

recommended in SP 800-132 (1000 iterations) for both ARM implementations (3300 iterations) and 64-

bit editions (8000 iterations).

2.1.16.2 Guidance Assurance Activities

None defined.

2.1.16.3 Test Activities

No explicit testing of the formation of the submask from the input password is required.

2.1.17 Extended: HTTPS Protocol (FCS_HTTPS_EXT.1)

2.1.17.1 TSS Assurance Activity

None Defined.

2.1.17.2 Guidance Assurance Activities

None Defined.

2.1.17.3 Test Activities

Test 1: The evaluator shall attempt to establish an HTTPS connection with a webserver, observe the

 Page 56 of 181

traffic with a packet analyzer, and verify that the connection succeeds and that the traffic is identified

as TLS or HTTPS.

This activity was performed in conjunction with FCS_TLSC_EXT.2.

Test 2: The evaluator shall demonstrate that using a certificate without a valid certification path

results in an application notification. Using the administrative guidance, the evaluator shall then load

a certificate or certificates to the Trust Anchor Database needed to validate the certificate to be used

in the function, and demonstrate that the function succeeds. The evaluator then shall delete one of the

certificates, and show that the application is notified of the validation failure.

This activity was performed in conjunction with FCS_TLSC_EXT.2.

2.1.18 Initialization Vector Generation (FCS_IV_EXT.1)

2.1.18.1 TSS Assurance Activity

The evaluator shall examine the key hierarchy section of the TSS to ensure that the encryption of all

keys is described and the formation of the IVs for each key encrypted by the same KEK meets

FCS_IV_EXT.1.

Windows follows the guidance in [PP MDF] Table 14 when generating initialization vectors as

described in [ST] section 6.2.8 SFR Mapping.

2.1.18.2 Guidance Assurance Activities

None Defined.

2.1.18.3 Test Activities

None Defined.

2.1.19 Random Bit Generation (FCS_RBG_EXT.1)

2.1.19.1 TSS Assurance Activity

Documentation shall be producedðand the evaluator shall perform the activitiesðin accordance with

Appendix E and the ñClarification to the Entropy Documentation and Assessment Annexò.

Microsoft provided CCEVS with entropy documentation as required. The evaluation team provided a

review summary in accordance with Appendix E and the ñClarification to the Entropy Documentation

and Assessment Annexò.

 Page 57 of 181

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes

the security functions described in FCS_RBG_EXT.1.3.

[ST] section 10 Appendix B: Interfaces and Binaries provides the references to the API documentation

which includes the security functions (cryptographic algorithms) described in these requirements.

The interfaces CryptographicBuffer.GenerateRandom and CryptographicBuffer.GenerateRandom-

Number provide the output of the RBG to applications running on the TSF that request random bits.

2.1.19.2 Guidance Assurance Activities

None Defined.

2.1.19.3 Test Activities

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

The evaluator shall perform the following tests, depending on the standard to which the RBG

conforms.

Implementations Conforming to FIP 140-2 Annex C

The reference for the tests contained in this section is The Random Number Generator Validation

System (RNGVS). The evaluators shall conduct the following two tests. Note that the "expected

values" are produced by a reference implementation of the algorithm that is known to be correct.

Proof of correctness is left to each Scheme.

The evaluators shall perform a Variable Seed Test. The evaluators shall provide a set of 128 (Seed,

DT) pairs to the TSF RBG function, each 128 bits. The evaluators shall also provide a key (of the

length appropriate to the AES algorithm) that is constant for all 128 (Seed, DT) pairs. The DT value

is incremented by 1 for each set. The seed values shall have no repeats within the set. The evaluators

ensure that the values returned by the TSF match the expected values.

The evaluators shall perform a Monte Carlo Test. For this test, they supply an initial Seed and DT

value to the TSF RBG function; each of these is 128 bits. The evaluators shall also provide a key (of

the length appropriate to the AES algorithm) that is constant throughout the test. The evaluators then

invoke the TSF RBG 10,000 times, with the DT value being incremented by 1 on each iteration, and

the new seed for the subsequent iteration produced as specified in NIST-Recommended Random

Number Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES

Algorithms, Section 3. The evaluators ensure that the 10,000th value produced matches the expected

value.

Implementations Conforming to NIST Special Publication 800-90A

The evaluator shall perform 15 trials for the RNG implementation. If the RNG is configurable, the

evaluator shall perform 15 trials for each configuration. The evaluator shall also confirm that the

 Page 58 of 181

operational guidance contains appropriate instructions for configuring the RNG functionality.

If the RNG has prediction resistance enabled, each trial consists of (1) instantiate DRBG, (2) generate

the first block of random bits (3) generate a second block of random bits (4) uninstantiate. The

evaluator verifies that the second block of random bits is the expected value. The evaluator shall

generate eight input values for each trial. The first is a count (0 ï 14). The next three are entropy

input, nonce, and personalization string for the instantiate operation. The next two are additional

input and entropy input for the first call to generate. The final two are additional input and entropy

input for the second call to generate. These values are randomly generated. ñgenerate one block of

random bitsò means to generate random bits with number of returned bits equal to the Output Block

Length (as defined in NIST SP800-90A).

If the RNG does not have prediction resistance, each trial consists of (1) instantiate DRBG, (2)

generate the first block of random bits (3) reseed, (4) generate a second block of random bits (5)

uninstantiate. The evaluator verifies that the second block of random bits is the expected value. The

evaluator shall generate eight input values for each trial. The first is a count (0 ï 14). The next three

are entropy input, nonce, and personalization string for the instantiate operation. The fifth value is

additional input to the first call to generate. The sixth and seventh are additional input and entropy

input to the call to reseed. The final value is additional input to the second generate call.

The following paragraphs contain more information on some of the input values to be

generated/selected by the evaluator.

Entropy input: the length of the entropy input value must equal the seed length.

Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does not use a

nonce), the nonce bit length is one-half the seed length.

Personalization string: The length of the personalization string must be <= seed length. If the

implementation only supports one personalization string length, then the same length can be

used for both values. If more than one string length is support, the evaluator shall use

personalization strings of two different lengths. If the implementation does not use a

personalization string, no value needs to be supplied.

Additional input: the additional input bit lengths have the same defaults and restrictions as

the personalization string lengths.

Windows uses algorithm implementations validated under the CAVP. [ST] Table 14 Cryptographic

Algorithm Standards and Evaluation Methods identifies applicable CAVP DRBG certificates for

Windows 10: 868 (http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html). The

relevant detail is reproduced and highlighted below.

868 CTR_DRBG: [Prediction Resistance Tested: Not Enabled; BlockCipher_Use_df: (AES-256) (

AES Val#3497)]

[ST] Table 14 Cryptographic Algorithm Standards and Evaluation Methods identifies applicable CAVP

DRBG certificates for Windows 10 Mobile: 955. The relevant detail is reproduced and highlighted

below.

955 CTR_DRBG: [Prediction Resistance Tested: Not Enabled; BlockCipher_Use_df: (AES-256) (

AES Val#3629)]

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgnewval.html

 Page 59 of 181

2.1.20 Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1.1)

2.1.20.1 TSS Assurance Activity

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes

the security functions (cryptographic algorithms) described in these requirements.

[ST] section 6.2.2 Programming Interfaces provides the API documentation relevant to the security

functions (cryptographic algorithms) described in these requirements.

2.1.20.2 Guidance As surance Activities

None Defined.

2.1.20.3 Test Activities

The evaluator shall write, or the developer shall provide access to, an application that requests

cryptographic operations by the TSF. The evaluator shall verify that the results from the operation

match the expected results according to the API documentation. This application may be used to

assist in verifying the cryptographic operation assurance activities for the other algorithm services

requirements.

The evaluator used a test app delivered by the developer to request cryptographic operations on the

TOE. The evaluator verified that these operations were successful and the results matched the API

documentation. Cryptographic operations were requested through APIs identified in [ST]:

¶ CryptographicEngine.Encrypt

¶ CryptographicEngine.Decrypt

¶ HashAlgorithmProvider.HashData1

¶ CryptographicEngine.Sign2

¶ CryptographicEngine.VerifySignature3

¶ KeyDerivationParameters.BuildForPbkdf2

¶ AsymmetricKeyAlgorithmProvider.CreateKeyPair

1 Class HashAlgorithmProvider provides method CreateHash that is called by HashData.

2 Class CryptographicEngine provides methods SignAsync, SignHashedData, and

SignhashedDataAsync that calls the same code as Sign.

3 Class CryptographicEngine provides method VerifySignatureWithHashInput that calls the same code

as VerifySignature.

 Page 60 of 181

2.1.21 Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1.2)

2.1.21.1 TSS Assurance Activity

The evaluator shall verify that the API documentation for the secure key storage includes the

cryptographic operations by the stored keys.

[ST] section 6.2.2 Programming Interfaces provides the API documentation relevant to the security

functions (cryptographic algorithms) described in these requirements. The APIôs include

CryptographicEngine.Sign, CryptographicEngine.Encrypt, and CryptographicEngine.Decrypt.

2.1.21.2 Guidance Assurance Activities

None Defined.

2.1.21.3 Test Activities

The evaluator shall write, or the developer shall provide access to, an application that requests

cryptographic operations of stored keys by the TSF. The evaluator shall verify that the results from

the operation match the expected results according to the API documentation. The evaluator shall use

these APIs to test the functionality of the secure key storage according to the Assurance Activities in

FCS_STG_EXT.1.

This activity was performed in conjunction with FCS_SRV_EXT.1.1.

2.1.22 Extended: Cryptographic Key Storage (FCS_STG_EXT.1)

2.1.22.1 TSS Assurance Activity

The assurance activity for this component entails examination of the STôs TSS to determine that the

TOEôs implements the required secure key storage. The evaluator shall ensure that the TSS contains a

description of the key storage mechanism that justifies the selection of ñhardwareò, ñhardware-

isolatedò, or ñsoftware-based.ò

[ST] section 6.2.5 Key Storage describes secure key storage. Windows protects keys with a combination

of software and hardware mechanisms. The Key Isolation Service provides protected key storage. It

relies on Windows process isolation, NTFS discretionary access controls, DPAPI, and BitLocker

mechanisms. The section states, ñPrivate keys are protected on disk using DPAPI and BitLocker

encryption and access is restricted using the Windows Discretionary Access Control Policy.ò BitLocker

ultimately relies of TPM hardware to protect the REK.

An administrator can perform a wipe on their device to destroy keys while keys for users are protected

via DAC and are deleted when a Windows Store Application is deleted.

Additionally, the ST states: ñUsers and local administrators authorize applications at installation to

access shared keys or secrets when an application declares the sharedUserCertificates capability to share

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx

 Page 61 of 181

the certificate with other Windows Store Applications for the user. The sharedUserCertificates

capability is described further in Restricting Access to System Services.ò

Section 6.3.1 Restricting Access to System Services, goes into additional information in regards to how

restrictions are placed on the Shared User Certificates: ñThe sharedUserCertificates capability enables a

Windows Store Application to access software and hardware certificates, such as certificates stored on a

smart card, the certificate is stored in the userôs DPAPI profile location instead of the DPAPI profile

associated with the Windows Store Application.ò

2.1.22.2 Guidance Assurance Activities

The evaluator shall review the AGD guidance to determine that it describes the steps needed to import

or destroy keys/secrets.

[Mobile Guide] section 13 Managing Certificates covers import and destruction of key and secrets.

Subsection 13.1 IT Administrator Guidance describes adding and removing root certificates using an

MDM as well as providing links to online guidance. Subsection 13.4 Windows 10 provides the same

information for Windows 10 users and local administrators along with instructions for certificate

requests. Subsection 13.2 Developer Guidance covers how developers implement key management in

applications, which applies when users install applications. Subsection 13.5 Windows 10 Mobile covers

deleting keys by wiping the device.

The evaluator shall also verify that the API documentation provided according to Section 6.2.1

includes the security functions (import, use, and destruction) described in these requirements. The

API documentation shall include the method by which applications restrict access to their keys/secrets

in order to meet FCS_STG_EXT.1.4.

[Mobile Guide] section 13.2.1 Developer Guidance identifies the

Windows.Security.Cryptography.Certificates namespace APIs used in key import, for using keys, and

for using secrets. The section includes a link to online documentation in an MSDN topic. An application

restricts access to keys through choice of certificate enrollment manager class as described in section

13.2.4. Using CertificateEnrollmentManager base class limits access to application that imported or

created keys. Using derived class UserCertificateEnrollmentManager limits access by user credentials

and account access control lists.

Destruction of keys/secrets is accomplished by wiping the TOE (this functionality is already described

as user interfaces ï there is no programmatic access to the wipe function).

The [ST] identifies applicable API documentation for Windows 10 and Windows Phone 10 in Section

10 Appendix B: Interfaces.

APIs applicable to key storage are:

1. Import

a. AsymmetricKeyAlgorithmProvider.ImportKeyPair

i. Required minimums: Windows 10 device family

b. CertificateEnrollmentManager.ImportPfxDataAsync

i. Required minimums: Windows 10 device family

2. Use

a. CryptographicEngine.Encrypt

i. Required minimums: Windows 10 device family

 Page 62 of 181

b. CryptographicEngine.Decrypt

i. Required minimums: Windows 10 device family

c. CryptographicEngine.Sign

i. Required minimums: Windows 10 device family

d. CryptographicEngine.SignAsync

i. Required minimums: Windows 10 device family

e. CryptographicEngine.SignHashedData

i. Required minimums: Windows 10 device family

f. CryptographicEngine.SignHashedDataAsync

i. Required minimums: Windows 10 device family

g. CmsDetachedSignature.GenerateSignatureAsync

i. Required minimums: Windows 10 device family

h. CmsAttachedSignature.GenerateSignatureAsync

i. Required minimums: Windows 10 device family

i. Windows.Security.Cryptography.DataProtection

i. Required minimums: Windows 10 device family

There are no APIs to explicitly destroy keys/secrets, since Windows handles key destruction

automatically.

There no APIs for the capability in FCS_STG_EXT.1.4. The capability is determined by

sharedUserCertificates as described in [ST] sections 6.2.5 Key Storage and 6.3.1 Restricting Access to

System Services. Exceptions are made at application installation.

2.1.22.3 Test Activities

The evaluator shall test the functionality of each security function:

Test 1: The evaluator shall import keys/secrets of each supported type according to the AGD

guidance. The evaluator shall write, or the developer shall provide access to, an application that

generates a key/secret of each supported type and calls the import functions. The evaluator shall

verify that no errors occur during import.

Test 2: The evaluator shall write, or the developer shall provide access to, an application that uses an

imported key/secret:

¶ For RSA, the secret shall be used to sign data.

¶ For ECDSA, the secret shall be used to sign data

In the future additional types will be required to be tested:

¶ For symmetric algorithms, the secret shall be used to encrypt data.

¶ For persistent secrets, the secret shall be compared to the imported secret.

The evaluator shall repeat this test with the application-imported keys/secrets and a different

applicationôs imported keys/secrets. The evaluator shall verify that the TOE requires approval before

allowing the application to use the key/secret imported by the user or by a different application:

¶ The evaluator shall deny the approvals to verify that the application is not able to use the

 Page 63 of 181

key/secret as described.

¶ The evaluator shall repeat the test, allowing the approvals to verify that the application is able

to use the key/secret as described.

If the ST Author has selected ñcommon application developerò, this test is performed by either using

applications from different developers or appropriately (according to API documentation) not

authorizing sharing.

Test 3: The evaluator shall destroy keys/secrets of each supported type according to the AGD

guidance. The evaluator shall write, or the developer shall provide access to, an application that

destroys an imported key/secret.

The evaluator shall repeat this test with the application-imported keys/secrets and a different

applicationôs imported keys/secrets. The evaluator shall verify that the TOE requires approval before

allowing the application to destroy the key/secret imported by the administrator or by a different

application:

¶ The evaluator shall deny the approvals and verify that the application is still able to use the

key/secret as described.

¶ The evaluator shall repeat the test, allowing the approvals and verifying that the application is

no longer able to use the key/secret as described.

If the ST Author has selected ñcommon application developerò, this test is performed by either using

applications from different developers or appropriately (according to API documentation) not

authorizing sharing.

The evaluator used a suite of test apps to create and approve cryptographic keys, use the keys and allow

other applications to use the keys. The evaluator verified that all these operations were successful. The

evaluator then destroyed the keys and verified that the apps could no longer use them.

2.1.23 Extended: Encrypted Cryptographic Key Storage (FCS_STG_EXT.2)

2.1.23.1 TSS Assurance Activity

The evaluator shall review the TSS to determine that the TSS includes key hierarchy description of the

protection of each DEK for data-at-rest, of software-based key storage, of long-term trusted channel

keys, and of KEK related to the protection of the DEKs, long-term trusted channel keys, and software-

based key storage. This description must include a diagram illustrating the key hierarchy

implemented by the TOE in order to demonstrate that the implementation meets FCS_STG_EXT.2.

The description shall indicate how the functionality described by FCS_RBG_EXT.1 is invoked to

generate DEKs (FCS_CKM_EXT.2), the key size (FCS_CKM_EXT.2 and FCS_CKM_EXT.3) for each

key, how each KEK is formed (generated, derived, or combined according to FCS_CKM_EXT.3), the

integrity protection method for each encrypted key (FCS_STG_EXT.3), and the IV generation for each

key encrypted by the same KEK (FCS_IV_EXT.1). More detail for each task follows the

corresponding requirement.

[ST] describes the key hierarchy in sections 6.2.4 Encrypting the Device with BitLocker, 6.2.5 Key

Storage, and 6.2.6 Protecting Data with DPAPI describe how Windows uses key and data encryption..

See above section 2.1.7.1 above in Cryptographic Key Random Generation (FCS_CKM_EXT.2) for a

 Page 64 of 181

summary of the key hierarchy. See 2.1.18.1 above in Initialization Vector Generation (FCS_IV_EXT.1)

for IV generation by cipher modes.

The evaluator shall examine the key hierarchy section of the TSS to ensure that each key (DEKs,

software-based key storage, and KEKs) is encrypted by keys of equal or greater security strength

using one of the selected modes.

See section 2.1.7.1 above in Cryptographic Key Random Generation (FCS_CKM_EXT.2) for a

summary of the key hierarchy. See above 2.1.8.1 above in Cryptographic Key Generation Extended

(FCS_CKM_EXT.3) for KEK key sizes.

See 2.1.8.1 above in Cryptographic Key Generation Extended (FCS_CKM_EXT.3) regarding strength

of KEK and chains of keys.

The evaluator shall examine the key hierarchy description in the TSS section to verify that each DEK

and software-stored key is encrypted according to FCS_STG_EXT.2.

See 2.1.7.1 above in Cryptographic Key Random Generation (FCS_CKM_EXT.2) for a summary of the

key hierarchy. See 2.1.8.1 Cryptographic Key Generation Extended (FCS_CKM_EXT.3) for KEK key

sizes. See 2.1.18.1 above in Initialization Vector Generation (FCS_IV_EXT.1) for cipher modes.

2.1.23.2 Guidance Assurance Activities

None defined.

2.1.23.3 Test Activities

None defined.

2.1.24 Extended: Integrity of encrypted key storage (FCS_STG_EXT.3)

2.1.24.1 TSS Assurance Activity

The evaluator shall examine the key hierarchy description in the TSS section to verify that each

encrypted key is integrity protected according to one of the options in FCS_STG_EXT.3.

The Table 2 below summarizes the information from the key hierarchy. For each key, the table identifies

the key type and the mechanism that provides integrity of the key.

Table 2 Key Integrity Summary

Key Type Integrity

Storage Primary Seed REK N/A hardware-isolated not encrypted

Storage Root Key KEK N/A when derived from SPS

Keyed hash when in Protected Storage (as per

[TPM 2.0 Arch] section 22 Protected Storage)

 Page 65 of 181

Intermediate keys KEK CCM in accordance with [PP MDF] Table 14

VMK KEK CCM in accordance with [PP MDF] Table 14

DPAPI password-based encryption key KEK N/A PBKDF

DPAPI Master Secret KEK Keyed hash

Device User Credential Keys KEK CCM in accordance with [PP MDF] Table 14

Userôs public/private key pairs KEK Microsoft proprietary

2.1.24.2 Guidance Assurance Activities

None defined.

2.1.24.3 Test Activities

None defined.

2.1.25 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.1)

2.1.25.1 TSS Assurance Activity

The evaluator shall check the description of the implementation of this protocol in the TSS to ensure

that the ciphersuites supported are specified.

[ST] section 6.2.7.1.1 TLS and EAP TLS lists the cipher suites supported by Windows.

The evaluator shall check the TSS to ensure that the ciphersuites specified include those listed for this

component.

[ST] section 6.2.7.1.1 TLS and EAP TLS distinguishes between the cipher suites supported by Windows

10 and the cipher suites supported by Windows 10 Mobile, which match FCS_TLSC_EXT.1(C) and

FCS_TLSC_EXT.1(M), respectively.

2.1.25.2 Guidance Assurance Activities

The evaluator shall also check the operational guidance to ensure that it contains instructions on

configuring the TOE so that TLS conforms to the description in the TSS.

 Page 66 of 181

[Mobile Guide] section 5 Managing TLS lists the cipher suites the TOE supports. The section covers

configuring TLS via MDM4 and for Windows 10 as a user and local administrator. The section includes

links for Windows 10 to guidance to configure a server to allow only the specified cipher suites.

Section 6 provides the correspondence between cipher suites names used in the security target and the

cipher suite names used in TOE configuration:

ST Name: TLS_RSA_WITH_AES_128_CBC_SHA

Config Name: TLS_RSA_WITH_AES_128_CBC_SHA

ST name: TLS_RSA_WITH_AES_256_CBC_SHA

Config Name: TLS_RSA_WITH_AES_256_CBC_SHA

ST Name: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

Config Name: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA_P256

and/or

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA_P384

Note: RFC 4492 permits the use of multiple curves for the ECDHE-ECDSA key

exchange. RFC 4492 Section 5.1 states: A server participating in an ECDHE-

ECDSA key exchange may use different curves for (i) the ECDSA key in its

certificate, and (ii) the ephemeral ECDH key in the ServerKeyExchange message.

ST Name: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

Config Name: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA_P256

and/or

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA_P384

Note: RFC 4492 permits the use of multiple curves for the ECDHE-ECDSA key

exchange. RFC 4492 Section 5.1 states: A server participating in an ECDHE-

ECDSA key exchange may use different curves for (i) the ECDSA key in its

certificate, and (ii) the ephemeral ECDH key in the ServerKeyExchange message.

ST Name: TLS_RSA_WITH_AES_128_CBC_SHA256

Config Name: TLS_RSA_WITH_AES_128_CBC_SHA256

ST Name: TLS_RSA_WITH_AES_256_CBC_SHA256

Config Name: TLS_RSA_WITH_AES_256_CBC_SHA256

4 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 67 of 181

ST Name: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

Config Name: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256_P256

ST Name: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

Config Name: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384_P384

ST Name: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

Config Name: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256_P256

ST Name: TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

Config Name: TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384_P384

2.1.25.3 Test Activities

The evaluator shall also perform the following tests:

Test 1: The evaluator shall establish a TLS connection using each of the ciphersuites specified by the

requirement. This connection may be established as part of the establishment of a higher-level

protocol, e.g., as part of an EAP session. It is sufficient to observe the successful negotiation of a

ciphersuite to satisfy the intent of the test; it is not necessary to examine the characteristics of the

encrypted traffic in an attempt to discern the ciphersuite being used (for example, that the

cryptographic algorithm is 128-bit AES and not 256-bit AES).

The evaluator successfully negotiated an EAP-TLS connection from the TOE using each of the claimed

cipher suites in the Security Target.

Test 2: The evaluator shall attempt to establish the connection using a server with a server certificate

that contains the Server Authentication purpose in the extendedKeyUsage field and verify that a

connection is established. The evaluator will then verify that the client rejects an otherwise valid

server certificate that lacks the Server Authentication purpose in the extendedKeyUsage field and a

connection is not established. Ideally, the two certificates should be identical except for the

extendedKeyUsage field.

Because of the similarity in assurance activities, this activity was performed in conjunction with

FCS_TLSC_EXT.2. This wording of this activity and the one explained in FCS_TLSC_EXT.2 are

exactly the same.

Test 3: The evaluator shall send a server certificate in the TLS connection that the does not match the

server-selected ciphersuite (for example, send a ECDSA certificate while using the

TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite or send a RSA certificate while using one of the

ECDSA ciphersuites.) The evaluator shall verify that the TOE disconnects after receiving the serverôs

Certificate handshake message.

 Page 68 of 181

Because of the similarity in assurance activities, this activity was performed in conjunction with

FCS_TLSC_EXT.2. This wording of this activity and the one explained in FCS_TLSC_EXT.2 are

exactly the same.

Test 4: The evaluator shall configure the server to select the TLS_NULL_WITH_NULL_NULL

ciphersuite and verify that the client denies the connection.

Because of the similarity in assurance activities, this activity was performed in conjunction with

FCS_TLSC_EXT.2. This wording of this activity and the one explained in FCS_TLSC_EXT.2 are

exactly the same.

Test 5: The evaluator shall perform the following modifications to the traffic:

¶ Change the TLS version selected by the server in the Server Hello to a non-supported TLS

version (for example 1.3 represented by the two bytes 03 04) and verify that the client rejects

the connection.

¶ Modify at least one byte in the serverôs nonce in the Server Hello handshake message, and

verify that the client rejects the Server Key Exchange handshake message (if using a DHE or

ECDHE ciphersuite) or that the server denies the clientôs Finished handshake message.

¶ Modify the serverôs selected ciphersuite in the Server Hello handshake message to be a

ciphersuite not presented in the Client Hello handshake message. The evaluator shall verify

that the client rejects the connection after receiving the Server Hello.

¶ Modify the signature block in the Serverôs Key Exchange handshake message, and verify that

the client rejects the connection after receiving the Server Key Exchange message.

¶ Modify a byte in the Server Finished handshake message, and verify that the client sends a

fatal alert upon receipt and does not send any application data.

¶

¶ Last bullet in Test 5 was modified per TD0034

¶ Send a valid Server Finished message in plaintext and verify the client sends a fatal alert upon

receipt and does not send any application data. The serverôs finished message shall contain

valid verify_data and shall parse correctly using a network protocol analysis tool.

Because of the similarity in assurance activities, this activity was performed in conjunction with

FCS_TLSC_EXT.2. This wording of this activity and the one explained in FCS_TLSC_EXT.2 are

exactly the same.

2.1.26 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.2)

2.1.26.1 TSS Assurance Activity

None defined.

 Page 69 of 181

2.1.26.2 Guidance Assurance Activities

The evaluator shall check that the AGD guidance contains instructions for the administrator to

configure the list of Certificate Authorities that are allowed to sign certificates or to configure the

FQDN of the authentication server certificate that will be accepted by the TOE in the EAP-TLS

exchange.

[Mobile Guide] section 5 Managing EAP-TLS contains the guidance to manage the EAP-TLS exchange.

The section identifies Wi-Fi profiles as the mechanisms for MDM configuration5. For Windows 10, the

section includes links to EAP settings and certificate management for local administrators. The EAP

settings topic contains configuration information specific to the EAP-TLS authentication method. In

particular, it covers configuration of certificate validation for network connections based on EAP-TLS.

[Mobile Guide] Section 13 Certificate Management contains the guidance to configure the list of

Certificate Authorities that are allowed to sign certificates.

2.1.26.3 Test Activities

The evaluator shall also perform the following tests:

Test 1: Following the guidance provided by the AGD guidance, a CA or an FQDN will be configured

as ñacceptableò for authentication server certificates and then the evaluator will start a wireless

connection and verify that the wireless client is able to successfully connect. The evaluator will then

configure the system such that an otherwise valid certificate is signed by a CA that is not allowed by

the TOE or presents a FQDN that is not allowed by the TOE. Attempts to authenticate to an

authentication server presenting such a certificate should result in the connection being refused. If the

TOE supports both methods of limiting the acceptable authentication servers, the evaluator shall

repeat this test twice, once with each method.

Because of the similarity in assurance activities, this activity was performed in conjunction with

FCS_TLSC_EXT.2. The activity in FCS_TLSC_EXT.2 is an expansion of this activity that tests the

values of the FQDN by using several modified values of the CN and SAN that test both the invalid and

valid cases.

2.1.27 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.3)

2.1.27.1 TSS Assurance Activity

None defined.

5 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 70 of 181

2.1.27.2 Guidance Assurance Activities

None defined.

2.1.27.3 Test Activities

The evaluator shall also perform the following tests:

Test 1: The evaluator shall demonstrate that using a certificate without a valid certification path

results in the function failing. Using the administrative guidance, the evaluator shall then load a

certificate or certificates to the Trust Anchor Database needed to validate the certificate to be used in

the function, and demonstrate that the function succeeds. The evaluator then shall delete one of the

certificates, and show that the function fails.

Because of the similarity in assurance activities, this activity was performed in conjunction with

FCS_TLSC_EXT.2. This wording of this activity and the one explained in FCS_TLSC_EXT.2 are

exactly the same.

2.1.28 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.4)

2.1.28.1 TSS Assurance Activity

The evaluator shall ensure that the TSS description required per FIA_X509_EXT.2.1 includes the use

of client-side certificates for TLS mutual authentication.

[ST] section 6.2.8 SFR Mapping identifies mutual authentication for TLS 1.0, 1.1 and 1.2. The cipher

suites specified in FCS_TLSC_EXT.1.1 all require client-side certificate for mutual authentication.

2.1.28.2 Guidance Assurance Activities

The evaluator shall verify that the AGD guidance required per FIA_X509_EXT.2.1 includes

instructions for configuring the client-side certificates for TLS mutual authentication.

[Mobile Guide] section 5 Managing TLS states that no configuration is necessary to use client

authentication on the device once a device has client authentication certificates. Section 13 Managing

Certificates contains information on configuring a device to enroll for client certificates.

2.1.28.3 Test Activities

The evaluator shall also perform the following tests:

Test 1: The evaluator shall perform the following modification to the traffic:

¶ Configure the server to require mutual authentication and then modify a byte in a CA field in

the Serverôs Certificate Request handshake message. The modified CA field must not be the

CA used to sign the clientôs certificate. The evaluator shall verify the connection is

 Page 71 of 181

unsuccessful.

Because of the similarity in assurance activities, this activity was performed in conjunction with

FCS_TLSC_EXT.2. This wording of this activity and the one explained in FCS_TLSC_EXT.2 are

exactly the same.

2.1.29 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.5)

2.1.29.1 TSS Assurance Activity

The evaluator shall verify that TSS describes the Supported Elliptic Curves Extension and whether the

required behavior is performed by default or may be configured.

[ST] section 6.2.7.1.1 TLS and EAP TLS states that when negotiating a TLS 1.2 elliptic curve cipher

suite, Windows will include automatically as part of the Client Hello message both its supported elliptic

curves extension (i.e., secp256r1, secp384r1, and secp521r1) as well as signature algorithm (i.e.,

SHA256, SHA384, and SHA512).

2.1.29.2 Guidance Assurance Activities

If the TSS indicates that the Supported Elliptic Curves Extension must be configured to meet the

requirement, the evaluator shall verify that AGD guidance includes configuration of the Supported

Elliptic Curves Extension.

