
.NET StockTrader Technical Documentation Page 1

.NET 3.0/Windows
Communication Foundation
and IBM WebSphere 6.1
Service-Oriented Performance
and Scalability Benchmark
.NET StockTrader vs. IBM WebSphere Trade 6.1 Benchmark
Results for Transactions, Web Services, and Messaging
Workloads

6/4/2007
© Microsoft Corporation 2007

The information contained in this document represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication. Because Microsoft must respond to
changing market conditions, it should not be interpreted to be a commitment on the part of
Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the
date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,
EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into
a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written
permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2007 Microsoft Corporation. All rights reserved.

Microsoft, the .NET logo, Visual Studio, Win32, Windows, and Windows Server 2003 are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 1

Contents

Introduction .. 4

.NET StockTrader Sample Application and Performance Kit .. 4

Multiple Clients with Open Integration to Middle Tier via WCF... 4

Full Disclosure Notice .. 5

Tests Performed and Testing Details .. 5

Fair Benchmark Comparisons Between .NET StockTrader and IBM WebSphere Trade 6.1 6

Database Access Technology/Programming Model: .. 6

Interface from Web Application to Backend Business Services: .. 6

Order Processing Mode .. 7

Caching .. 9

Enable Long Run Support .. 10

Database Load ... 11

Database Configuration .. 11

Test Scripts .. 11

Simulated User Settings .. 12

Changes to the IBM Downloadable Version of Trade 6.1 as Used for Testing 12

Security Settings .. 13

IBM HTTP Server vs. Port 9080 ... 13

32-Bit Versus 64-Bit Testing .. 14

Middle Tier .. 14

Database ... 15

Benchmark Results .. 16

Web Service Benchmark ... 16

The Web Services Benchmark Discussion ... 19

Messaging Benchmark - Durable Queue with Two Phase/Distributed Transactions 20

Messaging Benchmark Discussion – Durable/Persistent Message Queue ... 23

Messaging Benchmark – Non-Durable Queue with One Phase Transactions .. 24

Messaging Benchmark Discussion – Non-Durable/Non-Persistent Message Queue 26

Data-Driven Monolithic Web Application Benchmark.. 27

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 2

Data-Driven Monolithic Web Application Benchmark Discussion .. 30

Application Architecture Diagrams ... 30

Conclusion ... 33

Appendix A: Pricing ... 34

Pricing for the Web Service Tests ... 34

WebSphere Pricing Windows .. 35

WebSphere Pricing Red Hat Linux .. 35

.NET Pricing (Windows Server 2003) .. 36

Pricing for the Monolithic Application and Messaging Tests ... 36

WebSphere Pricing Windows .. 36

WebSphere Pricing Linux .. 36

.NET Pricing (Windows Server 2003) .. 36

Appendix B: Performance Monitor Captures ... 37

WebSphere 6.1 Windows ... 38

Web Services Benchmark: EJB Mode .. 38

Web Services Benchmark: Direct (JDBC) Mode .. 41

Messaging Benchmark Persistent Queue TwoPhase– EJB Mode ... 45

Messaging Benchmark Persistent Queue TwoPhase– Direct/JDBC Mode ... 46

Messaging Benchmark NonPersistent Queue OnePhase – EJB Mode .. 48

Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode 49

Monolithic Application: Synchronous Orders and Standard (non-remoted) Business Tier/Web Tier

Access .. 51

EJB Mode ... 51

Direct Mode .. 52

WebSphere 6.1 Linux .. 54

Web Services Benchmark: EJB Mode .. 54

Web Services Benchmark: Direct (JDBC) Mode .. 57

Messaging Benchmark Persistent Queue TwoPhase– EJB Mode ... 61

Messaging Benchmark Persistent Queue TwoPhase– Direct/JDBC Mode ... 62

Messaging Benchmark NonPersistent Queue OnePhase – EJB Mode .. 64

Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode 65

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 3

Monolithic Application: Synchronous Orders and Standard (non-remoted) Business Tier/Web Tier

Access .. 67

EJB Mode ... 67

Direct Mode .. 68

.NET 2.0/3.0 .. 70

Web Services ASMX .. 70

WCF Web Service – IIS Hosted (basicHttpBinding) ... 73

WCF Web Service HTTP – Self Hosted (basicHttpBinding).. 77

WCF Web Service TCP/Binary – Self Hosted (netTcp Binding) ... 80

Messaging Benchmark Persistent Queue- TwoPhase (WCF over transacted/durable MSMQ) 84

Messaging Benchmark Non-Persistent Queue- OnePhase (WCF over non-transacted/in-memory

MSMQ) .. 85

Monolithic Application: InProcess/Synchronous Orders ... 87

Appendix C: Tuning Parameters ... 89

Linux OS Tuning ... 89

Windows OS Tuning .. 89

WebSphere Tuning.. 89

IBM HTTP Server Windows Tuning ... 91

IBM HTTP Server Linux Tuning .. 91

.NET 2.0/3.0 Tuning... 92

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 4

Introduction
This paper presents detailed benchmark results based on extensive performance and scalability

testing of IBM WebSphere 6.1.07 Network Deployment Edition and .NET with the Windows

Communication Foundation (WCF). The benchmark focuses on three core workloads:

 Web Services

 Message-oriented transaction processing

 Data-driven Web application with middle-tier transaction services and data access

The benchmark tests focus on comparing an end-to-end solution based on the IBM Trade 6.1

performance application. Trade 6.1 is a J2EE-based application developed by IBM as a best-

practice performance sample application and capacity testing tool for IBM WebSphere 6.1. The

application is available for free download from the IBM WebSphere performance site, and is used

extensively by IBM throughout most of their core enterprise Redbooks for WebSphere. Since the

application was designed specifically as a performance-driven application, it presents a good

opportunity to compare the performance of IBM WebSphere to the performance of .NET/Windows

Server 2003 running an application server workload.

.NET StockTrader Sample Application and Performance Kit

For the benchmark comparison, Microsoft created an application that is precisely functionally

equivalent to the Trade 6.1 application, both in terms of user functionality and middle-tier

database access, transactional and messaging behavior. This application was created using best-

practice programming techniques for .NET and the Microsoft Application Development platform.

The resulting application, the .NET StockTrader, is now published on MSDN as a best-practice .NET

enterprise application. The .NET StockTrader is a service-oriented application that utilizes Windows

Communication Foundation (WCF) for its underlying remoting and messaging architecture. The

user interface is an ASP.NET/C# Web application that is equivalent to the Trade 6.1 Java Server

Pages (JSP) application. Additionally, the middle-tier services, written in C#, mirror the

functionality and transactional characteristics of the backend Trade 6.1 services which are based on

J2EE and the IBM WebSphere application server.

Multiple Clients with Open Integration to Middle Tier via WCF

As a service-oriented application based on WCF, multiple interoperability scenarios are enabled

with the .NET StockTrader. Since both the J2EE Trade 6.1 and .NET StockTrader applications expose

their middle-tier services as industry-standard Web Services, the two applications can be

seamlessly integrated with no code changes required. The JSP Trade 6.1 front-end application can

fully utilize the .NET middle tier services and messaging capabilities of the .NET StockTrader; and

the ASP.NET StockTrader front-end application can fully utilize the EJB-based WebSphere Trade 6.1

middle tier services and messaging capabilities. This interoperability is possible with the .NET

StockTrader since WCF, Microsoft’s new component remoting and distributed application

programming model, is fundamentally based on open Web Service standards including SOAP, XML

and the latest WS-* industry standards. In addition to the ASP.NET Web based application that

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 5

integrates via services with the middle tier, the sample also includes a Windows Presentation

Foundation (WPF) desktop client (also developed in C#), that provides a smart-client interface to

the middle tier. The WPF client can also seamlessly connect to either .NET middle tier services, or

J2EE Trade 6.1 middle tier services simply by changing the services URL in the configuration page—

no code changes are required to achieve this interoperability.

Full Disclosure Notice

The complete source code, all test scripts and all testing methodology for this benchmark are available

online. Any reader may download and view the actual code for all implementations tested, and may

further perform the benchmark for themselves to verify the results. The benchmark kit can be

downloaded from http://msdn.microsoft.com/stocktrader. Extensive time was spent to generate

results that represent optimal tuning for the platforms tested, and we are quite confident in the results.

We encourage customers to download each kit and perform their own comparative testing and

functional and technical reviews of each application.

