
BizTalk Server 2002BizTalk Server 2002

Copyright© 2017 Microsoft Corporation

The content in this document is retired and is no longer updated or supported. Some links might not work. Retired content represents the
latest updated version of this content.

 BizTalk Server 2002

Microsoft BizTalk Server 2002 is one of the Microsoft .NET Enterprise Servers that helps you orchestrate you
r business from internal applications to cross-company business processes. BizTalk Server 2002 provides a d
evelopment and execution environment that integrates loosely coupled, long-running business processes fr
om the enterprise to the Internet.

BizTalk Server 2002 features include the ability to:

Design and execute state-full business processes in the form of XLANG schedules
Integrate existing applications
Define document specifications and specification transformations
Monitor and log run-time activity

Check out the BizTalk Server Developer Center

The BizTalk Server Developer Center provides developers information and insights for using BizTalk Server to automate, integrate,
and facilitate business information processing.

In This Library Section Essentials
Toolkit for Microsoft .NET
Product Documentation
Technical Articles
Specifications
Online Books
Downloads

BizTalk Server 2002 Service Pack 1 (SP1)
Office XP Resource Kit for BizTalk Server
BizTalk Server 2002 Security Release: MS03-016
White Papers
Training and Events
Support
Newsgroups
Community

http://msdn.microsoft.com/biztalk/default.aspx
https://msdn.microsoft.com/en-us/library/ms941728(v=msdn.10).aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/bts_2002/htm/lat_bts_intro_gs_bgfe.asp
https://msdn.microsoft.com/en-us/library/ms942887(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/aa479359(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/ms934465(v=msdn.10).aspx
http://msdn.microsoft.com/library/default.asp?url=/downloads/list/biztalk.asp
http://www.microsoft.com/downloads/details.aspx?FamilyID=24b736ba-611e-41e5-9551-45eb5450296b&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c4c7cb91-7095-4935-b615-4cfb739704e7&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=a05344fe-2622-4887-aa45-3de7c4ed3c75&DisplayLang=en
http://www.microsoft.com/biztalk/techinfo/whitepapers/2002/default.asp
http://www.microsoft.com/biztalk/techinfo/training/previous.asp
http://support.microsoft.com/ph/1443
http://www.microsoft.com/biztalk/Community/newsgroups/default.mspx
http://www.microsoft.com/biztalk/Community/default.mspx

BizTalk Server 2002 Toolkit for Microsoft .NET - Getting
Started with BizTalk Server Toolkit for Microsoft .NET

Getting Started with BizTalk Server Toolkit for Microsoft .NET
The Microsoft® BizTalk™ Server Toolkit for Microsoft .NET provides the framework to integrate BizTalk Server 2002 with the .NET
Framework architecture and with Microsoft Visual Studio® .NET. It explains how BizTalk Server can access available XML Web
services, how BizTalk Server functionality can be used to construct XML Web services, and how Visual Studio .NET can be used to
access and extend BizTalk Server.

This section includes the following topics:

Introducing BizTalk Server and Visual Studio .NET

How to Use Help

Accessibility for People with Disabilities

Hardware and Software Requirements

Microsoft BizTalk Server Toolkit for Microsoft .NET

Introducing BizTalk Server and Visual Studio .NET
Microsoft BizTalk Server 2002 is one of the Microsoft .NET Enterprise Servers. BizTalk Server provides two core functions:

Message-level integration, from the enterprise (enterprise application integration, or EAI) to the Internet (business-to-
business, or B2B), through BizTalk Messaging Services.

Business process automation using BizTalk Orchestration Services, which provide the ability to implement long-running,
loosely coupled business processes.

BizTalk Server is built on, and integrates closely with, the Component Object Model (COM). You can extend BizTalk Messaging
Services by using COM to create application integration components (AICs), preprocessors, and custom parsers and serializers.
Similarly, the implementation of actions in a BizTalk orchestration is typically based on COM components. The COM extensions
for both BizTalk Messaging and BizTalk Orchestration are currently built using a COM-compliant language, such as Microsoft
Visual Basic® or Microsoft Visual C++®. Now, with the release of the Microsoft BizTalk Server Toolkit for Microsoft .NET, you can
create all of these BizTalk components from within the .NET Framework.

The Microsoft .NET Framework is a new platform for building integrated, service-oriented applications to meet the needs of
today's Internet businesses. These applications gather information from, and interact with, a wide variety of sources, regardless of
the platforms or languages in use. The larger Microsoft .NET initiative envisions software services on the Web. The key principle of
the .NET initiative is that a new kind of application, called an "XML Web service," will become the engine for business over the
Internet. Parts of this vision are shared with other key players in the industry.

Leveraging the .NET Framework, Microsoft Visual Studio .NET is a complete set of development tools for building:

ASP.NET Web applications

XML Web services

Desktop applications

Mobile applications

This section contains the following topics:

BizTalk Server Toolkit for Microsoft .NET Overview

XML Web Services

Microsoft BizTalk Server Toolkit for Microsoft .NET

BizTalk Server Toolkit for Microsoft .NET Overview
The Microsoft BizTalk Server Toolkit for Microsoft .NET provides the ability to leverage the power of XML Web services and Visual
Studio .NET to build dynamic, transaction-based, fault-tolerant systems with full access to existing applications.

The following topics are included in the BizTalk Server Toolkit for Microsoft .NET documentation:

Understanding BizTalk Server and Visual Studio .NET
This section provides general background information for working with BizTalk Server 2002 and Visual Studio .NET.

Using BizTalk Server with Visual Studio .NET
This section provides information about specific tasks when working with BizTalk Server 2002 and Visual Studio .NET.

BizTalk Server Toolkit for Microsoft .NET Samples
This section provides documentation and instructions for running the samples included in the BizTalk Server Toolkit for Microsoft
.NET.

BizTalk Server Toolkit for Microsoft .NET Reference
This section documents the BizTalk Server .NET runtime callable wrappers (RCWs) and BizTalk interfaces that can be implemented
using the BizTalk Server Toolkit for Microsoft .NET.

Microsoft BizTalk Server Toolkit for Microsoft .NET

XML Web Services
An XML Web service is programmable application logic that is accessible by using standard Internet protocols. XML Web services
combine the best aspects of component-based development and the World Wide Web. Like components, XML Web services
represent black-box functionality that can be reused without regard to how the service is implemented. Unlike previous
component technologies, XML Web services are not accessed through object model-specific protocols, such as the Distributed
Component Object Model (DCOM), remote method invocation, or Internet Inter-ORB Protocol (IIOP).

Instead, XML Web services are accessed through ubiquitous Web protocols and data formats, such as Hypertext Transfer Protocol
(HTTP), Extensible Markup Language (XML), and SOAP. Furthermore, an XML Web service interface is defined strictly in terms of
the messages the XML Web service accepts and generates. Consumers of an XML Web service can be implemented on any
platform in any programming language, provided they can create and consume the messages defined for the XML Web service
interface.

Building or consuming XML Web services involves specifications and technologies that address five requirements for service-
based development:

A standard way to represent data

A common, extensible message format

A common, extensible service-description language

A way to discover services located on a particular Web site

A way to discover service providers

The following paragraphs describe how these requirements are met.

Representing data with XML
XML is the obvious choice for a standard way to represent data related to XML Web services (that is, as the format of the data
transmitted to and from the XML Web service). As such, the various XML Web service-related specifications all use XML for data
representation.

Using SOAP as a messaging protocol
XML Web services require a messaging protocol that can invoke the XML Web services and exchange data with them. SOAP is a
lightweight, XML-based protocol for exchanging information in a decentralized, distributed environment. SOAP is a network
protocol, with no underlying explicit programming model. Because SOAP does not mandate the technology used to implement
the client or server applications, it requires no application programming interface (API) or object model. As such, SOAP provides
an open methodology—XML Web services—for application-to-application communication.

Using WSDL as a contract language
An XML Web service honors a contract with its clients regarding the messages it accepts and generates. To support this, Microsoft
and IBM jointly developed an XML-based contract language, called Web Services Description Language (WSDL), as a standard
mechanism for creating and interpreting Web service contracts. WSDL is used to create a file that identifies the services and the
set of operations within each service that the server supports. The WSDL file also describes the format that the client must follow
in requesting an operation. WSDL is analogous to the Interface Definition Language (IDL) for COM components.

The operations in the WSDL file are defined by the style attribute of the <soap:binding> element in the file, and can be one of the
following:

Document-oriented operations. If an operation in the WSDL file is document-oriented, the input (request) and output
(response) messages specified for that operation contain XML documents.

RPC-oriented operations. RPC-oriented operations have input messages that contain the operation's input parameters
and output messages that contain the operation's results.

Discovering services and service providers
XML Web service clients need to be able to discover where XML Web services are located. The Discovery Protocol (Disco)

specification defines a discovery document format based on XML, and a protocol for retrieving the discovery document, enabling
developers to discover services at a known URL. However, in many cases the developer will not know the URLs where services
can be found. Universal Description, Discovery, and Integration (UDDI) specifies an advertising mechanism for Web service
providers, and a location device for Web service consumers.

Microsoft BizTalk Server Toolkit for Microsoft .NET

How to Use Help
The BizTalk Server Toolkit for Microsoft .NET Help system uses Hypertext Markup Language (HTML) to format and display
information. The Help Viewer provides an integrated table of contents and a full-text search feature so that you can find
information easily. Book icons open to reveal sub-books and topics. To expand the table of contents and view topics within a
book, click the expand indicator (+) next to a book icon. When you click the collapse indicator (-), the topics are hidden. The Help
Viewer has the added benefit of enabling you to see the table of contents or search results at the same time you are viewing a
Help topic.

The Help Viewer also includes the Favorites tab, which you can use to bookmark topics. This enables you to quickly display topics
that you refer to often.

To learn more about the BizTalk Server Toolkit for Microsoft .NET, you can use the table of contents to browse through the
documentation. When you click a topic in the table of contents, information is displayed in the content pane of the Help window.

The table of contents is organized in books according to the major features and functions that the BizTalk Server Toolkit for
Microsoft .NET provides. For procedural and task-based information, start with the chapters that begin with the word "Using." For
more general information about the BizTalk Server Toolkit for Microsoft .NET, its features, and other information, start with the
chapters that begin with the word "Understanding."

The following topics are covered in this section:

Finding a Help Topic

Bookmarking a Help Topic

Copying a Help Topic

Printing a Help Topic

Changing the Font Size

Help Viewer Shortcut Keys

Microsoft BizTalk Server Toolkit for Microsoft .NET

Finding a Help Topic
In the Help Viewer, the following browse and search options are available:

Contents tab

1. To browse through the table of contents, click the Contents tab.

2. Double-click the book icons to reveal topic entries and sub-books.

3. Click a table-of-contents entry to display the corresponding topic.

Index tab

1. To see a list of index entries, click the Index tab and either type a word or scroll through the list.

Topics are often indexed under more than one entry.

2. Double-click an index entry to display the corresponding topic.

Search tab

1. To locate every occurrence of a word or phrase, click the Search tab, type the word or phrase for which you want to search,
and then click List Topics.

To improve the search results, combine multiple words or phrases with AND, OR, NEAR, or NOT.

2. Double-click a search results entry to display the corresponding topic.

Favorites tab

1. To bookmark a topic, use the Contents or Search tab to locate and then display the topic.

2. Click the Favorites tab and click Add to save the topic title to the Topics list.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Bookmarking a Help Topic
You can create a list of favorite and frequently visited Help topics by adding a bookmark to them. Later, as you become more
familiar with the information, you might want to remove the bookmark.

The following topics are covered in this section:

Bookmark a Help topic

Remove a topic from your list of Favorites

Microsoft BizTalk Server Toolkit for Microsoft .NET

Bookmark a Help topic
Click the Favorites tab and then double-click a bookmark in the Topics list.

The Help Viewer adds the topic title to the Topics list. Later, you can return to this list and double-click the bookmark to quickly
display the topic.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Remove a topic from your list of Favorites
In the Topics list, click the bookmark and click Remove.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Copying a Help Topic
1. In the topic pane of the Help Viewer, right-click inside the topic you want to copy and click Select All.

2. Inside the topic, right-click and click Copy.

This copies the topic to the Clipboard.

3. Open the document to which you want to copy the topic.

4. Click the place in your document where you want the information to appear.

5. On the Edit menu, click Paste.

Notes

If you want to copy only part of a topic, select the part you want to copy, right-click the selection, and then click Copy.

Step numbers are not copied to the Clipboard.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Printing a Help Topic
The following topics are covered in this section:

Print a single topic or all topics within a book

Microsoft BizTalk Server Toolkit for Microsoft .NET

Print a single topic or all topics within a book
1. On the Contents tab, select a topic.

2. On the toolbar, click Print.

The Print Topics dialog box appears.

3. Click Print the selected topic to print a single topic and click OK.

-Or-

Click Print the selected heading and all subtopics and click OK.

The Print dialog box appears.

4. Click Print.

 Important

It is recommended that you select Landscape for the page orientation; however, printing code samples, large illustrations,
and significant text might result in only part of the content or illustration printing.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Changing the Font Size
You can increase the font size of text for easier viewing, or you can decrease the font size to see a representation of the layout of a
page.

On the toolbar, click the Font button to increase or decrease the text size.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Help Viewer Shortcut Keys
You can use shortcut keys to accomplish tasks in the BizTalk Server Accelerator for RosettaNet Help Viewer. The following tables
are quick references to the shortcut keys available in Help Viewer.

 Note

Functionality that is not included in these tables can be obtained by using the numeric keypad to move the mouse pointer
with MouseKeys. For more information about MouseKeys, in Windows 2000 Server Help, see "Using the keyboard to move
the mouse pointer." In Windows 2000 Professional Help, see "To move the mouse pointer by using MouseKeys."

Help Viewer Shortcut Keys

Press To
ALT+SPACEBAR Display the system menu.
SHIFT+F10 Display the Help Viewer shortcut menu.

 Note

Use this shortcut when the focus is in the topic pane.

ALT+TAB Switch between the Help Viewer and other open windows.
ALT+O Display the Options menu.
ALT+O, and then press T Hide or show the navigation pane.
CTRL+TAB Switch to the next tab in the navigation pane.
CTRL+SHIFT+TAB Switch to the previous tab in the navigation pane.
UP ARROW Move up one topic in the table of contents or search results list.
DOWN ARROW Move down one topic in the table of contents or search

results list.
PAGE UP Move up one page in the table of contents or search results list.
PAGE DOWN Move down one page in the table of contents or search

results list.
F6 Switch focus between the navigation pane and the topic pane.
ALT+O, and then press R Refresh the topic that appears in the topic pane.
UP ARROW or DOWN ARROW Scroll through a topic.
CTRL+HOME Move to the beginning of a topic.
CTRL+END Move to the end of a topic.
CTRL+A Highlight all text in the topic pane.
ALT+O, and then press P Print a topic.
ALT+O, and then press B Move back to the previously viewed topic.
ALT+O, and then press F Move forward to the next (previously viewed) topic.
TAB Move between related topics.

 Note

Use this shortcut when the focus is in the topic pane.

ALT+F4 Close the Help Viewer.

Contents Tab Shortcut Keys

Press To
ALT+C Display the Contents tab.
RIGHT ARROW Open a book.
LEFT ARROW Close a book.
BACKSPACE Return to the previous open book.
UP ARROW or DOWN ARROW Select a topic.
ENTER Display the selected topic.

Search Tab Shortcut Keys

Press To
ALT+S Display the Search tab.
ALT+L Start a search.
ALT+D or ENTER Display the selected topic.

Favorites Tab Shortcut Keys

Press To
ALT+I Display the Favorites tab.
ALT+A Add a topic to the Topics list.
ALT+P Select a topic in the Topics list.

 Note

Use this shortcut when the focus is in the topic pane and you want to move to the Topics list.

ALT+R Remove a topic from the Topics list.
ALT+D Display a topic from the Topics list.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Accessibility for People with Disabilities
Microsoft is committed to making its products easier for everyone to use. For information about accessibility options, in Windows
2000 Server Help, in the Getting Started with Windows 2000 book, see "Accessibility for People with Disabilities." In Windows
2000 Professional Help, see "Accessibility for Special Needs."

Microsoft BizTalk Server Toolkit for Microsoft .NET

Hardware and Software Requirements
This section includes information about the minimum hardware requirements to install the Microsoft BizTalk Server Toolkit for
Microsoft .NET. It also includes a list of the prerequisite software.

The following topics are covered in this section:

Minimum Hardware Requirements

Software Requirements

Microsoft BizTalk Server Toolkit for Microsoft .NET

Minimum Hardware Requirements
The minimum hardware requirements for an installation of the Microsoft BizTalk Server Toolkit for Microsoft .NET include:

400 megahertz (MHz) or higher Intel® Pentium®-compatible CPU

256 megabytes (MB) of RAM

6-gigabyte (GB) hard disk

CD-ROM drive

Network adapter card

VGA or Super VGA monitor

Microsoft Mouse or compatible pointing device

Microsoft BizTalk Server Toolkit for Microsoft .NET

Software Requirements
To install the Microsoft BizTalk Server Toolkit for Microsoft .NET, you will need the following software installed on your computer:

BizTalk Server 2002 and its required software

Microsoft Windows® 2000 Service Pack 2 or Microsoft Windows XP Professional

Microsoft .NET Framework

Microsoft Visual Studio .NET to work with the included sample files and to create your own components using BizTalk
Server 2002 with the .NET Framework

For information about installing BizTalk Server 2002 and its required software, see the BizTalk Server 2002 Help.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Understanding BizTalk Server and Visual Studio .NET
Integrating Microsoft® BizTalk™ Server with the Microsoft .NET Framework (in particular, with XML Web services and Microsoft
Visual Studio® .NET) provides considerable benefit for the application developer. BizTalk Server provides significant support for
the development of applications that are widely distributed in space (EAI and B2B) and time (long-running business processes).
Visual Studio .NET is a much richer IDE than any previous developer tool, with many more services and facilities available to the
application developer. The Microsoft BizTalk Server Toolkit for Microsoft .NET enables you to develop both custom components
and XML Web services from within the .NET Framework.

Custom components
Visual Studio .NET provides an integrated development environment (IDE) that is shared by Microsoft Visual Basic® .NET,
Microsoft Visual C++® .NET, and Microsoft Visual C#™ .NET. Visual Studio .NET provides access to key technologies that enable
the development of BizTalk custom components from within the .NET Framework.

By using the Microsoft BizTalk Server Toolkit for Microsoft .NET, you can create all of the BizTalk Server components in Visual
Studio .NET, including:

Lightweight AICs

Pipeline AICs and encoding components

Custom preprocessors

XML Web services
When working with BizTalk Server 2002 and Visual Studio .NET, you can call XML Web services from BizTalk Server, as shown in
the following illustration.

Or you can make BizTalk Server available as an XML Web service, as shown in the following illustration.

XML Web services are a key enabling technology for the Microsoft vision of providing great software, any time, any place, and on
any device. XML Web services enable a code reuse pattern by which services are made available to an application without being
physically collocated. However, this disconnected scenario offers some significant challenges:

Interaction among XML Web services. XML Web services provide simplified access to both local and remote business
logic. However, an application that is composed of many XML Web services introduces a management challenge: How are
the interactions between and across the aggregated XML Web services managed in an agile manner so that new XML Web
services can be readily added to an application?

Transaction management and exception handling. Aggregated XML Web services provide access to remote business
logic, but how can transactions be managed across XML Web services? Also, how can exception processing be provided that
requires different XML Web services to be called?

Concurrency. Applications should be able to call XML Web services that have no interdependencies—such as an XML Web
service that checks inventory and one that checks a customer's credit—in a parallel manner. How can this be achieved
without complex threading issues?

Interaction with non-XML applications. Application development today involves equal interaction with XML Web
services and with applications that are not XML Web service-enabled. How can interactions be managed across both types

of systems in a homogeneous manner?

This section provides detailed conceptual information that is important to understanding how to work with the BizTalk Server
Toolkit for Microsoft .NET. The following topics are covered in this section:

BizTalk Messaging Services and Visual Studio .NET

BizTalk Orchestration Services and Visual Studio .NET

Microsoft BizTalk Server Toolkit for Microsoft .NET

BizTalk Messaging Services and Visual Studio .NET
This section contains the following topics:

Messaging Components and Visual Studio .NET

Legacy Protocols and Web Service Requests

Microsoft BizTalk Server Toolkit for Microsoft .NET

Messaging Components and Visual Studio .NET
The most obvious way to extend BizTalk Server 2002 with .NET is to develop extensions to BizTalk Server by using Visual Studio
.NET. BizTalk Server provides an application integration framework that is simple, but extensible and flexible. For the most part,
this framework takes the form of application integration components (AICs). BizTalk Server supports AICs supporting the
IBTSAppIntegration interface as well as pipeline component AICs. In addition, you can use the IBTSCustomProcess interface to
create custom preprocessors.

AICs supporting the IBTSAppIntegration interface
AIC components that support the IBTSAppIntegration interface provide a lightweight model for application integration, one that
does not support design-time user interface or configuration properties. This model requires a single interface that contains a
single method as an entry point. By using COM interop and the BizTalk Server Toolkit for Microsoft .NET, you can create
application integration components within the .NET Framework.

Pipeline AICs and encoding components
Pipeline AICs and encoding components support the same interfaces as Microsoft Commerce Server 2000 pipeline components.
They were originally derived from the Microsoft Site Server 3.0 Commerce Edition Order Processing pipeline (OPP) and
Commerce Interchange pipeline (CIP) components. BizTalk Server itself was derived from the CIP and the Commerce Interchange
Pipeline Manager (a free add-on to Site Server 3.0 Commerce Edition, available from Microsoft). Because BizTalk Server supports
these Commerce Server 2000 pipeline components, integration components written for the CIP and OPP are compatible. In fact,
BizTalk Server and Commerce Server 2000 share the same Microsoft Commerce Pipeline Components Type Library
(Pipecomplib.tlb). By using COM interop and the BizTalk Server Toolkit for Microsoft .NET, you can create pipeline AICs and
encoding components within the .NET Framework.

Pipeline components must support the IPipelineComponentAdmin interface, as well as the more complex
IPipelineComponent interface. In return, these components provide a user interface where configuration properties can be
specified and have access to additional information during run time.

Custom preprocessors
If you have documents that need to be processed before they are submitted to BizTalk Server, you can create a custom
preprocessor and configure the receive function to call the preprocessor. For example, if you send compressed data and need to
decompress it before submitting it to BizTalk Server for processing, configure the receive function to call the custom preprocessor
to decompress the data. By using COM interop and the BizTalk Server Toolkit for Microsoft .NET, you can create custom
preprocessors within the .NET Framework.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Legacy Protocols and Web Service Requests
Imagine a legacy application that uses a custom protocol to invoke a service. For example, many banks provide credit card
authentication and transaction processing using a protocol known as ISO 8583. This protocol consists of delimited requests and
responses between a client and the bank server, transmitted over a network pipe.

The client sends the sequence to request a credit card purchase, for example:

"P" ~ Merchant ID ~ Sequence Number ~ ~ Amount ~ Card No ~ Expiry Date

Other messages are also provided by the protocol to authorize a transaction or request a refund.

The bank then uses Visual Studio .NET to build a service to provide credit card processing capabilities to merchants. The service is
delivered as an XML Web service, so it is easily accessible by e-commerce Web applications, and uses SOAP as the message
protocol (which Visual Studio .NET supports natively). However, because the bank still needs to support older applications that
use the ISO 8583 protocol, the service must also be able to receive requests and send responses in this format.

The functionality to process the older ISO 8583 format could be provided by writing custom parser code that processes the ISO
8583 message and then calls the XML Web service. However, writing such string-parsing code is tedious. Instead, you can use
BizTalk Messaging Services to receive and parse the ISO 8583 message, convert it to XML, and then pass the message on to an
application integration component (AIC), which calls the XML Web service.

The AIC can be built using Visual Studio .NET, and can call the XML Web service by adding a Web reference to the XML Web
service when building the AIC. For more information, see Building an AIC with Visual Studio .NET and
Creating and Using an XML Web Service Client.

Microsoft BizTalk Server Toolkit for Microsoft .NET

BizTalk Orchestration Services and Visual Studio .NET
This section contains the following topics:

Asynchronous XML Web Services and BizTalk Orchestration

Synchronous XML Web Services and BizTalk Orchestration

Microsoft BizTalk Server Toolkit for Microsoft .NET

Asynchronous XML Web Services and BizTalk Orchestration
XML Web services are a key technology for delivering highly distributed applications. However, building applications in a
distributed, loosely coupled environment introduces some challenges.

Most applications today that consume XML Web services invoke such services in the same way that they would invoke a COM
component on another server using DCOM. The calls are synchronous, and the calling application cannot handle situations where
the XML Web service is unavailable or the response from the XML Web service falls outside acceptable limits. In essence, the
SOAP-over-HTTP call has replaced the remote procedure call (RPC) over the network.

This poses some problems for the application architect. When building an application that is distributed across an enterprise, the
architect typically has control over the responsiveness and availability of the distributed services used to build the application.
However, in the case of XML Web services, which provide services that are distributed across enterprise boundaries, the architect
typically has no control over the responsiveness or availability of the services.

Sync on async
Possible solutions to these concerns can be achieved by decoupling the XML Web service invocation from the invocation of the
service proxy by the application. That is, the application can asynchronously issue a request for service (from a proxy), and
application services ensure that the request is eventually submitted to the XML Web service for processing. Of course, the system
must also be able to eventually return a response to the calling application (again, asynchronously). This mechanism is sometimes
called "sync on async."

BizTalk Orchestration, a key part of Microsoft BizTalk Server 2002, applies directly to this problem. BizTalk Orchestration was built
to solve the problems associated with managing long-running, loosely coupled business processes that are distributed across
organizational boundaries. BizTalk Orchestration provides services, such as transactions (both DTC transactions, and timed and
long-running transactions), exception handling, and transaction compensation, to allow the application designer to design robust
business processes that are capable of recovering from failure. These are the facilities required to build robust XML Web services.

For an overview of designing an XML Web service that can asynchronously issue a request for service, see
Asynchronous XML Web Service and XLANG Schedule Correlation.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Asynchronous XML Web Service and XLANG Schedule
Correlation
As an example of an asynchronous XML Web service and XLANG schedule correlation, take the case of an Immigration
Department that has a legacy mainframe application that processes applications for visas. This application is usually run by
Immigration Department staff, who use a terminal to manually key in application details. The department decides to provide
access to this application to immigration consultants, so they can enter applications on behalf of their clients. Because the
immigration consultants have their own applications, the Immigration Department provides an XML Web service interface to the
legacy application.

The mainframe application is periodically unavailable. Also, because all applications are run in a batch every hour, the application
is not capable of providing a synchronous response to the request. To resolve these issues, BizTalk Orchestration uses a schedule
to process the XML Web service, as shown in the following illustration.

To implement this application:

1. The XML Web service receives a visa application request (formatted as a SOAP message).

2. This initiates the schedule that processes the XML Web service. The schedule submits the visa application to the legacy
mainframe application (using BizTalk Messaging Services), where it will be batched until a later time. A unique ID or
correlation number is also attached to this submission.

3. The schedule returns the correlation number to the client application as the response from the XML Web service.

4. Eventually, the mainframe application processes the visa application and generates a response. This response is sent back to
the XML Web service, together with the correlation number for that specific response. The correlation number ensures that
the response is linked to the appropriate initiating request.

5. At some later time, the client application requests the response from the XML Web service (by calling another method on
the XML Web service and quoting the correlation number).

The XLANG Scheduler Engine provides most of this functionality with no additional coding. The XLANG Scheduler Engine
provides the following functionality:

Each XML Web service request is processed as a separate thread of execution, with automatic invocation of the correct
instance of the schedule based on the correlation coefficient.

If individual instances of the schedule are running for long periods of time, they will be automatically dehydrated to the
database, and then rehydrated when required.

BizTalk Orchestration Designer can provide additional error handling in the schedule by using transactions, exception
handling, and compensation processing.

The result is an XML Web service that features high availability and responsiveness, despite the fact that the implementation of

the XML Web service depends on an application service that is neither highly available nor responsive.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Synchronous XML Web Services and BizTalk Orchestration
An XML Web service that directly calls an XLANG schedule and waits for a response is an example of synchronous
communication. The XLANG schedule waits for the XML Web service to send a method request and instantiate a component:

1. The schedule intercepts the method request.

2. The schedule waits for the component to return the method response.

3. The schedule intercepts the method response.

4. The schedule continues with the next action in the business process flow.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Using BizTalk Server with Visual Studio .NET
This section provides task-specific information about how to create XML Web services and custom components by using
Microsoft® BizTalk™ Server 2002 and .NET technologies. It is highly recommended that you review the
Understanding BizTalk Server and Visual Studio .NET topic as well.

The following topics are included in this section:

Creating XML Web Services with Visual Studio .NET

BizTalk Messaging and XML Web Services

BizTalk Orchestration and XML Web Services

Microsoft BizTalk Server Toolkit for Microsoft .NET

Creating XML Web Services with Visual Studio .NET
Microsoft Visual Studio® .NET natively provides extensive XML Web services functionality. XML Web services can be created in
Microsoft Visual Basic® .NET, Microsoft Visual C#™ .NET, Microsoft Visual C++® .NET, or any other language supported by the
common language runtime.

To create an XML Web service using Visual Studio .NET:

1. Start a new project, and select ASP .NET Web Service to build an XML Web service using either Visual C# or Visual Basic,
or select Managed C++ Web Service to build an XML Web service using Visual C++.

2. Enter a name for the XML Web service and a location at which the XML Web service will be deployed, and then click OK to
generate the XML Web service project.

3. Visual Studio .NET creates a project (in your language of choice) that imports the namespace System.Web.Services and
adds a class that is derived from System.Web.Services.WebService. This class will implement the XML Web service.

 Imports System.Web.Services

 Public Class MyWebServiceClass

 Inherits System.Web.Services.WebService

1. Add methods to the class that implement the various Web methods. In this case, we have created methods to debit, credit,
and check a customer's credit in real time at the customer's bank. To designate the method as an XML Web service, simply
prepend each method with a WebMethod attribute.

 <WebMethod()> Public Function MyWebServiceFunction(_

 ByRef Parameter1 As Integer, _

 ByRef Parameter2 As Integer) As Integer

1. When the project is built, it will create a XML Web service on the specified Web server, which exposes each method that has
a WebMethod attribute.

2. Information about the XML Web service—such as the WSDL file—can be obtained by browsing to the .asmx file for the class
that implements the XML Web service:

http://localhost/MyWebServices/MyClass.asmx

Microsoft BizTalk Server Toolkit for Microsoft .NET

BizTalk Messaging and XML Web Services
This section discusses how to work with BizTalk Messaging Services and Microsoft .NET.

BizTalk Messaging can be used to seamlessly create an XML Web service front end without modifying your existing applications.
Even without XML support in a legacy environment, you can make data available from any application as an XML Web service.
You can submit documents to BizTalk Server from an XML Web service, or submit documents to an XML Web service from BizTalk
Server.

This section contains the following topics:

Submitting Documents to BizTalk Server from an XML Web Service

Submitting Documents to an XML Web Service from BizTalk Server

Related Topics

XML Web Services

Understanding BizTalk Server and Visual Studio .NET

Microsoft BizTalk Server Toolkit for Microsoft .NET

Submitting Documents to BizTalk Server from an XML Web
Service
This section discusses how to submit documents to BizTalk Server 2002 from the .NET Framework. When building applications
using Visual Studio .NET, there are two common mechanisms to submit documents to BizTalk Server from these applications:

Directly submitting by using the BTSInterchange class

Submitting by writing the document to a Message Queuing message for BizTalk Server to pick up using a Message Queuing
receive function

 Note

The second method, while appearing to be more indirect, actually performs quite well, and also increases the fault tolerance
of the application, particularly when the application is deployed across multiple servers.

This section contains the following topics:

Using Message Queuing to Submit Documents

Using BTSInterchange to Submit Documents

Microsoft BizTalk Server Toolkit for Microsoft .NET

Using Message Queuing to Submit Documents
Submitting documents to BizTalk Server 2002 by posting them to a message queue, and then receiving them using a BizTalk
Server receive function, is an efficient mechanism for submitting documents to BizTalk Server, as well as for adding useful failover
attributes to the application.

The common language runtime provides a mechanism to write messages to Message Queuing. This is found in the
System.Messaging namespace and consists of a number of classes, including the MessageQueue class. It is also necessary to
use the ActiveXMessageFormatter class to serialize (and de-serialize) the message into (and from) Message Queuing messages
using a binary format.

The following code sample shows how a message that is suitable for a BizTalk Server receive function is sent to Message
Queuing:

void SendToMSMQ(string queueName, string body, string label) {

 MessageQueue queue = new MessageQueue();

 if (MessageQueue.Exists(queueName)) {

 //Set Queue Path

 queue.Path = queueName;

 Message msg = new Message();

 // Assumes the dest queue already exists

 ActiveXMessageFormatter format = new ActiveXMessageFormatter();

 format.Write(msg, body);

 if (queue.Transactional) {

 MessageQueueTransaction trans1 = new MessageQueueTransaction();

 trans1.Begin();

 queue.Send(msg, label, trans1);

 trans1.Commit();

 }

 else

 queue.Send(msg, label);

 }

}

 Note

The code tests to see if the queue is transactional. For transactional message queues (and most message queues used with
BizTalk Server queues are transactional), the call to Send must also specify a transaction (which is committed) in order for
the call to succeed. BizTalk Server 2000 Service Pack 1a (SP1a) or later is required for this code.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Using BTSInterchange to Submit Documents
XML Web services that submit documents asynchronously to BizTalk Server call the Submit method of the BTSInterchange
class. The Submit method returns after sending the document. No response document is returned, because the protocol does not
support it.

The following code example shows how you can load an XML document from a file and submit the document to BizTalk Server:

using System;

using System.Xml;

using System.IO;

using System.Data;

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSInterchangeLib;

// Load the XML document from a file.

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(args[0]);

BTSInterchange interchange = new

 BTSInterchange(BIZTALK_OPENNESS_TYPE.BIZTALK_OPENNESS_TYPE_NOTOPEN,

 "", "", "", "", "", "MyChannelName", "", "", 0);

// Submit the document into BizTalk and obtain the submission handle.

string submissionID = interchange.Submit(xmlDoc.OuterXml);

XML Web services that submit documents synchronously to BizTalk Server call SubmitSync.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Submitting Documents to an XML Web Service from BizTalk
Server
This section discusses submitting documents to an XML Web service from BizTalk Messaging Services.

This section contains the following topics:

Building an AIC with Visual Studio .NET

Registering Pipeline and Preprocessor COM Components

Debugging an AIC with Visual Studio .NET

Microsoft BizTalk Server Toolkit for Microsoft .NET

Building an AIC with Visual Studio .NET
To build an application integration component (AIC) with the .NET Framework, common language runtime, and Visual Studio .NET
integrated development environment (IDE), the standard development approach must be modified. Previously, Visual Basic or
Visual C++ was used to build a COM component that implemented the IBTSAppIntegration interface. This interface has a single
method:

ProcessMessage(ByVal bstrDocument As String) As String

.NET assembly
With Visual Studio .NET, instead of a simple COM+ component implementing a COM interface, a .NET assembly that
interoperates with COM through the common language runtime is created. The common language runtime can call COM objects
as if they were managed objects, and managed components can be exposed as if they were COM objects. The runtime handles
marshalling data between the managed environment and the unmanaged COM component. This functionality is provided by the
ServicedComponent interface in the common language runtime.

A serviced component is a class authored in a Common Language Specification (CLS)-compliant language that implements the
System.EnterpriseServices.ServicedComponent interface. That is, the class is derived from this interface either directly or
indirectly. A class configured this way is hosted as a COM+ application and can use the COM+ services. In addition, this class will
implement the IBTSAppIntegration interface.

.NET runtime callable wrapper
The AIC is built using the standard COM+ interop facilities supplied by the .NET Framework. Before a COM+ interface can be
implemented, or an existing COM+ component can be instantiated, a .NET runtime callable wrapper (RCW) needs to be created
for the COM+ interface. In the included samples, an RCW for the BizTalk Server Application Integration Component Type Library
is created. Because the RCW will be used within another strong name assembly, it must also have a strong name key when it is
created.

The RCW can be easily created within the Visual Studio .NET IDE by adding a reference to the BTSCompLib.tlb in the project, and
automatically generating a primary interop assembly wrapper. To do this, right-click the References section of the project and
select Add Reference from the context menu. A dialog box lists all registered COM types. Select Microsoft BizTalk Server
Interchange 1.0 Type Library. This is analogous to adding specific COM+ references to a Visual Basic 6.0 program.

 Note

If the Visual Studio .NET IDE generates the RCW for the COM Type Library automatically, a strong name key file for the
assembly must be added before adding any COM+ references. Otherwise, the COM wrapper generated by the Visual Studio
.NET IDE will not be strongly typed, thus preventing the .NET DLL from being hosted by COM+.

Visual Studio .NET uses the Output Path directory (bin\debug, by default) of the project to look for a strong name key file
when generating a primary interop assembly wrapper for referenced components. If the IDE is used to generate the
wrapper, the strong name key file must be in this directory and a reference to it must be in the Project Properties dialog
box.

Related Topics

Application Integration Component

Microsoft BizTalk Server Toolkit for Microsoft .NET

Registering Pipeline and Preprocessor COM Components
To use a pipeline or preprocessor component created with the Microsoft BizTalk Server Toolkit for Microsoft .NET as an
unconfigured component, the component must be registered with the appropriate category identifiers (CATIDs). You do not need
to do this step if you have created a configured COM+ component by extending the ServicedComponent class as described in
Building an AIC with Visual Studio. NET.

To register and unregister pipeline and preprocessor components using the Microsoft .NET Framework:

1. Specify the method to call when you register the assembly for COM interop by using the ComRegisterFunctionAttribute
class:

 using System;

 using System.Runtime.InteropServices;

 public class MyClassThatNeedsToRegister {

 [ComRegisterFunctionAttribute]

 public static void RegisterFunction(Type t) {

 //Insert code here.

 }

The preceding code example is in C#; the following code example performs the same task in Visual Basic:

 Imports System

 Imports System.Runtime.InteropServices

 Public Class MyClassThatNeedsToRegister

 <ComRegisterFunctionAttribute()> Public Shared Sub _

 RegisterFunction(t As Type)

 'Insert code here.

 End Sub

1. Specify the method to call when you unregister the assembly for COM interop by using the
ComUnregisterFunctionAttribute class:

 [ComUnregisterFunctionAttribute]

 public static void UnregisterFunction(Type t) {

 //Insert code here.

 }

 }

The preceding code example is in C#; the following code example performs the same task in Visual Basic:

 <ComUnregisterFunctionAttribute()> Public Shared Sub _

 UnregisterFunction(t As Type)

 'Insert code here.

 End Sub

 End Class

So, when you write a class for your custom component you will include the following methods to add and delete the appropriate
category identifiers (CATIDs):

public static void RegisterFunction(Type t) { }

public state void UnregisterFucntion(Type t) {}

 Note

The preceding prototypes are shown in C#.

BizTalk Server category identifiers
Pipeline and preprocessor components that are used in BizTalk Server must be associated with one or more CATIDs. The
following table shows the category identifiers defined by BizTalk Server.

CATID GUID Description
CATID_BIZT
ALK_
AIC

BD193E1D-D7DC-4B7C-B9
D2-92AE0344C836

Identifies the component as an application integration component (AIC).

CATID_BIZT
ALK_
COMPONE
NT

5C6C30E7-C66D-40E3-889
D-08C5C3099E52

Identifies the component as a BizTalk Server component. All components that are used
with BizTalk Server must implement this category identifier.

CATID_BIZT
ALK_
CUSTOM_P
ROCESS

20E8080F-F624-4401-A20
3-9D99CF18A6D9

Identifies the component as a custom preprocessor for a receive function.

Assigning affinity
Each component must be associated with two category IDs. One category ID marks the component as a BizTalk Server
component. A component so marked appears in a list of components in the BizTalk Server administration console. The second
category ID indicates the type or purpose of the component. This second association is called affinity, which allows BizTalk Server
to determine the context in which the component can be used. For example, only those components whose affinity is registered as
an application integration component (AIC) appear in the list of available components when an AIC transport type has been
selected in BizTalk Messaging Manager.

For example, to register and unregister a custom preprocessor component using C#:

1. Use the Registry.ClassesRoot.CreateSubKey method to create the appropriate CATIDs:

 [ComRegisterFunctionAttribute]

 public static void RegisterFunction(Type t) {

 try {

 // Implements CATID_BIZTALK_COMPONENT category

 Registry.ClassesRoot.CreateSubKey("CLSID\\{" + t.GUID.ToString().ToUpper() + "}\\Implemented Categories\\
{5C6C30E7-C66D-40E3-889D-08C5C3099E52}");

 // Implements CATID_BIZTALK_CUSTOM_PROCESS category

 Registry.ClassesRoot.CreateSubKey("CLSID\\{" + t.GUID.ToString().ToUpper() + "}\\Implemented Categories\\
{20E8080F-F624-4401-A203-9D99CF18A6D9}");

 }

 catch {}

 }

1. Then, use the Registry.ClassesRoot.DeleteSubKey method to delete the appropriate CATIDs:

 [ComUnregisterFunctionAttribute]

 public static void UnregisterFunction(Type t){

 try{

 Registry.ClassesRoot.DeleteSubKey("CLSID\\{" + t.GUID.ToString().ToUpper() + "}\\Implemented Categories\\
{5C6C30E7-C66D-40E3-889D-08C5C3099E52}");

 Registry.ClassesRoot.DeleteSubKey("CLSID\\{" + t.GUID.ToString().ToUpper() + "}\\Implemented Categories\\
{20E8080F-F624-4401-A203-9D99CF18A6D9}");

 }

 catch {}

 }

Microsoft BizTalk Server Toolkit for Microsoft .NET

Debugging an AIC with Visual Studio .NET
Writing numerous trace statements in code is an unsatisfactory way to debug AIC code. With the power and sophistication of the
Visual Studio .NET IDE, there is a better way.

BizTalk Server 2002 runs as a Microsoft Windows® 2000 service. When the AIC is invoked, it runs under the control of the COM+
services, by default as a separate process. This means that any bugs in the AIC will not cause BizTalk Server to fail.

Because the AIC is deployed as a DLL rather than as an executable file, COM+ provides an application, called dllhost.exe, in which
the AIC can run. Using Task Manager to look at the processes running on a server typically reveals one or more dllhost.exe
processes running. These are COM+ components running as applications under COM+.

To debug AICs, you could attach the Visual Studio .NET IDE to the appropriate dllhost.exe process, but it is not immediately
obvious which process is the one supporting the specific COM+ component (AIC) to be debugged. Instead of running the AIC as a
separate process, however, it can be run temporarily within the same process as the BizTalk Server service, allowing the Visual
Studio .NET IDE to be attached to this process. To do this, the BizTalk Server service is stopped, and then is invoked directly from
the Visual Studio .NET IDE.

To debug a custom BizTalk Server component:

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Component Services.

The COM+ applications on the system are displayed.

2. Select the AIC COM+ application and click Shut Down.

3. Set the COM+ application to run as a library package.

4. In the Component Services console, stop the BizTalk Messaging Service.

5. Load the BizTalk Server AIC project into Visual Studio .NET.

6. Set the debugging properties for the BizTalk Server AIC project so that Visual Studio .NET will start the BizTalk Server
executable (causing it to run as a normal application, not as a Windows service). Right-click the BizTalk Server AIC project in
Solution Explorer and click Properties.

7. In the left pane, click Configuration Properties, click Debugging, and then set Debug Mode to Program.

8. Set Start Application to the path where BizTalk Server is installed (typically, \Program Files\Microsoft BizTalk
Server\MSCIS.exe). This is the executable for the BizTalk Messaging Service. Click OK.

9. Set a breakpoint at an appropriate place in the code and, on the Debug menu, point to Debug and click Start, to start
BizTalk Server from the Visual Studio .NET IDE.

10. Call the code in the AIC by dropping a file into the file drop directory.

The File Listener will submit the file to BizTalk Server, which will call the AIC. Visual Studio .NET will stop execution of the AIC
at the breakpoint that was set in step 9. You can now use all of the debugging features of the Visual Studio .NET IDE to
debug the component.

After debugging, be sure to reset the COM+ application to run as a server application, and to restart the BizTalk Server service.

Microsoft BizTalk Server Toolkit for Microsoft .NET

BizTalk Orchestration and XML Web Services
This section discusses how to work with BizTalk Orchestration Services and Microsoft .NET. BizTalk Orchestration introduces some
remarkable synergies for the application developer who wants to deploy scalable, highly available XML Web services. BizTalk
Orchestration provides a long-running, loosely coupled business process that includes implementation services, such as
transactions—both Microsoft Distributed Transaction Coordinator (DTC)-style transactions, and timed and long-running
transactions—exception handling, and transaction compensation, to enable the application designer to create robust business
processes.

This section contains the following topics:

Calling XML Web Services from Orchestration

Calling Orchestration from XML Web Services

Related Topics

XML Web Services

Understanding BizTalk Server and Visual Studio .NET

Microsoft BizTalk Server Toolkit for Microsoft .NET

Calling XML Web Services from Orchestration
BizTalk Orchestration Designer provides the following implementation shape to represent technologies that can be used to
implement port communications:

COM Component. Each port is implemented by using a method call for each message that is sent to or received from a
COM+ component or a .NET component using COM interop.

XML Web services, however, are invoked by sending SOAP-formatted requests to the XML Web service and receiving SOAP-
formatted responses back to the client. The easiest way to implement this from a BizTalk Orchestration schedule is by calling a
COM or .NET component, which invokes the XML Web service using SOAP. In effect, the COM component acts as a proxy for the
XML Web service. The COM component proxy can be created using Visual Studio .NET using the interop facilities provided by the
common language runtime. To do this, you need the WSDL file that provides a description for the methods exposed by the XML
Web service.

The characteristics of the XML Web service can be displayed by browsing to the service's .asmx file. This URL provides a general
description of the XML Web service, details about the format of the SOAP messages required to invoke the various methods, and
the WSDL file for the XML Web service.

This section contains the following topic:

Creating and Using an XML Web Service Client

Related Topics

Orchestration Calling an XML Web Service

Microsoft BizTalk Server Toolkit for Microsoft .NET

Creating and Using an XML Web Service Client
To access an XML Web service from a client application that has been built using Visual Studio .NET, a reference to the XML Web
service must be added to the project. XML Web service discovery is the process of searching for and examining the service
descriptions of available XML Web services. The service description details which services are available and how to interact with
them. After an XML Web service has been discovered, it can be added as a Web reference to the Visual Studio .NET project.

To access an XML Web service from Orchestration, you need to create a .NET proxy component. First, to create the .NET proxy
component follow these steps:

1. On the Project menu of your application, click Add Web Reference.

The Add Web Reference dialog box appears.

2. In the Address box, type the URL to the .disco, .vsdisco, .wsdl, or .asmx file of the XML Web service to access.

Visual Studio .NET will download the service description and generate a proxy class to interface between the application and
the XML Web service. The proxy class is then used in the client application to represent (and invoke) the functionality of the
XML Web service.

After you register the component for COM interop, you can access the .NET component inside BizTalk Orchestration Designer
through COM binding.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Calling Orchestration from XML Web Services
This section discusses calling BizTalk Orchestration Services from XML Web services.

When working with the BizTalk Server Toolkit for Microsoft .NET, a BizTalk orchestration can be made available as an XML Web
service in two ways:

Programmatically

Using Visual Studio .NET

The following illustration shows the implementation process.

Executing orchestrations programmatically
An XLANG schedule is a process created in the Microsoft Visio®-based BizTalk Orchestration Designer, serialized in XML, and
executed under the control of COM+ services (called XLANG Scheduler). It is possible to run an entire orchestration as a COM
component under the control of COM+ services. The orchestration engine effectively provides a powerful mechanism for
business process automation, implemented with COM+ components.

By default, when BizTalk Server 2002 is installed on a server, it creates this single COM+ package to run all schedules on that
server and adds an XLANG tab to the COM+ Applications Properties dialog box. When a new COM+ application is created, this
additional tab can be used to specify that the COM+ application is also a host for XLANG schedule instances.

A client application can invoke these XLANG schedule instances using COM by specifying the path to the .skx (XML) file and the
orchestration port, as in the following code example:

set sked = GetObject("sked:///path-to-skx-file/port-name")

Alternatively, the common language runtime interop services can be used from within a Visual Studio .NET application to execute
a schedule either late bound or early bound. For more information, see Starting an XLANG Schedule.

This section contains the following topics:

Using BizTalk Orchestration from an XML Web Service

Starting an XLANG Schedule

Passing Data to an XLANG Schedule

Related Topics

XML Web Service Calling an Orchestration

Microsoft BizTalk Server Toolkit for Microsoft .NET

Using BizTalk Orchestration from an XML Web Service
To create an XML Web service using Visual Studio .NET and the common language runtime, an XML Web service project is
created. This project implements a class that is derived from System.Web.Services.WebServices. This class exposes one or
more class methods as WebMethods, by prefixing the method declaration with a [WebMethod] attribute.

The method itself invokes the schedule using the Marshal.BindToMoniker method from the System.Runtime.InteropServices
namespace (see Starting an XLANG Schedule), as shown in the following code:

[WebMethod]

public Object RunSked(string skedMoniker, int accountNo) {

 Type skedType;

 Object sked = null;

 try {

 sked = Marshal.BindToMoniker(skedMoniker);

 skedType = sked.GetType();

 // Set up the parameters

 Object[] prms = new Object[1];

 prms[0] = accountNo;

 skedType.InvokeMember("StartCreditCheck",

 System.Reflection.BindingFlags.InvokeMethod,

 null, sked, prms);

 result = skedType.InvokeMember("IsCreditApproved",

 System.Reflection.BindingFlags.InvokeMethod,

 null, sked, null);

 }

 catch (Exception ex) {

 System.Diagnostics.Debug.WriteLine (ex.Message);

 throw new Exception(ex.Message, ex);

 }

 finally {

 Marshal.ReleaseComObject(sked);

 }

}

This example shows late binding using reflection. It is also possible to do early binding by generating a .NET assembly
corresponding to the type library information in skedcore.dll. The tlbimp tool from the .NET Framework Software Development Kit
(SDK) is used to generate a strong named assembly, and then a reference to this assembly is added to the project, as shown in the
following code:

using <namespace corresponding to skedcore typelib>;

 IWFWorkFlowInstance oSked =

 Marshal.BindToMoniker(skedMoniker) as IWFWorkflowInstance;

Microsoft BizTalk Server Toolkit for Microsoft .NET

Starting an XLANG Schedule
To start an XLANG schedule using COM+, the GetObject method is used. This accesses a Microsoft ActiveX® object from a file
and assigns the object to an object variable. The parameter to GetObject is a moniker that can either create a new schedule
instance or refer to an existing instance. Applications can create new schedule instances by creating a moniker of the form:

set sked = GetObject("sked:///path-to-skx-file/port-name")

From this, you get a COM reference that lets you communicate with the specific port on the new schedule instance.

The scheduler engine has another form of moniker that allows a port on a specific, existing schedule instance. The engine will
create these fully qualified port names if a data flow is established from the "Port References" message to another outgoing
message. The common scenario for this is when a specific schedule instance is rehydrated later (possibly months later), when a
message arrives.

To start an XLANG schedule using the common language runtime, the .NET equivalent of GetObject, Marshal.BindToMoniker,
is used. This method is found in the System.Runtime.InteropServices namespace. The following code sample is a small
function you can use to start a schedule:

using System.Runtime.InteropServices;

static void LaunchXLANGSchedule(string skedMoniker) {

 Object sked = null;

 try {

 sked = Marshal.BindToMoniker(skedMoniker);

 }

 catch (Exception e){

 System.Diagnostics.Debug.WriteLine (e.Message);

 throw new Exception(e.Message, e);

 }

 finally{

 Marshal.ReleaseComObject(sked);

 }

}

 Note

The instantiation of the schedule is asynchronous (the BindToMoniker method returns immediately).

Microsoft BizTalk Server Toolkit for Microsoft .NET

Passing Data to an XLANG Schedule
The following code sample illustrates how to start an XLANG schedule and pass data to a port named InputPort, which is a COM
binding port. The InvokeMember call will create the COM component and call the member function bound to this port. The
specified parameters will be passed in as parameters to this method call. The result of the method call will be returned as the
result of the InvokeMember call.

 Note

This COM binding port can also be set for "No Instantiation," because it can be used just to pass the value (1 in this case)
into the schedule.

using System.Runtime.InteropServices;

using System.Reflection;

public void LaunchXLANGSchedule() {

 Object sked = null;

 Type typ;

 try {

 string skedMoniker = @"sked:///C:\Sched.skx/InputPort";

 sked = Marshal.BindToMoniker(skedMoniker);

 typ = sked.GetType();

 // Set up parameters

 Object[] prms = new Object[1];

 prms[0] = 1;

 typ.InvokeMember("Submit", BindingFlags.InvokeMethod, null, sked, prms);

 }

 catch (Exception e) {

 System.Diagnostics.Debug.WriteLine (e.Message);

 throw new Exception(e.Message, e);

 }

 finally {

 Marshal.ReleaseComObject(sked);

 }

}

The application binds to individual ports by calling the InvokeMember method to connect to specifically named ports. Values are
passed into these ports by using a parameter array, and received from these ports by the return value of the call.

Microsoft BizTalk Server Toolkit for Microsoft .NET

BizTalk Server Toolkit for Microsoft .NET Samples
Samples provided in the Microsoft® BizTalk™ Server Toolkit for Microsoft .NET are located in the folder \Microsoft BizTalk
Server\NET ToolKit\ on the BizTalk Server 2002 installation drive. This section contains all the information found in the readme.txt
files located in the sample folders, along with some additional content.

The Microsoft .NET samples are available in the following sections:

BizTalk Messaging Services Samples

BizTalk Orchestration Services Samples

E-Procurement Sample

 Important

These samples should not be used in a production environment.

Prior to running any samples, you must register the runtime callable wrapper (RCW) files and the primary interop assembly
(PIA) files in the Microsoft .NET global assembly cache. To do this, run the script file folder \Microsoft BizTalk Server\NET
ToolKit\setup_toolkit.cmd.

Microsoft BizTalk Server Toolkit for Microsoft .NET

BizTalk Messaging Services Samples
The samples in this section primarily demonstrate the use of Microsoft .NET components with BizTalk Messaging Services. The
documentation in this section applies to the samples written in Microsoft Visual C#™ .NET.

Application Integration Component

Configuration Application

Custom Preprocessor

Data Tracking and Interchange Application

Pipeline Component

 Notes

These samples can be run on Microsoft Windows® 2000 or Microsoft Windows XP.

The setup.wsf script files associated with many of these samples are configured to register the components from the C:
drive on Microsoft Windows 2000 by default. If this doesn’t match your configuration, you will need to edit the paths in the
setup before they are run.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Application Integration Component
This sample implements the IBTSAppIntegration interface in C# to create an application integration component (AIC). This
component receives a document that validates against the CommonPO.xml schema, modifies the incoming XML document, and
generates a local output file.

Path
To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Microsoft BizTalk Server\NET ToolKit\AppInt\C#\

To locate a Microsoft Visual Basic® .NET version of this sample, browse to the following folder on the BizTalk Server installation
drive:

\Microsoft BizTalk Server\NET ToolKit\AppInt\VB\

User's Guide
Before running the sample, complete the following steps:

1. Create the folder C:\Temp.

2. Compile the C# component. Note that because AppInt.dll is provided with this sample, this is an optional step.

3. Register the component and its category IDs and set up the BizTalk Messaging Services configuration by running the
setup.wsf script file. When this script is finished running, a message box indicates that the configuration completed. If an
error occurs during this step, see the Programming Notes section below for additional information.

To run the sample:

1. Submit the sample document instance on the channel BTSSamples_Channel_C#AppInt by running the submit.wsf script file.

2. If the submission succeeds, a file named output.xml will be created in the temporary folder C:\Temp. If the output file is not
created, check the Suspended queue in the BizTalk Server Administration application or the application log in the Event
Viewer for information about why the document failed.

Programming Notes
The processed file, C:\Temp\output.xml, contains the text "Message from AIC" in the POHeader element.

The XML document specification CommonPO.xml is provided by default in the Microsoft BizTalk Server repository. This file is
located on the BizTalk Server installation drive in the folder \Program Files\Microsoft BizTalk
Server\BizTalkServerRepository\DocSpecs\Microsoft.

When running setup.wsf in step 3, you might encounter the following error:

Fail Either the syntax of this address is incorrect for the Application Integration Component transport type property, or the
component is not registered, or else the component is not a valid AIC component?

To correct this error, you can edit the file setup.wsf and update the path to the location of RegSvcs.exe on your computer. The path
appears in the setup.wsf file as follows:

objWshShell.Run "C:\WINNT\Microsoft.NET\Framework\v1.0.3705\RegSvcs bin\Debug\AppInt.dll", , TRUE

 Note

RegSvcs.exe can be found in "%windir%\Microsoft.NET\Framework\v1.0.xxxx" where xxxx is the build number of the .NET
Framework you are using.

The BizTalk Messaging Services configuration script, setup.wsf, should be run only once. If you want to run the script again, you
must first delete any configuration objects previously created by the script in the following order:

1. Channel: BTSSamples_Channel_C#AppInt

2. Messaging ports: BTSSamples_Port_C#AppInt

3. Organizations: AIC_Dest_Org, AIC_Src_Org

4. Document definition: CommonPO_AIC

The following files are included in this sample:

File name Description
.\bin\Debug\AppInt.dll Compiled version of the AIC
.\obj\Interop.BTSComponentsLib.dll RCW for Microsoft BizTalk components type library
AppInt.csproj Visual Studio® .NET C# project for this AIC
AppInt.cs C# class containing the code of the AIC
AssemblyInfo.cs C# assembly configuration file
pubpriv.snk Public/private key pair for assembly strong name.
Config.vbs Configuration script for BizTalk Messaging Services
Doc_CommonPO.xml A valid document instance of the CommonPO.xml schema
Readme.txt Instructions about how to set up and run the sample
setup.wsf Script for running the configuration script
submit.wsf Script for submitting the sample document instance to BizTalk Server

Related Topic
IBTSAppIntegration

Microsoft BizTalk Server Toolkit for Microsoft .NET

Configuration Application
This sample demonstrates a Windows Form application that uses methods of the IBizTalkConfig interface by means of the
runtime callable wrapper (RCW) BTSConfig to view various BizTalk Messaging Services objects.

Path
To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Microsoft BizTalk Server\NET ToolKit\BTSConfigApp\C#\

To locate a Microsoft Visual Basic® .NET version of this sample, browse to the following folder on the BizTalk Server installation
drive:

\Microsoft BizTalk Server\NET ToolKit\BTSConfigApp\VB\

User's Guide
To run the sample:

1. Run the BTSConfigApp.exe application located in the folder:

\Microsoft BizTalk Server\NET ToolKit\BTSConfigApp\C#\bin\Debug

2. Click the buttons to view BizTalk Messaging Services objects.

Programming Notes
The following files are included in this sample in the BTSConfig folder:

File name Description
AssemblyInfo.cs C# assembly configuration file
BTSConfig.cs C# class containing the RCW code for the IBizTalkConfig interface
BTSConfig.csproj Visual Studio .NET C# project for the RCW code
BTSConfig.csproj.user Visual Studio .NET C# project user options file
BTSConfig.sln Visual Studio .NET solution file
BTSConfig.suo Visual Studio .NET solution user options file
Microsoft.BizTalk.snk Strong name key file

The following files are included in this sample in the BTSConfigApp folder:

File name Description
App.ico Icon file for the executable
AssemblyInfo.cs C# assembly configuration file
BTSConfigApp.csproj Visual Studio .NET C# project for the application
BTSConfigApp.csproj.user Visual Studio .NET C# project user options file
Form1.cs C# source file for the Windows Form used in the application
Form1.resx Visual Studio .NET XML resource template
\bin\Debug\BTSConfigApp.exe Main application to run

Related Topic
BTSConfig

Microsoft BizTalk Server Toolkit for Microsoft .NET

Custom Preprocessor
This sample demonstrates an implementation of a custom preprocessor in C#.

Path
To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Microsoft BizTalk Server\NET ToolKit\CustPreProcessor\C#\

To locate a Microsoft Visual Basic .NET version of this sample, browse to the following folder on the BizTalk Server installation
drive:

\Microsoft BizTalk Server\NET ToolKit\CustPreProcessor\VB\

User's Guide
Before running the sample, complete the following steps:

1. Create the following folders on the C drive of your computer:

Drop

PreProcessed

2. Compile the C# component. Note that because CustomPreProcessor.dll is provided with this sample, this is an optional step.

3. Register the component by running the setup.wsf script file.

4. When prompted about adding information to the system registry, click Yes. When this script is finished running, a message
box indicates that the configuration completed. If an error occurs during this step, see the Programming Notes section
below for additional information.

To run the sample:

1. Check the properties of the data file CommonPO_PreProcess.xml. Ensure that this file is not marked as a read-only file.

2. Copy and paste the file CommonPO_PreProcess.xml into the folder C:\Drop.

3. BizTalk Server will process this file and place the output file in the folder C:\PreProcessed.

Programming Notes
The custom preprocessor uses an input document with a CommonPO schema, and it changes the contents of the POHeader
element attributes Purpose, Type and Number to "XX", "YY", and "ZZ" respectively. The CreationDate attribute is also updated
with the current date.

When running setup.wsf, you might encounter the following error:

Fail Either the syntax of this address is incorrect for the Application Integration Component transport type property, or the
component is not registered, or else the component is not a valid AIC component?

To correct this error, you can edit the file setup.wsf and update the path to the location of RegSvcs.exe on your computer. The path
appears in the setup.wsf file as follows:

objWshShell.Run "C:\WINNT\Microsoft.NET\Framework\v1.0.3705\RegSvcs bin\Debug\AppInt.dll", , TRUE

 Note

RegSvcs.exe can be found in "%windir%\Microsoft.NET\Framework\v1.0.xxxx" where xxxx is the build number of the .NET
Framework you are using.

The BizTalk Messaging Services configuration script, setup.wsf, should be run only once. If you want to run the script again, you
must first delete any configuration objects previously created by the script in the following order:

1. Channel: PreProcessChannel

2. Messaging Ports: PreProcessPort

3. Organizations: PreProcessOrg

4. Document Definition: CommonPO_PreProcess

5. File receive function: PreProcess

The following files are included in this sample:

File name Description
.\bin\Debug\CustomPreProcessor.dll Compiled version of the component
.\obj\Interop.BTSComponentsLib.dll RCW for Microsoft BizTalk components type library
CommonPO_PreProcess.xml Sample data document instance of the CommonPO schema
Config.vbs Configuration script for BizTalk Messaging Services
CustPreProcessor.csproj C# project for this component
CustPreProcessor.cs C# class containing the code of the AIC
CustPreProcessor.sln Visual Studio .NET solution file
AssemblyInfo.cs C# assembly configuration file
pubpriv.snk Public/private key pair assembly strong name
Readme.txt Instructions about how to set up and run the sample
setup.wsf Script used for configuration and component registration
CSCustPreProcessor.reg Registry update file

Related Topic
IBTSCustomProcess

Microsoft BizTalk Server Toolkit for Microsoft .NET

Data Tracking and Interchange Application
This sample demonstrates the use of .NET runtime callable wrappers (RCWs) for the IInterchange and IBizTalkTrackData
interfaces, available in C# as BTSInterchange and BizTalkTrackData, respectively. The console application provided in this
sample submits a document to BizTalk Server by using methods of the IInterchange interface and obtains tracking data by using
methods of the IBizTalkTrackData interface. Then it outputs the tracking data in XML form. The output consists of three parts:
first is the tracking data related to the interchange, second is the information about the document submitted to BizTalk Server,
and third is the information about the document that was generated as a result of the submission.

Path
To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Microsoft BizTalk Server\NET ToolKit\TrackInterchange\C#\

To locate a Microsoft Visual Basic .NET version of this sample, browse to the following folder on the BizTalk Server installation
drive:

\Microsoft BizTalk Server\NET ToolKit\TrackInterchange\VB\

User's Guide
Before running the sample, complete the following steps:

1. Create the folder C:\Temp.

2. Compile the C# component. Note that because TrackInterchange.exe is provided with this sample, this is an optional step.

3. Configure BizTalk Messaging Services by running the setup.wsf script file.

To run the sample:

1. Browse to the \Microsoft BizTalk Server\NET ToolKit\TrackInterchange\C#\bin\Debug folder.

2. Submit a document on the channel "BTSSamples_Channel_C#Interchange" by typing at the command prompt:

TrackInterchange.exe ..\..\Doc_CommonPO.xml

1. If the submission succeeds, the tracking data will be displayed for the interchange in BizTalk Document Tracking. In addition,
the processed PO document is written to the C:\Temp folder.

Programming Notes
The BizTalk Messaging Services configuration script, setup.wsf, should be run only once. If you want to run the script again, you
must first delete any configuration objects previously created by the script in the following order:

1. Channel: BTSSamples_Channel_C#Interchange

2. Messaging Ports: BTSSamples_Port_C#Interchange

3. Organizations: TrackInt_Dest_Org, TrackInt_Src_Org

4. Document Definition: CommonPO_TrackInt

The following files are included in this sample:

File name Description
.\bin\Debug\TrackInterchange.exe Compiled version of the console application
.\bin\Debug\Interop.BTSDocTrackingLib.dll RCW for BizTalk Tracking type library
.\bin\Debug\Interop.BTSInterchangeLib.dll RCW for IInterchange components type library
.\bin\Debug\Microsoft.BizTalk.Interchange.dll RCW for IInterchange interface
.\bin\Debug\Microsoft.BizTalk.BizTalkTrackData.dll RCW for IBizTalkTrackData interface
TrackInterchange.csproj C# project for this application

App.cs C# class containing code for submission
AssemblyInfo.cs C# assembly configuration file
Config.vbs Configuration script for BizTalk Messaging Services
Doc_CommonPO.xml Valid CommonPO document instance
Readme.txt Instructions about how to set up and run the sample
setup.wsf Script used for configuration and component registration

Microsoft BizTalk Server Toolkit for Microsoft .NET

Pipeline Component
This sample implements the IPipelineComponent and IPipelineComponentAdmin interfaces to create an application
integration component (AIC) in C#, including the appropriate primary interop assembly (PIA) for the commerce components.

This component receives a document that validates against the CommonPO.xml schema, logs some of the transport properties
from the dictionary, and copies the incoming message to a file.

Path
To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Microsoft BizTalk Server\NET ToolKit\PipeCompCS\C#\

To locate a Microsoft Visual Basic .NET version of this sample, browse to the following folder on the BizTalk Server installation
drive:

\Microsoft BizTalk Server\NET ToolKit\PipeCompCS\VB\

User's Guide
Before running the sample, complete the following steps:

1. Create the folder C:\Temp.

2. Compile the C# component. Note that because PipeCompCS.dll is provided with this sample, this is an optional step.

3. Register the component by running the setup.wsf script file.

4. When prompted about adding information to the system registry, click Yes. When this script is finished running, a message
box indicates that the configuration completed. If an error occurs during this step, see the Programming Notes section
below for additional information.

To run the sample:

1. Submit a document on the channel BTSSamples_Channel_C#PipeComp by running the script file submit.wsf.

2. If the submission succeeds, a log file, BTSlog.txt, and an output file, BTSout.txt, are created in the temporary folder C:\Temp.

Programming Notes
When running setup.wsf, you might encounter the following error:

Fail Either the syntax of this address is incorrect for the Application Integration Component transport type property, or the
component is not registered, or else the component is not a valid AIC component?

To correct this error, you can edit the file setup.wsf and update the path to the location of RegSvcs.exe on your computer. The path
appears in the setup.wsf file as follows:

objWshShell.Run "C:\WINNT\Microsoft.NET\Framework\v1.0.3705\RegSvcs bin\Debug\AppInt.dll", , TRUE

 Note

RegSvcs.exe can be found in "%windir%\Microsoft.NET\Framework\v1.0.xxxx" where xxxx is the build number of the .NET
Framework you are using.

To configure the component, you have to copy the ASP pages to the folder designated for property pages. By default, this folder is
located at \Program Files\Microsoft BizTalk Server\MessagingManager\pipeline on the installation drive. You can then open
BizTalk Messaging Manager and edit the channel. The Advanced button on the Channel Properties Advanced Configuration
page allows you to set the properties for the primary transport. In this way, you can modify the log file and the output file
locations and names.

The BizTalk Messaging Services configuration script, setup.wsf, should be run only once. If you want to run the script again, you
must first delete any configuration objects previously created by the script in the following order:

1. Channel: BTSSamples_Channel_C#PipeComp

2. Messaging Ports: BTSSamples_Port_C#PipeComp

3. Organizations: PipeCompCS_Dest_Org, PipeCompCS_Src_Org

4. Document Definition: CommonPO_PipeCompCS

The following files are included in this sample:

File name Description
.\bin\Debug\PipeCompCS.dll Compiled version of the component
.\obj\Interop.MSCSCoreLib.dll RCW for Microsoft Commerce Core components type library
.\obj\Interop.PipeCompLib.dll RCW for Microsoft Commerce Pipeline components type library
PipeCompCS.csproj C# project for this component
PipeCompCS.cs C# class containing the code of the AIC
AssemblyInfo.cs C# assembly configuration file
pubpriv.snk Public/private key pair for assembly strong name
PipeCompCS_AICPipeCompCS.asp Property page for the component
PipeCompCS_AICPipeCompCS_post.asp Property page for the component
Config.vbs Configuration script for BizTalk Messaging Services
Doc_CommonPO.xml Valid CommonPO document instance
Readme.txt Instructions about how to set up and run the sample
setup.wsf Script used for configuration and component registration
submit.wsf Script for submitting a document to BizTalk Server 2002

Microsoft BizTalk Server Toolkit for Microsoft .NET

BizTalk Orchestration Services Samples
The samples in this section primarily demonstrate the use of Microsoft .NET components with BizTalk Orchestration Services. The
documentation in this section applies to the samples written in Microsoft Visual Basic™ .NET.

Orchestration Calling an XML Web Service

XML Web Service Calling an Orchestration

 Note

These samples can be run on Microsoft Windows 2000. Currently, there are known issues with running these samples on
Microsoft Windows XP; these issues will be resolved in the Windows XP SP1 release.

 Important

When using C# components inside BizTalk Server Orchestration, you are prompted in the Method Communication Wizard
to select either:

Initiate a synchronous method call

Wait for a synchronous method call

In the cases where BizTalk Orchestration initiates a synchronous method call, you should implement your own interface
inside the component and then extend the class from this interface. While you can also use the
ClassInterface(ClassInterfaceType.AutoDual) this is not recommended as it may lead to versioning issues with your
components.

In the cases where BizTalk Orchestration waits for a synchronous method call you have two options:

1. Specify your class with ClassInterface(ClassInterfaceType.AutoDual) attribute. This automatically creates the
interface for the component that is suitable for BizTalk Orchestration. This is the method currently used for the two
orchestration samples, but it may lead to versioning issues with your components.

2. Create your own interface inside the component and then extend the class from this interface. Specify the
ClassInterfaceType attribute of None to ensure that your interface is the default interface. Failure to specify a
ClassInterfaceType of None will cause BizTalk Orchestration to fail at runtime because an incorrect default interface
will be created.

For example the following class CreditUtil:

 public interface ICreditUtil

 {

 object StartCreditCheck(object ssn);

 object IsCreditApproved();

 object SetCreditApproval(object bApproval1, object bApproval2);

 }

 [ClassInterface(ClassInterfaceType.None)] public class CreditUtil : ICreditUtil

Microsoft BizTalk Server Toolkit for Microsoft .NET

Orchestration Calling an XML Web Service
This sample shows an orchestration bound to a Visual Basic .NET component that calls a Visual Basic .NET Microsoft ASP.NET XML
Web service.

Path
To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Microsoft BizTalk Server\NET ToolKit\CreditCheckNetOCWS\VB\

To locate a C# version of this sample, browse to the following folder on the BizTalk Server installation drive:

\Microsoft BizTalk Server\NET ToolKit\CreditCheckNetOCWS\C#\

For additional information on using C# components with BizTalk Orchestration Services, refer to
BizTalk Orchestration Services Samples.

User's Guide
Before running the sample, complete the following steps:

1. Run the script setup.cmd to register the CreditCheckUtilNetOCWSVB and CreditCheckerNetWSClientVB Visual Basic .NET
components.

2. Manually copy the CreditCheckerNetOCWSVB folder from the wwwroot directory to your Internet Information Services (IIS)
root directory (\inetpub\wwwroot).

3. Copy the contents of the folder \Program Files\Microsoft BizTalk Server\NET
ToolKit\CreditCheckNetOCWS\wwwroot\CreditCheckerNetOCWS to \inetpub\wwwroot\CreditCheckerNetOCWS.

4. On the Start menu, point to Settings and click Control Panel.

5. Double-click Administrative Tools.

6. Double-click Internet Services Manager.

The Internet Information Services Management console appears.

7. In the Internet Information Services Management console tree, expand <your computer>, and then click Default Web
Site.

8. Locate CreditCheckerNetOCWSVB, right-click the CreditCheckerNetOCWSVB Web site, and then click Properties.

The CreditCheckerNetOCWSVB Properties dialog box appears.

9. Click the Directory tab.

10. In Application Settings, click Create, and then click OK to close the CreditCheckerNetOCWSVB Properties dialog box.

To run the sample:

1. Ensure that the XML Web service is properly installed by running
http://localhost/CreditCheckerNetOCWSVB/CreditCheckerNetVB.asmx?WSDL.

2. Two mechanisms can be used for starting the sample:

To start the sample from the command prompt: Run the Visual Basic script startit.vbs located in the CreditCheckApp
directory.

—Or—

To start the sample from a .NET WinForms application: Run
CreditCheckNetOCWS\CreditCheckAppStart\bin\Debug\StartSked2.exe or load the project in Visual Studio.

 Note

If you have not installed the sample into C:\Program Files\Microsoft BizTalk Server\NET Toolkit\CreditCheckNetOCWS
then you will need to edit the path to the schedule in the WinForm.

3. Enter a number in the text box and the click Submit.

The Visual Basic script calls a local orchestration, CreditCheckOCWS.skx, which calls the CreditCheckerNetWSClientVB
component, which in turn calls the CreditCheckerNetOCWSVB ASP.NET XML Web service and returns the result to the
orchestration. When the orchestration completes the result is displayed with a Visual Basic Scripting Edition (VBScript)
message box.

 Note

Credit will be denied to any number starting with "1" and to any number less than four characters in length.

Programming Notes
This application demonstrates how to call a .NET Framework XML Web service from inside an orchestration business process. The
script initiates the work and then waits for the result. This sample is a modified version of the CreditCheck sample shipped in the
BizTalk Server SDK located in \Microsoft BizTalk Server\SDK\XLANG Samples\ASP on the installation drive.

This sample shows how to call an ASP.NET XML Web service from inside BizTalk Orchestration. BizTalk Orchestration can call XML
Web services created with the SOAP Toolkit 2.0 SP2 or with Visual Studio .NET. In this example, an ASP.NET XML Web service is
used.

The orchestration uses a Fork shape to start both the credit checks simultaneously and a Join shape to wait for both the credit
checks to complete. The ASP script will wait on the IsCreditApproved call until the schedule executes the IsCreditApproved
action.

Three helper components are used. The CreditCheckUtilNetOCWSVB component is used to input data into the schedule and
return the results to the calling Visual Basic script. The Visual Basic .NET component, CreditCheckerNetOCWSVB, which is
accessed through an XML Web Service, is used to simulate calls to two different credit agencies to approve the credit. The
CreditCheckerNetWSClientVB Visual Basic .NET component accesses the ASP.NET Visual Basic .NET CreditCheckerOCWSVB XML
Web Service and is called directly from the client orchestration.

The following folders are included in this sample:

Folder Description
CreditCheckApp Contains the CreditCheck sample schedule and the startit.vbs script
CreditCheckUtilN
etOCWSVB

Contains a helper component to input data to the schedule and return the result

wwwroot\
CreditCheckerNet
OCWSVB

Contains an ASP.NET XML Web service. This component might exist on a remote server (such as a bank) on th
e Internet, and is accessed by the client using an XML Web service call

CreditCheckerNet
WSClientVB

Contains a client component that is used inside the orchestration to access the XML Web service

Related Topics
XML Web Service Calling an Orchestration

BizTalk Orchestration and XML Web Services

Microsoft BizTalk Server Toolkit for Microsoft .NET

XML Web Service Calling an Orchestration
This application demonstrates how to synchronously call a business process from an ASP.NET XML Web service. The script
initiates the work and then waits for the result. This sample is a modified version of the CreditCheck sample located in the folder
\Microsoft BizTalk Server\SDK\XLANG Samples\ASP on the BizTalk Server 2002 installation drive.

Path
To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Microsoft BizTalk Server\NET ToolKit\CreditCheckNetOAWS\VB\

To locate a Microsoft C# version of this sample, browse to the following folder on the BizTalk Server installation drive:

\Microsoft BizTalk Server\NET ToolKit\CreditCheckNetOAWS\C#\

For additional information on using C# components with BizTalk Orchestration Services, refer to
BizTalk Orchestration Services Samples.

User's Guide
Before running the sample, complete the following steps:

1. Run the setup script, setup.cmd.

This script performs the following actions:

Registers the CreditCheckerNetVB component.

Registers the CreditCheckUtilNetOAWS component.

2. Copy the folder wwwroot\CreditCheckerAppWSVB to c:\inetpub\wwwroot\CreditCheckerAppWSVB.

3. On the Start menu, point to Settings and click Control Panel.

4. Double-click Administrative Tools.

5. Double-click Internet Services Manager.

The Internet Information Services Management console appears.

6. In the Internet Information Services Management console tree, expand <your computer>, and then click Default Web
Site.

7. Locate CreditCheckerAppWSVB, right-click the CreditCheckerAppWSVB Web site, and then click Properties.

The CreditCheckerAppWSVB Properties dialog box appears.

8. Click the Directory tab.

9. In Application Settings, click Create, and then click OK to close the CreditCheckerAppWSVB Properties dialog box.

To run the sample:

1. Test the XML Web service to verify that it is properly installed by running
http://localhost/CreditCheckerAppWSVB/CreditCheckerAppWSVB.asmx.

2. Run the Visual Basic .NET application CreditCheckAppWSClientVB.exe in the \Program Files\Microsoft BizTalk Server\NET
ToolKit\CreditCheckNetOAWS\CreditCheckAppWSClient\bin directory.

3. Enter a number in the text box and then click Submit.

The Visual Basic .NET application calls the CreditCheckerAppWSVB XML Web service, which runs the CreditCheckOAWS.skx
orchestration and returns the approval status. Credit will be denied to any number starting with "1" and to any number less

than four characters in length.

Programming Notes
This sample shows how to call an orchestration synchronously with an XML Web service by using a .NET XML Web service as a
front end to BizTalk Orchestration. For an example of how to call orchestration asynchronously, download the Microsoft Office XP
Resource Kit for BizTalk Server from: http://www.microsoft.com/downloads/release.asp?ReleaseID=32549.

The orchestration in this sample uses a Fork shape to start both the credit checks simultaneously and a Join shape to wait for
both credit checks to complete. The ASP script will wait on the IsCreditApproved call until the XLANG schedule executes the
IsCreditApproved action.

To remove the sample, run the script remove.cmd.

The following folders are included in this sample:

Folder Description
CreditCheckApp Contains the CreditCheck sample schedule
CreditCheckAppWSClient
VB

Contains the CreditCheck application that calls the XML Web service front end to BizTalk Orchestration
Services

wwwroot\
CreditCheckerAppWSVB

Contains the XML Web service front end to BizTalk Orchestration Services

CreditCheckerNetVB Contains a helper component to input data to the XLANG schedule and return the result
CreditCheckUtilNetOAWS Contains a helper component that simulates the credit checking functionality

Related Topics
Orchestration Calling an XML Web Service

BizTalk Orchestration and XML Web Services

Microsoft BizTalk Server Toolkit for Microsoft .NET

E-Procurement Sample
In this scenario we look at a business situation where your company is purchasing products from several different suppliers. We
focus on setting up a business solution, using Microsoft BizTalk Server 2002, the Internet, and correlation, that automates the
procurement process that takes place between your company and its suppliers. We call this solution e-procurement.

In this scenario you set up a hub for your company. The hub handles all the purchase order, invoice, and payment documents that
are sent back and forth to and from the suppliers. The EprocSetup application that is included with this sample configures the hub
and one supplier system to use BizTalk Server, the Internet, and correlation to handle these documents and complete the
procurement process. After the configuration is complete you run the DocumentGenerator.vbs script to start a transaction in
which a purchase order is sent to the supplier, an invoice is returned from the supplier, and the hub sends a payment. Finally the
supplier sends a payment acknowledgement and the e-procurement process is complete. The following illustration shows the
business transaction used in this sample.

The documents in this transaction are transmitted to their destinations over the Internet using XML Web services created with
Microsoft Visual Studio .NET. All of the custom components used in this scenario are written in the C# (C sharp) programming
language, and they leverage the runtime callable wrappers (RCWs) provided with the Microsoft BizTalk Server Toolkit for
Microsoft .NET. For more information about using these wrappers, see the BizTalk Server Toolkit for Microsoft .NET Reference.

The following topics cover the setup and configurations that are necessary to work through this scenario:

User's Guide

Programming Notes

 Note

Additional information about deploying the e-procurement configuration to other servers and monitoring activities on the
hub system is available in the BizTalk Server 2002 Help file.

Microsoft BizTalk Server Toolkit for Microsoft .NET

User's Guide
This section contains information about configuring your system to run the e-procurement sample.

 Important

The instructions in this sample assume that this sample and BizTalk Server 2002 are installed on the same drive.

To prepare and run the e-procurement sample, complete the following procedures:

Preliminary Setup

Run the E-Procurement Sample

Microsoft BizTalk Server Toolkit for Microsoft .NET

Preliminary Setup
The steps in this section explain how to configure your system to run the e-procurement sample. Before you can run the e-
procurement sample you must attach correlation databases and configure the hub and supplier systems. In this scenario, both the
hub and the supplier are configured on one BizTalk Server installation. In an actual production environment the hub and the
supplier would be two totally separate entities.

Prerequisites
This sample assumes that you have the following installed on the computer that is running BizTalk Server:

Microsoft BizTalk Server 2002

Microsoft Visual Studio .NET

Microsoft SQL Server™

Message Queuing (also known as MSMQ)

 Note

It is also recommended that you run the sample on a clean installation of BizTalk Server. If you would like to quickly delete
all the BizTalk Server objects (ports, channels, and so on), you can run the CleanBTM.vbs script that is located in the
eprocurement directory.

 Important

The CleanBTM.vbs script removes all configuration information from the BizTalk Messaging Management database. This
script should only be run in a testing environment.

Attach the databases
In this procedure you set up the correlation databases that are used with the e-procurement sample using Microsoft SQL Server
2000. If you are using Microsoft SQL Server 7.0, see the "Create the databases" section. There are two correlation databases, one
for the hub and one for the supplier. These databases capture and hold the globally unique identifier (GUID) and TransactionID
that are generated when the XLANG schedule begins. The GUID and the TransactionID are used to correlate the documents that
are sent and received throughout this transaction to the correct XLANG schedule. The TransactionID is an identifier such as a
purchase order number or invoice number.

 Note

The following instructions assume that SQL Server 2000 is installed on the same computer as BizTalk Server. If SQL Server
is installed on a different computer, you will need to modify these instructions so that they will work in your environment.
Before you begin this procedure, verify that the properties on the CustomCorrelation_Data and
SupplierCustomCorrelation_Data databases are not set to read-only. The database files for the hub are in the hub_database
folder, and the supplier database files are in the supplier_database folder, located in the eprocurement folder.

1. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

The SQL Server Enterprise Manager appears.

2. Expand Microsoft SQL Servers, expand SQL Server Group, and then expand the server on which you want to attach the
database.

3. Click Databases.

4. On the Action menu, point to All Tasks and click Attach Database.

The Attach Database dialog box appears.

5. Click the browse button (…).

The Browse For Existing File dialog box appears.

6. Browse to the hub_database directory, located in the eprocurement directory.

7. Click CustomCorrelation_Data.MDF, and then click OK.

A message box appears indicating that the process was successful.

8. Repeat the steps in this procedure to attach the file SupplierCustomCorrelation_Data.MDF located in the
supplier_database directory, located in the eprocurement directory.

Create the databases
The following procedure should be used if you are using Microsoft SQL Server 7.0 in your BizTalk Server installation.

1. On the Start menu, point to Programs, point to Microsoft SQL Server 7.0, and then click Enterprise Manager.

The SQL Server Enterprise Manager appears.

2. Expand Microsoft SQL Servers, expand SQL Server Group, and then expand the server on which you want to attach the
database.

3. Click Databases.

4. On the Action menu, click New Database.

The Database Properties menu appears.

5. In the Name field, type CustomCorrelation as the name of the database.

6. Click OK.

7. On the Action menu, click New Database…

8. The Database Properties menu appears.

9. In the Name field, type SupplierCustomCorrelation as the name of the database.

10. Click OK.

11. Close the SQL Server Enterprise Manager.

12. On the Start menu, point to Programs, point to Microsoft SQL Server 7.0, and then click Query Analyzer.

The Connect to SQL Server menu appears.

13. Make sure that the correct information to connect to SQL Server is entered. Click OK.

14. On the menu bar, make sure that the value in the DB field is CustomCorrelation. If it is not, click the DB drop-down list box
and select CustomCorrelation.

15. On the File menu, click Open.

16. Browse to the hub_database directory, located in the eprocurement directory.

17. Click the CustomCorrelationTable.sql file.

18. On the Query menu, click Execute. This will process the CustomCorrelationTable.sql file. If the SQL file has been run, you
will see a message stating: The command(s) completed successfully.

19. Repeat the steps in this procedure for the SupplierCustomCorrelationTable.sql file in the supplier_database directory.

20. Close Query Manager.

Set up the e-procurement configuration
In this procedure you run the setup application to configure BizTalk Server for the hub and the supplier to run the e-procurement
sample.

The e-procurement setup application performs the following tasks:

Creates these message queues:

.\private$\receiveinvoice

.\private$\receivepayment

.\private$\receivepaymentack

.\private$\receivepo

.\private$\receivepo2

.\private$\supplierreceivepo

.\private$\supplierreceivepo2

The queues are used to transfer data between the business partners represented by the running hub and supplier XLANG
schedules.

Creates the channels and ports

Each channel is configured to override the messaging port default values and associate the message with a specific XLANG
schedule instance by using the message label.

Registers the COM components

Creates the Message Queuing receive function

Creates the XML Web services

Moves the document specifications to the WebDAV folder

Configures the BizTalk Messaging Management database

Registers the necessary DLLs

Prior to running the setup application, verify that none of the message queues listed above exist. If any of these queues exist, the
e-procurement sample setup might fail.

To set up the e-procurement sample:

1. In Windows® Explorer, browse to the \setup directory located in the eprocurement directory.

2. Double-click eProcSetup.exe.

A setup dialog box appears.

3. Click eProcurement Setup.

A dialog box appears indicating that the setup was successful.

Continue to Run the E-Procurement Sample.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Run the E-Procurement Sample
The e-procurement sample demonstrates how to exchange documents through XML Web services and correlate user-defined
fields in an XLANG schedule. This sample allows you to use a data value that uniquely identifies a document, such as a purchase
order number, and associate that identifier with a running XLANG schedule instance to process a document through the steps of a
business transaction.

To run this sample, follow these steps:

1. In Windows Explorer, browse to the folder \Program Files\Microsoft BizTalk Server\SDK\XLANG Tools.

2. Double-click XLANGMon.exe.

The XLANG Event Monitor appears.

3. In Windows Explorer, browse to the folder \Program Files\Microsoft BizTalk Server\NET ToolKit\eprocurement on the
BizTalk Server installation drive.

4. Double-click DocumentGenerator.vbs.

The hub schedule appears first in the XLANG Event Monitor in the folder of running schedules, followed by the supplier schedule.
Eventually, the supplier schedule finishes and moves to the completed folder, followed by the hub schedule. To verify that the
transaction was completed successfully, browse to the PaymentAckReceived directory located in the eprocurement directory. This
directory should contain a payment acknowledgement XML file that uses the following naming convention: payack_[GUID].xml.

To run the sample and have the purchase order denied on the hub, change the POTotal in PO.xml to a value greater than 1000. To
run the sample and have the purchase order denied by the supplier system, change the POTotal in PO.xml to a value less than
300. The PO.xml file is located in the eprocurement directory.

 Note

By default, the hub and supplier schedules are bound to the Windows Script Component located at C:\Program
Files\Microsoft BizTalk Server\NET ToolKit\eprocurement\script_common\Message.wsc. If the component does not exist at
this location, the schedule will fail. To resolve this issue, open the schedules in BizTalk Orchestration Designer and use the
Script Component Binding Wizard to rebind the script file to the correct drive and path for the component.

Continue to Programming Notes.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Programming Notes
On both the hub and supplier systems, BizTalk Server 2002 XLANG schedules are used to implement the business processes and
logic required for a business transaction. The following sections describe the flow of documents through both systems:

Hub: Send Purchase Order to Supplier

Supplier: Receive PO and Send Invoice to Hub

Hub: Receive Invoice and Send Payment to Supplier

Supplier: Receive Payment and Send Acknowledgement to Hub

The following sections provide implementation details for the scenario:

XLANG Schedule Activation

E-Procurement XLANG Schedule Correlation

Creating XML Web Services

Uninstalling the E-Procurement Sample

Microsoft BizTalk Server Toolkit for Microsoft .NET

Hub: Send Purchase Order to Supplier
A business transaction is initiated when the ordering application generates a purchase order (PO) named PO.xml, and delivers it
to the ReceivePO message queue, which is monitored by the ReceivePO receive function. The document is submitted to a BizTalk
Messaging Services channel configured for PO processing. The HubReceivePO messaging port activates a new instance of the
XLANG schedule hub.skx, and then delivers the document to the ReceivePO port on that XLANG schedule. The schedule contains
some business logic to apply a simple approval process to the purchase order. If the PO.xml document is approved, it is sent to
the HubSendPO channel for further processing. When the processing completes and the correlation information is written to a
database, the purchase order is sent to the supplier by means of an application integration component (AIC) that functions as a
client to the supplier's XML Web service. The following illustration shows the purchase order flow through the hub system.

 Notes

If the PO.xml document is denied, the schedule terminates, and no further documents are processed for the business
transaction.

The purchase order number field in the document PO.xml is populated with a value of "123456789". This value is not used
in the transaction, because one is generated by the pipeline component. You can view this value in the payment
acknowledgement document created by running this sample.

Continue to Supplier: Receive PO and Send Invoice to Hub .

Microsoft BizTalk Server Toolkit for Microsoft .NET

Supplier: Receive PO and Send Invoice to Hub
The supplier's XML Web service accepts the incoming purchase orders. The XML Web service submits the PO to a BizTalk
Messaging Services channel configured for PO processing. The SupplierReceivePO messaging port then activates a new instance
of the XLANG schedule supplier.skx, and delivers the document to the ReceivePOfromHub port on that XLANG schedule. The
schedule contains some business logic to apply a simple approval process to the purchase order. If the PO.xml document is
approved, it is sent to a component that transforms the purchase order into an invoice document. Then, the invoice is sent to the
SupplierSendInvoice channel for further processing. When the processing completes and the correlation information is written to
a database, the invoice is sent back to the hub by means of an AIC that functions as a client to the hub's XML Web service. The
following illustration shows the incoming purchase order and the resulting invoice flow through the supplier system.

 Notes

The transform component used in the supplier schedule simulates the function of a sales or accounting application that
accepts purchase order documents and generates the corresponding invoice documents.

The transform component is written in C#, and is bound to the supplier XLANG schedule through the interop assembly for
accessing managed code through COM.

Continue to Hub: Receive Invoice and Send Payment to Supplier.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Hub: Receive Invoice and Send Payment to Supplier
The hub's XML Web service accepts the incoming invoices. The XML Web service submits the invoice to a BizTalk Messaging
Services channel configured for invoice processing. Then the pipeline component on that channel correlates the incoming
document with an XLANG schedule instance identifier. This correlation information is obtained by reading the key-pair values
from the custom correlation database. The invoice is sent to the correlated XLANG schedule instance, and resumes processing on
the ReceiveInvoice port. After the document is back in the schedule, it is sent to a component that transforms the invoice into a
payment. The payment is sent to the HubSendPayment channel for further processing. When the processing completes, the
payment is sent to the supplier by means of an AIC that functions as a client to the supplier's XML Web service. The following
illustration shows the invoice and the resulting payment flow through the hub system.

 Note

The transform component used in the hub schedule simulates the function of an ordering or accounting application that
accepts invoice documents and generates the corresponding payments.

Continue to Supplier: Receive Payment and Send Acknowledgement to Hub.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Supplier: Receive Payment and Send Acknowledgement to Hub
The supplier's XML Web service accepts the incoming payments for invoices that it has issued. The XML Web service submits the
payment to a BizTalk Messaging Services channel configured for payment processing. Then the pipeline component on that
channel correlates the incoming document with an XLANG schedule instance identifier. This correlation information is obtained
by reading the key-pair values from the supplier custom correlation database. The payment is sent to the correlated XLANG
schedule instance, and resumes processing on the ReceivePayment port. After the document is back in the schedule, it is sent to a
component that transforms the payment into a payment acknowledgement. The payment acknowledgement is sent to the
SupplierSendPaymentAck channel for further processing. When the processing completes, the payment acknowledgement is sent
back to the hub by means of an AIC that functions as a client to the hub's XML Web service. At this point, the supplier XLANG
schedule for this transaction completes. The following illustration shows the payment and the resulting acknowledgement flow
through the hub system.

The XLANG schedule instance on the hub system completes after it receives the payment acknowledgement, correlates it to the
correct purchase order, and writes out the acknowledgement document to the folder \eprocurement\PaymentAckReceived.

Microsoft BizTalk Server Toolkit for Microsoft .NET

XLANG Schedule Activation
BizTalk Server messaging ports activate the XLANG schedules used in this scenario. However, the first actions within the
schedules are bound to Message Queuing shapes, rather than BizTalk Messaging shapes, so that per-instance message
queues are not created. This helps optimize the performance of the schedule by preventing the creation, and subsequent deletion,
of a message queue used only for initiating the schedule.

Related Topics

E-Procurement XLANG Schedule Correlation

Creating XML Web Services

Uninstalling the E-Procurement Sample

Microsoft BizTalk Server Toolkit for Microsoft .NET

E-Procurement XLANG Schedule Correlation
This scenario uses two correlation databases, one for the hub and one for the supplier. The BizTalk Server channel uses a custom
pipeline component to save and recall correlation information in these databases. The correlation information consists of the
globally unique identifier (GUID) of the XLANG schedule instance, and a user-defined transaction identifier (TransactionID). The
XLANG schedule GUID is automatically generated when the XLANG schedule begins. The TransactionID is a unique identifier
contained within a specific document instance, such as a purchase order number or invoice number. Together, the XLANG
schedule GUID and the TransactionID are used to correlate the documents exchanged in a business transaction to the correct
XLANG schedule instance.

Storing the correlation information
In this scenario, when the hub receives a new purchase order from the ordering application, the GUID of the XLANG schedule is
extracted and stored in the CustomCorrelation database along with the PO number as a TransactionID. When the supplier
receives the purchase order and activates an XLANG schedule of its own, the GUID of the supplier's XLANG schedule is stored
along with the invoice number as the TransactionID. The supplier system stores this pair of values in its own
SupplierCustomCorrelation database. These initial correlation values are used to associate the remaining incoming and outgoing
documents to the correct running XLANG schedule instance as the transaction progresses until the XLANG schedule completes.

Reading the correlation information
The correlation of a document to its running XLANG schedule instance begins when the hub receives an invoice associated with a
purchase order. At this point, BizTalk Server queries the invoice for the TransactionID (PO number) and looks up the associated
XLANG schedule GUID in the CustomCorrelation database. If a running hub.skx schedule instance matches that GUID, the invoice
document is passed to that schedule for processing.

Similarly, when the supplier receives a payment from the hub, BizTalk Server queries the payment for the TransactionID (invoice
number) and looks up the associated XLANG schedule GUID in the SupplierCustomCorrelation database. If a running supplier.skx
schedule instance matches that GUID, the payment document is passed to that schedule for processing.

Finally, when the hub receives the payment acknowledgement, BizTalk Server queries the acknowledgement for the TransactionID
(PO number) and looks up the associated XLANG schedule GUID in the CustomCorrelation database. If a running hub.skx
schedule instance matches that GUID, the payment acknowledgement document is passed to that schedule for processing.

Related Topics

XLANG Schedule Activation

Creating XML Web Services

Uninstalling the E-Procurement Sample

Microsoft BizTalk Server Toolkit for Microsoft .NET

Creating XML Web Services
This section contains information about creating the XML Web services used in this scenario. These XML Web services provide a
mechanism to accept incoming documents through SOAP. The documents are sent from a client to the host running an XML Web
service. The client obtains a reference, also called a proxy, to the remote host by specifying the URL of the XML Web service. After
the proxy is established, the client can use the methods provided by the XML Web service.

In this scenario, the BizTalk messaging ports contain an application integration component (AIC) that uses a proxy to the
appropriate remote XML Web service method call. For example, the messaging port on the seller system that sends an invoice
contains an AIC with a proxy to the XML Web service method Process_invoice(invoice) provided by the hub system. Note that
the invoice argument passed to the method represents a strongly typed object corresponding to the CommonInvoice.xml
document schema.

The XML Web services provide methods to accept a specific document type, such as a purchase order or invoice, and submit that
document directly to a BizTalk Server 2002 channel for further processing.

The following sections describe how to create these XML Web services:

Converting a BizTalk Document to a C# Class

Calling an XML Web Service from an AIC

Microsoft BizTalk Server Toolkit for Microsoft .NET

Converting a BizTalk Document to a C# Class
For every document that is passed to an XML Web service, you need to create a corresponding C# class. The following steps
illustrate this process:

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Editor.

2. On the File menu, click Retrieve from WebDAV.

The Retrieve from WebDAV dialog box appears.

3. Browse for an XML document schema, and then click Open.

4. On the Tools menu, select Export XSD Schema.

The Export XSD Schema dialog box appears.

5. Type a name for the XSD file into the File name box, and then click Save.

6. Close BizTalk Editor.

7. On the Start menu, point to Programs, point to Microsoft Visual Studio .NET, point to Visual Studio .NET Tools, and
then click Visual Studio .NET Command Prompt.

The Visual Studio .NET Command Prompt window appears.

8. Run the XSD program to create a C# class from the XSD file you created previously by typing:

XSD filename.xsd /c

This command creates a new C# class named filename.cs.

9. Edit this C# class file to add a namespace declaration. For example:

 namespace namespacename {

 <contents of file>

 }

1. Update the XML element information.

For example, using the following output:

/// <remarks/>

[System.Xml.Serialization.XmlRootAttribute("Seller", Namespace="", IsNullable=false)]

public class Seller {

/// <remarks/>

[System.Xml.Serialization.XmlElementAttribute("Address", typeof(Address))]

[System.Xml.Serialization.XmlElementAttribute("ContactInfo", typeof(ContactInfo))]

public object[] Items;

}

Remove the public object[] Items statement, and add new declarations, shown in bold:

/// <remarks/>

[System.Xml.Serialization.XmlRootAttribute("Seller”)]

public class Seller {

/// <remarks/>

[System.Xml.Serialization.XmlElementAttribute("Address", typeof(Address))]

public Address[] Address;

[System.Xml.Serialization.XmlElementAttribute("ContactInfo", typeof(ContactInfo))]

public ContactInfo[] ContactInfo;

}

1. Make the changes in the preceding step to all XML element declarations in the file.

2. Use this new C# class to create an XML Web service in Visual Studio .NET.

3. Add the new C# (.cs) file to the project.

4. Add a custom method to the XML Web service code.

For example:

[WebMethod]

public string Process_invoice(CommonInvoice invoice)

{

StringWriter sw = new StringWriter();

XmlSerializer serializer = new XmlSerializer(typeof(CommonInvoice));

serializer.Serialize(sw, invoice);

Interop.BTSInterchangeLib.InterchangeClass BTSObj = new Interop.BTSInterchangeLib.InterchangeClass();

string result = BTSObj.Submit(Interop.BTSInterchangeLib.BIZTALK_OPENNESS_TYPE.BIZTALK_OPENNESS_TYPE_NOTOPEN,

sw.ToString(), // the document body

null, // docname

null, // sourcequalifier

null, // sourceid

null, // destqualifier

null, // destid

"HubReceiveInvoice", // channel

null, // filepath

null, // envelope

0); // passthrough

BTSObj = null;

return result;

}

 Notes

The [Webmethod] declaration must be added to the method to make it externally available.

StringWriter and XMLSerializer classes are used to convert the passed-in object into an XML string.

Test the XML Web service page to ensure that it works. Also note the URL of the XML Web service to reference in the client
program.

At this point, the client program can add a reference to the XML Web service method that you just created.

Continue to Calling an XML Web Service from an AIC.

Microsoft BizTalk Server Toolkit for Microsoft .NET

Calling an XML Web Service from an AIC
This section describes the steps required for an application integration component (AIC) to call an XML Web service.

Update the resource file
Create a project in Microsoft Visual Studio .NET for the AIC that calls the XML Web service. View the Reference.cs file to ensure
that the XMLRoot information contained in this class is correct, and that the structure matches the class in the original .cs file
created for the XML Web service.

To view and update the Reference.cs file, do the following:

1. In the Solution Explorer, click the Show All Files button.

2. Expand Web References, expand the name of the XML Web Service host, expand Reference.map, and then double-click
on Reference.cs.

3. Every element in the XML file has been converted to a public class. Search for the root element in the XML file.

4. The root element appears as:

 [System.Xml.Serialization.XmlAttribute(“Namespace=http://tempuri.org”)]

 public class RootElementName {

1. Change this to the following

 [System.Xml.Serialization.XmlRoot(“RootElementName”)]

 public class RootElementName {

Where RootElementName is the name of the document’s root element.

1. Repeat steps 4 and 5 for every element in the document.

Add a reference to the XML Web service
The AIC project must contain a reference to access the XML Web service remotely. After this reference is made, the project acts as
a client to that XML Web service. For example:

// Reference to the supplier’s XML Web service

using Supp_send_invoice.localhost;

Implement the IBTSAppIntegration.ProcessMessage method
To indicate that the project is an AIC, the code must implement the ProcessMessage method on the IBTSAppIntegration
interface.

The following example is from the supplier's XML Web service client code that sends an invoice to the hub:

string IBTSAppIntegration.ProcessMessage(string strDocument)

{

// The incoming string is CommonInvoice, convert the

// xml string into an object by deserializing it

CommonInvoice invoice;

XmlSerializer serializer = new XmlSerializer(typeof(CommonInvoice));

TextReader stringstream = new StringReader(strDocument);

invoice = ((CommonInvoice)serializer.Deserialize(stringstream));

// Open up the hub XML Web service

Hub_services web_service = new Hub_services();

// Process the order

string result = web_service.Process_invoice(invoice);

web_service = null;

return result;

}

Register the AIC for use with COM
When creating your AIC project in Microsoft Visual Studio .NET, you might want to use a fixed GUID value to maintain binary
compatibility. Otherwise, the GUID for the component changes every time you compile the code. In that case, any references to
this component would have to be rebound in your XLANG schedules. The following procedures assign a static GUID value to the
component and register the AIC for COM interop:

1. Add the following reference to your project:

using System.Runtime.InteropServices;

1. Just before the class declaration in your project, add the GUID declaration (shown in bold):

 [Guid(“”)]

 public class AIC_name : IBTSAppIntegration

 Note

The "Guid" literal string shown above is case sensitive.

1. On the Tools menu, click Create GUID.

The Create GUID dialog box appears.

2. Select option 4, Registry Format, click Copy, and then click Exit.

3. Place your cursor between the quotes in the [Guid(“”)] declaration and paste in the GUID value.

4. In the Solution Explorer pane, right-click the project and then click Properties.

The project Property Pages dialog box appears.

5. Click the Configuration Properties folder in the left pane.

6. In the Configuration drop-down menu, select All Configurations.

7. Change the value of the Register for COM interop property to True.

Related Topics

XLANG Schedule Activation

E-Procurement XLANG Schedule Correlation

Uninstalling the E-Procurement Sample

Microsoft BizTalk Server Toolkit for Microsoft .NET

Uninstalling the E-Procurement Sample
A script is not provided to remove the files and BizTalk Messaging Configuration objects, such as messaging ports and channels,
that are created by running the setup application. The following list contains the BizTalk Messaging Configuration objects, files,
folders, and libraries used by this sample. These can be manually deleted when you are finished running this sample.

Channels
HubReceivePO, HubSendPO, SupplierReceivePO, HubReceiveInvoice, SupplierSendInvoice, HubSendPayment,
SupplierReceivePayment, SupplierSendPaymentAck, HubReceivePaymentAck, HubSendPayAckToFile

Messaging ports
HubReceivePO, HubSendPO, SupplierReceivePO, HubReceiveInvoice, SupplierSendInvoice, HubSendPayment,
SupplierReceivePayment, SupplierSendPaymentAck, HubReceivePaymentAck, HubSendPayAckToFile

Organizations
Hub, Supplier

Document definitions
EcommonInvoice, EcommonPayment, EcommonPO, EPaymentAck

Receive functions (in BizTalk Server Administration)
Receive PO

Private messaging queues (in Computer Management)
receiveinvoice, receivepayment, receivepaymentack, receivepo, receivepo2, supplierreceivepo, supplierreceivepo2

BizTalk Server repository files (WebDAV)
ECommonInvoice.xml, eCommonPayment.xml, ECommonPO.xml, ePaymentAck.xml

Registered libraries
db_common.dll, hub_send_payment.dll, hub_send_po.dll, hub_comps.dll, hub_correlation.dll, supp_send_invoice.dll,
supp_send_payack.dll, supp_comps.dll, supplier_correlation.dll

XML Web services
E_Proc_Hub_WS, E_Proc_Supplier_WS

Related Topics

XLANG Schedule Activation

E-Procurement XLANG Schedule Correlation

Creating XML Web Services

Microsoft BizTalk Server Toolkit for Microsoft .NET

BizTalk Server Toolkit for Microsoft .NET Reference
This section provides reference information about the following runtime callable wrappers (RCWs) that are included in the
Microsoft® BizTalk™ Server Toolkit for Microsoft .NET:

BizTalkTrackData

BTSConfig

BTSInterchange

In addition, reference information is provided for the following BizTalk Server interfaces that you can implement by using the
BizTalk Server Toolkit for Microsoft .NET:

IBTSAppIntegration

IBTSCustomProcess

IPipelineComponent

IPipelineComponentAdmin

 Note

The following messaging configuration objects and their associated subobjects can be accessed through the BTSConfig
class:

IBizTalkChannel

IBizTalkDocument

IBizTalkEnvelope

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

 Note

The reference documentation included with the Microsoft BizTalk Server Toolkit for Microsoft .NET is not comprehensive.
For information about all referenced objects, subobjects, and enumerated values, see the BizTalk Server 2002 Help.

Microsoft BizTalk Server Toolkit for Microsoft .NET

BizTalkTrackData
BizTalkTrackData is a runtime callable wrapper (RCW) for IBizTalkTrackData. Use this object to facilitate programmatic access
to the tracking information of Microsoft BizTalk Server 2002. This object complements the BTSInterchange object so that returns
from BTSInterchange methods can be passed to these methods for reading tracking data about the documents submitted to
BizTalk Server 2002.

 Namespace Hierarchy
 Microsoft

 BizTalk
 BizTalkTrackData
 BTSConfig
 BTSInterchange

 Declaration
[C#]

public class BizTalkTrackData

 Members
BizTalkTrackData defines the following methods:

Method Description
 GetInDocDetailsReturns a DataSet that contains a list of the documents that were submitted to BizTalk Server by using the

Submit method.
 GetInterchangesReturns a DataSet that contains a list of interchanges that were submitted to BizTalk Server by using the Sub

mit method, including all the data from the Tracking database.
 GetOutDocDetailsReturns a DataSet that contains a list of the documents that were generated as a result of the Submit metho

d.

 To Create
The following code example shows how you create an instance of the BizTalkTrackData class:

using Microsoft.BizTalk;

BizTalkTrackData tracker = new BizTalkTrackData();

The constructor for BizTalkTrackData does not take any parameters.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSDocTrackingLib.dll

 Related Topics
Data Tracking and Interchange Application

Microsoft BizTalk Server Toolkit for Microsoft .NET

GetInDocDetails Method
Returns a DataSet that contains a list of the documents that were submitted to BizTalk Server by using the Submit method.

 Member List
 BizTalkTrackData

 GetInDocDetails
 GetInterchanges
 GetOutDocDetails

 Method Declaration
[C#]

public DataSet GetInDocDetails(

string SubmissionID

)

 Parameters
SubmissionID

[in] Contains the SubmissionHandle string returned by Submit for this document instance.

 Return Values
This method returns a DataSet that contains a list of the documents that were submitted to BizTalk Server by using the Submit
method and stores the list in System.Data.DataSet.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This method returns specific information for an input document.

To return the DataSet as XML data, you can use the GetXml method, as shown in the following C# code sample:

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSInterchangeLib;

BizTalkTrackData tracker = new BizTalkTrackData();

// Obtain an instance of BTSInterchange.

// Submit the document to BizTalk and obtain the submission handle.

string submissionID = interchange.Submit(xmlDoc.OuterXml);

DataSet MyDataSets = tracker.GetInDocDetails(submissionID);

Console.WriteLine(MyDataSets.GetXml());

 Requirements

Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSDocTrackingLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

GetInterchanges Method
Returns a DataSet that contains a list of interchanges that were submitted to BizTalk Server by using the Submit method,
including all the data from the Tracking database.

 Member List
 BizTalkTrackData

 GetInDocDetails
 GetInterchanges
 GetOutDocDetails

 Method Declaration
[C#]

public DataSet GetInterchanges(

string SubmissionID

)

 Parameters
SubmissionID

[in] Contains the SubmissionHandle string returned by Submit for this interchange.

 Return Values
This method returns a DataSet that contains a list of the interchanges that were included in the submission, including all the data
from the Tracking database, and stores the list in System.Data.DataSet.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
You can check the Tracking database to confirm or check delivery status because transport-specific information, such as delivery
times and receipt flags, appears in the Tracking database.

To return the DataSet as XML data, you can use the GetXml method, as shown in the following C# code sample:

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSInterchangeLib;

BizTalkTrackData tracker = new BizTalkTrackData();

// Obtain an instance of BTSInterchange.

//Submit the document to BizTalk and obtain the submission handle.

string submissionID = interchange.Submit(xmlDoc.OuterXml);

DataSet MyDataSets = tracker.GetInterchanges(submissionID);

Console.WriteLine(MyDataSets.GetXml());

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSDocTrackingLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

GetOutDocDetails Method
Returns a DataSet that contains a list of the documents that were generated as a result of the Submit method.

 Member List
 BizTalkTrackData

 GetInDocDetails
 GetInterchanges
 GetOutDocDetails

 Method Declaration
[C#]

public DataSet GetOutDocDetails(

string SubmissionID

)

 Parameters
SubmissionID

[in] Contains the SubmissionHandle string returned by Submit for this document instance.

 Return Values
This method returns a DataSet that contains a list of the documents that were generated as a result of the submission and stores
the list in System.Data.DataSet.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This method returns specific information for an output document—for example, PO #123456—from a Submit call made on a
specific date.

To return the DataSet as XML data, you can use the GetXml method, as shown in the following C# code sample:

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSInterchangeLib;

BizTalkTrackData tracker = new BizTalkTrackData();

// Obtain an instance of BTSInterchange.

// Submit the document to BizTalk and obtain the submission handle.

string submissionID = interchange.Submit(xmlDoc.OuterXml);

DataSet MyDataSets = tracker.GetOutDocDetails(submissionID);

Console.WriteLine(MyDataSets.GetXml());

 Requirements

Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSDocTrackingLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

BTSConfig
BTSConfig is a runtime callable wrapper (RCW) for IBizTalkConfig. Use this object to create channels, document specifications,
envelopes, organizations, ports, and port groups.

 Namespace Hierarchy
 Microsoft

 BizTalk
 BizTalkTrackData
 BTSConfig
 BTSInterchange

 Declaration
[C#]

public class BTSConfig : BTSObjectModelLib.BizTalkConfigClass

 Members
BTSConfig defines the following properties:

Property Description
 Channels Contains an ADO recordset that contains all IBizTalkChannel objects.
 DataSetChannels Contains a DataSet that contains all IBizTalkChannel objects.
 DataSetDocuments Contains a DataSet that contains all IBizTalkDocument objects.
 DataSetEnvelopes Contains a DataSet that contains all IBizTalkEnvelope objects.
 DataSetOrganizations Contains a DataSet that contains all IBizTalkOrganization objects.
 DataSetPortGroups Contains a DataSet that contains all IBizTalkPortGroup objects.
 DataSetPorts Contains a DataSet that contains all IBizTalkPort objects.
 Documents Contains an ADO recordset that contains all IBizTalkDocument objects.
 Envelopes Contains an ADO recordset that contains all IBizTalkEnvelope objects.
 Organizations Contains an ADO recordset that contains all IBizTalkOrganization objects.
 PortGroups Contains an ADO recordset that contains all IBizTalkPortGroup objects.
 Ports Contains an ADO recordset that contains all IBizTalkPort objects.

BTSConfig defines the following methods:

Method Description
 CreateChannel Returns a new IBizTalkChannel object.
 CreateDocument Returns a new IBizTalkDocument object.
 CreateEnvelope Returns a new IBizTalkEnvelope object.
 CreateOrganization Returns a new IBizTalkOrganization object.
 CreatePort Returns a new IBizTalkPort object.
 CreatePortGroup Returns a new IBizTalkPortGroup object.
 get_Certificates Returns an ADO recordset that contains all specified certificates.

 To Create
The following code example shows how you create an instance of the BTSConfig class:

using System;

using System.Data;

using Microsoft.BizTalk;

ADODB._Recordset MyADORecordSets;

DataSet MyDataSets;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

// Retrieve ADO recordsets.

MyADORecordSets = (ADODB._Recordset)BTConfig.Channels;

// Retrieve datasets.

MyDataSets = BTConfig.DataSetChannels;

The constructor for the BTSConfig class does not take any parameters.

 Remarks
When IBizTalkPort and IBizTalkChannel objects are created, BizTalk Server automatically creates some associated subobjects.
You can access these subobjects by using properties of the IBizTalkPort and IBizTalkChannel objects.

The following table shows the relationship between objects, their subobjects, and the properties used to obtain the subobjects.

Subobject Associated obje
ct

Property to set

BizTalkEndPoint BizTalkPort DestinationEndpoint
BizTalkEndPoint BizTalkChannel SourceEndpoint
BizTalkLoggingInfo BizTalkChannel LoggingInfo
BizTalkTransportInfo BizTalkPort PrimaryTransport, SecondaryTransport
BizTalkServiceWindowI
nfo

BizTalkPort ServiceWindowInfo

BizTalkCertificateInfo BizTalkPort EncryptionCertificateInfo
BizTalkCertificateInfo BizTalkChannel SignatureCertificateInfo, VerifySignatureCertificateInfo, or DecryptionCertifi

cateInfo

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

 Related Topics
Configuration Application

Microsoft BizTalk Server Toolkit for Microsoft .NET

Channels Property
Contains an ADO recordset that contains all IBizTalkChannel objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public override object Channels

 Parameters
None

 Return Values
This property returns all IBizTalkChannel objects.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN®, the Microsoft Developer Network, at
msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkChannel object in the
database. The fields in each record contain the following information:

http://msdn.microsoft.com/library/default.asp

Field content Item number
Handle 0
Name 1
DateModified 2

Additional information about Microsoft ActiveX® Data Objects (ADO) is available on MSDN at
msdn.microsoft.com/library/default.asp.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

http://msdn.microsoft.com/library/default.asp

Microsoft BizTalk Server Toolkit for Microsoft .NET

CreateChannel Method
Returns a new IBizTalkChannel object.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Method Declaration
[C#]

public override object CreateChannel()

 Parameters
None

 Return Values
This method returns a new IBizTalkChannel object.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

CreateDocument Method
Returns a new IBizTalkDocument object.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Method Declaration
[C#]

public override object CreateDocument()

 Parameters
None

 Return Values
This method returns a new IBizTalkDocument object.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

CreateEnvelope Method
Returns a new IBizTalkEnvelope object.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Method Declaration
[C#]

public override object CreateEnvelope()

 Parameters
None

 Return Values
This method returns a new IBizTalkEnvelope object.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

CreateOrganization Method
Returns a new IBizTalkOrganization object.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Method Declaration
[C#]

public override object CreateOrganization()

 Parameters
None

 Return Values
This method returns a new IBizTalkOrganization object.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

CreatePort Method
Returns a new IBizTalkPort object.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Method Declaration
[C#]

public override object CreatePort()

 Parameters
None

 Return Values
This method returns a new IBizTalkPort object.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

CreatePortGroup Method
Returns a new IBizTalkPortGroup object.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Method Declaration
[C#]

public override object CreatePortGroup()

 Parameters
None

 Return Values
This method returns a new IBizTalkPortGroup object.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

DataSetChannels Property
Contains a DataSet that contains all IBizTalkChannel objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public DataSet DataSetChannels

 Parameters
None

 Return Values
This property returns all IBizTalkChannel objects and stores them in System.Data.DataSet.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the DataSet returned by this property contains information about an existing IBizTalkChannel object in the
database. The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2

To return the DataSet as XML data, you can use the GetXml method, as shown in the following C# code sample:

using System;

using System.Data;

using Microsoft.BizTalk;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

MyDataSets = BTConfig.DataSetChannels;

MessageBox.Show (MyDataSets.GetXml(),"DataSet Channels");

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

DataSetDocuments Property
Contains a DataSet that contains all IBizTalkDocument objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public DataSet DataSetDocuments

 Parameters
None

 Return Values
This property returns all IBizTalkDocument objects and stores them in System.Data.DataSet.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the DataSet returned by this property contains information about an existing IBizTalkDocument object in the
database. The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2

To return the DataSet as XML data, you can use the GetXml method, as shown in the following C# code sample:

using System;

using System.Data;

using Microsoft.BizTalk;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

MyDataSets = BTConfig.DataSetDocuments;

MessageBox.Show (MyDataSets.GetXml(),"DataSet Documents");

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

DataSetEnvelopes Property
Contains a DataSet that contains all IBizTalkEnvelope objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public DataSet DataSetEnvelopes

Parameters
None

 Return Values
This property returns all IBizTalkEnvelope objects and stores them in System.Data.DataSet.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the DataSet returned by this property contains information about an existing IBizTalkEnvelope object in the
database. The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2
Format 3

To return the DataSet as XML data, you can use the GetXml method, as shown in the following C# code sample:

using System;

using System.Data;

using Microsoft.BizTalk;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

MyDataSets = BTConfig.DataSetEnvelopes;

MessageBox.Show (MyDataSets.GetXml(),"DataSet Envelopes");

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

DataSetOrganizations Property
Contains a DataSet that contains all IBizTalkOrganization objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public DataSet DataSetOrganizations

 Parameters
None

 Return Values
This property returns all IBizTalkOrganization objects and stores them in System.Data.DataSet.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the DataSet returned by this property contains information about an existing IBizTalkOrganization object in the
database. The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2
IsDefault 3

To return the DataSet as XML data, you can use the GetXml method, as shown in the following C# code sample:

using System;

using System.Data;

using Microsoft.BizTalk;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

MyDataSets = BTConfig.DataSetOrganizations;

MessageBox.Show (MyDataSets.GetXml(),"DataSet Organizations");

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

DataSetPortGroups Property
Contains a DataSet that contains all IBizTalkPortGroup objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public DataSet DataSetPortGroups

 Parameters
None

 Return Values
This property returns all IBizTalkPortGroup objects and stores them in System.Data.DataSet.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the DataSet returned by this property contains information about an existing IBizTalkPortGroup object in the
database. The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2

To return the DataSet as XML data, you can use the GetXml method, as shown in the following C# code sample:

using System;

using System.Data;

using Microsoft.BizTalk;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

MyDataSets = BTConfig.DataSetPortGroups;

MessageBox.Show (MyDataSets.GetXml(),"DataSet Port Groups");

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

DataSetPorts Property
Contains a DataSet that contains all IBizTalkPort objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public DataSet DataSetPorts

 Parameters
None

 Return Values
This property returns all IBizTalkPort objects and stores them in System.Data.DataSet.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the DataSet returned by this property contains information about an existing IBizTalkPort object in the database.
The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2

To return the DataSet as XML data, you can use the GetXml method, as shown in the following C# code sample:

using System;

using System.Data;

using Microsoft.BizTalk;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

MyDataSets = BTConfig.DataSetPorts;

MessageBox.Show (MyDataSets.GetXml(),"DataSet Ports");

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

Documents Property
Contains an ADO recordset that contains all IBizTalkDocument objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public override object Documents

 Parameters
None

 Return Values
This property returns all IBizTalkDocument objects.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkDocument object in
the database. The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2

Additional information about ADO is available on MSDN at msdn.microsoft.com/library/default.asp.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

http://msdn.microsoft.com/library/default.asp

Microsoft BizTalk Server Toolkit for Microsoft .NET

Envelopes Property
Contains an ADO recordset that contains all IBizTalkEnvelope objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public override object Envelopes

Parameters
None

 Return Values
This property returns all IBizTalkEnvelope objects.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkEnvelope object in
the database. The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2
Format 3

Additional information about ADO is available on MSDN at msdn.microsoft.com/library/default.asp.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

http://msdn.microsoft.com/library/default.asp

Microsoft BizTalk Server Toolkit for Microsoft .NET

get_Certificates Method
Returns an ADO recordset that contains all specified certificates.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public override object get_Certificates(

BTSObjectModelLib.BIZTALK_STORE_TYPE StoreType,

BTSObjectModelLib.BIZTALK_USAGE_TYPE UsageType,

string NamePrefix

)

 Parameters
StoreType

[in] Determines the store type. Valid values for this parameter are defined by the BIZTALK_STORE_TYPE enumeration.

UsageType

[in] Determines the usage type. Valid values for this parameter are defined by the BIZTALK_USAGE_TYPE enumeration.

NamePrefix

[in] Contains a prefix used as the selection criteria for certificate names. Any certificate Name starting with this value is returned
in the recordset. This value is case sensitive.

 Return Values
This method returns all specified certificates.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional

information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkCertificateInfo
object in the database. The fields in each record contain the following information:

Field content Item number
Name 0
Reference 1
Store 2
Usage 3

Additional information about ADO is available on MSDN at msdn.microsoft.com/library/default.asp.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp

Microsoft BizTalk Server Toolkit for Microsoft .NET

Organizations Property
Contains an ADO recordset that contains all IBizTalkOrganization objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public override object Organizations

 Parameters
None

 Return Values
This property returns all IBizTalkOrganization objects.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkOrganization object
in the database. The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2
IsDefault 3

Additional information about ADO is available on MSDN at msdn.microsoft.com/library/default.asp.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

http://msdn.microsoft.com/library/default.asp

Microsoft BizTalk Server Toolkit for Microsoft .NET

PortGroups Property
Contains an ADO recordset that contains all IBizTalkPortGroup objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public override object PortGroups

 Parameters
None

 Return Values
This property returns all IBizTalkPortGroup objects.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkPortGroup object in
the database. The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2

Additional information about ADO is available on MSDN at msdn.microsoft.com/library/default.asp.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

http://msdn.microsoft.com/library/default.asp

Microsoft BizTalk Server Toolkit for Microsoft .NET

Ports Property
Contains an ADO recordset that contains all IBizTalkPort objects.

 Member List
 BTSConfig

 Channels
 CreateChannel
 CreateDocument
 CreateEnvelope
 CreateOrganization
 CreatePort
 CreatePortGroup
 DataSetChannels
 DataSetDocuments
 DataSetEnvelopes
 DataSetOrganizations
 DataSetPortGroups
 DataSetPorts
 Documents
 Envelopes
 get_Certificates
 Organizations
 PortGroups
 Ports

 Property Declaration
[C#]

public override object Ports

 Parameters
None

 Return Values
This property returns all IBizTalkPort objects.

 Note

In addition to the HRESULT values listed on the error messages page, this property returns OLEDB provider errors.
Additional information about OLEDB is available on MSDN at msdn.microsoft.com/library/default.asp.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkPort object in the
database. The fields in each record contain the following information:

Field content Item number

http://msdn.microsoft.com/library/default.asp

Handle 0
Name 1
DateModified 2

Additional information about ADO is available on MSDN at msdn.microsoft.com/library/default.asp.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSObjectModelLib.dll

http://msdn.microsoft.com/library/default.asp

Microsoft BizTalk Server Toolkit for Microsoft .NET

BTSInterchange
BTSInterchange is a runtime callable wrapper (RCW) for IInterchange. Use this object to exchange documents between
applications and BizTalk Server 2002 directly or through a receive function.

 Namespace Hierarchy
 Microsoft

 BizTalk
 BizTalkTrackData
 BTSConfig
 BTSInterchange

 Declaration
[C#]

public class BTSInterchange

 Members
BTSInterchange defines the following methods:

Method Description
 Submit Sends an interchange or document to BizTalk Server 2002 for asynchronous processing. BizTalk Server 2002 place

s the document in a queue until the next available server can process it.
 SubmitSyncSends an interchange or document to BizTalk Server 2002 for synchronous processing. An optional response docu

ment is returned to the caller.

 To Create
The following code example shows how you create an instance of the BTSInterchange class:

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSInterchangeLib;

BTSInterchange interchange = new

 BTSInterchange(BIZTALK_OPENNESS_TYPE.BIZTALK_OPENNESS_TYPE_NOTOPEN,

 "", "", "", "", "", "MyChannelName", "", "", 0);

The constructor for the BTSInterchange class takes the following parameters:

public BIZTALK_OPENNESS_TYPE OpennessType;

public string DocName;

public string SrcQualifier;

public string SrcID;

public string DestQualifier;

public string DestID;

public string ChannelName;

public string FilePath;

public string EnvelopeName;

public int PassThrough;

private bool ParamSet;

 Remarks
Using parameters with Submit and SubmitSync overrides certain fields in the header of a self-routing document.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSInterchangeLib.dll

 Related Topics
Data Tracking and Interchange Application

Microsoft BizTalk Server Toolkit for Microsoft .NET

Submit Method
Sends an interchange or document to BizTalk Server 2002 for asynchronous processing. BizTalk Server 2002 places the document
in a queue until the next available server can process it.

In addition, the BizTalk Server Toolkit for Microsoft .NET provides an overloaded method for asynchronous processing. For more
information, see Remarks.

 Member List
 BTSInterchange

 Submit
 SubmitSync

 Method Declaration
[C#]

pubic string Submit(

BIZTALK_OPENNESS_TYPE Openness,

string Document,

string DocName,

string SourceQualifier,

string SourceID,

string DestQualifier,

string DestID,

string ChannelName,

string FilePath,

long EnvelopeName,

int PassThrough,

bool SetParams

)

 Parameters
Openness

[in] Indicates whether associated IBizTalkPort objects can be open. Valid values are defined by the BIZTALK_OPENNESS_TYPE
enumeration.

Document

[in] Contains the document instance submitted. This parameter accepts only a string buffer as the document or interchange. This
means that applications cannot submit other objects, such as DOM objects, IDictionary objects, ADO objects, or any other data
type or object type. Either the Document parameter or the FilePath parameter must be specified. Do not specify both. This is an
optional parameter.

DocName

[in] Contains the name of the IBizTalkDocument object associated with the instance of the document being submitted. If the
Openness parameter is set to BIZTALK_OPENNESS_TYPE_SOURCE, you can select an input IBizTalkDocument object that has
an X12 or EDIFACT specification. If you do, however, the output IBizTalkDocument must not have an X12 or EDIFACT
specification. If Openness is set to BIZTALK_OPENNESS_TYPE_DESTINATION, the IBizTalkDocument object must not have an
X12 or EDIFACT specification. The DocName parameter cannot be used if the PassThrough parameter is set to true. This is an
optional parameter.

SourceQualifier

[in] Contains the qualifier of the source organization. This indicates how the SourceID parameter is to be interpreted. Valid values
come from the organization identifier qualifiers that are created when the user creates an alias for an organization. Common
qualifiers include the Data Universal Numbering System (D-U-N-S) number, telephone number, and BizTalk. You must specify a
SourceID. The default qualifier for all new organizations is Organization Name and refers to the name of the organization in the
database. If a BizTalk Framework 2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier
defaults to BizTalk. The SourceQualifier parameter cannot be used if the PassThrough parameter is set to true. This is an optional
parameter.

SourceID

[in] Contains the value of the qualifier of the source organization. For example, if the SourceQualifier parameter is Telephone, this
value is the telephone number. If the Openness flag is set to OpenSrc, SourceID is interpreted as the source organization name.
The SourceID parameter cannot be used if the PassThrough parameter is set to true. This is an optional parameter.

DestQualifier

[in] Contains the qualifier of the destination organization. This indicates how the DestID parameter is to be interpreted. Valid
values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the D-U-N-S number, telephone number, and BizTalk. You must specify a DestID. The default qualifier
for all new organizations is OrganizationName and refers to the name of the organization in the database. If a BizTalk Framework
2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The
DestQualifier parameter cannot be used if the PassThrough parameter is set to true. This is an optional parameter.

DestID

[in] Contains the value of the qualifier of the destination organization. For example, if the DestQualifier parameter is Telephone,
this value is the telephone number. If the Openness flag is set to OpenDest, DestID is used as the destination address. Note that
the queue:// prefix must be used with an open messaging port when a message queue is specified as the destination address. The
DestID parameter cannot be used if the PassThrough parameter is set to true. This is an optional parameter.

ChannelName

[in] Contains the name of the IBizTalkChannel object that is executed for this document. This bypasses the normal processing in
which the parser tries to determine which messaging port/channel pair to execute, based on routing information in the
parameters or in the document. This is an optional parameter unless the PassThrough parameter is set to true.

FilePath

[in] Specifies a fully qualified path that contains the document to be submitted, rather than submitting the document directly as a
string. BizTalk Server 2002 supports only URL, UNC, and drive: formats. If the document is submitted as a file that is pointed to by
the FilePath parameter, the call returns successfully after BizTalk Server 2002 has successfully copied the file to the Work queue. It
is safe to delete the file from the specified path as soon as this method returns successfully. When a document is submitted to the
server, using FilePath to specify the data, Submit can take 30 seconds or longer if the file resides on a remote server that is
unavailable, if the UNC path is invalid, or if the computer running SQL Server is down. Either the Document parameter or the
FilePath parameter must be specified. Do not specify both. The FilePath parameter cannot be used if the PassThrough parameter
is set to true and a map is specified. This is an optional parameter.

EnvelopeName

[in] Contains the name of the envelope specification to use to break the interchange into documents. When an envelope name is
provided in this parameter, the envelope must have a valid interchange specification. This requirement is also enforced for
envelopes created for Custom XML format. When submitting a flat file to BizTalk Server 2002, you must create an envelope for
the flat file and specify the name of the envelope in EnvelopeName. This is an optional parameter.

PassThrough

[in] Indicates how the server processes the document. When this parameter is set to 1, no decryption, decoding, or signature
verification is performed on the document. When set to 0, the document is decrypted and decoded, and the signature is verified.
When using pass-through submission mode (1), the BIZTALK_OPENNESS_TYPE value must be set to
BIZTALK_OPENNESS_TYPE_NOTOPEN and the ChannelName parameter must be specified. In addition, the DocName,
SourceQualifier, SourceID, DestQualifier, and DestID parameters cannot be specified with pass-through submission mode. Pass-
through submission mode should be used to prevent data corruption when exchanging binary files, or when only the server
transport and global tracking features are being used.

SetParams

[in] Indicates whether to set the parameters of the BTSInterchange class. When this parameter is set to true, the parameters for
the class are set. When set to false, the parameters for the class are not set. This is useful if you are calling this method multiple
times.

 Return Values
This method returns a unique identifier for the submitted document or interchange. This handle can be used to query the Tracking
database for the status of the interchange or document submitted. If more than one document is submitted (an interchange), a
single handle is returned; the Tracking database can still access the status of all child documents related to this interchange
identifier.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
An overloaded Submit method is provided for successive calls where the submission parameters are unchanged, but a new
document is submitted to BizTalk Server 2002:

public string Submit(string sDocument)

 Important

Only call the overloaded version of Submit after the proper parameters have been set.

The following code example shows setting the proper parameters and calling the overloaded version of Submit:

using System;

using System.Xml;

using System.IO;

using System.Data;

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSInterchangeLib;

// Load the XML document from a file.

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(args[0]);

BTSInterchange interchange = new

 BTSInterchange(BIZTALK_OPENNESS_TYPE.BIZTALK_OPENNESS_TYPE_NOTOPEN,

 "", "", "", "", "", "MyChannelName", "", "", 0);

// Submit the document into BizTalk and obtain the submission handle.

string submissionID = interchange.Submit(xmlDoc.OuterXml);

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSInterchangeLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

SubmitSync Method
Sends an interchange or document to BizTalk Server 2002 for synchronous processing. An optional response document is
returned to the caller.

In addition, the BizTalk Server Toolkit for Microsoft .NET provides an overloaded method for synchronous processing. For more
information, see Remarks.

 Member List
 BTSInterchange

 Submit
 SubmitSync

 Method Declaration
[C#]

public string SubmitSync(

BIZTALK_OPENNESS_TYPE Openness,

string Document,

string DocName,

string SourceQualifier,

string SourceID,

string DestQualifier,

string DestID,

string ChannelName,

string FilePath,

string EnvelopeName,

int PassThrough,

ref string ResponseDocument,

bool SetParams

)

 Parameters
Openness

[in] Indicates whether associated IBizTalkPort objects can be open. Valid values are defined by the BIZTALK_OPENNESS_TYPE
enumeration.

Document

[in] Contains the document instance submitted. This parameter accepts only a string buffer as the document or interchange. This
means that applications cannot submit other objects, such as DOM objects, IDictionary objects, ADO objects, or any other data
type or object type. Either the Document parameter or the FilePath parameter must be specified. Do not specify both. This is an
optional parameter.

DocName

[in] Contains the name of the IBizTalkDocument object associated with the instance of the document submitted. If the Openness
parameter is set to BIZTALK_OPENNESS_TYPE_SOURCE, you can select an input IBizTalkDocument object that has an X12 or
EDIFACT specification. If you do, however, the output IBizTalkDocument must not have an X12 or EDIFACT specification. If
Openness is set to BIZTALK_OPENNESS_TYPE_DESTINATION, the IBizTalkDocument object must not have an X12 or
EDIFACT specification. The DocName parameter cannot be used if the PassThrough parameter is set to true. This is an optional
parameter.

SourceQualifier

[in] Contains the qualifier of the source organization. This indicates how the SourceID parameter is to be interpreted. Valid values
come from the organization identifier qualifiers that are created when the user creates an alias for an organization. Common
qualifiers include the D-U-N-S number, telephone number, and BizTalk. You must specify a SourceID. The default qualifier for all
new organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk Framework 2.0–
compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The SourceQualifier
parameter cannot be used if the PassThrough parameter is set to true. This is an optional parameter.

SourceID

[in] Contains the value of the qualifier of the source organization. For example, if the SourceQualifier parameter is Telephone, this
value is the telephone number. If the Openness flag is set to OpenSrc, SourceID is interpreted as the source organization name.
The SourceID parameter cannot be used if the PassThrough parameter is set to true. This is an optional parameter.

DestQualifier

[in] Contains the qualifier of the destination organization. This indicates how the DestID parameter is to be interpreted. Valid
values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the D-U-N-S number, telephone number, and BizTalk. You must specify a DestID parameter. The
default qualifier for all new organizations is Organization Name and refers to the name of the organization in the database. If a
BizTalk Framework 2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to
BizTalk. The DestQualifier parameter cannot be used if the PassThrough parameter is set to true. This is an optional parameter.

DestID

[in] Contains the value of the qualifier of the destination organization. For example, if the DestQualifier parameter is Telephone,
this value is the telephone number. If the Openness flag is set to OpenDest, DestID is used as the destination address. Note that
the queue:// prefix must be used with an open messaging port when a message queue is specified as the destination address. The
DestID parameter cannot be used if the PassThrough parameter is set to true. This is an optional parameter.

ChannelName

[in] Contains the name of the IBizTalkChannelobject that is executed for this document. This bypasses the normal processing in
which the parser tries to determine which messaging port/channel pair to execute, based on routing information in the
parameters or in the document. This is an optional parameter unless the PassThrough parameter is set to true.

FilePath

[in] Specifies a fully qualified path that contains the document to be submitted, rather than submitting the document directly as a
string. BizTalk Server 2002 supports only URL, UNC, and drive: formats. Either the Document parameter or the FilePath parameter
must be specified. Do not specify both. The FilePath parameter cannot be used if the PassThrough parameter is set to true and a
map is specified. This is an optional parameter.

EnvelopeName

[in] Contains the name of the envelope specification to use to break the interchange into documents. When an envelope name is
provided in this parameter, the envelope must have a valid interchange specification. This requirement is also enforced for
envelopes created for Custom XML format. This is an optional parameter.

PassThrough

[in] Indicates how the server processes the document. When this parameter is set to 1, no decryption, decoding, or signature
verification is performed on the document. When set to 0, the document is decrypted and decoded, and the signature is verified.
When using pass-through submission mode (1), the BIZTALK_OPENNESS_TYPE value must be set to
BIZTALK_OPENNESS_TYPE_NOTOPEN and the ChannelName parameter must be specified. In addition, the DocName,
SourceQualifier, SourceID, DestQualifier, and DestID parameters cannot be specified with pass-through submission mode. Pass-
through submission mode should be used to prevent data corruption when exchanging binary files, or when only the server
transport and global tracking features are being used.

ResponseDocument

[out] Contains the optional response document.

SetParams

[in] Indicates whether to set the parameters of the BTSInterchange class. When this parameter is set to true, the parameters for
the class are set. When set to false, the parameters for the class are not set. This is useful if you are calling this method multiple
times.

 Return Values
This method returns a unique identifier for the submitted document or interchange. This handle can be used to query the Tracking
database for the status of the interchange or document submitted. If more than one document is submitted (an interchange), a
single handle is returned; the Tracking database can still access the status of all child documents related to this interchange
identifier.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
SubmitSync returns an optional response document when one is provided. If no response is returned, the call returns
successfully, but with no response and with an HRESULT value of S_FALSE. If the destination is another BizTalk Server, an ASP
page must be used to return a response.

An overloaded SubmitSync method is provided for successive calls where the submission parameters are unchanged, but a new
document is submitted to BizTalk Server 2002:

public string SubmitSync(string sDocument, ref string sResponseDocument)

 Important

Only call the overloaded version of SubmitSync after the proper parameters have been set.

A synchronous interchange bypasses all queues and executes all the components required by the messaging port on the calling
thread. For synchronous protocols (HTTP and AIC), an optional response document is returned to the user, if available. This
method is valid only for a single channel match. If the parameters that are set cause multiple channels to match, synchronous
submission returns an error indicating that multiple channel matches are not allowed. This method can be used only for single
document interchanges. If the submission contains multiple documents, synchronous submission returns an error indicating that
multiple document submissions are not allowed. This method does not support port groups.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk
Library: BTSInterchangeLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

IBizTalkChannel
Configures a channel for processing documents.

The following code example shows how to access this object:

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSObjectModelLib;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

IBizTalkChannel MyChannel = (IBizTalkChannel)BTConfig.CreateChannel();

For information about the properties and methods defined by this interface, see the BizTalk Server 2002 Help.

Related Topic

CreateChannel

Microsoft BizTalk Server Toolkit for Microsoft .NET

IBizTalkDocument
Identifies and describes the document specification of a document.

The following code example shows how to access this object:

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSObjectModelLib;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

IBizTalkDocument MyDocument = (IBizTalkDocument)BTConfig.CreateDocument();

For information about the properties and methods defined by this interface, see the BizTalk Server 2002 Help.

Related Topic

CreateDocument

Microsoft BizTalk Server Toolkit for Microsoft .NET

IBizTalkEnvelope
Configures the envelope format used with documents processed by BizTalk Server. An envelope is the header information for an
interchange.

The following code example shows how to access this object:

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSObjectModelLib;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

IBizTalkEnvelope MyEnvelope = (IBizTalkEnvelope)BTConfig.CreateEnvelope();

For information about the properties and methods defined by this interface, see the BizTalk Server 2002 Help.

Related Topic

CreateEnvelope

Microsoft BizTalk Server Toolkit for Microsoft .NET

IBizTalkOrganization
Configures an organization, its organization identifiers (aliases), and the applications within the organization that send and/or
receive documents. The application indicates the ultimate source or destination of the document.

The following code example shows how to access this object:

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSObjectModelLib;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

IBizTalkOrganization MyOrganization = (IBizTalkOrganization)BTConfig.CreateOrganization();

For information about the properties and methods defined by this interface, see the BizTalk Server 2002 Help.

Related Topic

CreateOrganization

Microsoft BizTalk Server Toolkit for Microsoft .NET

IBizTalkPort
Configures a one-way transfer of a document between organizations and applications. It identifies the source organization and/or
application, the destination organization and/or application, the primary transport type, and, if selected, the associated envelope
for transmission.

The following code example shows how to access this object:

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSObjectModelLib;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

IBizTalkPort MyPort = (IBizTalkPort)BTConfig.CreatePort();

For information about the properties and methods defined by this interface, see the BizTalk Server 2002 Help.

Related Topic

CreatePort

Microsoft BizTalk Server Toolkit for Microsoft .NET

IBizTalkPortGroup
Configures port groups that are used to distribute the same document to many organizations.

The following code example shows how to access this object:

using Microsoft.BizTalk;

using Microsoft.BizTalk.BTSObjectModelLib;

Microsoft.BizTalk.BTSConfig BTConfig = new Microsoft.BizTalk.BTSConfig();

IBizTalkPortGroup MyPortGroup = (IBizTalkPortGroup)BTConfig.CreatePortGroup();

For information about the properties and methods defined by this interface, see the BizTalk Server 2002 Help.

Related Topic

CreatePortGroup

Microsoft BizTalk Server Toolkit for Microsoft .NET

IBTSAppIntegration
Creates an entry point for receiving a document.

To create an application integration component that uses the BizTalk Server Toolkit for Microsoft .NET, write a .NET class that
implements IBTSAppIntegration.

 Namespace Hierarchy
 Microsoft

 BizTalk
 BTSComponentsLib

 [Class that implements IBTSAppIntegration]
 [Class that implements IBTSCustomProcess]

 Declaration
[C++]

interface IBTSAppIntegration : IDispatch

 Members
IBTSAppIntegration defines the following method:

Method Description
 ProcessMessageProcesses a document and returns a response document, if available. This method is called at run time when t

he server is sending a document to the component.

 To Create
The following code example shows how you implement the IBTSAppIntegration interface:

using Microsoft.BizTalk.BTSComponentsLib;

public class MyApplicationIntegrationClass : ServicedComponent, IBTSAppIntegration {

 public MyApplicationIntegrationClass() {

 }

 string IBTSAppIntegration.ProcessMessage(string strDocument) {

 // Insert implementation code here.

 }

}

 Remarks
Application integration components must be properly registered so that Microsoft BizTalk Server 2002 can recognize that they
belong to BizTalk Server 2002. Application integration components register themselves with the category ID
CATID_BIZTALK_AIC. The CATIDs are defined in the bts_sdk_guids.h file. For more information, see the "Registering Custom
Components" topic in the BizTalk Server 2002 Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk.BTSComponentsLib
Library: BTSComponentsLib.dll

 Related Topics

Application Integration Component

Microsoft BizTalk Server Toolkit for Microsoft .NET

ProcessMessage Method
Processes a document and returns a response document, if available. This method is called at run time when the server is sending
a document to the component.

 Member List
 [Class that implements IBTSAppIntegration]

 IBTSAppIntegration.ProcessMessage

 Method Declaration
[C#]

string IBTSAppIntegration.ProcessMessage(

string Document

)

 Parameters
Document

[in] Contains the document to be processed.

 Return Values
This method returns the response document, if available.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
Components can return a response string to pass back a text-based response to an application, using the SubmitSync method of
the BTSInterchange class to send documents.

Components must raise an error if a problem with processing occurs so that the document can be retransmitted or sent to the
Suspended queue. If no error is returned, the server assumes that the component successfully processed the data.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk.BTSComponentsLib
Library: BTSComponentsLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

IBTSCustomProcess
Enables you to create a custom preprocessor for BizTalk Server receive functions.

To create a custom preprocessor that uses the BizTalk Server Toolkit for Microsoft .NET, write a .NET class that implements
IBTSCustomProcess.

 Namespace Hierarchy
 Microsoft

 BizTalk
 BTSComponentsLib

 [Class that implements IBTSAppIntegration]
 [Class that implements IBTSCustomProcess]

 Declaration
[C++]

interface IBTSCustomProcess : IUnknown

 Members
IBTSCustomProcess defines the following methods:

Method Description
 Execute Performs the custom processing on data obtained from a receive function.
 SetContext Retrieves information associated with a document submitted to BizTalk Server.

 To Create
The following code example shows how you implement the IBTSCustomProcess interface:

using Microsoft.BizTalk.BTSComponentsLib;

public class MyCustomProcessorClass : ServicedComponent, IBTSCustomProcess {

 public MyCustomProcessorClass() {

 }

 void IBTSCustomProcess.Execute(object vDataIn, int nCodePageIn,

 bool bIsFilePath, ref object nCodePageOut,

 ref object vDataOut) {

 // Insert implementation code here.

 }

 void IBTSCustomProcess.SetContext(IBTSCustomProcessContext context) {

 // Insert implementation code here.

 }

}

 Remarks
For information about custom preprocessors, see "Preprocessing Documents in a Receive Function" in the BizTalk Server 2002
Help.

Custom preprocessor components must be properly registered so that Microsoft BizTalk Server 2002 can recognize that they

belong to BizTalk Server 2002. Preprocessor components register themselves with the category ID
CATID_BIZTALK_CUSTOM_PROCESS. The CATIDs are defined in the bts_sdk_guids.h file. For more information, see
Registering Pipeline and Preprocessor COM Components and the "Registering Custom Components" topic in the BizTalk Server
2002 Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk.BTSComponentsLib
Library: BTSComponentsLib.dll

 Related Topics
Custom Preprocessor

Microsoft BizTalk Server Toolkit for Microsoft .NET

Execute Method
Performs the custom processing on data obtained from a receive function.

 Member List
 [Class that implements IBTSCustomProcess]

 IBTSCustomProcess.Execute
 IBTSCustomProcess.SetContext

 Method Declaration
[C#]

void IBTSCustomProcess.Execute(

object DataIn,

int CodePageIn,

bool IsFilePath,

ref object CodePageOut,

ref object DataOut

)

 Parameters
DataIn

[in] Contains the input data read by the receive function. For data read from a message queue, the data can be either an array or a
string. If the data is read from a File receive function, this parameter contains the file path. For File receive functions, the IsFilePath
parameter is set to true.

CodePageIn

[in] Contains the code page of the input data. The code page indicates the character set and keyboard layout used on a computer.

IsFilePath

[in] Contains a value that indicates whether or not the DataIn parameter contains a file path. True indicates that the DataIn
parameter contains a file path; false indicates that the DataIn parameter contains data from a Message Queuing receive function.

CodePageOut

[in, out] Contains the code page of the output data. The code page indicates the character set and keyboard layout used on a
computer.

DataOut

[in, out] Contains the output data. For File receive functions, this will be a string. The data in this parameter is sent to BizTalk
Server for processing.

 Return Values
This method does not have a return value.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
If BizTalk Server fails to create the custom preprocessor component, or if the Execute method returns an error or invalid data, the

document being processed is placed in the Suspended queue.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk.BTSComponentsLib
Library: BTSComponentsLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

SetContext Method
Retrieves information associated with a document submitted to BizTalk Server.

 Member List
 [Class that implements IBTSCustomProcess]

 IBTSCustomProcess.Execute
 IBTSCustomProcess.SetContext

 Method Declaration
[C#]

void IBTSCustomProcess.SetContext(

IBTSCustomProcessContext Ctx

);

 Parameters
Ctx

[in] IBTSCustomProcessContext that contains information associated with the document being processed by BizTalk Server.

 Return Values
This method does not have a return value.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
For additional information about the custom process context object, see "IBTSCustomProcessContext" in the BizTalk Server 2002
Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.BizTalk.BTSComponentsLib
Library: BTSComponentsLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

IPipelineComponent
Creates custom pipeline components that can execute in Microsoft BizTalk Server 2002 to extend its functionality.

To create a custom pipeline component that uses the BizTalk Server Toolkit for Microsoft .NET, write a .NET class that implements
IPipelineComponent.

 Namespace Hierarchy
 Microsoft

 CommerceServer
 Interop

 [Class that implements IPipelineComponent]
 [Class that implements IPipelineComponentAdmin]

 Declaration
[C++]

interface IPipelineComponent : IUnknown

 Members
IPipelineComponent defines the following methods:

Method Description
 EnableDesignConfigures the component for execution in one of two modes: design mode or execution mode.
 Execute Executes the operation expected of the component, given the transport IDictionary object and other configurati

on settings.

 To Create
The following code example shows how you implement the IPipelineComponent and IPipelineComponentAdmin interfaces:

using Microsoft.CommerceServer.Interop;

using Microsoft.CommerceServer.Runtime;

public class MyCustomComponent : ServicedComponent, IPipelineComponent, IPipelineComponentAdmin {

 public MyCustomComponent() {

 }

 int IPipelineComponent.Execute(object dispOrder, object dispContext, int Flags) {

 // Insert implementation code here.

 }

 void IPipelineComponent.EnableDesign(int Enable) {

 // Insert implementation code here.

 }

 object IPipelineComponentAdmin.GetConfigData() {

 // Insert implementation code here.

 }

 void IPipelineComponentAdmin.SetConfigData(object ConfigDictionary) {

 // Insert implementation code here.

 }

}

 Remarks
Application integration components must be properly registered so that BizTalk Server 2002 can recognize that they belong to
BizTalk Server 2002. Application integration components register themselves with the category ID CATID_BIZTALK_AIC. The
CATIDs are defined in the bts_sdk_guids.h file. For more information, see
Registering Pipeline and Preprocessor COM Components and the "Registering Custom Components" topic in the BizTalk Server
2002 Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.CommerceServer.Interop
Library: PipeCompLib.dll

 Related Topics
Pipeline Component

Microsoft BizTalk Server Toolkit for Microsoft .NET

EnableDesign Method
Configures the component for execution in one of two modes: design mode or execution mode.

 Member List
 [Class that implements IPipelineComponent]

 IPipelineComponent.EnableDesign
 IPipelineComponent.Execute

 Method Declaration
[C#]

void IPipelineComponent.EnableDesign(

int Enable

)

 Parameters
Enable

[in] Indicates the mode of the component. True (1) specifies that the component runs in design mode. False (0) specifies execution
mode. The default value is 0.

 Return Values
This method does not have a return value.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
The pipeline component runs in execution mode by default.

This method is called when the Override messaging port defaults page is opened in the Channel Wizard's Advanced
Configuration page. It is also called when the property page is closed and the Enable parameter is set to true. Design mode is
not enabled unless this method has been called with the Enable parameter set to true.

Design-only fields are returned only when the Enable parameter is set to true. Otherwise, the IDictionary object passed to the
server contains unnecessary information.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.CommerceServer.Interop
Library: PipeCompLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

Execute Method
Executes the operation expected of the component, given the transport IDictionary object and other configuration settings.

 Member List
 [Class that implements IPipelineComponent]

 IPipelineComponent.EnableDesign
 IPipelineComponent.Execute

 Method Declaration
[C#]

int IPipelineComponent.Execute(

object DispOrder,

object DispContext,

int Flags

)

 Parameters
DispOrder

[in] Transport IDictionary object.

DispContext

[in] Not supported for this release.

Flags

[in] Reserved.

 Return Values
This method returns the error level.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
Microsoft BizTalk Server 2002 calls this method, passing in the transport IDictionary object. The component can read these
IDictionary object values, perform the necessary functions, and optionally write new values back to the transport IDictionary
object for further processing.

For a component designed to run in BizTalk Server 2002, the first parameter is a Transport Dictionary object. The Transport
Dictionary values can be read by the component for processing. The string values supplied by the server for all application
integration components (AICs) are defined in the "Handling Data Passed to AICs" topic in the BizTalk Server 2002 Help.

For a component that runs in a Commerce Server order-processing pipeline, the first parameter contains the OrderForm object.

This method is called at run time when the server is sending a document to the component. This method is called immediately
after the SetConfigData method of the IPipelineComponentAdmin interface. The document is passed in the first parameter as
a dictionary within the working_data field of the IDictionary object. Components can add the ResponseField key to the
IDictionary object to pass back a text-based response to an application, using the SubmitSync method of the BTSInterchange
interface.

The component must raise an error if a problem with processing occurs so that the server can retry transmission later and, after

all retries, send the document to the Suspended queue. If no error is returned, the server assumes that the component
successfully processed the data.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.CommerceServer.Interop
Library: PipeCompLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

IPipelineComponentAdmin
Gets and sets configuration information for a component. Use IPipelineComponentAdmin between the component and the
component user interface.

To create a pipeline administration component that uses the BizTalk Server Toolkit for Microsoft .NET, write a .NET class that
implements IPipelineComponentAdmin.

 Namespace Hierarchy
 Microsoft

 CommerceServer
 Interop

 [Class that implements IPipelineComponent]
 [Class that implements IPipelineComponentAdmin]

 Declaration
[C++]

interface IPipelineComponentAdmin : IDispatch

 Members
IPipelineComponentAdmin defines the following methods:

Method Description
 GetConfigDataReturns an IDictionary object that contains the configuration data for the component to be used to display the

se values.
 SetConfigDataSets the configuration for a component, using the contents of an IDictionary object.

 To Create
The following code example shows how you implement the IPipelineComponent and IPipelineComponentAdmin interfaces:

using Microsoft.CommerceServer.Interop;

using Microsoft.CommerceServer.Runtime;

public class MyCustomComponent : ServicedComponent, IPipelineComponent, IPipelineComponentAdmin {

 public MyCustomComponent() {

 }

 int IPipelineComponent.Execute(object dispOrder, object dispContext, int Flags) {

 // Insert implementation code here.

 }

 void IPipelineComponent.EnableDesign(int Enable) {

 // Insert implementation code here.

 }

 object IPipelineComponentAdmin.GetConfigData() {

 // Insert implementation code here.

 }

 void IPipelineComponentAdmin.SetConfigData(object ConfigDictionary) {

 // Insert implementation code here.

 }

}

 Remarks
Application integration components must be properly registered so that BizTalk Server 2002 can recognize that they belong to
BizTalk Server 2002. Application integration components register themselves with the category ID CATID_BIZTALK_AIC. The
CATIDs are defined in the bts_sdk_guids.h file. For more information, see
Registering Pipeline and Preprocessor COM Components and the "Registering Custom Components" topic in the BizTalk Server
2002 Help.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.CommerceServer.Interop
Library: PipeCompLib.dll

 Related Topics
Pipeline Component

Microsoft BizTalk Server Toolkit for Microsoft .NET

GetConfigData Method
Returns an IDictionary object that contains the configuration data for the component to be used to display these values.

 Member List
 [Class that implements IPipelineComponentAdmin]

 IPipelineComponentAdmin.GetConfigData
 IPipelineComponentAdmin.SetConfigData

 Method Declaration
[C#]

object IPipelineComponentAdmin.GetConfigData()

 Parameters
None

 Return Values
This method returns an IDictionary object from which the user interface can read the configuration data.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
GetConfigData enables the user interface component to read the current value from the component and display it on the
property page initially.

When an IBizTalkPort object is first saved, this method is called to get the defaults for use in autoconfiguring the application
integration component (AIC) from the IDictionary object provided. Components must provide defaults for all mandatory
properties, whenever possible.

This method is called when the user selects the property page. It is used to supply property page defaults. It is called again when
the property page is closed. The contents of this returned IDictionary object are not used.

Components must always return a valid dictionary pointer from GetConfigData.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.CommerceServer.Interop
Library: PipeCompLib.dll

Microsoft BizTalk Server Toolkit for Microsoft .NET

SetConfigData Method
Sets the configuration for a component, using the contents of an IDictionary object.

 Member List
 [Class that implements IPipelineComponentAdmin]

 IPipelineComponentAdmin.GetConfigData
 IPipelineComponentAdmin.SetConfigData

 Method Declaration
[C++]

void IPipelineComponentAdmin.SetConfigData(

object ConfigDictionary

)

 Parameters
ConfigDictionary

[in] Contains an IDictionary object that contains the configuration information.

 Return Values
This method does not have a return value.

 Error Handling
When an error occurs, either the system or the currently executing application throws an exception containing information about
the error, including the HRESULT value.

Possible HRESULT values are documented in the "Error Messages" topic in the BizTalk Server 2002 Help.

 Remarks
With this method, the user interface can set or change these values. SetConfigData enables the user interface to write the
updated value from the property page to the component.

The server calls SetConfigData when the property page is saved. It is used to verify the values entered by the user on the
property page. The contents of this provided IDictionary object are also stored in the database.

This method is called immediately before the Execute method of the IPipelineComponent interface at run time, when the
server is ready to send a document to the component. Data stored during design time from autoconfiguration or from property-
page updates is passed to the component to allow for property setup prior to calling Execute.

Components validate the properties provided in SetConfigData and raise an error if any of the properties are invalid or missing.

 Requirements
Platforms: Windows 2000 SP2, Windows XP
Namespace: Microsoft.CommerceServer.Interop
Library: PipeCompLib.dll

Microsoft BizTalk Server 2002 - Introducing Microsoft BizTalk
Server 2002

Introducing Microsoft BizTalk Server 2002
Integrating your company's internal applications has traditionally been difficult. Integrating them with external customers and
suppliers has been even harder. But with Microsoft® BizTalk™ Server 2002, you can address all of your integration challenges
from the enterprise to the Internet. The following illustration gives one example of orchestrating your business from internal
applications to cross-company business processes.

A member of the Microsoft® .NET Enterprise Server family of products, BizTalk Server 2002 unites
enterprise application integration (EAI) and business-to-business (B2B) integration. Whether your company is an e-commerce
supplier, distributor, or aggregator, BizTalk Server helps you orchestrate your business—all of it—from internal applications to
cross-company business processes.

BizTalk Server helps you to integrate

Your interest in BizTalk Server indicates that you are involved in integration at some level. Maybe you are responsible for
integrating your company's fulfillment system with other internal applications. Perhaps you have been mandated with integrating
your newer Web-facing commerce systems with your back-end manufacturing and distribution systems. Or maybe your task is
devising a way to use the Internet to integrate your business processes with those of key suppliers and distributors.

With strong support for XML, HTTP, HTTPS, SMTP, SSL, S/MIME, and x509v3 certificates, BizTalk Server is a powerful example of
applying Internet-standard technologies to solve your integration issues.

About this Introduction

This Introduction provides a high-level view of BizTalk Server 2002. It contains illustrations, links, and definitions to help you
better understand how you can use BizTalk Server to solve the unique e-commerce issues that face your company or
organization.

The following topics are covered in this section:

Getting Started

Using BizTalk Server 2002 Help

BizTalk Server 2002 ~ Getting Started

Getting Started
Microsoft® BizTalk™ Server 2002 provides a powerful development and execution environment that integrates loosely coupled,
long-running business processes from the enterprise to the Internet. BizTalk Server can handle transactions that run as long as
weeks or months, not just minutes or hours.

BizTalk Server 2002 features include the ability to design and execute state-full business processes in the form of
XLANG schedules, integrate existing applications, define document specifications and specification transformations, and monitor
and log run-time activity.

BizTalk Server provides a standard gateway for sending and receiving documents across the Internet, as well as providing a range
of services that ensure data integrity, delivery, security, and support for the BizTalk Framework and other key document formats,
such as Extensible Markup Language (XML), electronic data interchange (EDI), and flat files.

For information about BizTalk Framework 2.0, as well as information about BizTalk Server product resources such as community
services, a large library of schemas, and white papers, go to the Microsoft BizTalk Server Web site (www.microsoft.com/biztalk).

Why use BizTalk Server?

Because it makes hard problems easier to solve. BizTalk Server integrates two key features—orchestration and messaging—into a
single product. While a powerful messaging engine handles message transport and mapping, BizTalk Orchestration Services can
orchestrate business processes composed of components, and messages that are sent and received using the
BizTalk Messaging Service.

For example, BizTalk Server enables you to:

Build dynamic business processes. The BizTalk Server infrastructure helps you to quickly integrate, manage, and
automate dynamic business processes by exchanging business documents among applications, within or across
organizational boundaries. With all the tools you need for business process orchestration, BizTalk Server helps you build
processes that span applications and businesses over the Internet.

Integrate applications and business partners. BizTalk Server makes it easy for developers to integrate applications and
businesses together. Business analysts and application developers benefit from graphical tools for building schema for
business documents, performing schema transformation, establishing trading partner relationships, and tracking and
analyzing data. With support for XML and standard Internet technologies, BizTalk Server extends the features of traditional
e-commerce and EDI to entire e-commerce communities.

Ensure interoperability using public standards. With extensive support for public standards and specifications, such as
XML, EDI, Hypertext Transfer Protocol (HTTP and HTTPS), and security standards, such as public key encryption and digital
signatures, BizTalk Server ensures the highest level of interoperability and security with your applications and business
partners.

BizTalk Server uses XML internally to define the data and structure of your business documents, and it uses standard Internet
protocols like HTTP and Simple Mail Transfer Protocol (SMTP) to deliver these documents to their destinations, enabling you to
interoperate with various applications running in any environment as long as those applications support Internet standards. You
can send documents to BizTalk Server as XML, EDI, or flat files.

What specific problems does BizTalk Server solve?

Problems associated with internal and external integration.

Historically, businesses have purchased enterprise applications from different vendors over several years, resulting in a variety of
applications running on several platforms. Because each application was designed to fulfill a specific task, such as warehousing or
customer relationship management (CRM), integration with other applications was not common. As a result, a company that
decided to integrate its internal applications found it an expensive and time-consuming task.

Consider these common integration complaints:

Disparate applications: "It's too difficult to integrate dissimilar applications within my company."

Programming overruns: "It takes too long to develop integrated solutions for my company's enterprise resource plan."

Dissimilar reports: "There is no way to generate integrated, timely reports from my various applications because the data
is stored in so many places."

http://www.microsoft.com/biztalk
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Modification difficulties: "Once my internal applications are integrated, changing them is arduous and expensive."

No set procedure: "My company does not have a consistent method for implementing our critical business processes."

Partnering headaches: "It's too difficult to integrate my company's business processes with my trading partner's."

Changing partners: "If another business offers me a better deal, it's too difficult to take advantage of this with all the IT
infrastructure that is required."

Today, the popularity of the World Wide Web has brought with it the prospect of e-commerce—doing business over the Internet.
However, while integrating in-house applications is difficult, trading with customers and suppliers through the Internet is far more
complicated, primarily because of increased security and reliability issues associated with online transactions. BizTalk Server is
designed to help you solve these problems. Using graphical tools like BizTalk Orchestration Designer and BizTalk Editor, BizTalk
Server lets you design your unique business processes in a visual design environment. BizTalk Server then executes the visual
diagram, providing rapid application development (RAD) for business processes.

Tutorials

You can get immediate hands-on experience with BizTalk Server 2002 by going through the tutorials provided in this manual:

Learning BizTalk Server 2002 helps you better understand how to use BizTalk Editor, BizTalk Mapper, BizTalk Messaging
Manager, BizTalk Administrator, and BizTalk Orchestration Designer to configure BizTalk Server to run a business-to-
business automated procurement process.

The BizTalk Server 2002 Tutorial explains step-by-step how to configure BizTalk Server processes.

The E-Procurement Sample is an end-to-end sample that uses BizTalk Server, the Internet, and correlation to demonstrate
how to automate the procurement process that takes place between your company and its suppliers.

Samples

BizTalk Server 2002 includes more than 20 samples that illustrate much of the BizTalk Server functionality. Samples provided in
the BizTalk Server Software Development Kit (SDK) are located in the folder \Program Files\Microsoft BizTalk Server\SDK on the
installation drive.

BizTalk Server samples are organized into two categories:

BizTalk Messaging Services Code Samples

BizTalk Orchestration Services Code Samples

In this section

The following topics are covered in this section:

What's New in BizTalk Server 2002

Who Is BizTalk Server For?

How Does BizTalk Server Work?

BizTalk Server Features

BizTalk Server Application Model

BizTalk Server Administration Model

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Getting Started

What's New in BizTalk Server 2002
Microsoft® BizTalk™ Server 2002 Enterprise Edition includes the following enhancements:

Intra-company deployment of BizTalk Server objects. BizTalk Server 2002 enhances intra-company deployment by
providing a BizTalk Server replication driver for use with Microsoft Application Center 2000. Application Center 2000 eases
deployment by automatically migrating and synchronizing your BizTalk Server objects across disparate environments.
Application Center 2000 enables two key deployment scenarios:

From development, through staging, to production

Across a production server farm
Rapid inter-company deployment and testing of public document interfaces to partners. With the introduction of
SEED packages, BizTalk Server 2002 provides streamlined inter-company deployment capability. SEED packages contain the
document schemas and other related information that a company (initiator) sends to and receives from its trading partners
(recipient). SEED packages are created one time, then deployed to many trading partners. The SEED package is opened by a
trading partner, who enters the organization's unique configuration requirements. The configuration information is
automatically created, tested locally in the trading partner's environment, and then tested against a remote server. Once a
configuration is tested, the partners can move the configuration into production. The BizTalk SEED Wizard decreases the
trading partner's setup time, and decreases the SEED package initiator's testing time.

Detailed monitoring and event management. BizTalk Server 2002 includes new and enhanced
Windows Management Instrumentation (WMI) events that enable you to manage business processes. To take advantage of
this enhanced event management, BizTalk Server 2002 ships with a management pack—specific to BizTalk Server—for
Microsoft Operations Manager (MOM). Using the BizTalk Server 2002 Enterprise Edition Management Pack, you can rapidly
select from a set of predefined alerts and rules to tailor your applications so you can get the precise information you need
from either a single event or combined events. Using MOM and the new BizTalk Custom Counters WMI class, you can also
build customized monitoring applications to learn more detail about the inner workings of your BizTalk Server installation.

Increased XML Web services support. As applications are being created from many disparate systems, including Web
services, the need to manage them into a business process increases. BizTalk Server 2002 ships with the SOAP Toolkit 2.0
Service Pack 2 (SP2), which enables you to orchestrate business processes that include XML Web services. The SOAP Toolkit
2.0 SP2 is located in the WebServices directory on the Microsoft BizTalk Server 2002 installation CD.

Remote administration. The BizTalk Server Administration console is now part of the Tools-only installation. The
administration console can be installed on a remote computer that is not running BizTalk Server and can be pointed to any
remote BizTalk Server in your environment for easier, more flexible, administration capability.

HTTP receive function. BizTalk Server now includes a high-performance ISAPI HTTP receive function that is managed and
configured directly inside the BizTalk Server Administration console.

Separate transaction handling and exception handling inside BizTalk Orchestration Designer. The
BizTalk Orchestration Designer now provides an option to specify that a transaction is being used for exception handling.
This increases performance by minimizing database read/write activity.

Integrated SQL security. BizTalk Server 2002 uses integrated Microsoft Windows® security to access Microsoft SQL
Server™. This means that BizTalk Server, rather than using SQL credentials, uses the credentials of a Windows 2000 user to
determine SQL privileges.

Database management. Several new utilities and scripts are provided to help you manage your Tracking database and
XLANG persistence database.

XLANG correlation. When a business process is started, multiple schedule instances can now use a single message queue,
and incoming messages on that queue can be correlated to a specific instance to continue the business process. In addition,
the process of correlation to a running business process has been simplified.

XLANG schedule pooling. You can now specify a "pool of schedules," which is the maximum number of schedule
instances that are allowed in memory at a time. This provides you with a fine level of control over computer resources and

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

is particularly useful in cases where you are constrained by hardware. BizTalk Server 2002 takes advantage of COM+ object
pooling for maximum performance.

Improved BizTalk Mapper. BizTalk Mapper has been upgraded to include the following features:
Mixed XML content is now supported.

You can now perform instance testing of native document instances (including XML and non-XML) directly in
BizTalk Mapper.

The grid zone has been scaled to allow multiple pages.

Drag-and-drop capabilities have been added.

You can now write functoid scripts using Microsoft JScript®. Also, custom functoid assemblies can be written using
Microsoft Visual C#™ .NET and Microsoft Visual Studio® .NET.

Improved BizTalk Editor. BizTalk Editor has been upgraded with the following features:
You can now create a native document instance.

Mixed XML content is now supported.

Drag-and-drop capabilities have been added.

You can now validate a document instance against a specification.

Record data typing is now supported.

You can now export XSD schemas directly from BizTalk Editor.

Enhanced documentation. More than 500 new pages of information have been added to BizTalk Server Help, including:
A new Getting Started section which includes topics such as Who Is BizTalk Server For?,
How Does BizTalk Server Work?, and Building a BizTalk Server Solution.

Learning BizTalk Server 2002, seven lessons that explain the fundamental concepts surrounding BizTalk Server, and
provide information that will help you understand the tools and processes that are required to start building
solutions with BizTalk Server.

E-Procurement Sample, which uses BizTalk Server 2002, the Internet, and correlation to show how to automate the
procurement process that takes place between your company and its suppliers.

An expanded BizTalk Server Developer's Toolbox, which provides all the information necessary for programmers of
the C++ and Microsoft Visual Basic® programming languages to use or extend BizTalk Server 2002.

More samples. BizTalk Server 2002 includes more than 20 new samples that illustrate much of the new program
functionality, including samples that show how to:

Refresh all BizTalk Messaging objects stored in WebDAV. See Refresh Messaging Manager.

Trace and log XLANG schedules for debugging. See XLANG Trace.

Submit documents greater than 4 megabytes (MB) to BizTalk Orchestration Services. See
Message Queuing 4 MB Limit.

Submit multi-part Multipurpose Internet Mail Extensions (MIME) attachments to BizTalk Messaging Services. See
Multi-Part MIME Attachment.

Submit multiple documents to XLANG schedules synchronously and query asynchronously. See
XLANG Submit Synchronously and Query Asynchronously.

Submit self-routing documents. See Self-Routing.

Monitor the Suspended queue. See Suspended Queue Monitoring.

Use reliable messaging. See Reliable Messaging.

Use XLANG schedule pooling. See XLANG Schedule Pooling.

Use custom counters. See Custom Counters.

Use electronic data interchange (EDI) and EDI receipts. See EDI and Receipts.

Use positional and delimited flat files. See Flat-File Positional and Flat-File Delimited.

In addition, the BTConfigAssistant, which provides simple support for scripted deployment of BizTalk Server Messaging
configuration information, has been enhanced to support receive functions.

Available business adapters. Connecting disparate systems and accessing heterogeneous data stores is now possible
with packaged adapters. Using these adapters to enable access to your systems and data drastically reduces and often
eliminates the vast amount of coding required to implement connectivity manually. These adapters connect BizTalk Server
2002 to third-party applications and data, including:

Databases

File transfer protocol (FTP)

Enterprise resource planning (ERP) applications

Customer relationship management (CRM) applications

For a comprehensive list of currently available BizTalk Server adapters available from Microsoft and its partners, go to the
BizTalk Server Adapters and Connectivity page on the Microsoft BizTalk Server Web site
(www.microsoft.com/biztalk/evaluation/adapters.asp).

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.microsoft.com/biztalk/evaluation/adapters.asp

BizTalk Server 2002 ~ Getting Started

Who Is BizTalk Server For?
BizTalk Server 2002 solves critical integration problems for a wide-ranging audience, from small shops that rely on sole
partnerships for their livelihood, to large manufacturing companies that maintain hundreds of partnerships and handle thousands
of documents each second.

Smaller companies might use BizTalk Server for point-to-point connectivity, but for larger corporations, this becomes less
efficient. In the largest corporations, multiple BizTalk Server groups can be joined together to form a distributed integration bus.
The largest organizations are typically organized into autonomous, discrete business units that develop and maintain their own
systems. These business units need to both share data with applications controlled by other business units and communicate with
external trading partners.

The following illustration shows how data might be shared within a company that has built its integration architecture piece-by-
piece as needs arose. The right side shows how BizTalk Server 2002 helps make data interchange more organized and efficient.

Established companies find that BizTalk Server enables their legacy systems to operate more efficiently and helps them re-tool
their architecture for business-to-business e-commerce. A startup company can use BizTalk Server from the beginning as a key
link around which to integrate a new system into its enterprise.

Consider these real-world cases:

A health care manufacturer uses BizTalk Server to interact with a variety of e-commerce platforms.

A privately held company that develops and markets business-to-business e-commerce and process automation solutions
for the global business finance market uses BizTalk Server technologies to build an infrastructure that enables data
integration to happen seamlessly, less expensively, and more efficiently.

A PC manufacturer is using BizTalk Server to rapidly deliver data and documents, and to integrate its supply chain
relationships in order to improve its supply chain, increase efficiency, and deliver a smooth, trouble-free experience to
customers.

A digital marketplace company is using Microsoft Windows 2000, Internet Information Services (IIS), and BizTalk Server, to
build an Internet hub that provides one-stop shopping for prospective college students, high school guidance counselors,
and university recruiting and admissions departments.

A firm that offers a suite of financial and accounting services designed for small- and medium-sized businesses uses XML
and BizTalk Server to create Web services based on its internal SAP R/3 application suite.

The following topics are covered in this section:

How BizTalk Server Fits into an Organization's IT Infrastructure

How BizTalk Server Fits into the .NET Platform

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

How BizTalk Server Fits into an Organization's IT Infrastructure
What does your company's technical infrastructure look like? Is it built on a single platform of Windows or UNIX? Probably not.
Most enterprise companies run a mix of various systems. Even if you have one "standard" platform, you likely have several other
application and development environments running simultaneously to help you accomplish your company's business goals.

Because your current configuration is a proven system that represents a substantial investment of your company's time and
money, you should not have to replace it just to solve a new business problem. Legacy systems are typically replaced when there
is a good business reason to do so.

BizTalk Server provides a central, data-driven, integration server and a set of advanced productivity tools and services that enable
you to build and deploy business processes for performing enterprise application integration (EAI) and business-to-business
(B2B) transactions. With support for multiple transports and protocols, BizTalk Server helps you enable existing IT investments for
XML and incorporate them into new e-commerce technologies.

BizTalk Server enhances your existing IT investments with XML by:

Providing BizTalk Mapper, a graphical data-mapping tool for converting XML data to and from legacy data formats with
various structures, such as EDI and flat files.

Supporting industry-standard transports and protocols, such as HTTP, HTTPS, SMTP, SSL, S/MIME, and SOAP, to integrate
your existing IT investments with Web applications and services.

Using standard adapters from leading industry vendors to access business applications. For more information, see the
BizTalk Server Adapters and Connectivity page on the Microsoft BizTalk Server Web site
(www.microsoft.com/biztalk/evaluation/adapters.asp).

With minimal hardware and software requirements, BizTalk Server installs into your established IT infrastructure.

For details about BizTalk Server features such as XML tools, BizTalk Messaging Manager, and BizTalk SEED Wizard, see
BizTalk Server Features.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.microsoft.com/biztalk/evaluation/adapters.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

How BizTalk Server Fits into the .NET Platform
The Microsoft® .NET platform includes a comprehensive family of .NET-based products built on industry and Internet standards
that provide for each aspect of developing (tools), managing (servers), using (building block services and smart clients) and
experiencing (rich user experiences) XML Web services.

The .NET Enterprise Servers encompass both e-commerce and overall enterprise infrastructure. The Windows 2000 Server family
is Microsoft's secure, scalable foundation for running the .NET Enterprise Servers and e-commerce business applications.

The .NET Enterprise Servers include:

Application Center 2000 to deploy and manage highly available and scalable Web applications.

BizTalk Server 2002 to build XML-based business processes across applications and organizations.

Commerce Server 2000 for building scalable e-commerce solutions.

Content Management Server 2001 to manage content for dynamic e-business Web sites.

Exchange 2000 Server to enable messaging and collaboration.

Host Integration Server 2000 for bridging data and applications on legacy systems.

Internet Security and Acceleration Server 2000 for secure, fast Internet connectivity.

Mobile Information 2001 Server to enable application support by mobile devices like cell phones.

SharePoint Portal Server 2001 to find, share, and publish business information.

SQL Server 2000 to store, retrieve, and analyze structured XML data.

Microsoft SQL Server manages your database business logic while Microsoft Commerce Server handles your front-end customer
interface.

BizTalk Server is the back-end that powers an e-commerce or back-end enterprise solution. Once the purchasing application, such
as Microsoft Commerce Server, facilitates a customer's placing an order for a product, BizTalk Server handles the purchasing
process that was previously done manually. BizTalk Server "buys" the product from suppliers, manages the purchase order
exchange, and performs internal enterprise application integration (EAI). Once the purchase is confirmed, the customer's records
are fed into a finance application, which sends an order ticket to the distribution program.

In addition, Microsoft Host Integration Server and host system adapters provide access to mission-critical data that is stored on a
back-end mainframe or minicomputer. Host Integration Server is designed to extract data from a mainframe and transfer it to
BizTalk Server or Commerce Server, completing the entire e-business transformation without converting or replacing the
mainframe hardware or software.

For more information about .NET Enterprise Servers, go to the Microsoft .NET Enterprise Servers Web site
(www.microsoft.com/servers).

For information about BizTalk Framework 2.0, as well as information about BizTalk Server product resources such as community
services, a large library of schemas, and white papers, go to the Microsoft BizTalk Server Web site (www.microsoft.com/biztalk).

XML Web services

As e-commerce grows among businesses and consumers, the industry is converging on a new computing model that enables a
standard way of building applications and processes to connect and exchange information over the Web. This new Internet-based
integration methodology, called XML Web services, enables applications, computers, and businesses to work together in a way
never possible before.

The following illustration shows how XML Web services can be leveraged in a number of combinations to create user experiences.

http://www.microsoft.com/Servers/
http://www.microsoft.com/biztalk
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

With the help of XML-based technologies such as SOAP, which enables applications to interoperate with standard Internet
protocols, and Universal Description, Discovery, and Integration (UDDI), which gives businesses a standard way to describe their
services and connect automatically, developers are creating a new type of software that uses XML to provide Web-based services.
(For more information about UDDI, go to www.uddi.org.) XML Web services are flexible technologies that bind disparate systems
across different languages, unifying personal computing, enterprise computing, and the Web. These XML Web services are
programmable and reusable, much like component software, except that they are accessible anywhere on the Internet. Programs
using this model can run across multiple Web sites, drawing on information and services from each of them, and combining and
delivering them in customized form to any device.

The Microsoft .NET platform enables you to build, deploy, operate, and integrate XML Web services. The following is a list of the
four principles of XML Web services:

1. Systems must connect through the Internet. This is a safe assumption given the high availability and low-cost
connectivity provided by the Internet.