[ST] section 6.2.7.1.1 TLS and EAP TLS states that when negotiating a TLS 1.2 elliptic curve cipher

suite, Windows will include automatically as part of the Client Hello message its supported elliptic

curves extension.

2.1.29.3 Test Activities

The evaluator shall also perform the following test:

Test: The evaluator shall configure the server to perform an ECDHE key exchange message in the

TLS connection using a non-supported ECDHE curve (for example, P-192) and shall verify that the

TOE disconnects after receiving the server's Key Exchange handshake message.

The evaluator used TLS server utility to force the use of the P-192 curve when the TOE negotiates the

P-256 curve. The evaluator verified that the TOE rejects this curve and ceases the connection.

2.1.30 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.6)

2.1.30.1 TSS Assurance Activity

The evaluator shall verify that TSS describes the signature_algorithm extension and whether the

required behavior is performed by default or may be configured.

[ST] section 6.2.7.1.1 TLS and EAP TLS states that when negotiating a TLS 1.2 elliptic curve cipher

suite, Windows will include automatically as part of the Client Hello message both its supported elliptic

 Page 72 of 181

curves extension, i.e., secp256r1, secp384r1, and secp521r1 as well as signature algorithm, i.e.,

SHA256, SHA384, and SHA512.

[ST] section 6.2.7.1.1 states that each Windows component that uses TLS checks that the identifying

information in the certificate matches what is expected, the component should reject the connection,

these checks include checking the expected Distinguished Name (DN), Subject Name (SN), or Subject

Alternative Name (SAN) attributes along with the applicable extended key usages. The DN, and any

Subject Alternative Name, in the certificate is checked against the identity of the remote computerôs

DNS entry or IP address to ensure that it matches. Matching criteria is further described at

http://technet.microsoft.com/en-us/library/cc783349(v=WS.10).aspx, see the ñServer Certificate

Messageò section.

2.1.30.2 Guidance Assurance Activities

If the TSS indicates that the signature_algorithm extension must be configured to meet the

requirement, the evaluator shall verify that AGD guidance includes configuration of the

signature_algorithm extension.

As indicated in section 2.1.29.1 above, the [ST] section 6.2.7.1.1 TLS and EAP TLS states that when

negotiating a TLS 1.2 elliptic curve cipher suite, Windows will include automatically as part of the

Client Hello message its signature algorithm, i.e., SHA256, SHA384, and SHA512.

Section 6.2.1 Local Administrator Guidance of the [Mobile Guide] states that the signature algorithm is

not configurable in Windows 10 for TLS.

2.1.30.3 Test Activities

The evaluator shall also perform the following test:

The evaluator shall configure the server to send a certificate in the TLS connection that is not

supported according to the Clientôs HashAlgorithm enumeration within the signature_algorithms

extension (for example, send a certificate with a SHA-1 signature). The evaluator shall verify that the

TOE disconnects after receiving the serverôs Certificate handshake message.

Because of the similarity in assurance activities, this activity was performed in conjunction with

FCS_TLSC_EXT.2. This wording of this activity and the one explained in FCS_TLSC_EXT.2 are

exactly the same.

2.1.31 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.7)

2.1.31.1 TSS Assurance Activity

None defined.

2.1.31.2 Guidance Assurance Activities

None defined.

 Page 73 of 181

2.1.31.3 Test Activities

None defined.

2.1.32 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1.8)

2.1.32.1 TSS Assurance Activity

None defined.

2.1.32.2 Guidance Assurance Activities

None defined.

2.1.32.3 Test Activities

The evaluator shall perform the following tests:

Test 1: The evaluator shall use a network packet analyzer/sniffer to capture the traffic between the

two TLS endpoints. The evaluator shall verify that either the ñrenegotiation_infoò field or the SCSV

ciphersuite is included in the ClientHello packet during the initial handshake.

Test 2: The evaluator shall verify the Clientôs handling of ServerHello messages received during the

initial handshake that include the ñrenegotiation_infoò extension. The evaluator shall modify the

length portion of this field in the ServerHello message to be non-zero and verify that the client sends a

failure and terminates the connection. The evaluator shall verify that a properly formatted field

results in a successful TLS connection.

Test 3: The evaluator shall verify that ServerHello messages received during secure renegotiation

contain the ñrenegotiation_infoò extension. The evaluator shall modify either the

ñclient_verify_dataò or ñserver_verify_dataò value and verify that the client terminates the

connection.

Because of the similarity in assurance activities, this activity was performed in conjunction with

FCS_TLSC_EXT.2. This wording of this activity and the one explained in FCS_TLSC_EXT.2 are

exactly the same.

2.1.33 Extended: TLS Protocol (FCS_TLSC_EXT.2.1)

2.1.33.1 TSS Assurance Activity

The evaluator shall check the description of the implementation of this protocol in the TSS to ensure

that the ciphersuites supported are specified.

 Page 74 of 181

[ST] section 6.2.7.1.1 TLS and EAP TLS lists the cipher suites supported by SChannel, which match

FCS_TLS_EXT.2.1.

The evaluator shall check the TSS to ensure that the ciphersuites specified include those listed for this

component.

[ST] section 6.2.7.1.1 TLS and EAP TLS lists the cipher suites supported by SChannel, which match

FCS_TLS_EXT.2.1.

2.1.33.2 Guidance Ass urance Activities

The evaluator shall also check the operational guidance to ensure that it contains instructions on

configuring the TOE so that TLS conforms to the description in the TSS.

See AAR Sections 2.1.25.2 and 2.1.26.2 Guidance Assurance Activities for analysis.

2.1.33.3 Test Activities

The evaluator shall write, or the ST author shall provide, an application for the purposes of testing

TLS. The evaluator shall also perform the following tests:

Test 1: The evaluator shall establish a TLS connection using each of the ciphersuites specified by the

requirement. This connection may be established as part of the establishment of a higher-level

protocol, e.g., as part of an EAP session. It is sufficient to observe the successful negotiation of a

ciphersuite to satisfy the intent of the test; it is not necessary to examine the characteristics of the

encrypted traffic in an attempt to discern the ciphersuite being used (for example, that the

cryptographic algorithm is 128-bit AES and not 256-bit AES).

The evaluator connected the TOE to a web server (via HTTPS) to negotiate each of the cipher suites

claimed in the Security Target. The evaluator confirmed that each negotiation succeeded and used the

correct cipher suite.

Test 2: The evaluator shall attempt to establish the connection using a server with a server certificate

that contains the Server Authentication purpose in the extendedKeyUsage field and verify that a

connection is established. The evaluator will then verify that the client rejects an otherwise valid

server certificate that lacks the Server Authentication purpose in the extendedKeyUsage field and a

connection is not established. Ideally, the two certificates should be identical except for the

extendedKeyUsage field.

The evaluator attempted to establish a TLS connection between the TOE and a server with the server

providing a certificate that did not contain the Server Authentication purpose. The evaluator verified that

the TOE rejected the connection.

 Page 75 of 181

Test 3: The evaluator shall send a server certificate in the TLS connection that the does not match the

server-selected ciphersuite (for example, send a ECDSA certificate while using the

TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite or send a RSA certificate while using one of the

ECDSA ciphersuites.) The evaluator shall verify that the TOE disconnects after receiving the serverôs

Certificate handshake message.

The evaluator attempted to establish a TLS connection between the TOE and a server with an ECDSA

server certificate when a RSA cipher suite was negotiated. The evaluator verified that upon receipt of

the certificate the TOE rejects the connection.

Test 4: The evaluator shall configure the server to select the TLS_NULL_WITH_NULL_NULL

ciphersuite and verify that the client denies the connection.

The evaluator attempted to establish a TLS connection between the TOE and a server using the

TLS_NULL_WITH_NULL_NULL cipher suite. The evaluator verified that TOE rejected this

connection.

Test 5: The evaluator shall perform the following modifications to the traffic:

¶ Change the TLS version selected by the server in the Server Hello to a non-supported TLS

version (for example 1.3 represented by the two bytes 03 04) and verify that the client rejects

the connection.

¶ Modify at least one byte in the serverôs nonce in the Server Hello handshake message, and

verify that the client rejects the Server Key Exchange handshake message (ifusing a DHE or

ECDHE ciphersuite) or that the server denies the clientôs Finished handshake message.

¶ Modify the serverôs selected ciphersuite in the Server Hello handshake message to be a
ciphersuite not presented in the Client Hello handshake message. The evaluator shall verify

that the client rejects the connection after receiving the Server Hello.

¶ (conditional) If a ECDHE or DHE ciphersuite is selected, modify the signature block in the

Serverôs Key Exchange handshake message, and verify that the client rejects the connection

after receiving the Server Key Exchange message.

¶ Modify a byte in the Server Finished handshake message, and verify that the client sends a

fatal alert upon receipt and does not send any application data.

¶

¶ Last bullet in Test 5 was modified per TD0034

¶ Send a valid Server Finished message in plaintext and verify the client sends a fatal alert upon

receipt and does not send any application data. The serverôs finished message shall contain

valid verify_data and shall parse correctly using a network protocol analysis tool.

The evaluator attempted a TLS connection between the TOE and a server using the modifications to the

traffic bulleted above. For each of these modifications, the evaluator confirmed that the TOE rejected

the connection.

 Page 76 of 181

2.1.34 Extended: TLS Protocol (FCS_TLSC_EXT.2.2)

2.1.34.1 TSS Assurance Activity

The evaluator shall ensure that the TSS describes the clientôs method of establishing all reference

identifiers from the application-configured reference identifier, including which types of reference

identifiers are supported (e.g Common Name, DNS Name, URI Name, Service Name, or other

application-specific Subject Alternative Names) and whether IP addresses and wildcards are

supported.

[ST] section 6.2.7.1.1 TLS and EAP TLS covers the DN check (search ñchecking the expected

Distinguished Name (DN), Subject Name (SN), or Subject Alternative Name (SAN)ò).

The DN and SAN, as explained in the ST, is as follows: óThe DN, and any Subject Alternative Name, in

the certificate, is checked against the identity of the remote computerôs DNS entry or IP address to

ensure that it matches as described at http://technet.microsoft.com/en-

us/library/cc783349(v=WS.10).aspx, and in particular the ñServer Certificate Messageò section.ô

A certificate that uses a wildcard in the leftmost portion of the resource identifier (i.e., *.contoso.com)

can be accepted for authentication, otherwise the certificate will be deemed invalid.

The evaluator shall ensure that this description identifies whether and the manner in which certificate

pinning is supported or used by the TOE.

[ST] section 6.2.7.1.1 TLS and EAP TLS states that Windows does not provide a general-purpose

capability to ñpinò TLS certificates.

2.1.34.2 Guidance Assurance Activities

The evaluator shall verify that the AGD guidance includes instructions for setting the reference

identifier to be used for the purposes of certificate validation in TLS. In particular, the AGD guidance

should describe the API used by applications for configuring the reference identifier.

[Mobile Guide] sections 5.3.1 Local Administrator Guidance and 5.4 Windows 10 Mobile indicate that

the reference identifier in Windows for TLS is the URL of the server; and that no configuration of the

reference identifier is required.

2.1.34.3 Test Activities

The evaluator shall configure the reference identifier according to the AGD guidance and perform the

following tests during a TLS connection:

Test 1: The evaluator shall present a server certificate that does not contain an identifier in either the

Subject Alternative Name (SAN) or Common Name (CN) that matches the reference identifier. The

evaluator shall verify that the connection fails.

Test 2: The evaluator shall present a server certificate that contains a CN that matches the reference

identifier, contains the SAN extension, but does not contain an identifier in the SAN that matches the

reference identifier. The evaluator shall verify that the connection fails. The evaluator shall repeat

http://technet.microsoft.com/en-us/library/cc783349(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc783349(v=WS.10).aspx

 Page 77 of 181

this test for each supported SAN type.

Test 3: The evaluator shall present a server certificate that contains a CN that matches the reference

identifier and does not contains the SAN extension. The evaluator shall verify that the connection

succeeds.

Test 4: The evaluator shall present a server certificate that contains a CN that does not match the

reference identifier but does contain an identifier in the SAN that matches. The evaluator shall verify

that the connection succeeds.

Test 5: The evaluator shall perform the following wildcard tests with each supported type of reference

identifier:

¶ The evaluator shall present a server certificate containing a wildcard that is not in the left-most

label of the presented identifier (e.g. foo.*.example.com) and verify that the connection fails.

¶ The evaluator shall present a server certificate containing a wildcard in the left-most label but

not preceding the public suffix (e.g. *.example.com). The evaluator shall configure the

reference identifier with a single left-most label (e.g. foo.example.com) and verify that the

connection succeeds. The evaluator shall configure the reference identifier without a left-most

label as in the certificate (e.g. example.com) and verify that the connection fails. The evaluator

shall configure the reference identifier with two left-most labels (e.g. bar.foo.example.com)

and verify that the connection fails.

¶ The evaluator shall present a server certificate containing a wildcard in the left-most label

immediately preceding the public suffix (e.g. *.com). The evaluator shall configure the

reference identifier with a single left-most label (e.g. foo.com) and verify that the connection

fails. The evaluator shall configure the reference identifier with two left-most labels (e.g.

bar.foo.com) and verify that the connection fails.

Test 6: [conditional] If URI or Service name reference identifiers are supported, the evaluator shall

configure the DNS name and the service identifier. The evaluator shall present a server certificate

containing the correct DNS name and service identifier in the URIName or SRVName fields of the

SAN and verify that the connection succeeds. The evaluator shall repeat this test with the wrong

service identifier (but correct DNS name) and verify that the connection fails.

Test 7: [conditional] If pinned certificates are supported the evaluator shall present a certificate that

does not match the pinned certificate and verify that the connection fails.

The evaluator created a server certificate with each of the modifications above. The evaluator then

attempted a TLS connection between the TOE and the server using each of the modified certificates.

The evaluator verified that when the connection was expected to succeed it did and when it should fail,

the TOE rejected the connection.

2.1.35 Extended: TLS Protocol (FCS_TLSC_EXT.2.3)

2.1.35.1 TSS Assurance Activity

None defined.

 Page 78 of 181

2.1.35.2 Guidance Assurance Activities

None defined.

2.1.35.3 Test Activities

The evaluator shall perform the following test:

Test 1: The evaluator shall demonstrate that using a certificate without a valid certification path

results in the function failing. Using the administrative guidance, the evaluator shall then load a

certificate or certificates to the Trust Anchor Database needed to validate the certificate to be used in

the function, and demonstrate that the function succeeds. The evaluator then shall delete one of the

certificates, and show that the function fails.

The evaluator loaded a server certificate onto the sever that did not chain to a trusted root authority. The

evaluator the attempted a connection between the TOE and server and verified that upon receipt of the

certificate the TOE rejected the connection.

As specified in [ST] section 6.4.2 X.509 Certificate Validation and Generation, the evaluator observed if

certificate validation fails, Windows will not establish a trusted network channel except in the case of

HTTPS web browsing. Windows informs the user and seeks their consent before establishing a HTTPS

web browsing session, which is the behavior specified in FCS_HTTPS_EXT.1.3.

2.1.36 Extended: TLS Protocol (FCS_TLSC_EXT.2.4)

2.1.36.1 TSS Assurance Activity

The evaluator shall ensure that the TSS description required per FIA_X509_EXT.2.1 includes the use

of client-side certificates for TLS mutual authentication.

[ST] section 6.2.8 SFR Mapping identifies mutual authentication for TLS 1.0, 1.1 and 1.2. The cipher

suites specified in FCS_TLSC_EXT.2.1 all require client-side certificate for mutual authentication.

2.1.36.2 Guidance Assurance Activities

The evaluator shall verify that the AGD guidance required per FIA_X509_EXT.2.1 includes

instructions for configuring the client-side certificates for TLS mutual authentication.

[Mobile Guide] section 6.1 Managing TLS states that no configuration is necessary to use client

authentication on the device once a device has client authentication certificates. Section 13 Managing

Certificates contains information on configuring a device to enroll for client certificates.

2.1.36.3 Test Activi ties

The evaluator shall perform the following test:

Test 1: The evaluator shall perform the following modification to the traffic:

 Page 79 of 181

¶ Configure the server to require mutual authentication and then modify a byte in a CA field in

the Serverôs Certificate Request handshake message. The modified CA field must not be the

CA used to sign the clientôs certificate. The evaluator shall verify the connection is

unsuccessful.

The evaluator configured the TOE to connect to the TLS server using mutual authentication and

attempted a connection. The evaluator then modified a byte in the CA field in the Serverôs Certificate

Request message and verified that the TOE rejected the connection.

2.1.37 Extended: TLS Protocol (FCS_TLSC_EXT.2.5)

2.1.37.1 TSS Assurance Activity

The evaluator shall verify that TSS describes the Supported Elliptic Curves Extension and whether the

required behavior is performed by default or may be configured.

[ST] section 6.2.7.1.1 TLS and EAP TLS states that when negotiating a TLS 1.2 elliptic curve cipher

suite, Windows will automatically include as part of the Client Hello message both its supported elliptic

curves extension (i.e., secp256r1, secp384r1, and secp521r1) as well as signature algorithm (i.e.,

SHA256, SHA384, and SHA512).

2.1.37.2 Guidance Assurance Activities

If the TSS indicates that the Supported Elliptic Curves Extension must be configured to meet the

requirement, the evaluator shall verify that AGD guidance includes configuration of the Supported

Elliptic Curves Extension.

See AAR section 2.1.29.2 above.

2.1.37.3 Test Activities

Testing for this element are performed in conjunction with the assurance activities for

FPT_TST_EXT.2.1.

This activity was performed in conjunction with FCS_TLSC_EXT.1.5.

2.1.38 Extended: TLS Protocol (FCS_TLSC_EXT.2.6)

2.1.38.1 TSS Assurance Activity

The evaluator shall verify that TSS describes the signature_algorithm extension and whether the

required behavior is performed by default or may be configured.

[ST] section 6.2.7.1.1 TLS and EAP TLS states that when negotiating a TLS 1.2 elliptic curve cipher

suite, Windows will automatically include as part of the Client Hello message both its supported elliptic

curves extension, i.e., secp256r1, secp384r1, and secp521r1 as well as signature algorithm, i.e.,

SHA256, SHA384, and SHA512.

 Page 80 of 181

[ST] section 6.2.7.1.1 states that each Windows component that uses TLS checks that the identifying

information in the certificate matches what is expected, the component should reject the connection,

these checks include checking the expected Distinguished Name (DN), Subject Name (SN), or Subject

Alternative Name (SAN) attributes along with the applicable extended key usages. The DN, and any

Subject Alternative Name, in the certificate is checked against the identity of the remote computerôs

DNS entry or IP address to ensure that it matches. Matching criteria is further described at

http://technet.microsoft.com/en-us/library/cc783349(v=WS.10).aspx, see the ñServer Certificate

Messageò section.

2.1.38.2 Guidance Assurance Activities

If the TSS indicates that the signature_algorithm extension must be configured to meet the

requirement, the evaluator shall verify that AGD guidance includes configuration of the

signature_algorithm extension.

See AAR Section 2.1.30.2 above for analysis.

2.1.38.3 Test Activities

The evaluator shall also perform the following test:

Test: The evaluator shall configure the server to send a certificate in the TLS connection that is not

supported according to the Clientôs HashAlgorithm enumeration within the signature_algorithms

extension (for example, send a certificate with a SHA-1 signature). The evaluator shall verify that the

TOE disconnects after receiving the serverôs Certificate handshake message.

The evaluator attempted a TLS connection between the TOE and a server. The evaluator configured the

server to use MD2 hash algorithm and verified that the TOE rejected the connection.

2.1.39 Extended: TLS Protocol (FCS_TLSC_EXT.2.7)

2.1.39.1 TSS Assurance Activity

None defined.

2.1.39.2 Guidance Assurance Activities

None defined.

2.1.39.3 Test Activities

None defined.

 Page 81 of 181

2.1.40 Extended: TLS Protocol (FCS_TLSC_EXT.2.8)

2.1.40.1 TSS Assurance Activity

None defined.

2.1.40.2 Guidance Assurance Activities

None defined.

2.1.40.3 Test Activities

The evaluator shall perform the following tests:

Test 1: The evaluator shall use a network packet analyzer/sniffer to capture the traffic between the

two TLS endpoints. The evaluator shall verify that either the ñrenegotiation_infoò field or the SCSV

ciphersuite is included in the ClientHello packet during the initial handshake.

The evaluator observed a TLS connection between the TOE and sever and verified that the

renegotiation_info field was contained in the ClientHello packet.

Test 2: The evaluator shall verify the Clientôs handling of ServerHello messages received during the

initial handshake that include the ñrenegotiation_infoò extension. The evaluator shall modify the

length portion of this field in the ServerHello message to be non-zero and verify that the client sends a

failure and terminates the connection. The evaluator shall verify that a properly formatted field

results in a successful TLS connection.

The evaluator configured the TOE to connect to a TLS server and modified the renegotiation_info

length in the ServerHello packet. The evaluator verified that the TOE rejected the connection.

Test 3: The evaluator shall verify that ServerHello messages received during secure renegotiation

contain the ñrenegotiation_infoò extension. The evaluator shall modify either the

ñclient_verify_dataò or ñserver_verify_dataò value and verify that the client terminates the

connection.

The evaluator modified the server_verify_data value during a connection attempt between the TOE and

the TLS server. The evaluator confirms that the TOE rejected the connection.

2.2 User Data Protection (FDP)

2.2.1 Extended: Security Access Control (FDP_ACF_EXT.1.1)

2.2.1.1 TSS Assurance Activity

The evaluator shall ensure the TSS lists all system services available for use by an application. The

 Page 82 of 181

evaluator shall also ensure that the TSS describes how applications interface with these system

services, and means by which these system services are protected by the TSF.

[ST] section 6.3.1 Restricting Access to System Services lists device resources accessible to Windows

Store Apps. Section 6.3.1 describes the package manifest for Windows Store Apps (search ñpackage

manifest for the applicationò) for interfacing with system services. The section describes the Windows

App Container that mediates access to system services (search ñWindows App Containerò).

The TSS shall describe which of the following categories each system service falls in:

1) No applications are allowed access

2) Privileged applications are allowed access

3) Applications are allowed access by user authorization

4) All applications are allowed access

For all applications, Windows requires user authorization for each system services at application

installation (search ñuser is prompted to authorizeò in [ST] section 6.3.1 Restricting access to System

Services).

Privileged applications include any applications developed by the TSF developer. The TSS shall

describe how privileges are granted to third-party applications. For both types of privileged

applications, the TSS shall describe how and when the privileges are verified and how the TSF

prevents unprivileged applications from accessing those services.

Section 6.3.1 Restricting Access to System Services identifies package manifest, capability, and the

Windows App Container as the mechanisms for granting privilege to application. If a capability for a

system service is included in an applicationôs package manifest and a user authorizes that capability

when installing the application, then the Windows App Container will grant the application access to the

service (search ñmanaged by a capabilityò).

Microsoft distinguishes capabilities through the publication process. Individual developers registered

with Windows Store accounts can include in application package manifests the capabilities listed in [ST]

Table 17 General Use Capabilities and Table 18 Device Capabilities. Microsoft provides additional

review for applications that include capabilities in Table 19 Special Use Capabilities as well as requiring

the developers have a registered company account with the Windows Store (search ñadditional

capabilitiesò).

For any services for which the user may grant access, the evaluator shall ensure that the TSS

identifies whether the user is prompted for authorization when the application is installed, or during

runtime.

For all applications, Windows requires user authorization for each system services at application

installation (search ñuser is prompted to authorizeò in [ST] section 6.3.1 Restricting Access to System

Services).

2.2.1.2 Guidance Assurance Activities

The evaluator shall ensure that the operational user guidance contains instructions for restricting

application access to system services.

 Page 83 of 181

Application access to system services is determined at installation as described above. [Mobile Guide]

section 6 Managing Apps covers restricting ability to install, run, and remove applications. Section 6.1

IT Administrator Guidance identifies the capability of MDM6 solutions to install, remove, and restrict

the ability to run for applications. Section 6.2.1 provides guidance to Windows 10 local administrators

for restricting user ability to install and run applications. Section 6.2.1 includes instructions for installing

and removing applications. As noted in [ST] section 6.3.1 Restricting Access to System Services a user

authorizes application access to system services at installation not through configuration.

2.2.1.3 Test Activities

Assurance Activity Note: The following tests require the vendor to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device

products.

The evaluator shall write, or the developer shall provide, applications for the purposes of the

following tests.

Test 1: For each system service to which no applications are allowed access, the evaluator shall attempt

to access the system service with a test application and verify that the application is not able to access that

system service.

Not Applicable to the TOE: There are no system services to which no applications are allowed access.

Test 2: For each system service to which only privileged applications are allowed access, the

evaluator shall attempt to access the system service with an unprivileged application and verify that

the application is not able to access that system service. The evaluator shall attempt to access the

system service with a privileged application and verify that the application can access the service.

Not Applicable to the TOE: There are no system services to which only privileged (developed and

included in the TSF by Microsoft) applications are allowed access.

Test 3: For each system service to which the user may grant access, the evaluator shall attempt to

access the system service with a test application. The evaluator shall ensure that either the system

blocks such accesses or prompts for user authorization. The prompt for user authorization may occur

at runtime or at installation time, and should be consistent with the behavior described in the TSS.

To test this requirement the developer provided an app test suite known as the ñSysUseò apps. Each app

tests a specific capability and collectively the apps fulfill the requirement.

Test 4: For each system service listed in the TSS that is accessible by all applications, the evaluator

shall test that an application can access that system service.

All system services are available to all applications; therefore this test is satisfied by Test 3 above.

6 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 84 of 181

2.2.2 Extended: Security Access Control (FDP_ACF_ EXT.1.2)

2.2.2.1 TSS Assurance Activity

The evaluator shall examine the TSS to verify that it describes which data sharing is permitted

between applications, which data sharing is not permitted, and how disallowed sharing is prevented.

Section 6.6.1 states Application Containers (ñApp Containersò) provide an execution environment for

Universal Windows Applications. The environment prevents Universal Windows Applications from

accessing data created by other Universal Windows Applications (that is, private data in [PP MDF]

terminology) except through brokered operating system services such as the File Picker dialog. Table 17

General Use Capabilities lists shared data resources and the capability required to access each one.

By definition, Universal Windows Applications do not have the capability to launch (ñexecuteò in the

language of the [PP MDF]) other programs. An application can read or write to a file. Table 19 Special

Use Capabilities lists the Documents capability for access to the documents library.

2.2.2.2 Guidance Assurance Activities

None defined.

2.2.2.3 Test Activities

Test: The evaluator shall write, or the developer shall provide, two applications, one which saves

data containing a unique string and the other which attempts to access that data. If ñgroups of

applicationsò is selected, the applications shall be placed into different groups. If ñprivate dataò is

selected, the application shall not write to a designated shared storage area. The evaluator shall

verify that the second application is unable to access the stored unique string. The evaluator shall

grant access, either as a user, the administrator, or by using a third application with a common

application developer to the first, and verify that the application is able to access the stored unique

string.

The developer provided two apps, ReadAppData and WriteAppData. The evaluator used WriteAppData

to create a file that ReadAppData did not have access to. The evaluator verified that ReadAppData was

not able to access the file; then the evaluator granted access to the file and the evaluator verified

ReadAppData was allowed access.

2.2.3 Extended: Security Access Control (FDP_ACF_EXT.1.3)

2.2.3.1 TSS Assurance Activity

None defined.

2.2.3.2 Guidance Assurance Activities

None defined.

 Page 85 of 181

2.2.3.3 Test Activities

Assurance Activity Note: The following tests require the developer to provide access to a test

platform that provides the evaluator with tools that are typically not found on consumer Mobile

Device products.

Test 1: The evaluator shall write, or the developer shall provide, an application which attempts to

store a file with both write and execute permissions. The evaluator shall verify that this action fails

and that the permissions on the file are not simultaneously write and execute.

The Windows class Windows.Storage.FileAccessMode does not offer a method to attempt to store a file

with both write and execute permissions. See: https://msdn.microsoft.com/en-

us/library/windows/apps/windows.storage.fileaccessmode.aspx.

Test 2: The evaluator shall traverse the file system examining the permission on each TSF file to

verify that no file has both write and execute permissions set.

This activity was performed in conjunction with FPT_AEX_EXT.4

2.2.4 Extended: Limitation of Bluetooth Device Access (FDP_BLT_EXT.1)

2.2.4.1 TSS Assurance Activity

The evaluator shall ensure that the TSS describes the mechanism used to prevent unrestricted access

to paired Bluetooth devices (and/or their communication data) by every application with access to the

Bluetooth system service on the TOE (as listed in FDP_ACF_EXT.1). The evaluator shall verify that

this method either restricts access to a single application or provides explicit control of the

applications that may communicate with the paired Bluetooth device.

Windows uses the device capabilities described in section 6.3.1 Restricting Access to System Services to

restrict access to Bluetooth devices. The Bluetooth GATT and Bluetooth RFCOMM device capabilities

allow the Windows Store App to access Bluetooth services. The Bluetooth device capability allows

applications to communicate with already paired Bluetooth devices.

2.2.4.2 Guidance Assurance Activities

None defined.

2.2.4.3 Test Activities

None defined.

https://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.fileaccessmode.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.fileaccessmode.aspx

 Page 86 of 181

2.2.5 Extended: Protected Data Encryption (FDP_DAR_EXT.1)

FDP_DAR_EXT.1(128) and FDP_DAR_EXT.1(256) correspond to FDP_DAR_EXT.1 in the [PP

MDF] protection profile.

2.2.5.1 TSS Assurance Activity

The evaluator shall verify that the TSS section of the ST indicates which data is protected by the DAR

implementation and what data is considered TSF data. The evaluator shall ensure that this data

includes all protected data.

All user data and all Windows data are encrypted on the device. [ST] section 6.3.2 Data at Rest

Protection describes encryption of the entire storage volume as protected by BitLocker full disk

encryption, this includes user data, Windows configuration (TSF) data, and all programs other than the

BitLocker programs needed to unlock the drive.

2.2.5.2 Guidance Assurance Activities

The evaluator shall review the AGD guidance to determine that the description of the configuration

and use of the DAR protection does not require the user to perform any actions beyond configuration

and providing the authentication credential.

[Mobile Guide] section 7 Managing Volume Encryption covers data at rest protection. An administrator

configures volume encryption either through an MDM7 solution or as a local Windows 10 administrator.

A Windows 10 Mobile user may enable and disable volume encryption as described in section 7.3.1

BitLocker and Device Encryption do not require the user to perform any actions beyond configuration

and providing the authentication credential.

The evaluator shall also review the AGD guidance to determine that the configuration does not

require the user to identify encryption on a per-file basis.

The encryption is configured on the entire operation system volume or removable volumes. The

configuration does not require the user to identify encryption on a per-file basis.

2.2.5.3 Test Activities

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device

products.

Test 1: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall

create user data (non-system) either by creating a file or by using an application. The evaluator shall

use a tool provided by the developer to verify that this data is encrypted when the product is powered

off, in conjunction with Test 1 for FIA_UAU_EXT.1.

7 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 87 of 181

This activity was performed in conjunction with FIA_UAU_EXT.1.