Tests Performed and Testing Details
Four core benchmark tests were performed:

1. Web Services: Remote activation of backend services from the front-end Web application.

2. Durable Messaging: Orders placed via transacted/durable queue in loosely-coupled architecture.

3. Non-Durable Messaging: Orders placed via a non-durable/non-transacted queue.

4. Monolithic: All elements of application run in a single JVM or CLR instance, no Web Services or

messaging. In this mode, orders were set to be placed synchronously.

Both the WebSphere Trade 6.1 and .NET StockTrader can easily be configured to run in each of the four

modes above. For each result, we report a peak sustained transaction per second (TPS) throughput rate

as averaged over a 30 minute measurement period as tracked by Mercury LoadRunner. Distributed

LoadRunner agents drive load against the system tested via simulated Web users running the test script

across 40 different distributed client test PCs. Users are added to the system until peak throughput is

obtained. Extensive iterative benchmark runs (as required) were done prior to measurement runs to

ensure proper tuning of the middle tier systems. For each of the four tests above, we report the peak

sustained TPS rate, and also a calculated dollar cost per TPS so customers can better understand what

that performance costs in normalized measurement across systems. The cost calculations are based

solely on measuring the middle tier application server software costs (all tests are conducted on the

exact same hardware setup). Notes and details on the pricing of the middle tier application servers is

included in the Appendix, and based on basic published pricing from each vendor.

Customers should understand that full .NET capabilities are included in every edition of Windows Server,

and upgraded versions of .NET are made available for free download from MSDN (for example, .NET 3.0

as tested here). Hence, there is no additional or separate application server cost associated with a .NET

application; while commercial J2EE application servers such as WebSphere are separately licensed (and

http://msdn.microsoft.com/stocktrader

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 6

typically quite expensive) products. The dollar cost per TPS rates might, therefore, surprise some

readers.

It is also important to remember that this is a test of specific workloads based on the Trade 6.1 and

equivalent .NET StockTrader application. Each application, created by the respective vendors for their

platform, however, utilizes most (if not all) of the commonly deployed architectural building blocks used

in almost all enterprise applications.

Fair Benchmark Comparisons Between .NET StockTrader and

IBM WebSphere Trade 6.1
Since each application supports many different configurations, it is very important to understand what

constitutes a fair comparison. First, the configurations compared must be equivalent. This means that

the applications must produce the exact same functionality and processing behavior in the

configurations compared. You cannot, for example, compare one application running with one-phase

transactions between the message queue and the database, while running the other application with a

two-phase commit across these distributed resources. The .NET StockTrader, while based on .NET and

not J2EE, was designed to mirror most of the Trade 6.1 configurations possible with this testing goal in

mind. The key configuration modes Trade 6.1 and .NET StockTrader support, in any combination, are

discussed below.

Database Access Technology/Programming Model:

WebSphere Trade 6.1:

 EJB (default)

 Direct

The EJB mode employs a standard IBM/J2EE recommended development paradigm: JSPs invoke

stateless session beans, which in turn front-end Entity Beans that use Container Managed Persistence

(CMP). The Direct mode eliminates the Entity Beans and CMP, and instead uses direct JDBC calls to the

database. Both modes use Java model classes to pass data information between tiers.

.NET StockTrader:

Microsoft has a single data access strategy based on ADO.NET, so there is no mode that equates to this

Trade 6.1-configurable setting in the .NET StockTrader application. The ADO.NET implementation uses

C# model classes to pass data between tiers. It uses ADO.NET DataReaders isolated in a separate data

access layer (DAL) as a best-practice performance programming practice, and to maintain clean

separation of database logic from the other tiers of the application.

Interface from Web Application to Backend Business Services:

WebSphere Trade 6.1:

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 7

 Standard (via local invocation of EJB Session Beans from JSP pages, not remote/RMI-based

invocations)

 Web Services (JSP pages make remote Web calls to the backend services, which do all

database/transaction work)

Trade 6.1 Web Services are based on the IBM Web Services/SOAP implementation, which use an Http

transport and XML encoding. These are the only possible transport and encodings supported by the IBM

Web Services programming model. In Web Services mode, you can optionally direct the endpoint (via

their configuration page) to point to any of the .NET Web Service endpoints for StockTrader (discussed

below), and the JSP application will seamlessly work with the .NET middle tier services and data access

layers.

.NET StockTrader:

 Http_WebService. In this mode, the ASP.NET application makes calls to a Windows-hosted WCF

service called .NET StockTrader Business Services. This is a self-host application—self hosting

services is a core new concept introduced with WCF, and allows services to be hosted in any

application, not just IIS. In this mode, calls are made from the client over HTTP with XML

encoding.

 Tcp_WebService. In this mode, the ASP.NET application makes calls to the same self-host WCF

Windows application as with Http_WebService. However, WCF enables this same client and

same host to work with different “bindings”—in this case TCP as opposed to Http. So in this

mode, the application is using TCP and binary encoding between the Web application and

Business Services. WCF unifies the programming model for all remoting in .NET, and separates

transport/encoding standards out from the programming logic. So the self-host Business

Services program is actually simultaneously supporting Http/XML and Tcp/Binary modes of

operation with no extra programming. The WCF clients work the same way, and different

clients can simultaneously use different bindings.

 IISHost_WebService. In this mode, the WCF Business Services are hosted in IIS, as opposed to a

self-host program. IIS 6.0 hosted services always use Http and XML encoding. However, this is

not a restriction for IIS 7.0. For this benchmark, all testing was done on IIS 6.0 however.

 Asmx_WebService. WCF replaced Asmx as the strategic technology from Microsoft to build .NET

Web Services. This mode uses classic ASMX 2.0 Web Services, which are always hosted in IIS

and only support Http and XML encoding. This is a useful comparison point to understand the

performance differences between WCF/.NET 3.0 Web Services and Asmx Web Services.

Order Processing Mode

Trade 6.1

 Synchronous (default). In this mode, orders are simply processed as they come in from the Web

tier-- either by way of JDBC logic (Direct mode) or EJB/Entity Bean logic (EJB mode).

 Async OnePhase. In this mode, the application integrates with the IBM “Enterprise Service

Bus”—which at its core is their Service Integration Bus (SIB) messaging and message queue

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 8

facility integrated into WebSphere. In this mode, a one phase transaction is invoked across the

SIB message queue and the database. Orders are lost from the messaging system if the DB

transaction fails. No XA/distributed transaction takes place. The integration with the SIB is via a

JMS Message-Driven Bean (MDB) bound to a SIB message queue. The SIB message queue can

be either in-memory, or configured for persistent storage and “assured message delivery.” This

means if the application server crashes, the message is still on disk and can be recovered on

restart. This is also known as “durable” messaging. However, with a one phase commit, it does

not make sense to configure the SIB for assured message delivery, so benchmarks in this mode

were configured for “Express Non-Persistent” message queuing for the SIB.

 Async TwoPhase. In this mode, as with the previous mode, JMS is used to integrate with the SIB

message queue. In this mode, however, a full two phase distributed transaction takes place

when processing orders, so they are not lost if the database transaction fails. Hence, in this

mode it makes sense to configure the message queue for persistent storage and “assured

message delivery.” The transaction is coordinated by WebSphere JTA transaction facilities.

.NET StockTrader

 Sync_InProcess. This mode equates to the Synchronous mode for IBM Trade 6.1. There is no

messaging interface, orders are simply processed by Business Services as they come in from the

Web application.

 ASync_Msmq_Volatile. This mode equates to running Trade 6.1 with ASync_OnePhase and the

SIB queue configured for Express Delivery (non durable, not persisted to disk). In this mode, a

WCF service is invoked asynchronously by Business Services to place an order. The WCF Order

Processing Service then processes the order on its own. In this mode, the client invokes the

WCF service via an MSMQ binding to a non-transacted (non durable) message queue. The

message queue is maintained in-memory. This is a loosely coupled mode, however, in that the

WCF service host does not need to be running for Business Services (and hence the Web app) to

successfully place orders. WCF hides all the MSMQ programming logic from developers---you

program message-oriented services in the same way you program synchronous services.

 ASync_Msmq. This mode equates to running Trade 6.1 with the ASync_TwoPhase configuration,

with the SIB message queue configured for persistent storage. In this mode, the WCF service is

bound to a transacted (durable) MSMQ message queue, and thus presents assured message

delivery, since a two phase distributed transaction is always used when processing off the

message queue into the database. The transaction is coordinated by the MS Distributed

Transaction Coordinator.

 ASync_Http. There is no equivalent Trade 6.1 mode and this mode was not benchmarked. This

mode is meant to show how WCF presents a single programming model for a service no matter

the transport/encoding standard used. So in this mode, a message queue is not involved;

Business Services use an asynchronous Http call to place orders to the WCF host program.