2. There must be a simple way to find services on the Internet with which businesses can work. UDDI is a broad
industry effort, involving several major companies, which provides a way to locate and understand services provided by
other companies.

3. A common language is needed to ensure that information is shared with others. XML is the ingredient that makes
this possible. XML provides a common data format so that you can continue to work with data and information in a way
that does not require business partners or customers to use a particular programming language, application, or operating
system to interact with your systems.

4. There must be a way to actually conduct business. For example, there has to be a way to call the service, book the
appointment, order the part, or deliver the information—through a common protocol. This protocol is called SOAP. It
enables systems to talk to one another and make requests. SOAP is the new model for Internet native integration.

These four principles enable you to connect, find, transform, and transact across systems, applications, and processes to deliver
XML Web services.

With a graphical interface built into tools such as BizTalk Mapper, BizTalk Editor, and BizTalk Orchestration Designer, BizTalk
Server is a key component in architecting XML-based business processes across applications and organizations. To learn more
about XML Web services and the Microsoft .NET platform, see www.microsoft.com/net.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.uddi.org/
http://www.microsoft.com/net

BizTalk Server 2002 ~ Getting Started

How Does BizTalk Server Work?
Microsoft BizTalk Server 2002 consists of two main services: BizTalk Messaging Services through which you send messages
between business processes, and BizTalk Orchestration Services through which you create your business processes.

The pain of integration

No question about it, integrating applications within an organization has always been far too painful. You have seen these
challenges firsthand—different applications sitting on different operating systems, written in different languages, based on
different programming models. And your job is to get them all talking.

The e-commerce world, however, has made integration tasks considerably more complicated. Not only are you faced with
integrating your internal systems, you must also integrate their processes with those of external customers and key suppliers—
requiring open technologies such as XML Web services, HTTP or SMTP for delivery, and XML for data formatting—and it all has to
be done over the Internet.

Companies that want to remain competitive need to do a fundamentally better job with internal and external integration.
Historically, the differences between internal and external integration challenges have been seen as different sets of point-to-point
connections. But connections are just a means to an end; the real end is integrating business processes.

Internally, businesses typically use proprietary data formats, and have historically employed a synchronous remote procedure call
(RPC) mechanism. However, as you integrate more internal applications, the synchronous model leads to concerns about
reliability and availability. To counter this, businesses today are moving toward an asynchronous model that appears synchronous
—so called "sync on async."

So where do you begin? Business process integration sounds great, but it is often a full-time job just keeping your connections
working properly. And at the end of the day, your job is to get the right information in the right place at the right time.

That's where BizTalk Server can help.

BizTalk Server enables you to integrate business processes

Using BizTalk Server, business analysts, IT professionals, and developers can work in a common environment where they can
rapidly define, design, and deploy integrated solutions that work across applications, platforms, and organizations.

BizTalk Server makes it easier to orchestrate dynamic business processes within and between organizations.

More specifically, BizTalk Server enables you to:

Simplify application integration. Easily build, manage, and track distributed business processes that cross the
boundaries of applications, organizations, and time.

Decrease time to market. Quickly establish reliable, secure business-to-business (B2B) trading relationships with
customers and key partners over the Internet.

Leverage existing IT investments. Cost-effectively integrate disparate legacy applications using standards, independent
of platform.

The following topics are covered in this section:

BizTalk Messaging Services

BizTalk Orchestration Services

Building a BizTalk Server Solution

Manageability, Reliability, Flexibility

BizTalk Server Accelerators

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

BizTalk Messaging Services
BizTalk Messaging Services include:

Receiving incoming documents.

Parsing the documents to determine their specific format.

Extracting key identifiers and identifying specific routing rules.

Delivering documents to their respective destinations.

Tracking documents.

Also included are services for data mapping, receipt generation and correlation, and services to ensure data integrity and security.

To access code samples that use BizTalk Messaging Services, see BizTalk Messaging Services Code Samples.

Messaging configuration methods

BizTalk Server provides two methods for configuring BizTalk Messaging Services to manage the exchange of documents between
trading partners and applications within your business. These methods are:

BizTalk Messaging Manager, a graphical user interface that contains a messaging wizard

BizTalk Messaging Configuration object model, a model you access directly

Using BizTalk Messaging Manager or the BizTalk Messaging Configuration object model, you can create messaging ports and
channels to manage the exchange of data. You can also create document definitions, envelopes, and organizations, which you use
to create messaging ports and channels; and distribution lists, which are groups of messaging ports.

Configuring your messaging service

The following illustration shows the steps you take when creating a document specification and configuring your messaging
service.

You start by using BizTalk Editor to graphically create a document specification, which is an Extensible Markup Language (XML)
file that defines a document's structure, type, and version. If your trading partner needs the document in a different format, you
can use BizTalk Mapper to map the document's data into a format that your partner can use.

To configure your messaging service, you need to set up a document definition that refers to the specification you created. You do
this by accessing the BizTalk Messaging Configuration object model either graphically through BizTalk Messaging Manager, or
directly through the application programming interface (API). Conceptually, an XML specification and a BizTalk document
definition are identical. From a technical viewpoint, however, they differ greatly in how they are created and stored. Specifications
are documents that are created by BizTalk Editor and stored as XML files in the WebDAV repository. Document definitions are
objects created by the BizTalk Messaging Configuration object model (either through BizTalk Messaging Manager or the API) and
stored in the BizTalk Messaging Management database, a SQL Server database used by BizTalk Server. You can think of a BizTalk
Server document definition as an XML specification that has been converted into an object form.

The following topics are covered in this section:

Receive functions

https://msdn.microsoft.com/en-us/library/ee264880(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Transport services

Data parsers

Data validation

Reliable messaging

Security

Related Topics

BizTalk Messaging Services Code Samples

Introducing Messaging Services

Using BizTalk Messaging Manager

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee264885(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264890(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250786(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250782(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264883(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

BizTalk Orchestration Services
Before you start thinking about BizTalk Orchestration Services, think first about the word "orchestrate." Does music come to
mind? The conductor of a musical orchestra takes dozens of musicians and skillfully blends them into a single harmony. Without
the conductor, the individual musicians are lost. Have you ever heard 40 different musicians all practicing their instruments
before a performance? It's chaos. But once the maestro begins conducting, each of those 40 instruments blends its sound
perfectly into the harmony of the orchestration.

That's how BizTalk Server handles your business processes.

A business process determines the logical order of actions

Business-process integration is often developed through understanding the external interfaces that each system exposes, and the
message formats and specifications used to transfer messages. Typically, quality of service issues—such as security, message
encoding, and reliable messaging—must also be addressed. However, addressing, sending, and receiving messages are not
enough to provide a total solution for business-process integration.

How is the original message created? How is a message received, processed, and responded to? In all but the simplest cases,
these are business processes. A business process determines the logical order of actions and the corresponding flow of messages,
and it defines the message-exchange protocol between the distributed participants.

Most business processes today, perhaps even yours, are created using custom code. As a result, businesses are often constrained
from rapidly changing their business-process implementations to reflect the evolving business needs in today's fast-paced
environment. BizTalk Orchestration Services solves this problem by removing the custom coding aspect of creating business
processes, resulting in an environment that can be changed quickly.

BizTalk Server lets you orchestrate your business processes

BizTalk Orchestration Services represents a new way to approach designing, deploying, and maintaining distributed business
processes. BizTalk Orchestration Services are used to design business processes that manage the overall business logic. BizTalk
Server lets you orchestrate your business processes by combining a run-time engine with a design-time tool called BizTalk
Orchestration Designer. Using BizTalk Orchestration Designer, you visually coordinate all of your business-to-business
orchestrations on screen in a Microsoft® Visio® graphical interface. BizTalk Server then saves your workflow in an executable file
called an XLANG schedule, which a run-time engine uses to execute your business processes. You do not write any code to bind
the business processes together; your coding is in the individual components of specialized business logic, rather than the
implementation that holds them together.

BizTalk Orchestration Services include the integration of long-running business processes with the applications that run those
business processes. This integration is provided by the XLANG schedule. Additional services provide control for running XLANG
schedule instances.

A key feature of BizTalk Orchestration Services is the ability to handle complex transactions that run as long as weeks or months,
not just minutes or hours. BizTalk Orchestration Services also enable you to implement concurrent actions within a single XLANG
schedule. In addition, you do not need to write custom code to manage the state of your business process; BizTalk Orchestration
Services manages it for you.

To access code samples that use BizTalk Orchestration Services, see BizTalk Orchestration Services Code Samples.

The following topics are covered in this section:

XLANG schedules

Implementation technologies

XLANG language

Related Topics

BizTalk Orchestration Services Code Samples

Designing BizTalk Orchestrations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee264878(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264887(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264875(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

Building a BizTalk Server Solution
Before you build your BizTalk Server solution, you need to plan the methodology, that is, you should determine the specific way a
solution will perform to ensure the appropriate deliverables are being met.

For example, you might ask the following planning questions:

Do you need to deliver documents, receive documents, or both?

What documents need to be transferred?

To where do they need to be transferred?

When do they need to get there?

What document format will you use?

What protocols will you use to transfer the documents?

Are there legacy systems that need to adapt to your new integration system?

What kinds of files do those legacy systems require?

The decisions based on these and other questions are traditionally made during the design phase of a project, and then
implemented over a period of several weeks or months by a team of programmers. With BizTalk Server, you can use
BizTalk Orchestration Designer to rapidly build business processes in the visual designer.

A common scenario for integrating two services is the correlation of messages within a single running XLANG schedule instance.
That is, to have an XLANG schedule instance send a message to an internal application or trading partner, and to expect a
message in return. An example is sending a purchase order and expecting a purchase order acknowledgement in return.

Using the XML tools provided with BizTalk Server, your development process might follow the sequence described in the
following table.

Development task Traditional method BizTalk Server method
Diagram the business
process.

Sketch out the business process on paper or whiteboard,
or use a CASE tool.

Use BizTalk Orchestration Designer to combine
geometric shapes and connections into an
XLANG schedule drawing.

Implement the busines
s process

Manually write code to resemble the intended business l
ogic.

Bind your XLANG schedule to components to a
pply meaningful executable code to your drawi
ng.

Design the structure of
your documents.

Determine the structure of the documents, convey that in
formation to the programming department, then have th
em choose a language and manually write code to resem
ble the document structure.

Create the document specifications using
BizTalk Editor.

Synchronize your data
with your business par
tner's data.

Manually write code that will read and write data formats
into your document structure.

Visually map your data format to your partner'
s data format using BizTalk Mapper.

Configure the commun
ication between your c
ompany and your busi
ness partner.

Manually write code that will transmit and receive docum
ents and messages. If necessary, write code to perform m
essage queuing and configuration.

Create channels and ports using
BizTalk Messaging Manager.

Deploy your solution. Manually configure your system to receive new documen
ts from trading partners, then have your trading partners
write code to configure and deploy their systems to work
with yours.

Use Microsoft Application Center to deploy insi
de your enterprise. Then use the
BizTalk SEED Wizard to package your configura
tion and deploy to a trading partner.

Monitor your documen
ts.

Manually write code that will monitor and track documen
ts, create performance statistics, and generate reports on
your customized code.

Use Microsoft Operations Manager (MOM) and
the Tracking database to monitor alert notificati
ons, create performance statistics, and monitor
databases.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

RAD for business processes

The concept of rapid application development (RAD) came from the need to create and deploy a software solution quickly to
ensure the solution was still relevant by the time it was implemented. The RAD approach, when implemented efficiently, not only
reduces development time, but also decreases production costs.

BizTalk Server introduces RAD concepts into inter-company business process development by offering powerful XML tools such
as BizTalk Orchestration Designer, BizTalk Editor, and BizTalk Mapper.

BizTalk Server lets you maintain your long-term infrastructure investment while meeting your requirements for short-term critical
success.

The following topics are covered in this section:

Enterprise Application Integration

Business-to-Business Integration

Business Process Automation

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250784(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250790(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264865(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

Manageability, Reliability, Flexibility
BizTalk Server provides tools for defining and maintaining business processes managed by the product, as well as taking
advantage of the management facilities offered by the Windows 2000 platform.

The following topics are covered in this section:

Manageability

Reliability

Flexibility

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee264871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250778(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250775(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

BizTalk Server Accelerators
Microsoft offers accelerators that can significantly increase the development and performance of BizTalk Server 2002 installations
in specific markets and industries.

Microsoft currently offers BizTalk Server accelerators for:

Health insurance standards: BizTalk Accelerator for HIPAA

Multiple supply channels: BizTalk Accelerator for Suppliers

Supply chain standards: BizTalk Server Accelerator for RosettaNet

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee264869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250780(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

BizTalk Server Features
The following table provides information about BizTalk Server features and how to use them.

Feature Function
Administration

Administering Servers and Applications

BizTalk Orchestration Services

Create and manage servers and server groups.

Configure global server group properties, such as the location for the
Shared Queue database and the Tracking database.

Configure server settings.

Configure and manage receive functions.

View and manage document queues.

Programmatically access the XLANG Scheduler System Manager, group man
agers, XLANG schedule instances, and XLANG ports.

Document Tracking

Tracking Documents

Track the progress of documents processed by Microsoft BizTalk Server 2002.

Search for, display, view, and save complete copies of any interchange or doc
ument processed by BizTalk Server 2002.

Create queries to extract essential information from the Tracking database in
an easy-to-view format.

Extract, store, and analyze important user-defined data from within document
s.

Orchestration Design

Designing BizTalk Orchestrations

Create drawings that describe business processes, and programmatically imp
lement these drawings within an integrated design environment.

Compile XLANG schedule drawings into XLANG schedules.

Define the flow of data between messages within business processes.

Messaging

Using BizTalk Messaging Manager

Understanding Messaging Services

Manage the exchange of data locally or remotely using
BizTalk Messaging Manager.

Manage the exchange of data programmatically using the BizTalk Messaging
Configuration object model.

Create and manage channels, messaging ports, document definitions,
envelopes, organizations, and distribution lists.

XML Tools

Using BizTalk Editor

Using BizTalk Mapper

Create and manage document specifications.

Create records and fields, and set their properties.

Map records and fields from a source specification to records and fields of a
destination specification.

Use functoids to implement powerful data-transformation functionality.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Deployment

BizTalk SEED Wizard

Rapidly enable your trading partners by using SEED packages to make your c
onfigurations available through the Internet.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Getting Started

BizTalk Server Application Model
Microsoft BizTalk Server 2002 provides tools and services that enable you to create executable applications for controlling your
business processes and the exchange of data between trading partners and applications within your business. For a list of the
features provided by BizTalk Server 2002, see BizTalk Server Features.

Integrating BizTalk Orchestration Services and BizTalk Messaging Services enables you to control the exchange of documents and
messages between your trading partners and internal applications by using multiple transport services. It also provides:

Control over complex, long-running transactions and business processes.

Reliable delivery of documents and messages.

Data validation by verifying each document instance against a specification.

Data mapping by using maps to transform document structure and format.

Data security and integrity by using encryption and digital signature certificates.

Receipt generation and correlation support.

For more information about configuring BizTalk Server to send or receive receipts, see Understanding Receipts.

For more detailed information about how you can integrate BizTalk Orchestration Services and BizTalk Messaging Services, see
Integrating BizTalk Services.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

BizTalk Server Administration Model
The following table describes the four main areas of administration in Microsoft BizTalk Server 2002 and relevant administrative
functions of each area.

Area of administration Administrative function overview
Server administration Configure and manage server groups and servers.

Configure and manage receive functions.

Manage queues.

Application administration Configure and manage the COM+ applications that host XLANG schedules.

Configure and manage the default XLANG Scheduler application.

Programmatic administrat
ion

Configure XLANG system managers, XLANG group managers, XLANG schedule instances, and X
LANG ports.

Database administration Configure, manage, and maintain the following databases:
BizTalk Messaging Management

Orchestration Persistence

Tracking

Shared Queue

Server administration

In BizTalk Server 2002, server administration includes tasks such as managing and configuring server groups, adding, deleting
and configuring servers, adding and configuring receive functions, and managing the shared queue for each server group. The
following table describes the general server administrative tasks, their description, and where to find more information.

Administrative task Description Where to find more information
Configure servers and
server groups

Configure the connections for the Tracking and
Shared Queue databases.

Configure transport services and parser order.

Configure server settings.

Add, Delete, and Configure a Server Group

Add, Delete, and Configure Servers in a Group

Manage queues Delete and resubmit interchanges and docume
nts.

View data and error messages.

Manage Queues

Manage receive functi
ons

Configure receive functions. Manage Receive Functions for a Server Group

Troubleshooting Troubleshoot server and document processing
problems.

Manage Event Viewer

Troubleshooting BizTalk Server Administration

Application administration

Application administration includes configuring and managing the COM+ applications that host XLANG schedules, the default
XLANG Scheduler application, and the Orchestration Persistence database that is created when you install BizTalk Server 2002.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

The following table describes the general application administrative tasks, their description, and where to find more information.

Administrative task Description Where to find more information
Manage the default XL
ANG Scheduler applica
tion

Change the default settings f
or the XLANG Scheduler appl
ication.

Manage the Default XLANG Scheduler Application and Database

Manage COM+ applica
tions

Create COM+ applications to
run specific XLANG schedule
s.

Manage Other COM+ Applications That Host XLANG Schedules

Programmatic administration

The management and administration of servers and applications can be done programmatically in Microsoft BizTalk Server 2002.
The following table describes the general programmatic administrative tasks, their description, and where to find more
information.

Administrative task Description Where to find more information
Configure and manag
e the XLANG Schedul
er System Manager, g
roup managers, XLA
NG schedule instance
s, and XLANG ports

Start, stop, and retrieve information a
bout the XLANG Scheduler System M
anager and group managers.

Stop, suspend, resume, and retrieve i
nformation about all the schedules a
ssociated with a group.

BizTalk Orchestration Services

Create application int
egration components
(AIC)

Create custom components.

Integrate
line-of-business (LOB) applications.

Add encryption, decryption, and digit
al signature features.

BizTalk Custom Components

Use documents and i
nterchanges

Access the Suspended queue.

Read the Tracking database.

Submit documents.

View interchange and document data
.

BizTalk Documents

Documents and WMI

Displaying the Contents of a Document or an Interchange

WMI Tasks

Manage file receive s
ervices

Perform file receive functions such as
create, delete, and retrieve.

Receive Services and WMI

WMI Tasks

Manage queues Retrieve queues by group.

Retrieve all queues.

Queues and WMI

WMI Tasks

Manage server group
s

Perform server group functions such
as create, delete, and retrieve.

Groups and WMI

WMI Tasks

Manage servers Perform server functions such as cre
ate, delete, start, stop, and retrieve.

Servers and WMI

WMI Tasks

https://msdn.microsoft.com/en-us/library/ee250973(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250967(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250911(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250901(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250914(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250919(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250862(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250874(v=bts.10).aspx

Manage the BizTalk
Messaging Managem
ent database

Create and retrieve the BizTalk Messa
ging Management database.

BizTalk Messaging Management Database and WMI

WMI Tasks

Manage trading partn
er relationships

Set up messaging ports and channels
for the exchange of data.

1Create document definitions and en
velopes.

Set organization properties.

BizTalk Messaging Services

For more information about using Windows Management Instrumentation (WMI) and WMI Application programming, go to the
MSDN Online Library (msdn.microsoft.com/library/default.asp) and search for "WMI Application Programming."

Database management

In addition to regular database maintenance and administration, such as compressing data files and backing up the database and
transaction file logs, you must perform other database-related tasks, such as maintaining connectivity between BizTalk Server and
Microsoft SQL Server, adding, deleting, and restoring databases, and configuring new databases. The following table describes
general database administrative tasks, their description, and where to find more information.

Administrativ
e task

Description Where to find more information

Manage datab
ases

Configure and/or change the BizTal
k Messaging Management databas
e.

Create and configure new persisten
ce databases.

Restore and/or manually remove t
he Tracking and Shared Queue dat
abases.

Configure the BizTalk Messaging Management database

Change the BizTalk Messaging Management database for a server

Create a new empty persistence database

Manage Databases for a Server Group

Monitor traffic
to the database
s

Configure server settings. Understanding Server Properties

Optimizing Server Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250854(v=bts.10).aspx
http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee274492(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274547(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250959(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274499(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274556(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

Using BizTalk Server 2002 Help
This section includes information about the Microsoft® BizTalk™ Server 2002 Help system.

The following topics are covered in this section:

For comprehensive information about BizTalk Server 2002 Help, see About Help.

For detailed procedures on how to accomplish tasks, see How to Perform Help Tasks.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

About Help
The Microsoft BizTalk Server 2002 Help system uses HTML to format and display information. The Help Viewer provides an
integrated table of contents, an index, and a full-text search feature so that you can find information easily. Book icons open to
reveal sub-books and topics. To expand the table of contents and view topics within a book, click the expand indicator (+) next to a
book title. When you click the collapse indicator (-), the topics are hidden. The Help Viewer also enables you to see the table of
contents, index, or search results at the same time you are viewing a Help topic.

The Help Viewer includes the Favorites tab, which you can use to bookmark topics. This enables you to quickly display topics that
you refer to often.

To learn more about BizTalk Server 2002, you can use the table of contents to browse through the documentation. When you click
a topic in the table of contents, information is displayed in the content pane of the Help window.

The table of contents is organized in books according to the major features and functions that BizTalk Server 2002 provides. Each
book contains some or all of the following chapters:

About <feature/function/related concept>. These chapters contain descriptions and general information about BizTalk
Server 2002, its features, and related concepts.

Why Perform <feature/function name> Tasks. These chapters contain quick references about why you perform specific
tasks.

How to Perform <feature/function name> Tasks. These chapters contain procedural and task-based information.

Troubleshooting <feature/function name>. These chapters contain problem-solving instructions.

For programming information, see BizTalk Server 2002 Developer Solutions.

Related Topics

Find a Help Topic

Help Viewer Shortcut Keys

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

How to Perform Help Tasks
You can use the tasks described in this section to locate information in Microsoft BizTalk Server 2002 Help. For example, you can
locate information by performing a search in Help and then bookmark that information by adding it to a list of your favorite Help
topics on the Favorites tab. You can copy information from Help into a different document or print it out. You can also change
the font size, so that the content is easier to read.

The following procedures are covered in this section:

Find a Help Topic

Copy a Help Topic

Print a Help Topic

Change the Font Size

Help Viewer Shortcut Keys

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

Find a Help Topic
In the Help Viewer, the following tabs provide browse and search options:

Contents tab

Index tab

Search tab

Favorites tab

Contents tab

You can use the Contents tab to navigate through Help and learn more about BizTalk Server 2002.

1. To browse through the table of contents, click the Contents tab.

2. Double-click the book icons to reveal topic entries and sub-books.

3. Click a table-of-contents entry to display the corresponding topic.

Index tab

You can use the Index tab to search Help by subject and then display the corresponding topics.

1. To see a list of index entries, click the Index tab and then either type a word or scroll through the list.

Topics are often indexed under more than one entry.

2. Double-click an index entry to display the corresponding topic.

—Or—

Double-click a top-level index entry, where there are nested entries, to display a list of all the topics that contain that word.

The Topics Found dialog box appears.

Click the topic you want to see and click Display.

Search tab

You can use the Search tab to locate every occurrence of a word or phrase in Help.

1. To locate every occurrence of a word or phrase, click the Search tab, type the word or phrase for which you want to search,
and then click List Topics.

To improve the search results, you can use the search parameters listed in the following table.

Use To search for Example
AND,
OR, N
EAR, o
r NOT

Multiple words or phrases. This will find combinations of words, and also ca
n be used to exclude words.

Messaging AND Orchestration

 Note

You can click the right-arrow icon
next to the Type in the word(s) t
o search for box and select an op
tion from the drop-down list.

Asteri
sk (*)

Any word that starts with the letters before the asterisk. This will find words
with different endings.

Admin*

Specif*

Quota
tion m
arks ("
")

A phrase or a term that contains multiple words. This will eliminate matches
for the individual words. For example, if you type "BizTalk Mapper" it will no
t find all the matches for "BizTalk" and all the matches for "Mapper," only th
e matches for both words together.

"BizTalk Mapper"

"delimited flat file"

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

You can also select the options at the bottom of the Search tab to refine your search:

Search previous results. Searches the current list in the results pane with the new search parameters you provide.

Match similar words. Searches for all variations on the word being searched for. For example, searches for
"messaging" will also return matches to "messages." This option is selected by default.

Search titles only. Searches only the titles of the books, sub-books, and topics, not the entire text.

2. Double-click a search results entry to display the corresponding topic.

 Note

The words or phrases you search for will be highlighted in the text of the topic being displayed. You can turn off this feature
by selecting Search Highlight Off on the Options menu.

Favorites tab

You can create a list of your favorite or most frequently visited Help topics by creating bookmarks for them on the Favorites tab.

1. To bookmark a topic, use the Contents, Index, or Search tab to locate and then display a topic.

2. Click the Favorites tab and click Add to save the topic title to the Topics list.

The Help Viewer adds the topic title to the Topics list. Later, you can return to this list and double-click the bookmark to quickly
display the topic.

 Note

To remove a bookmark from the Topics list, click the bookmark and click Remove.

Related Topic

Help Viewer Shortcut Keys

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Getting Started

Copy a Help Topic
1. In the topic pane of the Help Viewer, right-click inside the topic you want to copy and click Select All.

2. Inside the topic, right-click again and click Copy.

This copies the topic to the Clipboard.

3. Open the document to which you want to copy the topic.

4. Click the place in your document where you want the information to appear.

5. On the Edit menu, click Paste.

 Notes

If you want to copy only part of a topic, select the part you want to copy, right-click the selection, and then click Copy.

Step numbers are not copied to the Clipboard.

Related Topics

Find a Help Topic

Print a Help Topic

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

Print a Help Topic
1. On the Contents tab, select a topic.

2. On the toolbar, click Print.

The Print Topics dialog box appears.

3. Click Print the selected topic to print a single topic and click OK.

-Or-

Click Print the selected heading and all subtopics to print all the topics in a book and click OK.

The Print dialog box appears.

4. Click Print.

 Important

It is recommended that you select Landscape for the page orientation because pages with code samples, large illustrations,
and significant text might print only partially if you use Portrait orientation. To select Landscape, in the Print dialog box,
click the Layout tab and click Landscape in the Orientation area.

Related Topics

Find a Help Topic

Help Viewer Shortcut Keys

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

Change the Font Size
You can increase the font size of text for easier viewing, or you can decrease the font size to see a representation of the layout of a
page.

On the toolbar, click the Font () button to increase or decrease the text size.

Changes to the font size are retained when you close the Help file, so that the next time you open the Help file, it will display the
font size you selected last.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

Help Viewer Shortcut Keys
You can use shortcut keys to accomplish tasks in the BizTalk Server 2002 Help Viewer. The following table is a quick reference to
the shortcut keys available in the Help Viewer.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Microsoft® Windows® 2000 Server Help, see "Using the keyboard
to move the mouse pointer." In Windows 2000 Professional Help, see "To move the mouse pointer by using MouseKeys."

Help Viewer shortcut keys

Press To
ALT+SPACEBAR Display the system menu.
SHIFT+F10 Display the Help Viewer shortcut menu.

 Note

Use this shortcut when the focus is in the topic pane.

ALT+TAB Switch between the Help Viewer and other open windows.
ALT+O Display the Options menu.
ALT+O, and then press T Hide or show the navigation pane.
CTRL+TAB Switch to the next tab in the navigation pane.
CTRL+SHIFT+TAB Switch to the previous tab in the navigation pane.
UP ARROW Move up one topic in the table of contents, index, or search results list.
DOWN ARROW Move down one topic in the table of contents, index, or search results list.
PAGE UP Move up one page in the table of contents, index, or search results list.
PAGE DOWN Move down one page in the table of contents, index, or search results list.
F6 Switch focus between the navigation pane and the topic pane.
ALT+O, and then press R Refresh the topic that appears in the topic pane.
UP ARROW or DOWN ARROW Scroll through a topic.
CTRL+HOME Move to the beginning of a topic.
CTRL+END Move to the end of a topic.
CTRL+A Highlight all text in the topic pane.
ALT+O, and then press P Print a topic.
ALT+O, and then press B Move back to the previously viewed topic.
ALT+O, and then press F Move forward to the next (previously viewed) topic.
TAB Move between related topics.

 Note

Use this shortcut when the focus is in the topic pane.

ALT+F4 Close the Help Viewer.

Contents tab shortcut keys

Press To
ALT+C Display the Contents tab.
RIGHT ARROW Open a book.
LEFT ARROW Close a book.
BACKSPACE Return to the previous open book.
UP ARROW or DOWN ARROW Select a topic.
ALT+LEFT ARROW Move back to the previously viewed topic.
ALT+RIGHT ARROW Move forward to the next (previously viewed) topic.
ENTER Display the selected topic.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Index tab shortcut keys

Press To
ALT+N Display the Index tab.
UP ARROW or DOWN ARROW Select a keyword in the list.
ALT+D or ENTER Display the associated topic.

Search tab shortcut keys

Press To
ALT+S Display the Search tab.
ALT+L Start a search.
ALT+D or ENTER Display the selected topic.

Favorites tab shortcut keys

Press To
ALT+I Display the Favorites tab.
ALT+A Add a topic to the Topics list.
ALT+P Select a topic in the Topics list.

 Note

Use this shortcut when the focus is in the topic pane and you want to move to the Topics list.

ALT+R Remove a topic from the Topics list.
ALT+D Display a topic from the Topics list.

Related Topic

About Help

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Getting Started

Accessibility for People with Disabilities
Microsoft is committed to making its products easier for everyone to use. For information about features that make Microsoft®
BizTalk™ Server 2002 more accessible, see the following:

Help Viewer Shortcut Keys

BizTalk Server Administration Shortcut Keys

BizTalk Document Tracking Shortcut Keys

BizTalk Orchestration Designer Shortcut Keys

BizTalk Messaging Manager Shortcut Keys

BizTalk Editor Shortcut Keys

BizTalk Mapper Shortcut Keys

 Notes

For more information about accessibility options, in Microsoft Windows® 2000 Server Help, in the Getting Started with
Windows 2000 book, see "Accessibility for People with Disabilities." In Windows 2000 Professional Help, see the chapter
"Accessibility for Special Needs."

For information about accessibility options in a variety of Microsoft products, go to the Microsoft Accessibility Web site
(www.microsoft.com/enable/).

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274646(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274734(v=bts.10).aspx
http://www.microsoft.com/enable/
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Getting Started

Contacting Microsoft Product Support Services
Product name: Microsoft® BizTalk™ Server 2002

Support options: To get the latest information about your support options, go to the Microsoft Product Support Services Web
site (support.microsoft.com/directory/productsupportoption.asp).

Worldwide support: Options, hours, and cost in your country/region may differ from the United States; check with your
local office for details.

Conditions: Microsoft Product Support Services are subject to Microsoft's then-current prices, terms, and conditions, which
are subject to change without notice.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://support.microsoft.com/directory/productsupportoption.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorials

Learning to Use BizTalk Server 2002
This section contains three end-to-end scenarios that will help you learn how to use and better understand Microsoft®
BizTalk™ Server 2002 tools and services:

The BizTalk Server 2002 Tutorial is a traditional tutorial that walks you through the procedures that are necessary to
configure a complete business-to-business automated procurement process. This tutorial focuses on giving you the
opportunity to learn how to use BizTalk Mapper, BizTalk Editor, BizTalk Orchestration Designer, BizTalk Messaging Manager,
and BizTalk Server Administration.

Learning BizTalk Server 2002 is a conceptual overview of the fundamental concepts that surround the processes and tasks
required to build a business-to-business automated procurement process with BizTalk Server. This approach enables you to
run scripts that perform the setup for you. It gives you an opportunity, through exploration, to better understand how the
services and processes work.

The E-Procurement Sample is an end-to-end sample that demonstrates some of the newest features of BizTalk Server. It
provides an overview of the BizTalk SEED Wizard, Application Center deployment, and advanced monitoring capabilities
using Microsoft Operations Manager (MOM). It also includes new XLANG correlation using common queues instead of
per-instance queues.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

BizTalk Server 2002 Tutorial
Business-to-Business Automated Procurement

In this tutorial you will learn how to configure Microsoft® BizTalk™ Server 2002 to establish and run a business-to-business
automated procurement process.

You will also learn how BizTalk Server components and services work together to integrate loosely coupled, long-running
business processes, both within and between businesses.

 Note

The BizTalk Server 2002 tutorial is also provided in Microsoft Word format. To print the tutorial, you must use the Word
version. If you do not have Word installed, you can view the file by using WordPad or Microsoft Word 97/2000 Viewer. The
Tutorial.doc file is located in \Program Files\Microsoft BizTalk Server\Documentation on the BizTalk Server installation drive.

Requirements

To successfully complete this tutorial, you must install BizTalk Server 2002 and all its dependencies. In addition, Microsoft Visual
Basic® 6.0 is required to complete portions of the Appendix. For a complete list of the hardware and software requirements for
BizTalk Server 2002, see Installing BizTalk Server 2002.

Scenario

The scenario used in this tutorial provides a comprehensive overview of the key elements of BizTalk Server 2002, as well as step-
by-step instructions about how to use Biztalk Server tools and services.

In this scenario, Northwind Traders (referred to in this tutorial as the buyer) uses BizTalk Server 2002 to design and implement a
business-to-business automated procurement process with Contoso, Ltd (referred to in this tutorial as the seller). When a
purchase order request is generated by Northwind Traders, it must meet certain criteria for approval. If the purchase order
request is equal to or less than $1,000, a purchase order is generated and sent to Contoso, Ltd. Otherwise, the purchase order
request is declined and the process terminates. Northwind Traders automates this process by using an XLANG schedule to control
the flow of messages through their system.

After the purchase order request is approved, the buyer's system uses BizTalk Messaging Services to receive, route, and transform
the purchase order to match the Contoso, Ltd format, and then extracts the data. The seller (Contoso, Ltd) fills the order and sends
an invoice back to the buyer (Northwind Traders). When the buyer receives the invoice, a payment is issued and sent to the seller.

This procurement process is automated by using BizTalk Server 2002 tools and services. Both systems also use a number of
auxiliary components that work in conjunction with BizTalk Server 2002 to perform key data-processing tasks.

The following illustration shows the interaction of the business-to-business automated procurement system implemented by
Northwind Traders and Contoso, Ltd. Arrows denote the flow of data among roles and entities.

 Important

For the purposes of this scenario, both the buyer and seller systems are configured on a single installation of BizTalk Server
2002.

The following illustration shows the movement of the documents through the buyer and seller systems. It also shows the

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

interaction between the XLANG schedule, BizTalk Messaging Services, and the auxiliary components. This illustration is a useful
reference that you might want to print and have available because it is referred to in several procedures throughout the modules
in this tutorial.

Contents

Module 1: Modeling Business Processes

In this module, you learn how to:

Use BizTalk Orchestration Designer to create an XLANG schedule drawing that defines and implements the procurement
processes for Northwind Traders. For more information, see Designing BizTalk Orchestrations.

Compile the XLANG schedule drawing into an XLANG schedule. For more information, see
Compile an XLANG schedule drawing into an XLANG schedule.

Run the XLANG schedule to see how a message moves through the buyer system.

Module 2: Creating Specifications and Maps

In this module, you learn how to:

Use BizTalk Editor to create document specifications. For more information, see Create and Validate Specifications.

Use BizTalk Mapper to create maps. For more information, see Create new maps.

Module 3: Configuring BizTalk Messaging Services

In this module, you learn how to:

https://msdn.microsoft.com/en-us/library/ee265284(v=bts.10).aspx

Use BizTalk Messaging Manager to configure BizTalk Messaging Services for Contoso, Ltd. For more information, see
Using BizTalk Messaging Manager.

Use BizTalk Server Administration to create a File receive function for Contoso, Ltd. For more information, see
Add a File receive function.

Module 4: Completing the XLANG Schedule

In this module, you learn how to:

Implement a port in the XLANG schedule drawing that you started in Module 2 by using a BizTalk Messaging
implementation. For information about the differences between ports and messaging ports, see
Understanding Port Implementations and Understanding Messaging Ports.

Complete the XLANG schedule drawing and compile it into an XLANG schedule.

Run the schedule to understand the complete movement of messages between the buyer and seller systems.

 Shortcuts

Throughout this tutorial, several shortcuts are available that will enable you to save time and effort by using an existing
XLANG schedule, a document specification, a map, or a configuration script. By using shortcuts, you can advance to
subsequent sections of the tutorial.

To use shortcuts, all the tutorial components must be installed on drive C. You will not be able to execute the tutorial if you
use a different drive.

Continue to Preliminary Setup.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274520(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274622(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Preliminary Setup
Before you begin the tutorial, you must create the following:

One folder containing four subfolders

Two local Web site folders containing Active Server Pages (ASP) files

Two message queues for the buyer system

Continue to Create folders.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251368(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Module 1: Modeling Business Processes
In this module, you use BizTalk Orchestration Designer to create an XLANG schedule drawing that defines and implements the
automated procurement process for Northwind Traders. You then compile the XLANG schedule drawing into an executable
XLANG schedule, which controls the flow of messages for the buyer system.

Objectives

Create an XLANG schedule drawing that defines the automated procurement process. For more information, see
Creating XLANG Schedule Drawings.

Connect the actions in a logical sequence to further define the business processes. For more information, see
Connect Shapes.

Implement the business processes by connecting actions to ports. For more information, see
Establish the communication flow between an action and a port.

Add a rule to the business processes by writing a script expression. For more information, see Designing Rules.

Define the data flow for messages. For more information, see Communication Shapes.

Save the XLANG schedule drawing and compile the drawing into an XLANG schedule. For more information, see
Compiling XLANG Schedules.

Run the XLANG schedule to process the message through BizTalk Server. For more information, see
Running XLANG Schedules.

Continue to Creating the XLANG Schedule for the Buyer.

Related Topic

Designing BizTalk Orchestrations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265374(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265268(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Creating the XLANG Schedule for the Buyer
In the following procedures, you define and implement the business processes for Northwind Traders (the buyer) and create and
run an XLANG schedule.

To create the XLANG schedule, continue to Create the buyer actions.

 Shortcut

To use the existing XLANG schedule, continue to Run the XLANG schedule.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251387(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Module 1 Summary
In this module, you accomplished the following:

Created the XLANG schedule drawing that described the automated procurement process. For more information, see
Creating XLANG Schedule Drawings.

Connected the actions in a logical sequence that described the business process. For more information, see Connect Shapes.

Implemented the business process by connecting actions to ports. For more information, see
Establish the communication flow between an action and a port.

Added a rule to the business process by writing a script expression. For more information, see Designing Rules.

Defined the data flow for messages. For more information, see Communication Shapes.

Saved the XLANG schedule drawing and compiled the drawing into the XLANG schedule. For more information, see
Compiling XLANG Schedules.

Ran the XLANG schedule twice to process the purchase order request through BizTalk Server, observing the approval and
denial actions. For more information, see Running XLANG Schedules.

The highlighted areas of the following illustration show the steps you completed in this module.

Continue to Module 2: Creating Specifications and Maps.

https://msdn.microsoft.com/en-us/library/ee265374(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265268(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Related Topic

Designing BizTalk Orchestrations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Tutorial

Module 2: Creating Specifications and Maps
Now that you have designed the business process and know how the flow of communication will work within this model, you
need to define the structure of the business documents that will be sent and received. The structure of the business documents is
defined in XML schemas, also referred to as specifications. In this module, you use BizTalk Editor to create payment specifications
and purchase order specifications for the buyer, Northwind Traders.

Contoso, Ltd uses a common schema for the invoice they send to Northwind Traders. When Northwind Traders receives the
invoice, the specifications need to be converted to payment specifications. You use BizTalk Mapper to create a map between the
records and fields of the payment specifications that you create for Northwind Traders and the CommonInvoice specifications
that Contoso, Ltd uses.

Objectives

Create a specification. For more information, see Using BizTalk Editor.

Add new records and fields to a specification. For more information, see Add new fields to records.

Create a map. For more information, see Using BizTalk Mapper.

Create links between fields in a map. For more information, see Creating Links.

Use functoids to mathematically manipulate values in a map. For more information, see Understanding Functoids.

Save specifications and maps to the Web Distributed Authoring and Versioning (WebDAV) repository. For more
information, see Store specifications and Store maps.

Continue to Using BizTalk Editor.

Related Topic

Creating Specifications and Mapping Data

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251432(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Using BizTalk Editor
You use BizTalk Editor to create, edit, and manage specifications.

To use BizTalk Editor to create the payment specification, continue to Create the payment specification.

 Shortcut

To use the existing payment specification, continue to Use the existing payment specification.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251397(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Using BizTalk Mapper
In this procedure, you use BizTalk Mapper to create a map that transforms the data from a message that conforms to the
CommonInvoice specifications that Contoso, Ltd uses, into data in a message that conforms to the PaymentSpec specifications
that you created for the buyer, Northwind Traders.

In the next module, you will see how BizTalk Messaging Services uses this map within a channel to specify how data in a
document using one XML schema is transformed into a document that uses a different XML schema.

If you printed the overview illustration provided at the beginning of this tutorial, you might want to review the visual
representation of this process as depicted in the lower section of the drawing under "BizTalk Messaging Services."

To use BizTalk Mapper to create the map, continue to Create the InvoiceToPayment map.

 Shortcut

If BizTalk Server and all its components are installed on the C drive you can use the existing map. Continue to
Use existing InvoiceToPayment map.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251367(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251398(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Module 2 Summary
In this module, you accomplished the following:

Created a specification. For more information, see Understanding Specifications.

Added new records and fields to a specification. For more information, see Add new fields to records.

Created a map. For more information, see Using BizTalk Mapper.

Created links between fields in a map. For more information, see Creating Links.

Used functoids to mathematically manipulate values in a map. For more information, see Understanding Functoids.

Saved specifications and maps to the WebDAV repository. For more information, see Store specifications and Store maps.

The highlighted areas of the following illustration show the steps you completed in this module.

Continue to Module 3: Configuring BizTalk Messaging Services.

Related Topic

Creating Specifications and Mapping Data

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251432(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Module 3: Configuring BizTalk Messaging Services
At this point in the tutorial, you have designed the business process and the communication flow, and defined the structure of the
documents that will be sent and received. The next step is to configure BizTalk Messaging Services on the buyer and seller
systems so that the documents can be sent and received.

In this module, you learn how to use BizTalk Messaging Manager to configure organizations, channels, and messaging ports for
the seller and buyer systems. You also learn how to use BizTalk Server Administration to configure a File receive function.

Objectives

Create document definitions. For more information, see Create and Manage Document Definitions.

Create organizations. For more information, see Create and Manage Organizations.

Create messaging ports. For more information, see Create and Manage Messaging Ports and Integrating BizTalk Services.

Create channels. For more information, see Create and Manage Channels.

Use a map in a channel to transform a document. For more information, see Using BizTalk Mapper.

Create a receive function. For more information, see Receive Functions.

Continue to Configuring the Buyer System.

Related Topic

Using BizTalk Messaging Manager

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Module 3 Summary
In this module, you configured BizTalk Messaging Services on the buyer and the seller systems. It is important to note the order of
events. First you establish the trading partners on each system by creating organizations, and then you define the documents that
the organizations will send and receive. Then you work backwards, configuring the destination for the document, the source of
the document, and then (for the buyer's system) the receive function that gets the document and submits it to BizTalk Messaging
Services.

In this module, you accomplished the following tasks:

Created organizations. For more information, see Create and Manage Organizations.

Created document definitions. For more information, see Create and Manage Document Definitions.

Created messaging ports. For more information, see Create and Manage Messaging Ports.

Created channels. For more information, see Create and Manage Channels.

Used a map in a channel to transform a document. For more information, see Using BizTalk Mapper.

Created a File receive function. For more information, see Receive Functions.

To view the document definitions, organizations, messaging ports, channels, and map that you created in this module, use the
Search Now button in BizTalk Messaging Manager.

The highlighted areas of the following illustration show the steps you completed in this module.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Continue to Module 4: Completing the XLANG Schedule.

Related Topic

Using BizTalk Messaging Manager

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Tutorial

Module 4: Completing the XLANG Schedule
The initial representation of the Northwind Traders business process covered only the purchase order approval process. The
business processes surrounding a purchase order also include sending out an approved purchase order, receiving an invoice, and
returning a payment.

In this module, you use BizTalk Orchestration Designer to modify the buyer's XLANG schedule to include the invoice and payment
actions, and to implement the necessary ports. You then compile and run the completed XLANG schedule.

Objectives

Add invoice and payment actions. For more information, see Add shapes.

Implement a port by using BizTalk Messaging Services. For more information, see Using the BizTalk Messaging Shape.

Compile and run the completed XLANG schedule. For more information, see Compiling XLANG Schedules and
Running XLANG Schedules.

To complete the XLANG schedule, continue to Add invoice and payment actions.

 Shortcut

If BizTalk Server and all its components are installed on the C drive you can use the existing XLANG schedule. Continue to
Run the completed XLANG schedule.

Related Topic

Designing BizTalk Orchestrations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265347(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251313(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Run the Completed XLANG Schedule
You have completed the configuration of a business-to-business automated procurement solution. You can now run the
application that activates the XLANG schedule.

In this procedure, you use the ExecuteTutorial application that activates the XLANG schedule by delivering a purchase order
request to the message queue that is being monitored.

To run the XLANG schedule:

1. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Solution on the BizTalk Server installation
drive.

2. Double-click ExecuteTutorial.exe. This application is used to activate the XLANG schedule by means of a moniker.

The ExecuteTutorial application opens.

3. Click Browse for Schedule.

 Shortcut

If BizTalk Server and all its components are installed on the C drive you can use the existing XLANG schedule. Browse
to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Solution and continue to step 5.

4. If you created the Buyer2 XLANG schedule, browse to \Program Files\Microsoft BizTalk
Server\Tutorial\Schedule\Lab.

5. Click the Buyer2.skx XLANG schedule and click Open.

6. Click Browse for Data File and browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\SampleData.

7. Click POReqAccept.xml and click Open.

8. Click Start XLANG Schedule.

Because its total is less than $1000, the purchase order request is approved. A message box appears, notifying you that the
application passed data to the XLANG Scheduler Engine. At this point, the application is finished. A second message box
notifies you that the purchase order request has been approved. Click OK to close the message boxes.

9. Click End to close the ExecuteTutorial application.

10. Browse to C:\TutorialFiles\Seller.

You see the payment file. The file name is PaymentXXXX.xml, where XXXX is a unique set of numbers. Double-click the file
to open it in Microsoft Internet Explorer.

You have submitted a purchase order request. The purchase order request was approved and sent to the seller. The order was
filled and an invoice was issued. When the invoice was received, a payment message was posted to the seller system.

Continue to Module 4 Summary.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Module 4 Summary
In this module, you accomplished the following:

Added invoice and payment actions. For more information, see Connect Shapes.

Implemented a messaging port using BizTalk Messaging Services. For more information about implementing a messaging
port using BizTalk Messaging Services, see Using the BizTalk Messaging Shape.

Compiled and ran the completed XLANG schedule. For more information, see Compiling XLANG Schedules and
Running XLANG Schedules.

The highlighted areas of the following illustration show the steps you completed in this module.

Continue to Tutorial Summary.

Related Topic

Designing BizTalk Orchestrations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265374(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Tutorial Summary
In this tutorial you configured Microsoft BizTalk Server 2002 to establish and run a business-to-business automated procurement
process.

The following illustration shows the flow of data through BizTalk Server while running the Buyer2 XLANG schedule at the end of
Module 4.

You learned how BizTalk Server components and services work together to integrate loosely coupled, long-running business
processes, both within and between businesses.

You also learned how to:

Use BizTalk Orchestration Designer to model business processes by creating an XLANG schedule drawing.

Use BizTalk Messaging Manager to create organizations, channels, messaging ports, and document definitions.

Use BizTalk Editor to create specifications.

Use BizTalk Mapper to create maps.

Compile and run an XLANG schedule.

You have successfully completed the tutorial.

Additional Resources

For detailed information about creating the auxiliary components used in this tutorial, see

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Appendix: Creating Auxiliary Components.

For a conceptual overview of the fundamental concepts that surround the processes and tasks required to build a business-to-
business automated procurement process with BizTalk Server, see Learning BizTalk Server 2002.

For a comprehensive example of how to use several of the new features available in BizTalk Server 2002, see the
E-Procurement Sample. The new features include:

BizTalk SEED Wizard for rapid partner enablement

Application Center deployment capabilities

Advanced monitoring capabilities using Microsoft Operations Manager (MOM)

New XLANG correlation using common queues instead of per-instance queues

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Tutorial

Appendix: Creating Auxiliary Components
In this appendix, you learn how to create auxiliary components that work in conjunction with Microsoft BizTalk Server 2002 to
process data. Each component and its role and relationship in the process are described in detail.

 Important

Microsoft Visual Basic 6.0 is required to complete some of the procedures in this Appendix.

Specifically, you create:

An application on the buyer system that activates an XLANG schedule and sends a purchase order (PO) request to a
message queue that is bound to the XLANG schedule that controls the flow of messages through the buyer system.

A Windows Script Component (WSC) on the buyer system that accepts the approval or denial status for a purchase order
request from the XLANG schedule. If approved, the WSC displays an approval message and writes the purchase order
request to a local file directory, where the BizTalk Messaging Services for the buyer system retrieves it. If denied, the WSC
displays a denial message and the schedule ends.

An application integration component (AIC) on the seller system that generates an invoice based on the data in the purchase
order from the buyer.

Continue to Creating the Application.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Creating the Application
In this topic, you create an application that activates an XLANG schedule and then drops a purchase order request to a queue. You
use this application to test the implementation of the XLANG schedule and the configuration of BizTalk Messaging Manager.

To complete the lab, modify the code in the sample project. You will focus on the code that is specific to activating the XLANG
schedule and to dropping a message into a queue. Ancillary code is provided for you.

Each step corresponds to a segment of code. Look for comment blocks similar to the following example:

''
'To Do: Step A
''

Following this code are lines that have question marks (?) indicating placeholders where you must make a change. Replace the
question marks with the proper code to complete the lab. For example:

Private g_MSMTxDisp As ?

should be changed to:

Private g_MSMTxDisp As MSMQ.MSMQTransactionDispenser

 Note

These lines of code have been commented out. Be sure to remove the comment mark at the beginning of the lines to which
you make changes. The steps are not necessarily in order in the code window.

Continue to Open the application.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251329(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Creating the Windows Script Component
In this topic, you create a Windows Script Component (WSC) that is bound to the XLANG schedule. The purpose of the WSC is to
display a message box with approval or denial status of the purchase order request, and to optionally write the purchase order
request to a local file if it is approved.

Continue to Add script to register the component.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251339(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tutorial

Creating the Application Integration Component (AIC)
In this topic, you create a new application integration component called POtoINVAIC that converts a purchase order document
into an invoice document by using the MSXML DOM.

Continue to Create an ActiveX DLL project for the AIC.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Learning BizTalk Server 2002
Over the course of these lessons you will learn how Microsoft® BizTalk™ Server 2002 can help your business exchange a variety
of documents with business partners, as well as integrate internal business processes and applications.

These lessons explain the fundamental concepts surrounding BizTalk Server, and also provide you with information that will help
you understand the tools and processes that are required to start building solutions with BizTalk Server.

 Note

For a step-by-step tutorial of how to configure BizTalk Server processes, see the BizTalk Server 2002 Tutorial. The BizTalk
Server Tutorial shows you how to use BizTalk Editor, BizTalk Mapper, BizTalk Messaging Manager, BizTalk Server
Administration, and BizTalk Orchestration Designer to configure BizTalk Server to run a business-to-business automated
procurement process. For more information about BizTalk Server in general, see Introducing Microsoft BizTalk Server 2002.

Requirements

To use this tutorial, BizTalk Server and all its components must be installed on drive C. Although it is possible to run these files
from another drive and directory, you would need to make extensive modifications to the source files.

Before running this tutorial, you must also copy the LearnBizTalk directory to your C drive:

1. Copy the \Program Files\Microsoft BizTalk Server\SDK\LearnBizTalk directory to C:\LearnBizTalk.

2. Browse to C:\LearnBizTalk\Documents.

3. While pressing CTRL, select ReqToApprove.xml and ReqToDecline.xml.

4. Right-click the selection and click Properties.

5. On the General tab, in the Attributes area, clear the Read-only check box.

6. Click OK.

 Important

There are several scripts located in the C:\LearnBizTalk\Scripts directory. You can run the script files by double-clicking
them. These scripts make configuration changes within your BizTalk Server installation to help you complete the lessons.
Running these scripts may take several minutes. A message box will be displayed when each script is completed.

When you are finished with the tutorial, you can run the CleanUp.vbs script to remove all of the changes.

Contents

Lesson 1: Introduction to BizTalk Server

Lesson 2: Configuring BizTalk Messaging Services

Lesson 3: Designing BizTalk Orchestration Services

Lesson 4: Understanding Implementation

Lesson 5: Using BizTalk Mapper

Lesson 6: Sending and Receiving Documents

Lesson 7: Completing the Transaction

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Lesson 1: Introduction to BizTalk Server
This lesson provides an overview of BizTalk Server and the scenario used throughout the lessons.

The following topics are covered in this lesson:

What is BizTalk Server?

Why Use BizTalk Server?

Why Use XML?

Integrated Solutions

Installing BizTalk Server

The Scenario

Running the Scenario

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

What Is BizTalk Server?
Microsoft BizTalk Server 2002 provides a development and execution environment that orchestrates business processes, both
within and between businesses. BizTalk Server can handle business transactions that run as long as weeks or months.

BizTalk Server 2002 features include the ability to define business document specifications and how these documents have to be
transformed when passed between applications, and the ability to monitor and log server activity.

The server provides a standard gateway for sending and receiving documents across the Internet, as well as providing a range of
services that ensures data integrity, delivery, and security.

Continue to Why Use BizTalk Server?

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Why Use BizTalk Server?
In today's business environment it is imperative to ensure that the solution you build is based on commonly accepted protocols
and document formats. It is also important to know that your solution will enable integration with the widest variety of business
partners and applications, will work securely over the Internet, and will scale as your business needs grow. Microsoft BizTalk
Server 2002 is designed to address these issues.

Today's global marketplace dictates a need to efficiently operate 24 hours a day, seven days a week. Customers are more
sophisticated and want to stay informed in real time, which translates into an accelerated pace of business and the need for faster
decision-making processes. In addition, business relationships have become highly dynamic, and new customers and partners
expect businesses to adapt quickly.

There is also a need to support multiple applications on a variety of platforms, and to integrate with business partners using the
Internet, extranets, business-to-business (B2B) exchanges, and other resources. Existing information-technology investments need
to be preserved, which requires having the ability to support legacy systems and Electronic Data Interchange (EDI) networks like
X12 and EDIFACT. And, perhaps most importantly, to effectively compete in today's market, you need to be able to build new
solutions quickly, using open Internet standards and technology to assure maximum interoperability. For more information, see
Supporting Standards.

BizTalk Server uses XML internally to define the data and structure of your business documents, and it uses standard Internet
protocols like Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol (SMTP) to deliver these documents to their
destinations, enabling you to interoperate with various applications running in any environment as long as those applications
support Internet standards. You can send documents to BizTalk Server as Extensible Markup Language (XML), EDI, or flat files.

Continue to Why Use XML?

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251528(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Why Use XML?
To exchange documents in an environment where neither side wants to depend on the technology the other side is using,
businesses need to choose a common language in which to write these documents. Extensible Markup Language (XML) has
become this common language.

XML is a flexible way to create common information formats and share both the format and the data on the Web. A document
that is written in XML can be viewed and edited with any text editor, and is usually easy to understand. In the following example, a
company called Northwind Traders is ordering two monitors from a company called Contoso, Ltd. Review the following internal
requisition request from Northwind Traders, which is represented in XML format:

<NorthwindReq>
<Header reqNumber="IL0829" reqStatus="New" dateCreated="2000-10-24"/>
<Shipping
name="Brian H. Valentine"
addr1="1234 Main Street"
city="Anytown"
state="AL"
zip="12345"
country="USA"
phone="(555)555-0123" />
<Items count="2">
<Item partNo="270FS" description="27-inch flat screen monitor" qty="2" />
</Items>
</NorthwindReq>

This document follows a predefined format, called a schema. A schema is an XML document that describes the format of other
XML documents. Unlike other XML documents, a schema does not contain any data. It contains only the formatting rules for
document elements that might appear in a corresponding XML document.

XML has been through a formal standardization process by the World Wide Web Consortium (W3C). XML has reached the level of
"W3C Recommendation," the highest level that W3C assigns. For more information about the XML recommendation, go to the
Extensible Markup Language (XML) page on the World Wide Web Consortium Web site (www.w3.org/XML).

Microsoft BizTalk Server 2002 also defines documents using a format known as XML-Data Reduced (XDR), a functional subset of
the W3C XML Schema effort, which gives you many of the benefits of XML Schema. W3C XML recently reached the level of "W3C
Recommendation" and future versions of BizTalk Server will support XML Schema while providing a seamless migration path for
existing XDR. For more information about XML Schema, go to the XML Schema page on the World Wide Web Consortium Web
site (www.w3.org/XML/Schema).

Continue to Integrated Solutions.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.w3.org/XML
http://www.w3.org/XML/Schema
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Integrated Solutions
Microsoft BizTalk Server addresses the two key aspects of any document exchange, messaging and orchestration.

BizTalk Messaging Services provides the ability to send business documents securely and reliably. An example of such a
document could be a purchase order sent to your supplier, or a request for a price quote on the same product sent to multiple
suppliers in order to select the lowest bidder.

BizTalk Orchestration Services enables you to define the business processes that are used to create the message and then
implement them using a highly integrated graphical environment. Processes defined using BizTalk Orchestration Services have
the key characteristic that they are easy to modify when the business changes, providing you with the agility to respond to those
changes.

Because most business processes involve sending and receiving documents and applying business rules to the process, BizTalk
Messaging Services and BizTalk Orchestration Services are designed to work together to enable you to create integrated
solutions.

Continue to Installing BizTalk Server.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Installing BizTalk Server
In the following lessons you will work through a sample scenario where Northwind Traders is buying computer equipment from
Contoso, Ltd. These lessons will explain what happens in each step of the process, and show you how to define formats for the
business documents in XML using BizTalk Editor, how to describe internal business processes using
BizTalk Orchestration Designer, and how to tie it all together. While there is no coding specific to BizTalk Server integration, you
still need to build your own business-specific rules; however, in these lessons the coding required is minimal.

The examples used in the lessons are designed to be installed and run on a single computer; however, you can also configure the
same scenario on two or more servers.

Before you install Microsoft BizTalk Server 2002, make sure you have read the Readme.htm and Installation Guide.htm
documents, observing the following prerequisites:

You must have a computer running Microsoft® Windows® 2000 with Service Pack 2 or later (Windows 2000 Professional
and Windows 2000 Server both work), including Internet Information Services (IIS) and Message Queuing, and an account
with administrative rights on that computer.

You must have Microsoft SQL Server™ 7.0 with Service Pack 3 or SQL Server 2000 with Service Pack 1. You must configure
SQL Server for Windows authentication.

Microsoft Visio® 2002 must be installed on the computer where you are installing BizTalk Server.

In Administrative Tools, in Internet Services Manager, the Enable authoring check box on the Server Extensions tab
of the Default Web Site Properties dialog box must be cleared. For more information, see
Configure IIS settings for BizTalk Server 2002.

To run the scripts for these lessons, you need to install the Message Queuing component of Windows 2000.

For detailed information about the installation process, see Installing BizTalk Server 2002.

Continue to The Scenario.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

The Scenario
A computer hardware retailer, Northwind Traders, is ordering computer parts from one of its suppliers, Contoso, Ltd. An internal
procurement application at Northwind Traders creates a purchase requisition, just like the one shown in Why Use XML?, and
writes it as a file on a hard disk. Microsoft BizTalk Server 2002 monitors the file location and, when it detects a purchase
requisition, passes this file to Northwind Traders' automated order approval process. If the requisition is declined, it is marked as
such and written as a file on a hard disk. If it is approved, a purchase order is generated and sent to Contoso, Ltd using HTTP
protocol. In this scenario, a requisition is always approved if it does not exceed $1,000, and is declined otherwise.

In this scenario, both businesses are using BizTalk Server. While servers running BizTalk Server work well with each other, you can
also use BizTalk Server to interact with businesses that are not using this application.

After BizTalk Server on the Contoso, Ltd side receives the purchase order (in this scenario the same instance of BizTalk Server is
used to perform tasks for both sides), it passes the purchase order to the Contoso, Ltd business process, which generates an
invoice to be delivered to Northwind Traders, again using HTTP. Finally, BizTalk Server on the Northwind Traders side receives the
invoice and writes it as a file on a hard disk.

The following illustration shows what this process looks like at a high level.

Continue to Running the Scenario.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Running the Scenario
 Important

To successfully run this scenario you must copy the LearnBizTalk directory to your C drive and all the BizTalk Server
components must be installed on drive C. Although it is possible to run these files from another drive and directory, you
would need to make extensive modifications to the source files. For more information about these requirements, see
Learning BizTalk Server 2002.

To configure BizTalk Server for the tutorial

1. Browse to C:\LearnBizTalk\Scripts and double-click Setup.vbs.

This script file configures BizTalk Server for use during these lessons. Depending on your server environment, the script
might take a few minutes to complete, which will be indicated by a message box.

2. Browse to C:\LearnBizTalk\Documents and double-click ReqToApprove.xml and ReqToDecline.xml to open each file
in Microsoft Internet Explorer.

Notice that the reqStatus field is set to New, and note the values of the totalPrice and reqNumber fields in each
document.

To see BizTalk Server process the document

1. Copy the file ReqToDecline.xml from the C:\LearnBizTalk\Documents directory into the C:\LearnBizTalk\Pickup
directory.

 Note

Do not move the file because it will be processed by BizTalk Server and removed from the \Pickup directory. Because
the order total in this requisition exceeds $1,000, it gets declined and a message box is displayed.

2. Copy the file ReqToApprove.xml from the C:\LearnBizTalk\Documents directory into the C:\LearnBizTalk\Pickup
directory.

This time the requisition is approved, a purchase order is generated and sent to Contoso, Ltd, the purchase order is
processed, an invoice is created and sent back to Northwind Traders, and finally an invoice is received at Northwind Traders
and written as a file to the C:\LearnBizTalk\Output directory.

3. In the \Output directory, double-click the ContosoInvoice.xml file to open it in Internet Explorer.

The value of the referenceNumber field is now the same as the original reqNumber field.

In the lessons that follow, we take a closer look at what happens in each step of this process, and how to configure BizTalk Server
to perform all the necessary tasks.

Continue to Lesson 2: Configuring BizTalk Messaging Services.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Lesson 2: Configuring BizTalk Messaging Services
This lesson reviews the individual steps of the scenario that was set up in Lesson 1. In the remaining lessons you will run
additional script files. These scripts make adjustments to the Microsoft BizTalk Server 2002 configuration that was originally
created, so you can see the results of individual steps in the process rather than the complete process that was shown in Lesson 1.

The following topics are covered in this lesson:

2Configuring BizTalk Messaging Services

Configuring File Receive Functions

Configuring Messaging Ports and Channels

Defining Document Specifications

Running the Scenario

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Configuring BizTalk Messaging Services
BizTalk Messaging Services provides a way to pass documents between internal applications and between external business
partners. BizTalk Messaging Services enables you to define how your documents are received, processed, and delivered to their
destination, as well as provides such essential features as validating document structure, digital signatures, and encryptions, and
guaranteeing delivery over unreliable transports.

The script file L2Prep.vbs alters the configuration of BizTalk Messaging Services, so instead of delivering the document to BizTalk
Orchestration Services, it writes it as a file that you can examine.

To run this script

Browse to C:\LearnBizTalk\Scripts and double-click L2Prep.VBS.

The following illustration shows how the document is processed.

Continue to Configuring File Receive Functions.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Configuring File Receive Functions
The File receive functions enable you use a file that was created by an internal application with BizTalk Messaging Services. One
advantage of working with an output file is that an internal business application that creates this file does not need to
communicate with BizTalk Server. It simply creates a file containing the document and posts it to a specific location that BizTalk
Server is monitoring, and BizTalk Server picks it up. If you can create output files and receive input files into your existing
applications, you might be able to use them with BizTalk Server without a single modification.

Another important aspect of using File receive functions is asynchronous processing. Asynchronous, meaning "not at the same
time," pertains to processes that proceed independently of each other. Using asynchronous processing is important in a
distributed environment, because it enables each part of the solution to work by itself and not be affected if another part of the
solution is temporarily unavailable, whether due to failure or scheduled maintenance.

For example, if you experience a brief network failure, the overall application is not affected because the documents produced by
your internal business applications simply accumulate on the hard drive. When the network is available again, BizTalk Server picks
up and processes all the files it finds in the designated directory. You can also add more BizTalk Servers and configure them to
process documents from the same directory, if you generate more documents than one server can process at an acceptable
speed.

To see how the File receive function is configured

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Server
Administration.

2. Expand Microsoft BizTalk Server 2002, expand BizTalk Server Group, expand Receive Functions, right-click
ReceiveReq, and then click Properties.

The ReceiveReq Properties dialog box appears.

3. After reviewing the General tab, select the Services tab.

The following illustration shows Services tab, which indicates that the function was configured as a File receive function and
that the directory to poll for files and the file types to pick up have been specified.

The Advanced tab specifies where BizTalk Server will deliver the files it finds. It also identifies a channel to which the
receive function will pass the documents called Channel To Approval. Channels, as well as related messaging ports, are
covered in the next section. For more information, see Understanding Receive Function Advanced Properties.

https://msdn.microsoft.com/en-us/library/ee274552(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

4. Close the ReceiveReq Properties dialog box.

5. Close BizTalk Server Administration.

 Note

File receive functions are not the only way to submit documents to BizTalk Server. You can also receive documents from
Message Queuing, through e-mail (SMTP), and from Web pages (HTTP/HTTPS), as well as from a Component Object Model
(COM) from within your own applications. For more information, see Available Receive Functions.

Continue to Configuring Messaging Ports and Channels.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274658(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Configuring Messaging Ports and Channels
To deliver the document to a destination, you must define the destination in BizTalk Messaging Services. Destinations are known
in BizTalk Messaging Services as messaging ports. A messaging port also contains a set of properties with which you can direct
how documents are secured and transported to their destination, be it an internal application or an external business partner.

 Note

You can group messaging ports into distribution lists to send the same document to several different destinations, whether
they are business partners or internal applications.

The messaging port that was defined when you ran the setup script is called Req Approval Port. This is a messaging port to an
internal application that represents the Northwind Traders business process for requisition approval.

To view the messaging port properties

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Messaging
Manager.

2. Click Messaging ports and click Search Now.

3. In the right pane, double-click Req Approval Port to edit it.

The Messaging Port Properties page appears.

4. Click Next.

The Destination Organization page appears.

In the following illustration, the Destination Organization page shows that this document will be delivered to a file.

In Lesson 1, this messaging port delivered the message to an XLANG schedule within BizTalk Orchestration Services, which
implements the approval process. (BizTalk Orchestration Services is covered in more detail in the next lesson.) This was changed
by running the script at the start of the lesson, so you can now see the output.

Instead of delivering a document to BizTalk Orchestration Services or to a file, you can configure a messaging port to deliver
documents using any of the supported protocols, which include HTTP/HTTPS, SMTP, Message Queuing, and custom application
integration components (AICs).

You can also configure a messaging port with extra security features by optionally encrypting your document and/or adding a
digital signature to it.

Next, you will define a channel through which this document is delivered. A channel contains a set of properties, which identifies
the source organization or application that has sent out the document and defines the specific steps that are performed by BizTalk
Server before the document is delivered to the messaging port with which the channel is associated. The following illustration
shows the relationships between receive functions, channels, and messaging ports.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

To see how the channel that delivers requisitions to the Northwind Traders approval process is set up

1. Open BizTalk Messaging Manager if it is not already open.

2. Click Channels and click Search Now.

3. In the right pane, double-click Channel To Approval to edit it.

The Channel Properties page appears.

4. Click Next.

 Note

Alternatively you can select the messaging port Req To Approval by right clicking it and clicking Find Channels on
the Edit menu. This will show you all the channels. Only Channel To Approval is connected to Req To Approval.

In the following illustrations, note that the documents to be processed by this channel will originate from an internal
purchasing application, and that these documents will be in a format described by a document definition named Northwind
Req.

5. Click Cancel to close the Channel Properties page.

6. Close BizTalk Messaging Manager.

 Note

You can optionally instruct a channel to translate a document from one document definition into another, as well as specify
which information must be logged for tracking purposes as the channel delivers documents. Lesson 5 contains more
information about document translation using BizTalk Mapper.

For more information about messaging ports and channels, see Understanding Messaging Ports and Understanding Channels.

The following topic discusses what the document definition is and how to create one.

Continue to Defining Document Specifications.

Did you find this information useful? Please send your suggestions and comments about the documentation to

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Learning

Defining Document Specifications
Lesson 1 explained how important it is for businesses to use the same language for describing the documents that are passed
between them. This common language is XML. Although XML documents are stored in a text format and can be opened with any
text editor, creating or modifying them manually can be a tedious and error-prone process. BizTalk Server provides a tool called
BizTalk Editor that simplifies this task.

To open the NorthwindReq.xml file

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Editor.

2. On the File menu, click Open.

3. Browse to C:\LearnBizTalk\Documents, select NorthwindReq.xml, and then click Open.

The file will open in BizTalk Editor and it will appear as shown in the following illustration.

BizTalk Editor provides an easy way to manage specifications, including being able to visualize the format of a document, to
define data types for individual elements and attributes, and to define which data fields are required and which are optional. This
particular document schema represents an XML document, but BizTalk Editor looks similar for electronic data interchange (EDI)
and flat-file schemas.

Because you can work with the document specification on any workstation where you have BizTalk Editor installed, after the
specification has been created it also needs to be added to the BizTalk Server WebDAV repository so that BizTalk Server can
retrieve it.

 Note

Web Distributed Authoring and Versioning (WebDAV) is the Internet Engineering Task Force (IETF) standard for
collaborative authoring on the Web. It facilitates collaborative editing and file management between users located remotely
from each other on the Internet. For more information about WebDAV, go to the "HTTP Extensions for Distributed Authoring
-- WEBDAV" document on the IETF Web site (ietf.org/rfc/rfc2518.txt).

To create the document definition, you need to associate a specific XML specification that is created in BizTalk Editor and stored in
WebDAV with a name to be used by BizTalk Server.

http://ietf.org/rfc/rfc2518.txt
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

To create a document definition

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Messaging
Manager.

2. If the BizTalk Messaging Manager dialog box appears, click Cancel.

3. On the File menu, point to New and click Document Definition.

The New Document Definition dialog box appears.

4. In the Document definition name box, type a name for the document definition.

5. Select the Document specification check box and click Browse.

The Select a Document Specification from the WebDAV Repository dialog box appears.

6. Double-click the Microsoft folder, click the schema you want, and then click Open.

In this dialog box you can choose any schema stored in the BizTalk Server WebDAV repository.

7. Click OK to save the new document definition.

8. Close BizTalk Messaging Manager.

 Note

You can create multiple document definitions that are based on the same schema document. You can optionally define
global document tracking options for each document definition that you create. For more information, see
Understanding Document Definitions.

Continue to Running the Scenario.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Learning

Running the Scenario
 Important

To successfully run this scenario you must copy the LearnBizTalk directory to your C drive and all the BizTalk Server
components must be installed on drive C. Although it is possible to run these files from another drive and directory, you
would need to make extensive modifications to the source files. For more information about these requirements, see
Learning BizTalk Server 2002.

To run the scenario

1. Copy the file ReqToApprove.xml from C:\LearnBizTalk\Documents into C:\LearnBizTalk\Pickup.

The File receive function ReceiveReq that you defined previously will pick up that file and deliver it to the Req Approval Port
messaging port through the Channel To Approval channel.

2. Browse to C:\LearnBizTalk\Output and double-click the NorthwindRequisition.xml file to open it in Internet Explorer.

Note that it is the same document that you pasted into the \Pickup directory. At the beginning of this lesson you ran the
L2Prep.VBS script that modified the channel and messaging port definitions. So instead of delivering the requisition
document to BizTalk Orchestration Services, the messaging port wrote the document contents to a file called
NorthwindRequisition.xml in the \Output directory.

3. Perform these steps again, this time using the ReqToDecline.xml file. The file in the \Output directory will be overwritten
with your newly submitted requisition.

This lesson provided a basic overview of the way BizTalk Messaging Services functions. You ran a script that configured the
services, reviewed the properties involved, and picked up a file from the file system in one directory and deposited it in another
directory. Now that you understand the basic concepts and terminology, the following lessons will show you some additional
features.

The next lesson covers how Northwind Traders' requisition approval process is defined using BizTalk Orchestration Services.

Continue to Lesson 3: Designing BizTalk Orchestration Services.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Lesson 3: Designing BizTalk Orchestration Services
This lesson provides an overview of how Northwind Traders will implement their requisition approval process using BizTalk
Orchestration Services. The following illustration gives a detailed view of the requisition approval process.

Lesson 3 process preview

The following topics are covered in this section:

BizTalk Orchestration Services

Defining the Business Process

Implementing the Business Process

Creating the Communication Flow

Running the Scenario

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

BizTalk Orchestration Services
Microsoft BizTalk Server 2002 solves two problems: it provides you with BizTalk Messaging Services to send messages between
business processes, and it provides you with BizTalk Orchestration Services to create your business processes. The previous
lesson outlined how to submit your business documents to BizTalk Messaging Services. This lesson explains how to define your
business processes, and how to apply them using BizTalk Orchestration Services.

BizTalk Orchestration Services enables you to create a detailed representation of your business process, and also to
programmatically implement the business process within an integrated design environment based on Microsoft Visio 2002.
Historically, the business-process design phase and the implementation phase were performed separately. One of the important
features of BizTalk Orchestration Services is the integration of these previously distinct phases within a unified graphical design
environment.

Because business processes are defined in a graphical environment, when these processes change at the business level the
changes can be more rapidly reflected at the implementation level.

In addition to integrating design and implementation, BizTalk Orchestration Services provides the ability to create processes
containing concurrency, the ability to do multiple tasks at the same time, and the ability to create robust, long-running business
processes that span applications, platforms, and organizations.

To create robust, long-running business processes, BizTalk Orchestration Services saves instances of long-running business
processes and suspends them, which conserves computing resources and provides extra reliability. At a later point, the server
restarts these processes from the exact point at which they were suspended while waiting for a long operation to finish. Even if
the computer was turned off in the interim, the suspended processes restart when triggered. An example of such a long-running
operation could be waiting for payment of an invoice, an operation that usually takes 20 to 30 days before it is complete. For
more information, see Understanding Orchestration Services.

Continue to Defining the Business Process.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Defining the Business Process
In this lesson you open and review the XLANG schedule drawing that represents Northwind Traders' business process for
approving requisitions.

To review the Northwind Traders business process

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Orchestration
Designer.

2. On the File menu, click Open.

The Open XLANG Schedule Drawing dialog box appears.

3. Browse to C:\LearnBizTalk\Schedules, select NorthWindApprovalL3.skv, and click Open.

 Note

You can close the blank drawing that appears in BizTalk Orchestration Designer.

The following illustration shows the Northwind Traders approval process drawing that was designed in BizTalk Orchestration
Designer.

If you have drawn diagrams using Microsoft Visio, the look and feel of BizTalk Orchestration Designer will probably be familiar to
you. In BizTalk Orchestration Designer, you are defining your business process using flowchart shapes such as Action, Decision,
and While instead of more complex items, such as documents, specifications, components, and messages. No limitations are
imposed on the number or names of the steps in your business process. In addition, you can use Fork shapes to split the process
into multiple concurrent paths, such as requesting the same price quote from multiple suppliers, and later reunite these paths
with a Join shape. Finally, you can use the Transaction shape to bundle several steps of the process into a unitary transaction, if
necessary. For more information, see Flowchart Shapes.

Continue to Implementing the Business Process.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Implementing the Business Process
Once the business process has been defined, you can implement it by configuring BizTalk Server to perform each of the tasks
defined in the business process.

The following illustration shows the implementation shapes used in the Northwind Traders approval process.

You need to understand how to use the BizTalk Messaging shape, the COM Component shape, and the Message Queuing
shape. Note that you do not write any code to bind the business processes together; your coding is in the individual components
of specialized business logic, rather than the implementation that holds them together.

For example, by dragging and dropping the BizTalk Messaging shape onto the drawing, you open the BizTalk Messaging
Binding Wizard, which walks you through a series of pages in which you define the messaging port that is associated with a given
implementation shape. A messaging port is a collection of properties associated with a certain document destination, and your
business process can be such a destination. For more information, see Implementation Shapes.

For simpler tasks, you can also create components in a scripting language of your choice, such as Microsoft® Visual Basic®
Scripting Edition (VBScript). A component like this has been used in this XLANG schedule drawing. This script component exposes
a method called DeclineReq, whose only job is to display a message box alerting the user that a requisition has been declined. For
more information, see Creating a Script Component.

The NorthwindApprovalL3.skv XLANG schedule contains two script components and one BizTalk Messaging shape.

If a specific part of the business process requires you to perform specialized tasks, such as accessing internal databases or
interfacing with a mainframe system, you would most likely implement them in a COM component and call the appropriate
methods from BizTalk Orchestration Services.

The next lesson covers the process behind creating a script component.

Continue to Creating the Communication Flow.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274632(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Creating the Communication Flow
To create the communication flow you need to connect the business process definition with the implementation. Each flowchart
shape used in the Flowchart stencil, as well as each implementation shape used in the Implementation stencil, has a control
handle () on its side. You connect an Action shape on the left with an Implementation shape on the right by drawing a line
between the handle on the Action shape and the handle on the implementation port. After the shapes are connected, the XML
Communication Wizard opens and prompts you to answer a few questions to determine how the communication between the
shapes occurs. For more information, see Using the XML Communication Wizard.

After you connect the Action and Implementation shapes, the last step, on the Data page, is to define how the actual business
document will be passed from one action to the next. You can view the Data page by clicking the Data tab at the bottom of the
drawing in BizTalk Orchestration Designer. The next lesson contains more information about the Data page.

Continue to Running the Scenario.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Running the Scenario
 Important

To successfully run this scenario you must copy the LearnBizTalk directory to your C drive and all the BizTalk Server
components must be installed on drive C. Although it is possible to run these files from another drive and directory, you
would need to make extensive modifications to the source files. For more information about these requirements, see
Learning BizTalk Server 2002.

To test the scenario

1. Browse to C:\LearnBizTalk\Scripts and double-click L3Post.vbs.

This script temporarily alters your XLANG schedule drawing so the requisition does not get passed to Contoso, Ltd yet. The
original configuration will be restored later, but now it is useful to make this change so that you can see this step of the
process.

2. Copy the file ReqToDecline.xml from C:\LearnBizTalk\Documents into C:\LearnBizTalk\Pickup.

The File receive function picks up that file and delivers it to BizTalk Messaging Services. BizTalk Messaging Services in turn
invokes the Northwind Traders requisition approval process using BizTalk Orchestration Services, because you defined an
XLANG schedule as the destination for the messaging port that was created for this business process. Finally, BizTalk
Orchestration Services processes the requisition and displays a message box informing you that this particular requisition
was declined.

3. Repeat step 2 using the ReqToApprove.xml file.

The message box informs you that the requisition has been approved.

Lesson 4 provides further information about configuring Implementation shapes in BizTalk Orchestration Designer, developing
a script component, and what needs to be done on the Data page so your document is properly passed from action to action.

Continue to Lesson 4: Understanding Implementation.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Lesson 4: Understanding Implementation
In Lesson 4 you will extend the XLANG schedule from Lesson 3 and examine the implementation of the Northwind Traders'
requisition-approval process.

Using BizTalk Orchestration Services, the requisition-approval process is implemented in the form of an XLANG schedule. In this
lesson you will look at configuration parameters for various Implementation shapes, review the process involved in creating a
Windows Script Component implementation, and learn what must be done on the Data page in BizTalk Orchestration Designer to
ensure the correct flow of information in and out of an XLANG schedule.

The following topics are covered in this lesson:

Sending and Receiving Documents in BizTalk Orchestration Services

Adding Fields to Message Specifications

Working with COM Components

Creating a Script Component

Northwind Traders Data Page

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Sending and Receiving Documents in BizTalk Orchestration
Services
An XLANG schedule is the place where you implement your business process. In most cases, this process must examine the
various fields of an incoming document and make decisions or perform actions based on the values. In this tutorial, the Total
value of the Requisition document is checked and the requisition is approved only if its total is less than $1,000. Before this can
happen, the Requisition document must first be delivered to the approval process.

To begin this lesson, open the NorthwindApproval.skv file in BizTalk Orchestration Designer. This file is very similar to the
NorthwindApprovalL3.skv file in Lesson 3, except one of the Windows Script Components has been replaced by a BizTalk
Messaging shape with the words Channel To Contoso written on it, as shown in the following illustration.

After the business process of the XLANG schedule drawing has been defined, and the implementations have been added, the
diagram is compiled into an XLANG schedule. The schedule is a file written in the XLANG language, which is a language that uses
various technologies to describe the logical sequencing of business processes, as well as the implementation of the business
process. The XLANG language is expressed in XML. The XLANG schedule defines all the steps that must be performed,
components that must be called, and data that must be passed to fulfill the defined process. After both sides of the diagram are
completed, you can compile the XLANG schedule drawing by clicking Make XLANG <file name>.skx on the File menu in BizTalk
Orchestration Designer.

In previous lessons you learned how to send a message containing a business document by using BizTalk Messaging Services. In
this lesson you will combine the message and the business process.

In Lesson 2 you defined a messaging port and configured it to deliver the Requisition document to an XLANG schedule. You
specified the name of an XLANG schedule (the XLANG file) that BizTalk Messaging Services should start to process the requisition.
You also specified the name of a messaging port to receive the requisition within the schedule. This orchestration port must be
configured inside BizTalk Orchestration Designer. Notice that the word "port" is used to refer to two different things; a messaging
port defined in BizTalk Messaging Manager and an orchestration port defined in BizTalk Orchestration Designer are not the same
thing.

Using a BizTalk Messaging implementation

The BizTalk Messaging shape is used to pass documents from BizTalk Messaging Services to BizTalk Orchestration Services.

When you add a BizTalk Messaging shape to the right-hand side of the XLANG schedule drawing, the BizTalk Messaging
Binding Wizard opens. To edit an existing BizTalk Messaging implementation, double-click the BizTalk Messaging shape. In the
BizTalk Messaging Binding Wizard, you name the orchestration port (this name must match the one you specified in BizTalk

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Messaging Manager), and also indicate whether this port receives documents or sends them, and whether it is used to start a
business process.

If you need to send a document back to BizTalk Messaging Services, add a BizTalk Messaging shape to the right-hand side of
the XLANG schedule drawing and specify the name of the channel to which the document must be sent. Note that this channel
does not have to exist when you create your XLANG schedule drawing, but it must exist when the schedule is run.

After the orchestration port is created, connect the Action shape to the port and, in the XML Communication Wizard, specify
whether the document is sent as XML or as a string, the message type information, and an optional XML specification to validate
the document, similar to what you did earlier when you configured BizTalk Orchestration Services to receive documents from
BizTalk Messaging Services. For more information, see Using the BizTalk Messaging Shape.

Using a Message Queuing implementation

Another way to receive a document in an XLANG schedule is to use the Message Queuing shape. When you add this shape to
the drawing, the Message Queuing Binding Wizard starts and you are asked to specify a name of a private or public message
queue that will be used to send or receive documents. However, if you choose to use Message Queuing to receive documents, the
schedule does not start automatically, unlike when you receive documents from BizTalk Messaging Services. You must have
another way to start the schedule after the document is posted on a queue.

When you connect the Receive Requisition action shape on the left side of the drawing to the ReceiveReq port, the XML
Communication Wizard opens. To edit an existing Message Queuing implementation, and open the XML Communication Wizard,
double-click the blue line that connects the Receive Requisition action with the ReceiveReq port.

The XML Communication Wizard prompts you to create a message that will be used to carry the document through the
orchestration process represented by the XLANG schedule. More specifically, you are prompted to connect this message to other
messages on the Data page, to specify whether the document is processed in XML format,and to specify a message type. You can
optionally specify the name and location of an XML file, which contains your document specification, and BizTalk Orchestration
Services can validate each document against this specification prior to processing it.

You can also send documents out of an XLANG schedule by using Message Queuing. In this case, instead of specifying the name
of a channel, you need to specify the name of a private or public queue to which the document will be posted. For more
information, see Using the Message Queuing Shape.

After the business process of the XLANG schedule drawing has been defined, and the implementations have been added, the
diagram is compiled into an XLANG schedule. For more information, see
Compile an XLANG schedule drawing into an XLANG schedule. The XLANG schedule defines all the steps that must be performed,
components that must be called, and data that must be passed to fulfill the defined process.

Now that you know how to send and receive documents from BizTalk Messaging Services, let's look at what we can do with these
documents within BizTalk Orchestration Services.

Continue to Adding Fields to Message Specifications.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274674(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265284(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Adding Fields to Message Specifications
Previously, you configured an XML communication for a message and indicated which XML specification represented the
document being received. Now you can use BizTalk Orchestration Services to retrieve the values of individual fields inside the
document and transfer the information to COM components or other messages.

1. Open the XML Communication Wizard for the ReceiveReq port by double-clicking the blue line that connects the Receive
Requisition action with the ReceiveReq port.

2. Click Next four times.

The Message Specification Information page of the wizard opens.

3. In the Message fields area you will notice several entries. One of them, named Document, is the field that represents an
entire document passed to the XLANG schedule. Click Add.

The Field Selection dialog box appears.

Because you specified that the documents passed into the XLANG schedule would match a specific XML specification,
namely the Northwind Requisition specification, you can now select individual fields from this document by using a
standard XML query language called XPath.

 Note

XPath is a language for addressing parts of an XML document and is a public standard maintained by the W3C. For
more information about XPath, go to the XPath page on the W3C Web site (www.w3.org/TR/xpath.html).

4. Expand the Items node and click totalPrice.

An XPath for the node appears in the Node path box. The following illustration shows the Field Selection dialog box with
the totalPrice field selected.

You can add other fields from the specification to your message in a similar way. All the fields added in this dialog box
become available on the Data page in BizTalk Orchestration Designer, so you can use them in expressions and passed as
parameters to components.

5. Click Cancel to close the Field Selection dialog box.

6. Click Cancel to close the XML Communication Wizard.

7. On the left side of the XLANG schedule drawing, right-click the Decision shape and then click Properties.

The Decision Properties dialog box appears.

8. Click Edit.

A dialog box similar to the following illustration appears.

http://www.w3.org/TR/xpath.html
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

The Script expression shows that the value of the totalPrice field can be accessed by using the MessageName.FieldName
notation. In this example, Message_1.totalPrice is used to get the Total Price value of the Requisition document.

Continue to Working with COM Components..

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Learning

Working with COM Components
Now that you have the document inside the XLANG schedule, you can call various business components and pass your document
as one of the parameters. These components can perform tasks, such as address business rules, access corporate databases and
legacy systems, and send e-mail messages. The components can also modify the document itself and return these changes to the
XLANG schedule to be passed on to the next action. To do this, you need to implement the business logic as standard COM
components, add these components on the right side of the XLANG schedule drawing, and then choose which methods to call.

At this point in the tutorial, you have:

Read the Requisition document from a file on the hard disk and passed that file to BizTalk Messaging Services (using a File
receive function).

Validated the Requisition document against an XML specification (by using a channel) and passed it to BizTalk Orchestration
Services.

Received the document inside an XLANG schedule and retrieved the values of specific fields (using the XML Communication
Wizard).

Used rule properties in a Decision shape to evaluate values and build your business logic.

The tutorial has not required any programming to build and implement a business process, so far. However, you might need to
write a business component to implement certain company-specific actions (such as looking up requisition approval limits for
certain members of your staff), so the following topic covers how to write a Windows Script Component. For more information,
see Using the COM Component Shape.

Continue to Creating a Script Component.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274610(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Creating a Script Component
Microsoft Windows Script Components provide you with a way to create Component Object Model (COM) components by using
scripting languages such as Microsoft Visual Basic Scripting Edition (VBScript) and Microsoft® JScript®. You can use script
components just as any other COM components in any application that supports COM.

Script components perform differently from compiled components because they are interpreted at run time, but they are a way to
prototype an interface for a COM component that will be developed later.

To give you a head start on the creation of script components, Microsoft has released the Windows Script Component Wizard.
You can download this wizard from the MSDN Web site (msdn.microsoft.com/scripting/). Creating the skeleton code for your
component is easy: choose a name for the component, decide which scripting language you will use to implement it, specify
which properties and methods your component will have, and click Finish. The wizard generates all the code necessary for your
component and saves it in a file with a .wsc extension. Then you can open the file in the editor of your choice and add the actual
code behind your methods.

The component that you will use has two methods, ApproveReq and DeclineReq, and each method has a single parameter,
document. The following illustration shows the page in the Windows Script Component Wizard where you add these methods to
the script file.

The following code is for the Requisition Approval component:

<?xml version="1.0"?>
<component>

<registration
 description="Req Approval"
 progid=" LearnBizTalk.ProcessReq"
 version="1.00"
 classid="{AD454A9F-58FE-4877-B7CD-F61BD45988F5}">
</registration>

<public>
 <method name="ApproveReq">
 <PARAMETER name="Document"/>
 </method>
 <method name="DeclineReq">
 <PARAMETER name="Document"/>
 </method>
</public>

<script language="VBScript">
<![CDATA[

function ApproveReq(Document)
MsgBox "Orchestration Engine Approved Requisition:" & vbCrLf & vbCrLf & Document, 64, "Requisition Approved"
end function

function DeclineReq(Document)
MsgBox "Orchestration Engine Declined Requisition:" & vbCrLf & vbCrLf & Document, 16, "Requisition Declined"
end function

http://msdn.microsoft.com/scripting/
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

]]>
</script>

</component>

Everything in this file, except for the implementation code of the ApproveReq and DeclineReq methods that are bold, was
generated by the wizard.

Your business process flow might be complex, with COM components to be created by developers taking several weeks to write
and test. This does not mean that you cannot design and test your XLANG schedule drawing before those components are
finished. Use the Windows Script Component Wizard to create sample versions of your complex COM components, complete
with the properties and methods they expose, and then use these script components in your XLANG schedule drawing in place of
the actual COM components that will be completed later. You can now design your XLANG schedule drawing without having to
wait for developers to finish coding. For more information, see Using the Script Component Shape.

You can also test BizTalk Messaging Services and BizTalk Orchestration Services integration with your script components and
replace them with COM components developed in another language at a later time. When you are ready to replace the script
components, you add a COM Component shape to the XLANG schedule drawing. This opens the COM Component Binding
Wizard, which prompts you for information to create a new orchestration port. Then you disconnect your existing Action shape
that was previously attached to a script component port implementation, reconnect it to the new orchestration port, and
recompile the schedule.

Continue to Northwind Traders Data Page.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274651(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Northwind Traders Data Page
After an XLANG schedule drawing has been drawn, and all the Implementation shapes have been connected to their Action
counterparts, you need to configure the flow from one step of the process to the next using a Data page in BizTalk Orchestration
Services. Before you complete the Data page, it looks similar to the following illustration.

Note that the Data page shows several groups of fields, each group named after the message that carries the document to or
from an orchestration port.

Open NorthwindApproval.skv in BizTalk Orchestration Designer and click Data Page on the View menu. Notice how the
Document field in Message_1 has been connected to the Document field in Message_2 and DeclineReq_in. This indicates
that the document received from BizTalk Messaging Services by Message_1 is passed to the DeclineReq_in message, which is
the message that will submit the document to the script component, as well as to Message_2, which will send the same
document back to BizTalk Messaging Services. You can rearrange the messages on this page to make the drawing easier to
understand.

To view the data page click the Data tab at the bottom of the design pages. The Data page in NorthwindApproval.skv should look
similar to the following illustration.

After the flow of data between messages is defined, you can compile the drawing into an executable XLANG schedule.

To save and compile an XLANG schedule drawing

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

1. On the File menu, click Save <file name>.skv.

2. On the File menu, click Make <file name>.skx.

The Save XLANG Schedule to dialog box appears.

3. Verify the location where the XLANG schedule will be saved and click Save.

4. On the File menu, click Exit to close BizTalk Orchestration Designer.

Your XLANG schedule is now ready to be run.

For more information, see Compiling XLANG schedules.

The next lesson covers preparing the document for delivery to the trading partner by transforming it with the use of maps, and
explains how to use these maps with BizTalk Messaging Services.

Continue to Lesson 5: Using BizTalk Mapper.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Learning

Lesson 5: Using BizTalk Mapper
In the previous lessons you learned how Microsoft BizTalk Server 2002 accepts documents from line-of-business applications,
and how these documents are processed within BizTalk Orchestration Services.

In this lesson you will see how the Requisition document is prepared for submission to Contoso, Ltd and go through the steps
within BizTalk Messaging Services to accomplish this task.

The following topics are covered in this lesson:

Creating the Map

Using the Map

Running the Scenario

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Creating the Map
The Requisition document you have been using so far represents an internal purchase requisition produced by an application at
Northwind Traders. When this requisition is approved by a business process (implemented in this scenario by using BizTalk
Orchestration Services), a purchase order (PO) must be sent to Contoso to actually buy the merchandise.

At this point, there is no PO document, only a requisition. However, the structure of Contoso's PO, and most of the data required
to create the PO document, such as the list of items and the billing address, is actually contained within the requisition. To
transform the information contained in the Requisition document into a PO that Contoso, Ltd can use, you use BizTalk Mapper.
BizTalk Mapper uses an Internet standard called XSL Transformations (XSLT), which is a language for transforming XML
documents from one XML schema into another.

 Note

XSLT is a W3C recommendation. For more information about XSLT, go to the XLST page on the W3C Web site
(www.w3.org/TR/xslt.html).

You do not need to know anything about XSLT to use BizTalk Mapper. BizTalk Mapper is a highly graphical tool that presents you
with both specifications side-by-side and lets you define transformations by simply drawing lines between the specification fields.
For more information, see Mapping Specifications.

For those cases when simple rules, such as Field A from Document 1 is mirrored into Field B in Document 2, are not enough,
BizTalk Mapper offers a series of powerful transformation elements called functoids. There are over 60 functoids included with
BizTalk Mapper, enabling you to perform mathematical, logical, string, date/time, scientific, database, and other operations. There
is also a script functoid that enables you to write your own subroutines in Microsoft Visual Basic Scripting Edition (VBScript), in
case none of the existing functoids are suited for the operation. The resulting VBScript code is embedded directly into the XSLT
generated by BizTalk Mapper. For more information, see Understanding Functoids.

 Note

You can do even more powerful things by cascading functoids, which is a method of passing the results of one functoid
execution as input to the next functoid. You can also create custom functoids in a language such as Visual Basic and add
them to your functoid palette for future use.

For this business scenario we built a map that translates Northwind Traders' Requisition document into Contoso's PO. This map is
stored in the file ContosoPOMap.xml located in the C:\LearnBizTalk\Documents\ directory. By opening this map in BizTalk
Mapper, you will see the screen shown in the following illustration.

Most of the fields required to build the PO document for Contoso were already present in the Requisition document, perhaps
under different names. Some of the fields, such as PO Number, are new, and therefore their values had to be generated.

http://www.w3.org/TR/xslt.html
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

You can see that we used three functoids in this map:

A string concatenation functoid that combines two address fields in the requisition into one field in the PO

A date/time functoid that generates the current timestamp for the created field

A script functoid that implements a specific business rule to generate a PO number (In this example, the functoid picked a
random number for the PO number.)

Because the values of some destination fields do not change over time (for example, the name and address of your company),
BizTalk Mapper enables you to specify constant values to be used. To do this, highlight the field for which you need to provide a
constant value, click the Values tab, and enter your value. The following illustration shows the Values tab.

 Note

You cannot link to a node in a destination specification that has a destination constant value associated with it.

For more information about how to create a map, see Module 2 in the BizTalk Server 2002 Tutorial.

Continue to Using the Map.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Learning

Using the Map
Now that we have created the map, let's go back to BizTalk Messaging Manager and configure the channel called Channel To
Contoso, which is used to deliver the PO to Contoso, Ltd while using the map.

This is the same channel that you specified in the XLANG schedule drawing described in Lesson 4 when you configured the port
that delivered the Requisition document to Contoso, Ltd. Note that the XLANG schedule outputs the same Requisition document
as it receives, and it does not detect any potential transformations to this document (such as translation into a PO) that occur later
in BizTalk Messaging Services. This separation between a business process used for the requisition approval and the technical
details behind managing document format and delivery mechanism is what makes the overall solution so flexible and easily
adaptable.

The key point here is that BizTalk Orchestration Services is the technology for creating business processes, while BizTalk
Messaging Services is the technology for reliably sending documents between business processes to integrate them.

In the future, if Contoso, Ltd decides to change the format of its POs, you will be required to update only your specification for
Contoso PO and update the map to reflect the new specification changes, rather than recreate the entire business process.

When you configure the channel in BizTalk Messaging Manager, if you specify an outbound document definition that is different
from an inbound one, BizTalk Messaging Manager will automatically prompt you to provide a map document to translate
between these two document specifications. The following illustration shows where the map document is identified.

To open the channel to Contoso and view the channel properties:

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Messaging
Manager.

2. If the BizTalk Messaging Manager dialog box appears, click Cancel.

3. In the Search for other items area, click Channels.

4. Click Search Now.

In the Channel Name list, double-click Channel to Contoso.

1. Click Next three times to get to the Outbound Document page.

Continue to Running the Scenario.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Running the Scenario
 Important

To successfully run this scenario you must copy the LearnBizTalk directory to your C drive and all the BizTalk Server
components must be installed on drive C. Although it is possible to run these files from another drive and directory, you
would need to make extensive modifications to the source files. For more information about these requirements, see
Learning BizTalk Server 2002.

To run the scenario

1. Browse to C:\LearnBizTalk\Scripts\ and double-click L5Post.vbs.

This script removes the temporary changes we made to the orchestration process at the end of Lesson 3 and enables
BizTalk Orchestration Services to output the document to BizTalk Messaging Services.

2. Copy the file ReqToDecline.xml from C:\LearnBizTalk\Documents\ to the C:\LearnBizTalk\Pickup\ directory.

As before, this requisition gets declined and you receive the message box informing you of this.

3. Repeat step 2 using the ReqToApprove.xml file instead.

This requisition gets approved and BizTalk Orchestration Services sends it to BizTalk Messaging Services.

The channel receives the document, converts it into Contoso's PO by applying the map you specified, and BizTalk Messaging
Services writes the resulting document under the name ContosoPO.xml to the C:\LearnBizTalk\Output\ directory.

 Note

You will not receive a message box indicating that the requisition has been approved when this message is written to
a file.

4. Browse to C:\LearnBizTalk\Output\ and double-click ContosoPO.xml to open it in Microsoft Internet Explorer.

Look at the values of the PO Number field that was randomly generated by the script functoid, the created field that
contains the time when this file was generated, and the address field that contains the values from both original addr1 and
addr2 fields concatenated by the string functoid.

For more step-by-step procedural information about how to use BizTalk Mapper, see Module 2 of the
BizTalk Server 2002 Tutorial.

In the next lesson you will learn about some different ways to deliver documents to your business partners and how standard
Internet protocols once again help to make this job easier.

Continue to Lesson 6: Sending and Receiving Documents.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Lesson 6: Sending and Receiving Documents
In this lesson you will learn about the process Northwind Traders uses to send the purchase order (PO) to Contoso, Ltd, and how
this order is received and stored by Contoso.

The following topics are covered in this lesson:

Choosing a Protocol

Receiving Documents over HTTP

Using the Queue

Running the Scenario

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Choosing a Protocol
After the purchase order (PO) document is generated, it must be submitted to Contoso, Ltd for processing. When choosing a
transport service for this task, you must consider several important characteristics:

The transport service must use a standard protocol — you want to know that your trading partner (Contoso) can receive
documents using a variety of software running on any platform.

The transport service must be reliable — you want to be sure that the document was indeed received by the trading partner
on the other side.

The transport service must be secure — you want to know that you can encrypt the entire transmission process to protect
sensitive data.

For this scenario we chose a transport service that uses Hypertext Transfer Protocol (HTTP). HTTP is a standard protocol used by
Internet browsers to retrieve information from Web servers. Most administrators of corporate firewalls feel comfortable with
allowing transmissions based on HTTP to be sent outside the company. This is an important aspect of the process involving
choosing the right transport service. Your server running Microsoft BizTalk Server needs to communicate with internal
applications, databases, and legacy systems; therefore it must be located within the firewall. At the same time, it might need to
send and receive documents from an outside partner, preferably using a well-known protocol that can go through the firewall.

HTTP is reliable from a transport perspective because it defines a standard way for the receiving side to communicate the status
of the transmission back to the sender. From a business process perspective you want to be able to recover when temporary
Internet glitches cause a transmission failure. BizTalk Server can monitor the transmission process, retry sending documents for a
pre-configured number of times, and alert an administrator if transmission was unsuccessful.

Finally, HTTP has a secure variation, Secure Hypertext Transfer Protocol (HTTPS), which enables encryption of the entire
transmission by using standard algorithms. HTTPS encrypts the entire communication stream with a trading partner, and it can be
used in conjunction with encrypting and digitally signing the document to provide an extra level of security.

 Note

An alternative way of sending documents to trading partners could be by using the File transport service to save a
document into a file on a hard disk and then have another process pick up these files and deliver them to a partner by using
an EDI-VAN dialer or an FTP process.

For more information about the transport services that BizTalk Server 2002 supports, see Transport Services.

Continue to Receiving Documents over HTTP.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Receiving Documents over HTTP
Now let's look at what must be done by the receiving side to accept a document that was transmitted by BizTalk Server using
HTTP, and to process it. For this scenario we will assume that Contoso, Ltd also uses BizTalk Server to receive POs and to generate
and send invoices.

Because BizTalk Server is running on Microsoft Windows 2000 Server, a platform that includes Internet Information Services (IIS)
5.0, Contoso can use an Active Server Pages (ASP) script to accept documents from BizTalk Server on the Northwind Traders side
and submit them for processing to BizTalk Server on the Contoso, Ltd side.

 Note

In these lessons we use a single instance of BizTalk Server to simulate processing for both Northwind Traders and Contoso,
Ltd. In a real production environment these would be separate servers running at the sites of each respective company.

After an ASP script receives the document, it must eventually send it back to BizTalk Server for further processing. While there are
several options available to achieve this, we would like to emphasize the importance of designing a solution that can achieve this
result in a fail-safe way.

For example, if Contoso's servers are temporarily down for scheduled maintenance or an upgrade, or if Contoso is experiencing
an unusually high load on its servers, and the processing of POs cannot be done in real time, this should not affect Northwind
Traders' or any other trading partner's ability to submit PO documents. In fact, Northwind Traders should be completely unaware
of anything happening on Contoso's side or of the technology being used, except that the PO can be transmitted successfully.
Therefore, although BizTalk Server provides a standard way to accept documents using COM, it is not the best approach in this
particular example.

Let's look at a better way to architect this part of a solution. Once the ASP script receives the transmitted document, it should
store the document to a file on a hard disk, and then exit indicating that the document was successfully received. Meanwhile,
BizTalk Server can retrieve the stored document and process it in a completely asynchronous manner. In Lesson 2 you learned
about File receive functions in BizTalk Messaging Services and how to use them to post a file to a specific location that BizTalk
Server is monitoring. Therefore, it is possible in this scenario for the ASP script to store a document into a file, which is later
picked up by a File receive function. Such architecture provides flexibility in deciding exactly when BizTalk Server processes the
documents, and in adding more BizTalk Servers to process incoming documents as business needs increase.

The following topic presents an alternative way of achieving the same reliable results without storing documents in files and
includes the added benefit of being transactional.

Continue to Using the Queue.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Using the Queue
Message Queuing (also known as MSMQ) is one of the standard components of Windows 2000 Server, and it provides another
simple and reliable way to build an asynchronous solution just like the one we are designing.

After the document is received by an ASP script, instead of storing it into a file on a hard disk, you can post the document as a
message in a message queue on the server, and then deliver it to BizTalk Messaging Services by using a Message Queuing receive
function, which works similarly to a File receive function. In most configurations Message Queuing can be set up as transactional
for enhanced reliability.

The overall process is shown in the following illustration.

To create a new Message Queuing receive function

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Server
Administration.

2. Expand BizTalk Server Group, right-click Receive Functions, point to New, and then click Message Queuing Receive
Function.

The Add a Message Queuing Receive Function dialog box appears.

3. In the Name box, type a name for your function and, in the Polling location box, type the queue name for the polling
location.

4. Click Advanced.

The Advanced Receive Function Options dialog box appears.

5. In the Channel name box, select the channel from the drop-down list that will process documents received by this function.

 Notes

If you are using a private message queue to store documents, enter the queue name using the following format:
DIRECT=OS:.\private$\<queue_name>.

If you are using a public queue, enter the queue name in the following format:
DIRECT=OS:<server_name>\<queue_name>.

You can look at the properties of the ReceivePO Message Queuing receive function that was configured during setup. This
receive function will process PO documents accepted by the ASP script discussed previously. This function has been temporarily
suspended, so the documents will remain on the queue, which enables you to examine them. You can re-enable this function at
the end of this lesson.

Next we review the script inside the ContosoReceive.asp file to see the series of steps performed to accept the data transmitted by
BizTalk Server and to post it to a message queue. This code begins by using a BinaryRead method of a Request object provided
by ASP to read all the transmitted data. Next, Microsoft® ActiveX® Data Objects (ADO) is used to transform the received data

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

from binary format to text format. Finally, Message Queuing functions are used to create a new queue message and post it to a
private queue that we choose.

You can see the entire source code inside the ContosoReceive.asp file located in the C:\LearnBizTalk\ASP\ directory.

Continue to Running the Scenario.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Learning

Running the Scenario
 Important

To successfully run this scenario you must copy the LearnBizTalk directory to your C drive and all the BizTalk Server
components must be installed on drive C. Although it is possible to run these files from another drive and directory, you
would need to make extensive modifications to the source files. For more information about these requirements, see
Learning BizTalk Server 2002.

To run the scenario

1. Browse to C:\LearnBizTalk\Scripts\ and double-click L6Post.vbs.

This script will restore the configuration of the messaging port Port To Contoso that was modified previously and instruct it
to deliver documents to Contoso, Ltd using an HTTP transport, rather than writing it to a file as was done in Lesson 5.

2. Copy the file ReqToApprove.xml from C:\LearnBizTalk\Documents into the C:\LearnBizTalk\Pickup\ directory.

The file is processed by a File receive function, passed from BizTalk Messaging Services to BizTalk Orchestration Services for
approval, then delivered back to BizTalk Messaging Services, and finally transmitted to Contoso by using the HTTP protocol.

An ASP script simulating the Contoso, Ltd side reads the transmitted data, converts it back into a document, and posts the
document to a local private queue.

Afterward, a Message Queuing receive function should retrieve the document off the queue and submit it to BizTalk Messaging
Services; however, as you might recall we temporarily disabled this receive function so you can examine the document posted to
the queue.

To see the messages on the queue

1. On the Start menu, point to Settings and click Control Panel.

2. Double-click Administrative Tools.

3. Double-click Computer Management.

The Computer Management console appears.

4. In the Computer Management console tree, expand Services and Applications, expand Message Queuing, expand
Private Queues, and then expand ContosoPOQueue.

5. Click Queue Messages in the left pane to show all the messages currently posted to the queue.

6. Right-click the message in the right pane, click Properties, and then click the Body tab to see the beginning of the message
body.

After you examine the message, delete it from the queue by right-clicking Queue Messages in the left pane, and then clicking All
Tasks and Purge.

For more information, see Understanding Receive Functions and Document Routing.

In the next lesson we will discuss the final steps of the scenario, namely processing of the Purchase Order document by Contoso,
generating the Invoice, and delivering it to Northwind Traders.

Continue to Lesson 7: Completing the Transaction.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274599(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Lesson 7: Completing the Transaction
In Lesson 7 we will learn how Contoso, Ltd receives the PO sent by Northwind Traders over the Internet, processes this order
using BizTalk Messaging Services and BizTalk Orchestration Services, generates the invoice, and sends it back to Northwind
Traders. Finally, we will review how Northwind Traders receives the invoice and stores it, thus completing this example of buyer-
supplier communications.

The following illustration shows the remaining parts of the scenario.

The following topics are covered in this lesson:

Message Queuing

Processing the Order

Running the Scenario

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Message Queuing
Lesson 6 ended when a PO document received by an ASP script on the Contoso, Ltd side was delivered to a message queue. You
also learned about configuring a Message Queuing receive function, which monitors the message queue for any incoming
messages and delivers them to BizTalk Orchestration Services. We chose to store incoming POs on a message queue, rather than
storing them in files, because a message queue offers an additional level of reliability by supporting transactions, a feature not
found in a file system.

After the Message Queuing receive function takes the document off the queue, it submits the document to the channel, which in
turn delivers it to the messaging port you created for Contoso's business process. This messaging port is configured to transport
the document to an XLANG schedule, indicating that it will start an XLANG schedule to run Contoso's business process in a
manner similar to the Requisition document that was submitted to Northwind Traders' XLANG schedule in Lesson 4.

Continue to Processing the Order.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Learning

Processing the Order
The actual work that has to be completed to process a real PO varies from one company to the next. To simplify this scenario, we
defined a single Action shape (Do Some Work) within Contoso's XLANG schedule drawing, which represented all of the actions
that would normally be performed by a real-world supplier, such as checking inventory levels and communicating shipping
instructions to the warehouse.

The implementation for the Action shape is a simple Windows Script Component, ProcessPO.wsc, that displays a message box,
which advises the user that a PO is being processed. We used the Windows Script Component Wizard to assist in the creation of
this component.

Of course, in a production system no message boxes should be displayed by any BizTalk Orchestration Services components, for
the simple reason that there will not be a user currently logged on at the server to observe and acknowledge these messages.
Until a user dismisses the message box, the schedule will not continue to run, potentially causing unwanted effects. A more
appropriate means of communication is by sending e-mail messages, or by writing Windows Event Log entries that can in turn
trigger other actions.

To open Contoso's XLANG schedule drawing, browse to C:\LearnBizTalk\Schedules\ and double-click ContosoInvoice.skv. The
following illustration shows the BizTalk Orchestration Services process for Contoso, Ltd as defined in the XLANG schedule
drawing.

In this XLANG schedule drawing, we used the XML Communication Wizard to extract individual values of fields, in this case the
PONumber and Generated fields, from the PO document and pass them to the script component as parameters, without having
to write any code. This is similar to the way we extracted the value of the RequisitionTotal field from the Requisition document
in Lesson 4.

On the Data page of the XLANG schedule drawing, we connected these fields to input parameters of the DoWork method of the
script component. As you can see from the following illustration, the entire PO is not passed to the component, just the two
individual fields that we extracted.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

When you run this scenario and click OK on the message box presented by the script component, the XLANG schedule sends the
PO back to BizTalk Messaging Services, where it is transformed into an invoice by using another map, and then sent to Northwind
Traders by using the HTTP transport — the same transport Northwind Traders used to send POs to Contoso, Ltd.

Once an ASP script on the Northwind Traders' side receives the invoice document, it stores the invoice as a file for further
processing. In a real-world scenario such processing can include matching the invoice with the original requisition and PO,
updating internal systems with invoice information, and so on.

Continue to Running the Scenario.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Learning

Running the Scenario
 Important

To successfully run this scenario you must copy the LearnBizTalk directory to your C drive and all the BizTalk Server
components must be installed on drive C. Although it is possible to run these files from another drive and directory, you
would need to make extensive modifications to the source files. For more information about these requirements, see
Learning BizTalk Server 2002.

To run the scenario:

1. Browse to C:\LearnBizTalk\Scripts\ and double-click L7Post.vbs.

This script will re-enable the Message Queuing receive function that was temporarily suspended in Lesson 6.

2. Copy the requisition document, ReqToApprove.xml, from the C:\LearnBizTalk\Documents directory and paste it into
the C:\LearnBizTalk\Pickup directory.

The following is an outline of the complete flow for this scenario:

1. The File receive function at Northwind Traders reads the file 'ReqToApprove.xml' that was placed in a \Pickup directory and
sends it to the Northwind Traders BizTalk Orchestration Services process by using BizTalk Messaging Services.

2. The XLANG schedule extracts the value of the RequisitionTotal field and, because it is less than $1,000, approves the
requisition by sending it back to BizTalk Messaging Services.

3. BizTalk Messaging Services receives the requisition from BizTalk Orchestration Services, and uses a map to create a PO
document. This document is then transmitted to Contoso, Ltd using the industry-standard HTTP protocol.

4. An ASP script on the Contoso, Ltd side receives the transmission, extracts the document, and posts it as a message to a
private message queue.

5. A Message Queuing receive function finds a new document on the queue, retrieves it, and uses BizTalk Messaging Services
to send it to BizTalk Orchestration Services for processing.

6. The XLANG schedule extracts the values of the PONumber and Generated fields and invokes a method on a script
component, displaying a message box that indicates the arrival of the PO.

7. The XLANG schedule sends the PO back to BizTalk Messaging Services for invoice generation.

8. BizTalk Messaging Services applies a map to turn the PO into an invoice and transmits it to Northwind Traders by using the
HTTP protocol.

9. An ASP script at Northwind Traders accepts the transmission, extracts the document, and saves it as the file
C:\LearnBizTalk\Output\ContosoInvoice.xml.

This completes the process of integrating the internal business processes and applications between the two sample businesses,
Northwind Traders and Contoso, Ltd. The following illustration shows the components of this process, including the two XLANG
schedules, BizTalk Messaging Services, receive functions, ASP pages, and queues, and their relationships.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

If you now open the C:\LearnBizTalk\Output directory, you will find a file named ContosoInvoice.xml containing the invoice that
Northwind Traders received from Contoso, Ltd and stored in this file.

Continue to the Conclusion.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Learning

Conclusion
Over the course of these seven lessons you have witnessed the creation of a fully functional, integration scenario between a buyer
and a supplier.

We hope these lessons have helped you to better understand Microsoft BizTalk Server, and to learn how BizTalk Server can
significantly reduce the amount of work required to integrate business-to-business processes.

To undo the configuration changes made to your BizTalk Server installation by the scripts you ran during these lessons, run the
Cleanup.vbs script located in the C:\LearnBizTalk\Scripts\ directory. After the script completes, which is indicated by a message
box, you can safely remove the C:\LearnBizTalk directory and all the files it contains.

For a step-by-step tutorial of how to configure BizTalk Server processes, see the BizTalk Server 2002 Tutorial. The BizTalk Server
Tutorial will help you better understand how to use BizTalk Editor, BizTalk Mapper, BizTalk Messaging Manager, BizTalk Server
Administration, and BizTalk Orchestration Designer to configure BizTalk Server to run a business-to-business automated
procurement process.

To learn more about BizTalk Server 2002, go to the Microsoft BizTalk Server Web site (www.microsoft.com/biztalk). This Web site
contains technical product information, white papers, training and events, and third-party offerings.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.microsoft.com/biztalk
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ E-Procurement Sample

E-Procurement Sample
This sample highlights the following new features of Microsoft® BizTalk™ Server 2002:

BizTalk SEED Wizard—rapid partner enabler

Application Center 2000 deployment

Advanced monitoring capabilities using Microsoft Operations Manager (MOM)

New XLANG correlation using common queues instead of per-instance queues

HTTP receive function

In this scenario we look at a business situation where your company is purchasing products from several different suppliers. We
focus on setting up a business solution, using Microsoft BizTalk Server 2002, the Internet, and correlation, that automates the
procurement process that takes place between your company and its suppliers. We call this solution e-procurement.

In this scenario you set up a hub for your company. The hub handles all the purchase order, invoice, and payment documents that
are sent back and forth to and from the suppliers. The EprocSetup application that is included with this sample configures the hub
and one supplier system to use BizTalk Server, the Internet, and correlation to handle these documents and complete the
procurement process. After the configuration is complete you run the DocumentGenerator.vbs script to start a transaction in
which a purchase order is sent to the supplier, an invoice is returned from the supplier, and the hub sends a payment. Finally the
supplier sends a payment acknowledgement and the e-procurement process is complete. The following illustration shows the
business transaction used in this sample.

After the e-procurement sample is running successfully we focus on how to deploy this configuration to other servers by using
Microsoft Application Center 2000, so that this configuration is taken from a test environment to a production environment. We
also explain how to package the supplier's configuration by using the BizTalk SEED Wizard so that it can be easily picked up from
your Web site and implemented by other suppliers. Finally we cover how you can set up Microsoft Operations Manager (MOM) to
monitor the activities taking place in the hub.

The following topics cover the setup and configurations that are necessary to work through this scenario:

User's Guide
Preliminary Setup

Running the E-Procurement Sample
Programming Notes

Optional Monitoring and Deployment Procedures
Using Application Center for E-Procurement Deployment

Creating a SEED Package

Creating a MOM Custom Counter for the E-Procurement Sample

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ E-Procurement Sample

User's Guide
Before you run this sample you must attach the correlation databases and run the e-procurement setup program.

 Important

The instructions in this sample assume that this sample and BizTalk Server 2002 are installed on the same drive.

The eProcurement sample files must be copied to a folder named eProcurementSample on the root level of the drive.
These sample files are located on the root level of the BizTalk Server 2002 CD in the eProcurementSample folder.

After copying the files to your drive, verify that the empty folder PaymentAckReceived exists directly under the
ePprocurementSample folder. Create the PaymentAckReceived folder if it does not exist.

To prepare and run the e-procurement sample, complete the following procedures:

Preliminary Setup

Run the E-Procurement Sample

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ E-Procurement Sample

Preliminary Setup
The steps in this section explain how to configure your system to run the e-procurement sample. Before you can run the e-
procurement sample you must attach correlation databases and configure the hub and supplier systems. In this scenario, both the
hub and the supplier are configured on one BizTalk Server installation. In an actual production environment the hub and the
supplier would be two totally separate entities.

Prerequisite

This sample assumes that you have the following installed on the computer that is running BizTalk Server:

Microsoft BizTalk Server 2002

Microsoft SQL Server™

Message Queuing (also known as MSMQ)

 Note

If you plan to continue to the Application Center section of this demo, you need to install Application Center before you
install BizTalk Server.

It is also recommended that you run the sample on a clean installation of BizTalk Server. If you would like to quickly delete
all the BizTalk Server objects (ports, channels, and so on), you can run the CleanBTM.vbs script that is located in the
eProcurementSample directory.

 Important

The script CleanBTM.vbs removes all configuration information from the BizTalk Messaging Management database. This
script should only be run in a testing environment.

Attach the databases

In this procedure you set up the correlation databases that are used with the e-procurement sample using Microsoft SQL Server
2000. If you are using Microsoft SQL Server 7.0, see the "Create the databases" section. There are two correlation databases, one
for the hub and one for the supplier. These databases capture and hold the globally unique identifier (GUID) and TransactionID
that are generated when the XLANG schedule begins. The GUID and the TransactionID are used to correlate the documents that
are sent and received throughout this transaction to the correct XLANG schedule. The TransactionID is an identifier such as a
purchase order number or invoice number.

 Note

The following instructions assume that SQL Server 2000 is installed on the same computer as BizTalk Server. If SQL Server is
installed on a different computer, you will need to modify these instructions so that they will work in your environment. Before
you begin this procedure, verify that the properties on the CustomCorrelation_Data and SupplierCustomCorrelation_Data
databases are not set to read-only. The database files are in the Databases directory, located in the eProcurementSample
directory.

1. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

The SQL Server Enterprise Manager appears.

2. Expand Microsoft SQL Servers, expand SQL Server Group, and then expand the server on which you want to attach the
database.

3. Click Databases.

4. On the Action menu, point to All Tasks and click Attach Database.

The Attach Database dialog box appears.

5. Click the browse button (…).

The Browse For Existing File dialog box appears.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

6. Browse to the Databases directory, located in the eProcurementSample directory.

7. Click CustomCorrelation_Data.MDF, and then click OK.

A message box appears indicating that the process was successful.

8. Repeat the steps in this procedure to attach the file SupplierCustomCorrelation_Data.MDF located in the Databases
directory, located in the eProcurementSample directory.

Create the databases

The following procedure should be used if you are using Microsoft SQL Server 7.0 in your BizTalk Server installation.

1. On the Start menu, point to Programs, point to Microsoft SQL Server 7.0, and then click Enterprise Manager.

The SQL Server Enterprise Manager appears.

2. Expand Microsoft SQL Servers, expand SQL Server Group, and then expand the server on which you want to attach the
database.

3. Click Databases.

4. On the Action menu, click New Database…

The Database Properties menu appears.

5. In the Name field, type CustomCorrelation as the name of the database.

6. Click OK.

7. On the Action menu, click New Database…

8. The Database Properties menu appears.

9. In the Name field, type SupplierCustomCorrelation as the name of the database.

10. Click OK.

11. Close the SQL Server Enterprise Manager.

12. On the Start menu, point to Programs, point to Microsoft SQL Server 7.0, and then click Query Analyzer.

The Connect to SQL Server menu appears.

13. Make sure that the correct information to connect to SQL Server is entered. Click OK.

14. On the menu bar, make sure that the value in the DB field is CustomCorrelation. If it is not, click the DB drop-down list box
and select CustomCorrelation.

15. On the File menu, click Open.

16. Browse to the Databases directory, located in the eProcurementSample directory.

17. Click the CustomCorrelationTable.sql file.

18. On the Query menu, click Execute. This will process the CustomCorrelationTable.sql file. If the SQL file has been run, you
will see a message stating: The command(s) completed successfully.

19. Repeat the steps in this procedure for the SupplierCustomCorrelationTable.sql file.

20. Close Query Manager.

Set up the e-procurement configuration

In this procedure you run the setup application to configure the BizTalk Server for the hub and the supplier to run the e-
procurement sample.

The e-procurement setup application performs the following tasks:

Creates these message queues:

.\private$\receiveinvoice

.\private$\receivepayment

.\private$\receivepaymentack

.\private$\receivepo

.\private$\receivepo2

.\private$\supplierreceivepo

.\private$\supplierreceivepo2

The queues are used to transfer data between the business partners represented by the running hub and supplier XLANG
schedules.

Creates the virtual directories

The virtual directories work with HTTP receive functions to enable a trading partner to submit data to BizTalk Server.

When complete, your virtual directory structure should look similar to the following:

Alias Web site structure Directory path
hub Hub \Program Files\Microsoft BizTalk Server\HTTP Receive
paymentack hub/paymentack \Program Files\Microsoft BizTalk Server\HTTP Receive
supplier Supplier \Program Files\Microsoft BizTalk Server\HTTP Receive
payment supplier/payment \Program Files\Microsoft BizTalk Server\HTTP Receive

 Note

The virtual directory Application Protection value is set to Low (IIS Process) for all virtual directories used by this
sample. Medium (Pooled) is the default value.

Creates the channels and ports

Each channel is configured to override the messaging port default values and associate the message with a specific XLANG
schedule instance by using the message label.

Registers the COM components

Moves the document specifications to the WebDAV folder

Creates the HTTP receive functions

Configures the BizTalk Messaging Management database

Registers the necessary DLLs

Prior to running the setup application, verify that none of the message queues listed above exist. If any of these queues exist, the
e-procurement sample setup might fail.

To set up the e-procurement sample:

1. In Windows® Explorer, browse to the \COM Components\Setup directory located in the eProcurementSample
directory.

2. Double-click eProcSetup.exe.

A setup dialog box appears.

3. Click eProcurement Setup.

A dialog box appears indicating that the setup was successful.

Continue to Run the E-Procurement Sample.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ E-Procurement Sample

Run the E-Procurement Sample
The e-procurement sample demonstrates how to correlate user-defined fields in an XLANG schedule. This allows you to use a
data value that uniquely identifies a document, such as a purchase order number, and associate that identifier with a running
XLANG schedule instance to process a document through the steps of a business transaction.

To run this sample, follow these steps:

1. In Windows Explorer, browse to the eProcurementSample directory.

2. Start the XLANG Event Monitor located in \Program Files\Microsoft BizTalk Server\SDK\XLANG Tools.

3. Double-click DocumentGenerator.vbs.

To verify that the transaction was completed successfully, browse to the PaymentAckReceived directory located in the
eProcurementSample directory. This directory should contain a payment acknowledgement XML file that uses the following
naming convention: payack_[GUID].xml.

To run the sample and have the purchase order denied on the hub, change the POTotal in PO.xml to a value greater than 1000. To
run the sample and have the purchase order denied by the supplier system, change the POTotal in PO.xml to a value less than
300. The PO.xml file is located in the eProcurementSample directory.

 Note

By default, the hub and supplier schedules are bound to the Windows Scripting Component located at
C:\EprocurementSample\Script Components\Message.wsc. If the component does not exist at this location, the schedule will
fail. To resolve this issue, open the schedules in BizTalk Orchestration Designer and use the Script Component Binding
Wizard to rebind the script file to the correct drive and path for the component.

Continue to Programming Notes.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ E-Procurement Sample

Programming Notes
E-procurement XLANG schedule activation

When you run this sample, PO.xml is dropped in the ReceivePO queue, an XLANG schedule is activated, and the e-procurement
process begins. The HubReceivePO messaging port activates a new instance of the XLANG schedule hub.skx, and then delivers the
document to the ReceivePO port. After the purchase order is approved it is sent to the hub. The hub sends the purchase order to
the supplier and waits to receive an invoice.

The HTTP receive function is used to deliver the purchase order to the supplier. After the supplier receives the purchase order, an
XLANG schedule is activated on the supplier system and the process begins on that system. The SupplierReceivePO messaging
port activates a new instance of the XLANG schedule supplier.skx, and then delivers the document to the ReceivePOfromHub port.
When the purchase order has been transformed to an invoice it is sent back to the hub.

The HTTP receive function is used to deliver the invoice to the hub. The hub receives the invoice and sends a payment. Again, the
HTTP receive function is used to deliver the payment to the supplier. When the supplier receives the payment it sends an
acknowledgement. The transaction is complete when the acknowledgement is received by the hub and written to a file at
\eProcurementSample\PaymentAckReceived.

E-Procurement XLANG schedule correlation

Every instance of an XLANG schedule is assigned a GUID by the XLANG Scheduler Engine. In this sample the GUID is extracted
from the message, stored in a correlation database, and associated with a TransactionID such as a purchase order number or
invoice number.

More specifically, when the hub receives a purchase order the GUID is extracted, stored in the CustomCorrelation database, and
associated with a TransactionID. When the supplier receives the purchase order it sees that TransactionID, but also generates a
GUID and TransactionID of its own to be stored in the SupplierCustomCorrelation database. These values are used to correlate
incoming and outgoing messages to the correct running schedule instance as the transaction goes from purchase order to
invoice, from invoice to payment, and completes at the payment acknowledgement. The correlation actually begins when the hub
receives an invoice and the invoice has to be associated with the correct purchase order and thus the correct XLANG schedule.

For additional information about correlation, see:

XLANG Schedule Correlation

Instance Management

Uninstalling the E-Procurement Sample

A script is not provided to remove the files and BizTalk Messaging Configuration objects, such as ports and channels, that are
created by running the setup application. The following list contains the BizTalk Messaging Configuration objects, files, folders,
and libraries used by this sample. These can be manually deleted when you are finished running this sample.

Organizations

Hub, Supplier

Channels

HubReceivePO, HubSendPO, SupplierReceivePO, HubReceiveInvoice, SupplierSendInvoice, HubSendPayment,
SupplierReceivePayment, SupplierSendPaymentAck, HubReceivePaymentAck, HubSendPayAckToFile

Document Definitions

EcommonInvoice, EcommonPayment, EcommonPO, EPaymentAck

Messaging Ports

HubReceivePO, HubSendPO, SupplierReceivePO, HubReceiveInvoice, SupplierSendInvoice, HubSendPayment,
SupplierReceivePayment, SupplierSendPaymentAck, HubReceivePaymentAck, HubSendPayAckToFile

Receive Functions (in BizTalk Server Administration):

HubReceiveInvoice, HubReceivePaymentAck, Receive PO, SupplierReceivePayment, SupplierReceivePO

Private Messaging Queues (in Computer Management)

receiveinvoice, receivepayment, receivepaymentack, receivepo, receivepo2, supplierreceivepo, supplierreceivepo2

BizTalk Server Repository Files (WebDAV)

https://msdn.microsoft.com/en-us/library/ee274602(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

ECommonInvoice.xml, eCommonPayment.xml, ECommonPO.xml, ePaymentAck.xml

Registered Libraries

Correlation.dll, HubTransformation.dll, PaymentTransformation.dll, SuppCorrelation.dll, Transformation.dll

Folders in \Microsoft BizTalk Server\HTTP Receive

Hub
Hub/PaymentAck
Supplier
Supplier/Payment

 Note

An Internet Information Services virtual directory is associated with each one of these folders.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ E-Procurement Sample

Optional Monitoring and Deployment Procedures
You must set up and run the e-procurement sample before proceeding. However, the following procedures are optional.

Prerequisites for monitoring and deployment are:

To run the deployment procedure you must be running Application Center 2000.

The Microsoft Operations Manager (MOM) setup procedure covers MOM configuration for advanced monitoring
capabilities. This procedure requires MOM 2000 and the BizTalk Server 2002 Management Pack.

The following topics are covered in this section:

Using Application Center for E-Procurement Deployment

Creating a SEED Package

Creating a MOM Custom Counter for the E-Procurement Sample

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ E-Procurement Sample

Using Application Center for E-Procurement Deployment
Application Center can be used to deploy a BizTalk Server configuration from one environment to another, such as moving a
configuration from a test environment to a production environment. Using Application Center to deploy environments greatly
reduces both the time it takes to move configurations and the amount of human intervention associated with such a move.

In this scenario, the hub resides on one server (the source) and we deploy the BizTalk Server configuration to another server (the
target) within the organization. For the e-procurement sample the hub and supplier configurations were installed on the same
computer. Therefore, when we deploy the entire configuration from one environment to another, both the hub and the supplier
are included. In a production environment, the hub and supplier would be on different computers, and the supplier would not be
included in the deployment.

 Note

You need to install Application Center before you install BizTalk Server.

Prerequisites for using Application Center for deployment are:

To use Application Center for e-procurement deployment, you will need to install Application Center 2000 on two
computers. One will serve as the source computer and the other as the target computer. Both computers should also have
BizTalk Server 2002 installed and running. In addition, the e-procurement sample must be installed on the source computer
and running correctly.

After you install Application Center 2000, you must install SP1 for Application Center 2000. SP1 for Application Center 2000
can be found in the Application Center 2000 SP1 directory on the BizTalk Server 2002 installation CD.

If clusters are not already created on the computers, you will need to create clusters on both the source and target
computers. It is important that the source and target computers be on separate clusters so that the sample can simulate a
deployment from one environment to another, such as from a test environment to a production environment.

After the source and target computers are properly configured, use Application Center to create an application on the source
computer cluster. For more information, see Using Application Center 2000.

The resource types for this cluster include:

File system paths
The e-procurement sample site (for example, \eProcurementSample)

Web sites and virtual directories
Hub virtual directory

Supplier virtual directory
BizTalk

BizTalkPorts

BizTalkReceiveFunctions

After the Application Center application is created you can deploy it from the source computer to the target computer. For more
information, see Deploy an Application Center application to a target server.

Because the target computer is part of another cluster you must select Deploy content outside the current cluster on the
Deployment Target Options page in the Deployment Wizard. The Deployment Wizard also provides a drop-down list of
applications that are available for deployment. Choose to deploy the application that you created earlier on the source computer
to the target computer.

When deployment is complete you will need to make some minor adjustments on the target computer. For example, if the
correlation databases that are used in the e-procurement sample are in use by SQL Server during deployment they cannot be
copied to the target computer through Application Center.

To manually copy the correlation databases over to the target computer's SQL Server instance, use the "Attach the databases"
functionality described in the Preliminary Setup section for the e-procurement sample. You can also use the Data Transformation
Services (DTS) of SQL Server to export the databases to the target computer's SQL Server instance.

In addition, the DLLs used by the e-procurement sample will be copied to the target computer through Application Center, but

https://msdn.microsoft.com/en-us/library/ee274519(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

they will not be registered on the target computer. You can register the necessary DLLs by running the RegisterDLLs.vbs script file
located in the \eProcurementSample\Application Center directory. If this is the first time that you have deployed the sample to the
target computer, the message queues most likely have not been created on this computer. You can create the necessary message
queues by running the CreateQueues.vbs script file located in the \eProcurementSample\Application Center directory.

 Note

You might need to enable all the BizTalk receive functions used by the e-procurement sample. The receive functions can be
enabled in the BizTalk Server Administration application. This action might be needed because the receive functions are
created before the message queues are created. BizTalk Server automatically disables receive functions if their
corresponding polling locations (directory, message queue, and so on) are not accessible.

Finally, the BizTalk ports on the target computer will need to be changed so that the primary port address points to the target
server. When Application Center deploys the BizTalk Server configuration from one computer to another it does not modify the
BizTalk ports. They will still point to the source server. The following ports will need to be edited to point to the target server:

HubSendPayment

HubSendPO

SupplierSendInvoice

SupplierSendPaymentAck

 Note

You might need to start and stop the BizTalk service for these changes to take effect. You can start and stop the BizTalk
service in the BizTalk Server Administration tool.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ E-Procurement Sample

Creating a SEED Package
To complete this procedure the e-procurement sample must be installed on this server and running correctly.

This sample shows you how a hub creates a SEED package, how a supplier installs the SEED package, and how the SEED package
is tested by the supplier.

In this scenario the hub creates a SEED package that includes specific document specifications to be sent to the trading partner,
similar to the supplier organization in this sample. The trading partner installs the SEED package. The e-procurement sample was
set up with both the hub and the supplier on one computer. SEED packages are intended to be used in two totally separate
environments.

The following topics are covered in this section:

Preliminary Setup for the SEED Package

Create the SEED Package

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ E-Procurement Sample

Creating a MOM Custom Counter for the E-Procurement
Sample
The administrators on the hub system might want to monitor transactions with the supplier. Using Microsoft Operations Manager
(MOM), the administrators on the hub computers can set up rules to count documents being received or sent to the supplier. This
part of the sample details the steps required to make the MOM rules to track CommonInvoice documents received from the
supplier.

The following procedures can be completed only if you have installed MOM and the BizTalk Server 2002 Management Pack for
advanced monitoring capabilities. To read the results in MOM, the e-procurement sample must be configured and running.

To create and use a custom counter in MOM, complete these procedures:

Set Up the Custom Counter

Create the MOM Rule

Distribute the Rule to the Agent

Read the Results in MOM

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265023(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265041(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265051(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

BizTalk Server 2002 Administration
Microsoft® BizTalk™ Server 2002 administration is divided into the following parts:

Installing BizTalk Server 2002

This section provides information about installing BizTalk Server 2002. The information includes guidelines for hardware and
software requirements, and instructions for complete, tools, and custom installations. For more information, see
Installing BizTalk Server 2002.

Understanding Security

This section covers how businesses can securely exchange data with trading partners when they use BizTalk Server 2002. BizTalk
Server takes advantage of the security features included in Microsoft Windows® 2000. For more information, see
Understanding Security.

Enhancing Performance and Scalability

The section provides information about enhancing the performance of BizTalk Server and creating scalable solutions. Issues and
guidelines covered in this section include identifying potential bottlenecks, addressing latency, and managing databases. For more
information about creating a scalable, high-performance solution, see Enhancing Performance and Scalability.

Administering Servers and Applications

This section covers how to administer servers and XLANG-related applications. Topics covered in this section include centrally
configuring and managing servers in multiple groups, configuring and managing receive functions, managing the Shared queue,
and managing the COM+ applications that host XLANG schedules. For more information, see
Administering Servers and Applications.

Tracking Documents

This section provides information about how to track interchanges and documents processed by BizTalk Server 2002. Topics
covered in this section include how to create queries and advanced queries, how to save interchange, document, and custom-
search data, and understanding interchange record, document record, and receipt results. For more information, see
Tracking Documents.

Monitoring Documents

This section provides information about the BizTalk Server 2002 Enterprise Edition Management Pack for Microsoft Operations
Manager (MOM). This information includes the performance counters, Microsoft Windows NT® event rules, user-configured
rules, and views available in this Management Pack to enhance the MOM capabilities by monitoring events specific to BizTalk
Server. For more information, see Monitoring Documents.

 Note

The file path to open various Windows 2000 services and tools, such as Component Services or Administrative Tools, is
different depending on whether you are using a computer that is operating on Windows 2000 Server or Windows 2000
Professional. For more information, see Open Component Services.

In Microsoft BizTalk Server 2002 Help, the paths to these services and tools have been documented based on a
Windows 2000 Server installation. If you are using Windows 2000 Professional, refer to Windows 2000 Professional Help
for more information about how to open the service or tool that you are interested in using.

Related Topic

BizTalk Server Administration Model

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251025(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Installing BizTalk Server 2002
Welcome to the Microsoft® BizTalk™ Server 2002 installation guide. It provides guidelines for hardware and software
requirements, and complete instructions for the following installation options:

Complete Installation. Enables you to perform a complete installation of BizTalk Server 2002 that includes all BizTalk
services, tools, and samples.

Tools Installation. Enables you to perform a complete installation of the BizTalk Server 2002 tools, including BizTalk
Orchestration Designer, BizTalk Editor, BizTalk Mapper, the BizTalk Server Administration Microsoft Management Console
(MMC) snap-in, and BizTalk Server 2002 Help. The BizTalk Server 2002 parser, serializer, correlation, and run-time binaries
are not installed.

Custom Installation. Enables you to perform a custom installation that includes any combination of BizTalk Server 2002
tools and services.

Upgrade Installation. Enables you to upgrade from BizTalk Server 2000 tools and services to BizTalk Server 2002 tools and
services.

Silent Installation. Enables you to install BizTalk Server 2002 silently by specifying property values from the command line.

Removing BizTalk Server 2002. Enables you to remove your installation of BizTalk Server 2002.

The following topics are covered in this guide:

Installation Checklist

Hardware and Software Requirements

Installation Instructions

You may be vulnerable to the NIMDA virus and other viruses if you do not install Windows 2000 Service Pack 3.

For more information about virus protection strategies, go to http://go.microsoft.com/fwlink/?LinkId=17405.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://go.microsoft.com/fwlink/?LinkId=17405
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Installation Checklist
This checklist describes the steps required to set up a complete installation of Microsoft® BizTalk™ Server 2002 and all its
components. Each step refers you to instructions that are needed to complete the step. For best results, print this checklist for
referencing during setup.

Step Reference
Check hardware requirements. Minimum Hardware Requirements
Check software requirements. Software Requirements
View Readme file for latest developments. The Readme file is located on the root directory of the BizTalk

Server installation CD.
Review information on virus protection strategies. For more information on virus protection strategies, go to

http://go.microsoft.com/fwlink/?LinkId=17405.

/TD

Install Microsoft Windows® 2000 operating system. Windows 2000 Prerequisites and Installation Requirements
Install Microsoft Message Queuing. Install Message Queuing
Install Internet Information Services. Install Internet Information Services (IIS)
Configure Internet Information Services. Configure IIS settings for BizTalk Server 2002
Install Windows 2000 Service Pack. Install Windows 2000 Service Pack 3
Add your user account to the Windows 2000 Administrators grou
p and create a BizTalk Server service account.

Set up a service account

Install Microsoft SQL Server™. SQL Server Prerequisites and Installation Requirements
Install SQL Server Service Pack. Install the Service Pack for SQL Server
Verify that SQL Server is running. Verify that SQL Server is running
Add a SQL Server Login account (for remote SQL Server installati
ons).

SQL Server and BizTalk Server 2002 Database Interactions

Install Microsoft Visio® 2002. Installing Visio 2002
Install Microsoft Application Center 2000 SP1. Installing Application Center 2000
Install BizTalk Server 2002. Installation Instructions
Establish remote database permissions if SQL Server is installed
on a remote computer.

SQL Server and BizTalk Server 2002 Database Interactions

Configure COM+ applications to run as something other than Int
eractive User.

Change the application identity for a COM+ application

Start the World Wide Web Publishing Service. Start the World Wide Web Publishing Service
Configure Internet Explorer for BizTalk Document Tracking. Configuring BizTalk Document Tracking

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://go.microsoft.com/fwlink/?LinkId=17405
https://msdn.microsoft.com/en-us/library/ee250997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274500(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251032(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274494(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251027(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274496(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250956(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250992(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Hardware and Software Requirements
This section includes information about minimum hardware requirements and configuration options to install Microsoft BizTalk
Server 2002. It also includes installation instructions for the prerequisite software for BizTalk Server 2002.

The following topics are covered in this section:

Minimum Hardware Requirements

Recommended Configuration to Optimize Performance for Document Messaging

Software Requirements

Windows 2000 Prerequisites and Installation Requirements

SQL Server Prerequisites and Installation Requirements

Installing Visio 2002

Installing Application Center 2000

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Minimum Hardware Requirements
The minimum hardware requirements for a complete installation of Microsoft BizTalk Server 2002 include:

400 megahertz (MHz) or higher Intel® Pentium®-compatible CPU

256 megabytes (MB) of RAM

6-gigabyte (GB) hard disk

CD-ROM drive

Network adapter card

VGA or Super VGA monitor

Microsoft Mouse or compatible pointing device

 Note

During BizTalk Server 2002 installation, the installation program determines the hard disk space that is available on your
computer. A complete installation requires approximately 52 MB of hard disk space, not including the requirements of the
BizTalk Messaging Management database, the Tracking database, the Shared Queue database, and the Orchestration
Persistence database. A tools installation requires approximately 30 MB of hard disk space. A custom installation requires
approximately 2 to 52 MB of hard disk space, not including database requirements, depending on the services and tools that
you install.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Recommended Configuration to Optimize Performance for
Document Messaging
The following are guidelines to help you achieve optimal performance with Microsoft BizTalk Server 2002 :

Build a three-computer configuration. In the three-computer configuration, install BizTalk Server 2002 on one computer,
install the Tracking database on a second computer, and install the BizTalk Messaging Management and Shared Queue
databases on a third computer.

Instead of using a single server to perform all the processing and receiving functions, performance can be optimized by
configuring two BizTalk Server 2002 servers, one dedicated to processing and the other dedicated to receiving.

Install the Tracking database on a computer with multiple physical hard disks. The optimal configuration includes four SCSI
II hard disks and a SCSI II controller. The first hard disk is dedicated to document-tracking storage. The second hard disk is
dedicated to the Microsoft Windows® 2000 system page file. The third hard disk is dedicated to the Tracking transaction
log. The fourth hard disk is dedicated to the Distributed Transaction Coordinator (DTC) log.

Create multiple instances of receive functions to monitor multiple receive locations for documents that are to be processed.
To balance the load of documents across several computers, locate the receive functions on separate computers. Each
monitoring location must be unique and must have a separate receive function. To avoid overloading any individual receive
function, the business application that sends documents must evenly distribute the documents to all the monitoring
locations.

 Important

Do not install the BizTalk Messaging Manager tool, Internet Information Services (IIS), and the Biztalk Server configuration
database on three separate computers. This type of configuration causes authentication problems. For more information,
see Authentication problems when IIS, BizTalk Messaging Manager tool, and SQL Server are on three different computers.

For more information about performance enhancements to BizTalk Server, see Enhancing Performance and Scalability.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Software Requirements
The following table lists the software that must be installed to run Microsoft BizTalk Server 2002.

Complete installation Tools installation Custom installation
Microsoft Windows 2000 with Service Pa
ck 3 (SP3)* and the NTFS file system

Microsoft Windows 2000 with Service Pack 3
(SP3)* and the NTFS file system, or Windows
XP Professional or later

Microsoft Windows 2000 with Service Pa
ck 3 (SP3)* and the NTFS file system

Microsoft Internet Explorer 5.5 or later Microsoft Internet Explorer 5.5 or later Microsoft Internet Explorer 5.5 or later
Microsoft Visio® 2002, (required to use
BizTalk Orchestration Designer)

Microsoft Visio 2002, (required to use BizTalk
Orchestration Designer)

Microsoft Visio 2002, (required to use Biz
Talk Orchestration Designer)

Microsoft SQL Server 7.0 with Service Pa
ck 3 (SP3) or SQL Server 2000 SP1

 Microsoft SQL Server 7.0 with Service Pa
ck 3 (SP3) or SQL Server 2000 SP1

 Note

BizTalk Messaging Manager will no
t run unless the World Wide Web P
ublishing Service is running.

 Note

BizTalk Messaging Manager will not ru
n unless the World Wide Web Publishi
ng Service is running.

 Note

BizTalk Messaging Manager will no
t run unless the World Wide Web P
ublishing Service is running.

*Windows 2000 system console must be used to install BizTalk Server 2002. Using Terminal Services to install BizTalk Server is
not supported.

 Notes

Microsoft SQL Server is required for a custom installation only if you install the core BizTalk Services. It is not required for a
tools installation.

Microsoft Application Center 2000 with SP1 is required only if you want to take advantage of BizTalk Server 2002
deployment capabilities. For more information, see Installing Application Center 2000.

Microsoft Operations Manager (MOM) 2000 is required only if you plan to install the BizTalk Server 2002 Management
Pack for advanced monitoring capabilities. For more information about the BizTalk Server 2002 Management Pack, see
Import the BizTalk Server 2002 Management Pack.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee264997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Windows 2000 Prerequisites and Installation Requirements
Microsoft Windows 2000 with Service Pack 3 (SP3) is required for all Microsoft BizTalk Server 2002 installations. Because BizTalk
Server 2002 has been thoroughly tested on Windows 2000 SP3, this installation guide includes information regarding the
necessary configuration of Windows 2000 Server, Windows 2000 Advanced Server, and Windows 2000 Professional in
combination with BizTalk Server. You must also install Message Queuing and Internet Information Services (IIS) with your
Windows 2000 installation. For more information, see Install Message Queuing and Install Internet Information Services (IIS). If
your installation of Windows 2000 does not include Service Pack 3, you must install it. For more information, see
Install Windows 2000 Service Pack 3.

After installing Windows 2000, you must add a Windows 2000 user account to the Administrators group before you install any
additional software. The following topics are covered in this section:

Install Windows 2000 Server, Advanced Server, or Professional

Install Message Queuing

Install Internet Information Services (IIS)

Configure IIS settings for BizTalk Server 2002

Install Windows 2000 Service Pack 3

Set up a service account

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274500(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251032(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251047(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274500(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251032(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274494(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

SQL Server Prerequisites and Installation Requirements
Prior to installing Microsoft BizTalk Server 2002, you must install Microsoft SQL Server 7.0 with Service Pack 3 (SP3) or Microsoft
SQL Server 2000 with Service Pack 1 (SP1). When you install BizTalk Server 2002, the installation procedure creates four BizTalk
Server 2002 databases (the BizTalk Messaging Management database, the Shared Queue database, the Tracking database, and
the Orchestration Persistence database) within SQL Server.

 Important

If you plan to install BizTalk Server 2002 on a computer running Microsoft Windows 2000 Professional, you must install the
Standard or Enterprise Edition of SQL Server on a separate computer. Then, when you install the databases for BizTalk
Server 2002, you will need to specify the name of the computer where you installed SQL Server. The Standard and
Enterprise Editions of SQL Server cannot be installed on Windows 2000 Professional.

If you plan to install BizTalk Server and SQL Server on two different computers, your logon account and the BizTalk Server
service account must have System Administrator permissions on both computers. For more information, see
SQL Server and BizTalk Server 2002 Database Interactions.

By default, when you install SQL Server 2000, the authentication mode is set to Windows 2000 only. BizTalk Server 2002 uses
Windows Authentication to access the BizTalk Messaging Management, Shared Queue, and Tracking databases and the BizTalk
Document Tracking Web application. Verify that the SQL Server authentication mode is set to Windows before installing BizTalk
Server 2002. For more information, see Set SQL authentication mode for SQL Server 2000.

A cluster is a collection of servers that act as a single server. If you install SQL Server on a cluster and you plan to install BizTalk
Server 2002 on another computer, you must install SQL Server client tools on the computer where BizTalk Server 2002 is
installed. For more information, see Install SQL Server client tools. When the tools installation is complete, you must use the Client
Network Utility to change the default network library from named pipes to TCP/IP. For more information, see
Change the default network library to TCP/IP.

 International Issue

When you install SQL Server, it is important to use the correct collation settings. Collation refers to a set of rules that
determines how data is sorted and compared. Character data is sorted using rules that define the correct character
sequence, with options for specifying case sensitivity, accent marks, kana character types, and character width. For instance,
to store Japanese characters, select case-sensitive sort order to distinguish Japanese-Hiragana from Japanese-Katakana
when setting up SQL Server. For more information about collation settings, on the Start menu, point to Programs, point to
Microsoft SQL Server, and then click Books Online. The topics "Using SQL Collations" and "Windows Collation Sorting
Styles" provide additional information.

If SQL Server is set to use Binary Sort Order, then case sensitivity is observed.

The following topics are covered in this section:

Install SQL Server 7.0 or 2000

Check for SQL Server Service Pack

Install the Service Pack for SQL Server

Install SQL Server client tools

Change the default network library to TCP/IP

Set SQL authentication mode for SQL Server 2000

Verify that SQL Server is running

SQL Server and BizTalk Server 2002 Database Interactions

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee251036(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274508(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251021(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251013(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251038(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251027(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274508(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251021(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251036(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274496(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Installing

SQL Server and BizTalk Server 2002 Database Interactions
To avoid unnecessary disk space allocation, use the Truncate log on checkpoint and Auto shrink features of Microsoft SQL
Server. Otherwise, the SQL Server logs can consume large amounts of disk space. However, you need to install BizTalk Server
2002 before you can complete this procedure. For more information, see Avoid unnecessary disk space allocation. For more
information about installing BizTalk Server 2002, see Installation Instructions.

BizTalk Server 2002 uses Windows Authentication to access the BizTalk Messaging Management, Shared Queue, and Tracking
databases and the BizTalk Document Tracking Web application. If you plan to install BizTalk Server and SQL Server on two
different computers, the account you are using must have Administrative permissions on the computer running SQL Server and
the computer running BizTalk Server.

 International Issue

BizTalk Server cannot access databases created by a different language version of BizTalk Server.

The following procedures are necessary to establish permissions for remote SQL Server installations and to establish permissions
on the remote server to the appropriate BizTalk Server databases.

Remote SQL Server login account

 Note

By default, if SQL Server and BizTalk Server 2002 are both installed on the local computer, and the BizTalk Server Messaging
service account has been added to the Administrators group on the local computer, then it already has System
Administrator permissions in SQL Server and the following procedure is not necessary. If, however, you are installing
BizTalk Server and SQL Server on separate computers, you must perform the following procedure in order for BizTalk
Server 2002 to be able to access SQL Server.

1. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

2. Expand Microsoft SQL Servers, expand SQL Server Group, expand the server to which you want to add a SQL Server login
account, and then expand Security.

3. Right-click Logins and click New Login.

The SQL Server Login Properties - New Login dialog box appears.

4. On the General tab, in the Name box, specify a domain and Windows account name.

For example: <DOMAIN>\<service account>, specifying the name of the account under which BizTalk Messaging Services
will run.

5. On the Server Roles tab, in the Server Roles list, select the System Administrators check box.

 Note

Administrative privileges are not required for the service account for the BizTalk Messaging Service to run properly.

1. Click OK to exit the SQL Server Login Properties page.

Establish remote database permissions

After BizTalk Server 2002 is installed, you will need to specify the databases that can be accessed by the SQL Server login account.
Complete the following steps to give the SQL Server login account permissions to the BizTalk Messaging Management, Shared
Queue, and Tracking databases.

 Note

This procedure cannot be completed until BizTalk Server has been installed.

1. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

2. Expand Microsoft SQL Servers, expand SQL Server Group, expand the server that contains the BizTalk Server databases,
expand Security, and then click Logins.

https://msdn.microsoft.com/en-us/library/ee251041(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

3. In the details pane, double-click the SQL Server login account that you created for the BizTalk Server Messaging service
account.

The SQL Server Login Properties page appears.

4. On the Database Access tab, select the InterchangeBTM check box.

The account name you specified appears in the User box. The Permit in Database Role box automatically appears at the
bottom of this page.

5. In the Permit in Database Role box, select the db_owner and dta_ui_role check boxes.

6. Repeat steps 4 and 5 for the InterchangeDTA and InterchangeSQ databases, selecting only db_owner in the Permit in
Database Role box.

 Note

During setup, the BizTalk Messaging Management database object name defaults to InterchangeBTM; the Tracking
database object name defaults to InterchangeDTA; and the Shared Queue database object name defaults to
InterchangeSQ. You might have renamed these default database object names during setup.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Installing

Installing Visio 2002
Because BizTalk Orchestration Designer is a Microsoft Visio 2002-based user interface, you must have Visio 2002 installed on
your computer prior to using BizTalk Orchestration Designer. BizTalk Orchestration Designer has been fully tested with Visio
2002.

Install Visio 2002 Standard Edition

1. Insert the Visio 2002 compact disc into the CD-ROM drive.

2. Run the Visio 2002 Setup program and follow the on-screen instructions.

For more information, see the Microsoft Visio 2002 documentation.

 International Issue

In some languages, certain characters might not display properly in BizTalk Orchestration Designer. To correct this, specify
that Microsoft Visio 2002 must always use the system default font:

1. On the Start menu, point to Programs and click Microsoft Visio.

2. On the Tools menu, click Options.

3. Click the Regional tab and, in the Document base font area, select Always use the system default font.

4. Close Visio and open BizTalk Orchestration Designer.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Installing Application Center 2000
Microsoft Application Center 2000 with Service Pack 1 (SP1) is required only if you want to take advantage of BizTalk Server 2002
deployment capabilities.

 Important

Application Center must be installed before you install BizTalk Server and must be installed on the same computer as
BizTalk Server.

Application Center 2000 cannot be installed on a computer running Microsoft Windows 2000 Datacenter Server.

Install Application Center 2000

1. Insert the Application Center 2000 compact disc into the CD-ROM drive.

2. Run the Application Center 2000 Setup program and follow the on-screen instructions.

 Important

After you install Application Center 2000, you must install SP1 for Application Center 2000. For more information about
installing the patch, see the Readme file in the Application Center 2000 SP1 directory.

If Application Center is not installed before BizTalk Server is installed, the driver and enumerator are installed to the
AppCenter directory in the BizTalk Server installation directory and are not registered.

To register the driver and enumerator:

1. Install Application Center 2000 and SP1.

2. Copy rdrvbts.dll and AcBtsEnm.dll from \Program Files\Microsoft BizTalk Server\AppCenter to the Application
Center installation directory.

3. Copy the GIF files from \Program Files\Microsoft BizTalk Server\AppCenter\Images to the Admin\Images
folder in the Application Center installation directory.

4. Register the driver and enumerator by executing "regsvr32.exe rdrvbts.dll" and "regsvr32.exe AcBtsEnm.dll" from the
command line. You might need to specify a full path name to the dynamic-link libraries (DLLs).

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Installation Instructions
You can install Microsoft BizTalk Server 2002 by using the Installation Wizard (Microsoft BizTalk Server.msi) or by using Microsoft
Windows Installer (Msiexec.exe). The Installation Wizard is a step-by-step process in which you select options that correspond to
specific property values. The Microsoft Windows Installer enables you to specify property values from the command line. You can
use this method to install BizTalk Server 2002 silently (without constant interaction or prompts). A silent installation of BizTalk
Server 2002 is ideal for test scenarios or as part of a large-scale enterprise deployment.

Regardless of which installation you perform, it is recommended that you maintain secure records of the following information
for later use:

BizTalk Server group names
Default: BizTalk Server Group

Microsoft SQL Server names
Default: the computer name where SQL Server is installed

User names and passwords for the BizTalk Server service account

BizTalk Messaging Management database name
Default: InterchangeBTM

Tracking database name
Default: InterchangeDTA

Shared Queue database name
Default: InterchangeSQ

Orchestration Persistence database name
Default: XLANG

WebDAV repository URL
Default: \\localhost\BizTalkTracking

 Important

Before you run the installation program for BizTalk Server 2002, verify that you are logged on to the computer using an
account that has Administrative permissions on the local computer and on all SQL Server computers you intend to
configure. For more information about creating a SQL Server login account with Administrative permissions on a remote
computer, see SQL Server and BizTalk Server 2002 Database Interactions.

BizTalk Server 2002 requires Microsoft XML Parser (MSXML) version 3.0 with Service Pack 1 (SP1). This release of BizTalk
Server 2002 automatically installs MSXML 3.0 SP1. Using BizTalk Server 2002 with a different version of MSXML might
produce unpredictable results. If a side-by-side installation of MSXML 3.0 and 4.0 (or later) is necessary, you must uninstall
MSXML 4.0 before installing BizTalk Server 2002, and then reinstall MSXML 4.0 after BizTalk Server has been installed.

The Windows 2000 system console must be used to install BizTalk Server 2002. Using Terminal Services to install BizTalk
Server is not supported.

 Notes

For detailed information about BizTalk Server security issues, see Security Guidelines.

For more information about deploying BizTalk Server 2002 in a cluster environment, go to the Microsoft BizTalk Server Web
site (www.microsoft.com/biztalk) and browse to the Deployment page, which is located in the Technical Resources section.

The following topics are covered in this section:

Complete Installation

http://www.microsoft.com/biztalk
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Tools Installation

Custom Installation

Upgrade Installation

Silent Installation

Removing BizTalk Server 2002

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Installing

Complete Installation
You can use the following section to perform a complete installation of Microsoft BizTalk Server 2002 that includes all BizTalk
services, tools, and samples.

 Important

Before installing BizTalk Server 2002 you must be in compliance with the minimum hardware and software requirements.
To ensure that you have implemented the necessary prerequisites, see the Installation Checklist.

To successfully install BizTalk Server, IIS must be enabled. The service will be started during the BizTalk Server installation
process.

BizTalk Server 2002 uses Windows Authentication to access the BizTalk Messaging Management, Shared Queue, and
Tracking databases, and the BizTalk Document Tracking Web application. Verify that the Microsoft SQL Server
authentication mode is set to Windows before installing BizTalk Server 2002. For more information, see
Set SQL authentication mode for SQL Server 2000. If SQL Server is installed on a remote computer, verify that the account
you are using is a member of the SQL Server Administrators group. For more information, see
SQL Server and BizTalk Server 2002 Database Interactions.

BizTalk Server 2002 requires Microsoft XML Parser (MSXML) version 3.0 with Service Pack 1 (SP1). This release of BizTalk
Server 2002 automatically installs MSXML 3.0 SP1. Using BizTalk Server 2002 with other versions of MSXML might produce
unpredictable results. If a side-by-side installation of MSXML 3.0 and 4.0 (or later) is necessary, you must uninstall MSXML
4.0 before installing BizTalk Server 2002, and then reinstall MSXML 4.0 after BizTalk Server has been installed.

Perform a complete installation of BizTalk Server 2002

1. Insert the Microsoft BizTalk Server 2002 compact disc into the CD-ROM drive to start the Installation Wizard. The
Installation Wizard guides you through the steps necessary to install BizTalk Server 2002. You must observe the
requirements listed in the following steps.

2. On the Customer Information page, type your name in the User name box, type the name of your company in the
Organization box, and then click Next.

3. On the Destination Folder page, click Next to install BizTalk Server 2002 to the default location: C:\Program
Files\Microsoft BizTalk Server, or click Change to select another location.

4. On the Setup Type page, click Complete and click Next.

5. On the Configure BizTalk Server Administrative Access page, accept the default group name, BizTalk Server
Administrators, or type the group name that you want to use in the Group name box.

 Important

Do not rename this group without also modifying the value of "AdminGroupName" in the Windows registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
BizTalk Server\1.0\NTGroups. BizTalk Server 2002 uses this registry key to find the group.

 Note

To create a group name, adhere to the following group naming restrictions:

The group name must be different from any other group or user name on this computer.

The group name cannot contain the following characters: `~ ! @ # $ % ^ & * () + = [] { } | ; \ " ' < > , . ?

The group name cannot consist solely of periods (.) or spaces.

6. In the Group description box, type a new description for the group name or accept the default and click Next.

7. On the Microsoft BizTalk Server Service Log On Properties page, accept the default setting This account to specify a
service account. This is the account that the BizTalk Messaging Service will run under. This account must have access to SQL

https://msdn.microsoft.com/en-us/library/ee251036(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Server for BizTalk Messaging to run properly. Type a valid password in the Password box.

If you do not want BizTalk Services to automatically start when setup completes, clear the Start service after setup
completes check box. The BizTalk Server messaging services will not automatically start.

 Notes

BizTalk Server setup will grant Log on as a service and Act as part of the operating system rights to the account
specified on the Microsoft BizTalk Server Service Log On Properties page.

If you select This account, and intend to use public or private key certificates in your BizTalk Server implementation,
you must specify an account that is in the Windows 2000 Administrators group on the local computer. To configure
certificates for the S/MIME components by using BizTalk Messaging Manager, you must also log on using an account
that is in the local Windows 2000 Administrators group.

8. Click Next.

9. On the Ready to Install the Program page, click Install.

The BizTalk Server 2002 installation procedure might take several minutes.

10. When the Welcome to the Microsoft BizTalk Server 2002 Messaging Database Setup Wizard page appears, click
Next.

During BizTalk Server 2002 database setup, you are prompted for SQL Server computer and database information
necessary to configure the BizTalk Messaging Management, Tracking, and Shared Queue databases.

 Caution

Do not change the code, such as stored procedures or triggers, in the BizTalk Messaging Management, Tracking, and
Shared Queue databases. Do not access the databases directly. Do not directly call the stored procedures. Make all
changes to the databases by using the methods and properties of the BizTalk Messaging Configuration object model.
Making changes directly to the databases bypasses many constraints enforced by the BizTalk Messaging
Configuration object model and will either cause the server to function incorrectly or corrupt the database.

11. On the Configure a BizTalk Messaging Management Database page, accept the default, Create a new BizTalk
Messaging Management database, or click Select an existing database and type a server name in the appropriate text
box.

 Important

If you are installing BizTalk Server 2002 on a computer that is running Microsoft Windows 2000 Professional, the
server name you must specify is the name of the computer where you installed Microsoft SQL Server 7.0 or Microsoft
SQL Server 2000.

To create a new database with the same name as an existing database on the same server, it is recommended that you
manually delete the database content. For more information about deleting database content, on the Start menu,
point to Programs, point to Microsoft SQL Server, and then click Books Online. BizTalk Server setup only verifies
whether a stored procedure required by the database exists, rather than verifying whether all the variables required by
the database exist. If a stored procedure exists, BizTalk Server setup does not modify the database. If the stored
procedure does not exist, BizTalk Server setup deletes the database. Then it reinitializes the BizTalk Messaging
Management database tables. This information is also true for the Shared Queue and Tracking databases.

If you are setting up more than one BizTalk Server installation and want to centrally manage the BizTalk Messaging
Management database, it is highly recommended that you review information about changing the BizTalk Messaging
Management database. For more information, see Changing the BizTalk Messaging Management database.

12. Click Next.

13. On the Configure a BizTalk Server Group page, type the name that you want to use as your BizTalk Server group in the
Group name box or accept the default (BizTalk Server Group), and then click Next.

If you have set up other BizTalk Server groups you can also click Select an existing BizTalk Server group and select a
name from the Group Name list.

https://msdn.microsoft.com/en-us/library/ee251042(v=bts.10).aspx

 Important

The group name cannot contain the following characters: `~ ! @ # $ % ^ & * () + = [] { } | ; \ " '< > , . ?

All servers within a group must have the same version and language of BizTalk Server installed. If there are servers
with different versions of BizTalk Server (BizTalk Server 2000, BizTalk Server 2000 SP1, BizTalk Server 2002 Enterprise
Edition, or a different language version of BizTalk Server) installed within a group, the databases will not function
properly.

14. On the Configure a Tracking Database page, repeat the procedure in step 11 and click Next.

15. On the Configure a Shared Queue Database page, repeat the procedure in step 11 and click Next.

16. On the Verify BizTalk Server Group page, verify that the information in the BizTalk Server group properties box is
correct and click Next.

17. On the final page of the Microsoft BizTalk Server 2002 Messaging Database Setup Wizard, click Finish to complete the
configuration of the BizTalk Messaging Management, Tracking, and Shared Queue databases.

18. On the Welcome to the Microsoft BizTalk Server 2002 Orchestration Persistence Database Setup Wizard page, click
Next to install the Orchestration Persistence database.

 Note

If you click Cancel, BizTalk Server 2002 is installed, but the Orchestration Persistence database and the Data Source
Name (DSN) are not installed. You can install the database and the DSN later. For more information, see
Create a new persistence database, Manage Other COM+ Applications That Host XLANG Schedules, and
Configure a COM+ application to host XLANG schedules.

19. On the Configure a default Orchestration Persistence Database page, accept the default, Create a new default
Orchestration Persistence database, or click Select an existing database and then choose a SQL Server computer
name and type database information in the appropriate text boxes.

 Important

If you select Create a new default Orchestration Persistence database and choose a database with the same
name, on the same server, as an existing database, BizTalk Server setup deletes everything in the database. BizTalk
Server setup then reinitializes the Orchestration Persistence database tables.

If you are installing BizTalk Server 2002 on a computer that is running Windows 2000 Professional, the Server name
you specify must be the name of the computer where you installed SQL Server.

 Notes

The Orchestration Persistence database is created based on the current user log-on identity.

To use SQL Server remotely, you must have the appropriate permissions set for the Orchestration Persistence
database. If you have not reconfigured the identity for the XLANG Scheduler Engine, permissions will be granted to
the user who was logged on during installation of BizTalk Server 2002. If you have reconfigured the identity for the
XLANG Scheduler Engine to match a service account you created or another unique user account, you must set SQL
permissions to match the reconfigured identity.

20. Click Finish.

21. On the final page of the Microsoft BizTalk Server 2002 Installation Wizard, click View Readme to read important, late-
breaking information about BizTalk Server 2002, and then click Finish.

 Caution

Do not change the impersonation level for any COM+ application. By default, it is set to Impersonate. Changing this security
property to Anonymous, Identify, or Delegate can cause problems during installation.

https://msdn.microsoft.com/en-us/library/ee250959(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250967(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265238(v=bts.10).aspx

After BizTalk Server 2002 is installed on your computer you cannot change the computer name. BizTalk Server 2002 uses
the computer name internally; if you change the computer name, BizTalk Server 2002 detects a different name and
generates an error message. If you need to rename the computer, uninstall BizTalk Server, rename the computer, and then
re-install BizTalk Server.

 Important

If SQL Server is running on a remote computer, you will need to specify that the SQL Server login account has permissions
to access the BizTalk Messaging Management, Shared Queue, and Tracking databases. For more information, see
SQL Server and BizTalk Server 2002 Database Interactions.

 Note

To dramatically increase the performance of BizTalk Orchestration Services, in Windows Explorer, browse to Program
Files\Common Files\System\ado and double-click adofre15.reg. In the confirmation dialog box, click Yes, and then click
OK. This procedure changes the Microsoft® ActiveX® Data Objects (ADO) threading model from "Apartment threaded" to
"Both" and might affect other applications that use ADO. Any provider that is not thread safe cannot be used.

The following procedures should be completed after installation:

Avoid unnecessary disk space allocation

Start the World Wide Web Publishing Service

Configuring BizTalk Document Tracking

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251041(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250992(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Tools Installation
A Microsoft BizTalk Server 2002 tools installation enables you to install only:

BizTalk Orchestration Designer

BizTalk Editor

BizTalk Mapper

BizTalk Server Administration Microsoft Management Console (MMC) snap-in

BizTalk Server 2002 Help

The BizTalk Server 2002 parser, serializer, correlation, and run-time binaries are not installed.

Perform a tools installation of BizTalk Server 2002

1. Insert the Microsoft BizTalk Server 2002 compact disc into the CD-ROM drive to start the Installation Wizard. The
Installation Wizard guides you through the steps necessary to install BizTalk Server 2002. Observe the requirements listed
in the following steps.

2. On the Customer Information page, type your name in the User name box, type the name of your company in the
Organization box, and then click Next.

3. On the Destination Folder page, click Next to install BizTalk Server 2002 tools to the default location: C:\Program
Files\Microsoft BizTalk Server, or click Change to select another location.

4. On the Setup Type page, click Tools and click Next.

5. On the Ready to Install the Program page, click Install.

6. On the final page of the Microsoft BizTalk Server 2002 Installation Wizard, click View Readme to read important, late-
breaking information about this release of BizTalk Server 2002.

7. Click Finish to complete the installation process.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Custom Installation
A custom Microsoft BizTalk Server 2002 installation enables you to install all the features of BizTalk Server 2002 or only those
features that you want.

 Note

If you want to install the server components of BizTalk Server 2002, you must first install Microsoft SQL Server. For more
information, see SQL Server Prerequisites and Installation Requirements.

 Caution

Do not install the BizTalk Messaging Manager tool, Internet Information Services (IIS), and the Biztalk Server configuration
database on three separate computers. This type of configuration causes authentication problems.

Perform a custom installation of BizTalk Server 2002

1. Insert the Microsoft BizTalk Server 2002 compact disc into the CD-ROM drive to start the Installation Wizard. The
Installation Wizard guides you through the steps necessary to install BizTalk Server 2002. Observe the requirements listed
in the following steps.

2. On the Customer Information page, type your name in the User name box, type the name of your company in the
Organization box, then click Next.

3. On the Destination Folder page, click Next to install BizTalk Server 2002 to the default location: C:\Program
Files\Microsoft BizTalk Server, or click Change to select another location.

4. On the Setup Type page, click Custom and click Next.

5. On the Custom Setup page, follow the on-screen instructions to select the BizTalk Server 2002 components that you want
to install.

To perform a different type of installation, click Back. Otherwise, click Next. Additional pages appear on which you provide
additional information, depending on the installation components that you have selected.

6. On the Ready to Install the Program page, click Install.

The BizTalk Server 2002 custom installation procedure might take a few minutes.

7. On the final page of the Microsoft BizTalk Server 2002 Installation Wizard, click View Readme to read important, late-
breaking information about this release of Microsoft BizTalk Server 2002.

8. Click Finish to complete the installation process.

 Important

BizTalk Messaging Manager will not run unless the World Wide Web Publishing Service is running. For more information
about the World Wide Web Publishing Service, see Start the World Wide Web Publishing Service.

To dramatically increase the performance of BizTalk Orchestration Services, in Windows Explorer, browse to Program
Files\Common Files\System\ado and double-click adofre15.reg. In the confirmation dialog box, click Yes, and then click
OK. This procedure changes the Microsoft ActiveX Data Objects (ADO) threading model from "Apartment threaded" to
"Both" and might affect other applications that use ADO.

To avoid unnecessary disk space allocation, use the Truncate log on checkpoint and Auto shrink features of Microsoft
SQL Server. Otherwise, the SQL Server logs can consume large amounts of disk space. For more information, see
Avoid unnecessary disk space allocation.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251041(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Installing

Upgrade Installation
You can use the following section to upgrade to Microsoft BizTalk Server 2002 services, tools, and samples.

Preliminary Setup

Before upgrading to BizTalk Server 2002, it is recommended that you do a full backup of your current system.

Before upgrading to BizTalk Server 2002, it is recommended that you stop the IISAdmin service. If this is not done, it is
possible that two DLLs (MscsCore.dll and MSCSAspHelp.dll) will not be present after the upgrade. If that situation occurs,
locate the two dynamic-link library (DLL) files on the BizTalk Server 2002 CD, copy them to the Program Files\Common
Files directory, and register the DLLs.

You must remove all previous beta versions of Microsoft BizTalk Server before you upgrade to BizTalk Server 2002.

BizTalk Server 2002 uses Windows Authentication to access the BizTalk Messaging Management, Shared Queue, and
Tracking databases and the BizTalk Document Tracking Web application. Verify that the SQL Server authentication mode is
set to Windows before installing BizTalk Server 2002. For more information, see
Set SQL authentication mode for SQL Server 2000. If SQL Server is installed on a remote computer, verify that the account
you are using is a member of the SQL Server Administrators group. For more information, see
SQL Server and BizTalk Server 2002 Database Interactions.

 Caution

All existing BizTalk Server product files will be removed during the upgrade process, and the configuration of BizTalk Server
2000 Services and COM+ packages will be lost when you upgrade to BizTalk Server 2002.

 Important

BizTalk Server 2002 requires Microsoft XML Parser (MSXML) version 3.0 with Service Pack 1 (SP1). This release of BizTalk
Server 2002 automatically installs MSXML 3.0 SP1. Using BizTalk Server 2002 with other versions of MSXML might produce
unpredictable results. If a side-by-side installation of MSXML 3.0 and 4.0 (or later) is necessary, you must uninstall MSXML
4.0 before installing BizTalk Server 2002, and then reinstall MSXML 4.0 after BizTalk Server has been installed.

Perform an upgrade installation of BizTalk Server 2002

1. Insert the Microsoft BizTalk Server 2002 compact disc into the CD-ROM drive to start the Installation Wizard. The
Installation Wizard guides you through the steps necessary to upgrade to BizTalk Server 2002. Observe the requirements
listed in the following steps.

2. On the Customer Information page, type your name in the User name box, type the name of your company in the
Organization box, and then click Next.

3. On the Destination Folder page, click Next to upgrade the BizTalk Server installation located in the default directory.

4. On the Setup Type page, click Complete, Tools, or Custom and click Next.

 Note

All existing BizTalk Server files will be removed during the upgrade process. Only the features that you select will be
installed.

5. On the Configure BizTalk Server Administrative Access page, accept the default group name, BizTalk Server
Administrators, or type the group name that you want to use in the Group name box.

 Important

Do not rename this group without also modifying the value of "AdminGroupName" in the Windows registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
BizTalk Server\1.0\NTGroups. BizTalk Server 2002 uses this registry key to find the group.

 Note

https://msdn.microsoft.com/en-us/library/ee251036(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

To create a group name, adhere to the following group naming restrictions:

The group name must be different from any other group or user name on this computer.

The group name cannot contain the following characters: `~ ! @ # $ % ^ & * () + = [] { } | \\ ;\" '< > , . ?

The group name cannot consist solely of periods (.) or spaces.

6. On the Microsoft BizTalk Server Service Log On Properties page, accept the default setting This account to specify a
service account. This is the account that the BizTalk Messaging Service will run under. This account must have access to SQL
Server for BizTalk Messaging to run properly. Type a valid password in the Password box.

If you do not want BizTalk Services to automatically start when setup completes, clear the Start service after setup
completes check box. The BizTalk Server messaging services will not automatically start.

 Notes

BizTalk Server setup will grant Log on as a service and Act as part of the operating system rights to the account
specified on the Microsoft BizTalk Server Service Log On Properties page.

If you select This account, and intend to use public or private key certificates in your BizTalk Server implementation,
you must specify an account that is in the Windows 2000 Administrators group on the local computer. To configure
certificates for the S/MIME components by using BizTalk Messaging Manager, you must also log on using an account
that is in the local Windows 2000 Administrators group.

7. On the Ready to Install the Program page, click Install.

8. When the Welcome to the Microsoft BizTalk Server 2002 Messaging Database Setup Wizard page appears, click
Next.

9. On the Configure a BizTalk Messaging Management Database page, click Select an existing database or Create a
new BizTalk Messaging Management database.

 Notes

The BizTalk Messaging Management (InterchangeBTM), Tracking (InterchangeDTA), and Shared Queue
(InterchangeSQ) databases are not removed during the upgrade process. If you choose to create a new database you
will need to change the database names.

If you choose to keep your existing databases, you will be prompted to confirm that you want to upgrade the schema
and stored procedures before installation will continue. The existing database schemas and stored procedures will not
be compatible with BizTalk Server 2002. Click Yes to continue.

10. On the Configure a BizTalk Server Group page, type the name that you want to use as your BizTalk Server group in the
Group name box or accept the default (BizTalk Server Group), and then click Next.

 Important

All servers within a group must have the same version and language of BizTalk Server installed. If there are servers
with different versions of BizTalk Server (BizTalk Server 2000, BizTalk Server 2000 SP1, BizTalk Server 2002 Enterprise
Edition, or a different language version of BizTalk Server) installed within a group, the databases will not function
properly.

11. On the Configure a Tracking Database page, and on the Configure a Shared Queue Database page, repeat the
procedure in step 9 and click Next to continue.

12. On the Verify BizTalk Server Group page, verify that the information in the BizTalk Server group properties box is
correct and click Next.

13. On the final page of the Microsoft BizTalk Server 2002 Messaging Database Setup Wizard, click Finish to complete the
configuration of the BizTalk Messaging Management, Tracking, and Shared Queue databases.

14. On the Welcome to the Microsoft BizTalk Server 2002 Orchestration Persistence Database Setup Wizard page, click

Next to install the Orchestration Persistence database.

15. On the Configure a default Orchestration Persistence Database page, click Select an existing database or Create a
new BizTalk Messaging Management database.

16. Click Finish to complete the upgrade process.

 Caution

After BizTalk Server 2002 is installed on your computer you cannot change the computer name. BizTalk Server 2002 uses
the computer name internally; if you change the computer name, BizTalk Server 2002 detects a different name and
generates an error message. If you need to rename the computer, uninstall BizTalk Server, rename the computer, and then
re-install BizTalk Server.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Installing

Silent Installation
The Microsoft Windows Installer (Msiexec.exe) is an executable program that interprets packages and installs products. Msiexec
enables you to specify property values from the command line. This method gives you the ability to install Microsoft BizTalk
Server 2002 silently (without constant interaction or prompts). A silent installation of BizTalk Server 2002 is ideal for test
scenarios or as part of a large-scale enterprise deployment.

Perform a silent installation of BizTalk Server 2002

1. On the Start menu, click Run.

2. In the Open box, type cmd and click OK.

3. Type the following syntax at the command prompt to install BizTalk Server 2002 silently:

msiexec /I "\\server\folder\Microsoft BizTalk Server.msi"
/qb /Lv* "C:\Temp\install.log" INSTALLLEVEL=200
ALLUSERS=1
DSNCONFIG="C:\Temp\BizTalkInstall.ini"

 Important

You must add the ALLUSERS=1 parameter to complete the installation for all users. This parameter also ensures that the
services are able to see the registry settings.

By default the silent installation process uses a local system account. If SQL Server is on a remote computer, this account
must be given permissions to access the computer where SQL Server is installed. Failure to do so will cause the service to
fail, and will generate errors when accessing the BizTalk Messaging Management database.

 Notes

The following command-line options are used to run Msiexec in Step 3:
/I is the command line to install or configure a product.

/qb is the command line to present a basic user interface (progress bar only).

/Lv* produces a log file.

INSTALLLEVEL=200 installs the server. If you do not specify the INSTALLLEVEL, the value defaults to 100, which is
the tools installation of BizTalk Server 2002.

DSNCONFIG="C:\Temp\BizTalkInstall.ini" provides installation information to the setup wizard.

You can specify various options at the command line to set properties for a BizTalk Server 2002 installation. Unspecified
properties take on the default values. The properties unique to BizTalk Server 2002 are listed in the following table.