2.2.6 Extended: Subset information flow control (FDP_IFC_EXT.1)

2.2.6.1 TSS Assurance Activity

The evaluator shall verify that the TSS section of the ST describes the routing of IP traffic through

processes on the TSF when a VPN client is enabled. The evaluator shall ensure that the description

indicates which traffic does not go through the VPN and which traffic does and that a configuration

exists for each baseband protocol in which only the traffic identified by the ST author as necessary for

establishing the VPN connection (IKE traffic and perhaps HTTPS or DNS traffic) is not encapsulated

by the VPN protocol (IPsec).

[ST] section 6.3.4 VPN Client describes the native Windows IPsec VPN client and identifies the

Windows Networking VPN APIs and device capabilities a developer could use to implement a VPN

client. The evaluation team used the native Windows 10 IPsec VPN client in the evaluation. [ST] does

not claim IPsec in FTP_ITC_EXT.1 and Microsoft has not yet evaluated the native VPN client against

the Protection Profile for IPsec Virtual Private Network (VPN) Clients.

[ST] section 6.3.4 describes routing IP traffic through processes (search ñThe components responsible

for routing IP trafficò). Section 6.3.4 states that all traffic is routed through the IPsec tunnel except three

items as listed (search ñrouted through the IPsec tunnel exceptò). Windows routes all IP traffic through

an enabled VPN client, except as noted (search ñall IP traffic is routedò).

The evaluator shall verify that the TSS section describes any differences in the routing of IP traffic

when using any supported baseband protocols (e.g. WiFi or, LTE).

[ST] section 6.3.4 VPN Client does not identify any differences in the routing of Wi-Fi. The IPsec VPN

is an end-to-end internetworking technology and so VPN sessions can be established over physical

network protocols such as wireless LAN (Wi-Fi) or local area network.

The evaluator shall verify that one (or more) of the following options is addressed by the

documentation:

¶ The description above indicates that if a VPN client is enabled, all configurations route all

Data Plane traffic through the tunnel interface established by the VPN client.

¶ The AGD guidance describes how the user and/or administrator can configure the TSF to

meet this requirement.

¶ The API documentation includes a security function that allows a VPN client to specify this

routing.

[Mobile Guide] Section 8 is Managing VPN. Subsection 8.1 IT Administratorôs Guidance describes that

an MDM system may be used to administer VPN profiles. The Windows IPsec VPN client can be

configured by the MDM IT administrator, when the device is enrolled. The evaluated configuration

requires that all network traffic other than traffic necessary to establish the VPN connection go through

the VPN tunnel. This is done by verifying that the VPN configuration pushed down by the MDM is

configured to ñSend all traffic through the VPN connectionò.

 Page 88 of 181

[Mobile Guide] subsection 8.2 Windows 10 provides a TechNet topic that describes how to create a

VPN connection. The Add-VpnConnection and Set-VpnConnection topic cover configuration to

prevent split tunneling.

2.2.6.2 Guidance Assurance Activities

See TSS Assurance Activity Above

2.2.6.3 Test Activities

Test 1: If the ST author identifies any differences in the routing between WiFi and cellular protocols,

the evaluator shall repeat this test with a base station implementing one of the identified cellular

protocols.

Step 1 - The evaluator shall enable a WiFi configuration as described in the AGD guidance (as

required by FTP_ITC_EXT.1). The evaluator shall use a packet sniffing tool between the wireless

access point and an Internet-connected network. The evaluator shall turn on the sniffing tool and

perform actions with the device such as navigating to websites, using provided applications, and

accessing other Internet resources. The evaluator shall verify that the sniffing tool captures the traffic

generated by these actions, turn off the sniffing tool, and save the session data.

Step 2 - The evaluator shall configure an IPsec VPN client that supports the routing specified in this

requirement, and if necessary, configure the device to perform the routing specified as described in

the AGD guidance. The evaluator shall turn on the sniffing tool, establish the VPN connection, and

perform the same actions with the device as performed in the first step. The evaluator shall verify that

the sniffing tool captures traffic generated by these actions, turn off the sniffing tool, and save the

session data.

 Step 3 - The evaluator shall examine the traffic from both step one and step two to verify that all Data

Plane traffic is encapsulated by IPsec. The evaluator shall examine the Security Parameter Index

(SPI) value present in the encapsulated packets captured in Step two from the TOE to the Gateway

and shall verify this value is the same for all actions used to generate traffic through the VPN. Note

that it is expected that the SPI value for packets from the Gateway to the TOE is different than the SPI

value for packets from the TOE to the Gateway. The evaluator shall be aware that IP traffic on the

cellular baseband outside of the IPsec tunnel may be emanating from the baseband processor and

shall verify with the manufacturer that any identified traffic is not emanating from the application

processor.

Step 4 - The evaluator shall perform an ICMP echo from the TOE to the IP address of another device

on the local wireless network and shall verify that no packets are sent using the sniffing tool. The

evaluator shall attempt to send packets to the TOE outside the VPN tunnel (i.e. not through the VPN

gateway), including from the local wireless network, and shall verify that the TOE discards them.

The evaluator connected the TOE to an IPsec VPN and verified traffic was encapsulated by IPsec when

connected to the VPN and traffic was plaintext when not connected to the VPN. The evaluator also

 Page 89 of 181

verified the SPI values were the same for all packets going to the TOE from the Gateway and from the

TOE to the Gateway. The evaluator configured the TOE to not allow traffic to or from outside the VPN

when connected to the VPN and verified that any attempt to bypass the VPN was denied by the TOE or

dropped by the TOE.

2.2.7 Extended: User Data Storage (FDP_STG_EXT.1)

2.2.7.1 TSS Assurance Activity

The evaluator shall ensure the TSS describes the Trust Anchor Database implemented that contain

certificates used to meet the requirements of this PP. This description shall contain information

pertaining to how certificates are loaded into the store, and how the store is protected from

unauthorized access (for example, unix permissions) in accordance with the permissions established

in FMT_SMF_EXT.1 and FMT_MOF_EXT.1.1.

[ST] section 6.3.3 Certificate Storage explains Windows stores trusted root certificates in certificates

stores, which serve as the Trust Anchor Database. The Trust Anchor Database consists of multiple

Trusted Root Certificate stores. The Trust Anchor Database consists of one Trusted Root Certificate

store for each user account, and a Trusted Root Certificate store for the computer account. Access to a

certificate store is managed by the discretionary access control policy in Windows such that only the

authorized administrator, i.e., the user or the local administrator, can add or remove entries. Certificates

which are used by applications, for example, IPsec and TLS, are also placed in certificate stores for the

user. In addition to the standard certificate revocation processes, application certificates can be loaded

by either using administrative tools such as certutil.exe, changes to the trusted root certificates can be

made using Certificate Trust Lists (https://msdn.microsoft.com/en-

us/library/windows/desktop/aa376545(v=vs.85).aspx) .

[ST] Section 6.5 Security Management describes the authorized administrator function (search ñTrust

Anchor Databaseò in Section 6.5).

Windows implements a more robust Trust Anchor Database and a more granular administrator role than

are described in the protection profile. FMT_SMF_EXT.1 specifies two capabilities related to the Trust

Anchor Database:

13. import X.509v3 certificates into the Trust Anchor Database

14. remove imported X.509v3 certificates and [[all X.509v3 certificates]] in the Trust Anchor

Database,

FMT_SMF_EXT.1 capability 13 is offered to administrators and restricted to administrators. Capability

14 is restricted to standard users for Windows 10 and to administrators for enrolled Windows 10 Mobile

devices. This division of capabilities is shown in Table 20 Mobile Device Management Capabilities. See

rows containing "Trust Anchor Database".

In summary, only an administrator can add certificates to the Trust Anchor Database as follows:

o A user acting as administrator for the user's Trusted Root Certificate store

o A Device (Local) administrator for the computer account Trusted Root Certificate store, and

o An MDM Agent for any Trusted Root Certificate store.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa376545(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376545(v=vs.85).aspx

 Page 90 of 181

Thus, FMT_MOF_EXT.1.1 (device user) and FMT_MOF_EXT.1.2 ((device) local administrator or the

MDM Agent) represent Windows behavior.

2.2.7.2 Guidance Assurance Activities

None defined.

2.2.7.3 Test Activities

None defined.

2.2.8 Extended: Inter -TSF user data transfer protection (FDP_UPC_EXT.1)

2.2.8.1 TSS Assurance Activity

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes

the security functions (protection channel) described in these requirements, and verify that the APIs

implemented to support this requirement include the appropriate settings/parameters so that the

application can both provide and obtain the information needed to assure mutual identification of the

endpoints of the communication as required by this component.

[ST] section 6.3.5 SFR Mapping indicates Windows provides network transport for TLS, HTTPS,

Bluetooth BR/EDR, and Bluetooth LE. [ST] identifies the relevant APIs including HttpClient

(Appendix B) and Windows.Devices.Bluetooth (Table 18 Device Capabilities).

[ST] section 6.8 Trusted Path Channel identifies interface HttpClient for TLS/HTTPS. For

setting/parameter support, see the following from the HttpClient documentation page.

¶ HttpClient(IHttpFilter), IHttpFilter, Windows.Web.Http.Filters, and HttpBaseProtocolFilter

(client certificate, ignorable server certificate errors, server credential)

¶ SendRequestAsync, HttpRequestMessage, TransportInformation, (server certificate, server

certificate errors, server certificate error severity, and server intermediate certificates)

RequestUri and Uri

¶ GetAsync (error E_ILLEGAL_METHOD_CALL) and Uri

[ST] section 6.3.1 Restricting Access to System Services identifies three Bluetooth APIs:

Windows.Devices.Bluetooth.GenericAttributeProfile (for LE), Windows.Devices.Bluetooth.Rfcomm

(for BR/EDR), and Windows.Devices.Bluetooth (for paired Bluetooth devices). For setting/parameter

support, see:

¶ Windows.Devices.Bluetooth.GenericAttributeProfile, GattCharacteristic, ProtectionLevel

(GattProtectionLevel), and CharacteristicProperties (GattCharacteristicProperties)

¶ Windows.Devices.Bluetooth.Rfcomm, RfcommDeviceService, ProtectionLevel, and

SocketProtectionLevel as well as Supporting Bluetooth Devices (XAML) and RFCOMM

Scenario: Send File as a Client(XAML)

The evaluator shall examine the TSS to determine that it describes that all protocols listed in the TSS

 Page 91 of 181

are specified and included in the requirements in the ST.

[ST] section 5.1.2.6 Extended: Inter-TSF User Data Transfer Protection specifies the protocols: TLS,

HTTPS, Bluetooth BR/EDR, and Bluetooth LE. Section 6.3.1 Restricting Access to System Services

describes the protocols Bluetooth BR/EDR and LE. Section 6.2.7.1.1 TLS and EAP TLS describes the

TLS and HTTPS protocols. Also see guidance section 2.2.8.2 below for description.

2.2.8.2 Guidance Assurance Activities

The evaluator shall confirm that the operational guidance contains instructions necessary for

configuring the protocol(s) selected for use by the applications.

[ST] provides references to online documentation for HTTPS/TLS, Bluetooth BR/EDR, and Bluetooth

LE, which [Mobile Guide] supplements. [ST] section 6.8 Trusted Path / Channels references HttpClient

documentation. HttpClient provides both http and https schemes to applications. [Mobile Guide] section

5 Managing TLS identifies an MDM solution as an option for configuring cipher suites. The section

provides links for Windows 10 on how to configure the cipher suites for TLS and EAP-TLS.

[ST] Table 18 Device Capabilities in section 6.3.1 Restricting Access to System Services references

online documentation for Windows.Devices.Bluetooth.GenericAttributeProfile and Windows.Devices-

.Bluetooth.Rfcomm. Windows.Devices.Bluetooth.GenericAttributeProfile namespace APIs provide

applications with access to Bluetooth LE devices. Windows.Devices.Bluetooth.Rfcomm namespace

APIs provide support BR/EDR. [Mobile Guide] section 10 Managing Bluetooth states that Bluetooth

pairing uses a protected communication channel by default so there is no configuration necessary.

2.2.8.3 Test Activities

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes

the security functions (protection channel) described in these requirements, and verify that the APIs

implemented to support this requirement include the appropriate settings/parameters so that the

application can both provide and obtain the information needed to assure mutual identification of the

endpoints of the communication as required by this component. The evaluator shall write, or the

developer shall provide access to, an application that requests protected channel services by the TSF.

The evaluator shall verify that the results from the protected channel match the expected results

according to the API documentation. This application may be used to assist in verifying the protected

channel assurance activities for the protocol requirements.

Test 1: The evaluators shall ensure that the application is able to initiate communications with an

external IT entity using each protocol specified in the requirement, setting up the connections as

described in the operational guidance and ensuring that communication is successful.

Test 2: The evaluator shall ensure, for each communication channel with an authorized IT entity, the

channel data are not sent in plaintext.

These activities were performed in conjunction with FCS_TLS_EXT.1, FCS_TLS_EXT.2,

FTP_ITC_EXT.1 and FDP_IFC_EXT.1.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.bluetooth.rfcomm.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.bluetooth.rfcomm.aspx

 Page 92 of 181

2.3 Identification and Authentication (FIA)

2.3.1 Authentication failure handling (FIA_AFL_EXT.1)

2.3.1.1 TSS Assurance Activity

The evaluator shall ensure that the TSS describes that a value corresponding to the number of

unsuccessful authentication attempts since the last successful authentication is kept for each user for

each Password Authentication Factor interface.

[ST] section 6.4 Identification and Authentication describes how the Local Security Authority

component within Windows maintains a count of the consecutive failed logon attempts by security

principals from their last successful authentication (search ñcount of the consecutive failed logon

attemptsò).

The evaluator shall ensure that this description also includes if and how this value is maintained when

the TOE is powered off. The evaluator shall ensure that if the value is not maintained, the interface is

after another interface in the boot sequence for which the value is maintained.

[ST] section 6.4 Identification and Authentication states that Windows persists the number of

consecutive failed logons on for the user and so rebooting the computer does not reset the failed logon

counter.

2.3.1.2 Guidance Assurance Activities

The evaluator shall verify that the AGD guidance describes how the administrator configures the

maximum number of unsuccessful authentication attempts.

An administrator configures the maximum number of unsuccessful authentication attempts either

through an MDM8 solution or as a local Windows 10 administrator. Subsection 9.1 IT Administrator

Guidance describes the MDM policy. Subsection 9.2.1 Local Administrator Guidance provides links to

online documentation for a Windows 10 administrator. Subsection 9.3 User Guidance provides a

reminder to the user that in the evaluated configuration Windows will wipe a device when the

authorization failure limit is exceeded without an option for recovery.

2.3.1.3 Test Activities

The evaluator shall perform the following tests for each available authentication factor interface:

Test 1: The evaluator shall configure according to the AGD guidance the device with a maximum

number of unsuccessful authentication attempts. The evaluator shall enter the locked state and enter

incorrect passwords until the wipe occurs. The evaluator shall verify that the number of password

8 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 93 of 181

entries corresponds to the configured maximum and that the wipe is implemented.

For Windows 10 Mobile: The evaluator pushed a policy to the TOE that required a wipe after a fixed

number of failed authentication attempts. When that number was met, the evaluator observed the TOE

rebooted and reinstalled from the factory image, thus wiping the device.

For Windows 10: The evaluator pushed a policy to the TOE that required a wipe after a fixed number

of failed authentication attempts. When that number was met, the evaluator observed the TOE rebooted

and reinstalled from the factory image, thus wiping the device.

After a failed authentication attempt, Windows displays the warning:

ñIf you keep entering the wrong password, you'll be locked out to help protect your data. To

unlock, youôll need a BitLocker recovery key.ò

Please note there is no BitLocker recovery key when Windows 10 is in its evaluated configuration.

Consequently, when the maximum number of unsuccessful authentication attempts is reached, recovery

is not possible and the device is wiped.

Test 2: The evaluator shall repeat test one, but shall power off (by removing the battery, if possible)

the TOE between unsuccessful authentication attempts. The evaluator shall verify that the total

number of password entries corresponds to the configured maximum and that the wipe is

implemented. Alternatively, if the number of authentication failures is not maintained for the interface

under test, the evaluator shall verify that upon booting the TOE between unsuccessful authentication

attempts another authentication factor interface is presented before the interface under test.

The evaluator performed this activity similar to Test 1, except reboots the TOE after 2 failed attempts.

The evaluator verified that the TOEôs authentication failure counter did not reset on reboot and the TOE

wiped at the expected threshold.

2.3.2 Bluetooth Au thorization and Authentication (FIA_BLT_EXT.1)

2.3.2.1 TSS Assurance Activity

The evaluator shall examine the TSS to ensure that it contains a description of when user permission

is required for Bluetooth pairing, and that this description mandates explicit user authorization via

manual input for all Bluetooth pairing, including application use of the Bluetooth trusted channel and

situations where temporary (non-bonded) connections are formed.

[ST] section 6.4 Identification and Authentication describes Bluetooth pairing: ñThe Windows

implementation of Bluetooth follows the Bluetooth SIG Specification, including OBEX data transfer

RFCOMM, L2CAP, and OPP (object push profile). The OBEX specification, which Windows

implements, prevents any transfer of user data until both Bluetooth devices have paired, which requires

authorization by the Windows user. When a Windows OS encounters an unpaired device, it does not

transfer any data to the unpaired device. When paired to a Bluetooth device, Windows will reject

 Page 94 of 181

connection attempts from other devices that purport to use the same Bluetooth address as the connected

device.ò

[ST] section 6.4.3 SFR Mapping states, ñWindows requires Bluetooth mutual authentication between the

Windows device and the remote device prior to any data transfer over the Bluetooth connection.ò

The evaluator shall examine the API documentation provided according to Section 6.2.1 and verify

that this API documentation does not include any API for programmatic entering of pairing

information (e.g. PINs, numeric codes, or ñyes/noò responses) intended to bypass manual user input

during pairing.

The capability lists in section 6.3.1 and Appendix B the relevant APIs which include enabling and

disabling. There are no APIs for programmatic entering of pairing information.

2.3.2.2 Guidance Assurance Activities

The evaluator shall examine the AGD guidance to verify that these user authorization screens are

clearly identified and instructions are given for authorizing Bluetooth pairings.

[Mobile Guide] section 10 Managing Bluetooth provides guidance for configuring Bluetooth via MDM

or as a Windows 10 local administrator. Subsection 10.1 IT Administrator Guidance provides links

example Microsoft configurations. Subsection 10.2.1 Local Administrator Guidance states that

Bluetooth is enabled and disabled in the Settings -> Devices -> Bluetooth user interface by setting the

radio button labeled Bluetooth to the On or Off state. Sections 10.2.2 User Guidance and 10.3.1 User

Guidance provide instructions for Bluetooth pairing for Windows 10 and Windows 10 Mobile,

respectively.

If configuration is necessary to ensure the services provided before login are limited, the evaluator

shall determine that the operational guidance provides sufficient instruction on limiting the allowed

services.

[Mobile Guide] section 10 Managing Bluetooth states ñNo configuration is necessary to ensure the

Bluetooth services provided before login are limited.ò

2.3.2.3 Test Activities

The evaluator shall perform the following test:

Test 1: The evaluator shall perform the following steps:

Step 1 - Initiate pairing with the TOE from a remote Bluetooth device that requests no man-in-the-

middle protection, no bonding, and claims to have NoInputNoOutput input-output (IO) capability.

(Such a device will attempt to evoke behavior from the TOE that represents the minimal level of user

interaction that the TOE supports during pairing.)

Step 2 - Verify that the TOE does not permit any Bluetooth pairing without explicit authorization from

the user (e.g. the user must have to minimally answer ñyesò or ñallowò in a prompt).

 Page 95 of 181

The evaluator paired the TOE with a device that requests no man-in-the-middle protection, no bonding,

and claims to have NoInputNoOutput capability. The evaluator confirmed that the user must give

explicit authorization before pairing.

2.3.3 Bluetooth Authorization and Authentication (FIA_BLT_EXT.1.2)

2.3.3.1 TSS Assurance Activity

None defined.

2.3.3.2 Guidance Assurance Activities

None defined.

2.3.3.3 Test Activities

The evaluator shall perform the following tests for each service protected according to this

requirement:

Test 1: While the service is in active use by an application on the TOE, the evaluator shall attempt to

gain access to a ñprotectedò Bluetooth service (from the second list in the requirement) from a

remote device that does not have the required level of trust to use the service. The evaluator shall

verify that the user is explicitly asked for authorization by the TOE to allow access to the service for

the particular remote device. The evaluator shall deny the authorization on the TOE and verify that

the remote attempt to access the service fails due to lack of authorization.

Test 2: The evaluator shall repeat Test 1, allow the authorization, and verify that the remote device

successfully accesses the service. (Note that this connection may involve pairing, if the untrusted

remote device has not yet paired with the TOE.)

These activities are performed in conjunction with FIA_BLT_EXT.1.1 and FIA_BLT_EXT.2.1.

Test 3: If the TSF implementation differentiates between trusted and untrusted devices when

determining if user authorization is required, repeat Test 1with a service that appears in the second

list in the requirement (but not in the first list) and a device that has the required level of trust to use

the service. The evaluator shall verify that the user is not prompted for explicit authorization and the

connection to the service succeeds.

Test 4: If the TSF implementation differentiates between trusted and untrusted devices when

determining if user authorization is required, repeat Test 1 with a service that appears in the first list

in the requirement and a device that has the required level of trust to use the service. The evaluator

shall verify that the user is explicitly asked for authorization by the TOE to allow access to the service

for the particular remote device. The evaluator shall deny the authorization on the TOE and verify

that the remote attempt to access the service fails due to lack of authorization.

Test 5: If the TSF implementation differentiates between trusted and untrusted devices when

determining if user authorization is required, repeat Test 2 with a service that appears in the first list

 Page 96 of 181

in the requirement and a device that has the required level of trust to use the service. The evaluator

shall verify that the remote device successfully accesses the service if the user explicitly provides

authorization.

N/A ï These activities are not applicable to the TOE because the TOE does not differentiate between

trusted and untrusted devices when determining if user authorization is required.

2.3.4 Extended: Bluetooth Authentication (FIA_BLT_EXT.2)

This requirement was modified by TD0030: Separation of FIA_BLT_EXT.2

Elements. FIA_BLT_EXT.2.2 is now FIA_BLT_EXT.3

2.3.4.1 TSS Assurance Activity

The evaluator shall ensure that the TSS describes how data transfer of any type is prevented before

the Bluetooth pairing is completed. The TSS shall specifically call out any supported RFCOMM and

L2CAP data transfer mechanisms. The evaluator shall ensure that the description in the TSS is

detailed enough so that the evaluator can determine that data transfers are only completed after the

Bluetooth devices are paired and mutually authenticated.

[ST] section 6.4 Identification and Authentication describes Bluetooth pairing: ñThe Windows

implementation of Bluetooth follows the Bluetooth SIG Specification, including OBEX data transfer,

RFCOMM, L2CAP, and OPP (object push profile). The OBEX specification, which Windows

implements, prevents any transfer of user data until both Bluetooth devices have paired, which requires

authorization by the Windows user. When a Windows OS encounters an unpaired device, it does not

transfer any data to the unpaired device.ò

[ST] section 6.3.1 Restricting Access to System Services includes a description of the Bluetooth

RFCOMM capability. The description indicates Windows implements RFCOMM in support of Basic

Rate/Extended Data Rate (BR/EDR) transport.

[ST] Section 6.4.3 SFR Mapping states, ñWindows requires Bluetooth mutual authentication between

the Windows device and the remote device prior to any data transfer over the Bluetooth connection

because all Bluetooth profiles are disabled without an explicit authorization by the user.ò

2.3.4.2 Guidance Assurance Activities

None defined.

2.3.4.3 Test Activities

Test 1: The evaluator shall use a Bluetooth tool to attempt to access TOE files using the OBEX Object

Push service and verify that pairing and mutual authentication are required by the TOE before

allowing access. (If the OBEX Object Push service is unsupported on the TOE, a different service that

transfers data over Bluetooth L2CAP and/or RFCOMM may be used in this test.)

 Page 97 of 181

The evaluator attempted to send and receive files to and from the TOE using an external Bluetooth

device. The evaluator confirmed that the TOE requires mutual authentication in the form of a PIN before

any access is allowed.

2.3.5 Extended: Rejection of Duplica te Bluetooth Connections FIA_BLT_EXT.3

This requirement was modified by TD0030: Separation of FIA_BLT_EXT.2

Elements. FIA_BLT_EXT.3 was FIA_BLT_EXT.2.2

2.3.5.1 TSS Assurance Activity

The evaluator shall ensure that the TSS describes how Bluetooth connections are maintained such

that two devices with the same Bluetooth device address are not simultaneously connected and such

that the initial connection is not superseded by any following connection attempts. The evaluator shall

ensure that this description explicitly details the sequence of events that occurs when the TOE

receives a new connection request from a device with which it has a current established Bluetooth

connection.

When paired to a Bluetooth device, Windows will reject connection attempts from other devices that

purport to use the same Bluetooth address as the connected device. (Section 6.4 Identification and

Authentication).

2.3.5.2 Guidance Assurance Activities

None defined.

2.3.5.3 Test Activities

The evaluator shall perform the following test:

Test 1: The evaluator shall perform the following steps:

Step 1 - Make a Bluetooth connection between the TOE and a remote Bluetooth device with address a

known address (BD_ADDR1).

Step 2 - Attempt a connection to the same TOE from a second remote Bluetooth device claiming to

have a Bluetooth device address matching BD_ADDR1.

Step 3 - Using a Bluetooth protocol analyzer, verify that the second connection attempt is ignored by

the TOE and that the initial connection to the device with BR_ADDR1 is unaffected.

Section 4 and other tables in the PP that list requirement components must be updated to reflect the

new component.

The evaluator collected the Bluetooth address of an external device and paired it to the TOE. Using a

Bluetooth address spoofing tool, the evaluator attempted to pair a second external device to the TOE

using the Bluetooth address of the device that is already paired. The evaluator verified that this attempt

failed, and did not affect the initial connection.

 Page 98 of 181

2.3.6 Port Access Entity Authentication (FIA_PAE_EXT.1)

2.3.6.1 TSS Assurance Activity

None defined.

2.3.6.2 Guidance Assurance Activities

None defined.

2.3.6.3 Test Activities

The evaluator shall perform the following tests:

Test 1: The evaluator shall demonstrate that the TOE has no access to the test network. After

successfully authenticating with an authentication server through a wireless access system, the

evaluator shall demonstrate that the TOE does have access to the test network.

This activity was performed in conjunction with FCS_TLSC_EXT.1.

Test 2: The evaluator shall demonstrate that the TOE has no access to the test network. The evaluator

shall attempt to authenticate using an invalid client certificate, such that the EAP-TLS negotiation

fails. This should result in the TOE still being unable to access the test network.

The evaluator configured the TOE with an expired client certificate for EAP-TLS. The evaluator

attempted an EAP-TLS connection and verified that the TOE rejected the attempt since it did not have a

valid certificate.

Test 3: The evaluator shall demonstrate that the TOE has no access to the test network. The evaluator

shall attempt to authenticate using an invalid authentication server certificate, such that the EAP-TLS

negotiation fails. This should result in the TOE still being unable to access the test network.

The evaluator configured the authentication server with an expired EAP-TLS server certificate. The

evaluator attempted an EAP-TLS connection and verified that the TOE rejected the attempt since the

server did not provide a valid certificate.

2.3.7 Extended: Password Management (FIA_PMG_EXT.1)

2.3.7.1 TSS Assurance Activity

None defined.

 Page 99 of 181

2.3.7.2 Guidance Assurance Activities

The evaluator shall examine the operational guidance to determine that it provides guidance to

security administrators on the composition of strong passwords, and that it provides instructions on

setting the minimum password length.

[Mobile Guide] section 11 Managing Passwords provides links to TechNet topics that describe

characteristics of strong passwords and best practices for password policy. An administrator configures

the minimum password length either through an MDM9 solution or as a local Windows 10 administrator.

Subsection 11.1.1 IT Administrator Guidance describes MDM policy. Subsection 11.1.2 provides a link

to online documentation for setting Windows 10 password policy as a local administrator.

2.3.7.3 Test Activities

The evaluator shall also perform the following tests. Note that one or more of these tests can be

performed with a single test case.

Test 1: The evaluator shall compose passwords that either meet the requirements, or fail to meet the

requirements, in some way. For each password, the evaluator shall verify that the TOE supports the

password. While the evaluator is not required (nor is it feasible) to test all possible compositions of

passwords, the evaluator shall ensure that all characters, rule characteristics, and a minimum length

listed in the requirement are supported, and justify the subset of those characters chosen for testing.

The evaluator composed various passwords to meet the requirement. These passwords encompassed the

full array of characters that are selectable as well as varying password lengths.

2.3.8 Extended: Authentication Throttling (FIA_TRT_EXT.1)

2.3.8.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes the method by which authentication attempts are not

able to be automated.

The evaluator shall ensure that the TSS describes either how the TSF disables authentication via

external interfaces (other than the ordinary user interface) or how authentication attempts are

delayed in order to slow automated entry and shall ensure that this delay totals at least 500

milliseconds over 10 attempts.

[ST] section 6.4 Identification and Authentication describes how Interactive logons are done on the

secure desktop, which does not allow other programs to run, and therefore prevents automated password

guessing.

9 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 100 of 181

[ST] section 6.4 Identification and Authentication describes how the Windows logon component

enforces a one second delay between every failed logon with an increased delay after several

consecutive logon failures (search ñInteractive logons are done on the secure desktopò). In other words,

over the course of 10 failed logins, there will be an accumulated delay of at least 10 seconds, which

satisfies the minimum delay of 500 milliseconds.

2.3.8.2 Guidance Assurance Activities

None defined.

2.3.8.3 Test Activities

None defined.

2.3.9 Protected Authentication Feedback (FIA_UAU.7)

2.3.9.1 TSS Assurance Activity

The evaluator shall ensure that the TSS describes the means of obscuring the password entry.

[ST] section 6.4.3 SFR Mapping describes how during an interactive logon (search ñWindows echoesò),

Windows echoes the users password with ñ*ò characters to prevent disclosure of the userôs password.

2.3.9.2 Guidance Assurance Activities

The evaluator shall verify that any configuration of this requirement is addressed in the AGD

guidance and that the password is obscured by default.

[Mobile Guide] section 11.2 Protecting Passwords states Windows 10 and Windows 10 Mobile do not

require any configuration to ensure the password is obscured by default (subsections 11.2.1 Windows 10

and 11.2.2 Windows 10 Mobile, respectively).

2.3.9.3 Test Activities

Test: The evaluator shall enter passwords on the device, including at least the Password

Authentication Factor at lockscreen, and verify that the password is not displayed on the device.

From a locked state, the evaluator typed in a password to unlock the TOE and verified it was not

displayed. No information regarding the password was displayed to the user.

2.3.10 Extended: Authentication for Cryptographic Operation (FIA_UAU_EXT.1)

2.3.10.1 TSS Assurance Activity

The evaluator shall verify that the TSS section of the ST describes the process for decrypting protected

data and keys.

