NET 3.0/Windows
Communication Foundation
and IBM WebSphere 6.1
Service-Oriented Performance
and Scalability Benchmark

.NET StockTrader vs. IBM WebSphere Trade 6.1 Benchmark
Results for Transactions, Web Services, and Messaging
Workloads

6/4/2007
© Microsoft Corporation 2007

Microsoft

NetFramework

The information contained in this document represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication. Because Microsoft must respond to
changing market conditions, it should not be interpreted to be a commitment on the part of
Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the
date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,
EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into
a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written
permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, the .NET logo, Visual Studio, Win32, Windows, and Windows Server 2003 are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Microsoft Corporation « One Microsoft Way « Redmond, WA 98052-6399 « USA

Contents

T o e [V Tt d o] o WU TP PO U PP PP PP PPTPPPTUPPRPOR 4
.NET StockTrader Sample Application and Performance Kitccccceeeciiieieiiiie e 4
Multiple Clients with Open Integration to Middle Tier via WCF........cccceiiiiiiiiiiiee et 4
FUII DISCIOSUIE NOTICE...cciueeietieeiite ettt ettt et e st e st sat e sbe e e s bt e s be e e s abeesabeeesabeesaseeenseesareeesnseenn 5

Tests Performed and Testing DELailsciiiciiiiieciiee ettt e e e raa e e e e aa e e e esabaeeeeannaeeaean 5

Fair Benchmark Comparisons Between .NET StockTrader and IBM WebSphere Trade 6.1.......ccccccceeuvneeen. 6

Database Access Technology/Programming MOdel:c.eeeeviiiiiiiiiiie ettt 6
Interface from Web Application to Backend BUSiness SEIrVICES:ccccvveeeeeeeiiciiiiieeeeeeeeeeciireeeeee e e 6
Order ProCesSiNg IMOEcccocuiieiiiiiee ettt sttt e e et e e e e stee e e s sabe e e e seabeeeessabeeesesnbeeeeennseeeessreens 7
(672 o112 Y - PSPPSR 9
o Fe Yol SR Mo oYl AU I U o] oYY RS 10
Database LOad.ceiuieiiiiiiee ettt b e bt sttt et e bt e s ae e sae e et et e beenaes 11
B 1] o Tl @oT oY T ={0 = { o] o ISR 11
=R AT g o £ OO PP PP PP PUUPPPPPIRE 11
SIMUIGEEA USEI SEIEINGS ..neviiie ettt e e e et e e st e e e s aaae e e estaeeesnbaeeesannaeeenns 12
Changes to the IBM Downloadable Version of Trade 6.1 as Used for Testingccccceevcvveeivcieeeennns 12
Y=L ol UL g a VAT =]] TNt 13
IBM HTTP Server vs. POIt 9080cooiiiiiiiiiiiiiiiiiee ettt 13
32-Bit VersUS B4-Bit TESTING .cceeeeei e 14
Y T o | F< =T PP PP PP PRSP 14
DAtabaSe ...t ettt et sne s ne e reenes 15

BENCHMArK RESUILS.......eiiiiiieeieeee et ettt st e e e r e e s b e e saeesanesneeneens 16
WeEb SErvICe BENCNMAIKoiiiiiiiiieie ettt ettt e b e she e st e st e et be e bt e sbeesaeeeaeeen 16
The Web Services BENChmMark DiSCUSSION......cccuuiiiiieriiieeiiieiiieesiee sttt ne e e sreeenees 19
Messaging Benchmark - Durable Queue with Two Phase/Distributed Transactions........c...cccceeeveeene... 20
Messaging Benchmark Discussion — Durable/Persistent Message QUEUE..........ccueeeveerreenreenneeeveenveennens 23
Messaging Benchmark — Non-Durable Queue with One Phase Transactions..........ccccceeevvciveeeecveeeeenns 24
Messaging Benchmark Discussion — Non-Durable/Non-Persistent Message Queue............cccveeeveeenee.. 26
Data-Driven Monolithic Web Application Benchmark............oooooiooiiiiiic e 27

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 1

Data-Driven Monolithic Web Application Benchmark DisCUSSION.........ceviiiieiiciiiiiieee e 30

Application ArchitECtUrE DIiagIramS iii i ciiee ettt ettt e e et e e e e satee e e s sabaeeessasaeeeesnseeeesanssanesns 30
CONCIUSTON ..ttt ettt bt e b e s he e s at e et e et e e bt e sheesat e sabeeab e e bt e beeabeesaeeeateeaneebeenbeesnnenas 33
F YT o1<] o Yo 3t o ol =S UR 34
Pricing fOr the WEeb SEIrVICE TESES ..eiiiiiiiie ittt et e e et e e e ebte e e e ebteeeeeartaeessnreeessnnes 34
WebSPhere Pricing WiINGOWS........oiiiiiiiiiiiieeeieeeeecitee sttt e s e s s ite e e sabae e e sssbaeeesabaeessssaeeesnnsseeesan 35
WebSphere Pricing REA HAt LINUXuviiiiiiieicciiee ettt et e s saae e s siaae e s snsae e e snnneeeean 35
.NET Pricing (Windows SErver 2003)ceccieeiiieeiieesieeesieeesseeesteeesteessteeessseessaeessseesnseesssessnsesennnes 36
Pricing for the Monolithic Application and Messaging TESESccuveeeeciiieieiiiee e e 36
WebSPhEre Pricing WINAOWS........coiiiiiiecciiieeecieee ettt e e et e e e e te e e e eeata e e e seaaaeeeesasaee e s nssneesannseeanan 36
VT oY o] a1l gl o ol [T T U R 36
.NET Pricing (Windows SErver 2003)c.ceccieeiiieeeiieeeeteeerieeesieeesteeesreesnseeesseeessaeessseesssaessssessnsessnsnes 36
Appendix B: Performance MoNitor CaptUres..... .o uiieeiciieeeiiiieeeeciieeeeeieeeesereeesesrseeesssseeessnsseeesnsssesesns 37
TV o] o] g T = T8 MMV g Yo [1Y AU PP 38
Web Services Benchmark: EJB MOcocueiiuiiiiiiiieiieitesite ettt st sttt e b e s 38
Web Services Benchmark: Direct (JDBC) MOGEcccuvieiieiiiiieeeieee ettt stee e evre e e e e e e s enaee e 41
Messaging Benchmark Persistent Queue TwoPhase— EJB Mode........ccceeeeeeeiiiiiiirieeee e 45
Messaging Benchmark Persistent Queue TwoPhase— Direct/JIDBC Modeccovvevvveecveeecreeeererennee. 46
Messaging Benchmark NonPersistent Queue OnePhase —EJB Mode........cccccevevviieiieicieeecciiee e, 48
Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode.........cccccevveeeuvreerenennee. 49
Monolithic Application: Synchronous Orders and Standard (non-remoted) Business Tier/Web Tier
AACCESS ottt e a e a e s e e s s a e e s s b e e s aba s 51
EJB MOttt sttt et b e ae e st r e bt s re e s an e st e ne e reenes 51
DiIrECE IMIOTE ...ttt st sttt b e bt e s he e s et e et e et e e bt e s re e san e s en e e n e reenes 52
WEDSPREIE 6.1 LINUX .eeeeiiiiiieeiiiiee e ettt e e ettt e e eette e e eetee e e esateeeeeeabeeeeeesbeeaeeaabaeeeeasbaseeeanseseeeanseaesaasseeesenssenas 54
Web Services Benchmark: EJB MOcccuuiiuiiiiiiiieieesiee ettt ettt sttt e sbe e sae e s 54
Web Services Benchmark: Direct (JDBC) MOGEcccuuviiiieiiiieeeiiee ettt ettt ettt eetae e eenre e 57
Messaging Benchmark Persistent Queue TwoPhase— EJB Mode........ccccceevcvieieeciieeecciiee e, 61
Messaging Benchmark Persistent Queue TwoPhase— Direct/JDBC Modecccceveeveereereenreenneenne. 62
Messaging Benchmark NonPersistent Queue OnePhase —EJB Mode.........cccceeevvveeeciciieeeeciiee e, 64
Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode........ccccceevveeevreerenennee. 65

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 2

Monolithic Application: Synchronous Orders and Standard (non-remoted) Business Tier/Web Tier

AACCESS .ottt e et a e e e s s e e e s s et e s s e e e s nba s 67
EJB MOttt et b et st sttt et et e bt s h et st e et e et e e e bt e ehe e sat e et e e be e beenes 67
DiIrECE IMIOTE ...ttt ettt ettt st sttt e bt e s bt e she e s st e st e et e e ebe e eheesaee st e e be e beenes 68

INET 2.0/3.0 oottt ettt et e et e e te e be e s bt e s hb e st e e be e te e be e baeebaeehbeeabeeteaeteeehaeetteeateeate e beeraenres 70
WED SEIVICES ASIMX .ttt ettt ettt sttt e st e et e esab e e sbee e sabeesabeeebeeesabeeesnseesaseesaneeesabeesane 70
WCF Web Service — lIS Hosted (basicHttPBINAING)eeeeveeiiiieceecee e 73
WCF Web Service HTTP — Self Hosted (basicHttpBIiNding)........ccveeeeeiieiiiiiieeeecieecectee e 77
WCF Web Service TCP/Binary — Self Hosted (netTcp BiNdiNg)cccovveeveeeiieeiieeeieeecreeciee et 80
Messaging Benchmark Persistent Queue- TwoPhase (WCF over transacted/durable MSMQ) 84
Messaging Benchmark Non-Persistent Queue- OnePhase (WCF over non-transacted/in-memory
IMISIMIQ)) .ttt ettt ettt e h e et ettt e bt e s bt e s at e sat e e a et et e et e e bt e e he e e ae e e b e et e e eheeeheesaeeeabe e be e beenes 85

Monolithic Application: INProcess/SyNnchronous Orders..........ccceeccueieeiieeeireeeiieeceiee e e eeree e eeree e 87

AppPendixX C: TUNING ParamEterS.....cccuiiiie e ceceee ettt e e et e e e tte e e e e tae e e e ataee e e asaeeesasseeeesansseeesnnseneenns 89

LINUX OS TUNINS . ..ttttiitiieiiiiieeee e e ettt e e e e s s sbttee e e e e s s ssaabtaeeeeessssssasssaaeeesssssasssssaaaeesssssssssssaaeeesssnsannnnne 89

WINAOWS OS TUNING ..vetiiiiiiieieitiieeecteeeesitt e e e sstaeeessbaeeesesbaeeeesseteeeeaassaeeessssaeeesssaeeesssaeeessssensssassenesssnsenes 89

VAT oY o o T I VT Y o= PRSP 89
IBM HTTP Server WindOWS TUNINEGcccviiiiiiiee ettt eettee e eetee e e etae e e e eabaee s eeabeeeeennbaaesennbeeesenrenas 91
IBM HTTP SErVEr LINUX TUNINE ..uuuuutiiiiiiiiiiiiiiiitiitiiutituttaaanaaeaeaeeeaaeeeaaeaeneaeaaaeasananaeanaaaaanaeanaaananananaaannn—.. 91

INET 2.073.0 TUNINE.ceiitteeeeteee ettt ettt e et e et e e e tte e etee e taeesbeeeeteeeesseeebesessseeeaseeeseeesaseeenbeeeaseeesresenses 92

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 3

Introduction

This paper presents detailed benchmark results based on extensive performance and scalability
testing of IBM WebSphere 6.1.07 Network Deployment Edition and .NET with the Windows
Communication Foundation (WCF). The benchmark focuses on three core workloads:

o Web Services
e Message-oriented transaction processing
e Data-driven Web application with middle-tier transaction services and data access

The benchmark tests focus on comparing an end-to-end solution based on the IBM Trade 6.1
performance application. Trade 6.1 is a J2EE-based application developed by IBM as a best-
practice performance sample application and capacity testing tool for IBM WebSphere 6.1. The
application is available for free download from the IBM WebSphere performance site, and is used
extensively by IBM throughout most of their core enterprise Redbooks for WebSphere. Since the
application was designed specifically as a performance-driven application, it presents a good
opportunity to compare the performance of IBM WebSphere to the performance of .NET/Windows
Server 2003 running an application server workload.

.NET StockTrader Sample Application and Performance Kit

For the benchmark comparison, Microsoft created an application that is precisely functionally
equivalent to the Trade 6.1 application, both in terms of user functionality and middle-tier
database access, transactional and messaging behavior. This application was created using best-
practice programming techniques for .NET and the Microsoft Application Development platform.
The resulting application, the .NET StockTrader, is now published on MSDN as a best-practice .NET
enterprise application. The .NET StockTrader is a service-oriented application that utilizes Windows
Communication Foundation (WCF) for its underlying remoting and messaging architecture. The
user interface is an ASP.NET/C# Web application that is equivalent to the Trade 6.1 Java Server
Pages (JSP) application. Additionally, the middle-tier services, written in C#, mirror the
functionality and transactional characteristics of the backend Trade 6.1 services which are based on
J2EE and the IBM WebSphere application server.

Multiple Clients with Open Integration to Middle Tier via WCF

As a service-oriented application based on WCF, multiple interoperability scenarios are enabled
with the .NET StockTrader. Since both the J2EE Trade 6.1 and .NET StockTrader applications expose
their middle-tier services as industry-standard Web Services, the two applications can be
seamlessly integrated with no code changes required. The JSP Trade 6.1 front-end application can
fully utilize the .NET middle tier services and messaging capabilities of the .NET StockTrader; and
the ASP.NET StockTrader front-end application can fully utilize the EJB-based WebSphere Trade 6.1
middle tier services and messaging capabilities. This interoperability is possible with the .NET
StockTrader since WCF, Microsoft’s new component remoting and distributed application
programming model, is fundamentally based on open Web Service standards including SOAP, XML
and the latest WS-* industry standards. In addition to the ASP.NET Web based application that

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 4

integrates via services with the middle tier, the sample also includes a Windows Presentation
Foundation (WPF) desktop client (also developed in C#), that provides a smart-client interface to
the middle tier. The WPF client can also seamlessly connect to either .NET middle tier services, or
J2EE Trade 6.1 middle tier services simply by changing the services URL in the configuration page—
no code changes are required to achieve this interoperability.

Full Disclosure Notice

The complete source code, all test scripts and all testing methodology for this benchmark are available
online. Any reader may download and view the actual code for all implementations tested, and may
further perform the benchmark for themselves to verify the results. The benchmark kit can be
downloaded from http://msdn.microsoft.com/stocktrader. Extensive time was spent to generate

results that represent optimal tuning for the platforms tested, and we are quite confident in the results.
We encourage customers to download each kit and perform their own comparative testing and
functional and technical reviews of each application.