 ASync_Tcp. The same as ASync_Http except over Tcp with binary encoding, not HTTP/XML

encoding.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 9

Note for all these modes, you simply configure Business Services, not the Order Processor Host, since

the Host is simultaneously listening on all the endpoint types above.

Caching

Trade 6.1

 No Caching (default). The name of this mode is a bit misleading. As long as WebSphere is

configured for Servlet Caching, the Market Summary will be cached based on a 3 minute cycle,

as defined in the WebSphere Cachespec.xml file. All other elements of the application are not

cached, database interactions occur on every request. This is necessary, since the Market

Summary query is very heavyweight, and with any real data load, would quickly bring the

database and the app to a crawl if run on every visit to the home page. Since the query is the

same in the .NET StockTrader application, the same is true for .NET StockTrader. For benchmark

runs, we tuned to cache to a 1 minute expiration in both cases since user’s would likely want

market updates a bit more frequently than every three minutes.

 Distributed Map Caching. This uses IBM’s Dynamic Cache Service, based on settings in the

Cachespec.xml file, to perform a fairly complex series of caching steps for the application. This

enables the application to reduce database calls.

 Command Caching. This is provided for backwards compatibility since the Distributed Map

Caching replaces Command Caching as IBM’s primary cache technology/recommended

approach to caching.

.NET StockTrader

The .NET StockTrader uses the .NET cache API (output caching specifically) to cache the Market

Summary page for 60 seconds. We chose not to implement further caching in the application

because it is simply not realistic. While Trade 6.1 can cache stock quotes, account data,

portfolio data and the like (and .NET StockTrader could too if implemented), the simple fact is

that this is not a realistic approach or “cache policy” for this application. Consider that the IBM

cache, while distributed (it can keep cached items in sync across clustered servers), is not

invalidated by the data source itself. Hence, an update to a database table by any other

application using the same database would result in possibly corrupt data, or at least presenting

incorrect “stale” data to users in the application. Unless a customer is willing to direct all

database updates/deletes/inserts through the Trade 6.1 entity beans, data on the middle tier

would quickly become out of sync with the actual database. In other words, such a strategy

keeps the organization from building new applications against a common database. Market

Summary information is fine to cache, since its read-only and can stand to be 60 seconds stale;

user account balances and stock price information used on trades cannot. Hence, the .NET

StockTrader does not implement further caching beyond Market Summary.

It should be noted, however, that Microsoft introduced a new SQL Cache Dependency feature

for the .NET cache with .NET 2.0; and unlike IBM’s Distributed Cache technology, this is directly

invalidated by the data source itself. In other words, a completely separate application (or even

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 10

a manual update to a single row of data) will cause and application cache that contains that row

to be invalidated, such that data will remain in sync with the database itself. While this is a great

feature, it is not appropriate for constantly changing data (since the subscriptions generate

network traffic). Such constantly changing data should likely not be cached to begin with. Given

the nature of the benchmark, almost all data is constantly changing in the benchmark runs, so

again, for realism we do not use this .NET feature.

Enable Long Run Support

Trade 6.1

 On (default)

 Off

This setting was introduced to Trade with WebSphere Trade 6.1, apparently because customers running

the benchmark for long periods of time saw steady degradation of performance as user accounts started

to contain more and more orders. This resulted in heavier queries, and large and steadily increasing

amounts of data being passed between tiers and formatted into the account summary page. Hence,

IBM created this setting. All it does is completely eliminate the recent order query and order display on

the account page. It is understandable that in a benchmark setting, you cannot control the amount of

data as you would in a production application (typically, for example, by querying based on order date,

etc. for a restricted set of data). However, there are better approaches to solve this problem. For

example, capping the maximum orders returned by a given query at a reasonable number (like last 100

orders). EJBSQL, however, does not support this capability, so IBM chose this option instead.

Despite this discussion, there is a much better way to ensure benchmarks can be run for long periods of

time using Trade 6.1 and StockTrader---and a solution that makes the benchmark more realistic at the

same time. That solution is to use a much larger data load in the database. For example, with 500

users, and a benchmark script creating 100 orders per second, it would take just 5000 seconds (83

minutes) for each visit to the account page to cause a 1000 record SQL query to be run on each request,

followed by passing 1000 records over the network for each user on each request. This is the default

load IBM uses for the database. We chose simply to increase the default data load, which also makes

the benchmark more realistic---very few enterprise production databases would be so small. We used

500,000 accounts, each with 5 existing orders (2.5 million orders). Now, at 100/orders per second

during a benchmark, it would take 58 days to get to 1000 orders per user.

.NET StockTrader

As mentioned, there is no equivalent setting for StockTrader, instead we run the benchmark for both

applications against a larger, much more realistic data load (500,000 accounts, 5 order per account,

100,000 quotes). We provide a database loader (written in .NET Windows Forms) to load both SQL

Server 2005 and DB2 V9. This loader runs significantly faster than the Trade 6.1 JSP Data Load Page.

This loader program will also reset the database between benchmark runs to the same starting state by

deleting added data records.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 11

In summary, you should make sure to de-select “Enable Long Run Support” in Trade 6.1 before doing

benchmark comparisons involving the account page, since this only disables the account page

functionality which is not realistic.

Database Load

As discussed, we used a default load for all benchmark runs (reset between runs) of 500,000 accounts, 5

orders/holdings per account, and 100,000 quotes. This is much more realistic than the IBM default

settings.

Database Configuration

The IBM Trade 6.1 application was tested against an all-IBM configuration, using IBM DB2 V9 (Enterprise

Edition) as the backend database, and the latest IBM DB2 V9 JDBC drivers for data access. The .NET

StockTrader was tested against an all-Microsoft setup, with a backend SQL Server 2005 database

(Enterprise Edition). The benchmark is not a database benchmark: enough capacity was employed for

the database hardware to ensure it was not a bottleneck in any benchmark run. Each database was

deployed to the same 64-bit Windows Server machine, running on a 4-processor 2.2 GHz AMD Optereon

system. The database was configured with two fast RAID arrays (15 ms disk access times, 14 drives each

in a RAID 10 configuration); logging was directed to one array, the primary database files were stored on

the second array. Each array was configured with its own dedicated controller. The 64-bit editions of

DB2 and SQL Server were installed. All tuning steps were followed for DB2 according to the Trade 6.1

documentation, however, additional logging space was configured given the larger data load. The

equivalent drive space was configured for SQL Server logging. The database disk usage was closely

monitored to ensure each run could complete without requiring the database to extend the logging or

data file space during a benchmark run. This is an important consideration for custom tests.

Test Scripts

Mercury LoadRunner was used to record test scripts—browser interactions that exercise most of the

functionality in the application. These were run across 40 client machines (500 MHz Windows XP

desktops with 512 MB RAM). User agents were configured to run with a one second think time between

each request. Each benchmark run included a warm up run to get to steady state, and a 30 minute

measurement period. TPS rates were determined by LoadRunner by averaging across the 30 minutes.

Error rates were monitored to ensure they remained at less than .01% during the measurement period.

Some dropped connections and or database deadlock conditions do result from running very large user

loads (great than 1,000 concurrent users at a one second think time) against the applications. Dropped

connections, if any, occurred only during the warm-up period as larger user loads were ramped against

the applications. User loads were run for each application up to a number that represented peak

throughput for that configuration, as determined in many iterative runs (literally hundreds) during the

tuning stages. Extensive time was spent tuning IBM WebSphere (see the appendix) to achieve peak

throughput for the software/hardware configuration tested. IBM does not publish pre-set tuning guides

for Trade 6.1, and developers must iteratively test and tune the various knobs in WebSphere (there are

many) to get to an optimal setup for a given hardware configuration and software workload. .NET does

not require nearly as much tuning, and in general will scale quite well out of the box, given a properly

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 12

coded application. Some tuning was applied, however, and this is documented in detail along with the

WebSphere and Linux tuning in the appendix.

In general, it is fairly straightforward to recognize an in-properly tuned system for both platforms. Given

enough database capacity, each application server running under load should be able to reach full

saturation (~100% CPU saturation) when properly tuned. Just because the system can reach full

saturation, however, does not mean the tuning is optimal, it just means if it can’t reach this, then it is

not properly tuned. Hence it is a requirement to iteratively test after adjusting, individually, the core

tuning settings for the application. With Trade 6.1, these are extensive, including several different

thread pools, connection pools for databases and queue connection factories, Java heap sizes, and the

like. Several man-months were spent on this effort, and the WebSphere installation was always kept

up-to-date width the latest Refresh Packs from IBM during testing. We did notice a good increase in

performance in several scenarios between WebSphere 6.0 and 6.1. We are quite confident in the

results and the system tuning applied, however, should IBM recommend different (specific) settings, we

will be happy to re-run the benchmark and re-publish new results. Customers can also run the

benchmark—it is a great way to really judge the capacity of the two platforms for a realistic workload,

and then to judge the cost of each platform and compare the cost to the results achieved.