 Page 101 of 181

[ST] section 6.4.1 Protecting User Data describes the process for decrypting protected data. Section

6.2.4 Encrypting the Device with BitLocker includes details of BitLocker protection, including process

for decrypting protected data and keys. Sections 6.2.5 Key Storage and 6.3.6 Protecting Data with

DPAPI cover protecting key data through DPAPI.

The evaluator shall ensure that this process requires the user to enter a Password Authentication

Factor and, in accordance with FCS_CKM_EXT.3, derives a KEK which is used to protect the

software-based secure key storage and (optionally) DEK(s) for sensitive data, in accordance with

FCS_STG_EXT.2.

[ST] section 6.4.1 Protecting User Data states the logon password is used to derive the DPAPI secret (a

KEK) which provides an additional layer of protection for certain user data, including keys. Likewise,

section 6.4.3 SFR Mapping states for FIA_UAU_EXT.1 that the user must authenticate successfully

during interactive logon and prior to decryption of any user data stored on the device

2.3.10.2 Guidance Assurance Activities

None defined.

2.3.10.3 Test Activities

The following tests may be performed in conjunction with FDP_DAR_EXT.1 and FDP_DAR_EXT.2.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device

products.

Test 1: The evaluator shall enable encryption of protected data and require user authentication

according to the AGD guidance. The evaluator shall write, or the developer shall provide access to,

an application that includes a unique string treated as protected data.

The evaluator shall reboot the device, use a tool provided by developer to search for the unique string

amongst the application data, and verify that the unique string cannot be found. The evaluator shall

enter the Password Authentication Factor to access full device functionality, use a tool provided by

the developer to access the unique string amongst the application data, and verify that the unique

string can be found.

Test 2: [conditional] The evaluator shall require user authentication according to the AGD guidance.

The evaluator shall store a key in the software-based secure key storage.

The evaluator shall lock the device, use a tool provided by developer to access the key amongst the

stored data, and verify that the key cannot be retrieved or accessed. The evaluator shall enter the

Password Authentication Factor to access full device functionality, use a tool provided by developer

to access the key, and verify that the key can be retrieved or accessed.

Test 3: [conditional] The evaluator shall enable encryption of sensitive data and require user

authentication according to the AGD guidance. The evaluator shall write, or the developer shall

provide access to, an application that includes a unique string treated as sensitive data.

The evaluator shall lock the device, use a tool provided by developer to attempt to access the unique

string amongst the application data, and verify that the unique string cannot be found. The evaluator

 Page 102 of 181

shall enter the Password Authentication Factor to access full device functionality, use a tool provided

by developer to access the unique string amongst the application data, and verify that the unique

string can be retrieved.

The evaluator enabled device encryption on the TOE and used an application to create a unique string.

The evaluator used a tool to view the raw contents of the encrypted drive and verified that a query to

find the string did not return a result. The evaluator then authenticated the user and searched for the

unique string and succeeded.

2.3.11 Extended: Timing of Authentication (FIA_UAU_EXT.2)

2.3.11.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes the actions allowed by unauthorized users in the

locked state.

[ST] section 6.4.3 SFR Mapping describes the only actions that an unauthorized user can take when a

Windows device is locked is to bring up the authentication dialog or turn the device off. A Windows 10

Mobile device can place an emergency call or take a photograph.

2.3.11.2 Guidance Assurance Activities

None defined.

2.3.11.3 Test Activities

The evaluator shall verify that the TSS describes the actions allowed by unauthorized users in the

locked state. The evaluator shall attempt to perform some actions not listed in the selection while the

device is in the locked state and verify that those actions do not succeed.

The evaluator verified that the TOE only allowed actions listed in the ST before authenticating. This

test was performed in conjunction with FIA_UAU_EXT.3.

2.3.12 Extended: Re -Authentication (FIA_UAU_EXT.3)

2.3.12.1 TSS Assurance Activity

None defined.

2.3.12.2 Guidance Assurance Activities

None defined.

2.3.12.3 Test Activities

Test 1: The evaluator shall configure the TSF to use the Password Authentication Factor according to

 Page 103 of 181

the AGD guidance. The evaluator shall change Password Authentication Factor according to the

AGD guidance and verify that the TSF requires the entry of the Password Authentication Factor

before allowing the factor to be changed.

Test 2: The evaluator shall configure the TSF to transition to the locked state after a time of inactivity

(FMT_SMF_EXT.1) according to the AGD guidance. The evaluator shall wait until the TSF locks and

then verify that the TSF requires the entry of the Password Authentication Factor before transitioning

to the unlocked state.

Test 3: The evaluator shall configure user-initiated locking according to the AGD guidance. The

evaluator shall lock the TSF and then verify that the TSF requires the entry of the Password

Authentication Factor before transitioning to the unlocked state.

The evaluator changed the TOEôs password for authentication, locked the TOE (via user-initiated lock)

and set an inactivity timeout for the TOE to initiate a lock when it is met. The evaluator observed that

the password was required before changing it, and after each instance of the device locking password

authentication was required.

2.3.13 Extended: Validation of certificates (FIA_X509_EXT.1)

2.3.13.1 TSS Assurance Activity

The evaluator shall ensure the TSS describes where the check of validity of the certificates takes

place. The evaluator ensures the TSS also provides a description of the certificate path validation

algorithm.

[ST] section 6.4.2 X.509 Certificate Validation indicates each component that uses X.509 is responsible

for certificate validation with a common subcomponent performing the validation. The section describes

the certification path validation algorithm by reference to RFC 5280.

See also section 2.2.6 above and [ST] section 6.3.4 VPN Client regarding TOE support of IPsec.

2.3.13.1 Guidance Assurance Activities

None defined.

2.3.13.2 Test Activities

The tests described must be performed in conjunction with the other Certificate Services assurance

activities, including the use cases in FIA_X509_EXT.2.1 and FIA_X509_EXT.3. The tests for the

extendedKeyUsage rules are performed in conjunction with the uses that require those rules. The

evaluator shall create a chain of at least four certificates: the node certificate to be tested, two

Intermediate CAs, and the self-signed Root CA.

Test 1: The evaluator shall then load a certificate or certificates to the Trust Anchor Database needed

to validate the certificate to be used in the function (e.g. application validation, trusted channel setup,

 Page 104 of 181

or trusted software update), and demonstrate that the function succeeds. The evaluator then shall

delete one of the certificates, and show that the function fails.

Test 2: The evaluator shall demonstrate that validating an expired certificate results in the function

failing.

Test 3: The evaluator shall test that the TOE can properly handle revoked certificates-ïconditional on

whether CRL or OCSP is selected; if both are selected, then a test shall be performed for each

method. The evaluator shall test revocation of the node certificate and revocation of the intermediate

CA certificate (i.e. the intermediate CA certificate should be revoked by the root CA). For the test of

the WLAN use case, only pre-stored CRLs are used. The evaluator shall ensure that a valid certificate

is used, and that the validation function succeeds. The evaluator then attempts the test with a

certificate that has been revoked (for each method chosen in the selection) to ensure when the

certificate is no longer valid that the validation function fails.

Test 4: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the

TOEôs certificate does not contain the basicConstraints extension. The validation of the certificate

path fails.

Test 5: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the

TOEôs certificate has the cA flag in the basicConstraints extension not set. The validation of the

certificate path fails.

Test 6: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the

TOEôs certificate has the cA flag in the basicConstraints extension set to TRUE. The validation of the

certificate path succeeds.

Test 7: The evaluator shall modify any byte in the first eight bytes of the certificate and demonstrate

that the certificate fails to validate. (The certificate will fail to parse correctly.)

Test 8: The evaluator shall modify any byte in the last byte of the certificate and demonstrate that the

certificate fails to validate. (The signature on the certificate will not validate.)

Test 9: The evaluator shall modify any byte in the public key of the certificate and demonstrate that

the certificate fails to validate. (The signature on the certificate will not validate.)

The developer provided a custom test app, named x509 Certificate Validation CC Test App, to test these

activities. The app runs through a series of tests that test validates a certificate with a good chain, does

not validate a certificate with a certificate missing from the chain, does not validate an expired

certificate, does not validate a revoked certificate via OCSP and CRL, does not validate a CA certificate

that does not contain the basicConstraints extension or does not have the basicConstraints extension set,

and validates a CA certificate with the basicConstraints extension to TRUE. The app also modifies the

specified bytes in a certificate and the certificate does not validate.

2.3.14 Extended: X509 certificate authentication (FIA_X509_EXT.2)

2.3.14.1 TSS Assurance Activity

The evaluator shall check the TSS to ensure that it describes how the TOE chooses which certificates

to use, and any necessary instructions in the administrative guidance for configuring the operating

 Page 105 of 181

environment so that the TOE can use the certificates.

[ST] section 6.4.2 describes how each component that uses X.509 certificates will have a repository for

public certificates and will select a certificate based on criteria such as entity name for the

communication partner, any extended key usage constraints, and cryptographic algorithms associated

with the certificate.

[Mobile Guide] Section 13 Managing Certificates provides links to online pages describing configuring

the operating environment so that the TOE can use the certificates including importing X.509v3

certificates into the Trust Anchor Database.

The evaluator shall examine the TSS to confirm that it describes the behavior of the TOE when a

connection cannot be established during the validity check of a certificate used in establishing a

trusted channel.

[ST] section 6.4.2 X.509 Certificate Validation and Generation covers communication failure during

certificate validation for IPsec and TLS (search ñif Windows is not able to check the validation status for

a certificateò). The TSF actions are:

¶ Allow the administrator to choose whether to accept the certificate in these cases: HTTPS web

browsing

¶ Allow the user to choose whether to accept the certificate in these cases: HTTPS web browsing

¶ Not accept the certificate: TLS trusted channel, update Windows, update mobile applications,

and integrity verification

For web browsing, a user chooses to accept certificates on a case-by-case basis. The user may be acting

as an administrator or standard user.

2.3.14.2 Guidance Assurance Activities

The evaluator shall verify that any distinctions between trusted channels are described. If the

requirement that the administrator is able to specify the default action, then the evaluator shall ensure

that the operational guidance contains instructions on how this configuration action is performed.

[Mobile Guide] section 13 Managing Certificates covers trusted channel policy. Subsection 13.1 IT

Administrator Guidance describes setting Wi-Fi, VPN, and certificate profiles using an MDM as well as

providing links to online guidance. Section 13.2 Windows 10 provides the same information for

Windows 10 local administrators.

FIA_X509_EXT.2.2 specifies two user behaviors when the TOE cannot establish a connection for

revocation checking. The TOE either prevents the connection (EAP-TLS and IPsec) or presents the user

with an option to accept the certificate (TLS/HTTPS for web browsing). [Mobile Guide] section 13

covers these behaviors for Windows 10 and Windows 10 Mobile. Subsection 13.1 IT Administrator

Guidance describes the first behavior for MDM management. Subsection 13.2.2 Local Administrator

Guidance describes local Windows 10 management. Subsection 13.2.3 User Guidance covers the second

behavior. In a browsing scenario, Windows presents the user with the option to accept the certificate.

2.3.14.3 Test Activities

The evaluator shall perform the following test for each trusted channel:

 Page 106 of 181

Test: The evaluator shall demonstrate that using a valid certificate that requires certificate validation

checking to be performed in at least some part by communicating with a non-TOE IT entity. The

evaluator shall then manipulate the environment so that the TOE is unable to verify the validity of the

certificate, and observe that the action selected in FIA_X509_EXT.2.2 is performed. If the selected

action is administrator-configurable, then the evaluator shall follow the operational guidance to

determine that all supported administrator-configurable options behave in their documented manner.

The activity is performed in conjunction with FIA_X509_EXT.1.

2.3.15 Extended: X509 certificate authentication (FIA_X509_EXT.2.3)

2.3.15.1 TSS Assurance Activity

None defined.

2.3.15.2 Guidance Assurance Activities

None defined.

2.3.15.3 Test Activities

None defined.

2.3.16 Extended: X509 certificate authentication (FIA_X509_EXT.2.4)

2.3.16.1 TSS Assurance Activity

If the ST author selects "device-specific information", the evaluator shall verify that the TSS contains

a description of the device-specific fields used in certificate requests.

When Windows needs to generate a certificate enrollment request it will include a distinguished name,

information about the cryptographic algorithms used for the request, any certification extensions, and

information about the client requesting the certificate. (Section 6.4.2 X.509 Certificate Validation and

Generation).

2.3.16.2 Guidance Assurance Activities

The evaluator shall check to ensure that the operational guidance contains instructions on generating

a Certificate Request Message. If the ST author selects "Common Name", "Organization",

"Organizational Unit", or "Country", the evaluator shall ensure that this guidance includes

instructions for establishing these fields before creating the certificate request message.

[Mobile Guide] section 13.2.4 Custom Certificate Requests describes how certificate requests with

specific fields such as "Common Name", "Organization", "Organizational Unit", and/or "Country" can

 Page 107 of 181

be generated by apps using the Certificates.CertificateEnrollmentManager.CreateRequestAsync API.

The section provides a link to the documentation for the API. MDM systems perform certificate

enrollment as described in subsection 13.1 IT Administrator Guidance.

2.3.16.3 Test Activities

The evaluator shall also perform the following tests:

Test 1: The evaluator shall use the operational guidance to cause the TOE to generate a certificate

request message. The evaluator shall capture the generated message and ensure that it conforms with

the format specified. The evaluator shall confirm that the certificate request provides the public key

and other required information, including any necessary user-input information.

The evaluator requested a certificate from the TOE and noted the required information and public key.

The evaluator signed the certificate request and imported it onto the TOE. The evaluator verified that the

fields and public key in the certificate matched the ones specified in the request.

Test 2: The evaluator shall demonstrate that validating a certificate response message without a valid

certification path results in the function failing. The evaluator shall then load a certificate or

certificates as trusted CAs needed to validate the certificate response message, and demonstrate that

the function succeeds. The evaluator shall then delete one of the certificates, and show that the

function fails.

This activity is performed in conjunction with FIA_X509_EXT.1.

2.3.17 Extended: Request Validation of certificates (FIA_X509_EXT.3)

2.3.17.1 TSS Assurance Activity

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes

the security function (certificate validation) described in this requirement. This documentation shall

be clear as to which results indicate success and failure.

[ST] section 6.4.2 X.509 Certificate Validation and Generation identifies interfaces

Certificate.BuildChainAsync to construct a certificate chain and CertificateChain.Validate to validate a

chain. The API checks are:

1. Certificate.BuildChainAsync

a. API contract: Windows.Foundation.UniversalApiContract

b. Success/failure results: always succeeds

2. CertificateChain.Validate

a. API contract: Windows.Foundation.UniversalApiContract

b. Success/failure results: ChainValidationResult identifies success and reasons for failures

 Page 108 of 181

[ST] section 10 Appendix B: Interfaces and Binaries explicitly states the applicability of the interfaces:

ñThis section is a list of Universal Windows Platform (UWP) APIs used during testing of Windows 10.ò

2.3.17.2 Guidance Assurance Activities

None defined.

2.3.17.3 Test Activities

The evaluator shall write, or the developer shall provide access to, an application that requests

certificate validation by the TSF. The evaluator shall verify that the results from the validation match

the expected results according to the API documentation. This application may be used to verify that

import, removal, modification, and validation are performed correctly according to the tests required

by FDP_STG_EXT.1, FDP_ITC_EXT.1, FMT_SMF_EXT.1.1, and FIA_X509_EXT.1.

This activity is performed in conjunction with FIA_X509_EXT.1.

2.4 Security Management (FMT)

2.4.1 Extended: Management of Security Functions Behavior (FMT_MOF_EXT.1.1)

2.4.1.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes those management functions which may only be

performed by the user and confirm that the TSS does not include an Administrator API for any of

these management functions. This activity will be performed in conjunction with FMT_SMF_EXT.1.

[ST] Table 9 Management Functions identifies the management functions implemented by the TOE.

Functions that the TOE does not implement are struck out. Table 20 Mobile Device Management

Capabilities in Section 6.5 Security Management identifies FMT_SMF_EXT.1 management functions

that can be performed by a device user, device administrator (local administrator), and MDM agent.

In Table 20, a checkmark means that both Windows 10 and Windows 10 Mobile implement the security

function for the particular role. The table also indicates where Windows 10 and Windows 10 Mobile

have different behavior, namely, functions 9, 14, 20, 22, 24, 25, and 30. Functions 24 and 30 are

available on Windows 10 only.

 Section 6.5 explains that Windows does not allow a device user to modify a policy or configuration set

by an administrator (which applies to functions 8, 11, 12, 20, 26, 28, 30, 35, and 40).

2.4.1.2 Guidance Assurance Activities

None defined.

2.4.1.3 Test Activities

None defined.

 Page 109 of 181

2.4.2 Extended: Management of Security Functions Behavior (FMT_MOF_EXT.1.2)

2.4.2.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes those management functions which may be

performed by the Administrator, to include how the user is prevented from accessing, performing, or

relaxing the function (if applicable), and how applications/APIs are prevented from modifying the

Administrator configuration.

[ST] section 6.5 Security Management presents Table 20 Mobile Device Management Capabilities

identifying which FMT_SMF_EXT.1 management functions can be performed by an administrator

(local administrator or MDM agent) and administrator-restricted for enrolled devices. Section 6.5

explains Windows does not allow a device user to modify a policy or configuration set by an

administrator (which applies to functions 8, 11, 12, 20, 26, 28, and 40).

The TSS also describes any functionality that is affected by administrator-configured policy and how.

This activity will be performed in conjunction with FMT_SMF_EXT.1.

Section 6.5 explains Windows does not allow a device user to modify a policy or configuration set by an

administrator (which applies to functions 8, 11, 12, 20, 26, 28, and 40).

2.4.2.2 Guidance Assurance Activities

None defined.

2.4.2.3 Test Activities

Test 1: The evaluator shall use the test environment to deploy policies to Mobile Devices.

Test 2: The evaluator shall create policies which collectively include all management functions which

are controlled by the (enterprise) administrator and cannot be overridden/relaxed by the user as

defined in FMT_MOF_EXT.1.1. The evaluator shall apply these policies to devices, attempt to

override/relax each setting both as the user (if a setting is available) and as an application (if an API

is available), and ensure that the TSF does not permit it. Note that the user may still apply a more

restrictive policy than that of the administrator.

Test 3: Additional testing of functions provided to the administrator are performed in conjunction

with the testing activities for FMT_SMF_EXT.1.1.

 This activity is performed in conjunction with FMT_SMF_EXT.1. The evaluator configured and tested

each management function as specified in the ST.

 Page 110 of 181

2.4.3 Extended: Specification of Management Functions (FMT_SMF_EXT.1)

2.4.3.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes all management functions, what role(s) can perform

each function, and how these functions are (or can be) restricted to the roles identified by

FMT_MOF_EXT.1.

This activity is performed in conjunction with FMT_MOF_EXT.1.1. See sections 2.4.1.1 above and

2.4.2.1 above.

The following activities are organized according to the function number in the table. These activities

include TSS assurance activities, AGD assurance activities, and test activities.

Test activities specified below shall take place in the test environment described in the Assurance

Activity for FPT_TUD_EXT.1.1, FPT_TUD_EXT.1.2, and FPT_TUD_EXT.1.3. The evaluator shall

consult the AGD guidance to perform each of the specified tests, iterating each test as necessary if

both the user and administrator may perform the function. The evaluator shall verify that the AGD

guidance describes how to perform each management function, including any configuration details.

For each specified management function tested, the evaluator shall confirm that the underlying

mechanism exhibits the configured setting.

2.4.3.2 Function 1 TSS Ass urance Activity

The evaluator shall verify the TSS defines the allowable policy options: the range of values for both

password length and lifetime, and a description of complexity to include character set and complexity

policies (e.g., configuration and enforcement of number of uppercase, lowercase, and special

characters per password).

Function 1: Configure Password Policy

[ST] section 6.4.3 SFR Mapping states Windows devices support logon passwords at least 14 characters

in length up to 127 characters.

[ST] section 6.4.3 states logon passwords can be composed from uppercase characters, lowercase

characters, digits, and special characters.

[ST] section 6.6 Security Management states that the complexity requirements include English upper

and lowercase characters from A- Z, base 10 digits, non-alphabetic characters, from three of these four

categories; and the password lifetime can range from 1 to 999 days.

2.4.3.3 Function 1 Guidance A ssurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

 Page 111 of 181

Function 1: Configure Password Policy

[Mobile Guide] section 11 Managing Passwords provides links to TechNet topics that describe

characteristics of strong passwords and best practices for password policy. An administrator configures

the minimum password length either through an MDM10 solution or as a local Windows 10

administrator. Subsection 11.1.1 IT Administrator Guidance describes MDM policy. Subsection 11.1.2

provides a link to online documentation for setting Windows 10 password policy as a local

administrator.

2.4.3.4 Function 1 Test Activities

Test 1: The evaluator shall exercise the TSF configuration as the administrator and perform positive

and negative tests, with at least two values set for each variable setting, for each of the following:

ǒ minimum password length

ǒ minimum password complexity

ǒ maximum password lifetime

Function 1: Configure Password Policy

The evaluator configured the TOE to accept a specified password length and complexity. The evaluator

tested a combination of passwords that either met or failed to meet the setting. The evaluator confirmed

that the TOE only accepted the passwords that met the setting. The evaluator also configured the

password lifetime and observed that when the lifetime was met, the user was forced to change the

password.

2.4.3.5 Function 2 TSS Assurance Activity

The evaluator shall verify the TSS defines the range of values for both timeout period and number of

authentication failures.

Function 2: Configure Session Locking Policy

[ST] section 6.7 TOE Access describes the session timeout function.

[ST] section 6.4 Identification and Authentication identifies the range of values for the number of

consecutive failed logon attempts as from 0 (never lockout the account) to 999.

The timeout can range from 1 minute to 9999 minutes with a default value of 15 minutes.

2.4.3.6 Function 2 Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

10 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 112 of 181

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 2: Configure Session Locking Policy

[Mobile Guide] section 16 Locking a Device includes instructions for configuring session locking

policy. For Windows 10, section 16.1.1 Local Administrator Guidance covers setting policies for all

users. Section 16.1.2 User Guidance covers configuring screen lock timeout. Similarly, section 16.2.1

User Guidance covers screen lock timeout for a Windows 10 Mobile user.

2.4.3.7 Function 2 Test Activities .

Test 2: The evaluator shall exercise the TSF configuration as the user and the administrator. The

evaluator shall perform positive and negative tests, with at least two values set for each variable

setting, for each of the following.

ǒ screen-lock enabled/disabled

ǒ screen lock timeout

ǒ number of authentication failures (may be combined with test for FIA_AFL.1)

Function 2: Configure Session Locking Policy

This activity was performed in conjunction with FIA_UAU_EXT.3.

2.4.3.8 Function 3 TSS Assurance Activity

None defined.

Function 3: Enable/Disable the VPN Protection

2.4.3.9 Function 3 Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 3: Enable/Disable the VPN Protection

[Mobile Guide] section 8 Managing VPN covers configuring VPN, both by an MDM 11 system (section

8.1 IT Administrator Guidance) and by a local Windows 10 administrator (section 8.2.1 Local

11 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 113 of 181

Administrator Guidance). Evaluation of VPN support is as described in section 2.2.6 Extended: Subset

information flow control (FDP_IFC_EXT.1) and [ST] section 6.3.4 VPN Client.

2.4.3.10 Function 3 Test Activities

Test 3: The evaluator shall perform the following tests:

Test 3a: The evaluator shall exercise the TSF configuration to enable the VPN protection. These

configuration actions must be used for the testing of the FDP_IFC.1.1 requirement.

Test 3b: [conditional] If ñper-app basisò is selected, the evaluator shall create two applications and

enable one to use the VPN and the other to not use the VPN. The evaluator shall exercise each

application (attempting to access network resources; for example by browsing different websites)

individually while capturing packets from the TOE. The evaluator shall verify from the packet capture

that the traffic from the VPN-enabled application is encapsulated in IPsec and that the traffic from the

VPN-disabled application is not encapsulated in IPsec.

Function 3: Enable/Disable the VPN Protection

This activity was performed in conjunction with FDP_IFC_EXT.1.

2.4.3.11 Function 4 TSS Assurance Activity

The evaluator shall verify that the TSS includes a description of each radio and an indication of if the

radio can be enabled/disabled along with what role can do so.

Function 4: Enable/Disable [GPS, Wi-Fi, Bluetooth, mobile broadband]

[ST] section 1.1 Security Target, TOE, and Common Criteria (CC) Identification describes the radios as

follows: the Wi-Fi radio is conformant to IEEE 802.11, 3G/4G Mobile Broadband (GSM, WCDMA,

and LTE protocol support), and Bluetooth 4.1.

[ST] Table 20 Mobile Device Management Capabilities in Section 6.5 Security Management indicates

that the radios can be enabled/disabled by device administrator and MDM agent. Lumia devices used in

this evaluation have a GPS radio which provides location services. Enabling/disabling the broadband

connection can only be done by the local user and not the mobile device manager. Surface Pro 4 does

not have a GPS radio.

Microsoft uses iteration of requirements to identify significant difference in device capability. Microsoft

uses footnotes to identify small differences in device capability or evaluation evidence. For

FMT_SMF_EXT.1 Function 4, a footnote indicates only the Microsoft Lumia devices have GPS radios.

In addition the evaluator shall verify that the frequency ranges at which each radio operates is

included in the TSS.

[ST] section 6.6.1.1.2 Frequency Ranges provides the required frequency information.

2.4.3.12 Function 4 Guidance Assurance Activities

The evaluator shall confirm that the AGD guidance describes how to perform the enable/disable

function.

 Page 114 of 181

Function 4: Enable/Disable [GPS, Wi-Fi, Bluetooth, mobile broadband]

[Mobile Guide] section 10 Managing Bluetooth provides instructions for configuring Bluetooth, both by

an MDM system (section 10.1 IT Administrator Guidance) and by a local Windows 10 administrator

(section 10.2.1 Local Administrator Guidance)

[Mobile Guide] section 22 Managing Location Services (GPS) covers enabling/disabling GPS, both by

an MDM 12 system (section 22.1 IT Administrator Guidance) and by a local Windows 10 administrator

(section 22.2.1 Local Administrator Guidance).

[Mobile Guide] section 23 Managing Wi-Fi covers enabling/disabling Wi-Fi both by an MDM system

(section 23.1 IT Administrator Guidance) and by a local Windows 10 administrator (section 23.2.1

Local Administrator Guidance)..

[Mobile Guide] section 28 Managing Mobile Broadband provides a link to user guidance for

enabling/disabling mobile broadband (section 28.1 User Guidance).

2.4.3.13 Function 4 Test Activities

Test 4: The evaluator shall exercise the TSF configuration as both the user and administrator to

enable and disable the state of each radio (e.g. Wi-Fi, GPS, cellular, NFC, Bluetooth) listed by the ST

author. Additionally, the evaluator shall repeat the steps below, booting into any auxiliary boot mode

supported by the device. For each radio, the evaluator shall:

Step 1 - Configure spectrum analyzer to sweep desired frequency range for the radio to be

tested (based on range provided in the TSS) and place the handset into a Ramsey Box (or other

RF-shielding environment) to isolate them from all other RF traffic.

Step 2 - The evaluator shall create a baseline of the expected behaviour of RF signals. If a

spike of RF activity for the uplink channel for the specific radio frequency band is observed it

is deemed that the radio are enabled. The evaluator shall power on the device, ensure the

radio in question is enabled, power off the device, enable ñMax Holdò on the spectrum

analyzer and power on the device. The evaluator shall observe if any RF spikes are present.

The evaluator shall enter any necessary passwords to complete the boot process, waiting 2

minutes and resetting the spectrum analyzer between each step.

Step 3 - The evaluator shall disable the radio in question and complete the above tests, five

times per radio. The evaluator shall verify the absence of RF activity for the uplink channel

during device reboot and casual usage.

Function 4: Enable/Disable [GPS, Wi-Fi, Bluetooth, mobile broadband]

12 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 115 of 181

The evaluator performed a spectrum analysis on the TOE with each radio enabled and disabled inside a

Faraday Bag. The evaluator set a baseline of the spectrum analysis with nothing in the Faraday Bag and

compared the result to the capture with the disabled radios. The evaluator confirmed that there were no

unexpected spikes in the spectrum analysis when the radios were disabled.

2.4.3.14 Function 5 TSS Assurance Activity

The evaluator shall verify that the TSS includes a description of each collection device and an

indication of if it can be enabled/disabled along with what role can do so.

Function 5: Enable/Disable: camera, microphone

[ST] section 6.3.1 Restricting Access to System Services describes the Microphone and the WebCam

capability which provides the camera.

[ST] Table 20 Mobile Device Management Capabilities in Section 6.5 Security Management indicates

that the camera and microphone can be enabled/disabled across the device by users and administrators.

2.4.3.15 Function 5 Guidance Assurance Activities

The evaluator shall confirm that the AGD guidance describes how to perform the enable/disable

function.

Function 5: Enable/Disable: camera, microphone

[Mobile Guide] section 19 Managing Collection Devices describes how to enable/disable the camera

and microphone, both by an MDM 13 system (section 21.1 IT Administrator) and by a local Windows 10

administrator (section 19.2.1 Local Administrator Guidance).

2.4.3.16 Function 5 Test Activities

Test 5: The evaluator shall perform the following test(s):

Test 5a: The evaluator shall exercise the TSF configuration as both the user and administrator to

enable and disable the state of each audio or visual collection devices (e.g. camera, microphone)

listed by the ST author. For each collection device, the evaluator shall disable the device and then

attempt to use its functionality. The evaluator shall reboot the TOE and verify that disabled collection

devices may not be used during or early in the boot process. Additionally, the evaluator shall boot the

device into each available auxiliary boot mode and verify that the collection device cannot be used.

Test 5b: [conditional] If ñper-app basisò is selected, the evaluator shall create two applications and

enable one to use access the A/V device and the other to not access the A/V device. The evaluator

13 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 116 of 181

shall exercise each application attempting to access the A/V device individually. The evaluator shall

verify that the enabled application is able to access the A/V device and the disabled application is not

able to access the A/V device.

Function 5: Enable/Disable: camera, microphone

The evaluator disabled both the camera and microphone on the TOE. The evaluator then attempted to

use the camera and microphone through their default apps and verified that TOE denied access. The

evaluator confirmed that the TOE allowed access to the camera and microphone via the app when they

were enabled.

2.4.3.17 Function 6 TSS Assurance Activity

None defined.

Function 6: Specify wireless networks (SSIDs) to which the TSF may connect

2.4.3.18 Function 6 Guidance Assurance Activities

The evaluator shall specify the wireless network and wireless network settings according to the AGD

guidance both as an administrator and as a user.

Function 6: Specify wireless networks (SSIDs) to which the TSF may connect

[Mobile Guide] section 23 Managing Wi-Fi describes how to manage Wi-Fi using an MDM 14 system

(section 23.1 IT Administrator).

2.4.3.19 Function 6 Test Activities

The evaluator shall create a test environment consisting of a wireless access system and an

authentication server for the purpose of tests associated with functions 6 and 7.

Test 6: The evaluator shall specify the wireless network and wireless network settings according to

the AGD guidance both as an administrator and as a user. The evaluator shall specify a value for

each management function according to the configuration of the test network. Minimally, the

evaluator shall construct 2 SSIDs, one corresponding to a WPA2 Enterprise network using EAP-TLS

and one corresponding to a disallowed SSID. The evaluator shall verify that the TSF can establish a

connection to the allowed SSID, but not to the disallowed SSID.