Tests Performed and Testing Details

Four core benchmark tests were performed:

Web Services: Remote activation of backend services from the front-end Web application.
Durable Messaging: Orders placed via transacted/durable queue in loosely-coupled architecture.
Non-Durable Messaging: Orders placed via a non-durable/non-transacted queue.

A

Monolithic: All elements of application run in a single JVM or CLR instance, no Web Services or
messaging. In this mode, orders were set to be placed synchronously.

Both the WebSphere Trade 6.1 and .NET StockTrader can easily be configured to run in each of the four
modes above. For each result, we report a peak sustained transaction per second (TPS) throughput rate
as averaged over a 30 minute measurement period as tracked by Mercury LoadRunner. Distributed
LoadRunner agents drive load against the system tested via simulated Web users running the test script
across 40 different distributed client test PCs. Users are added to the system until peak throughput is
obtained. Extensive iterative benchmark runs (as required) were done prior to measurement runs to
ensure proper tuning of the middle tier systems. For each of the four tests above, we report the peak
sustained TPS rate, and also a calculated dollar cost per TPS so customers can better understand what
that performance costs in normalized measurement across systems. The cost calculations are based
solely on measuring the middle tier application server software costs (all tests are conducted on the
exact same hardware setup). Notes and details on the pricing of the middle tier application servers is
included in the Appendix, and based on basic published pricing from each vendor.

Customers should understand that full .NET capabilities are included in every edition of Windows Server,
and upgraded versions of .NET are made available for free download from MSDN (for example, .NET 3.0
as tested here). Hence, there is no additional or separate application server cost associated with a .NET
application; while commercial J2EE application servers such as WebSphere are separately licensed (and

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 5

http://msdn.microsoft.com/stocktrader

typically quite expensive) products. The dollar cost per TPS rates might, therefore, surprise some
readers.

It is also important to remember that this is a test of specific workloads based on the Trade 6.1 and
equivalent .NET StockTrader application. Each application, created by the respective vendors for their
platform, however, utilizes most (if not all) of the commonly deployed architectural building blocks used
in almost all enterprise applications.

Fair Benchmark Comparisons Between .NET StockTrader and
IBM WebSphere Trade 6.1

Since each application supports many different configurations, it is very important to understand what
constitutes a fair comparison. First, the configurations compared must be equivalent. This means that
the applications must produce the exact same functionality and processing behavior in the
configurations compared. You cannot, for example, compare one application running with one-phase
transactions between the message queue and the database, while running the other application with a
two-phase commit across these distributed resources. The .NET StockTrader, while based on .NET and
not J2EE, was designed to mirror most of the Trade 6.1 configurations possible with this testing goal in
mind. The key configuration modes Trade 6.1 and .NET StockTrader support, in any combination, are
discussed below.

Database Access Technology/Programming Model:
WebSphere Trade 6.1:

e EJB (default)
e Direct

The EJB mode employs a standard IBM/J2EE recommended development paradigm: JSPs invoke
stateless session beans, which in turn front-end Entity Beans that use Container Managed Persistence
(CMP). The Direct mode eliminates the Entity Beans and CMP, and instead uses direct JDBC calls to the
database. Both modes use Java model classes to pass data information between tiers.

.NET StockTrader:

Microsoft has a single data access strategy based on ADO.NET, so there is no mode that equates to this
Trade 6.1-configurable setting in the .NET StockTrader application. The ADO.NET implementation uses
C# model classes to pass data between tiers. It uses ADO.NET DataReaders isolated in a separate data
access layer (DAL) as a best-practice performance programming practice, and to maintain clean
separation of database logic from the other tiers of the application.

Interface from Web Application to Backend Business Services:
WebSphere Trade 6.1:

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 6

e Standard (via local invocation of EJB Session Beans from JSP pages, not remote/RMI-based
invocations)

e Web Services (JSP pages make remote Web calls to the backend services, which do all
database/transaction work)

Trade 6.1 Web Services are based on the IBM Web Services/SOAP implementation, which use an Http
transport and XML encoding. These are the only possible transport and encodings supported by the IBM
Web Services programming model. In Web Services mode, you can optionally direct the endpoint (via
their configuration page) to point to any of the .NET Web Service endpoints for StockTrader (discussed
below), and the JSP application will seamlessly work with the .NET middle tier services and data access
layers.

.NET StockTrader:

e Http_WebService. In this mode, the ASP.NET application makes calls to a Windows-hosted WCF
service called .NET StockTrader Business Services. This is a self-host application—self hosting
services is a core new concept introduced with WCF, and allows services to be hosted in any
application, not just IIS. In this mode, calls are made from the client over HTTP with XML
encoding.

e Tcp_WebService. In this mode, the ASP.NET application makes calls to the same self-host WCF
Windows application as with Http_WebService. However, WCF enables this same client and
same host to work with different “bindings” —in this case TCP as opposed to Http. So in this
mode, the application is using TCP and binary encoding between the Web application and
Business Services. WCF unifies the programming model for all remoting in .NET, and separates
transport/encoding standards out from the programming logic. So the self-host Business
Services program is actually simultaneously supporting Http/XML and Tcp/Binary modes of
operation with no extra programming. The WCF clients work the same way, and different
clients can simultaneously use different bindings.

e |ISHost_WebService. In this mode, the WCF Business Services are hosted in IS, as opposed to a
self-host program. 1IS 6.0 hosted services always use Http and XML encoding. However, this is
not a restriction for 1IS 7.0. For this benchmark, all testing was done on IS 6.0 however.

e Asmx_WebService. WCF replaced Asmx as the strategic technology from Microsoft to build .NET
Web Services. This mode uses classic ASMX 2.0 Web Services, which are always hosted in IS
and only support Http and XML encoding. This is a useful comparison point to understand the
performance differences between WCF/.NET 3.0 Web Services and Asmx Web Services.

Order Processing Mode
Trade 6.1

e Synchronous (default). In this mode, orders are simply processed as they come in from the Web
tier-- either by way of JDBC logic (Direct mode) or EJB/Entity Bean logic (EJB mode).

e Async OnePhase. In this mode, the application integrates with the IBM “Enterprise Service
Bus” —which at its core is their Service Integration Bus (SIB) messaging and message queue

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 7

facility integrated into WebSphere. In this mode, a one phase transaction is invoked across the
SIB message queue and the database. Orders are lost from the messaging system if the DB
transaction fails. No XA/distributed transaction takes place. The integration with the SIB is via a
JMS Message-Driven Bean (MDB) bound to a SIB message queue. The SIB message queue can
be either in-memory, or configured for persistent storage and “assured message delivery.” This
means if the application server crashes, the message is still on disk and can be recovered on
restart. This is also known as “durable” messaging. However, with a one phase commit, it does
not make sense to configure the SIB for assured message delivery, so benchmarks in this mode
were configured for “Express Non-Persistent” message queuing for the SIB.

e Async TwoPhase. In this mode, as with the previous mode, JMS is used to integrate with the SIB
message queue. In this mode, however, a full two phase distributed transaction takes place
when processing orders, so they are not lost if the database transaction fails. Hence, in this
mode it makes sense to configure the message queue for persistent storage and “assured
message delivery.” The transaction is coordinated by WebSphere JTA transaction facilities.

.NET StockTrader

e Sync_InProcess. This mode equates to the Synchronous mode for IBM Trade 6.1. There is no
messaging interface, orders are simply processed by Business Services as they come in from the
Web application.

e ASync_Msmgq_Volatile. This mode equates to running Trade 6.1 with ASync_OnePhase and the
SIB queue configured for Express Delivery (non durable, not persisted to disk). In this mode, a
WCF service is invoked asynchronously by Business Services to place an order. The WCF Order
Processing Service then processes the order on its own. In this mode, the client invokes the
WCF service via an MSMQ binding to a non-transacted (non durable) message queue. The
message queue is maintained in-memory. This is a loosely coupled mode, however, in that the
WCF service host does not need to be running for Business Services (and hence the Web app) to
successfully place orders. WCF hides all the MSMQ programming logic from developers---you
program message-oriented services in the same way you program synchronous services.

e ASync_Msmg. This mode equates to running Trade 6.1 with the ASync_TwoPhase configuration,
with the SIB message queue configured for persistent storage. In this mode, the WCF service is
bound to a transacted (durable) MSMQ message queue, and thus presents assured message
delivery, since a two phase distributed transaction is always used when processing off the
message queue into the database. The transaction is coordinated by the MS Distributed
Transaction Coordinator.

e ASync_Http. There is no equivalent Trade 6.1 mode and this mode was not benchmarked. This
mode is meant to show how WCF presents a single programming model for a service no matter
the transport/encoding standard used. So in this mode, a message queue is not involved;
Business Services use an asynchronous Http call to place orders to the WCF host program.

e ASync_Tcp. The same as ASync_Http except over Tcp with binary encoding, not HTTP/XML
encoding.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 8

Note for all these modes, you simply configure Business Services, not the Order Processor Host, since
the Host is simultaneously listening on all the endpoint types above.

Caching
Trade 6.1

e No Caching (default). The name of this mode is a bit misleading. As long as WebSphere is
configured for Servlet Caching, the Market Summary will be cached based on a 3 minute cycle,
as defined in the WebSphere Cachespec.xml file. All other elements of the application are not
cached, database interactions occur on every request. This is necessary, since the Market
Summary query is very heavyweight, and with any real data load, would quickly bring the
database and the app to a crawl if run on every visit to the home page. Since the query is the
same in the .NET StockTrader application, the same is true for .NET StockTrader. For benchmark
runs, we tuned to cache to a 1 minute expiration in both cases since user’s would likely want
market updates a bit more frequently than every three minutes.

e Distributed Map Caching. This uses IBM’s Dynamic Cache Service, based on settings in the
Cachespec.xml file, to perform a fairly complex series of caching steps for the application. This
enables the application to reduce database calls.

e Command Caching. This is provided for backwards compatibility since the Distributed Map
Caching replaces Command Caching as IBM’s primary cache technology/recommended
approach to caching.

.NET StockTrader

The .NET StockTrader uses the .NET cache API (output caching specifically) to cache the Market
Summary page for 60 seconds. We chose not to implement further caching in the application
because it is simply not realistic. While Trade 6.1 can cache stock quotes, account data,
portfolio data and the like (and .NET StockTrader could too if implemented), the simple fact is
that this is not a realistic approach or “cache policy” for this application. Consider that the IBM
cache, while distributed (it can keep cached items in sync across clustered servers), is not
invalidated by the data source itself. Hence, an update to a database table by any other
application using the same database would result in possibly corrupt data, or at least presenting
incorrect “stale” data to users in the application. Unless a customer is willing to direct all
database updates/deletes/inserts through the Trade 6.1 entity beans, data on the middle tier
would quickly become out of sync with the actual database. In other words, such a strategy
keeps the organization from building new applications against a common database. Market
Summary information is fine to cache, since its read-only and can stand to be 60 seconds stale;
user account balances and stock price information used on trades cannot. Hence, the .NET
StockTrader does not implement further caching beyond Market Summary.

It should be noted, however, that Microsoft introduced a new SQL Cache Dependency feature
for the .NET cache with .NET 2.0; and unlike IBM’s Distributed Cache technology, this is directly
invalidated by the data source itself. In other words, a completely separate application (or even

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 9

a manual update to a single row of data) will cause and application cache that contains that row
to be invalidated, such that data will remain in sync with the database itself. While this is a great
feature, it is not appropriate for constantly changing data (since the subscriptions generate
network traffic). Such constantly changing data should likely not be cached to begin with. Given
the nature of the benchmark, almost all data is constantly changing in the benchmark runs, so
again, for realism we do not use this .NET feature.

Enable Long Run Support
Trade 6.1

e On (default)
o Off

This setting was introduced to Trade with WebSphere Trade 6.1, apparently because customers running
the benchmark for long periods of time saw steady degradation of performance as user accounts started
to contain more and more orders. This resulted in heavier queries, and large and steadily increasing
amounts of data being passed between tiers and formatted into the account summary page. Hence,
IBM created this setting. All it does is completely eliminate the recent order query and order display on
the account page. It is understandable that in a benchmark setting, you cannot control the amount of
data as you would in a production application (typically, for example, by querying based on order date,
etc. for a restricted set of data). However, there are better approaches to solve this problem. For
example, capping the maximum orders returned by a given query at a reasonable number (like last 100
orders). EJBSQL, however, does not support this capability, so IBM chose this option instead.

Despite this discussion, there is a much better way to ensure benchmarks can be run for long periods of
time using Trade 6.1 and StockTrader---and a solution that makes the benchmark more realistic at the
same time. That solution is to use a much larger data load in the database. For example, with 500
users, and a benchmark script creating 100 orders per second, it would take just 5000 seconds (83
minutes) for each visit to the account page to cause a 1000 record SQL query to be run on each request,
followed by passing 1000 records over the network for each user on each request. This is the default
load IBM uses for the database. We chose simply to increase the default data load, which also makes
the benchmark more realistic---very few enterprise production databases would be so small. We used
500,000 accounts, each with 5 existing orders (2.5 million orders). Now, at 100/orders per second
during a benchmark, it would take 58 days to get to 1000 orders per user.

.NET StockTrader

As mentioned, there is no equivalent setting for StockTrader, instead we run the benchmark for both
applications against a larger, much more realistic data load (500,000 accounts, 5 order per account,
100,000 quotes). We provide a database loader (written in .NET Windows Forms) to load both SQL
Server 2005 and DB2 V9. This loader runs significantly faster than the Trade 6.1 JSP Data Load Page.
This loader program will also reset the database between benchmark runs to the same starting state by
deleting added data records.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 10

In summary, you should make sure to de-select “Enable Long Run Support” in Trade 6.1 before doing
benchmark comparisons involving the account page, since this only disables the account page
functionality which is not realistic.

Database Load

As discussed, we used a default load for all benchmark runs (reset between runs) of 500,000 accounts, 5
orders/holdings per account, and 100,000 quotes. This is much more realistic than the IBM default
settings.