Simulated User Settings

Mercury agents were set to not download images (this is not a web server/network I/O benchmark)

during runs. They make requests to the application server, and all processing is completed and just the

HTML returned to the agent. This reduces the overhead on the agent machines, and helps ensure the

40 client machines used in the testing never become an artificial bottleneck. Just as importantly, the

agents were configured to reset connections between iterations, to simulate constantly new users

logging into the application, and more fully exercise the underlying networking stacks and HTTP keep

alive system that the application servers and Web servers use to support large concurrent user bases.

Too many benchmarks are simply run with 10-15 threads, no think times and no network resets

between script iterations. These types of benchmarks often produce very different (often over-inflated)

results than real world usage conditions. Our settings are meant to much more closely mimic the real

world. Think times (even if just one second) and connection resets between iterations make all the

difference here.

Changes to the IBM Downloadable Version of Trade 6.1 as Used for Testing

We wanted to avoid making changes to IBM’s code; after all, it was developed by IBM for their own

platform as a best-practice performance application for performance testing and capacity planning. The

only setting we changed, therefore, besides ensuring the cachespec.xml file was only caching Market

Summary as did the .NET application (as previously discussed), was to ensure the application did not

make requests to the Stock Streamer sample Java Client application published with Trade 6.1. This

application uses a Topic-based pub/sub mechanism to show a subset of stock trades at periodic intervals

in a Java client application. Since we did not implement (at least not yet) this equivalent functionality

for .NET StockTrader (we instead did a full blown WPF client); we needed to make sure the Trade 6.1

application was not making JMS calls for each stock trade. This is accomplished easily by merely

changing environment entries (PublishQuotePriceChanges) in the deployment descriptors that disable

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 13

this functionality specifically, or by merely commenting out the call to publish to the JMS topic for the

Streamer application. Correct settings can be ensured by turning on Trade 6.1 detailed logging, and

ensuring these calls are not being made (which we did). Of course logging should be turned off for the

actual benchmark. Note however, that updates to stock prices and volumes remain on

(UpdateQuotePriceVolume), as the .NET StockTrader also updates stock prices and trading volumes in

the equivalent fashion for each order placed as part of the buy and sell transactions.

Security Settings

Trade 6.1 does not implement any security between the Web application and the JSP engine—for

example, no encryption of passwords takes place. We made sure the .NET StockTrader similarly did not

implement any extra security, although this would be appropriate for a Web-based deployment.

ASP.NET Forms Authentication was used as the authentication mechanism (with anonymous Internet

access ala Trade 6.1), and ASP.NET Forms Auth makes it extremely easy to implement any number of

encryption algorithms simply via a configuration setting. The application, if ever deployed on the Web

vs. an Intranet, would require SSL/HTTPS as the primary security mechanism. Customers can configure

IBM HTTP server or IIS for SSL optionally for additional testing if they desire. The Web Services in the

application as implemented by IBM are simply SOAP 1.1 based. They do not employ WS-*. Therefore,

neither does the 1.0 implementation of StockTrader, but the applications present a possible way for

benchmarking of various WS-* standards in the future, such as WS-Atomic transactions and WS-Reliable

Messaging which WCF and .NET fully support. It should be noted, however, as the applications do not

require federated security, in the real world neither would likely implement WS-Security for an actual

deployment, considering the overhead and lack of need for it in this specific application as designed.

IBM HTTP Server vs. Port 9080

When benchmarking IBM WebSphere, it is important to understand that while WebSphere provides an

in-process HTTP listener service (port 9080, by default), IBM best practice recommended deployments

are in conjunction with the full-blown IBM HTTP Server (a repackaged version of Apache). Hence, for all

configurations, we used IBM HTTP Server as packaged with WebSphere, configured with the WebSphere

Plugin. This includes the distributed Web Service benchmark runs, where four client application servers

execute the JSP Web application (co-located with the IBM HTTP Server); and make requests to the Web

Service Host application server. These requests are made on port 80 to the IBM HTTP Server that is

installed on the WebSphere Web Service Host application server. This is the recommended IBM

configuration for deploying high-load application servers hosting Web Services. IBM HTTP Server tuning

details for Windows and Linux are included in the Appendix.

Web Application Pages Exercised by the Test Scripts

The test scripts were designed to drive load on the system in a way that exercises most functionality in

the application, and puts a heavier emphasis on transactions; such as adding new registered users and

buying stocks. The precise flow of the test scripts (exactly the same for all test runs on all platforms) is

listed below. A one second think time (smaller than real-world, to driving more load per simulated user)

was placed between all URL requests, and in the results, a ‘transaction’ is defined as the successful

completion of the URL request to the server, with valid response/HTML returned.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 14

 Login random registered user (1 to 500,000 users loaded in database; the login includes in both

apps a redirect to the home page, and all the logic to login and display home page)

 Request four random quotes (1 to 100,000 distinct quotes loaded in database; one post

performed with 4 stocks requested)

 Request four random quotes (1 to 100,000 distinct quotes loaded in database; one post

performed with 4 stocks requested)

 Visit Portfolio Page

 Visit Account Page (no account update performed)

 Visit home Page

 Logout the Registered user via logout page

 Register a new user/submit registration form (this also logs new user in with redirect/display of

home page)

 Visit Portfolio Page

 Buy a random stock symbol (1 to 100,000 stock symbols in database; buy operation involves a

direct post/submit to the order submission pages, which submit the order for all backend

processing)

 Visit Home Page

 Buy a random stock

 Visit Account Page

 Get quotes for 4 random stocks (one post performed with 4 stocks requested)

 Buy a random stock

 Buy a random stock

 Visit Portfolio Page

 Visit Home Page

 Logout

32-Bit versus 64-Bit Testing

Middle Tier

For this benchmark, we could test either the 32-bit versions of .NET and IBM WebSphere, or the 64-bit

versions. Based on published documentation from IBM on 64-bit comparisons (see

ftp://ftp.software.ibm.com/software/webserver/appserv/was/64bitPerf.pdf1), including the Trade 6.1

benchmark, and pre-verification runs of the Trade 6.1 application on 64-bit WebSphere on both

1
 Note that you should not directly compare the results for Trade 6.1 workloads in this referenced benchmark

paper to the results obtained here. IBM does not report the test scripts used to generate the results (what
operations are performed?); or the test tool used to generate the results. For example, Trade 6.1 ships with a
built-in JSP workload driver test tool that can generate benchmark results that was likely used. However, this does
not exercise the application in the same way as our Mercury test scripts, which are more intensive in terms of the
% of orders and visits to Portfolio, Home and Account pages (vs. just retrieving stock quotes). They also do not
report the caching modes or whether the “Long Run” option, which disables the Account Page functionality when
turned on, was on (default) or off.

ftp://ftp.software.ibm.com/software/webserver/appserv/was/64bitPerf.pdf

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 15

Windows and Red Hat Linux/Opteron, we determined the Trade 6.1 application performs roughly 10-

20% slower on 64-bit WebSphere. The same is true for the .NET StockTrader, which also performs

roughly 10-20% slower on 64-bit Windows/.NET vs. 32-bit Windows/.NET. Both IBM and Microsoft have

documented that unless a middle tier application requires more than 2GB of addressable address space

(for caching, for example), or the application performs math-intensive floating point operations (as

required with heavy use of encryption, graphics engines, databases, etc.), typical middle-tier business

services will perform slightly better on their respective 32-bit platforms vs. 64-bit platforms given the

same hardware system. Why? There is extra overhead for the Java and .NET runtimes to carry around

64-bit memory addresses. For applications that will not benefit from the faster math calculations or the

ability to address more memory than 2GB per process, the extra overhead can decrease performance on

64-bit software platforms vs. 32-bit software platforms. Neither Trade 6.1 or .NET StockTrader benefit

from using their respective 64-bit platforms (.NET/WAS). We chose to run the middle tier on the fastest

setup of the hardware tested, therefore: 32-bit .NET and WAS running on the 4 x 1.8 GHz Opteron

system under test. For a different 64-bit benchmark, inclusive of WebSphere and .NET results, and a

discussion of 64-bit .NET on the middle tier, please also refer to http://msdn2.microsoft.com/en-

us/vstudio/aa700838.aspx.