Function 6: Specify wireless networks (SSIDs) to which the TSF may connect

This activity was performed in conjunction with FCS_TLSC_EXT.1.

14 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 117 of 181

2.4.3.20 Function 7 TSS Assurance Activity

The evaluator shall verify the TSS describes the configuration and enforcement of the various

credential options used in validation of the WLAN authentication server.

Function 7: Configure the security policy for each wireless network: (a, b, c, d)

Section 6.3.3 Certificate Storage describes how certificates are stored and configured. The Trust Anchor

Database contains a list of trusted root Certificate Authority certificates. Access to a certificate store is

managed by the discretionary access control policy in Windows such that only the authorized

administrator, i.e., the user or the local administrator, can add or remove entries. Certificates which are

used by applications, for example, IPsec and TLS, are also placed in certificate stores for the user.

Changes to the trusted root certificates can be made using Certificate Trust Lists.

Section 6.5 notes the configuration data for the Wi-Fi settings can be set by the MDM. The policy is

enforced when the computer connects to the Wi-Fi network.

2.4.3.21 Function 7 Guidance Assurance Activities

The evaluator shall review the administrative guidance to determine that it describes how to configure

the security type, protocol, and client credentials for each of the credential options described in the

TSS.

Function 7: Configure the security policy for each wireless network: (a, b, c, d)

[Mobile Guide] section 4 Managing EAP-TLS describes configuration of security policy for wireless

networks, both by an MDM 15 system (section 4.1 IT Administrator Guidance) and by a local Windows

10 administrator (section 4.2.1 Local Administrator Guidance).

2.4.3.22 Function 7 Test Activities

The evaluator shall create a test environment consisting of a wireless access system and an

authentication server for the purpose of tests associated with functions 6 and 7.

Test 7: The evaluator shall specify a wireless network with an incorrect value for WLAN

authentication server and verify that the Mobile Device cannot connect to the WLAN. The evaluator

shall repeat this test, setting incorrect values for the security type and authentication protocol

individually and verify that the Mobile Device cannot connect to the WLAN. The evaluator shall then

specify, for each credential option claimed in the ST, correct options and demonstrate that the TOE

can successfully establish a connection to the WLAN.

15 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 118 of 181

Function 7: Configure the security policy for each wireless network: (a, b, c, d)

The evaluator configured separate wireless network profiles each containing an incorrect authentication

server, security type, or authentication protocol. The evaluator attempted to connect to each of these

profiles and verified that the connection did not succeed. Correct values were tested in conjunction with

FCS_TLSC_EXT.1.

2.4.3.23 Function 8 TSS Assurance Activity

None defined.

Function 8: Transition to the locked state

2.4.3.24 Function 8 Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

 Function 8: Transition to the locked state

[Mobile Guide] section 16 Locking a Device contains instructions for device locking, both by a

Windows 10 user (section 16.1.2 User Guidance) and by a Windows 10 Mobile user (section 16.2.1

User Guidance).

2.4.3.25 Function 8 Test Activities

Test 8: The evaluator shall use the test environment to instruct the TSF, both as a user and as the

administrator, to command the device to transition to a locked state, and verify that the device

transitions to the locked state upon command.

Function 8: Transition to the locked state

This activity was tested in conjunction FIA_UAU_EXT.3.

2.4.3.26 Function 9 TSS Assurance Activity

None defined.

Function 9: TSF wipe of protected data

2.4.3.27 Function 9 Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

 Page 119 of 181

Function 9: TSF wipe of protected data

[ST] Table 20 indicates both Windows 10 and Windows 10 Mobile provide Function 9, but via distinct

methods.

[Mobile Guide] section 3 Managing Wipe describes wiping device protected data, both by an MDM

system (section 3.1 IT Administrator) and by a local Windows 10 administrator (section 3.2.1 Local

Administrator Guidance). In addition, section 3.1 includes guidance for using an MDM system to

configure Windows 10 Mobile to wipe a device after a user exceeds a maximum number of consecutive

authentication failures.

2.4.3.28 Function 9 Test Activities

Test 9: The evaluator shall use the test environment to instruct the TSF, both as a user and as the

administrator, to command the device to perform a wipe of protected data. The evaluator must ensure

that this management setup is used when conducting the assurance activities in FCS_CKM_EXT.5.

Function 9: TSF wipe of protected data

This activity was performed in conjunction with FCS_CKM_EXT.5.

2.4.3.29 Function 1 0 TSS Assurance Activity

The evaluator shall verify the TSS describes the allowable application installation policy options

based on the selection included in the ST.

Function 10: Configure application installation policy by (a, c)

[ST] section 6.5 describes restrictions on application installation. (Search ñcan restrict which

applications are installedò.)

If the application whitelist is selected, the evaluator shall verify that the TSS includes a description of

each application characteristic upon which the whitelist may be based.

N/A ï Application whitelist is not selected.

2.4.3.30 Function 1 0 Guidance Assurance Activities

The evaluator shall exercise the TSF configuration as the administrator to restrict particular

applications, sources of applications, or application installation according to the AGD guidance.

Function 10: Configure application installation policy by (a, c)

 Page 120 of 181

[Mobile Guide] section 6 Managing Apps describes how to configure policy for installing applications,

both by an MDM 16 system (section 6.1 IT Administrator Guidance) and by a local Windows 10

administrator (section 6.2.1 Local Administrator Guidance).

2.4.3.31 Function 1 0 Test Activities

Test 10: Test 10: The evaluator shall exercise the TSF configuration as the administrator to restrict

particular applications, sources of applications, or application installation according to the AGD

guidance. The evaluator shall attempt to install unauthorized applications and ensure that this is not

possible. The evaluator shall, in conjunction, perform the following specific tests:

Test 10a: [conditional] The evaluator shall attempt to connect to an unauthorized repository in order

to install applications.

Test 10b: [conditional] The evaluator shall attempt to install two applications (one whitelisted, and

one not) from a known good repository and verify that the application not on the whitelist is rejected.

The evaluator shall also attempt to side-load executables or installation packages via USB

connections to determine that the white list is still adhered toThe evaluator shall attempt to install

unauthorized applications and ensure that this is not possible. The evaluator shall, in conjunction,

perform the following specific tests:

Test 10a: [conditional] The evaluator shall attempt to connect to an unauthorized repository in order

to install applications.

Test 10b: [conditional] The evaluator shall attempt to install two applications (one whitelisted, and

one not) from a known good repository and verify that the application not on the whitelist is rejected.

The evaluator shall also attempt to side-load executables or installation packages via USB

connections to determine that the white list is still adhered to

Function 10: Configure application installation policy by (a, c)

The evaluator configured the TOE to not allow installation of apps from the Windows Store. The

evaluator attempted to connect to the Windows Store and was unable to access it. The evaluator also

attempted to install and use a blacklisted application and verified the TOE denied this attempt. Windows

10 Mobile reported the failure and provided an error code (for example, 0x80073CF9 which generally

means an application is not available). The cases where the evaluator was allowed to install an

application is tested in conjunction with FPT_TUD_EXT.2.

Note: The TOE is limited to using only Windows Store apps so only blacklisted windows store apps

were tested (for example, side-loaded apps were not tested)

16 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 121 of 181

2.4.3.32 Function 1 1 and Function 12 TSS Assurance Activity

The evaluator shall verify that the TSS describes each category of keys/secrets that can be imported

into the TSFôs secure key storage.

Function 11 and 12: Import keys/secrets into the secure key storage, destroy imported keys/secrets and

any other keys/secrets in the secure key storage.

[ST] section 6.2.5 Key Storage describes the categories of keys that can be imported. The administrator

can configure Certificate Profiles in a Mobile Device Management (MDM) server for importing keys to

the enrolled Windows devices. Applications import keys/secrets into the secure key storage by using the

CertificateEnrollmentManager.ImportPfxDataAsync API. In addition, on Windows 10 devices users and

local administrators can use the Certificate MMC Snap-in to import keys from Personal Information

Exchange (.pfx) files into the secure key storage.

2.4.3.33 Function 11 and Function 12 Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 11 and 12: Import keys/secrets into the secure key storage, destroy imported keys/secrets and

any other keys/secrets in the secure key storage.

See AAR Section 2.1.22.2 in 2.1.22 Extended: Cryptographic Key Storage (FCS_STG_EXT.1) for the

guidance on these functions.

2.4.3.34 Function 11 and Function 12 Test Activities

Test 11: & Test 12: The test of these functions is performed in association with FCS_STG_EXT.1.

Function 11 and 12: Import keys/secrets into the secure key storage, destroy imported keys/secrets and

any other keys/secrets in the secure key storage.

This activity is covered in conjunction with FCS_STG_EXT.1.

2.4.3.35 Function 1 3 TSS Assurance Activity

None defined.

Function 13: Import X.509v3 certificates into the Trust Anchor Database

2.4.3.36 Function 1 3 Guidance Assurance Activities

The evaluator shall review the AGD guidance to determine that it describes the steps needed to

import, modify, or remove certificates in the Trust Anchor database, and that the users that have

 Page 122 of 181

authority to import those certificates (e.g., only administrator, or both administrators and users) are

identified.

Function 13: Import X.509v3 certificates into the Trust Anchor Database

See AAR Section 2.1.22.2 in 2.1.22 Extended: Cryptographic Key Storage (FCS_STG_EXT.1) for the

guidance on importing X.509 certificates.

2.4.3.37 Function 1 3 Test Activities

Test 13: The evaluator shall import certificates according to the AGD guidance as the user and/or as

the administrator, as determined by the administrative guidance. The evaluator shall verify that no

errors occur during import. The evaluator should perform an action requiring use of the X.509v3

certificate to provide assurance that installation was completed properly.

Function 13: Import X.509v3 certificates into the Trust Anchor Database

The evaluator imported a certificate to the TOE and verified no errors occurred. Successful use of this

certificate was tested in conjunction with FIA_X509_EXT.1.

2.4.3.38 Function 1 4 TSS Assurance Activity

The evaluator shall verify that the TSS describes each additional category of X.509 certificates and

their use within the TSF.

Function 14: Remove imported X.509v3 certificates and all X.509v3 certificates in the Trust Anchor

Database.

[ST] section 6.4.3 SFR Mapping states Windows uses X.509v3 certificates for EAP-TLS exchanges,

TLS, HTTPS, code signing for system software updates, code signing for mobile applications, and code

signing for integrity verification.

[ST] Table 20 indicates both Windows 10 and Windows 10 Mobile provide Function 14, but via distinct

methods.

2.4.3.39 Function 1 4 Guidance Assurance Activities

The evaluator shall remove an administrator-imported certificate and any other categories of

certificates included in the assignment of function 14 from the Trust Anchor Database according to

the AGD guidance as the user and as the administrator.

Function 14: Remove imported X.509v3 certificates and all X.509v3 certificates in the Trust Anchor

Database.

See AAR Section 2.1.22.2 in 2.1.22 Extended: Cryptographic Key Storage (FCS_STG_EXT.1) for the

guidance on removing X.509 certificates.

2.4.3.40 Function 1 4 Test Activities

Test 14: The evaluator shall remove an administrator-imported certificate and any other categories of

certificates included in the assignment of function 14 from the Trust Anchor Database according to

 Page 123 of 181

the AGD guidance as the user and as the administrator.

Function 14: Remove imported X.509v3 certificates and all X.509v3 certificates in the Trust Anchor

Database.

The evaluator removed a certificate from the Trust Anchor Database and verified that the certificate was

successfully removed.

2.4.3.41 Function 1 5 TSS Assurance Activity

The evaluator shall examine the TSS to ensure that it contains a description of each management

function that will be enforced by the enterprise once the device is enrolled.

Function 15 Enroll the TOE in management

Table 20 Mobile Device Management Capabilities in Section 6.5 Security Management describes the

management functions enforced by the enterprise once the device is enrolled.

2.4.3.42 Function 1 5 Guidance Assurance Activities

The evaluator shall examine the AGD guidance to determine that this same information is present.

Function 15 Enroll the TOE in management

[Mobile Guide] section 17 Managing Device Enrollment contains instructions for enrolling a mobile

device, both for a Windows 10 device (sections 17.1.1 Local Administrator Guidance and 17.1.2 User

Guidance) and for a Windows 10 Mobile device (section 17.2.1 User Guidance).

2.4.3.43 Function 1 5 Test Activities

Test 15: The evaluator shall verify that user approval is required to enroll the device into

management.

Function 15 Enroll the TOE in management

This activity was tested in conjunction with FMT_SMF_EXT.2.

2.4.3.44 Function 1 6 TSS Assurance Activity

The evaluator shall verify that the TSS includes an indication of what applications (e.g., user-installed

applications, Administrator-installed applications, or Enterprise applications) can be removed along

with what role can do so.

Function 16: Remove applications

[ST] describes removal of applications. (Search ñA user is able to uninstallò and ñThe MDF PP

designates Enterprise Applicationsò.)

[ST] Table 20 Mobile Device Management Capabilities in Section 6.5 Security Management identifies

the roles can remove applications as MDM.

 Page 124 of 181

2.4.3.45 Function 1 6 Guidance Assurance Activities

The evaluator shall examine the AGD guidance to determine that it details, for each type of

application that can be removed, the procedures necessary to remove those applications and their

associated data. For the purposes of this assurance activity, ñassociated dataò refers to data that are

created by the app during its operation that do not exist independent of the app's existence, for

instance, configuration data, or e-mail information thatôs part of an e-mail client. It does not, on the

other hand, refer to data such as word processing documents (for a word processing app) or photos

(for a photo or camera app).

Function 16: Remove applications

[Mobile Guide] section 6 Managing Apps describes how to remove applications, both by an MDM17

system (section 6.1 IT Administrator Guidance) and by a local Windows 10 administrator (section 6.2.1

Local Administrator Guidance).

2.4.3.46 Function 1 6 Test Activities

Test 16: The evaluator shall attempt to remove applications according to the AGD guidance and

verify that the TOE no longer permits users to access those applications or their associated data.

Function 16: Remove applications

The evaluator installed an app onto the TOE that created application data. The data was located on the

TOE and the app was then removed. The evaluator verified (by searching the file system) that the

application and the application created data was removed.

2.4.3.47 Function 1 7 TSS Assurance Activity

None defined.

Function 17: Update system software

2.4.3.48 Function 1 7 Guidance Assurance Activities

The evaluator shall attempt to update the TSF system software following the procedures in the AGD

guidance and verify that updates correctly install and that the version numbers of the system software

increase.

Function 17: Update system software

17 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 125 of 181

[Mobile Guide] section 18 Managing Updates describes how to install updates, both by a local Windows

10 administrator (section 18.1.1 Local Administrator Guidance) and by a Windows 10 Mobile user

(section 18.2.1 User Guidance).

2.4.3.49 Function 1 7 Test Activities

Test 17: The evaluator shall attempt to update the TSF system software following the procedures in

the AGD guidance and verify that updates correctly install and that the version numbers of the system

software increase.

Function 17: Update system software

This activity was performed in conjunction with FPT_TUD_EXT.2.

2.4.3.50 Function 1 8 TSS Assurance Activity

None defined.

Function 18: Install applications

2.4.3.51 Function 1 8 Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 18: Install applications

[Mobile Guide] section 6 Managing Apps describes how to install applications, both by an MDM18

system (section 6.1 IT Administrator Guidance) and by a local Windows 10 administrator (section 6.2.1

Local Administrator Guidance).

2.4.3.52 Function 1 8 Test Activities

Test 18: The evaluator shall attempt to install a mobile application following the procedures in the

AGD guidance and verify that the mobile application is installed and available on the TOE.

Function 18: Install applications

This activity was performed in conjunction with FPT_TUD_EXT.2.

18 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 126 of 181

2.4.3.53 Function 1 9 TSS Assurance Activity

The evaluator shall verify that the TSS includes an indication of what Enterprise applications are

removable, what actions initiate this removal, and what role can do so. This activity can be performed

in conjunction with the TSS activity defined for Function 16.

Function 19: Remove Enterprise Applications

[ST] Table 20 Mobile Device Management Capabilities in Section 6.5 Security Management identifies

the roles can remove Enterprise applications as the Administrator and MDM.

2.4.3.54 Function 1 9 Guidance Assurance Activities

The evaluator shall review the AGD guidance to determine that it describes the steps needed to

remove Enterprise applications from the device.

Function 19: Remove Enterprise Applications

[Mobile Guide] section 6 Managing Apps describes how to remove applications, both by an MDM

system (section 6.1 IT Administrator Guidance) and by a local Windows 10 administrator (section 6.2.1

Local Administrator Guidance).

2.4.3.55 Function 1 9 Test Activities

Test 19: The evaluator shall attempt to remove any Enterprise applications from the device by

following the administrator guidance. The evaluator shall verify that the TOE no longer permits users

to access those applications or their associated data.

Function 19: Remove Enterprise Applications

This activity was performed in conjunction with FMT_SMF_EXT.1 Function 16.

2.4.3.56 Function 20 TSS Assurance Activity

The evaluator shall ensure that the TSS includes a description of the Bluetooth profiles and services

supported and the Bluetooth security modes and levels supported by the TOE.

Function 20: Configure the Bluetooth trusted channel: (a, b, d)

[ST] Section 6.5 states that Windows does not place any restrictions for the kinds of supported

Bluetooth profiles and provides an implementation of Bluetooth Discoverable mode and Low Energy

(LE) mode. Section 6.4.3 SFR Mapping includes a link to documentation listing the Bluetooth profiles

that Windows 10 supports. Section 13 Appendix D Windows 10 Mobile Bluetooth Profiles covers

Windows 10 Mobile. Section 6.4.3 identifies the supported security mode (mode 2) and level

(authorization and authentication).

If function c is selected, the evaluator shall verify that the TSS describes any additional wireless

technologies that may be used with Bluetooth, including WiFi with Bluetooth High Speed and NFC as

an Out of Band pairing mechanism.

Function c is not selected.

 Page 127 of 181

If function f is selected, the evaluator shall verify that all supported Bluetooth services are listed in the

TSS as manageable and, if the TOE allows disabling by application rather than by service name, that

a list of services for each application is also listed.

Function f is not selected.

If function g is selected, the evaluator shall verify that the TSS describes the method by which the level

of security for pairings are managed, including whether the setting is performed for each pairing or is

a global setting.

Function g is not selected.

If function h is selected, the evaluator shall verify that the TSS describes when Out of Band pairing

methods are allowed and which ones are configurable.

Function h is not selected.

2.4.3.57 Function 20 Guidance Assurance Activities

The evaluator shall verify that the AGD guidance describes how to perform each management

function, including any configuration details. For each specified management function tested, the

evaluator shall confirm that the underlying mechanism exhibits the configured setting.

Function 20: Configure the Bluetooth trusted channel: (a, b, d)

[Mobile Guide] section 10 Managing Bluetooth provides instructions for configuring Bluetooth by an

MDM system (section 10.1 IT Administrator Guidance) and by a Windows 10 local administrator or

user (section 10.2 Windows 10).

2.4.3.58 Function 20 Test Activities

Test 20: The evaluator shall use a Bluetooth-specific protocol analyzer to perform the following tests

of each sub-function:

Test 20a: The evaluator shall disable the Discoverable mode and shall verify that other Bluetooth

BR/EDR devices cannot detect the TOE. The evaluator shall use the protocol analyzer to verify that

the TOE does not respond to inquiries from other devices searching for Bluetooth devices. The

evaluator shall enable Discoverable mode and verify that other devices can detect the TOE and that

the TOE sends response packets to inquiries from searching devices.

Test 20b: The evaluator shall examine Bluetooth traffic from the TOE to determine the current

Bluetooth device name, change the Bluetooth device name, and verify that the Bluetooth traffic from

the device lists the new name.

 Page 128 of 181

Test 20c: [conditional] The evaluator shall disable additional wireless technologies for the TOE and

verify that the Bluetooth traffic is not able to be sent over WiFi using Bluetooth High Speed, and that

NFC cannot be used for pairing. The evaluator shall enable additional wireless technologies and

verify that Bluetooth High Speed uses WiFi or that the device can pair using NFC.

Test 20d: [conditional] The evaluator shall enable Advertising for Bluetooth LE, verify that the

advertisements are captured by the protocol analyzer, disable Advertising, and verify that no

advertisements from the device are captured by the protocol analyzer.

Test 20e: [conditional] The evaluator shall enable Connectable mode and verify that other Bluetooth

devices may pair with the TOE and (if the devices were bonded) re-connect after pairing and

disconnection. For BR/EDR devices: The evaluator shall use the protocol analyzer to verify that the

TOE responds to pages from the other devices and permits pairing and re-connection. The evaluator

shall disable Connectable mode and verify that the TOE does not respond to pages from remote

Bluetooth devices, thereby not permitting pairing or re-connection. For LE: The evaluator shall use

the protocol analyzer to verify that the TOE sends connectable advertising events and responds to

connection requests. The evaluator shall disable Connectable mode and verify that the TOE stops

sending connectable advertising events and stops responding to connection requests from remote

Bluetooth devices.

Test 20f: [conditional] The evaluator shall allow low security modes/levels on the TOE and shall

initiate pairing with the TOE from a remote device that allows only something other than Security

Mode 4/Level 3 or Security Mode 4/Level 4 (for BR/EDR), or Security Mode 1/Level 3 (for LE). (For

example, a remote BR/EDR device may claim Input/Output capability ñNoInputNoOutputò and state

that man-in-the-middle (MiTM) protection is not required. A remote LE device may not support

encryption.) The evaluator shall verify that this pairing attempt succeeds due to the TOE falling back

to the low security mode/level. The evaluator shall then remove the pairing of the two devices,

prohibit the use of low security modes/levels on the TOE, then attempt the connection again. The

evaluator shall verify that the pairing attempt fails. With the low security modes/levels disabled, the

evaluator shall initiate pairing from the TOE to a remote device that supports Security Mode 4/Level

3 or Security Mode 4/Level 4 (for BR/EDR) or Security Mode 1/Level 3 (for LE). The evaluator shall

verify that this pairing is successful and uses the high security mode/level.

Test 20g: [conditional] The evaluator shall attempt to pair using each of the Out of Band pairing

methods, verify that the pairing method works, iteratively disable each pairing method, and verify that

the pairing method fails.

Function 20: Configure the Bluetooth trusted channel: (a, b, d)

The evaluator used a peer Bluetooth device to scan for discoverable Bluetooth devices. When

discoverable mode was disabled on the TOE, it was not found; when discoverable was enabled on the

TOE it was found on the peer device. The evaluator used the peer to collect the Bluetooth device name

of the TOE. The evaluator confirmed that when the device name was changed on the TOE, the peer

recognized the new name. The evaluator used a special app as a listener to analyze the Bluetooth

 Page 129 of 181

advertisement traffic from the TOE. The evaluator enabled the listener and observed the traffic from the

TOE with advertising enabled. The evaluator then disabled advertising and verified that the listener did

not pick up any traffic from the TOE.

2.4.3.59 Function 21 TSS Assurance Activity

None defined.

Function 21: Enable/disable display notification in the locked state of: (a, b, c, d, e)

2.4.3.60 Function 21 Guidance Assurance Activities

The evaluator shall examine the AGD Guidance to determine that it specifies, for at least each

category of information selected for Function 21, how to enable and disable display information for

that type of information in the locked state.

Function 21: Enable/disable display notification in the locked state of: (a, b, c, d, e)

[Mobile Guide] section 12 Managing Lock Screen Notifications contains instructions to manage

notifications on the lock screen, both by a Windows 10 user (sections 12.1.1 Local Administrator

Guidance and 12.1.1.1 User Guidance) and by a Windows 10 Mobile user (section 12.2.1 User

Guidance).

2.4.3.61 Function 21 Test Activities

Test 21: For each category of information listed in the AGD guidance, the evaluator shall verify that

when that TSF is configured to limit the information according to the AGD, the information is no

longer displayed in the locked state.

Function 21: Enable/disable display notification in the locked state of: (a, b, c, d, e)

The evaluator enabled the selected notifications for the TOE in the locked state. The evaluator observed

that when each of these types of messages is pushed to the TOE, the notification is displayed on the

locked screen. The evaluator then disabled the notifications and observed that the notifications are no

longer displayed on the lock screen.

It should be noted that the following functions are optional capabilities, if the function is

implemented, then the following assurance activities shall be performed. The notation of

ñ[conditional] beside the function number indicates that if the function is not included in the ST, then

there is no expectation that the assurance activity be performed.

2.4.3.62 Function 22 [Conditional] TSS Assurance Activity

The evaluator shall verify that the TSS includes a list of each externally accessible hardware port and

an indication of if data transfer over that port can be enabled/disabled.

Function 22: Enable/disable all data signaling over [USB hardware ports]

 Page 130 of 181

[ST] Section 6.5 indicates only Surface Pro 4 provides the capability to enable and disable data signaling

over its USB hardware port.

Microsoft uses iteration of requirements to identify significant difference in device capability. Microsoft

uses footnotes to identify small differences in device capability or evaluation evidence. For

FMT_SMF_EXT.1 Function 22, a footnote indicates only Surface Pro 4 provides optional Function 22.

2.4.3.63 Function 22 [Conditional] Guidance Assurance Activities

AGD guidance will describe how to perform the enable/disable function.

Function 22: Enable/disable all data signaling over [USB hardware ports]

[Mobile Guide] section 26 Managing USB describes how to configure USB hardware ports, both by an

MDM 19 system (section 26.1 IT Administrator Guidance) and by a local Windows 10 administrator

(section 26.2.1 Local Administrator Guidance).

2.4.3.64 Function 22 [Conditional] Test Activities

Test 22: The evaluator shall exercise the TSF configuration to enable and disable data transfer

capabilities over each externally accessible hardware ports (e.g. USB, SD card, HDMI) listed by the

ST author. The evaluator shall use test equipment for the particular interface to ensure that no low-

level signalling is occurring on all pins used for data transfer when they are disabled. For each

disabled data transfer capability, the evaluator shall repeat this test by rebooting the device into the

normal operational mode and verifying that the capability is disabled throughout the boot and early

execution stage of the device.

Function 22: Enable/disable all data signaling over [USB hardware ports]

The evaluator attached a logic analyzer to the USB port of the Surface Pro 4. The evaluator then took

logic samples while the USB ports were both enabled and disabled and verified that data was passed in

the enabled state and no data was transferred while disabled.

2.4.3.65 Function 23 [Conditional] TSS Assurance Activity

The evaluator shall verify that the TSS describes how the TSF acts as a server in each of the protocols

listed in the ST, and the reason for acting as a server.

Function 23: Enable/disable [assignment: list of protocols where the device acts as a server]

Assurance Activity is not applicable. The functionality is not claimed in the security target.

19 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 131 of 181

2.4.3.66 Function 23 [Conditional] Guidance Assurance Activities

None defined.

Function 23: Enable/disable [assignment: list of protocols where the device acts as a server]

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.67 Function 23 [Conditional] Test Activities

Test 23: The evaluator shall attempt to disable each listed protocol in the assignment, which should

include tethering uses. The evaluator shall verify that remote devices can no longer access the TOE or

TOE resources using any disabled protocols.

Function 23: Enable/disable [assignment: list of protocols where the device acts as a server]

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.68 Function 24 [Conditional] TSS Assurance Activity

None defined.

Function 24: enable/disable developer modes

2.4.3.69 Function 24 [Conditional] Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 24: enable/disable developer modes

[Mobile Guide] section 24 Managing Developer Mode describes how to configure developer mode, both

by an MDM20 system (section 24.1 IT Administrator Guidance) and by a local Windows 10

administrator (section 24.2.1 Local Administrator Guidance).

[ST] Table 20 indicates only Windows 10 limits Function 24 to administrators and MDM.

2.4.3.70 Function 24 [Conditional] Test Activities

Test 24: The evaluator shall exercise the TSF configuration as both the user and administrator to

enable and disable any developer mode. The evaluator shall test that developer mode access is not

20 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 132 of 181

available when its configuration is disabled. The evaluator shall verify the developer mode remains

disabled during device reboot.

Function 24: enable/disable developer modes

The evaluator enabled developer mode on the TOE and verified that the user then had access to

developer functions. The evaluator then disabled developer mode and verified the user did not have

access to developer functions. The evaluator lastly rebooted the TOE and verified that developer mode

remained disabled.

2.4.3.71 Function 25 [Conditional] TSS Assurance Activity

None defined.

Function 25: Enable data-at rest protection

2.4.3.72 Function 25 [Conditional] Guidance Assurance Activities

The evaluator shall exercise the TSF configuration as both the user and administrator to enable

system-wide data-at-rest protection according to the AGD guidance.

Function 25: Enable data-at rest protection

[ST] Table 20 indicates both Windows 10 and Windows 10 Mobile provide Function 25, but via distinct

methods.

See AAR Section 2.2.5.2 in 2.2.5 Extended: Protected Data Encryption (FDP_DAR_EXT.1) for the

administrator guidance to enable system-wide data-at-rest protection.

2.4.3.73 Function 25 [Conditional] Test Activities

Test 25: The evaluator shall exercise the TSF configuration as both the user and administrator to

enable system-wide data-at-rest protection according to the AGD guidance. The evaluator shall

ensure that all assurance activities for DAR (see Section 0) are conducted with the device in this

configuration.

Function 25: Enable data-at rest protection

This activity was performed in conjunction with FIA_UAU_EXT.1.

2.4.3.74 Function 26 [Conditional] TSS Assurance Activity

None defined.

Function 26: Enable removable mediaôs data-at-rest protection

2.4.3.75 Function 26 [Conditional] Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

 Page 133 of 181

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 26: Enable removable mediaôs data-at-rest protection

See AAR Section 2.2.5.2 in 2.2.5 Extended: Protected Data Encryption (FDP_DAR_EXT.1) for the

administrator guidance to enable system-wide data-at-rest protection.

2.4.3.76 Function 26 [Conditional] Test Activi ties

Test 26: The evaluator shall exercise the TSF configuration as both the user and administrator to

enable removable mediaôs data-at-rest protection according to the AGD guidance. The evaluator

shall ensure that all assurance activities for DAR (see Section 0) are conducted with the device in this

configuration.

Function 26: Enable removable mediaôs data-at-rest protection

The evaluator enabled data-at-rest on removable media from the TOE. The evaluator verified that the

device was indeed encrypted by looking at raw drive data.

2.4.3.77 Function 27 [Conditional] TSS Assurance Activity

None defined.

Function 27: Enable/disable bypass of local user authentication

2.4.3.78 Function 27 [Conditional] Guidance Assurance Activities

The evaluator shall examine the AGD guidance to determine that it describes how to enable and

disable any ñForgot Passwordò, password hint, or remote authentication (to bypass local

authentication mechanisms) capability.

Function 27: Enable/disable bypass of local user authentication

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.79 Function 27 [Conditional] Test Activities

Test 27: For each mechanism listed in the AGD guidance that provides a ñForgot Passwordò feature

or other means where the local authentication process can be bypassed, the evaluator shall disable

the feature and ensure that they are not able to bypass the local authentication process.

Function 27: Enable/disable bypass of local user authentication

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.80 Function 28 [Conditional] TSS Assurance Activity

None defined.