Public property Value Description
USERNAME

(Built-in installer pr
operty)

<name>

Default: {LogonUser}

The name of the user performing the installation. Customer Informati
on dialog box; User name edit box.

COMPANYNAME

(Built-in installer pr
operty)

<organization>

Default: {LogonCompany}

The organization name for the user performing the installation. Custom
er Information dialog box; Organization edit box.

INSTALLLEVEL

(Built-in installer pr
operty)

<install level>

Default: 100

The feature installation level. For BizTalk Server 2002 setup, 100=Client
and 200=Server setup type.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

INSTALLDIR

(Built-in installer pr
operty)

<install path>

Default: "{ProgramFiles} \Microsoft B
izTalk Server"

The destination folder for the installation.

BTS_GROUP_NAM
E

(Complete installat
ion only)

<Group Name>

Default: "BizTalk Server Administrato
rs"

The name of the BizTalk Server 2002 Windows NT® group. ConfigAd
minGroup dialog box; Group name edit box.

BTS_GROUP_DESC
RIPTION

(Complete installat
ion only)

<Group Description>

Default: "Members can fully administ
er Microsoft BizTalk Server"

The description of the BizTalk Server 2002 Windows NT group. Config
AdminGroup dialog box; Group description edit box.

BTS_USERNAME

(Complete installat
ion only)

<username>

Default: ""

The logon DOMAIN\name for the BizTalk Server 2002 service. ConfigS
erviceLogon dialog box; User name edit box.

BTS_PASSWORD

(Complete installat
ion only)

<password>

Default: ""

The logon password for the BizTalk Server 2002 service. ConfigService
Logon dialog box; Password edit box.

BTS_SERVER

(Complete and Too
ls installations)

<servername>

Default: "localhost"

The name of the BizTalk Server to remotely administer. ConfigMgmtD
esk dialog box; Server name edit box.

BTS_SDK_SERVER

(Complete and Too
ls installations)

<servername>

Default: ""localhost""

The name of the BizTalk Server to use for DCOM. ConfigSDK dialog bo
x; Server name edit box.

DSNCONFIG

(Initialization file)

<pathname>

Default: ""

The path of the initialization file for the BTSsetupDB.exe and XLANGsetu
pDB.exe Database Setup Wizards to use.

 Notes

The DSNCONFIG property is required to complete a silent installation of BizTalk Server 2002. The initialization path file
listed on the command line is passed to the BTSsetupDB.exe and XLANGsetupDB.exe database setup wizards. Use one of the
following command-line values:

DSNCONFIG="Full path to .ini file for BTSsetupDB.exe and XLANGsetupDB.exe"

-Or-

BTSSETUPDB.INI="Full path to .ini file for BTSsetupDB.exe" and XLANGSETUPDB.INI="Full path to .ini file for
XLANGsetupDB.exe"

The database setup wizard processes the contents of the initialization file using these rules:
All [sections] and keys= are optional; if a key is absent, the default value as shown in the sample initialization file is
used.

If the GroupName exists in the specified BizTalk Messaging Management database, the [InterchangeDTA] and the
[InterchangeSQ] sections are ignored because the group defines the values.

Specified databases are created if they do not already exist on the specified server.
The BizTalk Messaging Management database setup and the Orchestration Persistence database setup are mutually
independent.

Depending on the features you install, setup configures either, neither, or both of the following:
BizTalk Messaging Management database. Configured only if the BizTalk Messaging Service and its associated

components are installed.

Orchestration Persistence database. Configured only if BizTalk Orchestration Services is installed.
The following properties are used on the command line:

DSNCONFIG. Specifies the location of .ini file to be used by BTSsetupDB.exe and XLANGsetupDB.exe.

-Or-

BTSSETUPDB.INI. Specifies the location of .ini file to be used by BTSsetupDB.exe.

XLANGSETUPDB.INI. Specifies the location of .ini file to be used by XLANGsetupDB.exe.

Sample initialization file with all [sections], keys=, and default values shown

The following is an example of the format of an .ini file needed to silently install BizTalk Server 2002. These command-line
properties are required to perform a first-time installation of BizTalk Server 2002 using Microsoft Windows Installer.

 Note

Store the following script file in a secure location, deleting Username, Password, and Database name values befor saving the
file. Additionally, avoid printing the file or otherwise compromising the file security when storing or sending it. Avoid using
the file without a value for the Username or Password, as doing so may cause blank usernames or passwords to be set.

Example SetupDB.ini

;--
; SQL Server connection parameters for BizTalk Messaging Management database
; Required section used by BTSsetupDB.exe only.
; Specify new or existing database.
;
[InterchangeBTM]
Server=localhost
; Delete this Username before storing the script
Username=
; Delete this Password before storing the script
Password=
; Delete this Database name before storing the script
Database=InterchangeBTM

;--
; Name for BizTalk Server Group
; Required section used by BTSsetupDB.exe only.
; Specify new or existing server group.
;
[Group]
GroupName=BizTalkGroup

;--
; SQL Server connection parameters for BizTalk Tracking database
; Required section used by BTSsetupDB.exe only.
; Optional if existing server group specified.
;
[InterchangeDTA]
Server=localhost
; Delete this Username before storing the script
Username=
; Delete this Password before storing the script
Password=
; Delete this Database name before storing the script
Database=InterchangeDTA

;--
; SQL Server connection parameters for BizTalk Shared Queue database
; Required section used by BTSsetupDB.exe only.
; Optional if existing server group specified.
;
[InterchangeSQ]
Server=localhost
; Delete this Username before storing the script
Username=
; Delete this Password before storing the script
Password=
; Delete this Database name before storing the script
Database=InterchangeSQ

;--

; SQL Server connection parameters for Orchestration database
; Required section used by XLANGsetupDB.exe only.
; Specify new or existing Orchestration database.
;
[Orchestration]
Server=localhost
Database=XLANG

The following table describes the properties and values of the sample BizTalkDB.ini initialization file.

Property Value Description
[InterchangeBT
M]

Server=BIZTALK Log on to this first SQL Server with default user name and password.

Database=BizTalkBTM

Create this BizTalk Messaging Management database if it does not already exist on
the server.

[Group] GroupName=BizTalkServerG
roup

The rest of the values are ignored if this group already exists.

[InterchangeDT
A]

Server=DTA-SERVER Log on to this second SQL Server with default user name and password.

Database=BizTalkDTA

Create this Tracking database if it does not already exist on the server.

[InterchangeSQ
]

Server=SQ-SERVER Log on to this third SQL Server with default user name and password.

Database=BizTalkSQ

Create this Shared Queue database if it does not already exist on the server.

[Orchestration] Server=localhost Log on to this fourth SQL Server with default user name and password.

Database=BizTalkXLANG

Create this Orchestration Persistence database if it does not already exist on the se
rver.

Command-line options of Microsoft Windows Installer

Microsoft Windows Installer (Msiexec.exe) is the program that interprets packages and installs products. It also sets an error level
on return that corresponds to the Microsoft® Win32® error codes. The following table describes command-line options for this
program that you can use in addition to the properties and values listed previously.

O
pt
io
n

Parameters Meaning

/I Package|Produ
ctCode

Installs or configures a product.

/f [p|o|e|d|c|a|u|m
|s|v] Package|Pr
oductCode

Repairs a product. This option ignores any property values entered on the command line. The default argume
nt list for this option is pecms. This option shares the same argument list as the REINSTALLMODE property.

p - Reinstall only if file is missing.

o - Reinstall if file is missing or if an older version is installed.

e - Reinstall if file is missing or an equal or older version is installed.

d - Reinstall if file is missing or a different version is installed.

c - Reinstall if file is missing or the stored checksum does not match the calculated value. Repairs only files tha
t have msidbFileAttributesChecksum in the Attributes column of the File table.

a - Force all files to be reinstalled.

u - Rewrite all required user-specific registry entries.

m - Rewrite all required computer-specific registry entries.

s - Overwrite all existing shortcuts.

v - Run from source and recache the local package.

/a Package Administrative installation option. Installs a product on the network.
/x Package|Produ

ctCode
Uninstalls a product.

/j [u|m]Package

or

[u|m]Package /
t Transform Lis
t

or

[u|m]Package /
g LanguageID

Advertises a product. This option ignores any property values entered on the command line.

u - Advertise to the current user.

m - Advertise to all users of the computer.

t - Apply transform to advertised package.

g - Language ID.

/L [i|w|e|a|r|u|c|m|
o|p|v|+|!]Logfil
e

Specifies the path to a log file; the flags indicate which information to log.

i - Status messages

w - Nonfatal warnings

e - All error messages

a - Startup of actions

r - Action-specific records

u - User requests

c - Initial UI parameters

m - Out-of-memory or fatal exit information

o - Out-of-disk-space messages

p - Terminal properties

v - Verbose output

+ - Append to existing file

! - Flush each line to the log

"*" - Wildcard; log all information except the v option. To include the v option, specify "/l*v".

/
m

filename Generates a Systems Management Server (SMS) status .mif file. Must be used with the install (-i), remove (-x),
administrative installation (-a), or reinstall (-f) option. The Ismif32.dll is installed as part of SMS and must be o
n the path.

The fields of the status .mif file are filled with the following information:

Manufacturer - Author

Product - Revision number

Version - Subject

Locale - Template

Serial Number - Not set

Installation - Set by Ismif32.dll to "DateTime"

InstallStatus - "Success" or "Failed"

Description - Error messages in the following order: 1) Error messages generated by installer; 2) Resour
ce from Msi.dll if installation could not commence or user exits; 3) System error message file; 4) Formatt
ed message: "Installer error %i", where %i is the error returned from Msi.dll.

/p PatchPackage Applies a patch. To apply a patch to an installed administrative image, you must combine options as follows:

/p <PatchPackage> /a <Package>

/q n|b|r|f Sets the user interface (UI) level.

q, qn - No UI.

qb - Basic UI.

qr - Reduced UI with a modal dialog box displayed at the end of the installation.

qf - Full UI with a modal dialog box displayed at the end.

qn+ - No UI except for a modal dialog box displayed at the end.

qb+ - Basic UI with a modal dialog box displayed at the end. The modal dialog box is not displayed if the user
cancels the installation.

qb- - Basic UI with no modal dialog boxes. /qb+- is not a supported UI level.

/?

or

/h

 Displays copyright information for the Windows Installer.

/y module Calls the system API DllRegisterServer to self-register modules passed in on the command line. For example,
msiexec /y my_file.dll.

This option is used only for registry information that cannot be added using the registry tables of the .msi file.

/z module Calls the system API DllUnRegisterServer to unregister modules passed in on the command line. For example,
msiexec /z my_file.dll.

This option is used only for registry information that cannot be removed using the registry tables of the .msi fi
le.

 Note

In the preceding table:
The options /i, /x, /f[p|o|e|d|c|a|u|m|s|v], /j[u|m], /a, /p, /y, and /z should not be used together. The one exception to

this rule is that patching an administrative installation requires using both /p and /a.

The options /t and /g should be used only with /j.

The options /l and /q can be used with /i, /x, /f[p|o|e|d|c|a|u|m|s|v], /j[u|m], /a, and /p.

Syntax rules for properties and values

Only public properties can be modified using the command line. All property names on the command line are interpreted as
uppercase, but the value retains case sensitivity. If you type MyProperty at a command line, the installer overrides the value of
MYPROPERTY and not the value of MyProperty in the Property table. To install a product with PROPERTY set to VALUE, use the
following syntax on the command line. You can put the property anywhere except between an option and its argument.

Correct syntax:

msiexec /i A:\Example.msi PROPERTY=VALUE

Incorrect syntax:

msiexec /i PROPERTY=VALUE A:\Example.msi

Property values that are literal strings must be enclosed in quotation marks. Include any white spaces in the string between these
marks.

msiexec /i A:\Example.msi PROPERTY="Embedded White Space"

To clear a public property using the command line, set its value to an empty string.

msiexec /i A:\Example.msi PROPERTY=""

For sections of text set apart by literal quotation marks, enclose the section with a second pair of quotation marks.

msiexec /i A:\Example.msi PROPERTY="Embedded ""Quotes"" White Space"

The following is an example of a complicated command line.

msiexec /i testdb.msi INSTALLLEVEL=3 /l* msi.log COMPANYNAME="Acme ""Widgets"" and ""Gizmos."""

The following example illustrates advertisement options. Switches are not case sensitive.

msiexec /JM msisample.msi /T transform.mst /G langid /LIME logfile.txt

For more information about Microsoft Windows Installer, go to the Microsoft® MSDN® Web site
(msdn.microsoft.com/downloads/).

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/downloads

BizTalk Server 2002 ~ Installing

Removing BizTalk Server 2002
Use the Microsoft Windows 2000 Add/Remove Programs utility to remove Microsoft BizTalk Server 2002.

 Notes

The BizTalk Server uninstall process will not remove SQL databases or the maps and schemas that have been stored in
WebDAV. Any files that you have added to the BizTalk Server directory will also be preserved.

In a cluster environment, before uninstalling BizTalk Server 2002, ensure that the computer has network connectivity to the
computer hosting the BizTalk Server databases, and all other BizTalk Servers in the group. Should errors occur while
uninstalling, you might need to manually delete the following COM+ applications:

BTS Interchange

BTS Internal Utilities

XLANG Scheduler

XLANG Persistence Helper

Remove BizTalk Server 2002

1. On the Start menu, point to Settings and click Control Panel.

2. Click Add/Remove Programs.

The Add/Remove Programs dialog box appears.

3. Click Microsoft BizTalk Server 2002 and click Remove.

4. Follow the on-screen instructions and click Yes when prompted to remove BizTalk Server 2002.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Understanding Security
Microsoft® BizTalk™ Server 2002 enables businesses to securely exchange data with trading partners by taking advantage of the
security features offered through Microsoft Windows® 2000 security.

The Windows 2000 security features used by BizTalk Server include the following:

Windows Account Security and Local Policies

Integrated Windows and Microsoft SQL Server™ Logon Security

Microsoft Component Services Security and Roles

Public-key infrastructure (PKI)

CryptoAPI

Smart cards

Kerberos protocol

BizTalk Server controls access to tools (for example, the BizTalk Server Administration console), APIs (for example,
Windows Management Instrumentation), COM+ applications, and other resources, by granting access to those resources to
specific user accounts. One way privileges are granted to user accounts is by adding those accounts to the Windows groups
created by BizTalk Server. When BizTalk Server is installed, it creates two local Windows groups: BizTalk Server Administrators
and BizTalk Server Report Users. Adding user accounts to these groups on the BizTalk Server computers grants those accounts
certain privileges on BizTalk Server. For example, you must be logged on using an account that is in the BizTalk Server
Administrators group to open BizTalk Messaging Manager or the BizTalk Server Administration console on that computer.

In addition, specific permissions might need to be granted at the operating system level to perform certain tasks. For example,
you must grant the BizTalk Server Messaging service account full privileges on the BizTalk Server Windows Management
Instrumentation (WMI) namespace for it to generate Suspended queue WMI events.

BizTalk Server controls access to SQL Server by leveraging SQL Server integrated security. With SQL Server integrated security,
SQL Server relies on Windows Authentication to grant access to SQL Resources. By default, all accounts that need to access one of
the SQL Server databases required by BizTalk Server must be given a SQL Server integrated logon and be granted access to the
database. For more information, see SQL Server and BizTalk Server 2002 Database Interactions. With the exception of the
connections to the Orchestration Persistence database, database access through BizTalk Server tools and run-time services cannot
be configured to use anything other than integrated security.

Component Services, one of the Administrative Tools available in Windows 2000, offers comprehensive component functionality,
such as automatic transaction support for data-integrity protection and simple, but powerful, role-based security.

BizTalk Server controls security between trading partners through the use of PKIs and Secure Multipurpose Internet Mail
Extensions (S/MIME). By exchanging public and private key certificates, trading partners can authenticate each other and encrypt
communications through the use of x.509 digitally signed messages and S/MIME (or custom encryption using their own
components). For more information, see Certificates Overview.

Because BizTalk Server takes advantage of Windows 2000 Secure Sockets Layer (SSL), Web pages can be created and used by
trading partners to securely exchange data using the Internet. SSL, which is implemented in Internet Information Services (IIS), is a
protocol designed to provide privacy between a Web client and a Web server. The protocol begins with a handshake phase that
negotiates an encryption algorithm, checks the keys (public and private), and authenticates the server to the client. Once the
handshake is complete and application data transmission begins, all data is encrypted using the session keys negotiated during
the handshake. Support for open PKI standards and secure protocols, such as IPSec, L2TP, SSL/TLS, and S/MIME, enables a
network to be extended to suppliers and partners quickly, while protecting against impostors, data theft, or malicious hackers.

The following topics are covered in this section:

Logon Properties

Local Policies

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Security Guidelines

BizTalk Server Administrators Group

BizTalk Messaging Service

BizTalk Server Interchange Application Security

Security for Applications That Host XLANG Schedule Instances

BizTalk Server Report Users Group

Transport Services

Certificates Overview

CryptoAPI

Collaboration Data Objects

Configuring Firewalls

Related Topic

Administration Privileges

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Security

Logon Properties
Logon properties are the initial layer of security for BizTalk Server 2002. These properties control a user's ability to log on to a
specific computer or domain and to perform specific tasks on that computer or domain. Logon properties require a user to
provide a user name and password prior to accessing resources, such as a file share or message queue. Messages received
through HTTP and SMTP also use logon properties to ensure security. For example, an ASP page accessed through HTTP could
require a user to enter a user name and password prior to displaying the contents of the Web page.

BizTalk Server can use Internet Information Services (IIS) and ASP pages to receive documents. ASP pages (actually the code
behind the pages) provide a layer of security for BizTalk Server by verifying signatures from Secure Sockets Layer (SSL) and
maximizing additional security, such as certificates, through IIS. For more information about IIS security, see "Internet Information
Services" in Windows 2000 Help.

BizTalk Server Administrators do not need to have System Administrator privileges. The HTTP account users must be members of
the BTS_RUNTIME_USERS role. Additionally, if HTTP is used for MIME encryption, then users must be System Administrators for
that computer.

Related Topic

Administration Privileges

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Local Policies
Local Policies, which is part of the Local Security Settings console, determine the security options for a user or service account.
Local policies are based on the computer a user is logged into, and the rights the user has on that particular computer. To set local
policies, on the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, double-click Local
Security Policy, and then expand the Local Policies folder.

Local policies define the privileges and rights for BizTalk Server 2002 users. Local Policies can be used to configure:

Audit Policy. Determines which security events are logged into the Security log on the computer (successful attempts,
failed attempts, or both). (The Security log is part of Event Viewer.)

User Rights Assignment. Determines which users or groups have logon or task privileges on the computer.

Security Options. Enables or disables security settings for the computer, such as digital signing of data, Administrator and
Guest account names, floppy drive and CD-ROM access, driver installation, and logon prompts.

Other policies in the Local Security Settings console can be configured to maintain the integrity of your data. For example,
Account Policies can be used to configure:

Password Policy. For local user accounts, determines settings for passwords, such as enforcement and lifetimes.

Account Lockout Policy. For local user accounts, determines when and for whom an account will be locked out of the
system.

 Important

Local policies, by definition, are local to a computer. When these settings are imported to a Group Policy object in Active
Directory, they will affect the local security settings of any computer accounts to which that Group Policy object is applied.
Therefore, it is important to note the order of precedence for security policies. Security policies associated with Group Policy
(Organizational Units) override policies established at the local level. Policies from the domain override locally defined
policies. In either case, user account rights may no longer apply if there is a local policy setting that overrides those
privileges. This is important because the behavior of Microsoft Windows 2000 can be quite different from the behavior in
Microsoft Windows NT. For example, when password policies are configured for the Domain group policy (as they are by
default), they affect every computer in that domain. This means that the local account databases (on individual workstations)
in the domain have the same password policy as the domain itself.

 Note

Do not set Local Policies for public keys. Public keys provide security protection for BizTalk Server. Public keys are a
component of certificates that are used to encrypt and decrypt data. By adding additional policies to a public key, BizTalk
Server will not be able to use the associated certificate.

Related Topic

Administration Privileges

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Security Guidelines
BizTalk Server 2002 uses integrated Windows NT security to access SQL Server, rather than using SQL Server credentials. This
means that BizTalk Server uses the credentials of the user currently logged on to determine SQL Server privileges. Therefore,
when installing and configuring BizTalk Server Administration components, there are some security issues that need to be
considered as follows:

BizTalk Serv
er feature

Security guidelines

BizTalk Serve
r Administrat
ion

User must be a member of the BizTalk Server Administrators group. For more information, see
Add users to the BizTalk Server Administrators group.

User must have full access to the Shared Queue and BizTalk Messaging Management databases and be a me
mber of the db_owner role for those databases. For more information, see
Create a SQL login and grant it database access.

BizTalk Mess
aging Manag
er

User must be a member of the BizTalk Server Administrators group. For more information, see
Add users to the BizTalk Server Administrators group.

User must have full access to the Shared Queue and BizTalk Messaging Management databases and be a me
mber of the db_owner role for those databases. For more information, see
Create a SQL login and grant it database access.

BizTalk Mess
aging Config
uration Obje
ct Model

User must be a member of the BizTalk Server Administrators group. For more information, see
Add users to the BizTalk Server Administrators group.

User must have full access to the Shared Queue and BizTalk Messaging Management databases and be a me
mber of the db_owner role for those databases. For more information, see
Create a SQL login and grant it database access.

BizTalk Mess
aging Servic
e

BizTalk Server Messaging service account must have been assigned Log on as a service security policies.

BizTalk Server Messaging service account must be granted full permission on the Root\MicrosoftBizTalkSe
rver Windows Management Instrumentation (WMI) namespace. For more information, see
Grant WMI namespace permission to a Windows account.

User must have full access to the Shared Queue, Tracking, and BizTalk Messaging Management databases an
d be a member of the BTS_RUNTIME_USERS role. For more information, see
Create a SQL login and grant it database access.

If a user name/password have been specified for any receive function, the Log on locally and Act as part of
the operating system security policies must be granted to the receive function user account.

If an HTTP receive function(s) has been created, the associated BizTalk ISAPI Extension(s) will require additiona
l security configuration. For more information, see Configure access privileges based on IIS protection level.

BizTalk Serve
r Interchange
Application (
COM+)

Application identity account must be granted full permission on the Root\MicrosoftBizTalkServer WMI na
mespace. For more information, see Grant WMI namespace permission to a Windows account.

Application identity account must have full access to the Shared Queue, Tracking, and BizTalk Messaging Man
agement databases and be a member of the db_owner role for those databases. For more information, see
Create a SQL login and grant it database access.

BizTalk Serve
r Document
Tracking UI

User account must be a member of the BizTalk Server Report Users group. For more information, see
Create a SQL login and grant it database access.

https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274973(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274973(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

XLANG Sche
duler Applica
tion (COM+)

If the data source name (DSN) for accessing the Orchestration Persistence database is configured with Windo
ws Authentication (as it is by default), then the credential of the user who interacts with an XLANG schedule in
stance must have full access to the Orchestration Persistence database and be a member of the db_owner rol
e for that database. For more information, see Create a SQL login and grant it database access.

If the DSN is configured with SQL Authentication, the SQL login used must have full access to the Orchestrati
on Persistence database and be a member of the db_owner role for that database. For more information, see
Create a SQL login and grant it database access.

The user who interacts with an XLANG schedule instance must a member of the XLANG Schedule User role u
nder the COM+ configuration of that BizTalk XLANG Scheduler Application. For more information, see
Security for Applications That Host XLANG Schedule Instances.

BizTalk SEED
Wizard

User must be a member of the BizTalk Server Administrators group. For more information, see
Add users to the BizTalk Server Administrators group.

User must have full access to the BizTalk Messaging Management database and be a member of the db_owne
r role for that database. For more information, see Create a SQL login and grant it database access.

BizTalk Depl
oyment usin
g Application
Center 2000

User must be a member of the BizTalk Server Administrators group. For more information, see
Add users to the BizTalk Server Administrators group.

User must have full access to the BizTalk Messaging Management database and be a member of the db_owne
r role for that database. For more information, see Create a SQL login and grant it database access.

XLANG Moni
tor

User must be a member of the XLANG Schedule Creator role for the XLANG Schedule and for the COM+ appl
ications that host XLANG schedules. For more information, see
Add a role to the BizTalk Server Interchange Application; but, if you perform this procedure, you need to repla
ce the Interchange application with the COM+ application that hosts XLANG schedules.

Application
Designer

No security requirements.

BizTalk Edito
r and BizTalk
Mapper

No security requirements.

The following procedures are covered in this section:

Create a SQL login and grant it database access

Grant WMI namespace permission to a Windows account

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274950(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274973(v=bts.10).aspx

BizTalk Server 2002 ~ Security

BizTalk Server Administrators Group
During installation, BizTalk Server 2002 creates a Windows group on the local computer whose members are granted
administrative and other privileges on BizTalk Server. By default, this group is named BizTalk Server Administrators, although the
user running setup is allowed to change this name. However, the name cannot be modified after installation. At installation,
BizTalk Server adds the built-in local Administrators group and the currently logged on user account to this group.

The primary purpose of the BizTalk Server Administrators group is to control access to tools and application programming
interfaces (APIs) provided by BizTalk Server. For more information about which resources require the user to be member of this
group, see Security Guidelines.

 Note

The service account that the BizTalk Messaging Service runs under does not need to be a member of this group for BizTalk
Server to function properly.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

BizTalk Messaging Service
The BizTalk Messaging Service is a Windows service that provides the substance of the BizTalk Messaging run-time functionality.
As a Windows service, the BizTalk Messaging Service runs under its own security context, either as Local System or as a service
account created by the user, known as the BizTalk Server Messaging service account. A service account is a Windows user account
that has been granted the special privileges of Act as part of the Operating System and Log on as a Service. During setup,
BizTalk Server grants these privileges to the account specified by the user for the BizTalk Server Messaging service account. For
more information, see Installation Instructions.

The two reasons why you might what to use Local System as opposed to a Windows local or domain service account depends
largely on two factors:

1. SQL Server topology. The BizTalk Server Messaging service account must be granted access to the SQL Server database
used by BizTalk Server for it to function. If you are running BizTalk Server on the same computer as the SQL Server
databases used by BizTalk Server, then any account can be used. However, if you are using a SQL Server that is on a
computer separate from that on which BizTalk Server is running, it might be most convenient to use a Windows domain
account for the BizTalk Server Messaging service account. By configuring BizTalk Server to use the same domain account, all
BizTalk Servers are granted access to SQL Server in one step by granting access to that one domain account.

2. Digital certificate usage. If you intend to take advantage of the digital signing and encryption/decryption features of
BizTalk Server, the BizTalk Server Messaging service account must be a member of the local Windows Administrators built-
in group. This is required in order to access the digital certificate stores on the local computer.

 Note

The BizTalk Server Messaging service account does not have to be a member of the BizTalk Server Administrators group for
BizTalk Server to function properly.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

BizTalk Server Interchange Application Security
The COM+ interface used to programmatically submit documents to BizTalk Server 2002 resides in a COM+ application that is
created by BizTalk Server during setup, called BizTalk Server Interchange Application. By default, the identity of this application is
configured as Interactive User. However, if this is not modified, a user must be logged on whenever programmatic submissions
are performed. Obviously, this is unacceptable for most purposes. To configure the BizTalk Server Interchange Application to run
under a service account, see Change the application identity for a COM+ application.

Controlling a user's ability to programmatically send work items to BizTalk Server through the IInterchange COM+ interface can
be accomplished by properly configuring the BizTalk Server Interchange Application COM+ component. To control a user's ability
to programmatically send work items, a role must first be added to the BizTalk Server Interchange Application, then the role must
be associated with the Submit and SubmitSync methods, and finally, the user account that you want to grant access to the
methods must be added to the role.

The following topics are covered in this section:

Add a role to the BizTalk Server Interchange Application

Associate a new role with the Submit and SubmitSync methods

Related Topic

Administration Privileges

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250956(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274950(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Security for Applications That Host XLANG Schedule Instances
After installing BizTalk Orchestration Services, security levels can be set for the following:

Creating new XLANG schedule instances

Interacting with existing XLANG schedule instances

Administrative functions relating to XLANG schedule instances

Applications hosting XLANG schedule instances

Applications that host XLANG schedule instances rely on role-based security, which is an automatic service provided by COM+.
Role-based security enables users to construct and enforce an access control policy for COM+ applications. With a flexible and
extensible security configuration model, role-based security offers considerable benefits over enforcing all security within
components. There are two default COM+ applications, the XLANG Scheduler and the XLANG Scheduler Persistence Helper,
which are automatically created when BizTalk Orchestration Services are installed. By default, the identity of these applications is
configured as Interactive User. However, if this is not modified, a user must be logged on whenever schedules are invoked or
accessed. Obviously, this is unacceptable for most purposes. To configure the BizTalk Server Interchange Application to run under
a service account, see Change the application identity for a COM+ application.

The XLANG Scheduler COM+ application has four roles that can be used to ensure the security of schedule instances regardless
of the COM+ application in which they run. The four roles are:

XLANG Schedule Creator. This role allows specified users to create XLANG schedule instances. For instance, if an
administrator wants a user to be able to create an XLANG schedule instance, the administrator must add the user to the
membership list for this role. Any user who is not listed as a member of this role and attempts to create an XLANG schedule
instance will see an error message indicating that access has been denied. In addition, an entry is generated in the Event Log
indicating that access has been denied.

XLANG Schedule User. This role allows specified users to interact with XLANG schedule instances. For instance, if an
administrator wants a user to be able to interact with a schedule instance, the administrator must add the user to the
membership list for this role. Any user who is not listed as a member of this role and attempts to interact with a schedule
instance will see an error message indicating that access has been denied. In addition, an entry is generated in the Event Log
indicating that access has been denied.

XLANG Scheduler Administrator. This role can be used to indicate who has administrative rights to the following tasks:
Determining whether a COM+ application is able to act as a host for XLANG schedule instances.

Setting the DSN type for a COM+ application that is hosting XLANG schedule instances and setting the state
management value for the level of persistence the COM+ application needs to support.

Shutting down all XLANG schedule instances.

Suspending, resuming, or terminating an XLANG schedule instance.
XLANG Scheduler Application. This role is used by the XLANG Scheduler to interact with any COM+ application that a
user creates. Therefore, the role must include the same identity that the COM+ application is using to run.

The following topics are covered in this section:

Best Practices for Securing COM+ Applications

Securing the Orchestration Persistence Database

Confirming the Sender's Identity

Related Topic

XLANG Schedules

https://msdn.microsoft.com/en-us/library/ee250956(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Security

Best Practices for Securing COM+ Applications
Using roles, an administrator can administratively construct an authorization policy for an application, choosing (down to the
method level, if necessary) which users can access which resources. Because all XLANG schedules are hosted in COM+ server
applications, access to the installed COM objects can be limited by configuring security properties for various roles.

 Important

If security properties are added at the component level, individual components, interfaces, and methods based on the role
settings at these levels are also limited. For more information about COM+ security, go to the MSDN Online Library Web
site (msdn.microsoft.com/library/default.asp), and search on "Security in COM+".

Recommendations for securing COM+ applications

The following recommendations apply primarily to securing deployed applications:

Do not configure a COM+ application as an interactive user. COM+ applications that use the interactive user identity
can be used only if a user is logged on to the computer where the application resides. If no one is logged on, the COM+
application cannot run. In addition, if a user creates a COM+ application using Interactive User, it will be more difficult to
configure access to its persistence database and other resources.

Reconfigure the identity for XLANG Scheduler. During setup, the XLANG Scheduler identity is automatically configured
as Interactive User. This configuration is suitable for most developers. On production systems, you should change the
identity property for the XLANG Scheduler so that the application runs under a unique user account. The identity is used by
all messages sent by the XLANG Scheduler.

 Note

When using the client for Microsoft Windows 2000 Terminal Services to initiate an XLANG schedule, the COM+
application hosting the XLANG Scheduler Engine must have its identity set to a valid Windows 2000 user or group
name. The identity of the COM+ application is set on the Identity tab of the properties dialog box for that
application. The identity cannot be set to interactive when using the XLANG Scheduler Engine through a session
hosted by Terminal Services.

Create a new COM+ application with a unique identity for every application that is hosting XLANG schedule
instances. Create a new COM+ application with a unique identity for each business process, such as purchasing, with
unique security requirements. This enables individual security levels to be specified for each application. In addition, it
safeguards from excessive damage that can be done by unstable application code and makes it easier to audit the
operations of individual applications.

Install application-specific components into their associated business processes. This protects data and keeps out
applications that do not have access to these components, provided the server application is adequately protected.

 Note

Each COM+ application must contain at least one component. If an application-specific component is not installed, a
placeholder component in the application must be created and installed, or the COM+ application will not be
available.

Change the membership list of the XLANG Scheduler roles from their defaults to provide added security. When
BizTalk Server is installed, the XLANG Scheduler is created and configured with the following roles, shown with their default
settings:

XLANG Schedule Creator. Membership role defaults to Everyone.

XLANG Schedule User. Membership role defaults to Everyone.

XLANG Scheduler Administrator. Membership role defaults to Administrators.

XLANG Scheduler Application. Membership role defaults to Everyone.

Related Topics

Change the application identity for the default XLANG Scheduler application

http://msdn.microsoft.com/library/
https://msdn.microsoft.com/en-us/library/ee250964(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Create a COM+ application to host XLANG schedules

XLANG Schedules

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274768(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Securing the Orchestration Persistence Database
When a COM+ application that hosts XLANG schedule instances is created, a persistence database must be associated with the
COM+ application. Therefore, first create a persistence database in Microsoft SQL Server. After creating the database, if the
XLANG COM+ application database data source name (DSN) is configured to use integrated security, a user needs to create a SQL
login and grant db_owner privileges to the identity account of the COM+ application that will be created later to host XLANG
schedule instances. Make sure that the COM+ application has permissions to both create tables and create procedures in the
associated persistence database. By default, the interaction between BizTalk Orchestration Services and the default BizTalk Server
Orchestration Persistence database is based on the Windows 2000 security model rather than on SQL Server.

Related Topic

Manage the Default XLANG Scheduler Application

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250973(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Confirming the Sender's Identity
During schedule design, various shapes can be used to describe implementation technologies used to implement a port in a
business process. The following shapes describe these technologies:

The COM Component shape represents a technology that can be used to implement a port by using a method call for each
message that is sent or received.

The Script Component shape represents a technology that can be used to implement a port by using a method call for
each message that is sent or received.

The Message Queuing shape represents a technology that is used to implement a port. Message Queuing
transport services are used to send or receive messages.

When adding one of the three technologies, a user can require that the sender's identity be confirmed prior to receiving
messages. When the sender's identity is required, the identity of the Windows user account (domain\user) of the person who
called this component is placed in the _Sender_ field of the message.

For more information about COM components, Windows Script Components, or Message Queuing security for XLANG schedules,
see Implement a port by using a COM component, Implement a port by using a Windows Script Component, and
Implement a port by using Message Queuing.

Related Topics

Using the COM Component Shape

Using the Message Queuing Shape

Using the Script Component Shape

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265340(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265355(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274610(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274674(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274651(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

BizTalk Server Report Users Group
During installation, BizTalk Server 2002 creates a Windows group on the local computer whose members are granted privileges
to use the BizTalk Document Tracking user interface and view tracked documents. By default, this group is named BizTalk Server
Report Users, although the user running setup is allowed to change this name. However, the name cannot be modified after
installation. At installation, BizTalk Server adds the built-in local Administrators group and the currently logged on user account to
this group.

Also during installation, BizTalk Server grants access permissions for this group, the local Administrators group, and the currently
logged on user account to the file directory in which the Web-based BizTalk Document Tracking user interface resides, that is,
\Program Files\Microsoft BizTalk Server\BizTalkTracking.

Users that require access to use the BizTalk Document Tracking user interface and view tracking documents must be in the BizTalk
Server Report Users group and must have access to the Tracking database, that is, have a logon in the SQL Server hosting the
Tracking database.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Transport Services
Microsoft BizTalk Server 2002 supports a core set of transport services. These transport services enable the server to send
documents to organizations or applications whether or not the applications are capable of communicating directly with the server
by using a Component Object Model (COM) interface. BizTalk Server supports the HTTP, HTTPS, and SMTP network protocols and
Message Queuing.

The following topics are covered in this section:

HTTP and HTTPS

SMTP

Message Queuing 2.0

File

Related Topics

Select a transport type

Set Transport Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250818(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

HTTP and HTTPS
HTTPS is used to provide strong authentication when using Hypertext Transfer Protocol (HTTP) to gain access to content on the
Web. The most common use of Secure Hypertext Transfer Protocol (HTTPS) is to provide an encrypted connection to an
authenticated Web server. When clients attempt to establish an HTTPS connection, typically triggered by browsing to a URL
beginning with https://, the client and server jointly negotiate a security protocol to use and then exchange authenticating
information.

Microsoft Internet Explorer 5 or later supports common secure communication protocols for HTTP transactions, including the
following:

Transport Layer Security (TLS version 1.0)

Secure Sockets Layer (SSL versions 2 and 3)

Private Communications Technology (PCT version 1.0)

Each protocol provides both encryption services (for confidentiality of exchanged data) and authentication services (for mutual
identification between clients and servers). SSL support, which is provided through the built-in HTTPS transport service, adds
server-to-server authentication and transport layer encryption to an interchange.

BizTalk Server and HTTPS can be used to securely exchange data within an organization or with a trading partner by means of
HTTP. The following provides specific details regarding how BizTalk Server 2002 uses HTTP and HTTPS to send and receive data:

Send

The HTTP and HTTPS transport services can be used to secure data that is sent to an application or trading partner. Security for
these transport services relies on certificates.

For example, prior to sending data over HTTP, a BizTalk Server administrator sends a copy of the client certificate to a trading
partner. The trading partner retains a copy of the certificate in the BizTalk store. In the future, the certificate is used to authenticate
the trading partner sending data. A unique certificate manager must be created to send or export a certificate to a trading partner.

Receive

To secure data over HTTP, BizTalk Server uses Microsoft Internet Information Services (IIS) and ASP pages. When using HTTPS to
connect to IIS, the client and browser negotiate a common protocol to secure the channel. In cases where the server and client
have multiple protocols in common, IIS secures the channel with a supported protocol, such as SSL. To secure data that is received
by BizTalk Server over HTTP, the process is identical. The ASP page serves as the gateway for sending data to BizTalk Server. If the
data is secure, BizTalk Server receives the data provided the ASP code uses the Submit method or the SubmitSync method to
make a call.

Related Topics

Select a transport type

Set Transport Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250818(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

SMTP
Simple Mail Transfer Protocol (SMTP) is a protocol for sending e-mail messages between servers. SMTP is a common protocol for
sending e-mail over the Internet. An e-mail message can be retrieved with an e-mail client using either Post Office Protocol (POP)
or Internet Message Access Protocol (IMAP). In addition, SMTP is used to send messages from a mail client to a mail server. When
configuring an e-mail application, both the POP or IMAP server and the SMTP server must be specified.

SMTP can be used to securely exchange data within an organization or with a trading partner. BizTalk Server 2002 uses SMTP to
send and receive data using the following methods:

Send

BizTalk Server implements a transport protocol to send data over SMTP. At a minimum, SMTP requires that data be MIME-
encoded. This process enables BizTalk Server to identify where a set of data ends and the next set of data begins. However, MIME
encoding does not provide security. S/MIME is the secure MIME version. Documents encoded using built-in S/MIME encoding
components ensure document integrity, authentication of the sending party, and payload encryption. BizTalk Server creates an
S/MIME document with the encrypted message as the body of the document. To add this security layer, a certificate must be
associated with the MIME-encoded message. MIME encoding can be specified when messaging ports are created in
BizTalk Messaging Manager. This is also where certificates are specified.

Receive

To implement security on the receive side of SMTP using Microsoft Exchange Server, an administrator must create a receive
account for BizTalk Server. Once the account is set up, trading partners send their public keys to Exchange Server, which
authenticates the sender (trading partner). The public key is added to the Exchange Server certificate store.

When Exchange Server receives a message, the Submit method sends the data to BizTalk Server. BizTalk Server verifies the
certificate against the public key; if they match, BizTalk Server decrypts the data and processes the document.

Related Topics

Messaging Port Elements

Select a transport type

Select an encryption certificate

Set Transport Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250818(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265327(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Message Queuing 2.0
Message Queuing 2.0 supports privacy and security using the following:

Access control

Auditing

Encryption

Authentication

Message Queuing also takes advantage of the Kerberos V5 security protocol available with Microsoft Windows 2000. In addition,
Message Queuing supports 128-bit encryption as well as 40-bit encryption. Message Queuing can also be used to integrate
applications, implement a push-style business-event delivery environment between applications, and build reliable applications
that work over unreliable but cost-effective networks.

Message Queuing can be used to securely exchange data within an organization and with a trading partner. BizTalk Server 2002
uses Message Queuing to send and receive data using the following methods:

Send

The first layer of security for Message Queuing is a user name and password, which is required by anyone to store data or
retrieve data from Message Queuing. In addition, Message Queuing can store data that has a certificate. Users are able to specify
a certificate for data stored on a message queue using BizTalk Messaging Manager.

Receive

If an administrator creates logon properties for a message queue, a user name and password must be used to retrieve the data.
Creating logon properties forms a fundamental layer of security. If a trading partner has added a certificate to the data, a copy of
its private key must be received to decrypt the data before BizTalk Server can process the package.

Related Topics

Add a Message Queuing receive function

Configure advanced properties for File, Message Queuing, or HTTP receive functions

Configure a Message Queuing receive function: General tab

Configure a Message Queuing receive function: Services tab

Select a transport type

Set Transport Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274535(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274501(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274637(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274525(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250818(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

File
Microsoft Windows 2000 ensures data and system protection by defining discretionary file access control. The Windows NTFS file
system, required for BizTalk Server 2002, can prevent users from damaging key system or application files. NTFS also provides
robust security for the supporting files in an application.

File storage can be used to securely exchange data within an organization and with a trading partner. File storage can also be
used to send and receive data using the following:

Send

The first layer of security for file storage is a user name and password. A user name and password is required by anyone storing
or retrieving data from a folder. In addition, folders can store data that has a certificate associated with it. To use this added layer
of security, use BizTalk Messaging Manager to create a certificate for the data to be stored in a folder.

Receive

If logon properties for a folder have been applied, a user name and password must be used to retrieve the data. An administrator
can also designate access levels (read, delete, and so on) to the file directory for specific users. If a trading partner has added a
certificate to the data, a copy of its private key must be received to decrypt the data before BizTalk Server can process the package.
Inbound documents can also be digitally signed to ensure that the sending source cannot deny that it sent the document.

Related Topics

Add a File receive function

Configure advanced properties for File or Message Queuing receive functions

Configure a File receive function: General tab

Configure a File receive function: Services tab

Select a transport type

Set Transport Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274520(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274501(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274568(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274497(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250818(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Certificates Overview
Digital certificates bind a cryptographic key with one or more attributes of a user. Issued by certification authorities, the
certificates protect the Internet by assuring the authenticity of network messages. This technology and its underlying digital
signatures are now helping to increase the widespread deployment of electronic commerce on the Internet.

The following topics and procedures are covered in this section:

Understanding Certificates

Certificates Needed by BizTalk Server

Certificate Name Restrictions

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Understanding Certificates
Microsoft BizTalk Server 2002 relies heavily on the security provided by certificates. Through the use of public keys, which encrypt
the data, and private keys, which enable the data to be decrypted, BizTalk Server can send data that can be trusted and can ensure
that the data it processes is secure. Public Key Policies, which are part of the Microsoft Management Console (MMC), enable a
user to configure encrypted data recovery agents for Encrypting File System (EFS), domain-wide root certificate authorities,
trusted certificate authorities, and so on. Certificates also contain digital signatures, which can be applied to documents and
verified on inbound documents using the BizTalk Server native support for digital signatures.

Certificates are used to authenticate and secure exchanges of information on non-secured networks, such as the Internet.
Certificates can be managed for a user, a computer, or a service. The X.509-based Public Key Certificate Server built into Windows
2000 Server lets organizations issue public-key certificates for authentication to their users, without depending on commercial
Certification Authority (CA) services.

BizTalk Server supports certificates through BizTalk Messaging Manager. Certificates make it easy to encrypt, decrypt, and digitally
sign data. Public-key encryption technology is supported for all documents that are transmitted using BizTalk Server
transport services. BizTalk Server also supports decryption and signature verification for the documents that it receives.

 Note

While processing S/MIME messages, the BizTalk Server engine checks to ensure that a certificate has not expired. However,
at run time, BizTalk Server does not check if a certificate has been revoked or whether a certificate has a valid and trusted
root certificate.

MachineKeys versus UserKeys

When obtaining certificates, it is best to use MachineKeys, which are associated with the computer, rather than UserKeys, which
are associated with the current, logged on user. If a user who is currently logged onto a server obtains a certificate with UserKeys,
only that user can access the certificate because the certificate UserKey contains that user's logon information. Therefore, if users
need to access certificates with UserKeys in BizTalk Server, BizTalk Server must be run in the context of that user. To enable any
user to log on to BizTalk Server and access keys, certificates must have MachineKeys.

For BizTalk Server to access the Certificates (Local Computer), either BizTalk Server must run as LocalSystem or Administrator or
the security settings of the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SystemCertificates must be
modified. Additionally, if UserKeys are used, BizTalk Server must run in the context of that user, who also must be an
administrator or be granted permissions to the registry key mentioned previously.

If you do not want to use an Administrator account to run BizTalk Server but still need to use certificates, give the account that the
BizTalk Messaging Service is running under full control permissions for the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SystemCertificates.

The following procedure is covered in this section:

Configure registry permissions for Certificates

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274969(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Certificates Needed by BizTalk Server
A certificate server stores certificates for a user and for a computer. Every user has a certificate store, and every computer has its
own certificate stores. If a user creates a certificate, Windows 2000 assumes the certificate is for the user. An organization needs
to store its certificates in the Personal store located under the Certificates (Local Computer) of the Certificates console. However,
during design time, when messaging ports and channels are created, a user needs to have all trading partner certificates
associated with the BizTalk store under Certificate (Local Computer) of the Certificates console, rather than with the user.

In addition, when specifying security, such as encryption or signature verification, for trading partners through
BizTalk Messaging Manager, the certificates displayed are the trading partner certificates located in the BizTalk store. BizTalk
Messaging Manager displays the certificates located in the Personal store under Certificate (Local Computer) of the Certificates
console when specifying security, such as verified decryption and signing, for SSL clients. Where certificates are located is
important because at run time, when a user attempts to process documents through BizTalk Server, the computer is acting as the
background service, and it is this service that needs to access the certificates.

There are two ways to resolve issues about where certificates are stored:

If a user has already created certificates, Windows 2000 has stored them in the user store. The certificates must be moved
from the user store to the corresponding store under Certificates (Local Computer). This process is done through the
Certificate Manager.

If a user has created a service account, all the certificates are associated with the computer, rather than with the user.

Certificate management through Windows 2000

BizTalk Server provides certificate management through Microsoft Windows 2000. Tightly integrated within the Windows 2000
security model is IIS 5.0, which includes a certificate server. This lets organizations issue and manage Internet-standard X.509
digital certificates. In addition to key management services in IIS 5.0, the Microsoft certificate server in IIS 5.0 provides
customizable services for issuing and managing digital certificates. A certificate server performs a central role in the management
of software security systems to enable secure communications across the Internet, corporate intranets, and other non-secure
networks.

The following procedure is covered in this section:

Create a Certificate Manager for BizTalk Server

Related Topics

Select a certificate for outbound signature

Select a certificate to verify inbound document decryption

Select a certificate to verify inbound document signature

Select an encryption certificate

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274971(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274670(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274702(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265327(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Certificate Name Restrictions
You cannot use identical names for certificates in Microsoft BizTalk Server 2002. If identical names for certificates exist, only one
of the certificates can be selected in BizTalk Messaging Manager. For example, if an organization uses two certificates that have
the same name and reference, it is impossible for the organization to use both certificates. If the organization uses one of the
certificates, the other certificate disappears from the list of available certificates in the Channel dialog box.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

CryptoAPI
Microsoft BizTalk Server 2002 uses CryptoAPI to secure data it processes. Recent developments in cryptography have added
additional uses, including mechanisms for authenticating users on a network, ensuring the integrity of transmitted information,
and preventing users from denying ownership of their transmitted messages.

Any application, message, data, and so on that uses encryption and uses Microsoft-specific encryption, such as Microsoft
Windows 2000 for generating certificates, uses CryptoAPI. BizTalk Server uses CryptoAPI for receive functions that a user specifies
when using a custom-made COM+ component such as a preprocessing component, which enables BizTalk Server to handle
unique encryption components.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Collaboration Data Objects
Microsoft BizTalk Server 2002 supports MIME encoding for both sending and receiving data. Through the use of Collaboration
Data Objects (CDO), a technology that is part of the Microsoft Windows 2000 environment, data can be encoded and processed
by BizTalk Server. For example, before BizTalk Server can send a catalog that contains text and graphics, it first needs the data
(graphics) to be changed from binary to string. CDO can be used to encode the text and graphics into a string format so that
BizTalk Server can process it.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Security

Configuring Firewalls
Firewalls help secure internal networks, but they also introduce latency and have the potential to create a single point of failure.
Even if a load-balancing mechanism is used to alleviate the single point of failure, a firewall can reduce a network's performance.

When configuring a BizTalk Server 2002 environment with a firewall, two primary configurations are recommended:

Configuration 1. Install servers on an internal corporate network. Select some of these servers to communicate to
trading partners on a corporate perimeter network (also known as DMZ or demilitarized zone). A company that wants to
host its own Internet services without sacrificing unauthorized access to its private network uses a perimeter network. The
perimeter network is the boundary between the Internet and an internal network's line of defense, usually a combination of
firewalls and bastion hosts, which are gateways between internal networks and external networks. The servers in the
perimeter network should use local transport services, such as HTTP, Message Queuing, or SMTP. In this environment, all
inbound and/or outbound transactions will pass through a firewall. The servers in the perimeter network send documents
through another firewall to Microsoft SQL Server. This configuration will allow servers, such as BizTalk Server in the
perimeter network, to communicate with Microsoft SQL Server through an internal firewall.

Configuration 2. Install the servers on a corporate network. Trading partners exchanging documents through the Internet
send their data using SMTP servers in the perimeter network (first firewall of protection). These servers then send the data
to the servers residing on the corporate network through a second firewall.

Configurations 1 and 2 will impact performance. To avoid a noticeable degradation in performance, you can construct the firewall
to accommodate a typical number of transactions between an organization and its trading partners.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Performance and Scalability

Enhancing Performance and Scalability
Understanding the various components of Microsoft® BizTalk™ Server 2002 enables you to create scalable, high-performance
solutions. There are several methods, such as identifying potential bottlenecks, addressing latency, and managing databases,
which you can use to increase the performance of BizTalk Server. However, the extent to which you can achieve an optimal
solution depends on the complexity of your organization's system architecture and your budget requirements.

Optimizing the following BizTalk Server databases is critical to achieving high performance:

BizTalk Messaging Management database

Shared Queue database

Tracking database

Orchestration Persistence database

For more information about optimizing the databases, see Scale Up the Databases and Scale Out the Databases.

The following topics are covered in this section:

Performance Optimization

Scaling BizTalk Server

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274596(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Performance and Scalability

Performance Optimization
To meet your transaction requirements and enhance performance, you must optimize BizTalk Server 2002. In addition to BizTalk
Server, you can optimize Microsoft® Windows® 2000 and database interactions to enhance performance.

After configuring your system, test it, and then evaluate the results to determine if your initial configuration can meet your
transaction requirements. It is likely that you will need to reconfigure your architecture to achieve optimal performance. After
each reconfiguration, test it again and evaluate the results. Once you have achieved the results you want, initiate a maintenance
plan, because server performance changes over time, and the quantity and type of transactions that your organization handles
might change.

The following topics are covered in this section:

Tuning the Performance of Your BizTalk Server Architecture

Architecture Design, Testing, and Analysis

Maintaining Performance

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Performance and Scalability

Tuning the Performance of Your BizTalk Server Architecture
This section provides general recommendations for optimizing system settings, and includes topics for optimizing
BizTalk Server 2002 to obtain increased performance.

When tuning the performance and scalability of BizTalk Server it is important to first understand all of the characteristics of your
system. With few exceptions, the bottleneck will be in one of the following areas:

Disk I/O

Processor speed

Network I/O

Input speed (how fast your documents are sent to BizTalk Server)

Custom code (for example, AICs, preprocessor components, or ASP pages to which you are posting)

The topics in this section provide help on how to address these problems. First, you must analyze the performance of your current
configuration to determine where your problem is. Even if you are satisfied with the current performance of your system,
analyzing and understanding the properties of your system is important and will save you time when troubleshooting or
upgrading.

The first five steps recommended to analyze the performance of a system are:

1. Monitor the disk I/O on all the computers in the BizTalk Server configuration by checking the performance counter %disk
idle time through the Windows System Monitor or Microsoft Operations Manager (MOM). Monitor this performance
counter for all BizTalk Servers, SQL Servers, and any additional computers that interact with BizTalk Server, for example,
through application integration components (AICs) or HTTP post. For more information, see
Evaluating the Performance of a Configuration.

2. Monitor the processor utilization on all the computers in the BizTalk Server configuration by checking the performance
counter %processor utilization through the Windows System Monitor tool or MOM. If you find that the processor is
overloaded on a BizTalk Server, you can optimize performance by modifying server, channel, and registry settings. For more
information, see Add, Delete, and Configure Servers in a Group, Add, Delete, and Configure a Server Group,
Optimizing Registry Settings, and Scale out BizTalk Messaging Services. In an optimally configured BizTalk Server system,
the processor utilization will be the only point where bottlenecks occur.

3. Do not allow any of the servers to participate in work-item processing and rerun your scenario so that items build up in the
Work queue. This will give a good indicator of how fast documents are received. Spend time analyzing the first two steps
again, as well as looking at other potential issues. One common issue is slow input rate occurring when using ASP submit
calls. Often Internet Information Services (IIS) cannot handle the requests fast enough to drive BizTalk Server to a peak
performance. When using an ASP submit call, it is recommended to switch to the BizTalk Server ISAPI-based HTTP
receive functions, as they will perform a lot better. In an optimally configured BizTalk Server system, processor utilization is
the bottleneck for receiving documents.

4. Shutdown the receive functions or stop calling the Submit method and allow the servers to participate in work-item
processing with items already in the Work queue. This will give you a good indication of how fast you can process and
transmit documents. Again, analyze the first two steps and tune the system until processor utilization is your bottleneck. To
determine whether the transport is the reason for the slowed performance, it is recommended to change the transport type
of the ports. When using AICs, this is a good indicator as to how much work you still need to do to achieve maximum
performance from your AICs.

5. Balance the input and output of the system. After you have eliminated all your resource bottlenecks and have the CPU
utilization of your servers above 90 percent, it is important to balance your receive rate and processing rate so that you
have between 40 and 100 documents in your Work queue at any given time. For more information, see
Balancing Receiving and Processing.

The following topics are covered in this section:

https://msdn.microsoft.com/en-us/library/ee274546(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274517(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274571(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Balancing Receiving and Processing

Optimizing BizTalk Orchestration Services

Optimizing BizTalk Messaging Services

Related Topic

Scaling BizTalk Server

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274511(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274593(v=bts.10).aspx

BizTalk Server 2002 ~ Performance and Scalability

Architecture Design, Testing, and Analysis
The key components of BizTalk Server 2002 include the BizTalk Services, the BizTalk Server databases, and the transport services.
Poor configuration of any component can degrade the performance of the entire system.

This section provides information about defining, testing, and refining the architecture of BizTalk Server to optimize performance.

The following topics are covered in this section:

Architectural Design

Architecture Testing and Analysis

Related Topic

Scaling BizTalk Server

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274569(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Performance and Scalability

Maintaining Performance
To maintain performance, create an ongoing maintenance plan to ensure the health and future performance of BizTalk Server.
BizTalk Server will most likely process increasing numbers of documents over time. Although the initial BizTalk Server
architecture may have performed well, if the number of transactions has increased over time, it might not be capable of
sustaining the same level of performance unless the system architecture or configuration is modified. Hardware failures, or out of
memory conditions, also can affect the performance of a system.

The following topics are covered in this section:

Creating a Performance Maintenance Plan

Using Application Center 2000

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274534(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274519(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Performance and Scalability

Scaling BizTalk Server
Once you have optimized performance by optimizing your system settings and BizTalk Server, you might still experience
bottlenecks due to high processor utilization. At this point, to achieve higher performance, it will be necessary to scale your
BizTalk Server solution. There are two ways you can scale your BizTalk Server configuration. You can scale vertically (scale up) by
increasing the number of processors and the amount of memory each server uses, or you can scale horizontally (scale out) by
adding more servers to your BizTalk Server configuration.

It is highly recommended that you distribute key components across multiple servers. The key components of
BizTalk Server 2002 include:

BizTalk Services. These services include BizTalk Messaging Services and BizTalk Orchestration Services. For more
information, see BizTalk Messaging Services and BizTalk Orchestration Services.

Databases. These databases include the BizTalk Messaging Management, Tracking, Shared Queue, and Orchestration
Persistence databases.

Transport services. The transport services include HTTP, File, SMTP, and Message Queuing. Each component has unique
scaling requirements.

The following topics are covered in this section:

Scaling BizTalk Server Vertically

Scaling BizTalk Server Horizontally

Related Topics

Managing BizTalk Server Databases

Managing the BizTalk Messaging Management Database

Persistence

Set Transport Properties

Shared Queue Database

Tracking Database

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251031(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274609(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Performance and Scalability

Scaling BizTalk Server Vertically
By using multiple processors and significant memory, you can vertically scale (scale up) BizTalk Server 2002. Scaling BizTalk
Server vertically requires fewer servers and simplifies site management, but is more costly than scaling a system horizontally or
improving software architecture. In addition, once capacity on existing hardware is maximized, you must begin to scale the system
horizontally.

The following topics are covered in this section:

Scale Up BizTalk Server

Scale Up the Databases

Scale Up the Transport Services

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274551(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274591(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Performance and Scalability

Scaling BizTalk Server Horizontally
A successful BizTalk Server 2002 implementation uses both a vertical and horizontal (scale out) strategy to optimize the services.
While scaling vertically minimizes the number of servers required, scaling horizontally provides the following benefits:

Heightened performance. Performance exceeds what could cost-effectively be accomplished on a single server.

Server fault-tolerance. With multiple servers in a group sharing the workload, when one server fails, the other servers in
the group can pick up the load.

Separation and optimization of the different components. Performance of BizTalk Services, the databases, and the
transport services can be increased.

Scaling hardware horizontally minimizes costs relative to scaling vertically. However, as site management complexity increases,
your organization must begin scaling vertically.

The following topics are covered in this section:

Scale Out BizTalk Messaging Services

Scale Out the Databases

Scale Out the Transport Services

Related Topic

Scaling BizTalk Server

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274571(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274596(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274526(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Administering Servers and Applications
The administration features provided by Microsoft® BizTalk™ Server 2002 help administrators to efficiently and effectively
administer all installations of BizTalk Server 2002. There are four areas of administration in BizTalk Server:

Server administration

Application administration

Programmatic administration

Database administration

This section covers server and application administration. For more information about programmatic and database
administration, see BizTalk Server Administration Model.

BizTalk Server Administration provides a central user interface (UI) from which you can:

Add and manage servers installed with BizTalk Server in server groups.

Configure server group properties, such as the location for the Shared Queue and Tracking databases.

Configure and manage receive functions.

View and manage queues.

Application administration includes configuring and managing the COM+ applications that host XLANG schedules, the default
XLANG Scheduler application, and the Orchestration Persistence database.

The following topics are covered in this section:

For comprehensive information about BizTalk Server Administration, see About BizTalk Server Administration.

For quick reference about why you perform specific tasks, see Why Perform BizTalk Server Administrator Tasks.

For detailed procedures on how to accomplish tasks, see How to Perform BizTalk Server Administration Tasks.

For problem-solving instructions, see Troubleshooting BizTalk Server Administration.

Related Topics

BizTalk Server Administration Model

BizTalk Orchestration Services

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

About BizTalk Server Administration
This section provides detailed conceptual information that is essential to understanding BizTalk Server Administration. It covers
administrative tasks such as creating server groups, defining receive functions, and creating databases to manage, view, and log
document activity in Microsoft BizTalk Server 2002.

The following concepts are covered in this section:

Groups and Servers

BizTalk Server Administration Environment

Administration Cache

Managing BizTalk Server Databases

Handling Server Errors

Receive Functions

Using Queues

Administration Privileges

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Groups and Servers
In a data-exchange environment that supports the processing of a large number of documents, scale out solutions might require
multiple servers and databases to meet processing demands. At the same time, businesses must have a way to centralize and
manage document exchange to reduce the total cost of ownership of the solution by making it easy to manage.

Microsoft BizTalk Server 2002 provides both scale out and centralized management by assembling servers into groups and
managing and configuring these server groups by using BizTalk Server Administration.

The following topics are covered in this section:

BizTalk Server Groups

Relationship Between Groups and Servers

Group Status States

BizTalk Servers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274605(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274566(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274554(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

BizTalk Server Administration Environment
The following topics are covered in this section:

BizTalk Server Administration User Interface

BizTalk Server Administration Shortcut Keys

Administration Features of a BizTalk Server Tools Installation

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250981(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274646(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Administration Cache
When you start Microsoft BizTalk Server 2002, all items in BizTalk Server Administration, such as server groups, server group
properties, receive functions, and connections to the Shared Queue and Tracking databases, are stored in the administration
cache. By default, all items in the cache are refreshed every 50 seconds, except for the server database connections and server
properties. This means that if you change the general properties for a server group, such as the SMTP host or the reliable
messaging reply-to URL, the changes are picked up within 50 seconds.

However, if you change any server properties, such as the Maximum number of worker threads per processor allowed, you
must stop and restart the server on which you changed the configuration so the change can be stored in the cache. Or, if you
change a connection to the BizTalk Messaging Management, Tracking, or Shared Queue database, you must stop and restart the
servers in the group and shut down the BizTalk Server Interchange Application.

Related Topics

Configure general properties for a server group

Shut down the BizTalk Server Interchange Application

Start a server in a group

Stop a server in a group

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274570(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274592(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Managing BizTalk Server Databases
The three databases associated with BizTalk Messaging Services are:

BizTalk Messaging Management database

Tracking database

Shared Queue databaseThe database associated with BizTalk Orchestration Services is:

Orchestration Persistence database

The BizTalk Messaging Management database stores information for all server configurations, including group and server
settings, and receive functions. The configuration of these administration objects can be handled either through BizTalk Server
Administration or programmatically using the BizTalk Server Windows Management Instrumentation (WMI) provider. In addition
to the administrative configuration, the BizTalk Messaging Management database also stores all messaging configuration
information for channels, messaging ports, and other messaging objects. The configuration of the objects is handled either by
using BizTalk Messaging Manager or programmatically by using the BizTalk Messaging Configuration object model. For more
information about configuring channels, messaging ports, and so on, see Using BizTalk Messaging Manager or
Messaging Services Reference.

The Tracking database keeps a log of all interchanges, documents, and receipts that are processed by BizTalk Messaging Services.
For more information about the Tracking database, see Tracking Database. To configure tracking settings, see
Configure tracking properties for a server group. To track specific fields or document instance data, see Set Channel Properties.

The Shared Queue database holds documents while they are being processed or waiting to be processed. Documents are later
removed once they have been processed. For more information about the Shared Queue database, see Shared Queue Database.

The BizTalk Orchestration Persistence database stores the structure of XLANG schedules, the progress of activated XLANG
schedule instances, and the messages that are sent or received while the XLANG schedule instance is running. For more
information, see BizTalk Orchestration Services.

The following topics are covered in this section:

Managing the BizTalk Messaging Management Database

Managing BizTalk Server Group Databases

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274594(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274609(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251031(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274604(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Handling Server Errors
You can configure error handling in Microsoft BizTalk Server 2002 at the server level through Windows 2000 Event Viewer, which
is included in BizTalk Server Administration. The Windows 2000 Event Viewer appears in the console tree of the administration
console.

Logging events

The Windows 2000 Event Viewer displays a log that contains information about hardware, software, and system problems. From
the administration console, you can customize the Event Viewer to show application errors that are specific to BizTalk Messaging
Services and the XLANG Scheduler, which makes troubleshooting for BizTalk Server efficient. For more information about
customizing Event Viewer for BizTalk Server and XLANG Scheduler errors, see Manage Event Viewer.

For more information about Event Viewer, in Windows 2000 Server Help, in the Event Viewer chapter, see "Using Event Viewer."

 Note

All application errors related to BizTalk Server 2002 are defined as BizTalk Server or XLANG Scheduler errors.

Related Topic

Manage Event Viewer

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Receive Functions
When you need to receive documents from a receive location and submit them to Microsoft BizTalk Server 2002, you can
configure receive functions to process the data. For example, if you need to receive documents from a business organization or
application that cannot communicate directly with BizTalk Server through a COM interface, you can use a receive function to
submit the documents to BizTalk Server. Or, if you need to receive from a message queue, you can use a receive function to
submit the document to BizTalk Server. BizTalk Server 2002 supports three types of receive functions:

File

Message Queuing

HTTP

You can create a generic receive function for BizTalk Server 2002 in the administration console in which you define the receive
function name, document definition, and so on. For more information about configuring receive functions, see
Manage Receive Functions for a Server Group. For more information about advanced properties for receive functions, see
Understanding Receive Function Advanced Properties.

The following illustration shows the relationship between the sending business application, the file system, and a generic BizTalk
Server receive function.

 Note

You can also configure submit calls programmatically to receive documents and submit them to BizTalk Server. For more
information about submit calls, see Submitting and BizTalk Documents.

The following topics are covered in this section:

Available Receive Functions

Correlation Token

Custom Preprocessors

Multiple Instances of Receive Function Types

Understanding Receive Functions and Document Routing

Understanding Receive Function Advanced Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274552(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274658(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274529(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274638(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274599(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274552(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Using Queues
Microsoft BizTalk Server 2002 provides shared queue management capabilities in BizTalk Server Administration. BizTalk Server
Administrators can move documents from any other queue to the Suspended queue. From the Suspended queue, documents can
be deleted, resubmitted, or viewed, depending on the processing state of the document. BizTalk Server Administrators can sort
and display error messages for documents in the Suspended queue.

The following queues are used to contain incoming and outgoing documents that are in various stages of routing and processing
in BizTalk Server:

Work Queue

Scheduled Queue

Retry Queue

Suspended Queue

 Note

Interchanges and documents appear in BizTalk Server Administration in the order of "first in, first out." That is, the oldest
items in a queue appear first and the newest items appear last. Additionally, up to 15,000 interchanges and/or documents
appear in a queue at a time. If there are more than 15,000 actual items in a queue, you must remove or resubmit current
items in the queue so that newer items can be displayed. The queue count in the console tree—the number next to the
queue in parentheses—represents how many actual items there are in the queue. You can resubmit or delete documents to
remove them from a queue.

Related Topic

Manage Queues

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274572(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274523(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274557(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274533(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Administration Privileges
To view BizTalk Server Administration, you must be a member of the BizTalk Server Administrators group. If you are not logged
on as a BizTalk Server Administrator, you cannot view items inside the Microsoft BizTalk Server 2002 folder. If you are a member
of the BizTalk Server Administrators group, but you are not a member of the Microsoft Windows 2000 Administrators group, you
can perform only the following tasks:

Add and remove server groups

View and modify group properties

Manage all queues and their entries

Add and remove receive functions

View and modify receive function properties

Additionally, if you are administering a server group that contains three servers, for example, Server_1, Server_2, and Server_3,
you must have Windows 2000 Administrator privileges on all three servers. If the Windows 2000 Administrator privileges have
been changed on Server_1, and you no longer have Administrator privileges, the administration console returns a list of all three
servers associated with the group and lists the state of each server. The state of Server_1 is returned as Access Denied.

If you are a member of both the BizTalk Server Administrators group and the Windows 2000 Administrators group, you can
perform the following additional tasks:

Add servers to and remove servers from a server group

View and modify server properties

View server status

Free interchanges on a server

You must be a member of the SQL Server Administrators group in order to create the databases. You must be a SQL Server
Database Owner (dbo) for most database operations.

During setup, the user who runs the BizTalk Server installation is added to the BizTalk Server Administrators group. You can add
other users to the BizTalk Server Administrators group. For more information, see
Add users to the BizTalk Server Administrators group.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Why Perform BizTalk Server Administration Tasks
This section provides a quick reference about why you perform BizTalk Server Administration tasks. The following table identifies primary tasks and their
specific subtasks, lists the purpose of each task, and provides links to the corresponding procedures.

Task Why perform the task
Open BizTalk Server Administration To perform most of the administration tasks.

Open Component Services To perform additional administration tasks.

Publish BizTalk Server 2002 in Active Directory To publish the availability of BizTalk Server in a distribut
ed environment.

Delete BizTalk Server 2002 from Active Directory To remove the registration of that computer from Activ
e Directory so that only those computers still running Bi
zTalk Server are properly identified when you query Act
ive Directory.

Add users to the BizTalk Server Administrators group To add new users that want permission to administer Bi
zTalk Server.

Configure the BizTalk Messaging Management database To take the BizTalk Messaging Management database of
fline for maintenance.

Change the BizTalk Messaging Management database being administered in a tools installation To change the BizTalk Messaging Management databas
e being administered from a client computer.

Refresh the administration console To view the current status of server groups, servers,
receive functions, the number of items in a queue, and s
o on.

Add, Delete, and Configure a Server Group:
Add a server group To add a new BizTalk Server group when additional scal

e out is required. BizTalk Server groups are a key factor
in the scalability of BizTalk Server. By creating additional
server groups, you can increase throughput by partition
ing processing across more computers.

Configure general properties for a server group To change the SMTP host that a BizTalk Server gro
up uses.

To change the URL the BizTalk Server group uses t
o receive reliable messaging receipts.

To modify how often the BizTalk Messaging Mana
gement object cache is refreshed.

To add and/or change the proxy server that the Bi
zTalk Server group uses.

Configure connection properties for a server group To modify the Shared Queue and/or Tracking databases
the BizTalk Server group connects to. Typically, these wil
l only need to be modified when changing to another d
atabase or database server is required, such as part of a
disaster recovery or backup regime.

Configure tracking properties for a server group To enable various levels of document tracking for the se
rver group and to turn tracking on and off.

Configure the parser order for a server group To change the parser order or refresh the parser list fro
m the registry. The parser list order can be altered, for e
xample, to optimize throughput when all or most of the
documents received are of a specific type. By placing th
e parser for that document type first in the list, BizTalk S
erver will process the documents faster by avoiding tryi
ng to parse with other parsers.

Delete a server group To remove a whole BizTalk Server group. For example, if
overall throughput requirements are reduced, deleting
one or more groups can free up the hardware resources
for other purposes.

Add, Delete, and Configure Servers in a Group:
Add a server to a group To add a new server to an existing BizTalk Server group.

In addition to adding groups to a BizTalk Server implem
entation, each group can have a variable number of ser
vers associated with it. By optimizing the number of ser
vers in the group against the processing power of the d
atabase servers in the group, throughput is maximized.

Delete a server from a group To remove a server from a BizTalk Server group. To mo
ve a server from one BizTalk Server group to another, y
ou first need to delete it from the current group and the
n add it to the new group.

https://msdn.microsoft.com/en-us/library/ee274495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251025(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274492(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274564(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274641(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274570(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274594(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274655(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274541(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274649(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Configure a server in a group To modify the general properties of a server, such as th
e maximum number of receive function threads allowed
, and whether the server participates in work-item proce
ssing. By creating receive functions that run on the serv
er and marking the server to not participate in processi
ng, the server can be optimized for receiving interchang
es as fast as possible, thus contributing to the overall th
roughput.

Change the BizTalk Messaging Management database for a server To change the BizTalk Messaging Management databas
e that a server uses. This is typically only necessary whe
n a permanent change to another database is needed, s
uch as during disaster recovery or when the existing dat
abase server is replaced by another database server.

Manage Servers in a Group:
Start a server in a group To start a BizTalk Server. This starts the BizTalk Server r

un-time services on the associated server so that it can
participate in receiving and/or processing interchanges.

Stop a server in a group To stop a BizTalk Server. This stops the BizTalk Server ru
n-time services on the associated server so that it will ce
ase participation in receiving and/or processing interch
anges.

Free interchanges from a server To free interchanges from a server so that the interchan
ges can be redistributed to other servers in the group if
the original server is stopped or taken offline.

Configure disk caching To enable or disable disk caching. When disk caching is
disabled, it avoids the loss of data during catastrophic fa
ilures such as power failures.

Manage Queues:
Move documents to the Suspended queue To move a document from the Work, Scheduled, or

Retry queues to the Suspended queue. Typically, this is
done if it is known that a specific message or group of
messages need to be suspended due to some type of pr
oblem or exception condition either with the message it
self, or with systems to which the message may be subs
equently sent if not suspended.

View error descriptions To find out what error caused a document to be placed i
n the Suspended queue. This is provided primarily to su
pport problem resolution scenarios.

View interchanges To view an interchange that has been placed in the Susp
ended queue. This is provided primarily to support prob
lem resolution scenarios.

View documents To view a document that has been placed in the Suspen
ded queue. This is provided primarily to support proble
m resolution scenarios.

Resubmit documents To resubmit a document that is currently in the Suspen
ded queue. This is typically used to resubmit messages
after the reason they were suspended has been address
ed. For example, if a transport problem resulted in the s
uspension of a number of messages, resubmitting them
after the problem has been addressed should result in s
uccessful transmission of the messages.

Delete documents To delete a document placed in the Suspended queue. T
his assumes that either the message is no longer neede
d, or that the message has been saved by the user.

Manage Databases for a Server Group:
Shut down the BizTalk Server Interchange Application To change a connection to the BizTalk Messaging Mana

gement, Tracking, or Shared Queue databases.
Remove the Tracking and Shared Queue databases To remove the Tracking or Shared Queue databases. Ty

pically, this would only be done after BizTalk Server has
been configured to use a different Tracking and/or Shar
ed Queue database. If these databases are removed wit
hout first configuring BizTalk Server to use other databa
ses, BizTalk Server will cease to function properly.

Manually restore the Tracking database If the Tracking database becomes corrupted or damage
d. This presumes that a backup has been previously cre
ated from which you can restore the database.

Manually restore the Shared Queue database If the Shared Queue database becomes corrupted or da
maged. This presumes that a backup has been previousl
y created from which a restore can be done.

Manage Receive Functions for a Server Group:
Add a File receive function To create a File receive function.

https://msdn.microsoft.com/en-us/library/ee274521(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274547(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274592(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274643(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274516(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274518(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274583(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274493(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274520(v=bts.10).aspx

Configure a File receive function: General tab To configure the general properties of a File receive fun
ction, such as the security information and to enable or
disable the function.

Configure a File receive function: Services tab To modify the server on which the File receive function
runs, the polling information, or the preprocessor that t
he File receive function uses.

Add a Message Queuing receive function To create a Message Queuing receive function.

Configure a Message Queuing receive function: General tab To configure the general properties of a Message Queui
ng receive function, such as the security information an
d to enable or disable the function.

Configure a Message Queuing receive function: Services tab To modify the server on which the Message Queuing re
ceive function runs, the polling information, or the prep
rocessor that the Message Queuing receive function use
s.

Add an HTTP receive function To create an HTTP receive function. You must follow this
task with the
Configure access privileges based on IIS protection level
task for the receive transport to work properly.

Configure an HTTP receive function: General tab To disable or enable the HTTP receive function.

Configure an HTTP receive function: Services tab To modify the services configuration of the HTTP receiv
e function, such as the server on which the HTTP receive
function runs, the virtual directory used, where the HTT
P receive function submits to, and whether a correlation
token is used.

Configure advanced properties for File, Message Queuing, or HTTP receive functions To configure advanced properties for receive functions.
These properties include openness level, envelope and c
hannel name, and source and destination organization i
nformation. You can configure the advanced properties
when creating the receive function, or whenever necess
ary.

Configure access privileges based on IIS protection level This task must be performed after an HTTP receive funct
ion has been created for the receive transport to work p
roperly.

Delete a receive function To permanently delete a receive function.

Manage BizTalk Services:
Start a BizTalk service To start a BizTalk service on the associated server. Starti

ng services enables the processing of messages by that
server. The server must be in the stopped state before it
can be started.

Stop a BizTalk service To stop BizTalk services on the associated server. Stoppi
ng services halts the processing of messages by that ser
ver. The server must be in the running state before it ca
n be stopped. Stopping services is typically used to tem
porarily suspend processing while making changes to t
he configuration or when troubleshooting issues.

Manage Event Viewer:
Configure Event Viewer for BizTalk Server errors To show only the events for BizTalk Server and/or

XLANG Scheduler in the application event log. This is ty
pically done when there are a lot of non-BizTalk Server
events that you do not want to see while troubleshootin
g.

View application-related errors in Event Viewer To look at error messages logged into Event Viewer.

Manage XLANG Applications and Databases:
Use stored procedures to delete records from the persistence database To delete old persistence documents from the

persistence database.
Shut down all XLANG applications To perform a controlled shutdown for all

XLANG schedules associated with all XLANG COM+ app
lications. Doing this saves the state for all running XLAN
G schedules to the persistence database.

Restart all XLANG applications To perform a controlled restart for all XLANG COM+ ap
plications.

Manage the Default XLANG Scheduler Application:
Change the application identity for the default XLANG Scheduler application When BizTalk Server is initially installed, the XLANG Sch

eduler COM+ application is configured to run as the int
eractive user. Before the XLANG Scheduler engine can b
e used when no interactive user is logged on, the applic
ation must be configured to run as a specific Windows a
ccount.

Manage Other COM+ Applications That Host XLANG Schedules:

https://msdn.microsoft.com/en-us/library/ee274568(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274497(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274535(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274637(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274525(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251022(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274501(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251006(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274581(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274505(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251018(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250948(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250950(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250964(v=bts.10).aspx

Create a new empty persistence database To create a new persistence database with the default se
ttings.

Change the application identity for a COM+ application To change the default interactive user account for a CO
M+ application.

Change the DSN settings for a COM+ application To modify the data source name (DSN) settings for a C
OM+ application and to generate the structure for the n
ew empty persistence database.

Shut down a COM+ application that hosts XLANG schedules To perform a controlled shutdown of all XLANG schedul
es associated with a specific COM+ XLANG application.
Doing this saves the state for XLANG schedules to the p
ersistence database.

Monitor Running XLANG Schedules This topic provides information about the tools availabl
e to monitor the health of the running XLANG schedule
s.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250959(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250956(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250970(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251009(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

How to Perform BizTalk Server Administration Tasks
This section provides task-specific information about using BizTalk Server Administration. It is highly recommended that you
review the About BizTalk Server Administration section to fully understand all the features and capabilities of BizTalk Server
Administration.

The following procedures and topics are covered in this section:

Open BizTalk Server Administration

Open Component Services

Publish BizTalk Server 2002 in Active Directory

Delete BizTalk Server 2002 from Active Directory

Add users to the BizTalk Server Administrators group

Configure the BizTalk Messaging Management database

Change the BizTalk Messaging Management database being administered in a tools installation

Refresh the administration console

Add, Delete, and Configure a Server Group

Add, Delete, and Configure Servers in a Group

Manage Servers in a Group

Manage Queues

Manage Databases for a Server Group

Manage Receive Functions for a Server Group

Manage BizTalk Services

Manage Event Viewer

Manage XLANG Applications and Databases

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251025(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274492(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274564(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Add, Delete, and Configure a Server Group
Server groups are collections of individual servers that are centrally managed, configured, and monitored. Server groups are a
key factor in the scalability of BizTalk Server. By creating additional server groups, you can increase throughput by partitioning
processing across more computers. Servers in a BizTalk Server group have in common:

A Shared Queue database that persists all documents until they are successfully processed.

A Tracking database that is used to log document and interchange activity and to run reports.

Receive functions.

All components that the server requires when processing documents and interchanges, such as transport components and
application integration components (AICs).

The following procedures are covered in this section:

Add a server group

Configure general properties for a server group

Configure connection properties for a server group

Configure tracking properties for a server group

Configure the parser order for a server group

Delete a server group

 Note

If you are setting up multiple server groups for scalability and improved performance, use only one BizTalk Messaging
Management database. Otherwise, these servers cannot share the same BizTalk Messaging Management configuration.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274641(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274570(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274594(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274655(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Add, Delete, and Configure Servers in a Group
Servers in a server group are configured to balance server performance and maximum throughput. As your business needs
change, you might want to restructure the BizTalk Server groups to optimize performance for your current needs. In doing so, you
might need to add new servers to a group, move servers from one group to another, or adjust the server settings that were
configured when BizTalk Server was installed. For example, you might be required to process more documents more quickly. Or
you might need to configure a server in a group to receive only interchanges and documents.

It is highly recommended that you review BizTalk Servers in About BizTalk Server Administration to fully understand BizTalk
Servers.

The following procedures are covered in this section:

Add a server to a group

Delete a server from a group

Configure a server in a group

Change the BizTalk Messaging Management database for a server

 Note

When you adjust server properties, experiment with various combinations in a test environment before you change the
server properties on your production BizTalk Servers.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274554(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274541(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274649(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274521(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274547(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Manage Servers in a Group
This section provides task-specific information about how to manage servers in a BizTalk Server group. It is highly recommended
that you review BizTalk Servers in About BizTalk Server Administration to fully understand BizTalk Servers.

The following procedures are covered in this section:

Start a server in a group

Stop a server in a group

Free interchanges from a server

Configure disk caching

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274554(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274592(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Manage Queues
This section provides task-specific information about how to manage queues in BizTalk Server. It is highly recommended that you
review Using Queues to fully understand BizTalk Server queues.

The following procedures are covered in this section:

Move documents to the Suspended queue

View error descriptions

View interchanges

View documents

Resubmit documents

Delete documents

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274643(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274516(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274518(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Manage Databases for a Server Group
This section provides task-specific information about how to manage databases for a BizTalk Server group. It is highly
recommended that you review Manage BizTalk Server Group Databases to fully understand BizTalk Server databases.

The following procedures are covered in this section:

Shut down the BizTalk Server Interchange Application

Remove the Tracking and Shared Queue databases

Manually restore the Tracking database

Manually restore the Shared Queue database

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274604(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274583(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274493(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Manage Receive Functions for a Server Group
Receive functions are those functions that are set up on a BizTalk Server group to handle incoming interchanges with a specific
protocol. These functions ultimately call the Receive methods on the inbound router object.

The following procedures are covered in this section:

Add a File receive function

Configure a File receive function: General tab

Configure a File receive function: Services tab

Add a Message Queuing receive function

Configure a Message Queuing receive function: General tab

Configure a Message Queuing receive function: Services tab

Add an HTTP receive function

Configure an HTTP receive function: General tab

Configure an HTTP receive function: Services tab

Configure advanced properties for File, Message Queuing, or HTTP receive functions

Configure access privileges based on IIS protection level

Delete a receive function

 Note

If you replicate a receive function that is configured to use a user name and password, the receive function will be disabled
due to an invalid password. To resolve this issue, you need to open the property page for each receive function, re-enter the
password, and then enable the receive function.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274520(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274568(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274497(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274535(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274637(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274525(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251022(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274501(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Manage BizTalk Services
When you make a fundamental change to your BizTalk Server configuration, such as changing the name of a database, or adding
a Web server or firewall, a running service might still be using the parameters that apply to the old configuration. To synchronize
all of the services for your new configuration, it is important to stop and restart the BizTalk services that are affected by the
change.

The following procedures are covered in this section:

Start a BizTalk service

Stop a BizTalk service

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251006(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Manage Event Viewer
You can use the Event Viewer included in BizTalk Server Administration to help you troubleshoot server and document processing
problems. The Event Viewer appears in the console tree of BizTalk Server Administration. All application-related errors for BizTalk
Server 2002 are labeled BizTalk Server errors. All XLANG schedule–related errors are labeled XLANG Scheduler errors.

The following procedures are covered in this section:

Configure Event Viewer for BizTalk Server errors

View application-related errors in Event Viewer

 Note

Some errors returned by Microsoft XML (MSXML) Parser within a custom script function might not be displayed in the
Event Viewer. Errors associated with a document in the Suspended queue may not reflect the error returned in the script.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274581(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274505(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Manage XLANG Applications and Databases
This section provides information about how to manage the default XLANG Scheduler application created when you install
BizTalk Server 2002. It also includes information about creating new COM+ applications to host XLANG schedule instances and
new persistence databases to store XLANG schedule state information.

The following topics and procedures are covered in this section:

Use stored procedures to delete records from the persistence database

Shut down all XLANG applications

Restart all XLANG applications

Manage the Default XLANG Scheduler Application

Manage Other COM+ Applications That Host XLANG Schedules

Monitor Running XLANG Schedules

 Caution

BizTalk Server 2002 provides a COM+ application called the XLANG Persistence Helper, which is used by all COM+
applications that host XLANG schedule instances. You should not change the configuration of the XLANG Persistence Helper
in any way after setup completes.

 Notes

For more information about Microsoft SQL Server, on the Start menu, point to Programs, point to Microsoft SQL Server,
and then click Books Online.

For Component Services Administration Help, on the Start menu, point to Settings, click Control Panel, double-click
Administrative Tools, and then double-click Component Services. In the console tree, right-click Component Services
and click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp) and search on "Component Services."

Related Topics

Running XLANG Schedules

Run XLANG Schedules

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251018(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250948(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250950(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250973(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250967(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251009(v=bts.10).aspx
http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Administration

Troubleshooting BizTalk Server Administration
This section provides a centralized location for information related to troubleshooting BizTalk Server Administration. If you receive error messages, try to find a solution in this
section.

Supplemental information related to issues discovered after this Microsoft® BizTalk™ Server 2002 documentation release are included in the Readme file located in the
\Program Files\Microsoft BizTalk Server\Documentation folder.

The following topics are covered in this section:

Permission denied errors occur when accessing the BizTalk Server Administration MMC, BizTalk Messaging Manager, or the BizTalk Messaging Configuration object model

Error getting all groups from a database

Interchange and document size limit

Transaction time-out discrepancy between Component Services and BizTalk Server 2002

BizTalk Messaging Service does not start

BizTalk Messaging Service does not shut down when the server is out of memory

Slowed performance when deleting a large quantity of documents from the Suspended dueue

Output validation failure

Server does not return all documents in a flat-file interchange

Class identifier does not appear in the Preprocessor list

An interchange or document appears as binary data in the Suspended queue

BizTalk Server stopped processing documents

Receive function does not delete the document

HTTP transmission might duplicate documents

HTTP receive function does not work

Unable to connect to a SQL Server installed on a clustered server

Receive functions stopped processing documents

Error when moving a remote server to a different BizTalk Messaging Management database

Parsing errors

Authentication problems when IIS, BizTalk Messaging Manager tool, and SQL Server are on three different computers

Setup and Messaging Service fails when BizTalk Server 2002 communicates with SQL Server on a cluster

Character corruption occurs when DBCS data is sent through an SMTP messaging port

Redundant or simultaneous resubmission of documents might create duplicate instances

 Notes

You can also check the error messages in the Suspended queue for more troubleshooting information. For more information about the Suspended queue, error messages,
and possible actions, see Suspended Queue.

You can also check the Event Log for detailed information, such as error and warning messages. For more information about the Event Log, see Manage Event Viewer.

Did you find this information useful? Please send your suggestions and comments about the documentation to BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274619(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274585(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274545(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274607(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274597(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274601(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274660(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274527(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274621(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274634(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274625(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274611(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274616(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274630(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274613(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274628(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274626(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274614(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274533(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Tracking Documents
BizTalk Document Tracking is a stand-alone Web application that you can use to view the progress of documents processed by
Microsoft® BizTalk™ Server 2002. You can create queries or advanced queries to extract essential information from the
Tracking database in an easy-to-view format. For example, in BizTalk Document Tracking you can view captured information
about the document source and destination, the document name and document type, and relevant date and time parameters. You
can also create queries that display standard and custom-search fields so you can analyze your business practices. For example, a
Purchase Order Total field can be stored for every purchase order sent to suppliers. You can then use this data to analyze and
report the monetary volume of purchases to one or several suppliers over a period of time.

In addition, you can configure BizTalk Document Tracking to display interchange and document records individually or in batches.
You can also use BizTalk Document Tracking to display, view, and save complete copies of the incoming and outgoing document
instances for future reference.

The following topics are covered in this section:

For comprehensive information about BizTalk Document Tracking, see About BizTalk Document Tracking.

For quick reference about why you perform specific tasks, see Why Perform BizTalk Document Tracking Tasks.

For detailed procedures on how to accomplish tasks, see How to Perform BizTalk Document Tracking Tasks.

For problem-solving instructions, see Troubleshooting BizTalk Document Tracking.

 Important

Because BizTalk Document Tracking is accessed as a Web application by using Microsoft Internet Explorer, Microsoft BizTalk
Server 2002 Help is accessed differently and Help functionality is somewhat restricted. The Table of Contents, Index,
Search, and Favorites tabs are not available. You can access all topics through links from the opening page and through
Related Topics links, as well as, the Back button on the browser.

If you want to search for a specific Help topic, or if you want to access information about other features and services of
BizTalk Server 2002, on the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click
BizTalk Server Documentation. For Help to be available from the Start menu, BizTalk Server 2002 must be installed on
your computer.

Because BizTalk Document Tracking uses Microsoft ActiveX® Controls, an ActiveX control download dialog box might
appear during selections or query submissions. If this happens, click Yes to continue.

 Note

A dialog box with the following message might appear during selection or query selection:

This page accesses data on another domain. Do you want to allow this?

To avoid this message in Internet Explorer, you can add a secure Web site to the Trusted sites zone on the Security tab of
the Internet Options dialog box.

To manually configure the settings on your browser to trust this Web application, add the Web application to the list of
trusted sites in Internet Explorer. For more information about adding the Web application to the list of trusted sites, see
Configure IIS settings for BizTalk Server 2002.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

About BizTalk Document Tracking
This section provides detailed conceptual information that is essential to understanding tracking documents and monitoring
activities.

The following topics are covered in this section:

BizTalk Document Tracking Environment

Using BizTalk Document Tracking

Understanding the Tracking Database Schema

Understanding How to Find Interchanges and Associated Documents

Understanding Query Results

Understanding Integrated XLANG Schedule Status for an Interchange

 Note

A dialog box with the following message might appear during selection or query selection:

This page accesses data on another domain. Do you want to allow this?

To avoid this message in Internet Explorer, you can add a secure Web site to the Trusted sites zone on the Security tab of
the Internet Options dialog box.

To manually configure the settings on your browser to trust this Web application, add the Web application to the list of
trusted sites in Internet Explorer. For more information about adding the Web application to the list of trusted sites, see
Configure IIS settings for BizTalk Server 2002.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

BizTalk Document Tracking Environment
The following topics are covered in this section:

BizTalk Document Tracking User Interface

BizTalk Document Tracking Shortcut Keys

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251109(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Using BizTalk Document Tracking
You can use BizTalk Document Tracking to do the following:

Track interchanges and associated documents processed by Microsoft BizTalk Server 2002.

Fulfill legal and/or standards requirements to keep copies of all electronic business transactions.

Answer customer questions quickly and easily. For example, if a customer asks "When did we send trading partner A an
invoice?", you can locate the date, time, and whether the trading partner returned a receipt.

Aid in troubleshooting.

Help resolve disputes.

Documents can be tracked either in batches or as single transactions. BizTalk Document Tracking automatically stores metadata
associated with an interchange, such as source and destination information, document type, and date and time parameters.
Metadata is stored automatically; however, additional fields, such as Purchase Order Date or Purchase Order Total, are captured
only if you configure the BizTalk Messaging Configuration object model or BizTalk Messaging Manager to capture this
information. For more information about configuring selected fields to be tracked, see Set Channel Properties and
Set Tracking for Inbound Document Properties.

All tracking information—either the metadata or the fields that you configured to be tracked—is stored in the Tracking database
that you configured during installation or when you configured a server group. Through the BizTalk Document Tracking user
interface (UI), you can access the data stored in the Tracking database associated with a particular server group. While not all the
information that is stored in the Tracking database is available through the user interface, the metadata and the fields that you
configured to be tracked are readily available. For example, if you need to track when purchasing application C sent a purchase
order to trading partner D and if and when trading partner D responded to the purchase order, this task can be accomplished
using BizTalk Document Tracking.

The following topics are covered in this section:

Understanding Tracking Settings for a Server Group

Understanding Tracking Settings in BizTalk Messaging Manager

 Note

Reliable messaging receipts are not displayed in the BizTalk Document Tracking user interface.

Related Topics

Set Channel Properties

Set Tracking for Inbound Document Properties

Tracking Database

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274715(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251054(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251165(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274715(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Understanding the Tracking Database Schema
All servers in a server group share a single Tracking database that stores all information related to interchange and document
activity in Microsoft BizTalk Server 2002. The Tracking database is used to track the status of an interchange or document as it
moves through the server. The three main tables in the Tracking database are:

dta_interchange_details

dta_outdoc_details

dta_indoc_details

The supporting tables are:

dta_group_details

dta_interchange_data

dta_document_data

dta_debug_data

dta_routing_details

dta_custom_field_names

dta_MIME_data

The following illustration shows the overall database schema of the Tracking database. For clarity, only the table names are listed
in the following illustration. The lines that connect the tables together demonstrate how the tables are connected through foreign
key fields. These key fields and their relationships to other tables are described in detail in the topics
Metadata Core Table Structure and Structure of Secondary Tables.

The following topics are covered in this section:

Metadata Core Tables

Secondary Tables

Metadata Core Table Structure

Structure of Secondary Tables

Related Tables

https://msdn.microsoft.com/en-us/library/ee251051(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251090(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251226(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251168(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251051(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251090(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251075(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

How Interchanges and Documents Are Logged

How Receipts Are Logged

How Routing Information Is Logged

Tracking XLANG Schedule Events in the Tracking Database

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251155(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251207(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251249(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Understanding How to Find Interchanges and Associated
Documents
You can use BizTalk Document Tracking to view all interchanges and documents using the query parameters that you specify. To
maximize your search results and to minimize load on the server, it is important to understand queries and how to use them. For
example, if you create a query with very few parameters defined, the query might return thousands of interchange records. This
places a high demand on your time and on the server's processing capabilities. This situation is compounded if more than one
person is querying the database at the same time.

There are two levels of queries in BizTalk Server: queries and advanced queries. Queries include the most common criteria that
are used to narrow query results. Advanced queries enable you to further define query results by using expressions to search for
specific data.

The following topics are covered in this section:

Understanding Queries

Understanding Advanced Queries

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251196(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Understanding Query Results
Query results are organized on the Query Results page in two levels, interchange records and document records. The highest
level of organization is interchange records. An interchange record represents an interchange submitted to or transmitted from
Microsoft BizTalk Server 2002. Interchange records are the parent records for document instance records and thus help to
organize the document instance records in a meaningful way. For more information about what fields are included in an
interchange record, see Understanding Interchange Record Results. Graphically, interchange records appear as rows of data fields
with an expand indicator at the left end of each row.

If you click the expand indicator, the document instance record(s) appears. Graphically, the document instance record(s) also
appears as a row of data fields. Usually, there is one document instance record per interchange record. However, if multiple
document types are sent in a single interchange, there is a document record for each document type sent in the interchange. For
more information about what fields are included in a document instance record, see
Understanding Document-Instance Record Results.

The following topics are covered in this section:

Tracking Database Schema Basics

Understanding Interchange Record Results

Understanding Document-Instance Record Results

Understanding Receipt Results

Understanding Results for Failed Transmissions

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251173(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251086(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Understanding Integrated XLANG Schedule Status for an
Interchange
You can track the status of related XLANG schedules in BizTalk Document Tracking. Actions in schedules on a server can be
monitored and stored in the appropriate tables in the Tracking database with an identifier that correlates them to specific
message instances. Storage schema in the Tracking database and correlation are part of Microsoft BizTalk Server 2002, but event
subscription functionality is not implemented when you install BizTalk Server 2002. However, a sample for performing tracking
integration is provided. After you install BizTalk Server, you can find the source code for this sample in the \Program
Files\Microsoft BizTalk Server\SDK\XLANG Samples\WorkFlowAudit folder. Additionally, the bin subfolder contains the dynamic-
link library (WorkFlowAudit.dll), and the Docs subfolder contains the documentation (Readme.txt) for this sample. There is a
sample client application located in \Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\WorkFlowAuditClient.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Why Perform BizTalk Document Tracking Tasks
This section provides a quick reference about why you perform specific Document Tracking tasks. The following table identifies
primary tasks and their specific subtasks, lists the purpose of each task, and provides links to the corresponding procedures.

Task Why perform the task
Open BizTalk Document Tracking for the first time To view the progress of documents pro

cessed by Microsoft BizTalk Server 200
2. You can create queries or advanced q
ueries to extract essential information fr
om the Tracking database in an easy-to
-view format.

Add users to BizTalk Server Report Users group To view the BizTalk Document Tracking
user interface and save
Advanced Query expressions. You must
be a member of the BizTalk Server Rep
ort Users group to do these tasks.

Maintain the Tracking Database:
Create an archive Tracking database To create a repository where old interch

ange and document instance records ar
e inserted for safekeeping. Creating an
archive Tracking database is the first of
four procedures you must sequentially
perform to install the utilities for mainta
ining the Tracking database.

Create the schema for the archive Tracking database To use the archive Tracking database, y
ou must create its schema. Creating the
schema for the archive Tracking databa
se is the second of four procedures you
must sequentially perform to install the
utilities for maintaining the Tracking dat
abase.

Configure the Tracking Database for a SQL linked server To archive the Tracking database and li
nk it to the archive Tracking database. Y
ou must configure both databases, prov
ided they are both on different databas
es. Configuring the Tracking database is
the third of four procedures you must s
equentially perform to install the utilitie
s for maintaining the Tracking database.

Install the stored procedures on the Tracking database To archive and/or delete old interchang
e and document instance records, you
must install specific stored procedures
on the Tracking database. Installing the
stored procedures on the Tracking data
base is the last of four procedures you
must sequentially perform to install the
utilities for maintaining the Tracking dat
abase.

Tracking Database Archive/Delete Stored Procedure Usage To archive and/or delete old interchang
e and document instance records, you
must use specific stored procedures on
the Tracking database.

Use Queries to Search and Sort Interchange and Document Data:
Search by date for interchange and document information To use queries to locate, view, and save

interchange and document instance rec
ords and associated data using standar
d search criteria, such as date.

https://msdn.microsoft.com/en-us/library/ee251181(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251127(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251147(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251231(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251228(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251063(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251218(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Search by organization for interchange and document information To use queries to locate, view, and save
interchange and document instance rec
ords and associated data using standar
d search criteria, such as
source organization.

Search by document type for interchange and document information To use queries to locate, view, and save
interchange and document instance rec
ords and associated data using standar
d search criteria, such as document info
rmation.

Search for interchange and document information by combining query parameters To combine the following query param
eters in a single query session to locate,
view, and save interchange and docume
nt instance records and associated data:
source and destination selections,
document type, and date and time.

Clear search criteria for organizations and document types To clear all search criteria and return to
the default search for all source and
destination organizations and all docu
ment types.

Customize the Query Results page To display and sort incoming interchan
ges grouped with associated outgoing i
nterchanges.

View search parameters for the Query Results page To view the following search parameter
s and their associated values: Date Rang
e, Time Zone, Expression Name, Sort Or
der, Organization Selection, and Docum
ent Type Selection.

Use Advanced Queries:
Build advanced queries To locate specific data, such as a docum

ent instance with a specific purchase or
der number.

Locate existing advanced queries To load and reuse existing advanced qu
eries that you have previously created a
nd saved.

Edit existing advanced queries To add, modify, or remove specific cond
itions to refine your document search.

Clear existing advanced queries To clear an existing advanced query, yo
u must remove the current expression.

Delete existing advanced queries If you no longer need the pre-created a
dvanced queries, you can select and del
ete them in order to maintain a shorter
list of existing advanced queries.

Save Interchange, Document, and Custom Search Data:
Save interchange data To view the data offline. This helps you t

o troubleshoot certain situations or anal
yze your business practices.

Save document instance data To view the data offline. This helps you t
o troubleshoot certain situations or anal
yze your business practices.

Save custom-field search data To view the data offline. This helps you t
o troubleshoot certain situations or anal
yze your business practices.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251082(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251103(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251251(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251078(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251224(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251190(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee275003(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251215(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251069(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251158(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251244(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

How to Perform BizTalk Document Tracking Tasks
This section provides task-specific information that explains how to find, view, and save search results for interchange and
document instance records and associated data. It is highly recommended that you review the About BizTalk Document Tracking
section to fully understand the search capabilities and expected query results.

BizTalk Document Tracking has two levels of searching capability: query and advanced query. You can use queries when you want
to locate documents using standard search criteria, such as source organization. You can use advanced queries when you want to
locate specific data in documents, such as a Purchase Order Total.

The following procedures are covered in this section:

Open BizTalk Document Tracking for the first time

Open BizTalk Document Tracking

Add users to BizTalk Server Report Users group

Maintain the Tracking Database

Use Queries to Search and Sort Interchange and Document Data

Use Advanced Queries

Save Interchange, Document, and Custom Search Data

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251181(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251187(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251127(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Maintain the Tracking Database
Utilities are included in BizTalk Server to maintain the Tracking database. When you install BizTalk Server, the appropriate files are
copied to the \Program Files\Microsoft BizTalk Server\Setup folder. However, to activate the utilities, you must follow the
instructions in this section.

 Note

If you do not track interchanges and documents in your BizTalk Server installation, or if you do not want to use the SQL
scripts included in BizTalk Server to archive and purge your Tracking database, you do not need to perform the procedures
in this section.

To install the utilities to maintain the Tracking database, you must complete the following procedures in the order listed.

The following procedures are covered in this section:

Create an archive Tracking database

Create the schema for the archive Tracking database

Configure the Tracking database for a SQL linked server

Install the stored procedures on the Tracking database

Tracking Database Archive/Delete Stored Procedure Usage

 Important

If you are unable to complete the following procedures, verify that the user account you are using to connect to the server
running Microsoft® SQL Server™ has sufficient permissions to create stored procedures and SQL Server Agent jobs.

The default name of the Tracking database is InterchangeDTA. If the name of your Tracking database is different, then you
must change all instances of the string InterchangeDTA in the BTS_Tracking_Archive_Purge_Script.sql script to the name of
your Tracking database.

 Notes

To avoid unnecessary disk space allocation, it is recommended that you enable the Truncate log on checkpoint option.
For more information about how to configure this option, see Avoid unnecessary disk space allocation.

For more information about the stored procedures that maintain the Tracking database utility, see
Tracking Database Archive/Delete Stored Procedure Usage.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251147(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251231(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251228(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251063(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251218(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251041(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251218(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Use Queries to Search and Sort Interchange and Document
Data
You can use queries to locate, view, and save interchange and document instance records and associated data using standard
search criteria, such as document type or source organization.

The following procedures are covered in this section:

Search by date for interchange and document information

Search by organization for interchange and document information

Search by document type for interchange and document information

Search for interchange and document information by combining query parameters

Clear search criteria for organizations and document types

Customize the Query Results page

View search parameters for the Query Results page

 Notes

When you select your query parameters, be as specific as possible. This reduces load on the server and the amount of time
it takes to return your query results.

A dialog box with the following message might appear during selection or query selection:

This page accesses data on another domain. Do you want to allow this?

To avoid this message in Internet Explorer, you can add a secure Web site to the Trusted sites zone on the Security tab of
the Internet Options dialog box.

To manually configure the settings on your browser to trust this Web application, add the Web application to the list of
trusted sites in Internet Explorer. For more information about adding the Web application to the list of trusted sites, see
Configure IIS settings for BizTalk Server 2002.

If you configure a nonstandard format for dates, numbers, time, currency, and so on in Regional Options in the Control
Panel, you might not be able to save a new query or view advanced queries that you saved. For more information, see
Use Advanced Queries.

To view existing advanced queries, only choose options available in the lists in Regional Options. For example, on the Date
tab, in the Short date format list, choose options in the list. Do not type or cut and paste other formats in the Short date
format list.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251082(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251103(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251251(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251078(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Use Advanced Queries
If you need to locate specific data, such as a document instance with a specific purchase order number, you can use an advanced
query to locate the information.

The following procedures are covered in this section:

Build advanced queries

Locate existing advanced queries

Edit existing advanced queries

Clear existing advanced queries

Delete existing advanced queries

 Notes

If you configure a nonstandard format for dates, numbers, time, currency, and so on in Regional Options in Control
Panel, you might not be able to save a new query or view advanced queries that you saved. For more information, see
Use Advanced Queries.

To view existing advanced queries, only choose options available in the lists in Regional Options. For example, on the Date
tab, in the Short date format list, choose options in the list. Do not type or cut and paste other formats in the Short date
format list.

The float and real data types are known as approximate data types. The behavior of float and real data types follows the
IEEE 754 specification on approximate numeric data types. Approximate numeric data types do not store the exact values
specified for many numbers; rather, they store an extremely close approximation of the value. For many applications, the
small difference between the specified value and the stored approximation is not noticeable. At times, though, the difference
is evident. Because of this approximate nature of the float and real data types, do not use these data types when exact
numeric behavior is required, such as in financial applications, in operations involving rounding, or in equality checks.
Instead, use the integer, decimal, money, or smallmoney data types.

BizTalk Server allows the Number data type to be tracked as an Integer data type. If the value of the number in the
document exceeds the size of the Integer data type, a warning message appears. This warning message contains the value
that could not be tracked.

Do not exceed the size of the Integer data type when tracking a Number data type as an Integer.

 International Issue

Depending on the system locale, a numeric value in XML data might be misinterpreted by BizTalk Server when logged as an
Integer tracking field in the Tracking database. For example, in a German locale, an XML Number value of 4.0 is logged as 40
in the Tracking database because the decimal point (.) is misinterpreted as the digit grouping symbol.

There are two workarounds for this issue. First, if you know in advance that the element/attribute value stores a decimal
number, you can change the XML element/attribute data type to Real (r4) or Double Real (r8). Second, you can configure
the document definition or channel to log an element/attribute with a Number data type as Real instead of Integer.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251224(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251190(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee275003(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251215(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Save Interchange, Document, and Custom Search Data
If you configured BizTalk Messaging Manager, the BizTalk Messaging Configuration object model, and/or BizTalk Server
Administration to store incoming and outgoing interchanges and their documents, you can save interchanges, document data,
and custom-field search data so you can view them offline. This helps you to troubleshoot certain situations or analyze your
business practices.

The following procedures are covered in this section:

Save interchange data

Save document instance data

Save custom-field search data

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251069(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251158(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251244(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Tracking Documents

Troubleshooting BizTalk Document Tracking
This section provides general information about BizTalk Document Tracking troubleshooting.

The following topics are covered in this section:

Problem displaying BizTalk Document Tracking user interface

Interchanges are not stored

Documents are not stored

Nothing is displayed in the query results

Tracking fields are not displayed in the query results

Too many search arguments

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251193(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251097(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251242(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251060(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251176(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251142(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Monitoring Documents

Monitoring Documents
You can use Windows Management Instrumentation (WMI) and Microsoft Operations Manager (MOM) 2000 to monitor
Microsoft® BizTalk™ Server 2002. These two management tools enable you to:

Monitor standard and custom alert notifications.

Consume and use Microsoft Windows NT® Event Log entries for BizTalk Server, with help from the tool guidelines.

Create performance statistics for the XLANG Scheduler without the use of scripts.

Monitor the basic BizTalk Server components, such as the BizTalk Server databases and database tables, per-instance
queues, and services.

The following topics are covered in this section:

About Windows Management Instrumentation

About Microsoft Operations Manager

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Monitoring Documents

About Windows Management Instrumentation
Windows Management Instrumentation (WMI) is a data-management layer that is included in Microsoft® Windows® 2000.
Microsoft BizTalk Server 2002 uses the WMI layer to encapsulate administrative functions. When you use
BizTalk Server Administration to change group, server, and queue settings, the new values are stored in the
BizTalk Messaging Management database through the BizTalk Server WMI provider. In BizTalk Server 2002, this WMI provider
uses a Microsoft SQL Server™ database to store administrative objects. WMI supports a uniform scripting application
programming interface (API) that gives applications and scripts access to the WMI provider on a local computer or a remote
computer. For more information and samples for using WMI, see BizTalk Managing and Monitoring.

 Notes

WMI has a restriction on syntax and valid characters for a WMI object path. The following are a list of invalid characters:

~` ! @ # $ % ^ & * () + = [] { } | ;\" '< > , . ?

Do not use any of these characters when you create a server group name.

All timestamps are created using the local time on SQL Server. However, the WMI provider refers to all timestamps in
coordinated universal time (UTC). The administration console then converts the timestamps back to local time for display.

To access the WMI database layer programmatically, you can use the InterchangeProvSchema.mof file located in the
\Program Files\Microsoft BizTalk Server\Setup folder. This file contains the WMI classes corresponding to the
Administration objects. For more information about WMI Application Programming, go to the MSDN Online Library Web
site (msdn.microsoft.com/library/default.asp) and search on "WMI Application Programming."

To execute WMI queries through Microsoft Operations Manager (MOM), you need to be a member of the BizTalk Server
Administrators group on the server on which the query will be executed. You also need to authorize the BizTalk Server
Administrators group with all the permissions to the root/MicrosoftBizTalkServer WMI namespace of the server. For more
information about authorizing users in WMI, see Windows 2000 Help and
Grant WMI namespace permission to a Windows account.

The following topics are covered in this section:

Custom Counters Overview

Suspended Queue Overview

Related Topics

BizTalk Managing and Monitoring

Windows Management Instrumentation

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee274973(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Monitoring Documents

Custom Counters Overview
Custom counters provide a programmatic way to define custom-built Windows Management Instrumentation (WMI) class
instances based on an advanced query of the Tracking database. These queries can be constructed based on the following fixed
set of attributes:

Time range

Document source

Document destination

Document type

These attributes can be specified using regular expressions. Each query returns a count of the documents matching the criteria,
and you can specify how the query results will be sorted. In addition, you can specify a set of criteria (a query) as a new class
instance that can be consumed by Microsoft Operations Manager (MOM), thus enabling alerts to be set as part of a MOM rule.

WMI classes enable you to:

Create a new instance of a WMI class that defines a specific tracking query.

For document source and document destination, validate the tracking query created in the new WMI class instance.

Execute the query defined in the new WMI class instance to acquire the number of documents in the Tracking database
matching this query.

For more information, see Custom Counters.

Related Topics

Creating a Custom Counter Using WMI

Custom Counter Query Properties

Validating the Custom Counter

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251003(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Monitoring Documents

Suspended Queue Overview
The Suspended queue contains work items that have not been successfully processed for a variety of reasons, including parsing
errors, serialization errors, failed transmissions, or the inability to find a channel configuration. You can view and retrieve
documents from the Suspended queue either through the BizTalk Server Administration console or programmatically through the
BizTalk Server Windows Management Instrumentation (WMI) provider. WMI queries can be constructed based on the following
fixed set of attributes:

Destination

Source

Document name

State

Channel handle

Port handle

String suspended GUID

Reason

For more information about viewing the Suspended queue through the Administration console, see Suspended Queue. For more
information about viewing the Suspended queue through the WMI provider, see Accessing the Suspended Queue.

Related Topics

Accessing the Suspended Queue

MicrosoftBizTalkServer_SuspendedQueue

Suspended Queue Monitoring

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274533(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Monitoring Documents

About Microsoft Operations Manager
Microsoft Operations Manager (MOM) 2000 is a set of event collection, performance monitoring, and reporting tools for
Microsoft server operating systems and server-based applications. MOM centrally monitors, manages, and secures a wide range
of resources, improving the availability, performance, and security of Windows 2000 networks and applications by providing
proactive, real-time system monitoring. MOM enables you to quickly identify potentially serious network problems, track
resolution progress, and provide resolution information that others in your organization can use.

MOM also enables you to monitor the performance of your network using Windows Management Instrumentation (WMI). You
can track performance thresholds and collect sampled data for trend analysis. You can create and view graphs of sampled data,
and use the information for capacity planning.

MOM provides the following features:

Event-driven operations monitoring

Self-deploying, scalable solutions

Advanced security policy enforcement and auditing capabilities

Improved system availability and performance tracking

Numerous ways to view and report data

Increases reliability and availability

MOM consumes various data from servers running BizTalk Server including Performance Counters, WMI Counters and Events,
and Windows NT Events. MOM consumes this data through the creation of providers, server groups, and rules. Providers are
simply individual sources of data, and are defined by naming the data source (that is, the type), the individual provider name, and
various other attributes specific to the data source. For example, the provider for monitoring the queue size, in bytes, for a queue
named "myQueue" is as follows:

Provider = Windows NT Performance Counter – MSMQ Queue-Bytes in Queue-myQueue-15.0-Minutes

 Note

The sampling rate is part of the provider definition for the Windows NT Performance Counter data source.

Once providers are created, rules that process data from the providers can be created. Rules are contained in one of the three
Processing Rules Groups within MOM:

Event Processing Rules. These rules can process different events that occur on a server and, based on an event, can take a
specified action. Examples of events are instances in the Windows NT Event Log, other standard log files like the Internet
Information Services (IIS) W3C log files created by the IIS service, and WMI events. Examples of actions are raising an Alert,
sending an e-mail, and running a script.

Performance Processing Rules. These rules process performance or capacity type counters. Performance rules can be
measuring rules or threshold rules. While measuring rules only collect statistics for reporting, the threshold rules can raise
alerts. This is true even if the measuring and threshold rules have exactly the same provider.

Alert Processing Rules. Event and performance rules are not used to respond to alerts directly, rather, separate alert rules
are created to actually respond to the alerts raised by event and performance rules. An Alert Processing Rule enables you to
associate one global response to a large set of alerts that have something in common.

 International Issue

Microsoft Operations Manager (MOM) 2000 is available in English only. The following list identifies supported scenarios
and limitations when using MOM with Microsoft BizTalk Server 2002:

Managed BizTalk Servers can be English or Japanese languages.

MOM servers can be English or Japanese, but must be in a single language.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

MOM uses Microsoft SQL Server 2000. The SQL Server installation for the MOM server can be English or Japanese.

The Web console is not supported in non-English configurations. However, the Microsoft Management Console
(MMC) console is supported in non-English configurations.

MOM setup supports English only. All domain and computer names must be English.

MOM does not support mixed-language environments. The MOM infrastructure servers all need to have the same
language operating system as the monitored computers. The exception is that when monitoring French or German
systems, it is required that all the MOM infrastructure servers be English. This is because BizTalk Server does not
support English MOM running on French or German localized infrastructure servers. BizTalk Server does not
support English MOM infrastructure servers with Japanese managed computers.

On all property pages, the single-line edit fields cannot display double-byte characters, such as Japanese characters,
because of a font issue. The missing information can be found in the description field in the right pane or in the
multi-line edit fields.

For more detailed information about MOM, see Microsoft Operations Manager Help.

The following topic is covered in this section:

BizTalk Server 2002 Enterprise Edition Management Pack

 Notes

MOM can be installed on a computer running BizTalk Server or on an independent computer dedicated to monitoring your
system.

MOM is not included on the BizTalk Server 2002 CD. It must be obtained independently. For more information about MOM,
go to the Microsoft Operations Manager Web site (www.microsoft.com/mom/).

To execute WMI queries through MOM, you need to be a member of the BizTalk Server Administrators group on the server
on which the query will be executed.

Related Topic

About Windows Management Instrumentation

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.microsoft.com/mom/

BizTalk Server 2002 ~ Monitoring Documents

BizTalk Server 2002 Enterprise Edition Management Pack
To further strengthen the monitoring capabilities of Microsoft Operations Manager (MOM), the BizTalk Server 2002 Enterprise
Edition Management Pack module contains computer grouping and processing rules, as well as other information that enables
you to monitor events specific to BizTalk Server 2002. You can import the BizTalk Server 2002 Management Pack to monitor
computers in the current configuration group.

The BizTalk Server 2002 Management Pack provides an initial set of rules and counters that include all of the Messaging and
Orchestration error messages, the BizTalk Server databases, Windows NT events, and queues. You can customize the
Management Pack to reflect your monitoring needs and obtain greater detail in the areas your organization is interested in
monitoring.

The BizTalk Server 2002 Management Pack provides over 900 rules of various types including:

A processing event rule for every Windows Application event that can be generated from BizTalk Messaging and BizTalk
Orchestration.

Performance measurement rules for performance counters and database file sizes in BizTalk Server 2002. These support the
20 performance views in the Management Pack specific to BizTalk Server.

Performance threshold rules for performance counters and database file sizes in BizTalk Server 2002 (one for error severity
and one for warning severity).

Custom Counter, Suspended Queue, and three other sample rules that show how to build rules customized to your specific
BizTalk Server 2002 implementation.

Using these rules, system administrators can be notified about:

When the BizTalk Messaging Service is down or how long it has been running.

When any Windows event is generated from BizTalk Messaging or BizTalk Orchestration.

Whether documents to an important customer are being suspended and how many documents to an important customer
are successfully sent per period of time.

When the BizTalk Server databases are getting too large.

When the number of failed schedules per unit time becomes too large.

The following procedure and topics are covered in this section:

Configuring MOM to Monitor BizTalk Server 2002

Import the BizTalk Server 2002 Management Pack

Notification Groups

View

Fully Configured Rules

User-Defined Rules

 Note

MOM 2000 must be installed prior to importing the BizTalk Server 2002 Enterprise Edition Management Pack.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265013(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265006(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

BizTalk Server 2002 Application Development
Microsoft® BizTalk™ Server 2002 provides tools and services that enable you to create executable applications for controlling
your business processes and the exchange of data between trading partners and applications within your business.

The following topics are covered in this section:

BizTalk SEED Wizard

Deploying BizTalk Server Resource Applications

Designing BizTalk Orchestrations

Configuring BizTalk Messaging Services

Creating Specifications and Mapping Data

Integrating BizTalk Services

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

BizTalk SEED Wizard
The BizTalk SEED Wizard enables companies to package their Microsoft® BizTalk™ Server 2002 configurations into a
SEED package and make it available to trading partners through the Internet. Companies that create a SEED package still have to
manually configure BizTalk Server to receive documents. However by creating a SEED package, trading partners are able to
configure BizTalk Server, test their configuration, and begin exchanging documents with the initiating company. A SEED package
helps companies rapidly start conducting business with partners. A SEED package contains:

The name of the initiating company.

The test Uniform Resource Locator (URL) and production URL information.

A reference to specifications and instance data.

After a SEED package is created, trading partners (recipients) can download the file, install it, and then configure it with additional
information, such as their:

Port information (which includes the test drop location)

Receive drop location

Because each trading partner relationship is unique, it is necessary for the recipient to specify these unique attributes.

The following topics are covered in this section:

For comprehensive information about BizTalk SEED Wizard, see About BizTalk SEED Wizard.

For quick reference about why you perform specific tasks, see Why Perform BizTalk SEED Wizard Tasks.

For detailed procedures on how to accomplish tasks, see How To Perform BizTalk SEED Tasks.

For problem-solving instructions, see Troubleshooting BizTalk SEED Wizard.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

About BizTalk SEED Wizard
The BizTalk SEED Wizard enables a company, referred to as the initiator in the wizard, to create a SEED package and make it
available to trading partners, referred to as the recipients in the wizard. A recipient is able to open a SEED package, configure and
test it, and begin sending documents to the deployment initiator's test site. If the recipient is successful in testing documents with
the site, then the deployment initiator can integrate the SEED package configuration into the production environment and begin
transactions with the recipient.

The following table lists the tasks included in a rapid deployment process.

Task Who or what accomplishes the task
Creating a SEED package Initiator
Selecting the SEED package to send Initiator
Sending or storing the SEED package Initiator
Configuring the recipient's BizTalk Server system Recipient
Testing the configuration locally on the recipient's system Recipient
Testing the remote connection Recipient
Using the configuration to move into production (outbound) Initiator
Using the configuration to move into production (inbound) Recipient

After a recipient configures the SEED package, the SEED package automatically configures the appropriate ports on the system of
the recipient, which will enable the recipient to begin testing transactions with the initiating company. Ports are created on a per-
document basis, not on a package basis. The port is created only after the recipient completes the configure and create process for
a specific document.

The following topics are covered in this section:

Initiating a SEED Package

Receiving a SEED Package

Example of Initiator and Recipient Relationship

Understanding the ASP Pages in SEED

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Initiating a SEED Package
A SEED package is created by an initiator using BizTalk SEED Wizard and made available to recipients through a Web site or file
share location. A common scenario consists of a single company interacting with several trading partners of the same kind. The
central company is called the initiator and the trading partners are called recipients.

When an initiator wants to set up a new relationship with a recipient, or simply start handling new documents from an existing
recipient, the initiator uses the BizTalk SEED Wizard to create a SEED package. The SEED package consists of the following:

Initiator Name: The name of the company initiating the connection. This bullet item is global to the SEED package; however,
the following bullets are specific to each document.

Test URL: http://test.<initiator name>/invoice (This is the test site to which the recipient will send documents during the
remote testing phase.)

Production URL: http://www.<initiator URL>/b2b/invoices

Specification: c:\specification\invoice.xml

Data: The Extensible Markup Language (XML) instance data for the specification.

Related Topic

Create a SEED package

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Receiving a SEED Package
As a recipient, you may have received a SEED package from a company or downloaded it from the company's Web site. After
saving the SEED package to your computer, you can then use the BizTalk SEED Wizard to complete the configuration and test the
process of receiving and sending documents.

When the SEED package is installed on your computer, it creates the necessary ports, channels, document definitions, and
receive functions. The title of each port, channel, document definition, and receive function starts with the name of the SEED
package. This naming scheme ensures that unique names are given to the SEED package objects. This naming scheme also makes
the objects distinct from other SEED package objects that might have been installed on the BizTalk Servers.

The BizTalk SEED Wizard displays the following information about the SEED package on the Package Installation Process -
Package Selection page:

Package ID. This is the generated Global Unique Identification (GUID) number.

Organization. This is the name specified by the initiating company who created the SEED package.

Document count. Specifies the number of documents within the SEED package.

Recommended operations. Indicates the tasks that might be involved in configuring, creating, and testing the package.
Possible status includes:

There is at least one document to be configured.

There is at least one document to be installed.

There is at least one document to be tested locally.

There is at least one document to be remote tested.

There is at least one document to be switched to production.

The entire package is installed and is in production.

In addition, the wizard displays all of the documents associated with a SEED package on the Package Installation Process -
Document Deployment page. For each document, you must perform the following tasks to verify and deploy the configuration:

Configure. This process configures the port property information. The status is either Configure Complete or Configure
Incomplete.

Create. This process creates the necessary objects (for example, receive functions, ports, and channels). The status is either
Create Passed, meaning the objects were created, or Create Failed, meaning the objects were not created.

Test Locally. When the wizard performs a local test, it drops the instance data for the specification in the directory you
specified as Receive location for inbound documents or submits it synchronously to the remote URL for outbound
documents. For documents marked as inbound, BizTalk Server then picks up the file and places it in the Test Drop
Location for verification of the local test. The instance is picked up by the BizTalk SEED Wizard and verified for both the
format and content, and the status of the specification is updated within the SEED package. This ensures that the format of
the document is correct. If the instance format is correct, the status of the specification within the SEED package is updated.
For documents marked as outbound, SubmitSync is called. BizTalk Server then processes the document and drops to the
Final Drop Location. The BizTalk SEED Wizard then picks up the document from the Final Drop Location and verifies the
data. Possible status includes:

Local Test in Process. The instance is being tested.

Local Test Passed. The instance was verified.

Local Test Failed. The instance was not verified.
Test Remotely. When the wizard performs a remote test for inbound documents, it updates the transport address to the

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

initiator's TestURL, which is part of the SEED package. The document is then submitted synchronously to BizTalk Server. The
initiator's Web site then returns the document as part of the HTTP response. The BizTalk SEED Wizard verifies the response.
For documents marked as outbound, the date is wrapped in Extensible Markup Language (XML) headers, which contain the
receiver's production URL and channel used to process the document. Using the specified channel, this page calls the
Submit method, which posts the document back to the production URL (localsubmit.asp) on the initiator's Web site. The
document is then dropped to the Final Drop Location where it is picked up and verified by the BizTalk SEED Wizard. This
process should be repeated with each of the remaining specifications. For more information about the .asp pages, see
Understanding the ASP Pages in SEED.

Deploy. You can only deploy documents marked as inbound. The status is either Deploy Passed, meaning the
configuration was deployed, or Deploy Failed, meaning the configuration was not deployed.

Related Topic

Install a SEED package

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265020(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Example of Initiator and Recipient Relationship
To understand the components that make up a SEED package, you must first understand the relationship between an initiator and
a recipient. (This example describes a scenario that uses two fictitious companies as the initiator and recipient.) A typical scenario
has an initiator, in this example Northwind Traders, and one or several recipients, in this example Contoso, Ltd. The Northwind
Traders procurement department (the initiator of the deployment scenario) receives invoices from several of its trading partners
(the recipients) for various maintenance request orders.

The procurement department has a Web site where it receives invoices from suppliers (recipients). The documents sent to this
location are Extensible Markup Language (XML) files that adhere to a BizTalk Editor specification called Invoice.xml. Documents
are verified when they are received at this location and at the test location of the recipient.

Northwind Traders also has a test site set up to receive documents and validate them against the specification. If the document
matches the specification, the data is sent to the recipient. The test site is used as the location for all recipients to test their
transactions before they send the files back to the production site of the initiator. Recipients send transactions to the initiator test
site until the transactions are processed without any errors. This procedure ensures that the transactions exchanged through the
production site will be successful.

Northwind Traders creates the SEED package and places the package on its Web site for its recipient to download. The recipient,
Contoso, Ltd, downloads the SEED package and then uses BizTalk SEED Wizard to complete the configuration, which requires
adding port and sometimes receive function information.

After Contoso, Ltd configures the SEED package, the BizTalk SEED Wizard creates the appropriate channel and port to configure
the site of the recipient to communicate with the initiator test site. Contoso, Ltd tests the sample instance by submitting it to the
channel (and to the port bound to the channel), which then sends it to the test ASP page.

After the test has been successfully completed, Contoso, Ltd can go live.

Related Topics

Initiating a SEED Package

Receiving a SEED Package

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Understanding the ASP Pages in SEED
Three Active Server Pages (ASP) are included with BizTalk SEED Wizard: slingback.asp, trigger.asp, and localsubmit.asp. These ASP
pages are located in the \Program Files\Microsoft Biztalk Server\SEED folder. Before you create a SEED package, you must set up
a Web site and place the Slingback.asp, Trigger.asp, and Localsubmit.asp files on that site. These pages are designed to take posts.
For more information about implementing a secure site, go to the MSDN Online Library Web site
(www.msdn.microsoft.com/library/default.asp) and search for the article "Implementing a Secure Site with ASP."

The following describes how the BizTalk SEED Wizard uses them:

Slingback.asp. This ASP is used for remote testing of inbound documents. When creating a SEED package, the initiator
must use this page, or one with the same functionality, in the URL for remote test box. When the recipient clicks the Test
Remotely button, the document is submitted to BizTalk Server synchronously through slingback.asp. The document is then
copied back to the recipient and the BizTalk SEED Wizard verifies that the document received back matches the one sent.

Trigger.asp. This ASP is used for remote testing of outbound documents. When creating a SEED package, the initiator must
type trigger.asp in the URL for remote test box for outbound documents. The document is sent to the trigger.asp page
with the production URL from the recipient and the channel the recipient used to process the document, all of which is
wrapped in the Extensible Markup Language (XML) file. On the trigger.asp page (initiator side), an open destination submit
is called with the production URL of the recipient (generally localsubmit.asp) as the transport address.

Localsubmit.asp. This ASP is used for remote testing of outbound documents. The recipient uses localsubmit.asp as the
production URL. When localsubmit.asp receives the document, the channel is retrieved from the XML file and the document
is submitted to Biztalk Server with the specified channel.

Related Topic

Create a SEED package

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee265017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Why Perform BizTalk SEED Wizard Tasks
This section provides a quick reference about why you perform BizTalk SEED Wizard tasks. The following table identifies primary
tasks, lists the purpose of each task, and provides links to the corresponding procedures.

Task Why perform the task
Create a SEED package To create an Extensible Markup Language (XML) package that contains your BizTalk Server 2002 co

nfiguration (for both outgoing and incoming documents) that you can make available to teams with
in your organization or with trading partners to begin the process of exchanging data.

Install a SEED package To install an XML package that contains the initiator's BizTalk Server 2002 configuration (for both o
utgoing and incoming documents) that you can use to test the transaction process prior to conducti
ng business within a production environment.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

How To Perform BizTalk SEED Tasks
This section provides task-specific information about how to create and install a SEED package.

The following procedures are covered in this section:

Create a SEED package

Install a SEED package

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Troubleshooting BizTalk SEED Wizard
This section provides troubleshooting information about SEED packages.

The following topic is covered in this section:

Test Locally or Test Remotely fails or times out

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265028(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Deploying BizTalk Server Resource Applications
Microsoft® Application Center 2000 can be used to deploy a Microsoft BizTalk™ Server 2002 configuration from one
configuration to another, such as moving a configuration from a test environment to a production environment. Using
Application Center to deploy environments greatly reduces both the time it takes to move configurations and the amount of
manual configuration associated with such a move.

The BizTalk Server replication driver extends Application Center to allow replication of BizTalk resources to all members of a
cluster and between clusters. The driver uses the existing replication support of Application Center.

This driver replaces the previous deployment method (BTConfigAssistant) featured in BizTalk Server 2000. BTConfigAssistant, a
Microsoft Visual Basic® sample application that was included with the first release of BizTalk Server, extracted configuration
information and enabled companies to deploy applications. This method is still available in BizTalk Server 2002; however, the
preferred method for deploying applications is to use Application Center.

The following topics are covered in this section:

For comprehensive information about deployment, see About BizTalk Server Deployment.

For quick reference about why you perform specific tasks, see Why Perform BizTalk Server Deployment Tasks.

For detailed procedures on how to accomplish tasks, see How To Perform BizTalk Server Deployment Tasks.

For problem-solving instructions, see Troubleshooting BizTalk Server Deployment.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

About BizTalk Server Deployment
Microsoft Application Center 2000, one of the .NET Enterprise Servers, supports deployment of several BizTalk Server resources,
such as ports (including all objects that are bound to ports, such as channels) and port groups, along with files, COM+
applications, registry keys, Web sites and virtual directories, and data sources.

A typical BizTalk Server production environment consists of a BizTalk Messaging Management database that stores the necessary
messaging configuration information, and a group of applications servers that share the messaging configuration. Each server
within the cluster contains the required XLANG schedules, COM+ applications associated with the XLANG schedules, and
information regarding which BizTalk Messaging Management database to use when deploying an application.

When you are deploying an application, the BizTalk Messaging Management database must be available to both the source and
target computers because only a central WebDAV repository is supported.

 Important

You must add a local system account (system\<computer name>) to a remote Microsoft® SQL Server™ to prevent the
Application Center driver from failing when SQL Server is remote. To access the BizTalk Messaging Management database
(InterchangeBTM) from an Application Center cluster, it must be local to the Application Center cluster controller, or it must
be outside of the Application Center cluster. The BizTalk Server replication driver might not be able to access the BizTalk
Messaging Management database if it is hosted on a member of the Application Center cluster.

The BizTalk Server replication driver on Application Center has two primary functions:

1. Move local resources. This task requires the source server to reference its local resources and replicate them to a target
server. Automatic replication is supported.

2. Move shared resources. This task requires collecting the appropriate information from the BizTalk Messaging
Management database, and then persisting that information and transmitting it to the target server. Automatic replication is
not supported.

To move shared resources, Application Center (using the BizTalk Server replication driver) on the source server contacts the
BizTalk Messaging Management database using the BizTalk Messaging Configuration object model, rather than reading directly
from the SQL Server database. This process protects against future changes in the BizTalk Server configuration and ensures object
model constraints are enforced.

Given the following three system configuration scenarios, the process of transferring shared information would be as follows:

In the previous illustration, two clusters are shown. Each member in a cluster refers to the same BizTalk Messaging Management
database. Therefore, when data is synchronized between cluster members in either cluster, configuration information does not
need to be transferred. However, when an application is deployed, configuration information will need to be transferred because
each cluster uses its own BizTalk Messaging Management database.

The previous illustration shows how an application would be deployed within a cluster where the BizTalk Messaging Management
database is shared. In this scenario, even "out-of-cluster" deployments would not require any shared resource to be transferred.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

In the previous illustration, individual members within a cluster use different BizTalk Messaging Management databases. Because
there are multiple databases for each cluster member, potentially all synchronizations would require the transfer of both local and
shared information in the respective BizTalk Messaging Management databases.

 Important

The last scenario is not supported in the current versions of Application Center and BizTalk Server. However, this system
configuration should function properly, enabling you to deploy applications.

Regardless of the system configuration scenario you are working with, the following pattern applies when shared information
needs to be transferred between databases:

1. The BizTalk Server replication driver on the source server sends a request containing the names of the shared resources
present on the source server to the target database to determine what data needs to be updated.

2. The driver on the target server returns an Action list containing the additions, updates, and deletions necessary to
synchronize the shared resources.

3. The source server reads the appropriate information from its database using the BizTalk Messaging Configuration object
model and generates a manifest of what needs to be transferred.

4. The BizTalk Server replication driver on the source server delegates the manifest to the Application Center File System
replication driver for transfer to the target server.

5. The driver on the source server sends an update list containing the changes to apply to the target server. This list includes
references to the manifest propagated to the target server.

6. On the target server, the BizTalk Server replication driver reads the manifest and makes the appropriate changes in its
corresponding BizTalk Messaging Management database.

The basic process for deploying a new or existing application includes the following:

1. If necessary, you must create a cluster on the computer you are deploying from and the one you will be deploying to. In
addition, you will need to define an Application Center cluster corresponding to a BizTalk Server group, and define one
computer as the controller of that cluster.

2. Create a new application or select an existing application in Application Center.

3. Add BizTalk resources and other resources such as files, COM+ applications, and registry keys, as needed.

4. Deploy the application from the source computer to the target computer.

The following topics are covered in this section:

About Clusters

Creating New Applications

Adding Resources

Deploying Applications

Did you find this information useful? Please send your suggestions and comments about the documentation to

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Application Development

About Clusters
Microsoft Application Center enables you to manage multiple clusters from a single computer. Using Application Center, you can:

Create clusters

Join existing clusters

Add and remove cluster members

Deploy new content

Configure load balancing

Monitor cluster performance

In addition, it provides a single, unified image of the content that is installed across a cluster. To help you with this content,
Application Center provides wizards, such as the New Cluster Wizard, to simplify the process of creating and managing clusters
and deploying content.

An Application Center cluster can serve corporate intranet clients or external Internet clients. The client software can be "thin-
client" (such as Web browsers) or "thick-client" applications (such as Microsoft Visual Basic programs). Application Center clusters
are designed to manage both the Web tier, which serves HTTP clients, and the business logic tier, which serves Distributed
Component Object Model (DCOM) traffic.

 Important

Microsoft Application Center uses Microsoft® Windows® Authentication to access the
BizTalk Messaging Management database (InterchangeBTM) from an Application Center cluster. To access the BizTalk
Messaging Management database (InterchangeBTM) from an Application Center cluster, the BizTalk Messaging
Management database must be local to the Application Center cluster controller, or the BizTalk Messaging Management
database must be outside of the Application Center cluster. If the BizTalk Messaging Management database is outside the
Application Center cluster, you must add a local system account to a remote SQL Server to prevent the Application Center
driver from failing when SQL Server is remote. You may not be able to access the BizTalk Messaging Management database
if SQL Server, which the database is local to, is a member of the Application Center cluster but not the cluster controller. For
detailed instructions on how to add a SQL Server login account, see the "Remote SQL Server login account" topic in
SQL Server and BizTalk Server 2002 Database Interactions.

 Note

You can use Application Center to manage availability and application deployment on stand-alone (non-clustered) servers
or servers that are not running Web sites. In these cases, Application Center treats the stand-alone server as a "cluster of
one."

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Creating New Applications
In the context of Microsoft Application Center, an application is a manifest listing resources that are synchronized within, or
deployed to, a cluster. An application contains resources by listing references to them, thus more than one application can list the
same resource. When you synchronize or deploy an Application Center application, the resources listed in the application are also
synchronized or deployed.

By creating new Application Center applications, you can manage synchronization and deployment for your resources, including
BizTalk resources. For more information about creating new Application Center applications, see Application Server 2000 Help.
Using applications in this way gives you more control over what resources are synchronized or deployed and when. In addition,
you can create an application that lists a subset of a default application or lists resources that are not listed in a default application.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Adding Resources
Microsoft Application Center enables you to add resources to an application. A BizTalk resource can be thought of as an object
with a unique name and a set of properties. Biztalk resources, such as ports, port groups, custom counters, and receive functions,
represent the configuration for a particular application that relies on Microsoft BizTalk Server. You specify the resources you want
to associate with an application that you want to deploy.

 Important

The plus sign (+) should not be used in resource names because it is converted in .asp (on the server) to a space. For
example, "BizTalkorg+port" would be converted to "BizTalkorg port". If you deploy an application that contains a resource
name with a plus sign, a manifest will not be generated and files will not be transferred. However, Application Center will
indicate that the application has been successfully deployed. If you have a resource that contains a plus sign in its name,
replace the symbol with %2B on your client computer.

The following table describes the type of BizTalk resources you can add to an application and the specific items that are
automatically included.

BizTa
lk res
ource

Items automatically add
ed

Notes

Port All associated:

Channels

Document definitions

Organizations

Envelopes

All elements linked to the port are deployed; however, unbound items such as document
s and envelopes are not moved automatically. Examples include envelopes and documen
ts that are envelopes, which are used to parse incoming flat files, and documents that are
used to parse incoming receipts.

Port G
roup

(Distri
butio
n Gro
up)

All ports in the group.

All items added for a port, f
or each port in the port gro
up.

All elements linked to the port group are deployed; however, unbound items such as doc
uments and envelopes are not moved automatically. Examples include envelopes and do
cuments that are envelopes, which are used to parse incoming flat files, and documents t
hat are used to parse incoming receipts.

Recei
ve Fu
nction

No additional items are ad
ded.

If necessary, you must manually add the file system resource used by the receive functio
n or create Message Queuing (also known as MSMQ) on the target server.

Custo
m Co
unter

No additional items are ad
ded.

There are various properties and restrictions to consider with custom counters. For more
information, see Custom Counters, Creating a Custom Counter Using WMI, and
Custom Counter Query Properties.

In addition to BizTalk resources, Application Center enables you to add the following resources:

File System Path

Registry Keys

Web Sites and Virtual Directories

COM+ Applications

Data Sources

File System Path

https://msdn.microsoft.com/en-us/library/ee265088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Displays replication of file system folders. For example, you can use the File System Path resource to deploy XLANG schedules or
directories used by receive functions and file transport.

 Important

You must use the File System Path resource to add XLANG schedules (.skx files) to the application you want to deploy.
XLANG schedules must be locally stored on the computer that they will be running on.

Registry Keys

Provides access to the registry. Synchronizing an entire registry across a cluster can cause significant conflicts on Cluster
Members, and therefore is not recommended.

Web Sites and Virtual Directories

Provides a list of Internet Information Services (IIS) Web sites and virtual directories available (including files, certificates,
certificate trust lists, and ISAPI filters referenced by the site or virtual directory). When specifying these, you need to add only the
Web site or virtual directory. You do not need to specify the physical directories or files that make up the Web site or virtual
directory explicitly. For example, HTTP receive functions and Web sites that trading partners reply to.

 Note

Application Center synchronizes resources that are specified only on the local file system and does not synchronize
resources that are specified with a UNC path or on removable media.

COM+ Applications

Displays all available COM+ applications, proxies, and components. You can use this to move application integration components
(AICs) and components in schedules, provided they are COM+ applications. For more information, see Application Center 2000
Help.

 Important

You must use the COM+ Applications resource to add any COM+ applications that have been bound to XLANG schedules
for applications being deployed.

Only COM+ applications that are properly registered, on the computer they are running on, with Component Services on
the local server can be added. If a COM+ application does not appear in the Application Center snap-in, you cannot add it to
an application. To add COM components to application lists, you must install them into COM+ Applications.

Data Sources

Specifies the system data source names (DSNs) available. Only DSNs on the local server are available to add to applications. DSNs
on remote servers are not available until you create them on the local server.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Application Development

Deploying Applications
Deployment is the process of copying an initial Microsoft Application Center application image from one cluster to another.
Typically, deployment occurs from a staging cluster to a production cluster that holds the live content. During deployment, the
application image is copied to the cluster controller of the recipient cluster.

The following topics are covered in this section:

Planning a Deployment

Pre-Deployment Checklist

Post-Deployment Checklist

Items That Are Not Deployed and/or Replicated

Synchronization of BizTalk Resources

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250768(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250762(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250766(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Why Perform BizTalk Server Deployment Tasks
This section provides a quick reference about why you perform BizTalk Server Deployment tasks. The following table identifies
primary tasks and their specific subtasks, lists the purpose of each task, and provides links to the corresponding procedures.

Task Why perform the task
Create an Application Center application that contains BizTalk resources To logically group BizTalk configuration informatio

n like ports,
application integration components (AICs),
XLANG schedules, and other resources that make a
BizTalk application a deployable unit.

Deploy an Application Center application to a target server To move newly developed BizTalk applications fro
m a development environment to testing or produc
tion environments.

Delete BizTalk resources from a target server To remove unused or obsolete resources.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

How To Perform BizTalk Server Deployment Tasks
This section provides task-specific information about how to create a new Application Center application or modify an existing
Application Center application that contains BizTalk resources, and how to deploy the Application Center application to a target
computer.

The following topics are covered in this section:

Create an Application Center application that contains BizTalk resources

Deploy an Application Center application to a target server

Delete BizTalk resources from a target server

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Application Development

Troubleshooting BizTalk Server Deployment
This section provides a centralized location for information related to troubleshooting the deployment of Microsoft
Application Center 2000 applications that contain BizTalk resources. If you are having difficulty deploying an Application Center
application, try to find a solution in this section.

The following topics are covered in this section:

Deployed Application Center application requires updated resources

Error message indicates that administrative privilege credentials are required

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250754(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250749(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Designing BizTalk Orchestrations
Microsoft® BizTalk™ Orchestration Designer is a Microsoft Visio® 2000–based design tool that enables you to create business
process drawings that can be compiled and run as XLANG schedules. XLANG is an XML-based language. An XLANG schedule
describes the business process and the binding of that process to application services.

You can use BizTalk Orchestration Designer to create drawings that describe long-running, loosely coupled, executable business
processes. Typically, these drawings describe the way interactions and procedures are performed during the completion of a
specified process, such as a purchase order request. Often, these business processes are not constrained by time limits. Also, the
steps within a business process are loosely coupled. The description of the business process is separate from the implementation
logic and sequencing used to perform the process.

The following topics are covered in this section:

For comprehensive information about BizTalk Orchestration Designer, see About BizTalk Orchestration Designer.

For quick reference about why you perform specific tasks, see Why Perform BizTalk Orchestration Designer Tasks.

For detailed procedures on how to accomplish tasks, see How to Perform BizTalk Orchestration Designer Tasks.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

About BizTalk Orchestration Designer
This section provides detailed conceptual information that is essential to understanding BizTalk Orchestration Designer. It
provides detailed information about the following topics:

BizTalk Orchestration Services

Creating XLANG Schedule Drawings

Compiling XLANG Schedules

Debugging XLANG Schedules

Running XLANG Schedules

Pooling XLANG Schedules

Managing Session State

Updating XLANG Schedules

 Note

It is highly recommended that you review the How to Perform BizTalk Orchestration Designer Tasks section for task-specific
information about using BizTalk Orchestration Designer.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

BizTalk Orchestration Services
BizTalk Orchestration Services extends the capabilities of established information-exchange technologies. It enables users to
create detailed representations of business processes that can be implemented programmatically within an integrated design
environment.

Business-process design and implementation have traditionally been performed in two distinct phases: the visual-design phase
and the coding phase. The visual-design phase typically consisted of the analysis of an existing business process (such as
corporate procurement) and the creation of a workflow diagram or an interaction diagram to describe the process. The coding
phase was usually performed separately. In this paradigm, you would build an abstract visual model of a business process and
then map the model to an implementation framework.

One of the important features of BizTalk Orchestration is the integration of these previously distinct phases within a unified
design environment. This design environment provides a versatile drawing surface and a comprehensive set of implementation
tools. BizTalk Orchestration enables you to:

Create XLANG schedule drawings that describe business processes.

Implement business processes by connecting specific actions within a drawing to ports that represent locations to which
messages are sent, or from which messages are received. Ports are named locations, and messages represent the data sent
or received between actions and ports.

Define the flow of data between messages within business processes.

Compile XLANG schedule drawings into XLANG schedules. XLANG schedules are executable
Extensible Markup Language (XML) representations of the information contained within the drawings.

In addition to the integration of design and implementation functionality, BizTalk Orchestration provides an important additional
feature: the ability to create robust, long-running, loosely coupled business processes that span organizations, platforms, and
applications. During an asynchronous, loosely coupled, long-running business process, a product that is ordered over the Internet
might have to be built from parts that are in inventory. Some of these parts might even be temporarily out of stock. The entire
business process might take weeks or months to complete. In contrast, a tightly coupled business process involves the
synchronous exchange of messages. For example, when a customer withdraws money from a bank account, the debiting of the
account is immediately followed by the delivery of the money.

BizTalk Orchestration enables you to:

Create a visual representation of long-running business processes.

Facilitate the exchange of messages by connecting the actions in your visual representation to ports that are implemented
by a certain technology.

Compile the completed drawing into an executable XML representation of the drawing.

Reliably execute business processes that might take weeks or months to complete.

The following topics are covered in this section:

Understanding Business Processes

BizTalk Orchestration Designer Environment

XLANG Schedules

Related Topics

Creating XLANG Schedule Drawings

Understanding Business Processes

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Understanding Business Processes
Business processes are as important to business management as assembly lines are to manufacturing. Adhering to a well-defined,
formalized set of processes can enable any business to increase productivity and lower costs. A business process defines the
message exchange protocol between all the distributed participants. To define a business process, you must determine the logical
order of actions and the corresponding flow of messages. A business process does not include definitions of the distributed
participants who perform these actions.

The sequence of steps in a long-running business process is typically asynchronous. Each step is an action that can be performed
by one or more independent, distributed participants. These actions can result in the sending and receiving of messages among
the participants, who might or might not be people performing related tasks. A distributed participant might be an automated
process that responds to input, or the participant might even be an entirely separate business process. To understand business
processes, you must be able to visualize a complex variety of relationships and dependencies. Business process modeling tools,
such as workflow diagrams and interaction diagrams, have been developed to visually describe these relationships.

The following topics are covered in this section:

Workflow Diagrams

Interaction Diagrams

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274647(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

BizTalk Orchestration Designer Environment
BizTalk Orchestration Designer enables you to create XLANG schedule drawings. An XLANG schedule drawing is a representation
of a business process. The drawing is saved as an .skv file, which is a customized version of the Microsoft Visio 2000 file format.
The XLANG schedule drawing can then be compiled into an XLANG schedule, which is an XML-structured .skx text file that the
XLANG Scheduler Engine understands. BizTalk Orchestration Designer enables you to create XLANG schedule drawings that
include:

A visual description of a business process. This aspect of an XLANG schedule drawing is similar to a workflow diagram
or an interaction diagram.

A visual representation of configurable ports. This is the implementation aspect of an XLANG schedule drawing.

A visual representation of the connections between shapes. Flowchart shapes can be connected to represent process
flow in a business process, and actions can be connected to ports to represent the flow of communication in a business
process.

A visual representation of the flow between specified message fields. This aspect of an XLANG schedule drawing
determines the relationship between a message field on one message and another message field on a different message. By
correlating these relationships, you can enable data-sensitive routing.

An XLANG schedule drawing is a representation of the procedures that are performed during a business process. An XLANG
schedule drawing can define:

The message-exchange protocol that trading partners agree to use.

Actions that are used to send or receive messages that describe the logical sequence in which actions occur.

The implementation of ports and the actions to which they are linked.

The data flow between message fields.

The following topics are covered in this section:

Design Pages

Flowchart Shapes

Implementation Shapes

Communication Shapes

BizTalk Orchestration Designer Shortcut Keys

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274644(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274632(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

XLANG Schedules
The compiled version of an XLANG schedule drawing is an XLANG schedule, and the XLANG Scheduler Engine runs this schedule.
The XLANG Scheduler Engine monitors and controls the business process described in the XLANG schedule, based on the actions,
rules, and error-handling processes that are defined for the XLANG schedule.

The following topics are covered in this section:

XLANG Overview

Instance management

Persistence

Dehydration and Rehydration

Data Handling

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274598(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274602(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274672(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274633(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Creating XLANG Schedule Drawings
There are five tasks you must perform when you design an XLANG schedule:

Draw a representation of the business process that the XLANG schedule will run. Use Flowchart shapes to describe the flow
of the business process on the left side of the design page. Your primary business process is drawn on the Business
Process page. Alternate processes are drawn on the Compensation for Transaction and On Failure of Transaction
pages.

Define rules for the branching decisions and repeated processes that occur within the business process; define concurrent
processes; and design the transactions and subordinate transactions required in the business process.

Create the port implementations that the business process requires. There are four implementation technologies available:
COM components, Windows Script Components, Message Queuing Services, and BizTalk Messaging Services.

Define the flow of data between messages. All flow of data between messages is drawn on the Data page.

Draw any necessary business processes for transactions that fail. Alternate business processes are drawn on the
Compensation for Transaction and On Failure of Transaction pages.

 Note

You can add Flowchart and Implementation shapes to the Business Process, Compensation for Transaction, and On
Failure of Transaction pages. These shapes are not available on the Data page.

The following topics are covered in this section:

Designing Business Processes

Handling Exceptions

Implementing Business Processes

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Designing Business Processes
In BizTalk Orchestration Designer, the left side of the Business Process page is the area in which you can design business
processes. A Separator bar divides the Business Process page into a business process design area on the left side and an
implementation area on the right side.

The following topics are covered in this section:

Designing Actions

Designing Rules

Designing Concurrency

Designing Transactions

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274618(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274639(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Handling Exceptions
The XLANG Scheduler Engine can trap system errors. BizTalk Orchestration Designer enables you to design XLANG schedules that
will react to XLANG schedule errors at run time. If you enclose part of a business process within a Transaction shape, you can
design an alternate business process that will run if an error is encountered or if a requirement is not met.

The following topics are covered in this section:

System Errors

Application Errors

Related Topic

Set Error Handling Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Implementing Business Processes
The Implementation stencil contains four shapes that correspond to the technologies that can be used to implement a port in a
business process. Because every action either sends a message to a port or receives a message from a port, the semantic meaning
of sending or receiving messages varies, depending on the specific implementation technology.

Using Implementation shapes involves two distinct processes. In the first process, a port is bound to an implementation
technology. Conceptually, a port is an abstract location to which a message is sent or from which a message is received. Binding
the port to an implementation defines the type of location to which the port is bound. In the second process, an action is
connected to the port. This process defines the schema of the message that is sent to or received from the port.

BizTalk Orchestration Designer supports four implementation technologies:

COM Components. This technology enables synchronous communication.

Windows Script Components. This technology enables synchronous communication.

Message Queuing Services. This technology enables asynchronous communication.

BizTalk Messaging Services. This technology enables asynchronous communication.

The Separator bar divides the design page of BizTalk Orchestration Designer into a business-process design area on the left side
and an implementation area on the right side. To open a port binding wizard, drag one of the Implementation shapes onto the
design page, to the right of the Separator bar. You can perform this task on the Business Process page, on the On Failure of
Transaction page, and on the Compensation for Transaction page.

 Note

You cannot configure an envelope in BizTalk Orchestration Designer. Therefore, if you want to submit a flat file to BizTalk
Orchestration, use BizTalk Editor to translate the contents of the flat file to XML. You can then submit the XML file to BizTalk
Orchestration.

The following topics are covered in this section:

Understanding Port Implementations

Synchronous and Asynchronous Communication

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274622(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Compiling XLANG Schedules
When you have completed an XLANG schedule drawing, you can compile the drawing into an executable XLANG schedule. Before
you compile the drawing, make sure the flow of data between messages has been defined on the Data page. An XLANG schedule
describes the business process and the binding of that process to an implementation technology.

BizTalk Orchestration Designer is designed to provide as much useful information as possible when a problem in your XLANG
schedule is discovered during the compilation process. If BizTalk Orchestration Designer encounters an error, it highlights the
shape that contains the error, displays an error message, and cancels the compilation of the XLANG schedule.

During compilation, BizTalk Orchestration Designer examines each shape to determine if it is complete and correct. The
XLANG Scheduler Engine processes the Begin shape on the Business Process page first, and then descends recursively through
the entire drawing. If the XLANG Scheduler Engine encounters an error, the error typically occurs when the business process flows
to a shape in a deeply nested position. To report the error, the XLANG Scheduler Engine constructs an appropriate error message.
Then, as the XLANG Scheduler Engine returns up through the stack, each method has an opportunity to concatenate its own error
message to the original error message. If none of the methods concatenates an error message to the original error message, the
top-level compilation method adds the following generic error message:

Failed to process the XLANG schedule.

The compiled XLANG schedule contains a globally unique identifier (GUID) that matches the XLANG identity property of the
Begin shape. This identification can be used to correlate a version of the XLANG schedule drawing with the XLANG schedule that
generated it.

 Note

It is highly recommended that you review the How to Perform BizTalk Orchestration Designer Tasks section for task-specific
information about using BizTalk Orchestration Designer to create XLANG schedule drawings and compile them into
executable XLANG schedules.

Related Topics

Compile and Debug XLANG Schedules

Compile an XLANG schedule drawing into an XLANG schedule

Debugging XLANG Schedules

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265284(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Debugging XLANG Schedules
XLANG Event Monitor is a tool that you can use to monitor running XLANG schedule instances. For specific information about
using XLANG Event Monitor, see the associated Readme.htm file. Both XLANG Event Monitor (XLANGMon.exe) and the readme
installed by the Microsoft BizTalk Server 2002 Setup Wizard are located in the following installation directory: \Program
Files\Microsoft BizTalk Server\SDK\XLANG Tools.

XLANG Event Monitor includes the following features:

It displays the XLANG Scheduler Engine working in real time.

After the initial enumeration of the running schedules, it monitors events. XLANG Event Monitor can be used to suspend
and stop running instances.

It has a multiple-document interface (MDI)-like user interface that enables you to simultaneously view multiple instance
traces.

It can simultaneously monitor selected applications on multiple computers.

It provides separate recording and viewing filters.

Related Topics

Compile and Debug XLANG Schedules

Compiling XLANG Schedules

Monitor Running XLANG Schedules

Orchestration Services Error Messages

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251009(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Running XLANG Schedules
When installing BizTalk Orchestration Designer, several COM+ applications are installed and configured within Microsoft
Windows 2000 Component Services, including the XLANG Scheduler COM+ application. This application hosts a default instance
of the XLANG Scheduler Engine. Each new COM+ application created in Component Services has an XLANG tab on the
Properties dialog box. On the XLANG tab you can enable the new COM+ application to host the XLANG Scheduler Engine. The
specific COM+ application in which a new XLANG schedule will execute can be determined through the moniker syntax used to
activate an instance of an XLANG schedule.

The XLANG Scheduler Engine controls the activation, execution, dehydration, and rehydration of running XLANG schedule
instances. To activate an XLANG schedule, you can create a small application that passes the moniker of an XLANG schedule to the
XLANG Scheduler Engine. The XLANG Scheduler Engine performs the actions within the XLANG schedule and continues the
business process sequence until it becomes necessary to dehydrate the XLANG schedule. Dehydrating an XLANG schedule occurs
when the XLANG Scheduler Engine expects to wait for more than three minutes to receive a message. When the message arrives,
the XLANG Scheduler Engine rehydrates the XLANG schedule instance and continues to perform the actions in the business
process sequence until the schedule either completes or the XLANG Scheduler Engine has to wait for another message. To
support dehydration, you must have a persistence database configured. The recommended network library is TCP/IP.

To display Microsoft Windows 2000 Component Services information, perform the following procedure:

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then expand COM+
Applications.

3. Right-click the COM+ application you want.

The Properties dialog box appears.

The XLANG tab on the Properties dialog box displays the following options:

This application is a host for XLANG schedule instances. If enabled, this COM+ application might activate instances of
XLANG schedules. To direct the activation of a schedule instance to a particular COM+ application, use a moniker form that
includes the name of the application. Check this option when you want the application to serve as a host for the XLANG
Scheduler Engine.

Configuring the DSN for Persistence. In this area you can configure Microsoft SQL Server to support the dehydration
and rehydration of long-running business processes:

Create DSN creates the ODBC data source name (DSN) for the COM+ application hosting the XLANG Scheduler
Engine. A file DSN stores information about a database connection in a file. The file has the extension .dsn and by
default is stored in the \Program Files\Common Files\ODBC\Data Sources directory. Click the Create DSN button to
start the DSN Wizard.

Configure DSN opens the ODBC Data Source Administrator to manage the data source for XLANG schedules in
this COM+ application.

Initialize Tables creates the tables that are needed to support persistence in the SQL Server database you have
defined.

 Important

The data source name configured in the XLANG Scheduler Properties dialog box must be the same as the name of
the COM+ application.

Controlled shutdown. In this area you can select a valid way to shut down the COM+ applications hosting XLANG
schedule instances:

All XLANG Applications shuts down all COM+ applications that are hosting running XLANG schedule instances.

 Note

If you have selected an application other than the default application, This XLANG Application will be displayed.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Restart dehydrated XLANG applications. In this area you can manage dehydrated XLANG applications:
All XLANG Applications rehydrates all COM+ applications that are hosting XLANG schedule instances and, if
possible, continues to run them.

 Important

Do not right-click the COM+ application to shut down running instances of an XLANG schedule. This will leave COM
components loaded in memory instead of unloading them correctly. Instead, use the Controlled Shutdown area of the
XLANG tab in the properties for the XLANG Scheduler COM+ application.

 Notes

When using the client for Microsoft Windows 2000 Terminal Services to initiate an XLANG schedule, the COM+ application
hosting the XLANG Scheduler Engine must have its identity set to a valid Windows 2000 user or group name. The identity of
the COM+ application is set on the Identity page of the properties dialog box for that application. The identity cannot be set
to interactive when using the XLANG Scheduler Engine through a session hosted by Terminal Services.

For task-specific information about running an XLANG schedule, see Run an XLANG Schedule.

The following topics are covered in this section:

Moniker Syntax

Creating an Instantiating Application

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265370(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Moniker Syntax
Monikers are used to create new XLANG schedule instances or to refer to an existing XLANG schedule instance. In either case, you
can refer to a specific port within the schedule instance. Monikers determine which COM+ application will host the
XLANG Scheduler Engine.

To create a new instance of an XLANG schedule, a moniker for the XLANG schedule must be passed to the COM+ application. The
COM+ application forwards the moniker to the XLANG naming service for resolution and to activate the XLANG schedule
instance with an instance of the XLANG Scheduler Engine. The following code sample shows the general syntax for monikers:

sked://[HostName][!GroupManager][/FilePath][/PortName]

Each segment of the moniker syntax is optional, depending on what type of object you want to instantiate. The following table
lists and describes each of the moniker syntax segments.

Monike
r syntax
segmen
t

Description Examples

HostNa
me

The host name of the computer running the XLANG Scheduler Engine. This is also referred to as the XLANG
System Manager. If omitted, localhost is used as the default value. This name is not case sensitive.

sked://
sked://My
Server

GroupM
anager

The XLANG Scheduler Engine group manager that is used to manage XLANG schedule instances. The name
of the group manager is the same as the COM+ application that is designated as an XLANG host. If omitted,
XLANG Scheduler is used as the default value. This name is case sensitive and can contain spaces.

sked:///
sked://Ano
therServer
!/
sked://Ano
therServer
!MyGroup/

FilePath The path to an XLANG schedule file (.skx) to be activated. This value is not case sensitive. sked://host
1!MyGrp/
C:\basic.sk
x
sked:///C:\
basic.skx

PortNa
me

The name of a port that is bound to a COM or Windows Script Component on an XLANG schedule. This nam
e is case sensitive.

sked:///C:\
basiccom.s
kx/portA

Moniker syntax can be used to refer to an existing XLANG schedule instance, to start an XLANG schedule, or to establish a
communication channel with a particular port on the new XLANG schedule instance.

Monikers that refer to an XLANG schedule instance are created by the XLANG Scheduler Engine and are made available by
creating a connection between the Port References shape and messages that are sent by the XLANG schedule. The exact form of
the port reference depends on which implementation technology the port is bound to and the data type of the target message
field. Ports that are bound to Message Queuing or BizTalk Messaging Services can only be connected to fields of data type String.
The target field contains the name of the queue or messaging endpoint that is bound to the port in the current XLANG schedule
instance.

Ports bound to COM components can be connected to fields of data type String, Object, or Unknown. If the target field is of
data type String, a moniker is created that refers to a port in the current XLANG schedule instance. This moniker is durable. It can
be resolved by using the GetObject function, and the moniker remains valid after a system restart. If the target field is of data
type Object or Unknown, a COM reference to the port instance is passed to the Message shape. If this kind of reference is
passed to an external component, it is not valid after a system restart.

The moniker to reference a running XLANG schedule instance can be obtained from the XLANG schedule instance object, as
shown in the following Microsoft Visual Basic code:

Dim oSchedule as IWFWorkflowInstance
Set oSchedule = GetObject("sked:///C:\temp\myschedule.skx")
dim sMoniker as string
sMoniker = oSchedule.FullyQualifiedName

Related Topics

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Creating an Instantiating Application

Running XLANG Schedules

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Creating an Instantiating Application
An instantiating application passes a moniker for the completed XLANG schedule file to the XLANG Scheduler Engine by using the
COM function GetObject. The following Microsoft Visual Basic code shows one way to do this:

Dim objExecute As object
Dim strURL as string

strURL = "sked:///c:\temp\myschedule.skx"

' This instantiates an XLANG schedule and enables the XLANG Scheduler
' Engine to execute the XLANG schedule.
Set objExecute = GetObject(strURL)

If you did not specify a port in the moniker, the Port property of the object that is returned by the GetObject function enables
you to obtain a reference to a port that is bound to a COM component. Similarly, the FullPortName property enables you to
obtain the full, durable name of a port bound to an implementation technology.

The following code shows how to obtain a proxy to a COM or Script port. This code sample continues from the previous code
sample:

Dim oPort as Object
Set oPort = objExecute.Port("SchedulePortName")
Call oPort.ComponentMethodName(arg1,arg2,...argN)

 Note

If the port is bound to a COM object that does not support a dual interface, the oPort variable must be declared with the
appropriate class.

Related Topics

Moniker Syntax

Running XLANG Schedules

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Pooling XLANG Schedules
When traffic is high and many schedule instances are active at once, you can make effective use of available resources by pooling
your schedules. BizTalk Server takes advantage of COM object pooling, and enables you to restrict the number of active schedule
instances. You can set the following properties on an object pool:

You can set a maximum number of schedule instances for a pool. When this maximum has been reached, no additional
instances of schedules that use that pool are created until a schedule either completes or is dehydrated. The default
maximum is 25 instances.

You can also set a timeout period on a pool. This is the length of time a schedule instance pending activation will wait for a
slot to become available within its pool. The default timeout period is 30,000 milliseconds (30 seconds).

You can improve performance by setting a minimum pool size. The minimum size determines how many pooling objects
will be maintained in memory, so that they do not have to be created on demand each time a schedule instance is activated
in that pool. The default minimum is one object.

These settings might not be optimal for one or more of your pools; pooling settings should be configured to your particular needs
to be most effective. For example, short-lived schedules with heavy traffic should generally be configured to run in an object pool
with a relatively large maximum number of instances. A relatively large minimum number might help as well; if you expect steady
traffic, having a number of objects created in advance will help performance. The timeout should be short and the messaging
retry count high in this case. For a longer running schedule in decreased traffic, you might want to use a longer timeout and a
smaller minimum and maximum of instances, as well as a lower messaging retry count.

 Notes

You may assign more than one schedule to a pool if you like, but if you do this, be sure that the pool settings meet the
needs of all of the schedules assigned to it.

Pooling does not present any backward compatibility issues. Schedules that do not have the pooled property set will get no
pooling effects.

After a pooled schedule instance to which the user holds a reference completes execution, it will continue to occupy a place
in the pool until the reference to that instance goes out of scope or is explicitly released, as shown in the following code
sample:

Set FSO = CreateObject("Scripting.FileSystemObject")
CurrentDirPath = FSO.GetAbsolutePathName(".")
SkedMoniker = "sked://localhost/" & CurrentDirPath & "\PoolingSample.skx"
While '(some condition)
 Set Sked = GetObject(SkedMoniker)
 '(some action)
 Set Sked = Nothing
Wend

Related Topic

Pool an XLANG schedule

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265378(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Managing Session State
On the Advanced Properties page of the COM Component Binding Wizard, you can select a state management value for the
level of persistence that your COM component supports. In the State management support area, select one of the following
options:

Holds no state. This specifies that the XLANG Scheduler Engine will terminate the component instance if the schedule
instance is dehydrated. If you select this setting, the XLANG Scheduler Engine will create a new component instance, if it is
required, when the schedule is rehydrated.

Holds state, but doesn't support persistence. This specifies that the XLANG Scheduler Engine will be required to leave
the component instance running until it is no longer needed in the schedule execution. If the system were to fail while the
schedule instance was dehydrated, any state that had been held in this component would be lost.

Holds state, and does support persistence. This specifies that the XLANG Scheduler Engine will remove the component
instance from memory, and then restore it to memory by calling either IPersistStream or IPersistStreamInit on the
component during dehydration, and then again during rehydration.

Related Topic

Instance Management

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274602(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Updating XLANG Schedules
There are two ways to update an XLANG schedule. You can overwrite the original XLANG schedule, or you can add a new XLANG
schedule that will run concurrently with the original XLANG schedule.

To overwrite the original XLANG schedule, use BizTalk Orchestration Designer to create a new XLANG schedule drawing and then
compile the XLANG schedule drawing as an XLANG schedule that has the same name as the original XLANG schedule. The XLANG
schedule drawing is saved as an .skv file, which is a customized version of the Microsoft Visio 2000 file format. You can then
compile the XLANG schedule drawing into an XLANG schedule, which is an XML-structured .skx text file that the
XLANG Scheduler Engine understands. To update the original XLANG schedule, copy the new .skx file over the original .skx file.

To add a new XLANG schedule that will run concurrently with the original XLANG schedule, use BizTalk Orchestration Designer to
create a new XLANG schedule drawing and compile the XLANG schedule drawing as an XLANG schedule with a new name. To
ensure that the new XLANG schedule will be correctly activated, you must change the XLANG schedule instance activation
mechanism to point to the new .skx file instead of pointing to the old .skx file. When you have completed this process, new
requests for XLANG schedules will create instances of the new XLANG schedule.

Because all XLANG schedules and their components typically work on a per-instance basis, XLANG schedule instances that are in
the process of executing the original schedule will continue to run to completion. This includes XLANG schedule instances that
have been persisted because the source code of the original schedule has been saved. In this scenario, the execution path will
continue to follow the original business process, and new requests for XLANG schedules will create instances of the new XLANG
schedule.

 Note

When an XLANG schedule uses an object with an interface that has changed, load the XLANG schedule drawing (the .skv
file) into BizTalk Orchestration Designer and compile a new .skx file. This will update the binding information in the .skx file,
enabling synchronization with the component's type library.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Why Perform BizTalk Orchestration Designer Tasks
This section provides a quick reference about why you perform BizTalk Orchestration Designer tasks. The following table
identifies primary tasks and their specific subtasks, lists the purpose of each task, and provides links to the corresponding
procedures.

Task Why perform the task
Use BizTalk Orchestration Designer To create drawings of business processes that ca

n be compiled and run as XLANG schedules.
Open and Save XLANG Schedule Drawings To create, open, or save an

XLANG schedule drawing of a business process.
View Pages, Shapes, and Stencils
View the Design Pages:

View the Business Process page To view a conceptual drawing of a business proce
ss.

View the Data page To view message fields, port fields, constants, and
the flow of data between them.

View the Business Process and Data pages To get a concurrent view of both the Business Pr
ocess and Data pages.

View Compensation for Transaction pages To view code that rolls back the results of a
nested transaction.

View On Failure of Transaction pages To view error-handling code associated with a fai
led transaction.

View Shapes:
View Flowchart shapes To view only the Flowchart shapes that describe

business processes.
View Flowchart and Communication shapes To view the Flowchart shapes that describe busi

ness processes and the connections between the
m.

View Flowchart, Communication, and Implementation shapes To view the Flowchart shapes that describe busi
ness processes, the Implementation shapes that d
escribe ports, and the connections between them.

View Stencils:
View the Flowchart Stencil To view shapes that you can use to describe busi

ness processes.
View the Implementation Stencil To view shapes that you can use to implement co

mmunications ports between business processes.
Use Multiple Windows To open, tile, and cascade windows or change the

window focus to view different pages of an XLAN
G schedule or different parts of the same page at
the same time.

Use Annotations To add, edit, or format annotations to make descr
iptive notes about your business process.

Preview, Print, or Resize XLANG Schedule Drawings You can print out your XLANG schedule drawing,
preview it before printing, or adjust the size of it.

Add, Delete, and Connect Shapes To place and logically connect shapes that repres
ent actions in your XLANG schedule drawing.

Select a shape Selecting a shape enables you to edit shape prop
erties, perform cut-and-paste operations with the
shape, or create connections between shapes.

Connect two shapes To represent process and communication flow by
connecting actions with other actions or with por
ts.

Use the Connector Tool Use this tool as a convenient way of drawing the
connections between actions.

Align shapes along a vertical or a horizontal axis To align shapes vertically or horizontally to impro
ve the look and clarity of a schedule drawing.

https://msdn.microsoft.com/en-us/library/ee265278(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274766(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265136(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265258(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265199(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265160(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274749(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265349(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265305(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265146(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274786(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Set Conditional Properties:
Set Decision Conditions To add rules to a Decision shape or determine th

e order in which rules will be evaluated.
Set While Loop Conditions To add a rule to determine whether to continue e

xecution of a while loop.
Preserve state in a while loop To specify whether or not to include messages us

ed in each loop iteration in a saved XLANG sched
ule state.

Create Rules:
Create a rule To evaluate conditions in decisions and while loo

ps within your business process.
Use the expression assistant To add the names of messages and fields to the s

cript expression within a rule.
Add constants to a rule To use constants from the Data page within a scr

ipt expression.
Set Concurrency Properties:

Create concurrent flows To create separate but concurrent logical flows, o
r forks, within your business process.

Set the Join Type property To specify whether or not you are requiring all
concurrent processes to complete execution befo
re continuing to the next action.

Join concurrent flows To synchronize concurrent actions so that they wi
ll proceed to a common action.

End a concurrent flow To terminate one concurrent flow so that it does
not rejoin others.

Set Transaction Properties
Set Transaction Properties for an XLANG Schedule:

Set the transaction model To specify whether to allow transactions within th
e XLANG schedule itself or treat the schedule as a
COM+ component, in which case the schedule ca
n exist within the context of a COM+ transaction.

Set the transaction activation property To specify how your XLANG schedule will behave
within the context of a COM+ transaction. You ca
n have the schedule ignore COM+ transactions o
r participate in them, or you can require that the s
chedule will always run within a transaction or al
ways create a new transaction within which to ru
n.

Set Individual Transaction Properties:
Group actions and flows within a transaction To place shapes or flows within a Transaction sh

ape so that they will be treated as one transaction
.

Design nested transactions To place one transaction within another.

Create flows that enter and leave transactions To specify the flows that begin and end a transact
ion, and to connect actions with corresponding p
orts.

Name a transaction To assign a value to the Name property of a tran
saction.

Set the transaction Type property To specify whether the transaction is a timed tran
saction, a short-lived DTC-style transaction, or a
long-running transaction.

Set the Timeout property To set the time, in seconds, that a transaction will
be allowed to run before it aborts.

Set the Retry count property To set the number of times a process within a sh
ort-lived, DTC-style transaction will be rerun if it
does not complete.

https://msdn.microsoft.com/en-us/library/ee274746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274761(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265281(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265342(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274774(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265360(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265247(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265168(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265302(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265323(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265165(v=bts.10).aspx

Set the Backoff time property To set the time interval between retries of a trans
action.

Set the Isolation level property To specify the degree to which data in concurrent
short-lived, DTC-style transactions is mutually av
ailable.

Set the Persist Schedule State property To specify whether or not a schedule's state will b
e persisted before a transaction begins.

Describe Component and Message Queuing Transaction Support:
Describe the level of transaction support in a COM component To specify whether transactions for this COM co

mponent are disabled, supported, not supported,
required, or required to be new.

Describe the level of transaction support in a Windows Script Component To specify whether transactions for this Windows
Script Component are disabled, supported, not su
pported, required, or required to be new.

Describe the transaction support provided by a message queue To specify whether or not transactions are requir
ed with this queue.

Set Error Handling Properties:
Abort a process flow If the application of a rule evaluates to an unexpe

cted or incorrect value, you can choose to abort t
he flow of the process.

Enable Transaction Error Handling:
Enable On Failure error handling You enable this so that the XLANG schedule can r

un On Failure of Transaction code to efficiently h
andle failures within a transaction.

Enable Compensation error handling You enable this so that the XLANG schedule can r
un Compensation for Transaction code to roll bac
k the results of a nested transaction.

Enable Component Error Handling:
Abort a transaction if a COM component returns a failure To specify whether a transaction should be abort

ed if a method call to a COM component returns
a failure HRESULT.

Abort a transaction if a Windows Script Component returns a failure To specify whether a transaction should be abort
ed if a method call to a Windows Script Compone
nt returns a failure HRESULT.

Implement Ports:
Add an unbound port to an XLANG schedule drawing You can do this to add a port to a schedule befor

e having to decide on the details of an
implementation for the port.

Add a bound port to an XLANG schedule drawing To add a port implementation directly to the sche
dule.

Implement a port by using a COM component To use an existing COM component or applicatio
n to perform an action.

Implement a port by using a Windows Script Component To use an existing Windows Script Component to
perform an action.

Implement a port by using Message Queuing To enable the schedule to communicate with ano
ther schedule or application in a loosely coupled
manner.

Implement a port by using BizTalk Messaging To enable your schedule to take advantage of
BizTalk Messaging Services to carry out a commu
nication.

Modify port implementation properties To modify a variety of properties that govern the
type and behavior of your implementation.

Send or Receive Messages:
Establish the communication flow between an action and a port To create a flow of communication between an ac

tion in your business process and an external bus
iness process.

https://msdn.microsoft.com/en-us/library/ee265230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274752(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265344(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265171(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265345(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274788(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265163(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265224(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274780(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274772(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274782(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274747(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265149(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265340(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265355(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265124(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265376(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265268(v=bts.10).aspx

Send or receive synchronous messages To specify a synchronous flow of communication
between an action in your business process and a
n external business process.

Send or receive asynchronous messages To specify an asynchronous flow of communicati
on between an action in your business process a
nd an external business process.

Modify the communication flow between an action and a port To specify whether a communication flow is sync
hronous or asynchronous.

Draw the Flow of Data between Messages You can describe data interactions by selecting m
essages, their fields, and ports and drawing the fl
ow of data between them.

Use Constants Use constants as specified on the Data page to p
rovide data for message fields.

Run XLANG Schedules
Compile and Debug XLANG Schedules:

Compile an XLANG schedule drawing into an XLANG schedule To create an executable XLANG schedule from th
e corresponding XLANG schedule drawing of a b
usiness process.

Run an XLANG schedule To carry out a business process; the basic action
of BizTalk Server.

Pool an XLANG schedule To control the number of instances of an XLANG
schedule that can be active in memory at any one
time, to optimize resource usage.

Debug compiled Visual Basic components To set breakpoints, view code, and debug compo
nents built with Microsoft Visual Basic.

Refresh method signatures If you have changed any parameters of any availa
ble method calls, you use this procedure to make
the method parameters available to the schedule.

Shut down all running XLANG schedules To modify COM components used by a schedule.
If a schedule instance is running, the file containi
ng the COM component will be locked.

Create and Configure an XLANG Schedule Host Application:
Create a COM+ application to host XLANG schedules If you have security, deployment, or configuratio

n issues that make it advantageous to have a sch
edule run from within a COM+ application.

Configure a COM+ application to host XLANG schedules To set or modify a variety of COM+ application p
roperties that will affect the performance and beh
avior of your hosting application.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265197(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265367(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265265(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265133(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265284(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265370(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265378(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274755(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265332(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265242(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274768(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265238(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

How to Perform BizTalk Orchestration Designer Tasks
This section provides task-specific information about how to use BizTalk Orchestration Designer to create
XLANG schedule drawings and compile them into executable XLANG schedules. This section also provides information about how
to run an XLANG schedule. It is highly recommended that you review the Concepts section to fully understand all the features and
capabilities of BizTalk Orchestration Designer.

The following topics are covered in this section:

Use BizTalk Orchestration Designer

Run XLANG Schedules

 Note

The following conventions apply to transactions, ports, messages, rules, queues, and fields:
The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.w3.org/
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Use BizTalk Orchestration Designer
This section contains procedures that explain how to use BizTalk Orchestration Designer to design XLANG schedule drawings and
how to compile them into XLANG schedules.

The following topics are covered in this section:

Open and Save XLANG Schedule Drawings

View Pages, Shapes, and Stencils

Add, Delete, and Connect Shapes

Set Conditional Properties

Set Concurrency Properties

Set Transaction Properties

Set Error Handling Properties

Implement Ports

Send or Receive Messages

Draw the Flow of Data Between Messages

 Notes

If one or more of the files in the VBA folder have not been properly registered or have become corrupt, you might not be
able to open BizTalk Orchestration Designer. This problem can result from uninstalling Microsoft Office.

If Office is not installed: On the Microsoft Office CD, browse to the Vba6.msi file, right-click it, and click Install.

If Office is installed: Open Microsoft Access, create a blank database, save it, and close Access.
If you hide the standard toolbar when using Microsoft Visio, you will not be able to see it upon opening Orchestration
Designer. To see it, do the following:

1. On the File menu, select Exit to close BizTalk Orchestration Designer. On the Start menu, point to Programs and click
Microsoft Visio.

2. On the View menu, point to Toolbars and click Standard.

3. On the File menu, select Exit to close Visio.

4. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk
Orchestration Designer.

The toolbar appears.

After using BizTalk Orchestration Designer, some menus and toolbars will not be accessible upon opening Visio. You can
use the context menu in Visio to customize toolbars and menus and reactivate the items you want.

 International Issue

In some languages, certain characters might not display properly in BizTalk Orchestration Designer. To correct this, you can
specify that Microsoft Visio 2002 must always use the system default font:

1. Close BizTalk Orchestration Designer.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

2. On the Start menu, point to Programs and click Microsoft Visio.

3. On the Tools menu, click Options.

The Options dialog box appears.