Database Configuration

The IBM Trade 6.1 application was tested against an all-IBM configuration, using IBM DB2 V9 (Enterprise
Edition) as the backend database, and the latest IBM DB2 V9 JDBC drivers for data access. The .NET
StockTrader was tested against an all-Microsoft setup, with a backend SQL Server 2005 database
(Enterprise Edition). The benchmark is not a database benchmark: enough capacity was employed for
the database hardware to ensure it was not a bottleneck in any benchmark run. Each database was
deployed to the same 64-bit Windows Server machine, running on a 4-processor 2.2 GHz AMD Optereon
system. The database was configured with two fast RAID arrays (15 ms disk access times, 14 drives each
in a RAID 10 configuration); logging was directed to one array, the primary database files were stored on
the second array. Each array was configured with its own dedicated controller. The 64-bit editions of
DB2 and SQL Server were installed. All tuning steps were followed for DB2 according to the Trade 6.1
documentation, however, additional logging space was configured given the larger data load. The
equivalent drive space was configured for SQL Server logging. The database disk usage was closely
monitored to ensure each run could complete without requiring the database to extend the logging or
data file space during a benchmark run. This is an important consideration for custom tests.

Test Scripts

Mercury LoadRunner was used to record test scripts—browser interactions that exercise most of the
functionality in the application. These were run across 40 client machines (500 MHz Windows XP
desktops with 512 MB RAM). User agents were configured to run with a one second think time between
each request. Each benchmark run included a warm up run to get to steady state, and a 30 minute
measurement period. TPS rates were determined by LoadRunner by averaging across the 30 minutes.
Error rates were monitored to ensure they remained at less than .01% during the measurement period.
Some dropped connections and or database deadlock conditions do result from running very large user
loads (great than 1,000 concurrent users at a one second think time) against the applications. Dropped
connections, if any, occurred only during the warm-up period as larger user loads were ramped against
the applications. User loads were run for each application up to a number that represented peak
throughput for that configuration, as determined in many iterative runs (literally hundreds) during the
tuning stages. Extensive time was spent tuning IBM WebSphere (see the appendix) to achieve peak
throughput for the software/hardware configuration tested. IBM does not publish pre-set tuning guides
for Trade 6.1, and developers must iteratively test and tune the various knobs in WebSphere (there are
many) to get to an optimal setup for a given hardware configuration and software workload. .NET does
not require nearly as much tuning, and in general will scale quite well out of the box, given a properly

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 11

coded application. Some tuning was applied, however, and this is documented in detail along with the
WebSphere and Linux tuning in the appendix.

In general, it is fairly straightforward to recognize an in-properly tuned system for both platforms. Given
enough database capacity, each application server running under load should be able to reach full
saturation (~¥100% CPU saturation) when properly tuned. Just because the system can reach full
saturation, however, does not mean the tuning is optimal, it just means if it can’t reach this, then it is
not properly tuned. Hence it is a requirement to iteratively test after adjusting, individually, the core
tuning settings for the application. With Trade 6.1, these are extensive, including several different
thread pools, connection pools for databases and queue connection factories, Java heap sizes, and the
like. Several man-months were spent on this effort, and the WebSphere installation was always kept
up-to-date width the latest Refresh Packs from IBM during testing. We did notice a good increase in
performance in several scenarios between WebSphere 6.0 and 6.1. We are quite confident in the
results and the system tuning applied, however, should IBM recommend different (specific) settings, we
will be happy to re-run the benchmark and re-publish new results. Customers can also run the
benchmark—it is a great way to really judge the capacity of the two platforms for a realistic workload,
and then to judge the cost of each platform and compare the cost to the results achieved.

Simulated User Settings

Mercury agents were set to not download images (this is not a web server/network I/0 benchmark)
during runs. They make requests to the application server, and all processing is completed and just the
HTML returned to the agent. This reduces the overhead on the agent machines, and helps ensure the
40 client machines used in the testing never become an artificial bottleneck. Just as importantly, the
agents were configured to reset connections between iterations, to simulate constantly new users
logging into the application, and more fully exercise the underlying networking stacks and HTTP keep
alive system that the application servers and Web servers use to support large concurrent user bases.
Too many benchmarks are simply run with 10-15 threads, no think times and no network resets
between script iterations. These types of benchmarks often produce very different (often over-inflated)
results than real world usage conditions. Our settings are meant to much more closely mimic the real
world. Think times (even if just one second) and connection resets between iterations make all the
difference here.

Changes to the IBM Downloadable Version of Trade 6.1 as Used for Testing

We wanted to avoid making changes to IBM’s code; after all, it was developed by IBM for their own
platform as a best-practice performance application for performance testing and capacity planning. The
only setting we changed, therefore, besides ensuring the cachespec.xml file was only caching Market
Summary as did the .NET application (as previously discussed), was to ensure the application did not
make requests to the Stock Streamer sample Java Client application published with Trade 6.1. This
application uses a Topic-based pub/sub mechanism to show a subset of stock trades at periodic intervals
in a Java client application. Since we did not implement (at least not yet) this equivalent functionality
for .NET StockTrader (we instead did a full blown WPF client); we needed to make sure the Trade 6.1
application was not making JMS calls for each stock trade. This is accomplished easily by merely
changing environment entries (PublishQuotePriceChanges) in the deployment descriptors that disable

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 12

this functionality specifically, or by merely commenting out the call to publish to the JMS topic for the
Streamer application. Correct settings can be ensured by turning on Trade 6.1 detailed logging, and
ensuring these calls are not being made (which we did). Of course logging should be turned off for the
actual benchmark. Note however, that updates to stock prices and volumes remain on
(UpdateQuotePriceVolume), as the .NET StockTrader also updates stock prices and trading volumes in
the equivalent fashion for each order placed as part of the buy and sell transactions.

Security Settings

Trade 6.1 does not implement any security between the Web application and the JSP engine—for
example, no encryption of passwords takes place. We made sure the .NET StockTrader similarly did not
implement any extra security, although this would be appropriate for a Web-based deployment.
ASP.NET Forms Authentication was used as the authentication mechanism (with anonymous Internet
access ala Trade 6.1), and ASP.NET Forms Auth makes it extremely easy to implement any number of
encryption algorithms simply via a configuration setting. The application, if ever deployed on the Web
vs. an Intranet, would require SSL/HTTPS as the primary security mechanism. Customers can configure
IBM HTTP server or |IS for SSL optionally for additional testing if they desire. The Web Services in the
application as implemented by IBM are simply SOAP 1.1 based. They do not employ WS-*. Therefore,
neither does the 1.0 implementation of StockTrader, but the applications present a possible way for
benchmarking of various WS-* standards in the future, such as WS-Atomic transactions and WS-Reliable
Messaging which WCF and .NET fully support. It should be noted, however, as the applications do not
require federated security, in the real world neither would likely implement WS-Security for an actual
deployment, considering the overhead and lack of need for it in this specific application as designed.

IBM HTTP Server vs. Port 9080

When benchmarking IBM WebSphere, it is important to understand that while WebSphere provides an
in-process HTTP listener service (port 9080, by default), IBM best practice recommended deployments
are in conjunction with the full-blown IBM HTTP Server (a repackaged version of Apache). Hence, for all
configurations, we used IBM HTTP Server as packaged with WebSphere, configured with the WebSphere
Plugin. This includes the distributed Web Service benchmark runs, where four client application servers
execute the JSP Web application (co-located with the IBM HTTP Server); and make requests to the Web
Service Host application server. These requests are made on port 80 to the IBM HTTP Server that is
installed on the WebSphere Web Service Host application server. This is the recommended IBM
configuration for deploying high-load application servers hosting Web Services. IBM HTTP Server tuning
details for Windows and Linux are included in the Appendix.

Web Application Pages Exercised by the Test Scripts

The test scripts were designed to drive load on the system in a way that exercises most functionality in
the application, and puts a heavier emphasis on transactions; such as adding new registered users and
buying stocks. The precise flow of the test scripts (exactly the same for all test runs on all platforms) is
listed below. A one second think time (smaller than real-world, to driving more load per simulated user)
was placed between all URL requests, and in the results, a ‘transaction’ is defined as the successful
completion of the URL request to the server, with valid response/HTML returned.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 13

e Login random registered user (1 to 500,000 users loaded in database; the login includes in both
apps a redirect to the home page, and all the logic to login and display home page)

e Request four random quotes (1 to 100,000 distinct quotes loaded in database; one post
performed with 4 stocks requested)

e Request four random quotes (1 to 100,000 distinct quotes loaded in database; one post
performed with 4 stocks requested)

e Visit Portfolio Page

e Visit Account Page (no account update performed)

e Visit home Page

e Logout the Registered user via logout page

e Register a new user/submit registration form (this also logs new user in with redirect/display of
home page)

e Visit Portfolio Page

e Buy a random stock symbol (1 to 100,000 stock symbols in database; buy operation involves a
direct post/submit to the order submission pages, which submit the order for all backend
processing)

e Visit Home Page

e Buy a random stock

e Visit Account Page

e Get quotes for 4 random stocks (one post performed with 4 stocks requested)

e Buy arandom stock

e Buy arandom stock

e Visit Portfolio Page

e Visit Home Page

e logout

32-Bit versus 64-Bit Testing

Middle Tier

For this benchmark, we could test either the 32-bit versions of .NET and IBM WebSphere, or the 64-bit
versions. Based on published documentation from IBM on 64-bit comparisons (see
ftp://ftp.software.ibm.com/software/webserver/appserv/was/64bitPerf.pdf'), including the Trade 6.1

benchmark, and pre-verification runs of the Trade 6.1 application on 64-bit WebSphere on both

! Note that you should not directly compare the results for Trade 6.1 workloads in this referenced benchmark
paper to the results obtained here. IBM does not report the test scripts used to generate the results (what
operations are performed?); or the test tool used to generate the results. For example, Trade 6.1 ships with a
built-in JSP workload driver test tool that can generate benchmark results that was likely used. However, this does
not exercise the application in the same way as our Mercury test scripts, which are more intensive in terms of the
% of orders and visits to Portfolio, Home and Account pages (vs. just retrieving stock quotes). They also do not
report the caching modes or whether the “Long Run” option, which disables the Account Page functionality when
turned on, was on (default) or off.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 14

ftp://ftp.software.ibm.com/software/webserver/appserv/was/64bitPerf.pdf

Windows and Red Hat Linux/Opteron, we determined the Trade 6.1 application performs roughly 10-
20% slower on 64-bit WebSphere. The same is true for the .NET StockTrader, which also performs
roughly 10-20% slower on 64-bit Windows/.NET vs. 32-bit Windows/.NET. Both IBM and Microsoft have
documented that unless a middle tier application requires more than 2GB of addressable address space
(for caching, for example), or the application performs math-intensive floating point operations (as
required with heavy use of encryption, graphics engines, databases, etc.), typical middle-tier business
services will perform slightly better on their respective 32-bit platforms vs. 64-bit platforms given the
same hardware system. Why? There is extra overhead for the Java and .NET runtimes to carry around
64-bit memory addresses. For applications that will not benefit from the faster math calculations or the
ability to address more memory than 2GB per process, the extra overhead can decrease performance on
64-bit software platforms vs. 32-bit software platforms. Neither Trade 6.1 or .NET StockTrader benefit
from using their respective 64-bit platforms (.NET/WAS). We chose to run the middle tier on the fastest
setup of the hardware tested, therefore: 32-bit .NET and WAS running on the 4 x 1.8 GHz Opteron
system under test. For a different 64-bit benchmark, inclusive of WebSphere and .NET results, and a
discussion of 64-bit .NET on the middle tier, please also refer to http://msdn2.microsoft.com/en-
us/vstudio/aa700838.aspx.

Database

The database, however, which can benefit enormously from the ability to directly address > 2GB of RAM
(especially since we used a good-sized database load for the tests), was run on 64-bit Windows Server
running the 64-bit versions of DB2 V9 and SQL Server 2005. This computer was configured with 16GB of
RAM.

As published benchmark kits, the two applications do present the chance for customers to run their own
tests, which we highly encourage. For example, running under an SSL configuration may see better
results with a 64-bit middle tier vs. a 32-bit middle tier. Such testing was beyond the scope of this set of
benchmark tests.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 15

http://msdn2.microsoft.com/en-us/vstudio/aa700838.aspx
http://msdn2.microsoft.com/en-us/vstudio/aa700838.aspx

Benchmark Results

Web Service Benchmark

LoadRunner
Agents (40)
192168 4 x subnet | Gigabit Network Backbone
WebApp WebApp WebApp WebApp
Server1 Server 2 Server 3 Server4
2x 22Ghz XEON, 2x 22Ghz XEON, 2x 2 2Ghz XEON, 2x 2 2Ghz XEON,
4GB RAM 4GB RAM 4GB RAM 4GB RAM
Gigabit Network Gigabit Network Gigabit Network Gigabit Network
Windows Server 2003 Windows Server 2003 Windows Server 2003 Windows Server 2003
| | 10.20.20.x subnet | |
. Gigabit Network Backbone
Web Service Host
Application Server L
4x 1.8Ghz AMD Opteron
16 GB RAM
Gigabit Network
Windows Server 2003 or
Red Hat Linux Enterprise V4 l—
E " Trade

2 Fast SCSI Drive Amays: . Database
14 drives each {15ms) 4 x 2. 2GHz AMD Opteron
configured with RAID Level 10 {140) | 64-bitDB/2 and 64-bit SQL Server
Logging Amay A; Database Amay B Windows Server2003

Figure 1: Benchmark Test Bed for Web Service Remote Tests. The setup ensures that the Web Service Host is the System
Under Test (SUT); as neither the 4 Web Application Servers running the Web application or the database are near capacity
during any benchmark run. Hence, we are measuring the throughput of the Web Service Host application server in all tests.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 16

.Net StockTrader and IBM WebSphere Trade6.1
Web Service Interface From Web App To
Remote Backend Services
Web App Servers: (Web Service Clients) : Four 2 x 2.2 Ghz Xeon, 4GB RAM
Web Service Host: One 4 x 1.8 GHz Opteron, 16GB R

Higher Bar is Better, as this is Peak Throughput in TPS

[7d
Q.
-
o
(]
(=
©
-
(%]
=]
(%]
=<
©
(]
a.