Function 28: wipe Enterprise data

 Page 134 of 181

2.4.3.81 Function 28 [Conditional] Guidance Assurance Activities

None defined.

Function 28: wipe Enterprise data

2.4.3.82 Function 28 [Conditional] Test Activities

Test 28: The evaluator shall attempt to wipe Enterprise data resident on the device according to the

administrator guidance. The evaluator shall verify that the data is no longer accessible by the user.

Function 28: wipe Enterprise data

This activity was performed in conjunction with FCS_CKM_EXT.5.

2.4.3.83 Function 29 [Conditional] TSS Assurance Activity

The evaluator shall verify that the TSS describes how approval for an application to perform the

selected action (import, removal) with respect to certificates in the Trust Anchor Database is

accomplished (e.g., a pop-up, policy setting, etc.).

Function 29: Approve [import, removal] by applications of X.509v3 certificates in the Trust Anchor

Database

Assurance Activity is not applicable. The functionality is not claimed in the security target.

The evaluator shall also verify that the API documentation provided according to Section 6.2.1

includes any security functions (import, modification, or destruction of the Trust Anchor Database)

allowed by applications.

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.84 Function 29 [Conditional] Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 29: Approve [import, removal] by applications of X.509v3 certificates in the Trust Anchor

Database

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.85 Function 29 [Conditional] Test Activities

Test 29: The evaluator shall perform one of the following tests:

Test 29a: [Conditional] If applications may import certificates to the Trust Anchor Database, the

 Page 135 of 181

evaluator shall write, or the developer shall provide access to, an application that imports a

certificate into the Trust Anchor Database. The evaluator shall verify that the TOE requires approval

before allowing the application to import the certificate:

ƺ The evaluator shall deny the approvals to verify that the application is not able to import the

certificate. Failure of import shall be tested by attempting to validate a certificate that chains to the

certificate whose import was attempted (as described in the Assurance Activity for FIA_X509_EXT.1).

ƺ The evaluator shall repeat the test, allowing the approval to verify that the application is able to

import the certificate and that validation occurs.

Test 29b: [Conditional] If applications may remove certificates in the Trust Anchor Database, the

evaluator shall write, or the developer shall provide access to, an application that removes

certificates from the Trust Anchor Database. The evaluator shall verify that the TOE requires

approval before allowing the application to remove the certificate:

ƺ The evaluator shall deny the approvals to verify that the application is not able to remove the

certificate. Failure of removal shall be tested by attempting to validate a certificate that chains to the

certificate whose removal was attempted (as described in the Assurance Activity for

FIA_X509_EXT.1).

The evaluator shall repeat the test, allowing the approval to verify that the application is able to

remove/modify the certificate and that validation no longer occurs.

Function 29: Approve [import, removal] by applications of X.509v3 certificates in the Trust Anchor

Database

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.86 Function 30 [Conditional] TSS Assurance Activity

None defined.

Function 30: Configure whether to establish a trusted channel or disallow establishment if the TSF

cannot establish a connection to determine the validity of a certificate.

2.4.3.87 Function 30 [Conditional] Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 30: Configure whether to establish a trusted channel or disallow establishment if the TSF

cannot establish a connection to determine the validity of a certificate.

[ST] Table 20 indicates only Windows 10 supports Function 30.

See AAR section 2.3.14.2 in 2.3.14 Extended: X509 certificate authentication (FIA_X509_EXT.2) for

guidance on trusted channel policy. The policy is configurable only for Windows 10.

 Page 136 of 181

2.4.3.88 Function 30 [Conditional] Test Activities

Test 30: The test of this function is performed in conjunction with FIA_X509_EXT.2.2.

Function 30: Configure whether to establish a trusted channel or disallow establishment if the TSF

cannot establish a connection to determine the validity of a certificate.

This activity was performed in conjunction with FIA_X509_EXT.2.

2.4.3.89 Function 31 [Conditional] TSS Assurance Activity

The evaluator shall ensure that the TSS describes which cellular protocols can be disabled.

Function 31: enable/disable the cellular protocols used to connect to cellular network base stations

The LTE broadband protocol in the Lumia devices can be disabled. The Surface Pro 4 does not include a

broadband modem.

Microsoft uses iteration of requirements to identify significant difference in device capability. Microsoft

uses footnotes to identify small differences in device capability or evaluation evidence. For

FMT_SMF_EXT.1 Function 31, a footnote indicates only the Microsoft Lumia devices have broadband

modems.

2.4.3.90 Function 31 [Conditional] Guidance Assurance Activities

The evaluator shall confirm that the AGD guidance describes the procedure for disabling each

cellular protocol identified in the TSS.

Function 31: enable/disable the cellular protocols used to connect to cellular network base stations

[Mobile Guide] section 28 Managing Mobile Broadband provides a link to user guidance for

enabling/disabling mobile broadband (section 28.1 User Guidance).

2.4.3.91 Function 31 [Conditional] Test Activities

Test 31: The evaluator shall attempt to disable each cellular protocol according to the administrator

guidance. The evaluator shall attempt to connect the device to a cellular network and, using network

analysis tools, verify that the device does not allow negotiation of the disabled protocols.

Function 31: enable/disable the cellular protocols used to connect to cellular network base stations

The evaluator disabled the cellular function on the TOE. The evaluator then attempted to connect to the

cellular network and verified that there was not cellular connectivity.

2.4.3.92 Function 32 [Conditional] TSS Assurance Activity

None defined.

Function 32: Read audit logs kept by the TSF

 Page 137 of 181

2.4.3.93 Function 32 [Conditional] Guidance Assurance Activities

The evaluator shall attempt to read any device audit logs according to the administrator guidance and

verify that the logs may be read.

Function 32: Read audit logs kept by the TSF

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.94 Function 32 [Conditional] Test Activities

Test 32: The evaluator shall attempt to read any device audit logs according to the administrator

guidance and verify that the logs may be read. This test may be performed in conjunction with the

assurance activity of FAU_GEN.1.

Function 32: Read audit logs kept by the TSF

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.95 Function 33 [Conditional] TSS Assurance Activity

None defined.

Function 33: Configure [certificate] used to validate digital signature on applications

2.4.3.96 Function 33 [Conditional] Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 33: Configure [certificate] used to validate digital signature on applications

[ST] section 6.6.6.1.1 Windows Store Applications explains Windows Store Applications and their

installation packages are verified using a digital signature from Microsoft Corporation with the Code

Signing usage. [Mobile Guide] section 13 Managing Certificates covers certificate, import, requests, and

enrollment. Subsection 13.1 IT Administrator Guidance describes adding and removing root certificates

using an MDM as well as providing links to online guidance. Subsection 13.2 Windows 10 provides the

same information for Windows 10 users and local administrators along with instructions for certificate

requests. Subsection 13.2.1 Developer Guidance covers how developers implement key management in

applications, which applies when users install applications.

2.4.3.97 Function 33 [Conditional] Test Activities

Test 33: The test of this function is performed in conjunction with FPT_TUD_EXT.2.5.

 Function 33: Configure [certificate] used to validate digital signature on applications

 Page 138 of 181

This activity was performed in conjunction with FPT_TUD_EXT.1.

2.4.3.98 Function 34 [Conditional] TSS Assurance Activity

The evaluator shall verify that the TSS describes how the approval for exceptions for shared use of

keys/secrets by multiple applications is accomplished (e.g., a pop-up, policy setting, etc.).

Function 34: Approve exceptions for shared use of keys/secrets by multiple applications

Users and local administrators authorize applications at installation to access shared keys or secrets

when an application declares the sharedUserCertificates capability to share the certificate with other

Windows Store Applications for the user. The sharedUserCertificates capability is described in [ST]

section 6.3.1 Restricting Access to System Services.

2.4.3.99 Function 34 [Conditional] Guidance Assurance Activities

None defined.

Function 34: Approve exceptions for shared use of keys/secrets by multiple applications

2.4.3.100 Function 34 [Conditional] Test Activities

Test 34: The test of this function is performed in conjunction with FCS_STG_EXT.1.

Function 34: Approve exceptions for shared use of keys/secrets by multiple applications

2.4.3.101 Function 35 [Conditional] TSS Assurance Activity

The evaluator shall verify that the TSS describes how the approval for exceptions for destruction of

keys/secrets by applications that did not import the key/secret is accomplished (e.g., a pop-up, policy

setting, etc.).

Function 35: Approve exceptions for destruction of keys/secrets by applications that did not import the

key/secret

Users and local administrators authorize applications at installation to access shared keys or secrets

when an application declares the sharedUserCertificates capability to share the certificate with other

Windows Store Applications for the user. [ST] section 6.2.5 Key storage explains ñDestruction of

keys/secrets imported into the secure key storage by applications is conducted automatically by the

modern application environment after the keys/secrets are no longer in use.ò

2.4.3.102 Function 35 [Con ditional] Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

 Page 139 of 181

Function 35: Approve exceptions for destruction of keys/secrets by applications that did not import the

key/secret

[Mobile Guide] section 13.3 Shared User Keys points common application developers to online

documentation for Special capabilities, which include the sharedUserCertificates capability.

2.4.3.103 Function 35 [Conditional] Test Activities

Test 35: The test of this function is performed in conjunction with FCS_STG_EXT.1.

Function 35: Approve exceptions for destruction of keys/secrets by applications that did not import the

key/secret

2.4.3.104 Function 36 [Conditional] TSS Assurance Activity

The evaluator shall verify that the TSS describes any restrictions in banner settings (e.g., character

limitations).

Function 36: Configure the unlock banner

[ST] Section 6.5 states that the banner can use any text string. See footnote for Function 36 in Table 20

Mobile Device Management Capabilities.

2.4.3.105 Function 36 [Conditional] G uidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 36: Configure the unlock banner

[Mobile Guide] section 27 Managing Notifications Prior to Unlocking a Device contains instructions for

configuring the unlock banner, both by a Windows 10 administrator (section 27.1.1 Local Administrator

Guidance) and by a Windows 10 Mobile user (section 27.2.1 User Guidance).

2.4.3.106 Function 36 [Conditional] Test Activities

Test 36: The test of this function is performed in conjunction with FTA_TAB.1.

Function 36: Configure the unlock banner

This activity is performed in conjunction with FTA_TAB.1.

2.4.3.107 Function 37 [Conditional] TSS Assurance Activity

None defined.

Function 37: Configure the auditable items.

 Page 140 of 181

2.4.3.108 Function 37 [Conditional] Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 37: Configure the auditable items.

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.109 Function 37 [Conditional] Test Activities

Test 37: The test of this function is performed in conjunction with FAU_SEL.1.

Function 37: Configure the auditable items.

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.110 Function 38 [Conditional] TSS Assurance Activity

None defined.

Function 38: Retrieve TSF-software integrity verification values

2.4.3.111 Function 38 [Conditional] Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 38: Retrieve TSF-software integrity verification values

See AAR Section 2.5.15.2 for the administrator guidance to retrieve TSF software integrity verification

values.

2.4.3.112 Function 38 [Conditional] Test Activities

Test 38: The test of this function is performed in conjunction with FPT_NOT_EXT.1.2.

Function 38: Retrieve TSF-software integrity verification values

This activity is performed in conjunction with FPT_NOT_EXT.1.

2.4.3.113 Function 39 [Conditional] TSS Assurance Activity

The evaluator shall verify that the TSS includes a description of how data transfers can be managed

 Page 141 of 181

over USB.

Function 39: Enable/Disable USB Mass Storage, USB Data Transfer

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.114 Function 39 [Conditional] Guidance Assurance Activities

None defined.

Function 39: Enable/Disable USB Mass Storage, USB Data Transfer

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.115 Function 39 [Conditional] Test Activities

Test 39: The evaluator shall perform the following tests based on the selections in 0.

Test 39a: [conditional] The evaluator shall disable USB mass storage mode, attach the device to a

computer, and verify that the computer cannot mount the TOE as a drive. The evaluator shall reboot

the TOE and repeat this test with other supported auxiliary boot modes.

Test 39b: [conditional] The evaluator shall disable USB data transfer without user authentication,

attach the device to a computer, and verify that the TOE requires user authentication before the

computer can access TOE data. The evaluator shall reboot the TOE and repeat this test with other

supported auxiliary boot modes.

Test 39c: [conditional] The evaluator shall disable USB data transfer without connecting system

authentication, attach the device to a computer, and verify that the TOE requires connecting system

authentication before the computer can access TOE data. The evaluator shall then connect the TOE to

another computer and verify that the computer cannot access TOE data. The evaluator shall then

connect the TOE to the original computer and verify that the computer can access TOE data.

Function 39: Enable/Disable USB Mass Storage, USB Data Transfer

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.116 Function 40 [Conditional] TSS Assurance Activity

The evaluator shall verify that the TSS includes a description of available backup methods that can be

enabled/disabled.

Function 40: enable/disable backup to [remote system]

[ST] Section 6.5 states that the user can initiate a backup to a remote system which was specified by a

MDM. The user can enable/disable backup to a remote system using the ñSync My Settingsò settings

page.

 Page 142 of 181

2.4.3.117 Function 40 [Conditional] Guidance Assurance Activities

None defined.

Function 40: enable/disable backup to [remote system]

2.4.3.118 Function 40 [Conditional] Test Activities

Test 40: The evaluator shall disable each supported backup location in turn and verify that the TOE

cannot complete a backup. The evaluator shall then enable each supported backup location in turn

and verify that the TOE can perform a backup.

Function 40: enable/disable backup to [remote system]

The evaluator disabled the sync feature on the TOE and verified that the sync could not be performed.

Then enabled the sync feature and was able to sync the selected settings.

2.4.3.119 Function 41 [Conditional] TSS Assurance Activity

The evaluator shall verify that the TSS includes a description of Hotspot functionality and USB

tethering to include any authentication for these.

Function 41: enable/disable (a. Hotspot, b. USB tethering)

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.120 Function 41 [Conditional] Guidance Assurance Activities

None defined.

Function 41: enable/disable (a. Hotspot, b. USB tethering)

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.121 Function 41 [Conditional] Test Activities

Test 41: The evaluator shall perform the following tests based on the selections in 0.

Test 41a: [conditional] The evaluator shall enable hotspot functionality with each of the of the

support authentication methods. The evaluator shall connect to the hotspot with another device and

verify that the hotspot functionality requires the configured authentication method.

Test 41b: [conditional] The evaluator shall enable USB tethering functionality with each of the of the

support authentication methods. The evaluator shall connect to the TOE over USB with another

device and verify that the tethering functionality requires the configured authentication method.

Function 41: enable/disable (a. Hotspot, b. USB tethering)

Assurance Activity is not applicable. The functionality is not claimed in the security target.

 Page 143 of 181

2.4.3.122 Function 42 [Conditional] TSS Assurance Activity

None defined.

Function 42: Approve Exceptions for Sharing Data

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.123 Function 42 [Conditional] Guidance Assurance Activities

None defined.

Function 42: Approve Exceptions for Sharing Data

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.124 Function 42 [Conditional] Test Activiti es

Test 42: The test of this function is performed in conjunction with FDP_ACF_EXT.1.2.

Function 42: Approve Exceptions for Sharing Data

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.125 Function 43 [Conditional] TSS Assurance Activity

None defined.

Function 43: Place Applications into Application Process Groups

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.126 Function 43 [Conditional] Guidance Assurance Activities

None defined.

Function 43: Place Applications into Application Process Groups

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.127 Function 43 [Conditional] Test Activities

Test 43: The test of this function is performed in conjunction with FDP_ACF_EXT.1.2.

Function 43: Place Applications into Application Process Groups

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.128 Function 44 [Conditional] TSS Assurance Activity

None defined.

 Page 144 of 181

Function 44: Enable/Disable Location Services Across the Device

2.4.3.129 Function 44 [Conditional] Guidance Assurance Activities

The evaluator shall consult the AGD guidance to perform each of the specified tests, iterating each

test as necessary if both the user and administrator may perform the function. The evaluator shall

verify that the AGD guidance describes how to perform each management function, including any

configuration details. For each specified management function tested, the evaluator shall confirm that

the underlying mechanism exhibits the configured setting.

Function 44: Enable/Disable Location Services Across the Device

[Mobile Guide] section 22 Managing Location Services (GPS) covers enabling/disabling GPS, both by

an MDM 21 system (section 22.1 IT Administrator Guidance) and by a local Windows 10 administrator

(section 22.2.1 Local Administrator Guidance). Surface Pro 4 does not have a GPS radio.

2.4.3.130 Function 44 [Conditional] Test Activities

Test 44: The evaluator shall perform the following tests.

Test 44a: The evaluator shall enable location services device-wide and shall verify that an

application (such as a mapping application) is unable to access the TOEôs location information.

Test 44b: [conditional] If ñper-app basisò is selected, the evaluator shall create two applications and

enable one to use access the location services and the other to not access the location services. The

evaluator shall exercise each application attempting to access location services individually. The

evaluator shall verify that the enabled application is able to access the location services and the

disabled application is not able to access the location services.

Function 44: Enable/Disable Location Services Across the Device

The evaluator enabled location services and verified that an application on the TOE was able to access

the deviceôs location. The evaluator then disabled location and verified that the same app on the TOE

was unable to access the TOEôs location.

2.4.3.131 Function 45 [Conditional] TSS Assurance Activity

The evaluator shall verify that the TSS describes all assigned security management functions and their

intended behavior.

Function 45: No Additional Management Functions

21 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 145 of 181

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.132 Function 45 [Conditional] Guidance Assurance Activities

None defined.

Function 45: No Additional Management Functions

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.3.133 Function 45 [Conditional] Test Activities

Test 45: The evaluator shall design and perform tests to demonstrate that the function may be

configured and that the intended behavior of the function is enacted by the TOE.

Function 45: No Additional Management Functions

Assurance Activity is not applicable. The functionality is not claimed in the security target.

2.4.4 Extended: Specification of Remediation Actions (FMT_SMF_EXT.2)

2.4.4.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes all available remediation actions, when they are

available for use, and any other administrator-configured triggers.

[ST] section 6.5.1 SFR Mapping states, ñAfter unenrollment, Windows will remove enterprise

applications, and inform the administrator that the device is no longer enrolled.ò The footnote to

FMT_SMF_EXT.2.1 indicates Windows 10 additionally wipes device of protected data.

Microsoft uses iteration of requirements to identify significant difference in device capability. Microsoft

uses footnotes to identify small differences in device capability or evaluation evidence. For

FMT_SMF_EXT.2.1, a footnote identifies a remediation action that Windows 10 Mobile provides in

addition to actions provided by Windows 10.

2.4.4.2 Guidance Assurance Activities

The evaluator shall unenroll the device according to AGD guidance and verify that the remediation

action configured is performed.

[Mobile Guide] section 17 Managing Device Enrollment provides the guidance to unenroll the device,

both for Windows 10 (sections 17.1.1 Local Administrator Guidance and 17.1.2 User Guidance) and for

Windows 10 Mobile (section 17.2.1 User Guidance).

2.4.4.3 Test Activities

The evaluator shall use the test environment to iteratively configure the device to perform each

remediation action in the selection upon unenrollment. The evaluator shall unenroll the device

according to AGD guidance and verify that the remediation action configured is performed.

 Page 146 of 181

The evaluator enrolled the TOE and issued a certificate to TOE. The evaluator then unenrolled the TOE

and verified that the enrollment data was removed as well as the certificate.

2.5 Protection of the TSF (FPT)

2.5.1 Extended: Anti -Exploitation Services (ASLR) (FPT_AEX_EXT.1)

2.5.1.1 TSS Assurance Activity

The evaluator shall ensure that the TSS section of the ST describes how the 8 bits are generated and

provides a justification as to why those bits are unpredictable.

[ST] section 6.5.2 Protection from Implementation Weaknesses provides the justification (search ñbase

address is generatedò).

2.5.1.2 Guidance Assurance Activities

None defined.

2.5.1.3 Test Activities

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device

products.

Test 1: The evaluator shall select 3 apps included with the TSF. These must include any web browser

or mail client included with the TSF. For each of these apps, the evaluator will launch the same app

on two separate Mobile Devices of the same type and compare all memory mapping locations. The

evaluator must ensure that no memory mappings are placed in the same location on both devices.

If the rare (at most 1/256) chance occurs that two mappings are the same for a single app and not the

same for the other two apps, the evaluator shall repeat the test with that app to verify that in the

second test the mappings are different.

The evaluator launched 3 apps on 2 identical TOEs and noted their memory mappings. The evaluator

verified that the mappings were different on each instance of the TOE.

2.5.2 Extended: Anti -Exploitation Services (ASLR) (FPT_AEX_EXT.1.3)

2.5.2.1 TSS Assurance Activity

None defined.

2.5.2.2 Guidance Assurance Activities

None defined.

 Page 147 of 181

2.5.2.3 Test Activities

None defined.

2.5.3 Extended: Anti -Exploitation Services (ASLR) (FPT_AEX_EXT.1.4)

2.5.3.1 TSS Assurance Activity

The evaluator shall ensure that the TSS section of the ST describes how the 4 bits are generated and

provides a justification as to why those bits are unpredictable.

[ST] section 6.6.2 Protection from Implementation Weaknesses provides the justification (search ñbase

address is generatedò).

2.5.3.2 Guidance Assurance Activities

None defined.

2.5.3.3 Test Activities

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device

products.

Test 1: The evaluator shall reboot the TOE at least five times. For each of these reboots, the evaluator

shall examine memory mapping locations of the kernel. The evaluator must ensure that no memory

mappings are placed in the same location on both devices.

The evaluator rebooted the TOE 5 times and noted the kernel memory mappings on each reboot. The

evaluator confirmed the mappings differed on each reboot.

2.5.4 Extended: Anti -Exploitation Services (Memory Page Permissions)

(FPT_AEX_EXT.2.1)

2.5.4.1 TSS Assurance Activity

The evaluator shall ensure that the TSS describes of the memory management unit (MMU), and

ensures that this description documents the ability of the MMU to enforce read, write, and execute

permissions on all pages of virtual memory.

[ST] section 6.6.2 Protection from Implementation Weaknesses states ñWindows runs on processors that

provide support for virtual memory and enforce restrictions to read, write, and execute pages of virtual

and physical memory.ò [ST] section 6.6.1.1 Supporting Hardware provides Table 21 Supporting

Hardware Specifications with the list of processors for each device. In addition, a link is provided for the

 Page 148 of 181

hardware specifications and a section identifier is provided so that an individual can identify where to

look for information on the MMU.

2.5.4.2 Guidance Assurance Activities

None defined.

2.5.4.3 Test Activities

None defined.

2.5.5 Extended: Anti -Exploitation Services (Memory Page Permissions)

(FPT_AEX_EXT.2.2)

2.5.5.1 TSS Assurance Activity

The evaluator shall ensure that the TSS describes how the operating system of the application

processor prevents all processes executing in a non-privileged execution domain from achieving write

and execute permissions on any page of memory (with only specified exceptions).

[ST] section 6.6.1 Separation and Domain Isolation describes memory page protection using Data

Execution Prevention (DEP). Search, ñexecute instructions.ò

The evaluator shall ensure that the TSS describes how such processes are unable to request pages of

memory with such permissions, and how they are unable to change permissions to both write and

execute on any pages already allocated to them.

[ST] Section 6.6.1 describes memory page protection using Data Execution Prevention (DEP) which

marks memory pages in a process as non-executable unless the location explicitly contains executable

code. The section also describes process isolation for all user-mode processes through private virtual

address spaces (private per process page tables), execution context (registers, program counters), and

security context (handle table and token). The data structures defining process address space, execution

context and security context are all stored in protected kernel-mode memory.

2.5.5.2 Guidance Assurance Activities

None defined.

2.5.5.3 Test Activities

None defined.

 Page 149 of 181

2.5.6 Extended: Anti -Exploitation Services (Overflow Protection) (FPT_AEX_EXT.3)

2.5.6.1 TSS Assurance Activity

The evaluator shall determine that the TSS contains a description of stack-based buffer overflow

protections implemented in the TSF software which runs in the non-privileged execution mode of the

application processor. The exact implementation of stack-based buffer overflow protection will vary

by platform. Example implementations may be activated through compiler options such as "-fstack-

protector-all", ñ-fstack-protectorò, and ñ/GSò flags.

[ST] section 6.6.2 Protection from Implementation Weaknesses describes stack-based buffer overflow

protection (search ñstack buffer overrun protection capabilityò). The section states: ñAll Windows

binaries and Windows Store Applications implement stack buffer overrun protection.ò

The evaluator shall ensure that the TSS contains an inventory of TSF binaries and libraries,

indicating those that implement stack-based buffer overflow protections as well as those that do not.

The TSS must provide a rationale for those binaries and libraries that are not protected in this

manner.

[ST] section 6.6.2 states that Windows binaries are compiled with stack overflow protection (the /GS

compiler option), which is used for all Windows binaries. Microsoft checks that all Windows Store

Applications are compiled with buffer overrun protection before ingesting the Windows Store

Application into the Windows Store.

2.5.6.2 Guidance Assurance Activities

None defined.

2.5.6.3 Test Activities

None defined.

2.5.7 Extended: Anti -Exploitation Services (Overflo w Protection) (FPT_AEX_EXT.3.2)

2.5.7.1 TSS Assurance Activity

The evaluator shall verify that the TSS enumerates the heap implementations provided to userspace

processes. The evaluator shall ensure that the TSS lists all types of heap metadata and identifies how

the integrity of each type of metadata is ensured.

[ST] Section 6.6.2 describes the heap implementations provided to userspace processes: default allocator

and application-implemented allocator. The heap is managed with a collection of metadata (which is not

pre-allocated to a specific address), with integrity protection provided by internal checksums and

encoding the metadata. If the heap detects corruption due to a heap overrun (e.g. integrity checks fail),

 Page 150 of 181

and heap termination on corruption is enabled for the process, then the process is immediately

terminated.

The evaluator shall ensure that the TSS identifies all memory address or offset fields within each type

of metadata and identifies how the integrity of these addresses or fields is ensured.

[ST] section 6.6.2 states the collection of metadata is not pre-allocated to a specific address. Windows

provides integrity protection by internal checksums and encoding the metadata.

The evaluator shall verify that the TSS identifies the manner in which an error condition is entered

when a heap overflow is detected and the resulting actions taken by the TSF.

If the heap detects corruption due to a heap overrun (e.g. integrity checks fail), and heap termination on

corruption is enabled for the process, then the process is immediately terminated.

2.5.7.2 Guidance Assurance Activities

None defined.

2.5.7.3 Test Activities

For each heap implementation, the evaluator shall write, or the developer shall provide access to, an

application which allocates memory from the heap and then writes arbitrary data significantly beyond

the end of the allocated buffer. The evaluator shall attempt to execute this application and verify that

the write is not allowed.

The evaluator ran an app provided by the developer that attempts to overwrite the memory allocated

from the heap. The evaluator confirmed that this attempt is denied and a buffer overflow does not occur.

2.5.8 Extended: Domain Isolation (FPT_AEX_EXT.4)

2.5.8.1 TSS Assurance Activity

The evaluator shall ensure that the TSS describes the mechanisms that are in place that prevents non-

TSF software from modifying the TSF software or TSF data that governs the behavior of the TSF.

These mechanisms could range from hardware-based means (e.g. ñexecution ringsò and memory

management functionality); to software-based means (e.g. boundary checking of inputs to APIs). The

evaluator determines that the described mechanisms appear reasonable to protect the TSF from

modification.

[ST] sections 6.6.1 Separation and Domain Isolation and 6.6.7 SFR Mapping describe mechanisms

protecting TSF software and data (search ñby untrusted subjectò).

 Page 151 of 181

The evaluator shall ensure the TSS describes how the TSF ensures that the address spaces of

applications are kept separate from one another.

[ST] section 6.6.7 SFR Mapping describes user-mode programs execute in separate virtual address

spaces (search ñFPT_AEX_EXT.4ò in Section 6.6.7).

The evaluator shall ensure the TSS details the USSD and MMI codes available from the dialer at the

locked state or during auxiliary boot modes that may alter the behavior of the TSF. The evaluator

shall ensure that this description includes the code, the action performed by the TSF, and a

justification that the actions performed do not modify user or TSF data. If no USSD or MMI codes are

available, the evaluator shall ensure that the TSS provides a description of the method by which

actions prescribed by these codes are prevented.

Windows does not have an ñauxiliary boot modeò that is distinctly used by a wired interface, as stated in

[ST] section 6.6.1.1.3 Mobile Broadband Isolation. Section 6.6.1.1.3 also covers UUSD and MMI codes.

Windows 10 does not include the ability to initiate or receive telephony calls. Windows 10 Mobile does

not implement any USSD or MMI codes. Hence, entering a USSD or MMI code while the screen is

locked has no effect.

The evaluator shall ensure the TSS documents any TSF data (including software, execution context,

configuration information, and audit logs) which may be accessed and modified over a wired

interface in auxiliary boot modes. The evaluator shall ensure that the description includes data which

is modified in support of update or restore of the device. The evaluator shall ensure that this

documentation includes the auxiliary boot modes in which the data may be modified, the methods for

entering the auxiliary boot modes, the location of the data, the manner in which data may be

modified, the data format and packaging necessary to support modification, and software and/or

hardware tools, if any, which are necessary for modifying the data.

[ST] Section 6.6.1 states that Windows does not have an ñauxiliary boot modeò that is distinctly used by

a wired interface.

The evaluator shall ensure that the TSS provides a description of the means by which unauthorized

and undetected modification (that is, excluding cryptographically verified updates per

FPT_TUD_EXT.2) of the TSF data over the wired interface in auxiliary boots modes is prevented.

(The lack of publically available tools is not sufficient justification. Examples of sufficient justification

include auditing of changes, cryptographic verification in the form of a digital signature or hash,

disabling the auxiliary boot modes, and access control mechanisms that prevent writing to files or

flashing partitions.)

[ST] Section 6.6.1 states that Windows does not have an ñauxiliary boot modeò that is distinctly used by

a wired interface.

 Page 152 of 181

2.5.8.2 Guidance Assurance Activities

None defined.

2.5.8.3 Test Activities

Assurance Activity Note: The following tests require the vendor to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device

products. In addition, the vendor provides a list of files (e.g., system files, libraries, configuration

files, audit logs) that make up the TSF data. This list could be organized by folders/directories (e.g.,

/usr/sbin, /etc), as well as individual files that may exist outside of the identified directories.

Test 1: The evaluator shall check the ñpermission settingsò for each file in vendor provided list of

files that make up the TSF and ensure the settings are appropriate for preventing writing by untrusted

applications. The evaluator shall attempt to modify a file of their choosing to ensure the mechanism

enforces the permission settings and prevents modification.

The evaluator examined the permission settings in the c:/windows directory and verified that the

permission settings were appropriate. The evaluator attempted to modify a file under this directory and

verified that this attempt was denied.

Test 2: The evaluator shall create and load an app onto the Mobile Device. This app shall attempt to

traverse over all file systems and report any locations to which data can be written or overwritten.

The evaluator must ensure that none of these locations are part of the OS software, device drivers,

system and security configuration files, key material, or another applicationôs image/data.

The evaluator ran an app to enumerate the folders that the app had access to write to and verified that

none of these folders were part of the OS, drivers, system and security configuration, keys, or another

applicationôs data.