4. Click the Regional tab and, in the Document base font area, select Always use the system default font.

5. Close Visio and open BizTalk Orchestration Designer.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Open and Save XLANG Schedule Drawings
The following procedures are covered in this section:

Create a new XLANG schedule drawing

Open an existing XLANG schedule drawing

Save an XLANG schedule drawing

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265208(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265130(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

View Pages, Shapes, and Stencils
BizTalk Orchestration Designer provides several view options that you can use to maximize your drawing area, or to view specific
shape or data relationships.

The following topics are covered in this section:

View the Design Pages

View Shapes

View Stencils

Use Multiple Windows

Use Annotations

Preview, Print, or Resize XLANG Schedule Drawings

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265187(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265362(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274749(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265349(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Add, Delete, and Connect Shapes
The following procedures are covered in this section:

Add shapes

Name shapes

Delete shapes

Delete unused ports and messages

Connect Shapes

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265347(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265292(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265317(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274744(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265374(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Set Conditional Properties
The following topics are covered in this section:

Set Decision Conditions

Set While Loop Conditions

Create Rules

Related Topic

Designing Rules

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265184(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Set Concurrency Properties
The following procedures are covered in this section:

Create concurrent flows

Set the Join Type property

Join concurrent flows

End a concurrent flow

 Important

For more information about concurrent processes, it is highly recommended that you read Designing Concurrency.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274618(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Set Transaction Properties
The following topics are covered in this section:

Set Transaction Properties for an XLANG Schedule

Set Individual Transaction Properties

Describe Component and Message Queuing Transaction Support

Related Topic

Designing Transactions

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265219(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265143(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274639(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Set Error Handling Properties
The following procedures are covered in this section:

Abort a process flow

Enable Transaction Error Handling

Enable Component Error Handling

Related Topic

Handling Exceptions

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265163(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265262(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Implement Ports
BizTalk Orchestration Designer provides four Implementation shapes that represent technologies that can be used to
implement port communications. The following table describes these shapes.

Shape
name

Description

COM
Comp
onent

The COM Component shape represents a technology that can be used to implement a port by using a method call for ea
ch message that is sent or received. Drag this shape to the right side of the Separator bar to open the COM Component B
inding Wizard.

Script
Comp
onent

The Script Component shape represents a technology that can be used to implement a port by using a method call for e
ach message that is sent or received. Drag this shape to the right side of the Separator bar to open the Script Component
Binding Wizard.

Messa
ge Qu
euing

The Message Queuing shape represents a technology that can be used to implement a port. Message Queuing Services
are used to send or receive messages. Drag this shape to the right side of the Separator bar to open the Message Queuin
g Binding Wizard.

BizTal
k Mes
sagin
g

The BizTalk Messaging shape represents a technology that can be used to implement a port. BizTalk Messaging Services
are used to send or receive messages. Either a BizTalk Server messaging port or a channel can be used to implement a por
t. Drag this shape to the right side of the Separator bar to open the BizTalk Messaging Binding Wizard.

The following procedures are covered in this section:

Add an unbound port to an XLANG schedule drawing

Add a bound port to an XLANG schedule drawing

Implement a port by using a COM component

Implement a port by using a Windows Script Component

Implement a port by using Message Queuing

Implement a port by using BizTalk Messaging

Modify port implementation properties

Related Topics

Communication Shapes

Flowchart Shapes

Implementation Shapes

Implementing Business Processes

Match a specific message with a specific port

Send or Receive Messages

Understanding Port Implementations

Using the Method Communication Wizard

https://msdn.microsoft.com/en-us/library/ee274747(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265149(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265340(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265355(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265124(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265376(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274632(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265369(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274622(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Using the XML Communication Wizard

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274695(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Send or Receive Messages
BizTalk Orchestration Designer provides two forms of communication by which an XLANG schedule can send or receive
messages:

Synchronous communication. Method calls are used to send or receive synchronous message pairs.

Asynchronous communication. XML messages are used to send or receive asynchronous messages.

For more information, see Synchronous and Asynchronous Communication.

The following procedures are covered in this section:

Establish the communication flow between an action and a port

Send or receive synchronous messages

Send or receive asynchronous messages

Modify the communication flow between an action and a port

Related Topics

Synchronous and Asynchronous Communication

Using the Method Communication Wizard

Using the XML Communication Wizard

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265268(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265197(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265367(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265265(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Draw the Flow of Data Between Messages
The following procedures are covered in this section:

Select a message

Select a field within a message

Draw the flow between messages

Delete a message

Match a specific message with a specific port

Use Constants

Related Topics

Add, Delete, and Connect Shapes

Data Handling

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265221(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265329(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265369(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265133(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274633(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Run XLANG Schedules
This section contains procedures that explain how to compile and debug XLANG schedules, as well as how to activate and run an
XLANG schedule. To run XLANG schedules, you might also want to create a COM+ application to host dedicated
schedule instances.

The following topics are covered in this section:

Compile and Debug XLANG Schedules

Create and Configure an XLANG Schedule Host Application

Related Topics

Creating an Instantiating Application

Manage XLANG Applications and Databases

Running XLANG Schedules

Security for Applications That Host XLANG Schedule Instances

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Compile and Debug XLANG Schedules
When you create an XLANG schedule,you will want to compile, run, test, and debug the schedule. BizTalk Orchestration Designer
provides features that assist in doing this.

In BizTalk Orchestration Designer, the following options are available:

Compiling

Updating method signatures

Shutting down running instances of XLANG schedules

In addition to these options, there are two tools that you can use to assist in testing and debugging an XLANG schedule:

XLANG Event Monitor. You can use this tool to monitor running XLANG schedule instances. For specific information about
using this tool, see the associated Readme.htm file. Both XLANG Event Monitor (XLANGMon.exe) and the Readme installed
by the Microsoft BizTalk Server 2002 Setup Wizard are located in the following installation directory: \Program
Files\Microsoft BizTalk Server\SDK\XLANG Tools.

Windows 2000 Event Viewer. You can use this tool to view XLANG schedule errors. For more information, see the
following topics:

Manage Event Viewer

Monitor Running XLANG Schedules

For more information about Event Viewer, in Windows 2000 Server Help, in the Event Viewer chapter, see "Using
Event Viewer."

The following procedures are covered in this section:

Compile an XLANG schedule drawing into an XLANG schedule

Run an XLANG schedule

Pool an XLANG schedule

Debug compiled Visual Basic components

Refresh method signatures

Shut down all running XLANG schedules

Related Topics

Create and Configure an XLANG Schedule Host Application

Creating an Instantiating Application

Manage XLANG Applications and Databases

Running XLANG Schedules

Security for Applications That Host XLANG Schedule Instances

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251009(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265284(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265370(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265378(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274755(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265332(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265242(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Designing BizTalk Orchestrations

Create and Configure an XLANG Schedule Host Application
This section contains procedures that explain how to activate and run an XLANG schedule. Although you can use the default
XLANG Scheduler application to run XLANG schedules, it is often useful to create a new COM+ application to run
schedule instances.

Due to security, deployment, and configuration issues, most COM+ applications that host XLANG schedules must be created
when the XLANG schedule is developed. You must take into consideration security and performance needs for the applications
and the schedules. You might want to create a new COM+ application to host dedicated instances of running schedules, or you
might want to isolate applications that run specific schedule instances from other XLANG schedules that use different
applications.

For more information about security and performance issues related to creating XLANG schedules and a COM+ application to
host the schedules, see Security for Applications That Host XLANG Schedule Instances.

For information about how to manage COM+ applications after they have been created, see
Manage XLANG Applications and Databases.

The following procedures are covered in this section:

Create a COM+ application to host XLANG schedules

Configure a COM+ application to host XLANG schedules

 Notes

For Component Services Administration Help, on the Start menu, point to Settings, click Control Panel, double-click
Administrative Tools, and then double-click Component Services. In the console tree, right-click Component Services
and click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp) and search on "Component Services."

Related Topics

Creating an Instantiating Application

Manage XLANG Applications and Databases

Running XLANG Schedules

Security for Applications That Host XLANG Schedule Instances

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274768(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265238(v=bts.10).aspx
http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Configuring BizTalk Messaging Services
Microsoft® BizTalk™ Server 2002 provides two methods for configuring BizTalk Messaging Services to manage the exchange of
documents between trading partners and applications within your business. You can either use BizTalk Messaging Manager,
which is a graphical user interface (UI), or directly access the BizTalk Messaging Configuration object model.

Using BizTalk Messaging Manager or the BizTalk Messaging Configuration object model, you can create messaging ports and
channels to manage the exchange of data. You also can create document definitions, envelopes, and organizations, which you use
to create messaging ports and channels; and distribution lists, which are groups of messaging ports.

Security Requirements

To use BizTalk Messaging Manager, you must:

Belong to a user account in the BizTalk Server Administrators group, which is created when BizTalk Server 2002 is installed.
Additional users can be added to this group as necessary. For more information about adding a user account, see
Add users to the BizTalk Server Administrators group.

Have full database access to the BizTalk Messaging Management database (InterchangeBTM), which means you are able to
log in and have been granted the db_owner database role. For more information, see "How to grant a Windows user or
group access to a database" in the Microsoft SQL Server online documentation.

Should you use BizTalk Messaging Manager or the BizTalk Messaging Configuration object model API?

BizTalk Messaging Manager enables you to access the BizTalk Messaging Configuration object model through a graphical user
interface. Whether or not you use that interface depends on the amount and type of information available to you in your
database. The BizTalk Messaging Configuration object model application programming interface (API) enables you to automate all
or part of the configuration process, rather than entering the data for each individual entity into BizTalk Messaging Manager. In
general, the more business partners you have, the more it benefits you to use the API to configure your messaging service.

For example, suppose a large manufacturing company (a "hub" in the hub-spoke paradigm) uses 1,000 suppliers and maintains a
database with information about each supplier. During the "create organizations" step, it would be relatively quick and easy to
write code that:

Extracts information from the database.

Uses the BizTalk Messaging Configuration object model to programmatically create these 1,000 organizations in the
BizTalk Messaging Management database.

In contrast, it could take considerably longer to create all 1,000 objects one-by-one using BizTalk Messaging Manager. (Imagine
running the same wizard 1,000 times.) And that is to create only the organizations, not the document definitions, channels, or
messaging ports.

However, a small supply company (a "spoke") that maintains relationships with just a few trading partners would likely use
BizTalk Messaging Manager to configure its entire messaging system rather than taking time to write specialized code.

For more information about accessing the BizTalk Messaging Configuration object model directly through the API, see
Introducing Messaging Services.

The following topic is covered in this section:

Using BizTalk Messaging Manager

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Using BizTalk Messaging Manager
Microsoft® BizTalk™ Messaging Manager is a graphical user interface (UI) with which you can manage the exchange of
documents by configuring BizTalk Messaging Services. BizTalk Messaging Services can also be configured programmatically
using the BizTalk Configuration object model API. For more information, see Introducing Messaging Services.

 Caution

You should use BizTalk Messaging Manager to configure BizTalk Messaging Services prior to processing documents.
Accessing and modifying objects that might be in use while Microsoft BizTalk Server 2002 is processing documents can
produce unexpected results.

Documents can be exchanged between trading partners and applications within your business. BizTalk Messaging Manager is
available both locally from the computer on which BizTalk Server 2002 is installed and remotely as a client application. This
enables system administrators to retain security and central control of the server, while enabling remote users to access BizTalk
Messaging Manager.

BizTalk Server 2002 Help provides information about how to create and manage the following BizTalk Messaging Manager
objects:

Channels

Messaging ports

Document definitions

Envelopes

Organizations

BizTalk Server 2002 Help also provides information about how to use distribution lists.

BizTalk Messaging Manager objects

The following illustration shows the relationships between the objects that you can create by using BizTalk Messaging Manager.

The following summary provides a brief overview of the objects that you can create by using BizTalk Messaging Manager. This
summary also further explains the relationship between the objects. For more detailed information about each object, click the
link at the end of each description to go to the Help topic for that object.

Channels

Channels are the primary objects in BizTalk Messaging Manager. The purpose of all other BizTalk Messaging Manager objects is
to either create channels or support the operation of channels. Channels identify the source of documents, which can be an
organization, an application within your business, or an XLANG schedule. Channels also identify inbound and outbound
documents by using document definitions. For more information, see Understanding Channels.

Messaging ports

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Messaging ports identify a destination for the documents that are processed by a channel. The destination can be an organization,
an application within your business, or an XLANG schedule. A messaging port specifies a destination address to which the
documents are sent, how they are transported to that address, and if and how they are secured and enveloped. For more
information, see Understanding Messaging Ports.

Organizations

Organizations represent other trading partners with which you exchange documents. A special organization type, called the
home organization, represents your business. You can create applications for the home organization that represent the internal
applications that your business uses. Organizations and applications serve as the source for a channel or the destination for a
messaging port. For more information, see Understanding Organizations.

Document definitions

A document definition represents a specific type of document that is processed by BizTalk Server 2002. A document definition
provides a pointer to a specification. Specifications define the document structure, type, and version. Channels specify an inbound
and an outbound document definition to indicate which documents the server processes. A document definition can be used in
any number of channels. For more information, see Understanding Document Definitions.

Envelopes

Envelopes provide BizTalk Server 2002 with the information that the server needs to either open inbound or create outbound
interchanges. Envelopes can be selected from within a messaging port to direct the server in creating outbound interchanges.
Envelopes, which are independent of a messaging port, can be used by BizTalk Server 2002 to open inbound interchanges. For
more information, see Understanding Envelopes.

Distribution lists

Distribution lists are groups of messaging ports with which you can send the same document to a group of different trading
partner organizations or internal applications. You must create at least one channel for a distribution list, just as you do for an
individual messaging port. For more information, see Understanding Distribution Lists.

 Notes

The objects that you can create by using BizTalk Messaging Manager can also be created programmatically by using the
BizTalk Messaging Configuration object model. For more information, see Understanding Messaging Services.

The objects that you can create by using BizTalk Messaging Manager also use objects that you can create by using other
BizTalk Messaging Services user interfaces. Channels use maps, which you can create by using BizTalk Mapper. Document
definitions use document specifications, and envelopes use envelope specifications. You can create specifications by using
BizTalk Editor.

The following topics are covered in this section:

For comprehensive information about BizTalk Messaging Manager, see About BizTalk Messaging Manager.

For quick reference about why you perform specific tasks, see Why Perform BizTalk Messaging Manager Tasks.

For detailed procedures on how to accomplish tasks, see How to Perform BizTalk Messaging Manager Tasks.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

About BizTalk Messaging Manager
This section provides detailed conceptual information that is essential to understanding Microsoft BizTalk Messaging Manager. It
provides information about the following topics:

BizTalk Messaging Manager Environment

Understanding Channels

Understanding Messaging Ports

Understanding Organizations

Understanding Document Definitions

Understanding Envelopes

Understanding Receipts

Understanding Distribution Lists

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

BizTalk Messaging Manager Environment
The following topics are covered in this section:

Configuring BizTalk Messaging Manager Options

BizTalk Messaging Manager User Interface

BizTalk Messaging Manager Shortcut Keys

Security

 Caution

You should use BizTalk Messaging Manager to configure BizTalk Messaging Services prior to processing documents.
Accessing and modifying objects that might be in use while Microsoft BizTalk Server 2002 is processing documents can
produce unexpected results.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Configuring BizTalk Messaging Manager Options
This section explains how to modify BizTalk Messaging Manager options. These options include:

Configuring new messaging ports or channels.

Managing previously configured messaging ports or channels.

Setting the search return value.

Setting the server connection.

Setting the server time-out value.

The following procedures are covered in this section:

Select a BizTalk Messaging Manager configuration option

Set server connection options

 Note

The toolbars in BizTalk Messaging Manager can be repositioned; however, when the application is restarted, the toolbars
return to their original positions.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265308(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265313(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

BizTalk Messaging Manager User Interface
The BizTalk Messaging Manager user interface has two main panes.

The left pane displays:

The name of the server to which BizTalk Messaging Manager is connected.

A list of objects for which you can search.

Search criteria that you can use to narrow your search.

You can search for any objects that you create by using BizTalk Messaging Manager. You can choose the type of object for which
you want to search by clicking the name in the Search for other items area. The search criteria differ according to the object that
you select.

The right pane displays:

The details of the items returned in your most recent search.

The details of the items differ according to the type of object for which you search.

You can sort the items in the search results pane in ascending or descending order by clicking the column headers. You can sort
based on only one column at a time.

 Notes

If you have a large number of a particular type of object for which to search, it might take several minutes to return all the
items. You can reduce the number of items returned in a search by using search criteria.

The default number of items returned in a search is 500. You can adjust this number. For more information, see
Set server connection options.

Related Topics

BizTalk Messaging Manager Shortcut Keys

Search for channels

Search for distribution lists

Search for document definitions

Search for envelopes

Search for messaging ports

Search for organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265313(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274700(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265153(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265195(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250814(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

BizTalk Messaging Manager Shortcut Keys
You can use shortcut keys to accomplish tasks in BizTalk Messaging Manager. The following table is a quick reference to these
shortcut keys.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Windows 2000 Server and Advanced Server Help, see "Using the
keyboard to move the mouse pointer." For more information about MouseKeys in Windows 2000 Professional Help, see
"Move the mouse pointer by using MouseKeys."

Press To
CTRL+A Select all.
CTRL+C Copy text.
CTRL+X Cut text.
CTRL+V Paste text.
CTRL+Z Undo text action.
CTRL+R Create a new messaging port to an organization.
CTRL+SHIFT
+R

Create a new messaging port to an application.

CTRL+L Create a new channel from an organization.
CTRL+SHIFT
+L

Create a new channel from an application.

CTRL+T Create a new distribution list.
CTRL+D Create a new document definition.
CTRL+G Create a new organization.
DELETE Delete the selected item or text.
SHIFT+F10 Display the shortcut menu for the selected item.
SHIFT with an
y arrow key

Select more than one item in a window or select text.

TAB In a dialog box, pressing TAB moves the focus through the buttons and fields of the dialog box.
SHIFT+TAB In a dialog box, pressing TAB moves the focus through the buttons and fields of the dialog box.
CTRL+TAB Toggle tabs of a dialog box in front-to-back order.
CTRL+SHIFT
+TAB

Toggle tabs of a dialog box in back-to-front order.

SPACEBAR Select or clear a check box. The spacebar also acts like a mouse click when the focus is on a button.
ALT+SPACEB
AR

Display the system menu for the active window.

ALT+Underlin
ed letter in a
menu name

Display the corresponding menu.

Underlined le
tter in a com
mand name o
n an open me
nu

Carry out the corresponding command.

ALT+ DOWN
ARROW

Display the drop-down list for an activated list box.

ENTER Carry out the command for the active option or button.
ESC Cancel the current task.
F1 Display online Help.
ALT+F4 Close the active window, or quit the active program.
LEFT ARROW Move the focus to the tab to the left.
RIGHT ARRO
W

Move the focus to the tab to the right.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Any arrow ke
y

Highlight a folder or a file in the main window of a dialog box, while the focus is in that window. This functionality
occurs in the Select a Document Specification from the WebDAV Repository, the Select an Envelope Speci
fication from the WebDAV Repository, and the Select a Map from the WebDAV Repository dialog boxes. Fo
r more information, see Select a document specification, Select an envelope specification, and Select a map.

Related Topic

BizTalk Messaging Manager User Interface

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265186(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265203(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274705(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Security
To access or create objects by using BizTalk Messaging Manager, you must:

Belong to a user account in the BizTalk Server Administrators group, which is created when BizTalk Server 2002 is installed.
Additional users can be added to this group as necessary. For more information about adding a user account, see
Add users to the BizTalk Server Administrators group.

Have full database access to the BizTalk Messaging Management database (InterchangeBTM), which means you are able to
log in and have been granted the db_owner database role. For more information, see "How to grant a Windows user or
group access to a database" in the Microsoft SQL Server documentation.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Understanding Channels
A channel is a set of properties that you can use to configure BizTalk Messaging Services to process a document that it receives.
Channels can be created for a messaging port or a distribution list. Once a channel has processed a document, the document is
transported to the destination specified in the associated messaging port or the messaging ports in the associated distribution list.
You can create one or more channels for a messaging port or distribution list.

In a channel, you specify the source of the documents, which can be a source organization or a source application. Before you can
designate an application as the source for a channel, you must create an application for the home organization, which represents
an actual internal application in your business. You can also designate an XLANG schedule as the source for a channel. You can
create an XLANG schedule by using BizTalk Orchestration Designer. For more information, see Designing BizTalk Orchestrations.
For more information about integrating BizTalk Messaging Services with BizTalk Orchestration Services, see
Integrating BizTalk Services.

You can also explicitly declare an open source for a channel, which means that the source must be specified either within the
document or in a parameter when the document is submitted. This is referred to as an open channel. For more information, see
Submitting.

You also specify an inbound document definition, which represents an incoming document from an internal application or a
trading partner organization. And you specify an outbound document definition, which represents a document to be delivered to
the specified destination. For more information about document definitions, see Understanding Document Definitions.

If the format or structure of an outbound document is different from the format or structure of the inbound document, you must
specify a map for the channel. A map transforms the format or structure of the original inbound document into the outbound
document format or structure that is required by the destination organization or application. For example, if your accounting
application generates purchase orders in a delimited flat-file format but your trading partner requires that purchase orders be in
an X12 format, you can use a map to transform the document format. For more information about maps, see
Using BizTalk Mapper.

You can create more than one channel for a messaging port or distribution list, each with a different configuration. For example,
suppose that you have two internal accounting applications that generate purchase orders in different formats and that you have
a trading partner that wants to receive purchase orders from you in still another format. You can create a single messaging port
to the trading partner. Then, for that messaging port, you can create a channel from each of the applications. The outbound
document definition for both channels would be the same and match the format of your trading partner. However, each channel
would have a different map to transform the inbound document formats from the applications. Because you can create different
channels connected to a single messaging port, you can send all your purchase orders in the same format.

In addition, you can set other properties within a channel to:

Designate specification fields to track for the inbound document definition. Any fields that you designate are logged to a
Tracking database for each document instance processed using this specific channel, in place of any global tracking fields
designated in the document definition. For more information about global tracking fields, see
Tracking Document Data Fields.

Create a channel filtering expression, which determines if BizTalk Server 2002 invokes the channel, based on the value of a
field or fields within the document being processed.

Configure receipts. You can request a receipt from the destination for a document that you send, and you can generate a
receipt to the source for a document that you receive. For more information about processing receipts, see
Understanding Receipts.

Configure security properties. You can specify that the server verify the encryption and signature for an inbound document,
or digitally sign the outbound document.

Specify document logging options. You can store both the inbound and the outbound documents in their native format, in
their intermediate XML format, or both.

Configure advanced properties. You can specify a group control number for documents with EDI formats, set the number
and time interval that the server uses to resend documents, and override the transport component and envelope properties
for the messaging port or distribution list.

You can also create receipt channels by using BizTalk Messaging Manager. A receipt channel is a special type of channel that you

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

use to return a receipt to the sender of a document that is received by BizTalk Messaging Services. When you create a channel to
process an inbound document that requires a receipt, you can specify the receipt channel that the server should use to process
the receipt. Because of this, you should create a messaging port and an associated receipt channel before you create a messaging
port and channel to process a document that requires a receipt. For more information about processing receipts, see
Understanding Receipts.

 Caution

When you create a receipt channel, both the inbound and outbound document definitions default to the BizTalk Canonical
Receipt and cannot be transformed by using a map. To use a different format for an outbound receipt, you must create and
select an inbound document definition that refers to the canonical receipt specification in the WebDAV repository. You also
must create an outbound document definition that refers to a specification with the format that you want for the outbound
receipt, as well as a map that transforms the format of the receipt.

When BizTalk Server 2002 receives a document, it locates the appropriate channel, which directs the server in how to process the
document. The server then locates the messaging port or distribution list associated with the channel. The messaging port directs
the server through the sequence of steps necessary to transport the document to the specified destination. If the channel is
associated with a distribution list, the server uses the properties of each of the messaging ports in the distribution list to transport
the document to the specified destinations.

The following topics are covered in this section:

Channel Elements

Valid Channel and Messaging Port Combinations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Channel Elements
Channels consist of the following elements:

Source organization or application

When you create a channel, you designate either an application or an organization as the source for documents. A
source application always represents a business application of your home organization. This could be an accounting application,
an order-entry system, or a line-of-business application. You can also designate an XLANG schedule as the source for documents.
You can create an XLANG schedule by using BizTalk Orchestration Designer. A source organization always represents an external
trading partner.

A channel is always created for a messaging port or a distribution list. The destination for the documents that you receive from
the source of a channel is designated in the messaging port, or in the messaging ports of the distribution list, for which the
channel is created.

Inbound and outbound document definitions

Document definitions in a channel represent the inbound and outbound documents that are processed by BizTalk Server 2002. A
document definition provides a pointer to a specification that defines the document. The specification defines such characteristics
as the document structure, type, and version. For more information, see Understanding Document Definitions.

When BizTalk Server 2002 receives a document, it locates the appropriate channel to process it. The server uses the specification
of the inbound document definition to translate the incoming document into an intermediate XML format. The server maps the
inbound document format and structure to the outbound format and structure, if necessary. Then, the server uses the
specification of the outbound document to translate the outbound document into the format and structure that the destination
application or organization can recognize and use.

Mapping data formats

The format or structure of an inbound document might be different from the format or structure that is required for the outbound
document. If this is the case, a map can be used to transform the format of the inbound document into the format of the
outbound document.

For example, if you have an accounting application that generates invoices in a comma-delimited, flat-file format, but your trading
partner needs to receive invoices in an X12 format, you can use a map on the channel to transform the format.

A map can also transform the content and structure of a document that uses the same format. For more information, see
Using BizTalk Mapper.

Tracking and filtering properties

You can designate specification fields to be logged to a Tracking database for the inbound document definition of a channel. The
specification fields that you designate in a channel are logged to a Tracking database for each instance of a document processed
using this channel. These fields are logged in place of any global tracking fields that are designated in the inbound document
definition. Any global tracking fields designated for the outbound document definition are ignored. For more information, see
Tracking Document Data Fields.

A channel filtering expression provides an additional way to determine which channels are invoked when BizTalk Server 2002
receives a document. In the case of a channel filtering expression, this determination is based upon the value of a specified field or
fields within the document instance.

When the server processes a document, the value of each of the specified fields is evaluated against the value of the channel
filtering expression. If the expression is found to be true, the channel is invoked. If the expression is found to be false, the channel
is not invoked. For example, if the channel filtering expression is created to check for a purchase order total greater than 1000,
and the PO Total field in the document is 1500, the channel is invoked.

Document logging properties

BizTalk Server 2002 translates non-XML inbound documents from their original, native format into an intermediate Unicode XML
format for processing. BizTalk Server 2002 translates outbound documents from an intermediate Unicode XML format into the
required format for the specified destination. You can choose to store the data of each inbound and outbound document in either
format or in both.

Related Topics

Create and Manage Channels

Understanding Channels

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Valid Channel and Messaging Port Combinations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Valid Channel and Messaging Port Combinations
You can create only certain channel (source) and messaging port (destination) combinations that are valid for use with Microsoft
BizTalk Server 2002.

The following valid business scenarios indicate how to configure messaging ports with the correct destination and channels with
the correct source designations to correctly route data.

Scenario 1: Trading partner to an internal application

In this scenario, you create a messaging port with an application of the home organization as its destination. You then create a
channel for this messaging port with the trading partner organization as its source.

Scenario 2: Internal application to trading partner

In this scenario, you create a messaging port with a trading partner organization as its destination. You then create a channel for
this messaging port with an application of the home organization as its source.

Scenario 3: Internal application to internal application

In this scenario, you create a messaging port with an application of the home organization as its destination. You then create a
channel for this messaging port with a different application of the home organization as its source.

Scenario 4: Internal application to distribution list

In this scenario, you create a distribution list, which includes a group of existing messaging ports to organizations or applications.
You then create a channel for this distribution list with an application of the home organization as its source.

Scenario 5: Internal application to open destination

In this scenario, you create a messaging port that you specify as an open messaging port. You then create a channel for this
messaging port with an application of the home organization as its source.

Scenario 6: Open source to internal application

In this scenario, you create a messaging port with an application of the home organization as its destination. You then create a
channel for this messaging port that you specify as an open channel.

 Note

A channel that is specified as an open channel cannot be created for a messaging port that is specified as an open
messaging port.

Scenario 7: Trading partner through intermediary to trading partner

In this scenario, one trading partner sends documents to another through your BizTalk Server, with your business serving as an
intermediary. You create a messaging port with one trading partner organization as its destination. You then create a channel for
this messaging port with a different trading partner as its source.

Related Topics

Channel Elements

Understanding Channels

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Understanding Messaging Ports
A messaging port is a set of properties that you can use to configure BizTalk Messaging Services to transport documents to a
specified destination by using a specified transport service. The documents that a messaging port transports originate from the
source that you specify in an associated channel. You can create multiple channels for a single messaging port to send documents
from many sources to the same destination.

A messaging port can be configured to send documents to a designated destination organization, an XLANG schedule, or a
destination application.

When you configure a messaging port to an organization, you can either designate a specific trading partner as the destination or
declare an open destination, which is referred to as an open messaging port. An open messaging port can be used to transport
documents only to trading partner organizations. The destination organization information for an open messaging port must be
specified either within the document or in a parameter when the document is submitted to BizTalk Server 2002. For more
information about submitting documents, see Submitting. For more information about open messaging ports, see Openness.

When the address specified for an open messaging port is an SMTP address, the server must have a From address for the
home organization. To obtain this address, the server uses the value that is specified for a special organization identifier of the
home organization, named Reliable Messaging Acknowledgement SMTP From Address. For more information about how to
configure this organization identifier, see Configure the home organization.

When you configure a messaging port to an application, you can designate either an XLANG schedule or an application of the
home organization as the destination. For more information about the home organization, see Understanding Organizations.

A messaging port to an XLANG schedule can be configured to activate a new instance of a specified XLANG schedule, and then
deliver the document to a specified messaging port of that schedule. In this case, the specified schedule must contain a messaging
port that is bound to BizTalk Messaging Services. When you specify the schedule, you also name the messaging port. You can also
configure a messaging port to deliver a document to a running instance of an XLANG schedule. In this case, the document must
contain a queue name to which the document should be delivered and that the targeted schedule is monitoring. For more
information about integrating BizTalk Messaging Services with BizTalk Orchestration Services, see Integrating BizTalk Services.

You also use the messaging port properties to designate a specific address to which documents are delivered, the transport type
for getting documents to that location, and how the documents are enveloped and secured prior to transport.

When BizTalk Server 2002 receives a document, it locates the appropriate channel to process it. After the channel processes the
document, it points the server to its associated messaging port or distribution list, which directs the server through the sequence
of steps necessary to envelope, secure, and transport the document to the specified destination.

The following topics are covered in this section:

Messaging Port Elements

Open Messaging Ports

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Messaging Port Elements
Messaging ports consist of the following elements:

Destination

The destination for a messaging port can be a trading partner organization, an XLANG schedule, or an application of the
home organization.

A messaging port to an organization can explicitly designate the destination organization, or a messaging port can be declared as
an open messaging port. For open messaging ports, the destination organization is determined at the time the messaging port
processes a document. The destination organization information must be specified either in the document or in parameters when
the document is submitted. For more information, see Submitting.

A messaging port to an XLANG schedule can be configured in two ways. You can configure a messaging port to activate a new
instance of an XLANG schedule by specifying the path to an XLANG schedule. When the messaging port processes a document, it
activates this schedule and then delivers the document to a messaging port in that schedule that you also specify in the
messaging port properties. Or you can configure the messaging port to deliver documents to an active XLANG schedule. You use
this option only when you send a trading partner a message and the trading partner returns a message to a specially configured
ASP page using an HTTP transport. For more information, see Integrating BizTalk Services. You can create an XLANG schedule by
using BizTalk Orchestration Designer. For more information, see Designing BizTalk Orchestrations.

A messaging port can also transport documents to a destination application of the home organization. Before you can designate
an application as the destination for a messaging port, you must add the application to the home organization. For more
information, see Add applications.

Transport properties

The transport properties that you specify for a messaging port determine the transport service used to convey documents to the
destination organization or destination application, and the specific address to which the documents are sent.

The transport properties that you set for a messaging port apply to all channels associated with that messaging port. After BizTalk
Server 2002 invokes a channel to process documents, the server then refers to the properties of the messaging port that is
associated with the channel. The server sends the documents to the address specified in the messaging port, using the transport
type specified in the messaging port.

You can also specify a service window, which designates a specific time range within which documents can be transported.
Service window hours are displayed in coordinated universal time (UTC) format and reflect the time on the server.

Envelope information

Envelopes are headers and sometimes footers that are used to prefix or encapsulate documents that are transported. An envelope
header contains information about the document or documents that it contains and how to route them. An envelope header
contains the source organization identifier, destination organization identifier, and information about the type of document or
documents that it contains.

BizTalk Server 2002 is capable of receiving and processing interchanges that contain multiple documents and groups of
documents. When transporting documents that use an envelope, BizTalk Server includes each document in a separate
interchange.

Envelopes are optional; however, if you choose to use an envelope, the format of an envelope that you specify in a messaging
port must agree with the format of the document or documents that it contains. The document format is determined by the
specification referred to in the outbound document definition of an associated channel. For example, if you choose an envelope
with an X12 format for a messaging port, you must select an outbound document definition for the channel that points to an X12
specification. Conversely, if you select an outbound document definition in a channel, the messaging port that the channel is
associated with must have an envelope with a matching format. For example, if you select an outbound document definition that
has a specification with an X12 format, you should specify an X12 envelope in the messaging port.

Security properties

The security properties that you designate for a messaging port apply to all channels associated with that messaging port. For
example, if you designate Secure Multipurpose Internet Mail Extensions (S/MIME) encryption for a messaging port, all documents
processed by channels associated with that messaging port are encrypted using the specified encryption.

If you have documents that need to be secured using a different encryption or that do not need to be encrypted, you need to
create a separate messaging port with the appropriate security properties for those documents.

BizTalk Server 2002 supports Multipurpose Internet Mail Extensions (MIME) encoding.

https://msdn.microsoft.com/en-us/library/ee265290(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

The MIME message format standard specifies how to format messages so that client programs can decode and display complex
message bodies that can contain rich text, multiple character sets, and binary attachments such as pictures, sounds, and
spreadsheets. MIME is a richer and more flexible technology than uuencode and provides generic and flexible mechanisms for
including content within messages. With MIME formatting, you can:

Specify alternate content encoding mechanisms for each body part.

Relate groups of multiple content parts within a message.

Use character sets other than US-ASCII character sets in body parts and message header fields.

Specify the intended disposition of a content part (for example, inline or attachment).

BizTalk Server 2002 supports Secure Multipurpose Internet Mail Extensions (S/MIME) certificate-based public key
encryption.

Encryption can be applied to business data that you send to your trading partners. By using an encryption certificate to secure the
data, you can ensure that only the intended recipient can access the information.

To encrypt business data, the source organization must have a copy of the public key for the encryption certificate of the
destination organization. The source organization uses this public key certificate to encrypt the business data and then forwards
the encrypted data to the destination organization. The destination organization can then use the private key of its encryption
certificate to decrypt the business data.

For an open messaging port, the encryption security properties are disabled because the destination organization is unknown.

BizTalk Server 2002 supports Secure Multipurpose Internet Mail Extensions (S/MIME) certificate-based public-key
digital signing. For more information about certificates, see Understanding Certificates.

Digital signing can be used to ensure the authenticity of the source of data, to ensure that the data has not been modified, and to
prevent the source of the data from repudiating the message.

A signature certificate is used to create digital signatures for authenticating data. Signing data does not alter the data, but it
generates a digital signature string that is either bundled with the data or transmitted separately.

To digitally sign a document, the data is processed to create a message digest, which is a condensed text string that has been
derived from a message. The source organization's private key is then used to encrypt the message digest to form the digital
signature. The data, along with the digital signature, is transmitted to the recipient.

To verify a digital signature, the recipient must have a copy of the public key from the sender's signature certificate. The recipient
decrypts the digest from the signature that was sent, and then calculates a message digest independently. The results of the two
digests are compared; if they are identical, the information has not been tampered with.

 Notes

If you submit MIME-encoded data using SMTP, a system-generated file name will appear in the main body of the output
message, and your data will be displayed as an attachment.

For more information about certificates, see Certificates Overview.

Related Topics

Create and Manage Messaging Ports

Open Messaging Ports

Understanding Messaging Ports

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Open Messaging Ports
An open messaging port is a messaging port to an organization for which you have not explicitly declared a specific
destination organization. An open messaging port cannot have an application as its destination.

For an open messaging port, the destination and transport information must be provided either in the document or in parameters
when the document is submitted to Microsoft BizTalk Server 2002. If submission parameters are used, they override any
destination and transport information contained in the document. For more information about submitting documents, see
Submitting.

When you create a channel for an open messaging port, and the destination information is provided in the document, the
inbound document definition for that channel must reference a specification that is properly configured. For more information
about how to configure a document specification to process documents for an open messaging port, see
Set dictionary properties.

For an open messaging port, the encryption security properties are disabled because the destination organization is unknown. To
set the encryption properties, you need to specify a certificate from a specific, known destination organization. An encryption
certificate is used to encrypt documents that are transported to the specific destination organization.

You can use an open messaging port to send one or more standardized documents to many different current or future
trading partner organizations without creating a messaging port for each destination. All documents share the same envelope,
security, and transport properties that are established in the messaging port.

An open messaging port differs from a distribution list in the following ways:

With an open messaging port, each document from a channel results in only one document being delivered to only one
destination. With a distribution list, each document from a channel can result in the document being delivered to multiple
destinations.

With an open messaging port, you do not have to change the properties of the messaging port to send information to a
different trading partner organization. With a distribution list, you have to add a messaging port to send information to a
different trading partner organization.

 Important

When you declare a messaging port as an open messaging port, you should not create channels for the messaging port that
have an outbound document definition with an X12 or EDIFACT specification. To build an X12 or EDIFACT envelope, the
server must have a source and a destination organization identifier. An open messaging port does not specify a destination
organization identifier. In addition, the documents for an open messaging port must have the destination address within the
document, but X12 and EDIFACT documents do not contain this information.

Related Topics

Create and Manage Messaging Ports

Messaging Port Elements

Understanding Messaging Ports

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251409(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Understanding Organizations
The organizations that you create by using BizTalk Messaging Manager represent the trading partners with which you exchange
documents. A special organization type, called the home organization, represents your business.

Home organization

BizTalk Messaging Manager creates the home organization for you automatically. When you configure the home organization,
you can rename it to make it easier to identify as your business. There is only one home organization, and you cannot delete it.

You cannot designate the home organization as a source or destination for documents in a messaging port or a channel. Only
applications of the home organization can be designated as the source or destination for documents within your business. For
example, you might create a messaging port that designates a trading partner organization as the destination for documents that
your business sends. Then, when you create a channel for that messaging port, rather than designating your home organization
as the source, you would designate a specific internal application within your business where the documents originate. You also
can designate one application of the home organization as the source for documents in a channel and another application as the
destination in a messaging port.

Applications of the home organization

The applications that you add to the home organization enable you to identify and track the flow of documents between Microsoft
BizTalk Server 2002 and actual internal applications within your business. However, simply creating an application and
designating it as a source or destination within BizTalk Messaging Manager does not control or enable the flow of documents to
or from an actual internal application. To integrate an internal application with BizTalk Server 2002 and direct the flow of
documents to or from the application, you need to further configure the server.

There are several ways to transport documents from an originating application to BizTalk Server. The configuration needed to
integrate an application to transport documents to the server is performed entirely outside BizTalk Messaging Manager. For more
information, see Submitting.

To deliver documents from BizTalk Server to an internal application can require configuration both within and outside BizTalk
Messaging Manager. The transport type and address that you specify in a messaging port can determine a specific location to
which documents are delivered. An application or a separate component must then be configured to retrieve documents received
at that location for the destination application. Or, within the transport properties of a messaging port, you can specify an
application integration component that is capable of delivering documents directly to an application. For more information, see
Understanding Messaging Ports.

Trading partner organizations

All other organizations that you create with BizTalk Messaging Manager represent external trading partners or business units of a
trading partner. You can create any number of organizations. You can designate a trading partner organization either as a source
of documents in a channel or as a destination for documents in a messaging port.

You can also designate one trading partner as the source of documents in a channel and another as the destination for the
documents in a messaging port. In this case, your business serves as a third-party intermediary between the two trading partners.

As with applications, simply creating an organization and designating it as a source or destination within BizTalk Messaging
Manager does not enable the flow of documents to or from that organization. To control and direct the flow of documents
between your partner organizations and BizTalk Server 2002, you need to further configure the server.

There are several ways for an external trading partner as a source organization to transport documents to your BizTalk Server. The
configuration needed to do this is similar to the way that you integrate applications to transport documents to the server, and it is
also performed entirely outside BizTalk Messaging Manager. For more information, see Submitting.

To deliver documents from your BizTalk Server to an external trading partner as a destination organization can require
configuration both within and outside BizTalk Messaging Manager. The transport type and address that you specify in a
messaging port determine a specific location to which documents are delivered. The destination organization, which must have
access to this location, can then configure its own BizTalk Server, one of its internal applications, or a separate component to
process the documents received at that location. For more information about configuring messaging ports, see
Understanding Messaging Ports.

The following topic is covered in this section:

Organization Identifiers

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Organization Identifiers
Microsoft BizTalk Server 2002 and other trading partners use organization identifiers to uniquely identify organizations. An
organization can have more than one organization identifier; however, each identifier must be unique to that organization. For
example, a telephone number, a URL, or a Data Universal Numbering System (D-U-N-S) number can each uniquely identify an
organization, but no two organizations can use the same telephone number as an organization identifier.

An organization identifier consists of three separate elements: a name, a qualifier, and a value. For example, a business might use
a telephone number to uniquely identify itself. In this example, the name of the identifier is "telephone number," the qualifier that
identifies the identifier as a telephone number is the number 12, and the value of the actual telephone number is (801-555-1079).
Each organization identifier name has a unique qualifier that is used in place of the name to indicate the type of identifier. For
example, the standard qualifier for a telephone number identifier is 12. When BizTalk Server 2002 processes documents, only the
qualifier and the value are used to identify organizations.

Each organization must have at least one identifier. When you create an organization, BizTalk Messaging Manager creates an
identifier with the name Organization. The qualifier for this identifier is OrganizationName, and its value is the name that you give
to the organization. This identifier is also set as the default identifier, which means that it is used when no other identifier is
specified. You can create additional identifiers and designate any identifier as the default identifier. You cannot delete the
OrganizationName identifier or the designated default identifier. The default identifier is used to identify an organization unless
you override it by selecting a different identifier in a messaging port or channel.

When BizTalk Server 2002 processes and transports a document, it includes the organization identifiers of the
destination organization and the source organization in the envelope header. When BizTalk Server 2002 receives documents, it
searches the data for the source organization and the destination organization identifiers. The server then uses the identifiers and
the document-definition name to determine which channels to use to process the documents.

Interchanges with an EDI format have restrictions on organization identifiers. When you use an organization identifier for X12
envelopes, you should not use the organization identifier named Organization, or any other identifier that has a qualifier that
exceeds 2 characters or a value that exceeds 15 characters. When you use an organization identifier for EDIFACT envelopes, you
should not use the organization identifier named Organization, or any other identifier that has a qualifier that exceeds 4
characters or a value that exceeds 35 characters.

 Notes

If the server encounters an empty qualifier and a non-empty value when processing an inbound document with an EDIFACT
format, it converts the empty qualifier to a dash (-). If you want to process an inbound document with an EDIFACT format
that has an empty qualifier, or an outbound envelope with an empty qualifier, you must create a custom organization
identifier that has a single dash as the qualifier. For an outbound EDIFACT document, the server converts the dash to an
empty qualifier.

If the server encounters an empty qualifier and a non-empty value when processing an inbound document with a format
other than EDIFACT, it converts the empty qualifier to OrganizationName.

Related Topics

Create and Manage Organizations

Understanding Organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Understanding Document Definitions
A document definition represents a specific type of document that is processed by Microsoft BizTalk Server 2002. A document
definition represents the type of inbound or outbound document in a channel and provides a pointer to a document specification.
The document specification defines the document structure, type, and version. The same document specification can be used in
any number of document definitions, and the same document definition can be used in any number of channels.

If the format and structure of the inbound and outbound document in a channel are the same, you can use the same specification
for both. Otherwise, you must specify a map, which the server uses to transform the format or structure of the inbound document
into that of the outbound document.

When BizTalk Server 2002 receives a document, it identifies the appropriate channel or channels that have matching inbound
document definitions. The inbound document definition for each channel points to a specification. The server uses the
specification to translate a non-XML inbound document from its original format into an intermediate XML format, and to validate
the document's structure. The outbound document definition for the channel also points to a specification. The server uses the
outbound document specification to validate the data structure of the outbound document. If required, the server also can use the
specification to translate the outbound document from an XML format into a format that the destination organization or
destination application can recognize and use. The destination is designated in the messaging port with which the channel is
associated.

A document specification for a document definition is optional; however, in most cases you should select one. If you do not select
a specification:

The data that you process is not translated into XML on the inbound side or from XML on the outbound side.

The data is not validated against a specification to ensure that it does not contain errors.

You cannot transform the structure or format of the data by using a map in a channel.

You cannot specify global tracking fields or selection criteria.

A document specification is not required if you want to use the document definition in a pass-through submission for data that is
not in Unicode XML format. An example would be if you want to send binary data through BizTalk Server 2002 to a destination
without transforming the data in any way. In this case, you should not select a document specification for either the inbound or
the outbound document definition of the channel that is used for the pass-through submission.

The following topics are covered in this section:

Tracking Document Data Fields

Understanding Selection Criteria

Related Topics

Create and Manage Document Definitions

Using BizTalk Editor

Mapping Specifications

Understanding Channels

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Tracking Document Data Fields
In a document definition, you can designate fields contained within the specification that you want to log to a Tracking database.
The fields that you designate in a document definition are tracked for all document instances processed by channels that use the
document definition as its inbound document definition. Because these fields are tracked for all channels, they are referred to as
global tracking fields.

When you select an inbound document definition for a channel, you can designate specification fields from within the channel to
be tracked. The specification fields that you designate in a channel are tracked in place of any global tracking fields for documents
that are processed by that specific channel.

The fields that you designate for tracking in a document definition or in a channel are logged to a Tracking database only for the
inbound document definition of the channel. Any fields that are designated for tracking in the outbound document definition of
the channel are not tracked.

With the tracking data from the documents that are processed, you can analyze information about your operation. For example,
an invoice-total field can be tracked for every invoice that you send to your trading partners. You can then determine the total
dollar amount for invoices sent to all trading partners for a given period of time, or you can determine the total dollar amount of
invoices for each individual trading partner.

Related Topics

Create and Manage Document Definitions

Using BizTalk Document Tracking

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Understanding Selection Criteria
Selection criteria are a unique set of name-value pairs that Microsoft BizTalk Server 2002 uses only to process EDI documents. For
inbound X12 or EDIFACT documents, the server uses selection criteria to uniquely identify and select a document definition
because no document definition name is available within individual EDI documents.

For outbound X12 or EDIFACT documents, selection criteria are used to create the functional group header information in the
envelope.

The following topics are covered in this section:

Using Selection Criteria with Inbound Documents

Using Selection Criteria with Outbound Documents

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265140(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Understanding Envelopes
An envelope encapsulates electronic business data for transport. An envelope typically consists of header and footer information,
or of header information only. The envelope properties that you specify provide Microsoft BizTalk Server 2002 with information
that the server needs to either open inbound interchanges or create outbound interchanges. When you create an envelope, you
specify an envelope format; for certain types of formats, you also can select an envelope specification.

The envelope formats supported by BizTalk Server 2002 are custom XML, ANSI X12, EDIFACT, flat file (delimited and positional),
custom, and reliable. The reliable format processes envelopes that are compliant with BizTalk Framework 2.0. For more
information about BizTalk Framework 2.0, go to the Microsoft BizTalk Server Web site (www.microsoft.com/biztalk/). If you
specify a custom envelope format, you must create and register a custom parser component to process inbound envelopes or a
custom serializer component to process outbound envelopes. For more information, see Parsers and Serializers.

Custom XML and flat-file formats

To enable BizTalk Server 2002 to process inbound interchanges with a custom XML or flat-file format, you must create envelopes
with a matching format. To enable BizTalk Server to process inbound interchanges with a custom format, you must create and
register a custom parser component. BizTalk Server can process inbound interchanges with ANSI X12, UN/EDIFACT, or reliable
formats without using an envelope created by using BizTalk Messaging Manager.

To process outbound documents with any format, you must create an envelope and select it in a messaging port to create an
interchange with the required envelope format and header information. BizTalk Server places only one document in each
outbound interchange.

X12 and EDIFACT formats

When you select an envelope with an X12 or EDIFACT format in a messaging port, you must also specify delimiters and an
interchange control number. These EDI properties apply only to the envelopes selected for use with that messaging port. When
you select an envelope with a custom format, delimiters and an interchange control number are optional and depend on the
requirements of your custom parser or serializer components. When you create a channel for a messaging port that uses an X12,
EDIFACT, or custom envelope, you can specify a functional group control number that applies only to documents processed by
that channel and messaging port combination.

The format of an envelope that you select in a messaging port must agree with the format of the outbound document that it
contains. The format of the outbound document is determined by the specification referred to in the outbound
document definition of a channel. For example, if you choose an envelope with an X12 format for a messaging port, when you
create a channel for that messaging port you must select an outbound document definition that points to a specification that also
has an X12 format.

If you do not specify an envelope when creating a messaging port, the data is sent in XML format without any header.

Handling DBCS characters

 International Issue

The UNOX syntax identifier in EDIFACT is defined as a code extension technique to cover other non-single-byte characters.
However, some countries had already defined their own standards before the UNOX syntax was created. For example, in Korea,
the standard called KEDIFACT marks data by KECA rather than UNO*. (The UNO* syntax is specified in ISO 9735 EDIFACT System
Rules.) The EDIFACT data received by BizTalk Server has a modified header such that it is UNOA; however, the double-byte
character set (DBCS) characters still remain. UNOA consists of uppercase ASCII characters only, and does not properly convert the
DBCS characters.

To resolve this, the EDIFACT parser and serializer have been updated. If the header is in UNOA characters, the EDIFACT parser and
serializer accept a registry key to define a codepage, other than the default codepage, that converts the data. A registry value,
called EDIFACTUNOACodepage, has been added to the set of values that BizTalk Server defines. This registry value has a default
of 0, and, if set to 0, uses BizTalk Server behavior. If this registry value is set to another value, that value is the codepage value
used to convert the resultant KEDIFACT data.

The codepage change is global. All EDIFACT data passing through BizTalk Server processes data according to the
EDIFACTUNOACodepage codepage.

 Important

EDIFACT documents with the UNOX or the UNOY syntax identifier are not supported in BizTalk Server 2002.

 Notes

http://www.microsoft.com/biztalk/
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

A control number can be skipped if a catastrophic failure occurs after a document has been sent but before it has been
removed from the BizTalk Server Work queue. To avoid serialization of all threads, the control number from the BizTalk
Server database is retrieved and incremented outside of the COM+ transaction but within its own local SQL transaction.
Therefore, while a control number will be used only once, it is possible that a thread that received control number 1000
would fail after retrieving this number. In this case, if the transport was transacted, the transmission is rolled back. If the
transaction did not take place, the message might not yet have been sent at the moment of failure. In either case, the control
number associated with that document is skipped and not reused.

When processing envelopes that are compliant with BizTalk Framework 2.0, BizTalk Server 2002 should be considered the
endpoint with regard to the expiration time. When BizTalk Framework 2.0–compliant documents are submitted to BizTalk
Server 2002, either from an application or a trading partner, the following fields are overwritten if present, or created if
absent:

In the properties subsection:

<prop:identity>

<prop:sentAt>

<prop:expiresAt>

In the receipt information subsection:

<sendTo>

<address>

<sendReceiptBy>

The following topics are covered in this section:

Using Envelopes for Inbound Processing

Using Envelopes for Outbound Processing

Related Topics

Create and Manage Envelopes

Understanding Messaging Ports

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Using Envelopes for Inbound Processing
Microsoft BizTalk Server 2002 can process an inbound interchange with an X12 or EDIFACT format without using an envelope
created by using BizTalk Messaging Manager.

For BizTalk Server 2002 to process an inbound interchange with a flat-file format, you must create an envelope by using BizTalk
Messaging Manager. That envelope must point to a specification that the server can use to interpret and open the interchange.
The name of the envelope must be provided to the server when the interchange is submitted for processing. For more
information, see Submitting.

For BizTalk Server 2002 to process an inbound interchange with a custom XML format, you must create an envelope by using
BizTalk Messaging Manager. However, the server is able to locate the custom XML envelope that it needs to interpret and open
the interchange without the name of the envelope being provided at submission. You can provide the server with the name of the
envelope at submission, but it is not required. For more information, see Submitting.

For BizTalk Server 2002 to process an inbound interchange with a custom format, you must create a custom parser to open the
interchange. For more information, see Parsers.

The envelopes that you create to process inbound interchanges do not need to be selected in a messaging port to be used by the
server. Only envelopes used for processing outbound interchanges need to be selected in a messaging port.

Related Topics

Create and Manage Envelopes

Understanding Envelopes

Using Envelopes for Outbound Processing

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Using Envelopes for Outbound Processing
Messaging ports regulate the outbound flow of data from Microsoft BizTalk Server 2002 to a specified destination. When you
create a messaging port, you can select an envelope for the documents that are processed by that messaging port. If you select an
envelope, the envelope format must match the format of the documents that the envelope contains. The format of the documents
is determined by the specification referred to in the outbound document definition of a channel. Once you create an envelope by
using BizTalk Messaging Manager, you can use it in any number of messaging ports.

When BizTalk Server 2002 processes an outbound document, the server uses the properties of the envelope selected in the
messaging port to create an interchange by encapsulating or prefixing the document. If you do not specify an envelope for a
messaging port, the data is sent in XML format without any header or footer. If you specify a custom XML format, but do not
select an envelope specification, the data is sent using the reliable format. The reliable format processes envelopes that are
compliant with BizTalk Framework 2.0. For more information about BizTalk Framework 2.0, go to the Microsoft BizTalk Server
Web site (www.microsoft.com/biztalk/).

For BizTalk Server 2002 to process an outbound interchange with a custom format, you must create a custom serializer to create
the interchange. For more information, see Serializers.

When you select an envelope with an X12 or EDIFACT format, you must specify an interchange control number and delimiters. An
interchange control number is used to identify and track documents that are processed using the messaging port. The
interchange control number is incremented with each use of the envelope and messaging port. Delimiters indicate the characters
that are used to separate the records and fields of the envelope and the documents contained in the envelope. For envelopes with
a custom format, an interchange control number and delimiters are optional.

 Important

The envelope format for a messaging port must agree with the document type format of the specification that is referred to
by the outbound document definition for any associated channel. For example, if you choose an envelope with an X12
format for a messaging port, you must select an outbound document definition for the channel that points to an X12
specification.

Related Topics

Create and Manage Envelopes

Understanding Envelopes

Using Envelopes for Inbound Processing

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.microsoft.com/biztalk/
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Understanding Receipts
When exchanging documents with a trading partner, your business processes might require you to receive receipts for the
documents that you send, or to generate receipts for documents that a trading partner sends to your business.

BizTalk Messaging Services provides two methods for processing receipts for interchanges. For interchanges that use the X12 or
EDIFACT parser, or a custom parser that requires receipts, you can configure BizTalk Messaging Manager to use channel
properties to process receipts. For interchanges that use the XML parser, you have the option of using reliable messaging, which
processes receipts automatically to guarantee the reliable delivery of data.

The following topics are covered in this section:

Processing Receipts Using Channels

Processing Receipts Using Reliable Messaging

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Processing Receipts Using Channels
This section explains how you can configure BizTalk Messaging Services to use channel properties to control the processing of
receipts. The destination system is configured to generate (send) receipts to the source system. The source system is configured to
expect (receive) receipts from the destination system and correlate them with the original interchanges. This configuration applies
only if you process interchanges that use the X12 or EDIFACT parser, or a custom parser that requires receipts. For more
information about creating custom parsers, see Parsers. If you process interchanges that use the XML parser, see
Processing Receipts Using Reliable Messaging.

If you use a custom parser and want to correlate receipts with the original interchanges, you must create a custom correlation
component.

For the source system to receive receipts, the destination system also must be configured to send receipts. Configuring a channel
on the source system to expect a receipt is not sufficient to receive receipts.

The following illustration shows the configuration for both the source and destination systems using channel properties for
processing receipts.

The following topics are covered in this section:

Configuring the Source System for Channel Receipts

Configuring the Destination System for Channel Receipts

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Processing Receipts Using Reliable Messaging
This section explains how you can configure BizTalk Messaging Services to send and receive receipts by using reliable messaging
envelopes, which create interchanges that are compliant with BizTalk Framework 2.0. Reliable messaging enables receipts to be
processed automatically, to ensure the reliable delivery of data. For more information about BizTalk Framework 2.0, go to the
Microsoft BizTalk Server Web site (www.microsoft.com/biztalk/). If you send and receive interchanges that use the X12, EDIFACT,
or a custom parser, see Processing Receipts Using Channels.

By using BizTalk Messaging Manager, you can configure a messaging port to use a reliable envelope format for an outbound
interchange. Envelopes that use the reliable messaging format must always include a reply-to URL address in the header. The
reply-to address is used by the destination system to send a receipt to the interchange sender system.

The following topics are covered in this section:

Configuring the Source System for Reliable Messaging Receipts

Configuring the Destination System for Reliable Messaging Receipts

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.microsoft.com/biztalk/
https://msdn.microsoft.com/en-us/library/ee265125(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Understanding Distribution Lists
A distribution list is a group of messaging ports with which you can send the same document to several different trading partner
organizations or internal applications.

You can use a distribution list to send the same data to several trading partner organizations or internal applications of your
home organization at the same time. For example, you can send the same catalog, price list, or newsletter to several trading
partner organizations by submitting the information only once to Microsoft BizTalk Server 2002.

You must first create a messaging port to each of the trading partner organizations or internal applications that you want to
receive the data, and then add the messaging ports to a distribution list. Open messaging ports cannot be added to a distribution
list. You can create new messaging ports to additional trading partner organizations or internal applications, and then add those
messaging ports to an existing distribution list. For more information, see Create messaging ports.

You must create at least one channel for each distribution list, or else the distribution list is not functional. For more information,
see Create channels.

When BizTalk Server 2002 invokes a channel related to a distribution list, it invokes only the channel that is associated with the
distribution list to process the data. None of the channels that are associated with the individual messaging ports in the
distribution list are invoked. The server uses the properties of each messaging port successively to transport the data to the
destinations specified in the messaging ports.

A distribution list differs from an open messaging port in the following ways:

With a distribution list, each document from a channel can result in the document being delivered to multiple destinations.
With an open messaging port, each document from a channel results in only one document being delivered to only one
destination.

With a distribution list, you have to add a messaging port to send information to a different trading partner organization.
With an open messaging port, you do not have to change the properties of the messaging port to send information to a
different trading partner organization.

Related Topic

Use Distribution Lists

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Why Perform BizTalk Messaging Manager Tasks
This section provides a quick reference about why you perform BizTalk Messaging Manager tasks. The following table identifies
primary tasks and their specific subtasks, lists the purpose of each task, and provides links to the corresponding procedures.

Task Why perform the task
Create and Manage Channels:

Create channels To process documents received through BizTalk Messaging Services.

Set Channel Properties To designate specification fields to track for the inbound document definition.

To create a channel filtering expression, which determines if BizTalk Server invoke
s the channel, based on the value of a field or fields within the document being pr
ocessed.

To configure receipts, security properties, and document logging options.

To specify a group control number for documents with
electronic data interchange (EDI) formats, set the number and time interval that th
e server uses to resend documents, or override the transport component and
envelope properties for the messaging port or distribution list.

Create and Manage Messaging Ports:
Create messaging ports To transport documents received through BizTalk Messaging Services to a specified

destination.
Set Messaging Port Properties To designate a specific address to which documents are delivered.

To set the transport type for getting documents to that location.

To specify how the documents are enveloped and secured prior to transport.

Create and Manage Organizations:
Configure the home organization To change the name of your home organization from the name it was given by

BizTalk Messaging Manager.

To modify the values of the home organization identifiers, which are properties u
sed to uniquely identify the home organization.

To set application properties, which enable you to identify and track the flow of d
ocuments between BizTalk Server and internal applications within your business.

Create organizations To enable document exchange between your company and your trading partners. The h
ome organization represents your company and is automatically created for you by Biz
Talk Messaging Manager. All other organizations that you create represent external tra
ding partners or business units of a trading partner.

Set Organization Properties To set organization identifiers, which are properties used to uniquely identify org
anizations.

To set application properties, which enable you to identify and track the flow of d
ocuments between your company and your trading partners.

Create and Manage Document Defini
tions:

Create document definitions To represent specific types of documents that are processed by BizTalk Server.

https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265172(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Set Document Definition Properties To create a document specification, which defines a document's structure, type, a
nd version. The same document specification can be used in any number of
document definitions, and the same document definition can be used in any num
ber of channels.

To set global tracking properties so you can track documents through the
Tracking database.

To set selection criteria, which are a unique set of name-value pairs that BizTalk S
erver uses to process EDI documents.

Create and Manage Envelopes:
Create envelopes To encapsulate electronic business data for transport. The envelope properties that you

specify provide BizTalk Server with information that the server needs to either open inb
ound interchanges or create outbound interchanges.

Select an envelope specification To apply a specification to an envelope format.

Use Distribution Lists:
Create distribution lists To send the same document to several different trading partner organizations or intern

al applications.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265209(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265203(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265127(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

How to Perform BizTalk Messaging Manager Tasks
This section provides task-specific information about how to use BizTalk Messaging Manager. It is highly recommended that you
review About BizTalk Messaging Manager to fully understand the relationships between objects that you can create by using
BizTalk Messaging Manager.

The following topics are covered in this section:

Create and Manage Channels

Create and Manage Messaging Ports

Create and Manage Organizations

Create and Manage Document Definitions

Create and Manage Envelopes

Use Distribution Lists

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Create and Manage Channels
This section provides task-specific information about how to create and manage channels. It is highly recommended that you
review Understanding Channels to fully understand channels.

The following procedures are covered in this section:

Create channels

Search for channels

Edit channels

Delete channels

Set Channel Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274700(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Set Channel Properties
This section provides task-specific information about how to configure the properties of a channel. The following procedures are
covered in this section:

Set general channel-information properties

Set source organization properties

Set source application properties

Set inbound document properties

Set outbound document properties

Set document logging properties

Set advanced configuration properties

Select a source organization

Select a receipt channel

Select an inbound document definition

Select a certificate to verify inbound document decryption

Select a certificate to verify inbound document signature

Select an outbound document definition

Select a map

Select a certificate for outbound signature

Override messaging port defaults

Override distribution list defaults

Set Tracking for Inbound Document Properties

Set Channel Filtering Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274707(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274675(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274680(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274694(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274671(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274702(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274705(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274670(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274687(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274715(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Create and Manage Messaging Ports
This section provides task-specific information about how to create and manage messaging ports. It is highly recommended that
you review Understanding Messaging Ports to fully understand messaging ports.

The following procedures are covered in this section:

Create messaging ports

Search for messaging ports

Edit messaging ports

Delete messaging ports

Set Messaging Port Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250814(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265324(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250821(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Set Messaging Port Properties
This section provides task-specific information about how to configure the properties of a messaging port.

The following procedures are covered in this section:

Set general messaging-port information properties

Set destination organization properties

Set destination application properties

Set envelope information properties

Set security information properties

Select a destination organization

Select an encryption certificate

Set Transport Properties

Set Envelope Delimiters

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250842(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250837(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265120(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250816(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250808(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250828(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265327(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250831(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Create and Manage Organizations
This section provides task-specific information about how to create and manage organizations. It is highly recommended that you
review Understanding Organizations to fully understand organizations.

The following procedures are covered in this section:

Configure the home organization

Create organizations

Search for organizations

Edit organizations

Delete organizations

Set Organization Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265261(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265274(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Set Organization Properties
This section provides task-specific information about how to configure the properties of an organization.

The following procedures are covered in this section:

Set general organization properties

Set Organization Identifier Properties

Set Application Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265296(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265256(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265277(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Create and Manage Document Definitions
This section provides task-specific information about how to create and manage document definitions. It is highly recommended
that you review Understanding Document Definitions to fully understand document definitions.

The following procedures are covered in this section:

Create document definitions

Search for document definitions

Edit document definitions

Delete document definitions

Set Document Definition Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265172(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265153(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265142(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265189(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Set Document Definition Properties
This section provides task-specific information about how to configure the properties of a document definition.

The following procedures are covered in this section:

Set general document-definition properties

Select a document specification

Set Global Tracking Properties

Set Selection Criteria Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265147(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265186(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265158(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265183(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Create and Manage Envelopes
This section provides task-specific information about how to create and manage envelopes. It is highly recommended that you
review Understanding Envelopes to fully understand envelopes.

The following procedures are covered in this section:

Create envelopes

Search for envelopes

Edit envelopes

Delete envelopes

Select an envelope specification

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265209(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265195(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265212(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265206(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265203(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Configuring BizTalk Messaging Services

Use Distribution Lists
This section provides task-specific information about how to use distribution lists. It is highly recommended that you review
Understanding Distribution Lists to fully understand distribution lists.

The following procedures are covered in this section:

Create distribution lists

Search for distribution lists

Edit distribution lists

Delete distribution lists

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265127(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265137(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265131(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications and Mapping Data

Creating Specifications and Mapping Data
Microsoft® BizTalk™ Server 2002 provides tools with which you can define the structure of a document and map data from one
format to another. These tools are based on Extensible Markup Language (XML) and related standards, such as
Extensible Stylesheet Language (XSL) Transformation (XSLT), and they provide the essential data translation necessary for an
application-integration server.

Using BizTalk Editor, you can create specifications that are based on industry standards and common schemas, or you can create
specifications that are unique to your organization.

Using BizTalk Mapper, you can create a map between the records and fields of two different specifications. The server uses the
map to process and translate data into formats that can be shared within your own organization or with your partner
organizations.

The following topics are covered in this section:

Using BizTalk Editor

Using BizTalk Mapper

Troubleshooting BizTalk Editor and BizTalk Mapper

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Using BizTalk Editor
Microsoft® BizTalk™ Editor is a tool with which you can create, edit, and manage specifications. BizTalk Editor uses
XML-Data Reduced (XDR) syntax, which provides a common vocabulary to handle overlaps between syntactic, database, and
conceptual schemas.

BizTalk Editor creates specifications by interpreting the properties of records and fields that are contained in a file. Specifications
represent the structured data as Extensible Markup Language (XML), regardless of the original format. In addition, specifications
that you create or modify in BizTalk Editor provide common data descriptions that BizTalk Mapper can use to transform data
across dissimilar formats. The specifications provide data portability across business processes. A specification created using
BizTalk Editor can be based on any of the following:

Well-formed XML

XDR-based document templates

XDR schemas

Document type definitions (DTDs)

Microsoft ActiveX® Data Objects (ADO) recordsets stored as XML

Electronic data interchange (EDI) (X12 and EDIFACT)

Flat files, including delimited and positional files (for example, SAP IDOCs), or flat files that are both delimited and positional

Structured document formats

In BizTalk Editor you can open a blank specification, which contains no structure, or you can import an existing schema or
specification. For example, you can import a DTD, which is a structured file that denotes elements and attributes as well as any
constraints on the order, frequency, and content of the elements and attributes. Standard specifications, such as XML, X12, or
EDIFACT, can also be used to create new specifications.

When an instance of a document is imported, BizTalk Editor interprets the structure of the document and produces a specification
that is an XDR representation of the document. You can edit any necessary records and fields that appear in the BizTalk Editor
specification tree, and then save the structure as a specification. You can import the following file types:

XDR schemas

Well-formed XML

DTDs

Each specification describes the structure of the file, given a specific set of tags. BizTalk Editor also provides several templates that
can be used as starting points for creating specifications for common documents, such as purchase orders, invoices, and advance
shipping notices.

When BizTalk Server 2002 processes documents, the server uses a map, which you create by using BizTalk Mapper, to translate
incoming and outgoing data from one specification format to another.

The following topics are covered in this section:

For comprehensive information about BizTalk Editor, see About BizTalk Editor.

For quick reference about why you perform specific tasks, see Why Perform BizTalk Editor Tasks.

For detailed procedures on how to accomplish tasks, see How to Perform BizTalk Editor Tasks.

For problem-solving instructions, see Troubleshooting BizTalk Editor and BizTalk Mapper.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Creating Specifications

About BizTalk Editor
BizTalk Editor is a graphical tool for defining specifications that are used to initialize the parts of Microsoft BizTalk Server 2002
that read and write data for transactions among organizations and between trading partners. This section provides detailed
conceptual information that is essential to understanding BizTalk Editor.

The following topics are covered in this section:

Understanding Specifications

BizTalk Editor Environment

Importing Files

Exporting Files

Records, Fields, and Properties

General Purpose Triggers

Namespace Support

Adding SQL Annotations

Creating XML and Native Instances

Validating Instances and Specifications

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Understanding Specifications
Specifications are BizTalk Server-specific Extensible Markup Language (XML) schemas that are created by BizTalk Editor. You can
create specifications that are based on industry standards (such as XML, EDIFACT, or X12) or non-industry standards (such as
delimited flat files, positional flat files, delimited and positional flat files, blank specifications, or existing files).

Industry standards

Industry standards provide uniform ways for businesses to exchange data electronically. The use of a common business language
enables computers to communicate within an organization or from one business to another. Industry standards specify the
format and data content of electronic business transactions. A specification that is based on an industry standard is considered a
subset of the standard. To create a specification that meets your needs, you can begin with an industry-standard specification as a
baseline and then delete any records and fields you do not need. In addition, you might need to modify properties for the
remaining records and fields.

Electronic data interchange (EDI) is a commonly used industry-standard specification. BizTalk Editor provides a subset of EDI
document specifications and an associated EDI code list database. These specifications are generated directly from data obtained
from officially recognized publishers of the X12 and EDIFACT standards. It is highly recommended that you validate EDI instances
against specifications that are created prior to a production implementation of processes that use these specifications. For more
information and updates about EDI specifications and standards, go to the Microsoft BizTalk Server Web site
(www.microsoft.com/biztalk/).

Non-industry standards

In specifications that are based on non-industry standards, you must define the structure of the document in BizTalk Editor. You
can use BizTalk Editor for various types of non-industry standards: positional flat files, delimited flat files, or combined positional
and delimited flat files. To help you better understand how to work with flat files, see the samples included in BizTalk Server 2002.
The delimited flat file sample is in the Flat-FileDelimited folder located at \Program Files\Microsoft BizTalk Server\SDK\Messaging
Samples\. The positional flat file sample is in the Flat-FilePositional folder located at \Program Files\Microsoft BizTalk
Server\SDK\Messaging Samples\.

On the Parse tab, you must set the Structure property of the root node to Delimited if your flat file is both delimited and
positional. Additional record properties are set to either Delimited or Positional, depending on their attributes.

For more information about flat files, see Working with Positional and Delimited Flat Files.

Blank specifications

A blank specification contains only the root-node element. If you start from a blank specification, you must build the entire
specification structure. Rename the root element and then modify the root-element property values you want to change, such as
the heading information for the specification. You can then add records and fields and their properties as required for your
business processes.

Existing BizTalk Server 2000 files

Schemas from BizTalk Server 2000 are compatible with BizTalk Server 2002. If you open and save a specification in BizTalk Server
2002 that you created in BizTalk Server 2000, the file format will be changed and you will not be able to open it again using
BizTalk Server 2000.

The following topics are covered in this section:

Specification Structure

Supporting Standards

Summary List of Included EDI-Based Documents

Working with Positional and Delimited Flat Files

Invalid XML Name Characters

Invalid Character Ranges

Related Topics

Create a specification based on a flat file

http://www.microsoft.com/biztalk/
https://msdn.microsoft.com/en-us/library/ee251521(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251528(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251516(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251521(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251496(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251506(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Create a specification based on an empty template

Create a specification based on an existing specification

Create a specification based on a standard

Records, Fields, and Properties

Working with Positional and Delimited Flat Files

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251410(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251521(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

BizTalk Editor Environment
When you open BizTalk Editor, you will see a graphical user interface that enables you to create and work with specifications easy.

The following topics are covered in this section:

BizTalk Editor User Interface

BizTalk Editor Menus

BizTalk Editor Toolbar Buttons

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251500(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Importing Files
BizTalk Editor enables you to import files. It creates the file structure; however, you must assign all record and field property
values. The following types of files can be imported into BizTalk Editor:

Well-formed XML instances

Document type definitions (DTDs)

XML-Data Reduced (XDR) schemas

Microsoft Office files (using the well-formed XML import module)

However, you cannot import a file if it contains an external reference to another file. After importing a well-formed XML instance,
a DTD, an XDR schema, or a Microsoft Office file, BizTalk Editor creates a structure that is based on the imported file and displays a
set of records and fields. However, if the file that you import has an element that has content, is repeated in the instance data, and
has no children, BizTalk Editor creates it as a field, rather than a record, when it imports the structure. After you save the file in
BizTalk Editor, the file becomes a specification. This specification has the appropriate header information, and it adheres to a
specified structure.

BizTalk Editor is able to determine which element should be the root node. However, in some cases if it is unable to determine the
appropriate root node element, a dialog box displays that prompts you to specify the element that is the root node. However, if
the <schema> node has a name="a_name" attribute on it, BizTalk Editor uses this element name as the root node and will not
prompt you to select a root node even if there are multiple candidates or the root indicated by name is involved in a cycle. If you
want to be able to select a root node, you must open the XDR file and remove the name="a_name" attribute. Then import the
file and BizTalk Editor will prompt you to select a root element.

The following topics are covered in this section:

Importing Well-formed XML

Importing DTDs

Importing XDR Schemas

Importing Microsoft OfficeXP Files

Related Topic

Create a specification based on an imported file

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251514(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251504(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251502(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251494(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251486(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Exporting Files
You can export new and existing specifications only while they are open in BizTalk Editor. When you export a specification,
BizTalk-specific annotations are removed from the structure, and the resulting structure is saved as a general schema that can be
used by other applications. You can export both XML-Data Reduced (XDR) schemas and
Extensible (XML) Structure Definitions (XSD) schemas.

In addition, you can create an XSD schema from an XDR schema with a conversion script provided with a complete installation of
BizTalk Server 2002.

Related Topics

Export XDR schemas

Export XSD schemas

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251406(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Records, Fields, and Properties
BizTalk Editor presents a specification as a tree view of records and fields in a given order. Within this structure, you can create
parent-to-child relationships by using records and fields. Records can contain other records or fields, but fields cannot contain
other fields or records. A record is always an element, but a field can be either an element or an attribute.

You can add and insert records and fields to records and you can insert records and fields to fields. You cannot add records or
fields to a field. The following illustration explains how records and fields are placed in relationship to a particular node in the tree.

Selecting BlankSpecification and clicking the Add Record button will create Record1 and clicking the Add Field button will
create Field1. This is represented as section A in the illustration. Selecting Record1 and clicking the Add Record button will
create Record2 and clicking the Add Field button will create Field1 (the one located below Record2). This is represented as
section B in the illustration. Selecting Record1 and clicking the Insert Record button will create Record3 and clicking the Insert
Field button will create Field2. This is represented as section C in the illustration.

The specification tree, which presents the records and fields as nodes, provides you with an easy way to view, create, edit, and
delete all the records and fields in a specification. Each node in the specification tree has a set of property definitions, which are
represented on six tabs in the main window of BizTalk Editor: Declaration, Reference, Parse, Namespace, Dictionary, and
Code List. The data on these tabs is necessary for BizTalk Editor to translate a document from its original format to
Extensible Markup Language (XML). The information defines the structure of the document, whether the document is positional or
delimited, the order and length of the data, and the format of the data.

The following topics are covered in this section:

Records and Their Properties

Supported Time Format for X12

Mixed Content Support

Fields and Their Properties

Calculating Field Positions

Character Length Limits

Code List Values and Descriptions

Pad Characters

https://msdn.microsoft.com/en-us/library/ee251492(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251526(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251501(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251517(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251525(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251519(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251493(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Property Scope

Cyclical References

Default Value Integration

Summary of Data Types and Data Type Values

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251497(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251524(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251507(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251527(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

General Purpose Triggers
BizTalk Editor provides a property called Trigger Field on the Parse tab to identify a trigger field for any segment type for
Microsoft® BizTalk™ Accelerator for HIPAA schemas. A trigger field is basically a form of content-qualified tagging. The existing
Enumeration data type and Values attribute specify the value(s) that causes the trigger to be identified. The parser interprets
this trigger field during parsing and matches instance content with the node in the schema that has the corresponding trigger
value(s).

There are 11 segment types that use trigger fields to further define their meaning. The following table lists these segment types
and the corresponding trigger fields.

Segment Trigger field
AMT AMT01
CRC CRC01
DTM DTM01
DTP DTP01
ENT ENT02
HI HI01:01 (01 is a composite, first subfield)
N1 N101
NM1 NM01
NTE NTE01
REF REF01
RMR RMR01

BizTalk Editor enables duplicate peers to exist if all of them use trigger fields with values that are mutually exclusive. In other
words, duplicate peers continue to be prohibited when they introduce ambiguity.

Triggers easily extend to loop interpretation as well, because the trigger segment (that is, the segment housing the trigger field) is
always the first segment in the loop. Triggers are also supported on segments that may be nested inside of a loop.

BizTalk Editor is not able to validate that enumerations do not overlap on the trigger value on the same source tag identifier. If
you edit the properties and create an overlap, a run-time error will occur. Annotations you add that are needed to support
segment nesting are not lost when saving a specification.

In addition to the segment types mentioned in the previous table, there is also a special case Hierarchical Level (HL) segment. For
more information about this segment, see HL Segment Special Case.

 Important

Trigger fields can be attributes only of the record or loop being triggered. This is because all fields in X12 schemas are
represented using attributes.

The following topics are covered in this section:

Trigger Field Validation

HL Segment Special Case

Instance Structure Limitations

HL Validation

Related Topic

Set parse properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251402(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251439(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251402(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251456(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251425(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251429(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Namespace Support
BizTalk Editor provides support for namespaces. An Extensible Markup Language (XML) namespace is a collection of names that
can be used as element or attribute names in an XML document. The namespace qualifies element names uniquely to avoid
conflicts between elements with the same name that may exist in the same document. The namespace is identified by some
Universal Resource Identifier (URI), either as an Uniform Resource Locator (URL) or an Uniform Resource Name (URN).

In the case of non-XML data formats, the XDR schema is annotated with elements and attributes that belong to the
BizTalk Server 2002 namespace. These namespace qualified elements and attributes contain information about the processing of
non-XML formats, such as EDI and flat-file documents, to re-format them to an XML representation that BizTalk Server can use to
transform, log, and track.

The following topics are covered in this section:

Namespace Declarations

Preserving Namespaces in Imported Files

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251513(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251518(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Adding SQL Annotations
You can specify an SQL annotation for any node in a specification. Specifying an SQL annotation on the Declaration tab creates
an annotation that is global in scope. The annotation is saved within the ElementType or AttributeType declaration in the
specification. Specifying an SQL annotation on the Reference tab creates an annotation that is local in scope. The annotation is
saved within the Element or Attribute reference in the specification.

You can select an SQL annotation in the list that appears when you double-click an empty field in the Property column of either
the Declaration tab or the Reference tab for a node in a specification. Enter a value for the SQL annotation in the corresponding
field in the Value column. For all SQL annotations except sql:relationship and sql:xpath-query, the value is ordinary string data.
For more information about adding SQL annotations and other custom annotations, see Add custom annotations.

The following list shows all the possible SQL annotations in BizTalk Editor:

sql:datatype

sql:field

sql:id

sql:id-prefix

sql:is-constant

sql:key-fields

sql:limit-field

sql:limit-value

sql:map-field

sql:is-mapping-schema

sql:overflow-field

sql:relation

sql:relationship

sql:target-namespace

sql:url-encode

sql:use-cdata

sql:xpath-query

The value of sql:relationship is one or more name-value pairs, and the name in each name-value pair must be one of four names:
key, key-relation, foreign-key, or foreign-relation. The value of sql:xpath-query contains two parts: the first part is one or
more name-value pairs that comprise an attribute or attributes, and the second part is the content of sql:xpath-query, represented
as "content=...". These two parts are separated by the number sign (#).

The following table shows valid examples of the sql:relationship and sql:xpath-query SQL annotations.

SQL annotation Example values
sql:relationship key="CustomerID"
sql:relationship key-relation="Cust"

https://msdn.microsoft.com/en-us/library/ee251428(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

sql:relationship foreign-key="CustomerID"
sql:relationship foreign-relation="Orders"
sql:xpath-query mapping-schema="Schema.xml" #content=Employees

 Notes

BizTalk Editor does not limit the selection of SQL annotations to only those that are appropriate in the current context. For
example, sql:relationship and xpath-query are available on the Declaration tab, even though their use must be restricted to
the Reference tab.

When you specify an SQL annotation, a namespace with an "sql" prefix and the corresponding Uniform Resource Name
(URN) value is automatically declared on the Namespace tab.

When you copy or cut a node with SQL annotations specified on its Reference tab and then paste that node to a different
location in the specification, the SQL annotations are not present in the new node.

Related Topics

Add custom annotations

Namespace Declarations

Property Scope

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251428(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251513(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251497(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Creating XML and Native Instances
To ensure the success of Microsoft BizTalk Server 2002 in your production environment, BizTalk Editor provides a mechanism for
you to test specifications prior to going live with them in your organization. Instance manipulation involves either testing an
instance against a specification, or generating an instance based on a specification you have created in BizTalk Editor.

BizTalk Editor enables you to either create Extensible Markup Language (XML) instances or native instances. When working with
flat files (both positional and delimited), it is not necessary to enter delimiter information. However, in the case of EDI documents,
you must provide the delimiter to use.

Related Topics

Create a document instance

Create a native instance

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251441(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251475(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Validating Instances and Specifications
BizTalk Editor enables you to validate a document instance. When validating a document instance against a specification with the
standard set to X12, EDIFACT, or CUSTOM, the document instance must have a document structure that conforms to the standard
of the specification. For example, you can validate an X12 document instance only against an X12 specification.

A document instance that contains a field with a blank attribute value ("") can be validated successfully against a specification
regardless of the value that is set for the Minimum Length property for that field. For example, if a specification has a field with a
Minimum Length property value set to 4, and you attempt to validate a document instance that has a corresponding field with a
blank attribute value, the validation will not fail because of this mismatch. The reason for this is that the MSXML parser that
underlies the validation engine treats an attribute with a blank value as though the attribute is not specified. This issue will be
corrected for the next release of BizTalk Server.

Document Delimiters

BizTalk Editor enables you to specify delimiters during validation of instances and specifications. You can use the Document
Delimiters tab to specify default delimiters to use during validation and can also specify whether or not to automatically display
the Document Delimiters dialog box each time you validate a document instance. You can set delimiters once or have BizTalk
Editor prompt you during each instance test for specific delimiters.

The following table lists the default values for delimiters.

Delimiter Value
Record delimiter ~ (0x7)
Field delimiter * (0x2a)
Subfield delimiter > (0x3e)
Escape ? (0x3f)

Envelope information

Depending on the situation, you may not have to specify delimiters. For example, if an instance contains envelope information,
which includes delimiter information, BizTalk Editor is able to automatically determine the correct delimiters to use. However, if
header information is not found in the EDI instance being validated, BizTalk Editor will display the Document Delimiters dialog
box enabling you to specify delimiters.

Validating documents in the middle of interchanges

BizTalk Editor will validate only the first document in a document instance that contains multiple documents. However, you can
validate a document that exists in the middle of an interchange, meaning that it is not the first document in the interchange. To do
this, you must remove the header information and all documents that precede the one being validated.

Optional and empty fields within records

If the document instance you are using has fields within a record that are both optional and empty, you must add a field delimiter
before the record delimiter. For example, the following document instance contains a tilde (~) for the record delimiter. However, it
also shows a plus sign (+) as the field delimiter for the first record. This requires that you set the Record Delimiter as ~ and the
Field Delimiter as + in the Document Delimiters dialog box.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

When you validate the previous document instance against the following specification, the following error appears:

While parsing record "Record1", the parser could not find the required leading delimiter: "+" (0x002b).
The parser failed to convert the document due to processing errors. See the following messages for details.

To resolve this issue, add a "+" between the "TTT" and the "~" in the document instance.

It is strongly recommended that before you use a document instance in a production environment, you validate the instance
against its source specification and correct any problems displayed on the Warnings tab.

Microsoft BizTalk Accelerator for HIPAA schemas

In BizTalk Editor, there is an option to set subdocument_creation_break to "yes" for BizTalk Accelerator for HIPAA schemas. In this
instance, the parser will generate several XML document instances that are contained in the original payload. In these cases,
validation is identical to that for EDI validation. For example, interchanges are split and schemas are validated against the first
document in the resultant set of split documents.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Creating Specifications

Why Perform BizTalk Editor Tasks
This section provides a quick reference about why you perform BizTalk Editor tasks. The following table identifies primary tasks
and their specific subtasks, lists the purpose of each task, and provides links to the corresponding procedures.

Task Why perform the task
Change BizTalk Editor options If you want to create a new field as an element. Or, if you want to sp

ecify default document delimiters to use during instance testing. In
addition, this procedure also describes how to automatically display
the Document Delimiters dialog box each time you validate a
document instance.

Create and Validate Specifications:
Create a specification based on a standard If you need to set up a process with a trading partner and know you

need to use standards, such as X12 or EDIFACT.

Also, if you do not have trading partner agreements set up, but anti
cipate needing to use standards that are published. For example, yo
u might be planning to set up your organization as a Web service.

Create a specification based on a flat file If you are dealing with legacy systems that use flat files. Or, if you u
se SAP (or similar applications that standardize on the use of flat fil
es) or have trading partners that do.

Create a specification based on an empty template This type of template is ideal if you are primarily doing
enterprise application integration (EAI) within your organization. Th
is template enables you to start with a single root node and build th
e structure you need from the "ground up."

Create a specification based on an existing specification You might work with an existing specification if performing EAI or b
usiness-to-business integration tasks is new to you. Or, you might
be exchanging data with an organization that has an existing specifi
cation that can easily be modified, saving you time and effort.

Create a specification based on an imported file If you need to work with an existing specification.

Create a specification based on a Microsoft Office file If you are primarily working within your organization or with tradin
g partners that use applications such as Microsoft Excel for capturin
g data. For example, an expense report might contain a macro that
enables employees to enter expenses and you create a specification
to correspond to the data being entered.

Validate a specification To ensure that the records and fields you have defined in your speci
fication are valid. Although BizTalk Editor provides feedback regardi
ng whether or not your actions are valid, you might import a file th
at contains an invalid structure. The only time you are warned abou
t the validity of a structure is when you validate the specification.

Open, Save, and Export Specifications:
Open existing specifications from a local drive If you want to work on a local copy of a specification. For example,

you might want to make some modifications and then test the spec
ification without impacting the collaborative copy that is stored in
Web Distributed Authoring and Versioning (WebDAV).

Open existing specifications from WebDAV If you need to work on the collaborative copy of a specification that
others can also access and modify. This is the file that
BizTalk Messaging Manager uses when processing transactions.

Open existing specifications from folders If you want to work on a local copy of a specification. For example,
you might want to make some modifications and then test the spec
ification without impacting the collaborative copy that is stored in
WebDAV.

Save new specifications If you want to save a local copy of a specification that you just creat
ed. For example, you might want to save a specification that you jus
t created without impacting the collaborative copy that is stored in
WebDAV.

https://msdn.microsoft.com/en-us/library/ee251481(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251410(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251486(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251453(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251431(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251460(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Save existing specifications If you want to save a local copy of a specification that you modified.
For example, you might want to save a specification that you have
modified without impacting the collaborative copy that is stored in
WebDAV.

Store XDR schema to WebDAV You cannot directly store pure XML-Data Reduced (XDR) schemas (
non-BizTalk Server schemas) to WebDAV using BizTalk Editor. If yo
u need to, make the XDR schema available to BizTalk Messaging Ma
nager through WebDAV. This will also make the file available to oth
ers to use.

Store specifications If you need to make a specification available to BizTalk Messaging
Manager through WebDAV. This will also make the file available to
others to use.

Export XDR schemas If you need to send a BizTalk Server specification to a trading partn
er that does not have BizTalk Server. The BizTalk Server specificatio
n annotations are removed during the export process, making it eas
ier for the trading partner use the final schema.

Export XSD schemas If you need to send the data that your specification represents to a t
rading partner that works in
Extensible (XML) Structure Definitions (XSD).

Manage Records and Fields:
Add new records to the root node

Add new fields to the root node

Add new records to existing records

Add new fields to records

Insert records

Insert fields

To build a new structure for a specification or modify an existing str
ucture.

Create a new field as an element If all the new fields you will be adding need to repeat, or need to ha
ve structure.

Change fields from attributes to elements If you have an existing field that needs to repeat, or needs to have s
tructure. Elements have structure, whereas attributes do not.

Change fields from elements to attributes If you do not want to allow a field to have structure.

Move records within a specification

Move fields within a specification

Move records from one specification to another

Move fields from one specification to another

To change the structure of one or more specifications. Moving reco
rds and fields from one specification to another, rather than adding
them and adding properties, saves time.

Copy records within a specification

Copy fields within a specification

Copy records from one specification to another

Copy fields from one specification to another

To change the structure of one or more specifications. Copying reco
rds and fields, rather than creating new ones, saves time.

Create cyclical references If you know that there is a recursive (meaning that a node contains
itself as a descendent) structure in the data BizTalk Server will be pr
ocessing. Recursive structures are common when dealing with item
s that have many components and subcomponents.

https://msdn.microsoft.com/en-us/library/ee251459(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251406(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251418(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251416(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251432(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251404(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251448(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251477(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251437(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251476(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251471(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251484(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251403(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251483(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251478(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251464(v=bts.10).aspx

Create a new instance of an existing record If you want to quickly recreate the same structure as an existing rec
ord.

Create a new instance of an existing element field If you want to quickly recreate the same structure as an existing fiel
d.

Specify Properties for Records and Fields:
Set document delimiters If you have a delimited structure, then you must set document deli

miters. Otherwise, BizTalk Server is not able to process the data.
Set declaration properties To control the properties of the data structure at a global level.

Set reference properties To control the properties of the data structure at a local level.

Set parse properties To provide instructions regarding how to handle converting non-X
ML data.

Declare namespaces To assign annotations to various parts of your specification. This ov
errides the use of the default namespace that may be associated wit
h the specification.

Add custom annotations To mark-up a specification with specific instructions. For example, if
you have a custom parser, you might want to add custom annotatio
ns. Annotations must be part of a namespace.

Set dictionary properties Every work item in BizTalk Server has an associated collection of pr
operties that describe the work item. If you want to add content to t
he collection, then you need to set dictionary properties. You would
most likely add routing or envelope-related properties to the prope
rty collection.

Add a custom dictionary property Set a custom dictionary property. See the previous explanation for t
he "Set dictionary properties" task.

Select codes If your specification is based on an X12 or EDIFACT structure, you w
ill want to select codes to set the Data Type property for a field to
Enumeration and set the Data Type Value to a valid code.

Clear codes Remove codes added to a field.

Automatically calculate field positions If you have a specification with a positional structure and have pred
efined all the Maximum Length values, use this to automatically c
alculate the start and end positions for each field.

Edit Notes and Syntax Rules:
Enter Record Notes Provide documentation for yourself or someone else that might wor

k on the specification.
View Syntax Rules This applies only to specifications based on X12 structure. Use this if

you need to map to or from an X12 specification and you want to en
sure that the specification does not violate any standard syntax rules
.

Enter Field Notes Provide documentation for yourself or someone else that might wor
k on the specification.

Manage Document Instances:
Create a document instance To test a specification against an XML or non-XML data instance.

Create a native instance To test a specification against a non-XML data instance.

Validate a document instance To ensure that the specification is compatible with the data that will
be passed through it.

Manage Invalid Character Maps If there are restrictions regarding the type of characters the consumi
ng application can handle, you will want to specify the characters tha
t are invalid.

Manage Views and Use Shortcut Keys:
Expand tree items To view all the records and fields in a specification from the viewpoi

nt of the root node record or simply the records and fields from the
viewpoint of a single record.

Collapse tree items To view only the root node record and/or parent records.

https://msdn.microsoft.com/en-us/library/ee251463(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251491(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251408(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251434(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251429(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251426(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251428(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251409(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251447(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251415(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251449(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251412(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251441(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251475(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251443(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251417(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251466(v=bts.10).aspx

View property values To view the properties for a record or field that are associated with t
he Declaration, Reference, Parse, Namespace, Dictionary, or Co
de List tab.

Change text sizes To increase or decrease the font size of text in BizTalk Editor.

BizTalk Editor Shortcut Keys To use shortcut keys, rather than a mouse, to accomplish tasks.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251473(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251474(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

How to Perform BizTalk Editor Tasks
This section provides task-specific information about how to create a specification. It is highly recommended that you review
About BizTalk Editor to understand fully the relationship between records and fields and how to specify properties for the type of
specification that you want to create.

The following topics are covered in this section:

Change BizTalk Editor options

Create and Validate Specifications

Open Specifications

Save, Export, and Close Specifications

Manage Records and Fields

Specify Properties for Records and Fields

Edit Notes and View Syntax Rules

Manage Document Instances

Manage Invalid Character Maps

Manage Views

BizTalk Editor Shortcut Keys

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251481(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Create and Validate Specifications
This section describes how to create a specification depending on the type of data you are using. For example, if you are working
with a delimited flat file, you will need to create a specification based on that flat file. It is important to understand issues with
invalid Extensible Markup Language (XML) name characters when you work with specifications because if you use an invalid
Unicode character in an XML name, that character is translated into an escaped numeric entity when you view it in the
specification tree. For more information, see Invalid XML Name Characters.

The following procedures are covered in this section:

Create a specification based on a standard

Create a specification based on a flat file

Create a specification based on an empty template

Create a specification based on an existing specification

Create a specification based on an imported file

Create a specification based on a Microsoft Office file

Validate a specification

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251496(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251410(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251486(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251453(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Open Specifications
The following procedures are covered in this section:

Open existing specifications from a local drive

Open existing specifications from WebDAV

Open existing specifications from folders

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251431(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251460(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Save, Export, and Close Specifications
The following procedures are covered in this section:

Save new specifications

Save existing specifications

Store XDR schema to WebDAV

Store specifications

Export XDR schemas

Export XSD schemas

Close specifications

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251459(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251406(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Manage Records and Fields
The following procedures are covered in this section:

Add new records to the root node

Add new fields to the root node

Add new records to existing records

Add new fields to records

Insert records

Insert fields

Create a new field as an element

Change fields from attributes to elements

Change fields from elements to attributes

Move records within a specification

Move fields within a specification

Move records from one specification to another

Move fields from one specification to another

Copy records within a specification

Copy fields within a specification

Copy records from one specification to another

Copy fields from one specification to another

Rename a single record

Rename a single field

Rename all records that have the same name

Delete records

Delete fields

Create cyclical references

Create a new instance of an existing record

Create a new instance of an existing element field

https://msdn.microsoft.com/en-us/library/ee251418(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251416(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251432(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251404(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251448(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251477(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251437(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251476(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251471(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251484(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251403(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251483(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251478(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251489(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251424(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251455(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251423(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251464(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251463(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251491(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Creating Specifications

Specify Properties for Records and Fields
This section includes information about the following topics:

Set document delimiters

Set declaration properties

Set reference properties

Set parse properties

Declare namespaces

Add custom annotations

Edit custom annotations

Delete custom annotations

Set dictionary properties

Add a custom dictionary property

Rename a custom dictionary property

Clear a dictionary property

Delete a custom dictionary property

Select codes

Clear codes

Clear a property for any field in the Value column

Automatically calculate field positions

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251408(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251434(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251429(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251426(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251428(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251430(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251409(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251485(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251442(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251490(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251447(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251451(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Edit Notes and View Syntax Rules
In the Node Properties dialog box, you can:

Read and edit notes for fields and records.

Read syntax rules for records.

To view the Node Properties dialog box, follow these steps:

1. In the specification tree, right-click a record or field and click Properties.

The Note tab appears by default.

2. To view syntax rules for a record, click the Syntax Rules tab.

 Note

Syntax rules apply only to records.

For information about how to use this dialog box, see the following topics:

Enter Record Notes

View Syntax Rules

Enter Field Notes

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251415(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251449(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251412(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Manage Document Instances
In BizTalk Editor you can create a document instance based on a specification and you can validate a document instance against a
specification.

The following procedures are covered in this section:

Create a document instance

Create a native instance

Validate a document instance

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251441(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251475(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251443(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Manage Invalid Character Maps
The following procedures are covered in this section:

Add invalid character ranges

Edit invalid character ranges

Delete invalid character ranges

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251436(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251440(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251450(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

Manage Views
The following procedures are covered in this section:

Expand tree items

Collapse tree items

View property values

Change text sizes

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251417(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251466(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251473(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251474(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Creating Specifications

BizTalk Editor Shortcut Keys
You can use shortcut keys to accomplish tasks in BizTalk Editor. The following table is a quick reference to these shortcut keys.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Windows 2000 Server and Advanced Server Help, see "Using the
keyboard to move the mouse pointer." For more information about MouseKeys in Windows 2000 Professional Help, see
"Move the mouse pointer by using MouseKeys."

Press To
CTRL+SHIFT++ (With the
NUMLOCK key enabled, pr
ess the + key on the numb
er pad while pressing the
SHIFT key.)

Add a new custom annotation when the focus is on the namespace data sheet in the right pane.

Or

Create a new custom property on the Declaration, Reference, Namespace, or Dictionary tab.

Or

Insert a custom property in a specification. This functionality occurs on the Declaration, Reference,
Namespace, and Dictionary tabs while a property is highlighted.

TAB key Access the buttons in the upper right corner of the New Document Specification dialog box.
SHIFT+F10 Open the context menu for highlighted items.
CTRL+N Open a new specification.
CTRL+O Open an existing specification.
CTRL+S Save a specification.
CTRL+SHIFT+R Insert a new record into a document specification.
CTRL+R Add a new record to a record.
CTRL+SHIFT+F Insert a new field into a document specification.
CTRL+F Add a new field to a record.
DEL Delete a record or a field.
F4 Highlight the next warning.
F5 Validate a schema.
CTRL+C Copy an object.
CTRL+X Cut an object.
CTRL+V Paste an object.
F6 Move the focus clockwise from pane to pane.
SHIFT+F6 Move the focus counterclockwise from pane to pane.
TAB Toggle the focus from the tab in the right pane to the data sheet below. In a dialog box, pressing TAB

moves the focus through the buttons and fields of the dialog box.

SPACEBAR Select or clear a check box. The spacebar also acts like a mouse click when the focus is on a button.
F2 Activate edit mode for a highlighted node in the specification tree. Activate edit mode for a highlight

ed row in the data sheet of the right pane.

SHIFT+F2 Activate edit mode for the following fields:

The Property column of a highlighted custom annotation row on the Declaration or Referen
ce tab.

The Prefix column of a highlighted custom annotation row on the Namespace tab.

The Property column of a highlighted custom dictionary row on the Dictionary tab.

ALT+ DOWN ARROW Display the list for an activated list box.
SHIFT++ Add a new custom annotation when the focus is on the namespace data sheet in the right pane.
ENTER Confirm edits to nodes and values.
ESC Cancel edits to nodes and values.
F1 View the online Help.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

ALT+F4 Exit from the program.
LEFT ARROW Activate the tab to the left.
RIGHT ARROW Activate the tab to the right.
Any arrow key Highlight a folder or a file in the main pane of a dialog box, while the focus is on that pane. This funct

ionality occurs in the New Document Specification, the Store to WebDAV, and the Retrieve fro
m WebDAV dialog boxes. For more information about the New Document Specification dialog b
ox, see Create and Validate Specifications. For more information about WebDAV, see
Open existing specifications from WebDAV.

Using MouseKeys with BizTalk Editor

Some operations in BizTalk Editor have no keyboard shortcuts. To perform the following operations, you must use MouseKeys:

Move

Drag-and-drop operations

Copy nodes

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251401(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Using BizTalk Mapper
Microsoft® BizTalk™ Mapper is a translation design tool that enables you to create a correspondence between the records and
fields in two different specification formats. BizTalk Mapper uses links and functoids to accomplish this translation. Functoids
perform operations that range from simple calculations to elaborate script functionality.

You can use BizTalk Mapper to graphically represent the structural transformation relationship between source-specification data
elements and destination-specification data elements. This cross-reference and data-manipulation functionality creates a map that
provides a set of instructions that defines the relationship between two different specification formats. The specification formats
are defined by using BizTalk Editor.

A map represents data transformations between a source specification and a destination specification. Microsoft
BizTalk Server 2002 uses the data that you provide in a map to generate Extensible Stylesheet Language Transformation (XSLT).
Then, the XSLT output is used by Microsoft XML Parser (MSXML) version 3.0 at run time to transform the schema on the server.
When you create a map, the XSLT can be viewed on the Output tab of BizTalk Mapper.

BizTalk Mapper enables the open exchange of specifications in an XML-Data Reduced (XDR) data format. BizTalk Mapper can open
only specifications that have been saved in BizTalk Editor. BizTalk Mapper cannot open generic
Extensible Markup Language (XML) files or non-XML files. If you need to translate two generic XML files, you must first import
them into BizTalk Editor and save them as specifications.

BizTalk Mapper supports a variety of mapping scenarios that range from simple, parent-child tree relationships to detailed,
complex looping of records and hierarchies. When the mapping process is complete, a serializer component uses the specification
to create a file format that can be recognized by your trading partner or internal application. BizTalk Mapper also includes a style-
sheet compiler component that takes the visual representation of the map and creates an XSLT style sheet.

The following illustration shows the process of mapping a source specification to a destination specification. The source file is an
electronic data interchange (EDI)-based document, and the destination file is a flat-file document. In this example, the EDI
document structure is converted to an intermediate XML format, the structure of which is represented by an XDR specification.
The final format of the data is a flat file. A data-driven parser (that uses the XDR specification) creates an XML version of the
source EDI specification. The XSL engine then transforms this source XML representation to an XML representation of the
destination file format. The destination specification is later serialized to the native format of the destination file, which is a flat file
in this example.

The following topics are covered in this section:

For comprehensive information about BizTalk Mapper, see About BizTalk Mapper.

For quick reference about why you perform specific tasks, see Why Perform BizTalk Mapper Tasks.

For detailed procedures on how to accomplish tasks, see How to Perform BizTalk Mapper Tasks.

For problem-solving instructions, see Troubleshooting BizTalk Editor and BizTalk Mapper.

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Mapping Data

About BizTalk Mapper
BizTalk Mapper is a highly graphical tool that presents you with both source specifications and destination specifications side-by-
side and lets you define transformations by simply drawing lines between records, fields, and functoids. BizTalk Mapper uses an
Internet standard called Extensible Stylesheet Language (XSL) Transformations (XSLT), which is a language for transforming
Extensible Markup Language (XML) documents from one XML schema into another.

This section provides detailed conceptual information that is essential to understanding BizTalk Mapper.

The following topics are covered in this section:

Mapping Specifications

Mapping Scenarios

BizTalk Mapper Environment

Creating Links

Matching Node-Hierarchy Levels

Viewing Record, Field, Link, and Functoid Properties

Understanding Functoids

Integrating BizTalk Services Using Maps

Compiling Maps

Testing Maps

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Mapping Specifications
A map identifies how data in one format is to be rendered in another format. A map requires two specifications: one is the source,
and the other is the destination. Mapping data is a data-translation process in which you define the correspondences between the
records and fields in the source specification and the records and fields in the destination specification.

There are two types of mapping:

Specific mapping. This type of map is designed to meet the individual needs of one trading partner. When you map a
trading partner's specific record and field requirements, you create a map that is unique and specific to that trading partner
only.

Generic mapping. This type of map is designed to meet the needs of several trading partners. In generic mapping, you
group the requirements of multiple trading partners in one map. Because multiple organizations can be interconnected, and
you can use the same map with multiple trading partners, this feature saves you valuable resources and time.

BizTalk Mapper shows a graphical representation of a map that can include simple value-copy translations, referred to as links,
and complex structural manipulations, referred to as functoids. By combining these elements, you can easily map data between a
source specification and a destination specification.

The following topic is covered in this section:

Map Source and Destination Files

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Mapping Scenarios
BizTalk Mapper addresses a variety of mapping scenarios ranging from simple parent-child tree-type operations to detailed
operations that are complex and involve looping records, and hierarchies. The complexity of mapping scenarios is further
complicated because formats like Extensible Markup Language (XML) allow for a great deal of flexibility in defining structured
formats.

Basic mapping operations

These are the most common mapping operations and involve the mapping of a source field or fields from a single parent in the
Source Specification tree to a field or fields in the Destination Specification tree belonging to a single parent. Though there are a
wide variety of transformations possible in this type of mapping, such as using multiple functoids and cascading functoids, the
fundamental scenario is not complicated when compared with other scenarios. Basic mapping operations also include the
mapping of fields from two different parents (that occur only once) to fields in the Destination Specification tree under a single
parent.

Complex mapping operations

Theses operations may involve mapping fields from different parents (one of which can occur multiple times) in the Source
Specification tree to a single parent in the Destination Specification tree. This type of mapping requires the proper selection of a
loop path, which is commonly encountered in mapping electronic data interchange (EDI)-based documents. This scenario would
require the Extensible Stylesheet Language (XSL) style sheet compiler to pick up the correct loop path over which it must iterate to
produce the required output. For more information about loop paths, see Loop Paths.

The following topics are covered in this section:

Loop Paths

Ordering of Records and Fields

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251277(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251277(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251266(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

BizTalk Mapper Environment
When you open BizTalk Mapper, you see a graphical user interface that enables you to create and work with maps easily.

The following topics are covered in this section:

BizTalk Mapper User Interface

BizTalk Mapper Menus

BizTalk Mapper Toolbar Buttons

BizTalk Mapper Functoid Palette

Customizing Your Display

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251248(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251282(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Creating Links
Links perform the basic function of copying data from the Source Specification tree records and fields to the
Destination Specification tree records and fields. BizTalk Mapper supports one-to-one links and one-to-many links. For example, a
link can join a single record or field from the Source Specification tree to a single record or field in the Destination Specification
tree. A link can also join a single record or field from the Source Specification tree to multiple records or fields in the Destination
Specification tree. Links can also join multiple records or fields from the Source Specification tree to a functoid, which then joins
to a single record or field in the Destination Specification tree. Multiple records or fields from the Source Specification tree can
join to a single record or field in the Destination Specification tree.

Related Topic

Manage Links

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Matching Node-Hierarchy Levels
BizTalk Mapper includes compiler directives. Using these directives, you can set the level of matching between the hierarchy of the
Source Specification tree and the hierarchy of the Destination Specification tree. When you create a link from one field in the
Source Specification tree to a field in the Destination Specification tree, BizTalk Mapper automatically adds compiler links based
on the choices you make in the Destination Specification Links area on the Compiler tab of the Link Properties dialog box.
For more information, see Select compiler properties for destination-specification links. The following illustrations show the node-
hierarchy level matches that are possible:

Flatten link (default mode). This mode means that all the source hierarchies are flattened to the parent record of the
destination node. In the first case, the source specification is more complex than the destination specification. In the second
case, the destination specification is more complex.

Match links top-down. This mode matches level to level from the top down. In the first case, the source specification is
more complex than the destination specification. In the second case, the destination specification is more complex.

Match links bottom-up. This mode matches level to level from the bottom up. In the first case, the source specification is
more complex than the destination specification. In the second case, the destination specification is more complex.

https://msdn.microsoft.com/en-us/library/ee251129(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

The following table shows how BizTalk Mapper treats links based on the type of directive used.

For example, if you use a flatten compiler directive, a top-down compiler directive, and a bottom-up compiler directive for links
from fields in the source specification to fields in the destination specification that share the same parent record, BizTalk Mapper
treats all the links as if they were set to the flatten compiler directive.

Flatten Top-down Bottom-up Result
1 1 1 BizTalk Mapper treats all the links as if they were set to the flatten compiler directive.
1 or more 1 BizTalk Mapper treats all the links as if they were set to the top-down compiler directive.
1 or more 1 BizTalk Mapper treats all the links as if they were set to the bottom-up compiler directive.
 1 or more 1 or more BizTalk Mapper treats all the links as if they were set to the flatten compiler directive.

Related Topic

Compiling Maps

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Mapping Data

Viewing Record, Field, Link, and Functoid Properties
The source specification and destination specification display the records and fields associated with a specification. You can build
these specifications using BizTalk Editor, or you can import them into BizTalk Editor as well-formed XML, a
document type definition (DTD), or an XDR schema. You can use any XDR schema created by a third-party organization. However,
group and namespace support are not provided. The source specification appears on the left of the mapping grid, and the
destination specification appears on the right of the mapping grid.

Record and field properties and values

The properties and values for records and fields appear on the Properties tab, which is located below the main pane. When you
select a record or field, the key properties and values from the property tabs of BizTalk Editor appear.

Link and functoid properties

The mapping grid of BizTalk Mapper graphically depicts the structure of the data transformation. A link appears as a single line
that connects a record or field in the Source Specification tree to a record or field in the Destination Specification tree. Links are
also used to connect records or fields to functoids. Functoids appear as icons. Properties for links include source and destination
data and compiler directive information. Properties for functoids include input parameter and script information.

Related Topics

Records, Fields, and Properties

Understanding Functoids

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Understanding Functoids
BizTalk Mapper supports complex structural transformations from records and fields in the Source Specification tree to records
and fields in the Destination Specification tree. Functoids perform calculations by using predefined formulas and specific values,
called arguments. These calculations are executed based on the designated order of the records and fields.

By selecting a functoid from the functoid palette, dragging it to the mapping grid, and linking it to elements in the Source
Specification and Destination Specification trees, data can be added together, date or time information can be modified, data can
be concatenated, or other operations can be performed. For example, the Addition functoid adds values.

The Functoid Palette includes the following tabs:

String. These functoids manipulate data strings by using string functions. For example, the String Find functoid finds one
text string within another text string, and returns the position of the first character of the found string. To understand the
parameter requirements for each string functoid, see String Functoids.

Mathematical. These functoids perform calculations by using specific values, called arguments, in a particular order, or
structure. For example, the Addition functoid adds the values of the designated fields or records. To understand the
parameter requirements for each mathematical functoid, see Mathematical Functoids.

Logical. These functoids perform specific logical tests. If a logical functoid is connected to a record in the destination
specification and returns the value "true", the corresponding record in the output document is generated. If a logical
functoid is connected to a record in the destination specification and returns the value "false", the corresponding record in
the output document is not generated. The output of a logical functoid can also be accepted as input for other functoids in a
map. If both a logical functoid and a looping functoid are linked together and then linked to a record in the Destination
Specification tree, the looping functoid is used only when the logical functoid output is "true". To understand the parameter
requirements for each logical functoid, see Logical Functoids.

 Important

If you link two records or fields in the Source Specification tree to two different logical functoids, and then link each
of the logical functoids to the same record in the Destination Specification tree, only the first logical functoid will be
used in the generated Extensible Stylesheet Language (XSL) Transformation (XSLT). The second link, from the second
logical functoid, will be ignored.

Date/Time. These functoids manipulate date and time data or add current date, time, or date and time data to a record or
field in the destination specification. To understand the parameter requirements for each date and time functoid, see
Date and Time Functoids.

Conversion. These functoids closely match engineering functions such as DEC2HEX, which returns a hexadecimal value
when given a decimal value. They can also be used to convert a character to its ASCII value or a value to the corresponding
ASCII character. To understand the parameter requirements for each conversion functoid, see Conversion Functoids.

Scientific. These functoids convert a numeric value to a scientific value. For example, the Cosine functoid takes a value in
radians from a field or record and returns the value of the cosine. To understand the parameter requirements for each
scientific functoid, see Scientific Functoids.

Cumulative. These functoids return the sum, average, minimum, or maximum input of a looping record. To understand the
parameter requirements for each cumulative functoid, see Cumulative Functoids.

Database. These functoids extract data from a database. To understand the parameter requirements for each database
functoid, see Database Functoids.

Advanced. This tab has a several functoids that perform various manipulations. For example, there is a functoid that can
use custom Microsoft® Visual Basic® script or Microsoft JScript®, functoids for value mapping, looping functoids, index
functoids, iteration functoids, and functoids for managing and extracting information from record loops. To understand the
parameter requirements for each advanced functoid, see Advanced Functoids.

You can also create your own custom functoids. For a sample of a custom functoid, go to the \Program Files\Microsoft BizTalk
Server\SDK\Messaging Samples\SampleFunctoid folder. You can also look at a Microsoft® .NET-based sample functoid in the
\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\DateFunctoidNet folder on a computer with a complete

https://msdn.microsoft.com/en-us/library/ee251543(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251189(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251083(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251108(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251192(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251180(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251143(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251123(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

installation of BizTalk Server or a custom installation of BizTalk Server that includes Messaging samples.

 Important

If you create a custom functoid, you must register it on every computer where you want it to display and function properly.
If a custom functoid is not registered on a computer and it is used in a map, the custom functoid will appear with the letters
"FT". You will not be able to move the functoid, even though it will appear in the grid page.

The following topics are covered in this section:

Using Cascading Functoids

Using Cumulative Functoids

Using Database Functoids

Using the Record Count Functoid

Using the Index Functoid

Using the Iteration Functoid

Using the Value Mapping Functoid

Using the Value Mapping (Flattening) Functoid

Using the Looping Functoid

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251257(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251300(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251289(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251279(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251284(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251291(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251270(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Integrating BizTalk Services Using Maps
When you integrate BizTalk Orchestration Services and BizTalk Messaging Services using a non-HTTP transport, you might need
to create a map to convert a path name to a format name. For more information, see Integrating BizTalk Services.

Converting a path name to a format name

The following code is an example of a message queue path name:

private$\sourcechannel2{9e0016bf-be1f-48fe-82de-b27077ab5e73}

To convert this path name to a format name, you need to add the following string to the beginning of the path name:

queue://Direct=OS:

You can do this with the Concatenate functoid.

The following illustration shows a map that uses the Concatenate functoid, which concatenates two or more strings. For more
information about the Concatenate functoid, see String Functoids.

Double-clicking the Concatenate functoid displays its properties. The following illustration shows how the properties should
look for a Concatenate functoid in a map that adds the queue://Direct=OS: prefix to the private$\sourcechannel2{9e0016bf-
be1f-48fe-82de-b27077ab5e73} path name.

For more information, see Edit Functoid Properties.

https://msdn.microsoft.com/en-us/library/ee251543(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251209(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Mapping Data

Compiling Maps
When you compile maps, the BizTalk Mapper compiler component generates an Extensible Stylesheet Language (XSL) style sheet.
This process creates a compiled map that can transform an instance document of the source schema to an instance document of
the destination schema. Compiling a map enforces the structural rules and transformations that are specified in the mapping grid.

Transformations, such as links, are processed in the same order that records and fields appear in the instance of the destination
structure. For example, when BizTalk Mapper reaches a destination record or field that has a link associated with it, BizTalk
Mapper compiles the properties of the link. The action might be a simple copy value from a record or field in the source
specification, or the action might calculate values from one or more records and fields from the source to one or more records
and fields in the destination, based on the properties of a functoid.

BizTalk Mapper generates a warning on the Warnings tab when the compiler encounters a situation that might yield incorrect
output. For example, if a functoid that requires one input parameter has no input parameters, BizTalk Mapper generates a warning
on the Warnings tab when the map is compiled. It is recommended that you do not use a map in a production environment until
it is no longer generating warnings.

The compiled map is used by BizTalk Server to perform the actual translation of an input instance to an output instance.

The following topic is covered in this section:

Compiler Directives

Related Topic

Matching Node-Hierarchy Levels

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251287(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Testing Maps
As you create a map, you can use BizTalk Mapper to verify that the map you designed produces the correct output. The Test Map
feature (an option on the Tools menu) automatically generates a test instance of the source document from the specification. This
feature uses information from the source specification, such as the number of occurrences of records and the data types of fields,
from the specification and generates the test instance. You can specify a value for any record or field in the Source test value box
on the Values tab and test the results of that data.

BizTalk Mapper supports instances as native or Extensible Markup Language (XML). In addition, it also supports native output
from the map test process where applicable. Depending on the source specification and destination specification that make up
your map, one or more of the options in the following table will be available for you to test your map.

Test Map
option

Description

Generate
d XML to
XML

A test instance of the source document is built and then fed to the style sheet. The output is displayed in the Output w
indow as XML.

Generate
d XML to
Native

A test instance of the source document is built and then fed to the style sheet. The output is serialized to native format
and displayed in the Output window as native data. This option is not available if the output schema is XML.

Instance
XML to X
ML

An instance file that you specify is used to create the output, which is displayed in the Output window as XML.

Instance
XML to N
ative

An instance file that you specify is used to create the output, which is displayed in the Output window as native data.
This option is not available if the output schema is XML.

Native In
stance to
XML

A native instance file that you specify is used to create the output, which is displayed in the Output window as XML. T
he format of the specified instance is assumed to be the same as the standard for the input schema. This option is not
available if the input schema is XML.

Native In
stance to
Native

A native instance file that you specify is used to create the output, which is displayed in the Output window as native
data. The format of the specified instance is assumed to be the same as the standard for the input schema. This option
is not available if the input schema or output schema is XML.

When you test a map, BizTalk Mapper automatically compiles it. However, it is best to first compile a map and resolve any
warnings or errors prior to testing it. Before the test begins you are prompted to save your file. Saving your file prior to testing it
is a precautionary measure to preserve your data in case any problems are accidentally introduced into the map.

BizTalk Mapper gives you the option to validate source instance data against the source specification prior to map testing. If one
of the specifications you are using in your map is a non-BizTalk Server-based specification, such as an XML-Data Reduced (XDR)
file, and you use the content validation feature, validation might fail. If warnings, especially those related to namespaces or
element groups, appeared when you opened the XDR file, you should not use the content validation feature.

BizTalk Mapper also gives you the option to validate content after the mapping functionality has been completed. In this case,
BizTalk Mapper will validate the output data against the destination specification. As is the case with Validate content before
map test functionality, if one of the specifications you are using in your map is a non-BizTalk Server-based specification, such as
an XDR file, and you use the content validation feature, validation might fail. If warnings, especially those related to namespaces
or element groups, appeared when you opened the XDR file, you should not use the content validation feature.

After you test a map, the results appear on the Output tab. The test data corresponds to the destination specification.

The following topic is covered in this section:

Setting Document Delimiters

Related Topics

BizTalk Mapper Options: Document Delimiters Tab

BizTalk Mapper Options: General Tab

Test maps

Test record and field properties that have links

https://msdn.microsoft.com/en-us/library/ee251294(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251074(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251206(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251134(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Mapping Data

Why Perform BizTalk Mapper Tasks
This section provides a quick reference about why you perform BizTalk Mapper tasks. The following table identifies primary tasks
and their specific subtasks, lists the purpose of each task, and provides links to the corresponding procedures.

Task Why perform the task
Change BizTalk Mapper Options:

BizTalk Mapper Options: General Tab To customize the behavior of BizTalk Mapper with regard to:

Receiving warnings

Viewing and clearing compiler links

Allowing record content links

Allowing multiple inputs into the Destination Specificatio
n tree

Saving content

Validating content

BizTalk Mapper Options: Colors Tab To customize the colors on the mapping grid.

BizTalk Mapper Options: Document Delimiters If you have a delimited structure for a specification, then you m
ust set document delimiters for instance testing. Document del
imiters are necessary for Microsoft BizTalk Server 2002 to proc
ess data in a production environment.

BizTalk Mapper Options: XSLT output To omit or include an XML declaration when the data is output.

Create, Open, and Save Maps:
Create new maps To enable the process of data transformation from one source

to another, using links and functoids.
Open maps from a local hard drive If you want to work on a local copy of a map. For example, you

might want to make some modifications and then test the map
without impacting the collaborative copy that is stored in
Web Distributed Authoring and Versioning (WebDAV).

Retrieve maps from WebDAV If you need to work on the collaborative copy of a map that oth
ers can also access and modify. This is the file that
BizTalk Messaging Manager uses when processing
transactions.

Open existing maps from a folder If you want to work on a local copy of a map. For example, you
might want to make some modifications and then test the map
without impacting the collaborative copy that is stored in Web
DAV.

Save new maps If you want to save a local copy of a map that you just created.
For example, you might want to save a map that you just creat
ed without impacting the collaborative copy that is stored in W
ebDAV.

Save existing maps If you want to save a local copy of a map that you modified. Fo
r example, you might want to save a map that you have modifi
ed without impacting the collaborative copy that is stored in W
ebDAV.

Save compiled maps To create a map that BizTalk Server can use to perform the act
ual translation of an input instance to an output instance at run
time. The compiling process stores all information about the
source specifications and destination specifications, including a
ll content and functionality of links and objects.

https://msdn.microsoft.com/en-us/library/ee251234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251532(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251074(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251140(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251096(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251201(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251105(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251214(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Store maps If you need to make a map available to BizTalk Messaging Man
ager through WebDAV. This will also make the file available to
others to use.

Replace Specifications:
Replace source specifications It is likely that when you create a map, the source specification

may undergo further modification, such as adding additional r
ecords or fields. This feature enables you to replace the source
specification and maintain all, or nearly all the links and functoi
ds you have created in your map between the source specificat
ion and destination specification.

Replace destination specifications It is likely that when you create a map, the destination specifica
tion may undergo further modification, such as adding additio
nal records or fields. This feature enables you to replace the de
stination specification and maintain all, or nearly all the links a
nd functoids you have created in your map between the source
specification and destination specification.

Work with Grid Pages:
Add grid pages If you want to simplify the view of your map. For example, if yo

u add a grid page, you can put all the links and functoids that r
elate to header information on one page and links and functoi
ds that relate to the body of your map on another page. You ca
n also rename and delete grid pages that you have created.

Add and Work with Functoids:
Add string functoids To manipulate data strings. For example, the String Find funct

oid finds one text string within another text string, and returns
the position of the first character of the found string.

Add mathematical functoids To perform calculations by using specific values, called argume
nts, in a particular order or structure. For example, the Additio
n functoid adds the values of the designated fields or records.

Add logical functoids To perform specific logical tests. For example, if a logical functo
id is connected to a record in the destination specification and
returns the value "true", the corresponding record in the outpu
t document is generated. If a logical functoid is connected to a
record in the destination specification and returns the value "fa
lse", the corresponding record in the output document is not g
enerated.

You might also need to add a logical functoid to serve as an in
put value for other functoids in a map.

Add date and time functoids To manipulate date and time data or add current date, time, or
date and time data to a record or field in the destination specifi
cation.

Add conversion functoids To convert data. For example, these functoids can be used to co
nvert a character to its ASCII value or a value to the correspond
ing ASCII character. Conversion functoids closely match engine
ering functions such as DEC2HEX, which returns a hexadecimal
value when given a decimal value.

Add scientific functoids To convert a numeric value to a scientific value. For example, th
e Cosine functoid takes a value in radians from a field or recor
d and returns the value of the cosine.

Add cumulative functoids To return the sum, average, or minimum or maximum input of
a looping record.

Add database functoids To handle the transformation of coded data to uncoded data. F
or example, one company might use a code to represent a stor
e name and address. And their trading partner needs to know t
he actual store name and address to process a transaction. Usi
ng a database functoid allows BizTalk Server to look up a code
in a database and replace the code with the actual value of the
code.

https://msdn.microsoft.com/en-us/library/ee251531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251540(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251535(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251062(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251178(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251245(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251225(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251167(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251221(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251159(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251175(v=bts.10).aspx

Add the Scripting functoid To use custom Microsoft Visual Basic script or Microsoft JScrip
t for performing custom operations not possible with the funct
oids available on the functoid palette.

Add the Record Count functoid To determine the total number of items related to a looping re
cord.

For example, a Record Count functoid might be used to count
the number of items that exist in an incoming purchase order a
nd output that value to a field in the outgoing invoice.

Add the Index functoid To access a specific occurrence of a record that repeats. For exa
mple, if you have a PO line item that repeats six times and only
want to get the value from the third occurrence, you would use
the Index functoid.

Add the Iteration functoid To identify which sequence number in a looping record is bein
g mapped at any given time.

Add the Value Mapping functoid To move data that meets a logical requirement, such as "true"
or "false".

Add the Value Mapping (Flattening) functoid To move data that meets a logical requirement, such as "true"
or "false". This is similar to the Add the Value Mapping funct
oid, but in this case the hierarchy is flattened. This means that i
f something repeats three times in the Source Specification tre
e, only one occurrence will be created in the Destination Specifi
cation tree.

Add the Looping functoid To force the compiler to loop the Destination Specification tree
data according to the looping behavior of the Source Specificat
ion tree data. This is called parallel looping behavior, which is t
ypically explicit and should happen automatically. However in s
ome complex maps, you may need to use a Looping functoid t
o force this behavior.

Move functoids and links, or links, between grid pages To simplify the complexity of the grid page, which can become
quite complex with numerous links and functoids.

Information about Functoid Parameters To clearly understand the parameter requirements for each fun
ctoid.

Input Parameters To set parameters, such as a constant value, for a functoid. You
can also rename input parameters, or move them up and dow
n (for situations in which the order of parameters matters) to c
hange when BizTalk Mapper processes the parameter.

Add and Work with Links:
Create links between fields To copy data from a field in the Source Specification tree to a fi

eld in the Destination Specification tree.
Create links between fields and functoids To copy data from a field in the Source Specification tree to a f

unctoid, which is required for further manipulation, prior to bei
ng output to the Destination Specification tree.

Create links between records and fields To copy data from a record in the Source Specification tree to a
field in the Destination Specification tree.

 Important

To perform this task, you must select the Allow record c
ontent links in the BizTalk Mapper Options dialog bo
x.

https://msdn.microsoft.com/en-us/library/ee251183(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251172(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251153(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274991(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251203(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251065(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251546(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251132(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee275004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251050(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251541(v=bts.10).aspx

Create links between records and functoids To copy data from a record in the Source Specification tree to a
functoid, which is required for further manipulation, prior to be
ing output to the Destination Specification tree.

 Important

To perform this task, you must select the Allow record c
ontent links in the BizTalk Mapper Options dialog bo
x.

Create links between functoids To accomplish tasks in which multiple functoids are required t
o generate the right output to the Destination Specification tre
e.

Allow record content links To enable you to create links between records and fields or bet
ween records and functoids.

Redirect links If you have made a mistake while drawing a link and want to r
edraw one of the end point links.

View links and functoids in the mapping grid To scroll the grid area so that you can view any link or functoid
that exists in the grid.

View links and functoids by using the grid preview To display a representation of where the functoids are located
on the mapping grid.

View Link Properties: General Tab To view information about the source and destination of a link.

View Link Properties: Compiler Tab To view the set compiler properties for source-specification lin
ks and compiler properties for destination-specification links.

Select compiler properties for source-specification links To control the way the compiler traverses the output tree. For e
xample, if you want it to copy text values, copy text and sub-co
ntent values, or copy names from the Source Specification tree.

Select compiler properties for destination-specification links To control the way the compiler traverses the output tree. For e
xample, you can have it flatten links, match links from the top d
own, or match links from the bottom up. For more information
, see Matching Node-Hierarchy Levels.

Create and Manage Compiled Maps:
Compile maps To compile a map that BizTalk Server can use to perform the ac

tual translation of an input instance to an output instance at ru
n time. The compiling process stores all information about the
source and destination specifications, including all content and
functionality of links and objects.

Resolve warnings and errors after compiling a map To locate the errors in your map and determine how to resolve
them.

Add constant values To create test data for a field in the Source Specification tree or
to add a run-time constant value to a field in the Destination S
pecification tree.

Perform Map Testing:
Test record and field properties that have links To verify that the links contained in your map produce the corr

ect output.
Test maps To verify that the map you designed produces the correct outp

ut. For example, the number of occurrences of records, data ty
pes of fields, and so on, are verified. The process involves gene
rating a test instance of the source document from the specific
ation.

Manage Views, Customize the User Interface, and Use Short
cut Keys:

Expand tree items To view all the records and fields in a specification from the vie
wpoint of the root node record or simply the records and fields
from the viewpoint of a single record.

Collapse tree items To view only the root node record and/or parent records.

https://msdn.microsoft.com/en-us/library/ee251091(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251156(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251534(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251148(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251126(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251243(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251547(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251129(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251533(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251212(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251134(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251206(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251068(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251195(v=bts.10).aspx

View record and field properties To view the properties for a record or field that are associated
with the Declaration, Reference, Parse, Namespace, Dictio
nary, or Code List tab in BizTalk Editor.

Adjust the pane size for the Source Specification tree To view more or less of the Source Specification tree or more o
r less of the mapping grid area.

Adjust the pane size for the Destination Specification tree To view more or less of the Destination Specification tree or m
ore or less of the mapping grid area.

Adjust the size of the lower pane To view more or less of the content contained on the Properti
es, Values, Output or Warnings tab.

Change mapping grid colors To change the color of the Grid foreground area, which repre
sents the dashed lines in the mapping grid, or to change the co
lor of the Grid background, which represents the background
color of the mapping grid.

Change the color of links To change the color of fixed, elastic, partial, and compiler links.

Change the color of selected objects To change the color of objects you select with the mouse point
er.

Change the color of compiler warnings To change the color of the records or fields that will be highlig
hted when a warning has been generated.

Restore default colors To set all the color options back to their original settings.

Change text size To increase or decrease the font size of text in BizTalk Mapper.

BizTalk Mapper Shortcut Keys To use shortcut keys, rather than a mouse, to accomplish tasks.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251053(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274986(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251538(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251219(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251170(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251137(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee275001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251545(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

How to Perform BizTalk Mapper Tasks
This section provides task-specific information about how to map data from one specification to another. It is highly
recommended that you review the About BizTalk Mapper section to fully understand links and functoids, as well as other mapping
properties and functionality.

The following topics are covered in this section:

Change BizTalk Mapper Options

Create New Maps

Open Maps

Save, Store, and Close Maps

Replace Specifications

Work with Grid Pages

Manage Functoids

Manage Links

Create and Manage Compiled Maps

Perform Map Testing

Manage Views

Customize the User Interface

BizTalk Mapper Shortcut Keys

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Change BizTalk Mapper Options
In the BizTalk Mapper Options dialog box, you can set general options and choose colors for the mapping grid.

To view the BizTalk Mapper Options dialog box, on the Tools menu, click Options.

The General tab appears by default.

For information about how to use the BizTalk Mapper Options dialog box, see the following procedures:

BizTalk Mapper Options: General Tab

BizTalk Mapper Options: Colors Tab

BizTalk Mapper Options: Document Delimiters Tab

BizTalk Mapper Options: XSLT output Tab

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251532(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251074(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251140(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Create New Maps
To create a map, you must specify both a source specification and a destination specification.

1. On the File menu, click New.

The Select Source Specification Type dialog box appears.

2. Double-click one of the following:

Local Files, and go to step 3.

Templates, and go to step 4.

WebDAV Files, and go to step 3.

3. Browse to the folder that contains the source specification that you want to open and go to step 5.

4. Click EDIFACT, X12, or XML and click OK.

If you select EDIFACT or X12, you must also select the version you want to use. Click the folder for the version you want to
use, click OK, and then go to step 5.

 Important

When the X12 templates included with the BizTalk Server installation are used in BizTalk Mapper, you might encounter
an error message similar to the following:

The length of the "ITD05" field ("") is not valid; it must be between 48 and -1. This document will be rejected.

The X12 templates use the implied decimal data type Nx. If the input data contains a decimal point, the output will not
match the N custom data type (which means no decimal point) and will create invalid instances in the intermediate
XML file. In this release of BizTalk Server, the serializer might not detect whether the intermediate XML file contains a
decimal point for data type N output. To resolve this issue, you must manually change the implied decimal data type
in the X12 templates to any other numeric data type.

5. Select the source specification and click Open or OK as appropriate.

The Select Destination Specification Type dialog box appears.

6. Double-click one of the following:

Local Files, and go to step 7.

Templates, and go to step 8.

WebDAV Files, and go to step 7.

7. Browse to the folder that contains the destination specification that you want to open and go to step 9.

8. Click EDIFACT, X12, or XML and click OK.

If you select EDIFACT or X12, you must also select the version you want to use. Click the folder for the version you want to
use, click OK, and then go to step 9.

9. Select the destination specification and click Open or OK as appropriate.

10. If you have selected an XDR schema, the Select Root Element dialog box might appear. If it does, select a root element
from the Root elements list and click OK.

 Notes

If the XML-Data Reduced (XDR) schema does not contain a root, you must specify one from the possible nodes in the
schema.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

When you open a non-BizTalk Server XDR schema in BizTalk Mapper, you will see error and/or warning messages if
element groups and/or namespaces are present in the schema. As a result, the map might not appear as you would
expect.

Groups are not visually represented in the Source Specification tree or Destination Specification tree. If your map
contains schemas that have groups, the run-time engine will validate against the group attribute, but BizTalk Mapper
will not graphically depict any grouping reference.

Related Topics

Replace destination specifications

Replace source specifications

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251535(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251540(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Open Maps
The following procedures are covered in this section:

Open maps from a local hard drive

Retrieve maps from WebDAV

Open existing maps from a folder

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251096(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251201(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251105(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Save, Store, and Close Maps
The following procedures are covered in this section:

Save new maps

Save existing maps

Save compiled maps

Store maps

Close maps

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251214(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251247(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Replace Specifications
The following procedures are covered in this section:

Replace source specifications

Replace destination specifications

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251540(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251535(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Work with Grid Pages
The following procedures are covered in this section:

Add grid pages

Rename grid pages

Delete grid pages

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251062(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251536(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251217(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Manage Functoids
The following topics are covered in this section:

Work with Functoids

Information about Functoid Parameters

Edit Functoid Properties

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251099(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251546(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251209(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Manage Links
The following topics are covered in this section:

Create links between fields

Create links between fields and functoids

Create links between records and fields

Create links between records and functoids

Create links between functoids

Allow record content links

Redirect links

Delete links

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee275004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251050(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251541(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251091(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251156(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251534(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251148(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Create and Manage Compiled Maps
The following procedures are covered in this section:

Compile maps

Resolve warnings and errors after compiling a map

Add constant values

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251533(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251212(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Perform Map Testing
The following procedures are covered in this section:

Test record and field properties that have links

Test maps

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251134(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251206(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Manage Views
The following procedures are covered in this section:

Expand tree items

Collapse tree items

View record and field properties

Adjust the pane size for the Source Specification tree

Adjust the pane size for the Destination Specification tree

Adjust the size of the lower pane

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251068(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251195(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251053(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274986(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251538(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251219(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

Customize the User Interface
The following procedures are covered in this section:

Change mapping grid colors

Change the color of links

Change the color of selected objects

Change the color of compiler warnings

Restore default colors

Change text size

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251170(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251137(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee275001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251545(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Mapping Data

BizTalk Mapper Shortcut Keys
You can use shortcut keys to accomplish tasks in BizTalk Mapper. The following table is a quick reference to these shortcut keys.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Windows 2000 Server and Advanced Server Help, see "Using the
keyboard to move the mouse pointer." For more information about MouseKeys in Windows 2000 Professional Help, see
"Move the mouse pointer by using MouseKeys."

Press To
CTRL+N Open a new specification.
CTRL+O Open an existing map.
CTRL+S Save a map.
CTRL+F
5

Test a map.

F4 Highlight the next warning.
F5 Compile a map.
CTRL+A Add a grid page.
On a gri
d page n
ame, F2

Rename a grid page.

CTRL+D Delete a grid page.
DEL Delete an object in the mapping grid.
F6 Move the focus clockwise from pane to pane.
SHIFT+F
6

Move the focus counterclockwise from pane to pane. Pressing SHIFT+F6 after opening the functoid palette moves the f
ocus to the String tab, allowing you to use the left and right arrow keys to view the other tabs.

SHIFT+F
10

Open the context menu for highlighted items.

TAB Move the focus clockwise in the lower pane from the tab to the panes or fields below. In a dialog box, pressing TAB mov
es the focus through the buttons and fields of the dialog box. In addition, this enables you to access the buttons in the u
pper right corner of the Select Source Specification Type dialog box.

SHIFT+T
AB

Move the focus counterclockwise in the lower pane from the tab to the panes or fields below.

SPACEB
AR

Select or clear a check box. The spacebar also acts like a mouse click when the focus is on a button.

F1 View online Help.
ALT+F4 Exit from the program.
Arrow ke
ys

Move the focus in the Grid Preview window.

LEFT AR
ROW

Activate the tab to the left.

RIGHT A
RROW

Activate the tab to the right.

Any arro
w key

Highlight a folder or a file in the main pane of a dialog box, while the focus is on that pane. This functionality occurs in t
he Store to WebDAV dialog box and the Retrieve from WebDAV dialog box. For more information, see
Retrieve maps from WebDAV.

Using MouseKeys with BizTalk Mapper

Some operations in BizTalk Mapper have no keyboard shortcuts. To perform the following operations, you must use MouseKeys:

Move

Select functoids

Drag functoids

https://msdn.microsoft.com/en-us/library/ee251201(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Linking

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Troubleshooting BizTalk Editor and BizTalk Mapper

Troubleshooting BizTalk Editor and BizTalk Mapper
This section provides a centralized location for information related to troubleshooting Microsoft® BizTalk™ Editor and BizTalk
Mapper. If you are having difficulty with BizTalk Editor or BizTalk Mapper, try to find a solution here.

The following topics are covered in this section:

Password required when trying to connect to a remote WebDAV server

Failure to connect to WebDAV or to store files to WebDAV

???.xml appears in the WebDAV dialog box

BizTalkServerRepositoryMaps folder appears in Retrieve from WebDAV dialog box

Retrieve from WebDAV dialog box or Store to WebDAV dialog box is empty

Failure to connect to http://localhost

Flat file not completely parsed when submitted to BizTalk Server

White space not preserved in flat files submitted to BizTalk Server

Test map fails

DTD import fails

Instance validation fails when using the Date or Time field

Re-register msdaipp.dll to retrieve or store maps in WebDAV

The parser cannot find the required leading delimiter

Storing a file to WebDAV fails

Importing an XML-Data Reduced file fails

Instance validation fails when using a comma to express a decimal number

Large data segments in an IDOC document are not posted to an SAP system

Unicode limitations in WebDAV

X12 templates contain an implied decimal

Using the keyboard to convert Korean characters to Chinese characters causes BizTalk Editor to fail

Cannot open BizTalk Editor or BizTalk Mapper

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251332(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251318(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251309(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251316(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251336(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251338(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251311(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251330(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251307(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251312(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251341(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251323(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251340(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251305(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251325(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251303(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251328(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Integrating BizTalk Services

Integrating BizTalk Services
Integrating Microsoft® BizTalk™ Orchestration Services and BizTalk Messaging Services enables you to control the exchange of
documents and messages between your trading partners and internal applications using multiple transport services. It also
provides:

Control over complex, long-running transactions and business processes.

Reliable delivery of documents and messages.

Data validation by verifying each document instance against a specification.

Data mapping by using maps to transform document structure and format.

Data security and integrity by using encryption and digital signature certificates.

Support for receipt generation and correlation.

While there are many ways to integrate BizTalk Orchestration Services and BizTalk Messaging Services, this section presents a
common scenario.

In this scenario, you configure an XLANG schedule instance on the source system to initiate and send a message to a destination
system of a trading partner, wait to receive a return message from that partner, and then deliver that return message to the same
XLANG schedule instance that sent the initial message. One example of a common business process where you might apply this
configuration is for sending a purchase order and waiting to receive a purchase order receipt before continuing the process.

The topics in this section explain the configuration steps required for exchanging messages between your business and a trading
partner by using a Hypertext Transfer Protocol (HTTP) transport and a non-HTTP transport. However, you can use a similar
configuration to control the exchange of messages between applications within your business.

Because Microsoft BizTalk Server 2002 can serve either as the source system, which sends the initial message, or the destination
system, which sends the return message, this section provides the configuration steps required for both. This also enables you to
see the entire configuration that is required.

For samples of XLANG schedules that reflect these configurations and other related files, browse to the \Program Files\Microsoft
BizTalk Server\SDK\XLANG Samples\Integrating BizTalk Services folder.

 Notes

The term messaging port, which is used in BizTalk Messaging Services, and the term port, which is used in BizTalk
Orchestration Services, have entirely different meanings:

A messaging port is a set of properties that directs BizTalk Messaging Services to transport documents to a specified
destination by using a specified transport service.

A port is a named location that uses a specific implementation. In an XLANG schedule, ports facilitate synchronous
and asynchronous communications and are used to pass messages into or out of the schedule.

Action events related to messages processed by an XLANG schedule that are either sent to or received from BizTalk
Messaging Services can be tracked in the Tracking database. For more information, see
Tracking XLANG schedule Events in the Tracking Database.

The following topics are covered in this section:

Using an HTTP Transport

Using a Non-HTTP Transport

Related Topics

How Does BizTalk Server Work?

Instance Management

https://msdn.microsoft.com/en-us/library/ee251249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274602(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Integrating BizTalk Services

Using an HTTP Transport
This section explains how to integrate and configure BizTalk Orchestration Services and BizTalk Messaging Services for both the
source system and destination system so that:

The source system generates and sends a message to the destination system of a trading partner by using a specific
XLANG schedule instance.

The destination system sends a return message by using an HTTP transport.

The source system receives the return message and routes it to the same XLANG schedule instance that generated and sent
the initial message.

To configure both systems so that the destination system can use a non-HTTP transport to send return messages, see
Using a Non-HTTP Transport.

The following topics are covered in this section:

Configuring the Source System to Use an HTTP Transport

Configuring the Destination System to Use an HTTP Transport

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Integrating BizTalk Services

Configuring the Source System to Use an HTTP Transport
The steps in this topic explain how to configure the source system to generate and send a message that contains an HTTP URL
reply-to address. The destination system of the trading partner uses the reply-to address contained in the initial message to send
a return message to an ASP page on the Web site of the source system by using an HTTP transport. If you want to configure the
source system so that the destination system can use a non-HTTP transport to send return messages, see
Configuring the Source System to Use a Non-HTTP Transport. The configuration steps required for using a Secure Hypertext
Transfer Protocol (HTTPS) transport are discussed later in this topic.

The HTTP URL that is used as the reply-to address in this configuration is generated by the XLANG schedule based on data from
the port properties. It is comprised of the following elements:

The address of an ASP page on the Web site of the source system to which a return message is sent.

A query string that contains the name of the channel in BizTalk Messaging Services for the source system that is used to
process the return message, and a fully qualified path of a per-instance queue that the XLANG schedule instance creates and
to which the return message is delivered.

The following is an example of an HTTP URL reply-to address:

http://hostname/receiveresponse.asp?channel=ChannelForReply&qpath=hostname.domain.corp.vigorair-
18.com\private$\ChannelForReply{9e0016bf-be1f-48fe-82de-b27077ab5e73}

When the ASP page on the source system receives the return message, it contains script that performs the following steps:

Extracts the channel name and queue path information from the query string.

Converts the queue path from a path name to a format name, and inserts a queue:// prefix, which is required by BizTalk
Messaging Services.

Submits the return message to BizTalk Messaging Services for the source system using the channel name and queue path
information as submission parameters. For more information about submitting documents, see Submitting.

BizTalk Messaging Services for the source system uses the specified channel to process the return message and uses the
associated messaging port, which uses the queue path to transport the return message to the same running XLANG schedule
instance that generated the initial message.

For this source system configuration to work correctly, the destination system of the trading partner also must be correctly
configured. For information about configuring the destination system, see
Configuring the Destination System to Use an HTTP Transport.

To configure the source system to use an HTTP transport, complete the steps in the following table. References are provided for
each procedure, and notes are provided to indicate special configuration considerations. Other property settings needed to
complete the configuration vary according to your particular business situation and are not specified here.

Step References and notes
Using BizTalk Editor:

Create the specifications t
hat are needed for the inb
ound and outbound
document definitions of t
he channel that will proce
ss the initial message.

Create and Validate Specifications

 Note

You must add a field in each of these specifications for the reply-to address. This fie
ld can be added at any level; however, the location must be agreed upon with the tr
ading partner and match the specifications on the destination system of your tradin
g partner. For more information, see Manage Records and Fields.

Create the specifications t
hat are needed for the inb
ound and outbound docu
ment definitions of the ch
annel that will process the
return message.

Create and Validate Specifications

 Note

These specifications do not require special configuration.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Using BizTalk Messaging Ma
nager:

Create an organization to
represent the trading part
ner and the destination sy
stem.

Create organizations

 Note

This organization does not require special configuration.

Create the document defi
nitions needed to create t
he channel that you use t
o process the initial mess
age.

Create document definitions

 Note

In the document definitions, select the specifications that have the reply-to field. Fo
r more information, see Select a document specification.

Create the document defi
nitions needed to create t
he channel that you use t
o process the return mess
age.

Create document definitions

 Note

These document definitions do not require special configuration.

Create a messaging port t
o an organization to trans
port the initial message to
the destination system.

Create messaging ports

 Note

This messaging port cannot be an open messaging port.

Create a channel from an
application to process the
outbound message from t
he XLANG schedule.

Create channels

 Notes

On the Source Application page of the Channel Wizard, click XLANG schedule. F
or more information, see Set source application properties.

Make a note of the channel name and the inbound document definition name. Thes
e names are used to configure BizTalk Orchestration Services.

Create a messaging port t
o an application to transp
ort the return message to
the active
XLANG schedule instance
that generated the outbou
nd message.

Create messaging ports

 Note

On the Destination Application page of the Messaging Port Wizard, click Runni
ng XLANG schedule. For more information, see
Set destination application properties.

Create a channel from an
organization to process th
e return message from th
e destination system.

Create channels

 Note

Make a note of the channel name and the outbound document definition name tha
t you use. These names are used to configure BizTalk Orchestration Services.

Using BizTalk Orchestration
Designer:

Use a BizTalk Messagin
g shape to implement a
port to send the initial me
ssage.

Implement a port by using BizTalk Messaging

 Note

On the Static or Dynamic Channel Information page of the BizTalk Messaging B
inding Wizard, click Static channel and, in the Enter the name of a known, pre-
existing channel box, type the name of the channel in
BizTalk Messaging Manager that you use to process the initial message.

https://msdn.microsoft.com/en-us/library/ee265298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265172(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265186(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265172(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265120(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265124(v=bts.10).aspx

Establish the communicati
on flow between an Actio
n shape and the port that
sends the initial message.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizard, click Crea
te a new message and, in the Message name box, type a name for the message.

You can use any name; however, using the name of the inbound document definiti
on for the channel makes it more apparent which message you are sending.

On the Message Type Information page, in the Message type box, type the nam
e of the inbound document definition for the channel that you use to process the m
essage.

On the Message Specification Information page, click Browse and browse to th
e specification that you use for the inbound document definition of the channel tha
t you use to process the initial message.

On the Message Specification Information page, in the Message fields area, cli
ck Add and add the field in the specification that was created to contain the reply-t
o address in the initial message.

Use a BizTalk Messagin
g shape to implement a p
ort where you receive a re
turn message.

Implement a port by using BizTalk Messaging

 Notes

On the XLANG Schedule Activation Information page of the BizTalk Messaging
Binding Wizard, click No.

On the Channel Information page, in the Channel name box, type the name of t
he channel in BizTalk Messaging Manager that you use to process the return messa
ge.

BizTalk Orchestration Designer uses the channel name and a GUID to create and na
me a per-instance queue to which the return message is delivered.

On the Channel Information page, in the HTTP URL address where the BizTalk
Messaging Service receives documents box, type the address of the ASP page
where the trading partner can send a return message.

BizTalk Orchestration Designer uses the address and the channel name that you en
tered previously to create an HTTP URL address with a query string that includes th
e channel name and the queue path of the per-instance queue.

Establish the communicati
on flow between an Actio
n shape and the port whe
re you receive a return m
essage.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizard, click Crea
te a new message and, in the Message name box, type a name for the message.

You can use any name; however, using the name of the outbound document definit
ion for the channel makes it more apparent which message you are receiving.

On the Message Type Information page, in the Message type box, type the nam
e of the outbound document definition for the channel that you use to process the
return message.

All messages delivered from BizTalk Messaging Services to an XLANG schedule inst
ance are sent to a message queue. The message label given to these messages is th
e name of the outbound document definition of the channel.

https://msdn.microsoft.com/en-us/library/ee265367(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265124(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265367(v=bts.10).aspx

Establish the data flow for
passing the port reference
data to the reply-to addre
ss field.

Draw the flow between messages

 Notes

Click the Data tab.

On the Data page, in the Port References message, click the port reference for the
port that will receive the return message. Then drag its control handle to the conne
ction point of the reply-to address field in the initial message.

This passes the port reference data into the reply-to address field of the outbound i
nitial message. The port reference is an HTTP URL address of an ASP page, which in
cludes a query string with a channel name and the queue path of the per-instance
queue for the port.

Using the ASP page:
You can use the sample A
SP page that is provided
with BizTalk Server 2002,
or configure an ASP page
that uses the same script
as the sample page.

 Notes

To use the sample ASP page, browse to \Program Files\Microsoft BizTalk Server\SDK\Mess
aging Samples\ReceiveScripts on the installation drive to locate the ReceiveResponse.asp s
ample. Place this file in the appropriate directory for the Web site of the source system.

When the sample ASP page receives a return message, its script extracts the channel name
and queue path from the query string in the address of the HTTP header. The ASP page als
o converts the queue path from a path name to a format name and inserts a queue:// prefi
x. The page then uses this data as parameters to submit the return message to BizTalk Mes
saging Services for the source system. For more information about submitting documents,
see Submitting.

Using a secure HTTPS transport

If your business process requires a secure transport for exchanging messages with a trading partner, you must use an HTTPS
transport.

The only change that you need to make in the source system configuration to use an HTTPS transport is to modify the URL
address for the port where you receive the return message.

When you implement the port that receives the return message, the URL that you enter for the reply-to address must use an
HTTPS prefix, rather than an HTTP prefix.

The following is an example of a reply-to address that uses HTTPS:

https://hostname/receiveresponse.asp?channel=ChannelForReply&qpath=hostname.domain.corp.vigorair-
18.com\private$\ChannelForReply{9e0016bf-be1f-48fe-82de-b27077ab5e73}

The destination system does not require any additional configuration changes.

Related Topic

Integrating BizTalk Services

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265310(v=bts.10).aspx

BizTalk Server 2002 ~ Integrating BizTalk Services

Configuring the Destination System to Use an HTTP Transport
The steps in this topic explain how to configure the destination system to receive a message that contains an HTTP URL reply-to
address and send a return message to the source system by using an HTTP transport. If you want to configure the destination
system to use a non-HTTP transport to send return messages, see
Configuring the Destination System to Use a Non-HTTP Transport. The configuration considerations for using an HTTPS transport
are discussed later in this topic.

When BizTalk Messaging Services for the destination system receives the initial message, it is configured to activate a new
instance of a specified XLANG schedule and send the message to a specified port in that XLANG schedule instance.

The XLANG schedule is configured to pass the reply-to address data that is contained in a field of the initial message to the
port reference field for the port that is used to send the return message. The XLANG schedule then submits the return message to
BizTalk Messaging Services using the Dynamic channel option.

For the Dynamic channel option, specific port data is passed as submission parameters when the message is submitted to
BizTalk Messaging Services. The port reference data, in this case the reply-to address, is passed as the destination identifier
parameter, and the Message type for the port is passed as the document definition name parameter. For more information
about submission parameters, see Submitting. The submission parameters enable BizTalk Messaging Services to identify a
specific channel to process the return message. For more information, see Identification.

When you use the Dynamic channel option, the channel in BizTalk Messaging Services must be associated with an
open messaging port. The open messaging port transports the return message to the source system of the trading partner by
using the reply-to address, which is passed as the destination identifier parameter. Because this is the HTTP URL of an ASP page
on the source system, the HTTP transport is used. For more information about open messaging ports, see Open Messaging Ports.

For this destination system configuration to work correctly, the source system of the trading partner also must be correctly
configured. For information about configuring the source system, see Configuring the Source System to Use an HTTP Transport.

To configure the destination system to use an HTTP transport, complete the steps in the following table. References are provided
for each procedure, and notes are provided to indicate special configuration considerations. Other property settings needed to
complete the configuration vary according to your particular business situation and are not specified here.

Step References and notes
Using BizTalk Editor:

Create the specifications for th
e inbound and outbound
document definitions of the ch
annel that you use to process t
he initial message.

Create and Validate Specifications

 Note

You must add a field in each of these specifications for the reply-to address. Th
is field can be added at any level; however, the location must be agreed upon
with the trading partner and match the specifications on the source system of
your trading partner. For more information, see Manage Records and Fields.

Create the specifications that a
re needed for the inbound and
outbound document definition
s of the channel that will proce
ss the return message.

Create and Validate Specifications

 Note

These specifications do not require special configuration.

Using BizTalk Messaging Manag
er:

Create an organization to repr
esent the trading partner with
the source system.

Create organizations

 Note

This organization does not require special configuration.

Create the document definitio
ns needed for creating a chan
nel to process the initial messa
ge and a channel to process th
e return message.

Create document definitions

 Note

In the document definitions, select the previously created specifications. For m
ore information, see Select a document specification.

https://msdn.microsoft.com/en-us/library/ee265298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265172(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265186(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Create a messaging port to an
application to activate a new X
LANG schedule instance, and t
ransport the initial message to
a port in that XLANG schedule
instance.

Create messaging ports

 Notes

On the Destination Application page of the Messaging Port Wizard, click Ne
w XLANG schedule.

In the Schedule moniker box, type the moniker of the specified schedule or cl
ick Browse to set the path.

In the Port name box, type the name of the specific port in this schedule to wh
ich the document is sent.

For more information, see Set destination application properties.

Create a channel from an orga
nization to process the initial
message from the trading part
ner.

Create channels

 Note

Make a note of the channel name and the outbound document definition nam
e that you use. These names are used to configure BizTalk Orchestration Servic
es.

Create an open messaging por
t to an organization to transpo
rt the return message to the s
ource system.

Create messaging ports

 Note

On the Destination Organization page of the Messaging Port Wizard, click O
pen destination. For more information, see
Set destination organization properties.

An open messaging port requires that the destination information be containe
d in the document or provided by submission parameters. When the XLANG sc
hedule submits the return message to BizTalk Messaging Services, it passes th
e reply-to address data, which was contained in the initial message, as the dest
ination identifier submission parameter.

Create a channel from an appli
cation to process the return m
essage from the XLANG sched
ule.

Create channels

 Note

On the Source Application page of the Channel Wizard, click XLANG schedu
le. For more information, see Set source application properties.

Using BizTalk Orchestration Desi
gner:

Use a BizTalk Messaging sha
pe to implement a port to rece
ive the initial message.

Implement a port by using BizTalk Messaging

 Notes

On the Communication Direction page of the BizTalk Messaging Binding Wi
zard, click Receive.

On the XLANG Schedule Activation Information page of the BizTalk Messa
ging Binding Wizard, click Yes.

 Important

Choosing Yes configures the port to activate a new schedule instance when a
message arrives. For important information about using this option, see the to
pic referenced for this step.

https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265120(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250837(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265124(v=bts.10).aspx

Establish the communication fl
ow between an Action shape
and the port that receives the i
nitial message.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizard, click
Create a new message and, in the Message name box, type a name for the
message.

You can use any name; however, using the name of the outbound
document definition for the channel makes it more apparent which message y
ou are sending.

On the Message Type Information page, in the Message type box, type the
name of the outbound document definition for the channel that you use to pro
cess the return message.

All messages passed from BizTalk Messaging to an XLANG schedule use a mes
sage queue. The label for these messages is the name of the outbound docum
ent definition of the channel.

Use a BizTalk Messaging sha
pe to implement a port to sen
d the return message with a d
ynamic channel.

Implement a port by using BizTalk Messaging

 Notes

On the Static or Dynamic Channel Information page of the BizTalk Messagi
ng Binding Wizard, click Dynamic channel.

When you create a port that uses a dynamic channel, the channel that BizTalk
Messaging Services uses to process the message is determined by port data p
assed as submission parameters. This is described later in this table.

Establish the communication fl
ow between an Action shape
and the port that is used to se
nd the return message.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizard, click
Create a new message and, in the Message name box, type a name for the
message.

You can use any name; however, using the name of the inbound document def
inition for the channel makes it more apparent which message you are sendin
g.

On the Message Type Information page, in the Message type box, you mus
t type the name of the inbound document definition for the channel that you u
se to process the message.

The inbound document definition data is passed as a submission parameter to
BizTalk Messaging Services. This is described later in this table.

https://msdn.microsoft.com/en-us/library/ee265367(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265124(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265367(v=bts.10).aspx

Establish the data flow to pass
the reply-to address field to th
e port reference of the port th
at sends the return message.

Draw the flow between messages

 Notes

Click the Data tab.

On the Data page, in the initial message, click the reply-to address field. Then
drag its control handle to the left connection point of the port reference in the
Port References message for the port that is used to send the return message
.

 Important

You must connect the reply-to address field to the left connection point of the
port reference. A left connection point on a port reference is available only whe
n a port is configured to use a dynamic channel to send messages.

For a port that uses a dynamic channel, the data for the port reference must be
passed from a field in a previously received message.

In this scenario, the reply-to address data from the initial message is passed to
the port reference field for the port that is used to send the return message. Th
e reply-to address is the HTTP URL to where the return message is sent.

When a port that uses a dynamic channel passes a message to BizTalk Messagi
ng Services, the port reference data is passed as the destination identifier para
meter and the message type data is passed as the document definition parame
ter. The parameters enable BizTalk Messaging Services to identify which chann
el to invoke to process the message. For more information, see Identification a
nd Submitting.

When a port is configured to use a dynamic channel, the destination informati
on is passed as a parameter in an open destination submission. Therefore, any
channel that is invoked by a port that uses a dynamic channel must be associat
ed with an open messaging port.

Using a secure HTTPS transport

Because the messaging port that you use to transport return messages is an open messaging port, you cannot use an encryption
certificate to encrypt documents.

If your business process requires a secure transport for exchanging messages with a trading partner, the source system must
include an HTTPS URL as the reply-to address in the initial messages that are sent to you, rather than an HTTP URL.

For more information, see Configuring the Source System to Use an HTTP Transport.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265310(v=bts.10).aspx

BizTalk Server 2002 ~ Integrating BizTalk Services

Using a Non-HTTP Transport
This section explains how to integrate and configure BizTalk Orchestration Services and BizTalk Messaging Services for both the
source system and destination system so that:

The source system generates and sends a message to the destination system of a trading partner by using a specific
XLANG schedule instance.

The destination system receives the initial message, activates an XLANG schedule instance that generates a return message,
and then sends the return message to the source system using a non-HTTP transport.

To configure both systems so that the destination system can use an HTTP transport to send return messages, see
Using an HTTP Transport.

The following topics are covered in this section:

Configuring the Source System to Use a Non-HTTP Transport

Configuring the Destination System to Use a Non-HTTP Transport

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Integrating BizTalk Services

Configuring the Source System to Use a Non-HTTP Transport
The steps in this topic explain how to configure the source system to generate and send a message that contains the path of a
static queue. The destination system of the trading partner is configured to pass the queue path contained in the message into a
field of a return message, and send it to the source system by using a non-HTTP transport. If you want to configure the source
system so that the destination system can use an HTTP transport to send return messages, see
Configuring the Source System to Use an HTTP Transport.

When the source system receives the return message, it submits the message to BizTalk Messaging Services. BizTalk Messaging
Services transports the return message to the queue that is specified by the queue path contained in the document field. This
queue is monitored by the same XLANG schedule instance that generated the initial message, and the schedule retrieves the
return message from that queue.

For this source system configuration to work correctly, the destination system of the trading partner also must be correctly
configured. For information about configuring the destination system, see
Configuring the Destination System to Use a Non-HTTP Transport.

To configure the source system to use a non-HTTP transport, complete the steps in the following table. References are provided
for each procedure, and notes are provided to indicate special configuration considerations. Other property settings needed to
complete the configuration vary according to your particular business situation and are not specified here.

Step References and notes
Using BizTalk Editor:

Create the specifications for t
he inbound and outbound
document definitions of the
channel that you use to proc
ess the initial message.

Create and Validate Specifications

 Note

You must add a field in each of these specifications for the queue path. This field
can be added at any level; however, the location must be agreed upon with the t
rading partner and match the specifications on the destination system of your tr
ading partner. For more information, see Manage Records and Fields.

Create the specifications for t
he inbound and outbound do
cument definitions of the cha
nnel that you use to process t
he return message.

Create and Validate Specifications

 Notes

You must add a field to the inbound specification for the queue path. This field c
an be added at any level; however, the location must be agreed upon with the tr
ading partner and match the specifications on the destination system of your tra
ding partner. For more information, see Manage Records and Fields.

The queue path field in the inbound specification must be set as the destination
value in the dictionary properties. For more information, see
Set dictionary properties.

When the return message is received and submitted to BizTalk Messaging Servi
ces on the source system, the queue path field is recognized and treated as the
destination identifier parameter. For more information, see Submitting. The mes
saging port transports the return message to the queue specified by this queue
path. The XLANG schedule monitors this queue and retrieves the return messag
e.

Using BizTalk Mapper:
Create a map to be used in th
e channel that processes the i
nitial message.

Create new maps

 Important

The syntax for the queue path name that the XLANG schedule generates must b
e changed from a path name to a format name and have the queue:// prefix add
ed. For the HTTP transport scenario, the script in the ASP page makes this chang
e. To make this change for the non-HTTP transport scenario, you must use a Co
ncatenate functoid in a map. For more information, see
Integrating BizTalk Services Using Maps.

https://msdn.microsoft.com/en-us/library/ee251409(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Using BizTalk Messaging Mana
ger:

Create an organization to rep
resent the trading partner wit
h the destination system.

Create organizations

 Note

This organization does not require special configuration.

Create the document definiti
ons needed to create a chann
el to process the initial messa
ge and a channel to process t
he return message.

Create document definitions

 Note

In the document definitions, select the previously created specifications. For mor
e information, see Select a document specification.

Create a messaging port to a
n organization to transport t
he initial message to the dest
ination system.

Create messaging ports

 Note

This messaging port does not require special configuration.

Create a channel from an ap
plication to process the initial
message from the XLANG sc
hedule.

Create channels

 Notes

On the Source Application page of the Channel Wizard, click XLANG schedul
e. For more information, see Set source application properties.

On the Outbound Document page, select the Map inbound document to o
utbound document check box and, to the right of the Map reference box, clic
k Browse. Then browse to the map that you created previously and click Open.

Make a note of the channel name and the inbound document definition name th
at you use. These names are used to configure BizTalk Orchestration Services.

Create an
open messaging port to an o
rganization to transport the r
eturn message to the active X
LANG schedule instance that
generated the initial message
.

Create messaging ports

 Notes

On the Destination Organization page of the Messaging Port Wizard, click O
pen destination. For more information, see
Set destination organization properties.

For this scenario, you create a messaging port to an organization, even though y
ou send the return message to an application, an XLANG schedule.

This enables you to use an open messaging port to submit the return message
using the queue path information as a submission parameter. For more informa
tion, see Submitting.

The open messaging port transports the return message to the static queue that
is specified in the queue path, where the XLANG schedule is configured to retrie
ve it.

Create a channel from an org
anization to process the retur
n message from the destinati
on system.

Create channels

 Notes

The inbound document definition for this channel must use the document defini
tion that uses the previously created specification in which you designated the q
ueue path field as the destination value in the dictionary properties.

Make a note of the channel name and the inbound document definition name th
at you use. These names are used to configure BizTalk Orchestration Services.

https://msdn.microsoft.com/en-us/library/ee265298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265172(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265186(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250837(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx

Using BizTalk Orchestration Des
igner:

Use a BizTalk Messaging sh
ape to implement a port to s
end the initial message.

Implement a port by using BizTalk Messaging

 Note

On the Static or Dynamic Channel Information page of the BizTalk Messagin
g Binding Wizard, click Static channel and, in the Enter the name of a known
, pre-existing channel box, type the name of the channel in
BizTalk Messaging Manager that you use to process the initial message.

Establish the communication
flow between an Action sha
pe and the port that sends th
e initial message.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizard, click C
reate a new message and, in the Message name box, type a name for the me
ssage.

You can use any name; however, using the name of the inbound document defi
nition for the channel makes it more apparent which message you are sending.

On the Message Type Information page, in the Message type box, type the n
ame of the inbound document definition for the channel that you use to process
the message.

On the Message Specification Information page, click Browse and browse t
o the specification that you use for the inbound document definition of the chan
nel for the initial message.

On the Message Specification Information page, in the Message fields area
, click Add and add the field in the specification that was created to contain the
queue path.

Use a Message Queuing sh
ape to implement a port whe
re you receive a return mess
age.

Implement a port by using Message Queuing

 Notes

In this scenario, you use a Message Queuing port binding, even though you are
receiving a message from BizTalk Messaging Services.

On the Static or Dynamic Queue Information page of the Message Queuing
Binding Wizard, click Static queue.

On the Queue Information page, click Create a new queue for every instan
ce, and, in the Enter the queue prefix box, type the name of the prefix that will
be used to create the queue name.

https://msdn.microsoft.com/en-us/library/ee265124(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265367(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274757(v=bts.10).aspx

Establish the communication
flow between an Action sha
pe and the port where you re
ceive a return message.

Send or receive asynchronous messages

 Notes

On the Welcome to the XML Communication Wizard page of the XML Com
munication Wizard, click Receive.

On the Message Information page, click Create a new message and, in the
Message name box, type a name for the message.

You can use any name; however, using the name of the outbound document def
inition for the channel makes it more apparent which message you are receivin
g.

On the Message Type Information page, in the Message type box, type the n
ame of the outbound document definition for the channel that you use to proce
ss the return message.

All messages passed from BizTalk Messaging to an XLANG schedule use a mess
age queue. The label for these messages is the name of the outbound document
definition of the channel.

Establish the data flow from t
he receiving port reference t
o the queue path field.

Draw the flow between messages

 Notes

Click the Data tab.

On the Data page, in the Port References message, click the field for the port t
hat receives the return message. Then drag its control handle to the connection
point of the queue path field in the initial message.

This inserts the port reference data into the queue path field of the initial messa
ge. The port reference is the queue path of the static queue for the port that you
use to receive a return message.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265367(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265310(v=bts.10).aspx

BizTalk Server 2002 ~ Integrating BizTalk Services

Configuring the Destination System to Use a Non-HTTP
Transport
The steps in this topic explain how to configure the destination system to receive a message that contains a queue path and to
send a return message that contains the same queue path to the source system by using a non-HTTP transport. If you want to
configure the destination system to use an HTTP transport to send return messages, see
Configuring the Destination System to Use an HTTP Transport.

When BizTalk Messaging Services for the destination system receives the initial message, it is configured to activate a new
instance of a specified XLANG schedule and pass the message to a specified port in that XLANG schedule instance.

The XLANG schedule is configured to pass the data contained in the queue path field of the initial message into a matching field
of the return message, and then submit the return message to a channel in BizTalk Messaging Services.

BizTalk Messaging Services uses the specified channel to process the return message and pass it to a messaging port. This
messaging port is configured to transport the return message to an address that is agreed upon with the trading partner with the
source system. This messaging port cannot be an open messaging port.

For this destination system configuration to work correctly, the source system of the trading partner also must be correctly
configured. For information about configuring the source system, see
Configuring the Source System to Use a Non-HTTP Transport.

To configure the destination system to use a non-HTTP transport, complete the steps in the following table. References are
provided for each procedure, and notes are provided to indicate special configuration considerations. Other property settings
needed to complete the configuration vary according to your particular business situation and are not specified here.

Step References and notes
Using BizTalk Editor:

Create the specifications for the inbou
nd and outbound
document definitions of the channel t
hat you use to process the initial mess
age.

Create and Validate Specifications

 Note

You must add a field in each of these specifications for the queue path.
This field can be added at any level; however, the location must be agre
ed upon with the trading partner and match the specifications on the s
ource system of your trading partner. For more information, see
Manage Records and Fields.

Create the specifications for the inbou
nd and outbound document definition
s of the channel that you use to proce
ss the return message.

Create and Validate Specifications

 Note

You must add a field in each of these specifications for the queue path.
This field can be added at any level; however, the location must be agre
ed upon with the trading partner and match the specifications on the s
ource system of your trading partner. For more information, see
Manage Records and Fields.

Using BizTalk Messaging Manager:
Create an organization to represent th
e trading partner with the source syst
em.

Create organizations

 Note

This organization does not require special configuration.

Create the document definitions need
ed for creating a channel to process th
e initial message.

Create document definitions

 Note

In the document definitions, select the previously created specifications
. For more information, see Select a document specification.

https://msdn.microsoft.com/en-us/library/ee265298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265172(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265186(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Create the document definitions need
ed for creating a channel to process th
e return message.

Create document definitions

 Note

In the document definitions, select the previously created specifications
. For more information, see Select a document specification.

Create a messaging port to an applica
tion to activate a new
XLANG schedule instance, and transp
ort the initial message to a port in that
XLANG schedule instance.

Create messaging ports

 Notes

On the Destination Application page of the Messaging Port Wizard,
click New XLANG schedule.

In the Schedule moniker box, type the moniker of the specified sched
ule or click Browse to set the path.

In the Port name box, type the name of the specific port in this schedu
le to which the document is sent.

For more information, see Set destination application properties.

To complete this step, you need the path of an XLANG schedule and th
e name of the port in that schedule to which the initial message is deliv
ered. Therefore, you must first create the XLANG schedule and configur
e its port, as described later in this table.

Create a channel from an organization
to process the initial message from th
e trading partner.

Create channels

 Note

Make a note of the channel name and the outbound document definiti
on name that you use. These names are used to configure
BizTalk Orchestration Services.

Create a messaging port to an organiz
ation to transport the return message
to the source system.

Create messaging ports

 Notes

On the Destination Organization page of the Messaging Port Wizard
, click Organization. To the right of the Name box, click Browse.

In the Select an Organization dialog box, select the organization that
you created previously to represent the trading partner with the source
system. For more information, see Select a destination organization.

On the Destination Organization page of the Messaging Port Wizard
, in the Primary Transport area, click Browse.

In the Primary Transport dialog box, in the Transport type list, select
the transport type and, in the Address box, type an address.

The transport type and address must be agreed upon with the trading
partner and match the specifications on the source system of your trad
ing partner.

You cannot use an open messaging port to send the return message.

https://msdn.microsoft.com/en-us/library/ee265172(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265186(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265120(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250828(v=bts.10).aspx

Create a channel from an application t
o process the return message from th
e XLANG schedule.

Create channels

 Notes

On the Source Application page of the Channel Wizard, click XLANG
schedule. For more information, see Set source application properties.

Make a note of the channel name and the inbound document definitio
n name that you use. These names are used to configure BizTalk Orche
stration Services.

Using BizTalk Orchestration Designer:
Use a BizTalk Messaging shape to i
mplement a port to receive the initial
message.

Implement a port by using BizTalk Messaging

 Notes

On the Communication Direction page of the BizTalk Messaging Bin
ding Wizard, click Receive.

On the XLANG Schedule Activation Information page of the BizTalk
Messaging Binding Wizard, click Yes.

 Important

Choosing Yes configures the port to activate a new schedule instance
when a message arrives. For important information about using this o
ption, see the topic referenced for this step.

Make a note of the name that you give to this port and the location to
which you save the compiled XLANG schedule. You need this informati
on to configure a messaging port in BizTalk Messaging Services, as des
cribed previously in this table.

Establish the communication flow bet
ween an Action shape and the port th
at receives the initial message.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizar
d, click Create a new message and, in the Message name box, type a
name for the message.

You can use any name; however, using the name of the outbound docu
ment definition for the channel makes it more apparent which messag
e you are sending.

On the Message Type Information page, in the Message type box, t
ype the name of the outbound document definition for the channel tha
t you use to process the return message.

All messages passed from BizTalk Messaging to an XLANG schedule us
e a message queue. The label for these messages is the name of the ou
tbound document definition of the channel.

On the Message Specification Information page, click Browse and
browse to the specification that you use for the outbound document de
finition of the channel for the initial message.

In the Message fields area, click Add and add the field in the specifica
tion that was created to contain the queue path address for the initial
message.

https://msdn.microsoft.com/en-us/library/ee274698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee274731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265124(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265367(v=bts.10).aspx

Use a BizTalk Messaging shape to i
mplement a port to send the return m
essage.

Implement a port by using BizTalk Messaging

 Notes

On the Static or Dynamic Channel Information page of the BizTalk
Messaging Binding Wizard, click Static channel and, in the Enter the
name of a known, pre-existing channel box, type the name of the c
hannel in BizTalk Messaging Manager that you use to process the retur
n message.

Because this port uses a static channel, an open destination submission
call to BizTalk Messaging is not made. Therefore, the channel that is sp
ecified cannot be associated with an open messaging port.

Establish the communication flow bet
ween an Action shape and the port th
at sends the return message.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizar
d, click Create a new message and, in the Message name box, type a
name for the message.

You can use any name; however, using the name of the inbound docu
ment definition for the channel makes it more apparent which messag
e you are sending.

On the Message Type Information page, in the Message type box, t
ype the name of the inbound document definition for the channel that
you use to process the message.

On the Message Specification Information page, click Browse and
browse to the specification that you use for the inbound document defi
nition of the channel that you use to process the return message.

In the Message fields area, click Add and add the field in the specifica
tion that was created to contain the queue path address for the return
message.

Establish the data flow for the queue p
ath field in the initial message to the q
ueue path field in the return message.

Draw the flow between messages

 Notes

Click the Data tab.

On the Data page, click the queue path field in the initial message. The
n drag its control handle to the connection point of the queue path fiel
d in the return message.

This passes the queue path data from the initial message into the retur
n message.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265124(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265367(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265310(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Server 2002 Developer Solutions
You can programmatically integrate applications with Microsoft® BizTalk™ Server 2002 by using the BizTalk Messaging
Configuration object model, or by extending and customizing the functionality of the server to suit your business and
information-exchange needs. The developer solutions provide all the information necessary for Microsoft Visual Basic® and C++
developers to use or extend BizTalk Server 2002. This section also includes a complete list of interfaces, objects, enumerations,
code samples, and possible error messages.

BizTalk Server 2002 supports programmatic application integration by accessing the BizTalk Messaging Configuration object
model and submitting documents by calling the methods of the IInterchange interface. BizTalk Server 2002 also supports the
use of extensible application integration components (AICs), including a lightweight integration model and support for the
pipeline-component model available in Microsoft Site Server 3.0, Commerce Edition.

Developer Solutions is divided into the following sections:

BizTalk Messaging Services

This section provides information about how to access the BizTalk Messaging Configuration object model, including all the
reference pages for the supported interfaces. This information is provided for both C++ and Visual Basic developers. For more
information, see BizTalk Messaging Services.

BizTalk Documents

This section covers submitting documents to BizTalk Server 2002, using the synchronous and asynchronous methods of the
IInterchange interface. It shows how to move a document after the trading partner relationships are set up, and how to track
documents moving through BizTalk Server 2002. For more information, see BizTalk Documents.

BizTalk Custom Components

This section covers BizTalk Server 2002 support for extensible application integration components (AICs), including a lightweight
integration model and support for the pipeline-component model available in Microsoft Site Server 3.0, Commerce Edition.

This allows developers to do the following:

Enable business applications to receive business documents by using AICs.

Extend the functionality of BizTalk Server 2002 by developing components to perform digital signatures and verification,
encryption and decryption, parsing, and transport.

For more information, see BizTalk Custom Components.

BizTalk Orchestration Services

This section provides information about the interfaces that can be used to access a running instance of a specific XLANG schedule,
or to perform system-wide administrative tasks in the XLANG Scheduler run-time environment. This information is provided for
both C++ and Visual Basic developers. For more information, see BizTalk Orchestration Services.

BizTalk Managing and Monitoring

This section covers the Windows Management Instrumentation (WMI) classes that allow you to perform administrative functions
that support the management of systems in an enterprise. This information is provided for C++, Visual Basic, and Visual Basic
Scripting Edition (VBScript) developers. For more information, see BizTalk Managing and Monitoring.

BizTalk Server Developer's Toolbox

This section provides code solutions to problems commonly encountered by developers working with BizTalk Server. For more
information, see BizTalk Server Developer's Toolbox.

BizTalk Server Samples

This section provides documentation and instructions for running the samples included in the BizTalk Server SDK. For more
information, see BizTalk Server Samples.

BizTalk Server Reference

This section documents the BizTalk Server application programming interfaces (APIs) and error messages. For more information,
see BizTalk Server Reference.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

BizTalk Messaging Services
This section provides information about how to access the BizTalk Messaging Configuration object model programmatically. It
shows how to manage trading partner relationships and set up messaging ports and channels for the exchange of data, using
Microsoft® BizTalk™ Server 2002. This section also shows how to create document definitions and envelopes, and how to set
organization properties. For additional information, see the following sections:

For introductory information about the BizTalk Messaging Configuration object model, see Introducing Messaging Services.

For general background information, see Understanding Messaging Services.

For information about COM interfaces, enumerations, and error messages, see the Messaging Services Reference.

For examples of code, see BizTalk Messaging Services Code Samples.

The BizTalk Messaging Configuration object model can also be configured by using the BizTalk Messaging Manager graphical
user interface. For more information, see Using BizTalk Messaging Manager.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Introducing Messaging Services
The BizTalk Messaging Configuration object model provides an easy way for applications to set up, maintain, and retrieve
messaging ports and channels for trading partner relationships and application-to-application integration. The BizTalk Messaging
Configuration object model can also create envelopes and document definitions, and set organization properties.

The BizTalk Messaging Configuration object model uses a Structured Query Language (SQL) database to store the port
configurations and other relational data. ActiveX® Data Objects (ADO) recordsets are returned when querying for lists of object
instances (for example, messaging ports or organizations).

The BizTalk Messaging Configuration object model consists of Component Object Model (COM) objects that expose the
configuration data required for Microsoft BizTalk Server 2002 to configure the interchange of structured documents between
applications and trading partners. The COM objects represent instances of data in memory that can be stored in the database.

All object properties are read/write, except where noted.

Related Topics

Messaging Configuration Objects

Referential Integrity

Security

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Messaging Configuration Objects
The following table shows the objects of the BizTalk Messaging Configuration object model.

Object Description
IBizTalkChannel Contains the configuration related to the source entity and its binding with an IBizTalkPort object.
IBizTalkConfig Creates and retrieves other BizTalk objects, such as channels, document specifications, and

messaging ports.
IBizTalkDocument Identifies and describes the specification of a document.
IBizTalkEnvelope Identifies the envelope format and/or the envelope schema used for documents. Envelopes are required f

or documents using the X12 or EDIFACT format.
IBizTalkOrganization Identifies the source or destination point for the exchange of electronic data. An organization can represe

nt an external trading partner, your own company, or a business unit of a trading partner or your compan
y. An organization can designate a source application in a channel or a destination application in a port.

IBizTalkPort Defines the destination-related attributes of a document submission.
IBizTalkPortGroup Configures a port group. This is a group of complete IBizTalkPort objects for sending the same documen

t, such as a catalog, a price list, or a newsletter, to a group of trading partners.