Figure 2: Peak TPS Rates for the Web Service test

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 17

.Net StockTrader and IBM WebSphere Trade6.1
Web Service Interface From Web App To
Remote Backend Services
Web App Servers: (Web Service Clients) : Four 2 x 2.2 Ghz Xeon, 4GB
RAM
Web Service Host: One 4 x 1.8 GHz Opteron, 16GB RAM

$166.66 Lower Bar is Better, as this is S/Cost per TPS

$180.00

$160.00

$140.00

120.00
° $111.01

— $104.76

$100.00

$80.00

$60.00

(7]
o
[
S~
e
—
("
Q.
-
—
[J]
o
ey
w
(]
(&)
2723
—
[J]
>
o
(]
(7]
c
.2
=y
©
L
Q.
Q
<

$40.00

$20.00

Figure 3: Price/Performance chart for the Web Service Test. Refer to Appendix A for pricing calculations for the middle tier
software.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 18

The Web Services Benchmark Discussion

In this test, the Web Application servers (running the JSP or ASP.NET front ends) are the Web Service
client machines, using Web Services to remotely invoke the service layer, hosted on the Web Service
Host application server. Both the clients and the host are performing XML serialization and de-
serialization. The Web Application server clients are accessing the services via a SOAP Proxy (Trade 6.1),
or the WCF client (.NET StockTrader). We set the test up with four distributed Web Application Servers,
with round-robin load balancing performed from the Mercury Controller as iterations are performed,
such that all four Web Application Servers get equal load. Each in turn makes remote network requests
to the Web Service Host, which is servicing all four Web Application Servers. The use of 4 Web
Application Servers ensures we do not have a bottleneck on the Web Tier, and we are accurately
comparing just the performance of the Web Service Host computer for all benchmark runs. Some
important conclusions can be drawn from this test:

1. Both the ASMX and WCF SOAP/HTTP configurations are significantly faster than IBM WebSphere
6.1 for hosting Web Services. .NET WCF hosted in IS offers 46% better throughput than the
JDBC WebSphere configuration in this test; and 124% better throughput than the EJB
implementation.

2. Self-hosting WCF services can lead to performance advantages over hosting .NET Web Services
in lIS—even when operating over an HTTP-XML basicHttpBinding. Self hosted WCF HTTP Web
Services offer 56% better throughout than the ASMX equivalent services hosted in IIS for this
test. They offer 45% better throughput than the equivalent WCF 1I1S-hosted service operating
over Http-XML.

3. Self hosted Web Services using WCF significantly outperform IBM WebSphere Web Services. The
self-hosted WCF services operating over Http-XML (full SOAP compliance) offer 113% better
throughput than the fastest WebSphere Web Service results (JDBC data access). They offer
225% better throughout than the WebSphere Web Services using EJB entity bean database
access.

4. The self-hosted WCF services can also support, simultaneously, the netTcp WCF binding, with
binary encoding. This can lead to significant performance boosts for remote calls. The WCF
netTcpBinding replaces .NET Binary Remoting (used with .NET 1.1 and 2.0) as the preferred way
for remote calls between .NET clients and remote .NET services. Supporting both HTTP/XML
and TCP/Binary requires no extra development, as WCF unifies the programming model for
HTTP-based Web Services and .NET Binary-remoted components, and service hosts will listen
simultaneously on all configured endpoints to support any different type of client on any
platform.

5. The Tcp-Binary binding (netTcpBinding) between the ASP.NET clients and the Web Service host
offer 81% better throughput than the WCF basicHttpBinding used in the same self-host .NET
executable. The Tcp-Binary remote mode offers 284% better throughput than the fastest
WebSphere Web Service configuration (JDBC data access).

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 19

Refer to the appendix for the performance monitor captures for this test taken after initial warm-up at
steady-state throughput rates for each configuration.

Messaging Benchmark - Durable Queue with Two Phase/Distributed Transactions

LoadRunner
Agents (40)
192 168 4 x subnet | (igabit Network Backbone
Application Server
4.x 1.8Ghz AMD Opteron
16 GB RAM
Gigabit Network
Windows Server 2003 or
Red Hat Linux Enterprise V4 |
10.20.20 x subnet Gigabit Network Backbone
Trade
. Database
2 Fast SCSI Drive Ammays: 4x 2.2GHzAMD Opteron
14 drives each {15ms) 16GB RAM
configured with RAID Level 10 {1+0) 64-bit DB/2 and 64-bit SQL Server
Logging Amay A; Database Amay B Windows Server2003

Figure 4: Figure 1: Benchmark Test Bed for Messaging Tests. The Messaging engine (MSMQ or IBM’s Service Integration Bus
Message Queue/JMS messaging engine) are co-located on the same application server as the other parts of the application in
this test. Benchmark agents drive load against the Web application, which in turn accesses the Trade Services running in-
process (the same CLR or JVM instance). The Trade Services then place asynchronous orders via the Trade 6.1 JMS Broker
MDB, or the .NET StockTrader WCF Order Processor Service.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 20

.Net StockTrader and IBM WebSphere Trade6.1
Asynchronous Message-Based Order Processing
Persistent Message Queue - Assured Delivery
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Higher Bar is Better, as this is Peak Throughputin TPS

("
o
-
©
()
=
©
)
(%]
=
(%)
-
1]
[}
a.

Figure 5: Peak TPS Rates for the Durable Messaging Test

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 21

.Net StockTrader and IBM WebSphere Trade6.1
Asynchronous Message-Based Order Processing
Persistent Message Queue - Assured Delivery
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

$160.00

$140.00 TEVR-CEM Lower Bar is Better, as this is $/Cost per TPS

»120.00 $112.81

$100.00

(7]
[~ %
[
SN
W
S
(7]
o
-
—
[}
a
e)
(7]
]
o
W
f
[}
>
o
[}
(7]
[=
0
e
©
2
[«
Q
<

Figure 6: Price/Performance Chart for the Durable Messaging Test. to Appendix A for pricing calculations for the middle tier
software.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 22

Messaging Benchmark Discussion - Durable /Persistent Message Queue

In this test, the OrderMode is set to Asynchronous-TwoPhase for Trade 6.1, with the SIB queue
configured for persistent storage and Assured Message Delivery. This is the configuration that would be
used in a production application, with the reads from the queue and the corresponding database
inserts/updates occurring as part of a single atomic, distributed transaction. This ensures that messages
are not lost if a database processing failure occurs. For .NET StockTrader, the OrderMode is set to
ASync_Msmag. In this mode, the WCF Service is bound to a transacted (durable/persisted) message
gueue, with a similar two phase distributed transaction when processing orders off the queue. Again,
this mode ensures messages are not lost if a database processing error occurs. Some conclusions that
can be drawn from this test:

1. Again, asin all tests, the JDBC “Direct” mode for WebSphere offers better performance than the
use of EJB entity beans.

2. .NET WCF outperforms the WebSphere EJB configuration in this test by 66%; it outperforms the
JDBC configuration by 16%.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 23

Messaging Benchmark - Non-Durable Queue with One Phase Transactions

.Net StockTrader and IBM WebSphere Trade6.1
Asynchronous Message-Based Order Processing
Non-Persistent Message Queue
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Higher Bar is Better, as this
is Peak Throughput in TPS

("
a.
-
©
(<))
£
L]
]
(%]
=
(%]
4
©
()]
a.

Figure 7: Peak TPS Rates for the Non-Durable Messaging Test

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 24

.Net StockTrader and IBM WebSphere Trade6.1
Asynchronous Message-Based Order Processing
Non-Persistent Message Queue
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

$100.00
Lower Bar is Better, as this is $/Cost per TPS
$90.78
$80.00
$70.00
$60.00
$50.00

$40.00

$30.00

(7]
o
[
SN
v
(7]
o
[
—
[J]
a
)
7]
(]
(@]
v
-
[J]
>
[
(7]
(%]
c
2
)
1]
2
[«
Q
<

$20.00

$10.00

Figure 8: Price/Performance Chart for the Non-Durable Messaging Test. Refer to Appendix A for pricing calculations for the
middle tier software.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 25

Messaging Benchmark Discussion - Non-Durable/Non-Persistent Message Queue

In this test, the OrderMode is set to Asynchronous-OnePhase for Trade 6.1, with the SIB queue
configured for express non-persistent storage. For .NET StockTrader, the OrderMode is set to
ASync_Msmgq_Volatile. In this mode, the WCF Service is bound to a non-transacted (in-memory)
message queue, with a similar one phase transaction when processing orders off the queue. While this
configuration would likely never be used in a production application, it is included here for
completeness. Messages will be lost in this configuration in two cases:

e The application server/messaging engine crashes.
e There is a database processing error of some sort, after the message is read from the queue.

Some conclusions that can be drawn from this test:

1. Interestingly, in this mode WebSphere outperforms .NET and WCF. One potential
explanation is that the WCF self-host program is run out-of-process with respect to the Web
application; while with WebSphere, the JMS engine is run in the same JVM process as the
Web application. In fact, in the WebSphere configuration, only a single JVM process is
involved in an order operation—so no process hops are involved. In the .NET tests, the Web
application runs in one process (ASP.NET worker CLR process), the WCF self-host runs in
another CLR process, and the messaging engine (MSMQ Service) runs in a third process.
While this is true for the .NET durable/persisted runs as well, in the non-persisted/one
phase tests WebSphere does not have to process a distributed transaction or persist
messages to disk. While .NET may be much faster in these key operations, when they are
not part of the benchmark test, that advantage is lost; while at the same time WebSphere
benefits from running everything within one JVM instance/process. Running the messaging
engine and core application in the same instance (default for a Trade 6.1 install) is not as
reliable, of course, as separating these components into separate processes. To be fair,
however, with extra configuration and setup, WebSphere could run multiple Application
Server instances on the same machine and run the messaging engine in a separate process
from the core application; such a setup is beyond the scope of this benchmark.

2. Keep in mind this configuration is really not relevant for a production application that must
have reliability guarantees on message processing.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 26

Data-Driven Monolithic Web Application Benchmark

LoadRunner
Agents (40)

192.168.4.x subnet Gigabit Network Backbone
Application Server
4 x 1.8Ghz AMD Opteron
16 GB RAM
Gigabit Network
Windows Server 2003 or
Red Hat Linux Enterprise V4
10.20.20.x subnet Gigabit Network Backbone
Trade
] Database
2 Fast SCSI Drive Amays: 4x 2 2GHzAMD Opteron
14 drives each {15ms) 16GB RAM
configured with RAID Level 10 {1+0) 64-bitDB/2 and 64-bit SQL Server
Logging Array A; Database Array B Windows Server2003

Figure 9: Test Bed setup for the monolithic Web application benchmark. In this setup, which is the same physical setup as
the messaging tests, orders are placed synchronously. There are no remote calls made, and no JMS or MSMQ messaging is
involved as all orders are placed synchronously. Since a WCF Service host is not involved for messaging or remoting, all
elements of the .NET StockTrader run within the ASP.NET worker process (a single CLR instance); just as the Trade 6.1

application runs in a single JVM instance.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 27

.Net StockTrader and IBM WebSphere Trade6.1
In-Process Interface to Business Services and Synchronous Orders
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Higher Bar is Better, as this is Peak Throughput in TPS

1547

[EnN
o
o
o

["d
Q.
-
o
()
c
©
-
(%)
=
(%]
-
1]
[}
a

WebSphere/RedHat WebSphere/Windows WebSphere/RedHat WebSphere/Windows .NET/Windows Server
Linux EJB Server EJB Linux JDBC Server JDBC

Figure 10: Peak TPS Rates for the Monolithic Web Application Test.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 28

.Net StockTrader and IBM WebSphere Trade6.1
In-Process Interface to Business Services and Synchronous Orders
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Lower Bar is Better, as this is S/Cost per TPS

$79.04

—
v
o
[

SN

©
("
[~ N
-

-
Q
o
re)
(7]
o
o
W
—
()]
>
[
(<))
(7]
c
=
]
©
2
Q
Q
<

Figure 11: Price/Performance Chart for the Monolithic Web Application Test. Refer to Appendix A for pricing calculations for
the middle tier software.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 29

Data-Driven Monolithic Web Application Benchmark Discussion

This mode of operation represents a non-service oriented, monolithic application. As such, there is no
service-reuse possible, and no ability to “plug in” different clients or applications/services running on
different platforms. The performance is quite good, considering there are no distributed transactions,
no messaging/queuing, and no remote calls whatsoever between the Web Applications and the middle
tier processing components. All elements of the application must be deployed in unison, and hence
versioned/updated in unison. Nevertheless, for applications that do not require Web Services, remote
calls, or messaging, this mode of operation, for both applications, is a viable choice for a deployment,

and one which can provide very fast performance.

Application Architecture Diagrams

AEt NET StockTrader Logical Design

'NET
\Web Forms

80BLSIM| JOSN

Web Application Layer (Ul)

Business Transactions

seo|es
sseu|sng Je|L 8IppIN

Middle-Tier Business Services Layer (BSL)

Clstomer Class

568000y Bl8(

Orders Class

Account
Table

Trade
Database Account
(SQL Server2005) Profile Table

Quote Table

Holdings
Table
Qrders
Table

Service Model Classes
Transformed For

Figure 12: Logical Design of .NET StockTrader

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 30

NE&t NET StockTrader Logical Design: Async Order Modes

Middle-Tier Business Services Layer (BSL)

Business Transactions

580JAIBS
ssoL|shg Jo|L 9|PPIN

MSMQ J>
Data Access Layer (DAL) Transacted -

Queue

Customer Class Orders Class

56020Y Ble(

Order Processor
Service Host

Trade

Database Data Access Layer
(SQL Server (DAL)

2005)

Figure 13: Asynchronous, Message-Oriented Processing of Orders

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 31

WebSphere Trade 6.1 Logical Design

WebSphere .Trade6 Application

JERs + Java Serviets

Welb Service Interface

Trade6.1 Middle Tier Service
Operations
Java Stateless Session Bean

Direct Activation

Trade6 Data Access Layer1:

‘EJB" Mode: |
Bes

ommended 211
y o ‘Direct’ Mode

EJB Entity fith DirectJDB

Container-| stence 2.0

DB2 Trade
Database

Tradeb Data Access Layer2:

Service Tier creates/iransforms
Java “ModeF objects representing
database information; these are
passed between middle-tier
servicesand Serviets/UIl layer

Conditional Logic withineach data
access module to handle database
differences between DB2 and
Oracle (SQL syntax, behavior with
E.Bs, eic)

Figure 14: Trade 6.1 Logical Design

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 32

WebSphere Trade 6.1 Logical Design: Async Order Mode

Message Reliability Options:

=Best Effort Non Persistent
=Express Non Persistent
=Reliable Non Persistent
=Assured Persisient

=As BUS Destinaion

WebSphere Middle Tier

Trade6.1 Middle Tier Service BrokerQueue
Operations SIB Message Queue
Java Stateless Session Bean

Trade6 Data Access Layer1: Trade6 Data Access Layer2: Pub/Sub

w .

commended ‘Direct” Mode

DirectJDBC

Containe

DB2 Trade
Database

Figure 15: Asynchronous, Message-Oriented Processing of Orders

Conclusion

This paper presents an extensive array of benchmark comparisons between IBM WebSphere and
.NET/Windows Server running an application server workload. The benchmark is based on the
functional specification of IBM WebSphere Trade 6.1, as defined and developed by IBM for the
WebSphere 6.1 platform. The .NET results are based on a migration of this application to .NET with the
use of Windows Communication Foundation for the service layers. The .NET StockTrader is a best-
practice performance implementation for the .NET platform, and is functionally and behaviorally
equivalent to the tested Trade 6.1 application in the configurations tested. The benchmark results show
the two platforms running in a variety of different configurations. With published source code for both
implementations, we encourage customers to perform their own comparative testing; and also to use
the .NET StockTrader application as a learning sample for various features of WCF and the Microsoft
enterprise development technologies.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 33

Appendix A: Pricing
The following pricing was used for the S/TPS calculations. Pricing is based on published list pricing for
the products.