Database

The database, however, which can benefit enormously from the ability to directly address > 2GB of RAM

(especially since we used a good-sized database load for the tests), was run on 64-bit Windows Server

running the 64-bit versions of DB2 V9 and SQL Server 2005. This computer was configured with 16GB of

RAM.

As published benchmark kits, the two applications do present the chance for customers to run their own

tests, which we highly encourage. For example, running under an SSL configuration may see better

results with a 64-bit middle tier vs. a 32-bit middle tier. Such testing was beyond the scope of this set of

benchmark tests.

http://msdn2.microsoft.com/en-us/vstudio/aa700838.aspx
http://msdn2.microsoft.com/en-us/vstudio/aa700838.aspx

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 16

Benchmark Results

Web Service Benchmark

Figure 1: Benchmark Test Bed for Web Service Remote Tests. The setup ensures that the Web Service Host is the System
Under Test (SUT); as neither the 4 Web Application Servers running the Web application or the database are near capacity
during any benchmark run. Hence, we are measuring the throughput of the Web Service Host application server in all tests.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 17

Figure 2: Peak TPS Rates for the Web Service test

375 412

563
630

856
922

1340

2422

0

500

1000

1500

2000

2500

3000

P
e

ak
 S

u
st

ai
n

e
d

 T
P

S
.Net StockTrader and IBM WebSphere Trade6.1

Web Service Interface From Web App To
Remote Backend Services

Web App Servers: (Web Service Clients) : Four 2 x 2.2 Ghz Xeon, 4GB RAM
Web Service Host: One 4 x 1.8 GHz Opteron, 16GB R

Higher Bar is Better, as this is Peak Throughput in TPS

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 18

Figure 3: Price/Performance chart for the Web Service Test. Refer to Appendix A for pricing calculations for the middle tier
software.

$166.66
$160.19

$111.01
$104.76

$77.10
$71.58

$49.25

$27.25

$-

$20.00

$40.00

$60.00

$80.00

$100.00

$120.00

$140.00

$160.00

$180.00

A
p

p
lic

at
io

n
 S

e
rv

e
r

$
 C

o
st

 P
e

r
TP

S
($

/T
P

S)

.Net StockTrader and IBM WebSphere Trade6.1
Web Service Interface From Web App To

Remote Backend Services
Web App Servers: (Web Service Clients) : Four 2 x 2.2 Ghz Xeon, 4GB

RAM
Web Service Host: One 4 x 1.8 GHz Opteron, 16GB RAM

Lower Bar is Better, as this is $/Cost per TPS

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 19

The Web Services Benchmark Discussion

In this test, the Web Application servers (running the JSP or ASP.NET front ends) are the Web Service

client machines, using Web Services to remotely invoke the service layer, hosted on the Web Service

Host application server. Both the clients and the host are performing XML serialization and de-

serialization. The Web Application server clients are accessing the services via a SOAP Proxy (Trade 6.1),

or the WCF client (.NET StockTrader). We set the test up with four distributed Web Application Servers,

with round-robin load balancing performed from the Mercury Controller as iterations are performed,

such that all four Web Application Servers get equal load. Each in turn makes remote network requests

to the Web Service Host, which is servicing all four Web Application Servers. The use of 4 Web

Application Servers ensures we do not have a bottleneck on the Web Tier, and we are accurately

comparing just the performance of the Web Service Host computer for all benchmark runs. Some

important conclusions can be drawn from this test:

1. Both the ASMX and WCF SOAP/HTTP configurations are significantly faster than IBM WebSphere

6.1 for hosting Web Services. .NET WCF hosted in IIS offers 46% better throughput than the

JDBC WebSphere configuration in this test; and 124% better throughput than the EJB

implementation.

2. Self-hosting WCF services can lead to performance advantages over hosting .NET Web Services

in IIS—even when operating over an HTTP-XML basicHttpBinding. Self hosted WCF HTTP Web

Services offer 56% better throughout than the ASMX equivalent services hosted in IIS for this

test. They offer 45% better throughput than the equivalent WCF IIS-hosted service operating

over Http-XML.

3. Self hosted Web Services using WCF significantly outperform IBM WebSphere Web Services. The

self-hosted WCF services operating over Http-XML (full SOAP compliance) offer 113% better

throughput than the fastest WebSphere Web Service results (JDBC data access). They offer

225% better throughout than the WebSphere Web Services using EJB entity bean database

access.

4. The self-hosted WCF services can also support, simultaneously, the netTcp WCF binding, with

binary encoding. This can lead to significant performance boosts for remote calls. The WCF

netTcpBinding replaces .NET Binary Remoting (used with .NET 1.1 and 2.0) as the preferred way

for remote calls between .NET clients and remote .NET services. Supporting both HTTP/XML

and TCP/Binary requires no extra development, as WCF unifies the programming model for

HTTP-based Web Services and .NET Binary-remoted components, and service hosts will listen

simultaneously on all configured endpoints to support any different type of client on any

platform.

5. The Tcp-Binary binding (netTcpBinding) between the ASP.NET clients and the Web Service host

offer 81% better throughput than the WCF basicHttpBinding used in the same self-host .NET

executable. The Tcp-Binary remote mode offers 284% better throughput than the fastest

WebSphere Web Service configuration (JDBC data access).

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 20

Refer to the appendix for the performance monitor captures for this test taken after initial warm-up at

steady-state throughput rates for each configuration.

Messaging Benchmark - Durable Queue with Two Phase/Distributed Transactions

Figure 4: Figure 1: Benchmark Test Bed for Messaging Tests. The Messaging engine (MSMQ or IBM’s Service Integration Bus
Message Queue/JMS messaging engine) are co-located on the same application server as the other parts of the application in
this test. Benchmark agents drive load against the Web application, which in turn accesses the Trade Services running in-
process (the same CLR or JVM instance). The Trade Services then place asynchronous orders via the Trade 6.1 JMS Broker
MDB, or the .NET StockTrader WCF Order Processor Service.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 21

Figure 5: Peak TPS Rates for the Durable Messaging Test

554

490

790

717

918

0

100

200

300

400

500

600

700

800

900

1000

P
ea

k
Su

st
ai

n
ed

 T
P

S

.Net StockTrader and IBM WebSphere Trade6.1
Asynchronous Message-Based Order Processing

Persistent Message Queue - Assured Delivery
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Higher Bar is Better, as this is Peak Throughput in TPS

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 22

Figure 6: Price/Performance Chart for the Durable Messaging Test. to Appendix A for pricing calculations for the middle tier
software.

$112.81

$134.69

$79.11

$92.05

$6.53

$-

$20.00

$40.00

$60.00

$80.00

$100.00

$120.00

$140.00

$160.00

A
p

p
lic

at
io

n
 S

er
ve

r
$

 C
o

st
 P

er
 T

P
S

($
/T

P
S)

.Net StockTrader and IBM WebSphere Trade6.1
Asynchronous Message-Based Order Processing

Persistent Message Queue - Assured Delivery
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Lower Bar is Better, as this is $/Cost per TPS

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 23

Messaging Benchmark Discussion – Durable/Persistent Message Queue

In this test, the OrderMode is set to Asynchronous-TwoPhase for Trade 6.1, with the SIB queue

configured for persistent storage and Assured Message Delivery. This is the configuration that would be

used in a production application, with the reads from the queue and the corresponding database

inserts/updates occurring as part of a single atomic, distributed transaction. This ensures that messages

are not lost if a database processing failure occurs. For .NET StockTrader, the OrderMode is set to

ASync_Msmq. In this mode, the WCF Service is bound to a transacted (durable/persisted) message

queue, with a similar two phase distributed transaction when processing orders off the queue. Again,

this mode ensures messages are not lost if a database processing error occurs. Some conclusions that

can be drawn from this test:

1. Again, as in all tests, the JDBC “Direct” mode for WebSphere offers better performance than the

use of EJB entity beans.

2. .NET WCF outperforms the WebSphere EJB configuration in this test by 66%; it outperforms the

JDBC configuration by 16%.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 24

Messaging Benchmark – Non-Durable Queue with One Phase Transactions

Figure 7: Peak TPS Rates for the Non-Durable Messaging Test

736 727

1309
1270

1145

0

200

400

600

800

1000

1200

1400

P
ea

k
Su

st
ai

n
ed

 T
P

S

.Net StockTrader and IBM WebSphere Trade6.1
Asynchronous Message-Based Order Processing

Non-Persistent Message Queue
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Higher Bar is Better, as this
is Peak Throughput in TPS

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 25

Figure 8: Price/Performance Chart for the Non-Durable Messaging Test. Refer to Appendix A for pricing calculations for the
middle tier software.