 Caution

Do not access the database directly. Do not directly call the stored procedures. Make all changes to the database by using
the methods and properties of the BizTalk Messaging Configuration object model. Making changes to the database directly
bypasses many constraints enforced by the BizTalk Messaging Configuration object model and either causes the server to
function incorrectly or corrupts the database.

The BizTalk Messaging Configuration object model should be accessed only at design time. Accessing objects in use while
BizTalk Server is processing documents can produce unexpected results.

BizTalk Server 2002 treats all variables with a BSTR data type as NULL-terminated strings. Any data contained in a BSTR
after the NULL character is ignored. Documents containing embedded NULL characters must be submitted to BizTalk Server
by using pass-through mode.

Related Topics

Channels

Document Definitions

Envelopes

Messaging Ports

Organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Referential Integrity
Referential dependency must be considered when instantiating objects in BizTalk Server 2002. Referential dependency indicates
that one object refers to, and is dependent upon, another object. For example, an IBizTalkChannel object refers to an
IBizTalkPort object.

To maintain referential integrity, an object instance cannot be deleted if it is referred to by another object instance. Referential
integrity is maintained when the object that is referred to exists in the database.

Remove objects from the database in the reverse order of their creation. If an object instance that is referred to by another object
instance is removed, a constraint error is returned. Using the preceding example, a constraint error is returned if an IBizTalkPort
object that is being used by an IBizTalkChannel object is removed.

The following sequence shows the preferred order for creating objects to maintain the referential integrity of the objects:

1. IBizTalkOrganization

2. IBizTalkDocument

3. IBizTalkEnvelope (if required)

4. IBizTalkPort

The IBizTalkPort object requires the IBizTalkOrganization object.

The IBizTalkPort object conditionally uses the IBizTalkEnvelope object.

5. IBizTalkChannel

The IBizTalkChannel object requires the IBizTalkPort object.

The IBizTalkChannel object requires the IBizTalkDocument object.

The IBizTalkChannel object requires the IBizTalkOrganization object.

The IBizTalkChannel object conditionally uses the IBizTalkPortGroup object if the channel is created for port
groups.

6. IBizTalkPortGroup (if used)

The IBizTalkPortGroup object requires the IBizTalkPort object.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Security
When accessing or creating objects in the BizTalk Messaging Configuration object model, the script or application must be run in
the context of a user account in the BizTalk Server Administrators group. The BizTalk Server Administrators group is created when
BizTalk Server 2002 is installed. Additional users can be added to this group as necessary. For additional information, see
Add users to the BizTalk Server Administrators group.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Understanding Messaging Services
This section provides detailed conceptual information that is important to understanding how to access the BizTalk Messaging
Configuration object model. The following topics are covered in this section:

Channels

Messaging Ports

Openness

Organizations

Document Definitions

Envelopes

Certificates

For information about code samples that use the BizTalk Messaging Configuration object model, see
BizTalk Messaging Services Code Samples.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Channels
The IBizTalkChannel object contains the configuration information related to the source entity and its binding with an
IBizTalkPort object. When BizTalk Server 2002 receives a document, a specific IBizTalkChannel object, along with the
properties configured in its associated IBizTalkPort object or an associated IBizTalkPort object within an IBizTalkPortGroup,
directs the server through the steps necessary to process that document. Note that multiple channels might be bound to the same
IBizTalkPort object. This represents multiple source entities that exchange documents with the same destination.

The IBizTalkChannel object identifies the map used for document transformation if the type of the input IBizTalkDocument
object is different from the type of the output IBizTalkDocument object. It also points to the specification that contains fields for
BizTalk document tracking and selects the type of logging desired.

The following topics are covered in this section:

Identification

Document Processing

Configuring

Channel Filtering

Document Storage

Document Tracking

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Identification
BizTalk Server 2002 determines the appropriate IBizTalkChannel object for processing the input document by one of the
following methods:

The source organization identifier, qualifier, and value; the destination organization identifier, qualifier, and value; and the
name of the IBizTalkDocument object are parameters of the Submit or the SubmitSync method of the IInterchange
object.

The source and destination organization identifiers, qualifiers, and values; and the name of the IBizTalkDocument object
are specified in the header fields of the document instance.

The name of the IBizTalkChannel object is a parameter of the Submit or the SubmitSync method call.

When BizTalk Server 2002 receives a document, it first identifies all IBizTalkChannel objects that support the specified
IBizTalkDocument object. The server then looks up each IBizTalkPort object and determines if the source organization and
destination organization properties identify the source and destination IBizTalkOrganization objects specified by the
organization identifiers in the document or in the parameters of Submit when the document is submitted. This includes any open
messaging ports that match either the specified source organization or the destination organization.

This identification process can be bypassed by specifying the name of an IBizTalkChannel object to be used as a parameter of
Submit or SubmitSync.

Related Topic

Submitting

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Document Processing
When BizTalk Server 2002 identifies an IBizTalkChannel object, the server processes this object, which directs the server in the
steps to process the document. To direct the server, the IBizTalkChannel object follows its own rules and the rules of its
associated IBizTalkPort object.

An input IBizTalkDocument object is related to an output IBizTalkDocument object by an IBizTalkChannel object. The
IBizTalkPort object must be created before an associated IBizTalkChannel object can be created.

When BizTalk Server 2002 processes an IBizTalkChannel object, the server calls upon each associated IBizTalkPort object to
provide the document-processing rules needed by the server. The rules set by the properties of the IBizTalkChannel object
direct the server in the initial steps of document processing, such as determining which input and output IBizTalkDocument
objects to use, which map file to use, and what fields to track. After a document is in its final output format, the properties of the
IBizTalkPort object direct the server in the steps to prepare and transport the document according to the rules agreed to by the
source and destination organizations.

When a document is submitted, the server can identify multiple IBizTalkPort and IBizTalkChannel objects that match the
source organization, the destination organization, and the specified IBizTalkDocument object. Therefore, it is possible for one
input document to generate multiple output documents. It is also possible for each output document to be transmitted to a
different location by using different transport properties in the matching IBizTalkPort objects, and for each output document
instance to include a different subset of data from the original input document by using different map files.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Configuring
An IBizTalkChannel object consists of the internal document processing data for the specified input and output
IBizTalkDocument objects. To be fully configured, an IBizTalkChannel object must have one complete IBizTalkPort object
identified by its Port property. Input and output IBizTalkDocument objects must be specified. After the InputDocument and
OutputDocument properties are selected for use in this IBizTalkChannel object, an IBizTalkPort object or an
IBizTalkPortGroup object must be selected.

The name of an IBizTalkChannel object must be unique across the database for all objects of its type.

The following properties are required before an IBizTalkChannel object can be saved:

InputDocument

Port (or PortGroup)

OutputDocument

Name

After an IBizTalkChannel object has been created or saved, only the following properties can be changed:

Comments

ControlNumberValue

MapReference

Name

TrackFields

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Channel Filtering
Channel filtering enables the user to build a filtering expression to select an IBizTalkChannel object for processing a
document instance. The server uses these expressions to select the correct IBizTalkChannel object. The Expression property
contains an XPath expression that evaluates to a Boolean value. If the expression evaluates to true, the channel is used to process
the document. Otherwise, the channel is not invoked to process the document.

XPath expressions can be used to obtain the value of a specific element, attribute, or collection of these items within an XML
document. Consider the following XML document:

<INVOICE>

 <DATE>12/31/2000</DATE>

 <BILLTO>Blue Yonder Airlines</BILLTO>

 <SUMMARY>

 <ITEM PARTNUMBER="10001" QUANTITY="10"/>

 <ITEM PARTNUMBER="20002" QUANTITY="20"/>

 <TOTAL VALUE="550"/>

 </SUMMARY>

</INVOICE>

Based on this document, the following XPath expression can be created to ensure that this channel only processes invoices that
exceed $500:

myChannel.Expression = "/INVOICE/SUMMARY/TOTAL[@VALUE>""500""]"

In this example, the channel would process the XML document instance because the total is greater than $500. For more
information about XPath expressions, go to the MSDN Online Library Web site (msdn.microsoft.com/library/default.asp) and
search for XPath.

 Note

You can use BizTalk Messaging Manager to generate XPath channel filtering expressions. For more information, see
Add a channel filtering expression.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee274711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Document Storage
You can choose how to log the activity of a document instance by using the IBizTalkLoggingInfo object. The default is to log the
document in its native form.

For document storage, you have the options shown in the following table.

Property Description
All properties empty Store no copies of the document.
LogNativeInputDocument Store input native format (default setting).
LogNativeOutputDocument Store output native format.
LogXMLInputDocument Store input XML format.
LogXMLOutputDocument Store output interim (XML) format.
Any combination of these choices Store the options as described above.

 Note

There is a size limit for interchanges and documents that use logging, which if exceeded greatly affects the performance of
BizTalk Server. For more information about the size limit, see Interchange and document size limit.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Document Tracking
An IBizTalkChannel object points to the specification that contains fields to track the instance of the document. The designated
fields are logged to the Tracking database for each instance of a document that is processed. When you assign an input
IBizTalkDocument object for an IBizTalkChannel object, you can designate fields to track within the document on this channel.

When BizTalk Server 2002 runs an IBizTalkChannel object, it uses the input IBizTalkDocument object to process an input
document. The fields that you have designated for tracking are captured and logged for each instance of that document. Any
fields designated for tracking in the output IBizTalkDocument object of the associated IBizTalkChannel object are ignored. To
retrieve the information that is tracked during document processing, use the methods of the IBizTalkTrackData object.

By logging important data from the input documents that are processed, you can track and analyze detailed information about
your operation. For example, an invoice-total field can be logged for every invoice that is sent to your trading partners. You can
then determine the total dollar amount of invoices sent to all trading partners over time or determine the total dollar amount of
invoices to each individual trading partner.

For additional information about document tracking, see Understanding the Tracking Database Schema.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Messaging Ports
Conceptually, a messaging port is a set of rules that trading partner organizations accept for sending documents to one another. It
includes information regarding the destination, transport type, security, and envelope. It identifies the source and destination
IBizTalkOrganization objects and the source and destination aliases. It also identifies any applications associated with the
organization, if applicable.

An IBizTalkPort object identifies a specific destination organization unless it is designated as an open messaging port, in which
case the destination organization is not specified. For open messaging ports, the IBizTalkPort object is valid only if the associated
document or the parameters on the Submit or the SubmitSync method of the IInterchange object contain the destination
transport and address information.

The IBizTalkPort object also identifies delimiter definitions and the EDI interchange control number. Delimiters are used to
separate the records and fields of the envelope and the documents within the envelope. An interchange control number is used to
identify and track documents that are sent using the envelope. The interchange control number is incremented with each use of
the envelope at run time.

An IBizTalkPort object also identifies the encoding, encryption, and signature type, if required.

 Note

After an IBizTalkPort object has been created and saved, the destination organization and the openness associated with the
endpoint cannot be changed.

Related Topics

Openness

Port Groups

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Port Groups
The IBizTalkPortGroup object configures a group of complete IBizTalkPort objects for sending the same document to a group
of trading partners. For example, you can use this when you want to send a document, such as a catalog, a price list, or a
newsletter, that contains identical data to a group of trading partners. One document is sent to a list of partners by calling a single
Submit method on the IInterchange object.

The IBizTalkPortGroup object must contain at least one IBizTalkPort object. You can add or remove IBizTalkPort objects to or
from an IBizTalkPortGroup by calling the AddPort or the RemovePort method.

An IBizTalkPortGroup object must be associated with at least one IBizTalkChannel object. After the port group has been
created, associate a channel with the port group by using the PortGroup property available on the IBizTalkChannel object.
When BizTalk Server 2002 invokes a channel related to a port group, it invokes only the channel that is associated with the port
group to process the data. None of the channels that are associated with the individual ports in the port group are invoked. The
server uses the properties of each port successively to transport the data to the destinations specified in the ports.

 Notes

Open messaging ports cannot be added to a port group.

BizTalk Messaging Manager refers to port groups as distribution lists.

Related Topic

Submitting

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Openness
The Openness property of the IBizTalkEndPoint object determines whether the messaging port or channel is open. An open
IBizTalkPort object is a messaging port without a specified destination. An open IBizTalkChannel object is a channel without a
specified source. The missing information for an open messaging port or channel must be supplied by the associated document
or by the parameters on the Submit or the SubmitSync method of the IInterchange object.

If an open channel is specified by using BIZTALK_OPENNESS_TYPE_EX_SOURCE or an open messaging port is specified by
using BIZTALK_OPENNESS_TYPE_EX_DESTINATION, the Usage, Reference, and Store properties cannot be specified on the
IBizTalkCertificateInfo object.

 Note

If an open messaging port is used with the SMTP transport type, the value specified for the IBizTalkOrganization identifier
Reliable Messaging Acknowledgement SMTP From Address is used as the From address.

Related Topic

Submitting

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Organizations
IBizTalkOrganization objects serve as sources or destinations for the exchange of electronic data. An organization can represent
an external trading partner, your own company, or a business unit of a trading partner or your company. The home organization
can designate a source application in a channel or a destination application in a messaging port.

Applications are properties of the home organization. An applications can be designated as a source application in an
IBizTalkChannel object or as a destination application in an IBizTalkPort object.

Aliases

An alias is an organization identifier for the IBizTalkOrganization object. An IBizTalkOrganization object must always have
one and only one default alias, but it can have multiple aliases. An alias is autogenerated for each IBizTalkOrganization object.
The default alias and the autogenerated alias cannot be removed.

For more information, see Create and Manage Organizations.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Document Definitions
The IBizTalkDocument object describes and identifies the document specification used to describe the document sent or
received. The document specification defines the structure of a document, as well as any validation rules and descriptions for the
individual elements of the document specification. The IBizTalkDocument object includes the version and type of the
specification and, optionally, a reference to the Web Distributed Authoring and Versioning (WebDAV) location of the specification.
For more information about document specifications, see Create and Validate Specifications.

 Notes

The document Content and NameSpace properties are not valid until you set the Reference property.

When creating a new IBizTalkDocument object that uses a namespace that is already registered with BizTalk Server, the
new document inherits the Reference property of that namespace. The namespace must be unique (case insensitive) for a
new Reference to be created.

The IBizTalkDocument object also contains the electronic data interchange (EDI) selection criteria by which BizTalk Server 2002
extracts information from the functional group header of the document to identify this object when the name of the
IBizTalkDocument object is not available.

An IBizTalkDocument object points to the specification that contains fields to track the instance of the document. The
designated fields are logged to the Tracking database for each document that is processed.

Selection criteria

For some EDI input interchanges, documents are contained within functional group envelopes. When BizTalk Server 2002
processes such documents, it cannot obtain the name of the IBizTalkDocument object from a field within each document. Also,
because there are multiple types of documents involved, a single name cannot be specified as a parameter of the Submit method
of the IInterchange object. In such cases, the server can locate document-related data within the functional group header (for
example, in the GS header of an X12 interchange). By comparing this data to matching selection criteria specified in the
PropertySet property on the IBizTalkDocument object, the server can uniquely identify an IBizTalkDocument object. After the
IBizTalkDocument object is identified, the server can obtain the name and then identify and instantiate the appropriate
IBizTalkChannel object.

Selection criteria also help BizTalk Server 2002 create the header of the EDI document when it is output.

Global tracking

An IBizTalkDocument object points to the specification from which fields can be selected for tracking. The designated fields in
the input document specification are tracked for each document that is processed using that specification. Any fields designated
for tracking in the output document specification are ignored. If an IBizTalkChannel object that specifies tracking fields is used
with an input document specification containing fields designated for tracking, only the fields specified by the channel are used
for tracking.

By logging important data from the input documents that are processed, you can track and analyze detailed information about
your operation. For example, an invoice-total field can be logged for every invoice that is sent to your trading partners. You can
then determine the total dollar amount of invoices sent to all trading partners over time or determine the total dollar amount of
invoices to each individual trading partner.

Related Topics

Document Storage

Document Tracking

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Envelopes
The IBizTalkEnvelope object consists of two pieces of information:

The type of envelope is specified in the Format property. The document Type should match the envelope Format for
"flatfile", "custom xml", "x12", "edifact", and "reliable" document types.

The actual envelope file used is specified in the Reference property.

Input document envelopes

An envelope is required if the input document Type is "flatfile" because the envelope contains information about how to parse
the document into XML and which parser should process the document. Input "flatfile" documents without an envelope are not
processed. For all other input document types, an envelope is optional.

Output document envelopes

Envelopes are used to wrap an output document instance that has been transformed into the native format. The envelope used
with an output document is specified on the IBizTalkPort object. An envelope is required if the output document Type is "x12" or
"edifact". However, the Reference property is ignored for these format types because indicating that a document is X12 or
EDIFACT is sufficient to serialize the document. For output documents with a Type of "custom xml", the Reference property is
used if specified. If the Reference property is not specified, "custom xml" documents are submitted for processing in the
transformed XML format.

 Notes

Multiple IBizTalkPort objects can refer to an envelope.

The envelope Content and NameSpace properties are not valid until you set the Reference property.

When creating a new IBizTalkEnvelope object that uses a namespace that is already registered with BizTalk Server, the
new document inherits the Reference property of that namespace. The namespace must be unique (case insensitive) for a
new Reference to be created.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Certificates
An IBizTalkCertificateInfo object is automatically created when an IBizTalkPort or an IBizTalkChannel object is instantiated
with the CreatePort or the CreateChannel method of the IBizTalkConfig object.

For output documents, access the IBizTalkCertificateInfo object by using the EncryptionCertificateInfo property of the
IBizTalkPort object. For input documents, access the IBizTalkCertificateInfo object by using the SignatureCertificateInfo,
VerifySignatureCertificateInfo, or DecryptionCertificateInfo property of the IBizTalkChannel object. To obtain the set of all
existing IBizTalkCertificateInfo objects, use the Certificates property of the IBizTalkConfig object.

 Note

All certificates are stored in the local computer store. To configure certificates for the S/MIME components, the script or
application accessing the object model must be run in the context of a user account in the BizTalk Server Administrators
group.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Documents
This section provides information about how to submit documents to Microsoft BizTalk Server 2002. For additional information,
see the following sections:

For help with specific tasks, see Using Documents.

For general background information, see Understanding Documents.

For information about COM interfaces and enumerations, see the Documents Reference.

For examples of code, see BizTalk Messaging Services Code Samples.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Understanding Documents
This section provides detailed conceptual information that is important to understanding how to submit documents to
Microsoft® BizTalk™ Server 2002. The following topics are covered in this section:

Submitting

Routing

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Submitting
All documents must be sent to Microsoft BizTalk Server 2002 by using the Submit or SubmitSync method of the IInterchange
interface in order to be processed. If an application is based on Microsoft Windows® and is capable of invoking methods on COM
objects, it can submit a document directly. The business application calls the Submit or SubmitSync method of the
IInterchange interface, passing in the document or the file path of the document as a string supplied as a parameter. This is the
simplest approach because no additional configuration is necessary. However, this method requires that the business application
be designed to support direct calls to BizTalk Server 2002.

If the application is not capable of invoking methods on COM objects, receive functions can be used to submit documents to
BizTalk Server. Receive functions enable applications to post documents or interchanges to specific locations that BizTalk
Server 2002 is monitoring. These locations are defined according to the specific receive function. Each receive function uses
event-based monitoring to recognize the presence of a document or interchange. After the data is received by the function, it
submits the data to BizTalk Server. For example, a File receive function can be configured to submit a document to BizTalk Server
when the business application can save a document as a file but cannot submit it directly. For more information about adding and
configuring receive functions, see Manage Receive Functions for a Server Group.

The receive functions are configured to continuously monitor a specific directory or queue for a file to appear and then be
submitted to BizTalk Server. HTTP and SMTP protocols are configured outside BizTalk Server. You must create script pages for
these transport services.

 Notes

There is a size limit for interchanges and documents that use logging, which, if exceeded, greatly affects the performance of
BizTalk Server. For more information about the size limit, see Interchange and document size limit.

A script or application that uses the IInterchange interface to submit documents to BizTalk Server can be run in any user
account.

When processing envelopes that are compliant with BizTalk Framework 2.0, BizTalk Server should be considered the
endpoint with regard to the expiration time. When BizTalk Framework 2.0-compliant documents are submitted to BizTalk
Server, either from an application or from a trading partner, the following fields are overwritten if present, or created if
absent:

In the properties subsection:

<prop:identity>

<prop:sentAt>

<expiresAt>

https://msdn.microsoft.com/en-us/library/ee274574(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Routing
To process a document, Microsoft BizTalk Server 2002 must load the rules that govern how the incoming document instance is to
be processed. These rules are known as the channel. A specific IBizTalkChannel object is associated with an IBizTalkPort object
and connects two organizations.

To find the channel to process the received document, the server must have the source organization, the destination organization,
and the document definition. The server can obtain this information by one of the following methods:

This information can be found in the content of the document itself from the data contained in the routing fields (self-
routing documents).

This information can be explicitly declared in the parameter list of the Submit method of the IInterchange interface (call-
based routing).

This information can be explicitly declared in the properties of a custom receive function. For more information about
receive functions, see Understanding Receive Functions and Document Routing.

You can choose to specify the channel to use when calling Submit. This causes the server to bypass the channel selection
process.

After the server has this information, it searches for the messaging port/channel pair that matches these routing criteria. If more
than one channel matches, each of the channels is processed, possibly resulting in multiple output documents.

Call-based routing

In call-based routing, the source organization identifier (SourceID), the destination organization identifier (DestID), and the name
of the document definition (DocName) are specified as parameters of Submit. If SourceQualifier and DestQualifier are not
specified, they default to OrganizationName and refer to the name of the organization in the database. If a BizTalk Framework
2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. If the Openness
flag is set to OpenDest, the DestID is used as the destination address. If SourceID, DestID, or DocName is left blank, the missing
information must be provided by the routing information contained within the document. If one of these parameters/fields is not
in Submit or in the document, the document goes to the Suspended queue.

 Note

Note that the queue:// prefix must be used with an open messaging port when a message queue is specified as the
destination address.

Self-routing documents

Self-routing documents have the source organization identifier (SourceID), the destination organization identifier (DestID), and the
name of the document definition (DocName) defined in the routing tags defined by the document specification, which are
contained within the <SelectionFields> tag. If SourceQualifier and DestQualifier are not specified, they default to
OrganizationName and refer to the name of the organization in the database. If a BizTalk Framework 2.0–compliant document is
submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The BizTalk Framework specification also
defines the routing tags for BizTalk Framework–compliant messages. These tags are defined as the <to> and <from> tags under
the <endpoint> tag, which is contained in the <header> tag under the root <biztalk> tag. The first tag under the <body> tag
determines the document type. For more information, see the BizTalk Framework 2.0 Independent Document Messaging
Specification. For X12 or EDIFACT routing, the locations of the routing fields are hard-coded and are not specified in a document
specification.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274599(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Using Documents
This section provides task-specific information about how to submit documents to Microsoft BizTalk Server 2002. It is highly
recommended that you review the Understanding Documents topic as well.

The following topics are covered in this section:

Submitting a Document

Submitting a Document from a Remote Client

Reading the Tracking Database

Preprocessing Documents in a Receive Function

Accessing the Suspended Queue

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Submitting a Document
Use the following steps as a guideline when submitting documents to Microsoft BizTalk Server 2002 with the IInterchange
interface.

1. Determine whether the source organization, destination organization, and document definition name are in the parameters
of the Submit or the SubmitSync method of the IInterchange interface or are included in the document; it might be a
combination of the two.

This information can be explicitly declared in the parameter list of Submit or SubmitSync (call-based routing).

One or more of these parameters can be left blank and the missing information can be provided by the routing
information contained within the document.

This information can be found in the content of the document itself from the data in the routing fields (self-routing
documents).

The user can choose to explicitly call out the specific channel to use when calling Submit. This causes the server to
bypass channel selection.

This information can be explicitly declared in the properties of a custom receive function.

2. Decide whether to submit asynchronously or synchronously.

Call Submit, passing in the document or the file path of the document as a string supplied as a parameter. BizTalk
Server supports URL, UNC, and drive: format for the file path.

Submit accepts only a string variable as the document or interchange.

Call SubmitSync, passing in the document or the file path of the document as a string supplied as a parameter.
A response document is returned to the user, if available.

This method is valid only for a single channel match.

This method can be used only for single-document interchanges.

3. Decide whether to call some of the Suspended queue methods. (This is optional and can be implemented in the same
application or in a different application.)

Call the CheckSuspendedQueue method of the IInterchange interface.
Retrieve items from the Suspended queue.

This returns a list of handles that can subsequently be used to call the DeleteFromSuspendedQueue or the
GetSuspendedQueueItemDetails method of the IInterchange interface.

Call GetSuspendedQueueItemDetails.

Retrieve the details about a particular item in the Suspended queue.

Call DeleteFromSuspendedQueue.

Remove items from the Suspended queue.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Submitting a Document from a Remote Client
A document can be submitted to Microsoft BizTalk Server 2002 from a remote client running an application that uses the
IInterchange interface. To accomplish this, follow these steps:

1. Using a computer that has Microsoft BizTalk Server 2002 installed, go to the Start menu, point to Programs, point to
Administrative Tools, and then click Component Services.

2. In the tree pane, click Component Services, expand Computers, expand My Computer, expand COM+ Applications, and
then click BizTalk Server Interchange Application.

3. On the Action menu, click Export.

4. In the Welcome to the COM Application Export Wizard dialog box, enter the name of an export installation package to
be created.

5. In the Export as area, click the Application proxy option and click Next to finish the wizard.

The COM Application Export Wizard creates a Windows Installer Package file with an .msi extension and its associated cabinet file
with a .cab extension. Copy these files to the remote client and run the Windows Installer Package file. Now the remote client can
run applications that use the IInterchange interface.

 Notes

The remote client must be running Microsoft Windows 2000.

The computer used to create the installation package acts as an "interchange server" for the remote client that is submitting
documents. Therefore, all documents submitted on the remote client are routed through that server.

You can also create a remote client during the BizTalk Server 2002 installation.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Reading the Tracking Database
The purpose of the tracking interface, IBizTalkTrackData, is to facilitate programmatic access to the tracking information of
Microsoft BizTalk Server 2002. This complements the IInterchange interface so that returns from IInterchange calls can be fed
to the IBizTalkTrackData methods to access data about the activity of documents submitted to BizTalk Server 2002.

There can be a one-to-one or a one-to-many relationship between input and output documents. In a normal document flow, one
document is submitted to the server, is tracked and possibly transformed, and one document results as output from the server.
However, the messaging port can be configured so that one document submitted can result in many documents as output to
several destinations.

To read and use information from the Tracking database, perform the following steps:

1. Get the SubmissionHandle return from the Submit method of the IInterchange interface.

2. Call the GetInterchanges method, using the SubmissionHandle return as the input. This method returns a list of
interchanges contained in that submission, including all the data from the Tracking database. Because transport-specific
information (delivery times, receipt flags, and so on) appears in the interchange data, you can look here to confirm or check
status on delivery, for example.

3. Call the GetInDocDetails method, using the SubmissionHandle return as the input. This method returns a list of the
documents that were included in that submission. You can look here to find information about an input document (whether
a document was valid, how many bytes it contained, and so on).

4. Call the GetOutDocDetails method, using the SubmissionHandle return as the input. This method returns a list of the
documents that were generated as a result of the submission. You can look here to find information about an output
document (for example, looking for PO #123456 from a submission made earlier today).

Related Topic

Documents Reference

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Preprocessing Documents in a Receive Function
Documents can be submitted to Microsoft BizTalk Server 2002 for processing by using a receive function. Using this mechanism,
other applications can send their output files to a specified directory or message queue. BizTalk Server continually monitors the
specified location at regular intervals and processes the files or messages placed in that location. BizTalk Server provides
interfaces that allow you to create custom preprocessing components. These components process the file or message picked up
by the receive function prior to submitting the data to BizTalk Server for processing.

A custom preprocessor component is required to implement the category identifier (CATID) CATID_BIZTALK_CUSTOM_PROCESS
in the registry. This allows the BizTalk Server Administration user interface, or administration console, to recognize the custom
preprocessor and display it in the Preprocessor list, where it can be selected.

For additional information, see IBTSCustomProcess and IBTSCustomProcessContext.

Transaction Support

If a preprocessing component supports transactions, you must explicitly enable transaction support for that component. To enable
transactions with custom preprocessor components, add a registry key by following these steps:

1. Open the registry editor.

2. Find the custom component in the registry.

3. Right-click the component.

4. Click New and then click DWORD Value.

5. In the Name field, type UseTxForCustPreProcessor.

6. Double-click the new UseTxForCustPreProcessor key.

The Edit DWORD Value dialog box appears.

7. In the Value data field, type 1.

8. Click OK.

Related Topics

BizTalk Server Administration User Interface

Receive Functions

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250981(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Accessing the Suspended Queue
The Suspended queue contains work items that have failed processing for a variety of reasons, including parsing errors,
serialization errors, failed transmissions, or the inability to find a channel configuration. You can retrieve or delete items from the
queue using the interfaces provided.

 Note

When accessing or deleting items in the Suspended queue, the script or application must be run in the context of a user
account in the BizTalk Server Administrators group. The BizTalk Server Administrators group is created when BizTalk Server
2002 is installed. Additional users can be added to this group as necessary.

Retrieving items from the Suspended queue

To retrieve items from the Suspended queue, applications call the CheckSuspendedQueue method of the IInterchange
interface.

CheckSuspendedQueue retrieves a list of items in the Suspended queue that meet the search criteria specified by the
parameters of the method. This returns a list of handles that can subsequently be used to call the DeleteFromSuspendedQueue
or the GetSuspendedQueueItemDetails method of the IInterchange interface.

Getting item details from the Suspended queue

CheckSuspendedQueue returns a list of handles to items in the Suspended queue. To process these items, you must get the
item details associated with each item in the Suspended queue by using GetSuspendedQueueItemDetails.

GetSuspendedQueueItemDetails retrieves the details about an item in the Suspended queue. If this method does not return
individual details about this item (because the item has been removed between the time CheckSuspendedQueue was called and
the call to this method, for example), each parameter that cannot be determined is returned.

Removing items from the Suspended queue

To remove items from the Suspended queue, applications call DeleteFromSuspendedQueue.

DeleteFromSuspendedQueue removes from the Suspended queue a list of items that meet the search criteria specified by the
parameters of the method.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Custom Components
This section provides information about how to create custom components and extend Microsoft® BizTalk™ Server 2002 to
integrate line-of-business applications and to add features such as encryption and decryption or digital signature. With this
information, you can do the following:

Create application integration components (AICs) that enable your applications to receive business documents by using
BizTalk Server 2002.

Extend the functionality of BizTalk Server 2002 by developing custom components to perform digital signature, encryption
and decryption, parsing, serializing, and transport of documents.

For additional information, see the following sections:

For help with specific tasks, see Using Custom Components.

For general background information, see Understanding Custom Components.

For information about COM interfaces, see Custom Components Reference.

For examples of code, see BizTalk Messaging Services Code Samples.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Understanding Custom Components
This section provides detailed conceptual information that is important to understanding how to extend Microsoft® BizTalk™
Server 2002. BizTalk Server 2002 can perform data transformation, digital signature, encryption and decryption, parsing,
serializing, and transport of documents. In addition, you can create your own application integration components (AICs) to extend
the capabilities of BizTalk Server 2002.

The following topics are covered:

Custom Component Types

Application Integration Components

Parsers

Serializers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Custom Component Types
Custom components can be created for application integration (AICs), encryption, encoding, signing, parsing, and serializing. The
following interfaces must be implemented for each component type:

Component types Interfaces to be implemented
Pipeline components:

 AIC
 Encryption
 Encoding
 Signing

IPipelineComponent, IPipelineComponentAdmin

AIC (lightweight) IBTSAppIntegration
Parsing IBizTalkParserComponent

By default, BizTalk Server registers the following parser components, listed by ProgID:

Edifact: BizTalk.ParserEdifact

Flat File: BizTalk.ParserFFile

X12: BizTalk.ParserX12

XML: BizTalk.ParserXML

Serializing IBizTalkSerializerComponent, IPipelineComponentAdmin (optional)

By default, BizTalk Server registers the following serializer components, listed by ProgID:

Edifact: BizTalk.SerializerEdifact

Flat File: BizTalk. SerializerFFile

X12: BizTalk. SerializerX12

XML: BizTalk. SerializerXML

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Application Integration Components
When creating an application integration component (AIC), you can implement either the pipeline model using the
IPipelineComponent interface or the lightweight model using the IBTSAppIntegration interface.

Application integration components are COM objects that the BizTalk Server state engine calls to deliver data to an application. If
a messaging port is configured in BizTalk Server 2002 to include the use of an AIC for application integration, this component is
automatically instantiated and passed the requisite data. The component then determines how to handle communicating this data
back to the application. This can be done using private API calls, invoking other COM objects, using database writes, and so on.

This section contains the following topics:

Pipeline Application Integration Components

Lightweight Application Integration Components

By default, AICs run in the LocalSystem account. If another security context is required, set it as part of the implementation of the
AIC. However, if an AIC is installed as a COM+ application, an administrator can configure security of the AIC by using the
Component Services console.

When developing an AIC using Microsoft Visual Basic®, ensure that all Visual Basic components set the Unattended Execution
and Retain in Memory project settings.

Related Topic

Registering Custom Components

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Pipeline Application Integration Components
One approach for application integration with BizTalk Server 2002 is the creation of a pipeline component. This is the same model
used in Microsoft Site Server 3.0 Commerce Edition for application integration with the Commerce Interchange pipeline (CIP) and
the Order Processing pipeline (OPP). BizTalk Server 2002 supports this method so that pipeline components written for
application integration for CIP and OPP are compatible. This is also a useful technique when the component requires
configuration properties.

The primary entry point for a pipeline component is the Execute method of the IPipelineComponent interface. This is the
method that BizTalk Server 2002 calls to transfer control and to pass the data to the component. It is in the implementation of this
method that the component does its work.

Related Topics

Lightweight Application Integration Components

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Lightweight Application Integration Components
BizTalk Server 2002 supports an additional model for application developers who want a lighter-weight model for application
integration, one that does not support a design-time user interface or configuration properties. This model requires a single
interface that contains a single method as an entry point. The component is implemented, and the document is passed to it
through the ProcessMessage method of the IBTSAppIntegration interface.

IBTSAppIntegration is for applications that do not need properties for their component and need only an entry point for
receiving a document. This is a simpler approach to application integration than pipeline components. BizTalk Server 2002
queries for this interface first. If it does not find this interface implemented, it queries for the pipeline component interfaces.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Parsers
The parser has two responsibilities:

Convert the documents to XML for later processing.

Get the parameters necessary to select the channel (these are the source qualifier, source identifier, destination qualifier,
destination identifier, and document definition name). These returned fields are combined with the parameters of the
Submit method of the IInterchange interface to select the channels necessary to process the documents.

This interface gets information from the component for one interchange. If the incoming data stream represents multiple
interchanges, the server selects the component at every interchange boundary. This simplifies construction of a component
because it deals with only one interchange at a time. There is one component instance per thread. No single object needs to be
safe for multiple threads. This interface is supported only in C++.

If the ProbeInterchangeFormat method of the IBizTalkParserComponent interface returns an error in the middle of the
document list, it blocks the server from detecting more document types, even if they could be handled by a custom parser that
follows the failed parser, if there are two or more custom parsers on a server. If the first custom parser fails, any document that
follows is not parsed, even if the other custom parser could handle it, because the server ends the entire parsing operation at the
time of the failure.

Related Topics

Registering Custom Components

Working with Parsers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Serializers
The serializer converts the document from XML back to its native format. This interface is intended to work on a single
interchange and is designed to get information from the component for one interchange. This simplifies the construction of this
component because it has to deal with only one interchange at a time. There is only one instance per thread. No single object
needs to be safe for multiple threads. The IBizTalkSerializerComponent interface is supported only in C++.

Related Topics

Registering Custom Components

Working with Serializers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Using Custom Components
This section provides task-specific information about how to create server components. It is highly recommended that you review
the Understanding Custom Components topic as well.

The following topics are covered:

Creating Pipeline Components

Creating Receipt Correlator Components

Working with Parsers

Working with Serializers

Registering Custom Components

Handling Data Passed to AICs

Supporting the Tracking Database with Parser and Serializer Components

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Creating Pipeline Components
Use the following steps to create a pipeline component:

1. Create an Active Template Library (ATL) wizard–generated Inproc server project.

2. Add a simple COM object.

3. Go to the Projectname.idl file and remove the dual or custom interface generated by the wizard in step 2.

4. Verify that the resulting IDL file looks like the code examples that follow. You might choose to implement your own set of
interfaces from the ones defined in Pipecomp.idl.

// SimplePipeComponent.idl : IDL source for SimplePipeComponent.dll

//

import "oaidl.idl";

import "ocidl.idl";

import "pipecomp.idl";

[

 uuid(D26A52F6-63A0-42B1-8C88-3C71C66BB189),

 version(1.0),

 helpstring("SimplePipeComponent 1.0 Type Library")

]

library SIMPLEPIPECOMPONENTLib

{

 importlib("stdole32.tlb");

 importlib("stdole2.tlb");

 [

 uuid(E66CAF06-18D8-4C70-9D39-5ED9756C21AD),

 helpstring("MySimplePipelineComponent Class")

]

 coclass MySimplePipelineComponent

 {

 [default] interface IPipelineComponentAdmin;

 interface IPipelineComponent;

 interface IPipelineComponentDescription;

 };

};

One of the implementations of MySimplePipelineComponent [coclass] is defined in the header file as follows:

// MySimplePipelineComponent.h : Declaration of the

// CMySimplePipelineComponent

#ifndef __MYSIMPLEPIPELINECOMPONENT_H_

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

#define __MYSIMPLEPIPELINECOMPONENT_H_

#include "resource.h" // main symbols

///

// CMySimplePipelineComponent

class ATL_NO_VTABLE CMySimplePipelineComponent :

 public CComObjectRootEx<CComSingleThreadModel>,

 public CComCoClass<CMySimplePipelineComponent, &CLSID_MySimplePipelineComponent>,

 public ISupportErrorInfo,

 public IDispatchImpl<IPipelineComponentAdmin, &IID_IPipelineComponentAdmin, &LIBID_SIMPLEPIPECOMPONENTLib>,

 public IDispatchImpl<IPipelineComponent, &IID_IPipelineComponent, &LIBID_SIMPLEPIPECOMPONENTLib>,

 public IDispatchImpl<IPipelineComponentDescription, &IID_IPipelineComponentDescription,
&LIBID_SIMPLEPIPECOMPONENTLib>

{

public:

 CMySimplePipelineComponent()

 {

 }

DECLARE_REGISTRY_RESOURCEID(IDR_MYSIMPLEPIPELINECOMPONENT)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CMySimplePipelineComponent)

 COM_INTERFACE_ENTRY2(IDispatch,IPipelineComponentAdmin)

 COM_INTERFACE_ENTRY(IPipelineComponentAdmin)

 COM_INTERFACE_ENTRY(IPipelineComponent)

 COM_INTERFACE_ENTRY(IPipelineComponentDescription)

 COM_INTERFACE_ENTRY(ISupportErrorInfo)

END_COM_MAP()

// ISupportsErrorInfo

 STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid);

public://IPipelineComponentAdmin

 STDMETHODIMP GetConfigData(IDispatch** ppDict);

 STDMETHODIMP SetConfigData(IDispatch* pDict);

public://IPipelineComponent

 STDMETHODIMP Execute(IDispatch* pdispObject,IDispatch* pdispContext,LONG lFlags,LONG* plErrorLevel);

 STDMETHODIMP EnableDesign(BOOL fEnable);

public: //IPipelineComponentDescription

 STDMETHODIMP ValuesRead(VARIANT* pvar);

 STDMETHODIMP ValuesWritten(VARIANT* pvar);

 STDMETHODIMP ContextValuesRead(VARIANT* pvar);

};

#endif //__MYSIMPLEPIPELINECOMPONENT_H_

Related Topics

Application Integration Components

IPipelineComponent

IPipelineComponentAdmin

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Creating Receipt Correlator Components
Receipt correlator components can be implemented to correlate documents, groups of documents, and interchanges with their
receipts. To use a receipt correlator, you must implement a custom parser by using the IBizTalkParserComponent interface. This
is required because the server can obtain only the progID of the receipt correlator to be used by calling the GetNextDocument
method on the IBizTalkParserComponent interface.

In addition, with BizTalk Server on the receiver side where the receipt is being generated, the parser component is responsible for
putting the acknowledgment status, as well as sufficient information, on the receipt (a Canonical Receipt to begin with, but it can
be mapped into other receipt document schemas, such as AK997 in EDI) to allow the correlator component on the sender side to
uniquely identify the original outbound interchange, group, or document record. For an XML document, using the GUID is usually
sufficient. But for EDI interchanges, because GUID cannot be used (there is no placeholder for any GUID in an EDI interchange), a
combination of EDI-specific fields is needed for this unique identifier. For instance, the default X12 correlator component uses a
combination of the following fields for this purpose: version, release, functional group ID, control ID, source application name, and
destination application name.

Whenever the server receives a receipt as an inbound document, the parser component's responsibility is to detect the inbound
document as being a receipt, to extract all relevant information needed for correlation, and to place the receipt onto the transport
dictionary. Upon returning from the GetNextDocument method call, the parser should set the DocIsReceipt parameter to TRUE
and the CorrelationCompProgID parameter to the progID of the corresponding correlator component.

The server calls the Correlate method on the IBizTalkCorrelation interface, and passes in a pointer to the
IBizTalkAcknowledge object and the transport dictionary containing the receipt as the working data. Then the receipt
correlator's implementation of the Correlate method extracts all relevant information about the document, document group, or
interchange that should have been set by the parser component from the transport dictionary. Using this information, the
Correlate method then calls AckDocument, AckGroup, or AckInterchange on the IBizTalkAcknowledge interface and sets
the DTA_ACK_STATUS value for that document, group, or interchange.

Note that the server does not immediately call IBizTalkCorrelation. The receipt document and the correlation progID are stored
to the database for later correlation. When the document is picked up for processing, the correlation component is created and
invoked with the transport dictionary that was given by the parser component and a pointer to IBizTalkAcknowledge.

Related Topics

Submitting Documents with Receipts

Understanding Receipts

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Working with Parsers
The following tables show the possible sequence of calling the methods of the IBizTalkParserComponent interface, based on
the following sample interchanges.

If you have an interchange with two groups, with two documents in the first group and one in the second, the methods are called
in the following sequence:

Method Return
ProbeInterchangeFormat Non-empty format string
GetInterchangeDetails N/A
GroupsExist True
GetGroupDetails N/A
GetNextDocument The LastDoc parameter is set to False.
GetNativeDocumentOffsets N/A
GetNextDocument The LastDoc parameter is set to True.
GetNativeDocumentOffsets N/A
GetGroupSize The LastGroup parameter is set to False.
GetGroupDetails N/A
GetNextDocument The LastDoc parameter is set to True.
GetNativeDocumentOffsets N/A
GetGroupSize The LastGroup parameter is set to True.

If you have an interchange with two documents, the methods are called in the following sequence:

Method Return
ProbeInterchangeFormat Non-empty format string
GetInterchangeDetails N/A
GroupsExist False
GetNextDocument The LastDoc parameter is set to False.
GetNativeDocumentOffsets N/A
GetNextDocument The LastDoc parameter is set to True.
GetNativeDocumentOffsets N/A

Related Topics

Parsers

IBizTalkParserComponent

Supporting the Tracking Database with Parser and Serializer Components

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Working with Serializers
To create a custom serializer component, you need to perform the following tasks:

Create a COM component that implements the IBizTalkSerializerComponent and IPipelineComponentAdmin
interfaces.

Register this component and include the category identifiers CATID_BIZTALK_COMPONENT and
CATID_BIZTALK_SERIALIZER in the registry. For more information, see Registering Custom Components.

Create Active Server Pages (ASP) files for setting custom property values on your serializer component by using the pre-
defined user interface management functions. These functions are available in the ASP include files located in the folder
\Microsoft BizTalk Server\Messaging Manager\pipeline on the BizTalk Server installation drive. For more information about
the ASP file format, see "ASP file formats" that follows.

Place the ASP files in the pipeline folder and name the files using these formats:
File name Description
BizTalk_ComponentNam
e_1.asp

Displays a dialog box that reads the serializer key values from the IDictionary object. These valu
es are displayed to the user for modification.

BizTalk_ComponentNam
e_1_post.asp

Updates the serializer dictionary with the new key values set by the user.

Use the SetConfigComponent method to associate the custom serializer component with a channel.

After these tasks are completed, the user can access these settings by clicking Advanced on the Channel Properties page in
BizTalk Messaging Manager. For more information, see Set advanced configuration properties.

ASP file formats

When using the functions provided in the ASP include files located in the folder \Microsoft BizTalk Server\Messaging
Manager\pipeline on the BizTalk Server installation drive, use the following general format:

<!--#INCLUDE FILE="pe_edit_header.asp" -->

<-- optional HTML formatting tags here -->

<%

optional calls to input functions here

%>

<!--#INCLUDE FILE="pe_edit_footer.asp" -->

The following functions can be used in the ASP pages for displaying text or retrieving specific types of information from the user.
These functions are defined in the file pe_global_edit.asp:

DisplayReadonlyText

GetLabelAccel

InputArrayAccel

InputCheckBoxAccel

InputFloatAccel

InputNumberAccel

InputPasswordAccel

InputRadioAccel

https://msdn.microsoft.com/en-us/library/ee274680(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

InputSimpleListAccel

InputTextAccel

Method Sequences

The following tables show the possible sequence of calling the methods of the IBizTalkSerializerComponent interface, based
on the following sample interchanges.

If you have an interchange with one document, the methods are called in the following sequence:

Method Return
Init The numdocs parameter is set to 1.
AddDocument The docHandle parameter is set to 0.
GetInterchangeInfo The numGroups parameter is set to 0.
GetDocInfo The docHandle parameter is set to 0.

If you have an interchange with one group, with one document in the group, the methods are called in the following sequence:

Method Return
Init The numdocs parameter is set to 1.
AddDocument The docHandle parameter is set to 0.
GetInterchangeInfo The numGroups parameter is set to 1.
GetGroupInfo The numdocs parameter is set to 1.
GetDocInfo The docHandle parameter is set to 0.

If you have an interchange with two groups, with two documents in the first group and one in the second, the methods are called
in the following sequence (this assumes support of batching):

Method Return
Init The numdocs parameter is set to 3.
AddDocument The handle parameter is set to 0.
AddDocument The handle parameter is set to 1.
AddDocument The handle parameter is set to 2.
GetInterchangeInfo The numGroups parameter is set to 2.
GetGroupInfo The numdocs parameter is set to 2.
GetDocInfo The handle parameter is set to 1.
GetDocInfo The handle parameter is set to 0.
GetGroupInfo The numdocs parameter is set to 1.
GetDocInfo The handle parameter is set to 2.

Related Topics

Serializers

Supporting the Tracking Database with Parser and Serializer Components

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Registering Custom Components
To use a custom component in BizTalk Server 2002, the component must be registered with the category IDs for all pipeline
components and for the specific type of pipeline component.

Register the component as an out-of-process component to provide better isolation. A component can be registered as an in
process (inproc) component to increase its performance. However, an inproc component that fails to respond during an error
condition might cause BizTalk Server to fail. Therefore, a component should be thoroughly tested before registering it as an
inproc component.

 Note

An out-of-process component registered as a COM+ application must be configured to run in an identity other than the
interactive user. For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp) and browse to Component Services in the Platform SDK.

BizTalk Server category identifiers

Custom components that are used in BizTalk Server must be associated with one or more category identifiers (CATID). The
following table shows the category identifiers defined by BizTalk Server.

CATID GUID Description
CATID_BIZT
ALK_
AIC

BD193E1D-D7DC-4B7C-B9
D2-92AE0344C836

Identifies the component as an application integration component (AIC).

CATID_BIZT
ALK_
COMPONE
NT

5C6C30E7-C66D-40E3-889
D-08C5C3099E52

Identifies the component as a BizTalk Server component. All components that are used
with BizTalk Server must implement this category identifier.

CATID_BIZT
ALK_
CUSTOM_P
ROCESS

20E8080F-F624-4401-A20
3-9D99CF18A6D9

Identifies the component as a custom preprocessor for a receive function.

CATID_BIZT
ALK_
IDocSpecEx
tension

711E279C-DE24-11D2-974
B-00C04F680FE7

Identifies the component as an extension module for importing XML documents.

CATID_BIZT
ALK_
MapEditFu
nctoids

2560F3BF-DB47-11D2-B3A
E-00C04F72D6C1

Identifies the component as a custom functoid that is displayed in the functoid palette.

CATID_BIZT
ALK_
PARSER

C0DCDF4E-692C-11D2-89
E7-00C04F79DBAA

Identifies the component as a parser that is used to process inbound documents.

CATID_BIZT
ALK_
SERIALIZER

AFCC065F-E0A6-47A6-B0A
8-ECAA2FEEE2F4

Identifies the component as a serializer that is used to process outbound documents.

Assigning affinity

Each component must be associated with two category IDs. One category ID marks the component as a BizTalk Server
component. A component so marked appears in a list of components in the BizTalk Server administration console. The second
category ID indicates the type or purpose of the component. This second association is called affinity, which allows BizTalk Server
to determine the context in which the component can be used. For example, only those components whose affinity is registered as
an application integration component (AIC) appear in the list of available components when an AIC transport type has been
selected in BizTalk Messaging Manager.

To register affinity for an AIC created with Microsoft Visual C++® using ATL, include the following code in your header file:

#include "bts_sdk_guids.h"

// Implement the Component and AIC Category IDs (CATID)

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BEGIN_CATEGORY_MAP(AIC_ClassName)

IMPLEMENTED_CATEGORY(CATID_BIZTALK_COMPONENT)

IMPLEMENTED_CATEGORY(CATID_BIZTALK_AIC)

END_CATEGORY_MAP()

To register affinity for an AIC created with Microsoft Visual Basic:

1. After registering your component using Regsvr32.exe, search the registry for the CLSID of your AIC under the following key:

HKEY_CLASSES_ROOT\CLSID

2. Expand the Implemented Categories key of your AIC.

3. Add two new keys with the following names:

HKEY_CLASSES_ROOT\CLSID\AIC_CLSID\Implemented Categories\{5C6C30E7-C66D-40e3-889D-08C5C3099E52}

HKEY_CLASSES_ROOT\CLSID\AIC_CLSID\Implemented Categories\{BD193E1D-D7DC-4b7c-B9D2-92AE0344C836}

These GUIDs can be found in bts_sdk_guids.h in the Program Files\Microsoft BizTalk Server\SDK\Include folder. The first key
shown in step 3 above identifies the AIC as a BizTalk Server component (CATID_BIZTALK_COMPONENT). The second key shown in
step 3 above identifies the component as an AIC (CATID_BIZTALK_AIC).

Testing affinity

To test affinity, use BizTalk Messaging Manager to create a port that uses the AIC. For more information, see
Select an application integration component.

Related Topics

IFunctoid Interface

ISchemaImporter Interface

IBTSCustomProcess

Parsers

Serializers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250794(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Handling Data Passed to AICs
The proper method for handling data returned by an application integration component (AIC) depends on several factors,
including programming language, the characteristics of the channel being used, and the document being passed.

For an AIC written in Visual Basic, you receive a buffer that contains Unicode characters, ANSI characters, or bytes.

The Direct Integration sample contains an ATL component that unpacks binary buffers returned as BSTR data. The component
defines and implements the IConvertBstr interface, which defines a single method called Convert:

HRESULT Convert([in] BSTR bstrData, [out,retval] VARIANT* psaData);

When a buffer is passed as a BSTR to this method, the component creates a safe array of characters. The size of the array is the
size of the buffer passed in the BSTR. A simple operation of memory copying helps translate the BSTR data to a safe array.
Convert can be used by an AIC to convert the data to a format that can be iterated, as shown in the following code:

STDMETHODIMP CConvertBstr::Convert(BSTR bstrData, VARIANT *psaData) {

 HRESULT hr = S_OK;

 SAFEARRAY *psa = NULL;

 BYTE HUGEP*psaBuffer = NULL;

 SAFEARRAYBOUND rgsaBound[1];

 UINT nDataLength = 0;

Determine if the arguments passed to Convert are valid, as shown in the following code:

 if (!psaData || !bstrData)

 return E_FAIL;

Clear the variant data type, as shown in the following code:

 hr = VariantClear(psaData);

 if (FAILED(hr))

 return hr;

The client code must initialize the variant. Then, retrieve the length of the allocated BSTR, in bytes, as shown in the following code:

 nDataLength = SysStringByteLen(bstrData);

At this point, construct a SAFEARRAY that will contain the bytes from the input BSTR data type, as shown in the following code:

 rgsaBound[0].lLbound = 0;

 rgsaBound[0].cElements = (ULONG)nDataLength;

 psa = SafeArrayCreate(VT_UI1, 1, rgsaBound) ;

 if (!psa)

 return E_FAIL;

 SafeArrayAccessData(psa, (void HUGEP**) &psaBuffer);

 memcpy(psaBuffer, bstrData, nDataLength);

 SafeArrayUnaccessData(psa);

Finally, return the SAFEARRAY through the output parameter, as shown in the following code:

 V_VT(psaData) = VT_ARRAY | VT_UI1;

 V_ARRAY(psaData) = psa;

 return hr;

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

}

In addition, all pipeline AICs receive an IDictionary object, containing a set of fields. Every IDictionary object contains a
working_data field. Several other fields could be present, including the following string values supplied by the server for all AICs:

Src_ID_Type: The type of identifier used for the source organization.

Src_ID_Value: The value of the source organization identifier.

Dest_ID_Type: The type of identifier used for the destination organization.

Dest_ID_Value: The value of the destination organization identifier.

Document_Name: The name of the input document definition.

Tracking_ID: A key value that is based on the globally unique identifier (GUID) and used for tracking.

Src_Filename: The name of the source document.

Src_Filepath: The file path of the source document.

Out_Codepage: The codepage used by the component to interpret the BSTR data.

Related Topics

Supporting the Tracking Database with Parser and Serializer Components

Execute Method

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Supporting the Tracking Database with Parser and Serializer
Components
When creating a custom parser or serializer, you might want your component to support the BizTalk Server Tracking database. To
accomplish this, the component must use the IDictionary interface to add key/value pairs into the database.

Interchange table

The following table contains the list of keys that can be used to support the Tracking database from the interchange level with a
custom component. The table used in the database is dta_interchange_details.

Diction
ary key

Inb
ou
nd
or
out
bo
un
d

Colum
n logg
ed in
Tracki
ng dat
abase

Description

Src_ID_
Type

Bot
h

*nvcSr
cAliasQ
ualifier

This is the qualifier for the source organization. This value can come from a parameter supplied in a Submit
call or from a receive function in the BizTalk Server Administration user interface. A parser can overwrite this
value to manipulate the routing information used for channel selection.

Src_ID_
Value

Bot
h

*nvcSr
cAliasI
d

This contains the value of the qualifier of the source organization. This value can come from a parameter su
pplied in a Submit call or from a receive function in the BizTalk Server Administration user interface. A pars
er can overwrite this value to manipulate the routing information used for channel selection.

In_Src_I
D_App

Inb
oun
d

nvcSrc
AppNa
me

This is the interchange level identifier for the source application of an EDI interchange. When the parser sets
the value with this dictionary key, the value is logged on the inbound interchange in the Tracking database.

Dest_ID
_Type

Bot
h

*nvcDe
stAlias
Qualifi
er

This is the qualifier for the destination organization. This value can come from a parameter supplied in a Su
bmit call or from a receive function in the BizTalk Server Administration user interface. A parser can overwri
te this value to manipulate the routing information used for channel selection.

Dest_ID
_Value

Bot
h

*nvcDe
stAliasI
d

This contains the value of the qualifier of the destination organization. This value can come from a paramete
r supplied in a Submit call or from a receive function in the BizTalk Server Administration user interface. A p
arser can overwrite this value to manipulate the routing information used for channel selection.

In_Dest
_ID_App

Inb
oun
d

nvcDes
tAppN
ame

This is the interchange level identifier for the destination application of an EDI interchange. When the parser
sets the value with this dictionary key, the value is logged on the inbound interchange in the Tracking datab
ase.

intercha
nge_id

Inb
oun
d

nvcCon
trolID

This is the unique control number used to identify an EDI interchange instance between trading partners. W
hen the parser sets the value with this dictionary key, the value is logged on the inbound interchange in the
Tracking database.

intercha
nge_ver
sion

Inb
oun
d

nvcVer
sion

This is the version of an EDI interchange. When the parser sets the value with this dictionary key, the value is
logged on the inbound interchange in the Tracking database.

Out_Src
_ID_App

Out
bou
nd

*nvcSr
cAppN
ame

This is the interchange level identifier for the source application of an EDI interchange. When the serializer s
ets the value with this dictionary key, the value is logged on the outbound interchange in the Tracking datab
ase.

Out_De
st_ID_A
pp

Out
bou
nd

*nvcDe
stAppN
ame

This is the interchange level identifier for the destination application of an EDI interchange. When the serializ
er sets the value with this dictionary key, the value is logged on the outbound interchange in the Tracking da
tabase.

out_inte
rchange
_id

Out
bou
nd

*nvcCo
ntrolID

This is the unique control number used to identify an EDI interchange instance between trading partners. Th
e serializer usually generates this unique value. When the serializer sets the value with this dictionary key, th
e value is logged on the outbound interchange in the Tracking database.

out_inte
rchange
_versio
n

Out
bou
nd

*nvcVe
rsion

This is the version of the EDI standard. When the serializer sets the value with this dictionary key, the value is
logged on the outbound interchange in the Tracking database.

 Note

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

The columns of the dta_interchange_details table marked with an asterisk (*) are used for receipt correlation.

Group table

The following table contains the list of keys that can be used to support the Tracking database from the group level with a custom
component. The table used in the database is dta_group_details. This table applies to both inbound and outbound documents.

Diction
ary key

Colum
n logg
ed in
Tracki
ng dat
abase

Description

group_i
d

*nvcCo
ntrolID

This is the unique control number of a group instance within an EDI interchange. Both the parser and the serializ
er can set the value with this key. The value is logged on the inbound and the outbound group, respectively, in t
he Tracking database. For outbound document processing, the serializer usually generates this value.

function
al_identi
fier

*nvcFu
nctiona
lGroupI
D

This is the code for the type of documents in an EDI group. Both the parser and the serializer can set the value w
ith this key. The value is logged on the inbound and the outbound group, respectively, in the Tracking database.
In the serializer, this value can be read from the document's PropertySet.

applicati
on_send
er_code

*nvcSrc
AppNa
me

This is the group level identifier for the source application in an EDI group. Both the parser and the serializer can
set the value with this key. The value is logged on the inbound and the outbound group, respectively, in the Trac
king database. In the serializer, this value can be read from the document's PropertySet.

applicati
on_recei
ver_cod
e

*nvcDe
stAppN
ame

This is the group level identifier for the destination application in an EDI group. Both the parser and the serialize
r can set the value with this key. The value is logged on the inbound and the outbound group, respectively, in th
e Tracking database. In the serializer, this value can be read from the document's PropertySet.

standar
ds_versi
on

*nvcVe
rsion

This is the version of the EDI standard. Both the parser and the serializer can set the value with this key. The valu
e is logged on the inbound and the outbound group, respectively, in the Tracking database.

standar
ds_relea
se

*nvcRel
ease

This is the release of the version of the EDI standard. Both the parser and the serializer can set the value with thi
s key. The value is logged on the inbound and the outbound group, respectively, in the Tracking database.

 Note

The columns of the dta_group_details table marked with an asterisk (*) are used for receipt correlation.

Inbound document table

The following table contains the list of keys that can be used to support the Tracking database from the document level with a
custom component. The table used in the database is dta_indoc_details. This table applies to inbound documents only.

Dictiona
ry key

Column l
ogged in
Tracking
database

Description

doc_id nvcControl
ID

This is the unique control number of an EDI document instance. When the parser sets the value with this di
ctionary key, the value is logged on the inbound document in the Tracking database.

standards
_version

nvcVersion This is the version of the EDI standard. When the parser sets the value with this dictionary key, the value is l
ogged on the inbound document in the Tracking database.

standards
_release

nvcRelease This is the release of the version of the EDI standard. When the parser sets the value with this dictionary ke
y, the value is logged on the inbound document in the Tracking database.

doc_type nvcDocTyp
e

This is the document type or transaction set identifier. When the parser sets the value with this dictionary k
ey, the value is logged on the inbound document in the Tracking database.

Outbound document table

The following table contains the list of keys that can be used to support the Tracking database from the document level with a
custom component. The table used in the database is dta_outdoc_details. This table applies to outbound documents only.

Dictionar
y key

Colum
n logg
ed in
Trackin
g data
base

Description

out_doc_d
oc_id

nvcCont
rolID

This is the unique control number of an EDI document instance. When the serializer sets the value with this di
ctionary key, the value is logged on the outbound document in the Tracking database.

out_doc_sy
ntax

nvcSynt
ax

This is the code for document syntax, such as XML, X12, EDIFACT, H7, and so on. When the serializer sets the
value with this dictionary key, the value is logged on the outbound document in the Tracking database.

out_doc_st
andards_v
ersion

nvcVers
ion

This is the version of the EDI standard. When the serializer sets the value with this dictionary key, the value is
logged on the outbound document in the Tracking database. In the serializer, this value can be read from the
document's PropertySet.

out_doc_st
andards_re
lease

nvcRele
ase

This is the release of the version of the EDI standard. When the serializer sets the value with this dictionary ke
y, the value is logged on the outbound document in the Tracking database. In the serializer, this value can be
read from the document's PropertySet.

out_doc_d
oc_type

nvcDoc
Type

This is the document type or transaction set identifier. When the serializer sets the value with this dictionary
key, the value is logged on the outbound document in the Tracking database.

Tracking_I
D

uidTrac
kingGUI
D

This is the tracking identifier of the document for which a receipt is generated.

 Note

The Tracking_ID key is used when calling the AckDocument method.

Interchange and document tables

The following table contains the list of keys that can be used to support the Tracking database from the interchange and
document level with a custom component. The table used in the database for interchange data is dta_interchange_data. The table
used in the database for document data is dta_document_data.

Dicti
onary
key

Inb
oun
d or
out
bou
nd

Colum
n logg
ed in
Trackin
g data
base

Description

in_cod
epage

Inbo
und

nCodeP
age

This is the system code page value with which interchange/document data is encoded. When the parser sets
the value with this dictionary key, the value is logged in the data record related to the inbound interchange/
document in the Tracking database.

out_c
odepa
ge

Out
bou
nd

nCodeP
age

This is the system code page value with which interchange/document data is encoded. When the serializer s
ets the value with this dictionary key, the value is logged in the data record related to the outbound intercha
nge/document in the Tracking database.

Related Topic

Understanding the Tracking Database Schema

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

BizTalk Orchestration Services
The interfaces in this section provide access to XLANG Scheduler System Managers, XLANG group managers,
XLANG schedule instances, and XLANG ports.

The XLANG Scheduler System Manager provides moniker resolution and maintains a collection of group managers. A group
manager runs in every COM+ application that has been designated as an XLANG schedule host, and maintains a collection of
XLANG schedule instances. An XLANG schedule instance represents a running XLANG schedule that can be queried for
information, such as the schedule's completion status. For XLANG schedules with a COM-bound port, a proxy object can be used
to obtain a reference to the interface specified in the port binding.

For help with specific tasks, see Using Orchestration Services.

For general background information, see Understanding Orchestration Services.

For information about COM interfaces and error messages, see the Orchestration Services Reference.

Related Topic

Moniker Syntax

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Understanding Orchestration Services
This section provides detailed conceptual information that is important to understanding how to access and work with BizTalk
Orchestration Services. The following topics are covered in this section:

XLANG Interfaces

XLANG Schedule Correlation

The interfaces described in this section provide access to XLANG Scheduler System Managers, XLANG group managers,
XLANG schedule instances, and XLANG ports.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

XLANG Interfaces
The XLANG Scheduler System Manager provides moniker resolution and maintains a collection of group managers. A group
manager runs in every COM+ application that has been designated as an XLANG schedule host, and maintains a collection of
XLANG schedule instances. An XLANG schedule instance represents a running XLANG schedule that can be queried for
information, such as the schedule's completion status. For XLANG schedules with a COM-bound port, a proxy object can be used
to obtain a reference to the interface specified in the port binding.

The following illustration shows the relationship between the XLANG interfaces covered in this section, and the corresponding
monikers.

The following XLANG schedule interfaces are available:

Administrator interfaces:

IWFGroupAdmin

IWFSystemAdmin

Schedule instance interfaces:

IWFProxy

IWFWorkflowInstance

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

XLANG Schedule Correlation
XLANG schedule correlation enables you to use a single message queue shared across multiple XLANG schedule instances,
allowing incoming messages on that queue to be correlated to the correct running XLANG schedule instance.
Src_XLANG_InstanceID and Dest_XLANG_InstanceID are dictionary keys created to take advantage of XLANG schedule correlation.
The XLANG Scheduler Engine supports the ability to set the globally unique identifier (GUID) assigned to the schedule instance, or
InstanceID, as the message label on received Message Queuing messages. These keys are provided by BizTalk Messaging Services
to supply a simple mechanism to save and retrieve the data from the XLANG Scheduler Engine. By using these keys, you do not
need to write code to retrieve and look up the InstanceIDs in the XLANG schedule, and you can leverage the existing BizTalk
Messaging transports.

The Src_XLANG_InstanceID dictionary key appears on messages that originate from the BizTalk Messaging binding in an XLANG
schedule instance, as long as the message is declared to send the InstanceID. This information can be used by a component in the
messaging port to store the InstanceID to a custom database with a business-level correlation ID.

When a response message is received for a business interaction, the messaging port bound to the running XLANG schedule
instance must contain the InstanceID in order to send the data to the correct running XLANG schedule instance. To do this, the
Dest_XLANG_InstanceID key is extracted by BizTalk Messaging Services and placed on the Message Queuing label for the
receiving queue. The key is set by custom pipeline components that look up the XLANG schedule InstanceID based on the
business-level correlation ID.

 Note

The tracking dictionary does not use these keys and they are not defined in a database table. To capture the correlation
state, you need to implement a custom database.

For more information, run the E-Procurement Sample, which demonstrates the XLANG schedule correlation feature.

Related Topic

Instance Management

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274602(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Using Orchestration Services
This section provides task-specific information about how to use BizTalk Orchestration Services. It is highly recommended that
you review the Understanding Orchestration Services topic as well.

The following topics are covered in this section:

Activating an XLANG Schedule Instance

Accessing a Running XLANG Schedule Instance

Accessing the XLANG Scheduler System Manager

Accessing Group Managers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Activating an XLANG Schedule Instance
Use IWFProxy to obtain a schedule instance. If IWFProxy is used on a non-COM port binding, an error is returned.

A reference to IWFProxy can be obtained from:

The Port property available on the IWFWorkflowInstance interface.

An XLANG schedule moniker that specifies the port name.

The following Microsoft Visual Basic code sample shows how to activate an XLANG schedule on the local computer by using a
moniker, and obtain a reference to the named port on that XLANG schedule instance.

Dim oPort As Object

 Set oPort = GetObject("sked:///C:\schedules\test.skx/PortA")

At this point, the oPort variable contains a reference to the COM object bound in PortA of the schedule instance.

For additional information about monikers, see Moniker Syntax.

 Note

When using C++, the COM CoGetObject function is used in place of GetObject.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Accessing a Running XLANG Schedule Instance
Use IWFWorkflowInstance to gather information about a specific running schedule instance.

A reference to IWFWorkflowInstance can be obtained from:

The WorkflowInstance property available on the IWFProxy interface.

The collection of IWFWorkflowInstance objects returned by the IWFGroupAdmin object.

An XLANG schedule moniker.

The following Microsoft Visual Basic code sample shows how to instantiate an XLANG schedule on the local computer and obtain
a reference to that schedule instance.

Dim oWFI As IWFWorkflowInstance

 Set oWFI = GetObject("sked:///C:\schedules\test.skx")

To obtain a reference to all currently running schedule instances in a group manager, you can access the collection of
IWFWorkflowInstance objects contained by the IWFGroupAdmin object. The following Microsoft Visual Basic code displays the
fully qualified name of each schedule instance running in the default XLANG Scheduler Group Manager.

Dim oGM As IWFGroupAdmin

Dim oWFI As IWFWorkflowInstance

 Set oGM = GetObject("sked://!XLANG Scheduler")

 For Each oWFI In oGM

 MsgBox ("XLANG Schedule: " + oWFI.FullyQualifiedName)

 Next

When using multiple group managers, you can determine the group manager associated with any schedule instance by following
these steps:

1. Retrieve the FullyQualifiedName property of the IWFWorkflowInstance object.

2. Parse the group manager name out of the moniker string returned.

This is the portion that begins with an exclamation point (!) and ends with a slash (/).

3. Obtain a reference to the IWFGroupAdmin object using a moniker created with the group manager name from step 2.

For additional information about monikers, see Moniker Syntax.

 Notes

When using C++, the COM CoGetObject function is used in place of GetObject.

When accessing this object in Microsoft Visual Basic, you must declare your object variable with the appropriate type
information rather than using the Object type. For example:

Dim myInstance As IWFWorkflowInstance

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Accessing the XLANG Scheduler System Manager
Use IWFSystemAdmin to start, stop, and retrieve information about the group managers.

To obtain a reference to this object, you can invoke the COM GetObject function using a moniker. The following Microsoft Visual
Basic code sample shows how to obtain a reference to the XLANG Scheduler System Manager on the local computer.

Dim oSM As SysMgr

 Set oSM = GetObject("sked://")

This object also enumerates a collection of the IWFGroupAdmin objects that represent the group managers associated with this
XLANG Scheduler System Manager.

For additional information about monikers, see Moniker Syntax.

 Note

When using C++, the COM CoGetObject function is used in place of GetObject.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Accessing Group Managers
To obtain a reference to an IWFGroupAdmin object, you can invoke the COM GetObject function using a moniker. The
following Microsoft Visual Basic code sample shows how to obtain a reference to the default XLANG Scheduler Group Manager
on the local computer.

Dim oGM As IWFGroupAdmin

 Set oGM = GetObject("sked://!XLANG Scheduler")

To obtain a reference to other group managers, replace "XLANG Scheduler" with the name of the COM+ application that has been
designated as an XLANG Scheduler Engine host or group manager. You can determine whether a COM+ application is a group
manager by using the IsWorkflowHost method on IWFSystemAdmin.

You can also obtain a reference to all group managers associated with the XLANG Scheduler System Manager through the
collection of IWFGroupAdmin objects contained by the SysMgr object. The following Microsoft Visual Basic code displays the
fully qualified name of each group manager.

Dim oSM As SysMgr

Dim oGM As IWFGroupAdmin

 Set oSM = GetObject("sked://")

 For Each oGM In oSM

 MsgBox ("Group Manager: " + oGM.FullyQualifiedName)

 Next

The IWFGroupAdmin object also enumerates a collection of the IWFWorkflowInstance objects that represent currently
running schedule instances for this group manager.

You can determine the XLANG Scheduler System Manager associated with any group manager by following these steps:

1. Retrieve the FullyQualifiedName property of the IWFGroupAdmin object.

2. Parse the XLANG Scheduler System Manager name out of the moniker string returned.

This is the portion between the sked:// prefix and the exclamation point (!).

3. Obtain a reference to the IWFSystemAdmin object using a moniker created with the XLANG Scheduler System Manager
name from step 2.

For additional information about monikers, see Moniker Syntax.

 Note

When using C++, the COM CoGetObject function is used in place of GetObject.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Managing and Monitoring
Windows Management Instrumentation (WMI) is a data-management layer included in Microsoft® Windows® 2000. Microsoft
BizTalk™ Server 2002 uses the WMI layer to encapsulate administrative functions that support the management of systems in an
enterprise.

For help with specific tasks, see Using Managing and Monitoring.

For general background information, see Understanding Managing and Monitoring.

For information about COM interfaces, see the Managing and Monitoring Reference.

This section contains sample code in Microsoft Visual Basic® and Visual Basic Script.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Understanding Managing and Monitoring
When you use the BizTalk Server Administration Microsoft Management Console (MMC) snap-in (the administration console) to
change group, server, queue, and database management settings, the new values are stored in the BizTalk Messaging
Management database through the BizTalk Server WMI provider. In BizTalk Server 2002, this WMI provider uses a Microsoft®
SQL Server™ database to store administrative objects. All timestamps are created by using the local time on the computer that is
running SQL Server. However, the WMI provider refers to all timestamps in coordinated universal time (UTC). The administration
console then converts the timestamps back to local time for display.

The WMI provider acts as an intermediary between WMI and the administration console MMC snap-in. The WMI provider gathers
information from a resource (managed object) and makes it available to management applications through the WMI API.

The BizTalk Server schema classes are registered and defined by using Managed Object Format (MOF), which is a compiled
language based on the Interface Definition Language (IDL). You place this information in an .mof file that you submit to the MOF
compiler, Mofcomp.exe.

This section contains the following topics:

BizTalk Server Namespace

BizTalk Server Provider and Registration

Custom Counters

The MOF code examples in the following topics are taken from the InterchangeProvSchema.mof file found in the \Program
Files\Microsoft BizTalk Server\Setup folder. This file, along with SrvEvents.mof, contains the BizTalk Server namespace, provider,
provider registration, and schema class definitions.

To access the WMI database layer programmatically, see Managing and Monitoring Reference, which documents the BizTalk
Server WMI schema classes that correspond to the Administration objects.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Server Namespace
Every WMI namespace contains a set of system classes, including __NAMESPACE. A namespace groups a collection of classes
into logical units. Every computer has a defined namespace at the top of the hierarchy called the Root namespace. The location of
a namespace is described by a path.

In the following MOF code, "MicrosoftBizTalkServer" is specified as the value for the Name property of the __NAMESPACE
system class for BizTalk Server:

#pragma namespace ("\\\\.\\Root")

instance of __Namespace

{

 Name = "MicrosoftBizTalkServer";

}

BizTalk Server defines the "MicrosoftBizTalkServer" namespace as a sibling of the Root namespace, logically distinguishing the
BizTalk Server–managed environment from other managed environments.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Server Provider and Registration
When WMI receives a request from a BizTalk Server management application, it forwards the request to the WMI provider,
"InterchangeProv." The WMI provider retrieves, modifies, deletes, and/or enumerates instances of the BizTalk Server schema
classes.

"InterchangeProv" is a custom provider designed to interact with the managed objects in the BizTalk Server environment. For a
complete reference of these managed objects and their properties and methods, see Managing and Monitoring Reference.

The BizTalk Server instance provider supports data retrieval, data modification, data deletion, data enumeration, and query
processing.

For more information about how to author and interpret .mof files, see the article "Managed Object Format (MOF) Language," in
the WMI SDK on the MSDN Online Library Web site (msdn.microsoft.com/library/default.asp).

The BizTalk Server WMI classes are defined in text files by using the Managed Object Format (MOF). Note that each class has a
key property qualifier. The key property qualifier tells you that any instance of that class (or any instance of a derived class) can be
uniquely identified by the value of the key property qualifier. This is a concept borrowed from database technologies.

To access the functionality provided by WMI you call a set of DCOM interfaces, including IWbemClassObject and
IWbemServices. These interfaces make it possible to write management applications that work with classes and instances that
are managed by WMI.

In addition, you can access WMI from environments that support Automation objects through scripting objects that wrap the
DCOM interfaces. For example, the SWbemObject class wraps the IWbemClassObject interface, and SWbemServices wraps
IWbemServices. When using WMI with the BizTalk Server schema classes, you can get complete access to WMI through
Microsoft Visual Basic or Visual Basic Scripting Edition (VBScript). Visual Basic projects can access these objects by adding
Microsoft WMI Scripting V1.1 Library in the Reference dialog box.

The Component Object Model (COM) API is available directly to C/C++ programmers. You can use the Scripting API to develop
script and applications based on Microsoft Visual Basic that you can use to view or control managed objects.

For a description of the interfaces in the WMI COM API, see the article "COM API for WMI," in the WMI SDK on the MSDN Online
Library Web site (msdn.microsoft.com/library/default.asp).

For a description of the interfaces in the Scripting API, see the article "Scripting API for WMI," in the WMI SDK on the MSDN
Online Library Web site.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Custom Counters
Custom counters are WMI class instances based on custom queries of the Tracking database. After they are created, these custom
counters can be consumed by user-defined rules in Microsoft Operations Manager 2000 (MOM).

This section contains the following topics:

Custom Counter Query Properties

Custom Counters Validation

To programmatically create, delete, and update custom counters, see Creating a Custom Counter Using WMI.

For information about using BizTalk Server 2002 together with MOM, see About Microsoft Operations Manager.

The BizTalk Server 2002 Management Pack module includes a sample custom counter performance processing rule called
"Sample - Custom Counter." This sample executes the query defined in the WMI custom counter class to acquire the number of
documents in the Tracking database.

 Notes

Unless you want to construct a regular expression when working with custom counters, there are a list of characters that
need special consideration:

[], ^, %, _

You should enclose these characters in [] braces. For example, the string "Org%ani^za_tio[n", should be replaced by
"Org[%]ani[^]za[_]tio[[]n".

Only the following custom counter setting properties can accept regular expressions: DocType, DestOrgName,
SrcOrgName, DestQualifier, DestQualifierValue, SrcQualifier, and SrcQualifierValue.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265079(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250795(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265100(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265115(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250801(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265112(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265109(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250798(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Using Managing and Monitoring
This section provides task-specific information about how to manage and monitor by using Microsoft BizTalk Server 2002. Topics
illustrate how to create and manipulate the BizTalk Server Administration objects by using WMI. It is highly recommended that
you review the Understanding Managing and Monitoring topic as well.

The following topics are covered:

Creating an Event Consumer Using WMI

Creating a Custom Counter Using WMI

Handling WMI Errors

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Creating an Event Consumer Using WMI
WMI provides a powerful event architecture that enables modifications in management information to be identified, aggregated,
and associated with other management information, which can then be forwarded to local or remote management applications.
Event handling and notification is a key benefit provided by WMI that provides a mechanism for identifying and dealing with
hardware or software events and errors.

After an event occurs, a notification is delivered to one or more registered recipients, knows as event consumers. Event
consumers can register to receive certain types of notifications. Event consumers register to receive notifications without any
knowledge of how events and notifications are provided. To register, event consumers specify a filter that is created by using the
WMI Query Language (WQL). The query describes the conditions under which the consumer receives the event notification.

In addition to DCOM interfaces, WMI supports a uniform scripting application programming interface (API) that gives applications
and scripts access to the WMI provider on either a local computer or a remote computer.

This section shows the basic steps necessary to write a temporary WMI event consumer with Microsoft Visual Basic script,
although some of the associated DCOM interfaces are mentioned.

This section contains the following topics:

Declaring Variables

Connecting to the Microsoft BizTalk Server Namespace

Creating the Event Object

Monitoring Events

 Note

If you have Health Monitor installed (either from Microsoft Application Center 2000 or Microsoft BackOffice® Server), you
can configure Health Monitor through its Microsoft Management Console (MMC) user interface (UI) (or its WMI class) to
consume events.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250979(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250958(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250969(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Creating a Custom Counter Using WMI
This section shows the basic steps necessary to create a custom counter using organizations, and to perform a Tracking database
query.

This section contains the following topics:

Declaring Variables

Setting the Security Level

Setting the Query Properties

Creating or Updating the Custom Counter

Validating the Custom Counter

Executing the Custom Counter Query

The code examples in this section use Microsoft Windows Instrumentation (WMI) and Microsoft Visual Basic script.

For an example of how to create a custom counter using qualifier and value pairs instead of organizations, see the
Custom Counters sample.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250986(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250976(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251003(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250994(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - Handling WMI Errors

BizTalk Server 2002 ~ Developer Solutions

BizTalk Server Developer's Toolbox
This section uses Microsoft® Visual Basic®, C++, and Visual Basic script to provide a toolbox of solutions to common tasks
encountered by BizTalk Server developers. These code examples are provided without robust error-handling functionality and
should serve as an introduction to designing your own tools when working with BizTalk Server.

These code examples should not be used in a production environment.

This section contains the following topics:

BizTalk Messaging Services Tasks

BizTalk Orchestration Services Tasks

BizTalk Managing and Monitoring Tasks

Miscellaneous Tasks

Note that some of these solutions are not specific to BizTalk Server.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Messaging Services Tasks
This section contains the following topics:

Clear BizTalk Messaging Configurations

Update Messaging Configurations with ADO Objects

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Clear BizTalk Messaging Configurations
The following code clears the BizTalk Messaging Management database.

This example ClearBTMConfigurations method is written in Microsoft Visual Basic.
Sub ClearBTMConfigurations()

First, declare the variables, as shown in the following declaration:
 Dim Configuration, Obj, CurrObj, HomeOrgID

To delete all existing configurations, create a configuration object to access the messaging objects, as shown in the following code:
 Set Configuration = CreateObject("BizTalk.BizTalkConfig")

Then, loop through and delete all existing channels, as shown in the following code:
 Set Obj = Configuration.CreateChannel

 Set CurrObj = Configuration.Channels

 While Not CurrObj.EOF

 Obj.Load CurrObj(0)
 Obj.Remove
 CurrObj.MoveNext
 Wend

Loop through and delete all existing port groups, as shown in the following code:
 Set Obj = Configuration.CreatePortGroup

 Set CurrObj = Configuration.PortGroups
 While Not CurrObj.EOF
 Obj.Load CurrObj(0)
 Obj.Remove
 CurrObj.MoveNext
 Wend

Loop through and delete all existing ports, as shown in the following code:
 Set Obj = Configuration.CreatePort

 Set CurrObj = Configuration.Ports
 While Not CurrObj.EOF
 Obj.Load CurrObj(0)
 Obj.Remove
 CurrObj.MoveNext
 Wend

Loop through and delete all existing envelopes, as shown in the following code:
 Set Obj = Configuration.CreateEnvelope

 Set CurrObj = Configuration.Envelopes
 While Not CurrObj.EOF
 Obj.Load CurrObj(0)
 Obj.Remove
 CurrObj.MoveNext
 Wend

Loop through and delete all existing document definitions, as shown in the following code:
 Set Obj = Configuration.CreateDocument

 Set CurrObj = Configuration.Documents
 While Not CurrObj.EOF
 Obj.Load CurrObj(0)
 Obj.Remove
 CurrObj.MoveNext
 Wend

Loop through and delete all existing organizations, as shown in the following code:
 Set Obj = Configuration.CreateOrganization

 Set CurrObj = Configuration.Organizations

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 While Not CurrObj.EOF
 Obj.Load CurrObj(0)

Note the home (default) organization identifier, as shown in the following code:
 If Obj.IsDefault Then

Ensure that the home organization is not deleted and that it is saved for removing aliases, as shown in the following code.
 HomeOrgID = Obj.Handle

 ElseIf Obj.Name = "SEED Test Organization" Then

Do not perform any action at this point; only ensure that the SEED organization is not deleted.
 Else

 Obj.Remove
 End If

 CurrObj.MoveNext

 Wend

Clear the home organization aliases, except for the default alias and the alias with the organization name, as shown in the
following code:
 Obj.load HomeOrgID

 Set CurrObj = Obj.Aliases

Then, reset the default alias, as shown in the following code:
 Obj.SaveAlias Obj.GetDefaultAlias, "sName" & Now(), False, "sQual" & Now(), "sValue" & Now()

 CurrObj.MoveFirst

 While Not CurrObj.EOF
 If CurrObj("qualifier") = "OrganizationName" Then
 Obj.SaveAlias CurrObj(0), "Organization", True, "OrganizationName", Obj.Name
 Obj.Save
 Else

 If CurrObj("qualifier") <> "SMTP" then Obj.RemoveAlias CurrObj(0)

 End If

 CurrObj.MoveNext

 Wend

Loop through and delete all existing home organization applications, as shown in the following code:
 Set CurrObj = Obj.Applications

 While Not CurrObj.EOF
 Obj.RemoveApplication CurrObj("id")
 CurrObj.MoveNext
 Wend

 Obj.save

Finally, set all objects to Nothing to release memory back to the system, as shown in the following code:
 Set Obj = Nothing

 Set CurrObj = Nothing
 Set Configuration = Nothing
End Sub

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Update Messaging Configurations with ADO Objects
The following code uses the Microsoft ActiveX® Data Objects (ADO) returned by the BizTalk Messaging Configuration object
model to select a subset of existing channels, and to modify the configurations of those channels. In this sample, all existing
channels using an input document definition name of "Invoice" will be selected, their RetryCount property will be updated to six
retries, and their RetryInterval property will be set to ten minutes.

This example UpdateRetry method is written in Microsoft Visual Basic Scripting Edition (VBScript).
Sub UpdateRetry()

First, declare the variables, as shown in the following declaration:
 Dim objConfig

 Dim objChannel
 Dim objDoc
 Dim objADO

Then, create the channel and document objects, as shown in the following code:
 Set objConfig = CreateObject("BizTalk.BizTalkConfig")

 Set objChannel = objConfig.CreateChannel
 Set objDoc = objConfig.CreateDocument

Obtain a reference to the Channels recordset containing all existing channels in the BizTalk Messaging Management database, as
shown in the following code:

 Set objADO = objConfig.Channels

Loop through all records in the recordset and load each channel by using the Handle provided in the first field of the record.
Load the InputDocument associated with each channel to obtain the document definition name, and compare it to the string
"Invoice" to select the appropriate records. When a record is selected, update the RetryCount and RetryInterval properties and
Save the new channel configuration. This logic is shown in the following code:

 Do While NOT objADO.EOF
 objChannel.Load(objADO.Fields.Item(0))
 objDoc.Load(objChannel.InputDocument)
 If objDoc.Name = "Invoice" Then
 objChannel.RetryCount = 6
 objChannel.RetryInterval = 10
 objChannel.Save
 End If
 objADO.MoveNext
 Loop

Finally, set all objects to Nothing to release memory back to the system, as shown in the following code:

 Set objChannel = Nothing
 Set objConfig = Nothing
 Set objDoc = Nothing
 Set objADO = Nothing
End Sub

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Orchestration Services Tasks
This section contains the following topic:

Access a Messaging Port

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Access a Messaging Port
The following code accesses a messaging port in an XLANG schedule instance:

This example is in Microsoft Visual Basic:
Dim oSked As IWFWorkflowInstance

Dim oPort

Set oSked = GetObject("sked://localhost/C:\temp\MySchedule.skx")

Set oPort = oSked.Port("PortIn")

This example is in VBScript:
Set oSked = GetObject("sked://localhost/C:\temp\MySchedule.skx")

Set oPort = oSked.Port("PortIn")

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Managing and Monitoring Tasks
This section contains the following topic:

WMI Tasks

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

WMI Tasks
To ensure that your Visual Basic projects can access the Windows® Management Instrumentation (WMI) objects used in the
following topics, you need to add the Microsoft WMI Scripting V1.1 Library in the Reference dialog.

Then, you declare the following WMI locator and services variables:
Public g_objLocator As SWbemLocator

Public g_objService As SWbemServices

In addition, the following constants should be defined:
Public Const GROUP_NAMESPACE = "MicrosoftBizTalkServer_Group"

Public Const MGMT_NAMESPACE = "MicrosoftBizTalkServer_MgmtDB"
Public Const SERVER_NAMESPACE = "MicrosoftBizTalkServer_Server"
Public Const RECVSVC_NAMESPACE = "MicrosoftBizTalkServer_ReceiveFunction"
Public Const QUEUE_NAMESPACE = "MicrosoftBizTalkServer_Queue"
Public Const WORKQ_NAMESPACE = "MicrosoftBizTalkServer_WorkQueue"
Public Const SCHEDULEDQ_NAMESPACE = "MicrosoftBizTalkServer_ScheduledQueue"
Public Const RETRYQ_NAMESPACE = "MicrosoftBizTalkServer_RetryQueue"
Public Const SUSPENDEDQ_NAMESPACE = "MicrosoftBizTalkServer_SuspendedQueue"

You make the connection to WMI with the following code:
Set g_objLocator = New SWbemLocator

Set g_objService = g_objLocator.ConnectServer(, "root/MicrosoftBizTalkServer")

This section contains the following topics:

Documents and WMI

Groups and WMI

BizTalk Messaging Management Database and WMI

Receive Services and WMI

Servers and WMI

Queues and WMI

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250911(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250862(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250854(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250914(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250874(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250919(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Miscellaneous Tasks
This section contains the following topics:

Determine if BizTalk Server is Installed

Modify the XML Encoding

Retrieve BizTalk Server Product Information

Validate an XML Document

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Determine if BizTalk Server is Installed
The following code determines if BizTalk Server is installed on the local machine.
Dim objService, objLocator, objConfig, strGroupName

Set objLocator = CreateObject("WbemScripting.SWbemLocator")

On Error Resume Next

Set objService = objLocator.ConnectServer(, "root/MicrosoftBizTalkServer")

PassFail "Unable to connect to BizTalk Server. Please verify that your BizTalk " & "Server is installed and functions properly."

Sub PassFail(strScope)

 If Err.Number <> 0 Then

 MsgBox strScope & " Error: x" & Hex(Err.Number) & " Description: " & Err.Description & " Source: " & Err.Source

 Err.Clear
 Else

 MsgBox "BizTalk Server appears to be installed."

 End If
End Sub

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Modify the XML Encoding
BizTalk Server uses UTF-8 encoding in XML output files by default. Use the following Microsoft Visual Basic Scripting Edition
(VBScript) code to specify a different encoding type:
set xmlObj = CreateObject("MSXML2.DomDocument.3.0")

wscript.echo wscript.arguments(1)

if wscript.arguments.count < 2 then
 wscript.echo "Usage: encoding.vbs XMLDocument Encoding"
 wscript.quit
end if

if xmlobj.load(wscript.arguments(0)) = False then
 wscript.echo "Unable to load the XML document."
 wscript.Echo "Error: " + xmlobj.ParseError.Reason + "Line: " + CStr(xmlobj.ParseError.Line)
 wscript.quit
end if

if (xmlObj.firstChild.nodeType = 7) and (xmlObj.firstChild.nodeName = "xml") then
 set child = xmlObj.firstChild
 xmlObj.removeChild child
end if

set pi = xmlObj.createProcessingInstruction("xml","version='1.0' encoding='" & wscript.arguments(1) & "'")
xmlObj.insertBefore pi, xmlObj.firstChild
xmlObj.save "newxml.xml"
wscript.echo "Done"

 Notes

The "Usage" statement assumes that the script file containing this code is named encoding.vbs.

The first argument is the name of the XML document to be modified.

The second argument is a valid XML encoding value.

A new, modified version of the input XML file is created in the same folder with the name newxml.xml.

To run this script, open a Command Prompt window and use the following syntax:

C:\ > wscript encoding.vbs file.xml enctype

Where file.xml is the name of the XML file to be converted, and enctype is the encoding type to be used in the XML file.

To use this code with XML files created by BizTalk Server, you can create an application integration component (AIC) that
incorporates similar XML document object model code. If you prefer to manually edit the file or run the script shown above, you
can use the file transport protocol on the port to create the XML files to be converted.

Related Topics

Application Integration Components

Specify a transport address

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Retrieve BizTalk Server Product Information
The following VBScript example uses the Microsoft Windows Installer Object Library to obtain information about BizTalk Server.
In a Microsoft Visual Basic project, use the Microsoft Windows Installer Object Library (\system32\msi.dll).
Public objInstaller

Const gstrProductName = "Microsoft BizTalk Server 2002"

Sub Main()
 Dim guidProductCode

 On Error Resume Next
 Set objInstaller = CreateObject("WindowsInstaller.Installer")
 guidProductCode = GetProductGuid(gstrProductName)
 Wscript.echo "PRODUCT INFORMATION" & vbNewLine & vbNewLine & GetProductInfo(guidProductCode)
End Sub

Function GetProductGuid(sProductName)

 Dim sName
 Dim guidProductCode

 On Error Resume Next
 GetProductGuid = ""

 For Each guidProductCode In objInstaller.Products
 sName = objInstaller.ProductInfo(guidProductCode, "ProductName")

 If (LCase(sProductName) = LCase(sName)) Then
 GetProductGuid = CStr(guidProductCode)
 Exit For
 End If
 Next
End Function

Function GetProductInfo(guidProductCode)
 Dim s

 On Error Resume Next
 s = "ProductInfo for " & guidProductCode & vbNewLine
 s = s & vbNewLine
 s = s & "InstalledProductName: " & vbTab & objInstaller.ProductInfo(guidProductCode, "InstalledProductName")
& vbNewLine
 s = s & "VersionString: " & vbTab & objInstaller.ProductInfo(guidProductCode, "VersionString") & vbNewLine
 s = s & "HelpLink: " & vbTab & objInstaller.ProductInfo(guidProductCode, "HelpLink") & vbNewLine
 s = s & "HelpTelephone: " & vbTab & objInstaller.ProductInfo(guidProductCode, "HelpTelephone") & vbNewLine
 s = s & "InstallLocation: " & vbTab & objInstaller.ProductInfo(guidProductCode, "InstallLocation") & vbNewLi
ne
 s = s & "InstallSource: " & vbTab & objInstaller.ProductInfo(guidProductCode, "InstallSource") & vbNewLine
 s = s & "InstallDate: " & vbTab & objInstaller.ProductInfo(guidProductCode, "InstallDate") & vbNewLine
 s = s & "Publisher: " & vbTab & objInstaller.ProductInfo(guidProductCode, "Publisher") & vbNewLine
 s = s & "LocalPackage: " & vbTab & objInstaller.ProductInfo(guidProductCode, "LocalPackage") & vbNewLine
 s = s & "URLInfoAbout: " & vbTab & objInstaller.ProductInfo(guidProductCode, "URLInfoAbout") & vbNewLine
 s = s & "URLUpdateInfo: " & vbTab & objInstaller.ProductInfo(guidProductCode, "URLUpdateInfo") & vbNewLine
 s = s & "VersionMinor: " & vbTab & objInstaller.ProductInfo(guidProductCode, "VersionMinor") & vbNewLine
 s = s & "VersionMajor: " & vbTab & objInstaller.ProductInfo(guidProductCode, "VersionMajor") & vbNewLine
 s = s & vbNewLine
 s = s & "Transforms: " & vbTab & objInstaller.ProductInfo(guidProductCode, "Transforms") & vbNewLine
 s = s & "Language: " & vbTab & objInstaller.ProductInfo(guidProductCode, "Language") & vbNewLine
 s = s & "ProductName: " & vbTab & objInstaller.ProductInfo(guidProductCode, "ProductName") & vbNewLine
 s = s & "AssignmentType: " & vbTab & objInstaller.ProductInfo(guidProductCode, "AssignmentType") & vbNewLine
 s = s & "PackageCode: " & vbTab & objInstaller.ProductInfo(guidProductCode, "PackageCode") & vbNewLine
 s = s & "Version: " & vbTab & objInstaller.ProductInfo(guidProductCode, "Version") & vbNewLine
 s = s & "ProductIcon: " & vbTab & objInstaller.ProductInfo(guidProductCode, "ProductIcon") & vbNewLine
 GetProductInfo = s
End Function

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Main

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Validate an XML Document
The following code validates an XML document:
Dim xmlDoc As New Msxml2.DOMDocument

 xmlDoc.async = False
 xmlDoc.validateOnParse = True
 xmlDoc.Load "myXML.xml"

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Server Samples
Samples provided in the BizTalk Server SDK are located in the folder \Program Files\Microsoft BizTalk Server\SDK on the
installation drive. These samples should not be used in a production environment.

Sample Requirements

The samples provided with BizTalk Server require one or more of the following applications:

Microsoft Visual Basic® is necessary to modify and compile the Visual Basic source files, such as .vbp files, that are included
in the SDK. The Visual Basic runtime, VB6.exe, is also needed to run some of the executable files included in the SDK.

A compiler and source code editor, such as Microsoft Visual C++®, is necessary to modify and compile the C++ source
files.

Microsoft Word or Wordpad is necessary to view some of the readme files that use a .doc file type extension.

An HTML browser, such as Microsoft Internet Explorer, is necessary to view some of the readme files that use an .htm file
type extension.

This section contains the following topics:

BizTalk Messaging Services Code Samples

BizTalk Orchestration Services Code Samples

E-Procurement Sample

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Messaging Services Code Samples
Sample files are located in the Messaging Samples folder on the Microsoft BizTalk Server installation drive. Browse to \Program
Files\Microsoft BizTalk Server\SDK\Messaging Samples on the installation drive to find the sample files. This is only a relative
path. Depending on your installation of BizTalk Server 2002, you might need to modify this path.

Application Integration in Visual Basic

Application Integration in Visual C++

BizTalk Framework Developers' Toolkit

Configuration Assistant

Custom Counters

Custom Import Module

Custom Preprocessor in Visual Basic

Custom Preprocessor in Visual C++

Date Functoid

Date Functoid with .NET

Direct Integration

Distribution List

EDI and Receipts

EDI Introduction

Encryption and Decryption

Flat-File Delimited

Flat-File Positional

HTTP Receive Function

Mapping Twice

Message Queuing 4 MB Limit

Multi-part MIME Attachment

Pipeline Component in Visual Basic

Pipeline Component in Visual C++

Queue Sniffer

Receive Scripts

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Refresh Messaging Manager

Reliable Messaging

Self Routing

Send To Remote Queue

Submitting Documents

Submitting Documents with Receipts

Submitting Documents to a Port Group

Suspended Queue Monitoring

Synchronous Orchestration Component

Tracking Database Tasks

Windows Management Instrumentation

 Notes

When using C++, you need to add \Program Files\Microsoft BizTalk Server\SDK\Include to the include directory list.

Some of the samples have a dependency on the Pipecomplib.tlb file. For these samples, you need to add \Program
Files\Common Files\Microsoft Shared\Enterprise Servers\Commerce to the include directory list.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Application Integration in Visual Basic
This sample demonstrates an application integration component (AIC) that implements the IBTSAppIntegration interface. The
component provided in this sample receives a document that validates against the CommonPO.xml schema (provided by default
in the BizTalk Server WebDAV repository), instantiates a schedule (provided with this sample) and passes the document to the
schedule. The schedule gets the document and sends it to the file C:\temp\WFOut.txt.

For a related sample, see Application Integration in Visual C++.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\BTSAppIntegration\VB

User's Guide

Before running the sample, complete the following steps:

1. Compile the Visual Basic component (this is optional because the DLL is provided with the sample).

2. Register the component, its category IDs, and its setup configuration by running the script:

cscript scenario.wsf //job:setup

When prompted whether to register information from Affinity.reg, click Yes. The component progid is
"BTSSamples_IBTSAppInt_VB AIC2Sched".

To run the sample:

Submit a document on the channel "BTSSamples_Channel_AIC2Sched" by using the script:

cscript scenario.wsf //job:submit

If the submission succeeds, the document appears in C:\temp\WFOut.txt.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Application Integration in Visual C++
This sample demonstrates an application integration component (AIC) that implements the IBTSAppIntegration interface by
using the Active Template Library (ATL). The component provided in this sample receives a document that validates against the
CommonPO.xml schema (provided by default in the BizTalk Server WebDAV repository) and returns the first element of the
document.

For a related sample, see Application Integration in Visual Basic.

 Note

This sample requires the Microsoft XML Parser (MSXML) version 3.0 or higher.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\BTSAppIntegration\VC\ATL

User's Guide

Before running the sample, complete the following steps:

1. Compile the Visual C++ component.

2. Set up the configuration by running the script:

cscript scenario.wsf //job:setup

The component progid is "BTSSamples.AtlIBTSAppInt".

To run the sample:

Submit a document on the channel "BTSSamples_Channel_ATL_IBTSAppInt_AIC" by using the script:

cscript scenario.wsf //job:SubmitSync

If the submission succeeds, it replies with the first element of the submitted document.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Framework Developers' Toolkit
This sample demonstrates how to programmatically access the BizTalk Framework 2.0 tags in a message.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\BTFDevToolkit

User's Guide

Before running the sample, complete the following steps:

1. Register one of the envelope objects using regsvr32. Depending on which version of the XML parser you have (version 2.0,
version 2.6, or version 3.0), register BTFEnvelope20.dll, BTFEnvelope26.dll, or BTFEnvelope30.dll respectively. Note that only
one of these libraries can be registered at a time because they share a common CLSID.

a. Copy SchemaPluginGenerator.dll to $:\Microsoft Visual Studio\Common\MSDev98\AddIns and run regsvr32 on the
DLL to register it. The AddIns folder path location can vary depending on where Microsoft Visual Studio® is installed.

2. Copy the file pigen.ini to the same location as SchemaPluginGenertor.dll (the Visual Studio AddIns folder).

3. Register the MSPlugin type library depending on which version of the XML parser you are running. Register the type library
MSPlugin20.tlb, MSPlugin26.tlb, or MSPlugin30.tlb if you are using XML parser version 2.0, version 2.6, or version 3.0
respectively You can register this file by verifying, and updating if necessary, the TLB file location paths in Plugin2.reg. After
the paths are correct, you can run the Plugin2.reg file by double-clicking it.

4. Copy the following files to the Template\Classes folder in the Visual Basic program tree, $:\Microsoft Visual
Studio\VB98\Template\Classes:

Microsoft Plugin class instance.cls

Microsoft Plugin collection instance.cls

Microsoft Plugin Main.cls

Be sure that these files are not read-only.

5. Copy the following file to the Template\Code folder in the Visual Basic program tree, $:\Microsoft Visual
Studio\VB98\Template\Code:

modXMLHelper3.bas

Be sure that this file is not read-only.

6. Load the code generator. Open Visual Basic and run the Add-In manager. You should see the following available add-in: BTF
Developers Toolkit Schema Plug-in Generator. Select the Loaded/Unloaded check box to load the add-in. It will appear in
the Add-Ins drop-down menu.

To run the sample, you must have the following components installed:

1. Visual Basic version 6.0 SP3 or SP4

2. Microsoft XMLDOM typelib {F5078F18-C551-11D3-89B9-0000F81FE221}. There are components specifically targeted at all
three versions (2.0, 2.6, and 3.0) of the Microsoft XML Parser (MSXML). Any one of these three versions of the document
object model (DOM) will work. Read UsingPluginGenerator.doc for more information about the DOM-targeted versions of
the BTFEnvelope component and the MSPlugin type library.

Programming Notes

The Resource Kit components consist of two core components and a type library:

Envelope object. This object provides programmatic access to the BTF2.0 header tags in the XML document, including
management of the message body and the ability to add documents.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Plugin code generator. This takes an XDR schema and generates a "plugin" set of Microsoft Visual Basic COM
components that provide programmatic access to the BODY tags in a BTF 2.0 message.

PlugIn2 interface. Exposed through the MSPlugin type library. This interface is implemented by the generated plugin
component and called by the Envelope object. This interface is the link between the Envelope and the Plugin.

You can find further documentation on the Envelope and Plugin in the files UsingPluginGenerator.doc and
EnvelopeAndPlugin.doc. The BizTalk Framework 2.0 (BTF) tag specification and the XML-Data Reduced (XDR) schema
documentation can be found at http://msdn.microsoft.com/xml. It is highly recommended that you read the BTF specification and
the UsingPluginGenerator documents before you use the components. You can obtain further architectural detail from the
EnvelopeAndPlugin document.

Known Issues

The Plugin generator does not support XDR <group> structures when nested within another <group>. Generated code will
work, but the embedded group will not have object model access code. In this scenario the IXMLDOMNode nodes will be
available and the plugin is still usable and correct.

The generator will treat XDR order="one" attributes like order="many" because it does not know which child element will
eventually be used. The programmer must set only one child element so that the resulting XML document will be valid.

The Visual Basic "Microsoft Plugin" template files located under $:\Microsoft Visual Studio\VB98\Template must not be
read-only. If they are read-only, the generator will fail when adding modules to the targets Visual Basic project.

The BTFEnvelope object does not yet support BTF 2.0 Multipart MIME structures and Reliable Delivery structures. While this
support is not directly developed into the component, the DOM nodes at each level are exposed so that they can easily be
extended and customized.

The envelope can currently accept only one business document added to its body. Therefore it is not currently possible to
add or access more than one business document nested in the body.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Configuration Assistant
This sample enables you to view all details of a BizTalk Server configuration and to export and import that configuration. The
configuration export and import is completed as a package that includes all messaging objects such as document specifications,
maps, custom parsers, serializers, and application integration components (AIC).

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\BTConfigAssistant

User's Guide

Detailed information is provided in the Readme.doc file located in the BTConfigAssistant folder.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Custom Counters
This sample allows you to create a custom counter that you can use to count the number of documents in the Tracking database
(DTA) that match a specified set of criteria. This sample allows you to create two types of counters, one based on source and
destination organization names, and one based on qualifier and value pairs. Each counter is validated after it is created.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Custom Counter

User's Guide

Before running the scripts, complete the following steps:

1. On the C drive, create a folder called CustomCounterSample with two subfolders called SrcOrg and DestOrg.

2. On the BizTalk Server installation drive, copy POReq.xml to \Program Files\Microsoft BizTalk
Server\BizTalkServerRepository\DocSpecs\Microsoft.

3. Run CustomCounterConfig.vbs to configure BizTalk Messaging Services.

To run documents through the DTA, copy and paste PORequest.xml to the C:\CustomCounterSample\SrcOrg folder. You should
see an output file, Output.xml, in the C:\CustomCounterSample\DestOrg folder. Each time you do this an additional record will be
tracked in the DTA.

To create a custom counter based on source and destination organization names, run CreateCustomCounter_Organizations.vbs.

To create a custom counter based on qualifier and value pairs, run CreateCustomCounter_Identifiers.vbs.

The first time you run each script, you will be creating an instance of the counter classes. When you run the script again to view
the number of matching documents in the DTA, you will update the class.

To run the sample, you need to remove the read-only property from the sample data file, PORequest.xml.

 Important

When calling the Put_ method to create or update the custom counter setting object, the wbemChangeFlagCreateOrUpdate
flag is not supported. Instead, you must specify either wbemChangeFlagCreateOnly or wbemChangeFlagUpdateOnly,
depending on whether you want to create or update the custom counter setting object. As a result, you need to update the
source code of CreateCustomCounter_Organizations.vbs or CreateCustomCounter_Identifiers.vbs accordingly.

For example, the following code from both the sample scripts creates the custom counter setting object:

objCustomCounterSetting.Put_(wbemChangeFlagCreateOnly)

To update the existing custom counter setting object, modify the code by specifying the wbemChangeFlagUpdateOnly flag,
as shown in the following code:

objCustomCounterSetting.Put_(wbemChangeFlagUpdateOnly)

When you run the script again, the existing custom counter setting object will be updated.

When the sample scripts are first installed, they are set up to create a custom counter setting object, in order to update the
custom counter setting object and query the MatchCount property, you will need to update the scripts as specified above.

For the value of the MatchCount property to be consumed by Microsoft Operations Manager (MOM), the MOM DAS
account must be a member of the BizTalk Server Administration group.

Programming Notes

This sample uses the MSBTS_CustomCounterSetting and MSBTS_CustomCounter Windows Management Instrumentation
(WMI) classes. To locate the definitions of these classes, view the InterchangeProvSchema.mof file. The MatchCount property of
MSBTS_CustomCounter is incremented each time a document runs through the DTA.

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee265097(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Custom Import Module
This sample creates a custom import module that imports a flat file and displays it in BizTalk Editor. The imported file is a
delimited flat file exported from an SQL table. It is an ANSI file that uses "{CR}{LF}" as the row delimiter and comma as the column
delimiter. The first line contains column names. The custom import module first creates a schema root called "SQLFile". It then
parses the first line of the input file, extracts each column name, and creates each column as a text-only element under the root.
The import module returns an XDR schema with BizTalk Server annotations.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\SampleImporter

User's Guide

To use this sample in BizTalk Editor, follow these steps:

1. Register CustomImporter.dll (run regsvr32 CustomImporter.dll).

2. Merge CustomImporter.reg (right-click CustomImporter.reg and then click Merge).

3. In BizTalk Editor, on the Tools menu, click Import. The "Custom data" import module will appear in the "Select Import
Module" window.

4. Select 'sqlfile.txt'. The BizTalk Editor tree view window will display the schema structure that was created based on the
input file.

5. Select 'Blank.txt'. BizTalk Editor will display a dialog box that indicates a "column not found" error.

6. Select 'FilewithWarning.txt'. BizTalk Editor will report warnings in the output window.

To remove this custom importer from BizTalk Editor, you need to unregister CustomImporter.dll by using the command: run
regsvr32 /u CustomImporter.dll.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Custom Preprocessor in Visual Basic
This sample demonstrates a very simple implementation of a custom preprocessor to be used with a File receive function.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\VBCustPreProcessor

User's Guide

Before running the sample, complete the following steps:

1. Compile the Visual Basic project into VBCustPreProcessor.dll.

2. Register VBCustPreProcessor.dll by using regsvr32.

To run the sample, follow these steps:

1. Set up a File receive function.

2. Submit a document to BizTalk Server.

3. Submit a document to the receive function.

Programming Notes

The Execute method simply loads the file into the XML DOM and then returns the XML data to BizTalk Server. The files should
therefore always contain XML for the purposes of this sample.

This sample also demonstrates how to obtain context information from BizTalk Server although it does not actually use this
context information during processing.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Custom Preprocessor in Visual C++
This sample demonstrates a very simple implementation of a custom preprocessor to be used with either File or Message
Queuing receive functions.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\CustomPreProcessor

User's Guide

Before running the sample, complete the following steps:

1. Compile the source files provided in this folder into CustomPreProcessorps.dll.

2. Register CustomPreProcessorps.dll by using regsvr32.

To run the sample, follow these steps:

1. Set up either a File receive function or a Message Queuing receive function.

2. Submit a document to the receive function.

Programming Notes

When used by a File receive function, the Execute method simply loads the file into the XML DOM and then returns the XML data
to BizTalk Server. The files should therefore always contain XML for the purposes of this sample.

When used by a Message Queuing receive function, if the input data contains an array of bytes, it is converted to a BSTR.
Alternatively, if the input data contains a BSTR, it is converted to an array of bytes.

This sample also demonstrates how to obtain context information from BizTalk Server although it does not actually use this
context information during processing.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Date Functoid
This sample creates a custom functoid that converts date formats. It converts a date in ISO format (generated from Date(), Time(),
Now() in Visual Basic or from Date, Time, DateTime functoids) to a date in mm-dd-yyyy format. This sample is similar to the
Date Functoid with .NET sample that is written in Visual C#™ .NET.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\SampleFunctoid

User's Guide

Before running the sample, complete the following steps:

1. Register DateConversion.dll (run regsvr32 DateConversion.dll).

2. Merge DateConversion.reg (right-click DateConversion.reg and then click Merge).

To run the sample in BizTalk Mapper:

Select the DateConversion functoid that appears in the functoid palette on the Date/Time tab.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Date Functoid with .NET
This sample creates a custom functoid that converts date formats. It converts a date in ISO format (generated from Date(), Time(),
Now() in Visual Basic or from Date, Time, DateTime functoids) to a date in mm-dd-yyyy format. This sample is written in Visual C#
.NET and shows how to write a functoid by using Microsoft .NET Framework. This sample is identical in functionality to the
Date Functoid sample that is written in Visual Basic.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\DateFunctoidNet

User's Guide

Before running the sample, complete the following steps:

1. Register AssemblyPathFinder.dll by typing the following two commands:

regasm AssemblyPathFinder.dll

gacutil /i AssemblyPathFinder.dll

2. Register AssemblyPathFinderProxy.dll by using the command:

run regsvr32 AssemblyPathFinderProxy.dll

To run the sample with BizTalk Mapper, follow these steps:

1. Run buildme.bat.

2. Merge DateFunctoidNet.reg (right-click DateFunctoidNet.reg and then click Merge).

3. The DateFunctoidNet functoid appears in the functoid palette on the Date/Time tab.

To remove this functoid from the BizTalk Mapper functoid palette, follow these steps:

1. Run unreg.bat

2. Delete the following key from the registry (by using regedit):

HKEY_CLASSES_ROOT\CLSID\{722FF791-A0F8-42b9-B390-16C3F9238A5E}

Programming Notes

.NET Framework must be installed to run this sample.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Direct Integration
This sample demonstrates the use of IInterchange methods to submit documents to BizTalk Server. A user interface offers the
ability to set parameters interactively before submitting a document.

The sample also contains the source code for a component that can be used to unpack binary buffers returned as BSTR. Buffers
are converted to safe character arrays. The component is used by the main sample when saving data items from the Suspended
queue to file.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\DirectIntegration

User's Guide

Detailed information is provided in the Readme.doc file located in the DirectIntegration folder.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Distribution List
This sample consists of independent Visual Basic and Visual C++ samples that configure and run a DistributionList, or port group,
scenario that sends documents to multiple trading partners. The two samples perform the same tasks and show how to
implement those tasks by using two different programming languages.

The sample Submitting Documents to a Port Group contains related information.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\DistributionList

User's Guide

Before running the sample, complete the following steps:

1. In the C++ sample, compile the source files DistributionList.cpp and DistributionList.h into an executable file.

2. In the Visual Basic sample, create an executable file from the DistributionList project (.bas) file.

To run the sample:

Run the .exe file that you created in the preceding steps.

Programming Notes

In the C++ sample, the code shows how to set up the BizTalk Messaging Management database to submit a CommonPO
document to a distribution list (port group).

The distribution list consists of two ports:

Port "SRC -> DST Port" wraps the input document in a BizTalk Framework (BTF) 2.0 envelope and drops the output to the file
"%HOMEDRIVE%\DL_SRCtoDST.TXT".

Port "SRC -> APP2 Port" transports the input document and drops it to the file "%HOMEDRIVE%\DL_SRCtoAPP2.TXT".

After configuring the BizTalk Messaging Management database, the sample submits a CommonPO to BizTalk Server and then
checks that there are no entries in the Suspended queue and that the expected number of entries was tracked in the Tracking
database during the last Submit call.

In the Visual Basic sample, the code shows how to set up the BizTalk Messaging Management database to submit a CommonPO
document to a distribution list.

The distribution list consists of two ports:

Port "SRC -> DST Port" wraps the input document in a BTF 2.0 envelope and drops the output to the file
"%HOMEDRIVE%\DL_SRCtoDST.TXT".

Port "SRC -> APP2 Port" transports the input document and drops it to the file "%HOMEDRIVE%\DL_SRCtoAPP2.TXT".

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

EDI and Receipts
This sample demonstrates how BizTalk Server can be used to support inbound X12 purchase order (850) messages from a
trading partner and generate outbound X12 receipts (997) for those messages.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\EDI and Receipts

User's Guide

The sample scenario involves an external trading partner (Fabrikam, Inc.) submitting X12 purchase order (850) documents to the
home organization (Microsoft). The inbound X12 electronic data interchange (EDI) documents are mapped to XML format and
transported to the internal recipient application (MOLP). To signal that the X12 850 has been received, the home organization
sends a functional acknowledgement (997) document to the external organization. The outbound X12 997 receipt is generated
from a canonical receipt format that is shipped with BizTalk Server.

This sample uses only file transport to simulate the scenario, and does not use BizTalk Orchestration Services. X12 EDI documents
from Fabrikam are dropped in one directory, and the transformed XML documents and receipt documents are generated as
output in other directories on the local file system.

 Note

If you have run setup.cmd on the EDI Introduction sample, you must run the setup on this sample for the scenario to work
correctly.

To run the sample, follow these steps:

1. Run setup.cmd in the sample folder to configure the scenario.

Configuration involves the creation of the following BizTalk Server objects:

Organizations: Microsoft (default organization), Fabrikam

Document Definitions: Fabrikam850, Microsoft997, MicrosoftPO-MOLP, MyCanonicalReceipt

Envelope: EDItoFabrikam

Port: EDIPortToFabrikam, PortToMOLP

Channel: Channel997toFabrikam, Channel850toFabrikam

Receive Function: EDIFiles

Files are copied onto the C drive. Make the necessary modifications in setup.cmd and ConfigureEDIReceipts.vbs if the C
drive does not exist.

2. With BizTalk Server running, navigate to c:\EDIReceipts\ and copy the file Fabrikam850.edi into c:\
EDIReceipts\Fabrikam.

This file should be consumed by BizTalk Server, transformed, and submitted to C:\EDIIntroduction\Microsoft as the file
xmlpotomolp_%tracking_id%.xml, where %tracking_id% is a unique ID value. A receipt file named
EDItofabrikam_%tracking_id%.edi is then submitted to C:\EDIIntroduction\Fabrikam\Receipts.

To walk through how the sample is prepared, follow these steps:

Set Up Organizations and Associated Identifiers

Set Up and Verify Document Specifications

Set Up Map for Converting X12 to XML

https://msdn.microsoft.com/en-us/library/ee264936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264943(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Create Document Definitions

Create EDI Envelope

Create Ports

Create Channels

Create File Receive Function

Run the Sample Scenario

Programming Notes

The schemas and maps for this sample are completed and are available for review. It is also recommended that you complete the
EDI Introduction sample for additional background.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee264941(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264938(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264933(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264929(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

EDI Introduction
This sample demonstrates how to configure BizTalk Server to support XML documents flowing outbound from the home
organization to an external trading partner using the EDI X12 855 document format.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\EDI Introduction

User's Guide

An internal application (MOLP) of the home organization (Microsoft) submits XML documents to BizTalk Server. These files are
then mapped to an X12 EDI format and transported to the recipient trading partner (Fabrikam).

This sample uses only file transport to simulate the scenario, and does not use BizTalk Orchestration Services. XML documents
from Microsoft are dropped in one directory, and the transformed X12 EDI documents are generated as output in another
directory on the local file system.

 Note

If you have run setup.cmd on the EDI and Receipts sample, you must run setup.cmd again on this sample for the scenario to
work correctly.

To run the sample, follow these steps:

1. Run setup.cmd in the sample directory to configure the scenario.

Configuration involves the creation of the following BizTalk Server objects:

Organizations: Microsoft (default organization), Fabrikam

Document Definitions: Fabrikam855, MicrosoftPOAck

Envelope: EDItoFabrikam

Port: EDIPortToFabrikam

Channel: Channel855toFabrikam

Receive Function: XMLAcks

Files are copied onto the C drive. Make the necessary modifications in setup.cmd and ConfigureEDI.vbs if the C drive does
not exist.

2. With BizTalk Server running, navigate to c:\EDIIntroduction\ and copy the file MOLPpoAck.xml into
c:\EDIIntroduction\Microsoft.

This file should be consumed by BizTalk Server, transformed, and submitted to C:\EDIIntroduction\Fabrikam as the file
EDItoFabrikam_%tracking_id%.edi, where %tracking_id% is a unique ID value.

To walk through how the sample is prepared, follow these steps:

Set Up Organizations and Associated Identifiers

Set Up Source Specification

Set Up Destination Specification

Set Up Map for Converting XML to X12

Create Document Definition for Microsoft

https://msdn.microsoft.com/en-us/library/ee264968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264950(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264967(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Create Document Definition for Fabrikam

Define EDI Selection Criteria for Fabrikam

Create EDI Envelope

Create Port for Delivering EDI to Fabrikam

Create Channel from Microsoft to Fabrikam

Create File Receive Function

Run the Sample Scenario

Troubleshooting

Programming Notes

Electronic data interchange (EDI) is a set of standards for controlling the exchange of business documents (such as purchase
orders and invoices) between computers. Although standardization efforts for EDI formats began in the 1960s, the expensive
setup and operational costs of EDI server systems and the somewhat cryptic EDI document formats limited its use.

BizTalk Server supports the EDIFACT standard adopted in 1987 by the International Organization for Standardization (ISO) as well
as the older X12 standard used primarily for American domestic trade. This sample goes through the transmission of a purchase
order acknowledgement from Microsoft to Fabrikam using the X12 standard.

The schemas and maps for this sample are completed and are available for review to get a better understanding.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee264948(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264957(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264965(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264964(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264947(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264970(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264959(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264960(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Encryption and Decryption
This sample walks through the process of setting up a secure document exchange between two trading partners. This sample
demonstrates the use of digital certificates to:

Encrypt an outgoing document

Sign an outgoing document

Decrypt an incoming document

Verify the signature on an incoming document

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Encryption

User's Guide

To prepare and run the sample, follow these steps:

Preliminary Setup (setup.cmd)

Obtain and Install Digital Certificates

Create Secure Ports and Channels

Create File Receive Functions

Run the Sample Scenario

Programming Notes

The sample scenario simulates establishing secure communications between two organizations: Buyer and Home. These
organizations can be considered as separate Web sites.

A flat-file purchase order, myPO.csv, is sent from Buyer to Home. Because the purchase order is considered sensitive, the
information needs to be encrypted and signed by Buyer before it is transported. Encryption prevents documents from being
viewed by unauthorized individuals. Signing ensures that a document is authentic and unaltered. Home decrypts, verifies, and
transforms the purchase order as an XML document of decision factors.

This sample requires obtaining certificates for each organization to perform the encryption, decryption, and digital signature. It is
recommended that you familiarize yourself with certificates before using this sample.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee264975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265007(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264973(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Flat-File Delimited
This sample translates an inbound delimited flat-file source document into an XML destination document.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Flat-File Delimited

User's Guide

Before running the sample, complete the following steps:

1. On the C drive, create a folder called FlatFileDelimited.

2. On the C drive, create a folder called XMLDest.

3. Copy FlatFileDelimited.xml to the folder \Program Files\Microsoft BizTalk
Server\BizTalkServerRepository\DocSpecs\Microsoft on the installation drive.

4. Run FlatFileDelimitedSetup.vbs to configure BizTalk Messaging Services.

 Note

The BizTalk Messaging Services configuration script, FlatFileDelimitedSetup.vbs, should be run only once. If you want to run
the script again, you must first delete any configuration objects previously created by the script in the following order:

1. Channel: Flat File Delimited To XML Channel

2. Port: Flat File Delimited to XML Port

3. Organization: Flat File Delimited Sample Org

4. Document definition: Flat File Delimited to XML

5. Envelope: Flat File Delimited Envelope

6. File receive function: FlatFileDelimited

To run the sample, follow these steps:

1. Ensure that the FlatFileDelimitedSampleData.txt file is not read-only. To modify this property, right-click the file, click
Properties, clear the Read-only attribute, and then click OK.

2. Copy and paste the flat file, FlatFileDelimitedSampleData.txt, to the C:\FlatFileDelimited folder. You should see an output
XML file in the C:\XMLDest folder.

Programming Notes

The same document specification, FlatFileDelimited.xml, is used for both the inbound and outbound documents, so a map is not
required.

Related Topic

Working with Positional and Delimited Flat Files

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251521(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Flat-File Positional
This sample translates an inbound positional flat-file source document into an XML destination document.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Flat-FilePositional

User's Guide

Before running the sample, complete the following steps:

1. On the C drive, create a folder called FlatFilePosSample with two subfolders called SourceOrg and DestOrg.

2. On the BizTalk Server installation drive, copy FlatFilePosSpec.xml to \Program Files\Microsoft BizTalk
Server\BizTalkServerRepository\DocSpecs\Microsoft.

3. Run FlatFilePosConfig.vbs to configure BizTalk Messaging Services.

To run the sample, follow these steps:

1. Ensure that the FlatFilePosSampleData.txt file is not read-only. To modify this property, right-click the file, click Properties,
clear the Read-only attribute, and then click OK.

2. Copy and paste the flat file, FlatFilePosSampleData.txt, to the C:\FlatFilePosSample\SourceOrg folder. You should see an
output XML file in the C:\CustomCounterSample\DestOrg folder.

 Note

The BizTalk Messaging Services configuration script, FlatFilePosConfig.vbs, should be run only once. If you want to run the
script again, you must first delete any configuration objects previously created by the script in the following order:

1. Channel: FlatFile Positional Channel

2. Messaging Port: FlatFile Positional Port

3. Organizations: FlatFilePos Source Organization, FlatFilePos Destination Organization

4. Document Definition: FlatFilePosDef

5. Envelope: FlatFilePosEnv

6. File Receive Function: FlatFilePos

Programming Notes

The same document specification, FlatFilePosSpec.xml, is used for both the inbound and outbound documents, so a map is not
required.

Related Topic

Working with Positional and Delimited Flat Files

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251521(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

HTTP Receive Function
This sample illustrates how an online buyer organization delivers a purchase order (PO) to a supplier organization through a
Web-based front end. The information is converted to an XML document and is sent to BizTalk Server by using an HTTP receive
function.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\HTTP Receive Function

User's Guide

To prepare and run the sample, follow these steps:

Set Up the Web Site Environment

Run the HTTP Receive Function Sample

 Note

This sample assumes that BizTalk Server is installed on your C drive. If this is not the case, you should make the appropriate
path modifications.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265072(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265065(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Mapping Twice
This sample demonstrates mapping a document from its source to its destination by using two iterations.

Biztalk Server allows you to map a document synchronously through two iterations by using SubmitSync and the Loopback
transport service. You can break your mapping into various stages by reusing and combining different channels.

In this scenario, we will first map Input.xml (which is hard-coded in the Microsoft Visual Basic source) to an intermediate XML file
by using 1stMap.xml. A message box will report the resulting IntermediateOutput.xml file. Then we will map
IntermediateOutput.xml to the final destination, producing FinalOutput.xml.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Mapping Twice

User's Guide

Before running the sample, complete the following steps:

1. In the Mapping Twice sample directory, double-click the DocSpecs folder.

2. Copy the Microsoft folder and paste it into the DocSpecs repository at:

\Microsoft BizTalk Server\BizTalkServerRepository\DocSpecs

3. In the Mapping Twice sample directory, double-click the Maps folder.

4. Copy the Microsoft folder and paste it into the Maps Repository at:

\Microsoft BizTalk Server\BizTalkServerRepository\Maps

5. Double-click SetUp.vbs to run Setup.

To run the sample:

Run Mapping_Twice.exe.

Programming Notes

In the first mapping, the following files are used:

File name Purpose
Input.xml Source instance file
SourceDocSpec.xml Source specification file
IntermediateDocSpec.xml Intermediate specification file
1stMap.xml Map source file
IntermediateOutput.xml Intermediate instance after first mapping

In the second mapping, the following files are used:

File name Purpose
IntermediateOutput.xml Intermediate instance file
IntermediateDocSpec.xml Intermediate specification file
DestinationDocSpec.xml Destination specification file
2ndMap.xml Map source file
FinalOutput.xml Final instance after first mapping

When running the sample, the first Msgbox should correspond to /Data/IntermediateOutput.xml, and the second Msgbox should
correspond to /Data/FinalOutput.xml.

The application will create two files in the Mapping Twice sample folder: SampleIntermediateOutput.xml and
SampleFinalOutput.xml. These files hold the values in the two messages that are displayed when you run the Mapping_Twice.exe

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

file.

The BizTalk Messaging Services configuration script, SetUp.vbs, should be run only once. If you want to run the script again, you
must first delete the configuration objects, such as organizations, ports, channels, and so on, that were previously created by the
script.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Message Queuing 4 MB Limit
This sample shows one way to process documents that exceed the Message Queuing maximum size limit. Depending on your
requirements, this method might not be suitable.

Message Queuing is limited in the size of documents that can be processed. The maximum size document that Message Queuing
supports is 4 MB if the document is in ASCII. The message queue can handle a maximum of 2 MB if the document is in Unicode.

In the Message Queuing 4 MB sample, a buyer organization delivers a large purchase order (PO) file, in excess of 4 MB, to a
supplier organization by using the BizTalk Framework 2.0 reliable messaging protocol.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\MSMQ 4MB Limit

User's Guide

Before running the sample, complete the following steps:

1. In the MSMQ 4MB Limit directory remove the read-only property on the following files:

BigCustomerPO.xml

CustomerPO.xml

MSMQ 4MB Limit.skv

MSMQ 4MB Limit.skx

2. Copy the following files to the Biztalk Repository at \Microsoft BizTalk Server\BizTalkServerRepository\DocSpecs\Microsoft:

\Setup\Docs\customerid.xml

\Setup\Docs\largeFileReceive.xml

3. Create a private transactional queue named customeridq in the Computer Management tool. Be sure to modify the
security settings for this queue to allow everyone full control.

4. In the SetUp folder, run SetUp.cmd and follow the prompts.

5. Close the Command window if it is still open.

6. Install XML for SQL Server Web Release 1 (WR1) by finding the downloadable release at:
www.microsoft.com/sql/downloads.

7. Modify the CustomerPO.xml and BigCustomerPO.xml files so that they are editable. By default, the files are read-only. If
the file attributes are not changed, the sample will not work correctly.

XML for SQL Server is required for this sample.

Verify that the settings are correct:

1. Open Biztalk Server Administration. Expand the Console Root until you see Receive Functions.

2. Click filercv_CustomerPO. In the right pane, edit this File receive function by double-clicking filercv_CustomerPO.

3. On the General tab, be sure that the Disable Receive Function check box is cleared.

4. On the Services tab, be sure that the Polling Location is polling in the \POdrop folder in your Samples directory.

5. Click OK.

6. Click msmqrcv_CustomerID. In the right pane, edit this File receive function by double-clicking msmqrcv_CustomerID.

http://www.microsoft.com/sql/downloads
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

7. On the General tab, be sure that the Disable Receive Function check box is cleared.

Modify the Orchestration schedule:

1. Edit the Orchestration schedule by right-clicking MSMQ 4MB Limit.skv and selecting Edit With Orchestration Designer.

2. Double-click the blue line connecting the port to the action "Receive CustomerID from Queue."

3. Click Next four times until you see Message Specification Information.

4. Click Browse and select the location of \Schemas\CustomerID.xml in the MSMQ 4MB Limit sample folder.

5. Double-click the GetSQLData COM shape; this should open the COM Component Binding Wizard.

6. Click Next twice.

7. Under Class Information, double-click the GetSqlData folder to expand the component.

8. Double-click the getData class.

9. Click Finish.

If a message box appears, click OK and perform the following steps:

a. Double-click the red and blue lines connecting the port to the action "Call COM Object."

b. Click Next.

c. Click Finish.

d. Click Yes in the dialog box.

e. Open the Data Flow page by clicking the Data tab.

f. Under the msg_CustomerID table, connect CustomerID to the strCust_ID in the getData_in table.

g. Make the XLANG schedule by clicking Make XLANG MSMQ 4MB Limit.skx on the File menu.

h. Be sure that XLANG MSMQ 4MB Limit.skx is being created in the MSMQ 4MB Limit samples directory.

i. Click OK to replace the file.

Update the messaging port

1. Open Biztalk Messaging Manager and search for all ports.

2. Double-click the port_CustomerID port.

3. Click Next.

4. In the first input box under "New XLANG schedule" click Browse.

5. Select MSMQ 4MB Limit.skx in your Samples directory.

6. Click Finish.

To run the sample:

Copy CustomerPO.xml and paste it into \PODrop to run this sample. You should see a message box pop up momentarily.
Check the Event Logs for errors. The CustomerPO.xml file is a small test file that will be processed in the same manner as a
large file. To test a large file, copy the BigCustomerPO.xml file to the \PODrop directory. Processing a large file will take
longer.

Programming Notes

The BizTalk Messaging Services configuration script, SetUp.cmd, should be run only once. If you want to run the script again, you
must first delete the configuration objects, such as organizations, ports, channels, and so on, that were previously created by the
script.

The following objects are created by the setup file:

Organizations

org_CustomerID

org_CustomerPO

Channels

channel_CustomerID

channel_CustomerPO

Document Definitions

docdef_CustomerID

docdef_CustomerPO

Messaging Ports

port_CustomerID

port_CustomerPO

Receive Functions (in BizTalk Server Administration):

filercv_CustomerPO

msmqrcv_CustomerID

Messaging Queues (in Computer Management)

customeridq

BizTalk Server Repository

largeFileReceive.xml

customerid.xml

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Multi-Part MIME Attachment
This sample shows how BizTalk Server handles an inbound document that contains multiple MIME attachments.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Multi-Part MIME Attachment

User's Guide

Before running the sample, complete the following steps:

1. On the Start menu, click Run.

2. On the command line type CMD.

This will bring up a Command Line window.

3. Change the directory to the Multi-Part MIME Attachment sample directory.

4. Type Config.wsf.

This will create the MimeSampleSource->MimeSampleDest port, MimeSampleSource->MimeSampleDest channel,
CommonPO document definition, BTFEnvelope envelope, and the MimeSample_DestinationOrg and
MimeSample_SourceOrg organizations.

5. Type Exit in the Command Line window to close it.

6. On the Start menu, point to Programs, point to Microsoft BizTalk Server, and then click BizTalk Server Administration.

7. Double-click Microsoft BizTalk Server 2002.

8. Right-click BizTalk Server Group, click Properties, and then click the Tracking tab.

9. Ensure that the Enable Document Tracking and Log the original MIME-encoded message check boxes are selected.

These options instruct BizTalk Server to store in a table all incoming documents as well as the original MIME documents.

10. Click OK.

11. Close BizTalk Server Administration.

To run the sample, follow these steps:

1. On the Start menu, click Run.

2. On the command line type CMD.

This will bring up a Command Line window.

3. Change the directory to the Multi-Part MIME Attachment sample directory.

4. Type Submit.vbs.

This script file will use the Submit method to submit the CommonPOAttached.txt file to BizTalk Server. When the
submission process is complete, a message box will appear stating that the submission was successful.

5. Verify that a new file has been created in the Multi-Part MIME Attachment sample directory. This file will be named with a
unique GUID and have a .txt extension (for example, {4DE29CC8-7631-46A7-BCA7-F92B910A2AD1}.txt).

6. Type Exit in the Command Line window to close it.

You can verify that the MIME attachments have been included by opening the .txt file. Note that the XML data within the

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

multi-part MIME file is encapsulated by a SOAP envelope.

Programming Notes

This sample assumes that BizTalk Server is installed on your C drive. If this is not the case, you should make the appropriate path
modifications.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Pipeline Component in Visual Basic
This sample demonstrates an application integration component (AIC) that implements the IPipelineComponent and
IPipelineComponentAdmin interfaces in Microsoft Visual Basic. The component provided in this sample receives a document
that validates against the CommonPO.xml schema (provided by default in the Microsoft BizTalk Server repository), logs some of
the properties passed to it in the dictionary, and copies the incoming message to a file.

For a related sample, see Pipeline Component in Visual C++.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\PipelineComponent\VB

User's Guide

Before running the sample, complete the following steps:

1. Compile the Visual Basic component (this is optional because the DLL is provided).

2. Register the component, its category IDs, and its setup configuration by running:

cscript scenario.wsf //job:setup

When asked whether to register information from Affinity.reg, click "Yes." The component ProgID is
"BTSSamples_VBPipeComp.PipelineComp".

To run the sample:

Submit a document on the channel "BTSSamples_Channel_VBPipeComp" by using the command:

cscript scenario.wsf //job:submit

If the submission succeeds, a log file, BTSSamples.log, and an output file, BTSSamples_pipe.out, will be created in the
temporary system directory (C:\WINNT\temp).

Programming Notes

If you want to configure the component, you must' copy the ASP pages to the directory designated for property pages (for
example, C:\Program Files\Microsoft BizTalk Server\MessagingManager\pipeline). You can then open the BizTalk Messaging
Manager and edit the channel. The Advanced button in the last dialog box allows you to set the properties for the primary
transport.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Pipeline Component in Visual C++
This sample demonstrates an application integration component (AIC) that implements the IPipelineComponent and
IPipelineComponentAdmin interfaces by using the Active Template Library (ATL). The component provided in this sample
receives a document that validates against the CommonPO.xml schema (provided by default in the Microsoft BizTalk Server
repository), logs some of the default dictionary properties to a file, C:\temp\BTSSamples_ATLPipeComp.log, and writes the
incoming data to another file, C:\BTSSamples_ATLPipeComp.out.

For a related sample, see Pipeline Component in Visual Basic.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\PipelineComponent\VC\ATL

User's Guide

Before running the sample, complete the following steps:

1. Compile the Visual C++ component.

2. Set up the configuration by running:

cscript scenario.wsf //job:setup

The component ProgID is "BTSSamples_AtlPipelineComp BTSPipelineComp".

3. Copy ASP files to the configuration files for BizTalk Messaging Manager:

C:\Program Files\Microsoft BizTalk Server\MessagingManager\pipeline

You can now change the default settings for output and log files.

To run the sample:

Submit a document on the channel "BTSSamples_Channel_ATLPipelineComp" by using the command:

cscript scenario.wsf //job:Submit

If the submit succeeds, you will get two files:

C:\temp\BTSSamples_ATLPipeComp.log

C:\temp\BTSSamples_ATLPipeComp.out

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Queue Sniffer
This sample enables you to view, forward, and remove messages in Message Queuing queues. This application supports the
following features:

Displays the entire content of a message

Displays XML and flat text file formats

Accesses message queues on remote servers

Performs criteria-based searches for specific messages

Forwards messages to other message queues

Removes messages from a queue

Retrieves detailed message information

Displays journal messages

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Queue Sniffer

User's Guide

To use this application, perform the following steps:

1. Run the executable file QueueSniffer.exe, located on the BizTalk Server installation drive at \Program Files\Microsoft
BizTalk Server\SDK\Messaging Samples\Queue Sniffer\QueueSniffer.exe.

2. Type the name or TCP/IP address of a Message Queuing server in the Message Queuing Server text box that is located at
the top of the window.

3. Type a message queue name in the Message Queue text box.

4. If the queue you are accessing is transactional, select the Use Transactional Queue check box.

5. If you wish to view journal messages for the queue, select the Use Journal check box.

After you have entered the required information, you can perform one of the following actions:

View the next message in the queue. Click View Next Message to display the next message in the queue.

Search for a specific message in the queue. Enter search criteria in the Message Search Criteria section and click
Search to display a message that matches your criteria. Click Search again to see the next message that matches your
search criteria.

After a message is displayed in the Message Information area, you can remove the message from the queue by clicking
Remove from Queue, or you can forward a copy of the message to another queue by clicking Forward Message.

 Note

The information in the message label cannot be passed to a remote queue.

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Receive Scripts
This sample demonstrates an HTTP receive function.

ReceiveResponse.asp is used as a page where the BizTalk Messaging Service receives documents to be sent to an existing
Orchestration schedule. If you copy that page into your localhost location, you can use http://localhost/ReceiveResponse.asp as
the HTTP URL address on the Channel Information page of the BizTalk Messaging Binding Wizard.

ReceiveStandard.asp is an example of an HTTP receive function. The document data posted to that page will be submitted as a
self–routing document for a NOT OPEN configuration.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\ReceiveScripts

Programming Notes

The Exchange Server 5.5 folder contains an example SMTP receive function. The document data sent as an e-mail message will
be deposited into C:\temp\RS_data.txt and then submitted as a self-routing document for a NOT OPEN configuration.

The Exchange Server 2000 folder contains an example of an event sink that intercepts e-mail messages and submits them to
BizTalk Server. See the readme.doc file in that folder for more details.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Refresh Messaging Manager
This sample allows you to refresh objects in BizTalk Messaging Manager. You must refresh the objects in the Messaging Manager
when a document definition, envelope, or channel is modified. This sample lets you choose whether to refresh all objects or
individual objects.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Refresh Messaging Manager

User's Guide

To prepare and run the sample, follow these steps:

1. Copy the BTM_RefreshV2.exe file to the BizTalk Server on which you are working.

The BTM_RefreshV2.exe file can be copied to any BizTalk Server. The Refresh Messaging Manager application will only affect
the BizTalk Server that it is currently running on.

2. Open Windows Explorer and browse to the BTM_RefreshV2.exe file.

3. Double-click the BTM_RefreshV2.exe file to start the application.

Within the application are three windows that display the document definitions, envelopes, and channels that are available
on the BizTalk Server.

4. To refresh individual objects, highlight the objects and then click the corresponding button to refresh only the highlighted
objects. To refresh all the listed objects (whether highlighted or not), click Update All.

5. To exit, click Exit.

 Note

This sample assumes that BizTalk Server is installed on your C drive. If this is not the case, you should make the appropriate
path modifications.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Reliable Messaging
This sample illustrates how a buyer organization delivers a purchase order (PO) to a supplier organization by using the BizTalk
Framework 2.0 reliable messaging protocol.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\ReliableMessaging

User's Guide

To prepare and run the sample, follow these steps:

Preliminary Setup

Enable Reliable Messaging

Run the Reliable Messaging Sample

 Note

The BizTalk Messaging Services configuration script, ReliableMsgConfig.vbs, should be run only once. If you want to run the
script again, you must first delete any configuration objects previously created by the script in the following order:

1. Applications: PurchaserOrgApp, SupplierOrgApp

2. Channels: PurchaserOrgOutgoingMsgChannel, SupplierOrgIncomingMsgChannel

3. Messaging Ports: PurchaserOrgOutgoingPort, SupplierOrgIncomingPort

4. Organization: Supplier Organization

5. Document Definition: PurchaserOrgPO

6. Envelope: PurchaserReliableEnvelope

7. File Receive Functions: PurchaserOrgOutgoingFunc, SupplierOrgIncomingFunc

Programming Notes

BizTalk Framework 2.0 (BTF) guarantees only a single delivery of a message to the destination organization. After the supplier
organization receives the message, the BizTalk Server in the supplier organization responds with a receipt to the purchaser
organization. When the purchaser organization receives the receipt, the transmission is complete.

As a brief example, consider an application (PurchaserOrgApp) in the buyer organization, which sends a PO to BizTalk Server
(PurchaserOrg), which, in turn, delivers the PO to the supplier organization application (SupplierOrgApp), as explained below:

BizTalk Server in the buyer organization

1. BizTalk Server wraps the PO with a BTF reliable message envelope and sends the message to the supplier organization.

2. BizTalk Server places a copy of the PO into the BizTalk Server Retry queue.

3. BizTalk Server tries to send the PO to a supplier organization until a BTF receipt is received. The number of retries is based
on the configuration and the interval between retries.

4. When the number of retries is exhausted and the receipt has not been received, the PO is placed into the Suspended queue.

5. If the receipt arrives before the number of retries is exhausted, BTF removes the PO from the Retry queue.

BizTalk Server in the supplier organization

https://msdn.microsoft.com/en-us/library/ee250793(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265113(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250804(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

1. BizTalk Server removes the PO from the BTF envelope and sends an acknowledgement receipt to the source organization.

2. The PO, without an envelope, is delivered to the supplier organization's internal application.

3. BizTalk Server logs the PO in the document-tracking database. However, no log is created for the receipt.

When BizTalk Messaging Services on the supplier organization receives an interchange with a reliable messaging format, it uses a
special document definition, channel, and messaging port to process and transport a receipt to the buyer organization. These
special system objects are not viewable in BizTalk Messaging Manager, and you cannot create similar objects by using the
reserved system names.

BizTalk Server uses the reply-to address that is included in the header of the inbound interchange as the destination address for
the receipt. You do not need to further configure BizTalk Messaging Services for the supplier system to return a receipt for an
interchange sent with the reliable messaging envelope.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Self-Routing
This sample demonstrates the BizTalk Server 2002 capability to route documents through BizTalk Server channels and ports
based on the contents of the document being routed.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Self-Routing

User's Guide

To prepare and run the sample, follow these steps:

Preliminary Setup

Run the Self-Routing Sample

Programming Notes

This sample walks through the process of setting up a self-routing document scheme that utilizes the routing capabilities of
BizTalk Server 2002 and, in the process, demonstrates the following:

The use of dictionary properties that are added to document specifications by BizTalk Editor and are used by the BizTalk
Server runtime to determine routing

The use of envelopes to parse and route differently formatted inbound flat files

The use of document selection criteria to determine routing

The use of receive functions in determining routing

In this sample, we will modify the business scenario and show how a single receive function can be used, with three different
inbound file formats, channels, and maps, to send the same DecisionFactors document to the approver through the existing
ApprovalMessagingPort port.

We modify the POApproval scenario by introducing the following business requirements:

Rather than one buyer organization, as in the original POApproval scenario, we now have two separate buyer departments,
each of which has its own flat-file format for a purchase order. The buyer departments are divided by region: Northwest
buyers (NWB) and Central buyers (CB).

Each buyer department has agreed to add a common header record, known as an inbound envelope, to each of their
purchase orders before submitting them for approval. They have also agreed to a data content convention for the common
header to properly route their documents.

We want to reuse our existing business logic, approver addresses, and wire protocols to route documents from both buyer
departments with a minimum of additional effort.

We want to use a single share drop location on the network for both departments and a single receive function no matter
how many buyer departments we add in the future. Note that we are assuming that all departments added in the future will
send flat files with the common header.

Inbound Envelope

Each buyer department uses the inbound envelope to tell BizTalk Server the source of the document and which file format to
expect. The envelope has the following format:

POHeader,999,XXX

The first field in the envelope is a constant string literal (that is, identical and unchanging in all documents) that is used to identify
the record type when the inbound file is parsed. This is the primary mechanism that BizTalk Server uses at run time to separate
individual purchase orders that are submitted in the same flat file.

https://msdn.microsoft.com/en-us/library/ee250849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250863(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

The second and third fields correspond to the document Source Qualifier and Source Name respectively. In addition, the third
field doubles as the Document Type property for the associated purchase order. Because each buyer department sends only one
document format, the third field can be "overloaded" in this way.

The Northwest and Central buyer departments provide the Source Qualifier/Source Name pairs 10/NWB and 12/CB, respectively.

A document specification file is provided by the sample and contains the XML-Data Reduced (XDR) information for the envelope.
The file name for this specification is defPOEnv.xml. If you look at this file in BizTalk Editor you will see that the string "POHeader"
has been entered as the Source Tag Identifier for the record.

Buyer Department Document Specifications and Input Files

The sample provides the document specifications and sample input files for the buyer departments. The specifications are named
defNWBPO.xml and defCBPO.xml for the Northwest and Central departments respectively. The sample input files are named
NWBPOx.csv and CBPOx.csv, where x is the number of purchase orders in the file (that is, the number of common header records
that you should expect to see).

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Send to Remote Queue
This sample contains a COM object in the library SendToRemoteQueue.dll that can be used to send XLANG messages to a
message queue on a remote server.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Send To Remote Queue

User's Guide

Before running the sample, register the library SendToRemoteQueue.dll on your system by using the RegSvr32 registration
utility. This library must be registered on a computer that is running Microsoft BizTalk Server.

This sample provides a simple schedule (RemoteQueue.skv) that reads a common purchase order file (CommonPOSample.xml)
from a local message queue, and then sends that purchase order to a remote message queue. To run this schedule, follow these
steps:

1. Create a private queue named .\private$\inbound on the local computer.

2. Open the file RemoteQueue.skv in BizTalk Orchestration Designer.

3. Click the Data tab at the bottom of the window.

4. Double-click the Constants message to open the Constants Message Properties dialog box. Replace the values
"RemoteServerName" and "RemoteServerQueue" with the real names of your remote server and queue.

5. Verify that the QueueType and IsTxn constant values are correct for the remote queue. If not, update them accordingly.

6. Compile the drawing into an XLANG schedule file (.skx).

7. Run the XLANG schedule.

8. Send a message to the .\private$\inbound queue that contains the purchase order data in the file CommonPOSample.xml.
Note that the sample does not provide this functionality.

For additional information on compiling and running XLANG schedules, see the following topics:

Run XLANG Schedules

Compile an XLANG schedule drawing into an XLANG schedule

Programming Notes

To use the sample, add one or more bindings to this COM object in your existing XLANG schedule files. After the object is bound
to a schedule, you also need to modify the data mapping in the schedule to specify the remote server and queue name
destination for the message. The SendToRemoteQueue object contains the following input parameters for sending messages to
a remote queue:

strMessage

String containing the message body.

strMSMQServerName

String containing the name of the remote server computer.

strMSMQQueueName

String containing the name of the remote message queue.

strMSMQQueueType

String containing the type of the remote queue. This value can be set to "PUBLIC" or "PRIVATE".

https://msdn.microsoft.com/en-us/library/ee265284(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

strMSMQMsgLabel

String containing the label of the message.

bollsQueueTransactional

Boolean that indicates whether the remote queue is transactional.

 Note

The information in the message label cannot be passed to a remote queue.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Submitting Documents
This sample demonstrates how to set up a BizTalk Messaging Management database and call the Submit method of the
Interchange object, which submits a business document to BizTalk Server 2002 from VBScript. The sample also demonstrates
the creation and use of an open destination messaging port, organization aliases, custom envelopes, and the IBizTalkTrackData
object.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Sample1

User's Guide

Before running the sample, complete the following steps:

1. Start a Command Line window.

2. Change the directory to:

<Microsoft BizTalk Installation Path>\SDK\Messaging Samples\Sample1

To run the sample:

Run cscript Sample1.vbs.

Programming Notes

During execution Sample1 outputs messages indicating its progress. It performs the following steps:

First it reports the results of using BizTalk Messaging to configure one organization, two documents, one envelope, an open
destination port, and a channel.

It then reports the results of the Submit method call, waits for 10 seconds, and outputs the content of the tracked business
document.

Finally, Sample1 creates the file C:\temp\Sample1_<tracking_id_GUID>.txt, which contains a SOAP-enveloped document
from the original Sample1.xml data file.

The input file, Sample1.xml, is an XML CommonPO document wrapped in a BizTalk Framework (BTF) 1.0 envelope.

The output file, C:\temp\Sample1_<tracking_id_GUID>.txt, is an XMLCommonPO document identical to Sample1.xml wrapped in
a BTF 2.0 envelope, also known as a SOAP envelope.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Submitting Documents with Receipts
This sample shows how to set up a BizTalk Messaging Management database and explains one way of generating a receipt. This is
accomplished by mapping a received purchase order (PO) to a PO acknowledgment without using a receipt channel.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Sample2

User's Guide

Before running the sample, complete the following steps:

1. Start a Command Line window.

2. Change the directory to

<Microsoft BizTalk Installation Path>\SDK\Messaging Samples\Sample2

To run the sample:

Run cscript Sample2.vbs.

Programming Notes

There are three parties involved in this sample: the source application, the source organization, and the destination organization.
The PO originates from the source application, is passed to the source organization, and then is passed from the source
organization to the destination organization. The destination organization then sends the PO acknowledgment back to the source
organization.

The sample uses local file transport. Two local File receive functions are configured for this sample.Both receive functions call the
Submit method of the IInterchange object.

The setup section of the script creates three folders on the C drive. They are C:\temp\SRC, C:\temp\DST, and C:\temp\ACK. This
script places the original PO in C:\temp\SRC, and the SRC receive function is configured to pick up files there. The SRC receive
function moves the original PO to C:\temp\DST, and the DST receive function places the PO acknowledgment in the C:\temp\ACK
folder.

This sample calls SubmitSync for the first submission and overwrites the component configurations on the channel.

The channels created can be described as follows:

SRC/APP->SRC/APP (C:\temp\SRC, used the script to drop a file)

OpenSrc->DST (C:\temp\DST, used receive function to drop a file)

DST->SRC (C:\temp\ACK, used receive function to drop a file)

During execution, Sample2 outputs messages indicating its progress. It performs the following steps:

First it copies CommonPOACKMAP.xml into the BizTalkServerRepository\Maps\Microsoft folder.

It then verifies the existence of the C:\temp, C:\temp\SRC, C:\temp\DST, and C:\temp\ACK folders, and creates two File
receive functions: "SRC File Receive Function" and "DST File Receive Function."

The script then tries to remove all pre-existing Sample2-related configuration objects if Sample2 was previously executed. It
configures the following Sample2 objects: two organizations, two documents, one envelope, one port, and three channels.

It then calls SubmitSync, verifies the response from SubmitSync, waits for one minute, and verifies that no Suspended
queue items are present and that the C:\temp\ACK\Sample2ACK.xml file exists. This file should contain
CommonPOAcknowledgment wrapped in SOAP envelope.

The input file, Sample2.xml, is an XML CommonPO document wrapped in a BizTalk Framework (BTF) 2.0 (SOAP) envelope.

The output file, C:\temp\ACK\Sample2ACK.xml, is a CommonPOAcknowledgment file mapped from CommonPO and wrapped in
a SOAP envelope.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Submitting Documents to a Port Group
This sample sets up a BizTalk Messaging Management database and calls the Submit method of the IInterchange object, which
submits the business document to BizTalk Server 2002 synchronously.

A distribution list in BizTalk Server is a way to send an identical business document, containing identical data, to a number of
partners. The business document originates from the source application and is passed to the distribution list, which causes the
same purchase order (PO) to be sent to the source application and to the destination organization. To verify that the documents
have been processed correctly, look for Sample3_DST.txt and Sample3_SRCAPP.txt files in the C:\temp folder.

The sample Distribution List contains related information.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Sample3

User's Guide

To run the sample, follow these steps:

1. Start a Command Line window.

2. Change the directory to:

<Microsoft BizTalk Installation Path>\SDK\Messaging Samples\Sample3

3. Run cscript Sample3.vbs.

Programming Notes

During execution, Sample3 outputs messages indicating its progress. It performs the following steps:

First it copies Sample3.asp into the default Web site of Internet Information Services (IIS).

It then tries to remove all Sample3-related Configuration objects if they exist.

It configures the following objects: two organizations, one document, one envelope, two ports, one port group, and one
channel pointing to the port group (distribution list).

It calls Submit, waits for 15 seconds, and verifies that the resulting C:\temp\Sample3_SRCAPP.txt and
C:\temp\Sample3_DST.txt files exist.

The C:\temp\Sample3_DST.txt file is created as a result of posting the data to the Sample3.asp page. The
C:\temp\Sample3_SRCAPP.txt file is created by a file transport configured in the source application port. The first line of
C:\temp\Sample3_DST.txt indicates when the data was received by the destination organization. Both files contain SOAP-
enveloped data from the original Sample3.xml.

The input file Sample3.xml is an XML CommonPO document wrapped in a BizTalk Framework (BTF) 2.0 (SOAP) envelope.

The output files are as follows:

C:\temp\Sample3_SRCAPP.txt is an XMLCommonPO document identical to the one from Sample3.xml wrapped in a BTF 2.0
envelope, also known as a SOAP envelope.

C:\temp\Sample3_DST.txt is an XMLCommonPO document identical to the one from Sample3.xml wrapped in a BTF 2.0
envelope, also known as SOAP envelope, with a first line containing "- Received at date/time -".

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Suspended Queue Monitoring
This sample demonstrates how to raise an alert in Microsoft Operations Monitor (MOM) when a document is sent to the BizTalk
Server Suspended queue.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Suspended Queue Monitoring

User's Guide

Complete the following steps to configure this sample:

1. On your C drive, create a folder named ReceivePO.

2. Run the configuration script, SuspendedQueueConfig.vbs, to configure BizTalk Messaging Services.

3. Enable the event processing rule named "Suspended Queue Sample" in the BizTalk Server 2002 Management Pack that is
installed in Microsoft Operations Monitor.

4. Verify that the computer running BizTalk Server is a managed computer agent in Microsoft Operations Monitor.

 Note

The BizTalk Messaging Services configuration script, SuspendedQueueConfig.vbs, should be run only once. If you want to
run the script again, you must first delete any configuration objects previously created by the script in the following order:

1. Channel: TestChannel

2. Port: TestPort

3. Organization: Dest Org

4. Organization: Source Org

5. Document Definition: PO

6. File Receive Function: ReceivePurchaseOrders

To run the sample, complete the following steps:

1. Ensure that the InvalidPO.xml file is not read-only. To modify this property, right-click the file, click Properties, clear the
read-only attribute, and then click OK.

2. Copy the file InvalidPO.xml into the file receive directory C:\ReceivePO. This will generate a Suspended queue event, which
is displayed in the alerts for that agent computer in the Microsoft Operations Monitor console.

 Important

For the Suspended queue event to be consumed by MOM, the MOM DAS account must be a member of the BizTalk Server
Administration group.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Synchronous Orchestration Component
This sample demonstrates a synchronous method for invoking and interacting with an XLANG schedule.

A synchronous call into BizTalk Server expects a response document in return for a request document submitted through the
SubmitSync method. For example, in a Web scenario where data flows through HTTP.Request into a Web page (for example,
request-submit.asp) and is submitted to BizTalk Server through SubmitSync, the response from BizTalk Server is sent back to the
HTTP client by mapping the response document to the HTTP.Response. If the application that produces the response document
behind BizTalk Server is accessed through an XLANG schedule, BizTalk Server must implement a synchronous, or blocking,
method of invoking and interacting with the XLANG schedule.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\SOC

User's Guide

Before running the sample, complete the following steps:

1. Open the SOC.dsw Visual C++ workspace. Compile the SOC and REQRES Visual C++ projects. The AIC will be registered
with a ProgID of "BizTalk.SyncOrchestration".

2. Open the XLANG schedule drawing RequestResponse.skv in the Schedule subfolder. Use the Make XLANG
RequestResponse.skx command on the File menu to create an XLANG schedule.

3. Copy the ASP files located in the ASP subfolder to the folder:

\Program Files\Microsoft BizTalk Server\MessagingManager\pipeline

4. Create a messaging port that uses an AIC transport type, and is referencing the new BizTalk.SyncOrchestration component.

5. Create a channel for the messaging port, with any document specification, and a document instance generated from BizTalk
Editor. On the Advanced Configuration page, click Advanced. On the Primary Transport tab, click Properties.

6. On the BizTalk SyncOrchestration Properties page, enter the path and file name of the XLANG schedule in the Skedpath
text box. Enter the XLANG port name SyncPort in the Skedport text box.

To run the sample:

Create the IInterchange object and call the SubmitSync method with the channel name and a sample document that uses the
Inbound Document Definition specified on the channel. The response will appear as the out parameter of the SubmitSync
method call.

Programming Notes

Synchronous COM calls into XLANG schedules are made by invoking a synchronous orchestration component, which is an
application integration component (AIC) that implements the IPipelineComponent interface. A synchronous orchestration
component uses a property page (.asp) configured with the path of the associated XLANG schedule, which will be used to process
messages of a particular schema on the port. When a message arrives at the port through a channel, BizTalk Server invokes a
predefined and configured synchronous orchestration component, passing the dictionary object to it. The custom synchronous
orchestration component inspects the dictionary object and retrieves the schedule path. It then uses the path to invoke the XLANG
schedule, passing along the document in the working_data field of the dictionary object.

The first action in the XLANG schedule is bound to the IRequestResponse::SetRequest(requestDoc) method. The synchronous
orchestration component invokes this method and passes the request document to the XLANG schedule for processing. To
receive the resulting response document from the XLANG schedule processing, the synchronous orchestration component makes
two subsequent calls to the XLANG schedule instance. The first method invoked is IRequestResponse::CompleteProcessing,
which sets the response document. Immediately thereafter, the synchronous orchestration component invokes the
IRequestResponse::GetResponse method to retrieve the response document. The synchronous orchestration component is
blocked until the XLANG schedule processing flows to the action that is bound to the SetResponse port. This call will time out
after 120 seconds if no response is available. You can change this default time-out setting of 120 seconds by changing the
constant MAX_TIMEOUT_SECS in RequestResponseExample.h.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Note

Because the client is blocked while awaiting a response, any issues with time-out limits must be addressed when
implementing a synchronous process flow.

The response document is then returned by the synchronous orchestration component to BizTalk Server as a field in the
dictionary. BizTalk Server then returns the response document to the Web page that called SubmitSync. The Web page in turn
maps the response document to HTTP.Response. To provide COM activation and message delivery from BizTalk Messaging
Services to an XLANG schedule, the XLANG schedule must have its first action bound to the IRequestResponse::SetRequest
method and its last two actions bound to the actions that will allow the passing of a response document.

 Notes

If outbound processing by BizTalk Server is required for the response document, the synchronous orchestration component
can call into BizTalk Server by using SubmitSync before returning the results to the ASP page through BizTalk Messaging
Services.

The synchronous orchestration component can be used as an orchestration activation and as a DCOM data delivery
mechanism by modifying the synchronous orchestration component to call only SetRequest.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Tracking Database Tasks
This sample contains an SQL script for creating a sample SQL Server Agent job:
dtaJob_receipt_monitor_<TrackingDatabaseName>

This job monitors expiring records in the dta_outdoc_details table that are expecting receipts to come back and whose waiting
periods have a time-out. By default, this job runs every 30 minutes. It calls the dta_job_mark_expired_outdocs stored
procedure.

For a related sample, see the file dta.vbs in the folder \Program Files\Microsoft BizTalk Server\SDK\Messaging
Samples\Miscellaneous.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\SQLServerAgentJobs

User's Guide

Before running the sample, complete the following steps:

1. In a text editor, open the DTA_SampleJobs.sql sample file.

2. Find all instances of the string "%InterchangeDTA%" and replace them with the name of your BizTalk Server Tracking
database.

3. Save the file. You might need to remove the read-only attribute on the file before you can save it.

4. Start the SQL Server Agent service if it has not already been started.

5. Start SQL Query Analyzer. On the Start menu, click Programs, click Microsoft SQL Server, and then click Query Analyzer.

6. In SQL Query Analyzer, connect to the SQL database server to which your BizTalk Server Tracking database belongs.

7. Change the current database to your BizTalk Server Tracking database.

To run the sample:

Open the modified DTA_SampleJobs.sql file and execute a query (press F5).

Programming Notes

If you encounter errors, make sure that the database user account with which you are connecting to the database server has
sufficient permissions to create stored procedures and SQL Server Agent jobs. Also make sure that the string find-and-replace in
step 2 was done correctly.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Windows Management Instrumentation
This sample illustrates the use of Visual Basic scripts to configure administrative entities such as organizations, document
definitions, ports, channels, and receive functions.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\WMI

User's Guide

The sample sets up a file-to-file scenario between two organizations. Each organization is simulated by a directory on the file
system. BizTalk Server receives a document from the source organization, and then transforms it and submits it to the destination
organization.

To prepare and run the sample, follow these steps:

1. Run setup.cmd in the sample directory to configure the scenario and run the scripts.

2. Run the sample scenario by navigating to C:\BizTalkWMI\ and copying the file SourceInstance.xml into
C:\BizTalkWMI\SourceOrg.

This file should be consumed by BizTalk Server, transformed, and submitted to C:\BizTalkWMI\DestinationOrg as the file
OutDoc%tracking_id%.xml, where %tracking_id% is a unique ID value.

3. Run Cleanup.vbs to clear the configuration changes that were made by the sample scripts and to delete c:\BizTalkWMI.

4. To clear the files stored to WebDAV, navigate to Program Files\Microsoft BizTalk Server\BizTalkServerRepository on
the file system and delete DocSpecs\WMISourcePOSchema.xml, DocSpecs\WMIDestPOSchema.xml, and
Maps\WMIPOMap.xml.

The two setup scripts that are run in this sample are:

ConfigureBTC.vbs. This script creates the organizations for the source and destination, the documents for the source and
destination specifications, and the port and channel that are needed for the scenario.

ReceiveFunction.vbs. This script configures the File receive function for the scenario.

For more information on these scripts, see the following topics:

Creating ConfigureBTC.vbs

Creating ReceiveFunction.vbs

These scripts have already been created, but the following programming notes are included to provide a better understanding of
how the scripts work.

Programming Notes

The setup.cmd program creates the following folders on your computer:

c:\BizTalkWMI. The common folder where all the scenario-related files are copied

c:\BizTalkWMI\SourceOrg. The location where BizTalk Server receives documents that are to be sent to the destination
organization

c:\BizTalkWMI\DestinationOrg. The location where BizTalk Server drops documents that were received from the source
organization after processing them

The following files are used in the scenario. You might want to examine them to gain a better understanding. These files are
copied to C:\BizTalkWMI and installed in WebDAV:

SourcePOSchema.xml. The specification for the source purchase order

https://msdn.microsoft.com/en-us/library/ee250887(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250891(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

DestPOSchema.xml. The specification for the destination purchase order

POMap.xml. The map that is used for transforming the source specification to the destination specification

The following sections walk through the process of creating ConfigureBTC.vbs and ReceiveFunction.vbs. Double-click the scripts
to run them. To avoid name conflict errors, run Cleanup.vbs before attempting to rerun the two configuration scripts. The names
of all objects that are created by the scripts in this sample start with "WMI".

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

BizTalk Orchestration Services Code Samples
Sample files are located in the XLANG Samples folder on the Microsoft BizTalk Server installation drive. Browse to \Program
Files\Microsoft BizTalk Server\SDK\XLANG Samples on the installation drive to find the sample files. This is only a relative path.
Depending on your installation of BizTalk Server 2002, you might need to modify this path.

BizTalk Framework Correlation

BizTalk Services Integration

Dispatcher Application

Dynamic Binding with COM

Dynamic Binding with Message Queuing

Exception Handling

Iteration

Nested Transactions

Orchestration Services Audit

Orchestration Services Audit Client

Personalized Queues

Queue Listener

While Shape

XLANG and ASP

XLANG Interfaces

XLANG Schedule Pooling

XLANG Submit Synchronously and Query Asynchronously

XLANG Trace

XML Translation

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Framework Correlation
This sample illustrates the use of BizTalk Framework (BTF) 2.0 and orchestration to accomplish stateful interoperability between
two applications. It allows two (or more) applications to engage in a potentially long-lived exchange of messages. Each exchange
is capable of referring back to the data passed in previous exchanges.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\Integrating BizTalk Services

User's Guide

The sample contains the following directories:

App contains the BTS SimpleApproval schedule file.

BTM2BPO contains a combination application integration component (AIC) and utility component. The AIC part of the
component allows a BTF-enveloped message, which includes the <prc> tag, to be sent to the correct existing instance of an
orchestration through a message queue or a COM interface (ReceiveMsg). The port name and other options are set through
the BizTalk Messaging Manager (Advanced-Properties). In addition to this AIC, this project also contains code needed to
envelope an existing message and include the <prc> tag and 'reflect' an enveloped message.

ThirdPartyApp contains an application that simulates a third-party application.

FileSubmit is the polling location for the ReceiveNewApp receive function.

Schema is the directory containing the schema.

CorrUtil contains a utility component.

SetupFiles contains the scripts to install and uninstall the sample.

To run the sample, follow these steps:

1. Run setup.cmd to install the sample.

2. Run SubmitDoc.cmd to drop the NewAppInst.xml file into the FileSubmit directory.

3. Run ThirdPartyApp\ThirdPartyApp.exe. The Get Message button will retrieve the next message from the
RequestApproval queue. It should appear in the edit window. Press the Reflect button to prepare the message for sending
back to the schedule. Press Approve to send it to the Approvals queue or Decline to send it to the Denials queue. Message
Queuing receive functions will pass these messages back to BizTalk Server and through BTM2BPO back to the schedule.

The BTS SimpleApproval schedule illustrates two ways in which the response document is delivered to the running schedule
instance. The ReceiveApprovalPort port is a Message Queuing port and receives the document through a per-instance
queue. The ReceiveDenialPort port is a COM port and receives the document as a parameter to the ReceiveMsg method of
the IReceive interface.

4. View the Application Log by using EventViewer for the name of the port to which the response document was delivered.

5. Run remove.cmd to uninstall the sample.

Programming Notes

The sample uses:

Orchestration to maintain the state of the exchange and determine the sequence of exchanges.

BizTalk Framework 2.0 envelopes to pass a state identifier between the applications.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 messaging facilities to abstract individual applications from each other.

BTS SimpleApproval.skv provides a summary view of a sample orchestration using all of the above.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

BizTalk Services Integration
Two samples are provided to demonstrate the integration of BizTalk Messaging Services and BizTalk Orchestration Services.

Paths

To locate the sample files for the sample using HTTP as a transport mechanism, browse to the following folder on the BizTalk
Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Integrating BizTalk Services\http

To locate the sample files for the sample using Message Queuing and File receive functions, browse to the following folder on the
BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Integrating BizTalk Services\non-http

User's Guide

Detailed information regarding the HTTP-based sample is provided in the Setting Up HTTP Sample.doc file located in the http
folder.

Detailed information regarding the Message Queuing sample is provided in the Setting Up Non-HTTP sample.doc file located
in the non-http folder.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Dispatcher Application
This sample demonstrates a dispatcher application that sends and receives documents on behalf of a client
application. When a document is sent, the dispatcher saves the "From address" in a database before sending the
document and uses the saved address to route the response document to the correct sender.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\Dispatcher

User's Guide

This sample consists of the following directories:

Apps contains the schedules, a data file, and VBScript files to run the sample.

ClientUtil contains a helper component for the ClientApp schedule.

DbUtil contains a helper component for simulating a database.

DestUtil contains a helper component for the DestApp schedule.

DispatchUtil contains a helper component for the DispatchApp schedule.

SendUtil contains a helper component for the SendApp schedule.

The setup script, "setup.cmd", does the following:

Registers the following components: ClientAppUtil, SendAppUtil, DestAppUtil, DispatchAppUtil, and DbComp.

Creates the Message Queuing queues SendDocs, RecvDocs, and UnknownDocs.

To remove the sample, run "remove.cmd".

To run the sample, first run "startDispatchApp.vbs" in the "Apps" directory. This starts the "DispatchApp" schedule and should
be run only once. Then run "startClientApp.vbs" in the "Apps" directory. This starts the "ClientApp" and "DestApp" schedules.

The "ClientApp" schedule sends a document to the "SendApp" schedule along with the To Queue and From Queue paths and then
waits on a per-instance queue for the response.

The "SendApp" schedule generates a unique token and saves the FromQueue (the per-instance queue of ClientApp) path and the
token in a database. The token is added to the document, which is then sent to the To Queue (SendDocs).

The "DestApp" monitors the "SendDocs" queue, reads the document from the queue, extracts the token, creates a response
document, adds the token to the response document, and sends the response document to the response queue "RecvDocs".

The "DispatchApp" schedule monitors the "RecvDocs" queue for any document. When the response document is available in the
queue, it extracts the token from the document, gets the corresponding delivery queue path from the database, and sends the
response document to the delivery queue. If the delivery queue cannot be determined, the document is sent to the
"UnknownDocs" queue. After dispatching the document to the correct queue, the "DispatchApp" schedule starts another instance
of itself to continue monitoring the "RecvDocs" queue.

The "ClientApp" that is waiting on the per-instance queue receives the response document and processes it.

The "startClientApp.vbs" script can be run any number of times. To terminate the "DispatchApp" schedule, shut down and restart
the "XLANG Scheduler" COM+ application by using the Component Services MMC snap-in.

Programming Notes

The "ClientApp" schedule gets the document as an input parameter. The Get Constants action is used to get constant values into
the schedule. The Display Input Doc action displays the input document. The Send Doc action uses a helper component to start the
"SendApp" schedule and pass it the document, the path of the queue to send the document to, and the path of the per-instance
queue where the response should be sent. The Get Response Doc action is used to wait on the per-instance response queue for
the response document. The Display Response Doc action displays the received response document.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

The "SendApp" schedule receives the document and the From Queue and To Queue paths from the Get Input action. The Save
Return Address action generates a GUID token and saves the token and the From Queue address in a database. The token is then
added to the document to be sent. The SendDoc action sends the document to the To Queue (SendDocs).

The "DestApp" schedule waits on the "SendDocs" queue for the document. The ReceiveDoc action gets the document from the
queue. The CreateResponse action extracts the token from the document, creates a response document, and adds the token to the
response document. The SendResponse action sends the response document to the "RecvDocs" queue.

The "DispatchApp" schedule waits on the "RecvDocs" queue for the document. The Get Doc From Queue action gets the
document from the queue. The Get Delivery Queue action extracts the token from the document and retrieves the corresponding
delivery queue path from the database. The SendDoc action sends the document to the delivery queue.

The "ClientAppUtil" helper component is used by the "ClientApp" schedule to get input parameters, get constants into the
schedule, display a message box, start the "SendApp" schedule, and pass parameters to it.

The "SendAppUtil" helper component is used by the "SendApp" schedule to get input parameters and to save the delivery queue
path in the database.

The "DestAppUtil" helper component is used by the "DestApp" schedule to extract the token from the input document, create the
response document, and add the token to the response document.

The "DispatchAppUtil" helper component is used by the "DispatchApp" schedule to get input parameters, get the delivery queue
path from the database, and restart the "DispatchApp" schedule.

The "DbComp" helper component is used by the "SendAppUtil" and "DispatchAppUtil" components to save and retrieve the
delivery queue address from a file-based database. The database is simulated by using an XML file, "TrackDb.xml," that is created
in the DbUtil directory.

 Note

To simplify this sample, a file-based database is used. Therefore a transaction shape cannot be used with the database-
related actions. Ideally one would use transaction shapes in conjunction with a transactional database to ensure proper
recovery in case of failures. The QueueListener sample demonstrates how to use transactions to ensure that a schedule is
restarted in the event of an abnormal termination.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Dynamic Binding with COM
This sample demonstrates how to bind dynamically to a COM component. The COM component that the schedule binds to is
decided at run time.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\Dynamic Binding\COM

User's Guide

The sample consists of the following directories:

ScrambleApp contains the scramble sample schedule and the VBScript file to run the sample.

ScrambleUtil contains a helper component used to create the COM component to bind to and display messages.

ScrambleInterface contains the type library for the IScramble interface.

HighSecurityScramble contains a COM component that implements the IScramble interface.

LowSecurityScramble contains a second COM component that implements the IScramble interface.

The setup script, "setup.cmd", does the following:

Registers the "Scramble" typelib.

Registers the following components: HighScramble, LowScramble, and ScrambleHelper.

To remove the sample, run "remove.cmd".

To run the sample, run "startit.vbs" in the "ScrambleApp" directory. The input data to be scrambled is passed to the schedule.
When the message High Security Scramble for "Hello World!"? is displayed, click "Yes" to scramble the data by using the
"HighScramble" component or click "No" to scramble the data by using the "LowScramble" component. The output is displayed in
a message box.

Programming Notes

In this schedule, the "GetInput" action gets the data to be scrambled.

The "GetScrambler" action creates the scrambler component to use based on user selection.

The "ScrambleData" action scrambles the data by using the component created by the previous action. This action can bind to any
component that implements the "IScramble" interface.

The "DisplayScrambledData" action displays the output of the "ScrambleData" action.

A helper component, "ScrambleHelper," is used to create the scrambler component and to display messages.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Dynamic Binding with Message Queuing
This sample demonstrates how to bind dynamically to a message queue. The queue path is specified at run time.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\Dynamic Binding\Queue

User's Guide

The sample consists of the following directories:

QueueBindApp contains the queuebind sample schedule, data file, and VBScript files to run the sample.

QueueBindUtil contains a helper component used to process the data file and display messages.

The setup script, "setup.cmd", does the following:

Registers the "QueueBindUtil" component.

Creates Message Queuing queues named purchase_dept and marketing_dept.

To remove the sample, run "remove.cmd".

To run the sample, run "startit.vbs" in the "QueueBindApp" directory. The "MarketingDeptOrder.xml" data file is sent to the
"purchase_dept" queue and the schedule is executed. The schedule reads the data file from the queue and sends an
acknowledgment to the "marketing_dept" queue. A message box displays the acknowledgement generated and the reply queue.

Programming Notes

In this schedule, the incoming document received by the "GetOrder" action contains the reply queue location where the
acknowledgement needs to be sent.

The "ProcessOrder" action builds the acknowledgement document and extracts the path of the reply queue from the incoming
document.

The "DisplayAck" action displays the acknowledgement document and the reply queue location.

The "SendAck" action sends the acknowledgement document to the reply queue that was specified in the incoming document.

A helper component, "QueueBindUtil," is used to process the data file and to display messages.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Exception Handling
This sample demonstrates how to handle an exception.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\Transaction Abort

User's Guide

The sample consists of the following modules:

A Visual Basic ActiveX DLL contains the component called by the schedule.

Abort.vbs contains the code to run the schedule.

The setup script, setup.cmd, registers the abortsample component.

To remove the sample, run remove.cmd.

To run the sample, run Abort.vbs. When you click OK in the dialog box, it sends the string to the schedule. If you have typed
Abort, the transaction will be aborted, and you will be shown the appropriate messages.

Programming Notes

This sample demonstrates the use of an abort handler and auto return. When a method call returns a negative HRESULT, then the
outer transaction is aborted and the abort handler code for the transaction starts executing. After the abort handler code
completes, the command goes to the next action.

If the transaction is aborted then the document is put back on the Received_Doc_In queue (because Message Queuing is used in
the transaction) and the abort handler drops a copy of the document into the aborted_doc_out_ queue.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Iteration
This sample demonstrates how to iterate through a list of items and process each item independently based on a condition.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\Iteration

User's Guide

Before running the sample, run the setup script setup.cmd.

To run the sample, follow these steps:

1. Browse to the LineItemsApp folder.

2. Run the script file startit.vbs.

3. When prompted, click OK on the message box to continue.

Programming Notes

When run, the "ItemList.xml" file is sent to the "items_in" queue. This file contains a list of items to be processed. The schedule
picks up the file from the queue and processes the items in it. Each item is placed in a different "out" queue based on the item
type. Any item of unknown type is placed in the "unknown_out" queue. A message box is displayed as each item is processed.

This sample uses a simple counted loop to iterate through the list of items. The GetItemCount action is used to get the maximum
iteration count and the While shape is used to control the loop. The Decision shape uses different rules to determine the branch
to execute. The Join shape uses an OR join type because only one of the branches will be executed at any given time.

A helper component, "LineItemHelper", is used to increment the loop count, process the data file, and display messages.

To remove this sample, run the script remove.cmd.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Nested Transactions
This sample illustrates nested transactions, aborting a transaction, and compensation.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\NestedTxns

User's Guide

To install this sample, register all the script components in the sample directory.

To run the sample, run the "NestedTxns.wsf" script file.

Programming Notes

The scenario for this sample is ordering an item, submitting payment, receiving the item, returning the item, and having the
payment reversed. This scenario is based on a familiar shopping experience, where a merchant accepts returned merchandise and
processes a credit-card credit. The credit slip looks like a credit-card debit slip except that it is usually printed in red ink.

The sample encapsulates the entire purchasing cycle in an outer transaction called "Purchase". Inside that transaction is a nested
transaction called "Payment". The compensation block for "Payment" includes a transaction named "ReverseCharges". This
sample has a total of three transaction envelopes.

The "Purchase" transaction includes an "Order" action; a "Payment" transaction; a "ReceiveItem" action; a decision about whether
to keep the item; a branch to return the item, abort, and compensate the payment; and another branch to keep the item. The
"Abort" action causes the entire "Purchase" transaction to abort, which, in turn, causes the nested "Payment" transaction to abort.
The "Payment" transaction has a compensation block, itself transactional, that carries out the credit or reversal of charges.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Orchestration Services Audit
This sample demonstrates an orchestration audit component.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\WorkFlowAudit

User's Guide

There is one interface, IUserEvent.

ServerName is the name of the server associated with your tracking database:

HRESULT Install(/*[in]*/ BSTR ServerName,

Datasource is the name of your tracking database:

/*[in]*/ BSTR Datasource,

/*[in]*/ BSTR Username,

/*[in]*/ BSTR Password,

/*[in,optional]*/ BSTR ApplicationFilter, /*[in,optional, defaultvalue(egAllEvents)]*/ EventGroupTypes EventFilter

HRESULT Uninstall();

Install installs the subscription into the COM+ catalog, and connects to the database. ApplicationFilter can be the name of a
COM+ application or the GUID key for that application. EventGroupTypes can be any combination of the enumeration combined
by using OR. The default is for all events.

Uninstall removes the subscription from the COM+ catalog and disconnects from the database.

A client should explicitly call Uninstall before releasing the component. Otherwise the subscription will be orphaned until the
server is rebooted.