Pricing for the Web Service Tests

Pricing includes middle tier software licensing costs (OS + Application Server) for the primary application
server/Web Service Host and the four remote Web Application servers used in the remote tests.
Database software costs and middle tier/database hardware costs were not included. In the Web
Services configuration, we priced WebSphere Express for the four Web Application Servers, and
Network Deployment Edition for the Web Service Host. Network Deployment Edition is IBM’s
recommended enterprise application server, and includes its core enterprise features. Note that for the
.NET/Microsoft Windows Server configuration, no separate application server is necessary: .NET is
integrated into Windows Server and new versions are made available as free downloads on MSDN.
There is also no redistribution license fee to redistribute the full .NET Framework runtime. Red Hat
Advanced Platform was priced for the 4-CPU Linux application server tested, as this is required to
support 4 CPUs. Windows Server 2003 R2 Enterprise was priced for the 4-CPU application server.
Windows Server 2003 was run on the 4-Web Application Servers: Windows Standard pricing was
calculated for these servers.

For the .NET configurations, the External Connector License, which allows unlimited Anonymous Web
access (as used in the StockTrader Application) without CALs was added for all Windows Servers.
Windows Standard Edition with Internet Connectors was priced for the 4 2-CPU Web Application
Servers, Enterprise Edition for the 4-CPU primary Application Server/Web Service Host.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 34

WebSphere Pricing Windows

Web Service Tests: 5 Systems

1 x WAS Network Deployment Edition:
($15,000 x 4 CPUSs)
$60,000.00

1 x Windows Enterprise Edition:
$3,999.00

4 x WAS Express Edition:
($2,000 x 8 CPUs)
$16,000.00

4 x Windows Standard Edition (@ $1199.00 per copy)
$4,796.00

Total: $84,795.00

WebSphere Pricing Red Hat Linux

Web Service Tests: 5 Systems

1 x WAS Network Deployment Edition:
($15,000 x 4 CPUs)
$60,000.00

1 x RedHat Advanced Platform (V5)
$2,499.00

4 x WAS Express Edition:
($2,000 x 8 CPUs)
$16,000.00

4 x Windows Standard Edition (@ $1199.00 per copy)
$4,796.00

Total: $83,295.00

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 35

.NET Pricing (Windows Server 2003)

1 x Windows Enterprise Edition:
$3,999.00

4 x Windows Standard Edition (@ $1199.00 per copy)
$4,796.00

5 x External Connector License (@$1,999.00 per copy)
$9,995.00

Total: $18,790.00

Pricing for the Monolithic Application and Messaging Tests
1 Application Server System was used for the middle tier in these tests, with 4 CPUs.

WebSphere Pricing Windows

1 x WAS Network Deployment Edition:
($15,000 x 4 CPUs)
$60,000.00

1 x Windows Enterprise Edition:
$3,999.00

1 x External Connector License
$1,999.00

Total: $65,998.00

WebSphere Pricing Linux

1 x WAS Network Deployment Edition:
($15,000 x 4 CPUs)
$60,000.00

1 x RedHat Advanced Platform (V5)
$2,499.00

Total: $62,499.00

.NET Pricing (Windows Server 2003)

1 x Windows Enterprise Edition:
$3,999.00

1 x External Connector License (@%$1,999.00 per copy)
$1,999.00

Total: $5,998.00

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 36

Appendix B: Performance Monitor Captures

Notes: The 4 x 2-Processor Web Server machines are hyper-threaded, so show 4 CPUs in Performance
Monitor. #Bytes All Heaps and Requests Queued are .NET Performance Counters, and will show as zero
during WebSphere benchmark runs.

What are We Looking For?

1. Near 100% CPU saturation of the Web Application Server Under Test (this is always the 4 x 1.8
GHz AMD Opteron System).

2. Response times (the right hand Mercury Console Window) less than .5 seconds---request
gueuing is just beginning, but we are not over-stressing the computer; we want to reach 100%
CPU saturation or as close as possible to get to peak throughput, but anything beyond would
cause throughput to fall as systems begin to queue requests.

3. Database CPU loads well under 100%. Note that you will see *higher* database CPU loads for
benchmark configuration runs that are pushing more TPS through the system. The more TPS
the middle tier is able to handle, the more database requests it is making per second.

4. Well under 100% CPU load for the 4 Web Application servers used in the remote Web Service
tests; plus roughly equal CPU loads for each run across these four Web App client boxes.

5. Note for Web Service Benchmark runs that are pushing more TPS through the system, more
user load is required across the four Web Application Servers; hence, you will see *higher* CPU
load because these boxes are handling more concurrent users and more TPS to saturate the
Web Service Host. For example, the netTcp WCF benchmark requires much greater loads to
saturate the server, produces higher TPS; hence the database and the four ASP.NET clients are
also handling more load to produce this TPS rate, as expected. In summary, always judge a CPU
utilization rate based on the TPS it is handling at that CPU utilization.

6. Note these shots were taken largely during warm up runs, after steady state had been achieved.
Actual results are based on 30 minute measurement intervals in the official benchmark runs,
averaged by Mercury Analysis tools after completion and not read from the real-time display
console shown here.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 37

WebSphere 6.1 Windows

Web Services Benchmark: EJB Mode

Running Vusers
Elapsed Time
Hits/Second
| Passed Transactions
- o [Failed Transactions
| e
|
| _
|
Vusers wih Enors
) Transacton Graphs | R SO || - B O
| Transaction Response Time . """""""
i i Transactions per Second (Pas
|- Second (Faik
| Total Transactions per Seconc
) Web Resource Graphs | N
|- Has per Secand)}
| Fioowhot CUEEN 27onnoocaannemnancbinnanaensennee AR oo e
| HTTP Responses per Second
L iy e P
I Total Transactions per Second (Passed) NZ& NZA 263705 129508 414875

Figure 16: Mercury LoadRunner

Figure 17: WebSphere Web Service Host

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 38

Figure 19: JSP App Server2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 39

B xlo] BlelE o=l

Figure 21: JSP App Server 4

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 40

Figure 22: DB2

Web Services Benchmark: Direct (JDBC) Mode

troller - Trade in]

Scenario Status

— | Tetal Transactions per Second [Passed) NA NA 634528 180517 657.081

Figure 23: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 41

Figure 25: JSP App Serverl

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 42

X[meE ol=a)

Figure 27: JSP App Server 3

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 43

Figure 29: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 44

Messaging Benchmark Persistent Qqueue TwoPhase- E]B Mode

B3 LoadRunner Controller - Trade.lrs - [Run] R =18 x|
Fle View Scenario Meritors Resuks Took Heb

e W |Oh| P %|E|HH,..

G enario Status 5

iroun N DnmiMu ink [Ready Run 3¢ Etior ' Exdi 2 > Swtseese || Running Vusers 600

u:_ 0. 0 [o]0 zl C N B B R ™ s || ElopsedTime 001132 (rhimmss)
M mem |

« B Hits/Second 49853 (last 60 sec)
" = Passed Transactions 305397 Q
o Failed T [Q
— A | r—— o Q

X Total (Passed) Transaction Response Time - Vihole scenario

User Defined Data Points
Ence Statistics J
Vusers with Erors
= Transaction Graphs
Transaction Response Time
Transactons pes Second (Pas
Transactions per Second (Faik
Total Transactions per Seconc
(= Web Resource Graphs
Hits per Second
Throughput
HTTP Responses per Second

Pages Downloaded per Secor _ y
Pt iyt _I_I 00:0000 000500 001000
L Eispsed Time (Hour Min'Sec)
Scale | Transaction
I Total Transactions per Second (Passed) NZA N/A 48515 111.874 485437
Design & Run |
] | I |

Hstart| | 5 @ BE || [ZHoadrunner Controler... 5rtualser Generator - ... | _yCiocuments and settin... | Bl ES socan

Figure 30: Mercury LoadRunner

REIE

Bl Aoy Fotes undow b TIES|
LI QT sl EE Hxe neE o=
and Alests 100 -‘—ﬁﬁ—-—————-—
i % v V. V. _/ v V V v f
%’
-
8
0
%
”
8
64
60
56
s2
4
-“
o
%
2
28
24
20
16
12
.
s
— 1,000 % Disk Tme 1H: . Physic... |IMSET-FMO...
I T
|ston] |0 S5 BB [reriormance Bsevas | &) mogatedsosons on.| &) vrate - ettt | 3 Fcumats rdseun..| SIBE

Figure 31: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 45

. LIQTr ol BuEl +Hxje belE of=[s]
=& and, 100
%
2
8
8
®
7%
”
6
e
&
B
82
“
“
«
%
2
2
2
2
1%
12
8
.
0
Last | 18746 Average | 2629 Mrimum | 3120 Maamum | 534 Duraten | 140
Color [Scle | Courter Linstarce [Paret Jobpect | 1]
——— 100.... Avg. Disk Queve Length ol - Physic... \MSFTRIF...
—100. Aw). Dish Quaue Length. 2w - Physic... \IMSFT-RIF...
=100 Aw). Disk Quaus Lergth 3z - Physic... \WMSFT-RIF...
—1.000 % Processer Time Tord - Proces... \MSFT-RIF...
1.000 % Processce Time 0 - Proces... \\MSFT-RIF...
1.000 % Processor Time 1 - Proces... ||MSFT-RIF...
1,000 5 Processee Trme 2 o Proces... \MSFTRIF...
[I
IQ__Q-!] e A [performance Sy | = €iocuments and seton.. OB zom

Figure 32: DB2

Messaging Benchmark Persistent Queue TwoPhase- Direct/JDBC Mode

EZ LoadRunner Controller - Trade.rs - [Run] = =18l x|
File View Scenario Moritors Resuks Tooks Hep

e (O F% £ |E S8,

Scenario Status

Running Vusers
Elapsed Time
Hits/Second
Passed Transactions
Failed Tt
Errors
Avalable Graphs x| Total " Transaction Response Time - Whole scenario
Ervor Stalisics = 1,000 2 :
Visers with Enors 200 18
& Transaction Graphs 20
Transaction Response Time
Transactions per Second (Pas’ 7004 -
Transactions per Second [Fal 6004
Total Transactions per Seconc ool
& Web Resouce Graphs
Hits per Second et
Theoughpet % 300
HTTP Responses per Second 200]-
Pages Dovinloaded per Secor
Retries per Second goo
£ System Resource Graphs
SLLSIme _':l 000000 00500 001000 000000 000500 001000
s 1. Elapsed Time (Hour M Sec) Elapsed Time (Hour:MincSac)
Tiensaction [Max [Min [avo [s [Lot |
Total Transactions per Second (Passed) N/A N/A 59595 179780 711800
5] Design a Run |
Hstart] | 14 51 & || [Ztoadrunner Controller... ZJWrtuslUser Generstor-L... | _C:\pocuments snd settn... | Bl E® 7zmam

Figure 33: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 46

O] QiTv sl @@l +xfe 2ieE o=

”V”VW‘WVV“VV'V_V\/ \/ﬁﬁw

Figure 35: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 47

Messaging Benchmark NonPersistent Queue OnePhase - EJB Mode

Running Vusers
Elap;d Time
Hits/Second
| Passed Transactions i
Failed Transactions

Errors

- Uses Defined Data Poirks
| Enor Statishics
. Vusers with Enors.
& Transaction Graphs
| t—lmmﬂmﬁmﬁu

| ETIMSM[F‘
é—v{ebnsr
- Hits per Second -

L Lo

| H Total Transactions per Second (Passed) N/A N/A 633083 185580 747.000

Figure 36: Mercury LoadRunner

Figure 37: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 48

o Acton Wew Faertes window teb | ali1x)
= a@E 2
O ol QrolBRE +Hxle =eiE o=@l
w8 v e 100
%
@2
8
8
0
%
72
68
o
@
%
2
4
“
40
£
2
)
3
20
1%
12
8
.
o T SR 7 e
Last | 0433 Averags | 0165 Miimun 0.09 Massmum | 0,324 ODuration | 1:40
——— 1.000 % Precessor Time _Tod - Proces... WMSFT-RIF...
1.000 % Processor Tame o - Proces... \IMSFT-RIF...
1.000 % Processor Time: 1 - Proces... \IMSFTARIF...
1.000 % Processor Time 2 Proces... \\MSFTRIF,..
——— 1.000 % Processor Time 3 - Proces... WMSFT-RIF...
[

Figure 38: DB2

Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode

E= LoadRunner Controller - Trade.rs - [Run]

Eile Yiew Scenario Monitors Resuks Tools Help
TR H(Oh ([P Ffux £ |E(HE..