$84.92

$90.78

$47.75

$51.97

$5.24

$-

$10.00

$20.00

$30.00

$40.00

$50.00

$60.00

$70.00

$80.00

$90.00

$100.00

A
p

p
lic

at
io

n
 S

er
ve

r
$

 C
o

st
 P

er
 T

P
S

($
/T

P
S)

.Net StockTrader and IBM WebSphere Trade6.1
Asynchronous Message-Based Order Processing

Non-Persistent Message Queue
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Lower Bar is Better, as this is $/Cost per TPS

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 26

Messaging Benchmark Discussion – Non-Durable/Non-Persistent Message Queue

In this test, the OrderMode is set to Asynchronous-OnePhase for Trade 6.1, with the SIB queue

configured for express non-persistent storage. For .NET StockTrader, the OrderMode is set to

ASync_Msmq_Volatile. In this mode, the WCF Service is bound to a non-transacted (in-memory)

message queue, with a similar one phase transaction when processing orders off the queue. While this

configuration would likely never be used in a production application, it is included here for

completeness. Messages will be lost in this configuration in two cases:

 The application server/messaging engine crashes.

 There is a database processing error of some sort, after the message is read from the queue.

Some conclusions that can be drawn from this test:

1. Interestingly, in this mode WebSphere outperforms .NET and WCF. One potential

explanation is that the WCF self-host program is run out-of-process with respect to the Web

application; while with WebSphere, the JMS engine is run in the same JVM process as the

Web application. In fact, in the WebSphere configuration, only a single JVM process is

involved in an order operation—so no process hops are involved. In the .NET tests, the Web

application runs in one process (ASP.NET worker CLR process), the WCF self-host runs in

another CLR process, and the messaging engine (MSMQ Service) runs in a third process.

While this is true for the .NET durable/persisted runs as well, in the non-persisted/one

phase tests WebSphere does not have to process a distributed transaction or persist

messages to disk. While .NET may be much faster in these key operations, when they are

not part of the benchmark test, that advantage is lost; while at the same time WebSphere

benefits from running everything within one JVM instance/process. Running the messaging

engine and core application in the same instance (default for a Trade 6.1 install) is not as

reliable, of course, as separating these components into separate processes. To be fair,

however, with extra configuration and setup, WebSphere could run multiple Application

Server instances on the same machine and run the messaging engine in a separate process

from the core application; such a setup is beyond the scope of this benchmark.

2. Keep in mind this configuration is really not relevant for a production application that must

have reliability guarantees on message processing.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 27

Data-Driven Monolithic Web Application Benchmark

Figure 9: Test Bed setup for the monolithic Web application benchmark. In this setup, which is the same physical setup as
the messaging tests, orders are placed synchronously. There are no remote calls made, and no JMS or MSMQ messaging is
involved as all orders are placed synchronously. Since a WCF Service host is not involved for messaging or remoting, all
elements of the .NET StockTrader run within the ASP.NET worker process (a single CLR instance); just as the Trade 6.1
application runs in a single JVM instance.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 28

Figure 10: Peak TPS Rates for the Monolithic Web Application Test.

909

835

1547

1464 1465

0

200

400

600

800

1000

1200

1400

1600

1800

WebSphere/RedHat
Linux EJB

WebSphere/Windows
Server EJB

WebSphere/RedHat
Linux JDBC

WebSphere/Windows
Server JDBC

.NET/Windows Server

P
e

ak
 S

u
st

ai
n

e
d

 T
P

S
.Net StockTrader and IBM WebSphere Trade6.1

In-Process Interface to Business Services and Synchronous Orders
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Higher Bar is Better, as this is Peak Throughput in TPS

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 29

Figure 11: Price/Performance Chart for the Monolithic Web Application Test. Refer to Appendix A for pricing calculations for
the middle tier software.

$68.76

$79.04

$40.40

$45.08

$4.09

$-

$10.00

$20.00

$30.00

$40.00

$50.00

$60.00

$70.00

$80.00

$90.00

A
p

p
lic

at
io

n
 S

er
ve

r
$

 C
o

st
 P

er
 T

P
S

($
/T

P
S)

.Net StockTrader and IBM WebSphere Trade6.1
In-Process Interface to Business Services and Synchronous Orders

Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Lower Bar is Better, as this is $/Cost per TPS

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 30

Data-Driven Monolithic Web Application Benchmark Discussion

This mode of operation represents a non-service oriented, monolithic application. As such, there is no

service-reuse possible, and no ability to “plug in” different clients or applications/services running on

different platforms. The performance is quite good, considering there are no distributed transactions,

no messaging/queuing, and no remote calls whatsoever between the Web Applications and the middle

tier processing components. All elements of the application must be deployed in unison, and hence

versioned/updated in unison. Nevertheless, for applications that do not require Web Services, remote

calls, or messaging, this mode of operation, for both applications, is a viable choice for a deployment,

and one which can provide very fast performance.

Application Architecture Diagrams

Figure 12: Logical Design of .NET StockTrader

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 31

Figure 13: Asynchronous, Message-Oriented Processing of Orders

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 32

Figure 14: Trade 6.1 Logical Design

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 33

Figure 15: Asynchronous, Message-Oriented Processing of Orders

Conclusion
This paper presents an extensive array of benchmark comparisons between IBM WebSphere and

.NET/Windows Server running an application server workload. The benchmark is based on the

functional specification of IBM WebSphere Trade 6.1, as defined and developed by IBM for the

WebSphere 6.1 platform. The .NET results are based on a migration of this application to .NET with the

use of Windows Communication Foundation for the service layers. The .NET StockTrader is a best-

practice performance implementation for the .NET platform, and is functionally and behaviorally

equivalent to the tested Trade 6.1 application in the configurations tested. The benchmark results show

the two platforms running in a variety of different configurations. With published source code for both

implementations, we encourage customers to perform their own comparative testing; and also to use

the .NET StockTrader application as a learning sample for various features of WCF and the Microsoft

enterprise development technologies.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 34

Appendix A: Pricing
The following pricing was used for the $/TPS calculations. Pricing is based on published list pricing for

the products.

Pricing for the Web Service Tests

Pricing includes middle tier software licensing costs (OS + Application Server) for the primary application

server/Web Service Host and the four remote Web Application servers used in the remote tests.

Database software costs and middle tier/database hardware costs were not included. In the Web

Services configuration, we priced WebSphere Express for the four Web Application Servers, and

Network Deployment Edition for the Web Service Host. Network Deployment Edition is IBM’s

recommended enterprise application server, and includes its core enterprise features. Note that for the

.NET/Microsoft Windows Server configuration, no separate application server is necessary: .NET is

integrated into Windows Server and new versions are made available as free downloads on MSDN.

There is also no redistribution license fee to redistribute the full .NET Framework runtime. Red Hat

Advanced Platform was priced for the 4-CPU Linux application server tested, as this is required to

support 4 CPUs. Windows Server 2003 R2 Enterprise was priced for the 4-CPU application server.

Windows Server 2003 was run on the 4-Web Application Servers: Windows Standard pricing was

calculated for these servers.

For the .NET configurations, the External Connector License, which allows unlimited Anonymous Web

access (as used in the StockTrader Application) without CALs was added for all Windows Servers.

Windows Standard Edition with Internet Connectors was priced for the 4 2-CPU Web Application

Servers, Enterprise Edition for the 4-CPU primary Application Server/Web Service Host.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 35

WebSphere Pricing Windows

Web Service Tests: 5 Systems

1 x WAS Network Deployment Edition:
($15,000 x 4 CPUs)
$60,000.00

1 x Windows Enterprise Edition:
$3,999.00

4 x WAS Express Edition:
($2,000 x 8 CPUs)
$16,000.00

4 x Windows Standard Edition (@ $1199.00 per copy)
$4,796.00

Total: $84,795.00

WebSphere Pricing Red Hat Linux

Web Service Tests: 5 Systems

1 x WAS Network Deployment Edition:
($15,000 x 4 CPUs)
$60,000.00

1 x RedHat Advanced Platform (V5)
$2,499.00

4 x WAS Express Edition:
($2,000 x 8 CPUs)
$16,000.00

4 x Windows Standard Edition (@ $1199.00 per copy)
$4,796.00

Total: $83,295.00

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 36

.NET Pricing (Windows Server 2003)

1 x Windows Enterprise Edition:
$3,999.00

4 x Windows Standard Edition (@ $1199.00 per copy)
$4,796.00

5 x External Connector License (@$1,999.00 per copy)
$9,995.00

Total: $18,790.00

Pricing for the Monolithic Application and Messaging Tests

1 Application Server System was used for the middle tier in these tests, with 4 CPUs.

WebSphere Pricing Windows
1 x WAS Network Deployment Edition:
($15,000 x 4 CPUs)
$60,000.00

1 x Windows Enterprise Edition:
$3,999.00

1 x External Connector License

$1,999.00

Total: $65,998.00

WebSphere Pricing Linux
1 x WAS Network Deployment Edition:
($15,000 x 4 CPUs)
$60,000.00

1 x RedHat Advanced Platform (V5)
$2,499.00

Total: $62,499.00

.NET Pricing (Windows Server 2003)
1 x Windows Enterprise Edition:
$3,999.00

1 x External Connector License (@$1,999.00 per copy)
$1,999.00

Total: $5,998.00

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 37

Appendix B: Performance Monitor Captures
Notes: The 4 x 2-Processor Web Server machines are hyper-threaded, so show 4 CPUs in Performance

Monitor. #Bytes All Heaps and Requests Queued are .NET Performance Counters, and will show as zero

during WebSphere benchmark runs.