Programming Notes

The database tables and stored procedures are initially built by setup. If you want to restore these, you need to run files in the
query analyzer after selecting your tracking database, in the following order:

<InstallationFolder>\Setup\BTS_WorkflowEvents_Schema.sql

<InstallationFolder>\Setup\BTS_WorkflowEvents_Logic.sql

 Important

This orchestration audit component persists detected events into the InterchangeDTA (default name) database, which is the
BizTalk Server Tracking data store. Two tables are used to contain the data for monitored events: dta_wf_WorkFlowEvent
and dta_wf_EventData. The first of these contains a row for each event detected and the second contains one or more rows
for each property related to a particular event in the first table. Note that the BizTalk Server Tracking user interface might
show truncated event data because the columns in the second table (event data) that contain property name and value pairs
are set to 100 characters, and actual names and values can exceed this length.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Orchestration Services Audit Client
This sample demonstrates an orchestration audit client.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\WorkFlowAuditClient

User's Guide

To run this application, first register the WorkFlowAudit.dll file by typing regsvr32 WorkFlowAudit.dll at the command prompt.
This file is in the <Installation Folder>\SDK\XLANG Samples\WorkflowAudit\bin folder.

After registering this component, run WorkflowAuditClient.exe. When the application is first run, it asks you to enter four
parameters. Except for the database user password, the values are taken from the Windows Management Instrumentation (WMI)
provider. If you want to change the default settings, type the new values.

When you click Start, the application calls the Install method of the interface in the WorkFlowAudit.dll. The events that are fired
by the XLANG Scheduler will be monitored. Do not close the application while tracking the scheduler events. Doing so will
terminate the monitoring process.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Personalized Queues
This sample uses a shared queue and per-instance queues. A shared queue called the new-user queue permanently resides at a
URL. This queue is associated with the enterprise Web site and with a schedule for creating new users. The client goes to the well-
known URL to create a new user account or to log on to an existing user account.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\Personalized Queues

User's Guide

This sample uses the items described in the following paragraphs.

Queues

Queues can be inspected from the Management Console (right-click My Computer on the desktop, click Manage, navigate to
Services and Applications, Message Queuing, Private Queues).

Fixed queue: .\private$\AmysNewUserAccount

Account queue: .\private$\AccountQueues{...fresh guid... }

Schedules

Schedules can be inspected with the XLANG Event Monitor that is installed with the BizTalk Server SDK.

AmysZoneTop.skv checks that a new user name has been deposited in the top-level queue. In a real application, this would
set up user account database tables.

AccountSchedule.skv takes command messages in a loop from the per-instance account queue. The loop terminates when
the command "Close" comes in.

Windows Batch Command Files

Run setup.cmd before running the sample.

Run remove.cmd to disable the sample and clean up.

Windows Script Files and Windows Script Components

RunMe.wsf runs the sample.

VerifyForm.wsc shows that the new user name was received by the new-user queue.

RecordQueueName.wsc records the user name and its associated per-instance account queue name in a text-file database.

CloseUserAccount.wsc removes the user name from the text-file database.

ReportUserCommand.wsc shows that the account schedule has received commands from the SessionWebPage.

CreateTopLevelQueue.vbs is run by setup.cmd.

DeleteTopLevelQueue.vbs is run by remove.cmd.

HTML pages

ClientWebPage.htm allows users to create new accounts or to log on to existing accounts.

SessionWebPage.htm feeds user commands to AccountSchedule.skv.

The sample setup script, setup.cmd, creates the unique shared new-user queue.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Note

This sample stores the user account database in a text file in the C:\winnt\system32 folder, and assumes that that folder
exists. The folder name is hard-coded in only one place in the sample code, so fixing this limitation is easy. Simply edit
RunMe.wsf, search for the string "winnt", and change the reference to match the name of your system folder.

To run the sample:

Run RunMe.wsf in the ClientApplication folder. Interact with its Web pages and dialogs.

Run the Microsoft Management Console (right-click My Computer on the desktop, and then click Manage) to inspect
queues and the event log.

Run the XLANG Event Monitor to watch the schedules running.

Inspect the file C:\winnt\system32\AccountQueuesDB.txt to see the association of user names and per-instance queues.

To remove the sample, run remove.cmd.

Programming Notes

A new user account is represented by a new per-instance queue called the account queue. The account queue is bound to a very-
long-lived schedule instance, the account schedule. The account schedule is born (instantiated) at account creation time and lives
until account destruction time. Thus, its lifetime is the same as the lifetime of the user account, and this could be measured in
years.

We have one new-user queue for the entire enterprise. The enterprise encompasses many user accounts, each with its own
account schedule and account queue.

The user logs on to the account by interacting with the account schedule through the account queue. Conceivably, the same
technique used to associate many users with one enterprise could be repeated one more level down to associate many sessions
with each user. We do not do so in this sample, presuming that two levels of schedules and queues suffice to illustrate the point.
However, if session schedules were used, then the account schedule would, in turn, create another per-instance queue called the
session queue, which is bound to a session schedule that lives until the user logs off the account.

For now, we assume that each user gets one session, so we combine the functionality of the account with that of the session.

We call this sample Personalized Queues because there is one per-instance queue per user. The most interesting aspect of this
application is that the account queue and schedule live as long as the user account. Such a schedule could encapsulate a
considerable amount of persistent state information about the user.

The user first approaches the application through a script called RunMe.wsf in the ClientApplication directory. This script launches
a Web page called ClientWebPage.htm. To create a new account, the user chooses a user name and a password and enters them
into a form on this Web page. When the user clicks Create New User, the script, RunMe.wsf, deposits the new user name in the
new-user queue and invokes the schedule in AmysZoneTop.skx.

The job of AmysZoneTop is to create the account queue and instantiate the account schedule, whose XLANG specification is
stored in AccountSchedule.skx. Each instance of this schedule lives as long as the user account, and this time could be measured
in years.

AccountSchedule creates a new queue for the user. The name of this queue is generated automatically by the system.
AccountSchedule invokes a script component, RecordQueueName.wsc, to store the name of the new queue in a system database.
For illustration purposes in this sample, the database is stored in a flat text file in the system directory. In a real application, it will
be necessary to keep user names and queue names in a SQL Server database.

AccountSchedule then goes into an indefinite loop awaiting commands from the user to arrive on the user's personalized queue.

Note that no real processing of passwords is done in this sample. Password processing is a delicate and critical topic; however, it
is beside the point of this sample, which is to illustrate very-long-lived per-instance queues. We therefore avoid the topic in this
sample.

The user can also log on to the application by running RunMe.wsf. The script checks the user name in the database and changes
to another Web page that allows the user to submit commands to the personalized queue. Some suggested commands appear on
the Web page SessionWebPage.htm. These commands only generate pop-up confirmation dialogs.

The one exception is the command Close This User Account. This command removes the user name from the database and shuts
down the AccountSchedule, also causing deletion of the personalized queue.

Note that multiple copies of RunMe.wsf can run at one time, and, up to the limitations of contention for the simple text-file
"database," all operations of this sample can be interleaved in any way. With user names stored in a SQL Server database, this
issue would go away.

The theory articulated here can be verified through the Management Console and XLANG Monitor tools, as well as by inspecting
the AccountQueuesDB.txt file over time. Also look at the schedules AmysZoneTop.skv and AccountSchedule.skv in BizTalk
Orchestration Designer.

There is one final point worth mentioning. Due to a known limitation of XLANG script binding, it is necessary to have two
messages in Port_4 of AccountSchedule. This port reports the user's command to a pop-up dialog box. One of the two messages
is outside the loop and corresponds to the first command issued by the user. The other message is inside the loop and
corresponds to subsequent commands issued by the user. Two messages are required because XLANG script binding refreshes
the contents of a sourced message instance only once. Each iteration of the loop creates a new instance of the message as long as
the message is not also present outside the loop. If there were only one message, the pop-up would show only the first command
issued by the user, over and over again. The workaround for the limitation is to have two messages of identical form. Note that
the Message Queuing binding in Port_2 does not suffer from this limitation, so a single message specification can be used both
inside and outside the loop body.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Queue Listener
This sample demonstrates how to continuously monitor a queue for data and start another schedule when new data is available.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\QueueListener

User's Guide

The sample consists of the following directories:

ListenerApp contains the sample schedules, a data file, and VBScript files to run the sample.

ListenerClientUtil contains a helper component used by the ClientApp schedule.

ListenerUtil contains a helper component used by the ListenerApp schedule.

The setup script, setup.cmd, does the following:

Registers the ListenerClient component.

Registers the ListenerComp component.

Creates the Message Queuing queue, Listener.

To remove the sample, run remove.cmd.

To run the sample, first run startListenerApp.vbs in the ListenerApp directory. This starts the ListenerApp schedule and should
be executed only once. The ListenerApp schedule monitors the Listener queue for data. When data is available in the queue, it
starts the ClientApp schedule, passes the data to it, and starts another instance of itself. To put the data file order.xml into the
queue, run File2Queue.vbs in the ListenerApp directory.

The File2Queue.vbs script can be run any number of times. To terminate the queue listener schedule, shut down and restart the
XLANG Scheduler COM+ application by using the Component Services MMC snap-in.

Programming Notes

In the ListenerApp, the GetSkedInfo action is used to pass in the path of the ClientApp and ListenerApp schedules. The Receive
Doc From Queue action waits until the document is available on the queue. The Start Client App action uses the helper
component to start the ClientApp schedule and pass it the document. The Restart Schedule action uses the helper component to
start another instance of the ListenerApp schedule before the current instance terminates.

Two transaction shapes are used to ensure that the schedule recovers from any abnormal termination. Transaction1 ensures that
the schedule is persisted at the point where it is waiting on the Listener queue. Transaction2 ensures that the schedule is persisted
just after the document is read from the queue. If the schedule is terminated at any time, it will be restarted from the last persisted
state. It is important to ensure that the database is set up correctly to support persistence.

The ClientApp schedule simply displays the document that is passed to it as input.

The ListenerComp helper component is used by ListenerApp to receive input parameters and start schedules.

The ListenerClient helper component is used by ClientApp to receive input parameters and display the input document.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

While Shape
This sample demonstrates how to use the While shape to retry a business process a limited number of times. A loop counter
component is used to track the number of times the loop has executed. The loop terminates when the retry count is reached or
when the simulated work completes successfully.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\Loop

User's Guide

The sample consists of the following directories:

RetryApp contains the retry sample schedule and associated script components. It also includes a small VBScript file to run
the sample.

LoopControl contains a helper component that implements a simple loop counter and supports persistence.

LoopUtil contains another helper component to display message boxes indicating the status of the schedule and to prompt
for success or failure of the simulated work.

The setup script, setup.cmd, registers the loopcontrol component.

To remove the sample, run remove.cmd.

To run the sample, run startit.vbs in the LoopApp directory. When the schedule runs, it displays a message box to simulate the
work being attempted. Click Yes to simulate successful completion of the work, or No to simulate failure. If you click No, the
schedule retries the operation and displays the message box again. The schedule proceeds to completion after you click Yes or
after the retry limit is reached, and indicates whether the operation was successful.

Programming Notes

This sample is a variation on a simple counted loop. The loop can terminate when the count limit is reached (the retry count) or
when the simulated work completes successfully. To exit the loop early, the schedule initializes the loop count to a negative
number. The While shape's rule is constructed to exit the loop when the maximum count is reached or when the count is negative.

A "constants" script component is used to supply the schedule with several constant values that are passed to other components.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

XLANG and ASP
This sample demonstrates how to call a schedule from an ASP script, passing in data and getting back the result. The script
initiates the work and then waits for the result.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\ASP

User's Guide

The sample consists of the following directories:

CreditCheckApp contains the creditcheck sample schedule, the ASP page, and a VBScript file to run the sample.

CreditCheckUtil contains a helper component to input data into the schedule and return the result.

CreditChecker contains a helper component that simulates the credit checking functionality.

The setup script, setup.cmd, does the following:

Registers the CreditCheckUtil component.

Registers the CreditChecker component.

Creates a creditsample Web directory on the default Web site of the local machine.

To remove the sample, run remove.cmd.

To run the sample, follow these steps:

1. Run startit.vbs in the CreditCheckApp directory. The creditcheck ASP page is displayed in the Web browser.

2. Enter a number in the text box and click Submit.

Credit will be denied to any number starting with 1 and to any number less then four characters in length.

Programming Notes

This sample uses a Fork shape to start both the credit checks simultaneously and a Join shape to wait for both the credit checks to
complete. The ASP script waits on the IsCreditApproved call until the schedule executes the IsCreditApproved action.

Two helper components are used. The CreditCheckUtil component is used to input data into the schedule and return the results to
the calling ASP script. The CreditChecker component is used to simulate calls to two different credit agencies to approve the
credit.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

XLANG Interfaces
This sample demonstrates how to use the XLANG public interfaces to enumerate and manage the running schedule instances and
the XLANG host applications.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\PublicInterfaces

User's Guide

When run with no arguments, the sked.vbs script displays its usage options:

usage: cscript sked.vbs <command> <args>

commands:

 hosts [computer]

 shutdown [computer[!group]]

 startup [computer[!group]]

 list [computer[!group]]

 run [computer[!group]] <schedule path or query> [count]

 kill [computer[!group]] <instanceId>

 suspend [computer[!group]] <instanceId>

 resume [computer[!group]] <instanceId>

The following table shows examples of managing the schedule instances in the default group (host application "XLANG
Scheduler") in the local machine.
Option Result
sked list Show a snapshot of the running schedules.
sked suspend {de0fff92-4424-4ef5-bdfb
-a6b391403b95}

Suspend the schedule with the given ID.

sked resume {de0fff92-4424-4ef5-bdfb-
a6b391403b95}

Resume the schedule with the given ID.

sked run c:\MySchedule.skx Run the Orchestration schedule with the given full path. If the schedule is successfully st
arted, the ScheduleID will be shown.

sked run c:\MySchedule.skx 10 Run 10 instances of the given schedule.

The following table shows examples of managing the XLANG host applications.

Option Result
sked hosts Show the COM+ applications that can host the XLANG schedules.
sked shutdown Shut down all host applications.
sked startup Start all host applications.
sked shutdown "!My Host Ap
p"

Shut down only the host application named "My Host App".

sked startup "!My Host App" Start the application "My Host App". (If the default host "XLANG Scheduler" was shut down, it will st
art too.)

sked hosts OtherMachine List the host applications on the remote computer OtherMachine.
sked shutdown OtherMachin
e

Shut down all host applications on the remote machine OtherMachine.

sked startup OtherMachine!
MyApp

Start the application MyApp on the remote computer OtherMachine (and possibly the default host "
XLANG Scheduler").

The following table shows examples of managing schedules on different host applications and different machines.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Option Result
sked list "!My Host App" List the schedules running in "My Host App".
sked list "OtherMachine!MyApp" List the schedules running in the application "MyApp" on the remote computer OtherMac

hine.
sked list OtherMachine List the schedules running in the default host application ("XLANG Scheduler") on the rem

ote computer OtherMachine.
sked run !MyApp c:\MySked.skx Run the schedule MySked.skx in the application MyApp on the local machine.
sked run OtherMachine!MyApp \\serv
er\share\MySked.skx

Run the schedule MySked.skx in the application MyApp on the remote machine OtherMac
hine. Note that the .skx file should be accessible to the application, for example, on a public
share.

sked suspend !MyApp {de0fff92-4424
-4ef5-bdfb-a6b391403b95}

Suspend the schedule with the given ID, which is running in the application MyApp on the
local machine.

sked resume OtherMachine!MyApp {d
e0fff92-4424-4ef5-bdfb-a6b391403b
95}

Resume a schedule running in the application MyApp on the remote computer OtherMach
ine.

sked kill OtherMachine {de0fff92-442
4-4ef5-bdfb-a6b391403b95}

Terminate a schedule running in the default host on the remote computer OtherMachine.

Programming Notes

The XLANG public interfaces are available from the type library "XLANG Scheduler Runtime Type Library."

The sked.vbs script uses the public interfaces IWFSystemAdmin, IWFGroupAdmin, and IWFWorkflowInstance, as well as
some COM+ admin interfaces and objects.

To list the running schedules or to suspend, resume, or terminate a schedule, the moniker for the Group Manager of the given
application is constructed, and its IWFGroupAdmin interface is used.

To shut down or start all host applications, or to shut down a particular application, the IWFSystemAdmin interface is used.

To start a particular application, its moniker is constructed and used in GetObject.

To run a schedule, the proper moniker is constructed (for example, "sked://"+ the computer name +"!" + the application name
+"/"+schedule path) and is used in GetObject. To obtain the ID and the module name of the newly started schedule, its
IWFWorkflowInstance interface is used.

To list the XLANG host applications, the COM+ admin objects are used.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

XLANG Schedule Pooling
This sample demonstrates how to use the pooling feature that is built into the XLANG Scheduler Engine. This feature helps
running schedules to effectively use system resources. This sample also demonstrates the new BizTalk Server 2002 feature that
makes the instance ID available.

BizTalk Server 2002 provides the capability to control the load on the XLANG Scheduler Engine by limiting the number of
schedules that can be run simultaneously at any given time. If many schedules are active simultaneously, the server will
constantly context switch and will use the operating system resources inefficiently.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\Schedule Throttling

User's Guide

To prepare and run the sample, follow these steps:

Preliminary Setup

Run the Sample

Programming Notes

The following instructions walk through the process of setting up the pooling sample that utilizes the load-limiting capabilities of
the BizTalk Server 2002 XLANG Scheduler Engine.

This schedule contains an action that is bound to a method called MessageBox on the script component. That method takes the
instance ID of the schedule instance as a parameter, demonstrating one use of the new BizTalk Server 2002 feature that makes
the instance ID available. As its name implies, the method displays a message box containing the instance ID. After the user clicks
the message box, the schedule completes.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250823(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250830(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

XLANG Submit Synchronously and Query Asynchronously
This sample shows how to make an ASP page submit information into a XLANG schedule and then retrieve information without
having to be interlocked with the running schedule.

 Note

This sample is an extension of the ASP sample that shows the interaction between an ASP page and an XLANG schedule.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\XLANG_ASYNC

User's Guide

To prepare and run the sample, follow these steps:

Preliminary Setup

Modifying the Default Configuration

Running the Sample

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250899(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250896(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250904(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

XLANG Trace
This sample uses a COM object in the library XLANG_TRACE.dll to insert tracing operations into an XLANG schedule. This COM
object helps trace and debug problems in an XLANG schedule by writing data from the running schedule into a logging table. Any
data that is used in the schedule can be sent to the logging table, including the XML documents being passed between actions in
the schedule.

 Note

This sample is intended only for debugging a specific XLANG schedule. In a production environment, the tracing COM
object should not be used because it can significantly impact XLANG schedule processing performance.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\XLANGTRACE.

User's Guide

To prepare and run the sample, follow these steps:

Preliminary Setup

Modifying the Default Configuration

Using the Tracing Component

Viewing the Trace Results

Programming Notes

After the XLANG_TRACE COM object is registered on a computer running BizTalk Server, you can add one or more bindings to
this object in your existing XLANG schedule files. After the object is bound to a schedule, you need to modify the data mapping in
the schedule to specify the data being traced. The XLANG_TRACE object contains the following input parameters for recording
schedule data:

message_label

String to describe the name of the Action shape.

message_ID

String to hold a unique identifier for this schedule, such as the instance GUID of the schedule.

message_UserKey

String to store a unique document identifier, such as a purchase order number.

message_body

String to store a large amount of data, such as an entire XML document in a message.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250918(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250928(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250915(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

XML Translation
This sample demonstrates how to use the SubmitSync method of BizTalk Server to perform an XML transformation by using
BizTalk Orchestration Services.

Path

To locate the sample files, browse to the following folder on the BizTalk Server installation drive:

\Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\XML Translation

User's Guide

The sample consists of the following modules:

A Visual Basic ActiveX DLL contains the component called by the schedule to get the submission parameters.

The loopback.vbs script contains the code to run the schedule.

The setup script, setup.cmd, does the following:

Registers the ProcessDoc component

Creates message queues.

Creates BizTalk Configuration objects.

To remove the sample, run remove.cmd and delete the copied files from the directories.

To run the sample, run loopback.vbs. The script sends SamplePOData.xml to the received_in message queue and starts the
loopback.skx schedule.

Programming Notes

This sample demonstrates the use of the SubmitSync call using BizTalk Orchestration Services to do the XML transformations.
The schedule picks up the document from the received_in queue and then calls GetSubmitParams to get parameters for calling
SubmitSync. When the SubmitSync call is returned, the transformed document is returned in the out parameter, which is
displayed and then sent to the biztalk_out message queue.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BizTalk Server Reference
This section contains the following topics:

Messaging Services Reference

Documents Reference

Custom Components Reference

Orchestration Services Reference

Managing and Monitoring Reference

Error Messages

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Messaging Services Reference
This section provides reference information about application programming interfaces (APIs) used by Microsoft
BizTalk Server 2002 for both C++ and Microsoft Visual Basic programming.

Reference information is provided for all interfaces, methods, properties, and enumerations exposed for accessing messaging
services:

Interfaces

Enumerations

In addition, a complete list of Error Messages is provided.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Interfaces
The following COM interfaces are documented:

IBizTalkBase

IBizTalkCertificateInfo

IBizTalkChannel

IBizTalkConfig

IBizTalkDocument

IBizTalkEndPoint

IBizTalkEnvelope

IBizTalkLoggingInfo

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

IBizTalkServiceWindowInfo

IBizTalkTransportInfo

IDictionary

ISimpleList

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBizTalkBase
Defines common methods and properties inherited by several messaging services objects.

 Hierarchy

IDispatch

|--IBizTalkBase

 Declaration

[Visual Basic]

Class IBizTalkBase

[C++]

interface IBizTalkBase : IDispatch

 Members

IBizTalkBase defines the following properties:
Property Description
DateModified Contains the date and time at which the information in the object was created or last modified.
Handle Contains the handle to the object.
Name Contains the name of the object.

IBizTalkBase defines the following methods:

Method Description
Clear Clears the object from memory.
Create Creates a new object in the database.
Load Loads a specified object in memory.
LoadByName Loads a specified object by name in memory.
Remove Removes the object from the database.
Save Saves the object in the database.

 Remarks

The following interfaces inherit properties and methods from IBizTalkBase:IBizTalkChannel

IBizTalkDocument

IBizTalkEnvelope

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

 Note

The methods and properties of IBizTalkBase are always invoked on the objects listed above, rather than by creating an
actual IBizTalkBase object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Clear Method
Clears the object from memory.

 Member List

IBizTalkBase

|--Clear

|--Create

|--DateModified

|--Handle

|--Load

|--LoadByName

|--Name

|--Remove

|--Save

 Method Declaration

[Visual Basic]

Sub Clear()

[C++]

HRESULT Clear();

 Parameters

None

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

After Clear is called, all member variables of the object in memory are initialized to their default values.

The following objects support this method:

IBizTalkChannel

IBizTalkDocument

IBizTalkEnvelope

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Create Method
Creates a new object in the database.

 Member List

IBizTalkBase

|--Clear

|--Create

|--DateModified

|--Handle

|--Load

|--LoadByName

|--Name

|--Remove

|--Save

 Method Declaration

[Visual Basic]

Function Create() As Long

[C++]

HRESULT Create(

long* BiztalkObjectHandle

);

 Parameters

BiztalkObjectHandle

[out, retval] In C++, contains a handle to the object. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this method returns a handle to the object.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The Name property must be set before calling this method. Name must be unique across the database for each object type.
Create updates the DateModified property.

When creating any object that refers to an XML document specification or map located outside your local domain, you might
receive an error. If an error occurs, download and configure the WinHTTP proxy utility. To download this utility, go to the
Microsoft MSDN Web site at msdn.microsoft.com/downloads/default.asp, and browse to the WinHTTP Proxy Configuration Utility
page, which is located in the XML chapter of the Web Development book.

The following objects support this method:

IBizTalkChannel

http://msdn.microsoft.com/downloads/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IBizTalkDocument

IBizTalkEnvelope

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

DateModified Property
Contains the date and time at which the information in the object was created or last modified.

 Member List

IBizTalkBase

|--Clear

|--Create

|--DateModified

|--Handle

|--Load

|--LoadByName

|--Name

|--Remove

|--Save

 Property Declaration

[Visual Basic]

Property DateModified As String

[C++]

HRESULT get_DateModified(

BSTR* Modified

);

 Parameters

Modified

[out, retval] In C++, contains the date modified. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the date modified.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with no default value.

The format for the Modified string is yyyy-mm-dd hh:mm:ss. The time is in coordinated universal time (UTC). The server sets this
property when the Create or the Save method is called for the object.

The following objects support this property:

IBizTalkChannel

IBizTalkDocument

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IBizTalkEnvelope

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Handle Property
Contains the handle to the object.

 Member List

IBizTalkBase

|--Clear

|--Create

|--DateModified

|--Handle

|--Load

|--LoadByName

|--Name

|--Remove

|--Save

 Property Declaration

[Visual Basic]

Property Handle() As Long

[C++]

HRESULT get_Handle(

long* BiztalkObjectHandle

);

 Parameters

BiztalkObjectHandle

[out, retval] In C++, contains the handle to the object. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property contains the handle to the object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with no default value.

The following objects support this property:

IBizTalkChannel

IBizTalkDocument

IBizTalkEnvelope

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Load Method
Loads a specified object in memory.

 Member List

IBizTalkBase

|--Clear

|--Create

|--DateModified

|--Handle

|--Load

|--LoadByName

|--Name

|--Remove

|--Save

 Method Declaration

[Visual Basic]

Sub Load(_

BiztalkObjectHandle As Long _

)

[C++]

HRESULT Load(

long BiztalkObjectHandle

);

 Parameters

BiztalkObjectHandle

[in] Contains the handle to the object to load.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

Load calls the Clear method internally before loading the object.

The following objects support this method:

IBizTalkChannel

IBizTalkDocument

IBizTalkEnvelope

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

LoadByName Method
Loads a specified object by name in memory.

 Member List

IBizTalkBase

|--Clear

|--Create

|--DateModified

|--Handle

|--Load

|--LoadByName

|--Name

|--Remove

|--Save

 Method Declaration

[Visual Basic]

Sub LoadByName(_

Name As String_

)

[C++]

HRESULT LoadByName(

BSTR Name

);

 Parameters

Name

[in] Contains the name of the object to load.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

LoadByName calls the Clear method internally before loading the object.

Names have a maximum length of 64 characters.

The following objects support this method:

IBizTalkChannel

IBizTalkDocument

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IBizTalkEnvelope

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Name Property
Contains the name of the object.

 Member List

IBizTalkBase

|--Clear

|--Create

|--DateModified

|--Handle

|--LoadLat_SDK_BTCOM_Base_GQNF

|--LoadByName

|--Name

|--Remove

|--Save

 Property Declaration

[Visual Basic]

Property Name() As String

[C++]

HRESULT get_Name(

BSTR* Name

);

HRESULT put_Name(

BSTR Name

);

 Parameters

Name

[out, retval], [in] In C++, contains the name of the object. This parameter is not supported in Visual Basic. For more information,
see "Return Values."

 Return Values

In Visual Basic, this property returns the name of the object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. The server requires the Name property. It must be set before calling the Create or the Save
method for the object. Name must be unique across a database for each object type and must be at least one character long.
Names have a maximum length of 64 characters.

The following table lists names reserved for use by BizTalk Server:

Name Object type

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Reliable Message Acknowledgement Port IBizTalkPort
Reliable Message Acknowledgement Channel IBizTalkChannel
BizTalk Canonical Receipt IBizTalkDocument
Reliable Messaging Acknowledgement IBizTalkDocument
Reliable Messaging Acknowledgement SMTP From Address IBizTalkOrganization
Home Organization IBizTalkOrganization

The following objects support this property:

IBizTalkChannel

IBizTalkDocument

IBizTalkEnvelope

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Remove Method
Removes the object from the database.

 Member List

IBizTalkBase

|--Clear

|--Create

|--DateModified

|--Handle

|--Load

|--LoadByName

|--Name

|--Remove

|--Save

 Method Declaration

[Visual Basic]

Sub Remove()

[C++]

HRESULT Remove();

 Parameters

None

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The object cannot be removed if any other object refers to it.

A BizTalkOrganization object cannot be removed if it is the default organization. Before it can be removed, the IsDefault
property must be set to False, and another organization must have the IsDefault property set to True.

The following objects support this method:

IBizTalkChannel

IBizTalkDocument

IBizTalkEnvelope

IBizTalkOrganization

IBizTalkPort

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IBizTalkPortGroup

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Referential Integrity

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Save Method
Saves the object in the database.

 Member List

IBizTalkBase

|--Clear

|--Create

|--DateModified

|--Handle

|--Load

|--LoadByName

|--Name

|--Remove

|--Save

 Method Declaration

[Visual Basic]

Sub Save()

[C++]

HRESULT Save();

 Parameters

None

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The Save method updates the DateModified property.

When saving any object that refers to an XML document specification or map located outside your local domain, you might
receive an error. If an error occurs, download and configure the WinHTTP proxy utility. To download this utility, go to the
Microsoft MSDN Web site at msdn.microsoft.com/downloads/default.asp, and browse to the WinHTTP Proxy Configuration Utility
page, which is located in the XML chapter of the Web Development book.

The following objects support this method:

IBizTalkChannel

IBizTalkDocument

IBizTalkEnvelope

IBizTalkOrganization

http://msdn.microsoft.com/downloads/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IBizTalkPort

IBizTalkPortGroup

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IBizTalkCertificateInfo
Configures a certificate associated with an IBizTalkPort or IBizTalkChannel object.

 Hierarchy

IDispatch

|--IBizTalkCertificateInfo

 Declaration

[Visual Basic]

Class BizTalkCertificateInfo

[C++]

interface IBizTalkCertificateInfo : IDispatch

 Members

IBizTalkCertificateInfo defines the following properties:
Property Description
Name Contains the name of the certificate.
Reference Contains a reference to the certificate in the certificate store.
Store Contains the store type for the certificate.
Usage Contains the type of use for the certificate.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Certificates

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - Name Property

BizTalk Server 2002 ~ Developer Solutions

Reference Property
Contains a reference to the certificate in the certificate store.

 Member List

IBizTalkCertificateInfo

|--Name

|--Reference

|--Store

|--Usage

 Property Declaration

[Visual Basic]

Property Reference As String

[C++]

HRESULT get_Reference(

BSTR* Reference

);

HRESULT put_Reference(

BSTR Reference

);

 Parameters

Reference

[out, retval], [in] In C++, contains the certificate reference. This parameter is not supported in Visual Basic. For more information,
see "Return Values."

 Return Values

In Visual Basic, this property returns the certificate reference.

In C++, this property returns an HRESULT value, indicating success or failure.

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, the put method returns CryptoAPI errors. Additional
information about CryptoAPI is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has a default value of an empty string (""). A reference to a certificate should be obtained by using the Certificates
property on the IBizTalkConfig object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Store Property
Contains the store type for the certificate.

 Member List

IBizTalkCertificateInfo

|--Name

|--Reference

|--Store

|--Usage

 Property Declaration

[Visual Basic]

Property Store As BIZTALK_STORE_TYPE

[C++]

HRESULT get_Store(

BIZTALK_STORE_TYPE* StoreType

);

HRESULT put_Store(

BIZTALK_STORE_TYPE StoreType

);

 Parameters

StoreType

[out, retval], [in] In C++, contains the store type for the certificate. Valid values for this parameter are defined by the
BIZTALK_STORE_TYPE enumeration. This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value from the BIZTALK_STORE_TYPE enumeration.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. The store, which contains the certificate, is determined by the use of the certificate as follows:
Certificate type Store
Decryption MY
Encryption BIZTALK
Signature MY
Verify signature BIZTALK

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Usage Property
Contains the type of use for the certificate.

 Member List

IBizTalkCertificateInfo

|--Name

|--Reference

|--Store

|--Usage

 Property Declaration

[Visual Basic]

Property Usage As BIZTALK_USAGE_TYPE

[C++]

HRESULT get_Usage(

BIZTALK_USAGE_TYPE* UsageType

);

 Parameters

UsageType

[out, retval] In C++, contains the usage type for the certificate. Valid values for this parameter are defined by the
BIZTALK_USAGE_TYPE enumeration. This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value from the BIZTALK_USAGE_TYPE enumeration.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with no default value.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBizTalkChannel
Configures a channel for processing documents.

 Hierarchy

IDispatch

|--IBizTalkBase

 |--IBizTalkChannel

 Declaration

[Visual Basic]

Class BizTalkChannel

[C++]

interface IBizTalkChannel : IBizTalkBase

 Members

IBizTalkChannel defines the following properties:
Property Description
Comments Contains user comments for the object.
ControlNumberValue Contains the value of the group control number.
DateModified Contains the date and time at which the information in the object was created or last modified.
DecryptionCertificateInfo Contains information about the certificate that decrypts the input document.
ExpectReceiptTimeout Contains the time, in minutes, in which to expect the receipt for the current document before tr

eating the document as expired.
Expression Contains a complete set of equations that filter the selection of the object.
Handle Contains the identifier of the object.
InputDocument Contains the handle to the input IBizTalkDocument object that describes the input document

specification.
IsReceiptChannel Contains the flag that indicates whether the object is a receipt channel.
LoggingInfo Contains information about logging the document.
MapContent Contains the contents of the map that provide instructions on how the input document in the fo

rmat used by the source organization is to be rendered in the format used by the destination or
ganization, if different.

MapReference Contains the full Web Distributed Authoring and Versioning (WebDAV) URL of the map that pr
ovides instructions on how the input document in the format used by the source organization i
s to be rendered in the format used by the destination organization, if different.

Name Contains the name of the object.
OutputDocument Contains the handle to the output IBizTalkDocument object that describes the output docume

nt specification.
Port Contains the handle to the associated IBizTalkPort object.
PortGroup Contains the handle to the associated IBizTalkPortGroup object.
ReceiptChannel Contains the handle to the receipt channel for this object.
RetryCount Contains the number of times to retry submitting a document when a destination connection fa

ilure occurs.
RetryInterval Contains the amount of time, in minutes, between retry attempts when a destination connectio

n failure occurs during document submission.
SignatureCertificateInfo Contains information about the certificate that signs the output document.
SourceEndpoint Contains information about the source.
TrackFields Contains the IDictionary object that points to the specification that contains fields to track inte

rchange data on input documents for this IBizTalkChannel object.
VerifySignatureCertificateInfo Contains information about the certificate that verifies the signature of the input document.

IBizTalkChannel defines the following methods:

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Method Description
Clear Clears the object from memory.
Create Creates a new object in the database.
GetConfigComponent Retrieves the CLSID of the component associated with the IBizTalkPort object.
GetConfigData Retrieves the configuration associated with the specified IBizTalkPort object.
Load Loads an object in memory.
LoadByName Loads an object by name in memory.
Remove Removes the object from the database.
Save Saves the object in the database.
SetConfigComponent Sets the CLSID of the component associated with the IBizTalkPort object.
SetConfigData Sets the configuration information for the associated IBizTalkPort object.

 Remarks

An IBizTalkChannel object requires an associated complete IBizTalkPort object. One or more IBizTalkChannel objects can be
associated with an IBizTalkPort object. An IBizTalkChannel object can be associated with only one input IBizTalkDocument
object and one output IBizTalkDocument object; however, an IBizTalkDocument object can be associated with more than one
IBizTalkChannel object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Channels

Document Processing

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - Comments Property

BizTalk Server 2002 ~ Developer Solutions

ControlNumberValue Property
Contains the value of the group control number.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property ControlNumberValue As String

[C++]

HRESULT get_ControlNumberValue(

BSTR* strControlNumberValue

);

HRESULT put_ControlNumberValue(

BSTR strControlNumberValue

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

strControlNumberValue

[out, retval], [in] In C++, contains the value of the group control number. This parameter is not supported in Visual Basic. For
more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the value of the group control number.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. The ControlNumberValue property must contain a value between 1 and 999999999.

If the Format property of the IBizTalkEnvelope object for the associated IBizTalkPort object is set to X12, EDIFACT, or Custom,
this property is required.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

DecryptionCertificateInfo Property
Contains information about the certificate that decrypts the input document.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property DecryptionCertificateInfo As Object

[C++]

HRESULT get_DecryptionCertificateInfo(

IDispatch** DecryptionCertificateInfoDisp

);

HRESULT putref_DecryptionCertificateInfo(

IDispatch* DecryptionCertificateInfoDisp

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

DecryptionCertificateInfoDisp

[out, retval], [in] In C++, contains the information about the certificate that decrypts the input document. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the information about the certificate that decrypts the input document.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. Information contained by this property includes the Name, Reference, Store, and Usage
properties and is created and stored in memory in the IBizTalkCertificateInfo object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ExpectReceiptTimeout Property
Contains the time, in minutes, in which to expect the receipt for the current document before treating the document as expired.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property ExpectReceiptTimeout As Long

[C++]

HRESULT get_ExpectReceiptTimeout(

long* Minutes

);

HRESULT put_ExpectReceiptTimeout(

long Minutes

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Minutes

[out, retval], [in] In C++, contains the time, in minutes, in which to expect the receipt for the current document before treating the
document as expired. This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the time, in minutes, in which to expect the receipt for the current document before treating
the document as expired.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has a default value of 0.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Expression Property
Contains a complete set of equations that filter the selection of the object.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property Expression As String

[C++]

HRESULT get_Expression(

BSTR* Expression

);

HRESULT put_Expression(

BSTR Expression

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Expression

[out, retval], [in] In C++, contains a complete set of equations that filter the selection of the object. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a complete set of equations that filter the selection of the object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has a default value of an empty string (""). If the expression evaluates to true, the server selects the channel for
processing the document.

The XPath expression must be based on the input document specification set in the InputDocument property.

 Note

If the specification field that you are using to create an expression has a Boolean data type, you cannot use the text strings
"true" or "false" as the expression value. You must use a numerical value instead: "-1" for true and "0" for false. For example,
to filter a channel so it processes only approved purchase orders, your expression might look like this:

Channel1.Expression = "/PORequest/Total[IsApproved = -1]"

This sample assumes that the input document specification contains a Total subelement with a Boolean IsApproved field.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Channel Filtering

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

GetConfigComponent Method
Retrieves the CLSID of the component associated with the IBizTalkPort object.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Method Declaration

[Visual Basic]

Function GetConfigComponent(_

ConfigType As BIZTALK_CONFIGDATA_TYPE, _

PortHandle As Long _

) As String

[C++]

HRESULT GetConfigComponent(

BIZTALK_CONFIGDATA_TYPE ConfigType,

long PortHandle,

BSTR* CLSID

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

);

 Parameters

ConfigType

[in] Determines the configuration type. Valid values for this parameter are defined by the BIZTALK_CONFIGDATA_TYPE
enumeration.

PortHandle

[in] Contains the handle to the IBizTalkPort object.

CLSID

[out, retval] In C++, contains the CLSID of the component associated with the IBizTalkPort object. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this method returns the CLSID of the component associated with the IBizTalkPort object.

In C++, this method returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

If the ConfigType parameter is set to BIZTALK_CONFIGDATA_TYPE_SIGNATURE and the associated IBizTalkPort object has
both the EncryptionType and SignatureType properties set to S/MIME, this method returns an empty string ("").

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

GetConfigData Method
Retrieves the configuration associated with the specified IBizTalkPort object.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Method Declaration

[Visual Basic]

Function GetConfigData(_

ConfigType As BIZTALK_CONFIGDATA_TYPE, _

PortHandle As Long, _

Type As Variant _

)

[C++]

HRESULT GetConfigData(

BIZTALK_CONFIGDATA_TYPE ConfigType,

long PortHandle,

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

VARIANT* Type,

VARIANT* Dictionary

);

 Parameters

ConfigType

[in] Determines the configuration type. Valid values for this parameter are defined by the BIZTALK_CONFIGDATA_TYPE
enumeration.

PortHandle

[in] Identifies the handle to the associated IBizTalkPort object.

Type

[in, out] Contains the transport type.

Dictionary

[in, out] In C++, contains the IDictionary interface of an object that contains the primary transport configuration information.
This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this method returns an IDictionary object that contains the primary transport configuration information.

In C++, this method returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

When reading serializer data, the IDictionary object returned by this method has specific string qualifiers used for EDIFACT and
X12. The following tables describe these strings.

EDIFACT

Qualifier string Description
SerializerEdifact_SenderIntID Interchange sender internal identification
SerializerEdifact_SenderIntSubID Interchange sender internal subidentification
SerializerEdifact_RecipientIntID Interchange recipient internal identification
SerializerEdifact_RecipientIntSubID Interchange recipient internal subidentification
SerializerEdifact_RecipientRefPwd Recipient reference/password
SerializerEdifact_RecipientRefPwdQual Recipient reference/password qualifier
SerializerEdifact_ApplicationRef Application reference
SerializerEdifact_ProcPriCode Processing priority code
SerializerEdifact_AckRequest Acknowledgment request
SerializerEdifact_AgreementID Interchange agreement identifier
SerializerEdifact_TestInd Test indicator
SerializerEdifact_UNACtrl "Send UNA Always" or "Send UNA Only When Required"
SerializerEdifact_SyntaxID Syntax identifier

X12

Qualifier string Description

http://msdn.microsoft.com/library/default.asp

SerializerX12_AuthInfoQual Authorization information qualifier
SerializerX12_AuthInfo Authorization information
SerializerX12_SecInfoQual Security information qualifier
SerializerX12_SecInfo Security information
SerializerX12_CtrlStdID Interchange control standards identifier
SerializerX12_CtrlVerNum Interchange control version number
SerializerX12_AckRequired Acknowledgment required
SerializerX12_UseInd Usage indicator

 Note

For more information about the EDIFACT standard, see the United Nations Economic Commission for Europe Web site
(www.unece.org).

For more information about the X12 standard, see the Data Interchange Standards Association Web site (www.disa.org).

If you override the transport properties of an IBizTalkPort object with this method and then change the transport properties in
that IBizTalkPort object, you must call this method again.

If the ConfigType parameter is set to BIZTALK_CONFIGDATA_TYPE_SIGNATURE and the associated IBizTalkPort object has
both the EncryptionType and SignatureType properties set to S/MIME, this method returns an empty IDictionary object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://www.unece.org/
http://www.disa.org/

BizTalk Server 2002 ~ Developer Solutions

InputDocument Property
Contains the handle to the input IBizTalkDocument object that describes the input document specification.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property InputDocument As Long

[C++]

HRESULT get_InputDocument(

long* InDocHandle

);

HRESULT put_InputDocument(

long InDocHandle

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

InDocHandle

[out, retval], [in] In C++, contains the handle of the input IBizTalkDocument object. This parameter is not supported in Visual
Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the handle of the input IBizTalkDocument object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. This is a required property.

This property cannot be changed after the Create or the Save method is called.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Configuring

Document Definitions

Document Processing

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IsReceiptChannel Property
Contains a flag that indicates whether the object is a receipt channel.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property IsReceiptChannel As Boolean

[C++]

HRESULT get_IsReceiptChannel(

VARIANT_BOOL* IsReceiptChannel

);

HRESULT put_IsReceiptChannel(

VARIANT_BOOL IsReceiptChannel

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IsReceiptChannel

[out, retval], [in] In C++, contains a value indicating whether or not the channel is a receipt channel. VARIANT_TRUE indicates that
this channel is a receipt channel; VARIANT_FALSE indicates that this channel is not a receipt channel. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value indicating whether or not the channel is a receipt channel. True indicates that this
channel is a receipt channel; False indicates that this channel is not a receipt channel.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

In C++, this property has a default value of VARIANT_FALSE. In Visual Basic, this property has a default value of False.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

ReceiptChannel

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

LoggingInfo Property
Contains information about logging the document.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property LoggingInfo As Object

[C++]

HRESULT get_LoggingInfo(

IDispatch** LoggingInfoDisp

);

HRESULT putref_LoggingInfo(

IDispatch* LoggingInfoDisp

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

LoggingInfoDisp

[out, retval], [in] In C++, contains the logging fields. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the logging fields.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

Information contained by this property includes the LogNativeInputDocument, LogNativeOutputDocument,
LogXMLInputDocument, and LogXMLOutputDocument properties and is created and stored in memory in the
IBizTalkLoggingInfo object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Document Storage

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

MapContent Property
Contains the contents of the map that provide instructions on how the input document in the format used by the source
organization is to be rendered in the format used by the destination organization, if different.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property MapContent As String

[C++]

HRESULT get_MapContent(

BSTR* MapContent

);

onkeypress="expand(expand3, img3)" onclick="expand(expand3, img3)" Parameters

BizTalk Server 2002 ~ Developer Solutions

MapReference Property
Contains the full Web Distributed Authoring and Versioning (WebDAV) URL of the map that provides instructions on how the
input document in the format used by the source organization is to be rendered in the format used by the destination
organization, if different.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property MapReference As String

[C++]

HRESULT get_MapReference(

BSTR* Reference

);

HRESULT put_MapReference(

BSTR Reference

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

);

 Parameters

Reference

[out, retval], [in] In C++, contains the map name. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the map name.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has a default value of an empty string (""). This is a required property if the InputDocument property refers to a
different document specification than the OutputDocument property.

Once you have created or saved a IBizTalkChannel object with MapReference set to a map, any changes you make to the
content of the referenced map are not automatically updated on the referring IBizTalkChannel object. To update the
IBizTalkChannel object that refers to the revised map, you must save the map, reset the MapReference property of the
IBizTalkChannel object to its current value, and then call Save on the referring IBizTalkChannel object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

OutputDocument Property
Contains the handle to the IBizTalkDocument object that describes the output document specification.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property OutputDocument As Long

[C++]

HRESULT get_OutputDocument(

long* OutDocHandle

);

HRESULT put_OutputDocument(

long OutDocHandle

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

OutDocHandle

[out, retval], [in] In C++, contains the handle to the output IBizTalkDocument object. This parameter is not supported in Visual
Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the handle to the output IBizTalkDocument object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. This is a required property. This property cannot be changed after the Create or the Save
method is called.

If the Openness property of the associated IBizTalkEndPoint object is set to BIZTALK_OPENNESS_TYPE_SOURCE, the
InputDocument property can identify an input IBizTalkDocument object that has an X12 or an EDIFACT specification. If it does,
however, OutputDocument must not identify an IBizTalkDocument object that has an X12 or an EDIFACT specification.

If the Openness property of the associated IBizTalkEndPoint object is set to BIZTALK_OPENNESS_TYPE_DESTINATION, the
OutputDocument property for this IBizTalkChannel object must not identify an output IBizTalkDocument object that has an
X12 or an EDIFACT specification.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Document Definitions

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Port Property
Contains the handle to the associated IBizTalkPort object.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property Port As Long

[C++]

HRESULT get_Port(

long* PortHandle

);

HRESULT put_Port(

long PortHandle

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

PortHandle

[out, retval], [in] In C++, contains the handle to the IBizTalkPort object. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the handle to the IBizTalkPort object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. The following constraints are enforced:

Either the Port or the PortGroup property must be specified for a channel.

This property cannot be changed after the Create or the Save method is called.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Messaging Ports

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

PortGroup Property
Contains the handle to the associated IBizTalkPortGroup object.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property PortGroup As Long

[C++]

HRESULT get_PortGroup(

long* PortGroupHandle

);

HRESULT put_PortGroup(

long PortGroupHandle

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

PortGroupHandle

[out, retval], [in] In C++, contains the handle to the associated IBizTalkPortGroup object. This parameter is not supported in
Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the handle to the associated IBizTalkPortGroup object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. The following constraints are enforced:

Either the Port property or PortGroup must be specified for a channel.

This property cannot be changed after the Create or the Save method is called.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Port Groups

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ReceiptChannel Property
Contains the handle to the receipt channel for this object.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property ReceiptChannel As Long

[C++]

HRESULT get_ReceiptChannel(

long* ReceiptChannelHandle

);

HRESULT put_ReceiptChannel(

long ReceiptChannelHandle

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

ReceiptChannelHandle

[out, retval], [in] In C++, contains the handle to the receipt channel. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the handle to the receipt channel.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. An IBizTalkChannel object can specify a receipt channel only if it is not a receipt channel
itself. The channel specified as the receipt channel must have the IsReceiptChannel property set to TRUE. In addition, the receipt
channel must use a messaging port with a DestinationEndpoint that is the same as the SourceEndpoint on the channel using
the receipt channel. This allows the receipt channel to send a receipt to the original source of the document.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

RetryCount Property
Contains the number of times to retry submitting a document when a destination connection failure occurs.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property RetryCount As Long

[C++]

HRESULT get_RetryCount(

long* Count

);

HRESULT put_RetryCount(

long Count

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Count

[out, retval], [in] In C++, contains the number of retries. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the number of retries.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The RetryCount property must contain a value between 0 and 999. The default value is 3 retries.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

RetryInterval Property
Contains the amount of time, in minutes, between retry attempts when a destination connection failure occurs during document
submission.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property RetryInterval As Long

[C++]

HRESULT get_RetryInterval(

long* Interval

);

HRESULT put_RetryInterval(

long Interval

);

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Parameters

Interval

[out, retval], [in] In C++, contains the retry interval, in minutes. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the retry interval, in minutes.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The RetryInterval property must contain a value between 1 and 63999. The default value is 5 minutes.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SetConfigComponent Method
Sets the CLSID of the component associated with the IBizTalkPort object.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Method Declaration

[Visual Basic]

Sub SetConfigComponent(_

ConfigType As BIZTALK_CONFIGDATA_TYPE, _

PortHandle As Long, _

CLSID As String _

)

[C++]

HRESULT SetConfigComponent(

BIZTALK_CONFIGDATA_TYPE ConfigType,

long PortHandle,

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BSTR CLSID

);

 Parameters

ConfigType

[in] Determines the configuration type. Valid values for this parameter are defined by the BIZTALK_CONFIGDATA_TYPE
enumeration.

PortHandle

[in] Contains the handle.

CLSID

[in] Contains the CLSID of the component.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SetConfigData Method
Sets the configuration information for the associated IBizTalkPort object.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Method Declaration

[Visual Basic]

Sub SetConfigData(_

ConfigType As BIZTALK_CONFIGDATA_TYPE, _

ConfigDataHandle As Long, _

ConfigDataDisp As Object _

)

[C++]

HRESULT SetConfigData(

BIZTALK_CONFIGDATA_TYPE ConfigType,

long ConfigDataHandle,

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IDispatch* ConfigDataDisp

);

 Parameters

ConfigType

[in] Determines the configuration type. Valid values for this parameter are defined by the BIZTALK_CONFIGDATA_TYPE
enumeration.

ConfigDataHandle

[in] Identifies the handle to the associated IBizTalkPort object.

ConfigDataDisp

[in] IDictionary object that contains information about the component specified in the ConfigType parameter.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The IDictionary object passed to this method has specific string qualifiers used for EDIFACT and X12. For a description of these
qualifiers, see the GetConfigData Method.

When using the BIZTALK_CONFIGDATA_TYPE_PRIMARYTRANSPORT or
BIZTALK_CONFIGDATA_TYPE_SECONDARYTRANSPORT enumeration value, the content of the transport dictionary varies
according to the transport protocol used. The following tables list the transport dictionary fields for each protocol.

HTTP and HTTPS

Field na
me

Data t
ype

Requir
ed

Description

URL String Yes URL of the document destination.
ContentT
ype

String No Value for the Content-Type HTTP/HTTPS property that appears in HTTP headers during transmission. Th
e default value is an empty string ("").

ClientCe
rt

String No Reference to the certificate used with SSL connections using HTTPS. The default value is an empty string
("").

ProxyNa
me

String No URL of the proxy server used when sending documents outside a firewall.

ProxyPor
t

Integer No Port number used by the proxy server.

UseProx
y

Boolea
n

No Value that indicates whether the proxy server is used. The default value is True.

Local File

Field
name

Data
type

Req
uire
d

Description

Filena
me

Strin
g

Yes Name and path of the file to be created.

Copy
Mode

Integ
er

No Value that indicates how the file should be written. Use a value of 0 for overwrite mode, a value of 1 for appen
d mode, and a value of 2 to create a new file. The default value is append mode (1).

UserN
ame

Strin
g

No Windows NT username needed to access a file share. The default value is an empty string ("").

Passw
ord

Strin
g

No Windows NT username needed to access a file share. The default value is an empty string ("").

Message Queuing

Field
name

Dat
a ty
pe

Req
uire
d

Description

Queu
eNam
e

Stri
ng

Yes Name of the Messaging Queue to which the document is sent.

Mess
ageLa
bel

Stri
ng

Yes Value specified in the message label field on the queue.

Priorit
y

Inte
ger

No Priority of the message placed in the queue. This must be a value between 0 and 7, where a higher value indicate
s a higher priority. The default value is 3

AuthL
evel

Inte
ger

No Value indicating whether the message needs to be authenticated using a digital signature. Use a value of 0 to by
pass authentication. A value of 1 indicates that authentication will be used. The default value is 0.

Delive
ry

Inte
ger

No Value indicating how a message is delivered to a queue. Use a value of 1 to indicate that the message should be
backed up until it is delivered to the queue. A value of 0 indicates that the message is only resident in memory. T
he default value is 0.

 Notes

When you override messaging port properties in a channel, the overrides apply only to that channel. No errors are
generated as a result of overriding previous values.

You cannot override the transport address that was set in a messaging port.

The default setting for the HTTP transport component is to use the HTTP proxy server. This is the correct setting to transport
data to Web sites outside your business's firewall. To transport data to Web sites that are inside your business's firewall
(that is, within your intranet), modify the transport dictionary values to override the default setting.

For the HTTPS transport component, use only certificates that are specified for client authentication.

The default setting for the file transport component is to append files (CopyMode=1). If you choose the file transport type
with its default settings in a messaging port and use antivirus software on the server on which BizTalk Server 2002 is
installed, and you send multiple files that have exactly the same name to the same file location, at the same time, BizTalk
Server 2002 might stop responding and must be restarted. You can eliminate this problem by changing the default setting
for the file transport component to overwrite (CopyMode=0). You also can eliminate this problem by creating a unique file
for each document instance processed by using %tracking_id% in the Address property of the IBizTalkTransportInfo
object.

To access the properties in a custom component dictionary through BizTalk Messaging Manager, you must create ASP pages in
the \Program Files\BizTalk Server\MessagingManager\pipeline folder. These ASP pages provide a dialog box for editing the
properties of your custom component. This dialog box is displayed from the channel Advanced Configuration page when you
click Advanced and then click Properties on the Primary Transport tab. For additional information about the ASP pages, see
Working with Serializers. For a sample that uses SetConfigData with custom property pages, see
Synchronous Orchestration Component.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SignatureCertificateInfo Property
Contains information about the certificate that signs the output document.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property SignatureCertificateInfo As Object

[C++]

HRESULT get_SignatureCertificateInfo(

IDispatch** SignatureCertificateInfoDisp

);

HRESULT putref_SignatureCertificateInfo(

IDispatch* SignatureCertificateInfoDisp

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

SignatureCertificateInfoDisp

[out, retval], [in] In C++, contains the certificate information. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the certificate information.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. Information contained by this property includes the Name, Reference, Store, and Usage
properties and is created and stored in memory in the BizTalkCertificateInfo object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SourceEndpoint Property
Contains information about the source.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property SourceEndpoint As Object

[C++]

HRESULT get_SourceEndpoint(

IDispatch** SrcEndpointDisp

);

HRESULT putref_SourceEndpoint(

IDispatch* SrcEndpointDisp

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

SrcEndpointDisp

[out, retval], [in] In C++, contains information about the source. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns information about the source.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. Information contained by this property includes the Alias, Application, and Organization
properties and is created and stored in memory in the IBizTalkEndPoint object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

TrackFields Property
Contains the IDictionary object that points to the specification that contains fields to track interchange data on input documents
for this BizTalkChannel object.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property TrackFields As Object

[C++]

HRESULT get_TrackFields(

IDispatch** TrackFieldsDisp

);

HRESULT putref_TrackFields(

IDispatch* TrackFieldsDisp

);

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Parameters

TrackFieldsDisp

[out, retval], [in] In C++, contains the custom tracking fields. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the custom tracking fields.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. The tracking fields specified by this property override the fields set in the TrackFields property
on the IBizTalkDocument object.

The fields in the IDictionary object must contain an XPath value that identifies the field to be tracked in a document. By default,
the IDictionary object provides eight predefined fields for tracking data in a document. These predefined fields consist of two
fields for each of the following data types: integer, real, date, and string. If additional fields are required for tracking, you can use
the x_custom_search field in the IDictionary object, and set the value to an ISimpleList object. The ISimpleList object contains a
list of XPaths pointing to the additional tracking fields. XPath values can be added to and deleted from this list using the Add and
Delete methods.

The following table shows the field names in the IDictionary object for TrackFields:

Field Name Field type
i_value1 Integer value
i_value2 Integer value
r_value1 Real value
r_value2 Real value
d_value1 Date value
d_value2 Date value
s_value1 String value
s_value2 String value
x_custom_search A list to return one or more additional data items

For more information about XPath expressions, go to the Microsoft Web site (msdn.microsoft.com/library/default.asp) and search
for XPath.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Document Tracking

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

VerifySignatureCertificateInfo Property
Contains information about the certificate that verifies the signature of the input document.

 Member List

IBizTalkChannel

|--Comments

|--ControlNumberValue

|--DecryptionCertificateInfo

|--ExpectReceiptTimeout

|--Expression

|--GetConfigComponent

|--GetConfigData

|--InputDocument

|--IsReceiptChannel

|--LoggingInfo

|--MapContent

|--MapReference

|--OutputDocument

|--Port

|--PortGroup

|--ReceiptChannel

|--RetryCount

|--RetryInterval

|--SetConfigComponent

|--SetConfigData

|--SignatureCertificateInfo

|--SourceEndpoint

|--TrackFields

|--VerifySignatureCertificateInfo

 Property Declaration

[Visual Basic]

Property VerifySignatureCertificateInfo As Object

[C++]

HRESULT get_VerifySignatureCertificateInfo(

IDispatch** VerifySignatureCertificateInfoDisp

);

HRESULT putref_VerifySignatureCertificateInfo(

IDispatch* VerifySignatureCertificateInfoDisp

);

 Parameters

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

VerifySignatureCertificateInfoDisp

[out, retval], [in] In C++, contains the certificate information. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the certificate information.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. Information contained by this property includes the Name, Reference, Store, and Usage
properties and is created and stored in memory in the IBizTalkCertificateInfo object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IBizTalkConfig

IBizTalkConfig
Creates channels, document specifications, envelopes, organizations, ports, and port groups.

 Hierarchy

IDispatch

|--IBizTalkConfig

 Declaration

[Visual Basic]

Class BizTalkConfig

[C++]

interface IBizTalkConfig : IDispatch

 Members

IBizTalkConfig defines the following properties:
Property Description
Certificates Contains an ADO recordset that contains all specified certificates.
Channels Contains an ADO recordset that contains all IBizTalkChannel objects.
Documents Contains an ADO recordset that contains all IBizTalkDocument objects.
Envelopes Contains an ADO recordset that contains all IBizTalkEnvelope objects.
Organizations Contains an ADO recordset that contains all IBizTalkOrganization objects.
PortGroups Contains an ADO recordset that contains all IBizTalkPortGroup objects.
Ports Contains an ADO recordset that contains all IBizTalkPort objects.

IBizTalkConfig defines the following methods:

Method Description
CreateChannel Returns a new IBizTalkChannel object.
CreateDocument Returns a new IBizTalkDocument object.
CreateEnvelope Returns a new IBizTalkEnvelope object.
CreateOrganization Returns a new IBizTalkOrganization object.
CreatePort Returns a new IBizTalkPort object.
CreatePortGroup Returns a new IBizTalkPortGroup object.

 Remarks

Each object created by using one of the methods of this interface inherits the following common methods from IBizTalkBase:

DateModified

Handle

Name

Clear

Create

Load

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

LoadByName

Remove

Save

When IBizTalkPort and IBizTalkChannel objects are created, BizTalk Server automatically creates some associated subobjects.
You can access these subobjects by using properties of the IBizTalkPort and IBizTalkChannel objects.

The relationship between objects, their subobjects, and the properties used to obtain the subobjects is shown in the following
table.

Subobject Associated obj
ect

Property to set

BizTalkEndPoint BizTalkPort DestinationEndpoint
BizTalkEndPoint BizTalkChannel SourceEndpoint
BizTalkLoggingInfo BizTalkChannel LoggingInfo
BizTalkTransportInfo BizTalkPort PrimaryTransport, SecondaryTransport
BizTalkServiceWindowInfo BizTalkPort ServiceWindowInfo
BizTalkCertificateInfo BizTalkPort EncryptionCertificateInfo
BizTalkCertificateInfo BizTalkChannel SignatureCertificateInfo, VerifySignatureCertificateInfo, or

DecryptionCertificateInfo

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Certificates Property
Contains an ADO recordset that contains all specified certificates.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Property Declaration

[Visual Basic]

Property Certificates(_

StoreType As BIZTALK_STORE_TYPE, _

UsageType As BIZTALK_USAGE_TYPE, _

NamePrefix As String _

) As Object

[C++]

HRESULT get_Certificates(

BIZTALK_STORE_TYPE StoreType,

BIZTALK_USAGE_TYPE UsageType,

BSTR NamePrefix,

IDispatch** CertsDisp

);

 Parameters

StoreType

[in] Determines the store type. Valid values for this parameter are defined by the BIZTALK_STORE_TYPE enumeration.

UsageType

[in] Determines the usage type. Valid values for this parameter are defined by the BIZTALK_USAGE_TYPE enumeration.

NamePrefix

[in] Contains a prefix used as the selection criteria for certificate names. Any certificate Name starting with this value is returned
in the recordset. This value is case sensitive.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

CertsDisp

[out, retval] Contains all specified certificates. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns all specified certificates.

In C++, this property returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkCertificateInfo
object in the database. The fields in each record contain the following information:

Field content Item number
Name 0
Reference 1
Store 2
Usage 3

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Update Messaging Configurations with ADO Objects

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

Channels Property
Contains an ADO recordset that contains all IBizTalkChannel objects.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Property Declaration

[Visual Basic]

Property Channels As Object

[C++]

HRESULT get_Channels(

IDispatch** ChannelsDisp

);

 Parameters

ChannelsDisp

[out, retval] Contains all IBizTalkChannel objects. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns all IBizTalkChannel objects.

In C++, this property returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkChannel object in the
database. The fields in each record contain the following information:

Field content Item number
Handle 0
Name 1
DateModified 2

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Update Messaging Configurations with ADO Objects

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

CreateChannel Method
Returns a new IBizTalkChannel object.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Method Declaration

[Visual Basic]

Function CreateChannel() As Object

[C++]

HRESULT CreateChannel(

IDispatch** ChannelDisp

);

 Parameters

ChannelDisp

[out, retval] Contains a new IBizTalkChannel object. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this method returns a new IBizTalkChannel object.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

CreateDocument Method
Returns a new IBizTalkDocument object.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Method Declaration

[Visual Basic]

Function CreateDocument() As Object

[C++]

HRESULT CreateDocument(

IDispatch** DocumentDisp

);

 Parameters

DocumentDisp

[out, retval] Contains a new IBizTalkDocument object. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this method returns a new IBizTalkDocument object.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

CreateEnvelope Method
Returns a new IBizTalkEnvelope object.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Method Declaration

[Visual Basic]

Function CreateEnvelope() As Object

[C++]

HRESULT CreateEnvelope(

IDispatch** EnvelopeDisp

);

 Parameters

EnvelopeDisp

[out, retval] Contains a new IBizTalkEnvelope object. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this method returns a new IBizTalkEnvelope object.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

CreateOrganization Method
Returns a new IBizTalkOrganization object.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Method Declaration

[Visual Basic]

Function CreateOrganization() As Object

[C++]

HRESULT CreateOrganization(

IDispatch** OrganizationDisp

);

 Parameters

OrganizationDisp

[out, retval] Contains a new IBizTalkOrganization object. For more information, see "Return Values."

 Return Values

In Visual Basic, this method returns a new IBizTalkOrganization object.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

CreatePort Method
Returns a new IBizTalkPort object.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Method Declaration

[Visual Basic]

Function CreatePort() As Object

[C++]

HRESULT CreatePort(

IDispatch** PortDisp

);

 Parameters

PortDisp

[out, retval] Contains a new IBizTalkPort object. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this method returns a new IBizTalkPort object.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

CreatePortGroup Method
Returns a new IBizTalkPortGroup object.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Method Declaration

[Visual Basic]

Function CreatePortGroup() As Object

[C++]

HRESULT CreatePortGroup(

IDispatch** PortGroupDisp

);

 Parameters

PortGroupDisp

[out, retval] Contains a new IBizTalkPortGroup object. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this method returns a new IBizTalkPortGroup object.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Documents Property
Contains an ADO recordset that contains all IBizTalkDocument objects.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Property Declaration

[Visual Basic]

Property Documents() As Objects

[C++]

HRESULT get_Documents(

IDispatch** DocumentsDisp

);

 Parameters

DocumentsDisp

[out, retval] Contains all BizTalkDocument objects. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns all BizTalkDocument objects.

In C++, this property returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkDocument object in
the database. The fields in each record contain the following information:

Field content Item number
Handle 0
Name 1
DateModified 2

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Update Messaging Configurations with ADO Objects

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

Envelopes Property
Contains an ADO recordset that contains all IBizTalkEnvelope objects.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Property Declaration

[Visual Basic]

Property Envelopes() As Objects

[C++]

HRESULT get_Envelopes(

IDispatch** EnvelopesDisp

);

Parameters

EnvelopesDisp

[out, retval] Contains all IBizTalkEnvelope objects. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns all IBizTalkEnvelope objects.

In C++, this property returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkEnvelope object in
the database. The fields in each record contain the following information:

Field content Item number
Handle 0
Name 1
DateModified 2
Format 3

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Update Messaging Configurations with ADO Objects

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

Organizations Property
Contains an ADO recordset that contains all IBizTalkOrganization objects.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Property Declaration

[Visual Basic]

Property Organizations() As Objects

[C++]

HRESULT get_Organizations(

IDispatch** OrganizationsDisp

);

 Parameters

OrganizationsDisp

[out, retval] Contains all IBizTalkOrganization objects. This parameter is not supported in Visual Basic. For more information,
see "Return Values."

 Return Values

In Visual Basic, this property returns all IBizTalkOrganization objects.

In C++, this property returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkOrganization object
in the database. The fields in each record contain the following information:

Field content Item number
Handle 0
Name 1
DateModified 2
IsDefault 3

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Update Messaging Configurations with ADO Objects

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

PortGroups Property
Contains an ADO recordset that contains all IBizTalkPortGroup objects.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Property Declaration

[Visual Basic]

Property PortGroups() As Objects

[C++]

HRESULT get_PortGroups(

IDispatch** PortGroupsDisp

);

 Parameters

PortGroupsDisp

[out, retval] Contains all IBizTalkPortGroup objects. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns all IBizTalkPortGroup objects.

In C++, this property returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkPortGroup object in
the database. The fields in each record contain the following information:

Field content Item number
Handle 0
Name 1
DateModified 2

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Update Messaging Configurations with ADO Objects

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

Ports Property
Contains an ADO recordset that contains all IBizTalkPort objects.

 Member List

IBizTalkConfig

|--Certificates

|--Channels

|--CreateChannel

|--CreateDocument

|--CreateEnvelope

|--CreateOrganization

|--CreatePort

|--CreatePortGroup

|--Documents

|--Envelopes

|--Organizations

|--PortGroups

|--Ports

 Property Declaration

[Visual Basic]

Property Ports() As Objects

[C++]

HRESULT get_Ports(

IDispatch** PortsDisp

);

 Parameters

PortsDisp

[out, retval] Contains all IBizTalkPort objects. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns all IBizTalkPort objects.

In C++, this property returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about an existing IBizTalkPort object in the
database. The fields in each record contain the following information:

Field content Item number
Handle 0
Name 1
DateModified 2

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Update Messaging Configurations with ADO Objects

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

IBizTalkDocument
Identifies and describes the document specification of a document.

 Hierarchy

IDispatch

|--IBizTalkBase

 |--IBizTalkDocument

 Declaration

[Visual Basic]

Class BizTalkDocument

[C++]

interface IBizTalkDocument : IBizTalkBase

 Members

IBizTalkDocument defines the following properties:
Property Description
Content Contains the content of the document specification described by the object.
DateModified Contains the date and time at which the information in the object was created or last modified.
Handle Contains the handle to the object.
Name Contains the name of the object.
NameSpace Contains the string that resolves naming conflicts between elements in a document.
PropertySet Contains an IDictionary object that contains the electronic data interchange (EDI) selection criteria (name/value

pairs) by which the server extracts information from the functional group header of the EDI document to identify
the object when the document is input.

Reference Contains the full Web Distributed Authoring and Versioning (WebDAV) URL for the document specification referr
ed to by this IBizTalkDocument object.

TrackFields Contains an IDictionary object that stores the custom fields that Tracking uses to track all documents processed
by the server, based on this document instance.

Type Contains the type of document specification.
Version Contains the version of the document standard.

IBizTalkDocument defines the following methods:

Method Description
Clear Clears the object from memory.
Create Creates a new object in the database.
Load Loads a specified object in memory.
LoadByName Loads a specified object by name in memory.
LoadByPropertySet Loads the document object by its PropertySet object.
Remove Removes the object from the database.
Save Saves the object in the database.

 Remarks

Each IBizTalkDocument object must have at least one associated IBizTalkChannel object. More than one IBizTalkDocument
object can refer to the same document specification.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Document Definitions

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Content Property
Contains the content of the document specification described by the object.

 Member List

IBizTalkDocument

|--Content

|--LoadByPropertySet

|--NameSpace

|--PropertySet

|--Reference

|--TrackFields

|--Type

|--Version

 Property Declaration

[Visual Basic]

Property Content As String

[C++]

HRESULT get_Content(

BSTR* Content

);

 Parameters

Content

[out, retval] In C++, contains the content. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the content.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with a default value of an empty string ("").

The Reference property is checked when the Create or the Save method is called. If this string is not empty when Create is
called, Content is set to the contents of the document specification and the NameSpace property is changed to the value found
in the document specification.

Once you have created or saved an object with Reference set to a document specification, any changes you make to the Content
or NameSpace of the referenced document specification are not automatically updated on the referring object. To update the
object that refers to the revised document specification, you must save the document specification, reset the Reference property
of the object to its current value, and then call Save on the referring object.

 Requirements

Windows NT/2000: Windows 2000 SP2

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

LoadByPropertySet Method
Loads the document object by its PropertySet object.

 Member List

IBizTalkDocument

|--Content

|--LoadByPropertySet

|--NameSpace

|--PropertySet

|--Reference

|--TrackFields

|--Type

|--Version

 Method Declaration

[Visual Basic]

Property LoadByPropertySet(_

PropSetDictionaryDisp As Object _

)

[C++]

HRESULT LoadByPropertySet(

IDispatch** PropSetDictionaryDisp

);

 Parameters

PropSetDictionaryDisp

[in] In C++, contains the PropertySet. This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this method returns the PropertySet.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

NameSpace Property
Contains the string that resolves naming conflicts between elements in a document.

 Member List

IBizTalkDocument

|--Content

|--LoadByPropertySet

|--NameSpace

|--PropertySet

|--Reference

|--TrackFields

|--Type

|--Version

 Property Declaration

[Visual Basic]

Property NameSpace As String

[C++]

HRESULT get_NameSpace(

BSTR* NameSpace

);

 Parameters

NameSpace

[out, retval] In C++, contains the namespace. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the namespace.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with a default value of an empty string ("").

The Reference property is checked when the Create or the Save method is called. If this string is not empty when Create is
called, Content is set to the contents of the document specification and NameSpace is changed to the value found in the
document specification.

Once you have created or saved an object with Reference set to a document specification, any changes you make to the Content
or NameSpace of the referenced document specification are not automatically updated on the referring object. To update the
object that refers to the revised document specification, you must save the document specification, reset the Reference property
of the object to its current value, and then call Save on the referring object.

 Note

When creating a document, the number of characters in the NameSpace combined with the number of characters in the

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

specification name cannot exceed 255.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

PropertySet Property
Contains an IDictionary object that contains the electronic data interchange (EDI) selection criteria (name/value pairs) by which
the server extracts information from the functional group header of the EDI document to identify the object when the document is
input.

 Member List

IBizTalkDocument

|--Content

|--LoadByPropertySet

|--NameSpace

|--PropertySet

|--Reference

|--TrackFields

|--Type

|--Version

 Property Declaration

[Visual Basic]

Property PropertySet As Object

[C++]

HRESULT get_PropertySet(

IDispatch** PropSetDisp

);

HRESULT putref_PropertySet(

IDispatch* PropSetDisp

);

 Parameters

PropSetDisp

[out, retval], [in] In C++, contains the selection criteria. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the selection criteria.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value.

This is a required property if the document is an EDI document. The Delimiters property of the associated IBizTalkPort object
must also be defined.

The following table shows whether names are required in the IDictionary object for PropertySet.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Selection criteria X12 EDIFACT
application_sender_code Yes Yes
application_receiver_code Yes Yes
functional_identifier Yes Yes
standards_version Yes No
standards_version_type No Yes
standards_version_value No Yes

 Note

The name/value pairs contained in the IDictionary object cannot exceed a total of 450 bytes.

PropertySet can be set only if the Reference property is set.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Document Definitions

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Reference Property
Contains the full Web Distributed Authoring and Versioning (WebDAV) URL for the document specification referred to by this
IBizTalkDocument object.

 Member List

IBizTalkDocument

|--Content

|--LoadByPropertySet

|--NameSpace

|--PropertySet

|--Reference

|--TrackFields

|--Type

|--Version

 Property Declaration

[Visual Basic]

Property Reference As String

[C++]

HRESULT get_Reference(

BSTR* Reference

);

HRESULT put_Reference(

BSTR Reference

);

 Parameters

Reference

[out, retval], [in] In C++, contains the reference. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the reference.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has a default value of an empty string ("").

Reference is checked when the Create or the Save method is called. If this string is not empty when Create is called, Content is
set to the contents of the document specification and the NameSpace property is changed to the value found in the document
specification.

Once you have created or saved an object with Reference set to a document specification, any changes you make to the Content

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

or NameSpace of the referenced document specification are not automatically updated on the referring object. To update the
object that refers to the revised document specification, you must save the document specification, reset the Reference property
of the object to its current value, and then call Save on the referring object.

If Reference is not set, the PropertySet and TrackFields properties must not be set.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

TrackFields Property
Contains an IDictionary object that stores the custom fields that Tracking uses to track all documents processed by the server,
based on this document instance.

 Member List

IBizTalkDocument

|--Content

|--LoadByPropertySet

|--NameSpace

|--PropertySet

|--Reference

|--TrackFields

|--Type

|--Version

 Property Declaration

[Visual Basic]

Property TrackFields As Object

[C++]

HRESULT get_TrackFields(

IDispatch** TrackFieldsDisp

);

HRESULT putref_TrackFields(

IDispatch* TrackFieldsDisp

);

 Parameters

TrackFieldsDisp

[out, retval], [in] In C++, contains the custom tracking fields. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the custom tracking fields.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value.

TrackFields can be set only if the Reference property is set. Tracking fields specified for an output IBizTalkDocument object
are ignored.

An IBizTalkDocument object points to the specification that contains fields to track the document. The designated fields are
logged to the Tracking database for each instance of a document that is processed. Tracking fields on the IBizTalkDocument

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

object are global. The TrackFields property on the IBizTalkChannel object overrides the values specified by this property.

The fields in the IDictionary object must contain an XPath value that identifies the field to be tracked in a document. By default,
the IDictionary object provides eight predefined fields for tracking data in a document. These predefined fields consist of two
fields for each of the following data types: integer, real, date, and string. If additional fields are required for tracking, you can use
the x_custom_search field in the IDictionary object and set the value to a SimpleList object. The SimpleList object contains a list
of XPaths pointing to the additional tracking fields. XPath values can be added to and deleted from this list using the Add and
Delete methods.

The following table shows the field names in the IDictionary object for TrackFields:

Field Name Field type
i_value1 Integer value
i_value2 Integer value
r_value1 Real value
r_value2 Real value
d_value1 Date value
d_value2 Date value
s_value1 String value
s_value2 String value
x_custom_search A list to return one or more additional data items

For more information about XPath expressions, go to the Microsoft Web site (msdn.microsoft.com/library/default.asp) and search
for XPath.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Document Definitions

Document Tracking

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

Type Property
Contains the version of the document standard.

 Member List

IBizTalkDocument

|--Content

|--LoadByPropertySet

|--NameSpace

|--PropertySet

|--Reference

|--TrackFields

|--Type

|--Version

 Property Declaration

[Visual Basic]

Property Type As String

[C++]

HRESULT get_Type(

BSTR* Type

);

 Parameters

Type

[out, retval] In C++, contains the document type. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the document type.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with a default value of an empty string ("").

All document instances must have the same document type as the associated envelope. For example, if the Format property of
the IBizTalkEnvelope object is set to X12, Type must also be X12.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Version Property
Contains the version of the document standard.

 Member List

IBizTalkDocument

|--Content

|--LoadByPropertySet

|--NameSpace

|--PropertySet

|--Reference

|--TrackFields

|--Type

|--Version

 Property Declaration

[Visual Basic]

Property Version As String

[C++]

HRESULT get_Version(

BSTR* Version

);

 Parameters

Version

[out, retval] In C++, contains the version. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the version.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with no default value.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBizTalkEndPoint
Configures source information for an IBizTalkChannel object and destination information for an IBizTalkPort object.

 Hierarchy

IDispatch

|--IBizTalkEndPoint

 Declaration

[Visual Basic]

Class BizTalkEndpoint

[C++]

interface IBizTalkEndpoint : IDispatch

 Members

IBizTalkEndPoint defines the following properties:
Property Description
Alias Contains a handle to the organization identifier type/value pair for the destination IBizTalkOrganization object f

or the associated IBizTalkPort object.
Application Contains a handle to the associated application for the destination IBizTalkOrganization object for this IBizTalk

Port object.
Openness Contains an enumeration value that indicates whether the object has an open destination or source, or neither.
Organization Contains a handle to the destination IBizTalkOrganization object for this IBizTalkPort object.

 Remarks

The IBizTalkEndPoint object is automatically created when an IBizTalkPort object or an IBizTalkChannel object is instantiated
with the CreatePort or the CreateChannel method of the IBizTalkConfig object.

For destination endpoints, access the IBizTalkEndPoint object by using the DestinationEndpoint property of the IBizTalkPort
object. For source endpoints, access the IBizTalkEndPoint object by using the SourceEndpoint property of the
IBizTalkChannel object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Alias Property
Contains a handle to the organization identifier type/value pair for the destination IBizTalkOrganization object for the
associated IBizTalkPort object.

 Member List

IBizTalkEndPoint

|--Alias

|--Application

|--Openness

|--Organization

 Property Declaration

[Visual Basic]

Property Alias As Long

[C++]

HRESULT get_Alias(

long* AliasHandle

);

HRESULT put_Alias(

long AliasHandle

);

 Parameters

AliasHandle

[out, retval], [in] In C++, contains the handle to the alias. This parameter is not supported in Visual Basic. For more information,
see "Return Values."

 Return Values

In Visual Basic, this property returns the handle to the alias.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Application Property
Contains a handle to the associated application for the destination IBizTalkOrganization object for this IBizTalkPort object.

 Member List

IBizTalkEndPoint

|--Alias

|--Application

|--Openness

|--Organization

 Property Declaration

[Visual Basic]

Property Application As Long

[C++]

HRESULT get_Application(

long* AppHandle

);

HRESULT put_Application(

long AppHandle

);

 Parameters

AppHandle

[out, retval], [in] In C++, contains the handle to the application. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the handle to the application.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Openness Property
Contains an enumeration value that indicates whether the object has an open destination or source, or neither.

 Member List

IBizTalkEndPoint

|--Alias

|--Application

|--Openness

|--Organization

 Property Declaration

[Visual Basic]

Property Openness As BIZTALK_OPENNESS_TYPE_EX

[C++]

HRESULT get_Openness(

BIZTALK_OPENNESS_TYPE_EX* OpennessType

);

HRESULT put_Openness(

BIZTALK_OPENNESS_TYPE_EX OpennessType

);

 Parameters

OpennessType

[out, retval], [in] In C++, contains a value indicating whether the object has an open destination or source, or neither. Valid values
for this parameter are defined by the BIZTALK_OPENNESS_TYPE_EX enumeration. This parameter is not supported in Visual
Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value from the BIZTALK_OPENNESS_TYPE_EX enumeration, indicating whether the object
has an open destination or source, or neither.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has a default value of BIZTALK_OPENNESS_TYPE_EX_NOTOPEN.

The IBizTalkPort object is valid only if the associated document or the parameters on the Submit or the SubmitSync method of
IInterchange identify the missing information.

If Openness is set to BIZTALK_OPENNESS_TYPE_EX_SOURCE for an IBizTalkEndPoint object associated with a channel, the
following constraints apply:

The SignatureType property must not be set.

The IBizTalkPort object cannot be included in a port group.

If Openness is set to BIZTALK_OPENNESS_TYPE_EX_FROMWORKFLOW on a channel, the associated IBizTalkOrganization

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

object must be the default organization.

If Openness on the object is set to BIZTALK_OPENNESS_TYPE_EX_DESTINATION for an IBizTalkEndPoint object associated
with a messaging port, the following constraints apply:

The PrimaryTransportType property must be set to BIZTALK_TRANSPORT_TYPE_OPENDESTINATION.

The EncryptionType property must not be set.

The document or the parameters on Submit or SubmitSync must specify the destination, transport type, and address.

The IBizTalkPort object cannot be included in a port group.

 Note

This property cannot be changed on an existing port.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Openness

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Organization Property
Contains a handle to the destination IBizTalkOrganization object for this IBizTalkPort object.

 Member List

IBizTalkEndPoint

|--Alias

|--Application

|--Openness

|--Organization

 Property Declaration

[Visual Basic]

Property Organization As Long

[C++]

HRESULT get_Organization(

long* OrganizationHandle

);

HRESULT put_Organization(

long OrganizationHandle

);

 Parameters

OrganizationHandle

[out, retval], [in] In C++, contains the handle to the organization. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the handle to the organization.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. This is a required property for this object to be complete unless the Openness property is set
to BIZTALK_OPENNESS_TYPE_EX_DESTINATION.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBizTalkEnvelope
Configures the envelope format used with documents processed by BizTalk Server. An envelope is the header information for an
interchange.

 Hierarchy

IDispatch

|--IBizTalkBase

 |--IBizTalkEnvelope

 Declaration

[Visual Basic]

Class BizTalkEnvelope

[C++]

interface IBizTalkEnvelope : IBizTalkBase

 Members

IBizTalkEnvelope defines the following properties:
Property Description
Content Contains the contents of the selected envelope format specification.
DateModified Contains the date and time at which the information in the object was created or last modified.
Format Contains a string that identifies the type of envelope.
Handle Contains the handle to the object.
Name Contains the name of the object.
NameSpace Contains a string that resolves naming conflicts between elements in an envelope specification.
Reference Contains a full Web Distributed Authoring and Versioning (WebDAV) URL name of the envelope format specificat

ion file.
Version Contains the version of the envelope format specification.

IBizTalkEnvelope defines the following methods:

Method Description
Clear Clears the object from memory.
Create Creates a new object in the database.
Load Loads a specified object in memory.
LoadByName Loads a specified object by name in memory.
Remove Removes the object from the database.
Save Saves the object in the database.

 Remarks

All document instances in an electronic data interchange (EDI) functional group must have the same format. All document
instances must have the same document type as the associated envelope. For example, if Format is set to X12, the Type property
of the IBizTalkDocument objects for the associated IBizTalkPort object must also be X12.

If you use an envelope with an EDIFACT format and you want to use a null value for the empty qualifier in the header for the
source or the destination, create a custom identifier with a single dash (-) as the qualifier. To do this, use the CreateAlias method
on the IBizTalkOrganization object. When an empty qualifier is encountered on an input EDIFACT envelope, the server converts
the empty qualifier to a dash. For an output EDIFACT envelope, the server converts the dash to an empty qualifier.

The IBizTalkEnvelope object is required for input documents if the Type property of the IBizTalkDocument object is set to
"flatfile" or "custom xml".

 Requirements

Windows NT/2000: Windows 2000 SP2

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Envelopes

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Content Property

Content Property
Contains the contents of the selected envelope format specification.

 Member List

IBizTalkEnvelope

|--Content

|--Format

|--NameSpace

|--Reference

|--Version

 Property Declaration

[Visual Basic]

Property Content As String

[C++]

HRESULT get_Content(

BSTR* Content

);

 Parameters

Content

[out, retval] In C++, contains the content. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the content.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with no default value.

The Reference property is checked when the Create or the Save method is called. If this string is not empty when Create is
called, Content is set to the contents of the envelope specification, and the NameSpace property is changed to the value found
in the envelope specification.

Once you have created or saved an object with Reference set to an envelope specification, any changes you make to the Content
or NameSpace of the referenced envelope specification are not automatically updated on the referring object. To update the
object that refers to the revised envelope specification, you must save the envelope specification, reset the Reference property of
the object to its current value, and then call Save on the referring object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Format Property
Contains a string that identifies the type of envelope.

 Member List

IBizTalkEnvelope

|--Content

|--Format

|--NameSpace

|--Reference

|--Version

 Property Declaration

[Visual Basic]

Property Format As String

[C++]

HRESULT get_Format(

BSTR* Format

);

HRESULT put_Format(

BSTR Format

);

 Parameters

Format

[out, retval], [in] In C++, contains the envelope format. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the envelope format.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The format value must be one of the following strings:

x12

edifact

custom xml (default)

custom

flatfile

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

reliable

 Note

Any string other than the ones listed here will cause an error at run time.

If this property is set to "custom", the Reference property is required. Also, a custom parser component has to be registered with
the server for input documents with this property set to "custom". For more information about custom parser components, see
Parsers.

All document instances must have the same document type as the associated envelope. For example, if Format is set to "x12", the
Type property of the IBizTalkDocument objects must also be "x12".

If Format is set to X12, edifact, or reliable, the Reference property should not be set.

For more information about envelope formats, see Create envelopes.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Envelopes

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265209(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

NameSpace Property
Contains a string that resolves naming conflicts between elements in an envelope specification.

 Member List

IBizTalkEnvelope

|--Content

|--Format

|--NameSpace

|--Reference

|--Version

 Property Declaration

[Visual Basic]

Property NameSpace As String

[C++]

HRESULT get_NameSpace(

BSTR* NameSpace

);

 Parameters

NameSpace

[out, retval] In C++, contains the namespace. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the namespace.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with no default value. The Reference property is checked when the Create or the Save method is
called. If this string is not empty when Create is called, the Content property is set to the contents of the envelope specification,
and NameSpace is changed to the value found in the envelope specification.

Once you have created or saved an object with Reference set to an envelope specification, any changes you make to the Content
or NameSpace of the referenced envelope specification are not automatically updated on the referring object. To update the
object that refers to the revised envelope specification, you must save the envelope specification, reset the Reference property of
the object to its current value, and then call Save on the referring object.

 Note

When creating an envelope, the number of characters in the NameSpace combined with the number of characters in the
specification name cannot exceed 255.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Reference Property
Contains a full Web Distributed Authoring and Versioning (WebDAV) URL name of the envelope format specification file.

 Member List

IBizTalkEnvelope

|--Content

|--Format

|--NameSpace

|--Reference

|--Version

 Property Declaration

[Visual Basic]

Property Reference As String

[C++]

HRESULT get_Reference(

BSTR* Reference

);

HRESULT put_Reference(

BSTR Reference

);

 Parameters

Reference

[out, retval], [in] In C++, contains the reference. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the reference.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. This is a required property if the Format property is set to "custom". Reference is checked
when the Create or the Save method is called. If this string is not empty when Create is called, the Content property is set to the
contents of the envelope specification, and the NameSpace property is changed to the value found in the envelope specification.

Once you have created or saved an object with Reference set to an envelope specification, any changes you make to the Content
or NameSpace of the referenced envelope specification are not automatically updated on the referring object. To update the
object that refers to the revised envelope specification, you must save the envelope specification, reset the Reference property of
the object to its current value, and then call Save on the referring object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Version Property
Contains the version of the envelope format specification.

 Member List

IBizTalkEnvelope

|--Content

|--Format

|--NameSpace

|--Reference

|--Version

 Property Declaration

[Visual Basic]

Property Version As String

[C++]

HRESULT get_Version(

BSTR* Version

);

 Parameters

Version

[out, retval] In C++, contains the version. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the version.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with no default value.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBizTalkLoggingInfo
Configures the document-logging information for an associated IBizTalkChannel object.

 Hierarchy

IDispatch

|--IBizTalkLoggingInfo

 Declaration

[Visual Basic]

Class BizTalkLoggingInfo

[C++]

interface IBizTalkLoggingInfo : IDispatch

 Members

IBizTalkLoggingInfo defines the following properties:
Property Description
LogNativeInputDocument Contains a value that indicates whether the input document instance is saved and logged in its nat

ive format.
LogNativeOutputDocument Contains a value that indicates whether the output document instance is saved and logged in its n

ative format.
LogXMLInputDocument Contains a value that indicates whether the XML input document is saved and logged.
LogXMLOutputDocument Contains a value that indicates whether the XML output document is saved and logged.

 Remarks

The IBizTalkLoggingInfo object is automatically created when an IBizTalkChannel object is instantiated with the
CreateChannel method of the IBizTalkConfig object. You can access the IBizTalkLoggingInfo object by using the
LoggingInfo property of the IBizTalkChannel object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Document Storage

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

LogNativeInputDocument Property
Contains a value that indicates whether the input document instance is saved and logged in its native format.

 Member List

IBizTalkLoggingInfo

|--LogNativeInputDocument

|--LogNativeOutputDocument

|--LogXMLInputDocument

|--LogXMLOutputDocument

 Property Declaration

[Visual Basic]

Property LogNativeInputDocument As Boolean

[C++]

HRESULT get_LogNativeInputDocument(

VARIANT_BOOL* LogNativeInDoc

);

HRESULT put_LogNativeInputDocument(

VARIANT_BOOL LogNativeInDoc

);

 Parameters

LogNativeInDoc

[out, retval], [in] In C++, contains a value that indicates whether or not the input documents will be saved and logged in their
native format. VARIANT_TRUE indicates that the input documents will be saved and logged in their native formats;
VARIANT_FALSE indicates that the input documents will not be saved and logged in their native formats. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the input documents will be saved and logged in their
native format. True indicates that the input documents will be saved and logged in their native formats; False indicates that the
input documents will not be saved and logged in their native formats.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

In C++, this property has a default value of VARIANT_FALSE. In Visual Basic, this property has a default value of False.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Document Storage

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

LogNativeOutputDocument Property
Contains a value that indicates whether the output document instance is saved and logged in its native format.

 Member List

IBizTalkLoggingInfo

|--LogNativeInputDocument

|--LogNativeOutputDocument

|--LogXMLInputDocument

|--LogXMLOutputDocument

 Property Declaration

[Visual Basic]

Property LogNativeOutputDocument As Boolean

[C++]

HRESULT get_LogNativeOutputDocument(

VARIANT_BOOL* LogNativeOutDoc

);

HRESULT put_LogNativeOutputDocument(

VARIANT_BOOL LogNativeOutDoc

);

 Parameters

LogNativeOutDoc

[out, retval], [in] In C++, contains a value that indicates whether or not the output documents will be saved and logged in their
native format. VARIANT_TRUE indicates that the output documents will be saved and logged in their native formats;
VARIANT_FALSE indicates that the output documents will not be saved and logged in their native formats. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the output documents will be saved and logged in their
native format. True indicates that the output documents will be saved and logged in their native formats; False indicates that the
output documents will not be saved and logged in their native formats.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

In C++, this property has a default value of VARIANT_FALSE. In Visual Basic, this property has a default value of False.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Document Storage

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

LogXMLInputDocument Property
Contains a value that indicates whether the XML input document is saved and logged.

 Member List

IBizTalkLoggingInfo

|--LogNativeInputDocument

|--LogNativeOutputDocument

|--LogXMLInputDocument

|--LogXMLOutputDocument

 Property Declaration

[Visual Basic]

Property LogXMLInputDocument As Boolean

[C++]

HRESULT get_LogXMLInputDocument(

VARIANT_BOOL* LogXMLInDoc

);

HRESULT put_LogXMLInputDocument(

VARIANT_BOOL LogXMLInDoc

);

 Parameters

LogXMLInDoc

[out, retval], [in] In C++, contains a value that indicates whether or not the input documents will be saved and logged in XML
format. VARIANT_TRUE indicates that the input documents will be saved and logged in XML format; VARIANT_FALSE indicates
that the input documents will not be saved and logged in XML format. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the input documents will be saved and logged in XML
format. VARIANT_TRUE indicates that the input documents will be saved and logged in XML format; VARIANT_FALSE indicates
that the input documents will not be saved and logged in XML format.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

In C++, this property has a default value of VARIANT_FALSE. In Visual Basic, this property has a default value of False.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Document Storage

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

LogXMLOutputDocument Property
Contains a value that indicates whether the XML output document is saved and logged.

 Member List

IBizTalkLoggingInfo

|--LogNativeInputDocument

|--LogNativeOutputDocument

|--LogXMLInputDocument

|--LogXMLOutputDocument

 Property Declaration

[Visual Basic]

Property LogXMLOutputDocument As Boolean

[C++]

HRESULT get_LogXMLOutputDocument(

VARIANT_BOOL* LogXMLOutDoc

);

HRESULT put_LogXMLOutputDocument(

VARIANT_BOOL LogXMLOutDoc

);

 Parameters

LogXMLOutDoc

[out, retval], [in] In C++, contains a value that indicates whether or not the output documents will be saved and logged in XML
format. VARIANT_TRUE indicates that the output documents will be saved and logged in XML format; VARIANT_FALSE indicates
that the output documents will not be saved and logged in XML format. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the output documents will be saved and logged in XML
format. VARIANT_TRUE indicates that the output documents will be saved and logged in XML format; VARIANT_FALSE indicates
that the output documents will not be saved and logged in XML format.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

In C++, this property has a default value of VARIANT_FALSE. In Visual Basic, this property has a default value of False.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Document Storage

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IBizTalkOrganization
Configures an organization, its organization identifiers (aliases), and the applications within the organization that send and/or
receive documents. The application indicates the ultimate source or destination of the document.

 Hierarchy

IDispatch

|--IBizTalkBase

 |--IBizTalkOrganization

 Declaration

[Visual Basic]

Class BizTalkOrganization

[C++]

interface IBizTalkOrganization : IBizTalkBase

 Members

IBizTalkOrganization defines the following properties:
Property Description
Aliases Contains an ADO recordset of aliases that refer to the object.
Applications Contains an ADO recordset of applications that refer to the object.
Comments Contains user comments for the object.
DateModified Contains the date and time at which the information in the object was created or last modified.
Handle Contains the handle to the object.
IsDefault Contains a value that indicates whether the object is the default organization.
Name Contains the name of the object.

IBizTalkOrganization defines the following methods:

Method Description
Clear Clears the object from memory.
Create Creates a new object in the database.
CreateAlias Creates an alias for the object.
CreateApplication Creates a new application.
GetDefaultAlias Retrieves the default alias for the object.
Load Loads a specified object in memory.
LoadAlias Loads an existing alias for the object in memory.
LoadApplication Loads an application in memory.
LoadByName Loads a specified object by name in memory.
Remove Removes the object from the database.
RemoveAlias Removes an alias.
RemoveApplication Removes an application.
Save Saves the object in the database.
SaveAlias Saves the alias.
SaveApplication Saves the application.

 Remarks

An IBizTalkOrganization object can have more than one application, but each application name must be unique for that object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Aliases Property
Contains an ADO recordset of aliases that refer to the object.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Property Declaration

[Visual Basic]

Property Aliases As Object

[C++]

HRESULT get_Aliases(

IDispatch** AliasesDisp

);

 Parameters

AliasesDisp

[out, retval] Contains all aliases that refer to the object. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns all aliases that refer to the object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with no default value.

The alias for an object is the organization qualifier/value pair. BizTalk Messaging Manager refers to aliases as identifiers.

Each record in the ADO recordset returned by this property contains information about the aliases of an existing

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IBizTalkOrganization object in the database. The fields in each record contain the following information, listed in order:

Handle assigned to the alias.

Name specified in the CreateAlias method.

Boolean specified in the CreateAlias method.

Qualifier specified in the CreateAlias method.

Value specified in the CreateAlias method.

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

Applications Property
Contains an ADO recordset of applications that refer to the object.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Property Declaration

[Visual Basic]

Property Applications As Object

[C++]

HRESULT get_Applications(

IDispatch** ApplicationsDisp

);

 Parameters

ApplicationsDisp

[out, retval] Contains all applications that refer to the object. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns all applications that refer to the object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about the applications of an existing
IBizTalkOrganization object in the database. The fields in each record contain the following information, listed in order:

Handle assigned to the application.

Name specified in the CreateApplication method.

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

Comments Property
Contains user comments for the object.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Property Declaration

[Visual Basic]

Property Comments As String

[C++]

HRESULT get_Comments(

BSTR* Comments

);

HRESULT put_Comments(

BSTR Comments

);

 Parameters

Comments

[out, retval], [in] In C++, contains the comments. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the comments.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This property has a default value of an empty string ("").

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

CreateAlias Method
Creates an alias for the object.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Method Declaration

[Visual Basic]

Sub CreateAlias(_

Name As String, _

Default As Boolean, _

Qualifier As String, _

Value As String _

)

[C++]

HRESULT CreateAlias(

BSTR Name,

VARIANT_BOOL Default,

BSTR Qualifier,

BSTR Value

);

 Parameters

Name

[in] Contains the name of the alias.

Default

[in] In Visual Basic, contains a value that indicates whether or not this default alias overrides the previous default alias. True
indicates that this default alias overrides the previous default alias; False indicates that this default alias should not override the
previous default alias. If no alias is specified as the default, one is assigned when the Create method is called.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

[in] In C++, contains a value that indicates whether or not this default alias overrides the previous default alias. VARIANT_TRUE
indicates that this default alias overrides the previous default alias; VARIANT_FALSE indicates that this default alias should not
override the previous default alias. If no alias is specified as the default, one is assigned when the Create method is called.

Qualifier

[in] Contains the qualifier. This parameter cannot be set to "group".

Value

[in] Contains the value.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The alias for an object is the organization identifier that contains a name and a qualifier/value pair.

More than one alias can be created for an IBizTalkOrganization object. The organization alias must contain a name that is
unique for the specified IBizTalkOrganization object, and a qualifier/value pair that is unique across all IBizTalkOrganization
objects. One of these aliases must be specified as the default alias for the object.

The server automatically creates an alias named Organization with a default identifier of OrganizationName and the value set to
the organization's name for new organizations. If the organization name is changed, the value is automatically updated with the
new name. This alias cannot be removed.

 Note

When using envelopes with an EDIFACT format and you want to use a null value for the empty qualifier in the header for
the source or the destination, create a custom identifier with a single dash (-) as the qualifier.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

CreateApplication Method
Creates a new application.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Method Declaration

[Visual Basic]

Sub CreateApplication(_

Name As String _

)

[C++]

HRESULT CreateApplication(

BSTR Name

);

 Parameters

Name

[in] Contains the name of the application.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

If an IBizTalkOrganization object is associated with more than one application, each application name must be unique.

 Notes

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Messaging Manager refers to the default organization as the home organization.

BizTalk Messaging Manager allows applications to be created for the home organization only. The BizTalk Messaging
Configuration object model does not enforce this restriction. Therefore, if you create an application for an organization
other than the default (home) organization, you cannot modify it using BizTalk Messaging Manager.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

GetDefaultAlias Method
Retrieves the default alias for the object.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Method Declaration

[Visual Basic]

Function GetDefaultAlias() As Long

[C++]

HRESULT GetDefaultAlias(

long* AliasHandle

);

 Parameters

AliasHandle

[out, retval] Contains the handle. This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this method returns the handle.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The default alias for an object is the default organization identifier type/value pair.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IsDefault Property
Contains a value that indicates whether the object is the default organization.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Property Declaration

[Visual Basic]

Property IsDefault() As Boolean

[C++]

HRESULT get_IsDefault(

VARIANT_BOOL* IsDefault

);

 Parameters

IsDefault

In C++, contains a value that indicates whether or not this organization is the default organization. VARIANT_TRUE indicates that
this organization is the default organization; VARIANT_FALSE indicates that this organization is not the default organization. This
parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not this organization is the default organization. True
indicates that this organization is the default organization; False indicates that this organization is not the default organization.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property. There must be one and only one default organization at any time.

 Note

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Messaging Manager refers to the default organization as the home organization.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

LoadAlias Method
Loads an existing alias for the object in memory.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Method Declaration

[Visual Basic]

Sub LoadAlias(_

AliasHandle As Long, _

Name As Variant, _

Default As Variant, _

Qualifier As Variant, _

Value As Variant _

)

[C++]

HRESULT LoadAlias(

long AliasHandle,

VARIANT* Name,

VARIANT* Default,

VARIANT* Qualifier,

VARIANT* Value

);

 Parameters

AliasHandle

[in] Contains the handle to the alias.

Name

[in, out] Contains the name of the organization identifier.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Default

[in, out] Contains the default flag.

Qualifier

[in, out] Contains the qualifier of the organization identifier.

Value

[in, out] Contains the value of the organization identifier.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The alias for an object is the organization qualifier/value pair.

The values used with the parameters of this method can be obtained from the Aliases property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

LoadApplication Method
Loads an application in memory.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Method Declaration

[Visual Basic]

Sub LoadApplication(_

ApplicationHandle As Long, _

Name As Variant _

)

[C++]

HRESULT LoadApplication(

long ApplicationHandle,

VARIANT* Name

);

 Parameters

ApplicationHandle

[in] Contains the application handle.

Name

[in, out] Contains the name of the application.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The values used with the parameters of this method can be obtained from the Applications property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

RemoveAlias Method
Removes an alias.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Method Declaration

[Visual Basic]

Sub RemoveAlias(_

AliasHandle As Long _

)

[C++]

HRESULT RemoveAlias(

long AliasHandle

);

 Parameters

AliasHandle

[in] Contains the handle to the alias.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This record cannot be removed if any of the following conditions apply:

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

An IBizTalkPort or an IBizTalkChannel object refers to it.

It has been designated the default organization identifier.

This alias was autogenerated.

The alias handle can be obtained from the Aliases property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

RemoveApplication Method
Removes an application.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Method Declaration

[Visual Basic]

Sub RemoveApplication(_

ApplicationHandle As Long _

)

[C++]

HRESULT RemoveApplication(

long ApplicationHandle

);

 Parameters

ApplicationHandle

[in] Contains the handle.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This record cannot be removed if an IBizTalkPort or an IBizTalkChannel object refers to it.

The application handle can be obtained from the Applications property.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SaveAlias Method
Saves the alias.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Method Declaration

[Visual Basic]

Sub SaveAlias(_

AliasHandle As Long, _

Name As String, _

Default As Boolean, _

Qualifier As String, _

Value As String _

)

[C++]

HRESULT SaveAlias(

long AliasHandle,

BSTR Name,

VARIANT_BOOL Default,

BSTR Qualifier,

BSTR Value

);

 Parameters

AliasHandle

[in] Contains the handle to the alias.

Name

[in] Contains the name of the organization identifier. This parameter cannot be changed if this alias was autogenerated.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Default

[in] In Visual Basic, contains a value that indicates whether or not this is the default alias for the organization. True indicates that
this is the default alias for the organization; False indicates that this is not the default alias for the organization.

[in] In C++, contains a value that indicates whether or not this is the default alias for the organization. VARIANT_TRUE indicates
that this is the default alias for the organization; VARIANT_FALSE indicates that this is not the default alias for the organization.

Qualifier

[in] Contains the qualifier of the organization identifier. This parameter cannot be changed if this alias was autogenerated. This
parameter cannot be set to "group".

Value

[in] Contains the value of the organization identifier. This parameter cannot be changed if this alias was autogenerated.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The alias for an object is the organization identifier type/value pair.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Organizations

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SaveApplication Method
Saves the application.

 Member List

IBizTalkOrganization

|--Aliases

|--Applications

|--Comments

|--CreateAlias

|--CreateApplication

|--GetDefaultAlias

|--IsDefault

|--LoadAlias

|--LoadApplication

|--RemoveAlias

|--RemoveApplication

|--SaveAlias

|--SaveApplication

 Method Declaration

[Visual Basic]

Sub SaveApplication(_

ApplicationHandle As Long, _

Name As String _

)

[C++]

HRESULT SaveApplication(

long ApplicationHandle,

BSTR Name

);

 Parameters

ApplicationHandle

[in] Contains the handle to the application.

Name

[in] Contains the name of the application.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IBizTalkPort
Configures a one-way transfer of a document between organizations and applications. It identifies the source organization and/or
application, the destination organization and/or application, the primary transport type, and, if selected, the associated envelope
for transmission.

 Hierarchy

IDispatch

|--IBizTalkBase

 |--IBizTalkPort

 Declaration

[Visual Basic]

Class BizTalkPort

[C++]

interface IBizTalkPort : IBizTalkBase

 Members

IBizTalkPort defines the following properties:
Property Description
Channels Contains an ADO recordset that includes information about all IBizTalkChannel objects that refer to

the object.
Comments Contains the user comments for the IBizTalkPort object.
ControlNumberValue Contains the value of the interchange control number.
DateModified Contains the date and time at which the information in the object was created or last modified.
Delimiters Contains an IDictionary object that includes all delimiters used in the document specification.
DestinationEndpoint Contains information about the destination.
EncodingType Contains an enumeration value that indicates the type of document encoding.
EncryptionCertificateInfo Contains information about the certificate that encrypts the document.
EncryptionType Contains an enumeration value that indicates the type of document encryption.
Envelope Contains a handle to the IBizTalkEnvelope object associated with this IBizTalkPort object.
Handle Contains the handle to the object.
Name Contains the name of the object.
PrimaryTransport Contains the primary transport component information.
SecondaryTransport Contains the secondary transport component information.
ServiceWindowInfo Contains the service window information.
SignatureType Contains an enumeration value that indicates the type of digital signing and verification.

IBizTalkPort defines the following methods:

Method Description
Clear Clears the object from memory.
Create Creates a new object in the database.
Load Loads a specified object in memory.
LoadByName Loads a specified object by name in memory.
Remove Removes the object from the database.
Save Saves the object in the database.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Related Topics

Document Processing

Messaging Ports

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Channels Property
Contains an ADO recordset that includes information about all IBizTalkChannel objects that refer to the object.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property Channels() As Object

[C++]

HRESULT get_Channels(

IDispatch** ChannelsDisp

);

 Parameters

ChannelsDisp

[out, retval] Contains the IBizTalkChannel objects that refer to the object.

 Return Values

In Visual Basic, this property returns the IBizTalkChannel objects that refer to the object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property with no default value.

Each record in the ADO recordset returned by this property contains information about the IBizTalkChannel objects in the
database that are associated with this IBizTalkPort object. The fields in each record contain the following information, listed in
order:

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Handle

Name

A unique channel identifier, in GUID format.

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2002 ~ Developer Solutions

Comments Property
Contains the user comments for the IBizTalkPort object.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property Comments As String

[C++]

HRESULT get_Comments(

BSTR* Comments

);

HRESULT put_Comments(

BSTR Comments

);

 Parameters

Comments

[out, retval], [in] In C++, contains the comments. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the comments.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This property has a default value of an empty string ("").

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ControlNumberValue Property
Contains the value of the interchange control number.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property ControlNumberValue As String

[C++]

HRESULT get_ControlNumberValue(

BSTR* ControlNumberValue

);

HRESULT put_ControlNumberValue(

BSTR ControlNumberValue

);

 Parameters

ControlNumberValue

[out, retval], [in] In C++, contains the interchange control number. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property the interchange control number.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

The ControlNumberValue property must contain a value between 1 and 999999999. This property has no default value.

This is a required property if the Format property of the associated IBizTalkEnvelope object is set to "x12", "edifact", or
"custom". This constraint is not enforced for this release, but the server fails if it is not adhered to.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Delimiters Property
Contains an IDictionary object that includes all delimiters used in the document specification.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property Delimiters As Object

[C++]

HRESULT get_Delimiters(

IDispatch** DelimitersDisp

);

HRESULT putref_Delimiters(

IDispatch* DelimitersDisp

);

 Parameters

DelimitersDisp

[out, retval], [in] In C++, contains the delimiters. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the delimiters.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This property has no default value. This is a required property for the object to be complete if the Format property of the
associated IBizTalkEnvelope object is set to "x12", "edifact", or "custom". Delimiters specifies which characters to use to
separate data within the envelope and the documents that are sent using this envelope.

The PropertySet property of the associated IBizTalkDocument object must also be defined. The following table shows which
names are required for the delimiters of the IDictionary object for various formats:

Delimiter X12 EDIFACT
Record_delim Yes Yes
Field_delim Yes Yes
Subfield_delim Yes Yes
Escape_char No Yes

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

DestinationEndpoint Property
Contains information about the destination.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property DestinationEndpoint As Object

[C++]

HRESULT get_DestinationEndpoint(

IDispatch** DestEndpointDisp

);

HRESULT putref_DestinationEndpoint(

IDispatch* DestEndpointDisp

);

 Parameters

DestEndpointDisp

[out, retval], [in] In C++, contains information about the destination. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns information about the destination.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This property has no default value. Information provided by this property includes the Alias, Application, and Organization
properties and is created and stored in memory in the IBizTalkEndPoint object.

Once an IBizTalkPort object has been created, the destination IBizTalkOrganization object cannot be changed.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

EncodingType Property
Contains an enumeration value that indicates the type of document encoding.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property EncodingType As BIZTALK_ENCODING_TYPE

[C++]

HRESULT get_EncodingType(

BIZTALK_ENCODING_TYPE* EncodingType

);

HRESULT put_EncodingType(

BIZTALK_ENCODING_TYPE EncodingType

);

 Parameters

EncodingType

[out, retval], [in] In C++, contains the encoding type. Valid values for this parameter are defined by the
BIZTALK_ENCODING_TYPE enumeration. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns a value from the BIZTALK_ENCODING_TYPE enumeration, indicating the encoding type.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Remarks

This property has a default value of BIZTALK_ENCODING_TYPE_NONE. The Clear method sets EncodingType to
BIZTALK_ENCODING_TYPE_NONE.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

EncryptionCertificateInfo Property
Contains information about the certificate that encrypts the document.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property EncryptionCertificateInfo As Object

[C++]

HRESULT get_EncryptionCertificateInfo(

IDispatch** EncryptionCertificateInfoDisp

);

HRESULT putref_EncryptionCertificateInfo(

IDispatch* EncryptionCertificateInfoDisp

);

 Parameters

EncryptionCertificateInfoDisp

[out, retval], [in] In C++, contains the certificate information. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the certificate information.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This property has no default value. Information provided by this property includes the Name, Reference, Store, and Usage
properties and is created and stored in memory in the IBizTalkCertificateInfo object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

EncryptionType Property
Contains an enumeration value that indicates the type of document encryption.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property EncryptionType As BIZTALK_ENCRYPTION_TYPE

[C++]

HRESULT get_EncryptionType(

BIZTALK_ENCRYPTION_TYPE* EncryptionType

);

HRESULT put_EncryptionType(

BIZTALK_ENCRYPTION_TYPE EncryptionType

);

 Parameters

EncryptionType

[out, retval], [in] In C++, contains the encryption type. Valid values for this parameter are defined by the
BIZTALK_ENCRYPTION_TYPE enumeration. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns a value from the BIZTALK_ENCRYPTION_TYPE enumeration, indicating the encoding type.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Remarks

This property has a default value of BIZTALK_ENCRYPTION_TYPE_NONE. The Clear method sets EncryptionType to
BIZTALK_ENCRYPTION_TYPE_NONE.

If the EncryptionType is set to BIZTALK_ENCRYPTION_TYPE_SMIME, then the EncryptionCertificateInfo property must be
set.

For open messaging ports, EncryptionType must be set to BIZTALK_ENCRYPTION_TYPE_NONE.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Envelope Property
Contains a handle to the IBizTalkEnvelope object associated with this IBizTalkPort object.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property Envelope As Long

[C++]

HRESULT get_Envelope(

long* EnvelopeHandle

);

HRESULT put_Envelope(

long EnvelopeHandle

);

 Parameters

EnvelopeHandle

[out, retval], [in] In C++, contains the handle to the object. This parameter is not supported in Visual Basic. For more information,
see "Return Values."

 Return Values

In Visual Basic, this property returns the handle to the object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This property no default value.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Envelopes

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

PrimaryTransport Property
Contains the primary transport component information.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property PrimaryTransport As Object

[C++]

HRESULT get_PrimaryTransport(

IDispatch** TransportInfoDisp

);

HRESULT putref_PrimaryTransport(

IDispatch* TransportInfoDisp

);

 Parameters

TransportInfoDisp

[out, retval], [in] In C++, contains the primary transport component information. This parameter is not supported in Visual Basic.
For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the primary transport component information.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This property has no default value. This is a required property for the object.

Information provided by this property includes the Address, Parameter, and Type properties of the IBizTalkTransportInfo
object.

The following constraints are enforced:

If the Openness property of the associated IBizTalkEndPoint object is set to
BIZTALK_OPENNESS_TYPE_EX_DESTINATION, the Address property cannot be set, and PrimaryTransport must be set
to BIZTALK_TRANSPORT_TYPE_OPENDESTINATION. The IBizTalkServiceWindowInfo object cannot be used with
open destination ports.

Once an IBizTalkPort object has been created, the Openness property of the associated IBizTalkEndPoint object cannot
be changed.

The Openness property cannot be set to BIZTALK_OPENNESS_TYPE_EX_SOURCE or
BIZTALK_OPENNESS_TYPE_EX_FROMWORKFLOW.

When using a Type of BIZTALK_TRANSPORT_TYPE_LOOPBACK, the primary and secondary transport Address property
cannot be set, and the IBizTalkServiceWindowInfo object cannot be used.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SecondaryTransport Property
Contains the secondary transport component information.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property SecondaryTransport As Object

[C++]

HRESULT get_SecondaryTransport(

IDispatch** TransportInfoDisp

);

HRESULT putref_SecondaryTransport(

IDispatch* TransportInfoDisp

);

 Parameters

TransportInfoDisp

[out, retval], [in] In C++, contains the secondary transport component information. This parameter is not supported in Visual
Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the secondary transport component information.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This property has no default value. This is a required property for the object to be complete.

Information provided by this property includes the Address, Parameter, and Type properties, and is created and stored in
memory in the IBizTalkTransportInfo object.

The following constraints are enforced:

If the Openness property of the associated IBizTalkEndPoint object is set to
BIZTALK_OPENNESS_TYPE_EX_DESTINATION, the Address property cannot be set, and SecondaryTransport must be
set to BIZTALK_TRANSPORT_TYPE_OPENDESTINATION.

Once an IBizTalkPort object has been created, the Openness property of the associated IBizTalkEndPoint object cannot
be changed.

The Openness property cannot be set to BIZTALK_OPENNESS_TYPE_EX_SOURCE or
BIZTALK_OPENNESS_TYPE_EX_FROMWORKFLOW.

The Type property cannot be set to BIZTALK_TRANSPORT_TYPE_LOOPBACK.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ServiceWindowInfo Property
Contains the service window information.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property ServiceWindowInfo As Object

[C++]

HRESULT get_ServiceWindowInfo(

IDispatch** ServiceWindowInfoDisp

);

HRESULT putref_ServiceWindowInfo(

IDispatch* ServiceWindowInfoDisp

);

 Parameters

ServiceWindowInfoDisp

[out, retval], [in] In C++, contains the service window. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the service window.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This property has no default value. Information provided by this property includes the FromTime, IsEnabled, and ToTime
properties and is created and stored in memory in the IBizTalkServiceWindowInfo object.

If this property is used, the IBizTalkServiceWindowInfo object must specify a valid time range by using the FromTime and
ToTime properties.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SignatureType Property
Contains an enumeration value that indicates the type of digital signing and verification.

 Member List

IBizTalkPort

|--Channels

|--Comments

|--ControlNumberValue

|--Delimiters

|--DestinationEndpoint

|--EncodingType

|--EncryptionCertificateInfo

|--EncryptionType

|--Envelope

|--PrimaryTransport

|--SecondaryTransport

|--ServiceWindowInfo

|--SignatureType

 Property Declaration

[Visual Basic]

Property SignatureType As BIZTALK_SIGNATURE_TYPE

[C++]

HRESULT get_SignatureType(

BIZTALK_SIGNATURE_TYPE* SignatureType

);

HRESULT put_SignatureType(

BIZTALK_SIGNATURE_TYPE SignatureType

);

 Parameters

SignatureType

[out, retval], [in] In C++, contains the signature type. Valid values for this parameter are defined by the
BIZTALK_SIGNATURE_TYPE enumeration. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns a value from the BIZTALK_SIGNATURE_TYPE enumeration, indicating the encoding type.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Remarks

This property has a default value of BIZTALK_SIGNATURE_TYPE_NONE. The Clear method sets SignatureType to
BIZTALK_SIGNATURE_TYPE_NONE.

IBizTalkPort objects associated with open channels cannot have a SignatureType.

If the SignatureType on an IBizTalkPort object is changed from BIZTALK_SIGNATURE_TYPE_NONE to
BIZTALK_SIGNATURE_TYPE_SMIME, all channels associated with this IBizTalkPort object must have already been saved with
SignatureCertificateInfo. Also, if a IBizTalkChannel contains a SignatureCertificateInfo object and the SignatureType of
the IBizTalkPort is set to BIZTALK_SIGNATURE_TYPE_NONE, the signature will be ignored.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IBizTalkPortGroup
Configures port groups that are used to distribute the same document to many organizations.

 Hierarchy

IDispatch

|--IBizTalkBase

 |--IBizTalkPortGroup

 Declaration

[Visual Basic]

Class BizTalkPortGroup

[C++]

interface IBizTalkPortGroup : IBizTalkBase

 Members

IBizTalkPortGroup defines the following properties:
Property Description
Channels Contains an ADO recordset that contains information about all IBizTalkChannel objects that refer to this object.
DateModified Contains the date and time at which the information in the object was created or last modified.
Handle Contains the handle to the object.
Name Contains the name of the object.
Ports Contains an ADO recordset that contains information about all IBizTalkPort objects that refer to this object.

IBizTalkPortGroup defines the following methods:

Method Description
AddPort Adds an IBizTalkPort object to this port group. There must be at least one IBizTalkPort object in the port group.
Clear Clears the object from memory.
Create Creates a new object in the database.
Load Loads a specified object in memory.
LoadByName Loads a specified object by name in memory.
Remove Removes the object from the database.
RemovePort Removes an IBizTalkPort object from the port group. There must be at least one IBizTalkPort object in the port

group.
Save Saves the object in the database.

 Remarks

There must always be at least one IBizTalkPort object and one IBizTalkChannel object associated with a
IBizTalkPortGroupobject. The IBizTalkChannel object is associated with the IBizTalkPortGroup object, not the IBizTalkPort
object within the group. Each IBizTalkPort object within the group has another IBizTalkChannel object or objects associated
with it, but these are ignored when the port group channel is invoked.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Distribution List

Port Groups

Submitting Documents to a Port Group

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

AddPort Method
Adds an IBizTalkPort object to this port group. There must be at least one IBizTalkPort object in the port group.

 Member List

IBizTalkPortGroup

|--AddPort

|--Channels

|--Ports

|--RemovePort

 Method Declaration

[Visual Basic]

Sub AddPort(_

PortHandle As Long _

)

[C++]

HRESULT AddPort(

long PortHandle

);

Parameters

PortHandle

[in] Contains the handle to the object.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The following constraints apply to this method:

There must be at least one IBizTalkPort in this IBizTalkPortGroup object.

The Openness property of the associated BizTalkEndPoint object to be added must be set to
BIZTALK_OPENNESS_TYPE_NOTOPEN.

The port group specified by this object cannot contain any duplicate IBizTalkPort objects.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Channels Property
Contains an ADO recordset that contains information about all IBizTalkChannel objects that refer to this object.

 Member List

IBizTalkPortGroup

|--AddPort

|--Channels

|--Ports

|--RemovePort

 Property Declaration

[Visual Basic]

Property Channels As Object

[C++]

HRESULT get_Channels(

IDispatch** ChannelsDisp

);

 Parameters

ChannelsDisp

[out, retval] Contains an ADO recordset that contains all IBizTalkChannel objects that refer to the object. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns an ADO recordset that contains all IBizTalkChannel objects that refer to the object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. Each record in the ADO recordset returned by this property contains information about the
IBizTalkChannel objects in the database that are associated with this IBizTalkPortGroup object. The fields in each record
contain the following information, listed in order:

Handle

Name

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Ports Property
Contains an ADO recordset that contains information about all IBizTalkPort objects that refer to this object.

 Member List

IBizTalkPortGroup

|--AddPort

|--Channels

|--Ports

|--RemovePort

 Property Declaration

[Visual Basic]

Property Ports As Object

[C++]

HRESULT Ports(

IDispatch** PortsDisp

);

 Parameters

PortsDisp

[out, retval] Contains an ADO recordset that includes all IBizTalkPort objects that refer to the object. This parameter is not
supported in Visual Basic. For more information, see "Return Values.

 Return Values

In Visual Basic, this property returns an ADO recordset that includes all IBizTalkPort objects that refer to the object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. Each record in the ADO recordset returned by this property contains information about the
IBizTalkPort objects in the database that are associated with this IBizTalkPortGroup object. The fields in each record contain the
following information, listed in order:

Handle

Name

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

RemovePort Method
Removes an IBizTalkPort object from the port group. There must be at least one IBizTalkPort object in the port group.

 Member List

IBizTalkPortGroup

|--AddPort

|--Channels

|--Ports

|--RemovePort

 Method Declaration

[Visual Basic]

Sub RemovePort(_

PortHandle As Long _

)

[C++]

HRESULT RemovePort(

long PortHandle

);

 Parameters

PortHandle

[in] Contains the handle to the object to remove.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The last IBizTalkPort object associated with the object cannot be removed. An IBizTalkPort object cannot be removed if an
IBizTalkChannel object refers to it.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBizTalkServiceWindowInfo
Configures the service window for an associated IBizTalkPort object. The service window indicates a valid time range for
transmitting documents.

 Hierarchy

IDispatch

|--IBizTalkServiceWindowInfo

 Declaration

[Visual Basic]

Class BizTalkServiceWindowInfo

[C++]

interface IBizTalkServiceWindowInfo : IDispatch

 Members

IBizTalkServiceWindowInfo defines the following properties:
Property Description
FromTime Contains the earliest time that the interchange can be transmitted.
IsEnabled Contains a value that indicates whether the service window is enabled.
ToTime Contains the latest time that the interchange can be transmitted.

 Remarks

The IBizTalkServiceWindowInfo object is automatically created when an IBizTalkPort object is instantiated with the
CreatePort method of the IBizTalkConfig object. Access the properties of the IBizTalkServiceWindowInfo object by using the
ServiceWindowInfo property of the IBizTalkPort object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

FromTime Property
Contains the earliest time that the interchange can be transmitted.

 Member List

IBizTalkServiceWindowInfo

|--FromTime

|--IsEnabled

|--ToTime

 Property Declaration

[Visual Basic]

Property FromTime As String

[C++]

HRESULT get_FromTime(

BSTR* FromTime

);

HRESULT put_Comments(

BSTR FromTime

);

 Parameters

FromTime

[out, retval], [in] In C++, contains the earliest time that the interchange can be transmitted. This parameter is not supported in
Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the earliest time that the interchange can be transmitted.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. The FromTime property must contain an integer value between 0 and 23. Fractional values
and minutes cannot be specified. Service window hours are displayed in the coordinated universal time (UTC) format and reflect
the time on the database server.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IsEnabled Property
Contains a value that indicates whether the service window is enabled.

 Member List

IBizTalkServiceWindowInfo

|--FromTime

|--IsEnabled

|--ToTime

 Property Declaration

[Visual Basic]

Property IsEnabled As Boolean

[C++]

HRESULT get_IsEnabled(

VARIANT_BOOL* IsEnabled

);

HRESULT put_IsEnabled(

_BOOL IsEnabled

);

 Parameters

IsEnabled

[out, retval], [in] In C++, contains a value that indicates whether or not a service window is enabled. VARIANT_TRUE indicates that
the service window is enabled; VARIANT_FALSE indicates that the service window is not enabled. This parameter is not supported
in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not a service window is enabled. True indicates that the
service window is enabled; False indicates that the service window is not enabled.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

In C++, this property has a default value of VARIANT_FALSE. In Visual Basic, this property has a default value of False.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

ToTime Property
Contains the latest time that the interchange can be transmitted.

 Member List

IBizTalkServiceWindowInfo

|--FromTime

|--IsEnabled

|--ToTime

 Property Declaration

[Visual Basic]

Property ToTime As String

[C++]

HRESULT get_ToTime(

BSTR* ToTime

);

HRESULT put_ToTime(

BSTR ToTime

);

 Parameters

ToTime

[out, retval], [in] In C++, contains the latest time that the interchange can be transmitted. This parameter is not supported in Visual
Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the latest time that the interchange can be transmitted.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. The ToTime property must contain an integer value between 0 and 23. Fractional values and
minutes cannot be specified. Service window hours are displayed in the coordinated universal time (UTC) format and reflect the
time on the database server.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBizTalkTransportInfo
Configures the transport service for an associated IBizTalkPort object.

 Hierarchy

IDispatch

|--IBizTalkTransportInfo

 Declaration

[Visual Basic]

Class BizTalkTransportInfo

[C++]

interface IBizTalkTransportInfo : IDispatch

 Members

IBizTalkTransportInfo defines the following properties:
Property Description
Address Contains the destination address of the primary transport component.
Parameter Contains the required return e-mail address for the associated source IBizTalkOrganization object if the Type prop

erty is BIZTALK_TRANSPORT_
TYPE_SMTP.

Type Contains an enumeration value that indicates the type of transport component to be used for the primary transport.

 Remarks

The IBizTalkTransportInfo object is automatically created when an IBizTalkPort object is instantiated with the CreatePort
method of the IBizTalkConfig object.

Access the IBizTalkTransportInfo object by using the PrimaryTransport or SecondaryTransport property of the IBizTalkPort
object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Address Property
Contains the destination address of the primary transport component.

 Member List

IBizTalkTransportInfo

|--Address

|--Parameter

|--Type

 Property Declaration

[Visual Basic]

Property Address As String

[C++]

HRESULT get_Address(

BSTR* TransportAddress

);

HRESULT put_Address(

BSTR TransportAddress

);

 Parameters

TransportAddress

[out, retval], [in] In C++, contains the address. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the address.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. If the Openness property of the associated IBizTalkEndPoint object is set to
BIZTALK_OPENNESS_TYPE_DESTINATION, Address cannot be set, and the Type property must be set to
BIZTALK_TRANSPORT_TYPE_OPENDESTINATION.

Address must have one of the following prefixes, according to the Type property:

Transport type Prefix Example Address value
APPINTEGRATION Not applicable {11111111-1111-1111-1111-111111111111}
FILE file:// file://C:\Test\MyFile.xml
HTTP http:// http://www.adatum.com/repository/bts.asp
HTTPS https:// https://www.adatum.com/secure/btss.asp
LOOPBACK Not applicable Not applicable
MSMQ Not applicable DIRECT=OS:.\private$\myqueue
NONE Not applicable Not applicable
OPENDESTINATION Not applicable Not applicable

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

ORCHESTRATIONACTIVATION Not applicable C:\XLANG\Schedules\mysched.skx
SMTP mailto: mailto:patricia@adatum.com

 Notes

The queue:// prefix must be used with an open messaging port when a Message Queue is specified as the destination
address. For open messaging ports, the address is specified either in the document instance or as a parameter when
submitting the document. For more information, see Routing.

When using the Orchestration Activation Component transport type, the Address property must contain the full path of the
XLANG schedule on the local computer. The file:// prefix cannot be used when specifying the path of the XLANG schedule
(.skx) file.

When using the HTTP or HTTPS transport types, BizTalk Server sends the data using a proxy server by default. This is the
correct setting to transport data to computers outside of your company's firewall. However, when sending data within your
company's intranet, you can bypass the use of a proxy server. To do this, you must set the UseProxy field to False in the
transport dictionary. For more information, see SetConfigData.

When using the file:// transport type, you can include symbols to modify the file name. The file name created by the server
contains any static characters you specified in the Address property, along with the actual value of the symbol. For example, if the
Address property is set to "file://C:\Orders\Invoice_%tracking_id%.xml", the actual file name would use a format similar to:
C:\Orders\Invoice_{12345678-90AB-CDEF-1234-567890ABCDEF}. The following table contains the symbols that can be used with
the file:// transport type:

Symbol Description Unique file n
ame

%datetime% Date and time, in milliseconds, of the file creation. The time is based on Greenwich Mean Time (G
MT) rather than local time.

No

%src_filename
%

Name of the source document processed by BizTalk Server. No

%src_filepath% This value is not supported. Not applicable
%document_na
me%

Name of the document definition used to process the source file. No

%server% Host name of the server that processed the document. No
%tracking_id% Globally unique tracking number. Yes
%uid% Counter that increases over time, represented in milliseconds. This number is reset when the serv

er is rebooted.
No

When sending reliable messaging receipts that use the SMTP transport protocol, the value specified in the identifier named
Reliable Messaging Acknowledgement SMTP From Address is used as the From address. This identifier is automatically created
for the default IBizTalkOrganization object. This identifier cannot be removed. You should not modify the name or qualifier for
this identifier, but you can modify the value. For more information, see Processing Receipts Using Reliable Messaging.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Parameter Property
Contains the required return e-mail address of the associated source IBizTalkOrganization object if the Type property is set to
BIZTALK_TRANSPORT_TYPE_SMTP.

 Member List

IBizTalkTransportInfo

|--Address

|--Parameter

|--Type

 Property Declaration

[Visual Basic]

Property Parameter As String

[C++]

HRESULT get_Parameter(

BSTR* PrimaryTransportParameter

);

HRESULT put_Parameter(

BSTR PrimaryTransportParameter

);

 Parameters

PrimaryTransportParameter

[out, retval], [in] In C++, contains the required return e-mail address. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the required return e-mail address.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has a default value of an empty string ("").

BizTalk Server 2002 ~ Developer Solutions

Type Property
Contains an enumeration value that indicates the type of transport component to be used for the primary transport.

 Member List

IBizTalkTransportInfo

|--Address

|--Parameter

|--Type

 Property Declaration

[Visual Basic]

Property Type As BIZTALK_TRANSPORT_TYPE

[C++]

HRESULT get_Type(

BIZTALK_TRANSPORT_TYPE* TransportType

);

HRESULT put_Type(

BIZTALK_TRANSPORT_TYPE TransportType

);

 Parameters

TransportType

[out, retval], [in] In C++, contains the transport type. Valid values for this parameter are defined by the
BIZTALK_TRANSPORT_TYPE enumeration. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns a value from the BIZTALK_TRANSPORT_TYPE enumeration, indicating the transport type.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. The following constraints are enforced:

If the Openness property of the associated IBizTalkEndPoint object is set to BIZTALK_OPENNESS_TYPE_DESTINATION,
the Address property cannot be set, and Type must be set to BIZTALK_TRANSPORT_TYPE_OPENDESTINATION.

When using the Message Queuing transport type (BIZTALK_TRANSPORT_TYPE_MSMQ), the following restrictions apply:

When using an envelope, the maximum size of a document submitted to BizTalk Server is 4MB.

When an envelope is not used, the maximum size of a document submitted to BizTalk Server is 2MB.

When using the BIZTALK_TRANSPORT_TYPE_SMTP, the Parameter property must be set to the reply-to SMTP address.

The transport Type of BIZTALK_TRANSPORT_TYPE_ORCHESTRATIONACTIVATION is supported only when the

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Openness property of the associated IBizTalkEndPoint object is set to BIZTALK_OPENNESS_TYPE_TOWORKFLOW.

When using the Orchestration activation component type (BIZTALK_TRANSPORT_TYPE_ORCHESTRATIONACTIVATION),
the maximum size of a document sent to the port on the XLANG schedule is 2MB.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IDictionary
Supports the creation, storage, and retrieval of name/value pairs in memory. This collection object is used by several methods in
the BizTalk Messaging Configuration object model.

 Hierarchy

IDispatch

|--IDictionary

 Declaration

[Visual Basic]

Class CDictionary

[C++]

interface IDictionary : IDispatch

 Members

IDictionary defines the following properties:
Propert
y

Description

Count Contains the number of entries in the IDictionary object.
Prefix Contains the prefix that is used to exclude all entries with that prefix when the contents of the IDictionary object are sa

ved.
Value Contains the value associated with an entry name.

IDictionary defines the following methods:

Method Description
GetMultiple Returns the values of multiple entries from the IDictionary object.
PutMultiple Adds specified entries to the IDictionary object or changes them.

 Remarks

An IDictionary object is designed to be a general-purpose collection. Therefore, it can be used for anything that is supported by
its internal structure. Every value in an IDictionary object is a Variant. This means that an IDictionary object can be created that
consists of almost any kind of value (including other IDictionary objects).

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Count Property
Contains the number of entries in the IDictionary object.

 Member List

IDictionary

|--Count

|--GetMultiple

|--Prefix

|--PutMultiple

|--Value

 Property Declaration

[Visual Basic]

Property Count As Long

[C++]

HRESULT get_Count(

long* Count

);

 Parameters

Count

[out, retval] In C++, contains the count. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the count.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property is read-only with no default value.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

GetMultiple Method
Returns the values of multiple entries from the IDictionary object.

 Member List

IDictionary

|--Count

|--GetMultiple

|--Prefix

|--PutMultiple

|--Value

 Method Declaration

[Visual Basic]

Sub GetMultiple(_

NumberOfEntries As Long, _

Entries As String, _

Values As Variant _

)

[C++]

HRESULT GetMultiple(

long NumberOfEntries,

const LPOLESTR Entries[],

VARIANT Values[]

);

 Parameters

NumberOfEntries

[in] Specifies the number of values to retrieve.

Entries

[in, size_is(cb)] Array of string values that identifies the Dictionary object entries for which the values should be retrieved.

Values

[out, size_is(cb)] Array of VARIANTs. When GetMultiple returns, this array contains the values associated with the Dictionary
object entries identified by the Entries[] array.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

If you call PutMultiple or GetMultiple from Microsoft Visual Basic Scripting Edition (VBScript), these methods fail because they

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

require data types that VBScript does not support.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Prefix Property
Contains the prefix that is used to exclude all entries with that prefix when the contents of the IDictionary object are saved.

 Member List

IDictionary

|--Count

|--GetMultiple

|--Prefix

|--PutMultiple

|--Value

 Property Declaration

[Visual Basic]

Property Prefix As String

[C++]

HRESULT get_Prefix(

BSTR* Prefix

);

HRESULT put_Prefix(

BSTR Prefix

);

 Parameters

Prefix

[out, retval], [in] In C++, contains the prefix. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the prefix.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

Any name/value pair with a name beginning with the specified prefix is not saved to the database. The prefix default is an
underscore (_). Therefore, any keywords that begin with an underscore are not saved unless the prefix is changed.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

PutMultiple Method
Adds specified entries to the IDictionary object or changes them.

 Member List

IDictionary

|--Count

|--GetMultiple

|--Prefix

|--PutMultiple

|--Value

 Method Declaration

[Visual Basic]

Sub PutMultiple(_

NumberOfEntries As Long, _

Entries As String, _

Values As Variant _

)

[C++]

HRESULT PutMultiple(

long NumberOfEntries,

const LPOLESTR Entries[],

const VARIANT Values[]

);

 Parameters

NumberOfEntries

[in] Identifies the number of elements in the rgolestr and rgvar arrays.

Entries

[in, size_is(cb)] Array of strings that contains the names to add to the IDictionary object.

Values

[in, size_is(cb)] Array of VARIANTs that contains the values to add to the IDictionary object.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

A one-to-one mapping exists between the elements of the Entries[] and Values[] arrays. This means that Entries[n] is added to the
IDictionary object and is initialized to Values[n]. If the element specified by Entries[n] is already in the IDictionary object, the

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

value associated with the element is overwritten with the value stored in Values[n].

If you call PutMultiple or GetMultiple from Microsoft Visual Basic Scripting Edition (VBScript), these methods fail because they
require data types that VBScript does not support.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Value Property
Contains the value associated with an entry name.

 Member List

IDictionary

|--Count

|--GetMultiple

|--Prefix

|--PutMultiple

|--Value

 Property Declaration

[Visual Basic]

Property Value(_

Name As String _

)

[C++]

HRESULT get_Value(

BSTR Name,

VARIANT* Value

);

HRESULT put_Value(

BSTR Name,

VARIANT Value

);

 Parameters

Name

[in] Contains the name.

Value

[out, retval] [in] In C++, contains the value. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property optionally returns the value.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property has no default value. The value of an IDictionary object can be read or written to without explicitly using the Value
property by treating the named entry as a property of the IDictionary object.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ISimpleList
Creates an array of variants that supports enumeration.

 Hierarchy

IDispatch

|--ISimpleList

 Declaration

[Visual Basic]

Class CSimpleList

[C++]

interface ISimpleList : IDispatch

 Members

ISimpleList defines the following properties:
Property Description
Count Contains the number of elements in the ISimpleList object.
Item Contains a container for an element of the ISimpleList object.

ISimpleList defines the following methods:

Method Description
Add Adds the specified item to the ISimpleList object.
Delete Deletes the specified item from the ISimpleList object.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Add Method
Adds the specified item to the ISimpleList object.

 Member List

ISimpleList

|--Add

|--Count

|--Delete

|--Item

 Method Declaration

[Visual Basic]

Sub Add(_

Var As Variant _

)

[C++]

HRESULT Add(

VARIANT* Var

);

 Parameters

Var

[in] Contains the object to add to the ISimpleList object.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Count Property
Contains the number of elements in the ISimpleList object.

 Member List

ISimpleList

|--Add

|--Count

|--Delete

|--Item

 Property Declaration

[Visual Basic]

Property Count As Long

[C++]

HRESULT get_Count(

long* Count

);

 Parameters

Count

[out, retval] Contains the number of items in the ISimpleList object. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the number of items in the ISimpleList object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property is read-only with no default value.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Delete Method
Deletes the specified item from the ISimpleList object.

 Member List

ISimpleList

|--Add

|--Count

|--Delete

|--Item

 Method Declaration

[Visual Basic]

Sub Delete(_

Index As Long _

)

[C++]

HRESULT Delete(

long Index

);

 Parameters

Index

[in] Contains the index value of the item to delete.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Item Property
Contains a container for an element of the ISimpleList object.

 Member List

ISimpleList

|--Add

|--Count

|--Delete

|--Item

 Property Declaration

[Visual Basic]

Property Item(_

Index (ISimpleList, Item) As Long _

) As Variant

[C++]

HRESULT get_Item(

long Index (ISimpleList, Item),

VARIANT* Item (ISimpleList, Item)

);

HRESULT put_Item(

long Index,

VARIANT Item

);

HRESULT putref_Item(

long Index,

VARIANT Item

);

 Parameters

Index

[in], [in] In C++, contains the index of the item.

Item

[out, retval], [in] In C++, contains the object used to return the item. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the object used to return the item.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Remarks

This property has no default value. The Item property is a read/write Variant that contains an element of the ISimpleList object.
An initialized Variant is stored at a specified array index. If an item is already stored at the specified index, that item is overwritten
by the put method.

In C++, When putting a value, use the putref_Item method if you are setting an object reference; use the put_Item method if
you are setting a scalar value.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: commerce.h
Library: Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Enumerations
The following enumerations provide possible property and parameter values:

BIZTALK_CONFIGDATA_TYPE

BIZTALK_ENCODING_TYPE

BIZTALK_ENCRYPTION_TYPE

BIZTALK_OPENNESS_TYPE

BIZTALK_OPENNESS_TYPE_EX

BIZTALK_SIGNATURE_TYPE

BIZTALK_STORE_TYPE

BIZTALK_TRANSPORT_TYPE

BIZTALK_USAGE_TYPE

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BIZTALK_CONFIGDATA_TYPE
Configures messaging ports.

[Visual Basic]

Enum BIZTALK_CONFIGDATA_TYPE

[C++]

enum BIZTALK_CONFIGDATA_TYPE

 Members

BIZTALK_CONFIGDATA_TYPE_PRIMARYTRANSPORT

[0] Configures the primary transport on the messaging port.

BIZTALK_CONFIGDATA_TYPE_SECONDARYTRANSPORT

[1] Configures the secondary transport on the messaging port.

BIZTALK_CONFIGDATA_TYPE_ENCRYPTION

[2] Configures the encryption certificate on the messaging port.

BIZTALK_CONFIGDATA_TYPE_ENCODING

[2] Configures the encoding type on the messaging port.

BIZTALK_CONFIGDATA_TYPE_SIGNATURE

[4] Configures the signature verification on the messaging port.

BIZTALK_CONFIGDATA_TYPE_SERIALIZER

[5] Configures the serializer on the messaging port.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

GetConfigComponent

GetConfigData

SetConfigComponent

SetConfigData

Using Custom Components

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BIZTALK_ENCODING_TYPE
Specifies the encoding type.

[Visual Basic]

Enum BIZTALK_ENCODING_TYPE

[C++]

enum BIZTALK_ENCODING_TYPE

 Members

BIZTALK_ENCODING_TYPE_NONE

[1] Specifies that encoding is not used.

BIZTALK_ENCODING_TYPE_MIME

[2] Specifies Multipurpose Internet Mail Extensions (MIME) encoding.

BIZTALK_ENCODING_TYPE_CUSTOM

[3] Specifies custom encoding.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

EncodingType

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BIZTALK_ENCRYPTION_TYPE
Specifies the encryption type.

[Visual Basic]

Enum BIZTALK_ENCRYPTION_TYPE

[C++]

enum BIZTALK_ENCRYPTION_TYPE

 Members

BIZTALK_ENCRYPTION_TYPE_NONE

[1] Specifies that encryption is not used.

BIZTALK_ENCRYPTION_TYPE_CUSTOM

[2] Specifies custom encryption.

BIZTALK_ENCRYPTION_TYPE_SMIME

[4] Specifies Secure Multipurpose Internet Mail Extensions (S/MIME) encryption.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

EncryptionType

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BIZTALK_OPENNESS_TYPE
Specifies the openness type.

[Visual Basic]

Enum BIZTALK_OPENNESS_TYPE

[C++]

enum BIZTALK_OPENNESS_TYPE

 Members

BIZTALK_OPENNESS_TYPE_NOTOPEN

[1] Specifies that this instance of the object is not open.

BIZTALK_OPENNESS_TYPE_SOURCE

[2] Specifies that the source organization of this instance of the object is open.

BIZTALK_OPENNESS_TYPE_DESTINATION

[4] Specifies that the destination organization of this instance of the object is open.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: (cisapi.tlb)

 Related Topics

Openness

Submit

SubmitSync

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BIZTALK_OPENNESS_TYPE_EX
Specifies the openness type.

[Visual Basic]

Enum BIZTALK_OPENNESS_TYPE_EX

[C++]

enum BIZTALK_OPENNESS_TYPE_EX

 Members

BIZTALK_OPENNESS_TYPE_EX_NOTOPEN

[1] Specifies that this instance of the object is not open.

BIZTALK_OPENNESS_TYPE_EX_SOURCE

[2] Specifies that the source organization of this instance of the object is open.

BIZTALK_OPENNESS_TYPE_EX_DESTINATION

[4] Specifies that the destination organization of this instance of the object is open.

BIZTALK_OPENNESS_TYPE_EX_FROMWORKFLOW

[8] Specifies that BizTalk Server is receiving a document from an XLANG schedule instance.

BIZTALK_OPENNESS_TYPE_EX_TOWORKFLOW

[16] Specifies that BizTalk Server is sending a document to an XLANG schedule instance.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Openness

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BIZTALK_SIGNATURE_TYPE
Specifies the signature type.

[Visual Basic]

Enum BIZTALK_SIGNATURE_TYPE

[C++]

enum BIZTALK_SIGNATURE_TYPE

 Members

BIZTALK_SIGNATURE_TYPE_NONE

[1] Specifies that there is no signature.

BIZTALK_SIGNATURE_TYPE_CUSTOM

[2] Specifies the custom signature of the document.

BIZTALK_SIGNATURE_TYPE_SMIME

[4] Specifies the S/MIME signature of the document.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

SignatureType

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BIZTALK_STORE_TYPE
Specifies the store type of the certificate.

[Visual Basic]

Enum BIZTALK_STORE_TYPE

[C++]

enum BIZTALK_STORE_TYPE

 Members

BIZTALK_STORE_TYPE_MY

[1] Specifies that the certificate store is type MY. This store contains certificates authorized only by your organization.

BIZTALK_STORE_TYPE_BIZTALK

[2] Specifies that the certificate is stored in the dedicated BizTalk Server 2002 store.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Certificates

Store

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BIZTALK_TRANSPORT_TYPE
Specifies the transport component type.

[Visual Basic]

Enum BIZTALK_TRANSPORT_TYPE

[C++]

enum BIZTALK_TRANSPORT_TYPE

 Members

BIZTALK_TRANSPORT_TYPE_NONE

[1] Specifies that this instance of the object does not select a transport component.

BIZTALK_TRANSPORT_TYPE_HTTP

[4] Specifies that this instance of the object selects a Hypertext Transfer Protocol (HTTP) transport component.

BIZTALK_TRANSPORT_TYPE_SMTP

[8] Specifies that this instance of the object selects a Simple Mail Transfer Protocol (SMTP) transport component.

BIZTALK_TRANSPORT_TYPE_APPINTEGRATION

[32] Specifies that this instance of the object selects an application integration component (AIC) transport component.

BIZTALK_TRANSPORT_TYPE_MSMQ

[128] Specifies that this instance of the object selects a Microsoft Message Queuing transport component.

BIZTALK_TRANSPORT_TYPE_FILE

[256] Specifies that this instance of the object selects a file as a transport component.

BIZTALK_TRANSPORT_TYPE_HTTPS

[1024] Specifies that this instance of the object selects a Secure Hypertext Transfer Protocol (HTTPS) transport component.

BIZTALK_TRANSPORT_TYPE_OPENDESTINATION

[2048] Specifies that the messaging port is an open destination.

BIZTALK_TRANSPORT_TYPE_LOOPBACK

[4096] Specifies that the document submitted to the server with the SubmitSync method will be processed and then returned
back as the response document of the method.

BIZTALK_TRANSPORT_TYPE_ORCHESTRATIONACTIVATION

[8192] Specifies that the Address property contains the path of an XLANG schedule to be executed.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Type

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

BIZTALK_USAGE_TYPE
Specifies the usage type of the certificate.

[Visual Basic]

Enum BIZTALK_USAGE_TYPE

[C++]

enum BIZTALK_USAGE_TYPE

 Members

BIZTALK_USAGE_TYPE_ENCRYPTION

[1] Specifies that this is an encryption certificate.

BIZTALK_USAGE_TYPE_SIGNATURE

[2] Specifies that this is a signature certificate.

BIZTALK_USAGE_TYPE_BOTH

[4] Specifies that this certificate is used for both encryption and signature.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BizTalkObjectModel.h
Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

 Related Topics

Certificates

Usage

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Documents Reference
This section provides reference information about application programming interfaces (APIs) used by Microsoft
BizTalk Server 2002 for both C++ and Microsoft Visual Basic programming.

Reference information is provided for all interfaces, methods, properties, and enumerations exposed for working with documents:

Interfaces

Enumerations

In addition, a complete list of Error Messages is provided.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Interfaces
The following COM interfaces are documented:

IBizTalkTrackData

IBTSCustomProcess

IBTSCustomProcessContext

IInterchange

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBizTalkTrackData Interface
Use this object to facilitate programmatic access to the tracking information of Microsoft BizTalk Server 2002. This object
complements the IInterchange object so that returns from IInterchange methods can be passed to these methods for reading
tracking data about the documents submitted to BizTalk Server 2002.

 Hierarchy

IDispatch

|--IBizTalkTrackData

 Declaration

[Visual Basic]

Class BTSDocTracking

[C++]

interface IBizTalkTrackData : IDispatch

 Members

IBizTalkTrackData defines the following methods:
Method Description
GetInDocDetails Returns an ADO recordset that contains a list of the documents that were submitted to BizTalk Server by usin

g the Submit method.
GetInterchanges Returns an ADO recordset that contains a list of interchanges that were submitted to BizTalk Server by using

the Submit method, including all the data from the Tracking database.
GetOutDocDetails Returns an ADO recordset that contains a list of the documents that were generated as a result of the

Submit method.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSDocTracking.h
Library: Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

 Related Topics

Understanding the Tracking Database Schema

Document Definitions

Reading the Tracking Database

Document Tracking

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - GetInDocDetails Method

BizTalk Server 2002 ~ Developer Solutions

GetInterchanges Method
Returns an ADO recordset that contains a list of interchanges that were submitted to BizTalk Server by using the Submit method,
including all the data from the Tracking database.

 Member List

IBizTalkTrackData

|--GetInDocDetails

|--GetInterchanges

|--GetOutDocDetails

 Method Declaration

[Visual Basic]

Function GetInterchanges(_

SubmissionID As String _

) As Object

[C++]

HRESULT GetInterchanges(

BSTR SubmissionID ,

IDispatch** Result

);

 Parameters

SubmissionID

[in] Contains the SubmissionHandle string returned by Submit for this interchange.

Result

[out, retval] In C++, an IDispatch interface that contains a list of the interchanges that were included in the submission, including
all the data from the Tracking database. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this method optionally returns an Object that contains a list of interchanges contained in this submission,
including all the data from the Tracking database.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

You can check the Tracking database to confirm or check status on delivery because transport-specific information, such as
delivery times and receipt flags, appears in the Tracking database.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSDocTracking.h
Library: Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

 Related Topics

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Understanding the Tracking Database Schema

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

GetOutDocDetails Method
Returns an ADO recordset that contains a list of the documents that were generated as a result of the Submit method.

 Member List

IBizTalkTrackData

|--GetInDocDetails

|--GetInterchanges

|--GetOutDocDetails

 Method Declaration

[Visual Basic]

Function GetOutDocDetails(_

SubmissionID As String _

) As Object

[C++]

HRESULT GetOutDocDetails(

BSTR SubmissionID ,

IDispatch** Result

);

 Parameters

SubmissionID

[in] Contains the SubmissionHandle string returned by Submit for this document instance.

Result

[out, retval] In C++, an IDispatch interface that contains a list of the documents that were generated as a result of the
submission. This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this method returns an Object that contains a list of the documents that were generated as a result of the
submission.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This method returns specific information for an output document, for example, PO #123456 from a Submit call made on a
specific date.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSDocTracking.h
Library: Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

 Related Topics

Understanding the Tracking Database Schema

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IBTSCustomProcess
Implement IBTSCustomProcess to create a custom preprocessor for BizTalk Server receive functions.

 Hierarchy

IUnknown

|--IBTSCustomProcess

 Declaration

[Visual Basic]

Class IBTSCustomProcess

[C++]

interface IBTSCustomProcess : IUnknown

 Members

IBTSCustomProcess defines the following methods:
Method Description
Execute Performs the custom processing on data obtained from a receive function.
SetContext Retrieves context information associated with the data being processed.

 Remarks

For information about custom preprocessors, see Preprocessing Documents in a Receive Function.

Custom preprocessor components must be properly registered so that Microsoft BizTalk Server 2002 can recognize that they
belong to BizTalk Server 2002. Preprocessor components register themselves with the category ID
CATID_BIZTALK_CUSTOM_PROCESS. The CATIDs are defined in the bts_sdk_guids.h file. For more information, see
Registering Custom Components.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Execute Method
Performs the custom processing on data obtained from a receive function.

 Member List

IBTSCustomProcess

|--Execute

|--SetContext

 Method Declaration

[Visual Basic]

Sub Execute(_

DataIn As Variant, _

CodePageIn As Long, _

IsFilePath As Boolean, _

CodePageOut As Variant, _

DataOut As Variant _

)

[C++]

HRESULT NAME(

VARIANT DataIn,

long CodePageIn,

VARIANT_BOOL IsFilePath,

VARIANT* CodePageOut,

VARIANT* DataOut

);

 Parameters

DataIn

[in] In Visual Basic, contains the input data read by the receive function. For data read from a message queue, the data can be
either an array or a String. If the data is read from a file receive function, this parameter contains the file path. For file receive
functions, the IsFilePath parameter is set to True.

[in] In C++, contains the input data read by the receive function. For data read from a message queue, the data can be either an
array or a BSTR. If the data is read from a file receive function, this parameter contains the file path. For file receive functions, the
IsFilePath parameter is set to VARIANT_TRUE.

CodePageIn

[in] Contains the code page of the input data. The code page indicates the character set and keyboard layout used on a computer.

IsFilePath

[in] In Visual Basic, contains a value that indicates whether or not the DataIn parameter contains a file path. True indicates that the
DataIn parameter contains a file path; False indicates that the DataIn parameter contains data from a message queue receive
function.

[in] In C++, contains a value that indicates whether or not the DataIn parameter contains a file path. VARIANT_TRUE indicates that
the DataIn parameter contains a file path; VARIANT_FALSE indicates that the DataIn parameter contains data from a message
queue receive function.

CodePageOut

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

[in, out] Contains the code page of the output data. The code page indicates the character set and keyboard layout used on a
computer.

DataOut

[in, out] In Visual Basic, contains the output data. For file receive functions, this will be a String. The data in this parameter is sent
to BizTalk Server for processing.

[in, out] In C++, contains the output data. For file receive functions, this will be a BSTR. The data in this parameter is sent to
BizTalk Server for processing.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

If BizTalk Server fails to create the custom preprocessor component, or if the Execute method returns an error or invalid data, the
document being processed is placed in the Suspended queue.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SetContext Method
Retrieves information associated with a document submitted to BizTalk Server.

 Member List

IBTSCustomProcess

|--Execute

|--SetContext

 Method Declaration

[Visual Basic]

Sub SetContext(_

Ctx As IBTSCustomProcessContext _

)

[C++]

HRESULT SetContext(

IBTSCustomProcessContext* Ctx

);

 Parameters

Ctx

[in] IBTSCustomProcessContext that contains information associated with the document being processed by BizTalk Server.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

For additional information about the custom process context object, see IBTSCustomProcessContext.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBTSCustomProcessContext
Retrieves information associated with data being processed by using a custom preprocessor component.

 Hierarchy

IUnknown

|-- IBTSCustomProcessContext

 Declaration

[Visual Basic]

Class IBTSCustomProcessContext

[C++]

interface IBTSCustomProcessContext: IUnknown

 Members

IBTSCustomProcessContext defines the following properties:
Property Description
ChannelName Contains the name of the channel.used for processing the current document.
DestID Contains the value of the destination organization qualifier.
DestQualifier Contains the destination organization qualifier type.
DocName Contains the name of the document definition used by the current document.
EnvelopeName Contains the name of the envelope used with the current document.
Openness Contains the openness value associated with the messaging port.
PassThrough Contains a value indicating whether the document uses pass-through submission mode.
SourceID Contains the value of the source organization qualifier.
SourceQualifier Contains the source organization qualifier type.

 Remarks

This object can be obtained by calling the SetContext method on the IBTSCustomProcess object. For information about custom
preprocessors, see Preprocessing Documents in a Receive Function.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - ChannelName Property

BizTalk Server 2002 ~ Developer Solutions

DestID Property
Contains the value of the destination organization qualifier.

 Member List

IBTSCustomProcessContext

|--ChannelName

|--DestID

|--DestQualifier

|--DocName

|--EnvelopeName

|--Openness

|--PassThrough

|--SourceID

|--SourceQualifier

 Property Declaration

[Visual Basic]

Property DestID As String

[C++]

HRESULT get_DestID(

BSTR* DestID

);

 Parameters

DestID

[out, retval] In C++, contains the value of the destination organization qualifier. This parameter is not supported in Visual Basic.
For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the name of the destination organization qualifier.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

DestQualifier Property
Contains the destination organization qualifier type.

 Member List

IBTSCustomProcessContext

|--ChannelName

|--DestID

|--DestQualifier

|--DocName

|--EnvelopeName

|--Openness

|--PassThrough

|--SourceID

|--SourceQualifier

 Property Declaration

[Visual Basic]

Property DestQualifier As String

[C++]

HRESULT get_DestQualifier(

BSTR* DestQualifier

);

 Parameters

DestQualifier

[out, retval] In C++, contains the value of the destination organization type. This parameter is not supported in Visual Basic. For
more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the name of the destination organization qualifier type.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

DocName Property
Contains the name of the document definition used by the current document.

 Member List

IBTSCustomProcessContext

|--ChannelName

|--DestID

|--DestQualifier

|--DocName

|--EnvelopeName

|--Openness

|--PassThrough

|--SourceID

|--SourceQualifier

 Property Declaration

[Visual Basic]

Property DocName As String

[C++]

HRESULT get_DocName(

BSTR* DocName

);

 Parameters

DocName

[out, retval] In C++, contains the document definition name. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the name of the document definition.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

EnvelopeName Property
Contains the name of the envelope used with the current document.

 Member List

IBTSCustomProcessContext

|--ChannelName

|--DestID

|--DestQualifier

|--DocName

|--EnvelopeName

|--Openness

|--PassThrough

|--SourceID

|--SourceQualifier

 Property Declaration

[Visual Basic]

Property EnvelopeName As String

[C++]

HRESULT get_EnvelopeName(

BSTR* EnvName

);

 Parameters

EnvName

[out, retval] In C++, contains the envelope name. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the name of the envelope.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Openness Property
Contains the openness value associated with the messaging port.

 Member List

IBTSCustomProcessContext

|--ChannelName

|--DestID

|--DestQualifier

|--DocName

|--EnvelopeName

|--Openness

|--PassThrough

|--SourceID

|--SourceQualifier

 Property Declaration

[Visual Basic]

Property Openness As Long

[C++]

HRESULT get_Openness(

long* Openness

);

 Parameters

Openness

[out, retval] In C++, indicates the openness on the messaging port. Valid values for this parameter are defined by the
BIZTALK_OPENNESS_TYPE enumeration. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns a value from the BIZTALK_OPENNESS_TYPE enumeration.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

PassThrough Property
Contains a value indicating whether the document uses pass-through submission mode.

 Member List

IBTSCustomProcessContext

|--ChannelName

|--DestID

|--DestQualifier

|--DocName

|--EnvelopeName

|--Openness

|--PassThrough

|--SourceID

|--SourceQualifier

 Property Declaration

[Visual Basic]

Property PassThrough As Long

[C++]

HRESULT get_PassThrough(

long* PassThrough

);

 Parameters

PassThrough

[out, retval] In C++, indicates whether the document uses pass-through submission mode. A value of 0 indicates that pass-
through submission mode is not used. A non-zero value indicates that pass-through submission mode is used with the current
document. This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether the document uses pass-through submission mode. A value of
0 indicates that pass-through submission mode is not used. A non-zero value indicates that pass-through submission mode is
used with the current document.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SourceID Property
Contains the value of the source organization qualifier.

 Member List

IBTSCustomProcessContext

|--ChannelName

|--DestID

|--DestQualifier

|--DocName

|--EnvelopeName

|--Openness

|--PassThrough

|--SourceID

|--SourceQualifier

 Property Declaration

[Visual Basic]

Property SourceID As String

[C++]

HRESULT get_SourceID(

BSTR* SourceID

);

 Parameters

SourceID

[out, retval] In C++, contains the value of the source organization qualifier. This parameter is not supported in Visual Basic. For
more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the name of the source organization qualifier.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

SourceQualifier Property
Contains the source organization qualifier type.

 Member List

IBTSCustomProcessContext

|--ChannelName

|--DestID

|--DestQualifier

|--DocName

|--EnvelopeName

|--Openness

|--PassThrough

|--SourceID

|--SourceQualifier

 Property Declaration

[Visual Basic]

Property SourceQualifier As String

[C++]

HRESULT get_SourceQualifier(

BSTR* SourceQualifier

);

 Parameters

SourceQualifier

[out, retval] In C++, contains the value of the source organization type. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the name of the source organization qualifier type.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IInterchange
Use this object to exchange documents between applications and BizTalk Server 2002 directly or through a receive function

 Hierarchy

IDispatch

|--IInterchange

 Declaration

[Visual Basic]

Class Interchange

[C++]

interface IInterchange : IDispatch

 Members

IInterchange defines the following methods:
Method Description
CheckSuspendedQueue Returns a list of documents from the Suspended queue that match the request criteria.
DeleteFromSuspendedQueue Deletes all specified documents from the Suspended queue.
GetSuspendedQueueItemDetails Retrieves information about a single entry in the Suspended queue.
Submit Sends an interchange or document to BizTalk Server 2002 for asynchronous processing. BizT

alk Server 2002 places the document in a queue until the next available server can process it.
SubmitSync Sends an interchange or document to BizTalk Server 2002 for synchronous processing. An o

ptional response document is returned to the caller.

 Remarks

Using parameters with Submit and SubmitSync overrides certain fields in the header of a self-routing document.

For information about submitting documents from a remote client, see How To.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: cisapi.h
Library: (cisapi.tlb)

 Related Topics

Direct Integration

Submitting

Routing

Submitting Documents

Submitting a Document

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - CheckSuspendedQueue
Method

BizTalk Server 2002 ~ Developer Solutions

DeleteFromSuspendedQueue Method
Deletes all specified documents from the Suspended queue.

 Member List

IInterchange

|--CheckSuspendedQueue

|--DeleteFromSuspendedQueue

|--GetSuspendedQueueItemDetails

|--Submit

|--SubmitSync

 Method Declaration

[Visual Basic]

Sub DeleteFromSuspendedQueue(_

DocumentHandleList As Variant _

)

[C++]

HRESULT DeleteFromSuspendedQueue(

VARIANT* DocumentHandleList

);

 Parameters

DocumentHandleList

[in] Contains a full list of handles or a subset for documents to be deleted from the Suspended queue.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: cisapi.h
Library: (cisapi.tlb)

 Related Topics

Submitting

Submitting a Document

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

GetSuspendedQueueItemDetails Method
Retrieves information about a single entry in the Suspended queue.

 Member List

IInterchange

|--CheckSuspendedQueue

|--DeleteFromSuspendedQueue

|--GetSuspendedQueueItemDetails

|--Submit

|--SubmitSync

 Method Declaration

[Visual Basic]

Sub GetSuspendedQueueItemDetails(_

ItemHandle As String, _

SourceName As Variant, _

DestName As Variant, _

DocName As Variant, _

ReasonCode As Variant, _

ItemData As Variant

)

[C++]

HRESULT GetSuspendedQueueItemDetails(

BSTR ItemHandle,

VARIANT* SourceName,

VARIANT* DestName,

VARIANT* DocName,

VARIANT* ReasonCode,

VARIANT* ItemData

);

 Parameters

ItemHandle

[in] Contains the handle of an item in the Suspended queue. This value can be obtained by calling the CheckSuspendedQueue
method.

SourceName

[out] Contains the name of the source IBizTalkOrganization object.

DestName

[out] Contains the name of the destination IBizTalkOrganization object.

DocName

[out] Contains the name of the IBizTalkDocument object.

ReasonCode

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

[out] Contains the reason a document or interchange has been placed in the Suspended queue. For more information about this
value, see the CISReasonToQueue enumeration.

ItemData

[out] Contains the document instance or interchange.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: cisapi.h
Library: (cisapi.tlb)

 Related Topics

Submitting

Submitting a Document

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Submit Method
Sends an interchange or document to BizTalk Server 2002 for asynchronous processing. BizTalk Server 2002 places the document
in a queue until the next available server can process it.

 Member List

IInterchange

|--CheckSuspendedQueue

|--DeleteFromSuspendedQueue

|--GetSuspendedQueueItemDetails

|--Submit

|--SubmitSync

 Method Declaration

[Visual Basic]

Function Submit(_

Openness As BIZTALK_OPENNESS_TYPE, _

Document As String, _

DocName As String, _

SourceQualifier As String, _

SourceID As String, _

DestQualifier As String, _

DestID As String, _

ChannelName As String, _

FilePath As String, _

EnvelopeName As String, _

PassThrough As Long

) As String

[C++]

HRESULT Submit(

BIZTALK_OPENNESS_TYPE Openness,

BSTR Document,

BSTR DocName,

BSTR SourceQualifier,

BSTR SourceID,

BSTR DestQualifier,

BSTR DestID,

BSTR ChannelName,

BSTR FilePath,

long EnvelopeName,

BSTR* PassThrough,

BSTR* SubmissionHandle

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

);

 Parameters

Openness

[in] Indicates whether associated IBizTalkPort objects can be open. Valid values are defined by the BIZTALK_OPENNESS_TYPE
enumeration.

Document

[in] Contains the document instance submitted. This parameter accepts only a string buffer as the document or interchange. This
means that applications cannot submit other objects, such as DOM objects, IDictionary objects, ADO objects, or any other data
type or object type. Either the Document parameter or the FilePath parameter must be specified. Do not specify both. This is an
optional parameter.

DocName

[in] Contains the name of the IBizTalkDocument object associated with the instance of the document being submitted. If the
Openness parameter is set to BIZTALK_OPENNESS_TYPE_SOURCE, you can select an input IBizTalkDocument object that has
an X12 or EDIFACT specification. If you do, however, the output IBizTalkDocument must not have an X12 or EDIFACT
specification. If Openness is set to BIZTALK_OPENNESS_TYPE_DESTINATION, the IBizTalkDocument object must not have an
X12 or EDIFACT specification. The DocName parameter cannot be used if the PassThrough parameter is set to TRUE. This is an
optional parameter.

SourceQualifier

[in] Contains the qualifier of the source organization. This indicates how the SourceID parameter is to be interpreted. Valid values
come from the organization identifier qualifiers that are created when the user creates an alias for an organization. Common
qualifiers include the Data Universal Numbering System (D-U-N-S) number, telephone number, and BizTalk. You must specify a
SourceID. The default qualifier for all new organizations is Organization Name and refers to the name of the organization in the
database. If a BizTalk Framework 2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier
defaults to BizTalk. The SourceQualifier parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional
parameter.

SourceID

[in] Contains the value of the qualifier of the source organization. For example, if the SourceQualifier parameter is Telephone, this
value is the telephone number. If the Openness flag is set to OpenSrc, SourceID is interpreted as the source organization name.
The SourceID parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

DestQualifier

[in] Contains the qualifier of the destination organization. This indicates how the DestID parameter is to be interpreted. Valid
values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the D-U-N-S number, telephone number, and BizTalk. You must specify a DestID. The default qualifier
for all new organizations is OrganizationName and refers to the name of the organization in the database. If a BizTalk Framework
2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The
DestQualifier parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

DestID

[in] Contains the value of the qualifier of the destination organization. For example, if the DestQualifier parameter is Telephone,
this value is the telephone number. If the Openness flag is set to OpenDest, DestID is used as the destination address. Note that
the queue:// prefix must be used with an open messaging port when a Message Queue is specified as the destination address. The
DestID parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

ChannelName

[in] Contains the name of the IBizTalkChannel object that is executed for this document. This bypasses the normal processing in
which the parser tries to determine which messaging port/channel pair to execute, based on routing information in the
parameters or in the document. This is an optional parameter unless the PassThrough parameter is set to TRUE.

FilePath

[in] Specifies a fully qualified path that contains the document to be submitted, rather than submitting the document directly as a
string. BizTalk Server 2002 supports URL, UNC, and drive: format only. If the document is submitted as a file that is pointed to by
the FilePath parameter, the call returns successfully after BizTalk Server 2002 has successfully copied the file to the Work queue. It
is safe to delete the file from the specified path as soon as this method returns successfully. When a document is submitted to the
server, using FilePath to specify the data, Submit can take 30 seconds or longer if the location of the file resides on a remote

server that is unavailable, if the UNC path is invalid, or if the SQL server is down. Either the Document parameter or the FilePath
parameter must be specified. Do not specify both. The FilePath parameter cannot be used if the PassThrough parameter is set to
TRUE and a map is specified. This is an optional parameter.

EnvelopeName

[in] Contains the name of the envelope specification to use to break the interchange into documents. When an envelope name is
provided in this parameter, the envelope must have a valid interchange specification. This requirement is enforced for envelopes
created for Custom XML format also. When submitting a flat file to BizTalk Server 2002, you must create an envelope for this flat
file and specify the name of the envelope in EnvelopeName. This is an optional parameter.

PassThrough

[in] Indicates how the server processes the document. When this parameter is set to TRUE, no decryption, decoding, or signature
verification is performed on the document. When set to FALSE, the document is decrypted and decoded, and the signature is
verified. When using pass-through submission mode (TRUE), the BIZTALK_OPENNESS_TYPE value must be set to
BIZTALK_OPENNESS_TYPE_NOTOPEN and the ChannelName parameter must be specified. In addition, the DocName,
SourceQualifier, SourceID, DestQualifier, and DestID parameters cannot be specified with pass-through submission mode. Pass-
through submission mode should be used to prevent data corruption when exchanging binary files, or when only the server
transport and global tracking features are being used.

SubmissionHandle

[out, retval] In C++, contains a unique identifier for the submitted document or interchange. This handle can be used to query the
Tracking database for the status of the interchange or document submitted. If more than one document is submitted (an
interchange), a single handle is returned, yet the Tracking database enables the user to get the status of all child documents
related to this interchange identifier. This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this method returns a unique identifier for the submitted document or interchange. This handle can be used to
query the Tracking database for the status of the interchange or document submitted. If more than one document is submitted
(an interchange), a single handle is returned; yet the Tracking database can access the status of all child documents related to this
interchange identifier.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: cisapi.h
Library: (cisapi.tlb)

 Related Topics

Openness

Routing

Submitting

Submitting a Document

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

SubmitSync Method
Sends an interchange or document to BizTalk Server 2002 for synchronous processing. An optional response document is
returned to the caller.

 Member List

IInterchange

|--CheckSuspendedQueue

|--DeleteFromSuspendedQueue

|--GetSuspendedQueueItemDetails

|--Submit

|--SubmitSync

 Method Declaration

[Visual Basic]

Sub SubmitSync(_

Openness As BIZTALK_OPENNESS_TYPE, _

Document As String, _

DocName As String, _

SourceQualifier As String, _

SourceID As String, _

DestQualifier As String, _

DestID As String, _

ChannelName As String, _

FilePath As String, _

EnvelopeName As String, _

PassThrough As Long, _

SubmissionHandle As Variant, _

ResponseDocument As Variant

)

[C++]

HRESULT SubmitSync(

BIZTALK_OPENNESS_TYPE Openness,

BSTR Document,

BSTR DocName,

BSTR SourceQualifier,

BSTR SourceID,

BSTR DestQualifier,

BSTR DestID,

BSTR ChannelName,

BSTR FilePath,

long EnvelopeName,

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BSTR* PassThrough,

VARIANT* SubmissionHandle,

VARIANT* ResponseDocument

);

 Parameters

Openness

[in] Indicates whether associated IBizTalkPort objects can be open. Valid values are defined by the BIZTALK_OPENNESS_TYPE
enumeration.

Document

[in] Contains the document instance submitted. This parameter accepts only a string buffer as the document or interchange. This
means that applications cannot submit other objects, such as DOM objects, IDictionary objects, ADO objects, or any other data
type or object type. Either the Document parameter or the FilePath parameter must be specified. Do not specify both. This is an
optional parameter.

DocName

[in] Contains the name of the IBizTalkDocument object associated with the instance of the document submitted. If the Openness
parameter is set to BIZTALK_OPENNESS_TYPE_SOURCE, you can select an input IBizTalkDocument object that has an X12 or
EDIFACT specification. If you do, however, the output IBizTalkDocument must not have an X12 or EDIFACT specification. If
Openness is set to BIZTALK_OPENNESS_TYPE_DESTINATION, the IBizTalkDocument object must not have an X12 or
EDIFACT specification. The DocName parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional
parameter.

SourceQualifier

[in] Contains the qualifier of the source organization. This indicates how the SourceID parameter is to be interpreted. Valid values
come from the organization identifier qualifiers that are created when the user creates an alias for an organization. Common
qualifiers include the D-U-N-S number, telephone number, and BizTalk. You must specify a SourceID. The default qualifier for all
new organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk Framework 2.0–
compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The SourceQualifier
parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

SourceID

[in] Contains the value of the qualifier of the source organization. For example, if the SourceQualifier parameter is Telephone, this
value is the telephone number. If the Openness flag is set to OpenSrc, SourceID is interpreted as the source organization name.
The SourceID parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

DestQualifier

[in] Contains the qualifier of the destination organization. This indicates how the DestID parameter is to be interpreted. Valid
values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the D-U-N-S number, telephone number, and BizTalk. You must specify a DestID parameter. The
default qualifier for all new organizations is Organization Name and refers to the name of the organization in the database. If a
BizTalk Framework 2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to
BizTalk. The DestQualifier parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

DestID

[in] Contains the value of the qualifier of the destination organization. For example, if the DestQualifier parameter is Telephone,
this value is the telephone number. If the Openness flag is set to OpenDest, DestID is used as the destination address. Note that
the queue:// prefix must be used with an open messaging port when a Message Queue is specified as the destination address. The
DestID parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

ChannelName

[in] Contains the name of the IBizTalkChannel object that is executed for this document. This bypasses the normal processing in
which the parser tries to determine which messaging port/channel pair to execute, based on routing information in the
parameters or in the document. This is an optional parameter unless the PassThrough parameter is set to TRUE.

FilePath

[in] Specifies a fully qualified path that contains the document to be submitted, rather than submitting the document directly as a

string. BizTalk Server 2002 supports URL, UNC, and drive: format only. Either the Document parameter or the FilePath parameter
must be specified. Do not specify both. The FilePath parameter cannot be used if the PassThrough parameter is set to TRUE and a
map is specified. This is an optional parameter.

EnvelopeName

[in] Contains the name of the envelope specification to use to break the interchange into documents. When an envelope name is
provided in this parameter, the envelope must have a valid interchange specification. This requirement is enforced for envelopes
created for Custom XML format also. This is an optional parameter.

PassThrough

[in] Indicates how the server processes the document. When this parameter is set to TRUE, no decryption, decoding, or signature
verification is performed on the document. When set to FALSE, the document is decrypted and decoded, and the signature is
verified. When using pass-through submission mode (TRUE), the BIZTALK_OPENNESS_TYPE value must be set to
BIZTALK_OPENNESS_TYPE_NOTOPEN and the ChannelName parameter must be specified. In addition, the DocName,
SourceQualifier, SourceID, DestQualifier, and DestID parameters cannot be specified with pass-through submission mode. Pass-
through submission mode should be used to prevent data corruption when exchanging binary files, or when only the server
transport and global tracking features are being used.

SubmissionHandle

[out] Contains a unique identifier for the submitted document or interchange. This handle can be used to query the Tracking
database for the status of the interchange or document submitted. If more than one document is submitted (an interchange), a
single handle is returned; yet the Tracking database can access the status of all child documents related to this interchange
identifier.

ResponseDocument

[out] Contains the optional response document.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

SubmitSync returns an optional response document when provided. If no response is returned, the call returns successfully, but
with no response and with an HRESULT value of S_FALSE. If the destination is another BizTalk Server, an ASP page must be used
to return a response.

A synchronous interchange bypasses all queues and executes all the components required by the messaging port on the calling
thread. For synchronous protocols (HTTP and AIC), an optional response document is returned to the user, if available. This
method is valid only for a single channel match. If the parameters set cause multiple channels to match, synchronous submission
returns an error indicating that multiple channel matches are not allowed for synchronous submission. This method can be used
only for single document interchanges. If the submission contains multiple documents, synchronous submission returns an error
indicating that multiple document submissions are not allowed. This method does not support port groups.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: cisapi.h
Library: (cisapi.tlb)

 Related Topics

Openness

Routing

Submitting

Submitting a Document

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Enumerations
The following enumeration provides possible property and parameter values:

CISReasonToQueue

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

CISReasonToQueue
Describes the reasons a document was placed in a queue.

[Visual Basic]

Enum CISReasonToQueue_tag

[C++]

enum CISReasonToQueue

 Members

noReason

[0] Not supported for this release.

rtdlqParserFailure

[1] Specifies that the instance of the document was placed in the queue because of failure of the parser.

rtdlqParserDocFailure

[2] Specifies that the instance of the document was placed in the queue because the business document was invalid.

rtdlqDocValidation

[3] Specifies that the document was placed in the queue because document validation failed.

rtdlqChannelSelectFailure

[4] Specifies that the instance of the document was placed in the queue because of failure in selecting the correct
IBizTalkChannel object.

rtdlqInvalidMap

[5] Specifies that the instance of the document was placed in the queue because the map referred to by the BizTalkChannel
object was formatted incorrectly.

rtdlqFieldTrackingFailure

[6] Specifies that the instance of the document was placed in the queue because the server was unable to track the requested
fields within the document.

rtdlqMappingFailure

[7] Specifies that the instance of the document was placed in the queue because of failure of transformation.

rtdlqSerializerFailure

[8] Specifies that the instance of the document was placed in the queue because the server could not convert this document to its
native format.

rtdlqEncodingFailure

[9] Specifies that the instance of the document was placed in the queue because the server was unable to encode this interchange.

rtdlqSigningFailure

[10] Specifies that the instance of the document was placed in the queue because the server was unable to sign this interchange.

rtdlqEncryptionFailure

[11] Specifies that the instance of the document was placed in the queue because the server was unable to encrypt this
interchange.

rtdlqTransmissionFailure

[12] Specifies that the instance of the document was placed in the queue because the server was unable to deliver this document.

rtdlqUserMove

[13] Specifies that the administrator moved this instance of the document to the queue.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

rtdlqTimeout

[14] Specifies that the instance of the document was placed in the queue because a time-out occurred.

rtdlqCustomCompFailure

[15] Specifies that the instance of the document was placed in the queue because of failure of a custom component.

unkReason

[16] Specifies that this item was marked as "In process" by an inactive server. On restart of this server, this item was automatically
moved to the Suspended queue. There was probably a catastrophic failure on the original server. Contact the system
administrator for more information.

rtdlqNoChannel

[17] Specifies that the instance of the document was placed in the queue because the BizTalkChannel object was deleted.

rtdlqMissingChannel

[18] Specifies that the instance of the document was placed in the queue because the BizTalkChannel object specified by the
Submit method of the IInterchange interface was not found.

rtdlqInvalidChannel

[19] Specifies that the instance of the document was placed in the queue because the BizTalkChannel object specified by the
Submit method of the IInterchange interface specifies an open IBizTalkPort object. This is not permitted.

rtdlqOutOfMemory

[20] Specifies that your computer has run out of memory. Rebooting is recommended.

rtdlqBTFRecReqExpired

[21] Specifies that the document was placed in the queue because the BTF timestamp receiptRequiredBy expired.

rtdlqBTFExpiresAtExpired

[22] Specifies that the document was placed in the queue because the BTF timestamp expiresAt expired.

rtdlqCorrelationFailure

[23] Specifies that the document receipt failed.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: cisapi.h
Library: (cisapi.tlb)

 Related Topics

GetSuspendedQueueItemDetails

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Custom Components Reference
This section provides reference information about application programming interfaces (APIs) used by Microsoft
BizTalk Server 2002 for both C++ and Microsoft Visual Basic programming.