Test 3: For each available auxiliary boot mode, the evaluator shall attempt to modify a TSF file of

their choosing using the software and/or hardware tools described in the TSS. The evaluator shall

verify that the modification fails or that the TSF audits the change as expected according to the

description in the TSS.

In Windows 10 the auxiliary boot modes are not applicable in the evaluated configuration, therefore this

test case is not applicable.

2.5.9 Application Processor Mediation (FPT_BBD_EXT.1)

2.5.9.1 TSS Assurance Activity

The evaluator shall ensure that the TSS section of the ST describes at a high level how the processors

on the Mobile Device interact, including which bus protocols they use to communicate, any other

 Page 153 of 181

devices operating on that bus (peripherals and sensors), and identification of any shared resources.

Microsoft claims FPT_BBD_EXT.1 only for Surface Pro 4, as indicated in the footnote to

FPT_BBD_EXT.1 in section 5.1.5.5 Extended: Application processor Mediation (FPT_BBD_EXT.1).

Microsoft uses iteration of requirements to identify significant difference in device capability. Microsoft

uses footnotes to identify small differences in device capability or evaluation evidence. For

FPT_BBD_EXT.1, a footnote indicates that the security target only claims the optional requirement for

Surface Pro 4.

[ST] Section 6.6.1.1.3 Mobile Broadband Isolation states Surface Pro 4 does not include the ability to

initiate or receive telephony calls (that is, cellular support). Section 6.6.7 SFR Mapping describes the

separation (separate memory, separate cache, and no access to peripherals or sensors) between the

application processor and the baseband processor, which provides Wi-Fi and Bluetooth.

The evaluator shall verify that the design described in the TSS does not permit any BPs from

accessing any of the peripherals and sensors or from accessing main memory (volatile and non-

volatile) used by the AP. In particular, the evaluator shall ensure that the design prevents

modification of executable memory of the AP by the BP.

[ST] Section 6.8.1.1.3 Mobile Broadband Isolation states Surface Pro 4 does not include the ability to

initiate or receive telephony calls (that is, cellular support). Section 6.6.7 SFR Mapping describes the

separation (separate memory, separate cache, and no access to peripherals or sensors) between the

application processor and the baseband processor, which provides Wi-Fi and Bluetooth.

2.5.9.2 Guidance Assurance Activities

None defined.

2.5.9.3 Test Activities

None defined.

2.5.10 Extended: Limitation of Bluetooth Profile Support (FPT_BLT_EXT.1)

2.5.10.1 TSS Assurance Activity

None defined.

2.5.10.2 Guidance Assurance Activities

None defined.

2.5.10.3 Test Activities

The evaluator shall perform the following tests:

Test 1: While the service is not in active use by an application on the TOE, the evaluator shall attempt

 Page 154 of 181

to discover a service associated with a ñprotectedò Bluetooth profile (as specified by the requirement)

on the TOE via a Service Discovery Protocol search. The evaluator shall verify that the service does

not appear in the Service Discovery Protocol search results. Next, the evaluator shall attempt to gain

remote access to the service from a device that does not currently have a trusted device relationship

with the TOE. The evaluator shall verify that this attempt fails due to the unavailability of the service

and profile.

Test 2: The evaluator shall repeat Test 1 with a device that currently has a trusted device relationship

with the TOE and verify that the same behavior is exhibited.

This activity was performed in conjunction with FIA_BLT_EXT.1.

2.5.11 Extended: Key Storage (FPT_KST_EXT.1)

2.5.11.1 TSS Assurance Activity

The evaluator shall consult the TSS section of the ST in performing the assurance activities for this

requirement.

In performing their review, the evaluator shall determine that the TSS contains a description of the

activities that happen on power-up and password authentication relating to the decryption of DEKs,

stored keys, and data.

[ST] section 6.2.4 Encrypting the Device with BitLocker describes activities from startup (search

ñprompt the user for the Enhanced PINò). Section 6.4.1 Protecting User Data describes use of the

Enhanced PIN authorization factor for Windows 10. Section 6.2.5 Key Storage covers password

authentication, which provides access to private keys and secrets protected by DPAPI (search ñWhen the

device is turned onò). Section 6.2.6 Protecting Data with DPAPI provides details of DPAPI access.

The evaluator shall ensure that the description also covers how the cryptographic functions in the

FCS requirements are being used to perform the encryption functions, including how the KEKs,

DEKs, and stored keys are unwrapped, saved, and used by the TOE so as to prevent plaintext from

being written to non-volatile storage. The evaluator shall ensure that the TSS describes, for each

power-down scenario how the TOE ensures that all keys in non-volatile storage are wrapped with a

KEK.

[ST] sections 6.2.5 Key Storage and 6.2.7 Networking cover unwrapping of keys. See section 2.1.24.1

above in Extended: Integrity of encrypted key storage (FCS_STG_EXT.3), which summarizes the

cryptographic algorithms used in unwrapping keys. ST Sections 6.2.4 Encrypting the Device with

BitLocker, 6.2.5 Key Storage, and 6.2.6 Protecting Data with DPAPI describe how keys are saved.

Windows does not save plain text keys to non-volatile memory. Windows clears keys as summarized

above in section 2.1.9.1 above in Cryptographic Key Destruction (FCS_CKM_EXT.4). Windows uses

FVEK continuously. Section 6.2.4 covers FVEK clearing on normal shutdown, on hibernation, and on

crash.

The evaluator shall ensure that the TSS describes how other functions available in the system (e.g.,

regeneration of the keys) ensure that no unencrypted key material is present in persistent storage.

 Page 155 of 181

[ST] section 6.2.4 Encrypting the Device with BitLocker describes encryption of the deviceôs storage

unit. Section 6.2.5 Key Storage covers storage of BitLocker keys, which are stored encrypted outside the

NTFS partitions (search ñFVEK, VMK, and Intermediate Key are stored on diskò). PBKDF is based on

CAVP-validated HMAC function (search ñThe HMAC function forms the basis forò).

The evaluator shall review the TSS to determine that it makes a case that key material is not written

unencrypted to the persistent storage.

The TSS sections 6.2.4, 6.2.4, and 6.2.7 make the case that the key material is not written unencrypted to

persistent storage.

2.5.11.2 Guidance Assurance Activities

None defined.

2.5.11.3 Test Activities

None defined.

2.5.12 Extended: No Key Transmission (FPT_KST_EXT.2)

2.5.12.1 TSS Assurance Activity

The evaluator shall consult the TSS section of the ST in performing the assurance activities for this

requirement. The evaluator shall ensure that the TSS describes the TOE security boundary. The

cryptographic module may very well be a particular kernel module, the Operating System, the

Application Processor, or up to the entire Mobile Device.

[ST] section 6.2.5 Key Storage defines the boundary of the cryptographic module (search

ñcryptographic module is the combination of the operating system and the deviceò).

In performing their review, the evaluator shall determine that the TSS contains a description of the

activities that happen on power-up and password authentication relating to the decryption of DEKs,

stored keys, and data.

See section 2.5.11.1 above in Extended: Key Storage (FPT_KST_EXT.1).

The evaluator shall ensure that the TSS describes how other functions available in the system (e.g.,

regeneration of the keys) ensure that no unencrypted key material is transmitted outside the security

boundary of the TOE. The evaluator shall review the TSS to determine that it makes a case that key

material is not transmitted outside the security boundary of the TOE.

[ST] section 6.2.5 Key Storage states ñNo unencrypted BitLocker key material is transmitted outside the

cryptographic module.ò Section 6.2.5 describes handling of intermediate keys, VMK, and FVEK.

Section 6.3.6 Protecting Data with DPAPI describes handling and protection of DPAPI keys. Section

6.6.7 SFR Mapping reiterates that plain text keys are not exported from the cryptographic modules

 Page 156 of 181

(search ñFPT_KST_EXT.2: Plaintextò). The TPM provides protections that prevent the export of TPM

data (section 6.2.3 Trusted Platform Module).

2.5.12.2 Guidance Assurance Activities

None defined.

2.5.12.3 Test Activities

None defined.

2.5.13 Extended: No Plaintext Key Export (FPT_KST_EXT.3)

2.5.13.1 TSS Assurance Activity

The ST author will provide a statement of their policy for handling and protecting keys. The evaluator

shall check to ensure the TSS describes a policy in line with not exporting either plaintext DEKs,

KEKs, or keys stored in the secure key storage.

[ST] section 6.2.5 Key Storage describes the Key Isolation Service, which covers both protected process

for handling keys and NTFS files for protecting stored keys.(See also section 6.2.1 Cryptographic

Algorithms and Operations.)

Section 6.6.7 SFR Mapping provides a concise summary of policy for handling and protecting keys is as

follows:

¶ During normal operation, Windows does not store plaintext key material in non-volatile storage

(FPT_KST_EXT.1).

¶ Plaintext keys are not exported from the FIPS-validated cryptographic modules

(FPT_KST_EXT.2).

¶ Users cannot export plain text keys from Windows Store applications (FPT_KST_EXT.3).

The policy is in line with not exporting either plaintext DEKs, KEKs, or keys stored in the secure key

storage.

2.5.13.2 Guidance Assurance Activities

None defined.

2.5.13.3 Test Activities

None defined.

 Page 157 of 181

2.5.14 Extended: Self -Test Notification (FPT_NOT_EXT.1)

2.5.14.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes critical failures that may occur and the actions to be

taken upon these critical failures.

[ST] section 6.6.4 Self-Tests describes the start-up self-tests, which are standard FIPS 140-2

cryptographic module tests. Section 6.6.5 Windows Code Integrity describes software integrity tests and

Windowsô responses to test failures. Windows will fall into a non-operational state after a failure of the

Windows FIPS 140 cryptographic self-tests and integrity failure for Windows system binaries (search

ñFPT_NOT_EXT.1: Windows will fallò in Section 6.6.7 SFR Mapping). Windows will notify the

remote administrator via MDM.

2.5.14.2 Guidance Assurance Activities

None defined.

2.5.14.3 Test Activities

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device

products.

Test 1: The evaluator shall use a tool provided by the developer to modify files and processes in the

system that correspond to critical failures specified in the second list. The evaluator shall verify that

creating these critical failures causes the device to take the remediation actions specified in the first

list.

The evaluator used a kernel debugger attached to the TOE to modify the integrity checking mechanism

on boot. The evaluator verified that this modification cause the TOE to go into an error state, attempt to

reboot, and audit the event.

2.5.15 Extended: Self -Test Notifica tion (FPT_NOT_EXT.1.2)

2.5.15.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes which critical memory is measured for these integrity

values and how the measurement is performed (including which TOE software performs these

generates these values, how that software accesses the critical memory, and which algorithms are

used)

Microsoft uses iteration of requirements to identify significant difference in device capability. Microsoft

uses footnotes to identify small differences in device capability or evaluation evidence. For

FPT_NOT_EXT.1, footnotes identify two optional requirements elements that only apply only when a

 Page 158 of 181

device is enrolled as described in the deployment guidance. (In this evaluation, all devices have TPM

2.0.)

[ST] section 6.6.5 Windows Code Integrity describes software integrity tests, how integrity values are

measured for each critical memory. Before Windows will unlock the operating system drive, it will

verify the integrity of the early boot components, which include the Boot Loader, OS Loader, and OS

Resume binaries using file integrity check algorithm. Section 6.4.3 SFR Mapping indicates that X.509v3

certificates are used to support authentication for code signing for integrity verification. Section 6.6.5

describes that when Secure Boot starts in the preboot environment, it will compare the sealed values

from the TPM and if those values do not match the calculated values, Secure Boot will lock the system

(which prevents booting) and display a warning on the computer display.

After Secure Boot verifies the integrity of early-running kernel components, including Code Integrity,

the Code Integrity capability provides measures code integrity for kernel-mode and user-mode

programs. Kernel-mode code signing (KMCS) prevents kernel-mode device drivers, such as the

BitLocker Drive Encryption Drivers (fvevol.sys), from loading unless they are published and digitally

signed by developers who have been vetted by one of a handful of trusted certificate authorities (CAs).

KMCS, using public-key cryptography technologies, requires that kernel-mode code include a digital

signature generated by one of the trusted certificate authorities. When a kernel device driver tries to

load, Windows decrypts the hash included with the driver using the public key stored in the certificate,

then verifies that the hash matches the one computed with the code. The authenticity of the certificate is

checked in the same way, but using the certificate authority's public key, which is trusted by Windows.

The root public key of the certificate chain that verifies the signature must match one of the Microsoftôs

root public keys indicating that Microsoft is the publisher of the Windows image files. These

Microsoftôs root public keys are hardcoded in the Windows boot loader.

2.5.15.2 Guidance Assurance Activities

If the integrity values are provided to the administrator, the evaluator shall verify that the AGD

guidance contains instructions for retrieving these values and information for interpreting them. (For

example, if multiple measurements are taken, what those measurements are and how changes to those

values relate to changes in the device state.)

[Mobile Guide] section 25 Managing Health Attestation provides instructions for generating and

retrieving health attestation measurements as well as a link to an application for reviewing

measurements. The guidance covers both an MDM 22 system (section 25.1 IT Administrator Guidance)

and by a local Windows 10 administrator (section 25.2.1 Local Administrator Guidance).

2.5.15.3 Test Activities

Assurance Activity Note: The following test may require the developer to provide access to a test

platform that provides the evaluator with tools that are typically not found on consumer Mobile

22 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 159 of 181

Device products.

The evaluator shall repeat the following test for each measurement:

Test: The evaluator shall boot the device in an approved state and record the measurement taken

(either from the log or by using the administrative guidance to retrieve the value via an MDM Agent).

The evaluator shall modify the critical memory or value that is measured. The evaluator shall boot the

device and verify that the measurement changed.

The evaluator enrolled the TOE in MDM and sent the attestation record to the MDM admin. Then the

evaluator toggled secure boot and sent the attestation record again, verifying that the value had changed.

2.5.16 Extended: Self -Test Notification (FPT_NOT_EXT.1.3)

2.5.16.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes which key the TSF uses to sign the responses to

queries and the certificate used to prove ownership of the key. The evaluator shall perform the

following test.

Microsoft uses iteration of requirements to identify significant difference in device capability. Microsoft

uses footnotes to identify small differences in device capability or evaluation evidence. For

FPT_NOT_EXT.1, footnotes identify two optional requirements elements that only apply only when a

device is enrolled as described in the deployment guidance. (In this evaluation, all devices have TPM

2.0.)

 [ST] Section 6.6.7 SFR Mapping states that when configured to generate health attestations, Windows

will use the Attestation Key (AK) in the TPM. Microsoft issues certificates for TPM Attestation Keys..

Table 15 Types of Keys Used by Windows identifies keys used for health attestations as TPM-based

RSA keys.

2.5.16.2 Guidance Assurance Activities

None defined.

2.5.16.3 Test Activities

Test: The evaluator shall write, or the developer shall provide, a management application that

queries either the audit logs or the measurements. The evaluator shall verify that the responses to

these queries are signed and verify the signatures against the TOEôs certificate.

This activity is performed in conjunction with FPT_NOT_EXT.1.2.

 Page 160 of 181

2.5.17 Reliable Time Stamps (FPT_STM.1)

2.5.17.1 TSS Assurance Activity

The evaluator shall examine the TSS to ensure that it lists each security function that makes use of

time.

[ST] section 6.6.3 Time Service lists the Windows capabilities that are included the evaluation that use

the centralized (i.e., reliable) time service as:

¶ Network expirations for authentication and data access

¶ Session timeout and screen locking

¶ X.509 certificate generation, revocation, and expiration

The TSS provides a description of how the time is maintained and considered reliable in the context of

each of the time related functions. This documentation must identify whether the TSF uses a NTP

server or the carrierôs network time as the primary time sources.

[ST] section 6.6.3 Time Service states each hardware platform supported by the TOE includes a real-

time clock as the primary time source. If Windows connects to a broadband network, it will use the

networkôs time server as a secondary time server in the same manner as a domain or a NTP time source.

The real-time clock is a device that can only be accessed using functions provided by the TSF and serves

as the reference clock that maintains the system time. Specifically, the TSF provides functions that

allow users, including the TSF itself, to query and set the clock, as well as functions to synchronize

clocks within a domain. The ability to query the clock is unrestricted, while the ability to set the clock

requires the SeSystemtimePrivilege. This privilege is only granted to authorized administrators to

protect the integrity of the time service.

Synchronizing the clocks within a managed Windows deployment is critical for cross-machine

communications and correlating activities which occur on multiple computers. Windows capabilities

that are included in the evaluation and use the centralized (i.e., reliable) time service are:

¶ Network expirations for authentication and data access

¶ Session timeout and screen locking

¶ X.509 certificate generation, revocation, and expiration

Accuracy (which the NIAP OS PP describes as ñreliable and monotonically increasingò) is described in

ñHow the Windows Time Service Worksò and a link has been provided.

2.5.17.2 Guidance Assurance Activities

The evaluator examines the operational guidance to ensure it describes how to set the time.

[Mobile Guide] section 14 Managing Time describes setting time manually in Windows 10 (subsection

14.1.1 Local Administrator Guidance) and Windows 10 Mobile (subsection 14.2.1 User guidance). The

section covers setting time automatically with an NTP server for Windows 10 (subsection 14.1.1 Local

Administrator Guidance) or a mobile operator via Network Identity and Time Zone for Windows 10

Mobile (subsection 14.2.1 user Guidance). Windows 10 Mobile does not support NTP.

 Page 161 of 181

2.5.17.3 Test Activities

Test 1: The evaluator uses the operational guide to set the time. The evaluator shall then use an

available interface to observe that the time was set correctly.

The evaluator queried the time, set the time and queried the time again on the TOE. The evaluator

verified that the time was successfully changed.

2.5.18 Extended: TSF Cryptographic Functionality Testing (FPT_TST_EXT.1)

2.5.18.1 TSS Assurance Activity

The evaluator shall examine the TSS to ensure that it specifies the self-tests that are performed at

start-up. This description must include an outline of the test procedures conducted by the TSF (e.g.,

rather than saying "memory is tested", a description similar to "memory is tested by writing a value to

each memory location and reading it back to ensure it is identical to what was written" shall be used).

[ST] section 6.6.4 Self-Tests lists the Windows start-up self-tests (search ñThe kernel-mode startup self-

tests areò). The tests are as defined in FIPS 140-2 (known answer tests, sign/verify tests, etc.). The

section describes the error state where Windows fails to boot (search ñIf there is a failure in any startup

self-testò and in section 6.6.7 SFR Mapping ñFPT_TST_EXT.1: Windows runs a series of self-testsò).

An administrator enables automatic execution of the start-up self-tests (search ñSystem Cryptography:

Use FIPS compliant algorithms for encryption, hashing, and signingò). [Mobile Guide] section 1.1

specifies this setting as part of the evaluated configuration.

The TSS must include any error states that they TSF may enter when self-tests fail, and the conditions

and actions necessary to exit the error states and resume normal operation.

[ST] section 6.6.4 Self-Tests describes the error state where Windows fails to boot (search ñIf there is a

failure in any startup self-testò and in section 6.6.7 SFR Mapping ñFPT_TST_EXT.1: Windows runs a

series of self-testsò).

The evaluator shall verify that the TSS indicates these self-tests are run at start-up automatically, and

do not involve any inputs from or actions by the user or operator.

[ST] section 6.6.4 Self-Tests describes that an administrator enables automatic execution of the start-up

self-tests (search ñSystem Cryptography: Use FIPS compliant algorithms for encryption, hashing, and

signingò). [Mobile Guide] section 1.1 specifies this setting as part of the evaluated configuration.

The evaluator shall inspect the list of selftests in the TSS and verify that it includes algorithm self-

tests. The algorithm self-tests will typically be conducted using known answer tests.

[ST] section 6.6.4 Self-Tests lists the Windows start-up self-tests (search ñThe kernel-mode startup self-

tests areò). The tests are as defined in FIPS 140-2 cryptographic module algorithm or known answer

tests.

 Page 162 of 181

2.5.18.2 Guidance Assurance Activities

None defined.

2.5.18.3 Test Activities

None defined.

2.5.19 Extended: TSF Integrity Testing (FPT_TST_EXT.2 .1)

2.5.19.1 TSS Assurance Activity

The evaluator shall verify that the TSS section of the ST includes a description of the boot procedures,

including a description of the entire bootchain, of the software for the TSFôs Application Processor.

The evaluator shall ensure that before loading the bootloader(s) for the operating system and the

kernel, all bootloaders and the kernel software itself is cryptographically verified. For each additional

category of executable code verified before execution, the evaluator shall verify that the description in

the TSS describes how that software is cryptographically verified.

[ST] section 6.6.5 Windows Code Integrity describes the Window boot procedures including the entire

bootchain, and its integrity mechanisms. Secure Boot capability of Windows verifies the integrity of the

early boot components. Secure Boot relies on file measurements sealed to the TPM. Section 6.2.3

Trusted Platform Module describes TPM sealing including hardware protection of the Storage Root

Key. Windows verifies the integrity of kernel software through its code integrity capability (search

ñCode Integrity capability provides measures code integrity for kernel-mode and user-mode programsò).

Section 6.2.1 Cryptographic Algorithms and Operations states, ñFIPS 140 AES-256 Counter Mode

DBRG Known Answer Tests (instantiate, generate) on start-up. Windows always runs the SP 800-90-

mandated self-tests for AES-CTR-DRBG during a reseed and runs the Dual-EC reseed self-test when

the user chooses to operate Windows in the FIPS validated mode.ò Section 6.6.1 Separation and

Domain Isolation indicates that the TOEôs Code Integrity Verification feature use the FIPS-certified

cryptographic libraries.

The evaluator shall verify that the TSS contains a justification for the protection of the cryptographic

key or hash, preventing it from being modified by unverified or unauthenticated software. The

evaluator shall verify that the TSS contains a description of the protection afforded to the mechanism

performing the cryptographic verification.

[ST] section 6.2.3 Trusted Platform Module describes protection of the TPM key. Section 6.2.5 Key

Storage describes how keys are protected. Section 6.6.5 Windows Code Integrity describes how Kernel-

mode code signing (KMCS) prevents kernel-mode device drivers, such as the BitLocker Drive

Encryption Drivers (fvevol.sys), from loading unless they are published and digitally signed by

developers who have been vetted by one of a handful of trusted certificate authorities (CAs). When a

kernel device driver tries to load, Windows decrypts the hash included with the driver using the public

key stored in the certificate, then verifies that the hash matches the one computed with the code. The

authenticity of the certificate is checked in the same way, but using the certificate authority's public key,

which is trusted by Windows. The root public key of the certificate chain that verifies the signature must

 Page 163 of 181

match one of the Microsoftôs root public keys indicating that Microsoft is the publisher of the Windows

image files. These Microsoftôs root public keys are hardcoded in the Windows boot loader.

The evaluator shall verify that the TSS describes each auxiliary boot mode available on the TOE

during the boot procedures. The evaluator shall verify that, for each auxiliary boot mode, a

description of the cryptographic integrity of the executed code through the kernel is verified before

each execution.

[ST] section 6.6.5 Windows Code Integrity describes the Window boot procedures including the entire

bootchain, and its integrity mechanisms. When Secure Boot starts in the preboot environment, it will

compare the sealed values from the TPM and if those values do not match the calculated values, Secure

Boot will lock the system (which prevents booting) and display a warning on the computer display.

Next the Code Integrity capability provides code integrity checking for kernel-mode programs.

2.5.19.2 Guidance Assurance Activities

None defined.

2.5.19.3 Test Activities

The evaluator shall perform the following tests:

Test 1: The evaluator shall perform actions to cause TSF software to load and observe that the

integrity mechanism does not flag any executables as containing integrity errors and that the TOE

properly boots.

This activity is performed in conjunction with FPT_NOT_EXT.1.

Assurance Activity Note: The following tests require the vendor to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device

products.

Test 2: The evaluator shall modify a TSF executable that is integrity protected and cause that

executable to be successfully loaded by the TSF. The evaluator observes that an integrity violation is

triggered and the TOE does not boot. (Care must be taken so that the integrity violation is determined

to be the cause of the failure to load the module, and not the fact that the module was modified so that

it was rendered unable to run because its format was corrupt).

The evaluator loaded a modified version of a boot file such onto the TOE. The evaluator confirmed that

the integrity violation is triggered on boot and the TOE fails to load.

Assurance Activity Note: The following tests require the vendor to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device

products.

 Page 164 of 181

[conditional] Test 3: If the ST author indicates that the integrity verification is performed using a

public key, the evaluator shall verify that the update mechanism includes a certificate validation

according to FIA_X509_EXT.1. The evaluator shall digitally sign the TSF executable with a

certificate that does not have the Code Signing purpose in the extendedKeyUsage field and verify that

an integrity violation is triggered. The evaluator shall repeat the test using a certificate that contains

the Code Signing purpose and verify that the integrity verification succeeds. Ideally, the two

certificates should be identical except for the extendedKeyUsage field.

This activity is performed in conjunction with FPT_TUD_EXT.2.

2.5.20 Extended: TSF Integrity Testing (FPT_TST_EXT.2.2)

2.5.20.1 TSS Assurance Activity

None defined.

2.5.20.2 Guidance Assurance Activities

None defined.

2.5.20.3 Test Activities

Testing for this element are performed in conjunction with the assurance activities for

FPT_TST_EXT.2.1.

2.5.21 Extended: Trusted Update: TSF Version Query (FPT_TUD_EXT.1)

2.5.21.1 TSS Assurance Activity

None defined.

2.5.21.2 Guidance Assurance Activities

Using the AGD guidance provided, the evaluator shall test that the administrator and user can query:

ǒ the current version of the TSF operating system and any firmware that can be updated separately

ǒ the hardware model of the TSF

ǒ the current version of all installed mobile applications

[Mobile Guide]section 15 Getting Version Information provides instructions to determine the hardware

model and operating system version, both for Windows 10 (subsection 15.1.1 User Guidance) and for

Windows 10 Mobile (subsection (15.2.1 User Guidance).

 Page 165 of 181

2.5.21.3 Test Activities

The evaluator shall establish a test environment consisting of the Mobile Device and any supporting

software that demonstrates usage of the management functions. This can be test software from the

developer, a reference implementation of management software from the developer, or other

commercially available software. The evaluator shall set up the Mobile Device and the other software

to exercise the management functions according to provided guidance documentation.

Test 1: Using the AGD guidance provided, the evaluator shall test that the administrator and user can

query:

ǒ the current version of the TSF operating system and any firmware that can be updated

separately

ǒ the hardware model of the TSF

ǒ the current version of all installed mobile applications

The evaluator must review manufacturer documentation to ensure that the hardware model identifier

is sufficient to identify the hardware which comprises the device.

The evaluator successfully queries the TOE for the TSF OS, firmware, hardware model, and current

version of all applications.

2.5.22 Extended: Trusted Update Verification (FPT_TUD_EXT.2)

2.5.22.1 TSS Assurance Activity

The evaluator shall verify that the TSS section of the ST describes all TSF software update

mechanisms for updating the system software. The evaluator shall verify that the description includes

a digital signature verification of the software before installation and that installation fails if the

verification fails.

[ST] section 6.6.6 Windows and Application Updates describes the software update mechanisms.

Software update includes digital signature verification (search ñare signed by Microsoftò and ñotherwise

the installation will abortò). The section states ñThe integrity of the Microsoft Code Signing certificate

on the computer is protected by the storage root key within the TPMò. Secure Boot verifies the integrity

of the boot loader (see sections 2.5.15 above and 2.5.19 above). Microsoftôs root public keys are

hardcoded in the Windows boot loader.

The evaluator shall verify that all software and firmware involved in updating the TSF is described

and, if multiple stages and software are indicated, that the software/firmware responsible for each

stage is indicated and that the stage(s) which perform signature verification of the update are

identified.

Integrity checking of both the Microsoft Update Packages and Windows executable code, and the

Windows Store Applications and their installation packages are verified using a digital signature from

Microsoft Corporation with the Code Signing usage. The process of verification is the same for all

update types and is described in Section 6.6.6 Windows and Application Updates.

 Page 166 of 181

The evaluator shall verify that the TSS describes the method by which the digital signature is verified

and that the public key used to verify the signature is either hardware-protected or is validated to

chain to a public key in the Trust Anchor Database. If hardware-protection is selected, the evaluator

shall verify that the method of hardware-protection is described and that the ST author has justified

why the public key may not be modified by unauthorized parties.

[ST] section 6.6.6 Windows and Application Updates describes the software update mechanisms.

Software update includes digital signature verification (search ñare signed by Microsoftò and ñotherwise

the installation will abortò). The section states ñThe integrity of the Microsoft Code Signing certificate

on the computer is protected by the storage root key within the TPMò. Secure Boot verifies the integrity

of the boot loader (see above sections 2.5.15 above and 2.5.19 above). Microsoftôs root public keys are

hardcoded in the Windows boot loader.

[conditional] If the ST author indicates that software updates to system software running on other

processors is verified, the evaluator shall verify that these other processors are listed in the TSS and

that the description includes the software update mechanism for these processors, if different than the

update mechanism for the software executing on the Application Processor.

N/A ï the ST author did not indicate that software updates to system software running on other

processors is verified.

[conditional] If the ST author indicates that the public key is used for software update digital

signature verification, the evaluator shall verify that the update mechanism includes a certificate

validation according to FIA_X509_EXT.1 and a check for the Code Signing purpose in the

extendedKeyUsage.

Section 6.4.3 SFR Mapping indicates that X.509v3 certificates are used to support software update

digital signature verification. Section 6.5.2 X.509 Certificate Validation describes certificate validation

in accordance with FIA_X509_EXT.1 including all applicable usage constraints (Code Signing purpose)

in the extendedKeyUsage as described in RFC 5280.

2.5.22.2 Guidance Assurance Activities

None defined.

2.5.22.3 Test Activities

The evaluator shall verify that the developer has provided evidence that the following tests were

performed for each available update mechanism:

Test 1: The tester shall try to install an update without the digital signature and shall verify that

installation fails. The tester shall attempt to install an update with digital signature, and verify that

installation succeeds.

The evaluator attempted to install an update without a digital signature and verified that this attempt

failed. The evaluator successfully installed an update with a valid digital signature.

 Page 167 of 181

Test 2: The tester shall digitally sign the update with a key disallowed by the device and verify that

installation fails. The tester shall digitally sign the update with the allowed key and verify that

installation succeeds.

The evaluator attempted to install an update with and untrusted ñdisallowedò key and verified the

attempt failed. The successful case was tested in Test 1.

Test 3: [conditional] The tester shall digitally sign the update with an invalid certificate and verify

that update installation fails. The tester shall digitally sign the application with a certificate that does

not have the Code Signing purpose and verify that application installation fails. The tester shall

repeat the test using a valid certificate and a certificate that contains the Code Signing purpose and

verify that the application installation succeeds.

The evaluator attempted to install 2 updates; one with an invalid certificate and the other with a valid

certificate with no code signing purpose and verified both these attempts failed. The successful cases

were tested in Test 1.

Test 4: [conditional] The tester shall repeat this test for the software executing on each processor

listed in the first selection. The tester shall attempt to install an update without the digital signature

and shall verify that installation fails. The tester shall attempt to install an update with digital

signature, and verify that installation succeeds.

N/Aðno selection made in the Security Target.