What are We Looking For?

1. Near 100% CPU saturation of the Web Application Server Under Test (this is always the 4 x 1.8

GHz AMD Opteron System).

2. Response times (the right hand Mercury Console Window) less than .5 seconds---request

queuing is just beginning, but we are not over-stressing the computer; we want to reach 100%

CPU saturation or as close as possible to get to peak throughput, but anything beyond would

cause throughput to fall as systems begin to queue requests.

3. Database CPU loads well under 100%. Note that you will see *higher* database CPU loads for

benchmark configuration runs that are pushing more TPS through the system. The more TPS

the middle tier is able to handle, the more database requests it is making per second.

4. Well under 100% CPU load for the 4 Web Application servers used in the remote Web Service

tests; plus roughly equal CPU loads for each run across these four Web App client boxes.

5. Note for Web Service Benchmark runs that are pushing more TPS through the system, more

user load is required across the four Web Application Servers; hence, you will see *higher* CPU

load because these boxes are handling more concurrent users and more TPS to saturate the

Web Service Host. For example, the netTcp WCF benchmark requires much greater loads to

saturate the server, produces higher TPS; hence the database and the four ASP.NET clients are

also handling more load to produce this TPS rate, as expected. In summary, always judge a CPU

utilization rate based on the TPS it is handling at that CPU utilization.

6. Note these shots were taken largely during warm up runs, after steady state had been achieved.

Actual results are based on 30 minute measurement intervals in the official benchmark runs,

averaged by Mercury Analysis tools after completion and not read from the real-time display

console shown here.

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 38

WebSphere 6.1 Windows

Web Services Benchmark: EJB Mode

Figure 16: Mercury LoadRunner

Figure 17: WebSphere Web Service Host

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 39

Figure 18: JSP App Server1

Figure 19: JSP App Server2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 40

Figure 20: JSP App Server 3

Figure 21: JSP App Server 4

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 41

Figure 22: DB2

Web Services Benchmark: Direct (JDBC) Mode

Figure 23: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 42

Figure 24: WebSphere Web Service Host

Figure 25: JSP App Server1

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 43

Figure 26: JSP App Server2

Figure 27: JSP App Server 3

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 44

Figure 28: JSP App Server 4

Figure 29: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 45

Messaging Benchmark Persistent Queue TwoPhase– EJB Mode

Figure 30: Mercury LoadRunner

Figure 31: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 46

Figure 32: DB2

Messaging Benchmark Persistent Queue TwoPhase– Direct/JDBC Mode

Figure 33: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 47

Figure 34: Application Server

Figure 35: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 48

Messaging Benchmark NonPersistent Queue OnePhase – EJB Mode

Figure 36: Mercury LoadRunner

Figure 37: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 49

Figure 38: DB2

Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode

Figure 39: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 50

Figure 40: Application Server

Figure 41: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 51

Monolithic Application: Synchronous Orders and Standard (non-remoted) Business

Tier/Web Tier Access

EJB Mode

Figure 42: Mercury LoadRunner

Figure 43: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 52

Figure 44: DB2

Direct Mode

Figure 45: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 53

Figure 46: Application Server

Figure 47: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 54

WebSphere 6.1 Linux

Web Services Benchmark: EJB Mode

Figure 48: Mercury LoadRunner

Figure 49: Web Service Host

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 55

Figure 50: JSP App Server1

Figure 51: JSP App Server2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 56

Figure 52: JSP App Server 3

Figure 53: JSP App Server 4

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 57

Figure 54: DB2

Web Services Benchmark: Direct (JDBC) Mode

Figure 55: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 58

Figure 56: Web Service Host

Figure 57: JSP App Server1

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 59

Figure 58: JSP App Server2

Figure 59: JSP App Server 3

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 60

Figure 60: JSP App Server 4

Figure 61: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 61

Messaging Benchmark Persistent Queue TwoPhase– EJB Mode

Figure 62: Mercury LoadRunner

Figure 63: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 62

Figure 64: DB2

Messaging Benchmark Persistent Queue TwoPhase– Direct/JDBC Mode

Figure 65: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 63

Figure 66: Application Server

Figure 67: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 64

Messaging Benchmark NonPersistent Queue OnePhase – EJB Mode

Figure 68: Mercury LoadRunner

Figure 69: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 65

Figure 70: DB2

Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode

Figure 71: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 66

Figure 72: Application Server

Figure 73: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 67

Monolithic Application: Synchronous Orders and Standard (non-remoted) Business

Tier/Web Tier Access

EJB Mode

Figure 74: Mercury LoadRunner

Figure 75: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 68

Figure 76: DB2

Direct Mode

Figure 77: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 69

Figure 78: Application Server

Figure 79: DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 70

.NET 2.0/3.0

Web Services ASMX

Figure 80: Mercury Load Runner

Figure 81: Application Server – Web Service Host

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 71

Figure 82: ASP.NET Server 1

Figure 83: ASP.NET Server 2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 72

Figure 84: ASP.NET Server 3

Figure 85: ASP.NET Server 4

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 73

Figure 86: SQL Server 2005

WCF Web Service – IIS Hosted (basicHttpBinding)

Figure 87: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 74

Figure 88: Application Server – Web Service Host

Figure 89: ASP.NET Server 1

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 75

Figure 90: ASP.NET Server 2

Figure 91: ASP.NET Server 3

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 76

Figure 92: ASP.NET Server 4

Figure 93: SQL Server 2005

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 77

WCF Web Service HTTP – Self Hosted (basicHttpBinding)

Figure 94: Mercury LoadRunner

Figure 95: Application Server- Web Service Host

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 78

Figure 96: ASP.NET Server 1

Figure 97: ASP.NET Server 2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 79

Figure 98: ASP.NET Server 3

Figure 99: ASP.NET Server 4

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 80

Figure 100: SQL Server 2005

WCF Web Service TCP/Binary – Self Hosted (netTcp Binding)

Figure 101: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 81

Figure 102: Application Server – Web Service Host

Figure 103: ASP.NET Server 1

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 82

Figure 104: ASP.NET Server 2

Figure 105: ASP.NET Server 3

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 83

Figure 106: ASP.NET Server 4

Figure 107: SQL Server 2005

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 84

Messaging Benchmark Persistent Queue- TwoPhase (WCF over transacted/durable MSMQ)

Figure 108: Mercury LoadRunner

Figure 109: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 85

Figure 110: SQL Server 2005

Messaging Benchmark Non-Persistent Queue- OnePhase (WCF over non-transacted/in-

memory MSMQ)

Figure 111: Mercury LoadRunner

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 86

Figure 112: Application Server

Figure 113: SQL Server 2005

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 87

Monolithic Application: InProcess/Synchronous Orders

Figure 114: Mercury LoadRunner

Figure 115: Application Server

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 88

Figure 116: SQL Server 2005

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 89

Appendix C: Tuning Parameters

Linux OS Tuning
 net.ipv4.tcp_max_syn_backlog=1024

 kernel.msgmni=1024

 kernel.sem=1000 32000 32 512

 fs.file-max=65535

 kernel.shmmax =4294967295

 net.core.netdev_max_backlog = 20000

 net.core.somaxconn = 20000

 net.ipv4.tcp_fin_timeout = 30

 net.ipv4.tcp_syn_retries = 20

 net.ipv4.tcp_synack_retries = 20

 net.ipv4.tcp_sack = 0

 net.ipv4.tcp_timestamps = 0

 net.ipv4.conf.all.arp_ignore = 3

 net.ipv4.conf.all.arp_announce = 2

 Open File Handle limit (soft) increased to 20000

Windows OS Tuning
 No tuning was required on the core Windows Server OS for either application server platform.