Reference information is provided for all interfaces, methods, properties, and enumerations exposed for working with custom
components:

Interfaces

Enumerations

In addition, a complete list of Error Messages is provided.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Interfaces
The following COM interfaces are documented for C++ developers:

IBizTalkParserComponent

IBizTalkSerializerComponent

The following COM interfaces are documented for both C++ and Visual Basic developers:

IBizTalkAcknowledge

IBizTalkCorrelation

IBTSAppIntegration

IFunctoid

IPipelineComponent

IPipelineComponentAdmin

ISchemaImporter

ISchemaImporterError

ISchemaImporterErrorProvider

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBizTalkAcknowledge
Processes receipts sent to the server.

 Hierarchy

IUnknown

|--IBizTalkAcknowledge

 Declaration

[Visual Basic]

Class IBizTalkAcknowledge

[C++]

interface IBizTalkAcknowledge : IUnknown

 Members

IBizTalkAcknowledge defines the following methods:
Method Description
AckDocument Processes receipts received for documents.
AckGroup Processes receipts received for document groups.
AckInterchange Processes receipts received for document interchanges.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSDocTracking.h
Library: Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

 Related Topics

Creating Receipt Correlator Components

How Receipts Are Logged

Understanding Receipts

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251207(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - AckDocument Method

BizTalk Server 2002 ~ Developer Solutions

AckGroup Method
Processes receipts received for document groups.

 Member List

IBizTalkAcknowledge

|--AckDocument

|--AckGroup

|--AckInterchange

 Method Declaration

[Visual Basic]

Sub AckGroup(_

Syntax As String, _

Version As String, _

Release As String, _

FunctionalGroupId As String, _

ControlId As String, _

SrcAppName As String, _

DestAppName As String, _

AckStatus As DTA_ACK_STATUS _

)

[C++]

HRESULT AckGroup(

BSTR Syntax,

BSTR Version,

BSTR Release,

BSTR FunctionalGroupId,

BSTR ControlId,

BSTR SrcAppName,

BSTR DestAppName,

DTA_ACK_STATUS AckStatus

);

 Parameters

Syntax

[in] Contains the syntax of the outbound document to be acknowledged, for example, X12 or EDIFACT. You must use the exact
strings for the following syntax types:

X12

EDIFACT

Custom XML

Version

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

[in] Contains the version of the syntax, used primarily for EDI.

Release

[in] Contains the release of the version of the syntax, used primarily for EDI.

FunctionalGroupId

[in] Contains the code for the type of documents in a group, used primarily for EDI.

ControlId

[in] Contains the unique identifier for the control number, used primarily for EDI.

SrcAppName

[in] Contains the name of the source application.

DestAppName

[in] Contains the name of the destination application.

AckStatus

[in] Indicates the receipt status. Valid values are defined by the DTA_ACK_STATUS enumeration.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This method is called only for receipts on document groups.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSDocTracking.h
Library: Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

AckInterchange Method
Processes receipts received for document interchanges.

 Member List

IBizTalkAcknowledge

|--AckDocument

|--AckGroup

|--AckInterchange

 Method Declaration

[Visual Basic]

Sub AckInterchange(_

Syntax As String, _

InterchangeId As String, _

Version As String, _

ControlId As String, _

SrcAliasQualifier As String, _

SrcAliasId As String, _

SrcAppName As String, _

DestAliasQualifier As String, _

DestAliasId As String, _

DestAppName As String, _

AckStatus As DTA_ACK_STATUS _

)

[C++]

HRESULT AckInterchange(

BSTR Syntax,

BSTR InterchangeId,

BSTR Version,

BSTR ControlId,

BSTR SrcAliasQualifier,

BSTR SrcAliasId,

BSTR SrcAppName,

BSTR DestAliasQualifier,

BSTR DestAliasId,

BSTR DestAppName,

DTA_ACK_STATUS AckStatus

);

 Parameters

Syntax

[in] Contains the syntax of the outbound document to be acknowledged, for example, X12 or EDIFACT. You must use the exact

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

strings for the following syntax types:

X12

EDIFACT

Custom XML

InterchangeId

[in] Contains the unique tracking identifier of the interchange. This value is a globally unique identifier (GUID).

Version

[in] Contains the version of the syntax, used primarily for EDI.

ControlId

[in] Contains the unique identifier for the control number, used primarily for EDI.

SrcAliasQualifier

[in] Contains the qualifier of the source organization. This indicates how the bstrSrcAliasID parameter is to be interpreted. Valid
values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the Data Universal Numbering System (D-U-N-S) number, telephone number, and BizTalk. The default
qualifier for all new organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk
Framework 2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk.

SrcAliasId

[in] Contains the value of the qualifier of the source organization. For example, if the bstrSrcAliasQualifier parameter is Telephone,
this value is the telephone number.

SrcAppName

[in] Contains the name of the source application.

DestAliasQualifier

[in] Contains the qualifier of the source organization. This indicates how the bstrDestAliasID parameter is to be interpreted. Valid
values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the D-U-N-S number, telephone number, and BizTalk. The default qualifier for all new organizations is
Organization Name and refers to the name of the organization in the database. If a BizTalk Framework 2.0–compliant document
is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk.

DestAliasId

[in] Contains the value of the qualifier of the source organization. For example, if the bstrDestAliasQualifier parameter is
Telephone, this value is the telephone number.

DestAppName

[in] Contains the name of the destination application.

AckStatus

[in] Indicates the receipt status. Valid values are defined by the DTA_ACK_STATUS enumeration.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This method is called only for receipts on document interchanges.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSDocTracking.h
Library: Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IBizTalkCorrelation
Creates receipt correlator components.

 Hierarchy

IUnknown

|--IBizTalkCorrelation

 Declaration

This interface is only supported in C++

interface IBizTalkCorrelation : IUnknown

 Members

IBizTalkCorrelation defines the following method:
Method Description
Correlate Extracts all relevant information from the document, document group, or interchange.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSParserComps.h

 Related Topics

Creating Receipt Correlator Components

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - Correlate Method

BizTalk Server 2002 ~ Developer Solutions

IFunctoid
Creates custom mapping functions. IFunctoid defines the generic protocol for calling custom functions used by the mapping
tool.

 Hierarchy

IDispatch

|--IFunctoid

 Declaration

[Visual Basic]

Class CannedFunctoid

[C++]

interface IFunctoid : IDispatch

 Members

IFunctoid defines the following properties:
Property Description
FunctionsCount Contains the number of functions implemented by the functoid.
Version Contains the version of the functoid.

IFunctoid defines the following methods:

Method Description
GetFunctionDescripter Retrieves information about a specific functoid.
GetFunctionParameter Retrieves the connection-type bit flags for the specified parameter.
GetScriptBuffer Retrieves the script code used to implement the functoid.

 Remarks

Custom functoids must be properly registered so that Microsoft BizTalk Server 2002 can recognize that they belong to BizTalk
Server 2002. Functoids register themselves with the category ID CATID_BIZTALK_MapEditFunctoids. The CATIDs are defined in
the bts_sdk_guids.h file. For more information, see Registering Custom Components.

Each custom functoid can support multiple functions and can contain icons and names for each supported function. Function
identifiers from 0 to 1000 are reserved for built-in functions in BizTalk Mapper. User-defined functions (custom functions) should
use function identifiers 1001 and above.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: Functoid.h
Library: Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

FunctionsCount Property
Contains the number of functions implemented by the functoid.

 Member List

IFunctoid

|--FunctionsCount

|--GetFunctionDescripter

|--GetFunctionParameter

|--GetScriptBuffer

|--Version

 Property Declaration

[Visual Basic]

Property FunctionsCount As Long

[C++]

HRESULT get_FunctionsCount(

long* Count

);

 Parameters

Count

[out, retval] In C++, contains the number of functions implemented by the functoid. This parameter is not supported in Visual
Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the number of functions implemented by the functoid.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: Functoid.h
Library: Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

GetFunctionDescripter Method
Retrieves information about a specific functoid.

 Member List

IFunctoid

|--FunctionsCount

|--GetFunctionDescripter

|--GetFunctionParameter

|--GetScriptBuffer

|--Version

 Method Declaration

[Visual Basic]

Function GetFunctionDescripter(_

Index As Long, _

FuncCategory As FUNC_CATEGORY, _

ScriptCategory As SCRIPT_CATEGORY, _

FuncType As FUNC_TYPE, _

Name As String, _

ToolTip As String, _

BitmapID As Long, _

ParmCount As Long _

) As Long

[C++]

HRESULT GetFunctionDescripter(

long Index,

FUNC_CATEGORY* FuncCategory,

SCRIPT_CATEGORY* ScriptCategory,

FUNC_TYPE* FuncType,

BSTR* Name,

BSTR* ToolTip,

long* BitmapID,

long* ParmCount,

FUNCID* FuncId

);

 Parameters

Index

[in] Specifies the index number of the function.

FuncCategory

[in, out] Contains a value indicating the tab on the functoid palette on which the custom functoid will appear. Valid values for this
parameter are defined by the FUNC_CATEGORY enumeration.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

ScriptCategory

[in, out] Contains the scripting language used by the custom functoid. Valid values for this parameter are defined by the
SCRIPT_CATEGORY enumeration.

FuncType

[in, out] Contains the function type information for the custom functoid. Valid values for this parameter are defined by the
FUNC_TYPE enumeration.

Name

[in, out] Contains the function name.

ToolTip

[in, out] Contains the ToolTip that appears when the mouse pointer is paused over the custom functoid icon in the mapping tool.

BitmapID

[in, out] Contains a bitmap identifier of the bitmap used for the custom functoid icon displayed in the mapping tool.

ParmCount

[in, out] Contains the number of parameters implemented by the function.

FuncId

[out, retval] In C++, contains the function identifier. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this method returns the function identifier.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: Functoid.h
Library: Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

GetFunctionParameter Method
Retrieves the connection-type bit flags for the specified parameter.

 Member List

IFunctoid

|--FunctionsCount

|--GetFunctionDescripter

|--GetFunctionParameter

|--GetScriptBuffer

|--Version

 Method Declaration

[Visual Basic]

Function GetFunctionParameter(_

FuncId As Long, _

Parameter As Long _

) As Long

[C++]

HRESULT GetFunctionParameter(

FUNCID FuncId,

long Parameter,

long* ConnectionType

);

 Parameters

FuncId

[in] Contains the function identifier.

Parameter

[in] Contains the function parameter number. For output parameters, a value of -1 is used.

ConnectionType

[out, retval] In C++, contains the connection type information of the specified parameter. Valid values for this parameter are
defined by the CONNECTION_TYPE enumeration. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this method returns the connection type information of the specified parameter. Valid values for this parameter
are defined by the CONNECTION_TYPE enumeration.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Header: Functoid.h
Library: Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

GetScriptBuffer Method
Retrieves the script code used to implement the functoid.

 Member List

IFunctoid

|--FunctionsCount

|--GetFunctionDescripter

|--GetFunctionParameter

|--GetScriptBuffer

|--Version

 Method Declaration

[Visual Basic]

Function GetScriptBuffer(_

FuncId As Long, _

InputParameters As Long _

) As String

[C++]

HRESULT GetScriptBuffer(

FUNCID FuncId,

long InputParameters,

BSTR* ScriptBuffer

);

 Parameters

FuncId

[in] Contains the function identifier.

InputParameters

[in] Indicates the number of connected input parameters for the specified function.

ScriptBuffer

[out, retval] In C++, contains the script code used to implement the function. This parameter is not supported in Visual Basic. For
more information, see "Return Values."

 Return Values

In Visual Basic, this method returns the script code used to implement the function.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: Functoid.h
Library: Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Version Property
Contains the version of the functoid.

 Member List

IFunctoid

|--FunctionsCount

|--GetFunctionDescripter

|--GetFunctionParameter

|--GetScriptBuffer

|--Version

 Property Declaration

[Visual Basic]

Property Version As Long

[C++]

HRESULT get_Version(

long* Version

);

 Parameters

Version

[out, retval] In C++, contains the custom functoid version. This parameter is not supported in Visual Basic. For more information,
see "Return Values."

 Return Values

In Visual Basic, this property returns the custom functoid version.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

If the custom functoid is modified in any way, the author should update the version number.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: Functoid.h
Library: Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IBizTalkParserComponent
Converts a document to XML for later processing and identifies the IBizTalkChannel objects necessary to process the
documents.

 Hierarchy

IUnknown

|--IBizTalkParserComponent

 Declaration

This interface is only supported in C++

interface IBizTalkParserComponent : IUnknown

 Members

IBizTalkParserComponent defines the following methods:
Method Description
GetGroupDetails Gets details of the group for the Tracking database. This method is called only if there are groups i

n the interchange.
GetGroupSize Gets the size of the group after all documents in the group are parsed. This method is called only if

there are groups in the interchange.
GetInterchangeDetails Gets information about the organization identifiers of the source and destination

IBizTalkOrganization objects.
GetNativeDocumentOffsets Identifies offsets from the beginning of the stream for final details about the group in the Tracking

database for final logging.
GetNextDocument Examines the data in a document and determines when to get the next document if this is not the l

ast document.
GroupsExist Determines whether the interchange contains groups.
ProbeInterchangeFormat Identifies the format of the interchange.

 Remarks

Custom parser components must be properly registered so that Microsoft BizTalk Server 2002 can recognize that they belong to
BizTalk Server 2002. Parser components register themselves with the category ID CATID_BIZTALK_PARSER. The CATIDs are
defined in the bts_sdk_guids.h file. For more information, see Registering Custom Components.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSParserComps.h

 Related Topics

Identification

Working with Parsers

Parsers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - GetGroupDetails Method

BizTalk Server 2002 ~ Developer Solutions

GetGroupSize Method
Gets the size of the group after all documents in the group are parsed. This method is called only if there are groups in the
interchange.

 Member List

IBizTalkParserComponent

|--GetGroupDetails

|--GetGroupSize

|--GetInterchangeDetails

|--GetNativeDocumentOffsets

|--GetNextDocument

|--GroupsExist

|--ProbeInterchangeFormat

 Method Declaration

This interface is only supported in C++

HRESULT GetGroupSize(

long* GroupSize,

BOOL* LastGroup

);

 Parameters

GroupSize

[out] Contains the size of the interchange.

LastGroup

[out] Indicates whether the group is the last group in the interchange. If this parameter is set to TRUE, the next method called is
GetGroupDetails for the next group in the data. If it is set to FALSE, the component is finished. When it is released, it leaves the
IStream interface after the last byte it has read.

 Return Values

This method returns an HRESULT value, indicating success or failure.

 Error Handling

If the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

After all documents in the group are called, the final details about the group are required. Both output parameters are added to
the Tracking database for final logging.

This method is called only if there are groups in the interchange.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSParserComps.h

 Related Topics

Working with Parsers

Parsers

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

GetInterchangeDetails Method
Gets information about the organization identifiers of the source and destination IBizTalkOrganization objects.

 Member List

IBizTalkParserComponent

|--GetGroupDetails

|--GetGroupSize

|--GetInterchangeDetails

|--GetNativeDocumentOffsets

|--GetNextDocument

|--GroupsExist

|--ProbeInterchangeFormat

 Method Declaration

This interface is only supported in C++

HRESULT GetInterchangeDetails(

IDictionary* Dict

);

 Parameters

Dict

[in] IDictionary interface of an object that contains information about the organization identifiers of the source and destination
IBizTalkOrganization objects.

 Return Values

This method returns an HRESULT value, indicating success or failure.

 Error Handling

If the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The minimum sets of fields are:
Field Description
src_id_type Source qualifier
src_id_value Source ID
dest_id_type Destination qualifier
dest_id_value Destination ID

The parameters of the Submit method of the IInterchange interface override any fields set here.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSParserComps.h

 Related Topics

Working with Parsers

Parsers

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

GetNativeDocumentOffsets Method
Identifies offsets from the beginning of the stream for final details about the group in the Tracking database for final logging.

 Member List

IBizTalkParserComponent

|--GetGroupDetails

|--GetGroupSize

|--GetInterchangeDetails

|--GetNativeDocumentOffsets

|--GetNextDocument

|--GroupsExist

|--ProbeInterchangeFormat

 Method Declaration

This interface is only supported in C++

HRESULT GetNativeDocumentOffsets(

BOOL SizeFromXMLDoc,

LARGE_INTEGER* StartOffset,

long* DocLength

);

 Parameters

SizeFromXMLDoc

[out] Indicates whether the XML document passed in from the GetNextDocument method was used to determine the size. If this
parameter is TRUE, the server fills in the StartOffset and DocLength values for the document just parsed. If this parameter is
FALSE, the server ignores the values in StartOffset and DocLength.

StartOffset

[out] Contains the location of the beginning of the document. This parameter is returned if the SizeFromXMLDoc parameter is set
to TRUE.

DocLength

[out] Contains the length of the document. This parameter is returned if the SizeFromXMLDoc parameter is set to TRUE.

 Return Values

This method returns an HRESULT value, indicating success or failure.

 Error Handling

If the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This method is called immediately after GetNextDocument whether or not the document is valid (as long as the parser does not
return an error value). These are offsets into the IStream object relative to the beginning of the stream, not the beginning of the
interchange.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSParserComps.h

 Related Topics

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Working with Parsers

Parsers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

GetNextDocument Method
Examines the data in a document and determines when to get the next document if this is not the last document.

 Member List

IBizTalkParserComponent

|--GetGroupDetails

|--GetGroupSize

|--GetInterchangeDetails

|--GetNativeDocumentOffsets

|--GetNextDocument

|--GroupsExist

|--ProbeInterchangeFormat

 Method Declaration

This interface is only supported in C++

HRESULT GetNextDocument(

IDictionary* Dict,

BSTR DocSpecName,

BOOL* DocIsValid,

BOOL* LastDocument,

GeneratedReceiptLevel ReceiptGenerated,

BOOL* DocIsReceipt,

BSTR* CorrelationCompProgID

);

 Parameters

Dict

[in] IDictionary interface of an object into which to set the XML instance created on parsing the current document. The parsed
XML document is placed into the working_data field of the dictionary.

DocSpecName

[in] Contains the name of the BizTalk document specification used to generate the XML from the document's native format.

DocIsValid

[out] Indicates whether the document instance is valid. If it is invalid but the parser can recover from it, set this parameter to
FALSE. This parameter and the LastDocument parameter are independent. Therefore, if there are no more documents and the last
one is invalid, both flags are set. If the document is invalid and the parser cannot continue, it might return an error value. The
server then stops at the current position of the IStream pointer. The component places the invalid data (if the parser can recover)
in the working_data field for inspection by the system administrator if the document is invalid.

LastDocument

[out] Indicates whether this is the last document instance in the group or interchange. When the last document is found, the
LastDocument flag is set to TRUE. If there are groups, this flag signals the last document in the group, and the GetGroupSize
method is called. If there are no groups, this is the last call to get document data from the parser, and the IStream pointer is set
appropriately.

ReceiptGenerated

[out] Contains the receipt status information. Valid values are defined by the GeneratedReceiptLevel enumeration.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

DocIsReceipt

[out] Identifies whether or not this document is a receipt.

CorrelationCompProgID

[out] Contains the program ID for the correlation of documents.

 Return Values

This method returns an HRESULT value, indicating success or failure.

 Error Handling

If the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSParserComps.h

 Related Topics

Working with Parsers

Parsers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

GroupsExist Method
Determines whether the interchange contains groups.

 Member List

IBizTalkParserComponent

|--GetGroupDetails

|--GetGroupSize

|--GetInterchangeDetails

|--GetNativeDocumentOffsets

|--GetNextDocument

|--GroupsExist

|--ProbeInterchangeFormat

 Method Declaration

This interface is only supported in C++

HRESULT GroupsExist(

BOOL* GrpsExist

);

 Parameters

GrpsExist

[out, retval] Indicates whether the data format contains groups. If this parameter is set to FALSE, the GetGroupDetails and
GetGroupSize methods are never called.

 Return Values

This method returns an HRESULT value, indicating success or failure.

 Error Handling

If the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSParserComps.h

 Related Topics

Working with Parsers

Parsers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

ProbeInterchangeFormat Method
Identifies the format of the interchange.

 Member List

IBizTalkParserComponent

|--GetGroupDetails

|--GetGroupSize

|--GetInterchangeDetails

|--GetNativeDocumentOffsets

|--GetNextDocument

|--GroupsExist

|--ProbeInterchangeFormat

 Method Declaration

This interface is only supported in C++

HRESULT ProbeInterchangeFormat(

IStream* pData,

BOOL FromFile,

BSTR EnvName,

IStream* pReceiptData,

BSTR* Format

);

 Parameters

pData

[in] IStream object that contains the data for the document interchange. Additional information about the IStream object is
available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

FromFile

[in] Contains a value that indicates whether or not the data came from the FilePath parameter of the Submit or the SubmitSync
method of the IInterchange interface. TRUE indicates that the data came from the file referred to by the FilePath parameter.
FALSE indicates that the data came from the Document parameter of Submit or SubmitSync as a string. If the data is from a file,
no conversion is made. If the data is a string, you can use UNICODE/MBCS techniques to understand it.

EnvName

[in] Contains the name of the envelope.

pReceiptData

[in] IStream object that contains the receipt document.

Format

[out] Contains the format of the data. If the server recognizes the format, it must fill in this parameter with a non-empty string and
hold on to (add a reference count to) the IStream interface because it is not given back to the component. This IStream object is
read-only; it supports only the Read, Stat, and Seek methods. All other methods return E_NOTIMPL. This method should not
return a failure if it does not recognize the format. It returns S_FALSE or an empty or NULL Format string. If you do not recognize
the format, you do not need to move the IStream pointer back to its original position; the server resets the IStream pointer.
Unless your format requires it, do not assume that the pointer is at the beginning. The pointer can be somewhere in the middle
during the probing stage.

 Return Values

This method returns an HRESULT value, indicating success or failure.

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

This method returns an HRESULT value, indicating success or failure.

 Error Handling

If the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is the first method that is called by the server. If ProbeInterchangeFormat returns an error in the middle of the document
list, it blocks the server from detecting more document types, even if they could be handled by a custom parser that follows the
failed parser, if there are two or more custom parsers on a server. If the first custom parser fails, any document that follows is not
parsed, even if the other custom parser could handle it, because the server ends the entire parsing operation at the time of the
failure.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSParserComps.h

 Related Topics

Working with Parsers

Parsers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IBizTalkSerializerComponent
Converts a document from XML to the document's original native format.

 Hierarchy

IUnknown

|--IBizTalkSerializerComponent

 Declaration

This interface is only supported in C++

interface IBizTalkSerializerComponent : IUnknown

 Members

IBizTalkSerializerComponent defines the following methods:
Method Description
AddDocument Adds an XML document for storage by the serializer component.
GetDocInfo Gets details of the document.
GetGroupInfo Gets details of the group, such as size and offset, for the Tracking database.
GetInterchangeInfo Gets information about the interchange created.
Init Outputs the document instance to the serializer component and indicates where it should be sent.

 Remarks

Custom serializer components must be properly registered so that Microsoft BizTalk Server 2002 can recognize that they belong
to BizTalk Server 2002. Serializer components register themselves with the category ID CATID_BIZTALK_SERIALIZER. The
CATIDs are defined in the bts_sdk_guids.h file. For more information, see Registering Custom Components.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSSerializerComps.h

 Related Topics

Working with Serializers

Serializers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - AddDocument Method

BizTalk Server 2002 ~ Developer Solutions

GetDocInfo Method
Gets details of the document.

 Member List

IBizTalkSerializerComponent

|--AddDocument

|--GetDocInfo

|--GetGroupInfo

|--GetInterchangeInfo

|--Init

 Method Declaration

This interface is only supported in C++

HRESULT GetDocInfo(

long* DocHandle,

BOOL* SizeFromXMLDoc,

LARGE_INTEGER* DocStartOffset,

long* DocLen

);

 Parameters

DocHandle

[out] Contains the document handle. For each ID that is passed back, this address is assigned to the group record that was created
when the GetGroupInfo method was called. This parameter also returns properties of the document, for example, size and
length, unless the SizeFromXMLDoc parameter is set to TRUE, in which case the other parameters are ignored.

SizeFromXMLDoc

[out] Indicates that the document offset and length values are retrieved from the XML document. TRUE indicates that the server
fills in the DocStartOffset and DocLen values for the document; FALSE indicates that the server ignores the values in
DocStartOffset and DocLen.

DocStartOffset

[out] Contains the offset to the beginning of the document. This parameter is returned if SizeFromXMLDoc is set to TRUE.

DocLen

[out] Contains the length of the document. This parameter is returned if SizeFromXMLDoc is set to TRUE.

 Return Values

This method returns an HRESULT value, indicating success or failure.

 Error Handling

If the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This method is called once for every document in a group (or interchange, if there are no groups).

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSSerializerComps.h

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Related Topics

Working with Serializers

Serializers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

GetGroupInfo Method
Gets details of the group, such as size and offset, for the Tracking database.

 Member List

IBizTalkSerializerComponent

|--AddDocument

|--GetDocInfo

|--GetGroupInfo

|--GetInterchangeInfo

|--Init

 Method Declaration

This interface is only supported in C++

HRESULT GetGroupInfo(

long* NumDocs,

LARGE_INTEGER* GrpStartOffset,

long* GrpLen

);

 Parameters

NumDocs

[out] Contains the number of documents in the group.

GrpStartOffset

[out] Contains the offset to the start of the group in the IStream interface.

GrpLen

[out] Contains the length of the group.

 Return Values

This method returns an HRESULT value, indicating success or failure.

 Error Handling

If the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This method is called the number of times returned by the GetInterchangeInfo method. Call the GetDocInfo method for each
document in the group.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSSerializerComps.h

 Related Topics

Sequence for Calling Methods of the IBizTalkSerializerComponent Interface

Serializers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

GetInterchangeInfo Method
Gets information about the interchange created.

 Member List

IBizTalkSerializerComponent

|--AddDocument

|--GetDocInfo

|--GetGroupInfo

|--GetInterchangeInfo

|--Init

 Method Declaration

This interface is only supported in C++

HRESULT GetInterchangeInfo(

BSTR* InterchangeID,

long* NumGroups

);

 Parameters

InterchangeID

[out] Contains the interchange ID, which is placed in the Tracking database.

NumGroups

[out] Contains the number of groups generated in the interchange. This value can be either 0 or 1. A document can exist in only
one group.

 Return Values

This method returns an HRESULT value, indicating success or failure.

 Error Handling

If the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This method is called after all the documents are passed in.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSSerializerComps.h

 Related Topics

Working with Serializers

Serializers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Init Method
Outputs the document instance to the serializer component and indicates its destination.

 Member List

IBizTalkSerializerComponent

|--AddDocument

|--GetDocInfo

|--GetGroupInfo

|--GetInterchangeInfo

|--Init

 Method Declaration

This interface is only supported in C++

HRESULT Init(

BSTR srcQual,

BSTR srcID,

BSTR destQual,

BSTR destID,

long envID,

IDictionary* Delimiters,

Istream* OutputStream,

long NumDocs

);

 Parameters

srcQual

[in] Contains the source-organization identifier qualifier.

srcID

[in] Contains the source-organization identifier value.

destQual

[in] Contains the destination-organization identifier qualifier.

destID

[in] Contains the destination-organization identifier value.

EnvID

[in] Contains the envelope identifier value.

Delimiters

[in] Contains an IDictionary interface of an object that contains the delimiters used in the document.

OutputStream

[in] Contains an IStream interface that contains the data of this document. This IStream pointer is write-only. The only methods
that are supported are Write and Stat; all other methods return E_NOTIMPL. Additional information about the IStream object is
available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

NumDocs

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

[in] Contains the number of documents sent as part of this interchange. For this release, this parameter is set to 1.

 Return Values

This method returns an HRESULT value, indicating success or failure.

 Error Handling

If the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSSerializerComps.h

 Related Topics

Working with Serializers

Serializers

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IBTSAppIntegration
Creates an entry point for receiving a document.

 Hierarchy

IDispatch

|--IBTSAppIntegration

 Declaration

[Visual Basic]

Class IBTSAppIntegration

[C++]

interface IBTSAppIntegration : IDispatch

 Members

IBTSAppIntegration defines the following method:
Method Description
ProcessMessage Processes a document and returns a response document, if available. This method is called at run time when th

e server is sending a document to the component.

 Remarks

Application integration components must be properly registered so that Microsoft BizTalk Server 2002 can recognize that they
belong to BizTalk Server 2002. Application integration components register themselves with the category ID
CATID_BIZTALK_AIC. The CATIDs are defined in the bts_sdk_guids.h file. For more information, see
Registering Custom Components.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: btsaic.h
Library: Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

 Related Topics

Lightweight Application Integration Components

Application Integration in Visual Basic

Application Integration in Visual C++

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - ProcessMessage Method

BizTalk Server 2002 ~ Developer Solutions

IPipelineComponent
Creates custom pipeline components that can execute in Microsoft BizTalk Server 2002 to extend its functionality.

 Hierarchy

IUnknown

|--IPipelineComponent

 Declaration

[Visual Basic]

Class IPipelineComponent

[C++]

interface IPipelineComponent : IUnknown

 Members

IPipelineComponent defines the following methods:
Method Description
EnableDesign Configures the component for execution in one of two modes: design mode or execution mode.
Execute Executes the operation expected of the component, given the transport IDictionary object and other configuratio

n settings.

 Remarks

Application integration components must be properly registered so that BizTalk Server 2002 can recognize that they belong to
BizTalk Server 2002. Application integration components register themselves with the category ID CATID_BIZTALK_AIC. The
CATIDs are defined in the bts_sdk_guids.h file. For more information, see Registering Custom Components.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: pipecomp.h
Library: Microsoft Commerce 2000 Default Pipeline Components Type Library (pipecomplib.tlb)

 Related Topics

Application Integration Components

Pipeline Components in Visual Basic

Pipeline Components in Visual C++

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - EnableDesign Method

BizTalk Server 2002 ~ Developer Solutions

Execute Method
Executes the operation expected of the component, given the transport IDictionary object and other configuration settings.

 Member List

IPipelineComponent

|--EnableDesign

|--Execute

 Method Declaration

[Visual Basic]

Function Execute(_

DispOrder As Object, _

DispContext As Object, _

Flags As Long _

) As Long

[C++]

HRESULT Execute(

IDispatch* DispOrder,

IDispatch* DispContext,

long Flags,

long* ErrorLevel

);

 Parameters

DispOrder

[in] Transport IDictionary object.

DispContext

[in] Not supported for this release.

Flags

[in] Reserved.

ErrorLevel

[out, retval] Reserved.

 Return Values

In Visual Basic, this method returns the error level.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

Microsoft BizTalk Server 2002 calls this method, passing in the transport IDictionary object. The component can read these
IDictionary object values, perform the necessary functions, and optionally write new values back to the transport IDictionary

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

object for further processing.

For a component designed to run in BizTalk Server 2002, the first parameter is a Transport Dictionary object. The Transport
Dictionary values can be read by the component for processing. The string values supplied by the server for all application
integration components (AICs) are defined in the Handling Data Passed to AICs topic.

For a component that runs in a Commerce Server order-processing pipeline, the first parameter contains the OrderForm object.

This method is called at run time when the server is sending a document to the component. This method is called immediately
after the SetConfigData method of the IPipelineComponentAdmin interface. The document is passed in the first parameter as
a dictionary within the working_data field of the IDictionary object. Components can add the ResponseField key to the
IDictionary object to pass back a text-based response to an application, using the SubmitSync method of the IInterchange
interface.

The component must raise an error if a problem with processing occurs so that the server can retry transmission later and, after
all retries, send the document to the Suspended queue. If no error is returned, the server assumes that the component
successfully processed the data.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: pipecomp.h
Library: Microsoft Commerce 2000 Default Pipeline Components Type Library (pipecomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IPipelineComponentAdmin
Gets and sets configuration information for a component. Use IPipelineComponentAdmin between the component and the
component user interface.

 Hierarchy

IDispatch

|--IPipelineComponentAdmin

 Declaration

[Visual Basic]

Class IPipelineComponentAdmin

[C++]

interface IPipelineComponentAdmin : IDispatch

 Members

IPipelineComponentAdmin defines the following methods:
Method Description
GetConfigData Returns an IDictionary object that contains the configuration data for the component to be used to display thes

e values.
SetConfigData The SetConfigData method sets the configuration for a component, using the contents of an IDictionary objec

t.

 Remarks

Application integration components must be properly registered so that BizTalk Server 2002 can recognize that they belong to
BizTalk Server 2002. Application integration components register themselves with the category ID CATID_BIZTALK_AIC. The
CATIDs are defined in the bts_sdk_guids.h file. For more information, see Registering Custom Components.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: pipecomp.h
Library: Microsoft Commerce 2000 Default Pipeline Components Type Library (pipecomplib.tlb)

 Related Topics

Application Integration Components

Pipeline Components in Visual Basic

Pipeline Components in Visual C++

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - GetConfigData Method

BizTalk Server 2002 ~ Developer Solutions

SetConfigData Method
The SetConfigData method sets the configuration for a component, using the contents of an IDictionary object.

 Member List

IPipelineComponentAdmin

|--GetConfigData

|--SetConfigData

 Method Declaration

[Visual Basic]

Sub SetConfigData(_

ConfigDictionary As Object _

)

[C++]

HRESULT SetConfigData(

IDispatch* ConfigDictionary

);

 Parameters

ConfigDictionary

[in] Contains an IDictionary object that contains the configuration information.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

With this method, the user interface can set or change these values. SetConfigData enables the user interface to write the
updated value from the property page to the component.

The server calls SetConfigData when the property page is saved. It is used to verify the values entered by the user on the
property page. The contents of this provided IDictionary object are also stored in the database.

This method is called immediately before the Execute method of the IPipelineComponent interface at run time, when the
server is ready to send a document to the component. Data stored during design time from autoconfiguration or from property-
page updates is passed to the component to allow for property setup prior to calling Execute.

Components validate the properties provided in SetConfigData and raise an error if any of the properties are invalid or missing.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: pipecomp.h
Library: Microsoft Commerce 2000 Default Pipeline Components Type Library (pipecomplib.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

ISchemaImporter
Handles the importing of DTDs, XDRs, and well-formed XML documents.

 Hierarchy

IDispatch

|--ISchemaImporter

 Declaration

[Visual Basic]

Class ISchemaImporter

[C++]

interface ISchemaImporter : IDispatch

 Members

ISchemaImporter defines the following properties:
Property Description
ImportFormatDescription Contains descriptive text about a supported import format.
ImportFormatIcon Contains an icon for a supported import format.
NumberOfSupportedImportFormats Contains the number of supported data formats from which a schema can be extracted.

ISchemaImporter defines the following method:

Method Description
ExtractXMLSchema Extracts a schema from a document.

 Remarks

Custom XML import components must be properly registered so that Microsoft BizTalk Server 2002 can recognize that they
belong to BizTalk Server 2002. Custom XML import components register themselves with the category ID
CATID_BIZTALK_IDocSpecExtension. The CATIDs are defined in the bts_sdk_guids.h file. For more information, see
Registering Custom Components.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

ExtractXMLSchema Method
Extracts a schema from a document.

 Member List

ISchemaImporter

|--ExtractXMLSchema

|--ImportFormatDescription

|--ImportFormatIcon

|--NumberOfSupportedImportFormats

 Method Declaration

[Visual Basic]

Function ExtractXMLSchema(_

FormatIndex As Long, _

DocumentPath As String _

) As Object

[C++]

HRESULT ExtractXMLSchema(

long FormatIndex ,

BSTR DocumentPath ,

IDispatch** SchemaDOM

);

 Parameters

FormatIndex

[in] Contains an index value that specifies the type of document from which to import the schema. Use the value 0 to import well-
formed XML, 1 to import a document type definition (DTD), or 2 to import an XDR schema.

DocumentPath

[in] Contains the path to the document from which to import the schema.

SchemaDOM

[out, retval] In C++, contains an IDispatch interface that contains the extracted XML schema. This parameter is not supported in
Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this method returns an Object that contains information about the extracted XML schema.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ImportFormatDescription Property
Contains descriptive text about a supported import format.

 Member List

ISchemaImporter

|--ExtractXMLSchema

|--ImportFormatDescription

|--ImportFormatIcon

|--NumberOfSupportedImportFormats

 Property Declaration

[Visual Basic]

Property ImportFormatDescription(_

FormatIndex As Long _

) As String

[C++]

HRESULT get_ImportFormatDescription(

long FormatIndex ,

BSTR* Description

);

 Parameters

FormatIndex

[in] Contains an index value that specifies the type of document from which to import the schema. Use the value 0 to import well-
formed XML, 1 to import a document type definition (DTD), or 2 to import an XDR schema.

Description

[out, retval] In C++, contains a textual description of the input document format. This parameter is not supported in Visual Basic.
For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a textual description of the input document format.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

ImportFormatIcon Property
Contains an icon for a supported import format.

 Member List

ISchemaImporter

|--ExtractXMLSchema

|--ImportFormatDescription

|--ImportFormatIcon

|--NumberOfSupportedImportFormats

 Property Declaration

[Visual Basic]

Property ImportFormatIcon(_

FormatIndex As Long _

) As Long

[C++]

HRESULT get_ImportFormatIcon(

long FormatIndex,

long* IconID

);

 Parameters

FormatIndex

[in] Contains an index value that specifies the type of document from which to import the schema. Use the value 0 to import well-
formed XML, 1 to import a document type definition (DTD), or 2 to import an XDR schema.

IconID

[out, retval] In C++, contains the icon identifier for the input format. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the icon identifier for the input format.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read only-property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

NumberOfSupportedImportFormats Property
Contains the number of supported data formats from which a schema can be extracted.

 Member List

ISchemaImporter

|--ExtractXMLSchema

|--ImportFormatDescription

|--ImportFormatIcon

|--NumberOfSupportedImportFormats

 Property Declaration

[Visual Basic]

Property NumberOfSupportedImportFormats As Long

[C++]

HRESULT get_NumberOfSupportedImportFormats(

long* Number

);

 Parameters

Number

[out, retval] In C++, indicates the number of supported import formats. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the number of supported import formats.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

ISchemaImporterError
Identifies and deciphers errors or warnings.

 Hierarchy

IDispatch

|--ISchemaImporterError

 Declaration

[Visual Basic]

Class ISchemaImporterError

[C++]

interface ISchemaImporterError : IDispatch

 Members

ISchemaImporterError defines the following properties:
Property Description
IsWarning Contains a value that identifies the object as an error or a warning.
NodePath Contains the path to the node that generated the error or warning.
Text Contains the error or warning message.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IsWarning Property
Contains a value that identifies the object as an error or a warning.

 Member List

ISchemaImporterError

|--IsWarning

|--NodePath

|--Text

 Property Declaration

[Visual Basic]

Property IsWarning As Boolean

[C++]

HRESULT get_IsWarning(

VARIANT_BOOL* IsWarning

);

 Parameters

IsWarning

[out, retval] In C++, contains a value that indicates whether or not the object is a warning. VARIANT_TRUE indicates that this is a
warning object; VARIANT_FALSE indicates that this is an error object. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the object is a warning. True indicates that this is a
warning object; False indicates that this is an error object.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

NodePath Property
Contains the path to the node that generated the error or warning.

 Member List

ISchemaImporterError

|--IsWarning

|--NodePath

|--Text

 Property Declaration

[Visual Basic]

Property NodePath As String

[C++]

HRESULT get_NodePath(

BSTR* NodePath

);

 Parameters

NodePath

[out, retval] In C++, contains the fully qualified name of the node that generated the error or warning. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the fully qualified name of the node that generated the error or warning.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Text Property
Contains the error or warning message.

 Member List

ISchemaImporterError

|--IsWarning

|--NodePath

|--Text

 Property Declaration

[Visual Basic]

Property Text As String

[C++]

HRESULT get_Text(

BSTR* errText

);

 Parameters

errText

[out, retval] In C++, contains the text associated with the error or warning. This parameter is not supported in Visual Basic. For
more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the text associated with the error or warning.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

ISchemaImporterErrorProvider
Returns errors or warnings.

 Hierarchy

IDispatch

|--ISchemaImporterErrorProvider

 Declaration

[Visual Basic]

Class ISchemaErrorProvider

[C++]

interface ISchemaErrorProvider : IDispatch

 Members

ISchemaImporterErrorProvider defines the following properties:
Property Description
Error Contains the error or warning.
NumberOfErrors Contains the number of errors or warnings.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Error Property
Contains the error or warning.

 Member List

ISchemaImporterErrorProvider

|--Error

|--NumberOfErrors

 Property Declaration

[Visual Basic]

Property Error(_

Index As Long _

) As ISchemaImporterError

[C++]

HRESULT get_Error(

long Index,

IschemaImporterError** Error

);

 Parameters

Index

[in] Contains the index of the error or warning.

Error

[out, retval] In C++, contains an ISchemaImporterError interface that contains the error or warning. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a SchemaImporterError object that contains the error or warning.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

NumberOfErrors Property
Contains the number of errors or warnings.

 Member List

ISchemaImporterErrorProvider

|--Error

|--NumberOfErrors

Property Declaration

[Visual Basic]

Property NumberOfErrors As Long

[C++]

HRESULT get_NumberOfErrors(

long* NumberOfErrors

);

 Parameters

NumberOfErrors

[out, retval] In C++, indicates the number of errors. This parameter is not supported in Visual Basic. For more information, see
"Return Values."

 Return Values

In Visual Basic, this property returns the number of errors.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SchemaImporter.h
Library: Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Enumerations
The following enumerations provide possible property and parameter values:

CONNECTION_TYPE

DTA_ACK_STATUS

FUNC_CATEGORY

FUNC_TYPE

GeneratedReceiptLevel

SCRIPT_CATEGORY

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

CONNECTION_TYPE
Specifies the connection type.

[Visual Basic]

Enum CONNECTION_TYPE

[C++]

enum CONNECTION_TYPE

 Members

CONNECT_TYPE_NONE

[0] The connection type is none.

CONNECT_TYPE_FIELD

[1] The connection type is field.

CONNECT_TYPE_RECORD

[2] The connection type is record.

CONNECT_TYPE_RECORD_CONTENT

[4] The connection type is record content.

CONNECT_TYPE_FUNC_STRING

[8] The connection type function is string.

CONNECT_TYPE_FUNC_MATH

[16] The connection type function is mathematical.

CONNECT_TYPE_FUNC_DATACONV

[32] The connection type function is data conversion.

CONNECT_TYPE_FUNC_DATETIME_FMT

[64] The connection type function is date/time format.

CONNECT_TYPE_FUNC_SCIENTIFIC

[128] The connection type function is scientific.

CONNECT_TYPE_FUNC_BOOLEAN

[256] The connection type function is Boolean.

CONNECT_TYPE_FUNC_SCRIPTER

[1024] The connection type function is script.

CONNECT_TYPE_FUNC_COUNT

[2048] The connection type function is count.

CONNECT_TYPE_FUNC_INDEX

[2048] The connection type function is index.

CONNECT_TYPE_FUNC_CUMULATIVE

[4096] The connection type function is cumulative.

CONNECT_TYPE_FUNC_VALUE_MAPPING

[8192] The connection type function is value mapping.

CONNECT_TYPE_FUNC_LOOPING

[16384] The connection type function is looping.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

CONNECT_TYPE_FUNC_ITERATION

[32768] The connection type function is iteration.

CONNECT_TYPE_FUNC_DBLOOKUP

[65536] The connection type function is database lookup.

CONNECT_TYPE_FUNC_DBEXTRACT

[131072] The connection type function is database extraction.

CONNECT_TYPE_ALL

[-1] The connection type includes all connection types.

CONNECT_TYPE_ALL_EXCEPT_RECORD

[-3] The connection type includes all connection types except records.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: Functoid.h
Library: Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

 Related Topics

GetFunctionParameter

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

DTA_ACK_STATUS
Indicates the acknowledgement status.

[Visual Basic]

Enum DTA_ACK_STATUS

[C++]

enum DTA_ACK_STATUS

 Members

DTA_ACK_NONE

[0] No receipt is expected.

DTA_ACK_PENDING

[1] The receipt is expected but has not yet arrived.

DTA_ACK_OVERDUE

[2] The receipt has timed out.

DTA_ACK_ACCEPTED

[3] The receipt has arrived with a status of accepted.

DTA_ACK_PARTIALLY_ACCEPTED

[4] The receipt has arrived with a status of accepted with errors.

DTA_ACK_REJECTED

[5] The receipt has arrived with a status of rejected.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSDocTracking.h
Library: Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

 Related Topics

AckDocument

AckGroup

AckInterchange

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

FUNC_CATEGORY
Defines the values to specify the functoid palette on which the custom functoid will appear.

[Visual Basic]

Enum FUNC_CATEGORY

[C++]

enum FUNC_CATEGORY

 Members

FUNC_CATEGORY_STRING

[3] The function category is string.

FUNC_CATEGORY_MATH

[4] The function category is mathematical.

FUNC_CATEGORY_DATACONV

[5] The function category is data conversion.

FUNC_CATEGORY_DATETIME_FMT

[6] The function category is date/time format.

FUNC_CATEGORY_SCIENTIFIC

[7] The function category is scientific.

FUNC_CATEGORY_BOOLEAN

[8] The function category is Boolean.

FUNC_CATEGORY_SCRIPTER

[9] The function category is script.

FUNC_CATEGORY_COUNT

[10] The function category is count. This value is not supported for this release.

FUNC_CATEGORY_INDEX

[11] The function category is index.

FUNC_CATEGORY_CUMULATIVE

[12] The function category is cumulative.

FUNC_CATEGORY_VALUE_MAPPING

[13] The function category is value mapping. This value is not supported for this release.

FUNC_CATEGORY_LOOPING

[14] The function category is looping. This value is not supported for this release.

FUNC_CATEGORY_ITERATION

[15] The function category is iteration. This value is not supported for this release.

FUNC_CATEGORY_DBLOOKUP

[16] The function category is database lookup. It is not recommended to add custom functoids to the Database tab on the functoid
palette. See the note following this table for information on adding functoids to the Advanced tab.

FUNC_CATEGORY_DBEXTRACT

[17] The function category is database extraction. It is not recommended to add custom functoids to the Database tab on the
functoid palette. See the note following this table for information on adding functoids to the Advanced tab.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

FUNC_CATEGORY_UNKNOWN

[31] The function category is unknown.

 Remarks

Custom functoids using a category value between 18 and 31 appear on the Advanced tab in the functoid palette.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: Functoid.h
Library: Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

 Related Topics

GetFunctionDescripter

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

FUNC_TYPE
Specifies the function type.

[Visual Basic]

Enum FUNC_TYPE

[C++]

enum FUNC_TYPE

 Members

FUNC_TYPE_STD

[1] The function type is standard.

FUNC_TYPE_VARIABLEINPUT

[2] The function type is variable input.

FUNC_TYPE_SCRIPTOR

[3] The function type is script.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: Functoid.h
Library: Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

 Related Topics

GetFunctionDescripter

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

GeneratedReceiptLevel
Specifies the generated receipt level.

This enumeration is only supported in C++.

enum GeneratedReceiptLevel

 Members

NoReceiptGenerated

[0] No receipt is created.

DocReceiptGenerated

[1] A receipt is generated for each document.

GroupReceiptGenerated

[2] A receipt is generated for each group.

InterchangeReceiptGenerated

[3] A receipt is generated for each interchange.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: BTSParserComps.h

 Related Topics

GetNextDocument

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

SCRIPT_CATEGORY
Specifies the script category.

[Visual Basic]

Enum SCRIPT_CATEGORY

[C++]

enum SCRIPT_CATEGORY

 Members

SCRIPT_CATEGORY_VBSCRIPT

[0] The custom functoid function is written in the Microsoft Visual Basic Scripting Edition (VBScript) language.

SCRIPT_CATEGORY_JSCRIPT

[1] The custom functoid function is written in the Microsoft JScript language.

SCRIPT_CATEGORY_XSLSCRIPT

[2] The custom functoid function is written in the Extensible Stylesheet Language (XSL). This value is not supported for this
release.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: Functoid.h
Library: Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

 Related Topics

GetFunctionDescripter

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Orchestration Services Reference
This section provides reference information about application programming interfaces (APIs) used by Microsoft
BizTalk Server 2002 for both C++ and Microsoft Visual Basic programming.

Reference information is provided for all interfaces, methods, and properties exposed for accessing orchestration services:

Interfaces

In addition, a complete list of Error Messages is provided.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Interfaces
The following COM interfaces are documented:

IWFGroupAdmin

IWFProxy

IWFSystemAdmin

IWFWorkflowInstance

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IWFGroupAdmin
Allows a client application to control running instances of an XLANG schedule. Use IWFGroupAdmin to stop, suspend, resume,
and retrieve information about all the schedule instances associated with a group manager.

 Hierarchy

IDispatch

|--IWFGroupAdmin

 Declaration

[Visual Basic]

Class IWFGroupAdmin

[C++]

interface IWFGroupAdmin : IDispatch

 Members

IWFGroupAdmin defines the following properties:
Property Description
Count Contains the number of running XLANG schedule instances associated with this group manager.
FullyQualifiedName Contains the moniker of this group manager.
InstanceIsResident Contains a value that indicates whether the specified XLANG schedule instance is currently resident in me

mory.
InstanceIsSuspended Contains a value that indicates whether the specified XLANG schedule instance is currently in a suspende

d state.
Name Contains the name of this group manager.
UseFileDSN Contains a value that indicates whether a Data Source Name (DSN) file is used for dehydrating the XLAN

G schedule instances.

IWFGroupAdmin defines the following methods:

Method Description
ResumeInstance Resumes the execution of an XLANG schedule instance in a suspended state.
Shutdown Stops the group manager and dehydrates all running XLANG schedule instances.
Startup Starts all the dehydrated XLANG schedule instances for the current group manager.
SuspendInstance Pauses the running XLANG schedule instance in its current state.
TerminateInstance Stops execution of the running XLANG schedule instance.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

 Related Topics

Accessing Group Managers

XLANG Interfaces

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - Count Property

BizTalk Server 2002 ~ Developer Solutions

FullyQualifiedName Property
Contains the moniker of this group manager.

 Member List

IWFGroupAdmin

|--Count

|--FullyQualifiedName

|--InstanceIsResident

|--InstanceIsSuspended

|--Name

|--ResumeInstance

|--Shutdown

|--Startup

|--SuspendInstance

|--TerminateInstance

|--UseFileDSN

 Property Declaration

[Visual Basic]

Property FullyQualifiedName As String

[C++]

HRESULT get_FullyQualifiedName(

BSTR* FullyQualifiedName

);

 Parameters

FullyQualifiedName

[out, retval] In C++, contains the moniker of this group manager. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the moniker of this group manager.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

Although a group manager can be instantiated through a local moniker, this property always includes the full Domain Name
Services (DNS) style system name. For example, suppose the default XLANG Scheduler Group Manager, named XLANG Scheduler,
is running on a computer named MyMachine in the domain vigorair-18.com. The FullyQualifiedName property would contain a
value of sked://MyMachine.vigorair-18.com!XLANG Scheduler.

 Requirements

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

 Related Topics

Moniker Syntax

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

InstanceIsResident Property
Contains a value that indicates whether the specified XLANG schedule instance is currently resident in memory.

 Member List

IWFGroupAdmin

|--Count

|--FullyQualifiedName

|--InstanceIsResident

|--InstanceIsSuspended

|--Name

|--ResumeInstance

|--Shutdown

|--Startup

|--SuspendInstance

|--TerminateInstance

|--UseFileDSN

 Property Declaration

[Visual Basic]

Property InstanceIsResident(_

InstanceId As String _

) As Boolean

[C++]

HRESULT get_InstanceIsResident(

BSTR InstanceId,

VARIANT_BOOL* IsResident

);

 Parameters

InstanceId

[in] Contains the globally unique identifier (GUID) assigned to the schedule instance.

IsResident

[out, retval] In C++, contains a value that indicates whether or not the specified schedule instance is currently resident in memory.
VARIANT_TRUE indicates that the specified schedule instance is currently resident in memory; VARIANT_FALSE indicates that the
specified schedule instance is not currently resident in memory. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the specified schedule instance is currently resident in
memory. True indicates that the specified schedule instance is currently resident in memory; False indicates that the specified
schedule instance is not currently resident in memory.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

InstanceIsSuspended Property
Contains a value that indicates whether the specified XLANG schedule instance is currently in a suspended state.

 Member List

IWFGroupAdmin

|--Count

|--FullyQualifiedName

|--InstanceIsResident

|--InstanceIsSuspended

|--Name

|--ResumeInstance

|--Shutdown

|--Startup

|--SuspendInstance

|--TerminateInstance

|--UseFileDSN

 Property Declaration

[Visual Basic]

Property InstanceIsSuspended(_

InstanceId As String _

) As Boolean

[C++]

HRESULT get_InstanceIsSuspended(

BSTR InstanceId,

VARIANT_BOOL* IsSuspended

);

 Parameters

InstanceId

[in] Contains the globally unique identifier (GUID) assigned to the schedule instance.

IsSuspended

[out, retval] In C++, contains a value that indicates whether or not the specified schedule instance is currently in a suspended
state. VARIANT_TRUE indicates that the specified schedule instance is currently in a suspended state; VARIANT_FALSE indicates
that the specified schedule instance is not currently in a suspended state. This parameter is not supported in Visual Basic. For
more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the specified schedule instance is currently in a
suspended state. VARIANT_TRUE indicates that the specified schedule instance is currently in a suspended state; VARIANT_FALSE
indicates that the specified schedule instance is not currently in a suspended state.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

This property should be checked prior to calling the ResumeInstance method.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Name Property
Contains the name of this group manager.

 Member List

IWFGroupAdmin

|--Count

|--FullyQualifiedName

|--InstanceIsResident

|--InstanceIsSuspended

|--Name

|--ResumeInstance

|--Shutdown

|--Startup

|--SuspendInstance

|--TerminateInstance

|--UseFileDSN

 Property Declaration

[Visual Basic]

Property Name As String

[C++]

HRESULT get_Name(

BSTR* Name

);

[
 Parameters

Name

[out, retval] In C++, contains the name of this group manager. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns the name of this group manager.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

This property is the same as the name of the hosting COM+ application.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ResumeInstance Method
Resumes the execution of an XLANG schedule instance in a suspended state.

 Member List

IWFGroupAdmin

|--Count

|--FullyQualifiedName

|--InstanceIsResident

|--InstanceIsSuspended

|--Name

|--ResumeInstance

|--Shutdown

|--Startup

|--SuspendInstance

|--TerminateInstance

|--UseFileDSN

 Method Declaration

[Visual Basic]

Sub ResumeInstance(_

InstanceId As String _

)

[C++]

HRESULT ResumeInstance(

BSTR InstanceId

);

 Parameters

InstanceId

[in] Contains the globally unique identifier (GUID) assigned to the schedule instance to be resumed.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The schedule instance can be paused with the SuspendInstance method. Prior to calling the ResumeInstance method, the
InstanceIsSuspended property should be checked.

 Requirements

Windows NT/2000: Windows 2000 SP2

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Shutdown Method
Stops the group manager and dehydrates all running XLANG schedule instances.

 Member List

IWFGroupAdmin

|--Count

|--FullyQualifiedName

|--InstanceIsResident

|--InstanceIsSuspended

|--Name

|--ResumeInstance

|--Shutdown

|--Startup

|--SuspendInstance

|--TerminateInstance

|--UseFileDSN

 Method Declaration

[Visual Basic]

Sub Shutdown()

[C++]

HRESULT Shutdown();

 Parameters

None

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

Prior to stopping the group manager, all running schedule instances associated with this group manager are dehydrated to the
database specified in the Data Source Name (DSN) file, and requests for activation of any new schedule instances are refused until
shutdown is completed.

Any component that is bound in an XLANG schedule should not invoke this method to stop the group manager, as this can
produce unexpected results.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Startup Method
Starts all the dehydrated XLANG schedule instances for the current group manager.

 Member List

IWFGroupAdmin

|--Count

|--FullyQualifiedName

|--InstanceIsResident

|--InstanceIsSuspended

|--Name

|--ResumeInstance

|--Shutdown

|--Startup

|--SuspendInstance

|--TerminateInstance

|--UseFileDSN

 Method Declaration

[Visual Basic]

Sub Startup()

[C++]

HRESULT Startup();

 Parameters

None

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The XLANG Scheduler System Manager normally calls this method. Users should not call this method directly.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

SuspendInstance Method
Pauses the running XLANG schedule instance in its current state.

 Member List

IWFGroupAdmin

|--Count

|--FullyQualifiedName

|--InstanceIsResident

|--InstanceIsSuspended

|--Name

|--ResumeInstance

|--Shutdown

|--Startup

|--SuspendInstance

|--TerminateInstance

|--UseFileDSN

 Method Declaration

[Visual Basic]

Sub SuspendInstance(_

InstanceId As String _

)

[C++]

HRESULT SuspendInstance(

BSTR InstanceId

);

 Parameters

InstanceId

[in] Contains the globally unique identifier (GUID) assigned to the schedule instance to be suspended.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

The schedule instance can be restarted with the ResumeInstance method.

This method might block if actions with COM-bound ports are waiting for a method to complete, or if a short-lived transaction is
currently in progress.

 Requirements

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

TerminateInstance Method
Stops execution of the running XLANG schedule instance.

 Member List

IWFGroupAdmin

|--Count

|--FullyQualifiedName

|--InstanceIsResident

|--InstanceIsSuspended

|--Name

|--ResumeInstance

|--Shutdown

|--Startup

|--SuspendInstance

|--TerminateInstance

|--UseFileDSN

 Method Declaration

[Visual Basic]

Sub TerminateInstance(_

InstanceId As String _

)

[C++]

HRESULT TerminateInstance(

BSTR InstanceId

);

 Parameters

InstanceId

[in] Contains the globally unique identifier (GUID) assigned to the schedule instance to be stopped.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

A terminated schedule instance can never be restarted or resumed.

This method might block if actions with COM-bound ports are waiting for a method to complete, or if a short-lived transaction is
currently in progress.

 Requirements

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

UseFileDSN Property
Contains a value that indicates whether a Data Source Name (DSN) file is used for dehydrating the XLANG schedule instances.

 Member List

IWFGroupAdmin

|--Count

|--FullyQualifiedName

|--InstanceIsResident

|--InstanceIsSuspended

|--Name

|--ResumeInstance

|--Shutdown

|--Startup

|--SuspendInstance

|--TerminateInstance

|--UseFileDSN

 Property Declaration

[Visual Basic]

Property UseFileDSN As Boolean

[C++]

HRESULT get_UseFileDSN(

VARIANT_BOOL* UseFileDSN

);

 Parameters

UseFileDSN

[out, retval] In C++, contains a value that indicates whether or not the group manager uses a DSN file for dehydrating schedule
instances. VARIANT_TRUE indicates that the group manager uses a DSN file for dehydrating schedule instances; VARIANT_FALSE
indicates that the group manager does not use a DSN file for dehydrating schedule instances. This parameter is not supported in
Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the group manager uses a DSN file for dehydrating
schedule instances. True indicates that the group manager uses a DSN file for dehydrating schedule instances; False indicates that
the group manager does not use a DSN file for dehydrating schedule instances.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

The value of this property is set when the group manager process is launched. The DSN setting in the COM+ catalog is changed
either on the XLANG tab of the XLANG Scheduler Properties dialog box or by setting the UseFileDSN property on the

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

IWFSystemAdmin interface. If the DSN value is changed while the group manager is running, the value of this property is not
dynamically updated. The new value is not reflected until the next time the group manager is launched. Updates to this property
require the caller to be in the XLANG Administrator role and are not normally performed by user code.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IWFProxy
Contains information about ports in an XLANG schedule instance that are bound to a COM component.

 Hierarchy

IDispatch

|--IWFProxy

 Declaration

[Visual Basic]

Class IWFProxy

[C++]

interface IWFProxy : IDispatch

 Members

IWFProxy defines the following properties:
Property Description
FullyQualifiedName Contains the fully qualified name of a COM-bound port.
WorkflowInstance Contains a reference to the current XLANG schedule instance.

 Remarks

Use IWFProxy to obtain a schedule instance.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

 Related Topics

Activating an XLANG Schedule Instance

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - FullyQualifiedName Property

BizTalk Server 2002 ~ Developer Solutions

WorkflowInstance Property
Contains a reference to the current XLANG schedule instance.

 Member List

IWFProxy

|--FullyQualifiedName

|--WorkflowInstance

 Property Declaration

[Visual Basic]

Property WorkflowInstance As IWFWorkflowInstance

[C++]

HRESULT get_WorkflowInstance(

IWFWorkflowInstance** ScheduleInstance

);

 Parameters

ScheduleInstance

[out, retval] Contains an IWFWorkflowInstance object that contains the current schedule instance. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns an IWFWorkflowInstance object that contains the current schedule instance.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

IWFSystemAdmin
Provides a client application with system-wide administrative control over the XLANG Scheduler Engine.

 Hierarchy

IDispatch

|--IWFSystemAdmin

 Declaration

[Visual Basic]

Class SysMgr

[C++]

interface IWFSystemAdmin : IDispatch

 Members

IWFSystemAdmin defines the following properties:
Property Description
Count Contains the number of group managers associated with this XLANG Scheduler System Manager.
FullyQualifiedName Contains the fully qualified DNS-style name of the XLANG Scheduler System Manager.
IsWorkflowHost Contains a value that indicates whether the COM+ server application is an XLANG Scheduler Engine host.
Item Contains a reference to the named schedule group.
UseFileDSN Contains a value that indicates whether a COM+ server application uses a Data Source Name (DSN) file fo

r dehydrating the XLANG schedule instances.

IWFSystemAdmin defines the following methods:

Method Description
ShutdownAll Stops the group managers and terminates their associated COM+ applications.
ShutdownApp Stops a specific group manager application and terminates the associated COM+ application.
Startup Starts all group managers.
TestAdminStatus Determines whether a caller on IWFGroupAdmin is an XLANG Scheduler Engine administrator.

 Remarks

Use IWFSystemAdmin to start, stop, and retrieve information about the group managers.

All XLANG Scheduler System Manager objects must have an associated Data Source Name (DSN) to support the dehydration and
rehydration of long-running business processes. Therefore, you must create a DSN for the XLANG Scheduler System Manager by
using the ODBC Data Source Administrator. XLANG schedules run by an XLANG Scheduler System Manager without a DSN
configured will generate an error. For more information about creating a DSN, see
Change the DSN settings for a COM+ application.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SysMgr.h
Library: XLANG Scheduler - System Manager (SKEDSMGR.dll)

 Related Topics

Accessing the XLANG Scheduler System Manager

XLANG Interfaces

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250970(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - Count Property

BizTalk Server 2002 ~ Developer Solutions

FullyQualifiedName Property
Contains the fully qualified DNS-style name of the XLANG Scheduler System Manager.

 Member List

IWFSystemAdmin

|--Count

|--FullyQualifiedName

|--IsWorkflowHost

|--Item

|--ShutdownAll

|--ShutdownApp

|--Startup

|--TestAdminStatus

|--UseFileDSN

 Property Declaration

[Visual Basic]

Property FullyQualifiedName As String

[C++]

HRESULT get_FullyQualifiedName(

BSTR* FullyQualifiedName

);

 Parameters

FullyQualifiedName

[out, retval] Contains the moniker of this XLANG Scheduler System Manager. This parameter is not supported in Visual Basic. For
more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the moniker of this XLANG Scheduler System Manager.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

Although an XLANG Scheduler System Manager can be instantiated through a local moniker, this property always includes the
full Domain Name Services (DNS) style system name. For example, suppose the XLANG Scheduler System Manager is running on
a computer named MyMachine in the domain vigorair-18.com. The FullyQualifiedName property would contain a value of
sked://MyMachine.vigorair-18.com.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SysMgr.h
Library: XLANG Scheduler - System Manager (SKEDSMGR.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Related Topics

Moniker Syntax

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IsWorkflowHost Property
Contains a value that indicates whether the COM+ server application is an XLANG Scheduler Engine host.

 Member List

IWFSystemAdmin

|--Count

|--FullyQualifiedName

|--IsWorkflowHost

|--Item

|--ShutdownAll

|--ShutdownApp

|--Startup

|--TestAdminStatus

|--UseFileDSN

 Property Declaration

[Visual Basic]

Property IsWorkflowHost(_

AppName As String _

) As Boolean

[C++]

HRESULT get_IsWorkflowHost(

BSTR AppName,

VARIANT_BOOL* IsWorkflowHost

);

HRESULT put_IsWorkflowHost(

BSTR AppName,

VARIANT_BOOL IsWorkflowHost

);

 Parameters

AppName

[in] Contains the COM+ server application name.

IsWorkflowHost

[out, retval], [in] In C++, contains a value that indicates whether or not the COM+ server application is hosting the XLANG
Scheduler Engine. VARIANT_TRUE indicates that the COM+ server application is hosting the XLANG Scheduler Engine;
VARIANT_FALSE indicates that the COM+ server application is not hosting the XLANG Scheduler Engine. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the COM+ server application is hosting the XLANG
Scheduler Engine. True indicates that the COM+ server application is hosting the XLANG Scheduler Engine; False indicates that
the COM+ server application is not hosting the XLANG Scheduler Engine.

In C++, this property returns an HRESULT value, indicating success or failure.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This property cannot be set on the XLANG Scheduler Engine application, or on any COM+ application marked as read-only.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SysMgr.h
Library: XLANG Scheduler - System Manager (SKEDSMGR.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Item Property
Contains a reference to the named schedule group.

 Member List

IWFSystemAdmin

|--Count

|--FullyQualifiedName

|--IsWorkflowHost

|--Item

|--ShutdownAll

|--ShutdownApp

|--Startup

|--TestAdminStatus

|--UseFileDSN

 Property Declaration

[Visual Basic]

Property Item(_

GrpMgrName As String _

) As Unknown

[C++]

HRESULT get_Item(

BSTR GrpMgrName,

IUnknown** Item

);

 Parameters

GrpMgrName

[in] Contains the group name corresponding to the hosting COM+ server application name. Group names are case sensitive and
can contain spaces.

Item

[out, retval] Contains an object that refers to a group manager. This parameter is not supported in Visual Basic. For more
information, see "Return Values."

 Return Values

In Visual Basic, this property returns an object that refers to a group manager.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SysMgr.h
Library: XLANG Scheduler - System Manager (SKEDSMGR.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ShutdownAll Method
Stops the group managers and terminates their associated COM+ applications.

 Member List

IWFSystemAdmin

|--Count

|--FullyQualifiedName

|--IsWorkflowHost

|--Item

|--ShutdownAll

|--ShutdownApp

|--Startup

|--TestAdminStatus

|--UseFileDSN

 Method Declaration

[Visual Basic]

Sub ShutdownAll()

[C++]

HRESULT ShutdownAll();

 Parameters

None

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

When the ShutdownAll method is called, new schedule activations are disabled and the shutdown notice is propagated to all
running group managers. Once this method has completed, all group managers are stopped and the system can be safely
rebooted.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SysMgr.h
Library: XLANG Scheduler - System Manager (SKEDSMGR.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

ShutdownApp Method
Stops a specific group manager application and terminates the associated COM+ application.

 Member List

IWFSystemAdmin

|--Count

|--FullyQualifiedName

|--IsWorkflowHost

|--Item

|--ShutdownAll

|--ShutdownApp

|--Startup

|--TestAdminStatus

|--UseFileDSN

 Method Declaration

[Visual Basic]

Sub ShutdownApp(_

AppName As String _

)

[C++]

HRESULT ShutdownApp(

BSTR AppName

);

 Parameters

AppName

[in] Contains the COM+ server application name to be stopped.

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

When the ShutdownApp method is called, new schedule activations on the named application are disabled and all running
XLANG schedule instances associated with that application are stopped. If this method is called on the default XLANG Scheduler
Group Manager, all group managers are shut down. Calling this method on the default XLANG Scheduler Group Manager is
equivalent to calling the ShutdownAll method.

 Note

The COM+ application name of the default XLANG Scheduler Group Manager is XLANG Scheduler.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SysMgr.h
Library: XLANG Scheduler - System Manager (SKEDSMGR.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

StartUp Method
Starts all group managers.

 Member List

IWFSystemAdmin

|--Count

|--FullyQualifiedName

|--IsWorkflowHost

|--Item

|--ShutdownAll

|--ShutdownApp

|--Startup

|--TestAdminStatus

|--UseFileDSN

 Method Declaration

[Visual Basic]

Sub StartUp()

[C++]

HRESULT StartUp();

 Parameters

None

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

When this method is invoked, rehydration is initiated for all group managers and, subsequently, all XLANG schedules. This
method is asynchronous, and it can complete before all group managers and schedules are running.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SysMgr.h
Library: XLANG Scheduler - System Manager (SKEDSMGR.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

TestAdminStatus Method
Determines whether a caller on IWFSystemAdmin is an XLANG Scheduler Engine administrator.

 Member List

IWFSystemAdmin

|--Count

|--FullyQualifiedName

|--IsWorkflowHost

|--Item

|--ShutdownAll

|--ShutdownApp

|--Startup

|--TestAdminStatus

|--UseFileDSN

 Method Declaration

[Visual Basic]

Sub TestAdminStatus()

[C++]

HRESULT TestAdminStatus();

 Parameters

None

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This method is intended for internal use by the group managers.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SysMgr.h
Library: XLANG Scheduler - System Manager (SKEDSMGR.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

UseFileDSN Property
Contains a value that indicates whether a COM+ server application uses a Data Source Name (DSN) file for dehydrating the
XLANG schedule instances.

 Member List

IWFSystemAdmin

|--Count

|--FullyQualifiedName

|--IsWorkflowHost

|--Item

|--ShutdownAll

|--ShutdownApp

|--Startup

|--TestAdminStatus

|--UseFileDSN

 Property Declaration

[Visual Basic]

Property UseFileDSN(_

AppName As String _

) As Boolean

[C++]

HRESULT get_UseFileDSN(

BSTR AppName,

VARIANT_BOOL* UseFileDSN

);

HRESULT put_UseFileDSN(

BSTR AppName,

VARIANT_BOOL* UseFileDSN

);

 Parameters

AppName

[in] Contains the COM+ server application name.

UseFileDSN

[out, retval], [in] In C++, contains a value that indicates whether or not the COM+ server application uses a DSN file for
dehydrating schedule instances. VARIANT_TRUE indicates that the COM+ server application uses a DSN file for dehydrating
schedule instances; VARIANT_FALSE indicates that the COM+ server application does not use a DSN file for dehydrating schedule
instances. This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the COM+ server application uses a DSN file for
dehydrating schedule instances. True indicates that the COM+ server application uses a DSN file for dehydrating schedule
instances; False indicates that the COM+ server application does not use a DSN file for dehydrating schedule instances.

In C++, this property returns an HRESULT value, indicating success or failure.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

If this property is changed while any group manager is running, the value of this property is not dynamically updated in the group
managers. Therefore, the UseFileDSN property value exposed by IWFGroupAdmin contains an incorrect value. The updated
value is not reflected until the next time the group manager is launched.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SysMgr.h
Library: XLANG Scheduler - System Manager (SKEDSMGR.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IWFWorkflowInstance
Allows a client application to navigate the ports of an XLANG schedule instance, check the completion status, and determine
whether the schedule instance completed successfully.

 Hierarchy

IDispatch

|--IWFWorkflowInstance

 Declaration

[Visual Basic]

Class IWFWorkflowInstance

[C++]

interface IWFWorkflowInstance : IDispatch

 Members

IWFWorkflowInstance defines the following properties:
Property Description
CompletionStatus Contains a value that indicates the success or failure of the XLANG schedule instance.
FullPortName Contains the full name of a port in a form usable by the associated technology.
FullyQualifiedName Contains the fully qualified name of this XLANG schedule instance.
InstanceId Contains the globally unique identifier (GUID) assigned to the current XLANG schedule instance.
IsCompleted Contains a value that indicates whether the XLANG schedule instance has finished executing.
ModuleId Contains the globally unique identifier (GUID) of the XML module associated with the current XLANG sche

dule instance.
ModuleName Contains the name of the XML module associated with the current XLANG schedule instance.
ParentInstanceID Contains the globally unique identifier (GUID) assigned to the parent XLANG schedule instance of the curr

ent schedule instance.
Port Contains a reference to the named port. This is applicable only to COM-based port bindings.

IWFWorkflowInstance defines the following method:

Method Description
WaitForCompletion Waits until the current XLANG schedule instance completes executing.

 Remarks

Use IWFWorkflowInstance to gather information about a specific, running schedule instance.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

 Related Topics

Accessing a Running XLANG Schedule Instance

XLANG Interfaces

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Microsoft BizTalk Server 2002 - CompletionStatus Property

BizTalk Server 2002 ~ Developer Solutions

FullPortName Property
Contains the full name of a port in a form usable by the associated technology.

 Member List

IWFWorkflowInstance

|--CompletionStatus

|--FullPortName

|--FullyQualifiedName

|--InstanceId

|--IsCompleted

|--ModuleId

|--ModuleName

|--ParentInstanceID

|--Port

|--WaitForCompletion

 Property Declaration

[Visual Basic]

Property FullPortName(_

Port As String _

) As String

[C++]

HRESULT get_FullPortName(

BSTR Port,

BSTR* FullPortName

);

 Parameters

Port

[in] Contains the name of the port to be retrieved.

FullPortName

[out, retval] Contains the full port name. This parameter is not supported in Visual Basic. For more information, see "Return
Values."

 Return Values

In Visual Basic, this property returns the full port name.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

The full port name is returned in a form that is usable by the associated binding technology. For example, a port that is bound to a
COM component returns a fully qualified moniker as the name of the port. For a port that is bound to Microsoft Message
Queuing, this method returns the full path of the queue.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

FullyQualifiedName Property
Contains the fully qualified name of this XLANG schedule instance.

 Member List

IWFWorkflowInstance

|--CompletionStatus

|--FullPortName

|--FullyQualifiedName

|--InstanceId

|--IsCompleted

|--ModuleId

|--ModuleName

|--ParentInstanceID

|--Port

|--WaitForCompletion

 Property Declaration

[Visual Basic]

Property FullyQualifiedName As String

[C++]

HRESULT get_FullyQualifiedName(

BSTR* FullyQualifiedName

);

 Parameters

FullyQualifiedName

[out, retval] Contains the moniker of the schedule instance. This parameter is not supported in Visual Basic. For more information,
see "Return Values."

 Return Values

In Visual Basic, this property returns the moniker of the schedule instance.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

InstanceId Property
Contains the globally unique identifier (GUID) assigned to the current XLANG schedule instance.

 Member List

IWFWorkflowInstance

|--CompletionStatus

|--FullPortName

|--FullyQualifiedName

|--InstanceId

|--IsCompleted

|--ModuleId

|--ModuleName

|--ParentInstanceID

|--Port

|--WaitForCompletion

 Property Declaration

[Visual Basic]

Property InstanceId As String

[C++]

HRESULT get_InstanceId(

BSTR* InstanceId

);

 Parameters

InstanceId

[out, retval] Contains the GUID of the schedule instance. This parameter is not supported in Visual Basic. For more information,
see "Return Values."

 Return Values

In Visual Basic, this property returns the GUID of the schedule instance.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

IsCompleted Property
Contains a value that indicates whether the XLANG schedule instance has finished executing.

 Member List

IWFWorkflowInstance

|--CompletionStatus

|--FullPortName

|--FullyQualifiedName

|--InstanceId

|--IsCompleted

|--ModuleId

|--ModuleName

|--ParentInstanceID

|--Port

|--WaitForCompletion

 Property Declaration

[Visual Basic]

Property IsCompleted As Boolean

[C++]

HRESULT get_IsCompleted(

VARIANT_BOOL* IsCompleted

);

 Parameters

IsCompleted

[out, retval], In C++, contains a value that indicates whether or not the schedule instance has finished executing. VARIANT_TRUE
indicates that the schedule instance has finished executing; VARIANT_FALSE indicates the schedule instance has not finished
executing. This parameter is not supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a value that indicates whether or not the schedule instance has finished executing. True
indicates that the schedule instance has finished executing; False indicates the schedule instance has not finished executing.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ModuleId Property
Contains the globally unique identifier (GUID) of the XML module associated with the current XLANG schedule instance.

 Member List

IWFWorkflowInstance

|--CompletionStatus

|--FullPortName

|--FullyQualifiedName

|--InstanceId

|--IsCompleted

|--ModuleId

|--ModuleName

|--ParentInstanceID

|--Port

|--WaitForCompletion

 Property Declaration

[Visual Basic]

Property ModuleId As String

[C++]

HRESULT get_ModuleId(

BSTR* ModuleId

);

 Parameters

ModuleId

[out, retval] Contains the GUID of the XLANG module associated with the current schedule instance. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the GUID of the XLANG module associated with the current schedule instance.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ModuleName Property
Contains the name of the XML module associated with the current XLANG schedule instance.

 Member List

IWFWorkflowInstance

|--CompletionStatus

|--FullPortName

|--FullyQualifiedName

|--InstanceId

|--IsCompleted

|--ModuleId

|--ModuleName

|--ParentInstanceID

|--Port

|--WaitForCompletion

 Property Declaration

[Visual Basic]

Property ModuleName As String

[C++]

HRESULT get_ModuleName(

BSTR* ModuleName

);

 Parameters

ModuleName

[out, retval] Contains the name of the XLANG module associated with the current schedule instance. This parameter is not
supported in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the name of the XLANG module associated with the current schedule instance.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

The module name is defined in the XLANG schedule (.skx) file.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

ParentInstanceID Property
Contains the globally unique identifier (GUID) assigned to the parent XLANG schedule instance of the current schedule instance.

 Member List

IWFWorkflowInstance

|--CompletionStatus

|--FullPortName

|--FullyQualifiedName

|--InstanceId

|--IsCompleted

|--ModuleId

|--ModuleName

|--ParentInstanceID

|--Port

|--WaitForCompletion

 Property Declaration

[Visual Basic]

Property ParentInstanceID As String

[C++]

HRESULT get_ParentInstanceID(

BSTR* ParentInstanceID

);

 Parameters

ParentInstanceID

[out, retval] Contains the GUID of the parent schedule instance of the current schedule instance. This parameter is not supported
in Visual Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns the GUID of the parent schedule instance of the current schedule instance.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

In C++, the property returns a NULL value if no parent schedule instance exists.

In Visual Basic, the property returns a Nothing value if no parent schedule instance exists.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Port Property
Contains a reference to the named port. This is applicable only to COM-based port bindings.

 Member List

IWFWorkflowInstance

|--CompletionStatus

|--FullPortName

|--FullyQualifiedName

|--InstanceId

|--IsCompleted

|--ModuleId

|--ModuleName

|--ParentInstanceID

|--Port

|--WaitForCompletion

 Property Declaration

[Visual Basic]

Property Port(_

Port As String _

) As Unknown

[C++]

HRESULT get_Port(

BSTR Port,

IUnknown** PortReference

);

 Parameters

Port

[in] Contains the name of the port to which to obtain a reference.

PortReference

[out, retval] Contains a reference to a port in the current XLANG schedule instance. This parameter is not supported in Visual
Basic. For more information, see "Return Values."

 Return Values

In Visual Basic, this property returns a reference to a port in the current XLANG schedule instance.

In C++, this property returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Remarks

This is a read-only property.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

The MK_E_NOOBJECT error code is returned if the moniker or port name passed in the Port parameter is incorrect.

In Visual Basic, the variable used for the port reference returned by using this property should be declared as a specific class or as
a Variant. You can't obtain the port reference if you declare the variable as an Object since the port actually returns an
IUnknown reference.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

WaitForCompletion Method
Waits until the current XLANG schedule instance completes executing.

 Member List

IWFWorkflowInstance

|--CompletionStatus

|--FullPortName

|--FullyQualifiedName

|--InstanceId

|--IsCompleted

|--ModuleId

|--ModuleName

|--ParentInstanceID

|--Port

|--WaitForCompletion

 Method Declaration

[Visual Basic]

Sub WaitForCompletion()

[C++]

HRESULT WaitForCompletion();

 Parameters

None

 Return Values

In Visual Basic, this method does not have a return value.

In C++, this method returns an HRESULT value, indicating success or failure.

 Error Handling

In Visual Basic, if an error is raised, Err.Number is set to an HRESULT value.

In C++, if the call fails, an HRESULT value is returned.

Possible HRESULT values are documented in the Error Messages topic.

 Requirements

Windows NT/2000: Windows 2000 SP2
Header: SkedCore.h
Library: XLANG Scheduler Runtime Type Library (SkedCore.dll)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Managing and Monitoring Reference
This section provides reference information about application programming interfaces (APIs) used by Microsoft
BizTalk Server 2002 for both C++ and Microsoft Visual Basic programming.

Reference information is provided for all interfaces, methods, properties, and enumerations exposed for working with managing
and monitoring BizTalk Server:

WMI Classes

In addition, a complete list of Error Messages is provided.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

WMI Classes
The following COM interfaces are documented:

DocSuspendedEvent

InterchangeProvError

MicrosoftBizTalkServer_Group

MicrosoftBizTalkServer_GroupReceiveFunction

MicrosoftBizTalkServer_GroupServer

MicrosoftBizTalkServer_MgmtDB

MicrosoftBizTalkServer_Queue

MicrosoftBizTalkServer_ReceiveFunction

MicrosoftBizTalkServer_RetryQueue

MicrosoftBizTalkServer_ScheduledQueue

MicrosoftBizTalkServer_Server

MicrosoftBizTalkServer_SuspendedQueue

MicrosoftBizTalkServer_WorkQueue

MSBTS_CustomCounter

MSBTS_CustomCounterSetting

ReceiveFunctionDisabledEvent

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

DocSuspendedEvent
Represents events raised by documents sent to the Suspended queue.

 Hierarchy

__ExtrinsicEvent

|--DocSuspendedEvent

 Declaration

[Visual Basic]

Class DocSuspendedEvent

[C++]

class DocSuspendedEvent : __ExtrinsicEvent

 Members

DocSuspendedEvent defines the following properties:
Property Description
ChannelHandle Contains the handle of the channel through which the suspended document was to be processed.
Destination Contains the name of the destination organization to which the suspended document was to be processe

d.
DocName Contains the name of the document definition designated as the input or output document for the chann

el through which the suspended document was to be processed.
PortHandle Contains the handle of the messaging port attached to the channel through which the suspended docum

ent was to be processed.
Reason Contains a value that indicates why the document was placed in the Suspended queue.
Source Contains the name of the source organization from which the suspended document was to be processed.
State Contains a value that indicates the state of the suspended document.
stringSuspendedGuid Contains the tracking key of the item in the Suspended queue event.

 Remarks

DocSuspendedEvent inherits from the __ExtrinsicEvent system class, an abstract base class that serves as a superclass for all
user-defined event types.

The purpose of this event is to raise a notification when a document is delivered to the suspended queue because of a server
processing error.

In the event that an administrator intentionally moves a document to the suspended queue using one of the following methods, a
document suspended event will not be raised:

MoveToSuspendedQueue

MoveToSuspendedQueue

MoveToSuspendedQueue

 Requirements

Windows NT/ Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: SrvEvents.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250829(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250835(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250809(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250813(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250832(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250822(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250805(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250756(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250771(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264894(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

InterchangeProvError
Represents error information returned by the interchange provider when creating class instances.

 Hierarchy

__ExtendedStatus

|--InterchangeProvError

 Declaration

[Visual Basic]

Class InterchangeProvError

[C++]

class InterchangeProvError : __ExtendedStatus

 Members

InterchangeProvError defines the following property:
Property Description
InterchangeProvName Contains the name of the interchange provider returning error information.

 Remarks

InterchangeProvError inherits from the __ExtendedStatus system class, which is used to report detailed status and error
information.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee251011(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_Group
Represents a logical grouping of a specific number of BizTalk Servers in an enterprise. It is the management abstraction for global
BizTalk Server properties.

 Hierarchy

MicrosoftBizTalkServer_Group

 Declaration

[Visual Basic]

Class Group

[C++]

class MicrosoftBizTalkServer_Group

 Members

MicrosoftBizTalkServer_Group defines the following properties:
Property Description
ConfigurationCacheRefreshInterval Contains a value that indicates how often the server refreshes the cache of the BizTalk Me

ssaging Configuration objects, in seconds.
ConnectToDbStatus Contains a value that indicates the status of the connection to the Tracking and Shared Qu

eue databases.
DateModified Contains a value that indicates the last modification date of the instance data.
DocTrackDbName Contains the database name component of the connect string for the Tracking database.
DocTrackDbServer Contains the server name component of the connect string for the Tracking database.
EnableDocumentTracking Contains a value that indicates whether document tracking is enabled or disabled.
LoggingPointState Contains a collection of flags that indicate the events that cause a Tracking entry to be log

ged.
Name Contains the name of the server.
ParserOrder Contains the CLSIDs of the parser components registered in the registry, sorted in parsing

order.
ProxyHost Contains the proxy host address.
ProxyLogon Contains the proxy logon.
ProxyPassword Contains the proxy password.
ProxyPort Contains a value that indicates the proxy port number.
QueueDbName Contains the database name component of the connect string for the Shared Queue data

base.
QueueDbServer Contains the server name component of the connect string for the Shared Queue databas

e.
ReliableMessagingReplyToURL Contains the URL repository for reliable messaging.
RetryQueueCount Contains a value that indicates the number of documents in the Retry queue.
ScheduledQueueCount Contains a value that indicates the number of documents in the Scheduled queue.
SMTPHost Contains the name of the Simple Mail Transfer Protocol (SMTP) host that is used for this g

roup.
SuspendedQueueCount Contains a value that indicates the number of documents in the Suspended queue.
UseProxyServer Contains a value that indicates whether to use the proxy server.
WorkQueueCount Contains a value that indicates the number of documents in the Work queue.

MicrosoftBizTalkServer_Group defines the following methods:

Method Description
PurgeSuspendedQueue Enables an administrator to remove all the documents in the Suspended queue.
RefreshParserListFromRegistry Updates the list of parser components in the database, based on current components registere

d in the registry.

https://msdn.microsoft.com/en-us/library/ee250913(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250917(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250857(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250885(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250843(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250880(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250847(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250893(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250897(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250920(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250905(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250900(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250889(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250877(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250873(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250850(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

 Remarks

MicrosoftBizTalkServer_Group is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time as needed.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_GroupReceiveFunction
Allows you to retrieve all the receive functions in a group.

 Hierarchy

MicrosoftBizTalkServer_GroupReceiveFunction

 Declaration

[Visual Basic]

Class MicrosoftBizTalkServer_GroupReceiveFunction

[C++]

class MicrosoftBizTalkServer_GroupReceiveFunction

 Members

MicrosoftBizTalkServer_GroupReceiveFunction defines the following properties:
Property Description
Antecedent Contains references to the properties of the BizTalk Server group.
Dependent Contains references to the properties of the receive function that is associated with the BizTalk Server group.

 Remarks

MicrosoftBizTalkServer_GroupReceiveFunction is an association class.

Associations are instances of association classes and are used to represent relationships between other WMI objects.

MicrosoftBizTalkServer_GroupReceiveFunction is a dynamic class, supplied by the WMI provider "InterchangeProv" at run
time as needed.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250941(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_GroupServer
Allows you to retrieve all the servers in a group.

 Hierarchy

MicrosoftBizTalkServer_GroupServer

 Declaration

[Visual Basic]

Class MicrosoftBizTalkServer_GroupServer

[C++]

class MicrosoftBizTalkServer_GroupServer

 Members

MicrosoftBizTalkServer_GroupServer defines the following properties:
Property Description
Antecedent Contains references to the properties of the BizTalk Server group.
Dependent Contains references to the properties of the server that is associated with the BizTalk Server group.

 Remarks

MicrosoftBizTalkServer_GroupServer is an association class.

Associations are instances of association classes and are used to represent relationships between other WMI objects.

MicrosoftBizTalkServer_GroupServer is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time as
needed.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250947(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_MgmtDB
Represents the BizTalk Messaging Management database.

 Hierarchy

MicrosoftBizTalkServer_MgmtDB

 Declaration

[Visual Basic]

Class MicrosoftBizTalkServer_MgmtDB

[C++]

class MicrosoftBizTalkServer_MgmtDB

 Members

MicrosoftBizTalkServer_MgmtDB defines the following properties:
Property Description
LocalServer Contains the name of the class, identifying the instance of the class.
MgmtDbName Contains the initial catalog component of the BizTalk Messaging Management database connect string and repr

esents the database name.
MgmtDbServer Contains the data source part of the BizTalk Messaging Management database connect string.

 Remarks

MicrosoftBizTalkServer_MgmtDB is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time as needed.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250705(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251028(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee251024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_Queue
Provides a set of properties inherited by Retry queue, Scheduled queue, Suspended queue, and Work queue objects.

 Hierarchy

MicrosoftBizTalkServer_Queue

 Declaration

[Visual Basic]

Class MicrosoftBizTalkServer_Queue

[C++]

class MicrosoftBizTalkServer_Queue

 Members

MicrosoftBizTalkServer_Queue defines the following properties:
Property Description
Destination Contains the name of the organization or application that receives the document.
Group Contains the name of the group to which the queue belongs.
QID Contains a value that identifies an instance of the class.
Source Contains the name of the organization or application that sends the document.
Timestamp Contains a value that indicates the last time the document was used, or when it entered the queue.

 Remarks

MicrosoftBizTalkServer_Queue serves only as a base for new classes. This class is abstract and should not be implemented.

The following interfaces inherit properties from MicrosoftBizTalkServer_Queue:MicrosoftBizTalkServer_RetryQueue

MicrosoftBizTalkServer_ScheduledQueue

MicrosoftBizTalkServer_SuspendedQueue

MicrosoftBizTalkServer_WorkQueue

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_ReceiveFunction
Represents a service that is set up on a BizTalk Server to handle incoming interchanges by using a specific protocol such as File,
Message Queuing, or Script.

 Hierarchy

MicrosoftBizTalkServer_ReceiveFunction

 Declaration

[Visual Basic]

Class MicrosoftBizTalkServer_ReceiveFunction

[C++]

class MicrosoftBizTalkServer_ReceiveFunction

 Members

MicrosoftBizTalkServer_ReceiveFunction defines the following properties:
Property Description
ChannelName Contains the name of the channel that the receive function should pass to the Submit method ca

ll when the pass-through flag is enabled.
Comment Contains user comments.
DateModified Contains a value that indicates the last modification date of the instance data.
DestinationID Contains the ID of the organization or application that receives the document.
DestinationQualifier Contains the ID type of the organization or application that receives the document.
DisableReceiveFunction Contains a value that indicates whether to enable or disable the receive function.
DocumentName Contains the name of the document definition for the input document of a channel.
EnvelopeName Contains the name of an envelope definition instance in the BizTalk Messaging Management data

base.
FilenameMask Contains the file name mask to use for receive functions that pull files from the file system for in

put to BizTalk Server.
GroupName Contains the name of the group to which the server belongs.
HttpReturnContentType Contains the name of the document type.
HttpReturnCorrelationToken Contains a value that indicates whether to return a correlation token.
HttpTransportType Contains the enumeration value used to represent the method used by the HTTP receive function

to submit an interchange.
IsPassThrough Contains a value that indicates whether a Submit method call is made with the pass-through fla

g enabled or disabled.
Name Contains the name of the component.
OpennessFlag Contains a value that indicates the value of the Openness parameter that the receive function pas

ses to the Submit method.
Password Contains the password to use for File Transfer Protocol (FTP) or Message Queuing receive functio

ns that require a user name and password.
PollingLocation Contains the name of the directory to poll (directory, message queue, and so on) for receive funct

ions that require polling.
PreProcessor Contains a value that indicates any preprocessing that must be done for a received document.
ProcessingServer Contains the name of the server that is currently processing the interchange.
ProtocolType Contains the enumeration value used to represent the type of the receive function component.
SourceID Contains the ID of the organization or application that sends the document.
SourceQualifier Contains the ID type of the organization or application that sends the document.
TransportURL Contains the transport URL, indicating how and where the HTTP receive function submits the doc

ument.
Username Contains the user name to use for FTP or Message Queuing receive functions.

 Remarks

MicrosoftBizTalkServer_ReceiveFunction is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time as

https://msdn.microsoft.com/en-us/library/ee250746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250718(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250715(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250732(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250722(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

needed.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_RetryQueue
Represents a logical grouping of interchanges in the Shared queue that are awaiting receipt correlation, or interchanges that are
due to be sent to multiple destinations.

 Hierarchy

MicrosoftBizTalkServer_Queue

|--MicrosoftBizTalkServer_RetryQueue

 Declaration

[Visual Basic]

Class MicrosoftBizTalkServer_RetryQueue

[C++]

class MicrosoftBizTalkServer_RetryQueue: MicrosoftBizTalkServer_Queue

 Members

MicrosoftBizTalkServer_RetryQueue defines the following properties:
Property Description
Destination Contains the name of the organization or application that receives the document.
Group Contains the name of the group to which the queue belongs.
LastRetryTime Contains a value that indicates the last time the server attempted a transmission.
ProcessingServer Contains the name of the server that last processed the document.
QID Contains a value that identifies an instance of the class.
RemainingRetryCount Contains a value that indicates the number of outstanding retries remaining.
RetryInterval Contains a value that indicates the wait time between retry intervals, in minutes.
ServiceWindowFromTime Contains a value that indicates the start time of the service window in which to send interchanges.
ServiceWindowToTime Contains a value that indicates the end time of the service window in which to send interchanges.
Source Contains the name of the organization or application that sends the document.
Timestamp Contains a value that indicates the last time the document was used, or when it entered the queue.

MicrosoftBizTalkServer_RetryQueue defines the following method:

Method Description
MoveToSuspendedQueue Enables the administrator to move the selected document to the Suspended queue.

 Remarks

MicrosoftBizTalkServer_RetryQueue is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time as
needed.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250760(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250753(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250755(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250761(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250763(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250758(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250756(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_ScheduledQueue
Represents a logical grouping of interchanges in the Shared queue that are scheduled to be delivered at a later time based on a
service window.

 Hierarchy

MicrosoftBizTalkServer_Queue

|--MicrosoftBizTalkServer_ScheduledQueue

 Declaration

[Visual Basic]

Class MicrosoftBizTalkServer_ScheduledQueue

[C++]

class MicrosoftBizTalkServer_ScheduledQueue: MicrosoftBizTalkServer_Queue

 Members

MicrosoftBizTalkServer_ScheduledQueue defines the following properties:
Property Description
Destination Contains the name of the organization or application that receives the document.
Group Contains the name of the group to which the queue belongs.
ProcessingServer Contains the name of the server that last processed the document.
QID Contains a value that identifies an instance of the class.
ServiceWindowFromTime Contains a value that indicates the start time of the service window in which to send interchanges.
ServiceWindowToTime Contains a value that indicates the end time of the service window in which to send interchanges.
Source Contains the name of the organization or application that sends the document.
Timestamp Contains a value that indicates the last time the document was used, or when it entered the queue.

MicrosoftBizTalkServer_ScheduledQueue defines the following method:

Method Description
MoveToSuspendedQueue Enables the administrator to move the selected document to the Suspended queue.

 Remarks

MicrosoftBizTalkServer_ScheduledQueue is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time as
needed.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250772(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250765(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250767(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250771(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_Server
Represents specific Windows 2000 computers within a BizTalk Server group that are running BizTalk Messaging Services.

 Hierarchy

MicrosoftBizTalkServer_Server

 Declaration

[Visual Basic]

Class MicrosoftBizTalkServer_Server

[C++]

class MicrosoftBizTalkServer_Server

 Members

MicrosoftBizTalkServer_Server defines the following properties:
Property Description
DateModified Contains the date of the last modification of the instance data.
GroupName Contains the name of the group to which the server belongs.
MaxRecvSvcThreadsPerProcessor Contains the maximum number of receive function threads that BizTalk Server can use per

processor for asynchronous calls.
MaxWorkerThreadsPerProcessor Contains the maximum number of worker threads that BizTalk Server can use per processo

r for asynchronous calls.
Name Contains the name of the server.
ParticipateInWorkItemProcessing Contains a value that indicates whether the server participates in work-item processing.
SchedulerWaitTime Contains the time interval that BizTalk Server Scheduler waits between tries, in milliseconds.
ServiceState Contains a value that indicates the state of the BizTalk services on a particular server.

MicrosoftBizTalkServer_Server defines the following methods:

Method Description
FreeInterchanges Frees interchanges that are currently assigned to a specific server if the server is stopped, removed, or in

an error state, so that other servers can use these interchanges.
RegisterServerInAD Registers the BizTalk Server in the Microsoft Active Directory.
StartServer Starts the BizTalk services on a specific server.
StopServer Stops the BizTalk services on a specific server.
UnregisterServerInAD Unregisters the BizTalk Server in the Microsoft Active Directory.

 Remarks

MicrosoftBizTalkServer_Server is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time as needed.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250776(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264872(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250789(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250783(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250792(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250791(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250774(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250785(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250781(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250787(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_SuspendedQueue
Represents a logical grouping of interchanges in the Shared queue that could not be successfully processed.

 Hierarchy

MicrosoftBizTalkServer_Queue

|--MicrosoftBizTalkServer_SuspendedQueue

 Declaration

[Visual Basic]

Class MicrosoftBizTalkServer_SuspendedQueue

[C++]

class MicrosoftBizTalkServer_SuspendedQueue: MicrosoftBizTalkServer_Queue

 Members

MicrosoftBizTalkServer_SuspendedQueue defines the following properties:
Property Description
ChannelHandle Contains the handle of the channel used for processing the interchange or document in the Suspended queue.
Destination Contains the name of the organization or application that receives the document.
DocName Contains the name of the document definition related to the document in the queue.
ErrorDescription Contains the first 64 characters of the error description.
Group Contains the name of the group to which the queue belongs.
QGUID Contains the submission GUID of the Suspended queue work item.
QID Contains a value that identifies an instance of the class.
Size Contains the approximate size of the interchange or document in the Suspended queue, in bytes.
Source Contains the name of the organization or application that sends the document.
State Contains a value that indicates the state of the document or interchange in the Suspended queue.
Timestamp Contains a value that indicates the last time the document was used, or when it entered the queue.

MicrosoftBizTalkServer_SuspendedQueue defines the following methods:

Method Description
Resubmit Enables an administrator to resubmit the selected document to the server.
ViewDocument Enables an administrator to view the contents of a selected document in the Suspended queue.
ViewErrorDescription Enables the administrator to view a description of the error.
ViewInterchange Enables the administrator to view the contents of a selected interchange in the Suspended queue.

 Remarks

MicrosoftBizTalkServer_SuspendedQueue is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time as
needed.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee264879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264891(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264882(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264877(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264889(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264876(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264884(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264881(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264892(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264874(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MicrosoftBizTalkServer_WorkQueue
Represents a logical grouping of interchanges in the Shared queue that are currently in process.

 Hierarchy

MicrosoftBizTalkServer_Queue

|--MicrosoftBizTalkServer_WorkQueue

 Declaration

[Visual Basic]

Class MicrosoftBizTalkServer_WorkQueue

[C++]

class MicrosoftBizTalkServer_WorkQueue: MicrosoftBizTalkServer_Queue

 Members

MicrosoftBizTalkServer_WorkQueue defines the following properties:
Property Description
Destination Contains the name of the organization or application that receives the document.
DocName Contains the name of the document definition related to the document in the queue.
EngineState Contains a value that indicates whether the work item is waiting for receipt correlation or waiting for transmis

sion.
Group Contains the name of the group to which the queue belongs.
ProcessingServer Contains the name of the server that last processed the document.
QID Contains a value that identifies an instance of the class.
Source Contains the name of the organization or application that sends the document.
Timestamp Contains a value that indicates the last time the document was used, or when it entered the queue.

MicrosoftBizTalkServer_WorkQueue defines the following method:

Method Description
MoveToSuspendedQueue Enables the administrator to move the selected document to the Suspended queue.

 Remarks

MicrosoftBizTalkServer_WorkQueue is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time as
needed.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264901(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264900(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264898(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee264894(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MSBTS_CustomCounter
Retrieves the value of the custom counter query.

 Hierarchy

CIM_ManagedSystemElement

|--CIM_LogicalElement

 |--MSBTS_CustomCounter

 Declaration

[Visual Basic]

Class MSBTS_CustomCounter

[C++]

class MSBTS_CustomCounter : CIM_LogicalElement

 Members

MSBTS_CustomCounter defines the following properties:
Property Description
GroupCounterName Contains the Tracking database and custom counter names.
MatchCount Contains the number of documents that match the criteria specified by the custom counter setting.
Name Contains the name of the custom counter.

 Remarks

MSBTS_CustomCounter is derived from CIM_LogicalElement.

MSBTS_CustomCounter is a dynamic class that is automatically created for every instance of MSBTS_CustomCounterSetting.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265093(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265097(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265095(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

MSBTS_CustomCounterSetting
Creates, deletes, and validates custom counters.

 Hierarchy

CIM_Setting

|--MSBTS_CustomCounterSetting

 Declaration

[Visual Basic]

Class MSBTS_CustomCounterSetting

[C++]

class MSBTS_CustomCounterSetting : CIM_Setting

 Members

MSBTS_CustomCounterSetting defines the following properties:
Property Description
DestOrgName Contains the name of the destination organization associated with the custom counter.
DestQualifier Contains the name of the destination qualifier type associated with the custom counter.
DestQualifierValue Contains the value of the destination qualifier type associated with the custom counter.
DocType Contains the name of the root element from the document schema.
GroupName Contains the name of the BizTalk Server group against which the custom counter query executes.
Name Contains the name of the custom counter.
SrcOrgName Contains the name of the source organization associated with the custom counter.
SrcQualifier Contains the name of the source qualifier type associated with the custom counter.
SrcQualifierValue Contains the value of the source qualifier type associated with the custom counter.
TimeInterval Contains the time over which to accumulate the custom counter query value, in seconds.

MSBTS_CustomCounterSetting defines the following method:

Method Description
IsValid Validates the custom counter creation parameters.

 Remarks

MSBTS_CustomCounterSetting is derived from CIM_Setting.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee265100(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250801(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265112(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250795(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265107(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265122(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265115(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265109(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250798(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265102(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee265118(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

ReceiveFunctionDisabledEvent
Represents events raised by disabled receive functions.

 Hierarchy

__ExtrinsicEvent

|--ReceiveFunctionDisabledEvent

 Declaration

[Visual Basic]

Class ReceiveFunctionDisabledEvent

[C++]

class ReceiveFunctionDisabledEvent : __ExtrinsicEvent

 Members

ReceiveFunctionDisabledEvent defines the following property:
Property Description
Name Contains the name of the disabled receive function.

 Remarks

ReceiveFunctionDisabledEvent inherits from the __ExtrinsicEvent system class, an abstract base class that serves as a
superclass for all user-defined event types.

 Requirements

Windows NT/Windows 2000: Windows 2000 SP2
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: SrvEvents.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250750(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Error Messages
The properties and methods of the BizTalk™ Messaging Services and BizTalk Orchestration Services object models use standard
Component Object Model (COM) HRESULT return values to communicate whether the operation was successful or not.

In C++, these values are the actual return values from the methods themselves (including property get_ and put_ methods). The
program must explicitly perform error checking by examining these return values, or use some variation of structured error
handling.

In Microsoft® Visual Basic®, and in Microsoft Visual Basic Scripting Edition (VBScript), these values are placed in the Number
property of the global Err object. Error handling is either handled automatically, displaying a standard error dialog box, or
explicitly by the program, checking the value of the Number property of the global Err object. The On Error Resume Next
command disables automatic error handling, thereby enabling explicit error handling.

For additional information about error message values, see the following sections:

Messaging Services Error Messages

Orchestration Services Error Messages

Standard COM Error Messages

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Messaging Services Error Messages
The BizTalk Messaging Services object model error messages defined by BizTalk Server can be used in your application by
including the bts_config_errors.h file located in the BizTalk Server installation directory at \Program Files\Microsoft BizTalk
Server\SDK\Include. These error messages, returned during design time by the methods and properties of the object model,
contain a BTS_ prefix in the message name. All other errors occur during run time, while BizTalk Server is processing a document.

The following table contains both design time and run time errors.

Message nam
e

V
a
l
u
e

Description

CIS_E_OBJECT_
NOT_FOUND

0
x
0
1
0
0

The object was not found.

CIS_E_STATE_N
OT_FOUND

0
x
0
1
0
1

The state engine state was not found in the messaging port definition.

CIS_E_STATE_T
RANSITION

0
x
0
1
0
3

The state table contains a bad engine state transition.

CIS_E_BAD_EN
GINE_CONFIG_
FILE

0
x
0
1
0
5

The string that describes the input state configuration is not valid.

CIS_E_CANNOT
_ADD_STATE

0
x
0
1
0
6

BizTalk Server could not add the user-defined state to the system.

CIS_E_NO_COM
PONENT_FOUN
D

0
x
0
1
0
7

There is no component in the state definition or the ProgID is wrong.

CIS_E_PIPECOM
P_ADMIN_REQ
UIRED

0
x
0
1
0
8

The required IPipelineComponentAdmin interface was not found on the component.

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

CIS_E_BAD_CO
MPONENT_TYP
E

0
x
0
1
0
9

The component type specified for the state engine is not recognized.

CIS_E_BAD_STA
TE_CONFIG

0
x
0
1
0
A

The state configuration is not valid.

CIS_E_BAD_STA
TE_TYPE

0
x
0
1
0
B

The specified state type is not recognized.

CIS_E_BAD_CO
MPONENT_CO
NFIG

0
x
0
1
0
C

The component configuration is not valid.

CIS_E_INTERNA
L_FAILURE

0
x
0
1
0
F

An internal server failure occurred due to an unknown cause.

CIS_E_CREATE_
SCHEDULER_FA
ILED

0
x
0
1
1
1

The Queue Scheduler for the service could not be created.

CIS_E_AGREEM
ENT_SELECT_FA
ILED

0
x
0
1
1
2

No channels matched the input criteria. Verify that a messaging port and a channel exist, and that they match t
he following fields: Source qualifier: "%1" Source identifier value: "%2" Source document name: "%3" Destinati
on qualifier: "%4" Destination identifier value: "%5" Also verify that any expressions specified for the channels
are compatible with this document.

CIS_E_ERROR 0
x
0
1
1
3

An error occurred in BizTalk Server.%n %n Details:%n ------------------------------%n %1

CIS_E_SERVICE_
INITIALIZATION
_FAILURE

0
x
0
1
1
4

The service failed to start. Verify that this server is enlisted in a BizTalk Server group.

CIS_E_SCHEDU
LER_FAILED

0
x
0
1
1
5

The Queue Scheduler failed and has exited.

CIS_E_WORKER
_THREAD_FAILE
D

0
x
0
1
1
6

A worker thread failed and has exited.

CIS_E_SHARED_
QUEUE_DB_EXE
C_FAILED

0
x
0
1
1
7

Execution against the Shared Queue database has failed.

CIS_E_CANT_RE
AD_WORK_ITE
M

0
x
0
1
1
9

A work item in the Shared Queue database cannot be read.

CIS_E_CHECKP
OINT_FAILED

0
x
0
1
1
c

Checkpointing the work item failed.

CIS_E_CREATE_
DEAD_WORK_IT
EM_FAILED

0
x
0
1
1
e

A new work item in the Suspended queue cannot be created.

CIS_E_GET_SNA
PSHOT_FAILED

0
x
0
1
2
2

A snapshot of the Shared Queue database cannot be taken.

CIS_E_FREE_INT
ERCHANGES_F
AILED

0
x
0
1
2
4

The specified interchanges cannot be freed.

CIS_E_DELETE_I
NTERCHANGE_
FAILED

0
x
0
1
2
5

The specified interchange cannot be deleted.

CIS_E_RECEIVIN
G_INTERCHAN
GE_FAILED

0
x
0
1
2
7

The specified interchange was not received.

CIS_E_GETTING
_NEXT_SCHEDU
LED_WORK_ITE
M_FAILED

0
x
0
1
2
8

The next scheduled work item cannot be obtained for processing.

CIS_E_GET_COU
NT_FAILED

0
x
0
1
2
9

The count on the shared queues cannot be obtained.

CIS_E_TRANSMI
SSION_FAILED

0
x
0
1
2
a

All retry transmissions failed.

CIS_W_TRANS
MISSION_ATTE
MPT_FAILED

0
x
0
1
2
b

A transmission attempt failed.

CIS_W_TRANS
MISSION_XFER
_TO_SECONDA
RY

0
x
0
1
2
c

The primary transport for messaging port "%1" cannot transmit the data. The server will switch to the seconda
ry transport.

CIS_E_RECEIPT_
GENERATION_F
AILED

0
x
0
1
2
e

After creating the work item, the attempt to generate a receipt failed.

CIS_E_RECEIPT_
GENERATION_F
AILED_NO_WO
RK_ITEM

0
x
0
1
2
f

The attempt to generate a receipt failed before the work item was created.

CIS_E_L1_RECEI
PT_CORRELATI
ON_FAILED

0
x
0
1
3
0

Receipt correlation failed.

CIS_E_AGREEM
ENT_LACKING_
PARAMS

0
x
0
1
3
3

At least one of the fields necessary to select a channel is missing. Verify that your document and envelopes ext
ract the proper fields for the parser, or specify the necessary fields upon submission. Channel selection fields:
Source identifier type: "%1" Source identifier value: "%2" Source document name: "%3" Destination identifier t
ype: "%4" Destination identifier value: "%5"

CIS_E_AGREEM
ENT_FAILED

0
x
0
1
3
4

The channel cannot be selected.

CIS_E_ORIGINA
L_L1_INTERCHA
NGE_MISSING

0
x
0
1
3
5

When trying to correlate an incoming receipt, the original interchange and related document(s) are no longer
present.

CIS_E_UNEXPEC
TED_DB_BEHAV
IOR

0
x
0
1
3
6

An unexpected return occurred. The database may need to be restarted.

CIS_E_AGREEM
ENT_INVALID_
MAP

0
x
0
1
3
7

The map specified by the reference "%1" is not valid. Verify that the reference points to a valid map created by
BizTalk Mapper.

CIS_I_SERVICE_
MSG

0
x
0
1
3
8

1%

CIS_E_AGREEM
ENT_MAP_FAIL
ED

0
x
0
1
3
9

The XML document could not be translated. The map specified by reference "%1" failed. Verify that the map is
up to date.

CIS_E_XML_ERR
OR

0
x
0
1
3
A

The XML document could not be parsed on line: %2, position: %3 for the following reason: "%1"

CIS_E_AGREEM
ENT_PROCESSI
NG_FAILED

0
x
0
1
3
f

The server could not finish processing the document.

CIS_E_AGREEM
ENT_PROCESSI
NG_FAILED_W_
NAME

0
x
0
1
4
0

The following channel configuration setting is not valid: "%1"

CIS_E_AGREEM
ENT_INVALID_
QUERY

0
x
0
1
4
1

The "%2" query for the "%1" document tracking field is not a valid XSL pattern. This pattern must be removed
or corrected.

CIS_I_SERVICE_
START

0
x
0
1
4
2

The service has started.

CIS_I_SERVICE_
STOP

0
x
0
1
4
3

The service has stopped.

CIS_E_ERROR_E
X

0
x
0
1
4
4

An error occurred in BizTalk Server.%n %n Details:%n ------------------------------%n %1 %2 %3 %4 %5 %6 %7
%8 %9 %n

CIS_E_ERROR_E
X_HEAD

0
x
0
1
4
5

An error occurred in BizTalk Server.

CIS_E_ERROR_E
X_FOOT

0
x
0
1
4
6

CIS_E_INVALID_
DATA_FORMAT

0
x
0
1
4
7

The business document that was passed in is not in a recognized format and could not be parsed or decrypted.

CIS_E_CREATE_
ENGINE

0
x
0
1
4
8

BizTalk Server was unable to create a new instance of the processing engine to process a work item. This migh
t be due to a failure to create a new COM+ transaction.

CIS_E_MISSING
DESTINATION
DOCUMENT_SP
EC

0
x
0
1
4
9

BizTalk Server has detected an incomplete messaging port. The destination specification is missing from the m
essaging port.

CIS_E_PROCESS
ING_THREAD_F
AILED

0
x
0
1
4
A

The processing thread failed to start. This might be due to a failure to create the state engine.

CIS_E_NOSRCO
RG

0
x
0
1
4
B

No source organization that corresponds to the ID and Qualifier pair has been specified.

CIS_E_NODEST
ORG

0
x
0
1
4
C

No destination organization that corresponds to the Identifier and Qualifier pair has been specified.

CIS_E_NODOC 0
x
0
1
4
D

No document that corresponds to the document name has been specified.

CIS_E_NOPIPELI
NES

0
x
0
1
4
E

No channel that corresponds to the parameters has been specified.

CIS_E_NOT_RES
UBMITTABLE

0
x
0
1
4
F

The state of the item in the Suspended queue does not allow resubmission.

CIS_E_PIPESELE
CT_POLICY_FAI
LED

0
x
0
1
5
0

No channels matched the certificates that were found with the incoming data. The following certificates accom
panied the submitted data: Signature certificate reference: "%1" Encryption certificate reference: "%2"

CIS_E_SUBMIT_I
NVALIDDOC

0
x
0
1
5
1

The submitted document is not valid. See the following messages for more details.

CIS_E_SUBMITS
YNC_TOOMAN
YDOCS

0
x
0
1
5
2

The SubmitSync method failed because multiple documents where found within the data. Only one document
is allowed per synchronous submission. If this is a structured flat-file submission, then the most common caus
e of failure is extra leading or trailing white space around the data.

CIS_E_SUBMITS
YNC_TOOMAN
YPIPES

0
x
0
1
5
3

The synchronous submission could not be completed because multiple valid channels matched the incoming d
ocument. Only one channel is allowed to match the incoming document.

CIS_E_XMIT_NO
TRANSPORTCO
MP

0
x
0
1
5
4

This server could not create a component with the class ID "%1" for transport. Verify that this component is pr
operly registered. The following error was returned:

CIS_E_XMIT_EM
PTY_DOCUMEN
T

0
x
0
1
5
5

Messaging port "%1" cannot transmit a zero-byte document.

CIS_E_XMIT_FAI
LED_W_NAME

0
x
0
1
5
6

The server could not finish processing messaging port "%1".

CIS_E_XMIT_NO
_INTERFACE

0
x
0
1
5
7

The server could not obtain the "%1" interface from the transport component with CLSID "%2".

CIS_E_XMIT_NO
_BTS_AIC_INTE
RFACES

0
x
0
1
5
8

The server could not obtain either the "%1" or "%2" interfaces from the BizTalk Server application integration c
omponent with CLSID "%3".

CIS_E_XMIT_FAI
LED_W_DETAIL
S

0
x
0
1
5
9

The server encountered a transport error while processing the messaging port "%1", which uses a transport co
mponent with a ProgID of "%2".

CIS_E_NOHDR_
ERROR_EX

0
x
0
1
5
A

%1 %2 %3 %4 %5 %6 %7 %8 %9 %n

CIS_W_COMP_
NOACK

0
x
0
1
5
B

The correlation component "%1" could not find a document for which to send a receipt. No action will be taken
.

CIS_E_CORREL
ATIONCOMP_F
AILED

0
x
0
1
5
C

The correlation component "%1" returned an unexpected failure. The document will be placed in the Suspende
d queue.

CIS_E_CORREL
ATION_FAILED

0
x
0
1
5
D

Receipt correlation processing failed.

CIS_E_XML_VAL
IDATE_ERROR

0
x
0
1
5
E

The XML document has failed validation for the following reason: %1

CIS_E_CHANNE
L_ACCESSDENI
ED

0
x
0
1
5
F

The submitted document does not have the necessary signature or encryption required by channel "%3". The f
ollowing certificates accompanied the submitted data: Signature certificate reference: "%1" Encryption certifica
te reference: "%2"

CIS_I_SERVICE_
RESTARTING

0
x
0
1
6
0

The service is restarting.

BTS_E_CONSTR
AINT

0
x
1
2
0
1

Constraint Error

BTS_E_NOOBJE
CT

0
x
1
2
0
2

The object was not found.

BTS_E_INTERNA
LFAILURE

0
x
1
2
0
3

An internal failure occurred.

BTS_E_ENVELO
PE_CONTROLN
UMBER

0
x
1
2
0
C

If the envelope format is set to X12 or EDIFACT, the control number value must be set to a number greater tha
n or equal to 1.

BTS_E_ENVELO
PE_DELIMETER

0
x
1
2
0
D

If the envelope format is set to X12, then delimiters are required and must be set.

BTS_E_ENCRYP
TION_CUSTOM
_NOCLSID

0
x
1
2
0
E

If the encryption type is Custom, then the class identifier (CLSID) must also be specified.

BTS_E_ENCODI
NG_CUSTOM_
NOCLSID

0
x
1
2
0
F

If the encoding type is Custom, then the class identifier (CLSID) must also be specified.

BTS_E_SIGNAT
URE_CUSTOM_
NOCLSID

0
x
1
2
1
0

If the signature type is Custom, then the class identifier (CLSID) must also be specified.

BTS_E_INVALID
CONTROLNUM
BER

0
x
1
2
1
2

The control number value must be set to a number greater than or equal to 1.

BTS_E_ENVELO
PE_INUSE

0
x
1
2
1
3

The format of the envelope cannot be changed because it is used in a messaging port.

BTS_E_CHANNE
L_MISSINGMAP
SOURCE

0
x
1
2
1
5

The channel is missing the MapSource node.

BTS_E_INVALID
_CERT_USAGE

0
x
1
2
1
6

The certificate is not valid for the current usage. An encryption certificate cannot be used for signing; nor can a
signing certificate be used for encryption. Make sure that the correct certificate is selected.

BTS_E_MISSING
SMTPHOST

0
x
1
2
1
8

The SMTP host is missing. The SMTP host can be configured in BizTalk Server Administration.

BTS_E_INVALID
_ENCRYPT_STO
RE

0
x
1
2
1
9

The encryption store type is not valid. The store type must be BIZTALK.

BTS_E_INVALID
_SGNTCERT_ST
ORE

0
x
1
2
1
A

The signature store type is not valid. The store type must be MY.

BTS_E_DATATO
OLONG

0
x
1
2
1
B

The data length is too long.

BTS_E_INVALID
_VERIFY_ENCRY
PTCERT_STORE

0
x
1
2
1
C

The encryption verification store type is not valid. The store type must be MY.

BTS_E_INVALID
_VERIFY_SGNT
CERT_STORE

0
x
1
2
1
D

The signature verification store type is not valid. The store type must be BIZTALK.

BTS_E_ORGANI
ZATION_UNIQU
E_ID

0
x
1
2
1
F

The organization identifier must be a unique identifier.

BTS_E_ORGANI
ZATION_UNIQU
E_NAME

0
x
1
2
2
0

The organization name must be a unique name.

BTS_E_OBJECT_
ALREADY_EXIST
S

0
x
1
2
2
1

The object already exists. You cannot call the Create() method on a BizTalk Messaging Configuration object mu
ltiple times without also calling the Clear() or Remove() methods.

BTS_E_ALIAS_U
NIQUE_ID

0
x
1
2
2
2

The identifier must be a unique identifier.

BTS_E_ALIAS_U
NIQUE_NAME

0
x
1
2
2
3

The identifier name for this organization must be a unique name.

BTS_E_ALIAS_U
NIQUE_QUALIFI
ERVALUE

0
x
1
2
2
5

The identifier must have a unique qualifier-value pair.

BTS_E_ALIAS_F
OREIGN_OWNE
RID

0
x
1
2
2
6

The organization cannot be removed because it is referred to by an identifier.

BTS_E_XMLSHA
RE_UNIQUE_ID

0
x
1
2
2
7

The primary identifier for the XML Share table in the SQL Server database must be a unique identifier.

BTS_E_XMLSHA
RE_UNIQUE_RE
FERENCE

0
x
1
2
2
8

The reference for the XML Share table in the SQL Server database must be a unique reference.

BTS_E_DOCUM
ENT_UNIQUE_I
D

0
x
1
2
2
9

The document identifier must be a unique identifier.

BTS_E_DOCUM
ENT_UNIQUE_N
AME

0
x
1
2
2
A

The document name must be a unique name.

BTS_E_DOCUM
ENT_FOREIGN_
SHAREID

0
x
1
2
2
C

The XML Share table in the SQL Server database cannot be removed because it is referred to by a document.

BTS_E_ENVELO
PE_UNIQUE_ID

0
x
1
2
2
D

The envelope identifier must be a unique identifier.

BTS_E_ENVELO
PE_UNIQUE_NA
ME

0
x
1
2
2
E

The envelope name must be a unique name.

BTS_E_ENVELO
PE_FOREIGN_S
HAREID

0
x
1
2
3
0

The XML Share table in the SQL Server database cannot be removed because it is referred to by an envelope.

BTS_E_CONTRO
LNUMBER_UNI
QUE_ID

0
x
1
2
3
1

The control-number identifier must be a unique identifier.

BTS_E_PORTGR
OUP_UNIQUE_I
D

0
x
1
2
3
2

The distribution list identifier must be a unique identifier.

BTS_E_PORTGR
OUP_UNIQUE_
NAME

0
x
1
2
3
3

The distribution list name must be a unique name.

BTS_E_MISSING
_VALUE

0
x
1
2
3
5

The identifier value property must have a value.

BTS_E_MISSING
_SRCORGID

0
x
1
2
3
6

The Channel SourceOrganization property must have a value.

BTS_E_APPLICA
TION_UNIQUE_I
D

0
x
1
2
3
7

The application identifier must be a unique identifier.

BTS_E_APPLICA
TION_FOREIGN
_OWNERID

0
x
1
2
3
8

The organization cannot be removed because it is referred to by an application.

BTS_E_APPLICA
TION_UNIQUE_
NAME

0
x
1
2
3
9

For applications within this organization, the application name must be a unique name.

BTS_E_CHANNE
L_UNIQUE_ID

0
x
1
2
3
A

The channel identifier must be a unique identifier.

BTS_E_CHANNE
L_UNIQUE_NA
ME

0
x
1
2
3
B

The channel name must be a unique name.

BTS_E_CHANNE
L_FOREIGN_INP
DOCID

0
x
1
2
3
D

The inbound document cannot be removed because it is used by a channel.

BTS_E_CHANNE
L_FOREIGN_OU
TDOCID

0
x
1
2
3
E

The output document cannot be removed because it is used by a channel.

BTS_E_CHANNE
L_FOREIGN_PO
RTGROUPID

0
x
1
2
3
F

The distribution list cannot be removed because it is used by a channel.

BTS_E_CHANNE
L_FOREIGN_SR
CORGID

0
x
1
2
4
0

The source organization cannot be removed because it is used by a channel.

BTS_E_ENVELO
PE_INVALIDFO
RMAT

0
x
1
2
4
1

The only valid envelope-format strings are: Custom, Custom XML, EDIFACT, Flatfile, X12, and Reliable. The prev
iously specified format will remain unchanged.

BTS_E_CHANNE
L_FOREIGN_CO
NTROLNUMID

0
x
1
2
4
2

The control number cannot be removed because it is used by an channel.

BTS_E_PORT_U
NIQUE_ID

0
x
1
2
4
3

The messaging port identifier must be a unique identifier.

BTS_E_PORT_U
NIQUE_NAME

0
x
1
2
4
4

The messaging port name must be a unique name.

BTS_E_CHANNE
L_FOREIGN_SR
CAPPID

0
x
1
2
4
7

The source application cannot be removed because it is used by a channel.

BTS_E_PORT_F
OREIGN_DSTO
RGID

0
x
1
2
4
8

The destination organization cannot be removed because it is used by a messaging port.

BTS_E_PORT_F
OREIGN_DSTAL
IASID

0
x
1
2
4
9

The destination identifier cannot be removed because it is used by a messaging port.

BTS_E_PORT_F
OREIGN_ENVID

0
x
1
2
4
A

The envelope cannot be removed because it is used by a messaging port.

BTS_E_CHANNE
L_FOREIGN_SR
CALIASID

0
x
1
2
4
B

The source identifier cannot be removed because it is used by a channel.

BTS_E_PORT_F
OREIGN_DSTAP
PID

0
x
1
2
4
C

The destination application cannot be removed because it is used by a messaging port.

BTS_E_PORT_F
OREIGN_CONT
ROLNUMID

0
x
1
2
4
D

The control number cannot be removed because it is used by a messaging port.

BTS_E_DOCUM
ENT_MISSING_
REFERENCE

0
x
1
2
4
E

The Reference property must have a value if the TrackingFields or PropertySet properties are specified.

BTS_E_DOCUM
ENT_REFERENC
E_CANT_BE_CH
ANGED

0
x
1
2
4
F

A document reference cannot be modified if it is referred to by a channel.

BTS_E_PORTGR
OUP_NOTOPEN
GRP

0
x
1
2
5
1

Messaging ports that are set to an open destination or set to an XLANG schedule (BIZTALK_OPENNESS_TYPE_
EX_TOWORKFLOW) cannot be used in distribution lists.

BTS_E_PORTGR
OUP_DUPLICAT
EPORT

0
x
1
2
5
2

A duplicate messaging port cannot be added to the distribution list.

BTS_E_OUTPUT
CONFIG_UNIQ
UE_ID

0
x
1
2
5
5

The output configuration identifier must be a unique identifier.

BTS_E_OUTPUT
CONFIG_FOREI
GN_PORTID

0
x
1
2
5
6

The messaging port cannot be removed because it is used by a channel.

BTS_E_OUTPUT
CONFIG_FOREI
GN_CHANNELI
D

0
x
1
2
5
7

The channel cannot be removed because it is used by a messaging port.

BTS_E_PORT_L
OOPBACK_RELI
ABLE

0
x
1
2
5
F

A messaging port with the transport type Loopback cannot be associated with an envelope that uses the Relia
ble format.

BTS_E_ALIAS_R
ESERVEDWORD

0
x
1
2
6
2

Group is a reserved word for qualifiers and cannot be used as the qualifier for an identifier.

BTS_E_DOCUM
ENT_NEEDMAP
REF

0
x
1
2
6
8

A map reference is required to transform the inbound document to the outbound document if the document s
pecifications are different.

BTS_E_PORT_D
ESTORGNOTSP
ECIFIED

0
x
1
2
6
C

This messaging port must have a destination organization specified.

BTS_E_PORT_MI
SSING_PRITRA
NSTYPE

0
x
1
2
6
D

You must specify a primary transport type for this messaging port. The primary transport cannot be blank, and
it cannot be an open destination.

BTS_E_PORT_MI
SSING_PRITRA
NSADDRESS

0
x
1
2
6
E

This messaging port must have a primary transport address specified.

BTS_E_PORT_IN
VALID_SECTRA
NSTYPE

0
x
1
2
6
F

The secondary transport type cannot be set to Open, Loopback, or to BizTalk Orchestration Activation.

BTS_E_PORT_MI
SSING_SECTRA
NSADDRESS

0
x
1
2
7
0

The secondary transport address is missing, although the transport type has been defined.

BTS_E_PORT_IN
VALID_ORG

0
x
1
2
7
1

The organization specified in this messaging port does not exist.

BTS_E_PORT_IN
VALID_ALIAS

0
x
1
2
7
2

The identifier specified for the organization in this messaging port either does not exist or it does not belong t
o the organization.

BTS_E_PORT_IN
VALID_APPLICA
TION

0
x
1
2
7
3

The application specified for the organization in this messaging port either does not exist or it does not belong
to the organization.

BTS_E_PORT_IN
VALID_ENVELO
PE

0
x
1
2
7
4

The envelope specified in this messaging port does not exist.

BTS_E_PORT_O
PEN_DESTORG_
SPECIFIED

0
x
1
2
7
C

An open-destination messaging port cannot have a destination organization specified.

BTS_E_PORT_O
PEN_DESTAPP_
SPECIFIED

0
x
1
2
7
E

An open-destination messaging port cannot have a destination application specified.

BTS_E_PORT_O
PEN_PRITRANS
TYPEOPEN

0
x
1
2
7
F

An open-destination messaging port must specify a primary transport type as an open destination.

BTS_E_PORT_O
PEN_PRITRANS
ADDRESS

0
x
1
2
8
0

An open-destination messaging port cannot specify a primary transport address.

BTS_E_PORT_O
PEN_PRITRANS
PARAMETER

0
x
1
2
8
1

An open-destination messaging port cannot specify a primary transport parameter.

BTS_E_PORT_O
PEN_SECTRANS
TYPE

0
x
1
2
8
2

An open-destination messaging port cannot specify the secondary transport type.

BTS_E_PORT_O
PEN_SECTRANS
ADDRESS

0
x
1
2
8
3

An open-destination messaging port cannot specify a secondary transport address.

BTS_E_PORT_O
PEN_SECTRANS
PARAMETER

0
x
1
2
8
4

An open-destination messaging port cannot specify a secondary transport parameter.

BTS_E_PORT_O
PEN_ENCRYPTI
ONTYPE

0
x
1
2
8
5

An open-destination messaging port cannot specify an encryption type.

BTS_E_PORT_O
PEN_ENCRYPTI
ONREF

0
x
1
2
8
6

An open-destination messaging port cannot specify an encryption reference.

BTS_E_PORT_SI
GNATTYPEAND
REFERENCE

0
x
1
2
8
7

The signature type is specified; however, the signature reference is missing.

BTS_E_PORT_E
NCRYPTIONTYP
EANDREFEREN
CE

0
x
1
2
8
8

The encryption type is specified; however, the encryption reference is missing.

BTS_E_ALIAS_D
EFAULT

0
x
1
2
8
A

One and only one default identifier is required and permitted at all times. The default identifier cannot be missi
ng, nor can it be duplicated.

BTS_E_ALIAS_A
UTO

0
x
1
2
8
B

The alias, which uses the name "Organization" and the qualifier "OrganizationName," is a system-created alias.
You cannot remove this alias, create another alias that uses the same name and qualifier, or change any fields
of this alias.

BTS_E_TRANSP
ORT_SYNTAXA
PPINT

0
x
1
2
8
E

Either the syntax of this address is incorrect for the Application Integration Component transport type property
, or the component is not registered, or else the component is not a valid AIC component.

BTS_E_TRANSP
ORT_SYNTAXFI
LE

0
x
1
2
8
F

The syntax of this address is incorrect for the File transport type.

BTS_E_TRANSP
ORT_SYNTAXH
TTP

0
x
1
2
9
1

The syntax of this address is incorrect for the HTTP transport type.

BTS_E_TRANSP
ORT_SYNTAXH
TTPS

0
x
1
2
9
2

The syntax of this address is incorrect for the HTTPS transport type.

BTS_E_TRANSP
ORT_SYNTAXS
MTP

0
x
1
2
9
3

The syntax of this address is incorrect for the SMTP transport type.

BTS_E_TRANSP
ORT_SYNTAXN
ONE

0
x
1
2
9
4

You cannot specify a transport address or a parameter when the transport type is set to None, or when the sou
rce or destination are Open.

BTS_E_TRANSP
ORT_LOCALHO
ST

0
x
1
2
9
5

The transport address cannot contain the word "localhost". Replace it with the computer name instead.

BTS_E_PORTGR
OUP_LASTPOR
T

0
x
1
2
9
6

The messaging port cannot be removed if it is the last remaining messaging port in a distribution list.

BTS_E_TRANSP
ORT_MISSING_
PRISMTPPARA
METER

0
x
1
2
9
8

A primary transport parameter is required for the SMTP transport type.

BTS_E_TRANSP
ORT_MISSING_
SECSMTPPARA
METER

0
x
1
2
9
9

A secondary transport parameter is required for the SMTP transport type.

BTS_E_NAMERE
Q

0
x
1
2
9
A

The Name property must always be at least one character long.

BTS_E_INVALID
TIMEFORMAT

0
x
1
2
9
B

The time format is not valid. Enter the time, in hours, in a 24-hour format (from 0 to 23 hours). You can enter o
nly hours, not minutes or seconds.

BTS_E_TIMESTA
MP

0
x
1
2
9
C

This object cannot be saved or removed because the timestamp has changed.

BTS_E_PORTGR
OUP_MISSING_
PORT

0
x
1
2
9
D

A distribution list must contain at least one messaging port.

BTS_E_ORGANI
ZATION_REMO
VEDEFAULT

0
x
1
2
9
E

The home organization cannot be removed.

BTS_E_PORT_SE
RVICEWINDOW
_EQUAL

0
x
1
2
9
F

The start time (FromTime) and end time (ToTime) for the service window cannot be equal.

BTS_E_ENVELO
PE_REFERENCE
NOTALLOWED

0
x
1
2
A
2

The reference property cannot be set for this envelope format.

BTS_E_ENVELO
PE_REFERRED

0
x
1
2
A
3

This envelope cannot be removed because it is used in a messaging port or channel.

BTS_E_TRANSP
ORT_LOOPBAC
K_SECTYPECON
FLICT

0
x
1
2
A
4

The secondary transport type cannot be specified for the messaging port if the primary transport type is set to
Loopback.

BTS_E_TRANSP
ORT_LOOPBAC
K_SECADDRESS
CONFLICT

0
x
1
2
A
5

The secondary transport address cannot be specified for the messaging port if the transport type is set to Loop
back.

BTS_E_PORT_L
OOPBACK_SER
VICEWINDOW

0
x
1
2
A
6

The service window cannot be specified for the messaging port if the transport type is set to Loopback.

BTS_E_PORT_O
PEN_DESTALIA
S_SPECIFIED

0
x
1
2
A
7

An open-destination messaging port cannot have a destination identifier specified.

BTS_E_PORT_O
PEN_SERVICEW
INDOW

0
x
1
2
A
8

The service window cannot be specified for the messaging port if the messaging port is an open-destination m
essaging port.

BTS_E_PORT_SE
RVICEWINDOW
TIMES

0
x
1
2
A
A

To use a service window, you must set both the From and To times or else, do not set either time.

BTS_E_TRANSP
ORT_LOOPBAC
K_PRIADDRESS
CONFLICT

0
x
1
2
A
C

A primary transport address cannot be specified for the messaging port if the transport type is Loopback.

BTS_E_PORT_O
RGCHANGE

0
x
1
2
A
D

The destination-organization identifier cannot be changed after it is created.

BTS_E_PORT_O
PENNESSCHAN
GE

0
x
1
2
A
E

The Openness property cannot be changed after it is created.

BTS_E_PORT_SI
GNATURE_CHA
NNEL_CERTREF

0
x
1
2
A
F

The signature-certification reference for a channel does not match the signature type for the port.

BTS_E_PORT_SI
GNATURE_CHA
NNEL_OPEN

0
x
1
2
B
0

A messaging port that contains a signature type cannot be connected to an open-source channel. Also, a mess
aging port that is already connected to an open-source channel cannot have a signature type assigned to it.

BTS_E_CHANNE
L_OPEN_SRCO
RG

0
x
1
2
B
1

An open-source channel cannot specify a source organization.

BTS_E_PORTGR
OUP_LOOPBAC
KPORT

0
x
1
2
B
2

A messaging port that uses the Loopback transport type cannot be added to a distribution list. Also, the transp
ort type of a messaging port that is already included in a distribution list cannot be changed to Loopback.

BTS_E_CHANNE
L_OPEN_SRCAL
IAS

0
x
1
2
B
3

An open-source channel cannot have a source identifier specified.

BTS_E_CHANNE
L_OPEN_SRCAP
P

0
x
1
2
B
4

An open-source channel cannot specify a source application.

BTS_E_CHANNE
L_PORTORPOR
TGROUP

0
x
1
2
B
5

Either a messaging port or a distribution list, but not both, must be specified in a channel.

BTS_E_CHANNE
L_MISSING_DO
CUMENT

0
x
1
2
B
6

Both input and output documents are needed in a channel.

BTS_E_CHANNE
L_INVALIDTYPE

0
x
1
2
B
7

A channel cannot be set to an open destination or set to an XLANG schedule (BIZTALK_OPENNESS_TYPE_EX_T
OWORKFLOW).

BTS_E_CHANNE
L_MISSING_OU
TDOCREFEREN
CE

0
x
1
2
B
8

If the inbound document definition for a channel has a reference to a specification, the outbound document de
finition must also have a reference to a specification.

BTS_E_CHANNE
L_TRACKFIELDS
CANTBESET

0
x
1
2
B
9

If the inbound document definition for a channel does not have a reference to a specification, the tracking field
s cannot be set.

BTS_E_CHANNE
L_EXPRESSION
CANTBESET

0
x
1
2
B
A

If the inbound document definition for a channel does not have a reference to a specification, the channel-filter
ing expressions cannot be set.

BTS_E_CHANNE
L_MAPREFCAN
TBESET

0
x
1
2
B
B

If the inbound document definition for a channel does not have a reference to a specification then a reference t
o a map cannot be set.

BTS_E_CHANNE
L_NOTSAME_IN
PDOC_OUTDO
C

0
x
1
2
B
C

If the inbound document definition for a channel does not have a reference to a specification then the outboun
d document handle should be the same of inbound document handle.

BTS_E_CHANNE
L_OPEN_RECEIP
TCONFLICT

0
x
1
2
B
D

Channels that are set from an open source or set from an XLANG schedule (BIZTALK_OPENNESS_TYPE_EX_FR
OMWORKFLOW) cannot be receipt channels.

BTS_E_CHANNE
L_RECEIPT_REC
EIPTTIMEOUT

0
x
1
2
B
E

The Expect Receipt Timeout property cannot be set on a receipt channel.

BTS_E_CHANNE
L_RECEIPT_CAN
TSETRECEIPTCH
ANNEL

0
x
1
2
B
F

An identifier cannot be set on a receipt channel.

BTS_E_CHANNE
L_RECEIPT_CO
NFLICT

0
x
1
2
C
0

In a receipt channel, the source specification from the original channel must be used as the destination specific
ation, and the destination specification from the original channel must be used as the source specification.

BTS_E_CHANNE
L_SRCORGDEF
AULT

0
x
1
2
C
1

If the channel is set from an XLANG schedule (BIZTALK_OPENNESS_TYPE_EX_FROMWORKFLOW), the source
organization must be the home organization.

BTS_E_CHANNE
L_PORT_BOTH
OPEN

0
x
1
2
C
2

Both the channel and messaging port cannot be set to Open.

BTS_E_CHANNE
L_RECEIPT_INV
ALID

0
x
1
2
C
3

The Receipt Channel and Expect Receipt Timeout properties cannot be set for an open-source channel. These p
roperties also cannot be set if the messaging port is set to an open destination, set to an XLANG schedule (BIZT
ALK_OPENNESS_TYPE_EX_TOWORKFLOW), or if the messaging port uses the Loopback transport type.

BTS_E_CHANNE
L_RECEIPTMAT
CHNOTFOUND

0
x
1
2
C
4

The corresponding receipt channel for this channel could not be found.

BTS_E_CHANNE
L_RECEIPT_OPE
NPORT

0
x
1
2
C
5

A receipt channel can be connected only to messaging ports that are not open messaging ports.

BTS_E_CHANNE
L_RECEIPT_LOO
PBACKPORT

0
x
1
2
C
6

A receipt channel cannot be connected to a messaging port that uses the Loopback transport type. Also, the tra
nsport type of a messaging port that is already connected to a receipt channel cannot be changed to Loopback.

BTS_E_CHANNE
L_CANNOTUPD
ATE

0
x
1
2
C
8

After a channel is created, the following properties cannot be changed: source organization, openness designat
ion, messaging port, distribution list, and receipt channel designation.

BTS_E_PORT_IN
VALIDOPENNE
SS

0
x
1
2
C
9

A messaging port cannot be set to an open source; nor can it be set from an XLANG schedule (BIZTALK_OPEN
NESS_TYPE_EX_FROMWORKFLOW).

BTS_E_CHANNE
L_CONTROLNU
MBER_ENVELO
PEFORMATMIS
MATCH

0
x
1
2
C
A

If the envelope format for the messaging port is X12 or EDIFACT, the control-number value on the channel mu
st be set.

BTS_E_PORT_E
NVELOPE_SERI
ALIZERCLSID

0
x
1
2
C
B

If the envelope format for the messaging port is set to Custom, a class identifier (CLSID) for the serializer comp
onent must be specified.

BTS_E_CHANNE
L_AIC_TRANSP
ORTCLSID

0
x
1
2
C
D

If the transport type associated with the channel is set to Application Integration Component, a class identifier (
CLSID) must be specified for the primary transport.

BTS_E_CHANNE
L_RECEIPT_POR
TGROUP

0
x
1
2
C
E

If a channel is connected to a distribution list, a receipt channel cannot be specified.

BTS_E_COMPO
NENTREQUIRES
2AGGREGATEFT
M

0
x
1
2
C
F

To be a valid object in the BizTalk Object Model, this custom component must aggregate the free-threaded ma
rshaler.

BTS_E_CERTREF
NOTFOUND

0
x
1
2
D
1

Either the certificate reference could not be found in MY or BIZTALK stores or it is not valid.

BTS_E_NODOC 0
x
1
2
D
2

The Document Definition has been removed from the database. Avoid deleting objects when documents might
exist in the queues which reference these objects.

BTS_E_NOENV 0
x
1
2
D
3

The envelope has been removed from the database. Avoid deleting objects when documents might exist in the
queues which reference these objects.

BTS_E_NOCHA
NNEL

0
x
1
2
D
4

The channel has been removed from the database. Avoid deleting objects when documents might exist in the
queues which reference these objects.

BTS_E_INVALID
REFERENCE

0
x
1
2
D
5

Either the WebDAV repository reference does not contain a valid HTTP address or it contains the text "localhos
t." Please provide either a valid HTTP address or replace the text "localhost" with the actual computer name.

BTS_E_CANNOT
CONTAINSUBO
BJECTS

0
x
1
2
D
6

The property set and delimiter objects cannot contain any subobjects.

BTS_E_INVALID
TRACKFIELDS

0
x
1
2
D
7

The "x_custom_search" field in the tracking field dictionary must be a simple list.

BTS_E_CHANNE
L_INVALID_OR
G

0
x
1
2
D
8

The organization specified in this channel does not exist.

BTS_E_CHANNE
L_INVALID_ALI
AS

0
x
1
2
D
9

The identifier specified for the organization in this channel either does not exist or it does not belong to the or
ganization.

BTS_E_CHANNE
L_INVALID_APP
LICATION

0
x
1
2
D
A

The application specified for the organization in this channel either does not exist or it does not belong to the o
rganization.

BTS_E_CHANNE
L_INVALID_INP
DOCID

0
x
1
2
D
B

The input document specified in this channel does not exist.

BTS_E_CHANNE
L_INVALID_OUT
DOCID

0
x
1
2
D
C

The output document specified in this channel does not exist.

BTS_E_CHANNE
L_INVALID_POR
TGROUP

0
x
1
2
D
D

The distribution list specified in this channel does not exist.

BTS_E_OBJECT_
NOT_XMLSERIL
IZABLE

0
x
1
2
D
E

The given dictionary or simplelist object must implement IPersistXML methods.

BTS_E_CHANNE
L_INVALID_POR
T

0
x
1
2
E
0

At least one messaging port that is referenced in this channel either does not exist or it is not associated with t
his channel.

BTS_E_CHANNE
L_RECEIPT_VER
SIGN_DECRYPT

0
x
1
2
E
1

The Verify Signature or Decrypt Encryption properties cannot be set on a receipt channel.

BTS_E_INVALID
_REQUEST_CHA
NNEL

0
x
1
2
E
2

A channel that is connected to a distribution list cannot be used as a request channel.

BTS_E_DESTINA
TION_NOT_FO
UND

0
x
1
2
E
3

The destination URL is not specified, and the messaging port is an open destination. Either the destination URL
or a destination for the messaging port must be specified.

BTS_E_DESTINA
TION_CONFLIC
T

0
x
1
2
E
4

Both a destination URL and a destination for the messaging port cannot be specified. Specify only one of these
properties.

BTS_E_ASYNC_
TRANSPORT

0
x
1
2
E
5

The transport type for the request channel is not valid. Only the HTTP, HTTPS, and Application Integration Com
ponent transport types are valid for a request channel.

BTS_E_INVALID
_RESPONSE_CH
ANNEL

0
x
1
2
E
6

The response channel can be connected only to a messaging port with a transport type set to Loopback.

BTS_E_INVALID
_VERSION

0
x
1
2
E
7

The database version is incompatible with the installed version of the server. Try running setup again.

BTS_E_INVALID
_SCHEMA

0
x
1
2
E
8

The document or envelope specification is not valid. Open the specification in BizTalk Editor, and then on the T
ools menu, click Validate Specification. Resolve any warnings to ensure that the specification is valid.

BTS_E_CHANNE
L_RECEIPTCHA
NNEL_PORTGR
OUP

0
x
1
2
E
9

A receipt channel cannot be connected to a distribution list.

BTS_E_TRANSP
ORT_ORCHEST
RATION_OPEN
NESS

0
x
1
2
E
A

A messaging port that uses the BizTalk Orchestration Activation transport type must have the Openness Type
property set to an XLANG schedule (BIZTALK_OPENNESS_TYPE_EX_TOWORKFLOW).

BTS_E_TRANSP
ORT_ORCHEST
RATION_ADDR
ESSPARAMETE
R

0
x
1
2
E
B

Both a primary address and a parameter are required for a messaging port that uses a BizTalk Orchestration A
ctivation transport type.

BTS_E_ORCHES
TRATION_INVA
LIDORG

0
x
1
2
E
C

A messaging port that uses a BizTalk Orchestration Activation transport type must have the home organization
set as the destination organization.

BTS_E_INVALID
_FILTEREXPRES
SION

0
x
1
2
E
D

The channel filtering expression is not valid. Make sure that the node-path expression is valid.

BTS_E_MULTIPL
EDOCDEFSFOR
PROPSET

0
x
1
2
E
E

Multiple document definitions were found for the given property set. Only a single document definition for a g
iven property set is expected.

BTS_E_INVALID
_PROPSET

0
x
1
2
E
F

The PropertySet cannot contain non-string element values.

BTS_E_DBSCHE
MA_MISMATCH

0
x
1
3
0
0

The existing Database Schema is not compatible with the current version of the product. You must delete the e
xisting database.

BTS_E_UNEXPE
CTED_INSTALL

0
x
1
3
0
1

The existing Database Schema is newer than the current version that is installed. Setup will rollback the change
s.

CIS_E_DOCSCH
EMA_ATTRIB_M
ISSING

0
x
1
4
0
0

The "%3" attribute is missing in the "%4" element. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
ATTRIB_VALUE

0
x
1
4
0
1

The "%3" attribute value "%4" is not valid. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_EMPTY_EL
EMENT

0
x
1
4
0
2

The "%3" element cannot be empty. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
CHILD_ELEMEN
T

0
x
1
4
0
3

The "%3" element cannot be a child of the "%4" element. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_MULTIPLE
_INFO

0
x
1
4
0
4

Only one record description or one field description is allowed for each element declaration. One of the descri
ptions must be removed. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
FIELD_DECL

0
x
1
4
0
5

The root node cannot contain a field. The root node of the document must contain a record. Verify that the roo
t node in your document is declared as a record. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
LEN_DECL

0
x
1
4
0
6

The minimum length value must be no greater than the maximum length value. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
POSLEN_DECL

0
x
1
4
0
7

The value of the start position must be no greater than the value of the end position. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_NO_INFO
_YET

0
x
1
4
0
8

A field description or record description must be specified before references to other elements. Line: %1, Pos:
%2.

CIS_E_DOCSCH
EMA_INVALID_
SCHEMATYPE_X
ML

0
x
1
4
0
9

Only non-XML document specifications are allowed for this format. The schema_type attribute has the value "x
ml". Verify that the specification selected is a non-XML specification. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_NO_INFO

0
x
1
4
0
A

No record information or field information was found in the "%3" element. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
ATTRIB

0
x
1
4
0
B

The "%3" attribute is not allowed in the "%4" element. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_MISSING_
ELEM_DECL

0
x
1
4
0
C

There is no element with the name "%1" in the document specification.

CIS_E_DOCSCH
EMA_MISSING_
ATTR_DECL

0
x
1
4
0
D

There is no attribute with the name "%1" in the document specification.

CIS_E_DOCSCH
EMA_INVALID_
POSITIONAL_D
ECL

0
x
1
4
0
E

The "%1" record cannot be a child of the "%2" positional record. Only fields can be children of positional recor
ds.

CIS_E_DOCSCH
EMA_INVALID_
RECORD_CHILD
REN

0
x
1
4
0
F

The children of the "%1" delimited record must either be all records or all fields. Records with no tag identifier
cannot have mixed records and fields as children.

CIS_E_DOCSCH
EMA_NO_RECO
RD_CHILDREN

0
x
1
4
1
0

The "%1" delimited record must have at least one child. Records with no tag identifier must have at least one c
hild, or else the record cannot be found in a non-XML format. Either add a child to the record, give the record a
tag identifier, or remove the record from the specification.

CIS_E_DOCSCH
EMA_MISSING_
RECORD_TAG

0
x
1
4
1
1

The "%1" delimited record is marked to repeat but it does not have a tag identifier. Only the last record in a do
cument specification is allowed to have this property. If this record appears only once in the document, then m
ark it as a single occurrence. Otherwise, give the record a tag identifier that tells the server where to look for th
e next record in the specification.

CIS_E_DOCSCH
EMA_NO_ROOT
_ELEMENT

0
x
1
4
1
2

The root-node name "%3" was not found in the specification. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
ROOT_ELEMEN
T

0
x
1
4
1
3

The "%3" element cannot be the root node of this document. Only <Schema> is allowed. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
EMPTY_ATTRIB
UTE

0
x
1
4
1
4

The "%3" attribute in the "%4" element cannot be empty. Either specify a nonempty value or remove the attrib
ute. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
REFERENCE

0
x
1
4
1
5

The "%1" record has an illegal cyclic path through the "%2" record. The only cyclic reference allowed for a reco
rd is if the record has a tag identifier that allows the system to terminate the search. Either remove the cyclic re
ference or add an appropriate tag identifier to the document specification.

CIS_E_DOCSCH
EMA_LOADFAIL
ED

0
x
1
4
1
6

The specification failed to load. See the following messages for details.

CIS_E_DOCSCH
EMA_MISSING_
NS

0
x
1
4
1
7

Valid BizTalk Server specifications for non-XML documents must have the namespace declarations of "urn:sch
emas-microsoft-com:BizTalkServer", "urn:schemas-microsoft-com:datatypes", and "urn:schemas-microsoft-co
m:xml-data" in the root node of the specification.

CIS_E_DOCSCH
EMA_INVALID_
SCHEMA_USAG
E

0
x
1
4
1
8

The specification referenced in the "%1" document is not compatible with the "%2" format. Select a specificatio
n that is compatible with this format, or if this is a valid specification for the defined format, assign "%2" to the
"standard" property on this specification.

CIS_E_DOCSCH
EMA_MISSING_
POSLEN_DECL

0
x
1
4
1
9

The "%3" field is missing a start and end position, and is referenced in the "%4" positional record. Specify valid
start and end positions for this field. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_DUPLICAT
E_NAMESPACE

0
x
1
4
1
A

The duplicate namespace declaration "%3" has been found. Please remove the duplicate reference to same na
mespace. Line: %1, Pos: %2.

CIS_E_PARSER_
EOF

0
x
1
4
3
0

The end of the file was reached prematurely.

CIS_E_PARSER_
MISSING_TAG

0
x
1
4
3
1

The required "%1" record was not found in the inbound document.

CIS_E_PARSER_
MISSING_FIELD

0
x
1
4
3
2

The required field "%1" in the "%2" record was not found in the inbound document.

CIS_E_PARSER_
FAILURE

0
x
1
4
3
3

The parser failed to convert the document due to processing errors. See the following messages for details.

CIS_E_PARSER_I
NVALIDDATA

0
x
1
4
3
4

The parser cannot match the current position of the data with the specification. Verify that the version of this s
pecification is consistent with the version of the data and that the root parsing tags match.

CIS_E_PARSER_
NO_DATA

0
x
1
4
3
5

There is no data that can be parsed on the dictionary. Verify that either the "working_data" field or the "file_pat
h" field contains nonempty data.

CIS_E_PARSER_I
NVALID_ENVN
AME

0
x
1
4
3
6

The envelope name "%1" does not reference a valid envelope for the BizTalk Server parser. Either the envelope
name does not exist or there is an envelope specification attached that is not valid.

CIS_E_PARSER_
NO_COMPONE
NTS_FOUND

0
x
1
4
3
9

No parser component recognizes the data. This might be caused by an interchange specification that is missin
g or not valid, or it might be caused by data that is not valid. Verify that both the interchange specification (if o
ne is specified) and the data match.

CIS_E_PARSER_
COMPONENT_F
AILED

0
x
1
4
4
0

While trying to process document #%4 during submission "%1", the parser component named "%2" failed on t
he method "%3" with the error code "%5". Possible causes are: the component found unexpected data in the in
coming stream; a document specification could not be found given the data; or an internal component failure
occurred. If this problem continues, remove this component from the valid list of parser components or contac
t your system administrator.

CIS_E_PARSER_
DOCUMENT_FA
ILED

0
x
1
4
4
1

Document #%4 within submission "%1" was returned as a document that was not valid from the parser comp
onent named "%2". The most frequent cause is a document specification that is not valid or else the componen
t was unable to determine the necessary routing fields. Verify that the proper specification is defined for this d
ata.

CIS_E_PARSER_I
NVALID_DATETI
ME

0
x
1
4
4
2

The "%1" date or time format for the tag "%3" does not match the format of the "%2" data extracted from the i
ncoming data.

CIS_E_PARSER_I
NVALID_COMP
ONENT

0
x
1
4
4
3

Within submission "%1", the parser component named "%2" could not be loaded. Verify that this component c
an be run in a stand-alone executable and that the server has sufficient permissions to start it.

CIS_W_PARSER
_SKIPPED_COM
PONENT

0
x
1
4
4
4

The parser was unable to probe the specified component. This component will be skipped.

CIS_E_PARSER_
UNUSEABLE_D
OCNAME

0
x
1
4
4
5

The parser cannot use the document "%1" as it has no specification. Please attach a specification to this docum
ent or specify a different one.

CIS_E_PARSER_
CONTROL_NU
MBER_MISMAT
CH

0
x
1
4
4
6

The control number of segment "%1" (%2) does not match that of segment "%3" (%4).

CIS_E_PARSER_
DOCCOUNT_IN
CORRECT

0
x
1
4
4
7

The document or segment count contained in tag "%1" (%2) does not match the number of documents or seg
ments processed (%3).

CIS_E_PARSER_
X12_ISA_PARSE
_FAILED

0
x
1
4
4
8

The parser cannot parse the ISA section of the X12 document. This segment is fixed-width; if fields in this segm
ent do not have correct length, the parsing will fail because the delimiters are picked up from the wrong offset
s.

CIS_E_PARSER_
MIN_LENGTH

0
x
1
4
4
9

The data contains a field value ("%1") that doesn't meet minimum length requirement for tag "%2" (minimum
length is %3).

CIS_E_PARSER_
MAX_LENGTH

0
x
1
4
4
A

The data contains a field value ("%1") that doesn't meet maximum length requirement for tag "%2" (maximum
length is %3).

CIS_E_PARSER_
NO_DATA_CON
SUMED

0
x
1
4
4
B

No data was read by the parser. Make sure that the code page is set correctly for the data. If the data is UNICO
DE, make sure that there is no byte order mark (0xFFFE or 0xFEFF) appears at the beginning of the file.

CIS_E_PARSER_
UNSUPPORTED
_EDIFACT_SYNT
AX

0
x
1
4
4
C

EDIFACT documents with the "UNOX" or the "UNOY" syntax identifier are not supported.

CIS_E_PARSER_
DATA_REMAINI
NG

0
x
1
4
4
D

Additional data in the document instance was not parsed. Make sure that the document instance you want to v
alidate contains only one document.

CIS_E_PARSER_
MISSING_DELI
MITER

0
x
1
4
4
E

While parsing record "%1", the parser cannot find the required delimiter: "%2" (%3).

CIS_E_PARSER_
MISSING_LEADI
NG_DELIMITER

0
x
1
4
4
F

While parsing record "%1", the parser cannot find the required leading delimiter: "%2" (%3).

CIS_E_PARSER_
MISSING_TRAIL
ING_DELIMITER

0
x
1
4
5
0

While parsing record "%1", the parser cannot find the required trailing delimiter: "%2" (%3).

CIS_E_VALIDAT
E_GROUP_RULE

0
x
1
4
5
1

In record "%1", if any of the following fields exist, then all must exist: %2

CIS_E_VALIDAT
E_GROUP_ALL

0
x
1
4
5
2

In record "%1", all of the following fields must exist: %2

CIS_E_VALIDAT
E_GROUP_ONE

0
x
1
4
5
3

In record "%1", only one of the following fields can exist: %2

CIS_E_PARSER_I
NVALID_WRAP
_CHAR_FOUND

0
x
1
4
5
4

While parsing record "%1", the parser found an occurrence of a wrap character, "%2", that is not valid.

CIS_E_VALIDAT
E_GROUP_ANY

0
x
1
4
5
5

In record "%1", one or more of the following fields must exist: %2

CIS_E_PARSER_
EXTRA_DELIMIT
ER

0
x
1
4
5
6

While parsing record "%1", the parser found the following extra delimiter: "%2".

BTS_E_DOCUM
ENT_HAS_INVA
LID_MANIFEST

0
x
1
4
5
7

Error parsing the manifest.

CIS_E_ADMIN_
CACHE_PARSER
S

0
x
1
5
0
4

The latest modification date from the administration parser table could not be loaded.

CIS_E_ADMIN_I
NIT_CACHE

0
x
1
5
0
5

The configuration data in the global cache could not be initialized.

CIS_E_ADMIN_
RELOAD_CACH
E

0
x
1
5
0
6

The configuration data from the database could not be reloaded.

CIS_E_ADMIN_P
ARSER_GETCLSI
D

0
x
1
5
0
7

The class identifiers (CLSIDs) of the parser records could not be loaded.

CIS_E_ADMIN_
CACHE_OBJECT
NOTCREATED

0
x
1
5
0
9

The administration cache cannot be created.

CIS_E_ADMIN_
CACHE_INITIAL
LOAD

0
x
1
5
0
A

The configuration cache data from the database could not be loaded.

CIS_E_ADMIN_
ADD_SERVER_A
CCESS_DENIED

0
x
1
5
0
B

Server "%1" cannot be added because access to the "%2" is denied.

CIS_E_ADMIN_
ADD_SERVER_
NO_SERVICE

0
x
1
5
0
C

Server "%1" cannot be added because BizTalk Server is not installed on the computer.

CIS_E_ADMIN_
DELETE_SERVE
R_NO_ACCESS

0
x
1
5
0
D

The "%1" server cannot be deleted because access to the "%2" service is denied and the service cannot be stop
ped.

CIS_E_ADMIN_
DELETE_GROUP
_SERVER_RUN
NING

0
x
1
5
0
E

This server group cannot be deleted because the "%1" server is still running.

CIS_E_ADMIN_
DELETE_GROUP
_SERVER_ACCE
SS_DENIED

0
x
1
5
0
F

This server group cannot be deleted because access to the "%1" service on "%2" server is denied.

CIS_E_ADMIN_
NOGROUP

0
x
1
5
1
2

The specified administration group does not exist.

CIS_E_ADMIN_
NOSERVER

0
x
1
5
1
3

The specified administration server does not exist.

CIS_E_ADMIN_
NORECEIVESER
VICE

0
x
1
5
1
4

The specified administration receive function does not exist in the database.

CIS_E_ADMIN_
UNEXPECTED_R
EMOVE_RECEIV
ESERVICE

0
x
1
5
1
5

An unexpected error occurred while trying to remove the "%1" receive function from the database.

CIS_E_ADMIN_
UNEXPECTED_R
EMOVE_GROUP

0
x
1
5
1
6

An unexpected error occurred while trying to remove the "%1" group from the database.

CIS_E_ADMIN_
UNEXPECTED_R
EMOVE_SERVE
R

0
x
1
5
1
7

An unexpected error occurred while trying to remove the "%1" server from the database.

CIS_E_ADMIN_
NOTIMESTAMP
S

0
x
1
5
1
A

The specified administration timestamps object does not exist in the database.

CIS_E_ADMIN_
REFRESH_THRE
AD_ERROR

0
x
1
5
1
B

The configuration refresh thread encountered an error while loading the configuration data.

CIS_E_ADMIN_
REFRESH_THRE
AD_EXIT

0
x
1
5
1
C

The configuration refresh thread cannot load the configuration data because of a previous error.

CIS_E_ADMIN_
RECSVC_GENE
RAL

0
x
1
5
1
D

The configuration refresh thread cannot set up one or more receive functions. This might be because SQL Serv
er is not started.

CIS_E_ADMIN_
CREATE_GROU
P

0
x
1
5
2
9

The server group cannot be created because "%1".

CIS_E_ADMIN_L
OAD_GROUP_P
ROPS

0
x
1
5
2
A

The group properties cannot be loaded because "%1".

CIS_E_ADMIN_S
AVE_GROUP_P
ROPS

0
x
1
5
2
B

The group properties cannot be saved because "%1".

CIS_E_ADMIN_
REMOVE_GRO
UP

0
x
1
5
2
C

The server group cannot be removed from the database because "%1".

CIS_E_ADMIN_
GETALLADMIN
GROUPS

0
x
1
5
2
D

All server groups cannot be retrieved from the database.

CIS_E_ADMIN_
GETSERVERS

0
x
1
5
2
E

All servers for the "%1" server group cannot be retrieved from the database because "%2".

CIS_E_ADMIN_
GETRECEIVESER
VICES

0
x
1
5
2
F

All receive functions for the "%1" group cannot be retrieved from database because "%2".

CIS_E_ADMIN_
GETPARSERS_I
N_GROUP

0
x
1
5
3
1

All parsers for the "%1" server group cannot be retrieved from the database because "%2".

CIS_E_ADMIN_
GETLOCALSMT
PHOST

0
x
1
5
3
8

The local SMTP host cannot be retrieved because "%1".

CIS_E_ADMIN_
CREATE_SERVE
R

0
x
1
5
3
9

The server cannot be created because "%1".

CIS_E_ADMIN_L
OAD_SERVER_P
ROPS

0
x
1
5
3
A

The server properties cannot be loaded because "%1".

CIS_E_ADMIN_S
AVE_SERVER_P
ROPS

0
x
1
5
3
B

The server properties cannot be saved because "%1".

CIS_E_ADMIN_
REMOVE_SERV
ER

0
x
1
5
3
C

The server cannot be removed from the database because "%1".

CIS_E_ADMIN_
GETALLADMIN
SERVRES

0
x
1
5
3
D

All servers cannot be retrieved from the database.

CIS_E_ADMIN_
GETSERVERBYN
AME

0
x
1
5
3
E

The server properties for "%1" cannot be retrieved because "%2".

CIS_E_ADMIN_
DECRYPT_PASS
WORD

0
x
1
5
4
0

The "%1" property cannot be retrieved.

CIS_E_ADMIN_E
XEC_COMMMA
ND_ON_PARSE
R

0
x
1
5
4
F

The SQL command "%1" on the parser database table cannot be executed because "%2".

CIS_E_ADMIN_P
REPOROCESSO
R_NOT_SUPPO
RTED_BY_HTTP_
RF

0
x
1
5
5
C

The "%1" property is not supported for the HTTP receive function in Submit to File mode.

CIS_E_ADMIN_
CREATE_RECEIV
ESERVICE

0
x
1
5
5
D

The receive function cannot be created because "%1".

CIS_E_ADMIN_L
OAD_RECEIVES
ERVICE_PROPS

0
x
1
5
5
E

The receive function properties cannot be loaded because "%1".

CIS_E_ADMIN_S
AVE_RECEIVESE
RVICE_PROPS

0
x
1
5
5
F

The receive function properties cannot be saved because "%1".

CIS_E_ADMIN_
REMOVE_RECEI
VESERVICE

0
x
1
5
6
0

The receive function cannot be removed from the database because "%1".

CIS_E_ADMIN_
GETALLRECEIVE
SERVICES

0
x
1
5
6
1

All receive functions cannot be retrieved from the database because "%1".

CIS_E_ADMIN_
GETALLRECEIVE
SERVICESINSER
VER

0
x
1
5
6
2

All receive functions cannot be retrieved for the "%1" server because "%2".

CIS_E_ADMIN_L
OAD_TIMESTA
MPS

0
x
1
5
6
3

All timestamps cannot be retrieved from the database because "%1".

CIS_E_ADMIN_
GETSQCONNEC
T

0
x
1
5
7
0

The Shared Queue database connection string cannot be retrieved from the database.

CIS_E_ADMIN_
GETCOMPUTER
NAME

0
x
1
5
7
1

The name of the local computer cannot be retrieved. Internally, BizTalk Server is using "localhost" as the comp
uter name.

CIS_E_ADMIN_
MIN_CONSTRAI
NT

0
x
1
5
7
3

The size of the "%1" property is less than the minimum required length for "%2".

CIS_E_ADMIN_
MAX_CONSTRA
INT

0
x
1
5
7
4

The size of the "%1" property is greater than the maximum length allowed for "%2".

CIS_E_ADMIN_
GET_MGMTDB_
CONNECT_PRO
PS

0
x
1
5
7
5

The BizTalk Messaging Management database properties cannot be retrieved.

CIS_E_ADMIN_K
EY_EMPTY

0
x
1
5
7
6

The key to the database table, property "%1", is empty.

CIS_E_ADMIN_
COCREATE_IN_
CREATE

0
x
1
5
7
7

An instance of the "%1" object could not be created while creating a new "%2" object.

CIS_E_ADMIN_
ADO_OPEN_CO
NNECTSTRING

0
x
1
5
7
8

The connection to the BizTalk Messaging Management database could not be opened.

CIS_E_ADMIN_
COCREATE_IN_
LOAD

0
x
1
5
7
9

An instance of the "%1" object could not be created while loading the "%2" properties.

CIS_E_ADMIN_
COCREATE_IN_
SAVE

0
x
1
5
8
0

An instance of the "%1" object could not be created while saving the "%2" properties.

CIS_E_ADMIN_
COCREATE_IN_
REMOVE

0
x
1
5
8
1

An instance of the "%1" object could not be created while trying to remove the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
GETALL

0
x
1
5
8
2

An instance of the "%1" object could not be created while trying to get all instances of "%2".

CIS_E_ADMIN_
COCREATE_IN_
GETALL_INSER
VER

0
x
1
5
8
3

An instance of the "%1" object could not be created while trying to get all instances of the "%2" object in the "
%3" server.

CIS_E_ADMIN_
GET_PROP

0
x
1
5
8
4

The "%1" property cannot be retrieved.

CIS_E_ADMIN_
CLOSE_ADO_C
ONNECTION

0
x
1
5
8
5

The ADO connection cannot be closed.

CIS_E_ADMIN_
CLOSE_ADO_RE
CORDSET

0
x
1
5
8
6

The ADO record set cannot be retrieved.

CIS_E_ADMIN_E
NCRYPT_PASS
WORD

0
x
1
5
8
7

The "%1" property cannot be processed.

CIS_E_ADMIN_
COCREATE_IN_
GETALLNAMES

0
x
1
5
8
8

An instance of the "%1" object could not be created while trying to get the names of all the "%2" object instanc
es.

CIS_E_ADMIN_
COCREATE_IN_
GETOTHERS_OF
_GROUP

0
x
1
5
8
9

An instance of the "%1" object could not be created while trying to get all instance of the "%2" object in the "%
3" group.

CIS_E_ADMIN_
COCREATE_IN_
GET_SMTPHOS
T

0
x
1
5
8
A

An instance of the "%1" object could not be created while trying to get "%2" for the local server.

CIS_E_ADMIN_
COCREATE_IN_
GET_SQ_CONN
ECTSTRING

0
x
1
5
8
B

An instance of the "%1" object could not be created while trying to get the Shared Queue parameters of "%2" i
n order to connect to the database.

CIS_E_ADMIN_
COCREATE_SER
VER_BYNAME

0
x
1
5
8
C

An instance of the "%1" object could not be created while trying to get the properties of the "%2" server instan
ce of the "%3" class.

CIS_E_ADMIN_
GETSQCONNEC
T_IN_OPEN

0
x
1
5
8
D

The Shared Queue database connection string could not be retrieved from the database because "%1".

CIS_E_ADMIN_
COCREATE_EXE
C_SQL_COMM
AND_ON_PARS
ER

0
x
1
5
8
E

An instance of the "%1" object could not be created while trying to execute a SQL command on the "%2" datab
ase table.

CIS_E_ADMIN_
COCREATE_PAR
SER_CLSIDS_IN
_GROUP

0
x
1
5
8
F

An instance of the "%1" object could not be created while retrieving the class identifiers (CLSIDs) for the parser
s that belong to the "%2" group.

CIS_E_ADMIN_I
NVALID_ARGU
MENT

0
x
1
5
9
0

An unexpected internal error occurred. An invalid "%1" argument was used when calling the "%2" method.

CIS_E_ADMIN_
MAX_ENUM_C
ONSTRAINT

0
x
1
5
9
1

The value of the "%1" property is greater than the maximum value allowed for "%2".

CIS_E_ADMIN_
MIN_ENUM_CO
NSTRAINT

0
x
1
5
9
2

The value of the "%1" property is smaller than the minimum value allowed for "%2".

CIS_E_ADMIN_
CREATE_CHAN
GETYPE_TO_BS
TR

0
x
1
5
9
3

The type of the "%1" property could not be changed to a string.

CIS_E_ADMIN_
CREATE_CHAN
GETYPE_TO_BO
OL

0
x
1
5
9
4

The type of the "%1" property could not be changed to Boolean.

CIS_E_ADMIN_
COCREATE_IN_
ENUMINSTANC
ES

0
x
1
5
9
5

An instance of the "%1" object could not be created while enumerating instances of the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
PUTINSTANCE

0
x
1
5
9
6

An instance of the "%1" object could not be created while setting an instance of the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
GETOBJECT

0
x
1
5
9
7

An instance of the "%1" object could not be created while getting an instance of the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
DELETEINSTAN
CE

0
x
1
5
9
8

An instance of the "%1" object could not be created while deleting an instance of the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
LOADPROPS

0
x
1
5
9
9

An instance of the "%1" object could not be created while loading properties for an instance of the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
LOADPARSERS

0
x
1
5
9
B

An instance of the "%1" object could not be created while loading parsers from a database for an instance the "
%2" object.

CIS_E_ADMIN_
COCREATE_IN_
SETPARSERSFR
OM_REGISTRY

0
x
1
5
9
C

An instance of the "%1" object could not be created while setting parsers from the registry for an instance of th
e "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
SETPARSERSFR
OM_CLIENT

0
x
1
5
9
D

An instance of the "%1" object could not be created while setting parsers from the client for an instance of the
"%2" object.

CIS_E_ADMIN_
COCREATE_IN_
REFRESHPARSE
RLIST

0
x
1
5
9
E

An instance of the "%1" object could not be created while refreshing the parser list for an instance of the "%2"
object.

CIS_E_ADMIN_
COCREATE_IN_
MOVETOSUSPE
NDED_Q

0
x
1
5
9
F

An instance of the "%1" object could not be created while moving an instance of "%2" to the Suspended queue
.

CIS_E_ADMIN_
COCREATE_IN_
RESUBMIT

0
x
1
5
A
0

An instance of the "%1" object could not be created while resubmitting an instance of "%2".

CIS_E_ADMIN_
COCREATE_IN_
VIEWDOC

0
x
1
5
A
2

An instance of the "%1" object could not be created while viewing a document instance of "%2".

CIS_E_ADMIN_
COCREATE_IN_
VIEWERRORDE
SC

0
x
1
5
A
3

An instance of the "%1" object could not be created while viewing the error description of an instance of "%2".

CIS_E_ADMIN_
COCREATE_IN_
VIEWINTERCHA
NGE

0
x
1
5
A
4

An instance of the "%1" object could not be created while viewing the interchanges of an instance of "%2".

CIS_E_ADMIN_
COCREATE_IN_
FREEINTERCHA
NGES

0
x
1
5
A
5

An instance of the "%1" object could not be created while freeing the interchanges for an instance of a "%2".

CIS_E_ADMIN_
COCREATE_IN_
STARTSERVER

0
x
1
5
A
6

An instance of the "%1" object could not be created while starting the server for an instance of a "%2".

CIS_E_ADMIN_
COCREATE_IN_
STOPSERVER

0
x
1
5
A
7

An instance of the "%1" object could not be created while stopping the server for an instance of a "%2".

CIS_E_ADMIN_
NO_DELETE_SE
RVER_IN_RECV
SERVICE

0
x
1
5
A
8

The "%1" server cannot be deleted because it is the processing server for at least one receive function.

CIS_E_ADMIN_
UPDATE_GROU
P_SERVER_RUN
NING

0
x
1
5
A
9

The server group properties cannot be changed because the "%1" server is still running.

CIS_E_ADMIN_
UPDATE_GROU
P_SERVER_ACC
ESS_DENIED

0
x
1
5
A
A

The server group properties cannot be changed because access to the "%1" service on "%2" server is denied.

CIS_E_ADMIN_
UPDATE_SERVE
R_SERVER_RUN
NING

0
x
1
5
A
C

The server properties cannot be changed because the "%1" server is still running.

CIS_E_ADMIN_
UPDATE_SERVE
R_SERVER_ACC
ESS_DENIED

0
x
1
5
A
D

The server properties cannot be changed because access to the "%1" service on "%2" server is denied.

CIS_E_ADMIN_
UPDATE_READ_
ONLY_PROP

0
x
1
5
A
E

The "%1" property cannot be changed. It is a read only property.

CIS_E_ADMIN_
DIFFERENT_RO
OT

0
x
1
5
A
F

The "%1" server may already belong to a different BizTalk Server installation.

CIS_E_ADMIN_
NOT_RESUBMIT
ABLE

0
x
1
5
B
0

This Suspended queue item cannot be submitted again.

CIS_E_ADMIN_
DBCONNECT

0
x
1
5
B
1

BizTalk Server failed to access the "%1" database on the "%2" server with the database connection information.

CIS_E_ADMIN_P
URGE_SUSPEN
DEDQ

0
x
1
5
B
2

An instance of the "%1" object could not be created while deleting documents from "%2".

CIS_E_ADMIN_
REQ_PROP_MIS
SING

0
x
1
5
B
3

%1 cannot be NULL.

CIS_E_ADMIN_
WMI_ERROR_H
ANDLING

0
x
1
5
B
4

The BizTalk Server WMI provider error-handling method failed. The original error description for the error that
called the error-handling method is: "%1".

CIS_W_ADMIN_
QUERY_FAILED

0
x
1
5
B
5

An attempt to get the Where clause values for a WMI Query failed.

CIS_E_ADMIN_I
NVALID_ENUM
_CONSTRAINT

0
x
1
5
B
6

The value "%2" of the "%1" property is not valid.

CIS_E_ADMIN_
OPENNESS_CO
NSTRAINT

0
x
1
5
B
7

The value "%2" of the "%1" property is not permitted when the value of the IsPassThrough property is set to T
RUE.

CIS_E_ADMIN_
RECEIVE_INVAL
ID_SERVER_GR
OUP

0
x
1
5
B
8

the specified server and/or group is not valid

CIS_E_ADMIN_I
NVALID_INSTA
NCE_NAME

0
x
1
5
B
9

The specified instance name "%1" contains at least one of the following characters that is not valid: [` ~ ! @ #
$ % ^ & * () + = [] { } | \ ; " ' < > , . ?]

BTS_E_ADMIN_
GROUP_UNIQU
E_NAME

0
x
1
5
B
A

A BizTalk Server group with the same name already exists in the BizTalk Messaging Management database.

BTS_E_ADMIN_
TIMESTAMPS_D
ATA_CORRUPTI
ON

0
x
1
5
B
B

Internal data corruption has been detected in the adm_TimeStamps table of the BizTalk Messaging Manageme
nt database.

BTS_E_ADMIN_
SERVER_UNIQU
E_NAME

0
x
1
5
B
C

A BizTalk Server with the same name already exists in the BizTalk Messaging Management database.

BTS_E_ADMIN_
SERVER_FOREI
GN_GROUPNA
ME

0
x
1
5
B
D

This BizTalk Server does not reference a valid BizTalk Server group in the BizTalk Messaging Management data
base.

BTS_E_ADMIN_
RECSVC_UNIQ
UE_NAME

0
x
1
5
B
E

A BizTalk Server receive function with the same name already exists in the BizTalk Messaging Management dat
abase.

BTS_E_ADMIN_
RECSVC_FOREI
GN_GROUPNA
ME

0
x
1
5
B
F

This BizTalk Server receive function does not reference a valid BizTalk Server group in the BizTalk Messaging
Management database.

BTS_E_ADMIN_
UNIQUE_HTTP_
POLLING_LOCA
TION

0
x
1
5
C
0

An HTTP receive function polling from the same location already exists in the BizTalk Messaging Management
database.

BTS_E_ADMIN_
PARSER_UNIQ
UE_ID

0
x
1
5
C
1

A BizTalk Server parser with the same CLSID and Group Name already exists in the BizTalk Messaging Manage
ment database.

BTS_E_ADMIN_
PARSER_FOREI
GN_GROUPNA
ME

0
x
1
5
C
2

This BizTalk Server parser does not reference a valid BizTalk Server group in the BizTalk Messaging Manageme
nt database.

CIS_E_ADMIN_
DB_SPROCVER
SION

0
x
1
5
C
3

The "%1" database on the "%2" server does not contain the necessary database schema.

CIS_E_ADMIN_
DB_VERSION

0
x
1
5
C
4

The "%1" database on the "%2" server is not compatible with the current version of the product.

CIS_E_ADMIN_
CREATE_CUSTO
M_COUNTER

0
x
1
5
D
0

The custom counter cannot be created because "%1".

CIS_E_ADMIN_L
OAD_CUSTOM_
COUNTER_PRO
PS

0
x
1
5
D
1

The custom counter cannot be loaded because "%1".

CIS_E_ADMIN_S
AVE_CUSTOM_
COUNTER_PRO
PS

0
x
1
5
D
2

The custom counter cannot be saved because "%1".

CIS_E_ADMIN_
REMOVE_CUST
OM_COUNTER_
PROPS

0
x
1
5
D
3

The custom counter cannot be removed because "%1".

CIS_E_ADMIN_
NOCUSTOM_C
OUNTER

0
x
1
5
D
4

The specified custom counter could not be found. Verify that the name of the specified custom counter is corre
ct.

CIS_E_ADMIN_
UNEXPECTED_R
EMOVE_CUSTO
M_COUNTER

0
x
1
5
D
5

An unexpected error occurred while trying to remove the "%1" custom counter from the database.

CIS_E_ADMIN_
VALIDATE_COU
NTER_PROPS

0
x
1
5
D
6

The custom counter cannot be validated because "%1".

CIS_E_ADMIN_
GET_VALUE_CU
STOM_COUNTE
R_PROPS

0
x
1
5
D
7

The value of the custom counter cannot be evaluated because "%1".

CIS_E_ADMIN_
UNEXPECTED_V
ALIDATE_CUST
OM_COUNTER

0
x
1
5
D
8

An unexpected error occurred while trying to validate the "%1" custom counter.

CIS_E_ADMIN_
CUSTOM_COU
NTER_ORG_CO
NSTRAIN

0
x
1
5
D
9

Either both %1 and %2 properties must be empty or %3 property must be empty.

CIS_E_ADMIN_
WRONG_HTTP_
POLLING_LOCA
TION

0
x
1
5
D
A

The "%1" property is incorrect for the HTTP receive function (http://... expected).