0 Group enario Sta &)
i e z gst 2] > SatScensio | Running Vusers 1500

aiazlce | g] ﬂ—l n I L] Stop Elapsed Time 00:15:15 (hh:mm:ss)

“ Beset Hits/Second 1295.09 (last 60 sec)
Passed Transactions 1 ¢
W ves | Failed Ti g >
¥ RunfStopVisers || Errors
|

(F Transaction Response Time - Whole scenario

Emor Statistics
Vusers wih Errors
£ Transaction Graphs
Transaction Response Time
Transactions per Second (Pas
Transactions per Second (Faik
Total Transactions pet Seconc
(=1 Web Resource Graphs

Hits per Second d
Thioughput " $
000500 00:10.00 0015 000500 0010.00 0015,
Elapsed Time (Hour-Min:Sec) Bapsed Time (Hour:MincSec)
[M [Mn [avg Jsd [iew
I Total Transactions per Second (Passed) N/A N/A 176134 154667 1260700

Design &2 Run l

Figure 39: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 49

LI OIT7 ol SRl /v S ols[a)

Figure 41: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 50

Monolithic Application: Synchronous Orders and Standard (non-remoted) Business
Tier/Web Tier Access

E]B Mode

i Running Vusers

1 Elapsed Time

| Hits/Second
Passed Transactions
Failed Transactions
Ermors

I Total Transactions per Second (Passed) N/A NA 752854 162721 854550

Figure 42: Mercury LoadRunner

Figure 43: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 51

E3|

acon Yew Favgtss Window el | =181
> a@e
B N 1o 5] [I]
@ S

s o R 5B 2RRESLENLEETEINILIBLE R B E

Laz | 43747 Average | 44773 Mo | 20,309 Maxiwm | §3.373 Duraton | 140

Figure 44: DB2

Direct Mode

dRunner Controller - Trade.Irs - [Run]

Fle View Scepario Monitors Resuks Tooks Help
EFEETEEE T AT

enario 0 enario Sta 5|

ioup Nam Down Pendng | It ’Hmi 5 |= |] _I Al IS NEEEeEEEN | Rynning Vusers 1700

hd': u L zlEy :g Q202 =eElZ0 9 ol Eetl] Stop Elapsed Time 00:21:08 (hh:mm:ss)

ade_dotr “ Reset Hits/Second 1464.15 (last 60 sec)
Passed Transactions 1600164 Q

— W vues. | — = |
Failed Ti] Q

[Errors 0 Q

Transaction Response Time - Whole scenario

Running Vusers s
User Defined Data Points J

Enor Stafistics
Vusers with Eriors
& Transaction Graphs
Transaction Respanse Time
Transactions per Second (Passe
Transactions per Second [Failed.
Total Transactions per Second (F
= Web Resource Graphs
Hits per Second
Thioughput
HTTP Responses per Second

Pages Downloaded per Second _, T T " ™ m T
S _j_l 000000 000500 004000 001500 00:2000 | 00:00:00 00:05.00 00:10:00 00:15:00 00:20:00
> ‘Blapsed Time (Hour:MincSec) Elapsed Time (Hour Min:Sec)
Color Transaction [Max [i [avg [Last |
L ___ B Total Transactions per Second (Passed) N/A N/A 1272587 309027 1447.244
g Design & Run I

Figure 45: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 52

o QFF ol @@ +xfe blelE o=

Figure 47: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 53

WebSphere 6.1 Linux

Web Services Benchmark: E]JB Mode

E= LoadRunner Controller - Trade.lrs - [Run]
File View Scenario Moritors Resuks Tools Help

FEdH O |Psm%|

Scenario Groups

Scenario Status

ioup Nam Down Pendng | Int ;awi Aun ssec Faled Enor 3radalExirg Exting Stopped = Running Vusers
1 ol 0/ 05w ST
o o Elepsed Time 90063 phmss)
Hits/Second 385.03 (last 60 sec)
Passed Transactions 127665
b L | X
Failed T
= | JeRuvsiovisess || g
Avalable Graphs x Total Transactions per Second (Passed) - Whae scenario Transsction Response Time - Whole scenario
5 Runtime Graphs B
Flunning Vusers 450 18
User Defined Data Points e A i
Enror Statistcs 2 v o
Vusers with Eriors) i —f| 814
=5 Transaction Graphs 300 o °12
Transacton Response Time o e B
Tansactions pes Second [Pas J
Transactions per Second (Fale § 200 e H 8
Total Transactions per Seconc %150 S8
= Web Resource Graphs ol ’
Hits per Second Bttt Nl ety o
Thioughput 0 2 P o LI SO PO SR T
HTTP Responses per Second _ AR g
phultisi it _'_J 00:01:00 020200 00.0300 000400 000500 00:05:00 0001:00 00:0200 000300 000400 000500 000500
2 Bapsed Time (Hour:Min:Sec) Elapsed Time (Hour:Min Sec)
Color Scale | Transaction [Max [tin [Avg [sd [Last |
1 Total Transaciions per Second (Passed) N/A NiA 3465 @S82 401500
(5] Design & Run I
| I
Hstart|| | 1) 5 @ | ‘¥c:\poments and settn. .. | Zvrtual User Generator - L. |[ZZ{LoadRunner Controller... BRI ES cean

Figure 48: Mercury LoadRunner

@ Applications Actions & @ ThuMay 31, 551PM Q
System Monitor, [=][=][x]
Eile Edit View Help

Process Listing éResource_ Monitgrj|

CPU History

EI CPU1: 100.0% IEI CPU2: 100.0%
lEI CPU3: 100.0% I:I CPU4: 100.0%

Memory and Swap History

EI Used memory: 12.4 GB of 15.5GB

EI Used swap: Obytes of 1.9GB

Devices
]Name Directory |Type ITota] |Used |ﬁ
| @ [devfsdal /media/NO_NAME vfat 6L0MB 34.4 MB =
L 7 none. Idev/shm _ tmnfs 7.8 GB 0 hvtes 0% K]

% | |8 System Monit| @ WebSphere A| = File Browser: | [root@localho|@ Integrated Sol | <. /opt61-32/1aM |]

Figure 49: Web Service Host

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 54

(LT ol Bae +xfs seE

Figure 51: JSP App Server2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 55

Figure 53: JSP App Server 4

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 56

B He At Yew Favites wdow to =leixi
o 0@ |
e LI+ ol @aE Hxe seE of=[e]

) and Bt 100

B2 8B K88 82248 9828 I8 28 LR

12
5
4
o
Last | 15,621 Average | 17.562 Miwwm | 4683 Maximum | 34372 Duraton | 1
[clor Irstance | Parert [Conputer |]
100.... Avg. Dek Queue Length Total - Physic... \MSFT-RIF...
 100.... v, Dk Queue Longin 3y Physc... ASET-RIE
— 100, Avg. Disk Queus Length 3z Physic... \MSFT-RIF.
— 1000 % Processce Time Tors - Proces... \WMSFT-RIF.
1,000 % Processor Tme. a Proces... ||MSFT-RIF.
1,000 % Processor Time: 1 Proces... \MSFT-RIF.
1.000 % Processor Time. 2 — Proces... \MSFT-RIF.
I
l!—:gt] X k] 1[4 performance Bz | s Ciiboaments and seten... OB sum

Figure 54: DB2

Web Services Benchmark: Direct (JDBC) Mode

B3 LoadRunner Controller - Trade.rs

FEle View Scenario Monitors Results

- [Run]

Tools Help

WO (P F% %K PE..

Scenario Groups

Scenario Status
Running Vusers
Elapsed Time
Hits/Second

Passed Transactions

Failed Tt
Erors

549.74 (last 60 sec)
127831 Q

Rurning Yusers
User Defined Data Points:
Enor Statistics =
Vusers wih Enors
(= Transaction Graphs.
Transaction Response Time
Transactions pet Second (Pas
Transactions pet Second (Fail
Total Transactions per Secanc
= Web Resource Graphs
Hits per Secord
Theoughput

HTTP Responses per Second

000100 000200 000300 00.0400

00500

0100 000200 000300 000400 000500

La Elapsed Time (HourMin: Sec) Bapsed Time (Hour:Min Sec)
Transaction [Max [Min [Avg [std [Last |
I Total Transactions per Second (Passed) N/A N/A 414882 163214 5§57.400
Design 2 Run |
I [[

Figure 55: Mercury

LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 57

& Applications Actions 6

Eile Edit View Help

Process Listing [Resource quitp[l

System Monitor.

@ sat Jun 2, 5:00AM Q

CPU History

\E CPUI: 100.0% EI CPU2: 99.5%
‘El CPU3: 99.5% I:l CPU4: 99.5%

Memory and Swap History

IEI Used memory: 123 GB of 15.5GB

\E] Used swap: Obytes of 1.9GB

Devices

I Name Directory

IType lTotaJ IUsed

) none [dev/shm

Idev/manper/\V/olGroun00-1 oaVol00_/

s 7.8G8 Obytes
81.2GR 143 GR - 18 %

ext3

1D

= 1 ‘1;. [root@Iocalhosr:/optGl-SZ/lEl 8 System Monitor

L]

Figure 56: Web Service Host

=18l x]
=181 x|

1718 Average |

13991 Mrkm

85 e acion Yew Fovries Window e
- m R E
Do LI QiTT ol e Hxje seE olsls
4 @ Performance Logs and erts 100

*

«2

8

L

L

%

7

]

o

@

5%

2

“

“

“

*»

z

=

2

|

16 |/

2

L

.

0

btes nabesps

[Parens Tobject T computer |
- AP,)
AsP.
Proces... |

Figure 57: JSP App Serverl

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 58

v ol BRE Hxle slelE ol=s

Figure 59: JSP App Server 3

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 59

Figure 61: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 60

Messaging Benchmark Persistent Queue TwoPhase- E]JB Mode

2 LoadRunner Controller - Trade.lrs - [Run] - =18l x|

File View Scepaio Montors Resubs Tools Help
e |(Ofh|PFx% %|E B,
Scenario Groups Scenario Status
icus Nam Down Pa;hq |-aa lne;w s;;\ % x '=..:¢Fa;.d Eor 3racual Exing Exiing Stopped Running Vusers 200
200 Elapsed Time 00:18:50 (hh:mm:ss)
Hits/Second 543 26 (last B0 sec)
Passed Transactions 498381 Q
— " Vusers. l
Failed Transactions 0 Q
WRyn/S!ooVusm\.v]
o Erors 0 Q
‘Available Graphs x| Total Transactions per Second (Passed) - Whole scenario Transaction Response Teme - Whole scenario
=1 Rurtime Graphs Al ' .
Running Vusers 720 18
User Defined Data Points i
Error Staistics Eljfpece : A s
Vusers with Errors gsm e s ==k \\/\-\/\/"\ g14
= Transacton Graphs 480 ra T12
Transacton Response Tine 8 /\/\’ : £
Transactions per Second [Pas E o g
Transactions per Second [Faik £ 320 / f=ees = o &
Total Transactions per Seconc % 240 }: L g 5
5 Web Resource Graphs .. : 4
Hits per Second
Thioughput L] A
HTTP Responses per Second - T ; .
PR s 0000:00 00.05.00 001000 00:15:00 00.00:00 00.05.00 00:10:00 001500
Elapsed Time (Hour:Min Sec) Blapsed Time (Hour.Min'Sec)
Color Scale | Transaction | Max | Min [Avg | st | Last |
I Register 4094 0.000 0170 0468 0180
I Buy 7563 0,000 0536 08616 0581
I Register_Subeit £.000 0.000 0.256 0608 0210
I Home 6016 0.000 0257 0646 0161
_____ B Pottfolio 4594 0000 0246 0585 0186 -~
I AccountSummary 4484 0.000 0248 0572 0162
I Logout 4500 0000 0192 0507 0147
— 1 nein 5 a0n fnnn e nemn n1a7 =
& Design &2 Run I
|
start| | 14 G @ HET Con.. 3G and...| &1trade - Mcrosoft 1..| Egjvrtusl User Gener... | BfRunTime viewer - .| [REG EE S8 sssam

Figure 62: Mercury LoadRunner

@ Applications Actions @ @ ThuMay 31, 3:57PM Q

V) System Monitor
Eile Edit View Help

Process Listing|Resource Monitor

CPU History

EI CPU1: 97.0% E] CPU2: 96.5%
IEI CPU3: 96.5% I:] CPU4: 99.5%

Memory and Swap History

E Used memory: 12.5GB of 15.5GB

E’ Used swap: Obytes of 1.9GB

Devices
Name Directory IType |Tota| |Used |ﬁ
@ /dev/sdal /medig/NO_NAME vfat 61.0MB 34.4 MB H
. nane Idevishm. mnfs 78GR0 htes 0% =
% 3 | 8 System Monitor | WebSphere Application Server - [File Browser: serverl] |1 ;;]LQLJ

Figure 63: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 61

Figure 64: DB2

BC Mode

Messaging Benchmark Persistent Queue TwoPhase- Direct/]JD
=] s - [Run] =18 %

nario Status

Failed Transactions

[—‘ Passed Transactions
i o e

Figure 65: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 62

System Monitor,
Eile Edit View Help

Process Listing | Resource Mc_nitgr}|

@ Applications Actions & @ ThuMay 31, 333PM Q

CPU History

EI CPUL: 97.0% EI CPU2: 97.0%
[E CPU3: 97.0% D CPU4: 95.0%

Memory and Swap History

EI Used memory: 12.5GB of 15.5GB

E Used swap: Obytes of 1.9GB

Devices
|Name Directory |Type ITmai IUsed |ﬁ
@ /dev/sdal /media/NO_NAME vfat 61.0MB 34.4 MB
. none Idev/shm tmnfs_ 7.8 GB___0 bvtes 0% [EI
% l- System Monitor [WebSphere Application Server-J [File Browser: serverl] J!
Figure 66: Application Server
T |
0 e avon Gen comtes Wniow tb =l81x)
= &)@ 2
O LIQIT+ ol RQIR +XIe BiRlE o=
& & petermance Logs end erts | 100 -
%
2
8
8
@
%
7
&
o
@
%
3
“«
“
0
%
x|/
»
2 |
o
1%
12
8
‘
o
Last 40,622 Averspe RS Mk 0,000 Maximum 43435 Ouation 1:40
[cdor [scde [Comeer [inzarce [Porent | bject | Camputer |]
Tod — Phym. \MSFTAI.
2v. Py, UMSFTRIF
3z Phiysic, \MSFTRIF,
Tord - Proces... \\MSFT-RIF,
o - Proces... \IMSFT-RIF,
Proces... |\M F.
\\MSFIH]

Figure 67: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 63

Messaging Benchmark NonPersistent Queue OnePhase - EJB Mode

B2 LoadRunner Controller - Trade.rs - [Run]
Fle View Scenaro Montors Resuls Tools Help

e |Oh|# 5% %K HE..