WebSphere Tuning
 Servlet Caching turned on in Web Container

 Session State set to 5 minute expiration (in-process session state)

 Access Log Turned Off

 Performance Monitor Infrastructure Turned Off

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 90

 App Profile Service Off

 Diagnostic Trace Turned Off

 System Out Off

 Trade 6.1 Configured not to write System.Out messages

 EJB Cache Size = 20000

 HTTP Channel maximum persistent requests = -1

 Minimum Web Container threads = 100

 Maximum Web Container threads = 100

 Minimum ORB threads = 80

 Maximum ORB threads = 80

 Minimum Default threads = 20

 Maximum Default threads = 20

 Minimum Message Listener Service Threads = 80

 Maximum Message Listener Service Threads = 80

 Minimum SIBInBound Thread = 80

 Maximum SIBInbound Thread = 80

 Minimum SIBFAPThread = 60

 Maximum SIBFAPThread = 60

 Custom JavaEnvironment Variable: com.ibm.websphere.ejbcontainer.poolsize value = “*=75,750”

 SIB Bus Security = Disabled

 Discard Messages = on

 Hi Message Threshold = 50000

 Quality of Service/Persistent = Assured Reliable

 Quality of Service/Non Persistent = Express/Non Persistent

 ReadAhead for Queue enabled

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 91

 MaxConcurrency/Max Endpoints for Queue = 20

 MaxBatchSize for JMS/Messaging = 5

 Minimum JDBC Connections in Pool = 90

 Maximum JDBC Connections in Pool = 90

Minimum Queue Connection Factory Connections in Pool = 90

Maximum Queue Connection Factory Connections in Pool = 90

 EJB Pass By Reference On; configured to use ORB Thread pool as recommended by IBM

 Java Heap Size: Windows = 1540 MB (maximum for 32-bit on Windows)

 Java Heap Size: Linux = 2000 MB (maximum for 32-bit on Linux)

 All runs: Trade 6.1 configured with “Enable Long Run Support” off to ensure it properly displays orders on

the Account Page. With our large database load, we never noticed any perf degradation over a 30 minute

measurement interval.

IBM HTTP Server Windows Tuning
 Access Log Off

 Max KeepAlive Requests 3000

 2048 Max threads

 2048 Threads/child

IBM HTTP Server Linux Tuning
 Access Log Off

 Max KeepAlive Requests 3000

 ThreadLimit 50

 ServerLimit 64

 StartServers 50

 MaxClients 3200

 MinSpareThreads 100

 MaxSpareThreads 100

 Threads/Child 50

 MaxRequests/Child 0

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 92

.NET 2.0/3.0 Tuning

.NET Worker Process

 Rapid Fail Protection off

 Pinging off

 Recycle Worker Process off

ASP.NET

 Authentication set to “None” to match anonymous access of IBM WebSphere Trade 6.1

 Forms Authentication Timeout=5 minutes

IIS 6.0 Virtual Directory

 Authentication Basic Only

 Access Logging Off

 Windows Communication Foundation/ASMX Web Services

 ServicePointManager.DefaultConnectionLimit = 64

 (note, this is a key setting for Web Service clients running under load. Without this

setting, Web Service clients (our four ASP.NET App Servers) will be throttled to 2

network connections per outbound IP Address. This is set programmatically, although it

 WCF basicHttp, nNetTcp and Msmq bindings: Security = “None” (no transport security for

Web services or the Service Integration Bus is configured for Trade 6.1 as well, see

tuning for WebSphere)

Service Behavior for Business Services and Order Processor Service:

 <behavior name="TradeServiceBehaviors">

<serviceDebug httpHelpPageEnabled="true" includeExceptionDetailInFaults="true"/>

<serviceMetadata httpGetEnabled="true" httpGetUrl=""/>

<serviceThrottling maxConcurrentInstances="400" maxConcurrentCalls="400"/>

</behavior>

 Order Processor Service: maxBatchSize = 5 (set programmatically in the Host)

 .NET StockTrader

 Max DB Connections = 90

 Min DB Connections = 90

 MSMQ

 Connection Caching turned on

 MSTDC

 Transaction Timeout = 15 seconds

 Network DTC Access Turned on (inbound and outbound allowed)

 DB2

Windows Communication Foundation and WebSphere 6.1 Service-Oriented Performance Benchmark Page 93

 Logging files expanded to 15 GB

 Logging Set to One Drive Array (array a)

 Database file on Second Drive Array (array b)

 Max Application Connections = 150

 SQL/Server

 Logging files expanded to 15 GB

 Logging Set to One Drive Array (array a)

 Database file on Second Drive Array (array b)

 Surface Area Configuration Allow Remote Connections (Named Pipes and TCP/IP)

	Introduction
	.NET StockTrader Sample Application and Performance Kit
	Multiple Clients with Open Integration to Middle Tier via WCF
	Full Disclosure Notice

	Tests Performed and Testing Details
	Fair Benchmark Comparisons Between .NET StockTrader and IBM WebSphere Trade 6.1
	Database Access Technology/Programming Model:
	Interface from Web Application to Backend Business Services:
	Order Processing Mode
	Caching
	Enable Long Run Support
	Database Load
	Database Configuration
	Test Scripts
	Simulated User Settings
	Changes to the IBM Downloadable Version of Trade 6.1 as Used for Testing
	Security Settings
	IBM HTTP Server vs. Port 9080
	Web Application Pages Exercised by the Test Scripts
	32-Bit versus 64-Bit Testing
	Middle Tier
	Database

	Benchmark Results
	Web Service Benchmark
	/
	/
	The Web Services Benchmark Discussion
	Messaging Benchmark - Durable Queue with Two Phase/Distributed Transactions
	Messaging Benchmark Discussion – Durable/Persistent Message Queue
	Messaging Benchmark – Non-Durable Queue with One Phase Transactions
	/
	Messaging Benchmark Discussion – Non-Durable/Non-Persistent Message Queue
	Data-Driven Monolithic Web Application Benchmark
	Data-Driven Monolithic Web Application Benchmark Discussion

	Application Architecture Diagrams
	Conclusion
	Appendix A: Pricing
	Pricing for the Web Service Tests
	Pricing for the Monolithic Application and Messaging Tests
	WebSphere Pricing Windows
	WebSphere Pricing Linux
	.NET Pricing (Windows Server 2003)

	Appendix B: Performance Monitor Captures
	WebSphere 6.1 Windows
	Web Services Benchmark: EJB Mode
	Web Services Benchmark: Direct (JDBC) Mode
	Messaging Benchmark Persistent Queue TwoPhase– EJB Mode
	Messaging Benchmark Persistent Queue TwoPhase– Direct/JDBC Mode
	Messaging Benchmark NonPersistent Queue OnePhase – EJB Mode
	Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode

	Monolithic Application: Synchronous Orders and Standard (non-remoted) Business Tier/Web Tier Access
	EJB Mode
	Direct Mode

	WebSphere 6.1 Linux
	Web Services Benchmark: EJB Mode
	Web Services Benchmark: Direct (JDBC) Mode
	Messaging Benchmark Persistent Queue TwoPhase– EJB Mode
	Messaging Benchmark Persistent Queue TwoPhase– Direct/JDBC Mode
	Messaging Benchmark NonPersistent Queue OnePhase – EJB Mode
	Messaging Benchmark NonPersistent Queue OnePhase Direct/JDBC Mode

	Monolithic Application: Synchronous Orders and Standard (non-remoted) Business Tier/Web Tier Access
	EJB Mode
	Direct Mode

	.NET 2.0/3.0
	Web Services ASMX
	WCF Web Service – IIS Hosted (basicHttpBinding)
	WCF Web Service HTTP – Self Hosted (basicHttpBinding)
	WCF Web Service TCP/Binary – Self Hosted (netTcp Binding)
	Messaging Benchmark Persistent Queue- TwoPhase (WCF over transacted/durable MSMQ)
	Messaging Benchmark Non-Persistent Queue- OnePhase (WCF over non-transacted/in-memory MSMQ)

	Monolithic Application: InProcess/Synchronous Orders

	Appendix C: Tuning Parameters
	Linux OS Tuning
	Windows OS Tuning
	WebSphere Tuning
	IBM HTTP Server Windows Tuning
	IBM HTTP Server Linux Tuning

	.NET 2.0/3.0 Tuning