2.5.23 Extended: Trusted Update Verification (FPT_TUD_EXT.2.4)

2.5.23.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes how mobile application software is verified at

installation. The evaluator shall ensure that this method uses a digital signature.

[ST] section 6.6.6.1.1 Windows Store Applications and their installation packages are verified using a

digital signature from Microsoft Corporation with the Code Signing usage.

2.5.23.2 Guidance Assurance Activities

None defined.

2.5.23.3 Test Activities

Test 1: The evaluator shall write, or the developer shall provide access to, an application. The

evaluator shall try to install this application without a digitally signature and shall verify that

installation fails. The evaluator shall attempt to install a digitally signed application, and verify that

installation succeeds.

 Page 168 of 181

The evaluator attempted to install an application without a digital signature and verified that this attempt

failed. The evaluator successfully installed an application with a valid digital signature along with the

activity for FPT_TUD_EXT.2.7.

2.5.24 Extended: Trusted Update Verification (FPT_TUD_EXT.2 .5)

2.5.24.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes how mobile application software is verified at

installation. The evaluator shall ensure that this method uses a digital signature by a code signing

certificate.

[ST] section 6.6.6.1.1 Windows Store Applications and their installation packages are verified using a

digital signature from Microsoft Corporation with the Code Signing usage.

2.5.24.2 Guidance Assurance Activi ties

None defined.

2.5.24.3 Test Activities

Test 1: The evaluator shall write, or the developer shall provide access to, an application. The

evaluator shall try to install this application without a digitally signature and shall verify that

installation fails. The evaluator shall attempt to install an application digitally signed with an

appropriate certificate, and verify that installation succeeds.

This activity was performed in conjunction with FPT_TUD_EXT.2.4.

Test 2: The evaluator shall digitally sign the application with an invalid certificate and verify that

application installation fails. The evaluator shall digitally sign the application with a certificate that

does not have the Code Signing purpose and verify that application installation fails. This test may be

performed in conjunction with the assurance activities for FIA_X509_EXT.1.

The evaluator attempted to install 2 applications; one with an invalid certificate and the other with a

valid certificate with no code signing purpose and verified both these attempts failed. The successful

cases were tested in FPT_TUD_EXT.2.7.

Test 3: If necessary, the evaluator shall configure the device to limit the public keys that can sign

application software according to the AGD guidance. The evaluator shall digitally sign the

application with a certificate disallowed by the device or configuration and verify that application

installation fails. The evaluator shall attempt to install an application digitally signed with an

authorized certificate and verify that application installation succeeds.

The evaluator attempted to install an application with and untrusted ñdisallowedò key and verified the

attempt failed. The successful case was tested with FPT_TUD_EXT.2.7.

 Page 169 of 181

2.5.25 Extended: T rusted Update Verification (FPT_TUD_EXT.2.6)

2.5.25.1 TSS Assurance Activity

None defined.

2.5.25.2 Guidance Assurance Activities

None defined.

2.5.25.3 Test Activities

Testing for this element are performed in conjunction with the assurance activities for

FPT_TUD_EXT.2.3 and FPT_TUD_EXT.2.5.

This activity was performed in conjunction with FPT_TUD_EXT.2.3 and FPT_TUD_EXT.2.5.

2.5.26 Extended: Trusted Update Verification (FPT_TUD_EXT.2.7)

2.5.26.1 TSS Assurance Activity

The evaluator shall verify that the TSS describes the mechanism that prevents the TSF from installing

software updates that are an older version that the currently installed version.

[ST] section 6.6.6 Windows and Application Updates indicates that the Windows installer will not

install an update if the files in the package have lower version numbers than the installed files.

2.5.26.2 Guidance Assurance Activities

None defined.

2.5.26.3 Test Activities

The evaluator shall repeat the following tests to cover all allowed software update mechanisms as

described in the TSS. For example, if the update mechanism replaces an entire partition containing

many separate code files, the evaluator does not need to repeat the test for each individual file.

Test 1: The evaluator shall attempt to install an earlier version of software (as determined by the

manufacturer). The evaluator shall verify that this attempt fails by checking the version identifiers or

cryptographic hashes of the privileged software against those previously recorded and checking that

the values have not changed.

The evaluator installed an application on the TOE and attempted to install an older version of the

application and verified this attempt was denied.

 Page 170 of 181

Test 2: The evaluator shall attempt to install a current or later version and shall verify that the update

succeeds.

The evaluator attempted to install a newer (later) version of the application from Test 1. The evaluator

observed that this attempt succeeded.

2.6 TOE Access (FTA)

2.6.1 Extended: TSF- and User -initiated locked state (FTA_SSL_EXT.1)

2.6.1.1 TSS Assurance Activity

The evaluator shall verify the TSS describes the actions performed upon transitioning to the locked

state.

[ST] describes the transition to locked state in Section 6.7 TOE Access describes how when the screen is

locked, Windows displays a screen saver (search ñlock the workstation and execute the screen saverò),

and shows notifications from applications which have registered to publish notifications to the locked

screen (search ñnotifications from applications which have registeredò).

[ST] section 6.7 describes information displayed to users through notifications:

ñé if the workstation was not locked manually, the TSF will lock the display and start the screen

saver program if and when the inactivity period is exceeded, as well any notifications from

applications which have registered to publish the applicationôs badge or the badge with

associated notification text to the locked screen. The user has the option to not display any

notifications, or choose one Windows Store Application to display notification text, and select

other applications display their badge.

For Windows 10 the inbox Calendar, Weather, and Alarm applications can generate

notifications, and when selected to display notification text they will show the location and time

of the upcoming and in-progress meeting, the current weather conditions, and an expired alarm

times. In addition, Mail application can be configured to display a badge but not notification text.

For Windows 10 Mobile the inbox Calendar, Mail, [SMS] Messaging, and Phone applications

can generate notifications, and when selected to display notification text they will show the

location and time of the upcoming and in-progress meeting, the sender and subject line of the last

received email, the sender and text from the last received SMS message, and the last phone caller

and caller notification respectively.ò

The evaluator shall verify that the TSS describes the information allowed to be displayed to

unauthorized users.

Section 6.4.3 SFR Mapping indicates that when the Windows device is locked an unauthorized user only

see the authentication (search ñFIA_UAU_EXT.2: The only actionsò).

2.6.1.2 Guidance Assurance Activities

The evaluation shall verify that the AGD guidance describes the method of setting the inactivity

 Page 171 of 181

interval and of commanding a lock.

[Mobile Guide] section 16 Locking a Device provides instructions for setting inactivity interval, both for

Windows 10 (subsections 16.1.1 Local Administrator Guidance and 16.1.2 User Guidance) and for

Windows 10 Mobile (subsection 16.2.1 User Guidance). Section 16 contains instructions for device

locking, both by a Windows 10 user (subsection 16.1.2 User Guidance) and by a Windows 10 Mobile

user (subsection 16.2.1 User Guidance).

2.6.1.3 Test Activities

Test 1: The evaluator shall configure the TSF to transition to the locked state after a time of inactivity

(FMT_SMF_EXT.1) according to the AGD guidance. The evaluator shall wait until the TSF locks and

verify that the display is cleared or overwritten and that the only actions allowed in the locked state

are unlocking the session and those actions specified in FIA_UAU_EXT.2.

Test 2: The evaluator shall command the TSF to transition to the locked state according to the AGD

guidance as both the user and the administrator. The evaluator shall wait until the TSF locks and

verify that the display is cleared or overwritten and that the only actions allowed in the locked state

are unlocking the session and those actions specified in FIA_UAU_EXT.2.

This activity was performed in conjunction with FIA_UAU_EXT.3.

2.6.2 Default TOE Access Banners (FTA_TAB.1)

2.6.2.1 TSS Assurance Activity

The TSS shall describe when the banner is displayed.

[ST] section 2.2 TOE Security Services states that the system can be configured to display a logon

banner before the logon dialog. Section 6.7 states ñAs part of establishing the interactive logon session,

Windows can be configured to display a logon banner, which is specified by the administrator, that the

user must accept prior to establishing the session.ò

2.6.2.2 Guidance Assurance Activities

None defined.

2.6.2.3 Test Activities

The evaluator shall also perform the following test:

Test 1: The evaluator follows the operational guidance to configure a notice and consent warning

message. The evaluator shall then start up or unlock the TSF. The evaluator shall verify that the

notice and consent warning message is displayed in each instance described in the TSS.

The evaluator configured the notice and consent waring on the TOE. The evaluator then locked the TOE

and verified that the warning was displayed.

 Page 172 of 181

2.6.3 Extended: Wireless Network Access (FTA_WSE_EXT.1)

2.6.3.1 TSS Assurance Activity

The assurance activity for this requirement is performed in conjunction with the assurance activity for

FMT_SMF_EXT.1.

2.6.3.2 Guidance Assurance Activities

The assurance activity for this requirement is performed in conjunction with the assurance activity for

FMT_SMF_EXT.1.

2.6.3.3 Test Activities

The assurance activity for this requirement is performed in conjunction with the assurance activity for

FMT_SMF_EXT.1.

2.7 Trusted Path/Channels (FTP)

2.7.1 Extended: Trusted channel Communication (FTP_ITC_EXT .1)

2.7.1.1 TSS Assurance Activity

The evaluator shall examine the TSS to determine that it describes the details of the TOE connecting

to access points, VPN Gateways, and other trusted IT products in terms of the cryptographic

protocols specified in the requirement, along with TOE-specific options or procedures that might not

be reflected in the specifications. The evaluator shall also confirm that all protocols listed in the TSS

are specified and included in the requirements in the ST.

[ST] section 6.2.7.1.1 Network Protocols lists the trusted channel protocols that protect data in transit

from disclosure, provide data integrity, and endpoint identification as TLS and HTTPS. [ST] section 6.8

Trusted Path / Channels states that: ñWindows implements IEEE 802.11-2012, IEEE 802.1X and EAP-

TLS to provide authenticated wireless networking sessions when requested by the user.ò [ST] section

6.4.3 states that Windows uses X.509 certificates for EAP-TLS exchanges, TLS, HTTPS, code signing

for system software updates, and code signing for mobile applications..

If OTA updates are selected, the TSS shall describe which trusted channel protocol is initiated by the

TOE and is used for updates.

ñOTA updatesò is not selected and this activity is not applicable.

 Page 173 of 181

2.7.1.2 Guidance Assurance Activities

The evaluator shall confirm that the operational guidance contains instructions for establishing the

connection to access points, VPN Gateways, and other trusted IT products.

[Mobile Guide] section 4 Managing EAP-TLS describes configuration of security policy for wireless

networks, both by an MDM 23 system (section 4.1 IT Administrator Guidance) and by a local Windows

10 administrator (section 4.2.1 Local Administrator Guidance).

[Mobile Guide] section 5 Managing TLS lists the cipher suites the TOE supports. The section covers

configuring TLS via MDM24 and for Windows 10 as a user and local administrator. The section includes

links for Windows 10 to guidance to configure a server to allow only the specified cipher suites.

[Mobile Guide] Section 8 is Managing VPN. Subsection 8.1 IT Administratorôs Guidance describes that

an MDM system may be used to administer VPN profiles. The Windows IPsec VPN client can be

configured by the MDM IT administrator, when the device is enrolled. The evaluated configuration

requires that all network traffic other than traffic necessary to establish the VPN connection go through

the VPN tunnel. This is done by verifying that the VPN configuration pushed down by the MDM is

configured to ñSend all traffic through the VPN connectionò.

[Mobile Guide] subsection 8.2 Windows 10 provides a TechNet topic that describes how to create a

VPN connection. The Add-VpnConnection and Set-VpnConnection topic cover configuration to

prevent split tunneling.

[Mobile Guide] section 13 Managing Certificates covers trusted channel policy. Subsection 13.1 IT

Administrator Guidance describes setting Wi-Fi, VPN, and certificate profiles using an MDM as well as

providing links to online guidance. Section 13.2 Windows 10 provides the same information for

Windows 10 local administrators.

2.7.1.3 Test Activities

The evaluator shall also perform the following tests for each protocol listed:

Test 1: The evaluators shall ensure that the TOE is able to initiate communications with an access

point using 802.11-2012 and a pre-shared key, setting up the connections as described in the

operational guidance and ensuring that communication is successful.

This activity was performed in conjunction with FCS_CKM.1(2).

Test 2: The evaluators shall ensure that the TOE is able to initiate communications with an access

23 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

24 As indicated in section 1.1.2 Mobile Device management Solutions, [Mobile Guide] does not include

specific steps for MDM solutions. Section 1.1.2 does include a reference to online information about

supported MDM policies.

 Page 174 of 181

point using 802.11-2012, 802.1x, and EAP-TLS, setting up the connections as described in the

operational guidance and ensuring that communication is successful.

This activity was performed in conjunction with FCS_TLSC_EXT.1.

Test 3: [conditional] If IPsec is selected (and the TSF includes a native VPN client), the evaluator

shall ensure that the TOE is able to initiate communications with a VPN Gateway, setting up the

connections as described in the operational guidance and ensuring that communication is successful.

This activity was performed in conjunction with FDP_IFC_EXT.1.

Test 4: For any other selected protocol (not tested in Test 1, 2, or 3), the evaluator shall ensure that

the TOE is able to initiate communications with a trusted IT product using the protocol, setting up the

connection as described in the operational guidance and ensuring that the communication is

successful.

N/Aðno other protocols are selected in the Security Target.

Test 5: If OTA updates are selected, the evaluator shall trigger an update request according to the

operational guidance and shall ensure that the communication is successful.

The evaluator triggered an over the air update onto the TOE and verified that the TOE successfully

communicated and received the update.

Test 6: The evaluator shall ensure, for each communication channel with an authorized IT entity, the

channel data are not sent in plaintext and that a protocol analyzer identifies the traffic as the protocol

under testing.

This activity was performed in conjunction with FDP_IFC_EXT.1, FCS_CKM.1(1), and

FCS_TLSC_EXT.1.

3 SECURITY ASSURANCE REQUIREMENTS

3.1 Class ADV: Development

3.1.1 ADV_FSP.1 Basic Functional Specification

3.1.1.1 FSP_FSP.1 Assurance Activity

There are no specific assurance activities associated with these SARs, except ensuring the information

is provided. The functional specification documentation is provided to support the assurance activities

 Page 175 of 181

described in Section 5, and other activities described for AGD, ATE, and AVA SARs. The

requirements on the content of the functional specification information is implicitly assessed by virtue

of the other assurance activities being performed; if the evaluator is unable to perform an activity

because the there is insufficient interface information, then an adequate functional specification has

not been provided.

3.2 Class AGD: Guidance Documents

3.2.1 AGD_OPE.1 Operational User Guidance

3.2.1.1 AGD_OPE.1 Assurance Activity

Some of the contents of the operational guidance will be verified by the assurance activities in Section

5 and evaluation of the TOE according to the CEM. The following additional information is also

required.

The operational guidance shall contain a list of natively installed applications and any relevant

version numbers. If any third-parties vendors are permitted to install applications before purchase by

the end user or enterprise, these applications shall also be listed.

[Mobile Guide] and [ST] refer to online Windows documentation, which was used for the assurance

activities. All referenced online documentation applies to Windows mobile devices. See [Mobile Guide]

section 1.1.1 Evaluated Configuration and [ST] section 2 TOE Description.

[Mobile Guide] section 30 includes a list of natively installed applications and indicates that they are

Windows 10 version 10.0.10240.16384 and Windows 10 Mobile version 10586.13053.20151029.-1700.

The operational guidance shall contain instructions for configuring the cryptographic engine

associated with the evaluated configuration of the TOE. It shall provide a warning to the

administrator that use of other cryptographic engines was not evaluated nor tested during the CC

evaluation of the TOE.

[Mobile Guide] section 21 Managing Cryptographic Algorithms state the Windows 10 system

cryptographic engines were tested during the FIPS evaluation of the operating system. Other

cryptographic engines may have been separately evaluated but were not part of this CC evaluation.

The documentation must describe the process for verifying updates to the TOE by verifying a digital

signature. The evaluator shall verify that this process includes the following steps:

46. Instructions for obtaining the update itself. This should include instructions for making the

update accessible to the TOE (e.g., placement in a specific directory).

47. Instructions for initiating the update process, as well as discerning whether the process

was successful or unsuccessful. This includes generation of the hash/digital signature.

[Mobile Guide] Section 18 Managing Updates describe the process to update the TOE both by a local

Windows 10 administrator (section 18.1.1 Local Administrator Guidance) and by a Windows 10 Mobile

user (section 18.2.1 User Guidance).

Windows applications include metadata that is installed with the application by the Windows Installer

and the Store App installer. The application metadata includes version information that prevents the

 Page 176 of 181

Windows Installer and the Store App installer from updating an installed application with an older

version.

Update packages downloaded by Windows are signed with the Microsoft Root Certificate Authority to

prove their authenticity and integrity. This signature is checked on the mobile device before installing

any of the product updates contained in a given package in order to verify the updates have not been

altered since they were digitally signed. If the signature is incorrect, then the update operation will fail.

Otherwise, if the signature is correct then the update operation will proceed. Section 19 includes links to

online documentation that describes how to determine whether an update operation was successful or

unsuccessful.

The TOE will likely contain security functionality that does not fall in the scope of evaluation under

this PP. The operational guidance shall make it clear to an administrator which security functionality

is covered by the evaluation activities.

[Mobile Guide] states ñThis document provides operational guidance information for a Common

Criteria evaluation describing only the security functionality which the administrator should use ï any

security functionality not described in this document is not part of the evaluation.ò

3.2.2 AGD_PRE.1 Preparative Procedures

3.2.2.1 AGD_PRE.1 Assurance Activity

As indicated in the introduction above, there are significant expectations with respect to the

documentationðespecially when configuring the operational environment to support TOE functional

requirements. The evaluator shall check to ensure that the guidance provided for the TOE adequately

addresses all platforms claimed for the TOE in the ST.

The evaluation team has reviewed the guidance documentation above and performed analysis of the

guidance assurance activities for each applicable security functional requirement. The Assurance

Activities for each SFR ensures that, where applicable, the guidance documentation provides adequate

steps for a user to perform an action. This information is present within each section and for each

platform claimed in the ST.

While performing testing, the evaluation team received the TOE and supported hardware and performed

an installation of the test environment consistent with the evaluated configuration.

3.3 Class ALC: Life-Cycle Support

3.3.1 ALC_CMC.1 Labeling of the TOE Assurance Activity

The evaluator shall check the ST to ensure that it contains an identifier (such as a product

name/version number) that specifically identifies the version that meets the requirements of the ST.

Further, the evaluator shall check the AGD guidance and TOE samples received for testing to ensure

that the version number is consistent with that in the ST.

If the vendor maintains a web site advertising the TOE, the evaluator shall examine the information

on the web site to ensure that the information in the ST is sufficient to distinguish the product.

 Page 177 of 181

The evaluator reviewed the configuration of the TOE during testing and confirmed that Windows 10 or

Windows 10 Mobile was the tested version for each platform in the evaluation. All versions were

claimed within the ST and all documentation uniquely identified the TOE version as Windows 10 or

Windows 10 Mobile.

3.3.2 ALC_CMS.1 TOE CM Coverage Assurance Activity

The evaluator shall ensure that the developer has identified (in public-facing development

documentation for their platform) one or more development environments appropriate for use in

developing applications for the developerôs platform. For each of these development environments,

the developer shall provide information on how to configure the environment to ensure that buffer

overflow protection mechanisms in the environment(s) are invoked (e.g., compiler flags). The

evaluator shall ensure that this documentation also includes an indication of whether such protections

are on by default, or have to be specifically enabled.

In regards to developer environments, developers who wish to develop for the devices can navigate to

http://dev.windows.com/en-us/ and follow the necessary procedures. Before submitting a developed

application, an individual must have a developer account and must meet all guidelines. Once submitted,

it would be reviewed.

The evaluator shall ensure that the TSF is uniquely identified (with respect to other products from the

TSF vendor), and that documentation provided by the developer in association with the requirements

in the ST is associated with the TSF using this unique identification.

The TOE boundary is identified within the Security Target and the guidance documentation clearly

identifies how a TOE user would place the product in the evaluated configuration.

3.3.3 Timely Security Updates (ALC_TSU_EXT) Assurance Activity

The evaluator shall verify that the TSS contains a description of the timely security update process

used by the developer to create and deploy security updates. The evaluator shall verify that this

description addresses the TOE OS, the firmware, and bundled applications, each. The evaluator shall

also verify that, in addition to the TOE developerôs process, any carrier or other third-party processes

are also addressed in the description. The evaluator shall also verify that each mechanism for

deployment of security updates is described.

[ST] section 6.6.6 Windows and Application Updates describes the process of creating and signing a

security update for the TOE. The ST also describes how the TOE validates a security updated along with

how a user can receive automatic updates or obtain updates manually. Section 6.9 Security Response

Process states the processes in section 6.6.6 apply to the operating system, firmware, and applications.

The evaluator shall verify that, for each deployment mechanism described for the update process, the

TSS lists a time between public disclosure of a vulnerability and public availability of the security

update to the TOE patching this vulnerability, to include any third-party or carrier delays in

deployment. The evaluator shall verify that this time is expressed in a number or range of days.

[ST] claims timely action without identifying a specific time between public disclosure and update

availability. Rather, section 6.9 Security Response Process provides links to pages describing

http://dev.windows.com/en-us/

 Page 178 of 181

Microsoftôs Security Update Lifecycle along with Report a Computer Security Vulnerability and

Microsoft Security Response Policy and Practices. The life cycle includes monthly security bulletins and

updates.

The evaluator shall verify that this description includes the publically available mechanisms

(including either an email address or website) for reporting security issues related to the TOE. The

evaluator shall verify that the description of this mechanism includes a method for protecting the

report either using a public key for encrypting email or a trusted channel for a website.

[ST] Section 6.9 Security Response Process provides an email address and web page (HTTPS link) for

reporting security issues. The section provides a secure link (HTTPS) to Microsoft Security Response

Center PGP Key and S/MIME certificate for securing email communication.

3.4 ATE_IND.1 Independent Testing Conformance

3.4.1 ATE_IND.1 Assurance Activity

The evaluator shall prepare a test plan and report documenting the testing aspects of the system. The

test plan covers all of the testing actions contained in the CEM and the body of this PPôs Assurance

Activities. While it is not necessary to have one test case per test listed in an Assurance Activity, the

evaluator must document in the test plan that each applicable testing requirement in the ST is

covered.

The test plan identifies the platforms to be tested, and for those platforms not included in the test plan

but included in the ST, the test plan provides a justification for not testing the platforms. This

justification must address the differences between the tested platforms and the untested platforms, and

make an argument that the differences do not affect the testing to be performed. It is not sufficient to

merely assert that the differences have no affect; rationale must be provided. If all platforms claimed

in the ST are tested, then no rationale is necessary.

The test plan describes the composition of each platform to be tested, and any setup that is necessary

beyond what is contained in the AGD documentation. It should be noted that the evaluator is expected

to follow the AGD documentation for installation and setup of each platform either as part of a test or

as a standard pre-test condition. This may include special test drivers or tools. For each driver or

tool, an argument (not just an assertion) should be provided that the driver or tool will not adversely

affect the performance of the functionality by the TOE and its platform. This also includes the

configuration of the cryptographic engine to be used. The cryptographic algorithms implemented by

this engine are those specified by this PP and used by the cryptographic protocols being evaluated

(IPsec, TLS/HTTPS, SSH).

The test plan identifies high-level test objectives as well as the test procedures to be followed to

achieve those objectives. These procedures include expected results. The test report (which could just

be an annotated version of the test plan) details the activities that took place when the test procedures

were executed, and includes the actual results of the tests. This shall be a cumulative account, so if

there was a test run that resulted in a failure; a fix installed; and then a successful re-run of the test,

the report would show a ñfailò and ñpassò result (and the supporting details), and not just the ñpassò

result.

 Page 179 of 181

The test plan created for testing of Windows 10 and Windows 10 Mobile was performed against the

requirements of the Mobility Device Fundamentals Protection Profile 2.0. Each test case is mapped to a

requirement which is met with a passing result. For each case, a description, expected result, actual

result, and evidence are provided to clearly identify how the requirement was met. Testing was

performed by analyzing the information within the AGD to ensure the evaluator could follow guidance

procedures in order to complete the configuration activities required. For certain tests, vendor apps were

needed to test the product. These actions would not normally be performed by a TOE user and would

only occur during testing for [PP MDF]. The overall conclusion was that testing was successful for all

requirements.

3.4.2 Cryptographic Algorithm Validation Programming Testing

Windows 10 and Window 10 Mobile use algorithm implementations validated under the Cryptographic

Algorithm Validation Program (http://csrc.nist.gov/groups/STM/cavp/index.html). [ST] Table 14

Cryptographic Algorithm Standards and Evaluation Methods identifies CAVP certificates that apply to

Windows 10 and Windows 10 Mobile devices. This section clarifies correspondence between

operational environments listed on CAVP certificates and TOE mobile devices. Information on

individual tests, modes, states, and key sizes can be found in cryptographic requirement sections above:

¶ 2.1.1.3

¶ 2.1.1.5

¶ 2.1.4.3

¶ 2.1.4.6

¶ 2.1.12.3

¶ 2.1.13.3

¶ 2.1.14.3

¶ 2.1.15.3

¶ 2.1.19.3

Windows 10 and Window 10 Mobile run in a large set of operational environments. CAVP certificates

cover a range of Windows variants, architectures, and cryptographic feature implementations (for

example, AES-NI). The correspondence between CAVP test systems and the Windows 10 and Windows

10 Mobile device undergoing CC evaluation is not one-to-one and is not required to be. NIAP Policy

Letter #5 (https://www.niap-ccevs.org/Documents_and_Guidance/ccevs/policy-ltr-5-update1.pdf)

defines the applicability and relationship of NIST CAVP and CMVP testing to assurance activities

associated with cryptography requirements in NIAP Protection Profiles. NIAP relies on NIST to

establish guidance and to determine when operational environments are equivalent. Frequently Asked

Questions for NIAP Policy #5 provides guidance on applying CAVP certificates to assurance activities

in NIAP protection profiles (https://www.niap-

ccevs.org/Documents_and_Guidance/ccevs/FAQ_Policy_5.pdf). This guidance is based on

Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program (IG:

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf).

Policy 5 FAQ 4 addresses equivalence of operational environments. FAQ 4 explains:

If the untested processor supports the same instruction set and operates on the same word size as

the tested processor and the algorithm implementation can operate on the untested processor

without change, then the algorithm implementation does not have to be re-tested.

http://csrc.nist.gov/groups/STM/cavp/index.html
https://www.niap-ccevs.org/Documents_and_Guidance/ccevs/policy-ltr-5-update1.pdf
https://www.niap-ccevs.org/Documents_and_Guidance/ccevs/FAQ_Policy_5.pdf
https://www.niap-ccevs.org/Documents_and_Guidance/ccevs/FAQ_Policy_5.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

 Page 180 of 181

[ST] identifies the processor for each mobile devices in section 6.6.1.1.1 Processor and Memory

Device Processor
Instruction

Set
Word Size

Microsoft Surface Pro 4 Intel Core i7 x64 64-bit

Microsoft Lumia 950 Snapdragon 808

Hexacore

ARMv8-A 64-bit/32-bit (Cortex-

A57/Cortex-A53)

Microsoft Lumia 950 XL Snapdragon 810

Octacore

ARMv8-A 64-bit/32-bit (Cortex-

A57/Cortex-A53)

Microsoft Lumia 550 Snapdragon 210 ARMv7 32-bit (Cortex-A7)

Microsoft Lumia 635 Snapdragon 400

Quad-core ARM Cortex

A7

ARMv7 32-bit (Cortex-A7)

Windows 10 runs without change on Intel Core i7 and Intel Core i5 processors. Core i7 and Core i5

processors are 64-bit processors that support the same x64 instruction sets including AES-NI,

PCKMULQDQ, and SSSE 3 extensions. Thus, the following operational environments cited on CAVP

certificates apply to the Surface Pro 4 mobile device:

¶ Intel Core i7 with AES-NI w/ Microsoft Surface Pro 3 w/ Windows 10 Enterprise (x64)

¶ Intel Core i7 with AES-NI w/ Microsoft Surface Pro 3 w/ Windows 10 Pro (x64)

¶ Intel Core i5 with AES-NI w/ Microsoft Surface Pro 2 w/ Windows 10 Enterprise (x64)

¶ Intel Core i5 with AES-NI w/ Microsoft Surface Pro 2 w/ Windows 10 Pro (x64)

The CAVP certificates include additional equivalent operational environments (that is, 64-bit x64

Windows 10 that runs unmodified) with Intel and non-Intel processors.

¶ Intel x64 Processor with AES-NI w/ Microsoft Surface Pro w/ Windows 10 Enterprise (x64)

¶ Intel x64 Processor with AES-NI w/ Microsoft Surface Pro w/ Windows 10 Pro (x64)

¶ AMD A4 with AES-NI and PCLMULQDQ and SSSE 3 w/ Windows 10 Enterprise (x64)

¶ AMD A4 with AES-NI and PCLMULQDQ and SSSE 3 w/ Windows 10 Pro (x64)

There was no technical reason to differentiate between Windows 10 Pro and Enterprise. Microsoft uses

the same binaries that implement cryptography in Windows 10 Pro and Windows 10 Enterprise editions.

The testing of additional Operational Environments supports the assessment that there are no technical

difference between Windows 10 Enterprise and Windows 10 Pro.

Consequently, the CAVP certificates for Windows 10 cited in the security target apply to the Surface

Pro 4 mobile device.

Similarly, the Windows 10 November 2015 Update CAVP certificates cited for Microsoft Lumia 950

apply to Microsoft Lumia 950 XL. The CAVP certificates for Microsoft Lumia 635 apply to Microsoft

Lumia 550. The applicable environments are:

¶ Qualcomm Snapdragon 808 (A57, A53) w/ Microsoft Lumia 950

¶ Qualcomm Snapdragon 400 (A7) w/ Microsoft Lumia 635 w/ Windows 10 Mobile

 Page 181 of 181

3.5 Class AVA: Vulnerability Assessment

3.5.1 AVA_VAN.1 Assurance Ac tivity

As with ATE_IND, the evaluator shall generate a report to document their findings with respect to this

requirement. This report could physically be part of the overall test report mentioned in ATE_IND, or

a separate document. The evaluator performs a search of public information to determine the

vulnerabilities that have been found in network infrastructure devices and the implemented

communication protocols in general, as well as those that pertain to the particular TOE. The

evaluator documents the sources consulted and the vulnerabilities found in the report. For each

vulnerability found, the evaluator either provides a rationale with respect to its non-applicability, or

the evaluator formulates a test (using the guidelines provided in ATE_IND) to confirm the

vulnerability, if suitable. Suitability is determined by assessing the attack vector needed to take

advantage of the vulnerability. For example, if the vulnerability can be detected by pressing a key

combination on boot-up, a test would be suitable at the assurance level of this PP. If exploiting the

vulnerability requires expert skills and an electron microscope, for instance, then a test would not be

suitable and an appropriate justification would be formulated.

The evaluation team applied the Vulnerability Analysis approach above to the Windows 10 and

Windows 10 Mobile TOE. The team documented the analysis and results Vulnerability Analysis Report,

which the team provided to the Common Criteria Evaluation and Validation Scheme certification body.