Scenario Groups

Scenario Status

itoup Nam| Down| Pending Init inmu‘ r:; ro =.md‘ Faiad‘ Enoe itadenii\g‘Eﬂ'mT o Viisers 300
1 ol o [af0 ofo|o 0 0 e
s Ti 11 M
ey 200 Elapsed Time 00:11:28 (hh:mmiss)
Hits/Second 740.94 (last 60 sec)
Passed Transactions 398286 Q
—— W Vusers. = = |
Failed Transactions 0 Q
5 Run/StopVusers. | ¢ o a
Avalable Graphs e Total Transactions per Secon (Passed) - Whole scenario Transaction Resporise Time - Whole scenario
= Runtime Graphs A 1
Running Vusers 00 18
Uses Defined Data Poirts T R G
Enor Statistics p ettt ot Peety tea . =
Vusers with Enors 700 o 814
=1 Transaclion Graphs 600 v w12
Transaction Responsse Time 2 o &
Transactions pet Second (Pas g o 3
Transactions per Second (Failc 5 400]- e e g 81-
Total Transactions per Seconc % 300 o~ g8
& WebResouce Graphs 200" ’
Hits per Second 7 A
Thioughput 1004, 2
HTTF Responses per Second |
- SR SR VT Iy ‘"r"_l_l 00.00:00 00.05:00 00:10:00 00.00.00 00.05:00 00:10:00
Elapsed Time (Hour M Sec) Eiapsed Tie (Hour:Min Sec)
Transacton [Max [Min [Avg ['std [Last I
I Total Transactions per Second (Passed) N/A N/A 563035 228427 73612
& Design & Run I
|
Figure 68: Mercury LoadRunner
& Applications Actions % ® Thu May 31, 1:52 PM Q

System Monitor
Eile Edit View Help

Process Listingl?Rgvsvgqrvgve M

CPU History

IE| CPU1: 100.0% E’ CPU2: 100.0%
IEI CPU3: 100.0% [:I CPU4: 100.0%

Memory and Swap History

\EI Used memory: 12.6 GB of 15.5GB
EI Used swap: Obytes of 1.9GB

Devices

[Name Directory IType ITota! | Used |ﬁ
@ (dev/sdal /media/NO_NAME vfat 61.0 MB 34.4 MB
7 none. Idev/shm. tmnfs 78GR0 hvtes 0% E]

@ | 8 System Monitor | WebSphere Application Serve

Figure 69: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 64

Figure 70: DB2

Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode

Scenario Status
Running Vusers
Elapsed Time
Hits/Second

Passed Transactions
Failed Transactions

~ Total Transactions per Seconc
= Web Resource Graphs

-~ Hits per Second
T

hroughput
~ HTTP Responses per Second _y
BRSSP

Figure 71: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 65

& Applications Actions &

@ Thu May 31, 11:05 AM Q

7 System Monitor,
Eile Edit View Help

Process Listing| Resource Monito_r;|

CPU History

E’ CPUI: 98.5% \EI CPU2: 97.0%
E’ CPU3: 97.0% \:’ CPU4: 95.5%

Memory and Swap History

EI Used memory: 12.2 GB of 15.5GB

EI Used swap: Obytes of 1.9GB

Devices
]Name Directory IType |Total lUsed |ﬁ
@ [dev/sdal /media/NO_NAME vfat 61.0MB 34.4 MB
. none Idevishm tmnfs 7.8 GB__ 0 hvtes 0% E‘
] | 8 System Monitor | :: :i

Figure 72: Application Server

_ LIET |
§F B acton Vew Favokes Wndow Heb sleix
= BO@| 2 :
O s ojairplRaa@l +Hxfe siels of=e
% &) Performence Logs snd lerts | 100
@
£
8
8
=0
»

Lozt | W7 Average 57763 Mimum 0308 Maomum 734% Ouatin 140
Color_| Scsle | Courter [ingonce [Farert | Object | Computer |]
100. - Tt Physk... \MSFT-RIF,
—— 100, v - Fhysic.. MSFT-RIF,
100. z Physk... UMSFT-RIF,

1000 % Precsssor Tree Totd
1000 % Processor Tre 0
1,000 % Procsssor Tree 1

Proces... \MSFT-RIF.
o AMSFT-RIF

Figure 73: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 66

Monolithic Application:

Synchronous Orders and Standard (non-remoted) Business
Tier/Web Tier Access

EJB Mode

EZ LoadRunner Controller - Trade.Irs - [Run]

JRETET]
File View Scepario Monkors Results Tools Help
Be | Ofh| L% % |E 2.,

Scenario Groups

Scenario Status E
I ! | I 1l I, il o -
iroup Nam Down| Pending | It |Rieady Run lendei®assec F.u] Enor AIMEMWEXR!&J‘SMM‘ Running Vusers 1100
1 0 0 0 [0 nw ofofo| o0 0 0ol o
| {! 15! mm::
e 100 Elapsed Time DES@ (hh:mm: 35)77
Hits/Second 901.04 (last 60 sec)
Passed Transactions 647534 Q
Failed Transactions 0 Q
2 Run/Stop Vusers. || g o 0 Q
Available Graphs x| Total Transactions per Second (Passed) - Whole scenario Transaction Response Time - Whole scenario
= Runtime Graphs Al
Running Vusers 1,800 18
User Defined Data Points
Eror Statistics = 159 18
Vusers with Enors gt.«w g4
=) Transaction Graphs S 1200 ©12
Transaction Response Time [T S
Transactions per Second (Pas 8
Transactions per Second (Failc g_ 8
Total Transactions per Seconc &
= Web Resource Graphs 4
Hits per Second
Thoughput 2
HTTP Responses per Second
B it rf_'ﬂ 00:00:00 00:05:00 0010:00 0045 00:00:00 00:05:00 0010:00 0015;
4 > Elapsed Time (Hour,Min:Sec) Elapsed Time (Hour.Min Sec)
Color | Scale | Transaction [Max [Min [Avg [sa [Last [
I Total Transactions per Second (Passed) N/& N/A 721.406 263,708 903.267
Design & Run I
Figure 74: Mercury LoadRunner
System Monitor [CE=]
Eile Edit View Help

CPU History

EI CPUL: 99.0% EI CPU2: 99.5%
E’ CPU3: 98.5% l:’ CPU4: 99.0%

Memory and Swap History

E’ Used memory: 12.6 GB of 15.5GB

EI Used swap: Obytes of 1.9GB

Devices
Name Directory IType [Total IUsed I
@ /dev/sdal /media/NO_NAME vfat 61.0 MB 34.4 MB ‘
. none. Idev/shm tmnfs 7.8 GR__ () hvtes ,7‘ I

Figure 75: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 67

@
i £ Ackn Vew Favakes window e]

EEA-E)
i oiarrslBae +xe seE ol=lEl
& ond Alerts 100

B 2 BRBE S 2 &8 &3 2TET RN IS8T R

31246 Average | 43.921 Minkwm | 12,49 Maxmum | 57,810 Duration | 1140
Jconpurer |]

Color_[scale [counter
Avg. Disk Queus Length.

Figure 76: DB2

Direct Mode

Scenario Status

> atatSeensic | Running Vusers
Elapsed Time 00:15:36 (hhrmm:ss)
Hits/Secand 154912 (last 60 sec)
Passed Transactions 1051567 Q
Failed T i 0 Q
Enors 0 Q
Avaable Graphs X Total Transaction Response Time - Vihole scenario
= Runtime Graphs = 000 ‘ :
Running Vsers N N PR | . 1 I T .
Uses Defined Data Points i
Errex Statistics — i e e a' 2
Vusers vith Errors 14000 72 At e [N et et st
= Transaction Graphs w12
Transaction Response Time B
Transactions per Second (Pas
Transactions per Second (Fail =
Total Transactions per Seconc s
= Web Resource Graphs ~ H ———
Hits per Second
Thioughput : 2 G react R H
HTTP Responses per Sec: " ’ r ¥ T v
Bl r_l._l 00:00:00 00,0500 00:10:00 004500 00:00:00 00:05.00 00:10:00 001500
13 Elapsed Time (Hour: Min Sec) Blapsed Time (Hour Min:Sec)
Color Transaction [Max [Min [Ave [5t [Lest |
| ___§ Total Transactions per Second (Passed) N/A N/A 1125380 472545 1540.906
& Design & Run l
Rstart|| 4] 21 & | |[Z2lLoadrunner Controller...

Figure 77: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 68

& Applications Actions 6

@ Thu May 31, 3:06 AM Q

7% i System Monitor
File Edit View Help

Process Listin

esource Monitor

CPU History

E] CPUL: 100.0% |E| CPU2: 100.0%
E’ CPU3: 100.0% I:I CPU4: 100.0%

Memory and Swap History

El Used memory: 123 GB of 15.5GB

E’ Used swap: Obytes of 1.9GB

Devices
]Name Directory IType |Total |Used |ﬁ
@ /dev/sdal /media/NO_NAME vfat 61.0MB 34.4 MB |
7 none Idev/shm. tmnfs_ 7.8 GR__0 bvtes 0% El
8 [8 System Monitor [1 1
Figure 78: Application Server
i LT
1) e | Actin Vew Favorkes Window Help =180
= | B@ R
8 emht ol QrvslawE +xfe 2elE of=[e
@ & Performance Logs and Alerts | 100
%
2
w
o
80

Lt G061 Average | .74 M 4372 M 3,062 Duration 140
[color_Tscale | couter [iewtonce [Parent [Object | Conputer |

. Avg. Disk Queue Length o — + MSFT-RIF

v Avg. Disk Queue Lencth 2y - hysic... \MSFT-RIF.

g, Dk Queus Lonth 3z ysc... WMSETRIF

Processor Time Tt - AMSFT-RIF.

Processor Time o - AMSFTRIF

Processor Trne 1 - oces... \SFTRIF

o 2

distart| | (3 B 1] Performance. 4§ Services | MOBE 05

Figure 79: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 69

.NET 2.0/3.0

Web Services ASMX

E= LoadRunner Controller - Trade.lrs - [Run]

Ele View Sceparo Monitors Resuts Tooks Help

g [Ob[# 4% E DB ..

1000

"“‘;f e S T e e e e e
rade_s

a A
P> StatScenaro I Running Vusers

L) Stop Elapsed Time
“ Reset Hits/Second

Passed Transactions
M Vusers

Failed Transactions
5 Run/Stop Vusers.

Erors

1000

00:03:16 (hh:mm:ss)
88031 (last60 5ec)

s Q

0 a

User Defined Data Ports
Enoe Statistics
Vusers with Ences
[Transaction Graphs
Transaction Response Tme
Transactions per Second (Pas
Transactions pet Second (Faik
Total Transactions pes Secon
[=)- Web Resource Graphs
Hits per Second
Througheut
HTTP Responses per Second

Panes Dowrinads m:ﬁm_v’ﬂ
>

00:05:00
Bispsed Time (Hour-Min:Sec)

Total Transactons per Second (Passed)

& Design & Run

N/A N/A ga:08Nn

Last

19031 871350

Somer — [CIOITT SlBwEl e Sela o]

e+ a b B2 B RS ETIVREETESY ISR B

peey (W

i)

smm-{ 0 Masimam |

175 Duraton |

| METEN.

Figure 81: Application Server — Web Service Host

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 70

LIl slaa@l +xfe Be

Figure 83: ASP.NET Server 2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 71

Figure 85: ASP.NET Server 4

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 72

ISEIES)
§ Fe Adin Yem Favrtes indow b | atelxi

LT+ o EaE] +xfe seE o=

e

B 2 83 B2 & 2 &8 Q8BTS N ¥E 2R AN

uivge y

[(dor T5cals T countar [instarce [Parers [Coject | Conputer |]
Physi,

. MSFTRIF..

Figure 86: SQL Server 2005

WCF Web Service - IIS Hosted (basicHttpBinding)

E# | oadRunner Controller - Trade.lrs - [Run] =18 x|
fle Vew Sceparo Montors Resuls Tools Help
Fed|Ofh | %% |E(HE,.

Scenario Groups

Scenario Status

P oeiteensio || Running Vusers
L) Stop Elapsed Time
“ Reset Hits/Second
{| Passed Transactions
" 5.
e Failed Tr

- Runtime Graphs
Running Vusers
User Defined Data Ports
Ertor Statistics
Vusers vith Ences
£} Transaction Graphs I
Transaction Response Time
Transactions pes Second (Pas
Transactions per Second (Faik
Total Transactions per Secont
=1 Web Resource Graphs
Hits per Second
Throughput L
HTTP Responses per Second.
Pages Downioaded per Secor
Retries per Second 200
[=)- System Resource Graphs
‘Windows Resources

VMR Danme s

@

o

6000 ,000000000 00500 %0000

1
Responss Time (sec)
» =

@

e

00:00:00

N/A N/A 878751 125121 932887

Figure 87: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 73

L QT ol a@l +xfe elE o=@

Figure 89: ASP.NET Server 1

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 74

Figure 91: ASP.NET Server 3

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 75

Figure 93: SQL Server 2005

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 76

WCF Web Service HTTP - Self Hosted (basicHttpBinding)

E= LoadRunner Controller - Trade.lrs - [Run]

Scenario Status

Running Vusers
- Stop Elapsed Time 00:06:33 (hhimm:ss)
“ Resst Hits/Second 1355 47 (st 60 sec)
Passed Transactions 480580 Q
W Vusers e SR A
Failed Transactions 0 Q
Lt TN | . 0 a
Total per F Transaction Response Time - Whole scenario
= Runtme Graphs A 2
Runring Vusers
User Defined Data Points
Enor Statistics
Vusers with Enors
) Transaction Graphs |

Transaction Responise Time
Transactions pet Second (Pas
Transactions per Second (Faik
Total Transactions per Secon:

= Web Resource Graphs
Hits per Second
Throughput
HTTP Responses per Secand
Pages Dowrloaded per Secor
Reties pet Second

[=)- System Resource Graphs

00:00:00 00:05:00

Eispsed Time (Hour Min Sec) Elapsed Time (Hour M Sec)
[Max Wi A Std Last
Total Transactions per Second (Passed) N/A N/A 1260254 258652 1341375
a Run |
[[[
Figure 94: Mercury LoadRunner
7
Bo At Yew Fowrtes Wndow teb =181 x)
LIQ[TF ol Gwa +Xje neE o=@l
100
%
= A
L.
L
o
»%
2
L
“
L
%
=2
43
“
40
»
2
2
Bl
20
t0Y
12

+. # of curreek logial Theeads
. Contention Rats | sec

Figure 95: Application Server- Web Service Host

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 77

CIQi sl B aE] X S

Figure 97: ASP.NET Server 2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 78

Figure 99: ASP.NET Server 4

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 79

Figure 100: SQL Server 2005

WCF Web Service TCP/Binary - Self Hosted (netTcp Binding)

Running Vusers
259 1 Elapsed Time
Hits/Second
Passed Transactions
— | 4 1 i Failed Transections
I Erors

- Running Vusers

- User Defined Data Points

- Erroe Statistics
~Vusers wih Errors

= Transaction Graphs

+ Transaction Response Time

= Second (Pas
- Transactions pet Second (Faik
- Total Transactions pes Seconc

- HTTP Responses per Second
- Pages Downloaded per Secor
+ Retiies per Second

=- System Resource Graphs

- Windows Resources

UMY Dosnienn

I Total Transactions per Second [Passed) N/A N/A 2175045 544651 2504.300 |

Figure 101: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 80

Figure 103: ASP.NET Server 1

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 81

Figure 105: ASP.NET Server 3

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 82

Figure 107: SQL Server 2005

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 83

Messaging Benchmark Persistent Queue- TwoPhase (WCF over transacted/durable MSMQ)
z =181 x|

B S

FrIEY T

Scenario Status

Siat Beensio
Stop
Reset

|| Running Vusers
| Elapsed Time m
Hits/Second 927.31 (last 60 sec)
Passed Transactions 768395 Q
Failed T 0 Q
Enors (] Q

»
-
“«
L

Vusers...

Total " Transaction Response Time - Whole scenaro

= Runtime Graphs
Running Vusers
User Defired Data Points
Emor Statistics
Vusers with Errors.

= Transaction Graphs 3
Transacton Response Tme:
Transactions pet Second [Pas
Transactions pet Second [Fale
Total Transactons per Seconc

[Web Resource Graphs
Hits per Second
Throughput
HTTP Responses per Second
Pages Downloaded per Secor

Retnes per Second 29
[System Resource Graphs °
Windows Resources - T T
LMY Bannsnnn _‘_‘ 0.00 00:05.00 00:10:00
» Elapsed Time (Hour:Min Sec)
i [Max Mn [Avg [std [Last |
Total Transactions per Second (Passed) N/& N/A 876.408 160,009 946 550

Design

a-u?-mmw» | a8l x)
= &@m @

O QT ol GRE +Hxle sk olswl

c@ andients |00

AV Vasavaze o\ W AN/ A
- \\/\,\v, WA VA va

8 2 B R R &2 SR B TERIE QR
—

o Proces.. |MSFTANOL.

—0.00... #Bytes ok Hesps _Gobal_ TG ST,
— 1000 % Tive 1 GC Zaobal_ - NETC... \ASFT-FMD...
— .10 # of curent bigcal Thisads aebal_ — NETC.. MSFT-FMD. =l

Figure 109: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 84

Figure 110: SQL Server 2005

Messaging Benchmark Non-Persistent Queue- OnePhase (WCF over non-transacted/in-
memory MSMQ)

(| Passed Transactions
|| FaiedTransacions

users 000 5 H

- UserDefned DataPonts 8 B SAEETTY EEUTRTI S ST R -
-~ Error Statistics v
~Vusers with Errors.
1ansaction Graphs

- Transaction Response Time]
- Transactions per Second (Pas 0 B ey IR -

Second F
- Total b Seconc

- Hits per Second

- Throughput
~vaﬂPme$mw

Total Transactions per Second (Passed) 1071738 190500 1158450

Figure 111: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 85

Lo oIS 2] S o]

Figure 113: SQL Server 2005

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 86

Monolithic Application: InProcess/Synchronous Orders

EZ LoadRunner Controller - Trade.Irs - [Run]

Fle View Scenario Monkors Results Tooks Help

SwdOh (% |E 2

ario Group enario Status 5|
itoup Nam| Down Pendng | It |R nm| —-|] IE- t 2l |» Siatseenaio | Running Vusers 1550
1 i 4 NAER :? Ll | g] n—‘ 4 | - Stop Elapsed Time 00:16:27 (hhimm:ss)
«“ Reset Hits/Second 1441.75 (last 60 sec)
W I Passed Transactions 1276378 Q
Failed T 0 Q
62 Rnsion ot Ermors ﬁ
Available Graphs x| Total It Transaction Respanse Time - Whole scenario
= Runtime Graphs 1 '

Running Vusers
User Defined Data Points
Enor Statistics -
Vusers with Errors
= Transaction Graphs
Transaction Response Time
Transactions per Second (Pas
Transactions per Second (Faile
Total Transactions per Seconc
= Web Resource Graphs
Hits per Second
Thioughput

HTTP Responses per Second _ ————r
B o r_'.J 00:00:00 000500 00410.00 001500 00:00:00 00:0500 0010:00 00:15:00
12 Elapsed Time (Hour:Min:Sec) Elapsed Time (HourMin:Sec)
Scale | Transaction [Max [Min [avg [st [Last |
I Total Transactions per Second (Passed) N/A N/A 1307135 290587 1440.400
Design & Run |

Figure 114: Mercury LoadRunner

= CIE
(5 He actin Vew Favaries indow Hep | =181
-~ | @82 -]
O QirtslaaeE +Hxfe seE o=l
Er) and Aler 10 T
%
R’
&8
o
@0
%
72
&
“
@0
%
2
8
“
0
»
=
3
2
20
16
12
=] |
o
Last | 0182 Average | 0152 Mnmum | 0182 Maximum | 0152 Duration | 140
Color_[Scae [Counter J tnstance I parerk_] object | Computer | |
——0.10... Requests Queued = — AN \MSFTRMO.]
—1.000 % Disk Time 1H: Physic... \\MSFT-FMO...
1.000 % Processor Tme o - Proces... \MSFT-FMO...
——— 1000 % Processor Tme i ~ Poces.. {WSFT-AMO..
1000 % Processor Trme 2 Froces.. IMSET-FHO.,
1000 % Frocessor Tme 3 ~ Proces... \MSFT-FMO.
em— ().(0.,. # Bytes in al Heaps. Global UNET C... IMSFT-FMO..
I I
dsn| oSO ¥ At | el L

Figure 115: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 87

(Lo e B Hxe bedE o=l

Figure 116: SQL Server 2005

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 88

Appendix C: Tuning Parameters

Linux OS Tuning
net.ipv4.tcp_max_syn_backlog=1024

kernel.msgmni=1024
kernel.sem=1000 32000 32 512
fs.file-max=65535

kernel.shmmax =4294967295
net.core.netdev_max_backlog = 20000
net.core.somaxconn = 20000
net.ipv4.tcp_fin_timeout = 30
net.ipv4.tcp_syn_retries = 20
net.ipv4.tcp_synack_retries = 20
net.ipv4.tcp_sack = 0
net.ipv4.tcp_timestamps = 0
net.ipv4.conf.all.arp_ignore = 3
net.ipv4.conf.all.arp_announce = 2
Open File Handle limit (soft) increased to 20000

Windows OS Tuning
No tuning was required on the core Windows Server OS for either application server platform.

WebSphere Tuning

Servlet Caching turned on in Web Container
Session State set to 5 minute expiration (in-process session state)
Access Log Turned Off

Performance Monitor Infrastructure Turned Off

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 89

App Profile Service Off

Diagnostic Trace Turned Off

System Out Off

Trade 6.1 Configured not to write System.Out messages

EJB Cache Size = 20000

HTTP Channel maximum persistent requests = -1

Minimum Web Container threads = 100

Maximum Web Container threads = 100

Minimum ORB threads = 80

Maximum ORB threads = 80

Minimum Default threads = 20

Maximum Default threads = 20

Minimum Message Listener Service Threads = 80

Maximum Message Listener Service Threads = 80

Minimum SIBInBound Thread = 80

Maximum SIBInbound Thread = 80

Minimum SIBFAPThread = 60

Maximum SIBFAPThread = 60

Custom JavaEnvironment Variable: com.ibm.websphere.ejbcontainer.poolsize value = “*=75,750"

SIB Bus Security = Disabled

Discard Messages = on

Hi Message Threshold = 50000

Quality of Service/Persistent = Assured Reliable

Quality of Service/Non Persistent = Express/Non Persistent

ReadAhead for Queue enabled

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 90

MaxConcurrency/Max Endpoints for Queue = 20

MaxBatchSize for JMS/Messaging = 5

Minimum JDBC Connections in Pool = 90

Maximum JDBC Connections in Pool = 90

Minimum Queue Connection Factory Connections in Pool = 90
Maximum Queue Connection Factory Connections in Pool = 90

EJB Pass By Reference On; configured to use ORB Thread pool as recommended by IBM
Java Heap Size: Windows = 1540 MB (maximum for 32-bit on Windows)

Java Heap Size: Linux = 2000 MB (maximum for 32-bit on Linux)

All runs: Trade 6.1 configured with “Enable Long Run Support” off to ensure it properly displays orders on

the Account Page. With our large database load, we never noticed any perf degradation over a 30 minute

measurement interval.

IBM HTTP Server Windows Tuning
Access Log Off

Max KeepAlive Requests 3000
2048 Max threads
2048 Threads/child

IBM HTTP Server Linux Tuning
Access Log Off

Max KeepAlive Requests 3000
ThreadLimit 50

ServerLimit 64

StartServers 50

MaxClients 3200
MinSpareThreads 100
MaxSpareThreads 100
Threads/Child 50

MaxRequests/Child 0

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 91

.NET 2.0/3.0 Tuning

.NET Worker Process

Rapid Fail Protection off
Pinging off

Recycle Worker Process off

ASP.NET

Authentication set to "None” to match anonymous access of IBM WebSphere Trade 6.1
Forms Authentication Timeout=5 minutes

IIS 6.0 Virtual Directory

Authentication Basic Only

Access Logging Off
Windows Communication Foundation/ASMX Web Services
ServicePointManager.DefaultConnectionLimit = 64

(note, this is a key setting for Web Service clients running under load. Without this
setting, Web Service clients (our four ASP.NET App Servers) will be throttled to 2

network connections per outbound IP Address. This is set programmatically, although it

WCF basicHttp, nNetTcp and Msmg bindings: Security = “None” (no transport security for
Web services or the Service Integration Bus is configured for Trade 6.1 as well, see

tuning for WebSphere)
Service Behavior for Business Services and Order Processor Service:

<behavior name="TradeServiceBehaviors">

<serviceDebug httpHelpPageEnabled="true" includeExceptionDetailInFaults="true"/>
<serviceMetadata httpGetEnabled="true" httpGetUrl=""/>

<serviceThrottling maxConcurrentInstances="400" maxConcurrentCalls="400"/>
</behavior>

Order Processor Service: maxBatchSize = 5 (set programmatically in the Host)

.NET StockTrader

Max DB Connections = 90
Min DB Connections = 90
MSMQ

Connection Caching turned on

MSTDC

Transaction Timeout = 15 seconds

Network DTC Access Turned on (inbound and outbound allowed)

DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 92

Logging files expanded to 15 GB

Logging Set to One Drive Array (array a)
Database file on Second Drive Array (array b)
Max Application Connections = 150

SQL/Server

Logging files expanded to 15 GB

Logging Set to One Drive Array (array a)

Database file on Second Drive Array (array b)

Surface Area Configuration Allow Remote Connections

(Named Pipes and TCP/IP)

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark

Page 93

	Introduction
	.NET StockTrader Sample Application and Performance Kit
	Multiple Clients with Open Integration to Middle Tier via WCF
	Full Disclosure Notice

	Tests Performed and Testing Details
	Fair Benchmark Comparisons Between .NET StockTrader and IBM WebSphere Trade 6.1
	Database Access Technology/Programming Model:
	Interface from Web Application to Backend Business Services:
	Order Processing Mode
	Caching
	Enable Long Run Support
	Database Load
	Database Configuration
	Test Scripts
	Simulated User Settings
	Changes to the IBM Downloadable Version of Trade 6.1 as Used for Testing
	Security Settings
	IBM HTTP Server vs. Port 9080
	Web Application Pages Exercised by the Test Scripts
	32-Bit versus 64-Bit Testing
	Middle Tier
	Database

	Benchmark Results
	Web Service Benchmark
	/
	/
	The Web Services Benchmark Discussion
	Messaging Benchmark - Durable Queue with Two Phase/Distributed Transactions
	Messaging Benchmark Discussion – Durable/Persistent Message Queue
	Messaging Benchmark – Non-Durable Queue with One Phase Transactions
	/
	Messaging Benchmark Discussion – Non-Durable/Non-Persistent Message Queue
	Data-Driven Monolithic Web Application Benchmark
	Data-Driven Monolithic Web Application Benchmark Discussion

	Application Architecture Diagrams
	Conclusion
	Appendix A: Pricing
	Pricing for the Web Service Tests
	Pricing for the Monolithic Application and Messaging Tests
	WebSphere Pricing Windows
	WebSphere Pricing Linux
	.NET Pricing (Windows Server 2003)

	Appendix B: Performance Monitor Captures
	WebSphere 6.1 Windows
	Web Services Benchmark: EJB Mode
	Web Services Benchmark: Direct (JDBC) Mode
	Messaging Benchmark Persistent Queue TwoPhase– EJB Mode
	Messaging Benchmark Persistent Queue TwoPhase– Direct/JDBC Mode
	Messaging Benchmark NonPersistent Queue OnePhase – EJB Mode
	Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode

	Monolithic Application: Synchronous Orders and Standard (non-remoted) Business Tier/Web Tier Access
	EJB Mode
	Direct Mode

	WebSphere 6.1 Linux
	Web Services Benchmark: EJB Mode
	Web Services Benchmark: Direct (JDBC) Mode
	Messaging Benchmark Persistent Queue TwoPhase– EJB Mode
	Messaging Benchmark Persistent Queue TwoPhase– Direct/JDBC Mode
	Messaging Benchmark NonPersistent Queue OnePhase – EJB Mode
	Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode

	Monolithic Application: Synchronous Orders and Standard (non-remoted) Business Tier/Web Tier Access
	EJB Mode
	Direct Mode

	.NET 2.0/3.0
	Web Services ASMX
	WCF Web Service – IIS Hosted (basicHttpBinding)
	WCF Web Service HTTP – Self Hosted (basicHttpBinding)
	WCF Web Service TCP/Binary – Self Hosted (netTcp Binding)
	Messaging Benchmark Persistent Queue- TwoPhase (WCF over transacted/durable MSMQ)
	Messaging Benchmark Non-Persistent Queue- OnePhase (WCF over non-transacted/in-memory MSMQ)

	Monolithic Application: InProcess/Synchronous Orders

	Appendix C: Tuning Parameters
	Linux OS Tuning
	Windows OS Tuning
	WebSphere Tuning
	IBM HTTP Server Windows Tuning
	IBM HTTP Server Linux Tuning

	.NET 2.0/3.0 Tuning