CIS_E_DTA_LOG
_INTERCHANGE
_DETAILS_FAILE
D

0
x
1
6
0
4

The details of an interchange could not be logged.

CIS_E_DTA_LOG
_DOCUMENT_D
ETAILS_FAILED

0
x
1
6
0
5

The details of a document could not be logged.

CIS_E_DTA_LOG
_GROUP_DETAI
LS_FAILED

0
x
1
6
0
6

The details of a group could not be logged.

CIS_E_DTA_INIT
_FAILED

0
x
1
6
0
A

The DTA object could not be initialized.

CIS_E_DTA_FAIL
ED_TO_GET_AD
MIN_PROPERTI
ES

0
x
1
6
0
E

The administration properties could not be obtained.

CIS_E_DTA_DAT
ABASE_CONNE
CTION

0
x
1
6
0
F

The server could not establish connection to the Tracking database.

CIS_E_DTA_LOG
_DOCUMENT_F
AILED

0
x
1
6
1
9

A copy of the document could not be logged.

CIS_E_DTA_LOG
_INTERCHANGE
_FAILED

0
x
1
6
2
0

A copy of the interchange could not be logged.

CIS_E_DTA_OBJ
ECT_IS_UNINITI
ALIZED

0
x
1
6
2
3

The DTA initialization method must be explicitly invoked before any DTA method can be invoked.

CIS_E_DTA_FAIL
ED_TO_COMMI
T

0
x
1
6
2
5

Changes could not be committed to the database.

CIS_E_DTA_FAIL
ED_TO_LOG_SO
URCE_XML

0
x
1
6
2
6

The intermediate source XML could not be logged.

CIS_E_DTA_FAIL
ED_TO_LOG_DE
ST_XML

0
x
1
6
2
7

The intermediate destination XML could not be logged.

CIS_E_DTA_ACK
_NO_ROW_FO
UND

0
x
1
6
2
B

Acknowledgment correlation failed. The correlation key(s) given did not match any record in the Tracking data
base.

CIS_E_DTA_ACK
_MULTIPLE_RO
WS_FOUND

0
x
1
6
2
C

Acknowledgment correlation failed. The correlation key(s) given match more than one record in the Tracking d
atabase.

CIS_E_DTA_LOG
_MIME_FAILED

0
x
1
6
2
D

The MIME data for submission "%1" could not be logged.

CIS_W_DTA_LO
G_TRACKING_FI
ELD_FAILED

0
x
1
6
2
E

The following tracking field for submission "%1" could not be logged: Tracking field: %2 Specification field na
me: %3 Actual value: %4 Possible causes are either a conversion error or an arithmetic overflow error. Check t
he tracking field settings in the document or channel configuration.

CIS_W_DTA_LO
G_BINARY_TRA
CKING_FIELD_F
AILED

0
x
1
6
2
F

The following tracking field for submission "%1" could not be logged: Tracking field: %2 Specification field na
me: %3 The submission could not be logged because the corresponding XML element or attribute is set to bin
ary type, which can only be tracked as custom type tracking field. Correct the tracking field settings in the docu
ment or channel configuration.

CIS_E_DTA_INIT
_TRANSACTION
AL_SESSION

0
x
1
6
3
1

The server could not create a transactional session for the Tracking object.

CIS_W_DTA_RE
CORD_UPDATE
_FAILED

0
x
1
6
3
2

An attempt to update a tracking record has failed. The record was probably deleted prior to the update action.

CIS_E_RESPON
SE_DOM_LOAD
_FAILED

0
x
1
7
0
1

The XML-DOM could not be loaded from the response data.

CIS_E_RECEIVE_
MSMQ_BYOT_C
REATE_FAILED

0
x
1
7
0
2

A Message Queuing receive function failed to create an IInterchange object using a Bring Your Own Transactio
n (BYOT) object. This may have been caused by editing the BizTalk Server COM+ application or configuring the
BYOT object in its own COM+ application. This BizTalk Message Queuing receive function will be stopped.

CIS_E_RECEIVE_
MSMQ_ZERO_B
YTE_DOC

0
x
1
7
0
3

A Message Queuing receive function read a zero byte document. This document has been discarded.

CIS_E_RECEIVE_
SERVICE_FAILE
D

0
x
1
7
0
4

There was a failure processing the "%1" receive function. Check your receive function configuration in BizTalk
Server Administration.

CIS_E_INITWOR
KITEM

0
x
1
7
0
5

There was a failure creating the internal work item. Make sure that SQL Server is running.

CIS_E_NOPIPELI
NE

0
x
1
7
0
6

A channel with the name "%1" cannot be located.

CIS_E_OPEN_PA
SSTHROUGH

0
x
1
7
0
7

The channel and messaging port openness type are not compatible with the submit method call.

CIS_E_DLQ_DET
AILS

0
x
1
7
0
8

Details about the Suspended queue could not be retrieved.

CIS_E_INVALID_
OPENDEST

0
x
1
7
0
9

The destination specified for the following open-destination messaging port was not valid: %1

CIS_E_SQL_MIS
SINGROWS

0
x
1
7
0
a

Rows were missing from the record returned by SQL OLEDB provider.

CIS_E_BTF_TIME
_STAMP_EXPIRE
D

0
x
1
7
0
b

The BizTalk Framework document "%1" was received with an expired "%2" timestamp. This message will be di
scarded.

CIS_E_ACCESS_
DENIED

0
x
1
7
0
c

The current process did not have administrative privileges and cannot access the Suspended queue.

CIS_E_BTF_ERR
OR_FINDING_T
AG

0
x
1
7
0
d

The parser could either not find the BizTalk Framework tag "%1", or the tag did not have a value. This documen
t will be moved to the Suspended queue.

CIS_E_INVALID_
FORMAT

0
x
1
7
0
e

The "%1" envelope format is not recognized by the server. Specify a valid envelope format.

CIS_E_INVALID_
MAP

0
x
1
7
0
f

The server could not load the map that is referenced by this channel.

CIS_E_MALFOR
MED_EXPR

0
x
1
7
1
0

The expression "%1" is malformed and cannot be interpreted by the server.

CIS_E_DB_SHUT
DOWN

0
x
1
7
1
1

The server is shutting down because of a database failure.

CIS_E_SUBMIT_
BLOCKED

0
x
1
7
1
2

All submit calls have been blocked due to a database failure. After correcting this problem, please go to Comp
onent Services and shut down the 'BizTalk Server Interchange Application', before attempting to call any subm
it method.

CIS_E_CERT_NO
T_FOUND

0
x
1
7
1
3

The required certificate cannot be found in the certificate store.

CIS_E_NODATA 0
x
1
7
1
4

The Submit method call did not contain a document or a file path.

CIS_E_TOOMUC
H_DATA

0
x
1
7
1
5

The Submit method call contained both a document and a file path.

CIS_E_INVALID_
OPENFLAG

0
x
1
7
1
6

The Submit method call was passed an openness type that is not valid. Refer to the BizTalk Server 200 Help do
cumentation for the enumeration of these values.

CIS_E_PASSTHR
OUGH_PARAM
S

0
x
1
7
1
7

The Submit method call contained a channel along with source, destination, or document name information. D
o not include source, destination, or document name information when passing the channel as a parameter wi
thin a Submit method call.

CIS_E_NOSRCI
D

0
x
1
7
1
8

The Submit method call contained a source qualifier but no source identifier.

CIS_E_NODESTI
D

0
x
1
7
1
9

The Submit method call contained a destination qualifier but no destination identifier.

MSG_TIMEBOM
B_EXPIRED

0
x
1
7
1
A

Thank you for evaluating Microsoft BizTalk Server. The period for this evaluation version has ended. Please con
tact Microsoft or your software reseller to obtain a licensed version of Microsoft BizTalk Server.

CIS_E_LOOPBA
CK

0
x
1
7
1
B

An attempt was made to submit a document that uses the Loopback transport type. The Loopback transport ty
pe can only be used when calling the SubmitSync method.

CIS_E_DBEXECU
TE

0
x
1
7
1
C

The following stored procedure call failed: "%1".

CIS_E_MISSING
_SMTPHOST

0
x
1
7
1
D

In order to use the SMTP transport, the SMTP host must be specified. To specify an SMTP host, in BizTalk Serve
r Administration expand Microsoft BizTalk Server 200, right-click BizTalk Server Group, and then click Properti
es to open the BizTalk Server Group Properties dialog box. On the General tab, in the SMTP host box, specify th
e SMTP host that you want to use.

CIS_E_INVALID
HANDLE

0
x
1
7
1
E

This method expected a submission handle or an array of submission handles, but the incoming data was not
valid. Verify that the parameters are correct.

CIS_E_DBCONN
ECT

0
x
1
7
1
F

BizTalk Server failed to initialize a connection to database: "%1" on server: "%2".

CIS_E_PASSTHR
OUGH_WITH_N
OCHANNEL

0
x
1
7
2
0

A valid channel name must be specified as a submission parameter on a Submit or SubmitSync method call w
hen the pass-through flag is set to true.

CIS_W_DBFAIL
URE

0
x
1
7
2
1

The database call failed and returned the following error string: "%1". If possible, we will attempt to retry this c
all.

CIS_E_GET_BTM
PARAMS

0
x
1
7
2
2

Unable to load connection parameters for BTM database. Please go to the Administration MMC to resolve this
problem.

CIS_E_UNABLE_
TO_CREATE_CU
STOM_PRE_PR
OC

0
x
1
7
2
3

The custom preprocessing component for the receive function "%1" could not be created. This document will b
e moved to the Suspended queue.

CIS_E_CUSTOM
_PRE_PROC_FAI
LED

0
x
1
7
2
4

The custom preprocessing component used by the receive function "%1" failed. This document will be moved t
o the Suspended queue.

CIS_E_CUSTOM
_PRE_PROC_N
O_BSTR

0
x
1
7
2
5

The custom preprocessing component used by the File receive function "%1" failed to return a valid BSTR. A va
lid BSTR is required. This document will be moved to the Suspended queue.

CIS_E_CUSTOM
_PRE_PROC_IN
VALID_DATA

0
x
1
7
2
6

The custom preprocessing component used by the Message Queue receive function "%1" cannot be called bec
ause the message contains data that is not a BSTR or a BYTE array. This document will be moved to the Suspen
ded queue.

CIS_E_CUSTOM
_PRE_PROC_IN
VALID_CP

0
x
1
7
2
7

The custom preprocessing component used by the Message Queue receive function "%1" failed to return a vali
d code page. This document will be moved to the Suspended queue.

CIS_E_CUSTOM
_PRE_PROC_IN
VALID_DATA_O
UT

0
x
1
7
2
8

The custom preprocessing component used by the Message Queue receive function "%1" failed to return a vali
d document, the document must be either a BSTR or a BYTE array. This document will be moved to the Suspen
ded queue.

CIS_E_CUSTOM
_FILE_PRE_PRO
C_FAIL

0
x
1
7
2
9

The custom preprocessing component used by the file receive function "%1" failed. The document "%2" will be
moved to the Suspended queue.

CIS_E_CUSTOM
_PRE_PROC_CA
NT_SET_CTX

0
x
1
7
2
A

The server was unable to set the context on the custom preprocessing component used by the receive function
"%1". This document will be moved to the Suspended queue.

CIS_E_FILERCV_
FILE_SHARE_D
OWN

0
x
1
7
2
B

The file receive function "%1" was unable to connect to the network share "%2". This receive function will try to
connect again.

CIS_E_FILERCV_
NETWORK_DO
WN

0
x
1
7
2
C

The file receive function "%1" is experiencing network problems and was unable to connect to the network sha
re "%2". This receive function will try to connect again.

CIS_E_RECEIVE_
FUNCTION_DIS
ABLED

0
x
1
7
2
D

The receive function "%1" has experienced problems, it will be shut down and disabled. Once these problems h
ave been corrected, re-enable this receive function in BizTalk Server Administration.

CIS_E_UNRECO
VERABLE

0
x
1
7
2
E

There was a serious error within the BizTalk Server scheduler component. The server is being shut down. Resol
ve this problem and then restart the server.

CIS_E_RELIABLE
_NOACK

0
x
1
7
2
F

The server has not received a receipt for the reliable message.

CIS_E_DLQ_ID 0
x
1
7
3
0

Suspended Queue ID: "%1"

CIS_E_CANNOT
_FIRE_EVENT

0
x
1
7
3
1

The server cannot send a WMI event for the Suspended queue item "%1". The most likely cause is that the user
configured for this submission has insufficient privileges to access WMI.

CIS_E_HTTP_L_I
NITIALIZATION

0
x
1
7
5
0

The BizTalk HTTP receive function could not complete initialization. Verify that the security credentials of "BizTa
lkHTTPReceive.dll" include access to the BizTalk configuration database.

CIS_E_HTTP_L_
NO_DATA_SEN
D

0
x
1
7
5
1

The BizTalk HTTP receive function "%1" received a request with no data.

CIS_E_HTTP_L_
NO_THREAD_F
ROM_POOL

0
x
1
7
5
2

The BizTalk HTTP receive function "%1" could not retrieve a thread from the thread pool.

CIS_E_HTTP_L_
NO_TRANSPOR
T

0
x
1
7
5
3

The BizTalk HTTP receive function could not select a valid transport. Check the configuration of this receive fun
ction: Request URL="%1".

CIS_E_HTTP_L_S
ERVER_SUPP_F
UNCT

0
x
1
7
5
4

The BizTalk HTTP receive function "%1" made a call to IIS Server Support Function: "%2" which failed.

CIS_E_HTTP_L_P
OST_THREAD_P
OOL

0
x
1
7
5
5

The BizTalk HTTP receive function "%1" could not post the work item to the thread pool. Try increasing the len
gth of the thread pool queue using the registry key "QueueFactor".

CIS_E_HTTP_L_
GET_FROM_TH
READ_POOL

0
x
1
7
5
6

The BizTalk HTTP receive function "%1" could not retrieve a work item from the thread pool.

CIS_E_HTTP_L_S
END_HEADERS

0
x
1
7
5
7

The BizTalk HTTP receive function "%1" could not send the HTTP headers to the client.

CIS_E_HTTP_L_
ASYNC_PROCE
SSING

0
x
1
7
5
8

The BizTalk HTTP receive function "%1" failed during asynchronous processing of an IIS request.

CIS_E_HTTP_L_
ASYNC_IIS_ERR
OR

0
x
1
7
5
9

The BizTalk HTTP receive function "%1" received an error from IIS while processing an asynchronous request.

CIS_E_HTTP_L_
DLL_LOAD_FAIL
URE

0
x
1
7
5
A

The BizTalk HTTP receive function could not load the DLL "%1".

CIS_E_HTTP_L_
CREATION_FAIL
URE

0
x
1
7
5
B

The BizTalk HTTP receive function could not create "%1", error:"%2".

CIS_E_HTTP_L_T
RANSPORT_UR
L

0
x
1
7
5
C

The BizTalk HTTP receive function could not extract a valid transport URL from the request URL. Error:"%1". Re
quest URL="%2".

CIS_E_HTTP_L_T
RANSPORT_UR
L_INVALID

0
x
1
7
5
D

The BizTalk HTTP receive function transport alias "%1" is not valid. Check the configuration of this receive funct
ion.

CIS_E_HTTP_L_T
RANSPORT_HA
NDLE_INVALID

0
x
1
7
5
E

The BizTalk HTTP receive function transport handle for alias "%1" is not valid. Check the configuration of this re
ceive function.

CIS_E_HTTP_L_F
ILE_CREATION_
FAILURE

0
x
1
7
5
F

The BizTalk HTTP receive function "%1" could not create the file "%2".

CIS_E_HTTP_L_S
ET_FILE_POINTE
R_FAILURE

0
x
1
7
6
0

The BizTalk HTTP receive function "%1" could not set the file pointer while writing to the file "%2".

CIS_E_HTTP_L_F
ILE_WRITE_FAIL
URE

0
x
1
7
6
1

The BizTalk HTTP receive function "%1" could not write to the file "%2".

CIS_E_HTTP_L_F
ILE_LOCK_FAIL
URE

0
x
1
7
6
2

The BizTalk HTTP receive function "%1" could not obtain a lock on the file "%2".

CIS_E_HTTP_L_B
UILD_FILE_NAM
E_FAILURE

0
x
1
7
6
3

The BizTalk HTTP receive function "%1" could not build a valid file name for "%2.

CIS_E_HTTP_L_F
ILE_DELETE_FAI
LURE

0
x
1
7
6
4

The BizTalk HTTP receive function "%1" could not delete the file "%2".

CIS_E_HTTP_L_
DETERMINING_
CODE_PAGE

0
x
1
7
6
5

The BizTalk HTTP receive function "%1" could not retrieve the code page for charset="%2".

CIS_E_HTTP_L_
MSMQ_SEND_F
AILURE

0
x
1
7
6
6

The BizTalk HTTP receive function could not send a message to the message queue "%1", HR=%2, Request UR
L:"%3".

CIS_E_HTTP_L_
MSMQ_OPEN_F
AILURE

0
x
1
7
6
7

The BizTalk HTTP receive function could not open the message queue "%1", HR=%2.

CIS_E_HTTP_L_
REGISTRY_FAIL
URE

0
x
1
7
6
8

The BizTalk HTTP receive function could not retrieve the configuration from the registry.

CIS_E_HTTP_L_
CP_CONVERTIO
N_FAILURE

0
x
1
7
6
A

The BizTalk HTTP receive function "%1" encountered an error converting the document to UNICODE.

CIS_E_HTTP_L_S
UBMIT_FAILED

0
x
1
7
6
B

The BizTalk HTTP receive function "%1" failed to submit the document into BizTalk Messaging.

CIS_E_HTTP_L_S
ERVER_VARIAB
LE

0
x
1
7
6
C

The BizTalk HTTP receive function could not successfully retrieve the server variable "%1" from IIS, error:%2.

CIS_E_HTTP_L_B
ASE_URL_NOT_
OBTAINABLE

0
x
1
7
6
D

The BizTalk HTTP receive function could not retrieve the URL from IIS.

CIS_E_HTTP_L_S
UBMISSION_HA
NDLE_ERROR

0
x
1
7
6
E

The BizTalk HTTP receive function "%1" could not send the BizTalk correlation token to the client.

CIS_E_HTTP_L_
GET_CONFIG_E
RROR

0
x
1
7
6
F

The BizTalk HTTP receive function could not successfully retrieve the configuration information from the datab
ase, hr=%1.

CIS_E_HTTP_L_I
MPERSNT_FAIL
ED

0
x
1
7
7
0

The BizTalk HTTP receive function could not get the appropriate security credentials to access the database.

CIS_E_HTTP_L_
WRITE_RESPON
SE_ERROR

0
x
1
7
7
1

The BizTalk HTTP receive function "%1" could not send the HTTP response to the client.

CIS_E_HTTP_L_S
UBMITSYNC_FA
ILED

0
x
1
7
7
2

The BizTalk HTTP receive function "%1" could not synchronously submit the document to BizTalk Messaging.

CIS_E_HTTP_L_
MOVETOSUSPE
NDQ_FAILED

0
x
1
7
7
3

The BizTalk HTTP receive function "%1" could not move the document received to the Suspended Queue.

CIS_E_SERIALIZ
ER_INVALID_D
OCUMENT

0
x
1
8
0
0

The document with the "%1" tracking identifier is invalid XML. The serializer cannot continue.

CIS_E_BTF_INV
ALID_ADDRESS
_TYPE

0
x
1
8
0
1

The BizTalk Framework document has an "type" specified that is not valid for the "%1" address field. This docu
ment will be moved to the Suspended queue.

CIS_E_RELIABLE
_MSG_RECEIPT_
REQ_BY

0
x
1
8
0
2

The BizTalk Framework document "%1" will not be transmitted as it has an expired "receiptRequiredBy" timest
amp. This message will be discarded.

CIS_E_CUSTOM
_ENVELOPE_ER
ROR

0
x
1
8
0
3

The custom envelope:"%1" had the property "%2" specified, but the custom envelope generator could not to lo
cate the XML node. This document will be moved to the Suspended queue.

CIS_E_SERIALIZ
ER_INVALID_DA
TETIME

0
x
1
8
0
4

The "%1" date or time format is not valid. Correct the format specification.

CIS_E_SERIALIZ
ER_INVALID_DT
DATA

0
x
1
8
0
5

The "%1" date or time field is not a valid ISO8601 format. Make sure that the XML date or time is formatted co
rrectly.

CIS_E_SERIALIZ
ER_INVALID_DE
LIMITER

0
x
1
8
0
6

The "%1" delimiter is either missing or has a value specified that is not valid. Update the delimiter value.

CIS_E_SERIALIZ
ER_MISSING_P
ROPSET

0
x
1
8
0
7

The "%1" document is missing the entire property set that is required for this serializer to run.

CIS_E_SERIALIZ
ER_MISSING_P
ROP

0
x
1
8
0
8

The property set for the "%1" document either is missing or does not contain a valid value for the "%2" proper
ty. Add or correct this property.

CIS_E_SERIALIZ
ER_INVALIDAR
G

0
x
1
8
0
9

Both source and destination qualifiers and values are required for this serializer to run. Specify qualifiers and v
alues in the messaging port for this transaction.

CIS_E_SERIALIZ
ER_MISMATCH_
SPEC

0
x
1
8
0
A

The serialization produced no output. Verify that the document specification matches the outbound XML docu
ment.

CIS_E_SERIALIZ
ER_FAILED

0
x
1
8
0
B

The serializer could not finish processing. See the following messages for details.

CIS_E_SERIALIZ
ER_INVALID_SR
CQUAL

0
x
1
8
0
C

The "%1" qualifier for the source identifier is too long to be placed in the outbound document header. Update t
he channel with a shorter qualifier.

CIS_E_SERIALIZ
ER_INVALID_SR
CID

0
x
1
8
0
D

The "%1" value for the source identifier is too long to be placed in the output header. Update the channel with
a shorter value.

CIS_E_SERIALIZ
ER_INVALID_DE
STQUAL

0
x
1
8
0
E

The "%1" qualifier for the destination identifier is too long to be placed in the output header. Update the port w
ith a shorter qualifier.

CIS_E_SERIALIZ
ER_INVALID_DE
STID

0
x
1
8
0
F

The "%1" value for the destination identifier is too long to be placed in the output header. Update the port with
a shorter identifier.

CIS_E_SERIALIZ
ER_INVALID_PO
SREC

0
x
1
8
1
0

The "%1" positional record is defined to contain a record length of zero. This happens when there is no tag, an
d none of the fields in this record specify start and end positions. Update the fields to have valid start and end
positions for this record.

CIS_E_SERIALIZ
ER_NODELIMS

0
x
1
8
1
1

This serializer component requires delimiters specified in the messaging port. Specify a valid delimiter set for t
his component.

CIS_E_SERIALIZ
ER_INVALID_CH
AR

0
x
1
8
1
2

The serializer component has encountered a character, "%1", that is not valid. An entry specified in the InvalidC
haracterMap tag of the document specification states that characters between "%2" and "%3" are not valid.

CIS_E_SERIALIZ
ER_INVALID_LE
NGTH

0
x
1
8
1
3

The length of the "%1" field ("%2") is not valid; it must be between %3 and %4. This document will be rejected.

CIS_E_SERIALIZ
ER_SELECT_SIN
GLE_NODE_FAI
LED

0
x
1
8
1
4

The serializer component cannot find the node using the query "%1". This document will be rejected.

CIS_E_SERIALIZ
ER_RELIABLE_U
RL_MISSING

0
x
1
8
1
5

The reply-to URL required for reliable messaging was not set. This document will be rejected.

CIS_E_SERIALIZ
ER_CONTROL_
NUMBER

0
x
1
8
1
6

The serializer component cannot find a control number for %1 %2 in the BizTalk Management database. This d
ocument will be rejected.

CIS_E_CUSTOM
_ENV_PARSE_T
ABLE_ERROR

0
x
1
8
1
7

The serializer component failed to build the custom envelope ID:"%1", this was due to errors in the XML Schem
a supplied. This document will be moved to the Suspended queue.

CIS_E_SUBSYN
C_RELIABLE_MS
G

0
x
1
8
1
8

The BizTalk Framework document that was submitted has "reliability" information specified. This information i
s not permitted in a synchronous call.

CIS_E_CUSTXM
L_BODY_NOT_F
OUND

0
x
1
8
1
9

The parser was unable to locate the XML document node by using the query specified in the XML specification:
"%1".

CIS_E_BTF_ACK
_BAD_MSG_ID

0
x
1
8
1
A

The BizTalk Framework receipt had a <prop:identity> tag that is not valid: "%1". This document will be moved t
o the Suspended queue.

CIS_E_BTF_MA
NIFEST_REF_MI
SSING

0
x
1
8
1
B

The BizTalk Framework document has a <manifest> tag without the mandatory <reference> tag. This docume
nt will be moved to the Suspended queue.

CIS_E_CUSTOM
_ENV_NO_DOC
_NODE

0
x
1
8
1
C

The serializer failed to create the custom envelope because the Document Container Node property was not sp
ecified in the XML specification. This document will be moved to the Suspended queue.

CIS_E_BTF_INV
ALID_XSI_TYPE

0
x
1
8
1
D

The BizTalk Framework document contains an xsi:type attribute "%1" that is not valid. This attribute must not h
ave spaces, and the first character must be alphabetical. This document will be moved to the Suspended queue
.

CIS_E_SERIALIZ
ER_INVALID_SY
NTAX_IDENTIFI
ER

0
x
1
8
1
E

The EDIFACT Syntax Identifier "%1" is not valid. Update the channel with a correct identifier.

CIS_E_SERIALIZ
ER_INVALID_U
NA_CONTROL

0
x
1
8
1
F

The EDIFACT UNA Control value "%1" is not valid. Update the channel with a correct value.

CIS_E_SERIALIZ
ER_EXPECT_BST
R_VALUE

0
x
1
8
2
0

The configuration data for the field "%1" must be a string. Update the data for this field.

BTS_E_XMLSERI
ALIZER_MISSIN
G_DEST

0
x
1
8
2
1

The BizTalk Framework header could not be generated because no destination identifier was specified.

BTS_E_XMLSERI
ALIZER_MISSIN
G_SRC

0
x
1
8
2
2

The BizTalk Framework header could not be generated because no source identifier was specified.

CIS_E_BTF_IDEN
TITY_MISSING

0
x
1
9
0
4

The parser could not find the mandatory BizTalk Framework tag "identity". This document will be moved to the
Suspended queue.

CIS_E_BTF_EXPI
RESAT_MISSIN
G

0
x
1
9
0
5

The parser could not find the mandatory BizTalk Framework tag "expiresAt". This document will be moved to t
he Suspended queue.

CIS_E_MSMQ_
NOT_INSTALLE
D

0
x
1
9
0
6

The Message Queuing receive function could not be started because the Message Queuing service is not instal
led on the server.

CIS_W_FILE_RE
CEIVE_RETRY_F
AILURE

0
x
1
9
0
7

There are file(s) in the "%1" directory that cannot be accessed by the file receive function. The receive service w
ill try again to access the file(s) in "%2" seconds.

CIS_E_FILE_REC
EIVE_DELETE_F
AILURE

0
x
1
9
0
9

The following file could not be deleted after processing: "%1". Make sure that the file attribute is not set to read
-only.

CIS_E_LOGON_
USER_FAILURE

0
x
1
9
0
a

Unable to logon with the account %1. Make sure that %2 has been granted "logon locally" privilege on this ser
ver and that the BizTalk Server account has "act as part of the operating system" privilege.

CIS_E_MSMQ_R
ECEIVE_IMPERS
ONATION_FAIL
URE

0
x
1
9
0
b

The "%1" Message Queuing receive function could not impersonate the logged on user.

CIS_E_RECEIVE_
CANNOT_CREA
TE_THREAD

0
x
1
9
0
c

A receive-function thread cannot be created due to a system error.

CIS_E_MSMQ_R
ECEIVE_OPENQ
_FAILURE

0
x
1
9
0
d

The following Message Queuing queue cannot be opened: "%1" (Message Queuing error code: 0x%2=%3). Ver
ify the existence and security setting of the queue.

CIS_E_MSMQ_R
ECEIVE_PEEKQ_
FAILURE

0
x
1
9
0
e

The Message Queuing queue could not be read: "%1" (Message Queuing error code: 0x%2=%3).

CIS_E_MSMQ_R
ECEIVE_RETRIE
VEQ_FAILURE

0
x
1
9
0
f

A message could not be retrieved from the following Message Queuing queue: '%1' (Message Queuing error:
0x%2=%3).

CIS_E_FILE_REC
EIVE_FINDCHA
NGE_FAILURE

0
x
1
9
1
0

The file-change notification cannot be set up on the following directory: "%1". Make sure that the path is correc
t.

CIS_E_SET_CUR
RENT_DIR_FAIL
URE

0
x
1
9
1
1

The current directory cannot be set to: "%1". Make sure that the path is correct.

CIS_W_RECEIVE
_SUBMIT_FAILU
RE

0
x
1
9
1
4

A submit request initiated from the "%1" receive function has failed.

CIS_E_READON
LY_FILE

0
x
1
9
1
5

The "%1" receive function picked up the following file: '%2'. This file is marked as read-only and cannot be pro
cessed.

CIS_E_BAD_REC
SVC

0
x
1
9
1
6

There was a serious failure in the receive function "%1". This receive service will be shut down, please check th
e event log for additional error messages.

CIS_E_FILE_REC
EIVE_IMPERSO
NATION_FAILU
RE

0
x
1
9
1
7

The "%1" file receive function could not impersonate the logged on user.

CIS_E_MSMQ_R
ECEIVE_UNEXPE
CTED_PASSTHR
OUGH

0
x
1
9
1
8

The ""%1"" Message Queuing receive function is not configured for a pass-through submission, but it has enco
untered a document that was submitted previously as a pass-through submission. Change this receive functio
n to accept pass-through submissions or remove the pass-through document from the queue. This receive fun
ction will be shut down.

CIS_E_BTSDOC
UMENT_INVALI
DNAME

0
x
1
A
0
0

The document named "%1" does not exist. Correct the document name or add the document to the BizTalk Me
ssaging Management database.

CIS_E_BTSDOC
UMENT_INVALI
DDOC

0
x
1
A
0
1

The server could not load any documents with the given criteria.

CIS_E_BTSDOC
UMENT_AMBIG
UOUS_NAMESP
ACE

0
x
1
A
0
2

The root node "%1" is ambiguous because documents "%2" and "%3" refer to different specifications with that
name. Either change the specifications to remove this ambiguity or use the document name explicitly.

CIS_E_BTSDOC
UMENT_AMBIG
UOUS_PROPSE
T

0
x
1
A
0
3

The property set is ambiguous because documents "%1" and "%2" refer to the same property set.

CIS_E_BTSDOC
UMENT_AMBIG
UOUS_PROPSE
TSHAREID

0
x
1
A
0
4

The property set is ambiguous because documents "%1" and "%2" refer to the same property set and have ref
erence "%3".

CIS_E_BTSDOC
UMENT_INVALI
DPROPERTYSET

0
x
1
A
0
5

The following property set was specified: %1.

CIS_E_BTSDOC
UMENT_EMPTY
PROPERTYSET

0
x
1
A
0
6

The property set was empty.

CIS_E_BTSDOC
UMENT_LOADF
AILED

0
x
1
A
0
7

The document "%1" could not be loaded. Possible causes are using a non-envelope specification, or incorrectly
configured tracking details.

CIS_E_BTSENVE
LOPE_LOADFAI
LED

0
x
1
A
2
0

The envelope "%1" could not be loaded. A possible cause is that the specification is not valid. Configure a valid
envelope specification.

CIS_E_FAILED_T
O_JOIN_TX

0
x
1
A
2
1

BizTalk Server failed to join a transaction. Ensure both the DTC and the SQL Server database are running.

MSG_COM_CRE
ATE_FAILED

0
x
1
B
0
1

An instance of the %1 class cannot be created: %2.

MSG_CONNEC
T_WMI_FAILED

0
x
1
B
0
2

A connection to Windows Management on "%1" cannot be established: %2.

MSG_COSETPR
OXY_FAILED

0
x
1
B
0
3

The authentication credential cannot be set for the Windows Management connection: %1.

MSG_WMI_ENU
MINST_FAILED

0
x
1
B
0
4

Instances of the BizTalk Server WMI provider class "%1" cannot be enumerated: %2.

MSG_WMI_GET
PROP_FAILED

0
x
1
B
0
5

The property value of "%1" cannot be retrieved from the BizTalk Server WMI provider because of an unexpecte
d error: %2.

MSG_WMI_EXE
CQUERY_FAILE
D

0
x
1
B
0
6

An unexpected error is preventing execution of the BizTalk Server WMI provider query "%1": %2.

MSG_WMI_GET
OBJ_FAILED

0
x
1
B
0
7

The BizTalk Server WMI provider instance of "%1" cannot be retrieved because of an unexpected error: %2.

MSG_WMI_PUT
PROP_FAILED

0
x
1
B
0
8

The property value of "%1" cannot be changed because of an unexpected error: %2.

MSG_WMI_PUT
INST_FAILED

0
x
1
B
0
9

The property values of the BizTalk Server WMI provider instance "%1" cannot be updated because of an unexp
ected error: %2.

MSG_WMI_DELI
NST_FAILED

0
x
1
B
0
A

The BizTalk Server WMI provider instance "%1" cannot be deleted because of an unexpected error: %2.

MSG_WMI_CRE
ATEINST_FAILE
D

0
x
1
B
0
B

A new instance of the WMI class "%1" cannot be created in the BizTalk Server WMI provider: %2.

MSG_WMI_CRE
ATEGETOBJ_FAI
LED

0
x
1
B
0
C

A new instance of the BizTalk Server WMI provider class "%1" cannot be created because of an unexpected err
or: %2.

MSG_WMI_EXE
CMETHOD_GET
OBJ_FAILED

0
x
1
B
0
D

The method "%1" of the BizTalk Server WMI provider class "%2" cannot be executed because of a failure to retr
ieve the class: %3.

MSG_WMI_EXE
CMETHODCLAS
S_FAILED

0
x
1
B
0
E

The method "%1" of the BizTalk Server WMI provider class "%2" cannot be executed because of a failure to retr
ieve the method information: %3.

MSG_WMI_EXE
CMETHODSPA
WN_FAILED

0
x
1
B
0
F

The method "%1" of the BizTalk Server WMI provider class "%2" cannot be executed because of an unexpected
error: %3.

MSG_WMI_EXE
CMETHODPUTP
ARAM_FAILED

0
x
1
B
1
0

The method "%1" of the BizTalk Server WMI provider class "%2" cannot be executed because of a failure to set
the parameter value: %3.

MSG_WMI_EXE
CMETHOD_FAIL
ED

0
x
1
B
1
1

The method "%1" of the WMI class "%2" cannot be executed by the BizTalk Server WMI provider: %3.

MSG_GET_HOS
TNAME_FAILED

0
x
1
B
1
2

The local computer name cannot be obtained because of an unexpected error: %1.

MSG_OUT_OF_
MEMORY

0
x
1
B
1
4

Insufficient memory.

MSG_FAIL_LOA
D_BMP

0
x
1
B
1
7

At least one of the bitmaps cannot be loaded in the BizTalk Server Administration console: %1.

MSG_FAIL_SET_
BMPSTRIP

0
x
1
B
1
8

At least one pair of bitmaps cannot be added to the image list of the BizTalk Server Administration console: %1
.

MSG_ERROR_
WMI_PATH_EM
PTY

0
x
1
B
1
9

The requested operation cannot be completed because of a previous WMI failure. The WMI object path is empt
y in this case.

MSG_ERROR_B
TM_GRP_ENUM
_FAIL

0
x
1
B
2
0

Unknown problems are preventing the WMI provider from enumerating a list of server groups from the BizTal
k Messaging Management database: %1.

MSG_ERROR_G
RP_DTA_DB_FAI
L

0
x
1
B
2
1

Unknown problems are preventing the WMI provider from accessing the Tracking database for the "%1" grou
p.

MSG_ERROR_G
RP_SQ_DB_FAIL

0
x
1
B
2
2

Unknown problems are preventing the WMI provider from accessing the Shared Queue database the "%1" gro
up.

MSG_ERROR_G
RP_BOTH_DB_F
AIL

0
x
1
B
2
3

Unknown problems are preventing the WMI provider from accessing the Tracking and Shared Queue databas
es for the "%1" group.

MSG_ERROR_D
ECRYPT_FAIL

0
x
1
B
2
4

Password decryption failed: %1.

MSG_WARN_E
NUM4ROOTUP
D_FAILED

0
x
1
B
2
7

Unknown problems are preventing the WMI provider from retrieving following list of servers and their states t
o prepare for BizTalk Messaging Management database update: %1

MSG_ERROR_C
HANGE_ROOTD
B

0
x
1
B
2
8

The server "%1" cannot be updated with the new BizTalk Messaging Management database information: %2.

MSG_ERROR_C
HANGE_ROOTD
B_CONNECT

0
x
1
B
2
9

We cannot connect to the WMI namespace "%1" to update server "%2" with the new BizTalk Messaging Mana
gement database information: %3

MSG_CHANGE_
ROOTDB_SUM
MARY

0
x
1
B
3
0

The BizTalk Messaging Management database change request has been completed. %1%2 %3%4

MSG_CHANGE_
ROOTDB_ON_L
OCAL

0
x
1
B
3
A

Because the server and server group information cannot be retrieved from the original BizTalk Messaging Man
agement database, the BizTalk Messaging Management database information will be updated only on the local
computer "%1". The update has been successful.

MSG_ERROR_U
NEXPECTED_EN
DOFLIST

0
x
1
B
3
C

An unexpected end of list (EOL) for the "%1" class enumeration has been reached.

MSG_ERROR_O
RG_QUALIFIERS
_FROM_DB_FAI
LED

0
x
1
B
3
D

The organization qualifiers cannot be retrieved from the BizTalk Messaging Management database because of
an unexpected error. "%1".

MSG_ERROR_O
RG_VALUES_FR
OM_DB_FAILED

0
x
1
B
3
E

The organization values cannot be retrieved from the BizTalk Messaging Management database because of an
unexpected error. "%1".

MSG_WARN_N
OT_RESUBMITA
BLE

0
x
1
B
3
F

In the selected group of multiple items, at least one item cannot be submitted again.

MSG_WARNIN
G_PROP_VALUE
S_CHANGED

0
x
1
B
4
0

%1 "%2" specified for receive function "%3" has been removed from the BizTalk Messaging Management data
base.

MSG_WARNIN
G_QUALIFIER_C
HANGED

0
x
1
B
4
1

The qualifier and identifier pair "%1" and "%2" specified for receive function "%3" is not valid in the BizTalk Me
ssaging Management database.

MSG_WARNIN
G_ORGANIZATI
ON_CHANGED

0
x
1
B
4
2

Organization "%1" specified for receive function "%2" is not valid in the BizTalk Messaging Management datab
ase.

MSG_TIMEBOM
B_DAYS_LEFT

0
x
1
B
4
3

Thank you for evaluating Microsoft BizTalk Server. The period for this evaluation version has %1 days left. Plea
se contact Microsoft or your software reseller to obtain a licensed version of Microsoft BizTalk Server.

INTERCHANGE_
EVENT

0
x
3
0
0
5

BizTalk Server: %1

 Note

When an error occurs, the %n variables are replaced with relevant information, such as an object name.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

BizTalk Server 2002 ~ Developer Solutions

Orchestration Services Error Messages
The BizTalk Orchestration Services object model error messages in the following table are returned when a running XLANG
schedule generates the warning or error. These messages can be viewed in Windows® 2000 Event Viewer.

Message na
me

V
a
l
u
e

Description

ID_W_NOT_
CREATOR

0
x
1
0
0
0

An unauthorized client attempted to create a new instance of an XLANG schedule. The remainder of the moniker s
tring and the identity of the client are shown in the following message. The client's security identifier (SID) is inclu
ded as binary data: %1%0

ID_W_NOT_
USER

0
x
2
0
0
1

An unauthorized client attempted to gain access to an existing instance of an XLANG schedule. The remainder of t
he moniker string identifying the instance and the identity of the client are shown in the following message. The cl
ient's security identifier (SID) is included as binary data: %1%0

ID_W_REHY
DRATIONER
ROR

0
x
2
0
0
2

An error was encountered while rehydrating an XLANG schedule. There might be a problem reading the database
or a problem with the information stored, or your system might be low on resources. The operation will be retried
. Detailed information is provided in the following message.%1%0

IDS_E_COM
SVCS_INTER
NAL_ERROR

0
x
3
0
0
0

The XLANG Scheduler Engine has detected an inconsistency in its internal state. Please contact Microsoft Product
Support Services to report this error: %1%0

IDS_COMSV
CS_RESOUR
CE_ERROR

0
x
3
0
0
1

The XLANG Scheduler Engine has detected the absence of a critical resource and has caused the process that host
ed it to end: %1%0

IDS_COMSV
CS_INTERN
AL_ERROR_
ASSERT

0
x
3
0
0
2

COM+ internal error. Please contact Microsoft Product Support Services to report this error. Assertion failure: %1
%0

ID_E_USER_
EXCEPTION

0
x
3
0
0
3

The system has called a scheduled component and that component has failed and generated an exception. This in
dicates a problem with the scheduled component. Notify the developer of this component that a failure has occurr
ed and provide the following information: %1%2%0

ID_INITIALIZ
E_FOR_DTC

0
x
3
0
0
4

The XLANG Scheduler Engine was unable to initialize for transactions that are required to support transactional co
mponents. Make sure that MS DTC is running: %1%0

https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

ID_E_CANT_
CREATE_CO
MPONENT

0
x
3
0
0
5

The XLANG Scheduler Engine was unable to create a user component that is required by the running XLANG sche
dule. Detailed information is provided in the following message. %1%0

ID_E_PROGI
D_NOT_FOU
ND

0
x
3
0
0
6

The XLANG Scheduler Engine was unable to convert the Programmatic ID in the following message to a COM clas
s ID: %1%0

ID_E_CANT_
CREATE_INT
ERCEPTOR

0
x
3
0
0
7

The XLANG Scheduler Engine was unable to create an interceptor object for the interface ID shown in the followin
g message. Probable causes for this are 1) the interface isn't registered properly; 2) no type library is provided for
the interface; or 3) the file that contains the interface type information can't be loaded. The port name associated
with this interceptor is: %1%0

ID_E_INTF_N
OT_SUPPOR
TED

0
x
3
0
0
8

The XLANG Scheduler Engine detected an inconsistency between the port implementation and the COM compone
nts to which it refers. A component listed in the port implementation has failed to support the expected interface.
The class ID of the component and the IID that it failed to support are shown in the following message. The port n
ame associated with this component is: %1%0

ID_E_UNKN
OWN_METH
OD

0
x
3
0
0
9

The XLANG Scheduler Engine received a call to a method that was not specified in the port implementation for thi
s XLANG schedule. The IID and method number are shown in the following message. The name of the port on whi
ch the call arrived is: %1%0

ID_E_UNKN
OWN_IDISP
ATCH_METH
OD

0
x
3
0
0
A

The XLANG Scheduler Engine received a call through the IDispatch::Invoke() interface to a method that no longe
r exists. The dispatch ID for the method is shown in the following message. The name of the port on which the call
arrived is: %1%0

ID_E_NAME
D_PARAMS

0
x
3
0
0
B

The XLANG Scheduler Engine received a call through the IDispatch::Invoke() interface to a method that contains
named arguments. Use positional arguments instead. The dispatch ID for the method is shown in the following m
essage. The name of the port on which the call arrived is: %1%0

ID_E_BAD_I
NVOKE_PAR
AMS

0
x
3
0
0
C

The XLANG Scheduler Engine received a call through the IDispatch::Invoke() interface to a method with an incor
rect number of parameters. The IID and the dispatch ID for the method are shown in the following message. The n
ame of the port on which the call arrived is: %1%0

ID_E_BAD_R
ETURN_POI
NTER

0
x
3
0
0
D

The XLANG Scheduler Engine received an incorrect Out parameter through the IDispatch::Invoke() interface fro
m a method. The reference returned was either not valid (NULL or a bad pointer) or does not support the expecte
d interface. The expected dispatch ID is shown in the following message. The name of the message containing the
bad port reference is: %1%0

ID_E_ACCES
S_CHECK_FA
ILURE

0
x
3
0
0
E

The XLANG Scheduler Engine was not able to authorize the client's moniker resolution request. Access is denied.%
0

ID_E_BAD_I
NVOKE

0
x
3
0
0
F

The IDispatch::Invoke() interface call to a method failed. The dispatch ID for the method is shown in the followin
g message. The name of the port on which the call was attempted is: %1%0

ID_E_INVOK
ED_METHO
D

0
x
3
0
1
0

The invoked method, whose dispatch ID is shown in the following message, reported an error. The name of the po
rt on which the call was attempted is: %1%0

ID_E_CANT_
GET_TYPEIN
FO

0
x
3
0
1
1

The component whose port name and COM CLSID are shown in the following message was unable to supply req
uired type information to the XLANG Scheduler Engine.%1%0

ID_E_CANT_I
NVOKE_MET
HOD

0
x
3
0
1
2

The XLANG Scheduler Engine was unable to deliver a method call to the object associated with the port name sho
wn in the following message. The interface and method name that are invoked are also shown.%1%0

ID_E_CANT_
GET_CLASSI
NFO

0
x
3
0
1
3

The component whose port name and COM CLSID are shown in the following message was unable to supply req
uired type information to the XLANG Scheduler Engine through the IProvideClassInfo::GetClassInfo interface.%
1%0

ID_E_SCRIPT
_ERROR

0
x
3
0
1
4

A scripted decision rule in an XLANG schedule instance could not be executed. The error returned by the script en
gine is shown in the following message. The script's source code and information about the schedule instance in
which the error occurred is also provided.%1%0

ID_E_SCRIPT
_ERROR_NO
INFO

0
x
3
0
1
5

A scripted decision rule in an XLANG schedule instance has failed. Detailed information regarding the error could
not be obtained due to an internal error. The error code is shown in the following message.%1%0

ID_E_SCRIPT
_BADCONV

0
x
3
0
1
6

A scripted decision rule in an XLANG schedule instance referred to a message field whose type was incompatible
with the VBScript Engine. The XLANG Scheduler Engine attempted to convert the field to a compatible type but wa
s unable to do so. The information in the following message shows the script rule, message, and field involved, as
well as the original field variant type and the type to which a conversion was attempted. The field's VARIANT data
structure is attached to this log entry as binary data.%1%0

ID_E_SCRIPT
_BADARRAY

0
x
3
0
1
7

A scripted decision rule in an XLANG schedule instance referred to a message field containing an array type that is
incompatible with the VB script engine. Only variant arrays are supported by Visual Basic Scripting. The informati
on in the following message shows the script rule, message, and field involved. The field's VARIANT data structure
is attached to this log entry as binary data.%1%0

ID_E_SCRIPT
_BADEXPR

0
x
3
0
1
8

A scripted decision rule in an XLANG schedule instance contained an expression that did not return a Boolean res
ult. The information in the following message shows the script rule and expression involved. The VARIANT data st
ructure returned by the expression is attached to this log entry as binary data.%1%0

ID_E_SCHED
ULE_NOT_R
UNNING

0
x
3
0
1
9

The XLANG Scheduler Engine received a call to an object associated with a port in an XLANG schedule instance th
at is not running. The name of the port on which the call arrived is: %1%0

ID_E_INTER
NAL_EXCEPT
ION

0
x
3
0
1
A

A COM+ internal exception occurred. Contact Microsoft Product Support Services to report this error, and provide
them with the information in the following message.%1%2%0

ID_E_BAD_D
ATAFLOW_
NOMESSAG
E

0
x
3
0
1
B

There is a problem with the data-flow specification. A message that is indicated as a source of data does not curre
ntly exist while this XLANG schedule is running. Detailed information is provided in the following message.%1%0

ID_E_BAD_A
RGUMENTV
ALUE

0
x
3
0
1
C

One of the fields that is used as a parameter for a COM method call has a bad value type in it. This is most likely c
aused by incorrect or missing data flow. Detailed information is provided in the following message.%1%0

ID_E_DEEP_
VARIANT_N
ESTING

0
x
3
0
1
D

One of the fields that is used as a parameter for a COM method call has more than one nesting level of VARIANTs.
The IID and the method's dispatch ID are shown in the following message. The name of the port on which the call
arrived is: %1%0

ID_E_BAD_M
APPORTVAL
UE

0
x
3
0
1
E

A field carrying a mapped port is not valid. Detailed information is provided in the following message.%1%0

ID_E_BAD_C
ALLPARAM
NUMBER

0
x
3
0
1
F

An incorrect number of parameters are being passed into a call. Detailed information is provided in the following
message.%1%0

ID_E_EXECU
TINGCALLE
DSCHEDULE

0
x
3
0
2
0

The XLANG schedule cannot be executed as a top-level schedule. Context parameters must be passed to it. Detaile
d information is provided in the following message.%1%0

ID_E_CANT_
GET_SUPPO
RTERRORIN
FO

0
x
3
0
2
1

The component whose port name and COM CLSID are shown in the following message was unable to return succ
ess from an interface that it claimed to support to the XLANG Scheduler Engine via ISupportErrorInfo::InterfaceSu
pportsErrorInfo.%1%0

ID_E_PERSIS
T_FAILURE

0
x
3
0
2
2

The state of the schedule instance could not be saved to the database. Detailed information is provided in the follo
wing message.%1%0

ID_E_TRANS
ACTION_CO
MMIT_FAILU
RE

0
x
3
0
2
3

The system failed to commit a transactional context. Detailed information is provided in the following message.%
1%0

ID_E_TRANS
ACTION_AB
ORTED

0
x
3
0
2
4

The system aborted a transactional context. Detailed information is provided in the following message.%1%0

ID_E_TRANS
ACTION_AB
ORT_FAILUR
E

0
x
3
0
2
5

The system failed to abort a transactional context. The state of this transaction is not known. Detailed information i
s provided in the following message.%1%0

ID_E_PENDI
NGREHYDR
ATIONERRO
R

0
x
3
0
2
6

The rehydration application encountered an error and is shutting down. Some of the rehydration requests will fail
due to this shutdown. Restart the XLANG Scheduler Engine service. Detailed information is provided in the followi
ng message.%1%0

ID_E_REHYD
RATIONONS
TARTUPERR
OR

0
x
3
0
2
7

One or more XLANG schedules could not be rehydrated because of a system error. There might be problems read
ing the database or problems with the data that was read. Detailed information is provided in the following messa
ge.%1%0

ID_E_REHYD
RATIONERR
OR

0
x
3
0
2
8

An error was encountered while rehydrating an XLANG schedule. There might be a problem reading the database,
or there might be a problem with the information stored. It is probable that the XLANG schedule was not dehydra
ted properly. Detailed information is provided in the following message.%1%0

ID_E_FOUN
DINITIALIZE
DTHREAD

0
x
3
0
2
9

The XLANG Scheduler Engine service encountered a critical thread-management error while processing an XLAN
G schedule. The schedule might fail to continue processing. Contact your technical support.%1%0

ID_E_CALLO
NCOMPLETE
DSCHEDULE

0
x
3
0
2
A

The XLANG Scheduler Engine service received a call on a completed XLANG schedule instance. The schedule insta
nce has already been removed from memory. The IID for the interface is shown in the following message.%1%0

IDS_MSG_TI
MEBOMB_E
XPIRED

0
x
3
0
2
B

Thank you for evaluating Microsoft BizTalk Server 2002. The period for this evaluation version has ended. Please c
ontact Microsoft or your software reseller to obtain a licensed version of Microsoft BizTalk Server 2002.%0

ID_E_FIELDP
ORTPERSIST
ENCEERROR

0
x
3
0
2
C

An error was encountered while attempting to persist an XLANG schedule instance. Detailed information is provid
ed in the following message.%1%0

ID_E_FIELDP
ORTREHYDR
ATIONERRO
R

0
x
3
0
2
D

An error was encountered while attempting to restore a particular sub-component of an XLANG schedule instanc
e from the database. Detailed information is provided in the following message.%1%0

ID_E_SCHED
ULEDONE

0
x
3
0
3
0

The XLANG Scheduler Engine encountered an error while marking the XLANG schedule instance as done. Either th
e database could not be updated or another error was encountered in the final stage. Detailed information is provi
ded in the following message.%1%0

ID_E_COMP
ONENT_INC
OMPATIBLE_
TXN

0
x
3
0
3
1

The XLANG Scheduler Engine encountered an error while attempting to instantiate a component. Either the comp
onent was previously enrolled in a different transaction, or the component was previously not enrolled in a transa
ction and the current instantiation requires a transaction. Detailed information is provided in the following messa
ge.%1%0

ID_E_SUSPE
ND_FAILURE

0
x
3
0
3
2

The XLANG schedule instance could not be suspended. Detailed information is provided in the following message.
%1%0

ID_E_INITNE
W

0
x
3
0
3
3

The XLANG Scheduler Engine received an error when doing IPersistStreamInit::InitNew. The class ID of the com
ponent and the error code are shown in the following message. The port name associated with this component is:
%1%0

ID_E_POSSIB
LEBYOTISSU
E

0
x
3
0
3
4

The component you requested could not be created. One possible reason for this is that you have configured the
BYOT component inside a COM+ application on this machine. This setting is incompatible with the XLANG Sched
uler service. The port name associated with this component is: %1%0

ID_E_FIELDP
ROCESSING
ERROR

0
x
3
0
3
5

The field value provided was not valid. Detailed information is provided in the following message.%1%0

ID_E_NO_OB
JECT

0
x
3
0
3
6

The XLANG schedule could not be instantiated. Detailed information is provided in the following message.%1%0

ID_E_START
UP_FAILED

0
x
3
0
3
7

One or more of the XLANG Group Managers failed to start up with the following error: %1%0

ID_E_NON_S
CRIPT_BADE
XPR

0
x
3
0
3
8

An XLANG schedule instance has a rule comparing fields for data types that are not permitted. Detailed informatio
n is provided in the following message.%1%0

E_BTW_PER
SIST_REACH
EDEOF

0
x
3
0
3
9

The recordset cannot return this row, because the end-of-file (EOF) has been reached.%1%0

ID_E_BAD_D
ATAFLOW_E
MPTYFIELD

0
x
3
0
4
0

There is a problem with the data-flow specification. A field indicated as a source of data is empty. This may be bec
ause it could not be persisted earlier. Detailed information is provided in the following message.%1%0

ID_E_CANT_
OPEN_DEAD
LETTER_QUE
UE

0
x
3
0
4
1

The XLANG Scheduler Engine was unable to create or open the XLANG dead-letter queue for its host COM+ appli
cation. The name of the failing COM+ application is: %1%0

ID_E_CANT_
XFER_TO_DE
ADLETTER_
QUEUE

0
x
3
0
4
2

The XLANG Scheduler Engine was unable to transfer an invalid message to the XLANG dead-letter queue for its h
ost COM+ application. The name of the failing COM+ application is: %1%0

ID_E_CANT_
LOADMODU
LE

0
x
3
0
4
3

The XLANG Scheduler engine was unable to load a required module. This may have been due to compilation/sem
antic errors with the module. Detailed information is available in the following message: %1%0

ID_E_USER_
DATA_EXCE
PTION

0
x
3
0
4
4

A value that was received from the client has caused an exception to be raised. This can be caused by incorrectly al
locating memory for the data, by a reference counting mismatch, or other data corruption. The most likely source
of the problem is in the client code. Detailed information is available in the following message: %1%2%0

E_BTW_INTE
RNAL_ERRO
R

0
x
4
0
0
1

An internal error has occurred. %1%0

E_EXPORT_F
AILED

0
x
4
0
0
2

The XLANG schedule could not be processed.%0

E_BTW_UNK
NOWN_SHA
PE

0
x
4
0
0
3

The compiler does not understand the shape. This shape is an unknown shape.%0

E_BTW_INC
OMPLETE_F
LOW

0
x
4
0
0
4

The flow is incomplete because a connector is missing.%0

E_BTW_INC
OMPLETE_F
LOW_LEFT

0
x
4
0
0
5

The flow is incomplete. The shape must have a flow connected to the left connector.%0

E_BTW_INC
OMPLETE_F
LOW_RIGHT

0
x
4
0
0
6

The flow is incomplete. The shape must have a flow connected to the right connector.%0

E_BTW_INC
OMPLETE_F
LOW_LATER
AL

0
x
4
0
0
7

The flow is incomplete. The shape is not attached to anything on the side.%0

E_BTW_INC
OMPLETE_F
LOW_TOP

0
x
4
0
0
8

The flow is incomplete. The shape must have a flow connected to the top connector.%0

E_BTW_INC
OMPLETE_F
LOW_BOTT
OM

0
x
4
0
0
9

The flow is incomplete. The shape must have a flow connected from the bottom connector.%0

E_BTW_INC
OMPLETE_F
LOW_ANYLI
NE

0
x
4
0
0
A

The flow is incomplete. Not connected to any shape.%0

E_BTW_MIR
RORLIST_IN
CONSISTEN
T

0
x
4
0
0
B

Mirror shapes are not found in the On Failure or Compensation page. Retry after replacing the shape with a ne
w one.%0

E_BTW_BEGI
N_INSIDE_T
RANSACTIO
N

0
x
4
0
1
0

The Begin shape must not be enclosed within a transaction.%0

E_BTW_END
MULTIPLE
LOOP

0
x
4
0
2
0

Only one End shape can be used in the loop branch.%0

E_BTW_END
_IN_TRANSA
CTION

0
x
4
0
2
1

The End shape cannot be used in the context.%0

E_BTW_SYN
CACTION_N
O_PAIR

0
x
4
0
3
0

Binding to a COM port requires actions to appear in pairs.%0

E_BTW_INC
OMPLETE_F
LOW_BINDI
NG

0
x
4
0
3
1

No binding for this action or port.%0

E_BTW_FIEL
D_TYPE_NO
T_SUPPORT
ED

0
x
4
0
4
0

Type (variant type=%1) is not supported.%0

E_BTW_ROL
E_NOT_SUP
PORTED

0
x
4
0
5
0

Contracts (XLANG Schedules with Roles) cannot be compiled.%0

E_BTW_EMP
TY_TRANSA
CTION

0
x
4
0
6
0

The transaction contains no valid shapes.%0

E_BTW_TRA
NSACTION_
NOT_PERMI
TTED

0
x
4
0
6
1

Transaction shapes are not permitted when the XLANG schedule is treated as a COM+ component. Remove the t
ransaction or edit the properties of the Begin shape to change the transaction model.%0

E_BTW_TRA
NSACTION_
BOUNDARIE
S_CROSSED

0
x
4
0
6
2

You cannot connect a flow from outside a transaction to a shape within a transaction without first connecting the f
low to the transaction. Draw your flow to the top connection point of a transaction to connect it to the transaction.
Then, click the transaction to highlight it. Draw another flow from the transaction connection point to the first sha
pe within the transaction. To draw a flow that leaves the transaction, you must first connect the flow to the connec
tion point at the bottom of the transaction. Then, click the transaction to highlight it. Draw another flow from the b
ottom connection point to the next shape in the business process.%0

E_BTW_TRA
NSACTION_
TERMINATE
D_PREMATU
RELY

0
x
4
0
6
3

At least one path within the transaction should flow out of the transaction.%0

E_BTW_NO_
RULES_FOR
_SWITCH

0
x
4
0
7
0

Decision shapes must contain at least one rule.%0

E_BTW_CAN
NOT_WAIT_
ON_ALL_SW
ITCH_BRAN
CHES

0
x
4
0
A
0

Cannot wait on "all" branches from the decision.%0

E_BTW_NO_
BRANCH_FO
UND

0
x
4
0
A
1

The join cannot find the corresponding fork or decision.%0

E_BTW_JOIN
_MISMATCH

0
x
4
0
A
2

Only a single join may be used with a given fork or decision.%0

E_BTW_JOIN
_SHARED

0
x
4
0
A
3

The same join cannot be used for flows coming from different forks or decisions.%0

E_BTW_CAN
NOT_WAIT_
ON_SOME_
SWITCH_BR
ANCHES

0
x
4
0
A
4

Not all paths from the decision come to the join.%0

E_BTW_CAN
NOT_WAIT_
ANY_ON_FO
RK_BRANCH
ES

0
x
4
0
A
5

Cannot wait "Or". The branches contain process forms that might never finish, resulting in hung schedules.%0

E_BTW_DAT
AFLOW_DIS
ALLOWED_
ON_BTM_P
ORT

0
x
4
0
C
0

This port cannot be used in multiple receive actions or within a single receive action in a loop.%0

E_BTW_MES
SAGE_TECH_
NOT_FOUN
D

0
x
4
1
1
0

The message is not bound to any port.%0

E_BTW_MES
SAGE_TYPE_
MISMATCH

0
x
4
1
1
1

The message was used with conflicting types "%1" and "%2".%0

E_BTW_MIS
SING_TECH
NOLOGY

0
x
4
1
2
0

The list of available methods for this communication flow has changed. Re-run the Method Communication Wizar
d to select a different method and update this communication flow.%0

E_BTW_MIS
SING_PORT_
DATAFLOW

0
x
4
1
A
0

The settings for this port indicate that it is created externally to the XLANG Scheduler Engine. You must designate
the source of this port reference by drawing a connection from the appropriate message field.%0

E_BTW_CIRC
ULAR_DATA
FLOW

0
x
4
1
A
1

There appears to be a circular path in the data-flow path for this XLANG schedule.%0

E_BTW_LOO
P_NORULE

0
x
4
1
D
0

A rule has not been defined.%0

E_BTW_LOO
P_BODY_EXI
TS_TRANSA
CTION

0
x
4
1
D
1

The body of the loop cannot exit the enclosing transaction.%0

E_BTW_LOO
P_BODY_EN
D_MISSING

0
x
4
1
D
2

The end of the body of the loop is not found.%0

E_BTW_ABO
RT_NOT_IN_
TXN

0
x
4
1
E
0

Abort shapes must be associated with an enclosing transaction.%0

E_BTW_ABO
RT_CONTEX
T_INVALID_
SCOPE

0
x
4
1
E
1

Abort shapes can refer to current or parent contexts only.%0

E_BTW_END
MULTIPLE
ABORT

0
x
4
1
E
2

Multiple End shapes are not allowed on the On Failure page.%0

E_BTW_CO
MPILER_FAI
LED

0
x
5
0
0
0

Compile failed on "%1".%0

E_BTW_PAR
SE_FAILED

0
x
5
0
0
1

Parse failed.%0

E_BTW_FIXU
P_FAILED

0
x
5
0
0
2

Fixup failed.%0

E_BTW_VALI
DATION_FAI
LED

0
x
5
0
0
3

Validation failed.%0

E_BTW_NOD
E_FAILURE

0
x
5
0
0
4

at node "%1" (%2!d!,%3!d!).%0

E_BTW_STA
CK_TOO_MA
NY_ITEMS

0
x
5
0
0
5

Too many items were found on the stack.%0

E_BTW_STA
CK_UNEXPE
CTED_NODE

0
x
5
0
0
6

An unexpected node was found.%0

E_BTW_XML
QUERY_RET
URNED_ZER
O_NODES

0
x
5
0
0
7

The XML Query returned zero nodes.%0

E_BTW_XML
QUERY_RET
URNED_MU
LTIPLE_NOD
ES

0
x
5
0
0
8

The XML Query returned multiple nodes.%1%0

E_BTW_XML
QUERY_MIS
SING_ATTRI
BUTE

0
x
5
0
0
9

Required attribute "%1" is missing its value.%0

E_BTW_LOA
D_MODULE_
FAILED

0
x
5
0
0
A

Failed to load module "%1".%0

E_BTW_XML
_LOAD_FAIL
ED

0
x
5
0
0
B

The XML-DOM returned an error at "%1!d!, %2!d!".%0

E_BTW_ERR
OR_LOADIN
G_PACKAGE

0
x
5
0
0
C

0x%1!X! error occurred while trying to load the following URL: "%2".%0

E_BTW_NA
MED_LIST_H
AS_DUPLICA
TE_ENTRIES

0
x
5
0
0
D

The list has duplicate entries with the name "%1".%0

E_BTW_REQ
UIRED_ELEM
ENT_MISSIN
G

0
x
5
0
0
E

Required element "%1" is missing.%0

E_BTW_ELE
MENT_MISSI
NG_VALUE

0
x
5
1
0
0

The element value is missing.%0

E_BTW_REFE
RENCE_RES
OLVE_FAILE
D

0
x
5
1
1
0

Unable to resolve "%1" with location value "%2".%0

E_BTW_CON
TEXTREF_IN
VALID_REFE
RENCE

0
x
5
1
2
0

Returning to or "releasing" from an independent (non-enclosing) context is not permitted.%0

E_BTW_CON
TEXTREF_SE
LF_REFEREN
CE

0
x
5
1
2
1

Return or Release referring to a context from within that context is not permitted.%0

E_BTW_ASY
NC_ACTION
_COM_NOT_
ALLOWED

0
x
5
4
0
0

An asynchronous action must refer to a non-COM port.%0

E_BTW_CON
NECTION_P
ORT_HAS_T
ECH_BINDIN
G

0
x
5
4
9
0

The port "%1" used in a connection cannot have technology binding.%0

E_BTW_CON
NECTION_P
ORT_REUSE
D

0
x
5
4
9
1

The port "%1" used in a connection has been used before in the XLANG schedule.%0

E_BTW_TRA
NSACTIONS
_NESTED

0
x
5
4
B
0

When transactions are nested, the outer transaction must be long-running.%0

E_BTW_TRA
NSACTIONS
_NESTED_RE
TRY

0
x
5
4
B
1

When transactions are nested, the outer transaction cannot have retry count.%0

E_BTW_MES
SAGE_HAS_
NO_DECL

0
x
5
5
2
0

Message "%1" has no associated declaration.%0

E_BTW_MES
SAGE_HAS_
UNSATISFIE
D_DATA_DE
PENDENCIE
S

0
x
5
5
2
1

Message "%1" has unsatisfied data dependencies on "%2". The dependencies are either not getting created in the
flow or are potentially expected on a port in which the "No instantiation" option has been selected.%0

E_BTW_POR
T_HAS_NO_
BINDING

0
x
5
5
7
0

Port "%1" has no associated binding.%0

E_BTW_POR
T_HAS_UNS
ATISFIED_D
ATA_DEPEN
DENCIES

0
x
5
5
7
1

Port "%1" has unsatisfied data dependencies on messages "%2". The dependencies are either not being created in
the flow or are potentially expected on a port in which the "No instantiation" option has been selected.%0

E_BTW_RUL
E_HAS_NO_
BINDING

0
x
5
5
B
0

Rule "%1" has no associated binding.%0

E_BTW_SCH
EDULE_SUS
PENDED

0
x
5
5
E
0

The XLANG schedule has been suspended.%0

E_BTW_SCH
EDULE_STO
PPED

0
x
5
5
E
1

The XLANG schedule has been stopped.%0

E_BTW_PER
SIST_FAILED

0
x
5
5
E
2

The state of the XLANG schedule instance could not be saved to the database.%0

E_BTW_SUS
PEND_FAILE
D

0
x
5
5
E
3

The XLANG schedule could not be suspended.%0

E_XLANG_S
HUTTINGDO
WN

0
x
5
5
E
4

The XLANG application is shutting down.%0

E_BTW_MIS
SING_MESS
AGE_BINDIN
G_ON_PORT

0
x
5
7
3
0

The action uses port "%1" whose binding does not define the binding for message "%2".%0

E_BTW_MIS
SING_INCO
MING_PORT
REF

0
x
5
7
3
1

The message used by this receive action contains a field (%1) that is connected to a port reference (%2) but the da
taflow connections do not indicate that the port reference should be received.%0

E_BTW_SOU
RCE_PORT_
HAS_NOINV
OCATION

0
x
5
7
4
0

The send action refers to port "%1", in which the "No instantiation" option has been selected.%0

E_BTW_MIS
SING_OUTG
OING_PORT
REF

0
x
5
7
4
1

The message used by this source action contains a field (%1) that is connected to a port reference (%2) but the dat
aflow connections do not indicate that the port reference should be sent.%0

E_BTW_TAS
K_LIMIT

0
x
5
7
5
0

The task has "%1!d!" actions. The current limit is "%2!d!".%0

E_BTW_SYN
C_DIFFEREN
T_PORTS

0
x
5
7
6
0

Synchronous action pair refers to different ports: "%1" and "%2".%0

E_BTW_SYN
C_SAME_ME
SSAGE

0
x
5
7
6
1

Synchronous action pair refers to the same message: "%1".%0

E_BTW_SYN
C_ONLY_CO
M_ALLOWE
D

0
x
5
7
6
2

Synchronous action pair must refer to COM port only.%0

E_BTW_SYN
C_SECOND_
MESSAGE_
MUST_BE_O
UT_FOR_FIR
ST_MESSAG
E

0
x
5
7
6
3

In a synchronous action pair the message in the second action must be the out message for the message in the fir
st action.%0

E_BTW_INV
ALID_DELAY
_TIME

0
x
5
7
7
0

The delay time (%1!d!) is not valid. The delay time cannot be a negative number.%0

E_BTW_CAL
L_MESSAGE
_SCHEMA_N
AME_MISM
ATCH

0
x
5
8
0
0

The message specification name "%1" for the message "%2" in the calling XLANG schedule does not match the sp
ecification name "%3" in the called XLANG schedule.%0

E_BTW_CAL
L_MESSAGE
_SCHEMA_R
EPRESENTA
TION_MISM
ATCH

0
x
5
8
0
1

The message specification representation for message "%1" in the calling XLANG schedule does not match the sp
ecification representation in the called XLANG schedule.%0

E_BTW_ASSI
GNMENT_P
ORT_HAS_T
ECH_BINDIN
G

0
x
5
8
3
0

Port "%1" used in an assignment in a cut form cannot have technology binding.%0

E_BTW_PAR
TITION_LIMI
T

0
x
5
8
5
0

The partition has "%1!d!" process(es). The current limit is "%2!d!".%0

E_BTW_MES
SAGE_USED
_IN_PARALL
EL

0
x
5
8
5
1

Parallel actions or processes use the same message "%1".%0

E_BTW_POR
T_USED_IN_
PARALLEL

0
x
5
8
5
2

Parallel actions or processes use the same port "%1".%0

E_BTW_INV
ALID_RETRY
_COUNT

0
x
5
A
3
0

The retry count "%1!d!" is not valid. The retry count cannot be negative.%0

E_BTW_INV
ALID_BACK
OFF_VALUE

0
x
5
A
3
1

The back-off value "%1!d!" is not valid. The back-off value cannot be negative.%0

E_BTW_INV
ALID_TIMEO
UT_VALUE

0
x
5
A
3
2

The timeout value "%1!d!" is not valid. The timeout value cannot be negative.%0

E_BTW_FIEL
D_RESERVE
D_NAME

0
x
5
A
5
0

%1 is a reserved field name.%0

E_BTW_ELE
MENT_TYPE
_NOT_DEFIN
ED

0
x
5
A
5
1

The element type "%1" is not defined.%0

E_BTW_ELE
MENT_TYPE
_INCOMPLE
TE

0
x
5
A
7
0

The element type definition is incomplete. Provide either subelements or dt:type.%0

E_BTW_MUL
TIPLE_PORT
S

0
x
5
A
9
0

Distinct ports "%1" and "%2" are used on the same field.%0

E_XLANG_IN
VALID_COM
PARE_TYPE

0
x
5
A
9
1

Comparison of this data type is not permitted.%0

E_BTW_FIEL
D_NOT_MAT
CHING_SCH
EMA_ELEME
NT

0
x
5
A
9
2

FieldBinding for "%1" does not have a matching element in the schema at position "%2!d!".%0

E_BTW_FIEL
D_HAS_AMB
IGUOUS_DA
TAFLOW

0
x
5
A
9
3

A message field cannot have both a data flow from another message field and a reference to a port. One of the da
ta flows must be removed.%0

E_BTW_POR
T_TARGET_I
NVALID

0
x
5
A
9
4

The type of this field is inappropriate for use as a port reference. Ports bound to a COM component can be comm
unicated as object references or strings. Ports bound to Message Queuing may only be transferred as strings. Inte
rnal ports can be communicated only as object references.%0

E_BTW_FIEL
D_TARGET_I
NVALID

0
x
5
A
9
5

The target field "%1", which is of variant type "%2", cannot get data from source field "%3", which is of variant typ
e "%4".%0

E_BTW_INITI
ALIZED_MES
SAGEFIELD_I
NVALID_OV
ERWRITE

0
x
5
A
9
6

The data in field "%1" of an initialized message "%2" cannot be overwritten with data from another message or po
rt in the binding specification.%0

E_BTW_DAT
AFLOW_INC
OMPLETE

0
x
5
A
B
1

A source action accepting [in] parameters must have the corresponding fields populated by data flow (that is, "fro
m").%0

E_BTW_DAT
AFLOW_FR
OM_SYSTE
M_FIELD

0
x
5
A
B
2

Port cannot be initialized from a system field.%0

E_BTW_DAT
AFLOW_FR
OM_CONST
ANT_FIELD

0
x
5
A
B
3

Port cannot be initialized from a constant message field.%0

E_BTW_MIS
SING_SCRIP
T_EXPRESSI
ON

0
x
5
A
C
0

No script expression was supplied for the rule.%0

E_BTW_BAD
_SCRIPT_EX
PRESSION

0
x
5
A
C
1

%1 %2 at character position %3!d! in "%4".%0

E_BTW_MAP
_INVALID_BI
NDING

0
x
5
A
E
0

The binding for message "%1" must contain a reference for mapped port "%2".%0

E_BTW_MES
SAGE_BINDI
NG_SCHEM
A_MISMATC
H

0
x
5
A
E
1

There is a mismatch between the binding and schema for the message "%1".%0

E_BTW_MES
SAGEDECL_I
NIT_DATA_U
NAVAILABLE

0
x
5
B
0
0

Unable to obtain initialization data for field "%1".%0

E_BTW_LATE
NCY_INVALI
D_VALUE

0
x
5
B
2
0

The Latency property value must be a non-negative integer that is less than the maximum long integer "%1!d!".%
0

E_BTW_POR
T_LATENCY_
ON_INTERN
AL

0
x
5
B
2
1

Cannot specify latency on an internal port.%0

E_BTW_MES
SAGE_TECH
NOLOGY_MI
SMATCH

0
x
5
B
B
0

There is a mismatch between the port "%1" technology "%2" and the message "%3" technology "%4".%0

E_BTW_FIEL
D_TECHNOL
OGY_MISM
ATCH

0
x
5
B
C
0

There is a mismatch between the message "%1" technology "%2" and the field "%3" technology "%4".%0

E_BTW_CO
M_PORT_N
OT_CREATA
BLE

0
x
5
C
1
0

If a COM port can be invoked, it must have a CLSID, a ProgID, or a moniker.%0

E_BTW_AUT
ORETURN_C
OM_PORT_
MUST_BE_U
SED_INSIDE
_CONTEXT

0
x
5
C
1
1

The port "%1", which is configured to abort a transaction if a method returns a failure HRESULT, can only be used
inside a transaction.%0

E_BTW_CO
M_PORT_GE
NERAL_ACC
ESS_FAILUR
E

0
x
5
C
1
2

A COM port can be invoked. Please refer to the Windows 2000 documentation.%1%0

E_BTW_CO
M_PARAME
TERS_LIMIT

0
x
5
C
2
0

The method has "%1!d!" parameter(s). The current limit is "%2!d!".%0

E_BTW_CO
M_NO_MAT
CHING_RET
URN

0
x
5
C
2
1

The COM method has no matching Return.%0

E_BTW_CO
M_NO_MAT
CHING_MET
HOD

0
x
5
C
2
2

The COM Return has no matching method.%0

E_BTW_INV
ALID_SLOT_
NUMBER

0
x
5
C
2
3

The slot number "%1!d!" is not valid. Slot numbers cannot be less than the following value: SLOT_NONE(-1).%0

E_BTW_INV
ALID_INVOK
E_KIND

0
x
5
C
2
4

The invokeKind value "%1!d!" is not valid. Acceptable values are: 1,2,3,4 and 8.%0

E_BTW_PRO
XY_DISCON
NECTED

0
x
5
C
2
5

The proxy has been disconnected.%0

E_BTW_CO
M_DISPATC
H_SLOT_SPE
CIFIED

0
x
5
C
2
6

A slot number cannot be specified for the dispatch interface.%0

E_BTW_CO
M_SPECIFY_
DISPID_OR_
SLOT

0
x
5
C
2
7

Valid values for dispid or slot must be specified.%0

E_BTW_CO
M_INVALID_
BYREF_FOR_
RETURN_ME
SSAGES

0
x
5
C
3
0

Byref should be "1" since "%1" is a <com:return> message.%0

E_BTW_CO
M_INVALID_
NESTED_VA
RIANTS

0
x
5
C
3
1

More than one level of nesting for variants is not permitted.%0

E_BTW_CO
M_FIELD_IN
DEX_MUST_
BE_NON_NE
GATIVE

0
x
5
C
3
2

The index "%1!d!" for the field is not valid. The index must be a non-negative integer.%0

E_BTW_CO
M_FIELD_IN
DEX_REPEAT
ED

0
x
5
C
3
3

The index "%1!d!" for the field has been used before on another field in the message.%0

E_BTW_CO
M_FIELD_IN
DEX_NOT_C
ONTIGUOU
S

0
x
5
C
3
4

For synchronous action pair messages "%1" and "%2", the index "%3!d!" for a field is not valid. The field indices fo
r these messages must form a contiguous block of non-negative numbers that start with zero.%0

E_BTW_MS
MQ_NO_M
QRT_DLL

0
x
5
D
0
0

The Message Queue DLL, MQRT.DLL, cannot be loaded.%0

E_BTW_MS
MQ_CREATE
CHANNEL

0
x
5
D
0
1

MQBinder: CreateChannel failed for: %1.%0

E_BTW_MS
MQ_NOT_C
ONFIGERED
_PROPERLY

0
x
5
D
0
2

The Message Queuing Service is not configured properly. A queue object could not be opened %1.%0

E_BTW_MS
MQ_NO_CE
RTIFICATE_A
VAILABLE

0
x
5
D
0
3

The Message Queuing Service is not able to obtain a certificate.%1%0

E_BTW_MS
MQ_NO_WE
LLKNOWN_
QUEUE_NA
ME

0
x
5
D
0
4

A message cannot be sent to a known queue because the queue is not named in the XLANG schedule. You must p
rovide a queue name in the XLANG schedule.%1%0

E_BTW_MS
MQ_INVALI
D_FIELD_TY
PE

0
x
5
D
0
5

The field type specified for message "%1" field "%2" is not valid.%0

E_BTW_MS
MQ_PORT_
NOT_BOUN
D

0
x
5
D
0
6

The Message Queuing port is not bound.%1%0

E_BTW_MS
MQ_QUEUE
_NOT_TRAN
SACTIONAL

0
x
5
D
1
0

The queue does not have the correct transactional properties.%1%0

E_BTW_MS
MQ_OPEN_
ACCESSDEN
IED

0
x
5
D
1
1

A Message Queuing access denied error occurred when opening the queue. Compare the accessRole specified for
the queue in the XLANG schedule with the rights associated to the current user.%1%0

E_BTW_MS
MQ_OPEN_
GENERALFAI
LURE

0
x
5
D
1
2

A Message Queuing failure occurred when opening the queue. Refer to the Message Queuing Service documentat
ion in Windows 2000 to look up the error code and diagnose as appropriate.%1%0

E_BTW_MS
MQ_PORT_
NOT_CREAT
ABLE

0
x
5
D
1
3

A port that is implemented by using a message queue must have a queue name.%0

E_BTW_MS
MQ_GENER
AL_QUEUE_
ACCESS_FAI
LURE

0
x
5
D
1
4

A Message Queuing failure occurred when accessing the queue. Refer to the Message Queuing Service document
ation in Windows 2000 to look up the error code and diagnose as appropriate.%1%0

E_BTW_MS
MQ_INVALI
D_MESSAGE
_VT_TYPE

0
x
5
D
2
0

The Message Queuing message is of unknown format.%1%0

E_BTW_MS
MQ_MESSA
GE_UNKNO
WN_MESSA
GETYPE

0
x
5
D
2
1

The Message Queuing message is of unknown message type. The message type could not be obtained from the
message.%1%0

E_BTW_MS
MQ_MESSA
GE_UNAUTH
ENTICATED

0
x
5
D
2
2

The Message Queuing message is not authenticated but the port only accepts authenticated messages.%1%0

E_BTW_MS
MQ_MESSA
GE_INCORR
ECT_AUTHE
NTICATE_LE
VEL

0
x
5
D
2
3

The Message Queuing message is not authenticated at the requested level.%1%0

E_BTW_MS
MQ_MESSA
GE_INVALID
_MESSAGE

0
x
5
D
2
4

The Message Queuing message has a message body that is not valid.%1%0

E_BTW_MS
MQ_MESSA
GE_NOT_SE
ND

0
x
5
D
2
5

The Message Queuing message could not be sent.%1%0

E_BTW_MS
MQ_MESSA
GE_SCHEMA
VALIDATION
_FAILED

0
x
5
D
2
6

The Message Queuing message was not successfully validated against the schema that was provided. Check the s
chema and the schema path.%1%0

E_BTW_MS
MQ_COULD
_NOT_CREA
TE_MQMESS
AGE

0
x
5
D
2
7

The message instance could not be converted to a Message Queuing message. %1%0

E_BTW_MS
MQ_NO_TR
USTRELATIO
NSHIP_FOR_
USER

0
x
5
D
2
8

The trust relationship for the provided user could not be established.%1%0

E_BTW_MS
MQ_MESSA
GE_EMPTY_
MESSAGE

0
x
5
D
2
9

The Message Queuing message has an empty message body.%1%0

E_BTW_MS
MQ_MESSA
GE_ONLY_O
NE_EMPTY_
XPATH_ALL
OWED

0
x
5
D
2
A

The Message Queuing message can have only one field with an empty node path (XPath).%0

E_BTW_MS
MQ_MESSA
GE_ONE_EM
PTY_XPATH_
NEEDED

0
x
5
D
2
B

The Message Queuing message must have one field with an empty node path (XPath).%0

E_BTW_MS
MQ_MESSA
GE_INVALID
_MESSAGEB
ODY

0
x
5
D
2
C

The Message Queuing message has a message body that is not valid.%1%0

E_BTW_MS
MQ_MESSA
GE_INVALID
_MESSAGES
TRING

0
x
5
D
2
D

The Message Queuing message has an invalid string for the message body.%1%0

E_BTW_MS
MQ_MESSA
GE_UNKNO
WN_MESSA
GE

0
x
5
D
2
E

The Message Queuing message is an invalid or unknown message and was moved to the dead-letter queue.%1%
0

E_BTW_MS
MQ_MESSA
GE_TYPE_CO
NFLICTING_
SCHEMA

0
x
5
D
2
F

The Message Queuing messages "%1" and "%2", which are of type "%3" on port "%4", have conflicting specificatio
n representations. This could be because the name, type, or XPath query does not match for one of the fields in th
e two representations.%0

E_BTW_MS
MQ_DOCU
MENT_FIELD
_TYPE_NOT_
STRING

0
x
5
D
3
0

A Message Queuing message's field "%1", that has an empty node path (XPath), must be a string data type.%0

E_BTW_MS
MQ_DOCU
MENT_FIELD
_CANNOT_C
ONVERT_TO
_STRING

0
x
5
D
3
1

A Message Queuing message's field could not be converted to a string.%1%0

E_BTW_MS
MQ_DOCU
MENT_FIELD
_CONVERTI
ON_FAILUR
E

0
x
5
D
3
2

The Message Queuing message's field could not be converted.%1%0

E_BTW_CAN
T_DISPOSE_
MESSAGE

0
x
6
0
0
1

The XLANG schedule instance was bound to a queue that received a message that is not valid. The XLANG Schedu
ler Engine was unable to transfer this message to the dead-letter queue, so the schedule instance has been termin
ated.%0

Related Topic

Configure Event Viewer for BizTalk Server errors

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

https://msdn.microsoft.com/en-us/library/ee274581(v=bts.10).aspx

BizTalk Server 2002 ~ Developer Solutions

Standard COM Error Messages
The following table shows the most common standard COM errors returned by the properties and methods of the BizTalk Server
objects.

Constant Value (3
2-bit)

Description

S_OK 0000000
0

The standard return value used to communicate successful completion.

S_FALSE 0000000
1

An alternate success value, typically used to communicate successful, but non-standard completion. The pr
ecise meaning depends on the method or property in question.

E_UNEXPEC
TED

8000FFF
F

Catastrophic failure error.

E_NOTIMPL 8000400
1

Not implemented error.

E_OUTOFM
EMORY

8007000
E

Out of memory error.

E_INVALID
ARG

8007005
7

One or more arguments are not valid error.

E_NOINTER
FACE

8000400
2

Interface not supported error.

E_POINTER 8000400
3

Pointer not valid error.

E_HANDLE 8007000
6

Handle not valid error.

E_ABORT 8000400
4

Operation aborted error.

E_FAIL 8000400
5

Unspecified error.

E_ACCESSD
ENIED

8007000
5

General access denied error.

MK_E_NOO
BJECT

800401E
5

The object identified by this moniker could not be found.

Additional information may be available using the global Err object. In Visual Basic, the Description property of the Err object
may contain a text description of the error.

In C++, call the OLE DB method GetErrorInfo on the IErrorRecords interface to retrieve the most recently set IErrorInfo pointer
in the current logical thread. The GetDescription method of the IErrorInfo interface may return a text description of the error.
For more information about the GetErrorInfo method, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp) and browse to OLE DB Interfaces in the Platform SDK.

Did you find this information useful? Please send your suggestions and comments about the documentation to
BizTalk Server Documentation Feedback@microsoft.com

http://msdn.microsoft.com/library/default.asp
https://msdn.microsoft.com/en-us/library/ee250922(v=bts.10).aspx

abort
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A

To cancel a transaction that is in progress. In orchestration schedules, the Abort shape is used to explicitly tell the XLANG
Scheduler Engine to discontinue transaction retries and consider the atomic transaction to have failed. Transactions that have
failed may optionally run "On Failure of Transaction" code.

See also: transaction, commit

action

To send or receive a message. Send or receive actions can be synchronous or asynchronous, depending upon which application
services are implemented in an XLANG schedule.

advanced query

An expression used to locate specific information. In BizTalk Document Tracking, an advanced query is an SQL statement that you
use to extract specific tracking data from the Tracking database, using custom search criteria, such as a Purchase Order Total.

See also: query

ANSI X12

EDI standards set by Accredited Standards Committee X12, whose work is approved by the American National Standards Institute.

Application Center 2000

A Microsoft product that simplifies the task of migrating applications through the development cycle (from development to
testing to production). Application Center helps ensure consistency between a development application, a test application, and a
production application. By automating deployment of applications from one server to another, Application Center speeds up
transfer time, eliminates manual errors, and improves the quality of releases.

Application Center 2000 cluster

A group of independent servers working together as a unified computing resource. An Application Center cluster does not share
resources; rather, it provides high availability by isolating and ignoring failed cluster members. Compare with Microsoft Windows
Clustering, which provides high reliability through resource sharing and failover.

application integration component (AIC)

A COM object that the BizTalk Server state engine calls to deliver data to an application. If a messaging port is configured in
BizTalk Server 2002 to include the use of an AIC for application integration, this component is automatically instantiated and
passed the requisite data. The component then determines how to handle communicating this data back to the application. This
can be done using private API calls, invoking other COM objects, using database writes, and so on.

asynchronous communication

An interaction between two or more processes in which one process communicates with another and can continue processing
independently from the other process.

See also: synchronous communication

attribute

A characteristic of a record or field. An attribute can contain several properties.

B

binding

A process by which the technology used to implement a port is specified.

See also: port

BizTalk Accelerator for HIPAA

An add-on product to Microsoft BizTalk Server 2002 that allows organizations to quickly and easily build HIPAA solutions. BizTalk
Accelerator for HIPAA includes several applications that enable health care providers, payers, and clearinghouses (acting on behalf
of providers or payers) to exchange, monitor, and control HIPAA-specific transactions. BizTalk Accelerator for HIPAA provides the
necessary document specifications, applications, and components to rapidly develop BizTalk Server 2002-based solutions that are
HIPAA specific.

BizTalk Document Tracking

A Web-based user interface (UI) that is used to access all BizTalk Messaging Services tracking information. It can also track XLANG
schedule status for BizTalk Orchestration Services.

BizTalk Editor

A tool with which you can create, edit, and manage specifications. With BizTalk Editor you can create a specification based on a
specification template, an existing schema, certain types of document instances, or a blank specification.

BizTalk Framework

A platform-neutral e-commerce framework that is based on Extensible Markup Language (XML) schemas and industry standards.
The framework enables integration across industries and between business systems, regardless of platform, operating system, or
underlying technology. Specifically, it is composed of three things: schema, products, and services. For more information about
the BizTalk Framework, go to the BizTalk Web site (www.microsoft.com/biztalk/).

BizTalk Mapper

A tool with which you can create maps that define the correspondence between the records and fields in one specification and the
records and fields in another specification. A map contains an Extensible Stylesheet Language (XSL) style sheet that is used by
BizTalk Server to perform the transformation described in the map.

BizTalk Messaging Management database

A Microsoft SQL Server database that stores the information related to all server configurations, including group and server
settings, receive functions, and all messaging configuration information for the objects that are created by using BizTalk
Messaging Manager, or by accessing the BizTalk Messaging Configuration object model.

BizTalk Messaging Manager

A graphical user interface (UI) that can be used to configure BizTalk Messaging Services to exchange documents between trading
partners and applications of the home organization.

See also: BizTalk Messaging Services

BizTalk Messaging Services

Services that include sending, receiving, parsing, and tracking documents; receipt generation and correlation; and data mapping,
integrity, and security.

See also: BizTalk Messaging Manager

BizTalk Orchestration Designer

A design tool used to create drawings that describe long-running, loosely coupled, executable business processes. The XLANG
schedule drawing is compiled into an XLANG schedule that is used to execute the automated business process.

BizTalk Orchestration Services

Services that include designing, compiling, and running XLANG schedules. Additional services include the ability to create custom
COM+ applications to host dedicated XLANG schedule instances, and the persistence of XLANG schedules.

BizTalk SEED Wizard

A tool that enables a company to create an XML package containing that company's configuration. After the package is created,
trading partners can use BizTalk SEED Wizard to install the configuration within their organizations in order to conduct business

with the initiating company on the Web.

BizTalk Server 2002

A Microsoft product for business-process automation and application-integration both within and between businesses. BizTalk
Server 2002 provides a powerful Web-based development and execution environment that integrates loosely coupled, long-
running business processes, both within and between companies.

BizTalk Server 2002 features include the composition of new and existing XLANG schedules; integration among existing
applications; the definition of document specifications and specification transformations; and the monitoring and logging of run-
time activity.

The server provides a standard gateway for sending and receiving documents across the Internet, as well as providing a range of
services that ensure data integrity, delivery, security, and support for the BizTalk Framework and other key document formats.

BizTalk Server Accelerator for RosettaNet

An add-on product to Microsoft BizTalk Server 2002 that allows organizations to quickly and easily build RosettaNet solutions.
BizTalk Server Accelerator for RosettaNet includes several applications that enable users to develop, administer, and test
RosettaNet standards-compliant Partner Interface Processes (PIPs) implemented as BizTalk Server 2002 XLANG schedules.

BizTalk Server Administration

A Microsoft Management Console (MMC) interface that is used to administer the BizTalk Server 2002 group of servers and their
properties, to monitor receive functions, and to monitor work items in the Microsoft SQL Server queues that are used by the
server group.

C

channel

A set of properties that designates the source of documents and defines specific processing steps that are performed by BizTalk
Messaging Services before a document is delivered to the destination designated by the messaging port or distribution list with
which the channel is associated.

See also: pass-through submission, receipt channel, source application, trading partner, open channel, open messaging port,
source organization

channel filtering

To compare the value of fields within a document instance to values in expressions designated within a channel. This comparison
filters the selection of which channel or channels the server invokes to process a document.

channel ID

A globally unique identifier (GUID) assigned by BizTalk Server 2002 to uniquely identify the channel through which a document is
processed.

checkpoint

A storage location in the Shared Queue database in which the current state of a work item is stored. In case of a server failure,
documents that were queued to the failed server can be retrieved from the Shared Queue database and redistributed to other
servers within the server group, based on the information provided by the checkpoint.

cluster

A group of independent servers managed as a single system for higher availability, easier manageability, and greater scalability.
The minimum requirements for a server cluster are: two servers connected by a network, a method for each server to access the
other's disk data, and special cluster software like Windows Clustering. The special software provides services such as failure
detection, recovery, and the ability to manage the servers as a single system.

code list

A list of code values used as abbreviations for a variety of textual information. For example, ST is the code list value for Ship To
and is most commonly used to qualify an address.

commit

To implement all changes requested by a pending transaction. This action occurs when all actions within a transaction are
successfully completed.

See also: abort, transaction

Communication shapes

Shapes that are used to identify the exact content of a message and type of application service that is implemented within an
XLANG schedule drawing. This category of shapes includes Constants, Message, Port, and Port References.

See also: Flowchart shapes, Implementation shapes, XLANG schedule drawing

compensation

A process by which reparation is made for a completed transaction. For example, if payment has been made for an order that then
cannot be fulfilled, the payment is returned to the purchaser.

compile

In BizTalk Mapper, to create an Extensible Stylesheet Language Transformations (XSLT) version of a map that can be used by
BizTalk Server. The map is stored in the WebDAV repository and used by BizTalk Server to translate one document format into
another document format.

See also: map, data mapping, data translation, Extensible Markup Language (XML)

concurrency

Two or more actions that are carried out at the same time.

configuration

A package of information that defines the various components of BizTalk Server 2002, including resources, such as BizTalk Ports,
BizTalk PortGroups, BizTalk Receive Functions, BizTalk Schedules, and BizTalk Custom Counters.

correlation

The association of an incoming document with the correct schedule instance.

correlation token

A variable parameter that is returned to the client upon successful submission to the HTTP receive function. It contains either a
submission handle or the file name, depending on whether the document is submitted to BizTalk Server or to a file.

custom counters

Values that enable users to define their own Windows Management Instrumentation (WMI) class instances based on an advanced
query of the Tracking database.

cyclical reference

A reference in a specification that occurs when a record is created as a descendant to itself. A cyclical reference can occur only
when the Standard property value is set to XML on the Reference tab in BizTalk Editor.

D

data mapping

In BizTalk Mapper, to create a correspondence between the records and fields of a source specification and the records and fields
of a destination specification.

See also: compile, data translation

data translation

A process that converts data from one format to another format. Data translation occurs within BizTalk Server at run time. The
rules that are specified in a map are used to convert data from a source specification format to a destination specification format,
as well as to perform any operations or calculations that are required on the data.

See also: compile, data mapping, map, Extensible Markup Language (XML)

decision

A process that evaluates one or more rules sequentially. In BizTalk Orchestration Designer, a decision is represented by the
Decision shape. Rules are Microsoft Visual Basic Scripting Edition (VBScript) expressions that are used by Decision and While
shapes.

dehydrate

To store all state information for an XLANG schedule instance in a SQL Server database while the XLANG Scheduler Engine is
waiting to receive a message before executing the next action in the business process.

See also: XLANG Scheduler Engine

dehydrated schedule

A schedule that is stored in a database temporarily while waiting for receipt of a message before continuing to the next action in
the sequence. All state information about the schedule is stored in the database until the message is received. Dehydrating
schedules reduces the load on the computer that is hosting the schedule.

delimited flat file

A file that contains one or more records that are represented as a group of fields separated by a delimiter character. The records
themselves are also separated by delimiter characters.

destination

The name of the organization for the channel through which a document is processed. The destination is defined in BizTalk
Messaging Services.

destination application

A home-organization application that has been designated in a messaging port as the destination for documents.

See also: home organization

destination organization

A trading partner organization that has been designated in a messaging port as the destination for documents.

See also: openness, organization, source organization

destination specification

The specification in a map that represents the outgoing document. BizTalk Mapper maps from a source specification to a
destination specification.

See also: source specification

dictionary

A collection of properties associated with each item of work processed by BizTalk Server. These properties are exposed in BizTalk
Editor so that users can tell BizTalk Server how to find values within document instances for properties that are used to locate a
messaging port.

distribution list

A group of messaging ports that can be used to send the same document to several different trading partner organizations or
applications of the home organization. In the BizTalk Messaging Configuration object model, this is referred to as a port group.

See also: messaging port, trading partner, home organization

document definition

A set of properties that represents a specific document. Document definition properties include a pointer to a document
specification and can include global tracking fields and selection criteria.

See also: global tracking fields, selection criteria

document instance

A representation of the actual data that is sent to BizTalk Server. A document instance differs from a specification in that the
specification defines the structure of the data, while a document instance is a representation of the specific data contained in a
structure.

See also: global tracking fields, pass-through submission

document messaging

Using BizTalk Messaging Services to send, receive, parse and track message documents.

document standard

The structure that defines a transaction set, such as an X12 850 standard. An implementation guideline can be created from a
document standard.

document type

A designation for the type of document on which a specification is based. For example, if a specification is based on
850Schema.xml from the X12 standard, when that specification is opened in BizTalk Editor, 850 appears in the document type
field on the Reference tab for the root node.

document type definition (DTD)

A standard definition that specifies which elements and attributes might be present in other elements and attributes and that
specifies any constraints on their ordering, frequency, and content.

dynamic port

A port that requires that specific location information be provided for an XLANG schedule at run time. The location for a dynamic
port is provided by a message that passes the location information to the reference for the port at run time.

See also: static port, port

dynamic queue

A queue that has an unknown address. Ports that use a Message Queuing implementation can use a dynamic queue when the
location of the queue is not known. The address of this queue must be provided by a message that passes the queue address to
the reference for the port at run time.

See also: static queue, per-instance queue

E

EDIFACT

Electronic Data Interchange For Administration, Commerce, and Transport. The international EDI standard as developed through
the United Nations. This standard is commonly used in Europe, as well as Japan and other Asian countries/regions. Also known as
UN/EDIFACT.

electronic data interchange (EDI)

A set of standards used to control the transfer of documents, such as purchase orders and invoices, between computers.

See also: selection criteria

element

A set of markup tags that identifies named sections of information. The tags in an element identify the name and the start and end
of the element.

enterprise application integration (EAI)

A system that enables separate applications to share data electronically. EAI can help your organization perform integration tasks
and individual transactions.

envelope

1. A set of properties that defines an envelope. Envelope properties include an envelope format and can include a pointer to an
envelope specification.

2. Header and footer information, or header information only, that encapsulates or precedes document data for transport.

envelope format

The format of documents that an envelope can contain; for example, XML or X12.

event consumer

The recipient of system and application event notifications such as Windows Management Instrumentation (WMI) events and
Windows NT Event Log events. For example, Microsoft Operations Manager (MOM) is an event consumer that uses event
notifications to raise alerts, notify administrators, and run scripts.

See also: provider

Extensible (XML) Structure Definitions (XSD)

A schema language. The XSD language is the one most recently recommended by the World Wide Web Consortium (W3C) for
defining Extensible Markup Language (XML) structures.

Extensible Markup Language (XML)

A specification developed by the World Wide Web Consortium (W3C) that enables designers to create customized tags beyond
the capabilities of standard HTML. While HTML uses only predefined tags to describe elements within the page, XML enables tags
to be defined by the developer of the page. Tags for virtually any data item, such as a product or an amount due, can be used for
specific applications. This enables Web pages to function as database records.

See also: compile, data translation, map, XML-Data Reduced (XDR), XPath

Extensible Stylesheet Language (XSL)

A style sheet format for Extensible Markup Language (XML) documents. XSL is used to define the display of XML in the same way
that cascading style sheets (CSS) are used to define the display of Hypertext Markup Language (HTML). BizTalk Server uses XSL as
the translation language between two specifications.

F

failfast

The early termination of a process, upon discovery of an internal error or inconsistency, in an effort to avoid a subsequent error or
errors that might be serious or unrecoverable.

Flowchart shapes

Shapes that represent the routing logic in an XLANG schedule drawing. This category of shapes includes Abort, Action, Begin,
Decision, End, Fork, Join, Transaction, and While.

See also: Flowchart stencil, XLANG schedule drawing, Communication shapes, Implementation shapes

Flowchart stencil

A drawing stencil provided by BizTalk Orchestration Designer. The Flowchart stencil provides all the shapes that can be used to
design the process flow of a business process that can be executed by a running XLANG schedule.

See also: Implementation stencil, Flowchart shapes

fully configured rules

Microsoft Operations Manager (MOM) rules that are completely preconfigured as part of the Microsoft BizTalk Server 2002
Management Pack.

See also: user-defined rules

functoid

Built-in reusable function that enables complex structural manipulation operations between source specification elements,
destination specification elements, and other functoids.

See also: link

Functoid Palette

A toolbox that contains all functoids that can be used to create relationships between source specification elements and
destination specification elements.

G

global tracking fields

Document specification fields, designated in a document definition, that are logged to a tracking database for each instance of an
actual document processed by BizTalk Messaging Services.

See also: document definition, document instance

H

Hierarchical Level (HL)

A segment in a hierarchical structure that identifies levels of detail information, such as relating line-item data to shipment data,
and packaging data to line-item data. You use HL to identify the dependencies between and the content of hierarchically related
groups of data segments.

home organization

An object that represents your business in BizTalk Messaging Manager. The home organization is created for you when BizTalk
Server 2002 is installed. Only the home organization can have applications.

See also: destination application, distribution list, organization, source application, trading partner

I

Implementation shapes

Shapes that represent the technologies that the XLANG Scheduler Engine supports. This category of shapes includes BizTalk
Messaging, COM Component, Message Queuing, and Script Component.

See also: Flowchart shapes, Implementation stencil, Communication shapes

Implementation stencil

A drawing stencil provided by BizTalk Orchestration Designer. The Implementation stencil provides all the shapes that can be
used to bind a port to an implementation technology.

See also: Flowchart stencil, Implementation shapes

implementation technologies

Technologies used to implement a port in an XLANG schedule. The technologies supported by the XLANG Scheduler Engine
include COM components, Windows Script Components, Message Queuing Services, and BizTalk Messaging Services.

industry standard

A defined standard that is used for the exchange of information. Standards are extensible, and they follow a well-defined set of
rules, or syntax.

initiator

A company that uses BizTalk SEED Wizard to create a SEED package to send to trading partners (recipients) so that they can
exchange business documents. A common scenario consists of a single company interacting with several trading partners of the
same kind; the central company is called the initiator and the trading partners are called recipients.

See also: SEED package, recipient

inner transaction

A transaction that is contained within the process flow of another transaction.

See also: long-running transaction, nested transaction, outer transaction, transaction

input instance

A content-bearing document that corresponds to a particular schema or specification.

See also: output instance

interchange

A collection of one or more document instances that comprises a single transmission and is exchanged from application to
application within an organization or from one trading partner to another.

K

knowledge base

A collection of rule comments that embodies knowledge about the meaning and importance of events. The Microsoft Knowledge
Base contains predefined information from Microsoft. The company knowledge base contains information entered by the
Microsoft Operations Manager 2000 user.

L

line-of-business (LOB) application

An organization's primary business application. BizTalk Server 2002 supports numerous communication protocols that enable
line-of-business applications to reliably send and receive information.

link

In Microsoft BizTalk Mapper, a simple value-copy (or name-copy) operation from a field in the source specification to a field in the
destination specification, or to a functoid.

See also: functoid

long-running transaction

A collection of actions that send and receive messages over an indefinite period of time. Typically, long-running transactions
contain several nested short-lived transactions.

See also: inner transaction, nested transaction, outer transaction, short-lived transaction, transaction

Loopback

A specific type of transport service that enables the return of current state data to the application from which the state data
originated. Loopback uses the SubmitSync method call to restore the state data to the original application.

See also: transport services

looping record

A structure that can have more than one occurrence in instance documents. The structure can be an elemental record, consisting
only of fields that hold content, or it can be a structure that has a nested hierarchical substructure.

M

manifest

A textual (typically XML) representation of a set of related configuration items, such as channel and port information, that are
packaged together for use in deploying a single application or multiple applications from a test or staging environment to a
production environment.

map

An XML file that defines the correspondence between the records and fields in one specification and the records and fields in
another specification. A map contains an Extensible Stylesheet Language (XSL) style sheet that is used by BizTalk Server to
perform the transformation described in the map. Maps are created in BizTalk Mapper.

See also: compile, data translation, Extensible Markup Language (XML)

mapping

The process of specifying the way in which data in one structure is transformed into another structure.

message

1. A packet of data that is sent or received by an XLANG schedule.

2. In BizTalk Orchestration Designer, a shape on the Data page that corresponds to the messages in an XLANG schedule.
Message shapes are composed of uniquely named fields, each containing a single data item of a specified data type.

messaging port

A set of properties that directs how documents are enveloped, secured, and transported to a designated destination organization
or application.

See also: distribution list

metadata

Data used to describe other data. For example, data type is a piece of metadata that further describes a property.

Microsoft Operations Manager (MOM)

An open, highly scalable, enterprise operations management and monitoring application in Microsoft Windows 2000 that enables
centralized, dynamic monitoring and automated problem resolution of the events generated by users, application software,
servers, and desktops.

MOM uses rules to monitor and generate a response to various events. This response can range from a user notification to an
automated resolution of the problem.

mixed content

In XML, an element that contains both textual content and subelements. The element may or may not also carry attributes.

moniker

A name that represents an object and may include the complete path or address that identifies the location of the object.

See also: port

N

native

Any data that is not Extensible Markup Language (XML) data.

native instance

An instance of native data. For example, an EDI 850 (purchase order).

nested transaction

One or more transactions that are contained within the process flow of a larger transaction.

See also: inner transaction, long-running transaction, outer transaction, transaction

node path

An expression used to obtain XML element and attribute information, select data that matches specific criteria, and perform
comparisons on the data retrieved. More formally known as XPath.

See also: XPath

non-self-routing document

A document that is missing one or more of the following pieces of routing information: source organization identifier, destination
organization identifier, or document definition.

O

open channel

A channel that is explicitly declared as open to any source organization. The source data for an open channel is passed to BizTalk
Messaging Services either within the document or in a parameter submitted with the document.

See also: channel, openness, source organization

open messaging port

A messaging port that is explicitly declared as open to any destination organization. The destination data for an open messaging
port is passed to BizTalk Messaging Services either within the document or in a parameter submitted with the document.

See also: channel, openness, source organization

openness

A lack of explicit information about a source in a channel or destination in a messaging port. Channels contain information that
identifies the source. Messaging ports contain information that identifies the destination. If a channel is designated as an open
source, the source information is not explicitly declared in the channel and is provided by other means. Usually this information is
contained in the instance of the document that is sent, or it is set as parameters in a Submit method call. Similarly, if a messaging
port is designated as an open destination, the destination information is not explicitly declared in the messaging port and is
instead provided in the document instance or in the parameters of a Submit method call.

See also: destination organization, open channel, open messaging port, source organization

organization

A trading partner or a business unit within a trading partner, or, in the case of the home organization, your own business.

See also: destination organization, organization identifier, trading partner, home organization, source organization

organization identifier

A set of properties that uniquely identifies an organization. An organization can have multiple organization identifiers.
Organization identifiers consist of the following properties: a name, a qualifier, and a value.

See also: organization

outer transaction

A transaction that contains one or more transactions within its process flow.

See also: inner transaction, long-running transaction, nested transaction, transaction

output instance

A file resulting from the consumption of an input instance by the compiled style sheet.

See also: input instance

P

parser

A component of BizTalk Server that translates non-XML files (for example, X12, EDIFACT, and flat file) into XML files.

pass-through submission

A submission that bypasses the parsing, decoding, decryption, transformation, and signature verification stages of processing. The
document instance is passed directly to the channel that is specified in the submission parameters. This type of submission can be
used to transmit binary files without data corruption, or to use only the server transport and global tracking features.

See also: channel, document instance

per-instance queue

A queue that is created for use with each new instance of an XLANG schedule.

See also: static queue, dynamic queue

performance counters

Values that represent specific performance-related parameters for BizTalk Server 2002 and that are made available through the
Microsoft Windows 2000 performance counter infrastructure. Performance counters are typically displayed using the Windows
2000 System Monitor standard utility, but might also be used by other applications, such as Microsoft Operations Manager
(MOM).

persistence database

A database that is used to store the XLANG schedule state when an XLANG schedule is dehydrated. A default database called the
Orchestration Persistence database is provided during installation when you install BizTalk Server 2002.

pipeline component

A component created to integrate applications with BizTalk Server 2002. Developers can use either the IPipelineComponent or
the IPipelineComponentAdmin interface, or the lighter-weight IBTSAppIntegration interface, to develop these components.

pooling

Using COM+ object pools to limit the number of instances of a schedule or schedules that might be active and resident in
memory at any one time.

port

A named location that uses a specific implementation. In BizTalk Orchestration Designer, a port is defined by the location to which
messages are sent or from which messages are received, and the technology that is used to implement the communication action.
The location is uniquely identified by the name of the port.

See also: binding, dynamic port, moniker, static port, port implementation, port location, port name, port reference

port group

A group of messaging ports that can be used to send the same document to several different trading partner organizations or
applications. In BizTalk Messaging Manager, this is referred to as a distribution list.

port ID

A globally unique identifier (GUID) assigned by BizTalk Server 2002 to uniquely identify the port through which a document is
processed.

port implementation

A specific technology used by a port to implement a communication action.

See also: port, port location, port name, port reference

port location

The location associated with a specific port. The location is also dependent on the port implementation that is used. Each
implementation provides a different type of location for the port.

See also: port, port implementation, port name, port reference

port name

A unique identification for a port. This identification is used to correlate the port location with a specific port.

See also: port, port implementation, port location, port reference

port reference

A unique message that contains the port location for every port in an XLANG schedule. The Port References shape is located on
the Data page. Any data flow into or out of this message contains the port location for a port.

See also: port, port implementation, port location, port name

positional flat file

A file that contains fields that are the same fixed length, and contains records that have a common end-of-record terminator.

provider

The source of information collected by Microsoft Operations Manager (MOM). Providers include system event logs and
performance counters, among others.

See also: event consumer

Q

query

An expression used to locate information. In BizTalk Document Tracking, a query is an SQL statement that you use to extract
tracking data from the Tracking database, using standard search criteria, such as source organization.

See also: advanced query

quiescent state

A state that represents processing activity that is inactive or at rest, or when a process is in standby mode.

R

receipt channel

A channel that contains the information necessary to process a receipt that can be returned to the sender of a document.

See also: channel

receive functions

Functionality that enables any BizTalk server(s) to monitor directories and submit documents to BizTalk Server for processing.
BizTalk Server 2002 supports File, HTTP, and Message Queuing receive functions.

recipient

A trading partner that receives a SEED package from an initiating company (initiator) so that they can exchange business
documents. A common scenario consists of a single company interacting with several trading partners of the same kind; the
central company is called the initiator and the trading partners are called recipients.

See also: initiator, SEED package

rehydrate

To retrieve all state information for an XLANG schedule instance from a SQL Server database after a message is received by the
XLANG Scheduler Engine.

See also: XLANG Scheduler Engine

reliable messaging

A feature of BizTalk Framework 2.0 protocol that supports guaranteed, once-only delivery of documents in heterogeneous
environments across the Internet.

replication

The underlying process of copying data within a server. When a server has completed the replication process, it synchronizes the
data to other servers.

resubmit

A procedure that submits interchanges or documents to BizTalk Server from the Suspended queue. The document is processed
from the point of failure.

Retry queue

A table within the Shared Queue database in Microsoft SQL Server. The Retry queue is associated with a server group that
contains items of work scheduled for transmission after an initial transmission has been attempted.

See also: Suspended queue, Work queue, Scheduled queue, Shared Queue database, transport services

routing logic

The set of rules that determines the sequence of execution within an XLANG schedule. Routing logic is implemented by the
Decision shape in BizTalk Orchestration Designer.

S

Scheduled queue

A table within the Shared Queue database in Microsoft SQL Server. The Scheduled queue is associated with a server group that
contains interchanges that have been received but not yet processed by BizTalk Server.

See also: Retry queue, Suspended queue, Work queue, Shared Queue database

schema

The definition of the structure of an XML file. A schema contains property information as it pertains to the records and fields
within the structure.

SEED package

An XML package containing a company's business document configuration, which is created using BizTalk SEED Wizard. After a
package is created, trading partners can use BizTalk SEED Wizard to install the configuration within their organizations in order to
conduct business with the initiating company on the Web.

See also: initiator, recipient

selection criteria

A name-value pair designated in a document definition. The name-value pairs are used to uniquely identify a document definition
for inbound EDI interchanges, based on values found in the functional group header, and to insert values in the functional group
header for outbound EDI interchanges.

See also: document definition, electronic data interchange (EDI)

self-routing document

A document that contains all the necessary routing information, such as source and destination organization identifiers and a
document definition, in the routing tags or within the document.

serializer

A component of BizTalk Server that translates XML files into non-XML files (for example, X12, EDIFACT, and flat files).

server group

A collection of individual servers that is centrally managed, configured, and monitored.

Shared Queue database

A Microsoft SQL Server database that is shared by all servers within a server group. The Shared Queue database stores all
checkpoint information related to documents processed by BizTalk Server. If a server fails, other computers that use the same
Shared Queue database can continue to retrieve messages from and post messages to the Work queue. This provides redundancy
and process load balancing. The Shared Queue database is graphically presented in BizTalk Server Administration as a series of
distinct queues.

See also: Retry queue, Scheduled queue, Suspended queue, Work queue

short-lived transaction

A collection of grouped actions that are performed as a single logical unit of work.

See also: long-running transaction, transaction

source

The name of the organization designated as the source for the channel through which a document is processed. Source is defined
in BizTalk Messaging Services.

source application

A home-organization application that has been designated in a channel as the source of documents.

See also: channel, home organization

source organization

A trading partner organization that has been designated in a channel as the source of documents.

See also: channel, destination organization, open channel, open messaging port, openness, organization, trading partner

source specification

The specification in a map that represents the incoming document. BizTalk Mapper maps from a source specification to a
destination specification.

See also: destination specification

specification

A BizTalk Server-specific XML schema. Specifications are created in BizTalk Editor and can be based on industry standards (such as
EDIFACT, X12, and XML) or on flat files (delimited, positional, or delimited and positional). BizTalk Mapper uses specifications,
opened as source specifications and destination specifications, to create maps.

state

The condition at a particular time of any of numerous elements of computing.

See also: XLANG schedule state

static port

A port that requires that all necessary information be provided for an XLANG schedule at design time. The designer who creates

the XLANG schedule must know the location to which messages are sent or from which messages are received, as well as the
technology chosen to implement the communication action.

See also: dynamic port, port

static queue

A queue that has a well-known address. Ports that use a Message Queuing implementation can use a static queue when the
location of the queue is known and does not change.

See also: dynamic queue, per-instance queue

Suspended queue

A table within the Shared Queue database in Microsoft SQL Server. The Suspended queue is associated with a server group. The
queue contains work items for which any error or failure was encountered during processing. The queue stores the documents
until they can be corrected and reprocessed, or simply deleted.

See also: Retry queue, Scheduled queue, Shared Queue database, Work queue

synchronous communication

An interaction between two or more processes in which one process communicates with another, but cannot continue processing
until it receives a specific response from the other process.

See also: asynchronous communication

T

topology

The organizational relationships between computers in a configuration. For example, one common topology in BizTalk Server is to
have multiple processing servers sharing a single BizTalk Messaging Management database.

Tracking database

A Microsoft SQL Server database associated with a server group that enables the tracking of documents that are processed by the
server either individually or in batches. You can also track XLANG schedule status.

trading partner

An external organization with which your home organization exchanges electronic data. The messaging ports, distribution lists,
channels, and XLANG schedules that you create govern the exchange of documents among trading partners.

See also: channel, distribution list, home organization, organization, source organization

transaction

A discrete activity within a computer system, such as an entry of a customer order or an update of an inventory item, that consists
of a group of operations that succeed or fail collectively. That is, if one operation fails, the entire transaction is rolled back, and the
effects of any operations that took place before the failure are undone. Transactions are usually associated with database
management, order-entry, and other online systems. In BizTalk Orchestration Designer, transactions are represented as a
collection of actions that are grouped within a Transaction shape.

See also: abort, inner transaction, long-running transaction, nested transaction, outer transaction, short-lived transaction, commit

transaction set

A collection of segments in an EDI schema that has a specific order and a particular meaning for a particular business transaction.

transport services

A set of services that includes network protocols and application integration components (AICs). BizTalk Server 2002 supports a
core set of transport services. This enables the server to send documents to organizations or applications whether or not the
applications are capable of communicating directly with the server by using a COM interface. BizTalk Server 2002 supports the
File, HTTP, HTTPS, and SMTP network protocols and Message Queuing. Transport services are also referred to as transport
components.

See also: Loopback, Retry queue

U

user-defined rules

Microsoft Operations Manager (MOM) rules that are completely designed, created, and configured by a user.

See also: fully configured rules

V

version

In BizTalk Server 2002, either a specific release number for a specification or the industry-standard version number from which a
specification is created.

W

Web Distributed Authoring and Versioning (WebDAV)

An extension to the HTTP 1.1 standard that exposes a hierarchical file storage media, such as a file system, over an HTTP
connection. WebDAV locks documents to prevent users from accidentally overwriting each other's changes. It also enables users
to share and work with server-based documents, regardless of their authoring tools, platforms, or the type of Web servers on
which the files are stored.

well-formed XML

A standard that dictates that an XML document that has a single root and elements must nest completely or not at all.

Windows Management Instrumentation (WMI)

A management infrastructure in Microsoft Windows 2000 that supports monitoring and controlling system resources through a
common set of interfaces and provides a logically organized, consistent model of Windows operation, configuration, and status.
BizTalk Server 2002 uses the WMI layer to encapsulate administrative functions.

Work queue

A table within the Shared Queue database in Microsoft SQL Server. The Work queue is associated with a server group. It contains
interchanges that are currently being processed by BizTalk Server 2002.

See also: Retry queue, Scheduled queue, Shared Queue database, Suspended queue

X

XLANG identity

A globally unique ID that is used to distinguish version instances of an XLANG schedule drawing. This property is read-only and
cannot be changed. Every time an XLANG schedule drawing is updated, this identity is also updated. The XLANG identity can be
used to correlate an XLANG schedule with the specific version of an XLANG schedule drawing from which the schedule was
compiled.

XLANG language

A language that describes the logical sequencing of business processes, as well as the implementation of the business process by
using various implementation technologies. The XLANG language is expressed in XML.

XLANG schedule

Specific business processes expressed in the XLANG language. An XLANG schedule is saved with the file extension .skx.

See also: XLANG Scheduler Engine, XLANG schedule drawing, XLANG schedule instance

XLANG schedule drawing

A drawing that represents a business process. In BizTalk Orchestration Designer, once a drawing is complete, it can be compiled
and run as an XLANG schedule. An XLANG schedule drawing is saved with the file extension .skv.

See also: XLANG schedule, XLANG Scheduler Engine, Communication shapes, Flowchart shapes

XLANG schedule instance

An evocation of a schedule. An XLANG schedule represents only the business process and implementation services. A single
instance, or multiple instances, of an XLANG schedule can be run by the XLANG Scheduler Engine. Different instances of the same
XLANG schedule contain different messages, but all instances follow the same business-process rules.

See also: XLANG schedule, XLANG Scheduler Engine

XLANG schedule state

The information contained in an XLANG schedule instance. This information includes messages that have been sent or received by
that instance, any COM objects used by that instance, and the progress of that instance toward the completion of the business
process.

See also: state

XLANG Scheduler

The default COM+ application that is installed when you install BizTalk Server 2002. This application is used to host running
instances of XLANG schedules.

XLANG Scheduler Engine

A service that runs XLANG schedule instances and controls the activation, execution, dehydration, and rehydration of an XLANG
schedule.

See also: dehydrate, rehydrate, XLANG schedule, XLANG schedule drawing, XLANG schedule instance

XML-Data Reduced (XDR)

An XML Schema dialect proposed by Microsoft and submitted to the World Wide Web Consortium (W3C) in 1998. Like XML-Data,
XDR is a syntax for Extensible Markup Language (XML) schemas that define the characteristics of an XML document. XDR is a
subset of XML-Data.

See also: Extensible Markup Language (XML)

XPath

A comprehensive language used for navigating through the hierarchy of an XML document. XPath expressions can obtain XML
element and attribute information, select data that matches specific criteria, and perform comparisons on the data retrieved. Also
called a node path.

See also: Extensible Markup Language (XML), node path

Microsoft BizTalk Server 2002 Technical Articles

Applying Microsoft Patterns to Solve EAI Problems

Version 0.9

Summary

Discover a solution pattern for enterprise application integration (EAI) using Microsoft technology. The architecture of this pattern
is built around the Microsoft Pattern Reference Model. (108 pages)

Contents

Introduction
EAI Business Pattern
Conceptual Solution
Synchronous or Asynchronous Interface
Synchronous Processing
Asynchronous Processing
Logical Services
Integration
Orchestration
Metadata
Interfacing
Physical Services
Implementation
BizTalk Server Messaging
Receiving a Message
Processing a Message
BizTalk Server Configuration
BizTalk Server Deployment
Suggested Architecture
Small-Scale Implementation
Medium-Scale Configuration
Highly Available and Scalable Solution
Scaling the System
GSO Goals
GSO Relationship to the EAI Pattern
GSO Implementation
New Business Processes with BizTalk Server Processing
Long-Running Transactions with BizTalk Server Processing
Integration
Orchestration
Microsoft BizTalk Server Orchestration
Process Wrapper
Performance and Scalability
Resilience
Security
Exposing Legacy System Applications as Web Services
Synchronous vs. Asynchronous Modes
Web Service Versioning
Handling Binary Payloads
Appendix A: Constraints
Appendix B: Logical Services
Appendix C: Integration of Heterogeneous Data Sources
Appendix D: Integration of Heterogeneous Applications
Appendix E: Integration of Business Processes
Appendix F: ETL with Host Integration Server 2000 Data Integration
Appendix G: ETL with SQL Server 2000 and DTS
Appendix H: Appendix H: BizTalk Server Tools
Appendix I: Microsoft Architecture Patterns

Introduction

Audience

This document is aimed at IT professionals and personnel evaluating enterprise application integration (EAI) technology. We
assume a technical audience with a low familiarity with EAI. Although we do not describe the high-level issues of EAI, we do
discuss the main issues that we recognize so that the reader understands our perspective on the problem.

The document itself is not intended to define a solution; rather it is intended to provide the building blocks from which IT
professionals can design and develop solutions tailored to their individual problems. It provides guidance about how to use those
building blocks to meet the requirements of common EAI scenarios.

About This Document

Enterprises across all industry sectors need to implement EAI. Different industries and sectors have different requirements and
use concepts that are specific to their individual problem domains. This complicates the design of EAI solutions, and means that
solution architects must develop industry-specific EAI offerings.

However, as one examines EAI solutions more closely, it is clear that there are common concepts across industry solutions. In fact,
many of the underlying functional concepts, services, and products are common across different industries. The differences
between industries tend to focus on business-specific scenarios that fit into common categories, rather than on functional EAI
issues.

With this in mind, this document seeks to distill the essential template or pattern for a common (and thus reusable) EAI
architecture. This pattern extends to the use of Microsoft technologies to meet the generic EAI solution needs.

The advantage of creating a pattern for the common elements of the EAI offering is that it allows industry-specific solution
providers, partners, and customers to build tailored EAI offerings on the reusable architecture components without having to
redefine the common implementation patterns and practices for each solution.

By building this pattern we can focus on the logical services that are required to implement the generic or pattern EAI architecture.
We can then examine the implementation specifics as separate topics in the "Physical Services" and "Implementation" sections.

This document is based on the implementation experiences of Microsoft Consulting Services (MCS), as well as those of our key
system integration partners, in over 1000 deployments of Microsoft® BizTalk® Server over the last 18 months. Over 600 of these
projects have been focused exclusively on EAI integration challenges, and all of them have involved an EAI interface to some
degree. This document aims to capture the current best-practice approaches for designing and deploying EAI solutions in popular
scenarios and to provide guidance to the reader about appropriate approaches using the pattern solution template.

Defining EAI

For the purposes of this paper, we define EAI as:

EAI is the discipline of integrating applications and data within the enterprise into automated business processes.

Specifically, when we use the term "EAI," we are referring to the integration of systems within the enterprise — for example,
application, data, and process integration. We will use the term "B2B" to refer to external integration needs. We will distinguish
between these services because they have significantly different non-functional requirements at this time. In fact, however, we
view these as different points on a continuum of the same service requirements, and we believe that the distinction will disappear
over time. Therefore we aim to provide a technical solution that will support both needs and thus simplify the future life of
enterprise architects.

Benefits of EAI

The major business benefits of EAI are as follows:

Reduced IT costs due to a more productive EAI toolset. Historically, most organizations have solved EAI challenges by
writing large amounts of code. Using better tools can reduce the initial financial and time outlays, as well as the ongoing
maintenance costs of this effort.
Reduced administrative costs through automation of manual processes. Automating the many manual processes
that exist in every organization can eliminate large areas of personnel costs.
Reduced operational costs through more efficient value-chain processes. Automating key value-chain processes that
reduce business process cycle times can reduce costs in many ways. For example, a more efficient supply chain can reduce
the cost of carrying inventory.
Higher customer satisfaction and loyalty through new services and programs. EAI projects are essential for offering
new information and business services more quickly than your competitors. For example, key online customer "self-service"
operations can be done more easily when using EAI tools to connect the appropriate systems.

Better and faster business decisions. Aggregating business information and making it available in near-real time can
fundamentally improve your ability to make better business decisions more quickly than your competitors.

Pattern Reference Model

This document relies heavily upon, and assumes that the reader is familiar with, the Microsoft Pattern Reference Model and, at a
high level, with the Microsoft Patterns work.

Throughout this document, we will use a diagram like the one shown here to indicate the Microsoft Pattern Reference Model layer
to which each section of the document refers.

Microsoft EAI Product Family

A key point is that EAI involves solving a number of individually distinct aggregated problems that are best addressed by several
products rather than a single one. This document provides guidance about the implementation patterns of the products that
together represent the comprehensive EAI platform from Microsoft.

Microsoft has a number of products that support the development and implementation of comprehensive EAI solutions. These
products cover different parts of the EAI landscape, and can be integrated to provide a complete solution. There is no single-
product answer to the problem of EAI; EAI is a solution built from different products, each with its own particular functional
capabilities.

Microsoft BizTalk Server provides the broadest coverage of services within the EAI platform. BizTalk Server is supported by the
following products and technologies that can be used with it to address additional service requirements:

Microsoft Host Integration Server
Microsoft SQL Server™
Windows core services including:

XML Web services
Microsoft Data Access Components (MDAC) data connectivity services
COM+ application services

These products are described in more detail throughout this document.

EAI Business Pattern
To build an IT pattern, it is first important to capture the business requirements of the problem domain and define how they will
be solved by IT. As mentioned earlier, one of the aims of this document is to provide guidance that can be utilized across industry
sectors; it is therefore important that we specify the business problem that we are addressing in generic terms.

Problem

What are the business drivers for EAI, and how can we (IT) best support needs for business agility?

Context

To amplify the problem statement, consider the context of the business problem, which defines the patterns that define the EAI
problem space. The following business forces define the context of the problem:

Importance of cost reduction

Increasingly competitive market conditions require organizations to be more aggressive in reducing administrative,
operational, and information technology costs wherever possible. Automating manual and error-prone processes can
deliver immediate cost and cycle-time benefits, and the benefits of streamlining value-chain operational processes
commonly include reduction of inventory carrying costs as well as reduction in write-offs through obsolescence. A common
EAI services environment can directly contribute to the bottom line by reducing the costs associated with application
integration and system maintenance. It can also play a more strategic role in the organization by supporting key business
initiatives through the appropriate application of information technology.

Responsiveness to business strategy change

It can be very difficult to quickly and easily support sea changes in business strategy by using existing IT systems. The classic
example for EAI was the change from a product-oriented view of the world to a customer-oriented view. The enterprise's IT
systems needed to be significantly re-architected to support such a change, but the required wholesale rewrite of existing
mission-critical systems made that course of action impossible. Therefore, a data and application mechanism was required
to provide the business with the new views that it needed, while working within most of the constraints of the existing
systems.

Moving to Web services

This is the next change that businesses expect to have to cope with. In this movement, the classical concept of how a
business delivers its services dramatically shifts. Instead of delivery through its own staff or other human agents, the
business can start to deliver its services through direct interaction with the systems of other businesses. The big questions
will be what services to expose and under what contracts they need to operate; after a business resolves these issues, the
next question will be how to implement the change — which is where EAI will play a crucial role.

Supporting business collaboration

This is a superset of the problem sometimes referred to as "business process integration." The requirement is for business
processes to act collaboratively across a network between two or more business systems, and managed through automated
services. The collaboration is event-based, requiring automated interaction between one business process and another in a
sequential or parallel fashion but not tied into a rigid workflow.

Supporting the rate of business process change

The rate of business process change can drive the need for an agile EAI solution that is capable of supporting the changing
needs of the business. Such a system must be correctly designed to allow the required degree of agility without
compromising the security and manageability of the services provided. The rate of change within a business can rapidly
cause poorly architected EAI solutions to fail, or become bogged down in the sheer amount of effort required to add or
update business services.

Providing secure integration

It is essential to most businesses that integration solutions follow the business security needs, and do not open up holes in
the security domains.

Solution

The business requirements will be met by providing these functions:

Integrating business processes
Integrating heterogeneous applications
Integrating heterogeneous data sources

To best address the business requirements, these goals will drive the solution provided:

Speed of application integration
Reuse of resulting components and services
Ease of access to and flexibility of integration services

Conceptual Solution

In this section, we provide an IT solution that meets the needs of the business problem that was defined in the preceding section.

Problem

How can we provide an EAI solution that can quickly and flexibly integrate business applications and data within a secure and
managed framework, and can support business process integration, both internally and externally?

Context

The proposed solution needs to solve two distinct IT problems:

Integrating disparate applications within an enterprise
Automating business process

The context of the proposed solution is shaped by internal IT forces as well as by constraints imposed by the environment. The
following topics discuss the forces, constraints, and solutions in more detail.

IT Forces

The following IT forces affect the solution context:

Application integration

One of the principal requirements for integration is application integration. There are many tools available from vendors
that support, to different degrees, the specific requirements of application integration. Integration with an application
requires an interface to a process within the application. The interface can be one-way or two-way, and must allow
interaction between the application and the integration framework. This kind of interface requires highly disciplined
software engineering techniques to minimize impact on the operation of the application. The interface also needs to be
secure and manageable.

Managed integration

Integration mechanisms and interfaces normally evolve over a long period of time. Many of the mechanisms (and interfaces
to a lesser degree) are very poorly managed. As the number of interfaces increases — particularly interfaces that connect
mission-critical processes — the risk and impact of failure of these interfaces also increases. Ultimately, it becomes
impossible to efficiently manage the interfaces manually. Businesses require that integration mechanisms and their
interfaces are managed within the enterprise operations management service and that they maintain the same service
quality levels.

Data exchange

A business may require data to be exchanged directly with a data source or through an interface with a business application.
Again, the interface requirement may be one-way or two-way, and requires highly disciplined software engineering
techniques in order to impact the operation of the application or data source as little as possible. The interface also needs to
be secure and manageable.

Internal Constraints

Before embarking on any integration project, designers should recognize the internal constraints of their business and technical
infrastructure and environment. These factors can present challenges that impact several aspects of the design and delivery of an
integration project. We cannot address these issues specifically in the pattern because they essentially describe the trade-offs you
will need to make in implementing the pattern in your environment. The purpose of including them here is to note these tensions
and to assert that the pattern is designed to be flexible enough to cope with them.

The following illustration shows how some of these forces and constraints might interact. See Appendix A for a short summary of
each constraint.

Fundamental IT Problem: Integrating Disparate Applications Within an Enterprise

As enterprises have grown and evolved, new application systems and data stores have increased the heterogeneity of operational
systems and hence the challenge of integrating them. This was characterized for many years by a strategy of adding stand-alone
application systems to service particular solution needs within organizations. The result has been the creation of "islands" of
business function encapsulated in numerous applications, processes, and data sources.

To make the most effective use of this information, the organization must be able to integrate these systems to allow the sharing
of the application functionality, the business processes, and the data held in the different applications.

The following illustration shows some of the different applications that might exist within an organization. These valuable IT
services need to be used fully and effectively to provide the best return on investment, and they also need to support business
agility. EAI is the process of integrating these disparate applications.

In the past, the typical approach to integrating applications within an enterprise was to generate the programming code to create
point-to-point integration interfaces between the applications as the need arose. This was the often the most financially appealing
option (in the short term) because it meant that the larger (and initially more costly) problem of architecting a common
application integration infrastructure did not need to be addressed. A fundamental problem with this approach is that the practice
of point-to-point integration between applications naturally results in higher maintenance costs, lower observed scalability and
availability for the distributed system, and the inability to quickly change the business processes based on those applications
when business and competitive needs arise.

The absence of any comprehensive and deliberate integration strategy will lead to a complex lattice of point-to-point integration
services. The following illustration shows a possible result of this strategy. This solution is not reusable, flexible, or scalable. It
presents an integrity, integration, and management problem, and its total cost is high.

The problem with such systems (even systems that currently operate successfully) is that they are susceptible to the development
of a complex lattice of inter-application connections and dependencies. In such scenarios, it is not uncommon for the scale and the
complexity of the interconnections to become a barrier to the addition of new business functions.

Also, in such scenarios, the nature and complexity of the interconnections — coupled with the fact that, in many cases, not all of
the dependencies are well understood or well documented — can lead to a situation where the architecture becomes highly
brittle. By brittle, we mean that although the system continues to function in its present (stable) state, changes to any of the
component applications can have unforeseen and unpredictable consequences on other applications and processes in the
enterprise. This is commonly referred to as the challenge of "tightly coupled" application connections, where changes to one
system or application cause failure in other systems that call or depend upon it.

Additional IT Problem: Business Process Integration

The IT organization is now increasingly being challenged to provide an automated business process integration system with a
cross-IT system scope. This pressure will become greater as businesses want to expose their business services as Web services. In
many instances, these Web services will operate in the context of the management of an inter-organizational business process,
and will be managed according to contractual business-service levels.

Solution

A principal goal of an EAI solution should be to quickly and flexibly integrate business applications and data within a secure and
managed framework, providing application-to-application (A2A) services. The purpose of an EAI platform is to insert a simple,
conceptually central service hub that offers a variety of secure connectivity services. Thus, any application can send a service
request to the hub and not worry about what application will service the request. This simple concept will then be extended to
provide many powerful services, which are described later in this document.

Additionally, a key goal of using EAI technology is to automate tasks that are currently manual, by using business process
integration. The use of standardized EAI services within the enterprise makes this cost effective. The use of such services between
enterprises is essential to support managed business-to-business (B2B) collaboration processes.

About the EAI Solution

The following illustration shows how EAI might work to simplify the connection between services — in this case, between a Web
server and mainframe applications.

Enterprise application integration is often difficult, and typically:

Requires connectivity between heterogeneous technology platforms.
Involves complex business rules and processes.
Involves long-running business processes, where logical units of work may span days or weeks as they move through
different processes within the organization, or may be extremely short.
Is driven by the need to extend/enhance an existing automated business process or to introduce an entirely new automated
business process.

Hence, an EAI solution will have these characteristics:

Exposes a technology-independent interface. Uses "business semantics" to request a service by using a document format
such as XML or flat files. As systems become more XML-aware, XML will become the preferred approach to requesting
services in the future.
Allows non-XML service requests at the functional or data levels to support systems that cannot expose their service needs
in XML format.
Uses a common and shared set of process rules and service rules to ensure consistency and reuse of integration services.
Is capable of reusing the existing transport protocols that typically already exist in the enterprise.
Insulates itself from existing technologies by using the concept of service interfaces commonly known as "adapters."

The following section, "Logical Services," provides the details of the set of services that an EAI solution should offer.

This example illustrates the conceptual EAI solution.

Synchronous or Asynchronous Interface
For any EAI solution, a major design decision is whether the integration being designed needs to be synchronous or
asynchronous. The following topics describe our definitions of these terms. In EAI, we expect most integration needs to be met by
functions built on asynchronous, loosely coupled solutions.

Synchronous Processing

The following illustration shows the concept of synchronous processing. The processes are said to be synchronized because each
step waits for the next step to complete before it continues.

1. Process A is initiated.
2. Process A calls/invokes Process B.
3. Process B is initiated.
4. Process B calls/invokes Process C.
5. Process C is initiated.
6. Process C finishes and returns to Process B.
7. Process B can now continue.
8. Process B finishes and returns to Process A.
9. Process A can now continue.

10. Process A finishes.

More accurately, the issue is that no process can proceed until the dependent process has finished. This restriction often results in
"blocking" behavior in the technical and business implementations of the solution.

In EAI solutions, synchronous processing is associated with the need to provide sequential coordinated data requests and
forwards between the coupled applications. The scale-out methodology for a synchronous process is often expensive because the
only option requires adding hardware to the solution.

Asynchronous Processing
The following illustration shows the simplest representation of asynchronous processing. It assumes that no process depends on
the processes that it calls or invokes or that call or invoke it. The processes are "loosely coupled" by design.

1. Process A is initiated.
2. Process A calls/invokes Process B.
3. Process A finishes.
4. Process B is initiated.
5. Process B calls/invokes Process C.
6. Process B finishes.
7. Process C is initiated.
8. Process C finishes.

A loosely coupled solution built primarily on asynchronous, message-based interactions between systems allows the distributed
system to be more highly available and scalable. This is because work can be performed independently by different nodes in the
distributed system, allowing the observed availability of given services in the distributed system to increase. Simultaneously, the
collective work performed by the distributed nodes increases the overall processing throughput capabilities by reducing
inefficient blocking behaviors found in synchronous interactions.

A fundamental characteristic of such an architectural approach is that the interactions are normally based on store-and-forward
or message queuing services. Queuing services provide the following benefits:

Service can continue in cases where the server application is not available at the exact time its service is requested.
Workloads can be smoothed during peak demands because queues can grow and then be worked through in slower times,
if that is acceptable.

-Or-

Workloads can be smoothed by adding servers to pull more work from the queues in peak demand periods. After the
queues are cleared, the servers can be detached.

The number of queues can be varied to better manage workload.
The service requester is never tightly bound to the server — only to the queuing system, which can route his request
anywhere it needs to satisfy the service. Thus, the servers can begin as a legacy server set today, and in the future can be
switched to a new application server set without the service requester knowing or caring.

When EAI services are provided on top of this asynchronous integration infrastructure. a very flexible solution is generated.

Logical Services

The Logical Services layer of the pattern describes the logical IT services that are required to support the EAI conceptual solution.
These services provide the logical building blocks of the EAI pattern variant and the details of how these services are deployed.
The products that support the particular services are explored in the following sections.

Problem

What common services should an integration broker provide in order to support the needs of EAI as defined in the conceptual
solution?

Context

The need for the functions provided by the services will depend upon the EAI strategy that you adopt for your enterprise.

In this generic EAI pattern we identify the principal services that are needed to support most EAI solutions. In practice, each EAI
solution will require a different mix of the services described in this solution. It is unlikely that any business will implement all
these services in their solution. The services identified here should therefore be thought of as a pick-list, not a check-list.

The purpose of identifying the services is so that you can identify whether and how well the service is provided by the technology
of your choice, and hence how much effort you will have to put into using that technology. We use them to identify the
capabilities of Microsoft technology to meet the functional needs of EAI, and demonstrate how the various Microsoft products in
the EAI platform map directly to the comprehensive set of required logical services.

Solution

In accordance with our observations in the "Conceptual Solution" section, a distinction has been made when defining the logical
services for enterprise application integration. The services have been divided into:

EAI services. Services that are required to resolve the heterogeneity of the ontology and semantics of different enterprise
applications.

EAI services have evolved because of the limitations of relying simply on transport technologies to connect applications.
Businesses may have a large IT infrastructure, and a complex mixture of applications, mission-critical business processes,
and business data supported by heterogeneous legacy applications. To integrate these applications and data they need
services that abstract the developer and the business person above the complexity of transport. They need services that
focus on solving business problems.

Transport services. Services that are required to enable and manage the transportation of messages to and from
participating enterprise applications.
Security services. Services that are often required across all aspects of the infrastructure, including directly at the enterprise
applications and in the transport and EAI services. Security services provide key functionality such as authentication,
authorization, and message encryption.
Management services. Services that provide functions that are vital to keeping the EAI infrastructure agile, and functions
that are used to monitor system health and business data.

The following illustrationshows all the logical services that EAI solutions will require, depending upon the unique needs of each
scenario.

EAI services require transport services in order to implement enterprise application integration, but applications can be integrated
without EAI services. For example, if several applications that all utilize (and can therefore communicate in) a consistent data
format are interconnected by a message-queuing technology such as MSMQ or IBM MQSeries, that data can be shared without
EAI services. However, in most EAI implementation scenarios, message delivery is just one of many required services, and
therefore the EAI solution relies upon the transport services for the ultimate delivery of messages to and from the respective
applications. Traditionally, transport technologies alone were commonly used to integrate applications, but more is required to
truly deliver on the benefits that EAI solutions can offer. To do so, organizations require solutions that make integration easier,
cheaper, more flexible, and easier to manage. The provision of EAI services aims to meet these requirements by providing
common, reusable services for accomplishing application integration tasks.

By dividing the model in this manner, the EAI services can process and manipulate the messages/data/processes/etc., and the
transport services can deliver the messages/data/processes/etc. to the EAI services and dispatch the responses. Thus the transport
services can be considered as providing the transport mechanisms for the messages and data flowing to and from the EAI
services. The transport services also provide the "glue" to allow the interconnection of the different applications and business
processes in the enterprise.

In this model, security and management services apply to all aspects of the infrastructure. Often security technologies are driven
from the business rather than from the EAI technology. This model assumes the position that the EAI services live within a larger
security model for the enterprise.

These services are briefly described in the following topics. Detailed information about each service is available in Appendix B.

EAI Services

EAI services are divided into three main groups:

Integration. Resolving semantics and data formats among applications.
Orchestration. Integrating applications at the process level.
Metadata. Storing and managing the data that the EAI service requires.

Integration
The services for integration focus on the process of resolving the differing semantics and data formats of different applications.
Each service performs different tasks that may be required to integrate one application with another. Not all services will be
invoked for every interface that is established between every application. The services that are used will depend on the differences
between the applications established across an interface.

All of these services assume that data has been passed from at least one application, known in this pattern as the source
application, and is destined for at least one application, the target application, although the target may not be explicitly known.
This does not mean that the services are limited to data integration, merely that data is the basic currency used by any EAI tool to
integrate applications.

Integration services are as follows (see Appendix B for details):

Parse. Takes a stream of input data from the network and creates structured data from it.
Map. After structured data has been validated, the Map service tries to map it to the output data.
Filter. Provides a mechanism for users to filter out information from certain data.
Validate. Can be used to validate many elements of the data, such as syntax, format, and range.
Transform. Uses the rules specified in the map of each data element to transform the contents of each element of input data
to the corresponding element of output data.
Format. Moves the content of input data elements to the corresponding elements of output data as specified in the map.
Compose/Decompose. The Compose service composes new data from elements of other input data, using information from
the Map service. The Decompose service decomposes input data into the appropriate output data.
Enrich. Allows the business owner to specify from where the EAI tool should acquire information to add to the input data to
create the required output data.
Route. Allows the EAI service to represent a route to facilitate integration.
Publish. Collects information from applications and publishes it.

Orchestration
The integration services focus predominantly on resolving the heterogeneity of applications at a data level. Orchestration services,
on the other hand, address the requirements of integrating applications at the process level. They are concerned with factors such
as time, order, correlation, integrity, and events, as well as long-running transactions.

Orchestration services are as follows (see Appendix B for details):

Schedule. Examines queues for data whose processing needs to be scheduled for specific times, and adjusts queue
processing as appropriate.
Transaction Integrity. Manages resources so that units of work are processed in an ACID (atomicity, consistency, isolation,
durability) fashion.
Process Flow. Executes and manages a defined sequence of events.
Non-delivery. Manages data when the data cannot be routed to a target.
Integration Events. Monitors integration events and invokes the correct process for handling them.

Metadata
A significant amount of metadata must be stored and managed to support an EAI service. Most EAI tools hold this data internally,
often within proprietary data stores. However, businesses often require access to this metadata for purposes such as:

Replication to other instances of an EAI service
Programmable access by other services
Backing up and restoring for resilience
Sharing metadata with other businesses
Data mining and reuse
Change management

Metadata services therefore store and manage all the data required to support an EAI service. The metadata services are as
follows (see Appendix B for details):

Data Models. Define the structure, syntax, and owners of data that is received from source applications and sent to target
applications or published.
Names. Supports an interface for defining names and identifying the entities that they reference.
Discovery. Accesses Web services that the data manipulation services require.
Configurations. Persists configurations of services so that they can be accessed programmatically or replicated for other
systems or cloned systems.
Repository. Provides a direct look-up service for specific resources that the EAI tool requires.
User Profiles. Defines user characteristics.
Interface Profiles. Defines the characteristics of the interfaces that the EAI service needs to support.
Subscriptions. Holds the details of subscriptions that users and interfaces have to publications.
Message Database. Holds messages that need to be accessed by other data services.
Message Database Index. Holds indexing information about messages in the message database.

Message Database Search and Query. Allows searching for messages and querying data in the message database.

Transport Services

Transport is often referred to as the "glue" that connects two or more applications together. The applications can be network
applications, operating systems, file management systems, database management systems, transaction processing management
systems, or business applications.

The main goal of transport services should be to simplify the connection of programs. These services should insulate the task of
connecting programs from the complexity of the underlying operating system and communications network.

The transport services defined here are not complete. There are other relevant transport services such as screen scraping that are
not included. In this pattern we have only included those services that are particularly relevant to supporting enterprise
application integration services.

Interfacing
Interfacing supports synchronous or asynchronous inter-application communication. The transport services that support
interfacing are as follows (see Appendix B for details):

Dispatch. Manages the dispatch of procedure or method calls.
Delivery. Uses the protocol of the network to send and receive data.
Message Queue. Manages and orders the persistence of messages.
Serialize/Deserialize. The Serialize service takes the output data structure and serializes it into a flat file that can be
transmitted across a network. The Deserialize service does the reverse.
Address Translate. Translates between the logical business address assigned to the destination of an integration service
and the network address required by the network protocol.
Decode/Encode. The Decode service converts data to the same code page as the platform on which the EAI tool is running.
If the EAI tool knows the code page of the target system, the Encode service can encode the character set of the output data
into the code page of that system.

Security Services

With the proliferation of data sources, applications, networks, and methods of access to all of these, every business must have a
security strategy that summarizes the security risks of its infrastructure and prescribes a security model to mitigate those security
risks.

In this pattern we have placed security services in a logical plane separate from the enterprise application integration and
transport services. This is not to suggest that the EAI and transport services do not require security services. Integrating
applications can increase security risks and the complexity of the solutions needed to mitigate them. Therefore we strongly
recommend that any security measures implemented in the EAI system are aligned with the enterprise security strategy of the
business. The problem we are trying to address is that many EAI solutions still have proprietary security implementations that are
difficult to integrate with the overall enterprise security services. The services that we have defined here are the generic services
that we believe an EAI system will need, but we recognize that each business will have specific implementation requirements that
we have not covered. This design approach admits from the outset that the EAI system should align with the security
requirements of the business rather than the other way around.

The security services are as follows (see Appendix B for details):

Authenticate. Validates the identity of the user or interface that wants to access the service.
Authorize. Manages what the user or interface is allowed to do.
Encrypt/Decrypt. The Encrypt service encrypts the output data for security reasons before it is transmitted across a
network. When the EAI service receives encrypted data, the Decrypt service is invoked to decrypt the data for processing.
Manage Certificates. Manages digital certificates that are used to establish the credentials of a user, interface, or
application.
Sign. Handles digital signatures that can be used to authenticate the sender or requester of a message or service.
Audit. Tracks activity within the EAI systems. The Audit service is focused specifically on events that are detected by the
Authenticate and Authorize services.

Management Services

One of the major financial drivers facing business today is the need to drive down cost, including the cost of IT. Many studies have
shown that, particularly for medium to large enterprises, the implementation of an enterprise IT management strategy can
produce significant cost savings. Management of IT therefore needs to have an enterprise-wide perspective. One of the ways to
reduce cost of IT management is to develop common tools, common processes, and a common organization for managing all IT.
This includes EAI systems.

We have therefore placed management services in a logical plane separate from the enterprise application integration and
transport services. This is because we recommend that many businesses should consider how to reuse existing management
services to manage the EAI and transport services, or develop an enterprise-level set of common management services. EAI
products that require proprietary management tools specific to their environment will correspondingly increase the cost of that
overall solution.

The services defined here are not complete; we assume that enterprises will need other services for other systems. These services
are the ones we believe are necessary to support the services that we have identified as enterprise application integration and
transport services.

Management services are as follows (see Appendix B for details):

State Management. Manages the integrity of the status of processes.
Resource Management. Enlists resources for the transaction manager.
Event Monitor. Monitors all system events except integration events.
Error Raising. Detects abnormal events and raises them as error events.
Error Handling. Processes an event that the Error Raising service has raised as an error.
Notify. Electronically informs a business user of a particular event in the EAI tool service through a standard
communication channel.
Configuration Management/Versions. Tracks configuration changes to an EAI component or modifications of EAI
metadata, and maintains old versions.
Load Balance. Distributes work across multiple physical systems.
Track. Provides a way to analyze the log created by the Audit service to provide a trace of a complex series of related data.
Monitor. Monitors all processes in the EAI tool and tracks the service levels of the processes dynamically.

Archive. Periodically archives data from the metadata services.
Report. Provides reports to both business users and system administrators.
System Management. Provides health monitoring and deployment facilities.
Audit. Records EAI system and service events, both normal and abnormal.
Recovery. For a process that fails, this service recovers the state of the process to a previously known status that preserves
data integrity.

Physical Services

This physical pattern proposes a generic physical implementation of the logical services defined in the EAI logical pattern. Physical
solution categories are identified and described, and the logical service components identified in the preceding section are related
to products and technologies.

The mapping of these services is proposed based on the assumption that the EAI solution will be built by using the Microsoft®
Windows Server System and technologies.

Problem

How does EAI technology from Microsoft support the logical services defined in the EAI logical pattern, and demonstrate
appropriate architectural attributes (such as scalability, reliability, and manageability) for those designing a solution based on the
architecture?

Context

Each organization has its own integration requirements shaped by both its business requirements and the history of its previous
investments in IT infrastructure and applications. A consequence of these factors is that there is no single "all-embracing" EAI
solution that an organization simply implements to resolve its integration needs. Rather, a solution is assembled from various
products and technologies that provide the required logical services, based on an organization's unique business requirements.

In the "Logical Services" section, we described a collection of services that can be used to address different EAI solutions; the
logical services layer provides a "palette" of services that different EAI solutions can use. Different EAI solutions will use different
sets of services from the logical layer in this EAI pattern.

With this in mind, the physical layer is divided into a number of sub-patterns, each representing the three main "modes" of
integration in an EAI solution. Again, as with the logical services, different EAI solutions will utilize different sub-patterns and
combinations of the different sub-patterns.

By subdividing the physical layer in this manner we can provide self-contained scenarios that give a context in which the mapping
between logical services and physical products and technologies can be explored.

The three main modes of integration in an EAI solution can be generalized as follows:

Data. Integration of heterogeneous data sources
Application. Integration of heterogeneous applications
Process. Integration of business processes

Higher layers of integration are built upon the lower layers.

The integration of a business process requires that the participating data sources or applications must first be integrated. The
integration of data sources and/or applications must be considered as the foundation for implementing the higher-level services
of process integration and the increased business value that this brings. Before an organization can consider moving to these
higher-level services, a solid framework must first be established for integrating data sources and applications.

For many organizations, significant business value can be achieved simply through the establishment of a core EAI service,
addressing specific and common application or data integration requirements, without ever moving to the next-level integration
of business processes.

In developing an integration solution, a common design decision is whether to integrate with an application at the data layer or at
the application layer. In many cases the degree of choice is dictated by the availability of an appropriate application programming
interface (API). Where genuine choice is available, it is strongly recommended that integration is achieved at the application layer
rather than directly at the data layer, because data-layer integration can potentially bypass application logic that protects the data,
and lead to adverse effects on the application itself.

Building a Solution with Microsoft EAI Products

Microsoft has a number of products that provide the comprehensive set of logical EAI services introduced in the previous section.
The product providing the greatest coverage of logical services is Microsoft BizTalk® Server. BizTalk Server is complemented by
the following products and technologies that can be used in conjunction with BizTalk Server to fulfill additional logical services:

Microsoft Host Integration Server
Microsoft SQL Server™
Windows core services including:

XML Web services
MDAC data connectivity services
COM+ application services

A key point here is that EAI is a solution, not a product. Microsoft has several products that support the development of an EAI
solution; these products cover different parts of the EAI landscape, and can be integrated to provide a complete EAI solution.

The following products can be used together to support the development of comprehensive EAI solutions:

BizTalk Server. An application integration server designed to support complex, distributed business processes. In
particular, BizTalk Server offers a core messaging engine providing an integration framework together with "orchestration"
— the ability to graphically depict a business process in flow-chart like manner, and link this to executable components.
Orchestration technology is a powerful tool when addressing long-running and complex procedural problems.
Host Integration Server. A comprehensive set of transactional gateways, services, and connectors that facilitate
integration between the Microsoft Windows® platform and host environments such as CICS, IMS, AS/400, and UNIX. It
includes advanced features such as password mapping, XA transaction support, CICS application access, and virtual private
networking (VPN) for Internet-based applications.
SQL Server. A powerful relational database that also offers a number of data integration features through the ability to
replicate databases, transform and import data by using Data Transformation Services (DTS), and execute queries across
heterogeneous data sources.
Windows core services. The Windows platform ships with several core services that can be leveraged in EAI scenarios.
Windows core services include the following services:

XML Web services. The fundamental building block in the move to distributed computing on the Internet moving
forward. Open standards and the focus on communication and collaboration among people and applications have

created an environment where XML Web services are becoming the platform for application integration.
Applications can be constructed by using multiple XML Web services from various sources that work together
regardless of where they reside or how they were implemented. XML Web services are successful for two reasons:
First, they are based on open standards, making them interoperable, and second, the technology used to implement
them is ubiquitous.
Microsoft Data Access Components (MDAC). The key technologies that enable the Microsoft Universal Data
Access strategy. These technologies include:
Microsoft ActiveX® Data Objects (ADO)
OLE DB
Open Database Connectivity (ODBC)
MDAC is also supplemented with data connectivity components in Host Integration Server 2000 to provide access
to mainframe data sources.

COM+ application services. COM+ services provide transaction and security boundaries around business logic
components that can be used to manipulate data as it flows through an EAI process.

How Microsoft Products Satisfy EAI Integration Requirements

As described earlier, an EAI solution can be broken down into three types of integration: data, application, and process. The
following appendices describe the EAI solution in detail as it relates to these three types of integration:

Appendix C: Integration of Heterogeneous Data Sources
Appendix D: Integration of Heterogeneous Applications
Appendix E: Integration of Business Processes

In addition, these appendices describe how each of the various Microsoft products has a different part to play in the development
of an integrated EAI solution.

The following illustration shows the main integration areas into which each product fits. Note that there is a separate connectivity
layer around the individual networking technologies that provide the low-level connectivity for the upper integration layers.
Appendices C, D, and E describe this connectivity layer in context with the relevant integration layer — for example, data
connectivity falls under data integration.

Implementation

In this pattern document so far, we have identified the services required to support EAI solutions in a general sense. In this section
we will describe some implementation scenarios that are representative of the many different types of EAI solutions.

We will use scenarios to describe typical implementation patterns and to focus on specific implementation topics. Because the
scope of EAI is so substantial, we recognize that we do not cover every implementation pattern here. We have selected the ones

http://www.microsoft.com/data/ado/
http://www.microsoft.com/data/oledb
http://www.microsoft.com/data/odbc

that we have observed as the most common in practice, effectively reflecting the cross section between common EAI deployment
challenges and the thousands of organizations using the Microsoft platform for EAI integration today.

The EAI deployments of these customers are primarily based on Microsoft® BizTalk® Server, which acts as the foundation upon
which EAI solutions are deployed on the Microsoft platform. When we look closely at these deployments, we see specific
scenarios that are quite common and that address integration challenges that are common and well known in organizations that
possess heterogeneous infrastructures.

We will define these observed deployment patterns as classes of implementation scenarios, which we will call variations.

Problem

How are Microsoft EAI technologies used to implement all or parts of common EAI implementation scenarios?

Context

In the "Physical Services" section we segmented the problem into these components.

In our implementation solutions we will focus on application integration and process integration.

Implementations that support application and process integration are addressed directly in the following variations.

Data integration that is related to "pure" data implementations (where no application or process integration is involved in driving
the data integration needs) is not dealt with in this pattern's implementation section. That implementation is dealt with in the
Microsoft Data Warehouse pattern or the Autonomous Computing pattern (depending on whether data needs are Consolidated
Informational or Reference Data).

Solution Variations

We will define our solutions in these major implementation variation classes. As previously described, these implementation
variations are based on an analysis of organizational deployments using BizTalk Server and the additional complementary
services that are represented in the Microsoft EAI platform solution.

A classic hub-and-spoke messaging integration solution

This addresses EAI integration at the application layer. This solution is characterized as a central logical hub that provides
data transformation, routing, receipt, and delivery services, among other complementary functions, to address the common
challenges of heterogeneous application integration. In this approach, various distributed applications communicate with
the hub through messages, and the hub performs all intelligent processing and state management of those processes.

A hub-and-intelligent-spoke, distributed messaging integration solution

This also addresses application integration. As in the preceding solution, this solution is characterized as one where a central
hub provides data transformation, routing, receipt, and delivery services as well as other complementary functions, but in
this variation distributed nodes exist that also possess these capabilities. The result is a centralized primary hub, with
distributed processing nodes that can perform application integration locally as well as communicate in a structured and
automated way with the central hub.

Business process orchestration solution

This addresses process integration in addition to application integration. In this variation, orchestration services are used to
perform higher-level business process automation functions, leveraging the services of the environment to handle
challenges of state management, transaction management, error and exception handling, concurrency, and other rule-based
considerations of business processes. Leveraging these more sophisticated "state engine" services as part of defined and
deployed processes may or may not utilize core data transformation and routing services also present in the platform,

though in practice, those services are utilized.

Web Services solution

This addresses application or process integration with the ability to expose the service outside of the normal trusted domain
within which EAI has traditionally operated. Web Services solutions are normally characterized by utilizing standards-based
messaging technologies to expose an existing (often legacy) application as a Web service, as well as combining Web service
interactions (and often non-Web service interactions) into higher-level business processes.

In each of these variations BizTalk Server will be a core component of the overall solution. In each case where BizTalk Server is
used, BizTalk Server itself can be implemented in a set of architectural patterns that depend on the non-functional requirements
of the implementation.

The following Microsoft white papers describe various scales of BizTalk Server implementations, from the smaller to the larger
configurations. These white papers are downloadable from the Web, and are based on best-practice advice from Microsoft. These
papers also advise about how to best implement resilience in your BizTalk Server implementation.

BizTalk Server Deployment Considerations white paper
BizTalk Server Clustering Considerations white paper
For prescriptive guidance about how to create a highly reliable data center environment that includes BizTalk Server, see
Microsoft Systems Architecture for Internet Data Centre. This installation guidance is for very large environments.

Solution: Hub-and-Spoke Messaging Integration

This is a common implementation and addresses most application integration scenarios with acceptable scalability and
availability, while based on a model that predictably minimizes complexity as well as deployment and maintenance costs.
Examples are:

Integration of systems within an IT environment, as described in the "EAI Business Pattern" section.
Integration of remote environments — such as stores for a retailer or branches for a financial institution — to the central IT
systems.

The key design consideration for this environment is that there is only one (logical) broker environment, which connects to the
systems that it integrates by using the interface language and protocol that is appropriate for each system. The following
illustration shows this environment.

Often this approach is facilitated by adapters that support integration with various ISV software products. These adapters can be
application adapters or technology adapters.

As a common example, an application adapter for SAP supports the SAP APIs and can expose these in a structured fashion. This
allows organizations to integrate with SAP without having to duplicate the integration work required to leverage those APIs, or
the broker vendor having to support hundreds of common systems.

When the target system is not a package, but a specific technology, a technology adapter can be utilized. An example is the
adapter for integration with IBM CICS transactions. Using this adapter avoids the "plumbing" problem of connecting to CICS to

http://www.microsoft.com/biztalk/techinfo/deployment/2000/wp_deploymentConsiderations.asp
http://www.microsoft.com/biztalk/techinfo/deployment/wp_clusteringconsiderations.asp
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/en-us/default.mspx

pass the service request or receive the reply. However, all the core work of understanding how to construct the request, and hence
how to define the mapping between requester and service provider, has to be done by the EAI service installer.

The broker primarily takes responsibility for mapping requests from one format to another, for routing requests to the correct
service providers, and for integrity of the end-to-end transaction. However, this mapping and routing can potentially result in
challenges with scaling up the service when the load becomes substantial. While a single broker can deal with hundreds or
thousands of interfaces depending upon the volume involved in accessing those interfaces, the difficulty can quickly become one
of management. This can be addressed by introducing multiple brokers to manage subsets of the systems to be integrated.
Subsequently integrating the intelligent hubs themselves is the subject of the next implementation solution described (hub-and-
intelligent spoke).

How BizTalk Server Supports a Hub-and-Spoke Configuration

BizTalk Server Messaging
By using the deployment patterns described in the following topics, BizTalk Server can be scaled to efficiently process extremely
large amounts of message traffic. The pattern also provides redundancy and fail-over in the architecture, and has no single point
of failure.

BizTalk Server itself can be adapted to communicate with a variety of different systems by using common standards and
protocols, or by creating custom components to allow the adaptation to other systems.

When using BizTalk Server to process the messaging requirements of the integration, it should first be broken down into the
steps by which it processes messages. This happens in two discrete stages: receiving a message and processing a message.

Receiving a Message
An inbound message can be posted to an Active Server Pages (ASP) page or directly processed by an ISAPI filter that passes the
message to an inbound message queue. The BizTalk Server receive function removes the message from the queue and puts it in
the BizTalk Server shared queue, which resides in an SQL database.

This is only one example of receiving a message; the message can be received in many of different ways, including:

File drops

The file is placed at a specified point on a file system (an FTP directory or similar) and BizTalk Server polls the location at set
intervals until it finds the file. The content of the file is then placed in the BizTalk Server shared queue.

Message queues

The message is placed in a specified message queue and BizTalk Server polls the location at set intervals until it finds a
message. The content of the message is then placed in the BizTalk Server shared queue.

Processing a Message
When a message is placed in the shared queue, it can then be accessed by the BizTalk Server processing server to be passed on to
a destination system; this is done by BizTalk Messaging Services.

BizTalk messaging can send the message out by using several methods, including:

Message queues

External applications

When sending or receiving messages to or from external applications, an application integration component may be used. These
components should reside on the processing server and not the receive servers because they are a core part of the BizTalk Server
processing functionality. These components can be purchased or created to adapt to the application that is being used.

BizTalk messaging not only allows the simple delivery of messages, but also provides a level of transformation (mapping) from
one message format to another. This translation ability allows different types of messages to become interchangeable.

BizTalk Server Configuration
In order to provide scaling and resilience to BizTalk Server, the configuration of a BizTalk Server solution must be understood.

BizTalk Server utilizes a database to store both its configuration and the shared message queues. These two items can be located
in separate databases if desired to provide greater scaling on a larger deployment. Further, clustering services can be employed to
guarantee a highly available integration service.

The following illustration shows an example BizTalk Server deployment.

In this deployment, we have used two receiving servers and six processing servers. The database server is running in a fail-over
cluster configuration to provide resilience.

BizTalk Server Deployment
Deploying BizTalk Server into a server farm environment (specifically represented by a BizTalk Server Group in the deployment
guide) is normally recommended when high-scale as well as complete fault tolerance is required. To accomplish this, a three-layer
architecture is recommended to deliver the application functionality for Internet-type client support. These layers are described in
the following paragraphs:

Access/acceleration resources layer. Devices at this layer sit closest to the incoming network resource and provide
functions such as load balancing, intrusion detection, and caching.

The load-balancing layer presents a single system image to clients in the form of a virtual host name and distributes client
requests across multiple application servers. This approach, for example, works perfectly for load balancing incoming HTTP
requests across multiple physical servers, providing scalability to the service as well as true fault tolerance, in addition to

organized management for the array of application servers. There are a variety of approaches to load balancing, including
round robin DNS and various intelligent load-balancing technologies.

Round Robin DNS (RRDNS) is a method of configuring a Domain Name Service (DNS) server so that DNS lookups of a
particular host name are sequentially distributed across a pool of IP addresses instead of a single address. Each successive
client visiting a site is directed to a different application server, thus achieving a rudimentary load-balancing effect.

RRDNS is inexpensive and straightforward to implement, but has shortcomings that make it a poor choice for load
balancing in a server farm environment. The principal problem with RRDNS is that there is no mechanism that enables the
DNS server to receive feedback about the current load and availability of the application servers. If a server is overloaded or
offline due to a failure, the DNS server will unwittingly continue to send clients to the failed server until an administrator
manually updates the DNS configuration. Even then, there is often a considerable delay as the changes propagate through
the Internet DNS system. During this time, clients directed to the failed server will experience frustrating downtime.

Another challenge with RRDNS is that it makes poor use of application servers that have different processing power and I/O
characteristics. The round robin assignment of clients to servers assumes that all server resources are equal. If one
application server has a 166 MHz processor and the others have 400 MHz processors, RRDNS will quickly overload the
slower server and cause it to deliver poor service to the end users.

In response to the deficiencies of RRDNS, many vendors have developed intelligent load-balancing products. Examples of
such products include Cisco Content Switch and Microsoft Windows® Load Balancing Service (WLBS).

These products typically present a virtual IP address to clients and use sophisticated algorithms to intelligently distribute
load across an array of application servers. These products can balance the load across application servers with different
processing power and I/O capabilities without overloading any individual server. This allows administrators to mix and
match servers of various capabilities to optimally leverage their aggregate capacity.

Unlike RRDNS, intelligent load balancers automatically detect failure of a server in the array and instantaneously route
traffic to another server. Most products also support fail-over configurations so that a backup unit can quickly take over if
the primary unit fails. This prevents the load-balancing layer of a server farm environment from becoming a single point of
failure.

A firewall at this layer will provide the first line of defense, for the underlying site, against specific types of intrusion into the
site.

Web/application resources layer. These resources are servers that process most of the business logic for the application.
Typically, they run a Web server and supporting services. An example of this is a server that runs specific application logic
built into scripted Web pages and COM objects.
Data resources layer. The data resources layer is where the application data is stored, accessed, and managed. The server
farm architecture avoids replication problems by providing a highly available centralized file server rather than replicated
data on application server drives. This layer contains the database that stores e-commerce data, such as product catalogs,
user registration information, shipping information and site activity logs. It also may provide connectivity to other systems
that hold application data resources, such as SAP, Siebel, and legacy applications.

In addition to these three layers, three global components of a server architecture farm — security, operations/management, and
integration — require special attention.

Security. The server farm architecture allows for integration of required security components based on customer business
requirements. Server farm architectures allow for strategic deployment of multiple firewalls between the distinct layers,
such as a firewall between the access/acceleration resources layer and the Web/application resources layer, and another
between the Web/application resources layer and the data resources layer.
Operations/management. Server farm environments involve many different servers that work together to deliver a
complete application. A robust approach to systems management is required in order to keep all the systems online and
running at peak performance. Internet applications deployed by using a server farm architecture can be integrated with all
popular management frameworks.
Integration. Enterprise environments contain many best-of-breed applications. Frequently, these applications do not
natively talk to one another. Integration provides a comprehensive set of services to facilitate connectivity between
applications.

Suggested Architecture
The following illustration shows the general architecture that is suggested for a BizTalk Server deployment of this type.

This provides a full network topography for the BizTalk messaging deployment. In this deployment, the receiving BizTalk Servers
are placed in the DMZ of the Web site with the processing servers sitting behind them. The firewalls give a double level of
protection, both on the inside of the network and within the DMZ. The network is held within two separate domains to provide
extra security. Cisco CSS load balancers can provide the load balancing between the processing servers, and full fail-over is
implemented between the twin links to the Internet. Each server uses its dual-ported Network Interface Cards (NICs) to allow
communication in the event that one of the switches fails. Although not shown on the diagram, the BizTalk Server receive
processors should also be dual-homed, that is, one NIC for front access (Internet side) and one for back access (processing side).

All systems can be managed from two management platforms (one on the DMZ and one in the back-end domain).

Smaller deployments are also possible, although they will not have the same level of availability as this larger type of deployment.
In this description of the deployments, the level of detail for the networking infrastructure will be very high and will not include
the full resilience because it depends entirely on the balance between availability and performance.

Small-Scale Implementation

Logical View

In this deployment, all of the systems can reside on a single computer. This solution does not have much resilience or scalability,
but can process a small number of messages and would be adequate for a non-business-critical path.

Physical View

This server would not need any interconnecting switches because it is running on a single computer. It would, however, need to
be connected to a network to accommodate the clients and destination applications; this would depend entirely on the
deployment environment.

If required by load demands, SQL Server could be put on a separate computer.

Medium-Scale Configuration
In this configuration BizTalk Server receive services, BizTalk Server processing services, and SQL Server databases are placed on
separate computers. This gives improved processing throughput for either large documents or a larger number of messages.

Logical View

If any of the three servers fail, the system will no longer be available.

Physical View

Highly Available and Scalable Solution
This configuration provides for a highly available and scalable solution.

Logical View

This arrangement provides for availability in the event of an issue with either of the BizTalk Servers. At this point the single point
of failure lies in the database server, which could be clustered to eliminate the risk.

Physical View

Note that this diagram does not include all the necessary networking pieces. To provide a fully available system, the appropriate
switches and other pieces must be included. This configuration is highly scalable by increasing the number of BizTalk receive
servers and adding the appropriate number of BizTalk processing servers in the ratio of one receive server for every three
processing servers.

Scaling the System
To increase the processing of messages in this system, the system can be scaled up in the following manner, depending on the
volume of traffic required:

SQL Server cluster (scale up). The number of processors in the SQL Server cluster can be increased to allow for additional
processing. If required, an additional cluster can be added to deal with the shared queues separately from the BizTalk Server
application's databases.
Processing and receive servers (scale out). These can be added in varying ratios depending upon the processing load
and its characteristics.

Example: Retailer

The classic hub-and-spoke architecture provides a pattern that is commonly used by retailers, as shown in the following
illustration.

Store sales information is collected and forwarded to the EAI service, either in a trickle-feed or batched-file approach. This is
typically done by using MSMQ, or MQSeries, to a BizTalk Server receive service in EAI. The store sales information is often
formatted in XML so that it is easier for the EAI service to understand and manage the transformations and routings that it will
perform.

The EAI service can now route to legacy systems that manage provisioning and other services. Because these are usually
mainframe based, Microsoft Host Integration Server is used to connect to the legacy system.

The EAI service can also route the data to new services. We illustrate this with a Data Warehouse service. If this is implemented on
Microsoft SQL Server™ then the DBMS itself understands XML and no transformation is required to store the data. With a trickle-
feed system from the stores, near-real-time decisions can be made in the warehouse regarding supplier requests that should be
sent out through the EAI systems for restocking of specific stores and store contents. A major retailer has implemented a fraud-
detection process that works from this warehouse content and has proven very successful in practice.

Solution: Hub-and-Intelligent-Spoke Messaging Integration

This is a more recent implementation variation. Examples are:

In the preceding solution, the number of systems to be integrated grows so large that it is best to manage them with several
brokers.
Integration of large departments with autonomous IT environments that are significantly complex in their own right. The
distinguishing characteristic of a department is that it must behave as part of the corporate whole, while requiring
autonomy due to size and possibly business requirements.
Integration of remote environments such as divisions for a conglomerate, or companies within a holding group. The
characteristic that distinguishes these environments from the "department" concept is that these are probably totally
autonomous and very likely have no requirement to behave as part of a corporate whole. Nevertheless they want to
leverage each others' strengths for competitive advantage.

The key design consideration for this environment is that there is one (logical) broker environment for each of the participating
major entities. This broker accesses the systems that it integrates by using the interface language and protocol that is appropriate
to each system. But then it also talks to the brokers of the other entities in the group. In this way, the entities can preserve
complete autonomy of their own domains. There is no intrusion into their domains by adapters from other domains, which would
create a tight coupling. Brokers request services from other brokers; brokers maintain a boundary that insulates the other systems
in their domain. Services can be protected and managed through this isolating interface.

This can be implemented in more than one way. One is the network of brokers, where all brokers are peers and each has full
knowledge of all the other brokers in the network and what services they offer. This approach works well as long as scaling up the
number of brokers is not a requirement. However if the number of brokers is likely to be tens or hundreds, then the "metadata"
problem of knowing what brokers exist and what services they offer becomes a non-trivial management problem.

The following illustration shows the configuration that we see as a common pattern for this solution.

In this configuration the top EAI service has two roles. It functions as an integration service for any local services that it needs to
support. These initially tend to be minimized to the set that is useful in its role of "manager of hubs," but very soon other benefits
emerge. One key benefit is that these services can now aCct as "virtual organization entities" as we will explain later.

This is the pattern used by the UK Government Gateway, an extremely large BizTalk Server deployment for the central UK
government that is the integration foundation for over 200 central government departments and over 482 local authorities. This
pattern has been far more specifically developed and defined, because it has been packaged by Microsoft Europe and is now
offered as the Microsoft Gateway Solution Offering (GSO).

Example: Gateway Solution Offering by Microsoft EMEA

GSO Goals
The Gateway Solution Offering (GSO) aims to reduce the complexity and cost of enabling electronic channels for delivery of
electronic relationships and services between an organization's internal departments, partners, and customers. These factors
prevent customers and businesses from receiving the benefits of "virtually integrated organizations."

A successful solution does the following:

Allows the quick and easy adoption of electronic services; for example, leveraging existing departmental back-end systems
as appropriate to reduce time to market.
Loosely couples the front-end services from the back-end systems to allow each to be implemented and evolve at its own
pace.
Avoids duplication of the facilities and services necessary to connect individual departments within an organization to
customers over the Internet.
Provides a basis for delivering joined-up services by centralizing an authentication service and enabling a customer to
interact with many departments within an organization.
Enables the provision of customer-driven applications that can interact with organizations in a consistent manner.

GSO Relationship to the EAI Pattern
The following illustration shows the services with which the Gateway Solution Offering implements the pattern.

GSO Implementation
The GSO expresses the core functionality of its instantiation of the pattern as shown in the following illustrations. The
departmental interface server (DIS) can provide interface services not only from the hub to the spokes, but also to other
department servers through the hub. This architectural approach avoids the complexity of the many-to-many connections that
would be required between interface servers if they were allowed to talk directly to each other (for example, in a networked-hubs
model), while still allowing each distributed hub to leverage the benefits of the pure hub-and-spoke model.

The following terminology and abbreviations are used:

DIS = departmental interface server (GSO terminology)

R&E = registration and enrollment

TxE = transaction engine

The high-level configuration of the system is as follows:

The DIS interface services are implemented as follows:

Solution: Business Process Orchestration (BPO)

EAI needs are driven by business requirements to deliver functions from multiple application or data services in ways that were
not originally planned when those services were created. It is logical that the EAI service should also ensure that the business
requirement is actually fulfilled — that is, it should manage the business process that requires integration.

This is a complicated issue because there is a question of how fine-grained this process management should be. That question
leads to the question of how fine-grained the EAI hub service integration should be. Some designers start with the goal of making
the EAI hub the conduit for every future application-to-application or component-to-component request for service. Successful

implementations resolve this goal in one of two ways:

Drop the idea when they realize the size of the EAI service required to support the goal, and the challenges of meeting the
variety of Service Level Agreements (SLAs) that arise, or
Accept that the EAI service is in fact going to be a huge and complex service and set about building it accordingly.

The fundamental architectural decision for BPO is whether it will aim for full-blown fine-grained workflow services or whether it
will operate in a clearly-defined subset. It is normally prudent to start with the subset. BPO provides the inter-domain process
integration that ensures that the interactions between the systems being integrated are coordinated with integrity. At the same
time, the systems are allowed to handle their internal integrity so that they are treated as trusted domains in providing the
service. In the "Logical Services" section this was described as "orchestration of business process."

The typical pattern of use of orchestration is to coordinate events and the consequences of those events occurring. The event is
the receipt of a service request. The consequences are the set of other events that it triggers, all of which have clearly defined
outcomes that must be achieved for the process to achieve a defined state. Finally, an action is taken to close the contract that is
implied by the set of events that happened.

The orchestration process requires great flexibility to deliver this capability. Intermediary events can have different outcomes that
lead to different final results. The results may or may not be in response to the original event. Some of the intermediary events
may require action by a service that is provided by a different company. Some events may take a long time to respond. BizTalk
Orchestration is aimed at supporting this type of BPO.

BizTalk Server Processing

BizTalk Messaging Services are designed to support the receipt of messages that flow into a business process, or to send
messages that flow out of a business process. BizTalk Orchestration is designed to manage business processes. Therefore, the two
services are designed to work together, with BizTalk Messaging Services providing a receipt and delivery support layer for BizTalk
Orchestration Services.

BizTalk Orchestration Services also can use BizTalk Messaging Services to integrate one business process with another by sending
or receiving messages between the two business processes.

To send or receive messages between two business processes, you must:

Use BizTalk Orchestration Services to create an XLANG schedule that sends a message and an XLANG schedule that receives
it.
Use BizTalk Messaging Services to create a messaging port. This messaging port must be configured to instantiate a new
instance of the receiving XLANG schedule and deliver a message to a specified port in that schedule.
Use BizTalk Messaging Services to create a channel for the messaging port that you created. This channel must be
configured to receive a message from the sending XLANG schedule.

A common scenario for integrating the two services is the correlation of messages within a single running XLANG schedule
instance — that is, to have an XLANG schedule instance send a message to an internal application or a trading partner, and to
expect a message in return. An example is sending a purchase order and expecting a purchase order acknowledgement in return.

If you need to apply encryption, digital signatures, mapping, or tracking to message contents, use BizTalk Messaging Services.

New Business Processes with BizTalk Server Processing
BizTalk Orchestration Services is ideally suited for developing business processes. Business-process design and implementation
have traditionally been performed in two distinct phases: the visual-design phase and the coding phase. The visual-design phase
typically consisted of the analysis of an existing business process (such as corporate procurement) and the creation of a workflow
diagram or an interaction diagram to describe the process. The coding phase was usually performed separately. In this paradigm,
you would build an abstract visual model of a business process and then map the model to an implementation framework.

One of the important features of BizTalk Orchestration Services is the integration of these previously distinct phases within a
unified design environment. This design environment provides a versatile drawing surface and a comprehensive set of
implementation tools. BizTalk Orchestration Services enables you to:

Create XLANG schedule drawings that describe business processes.
Implement business processes by connecting specific actions within a drawing to ports that represent locations to which
messages are sent or from which messages are received. Ports are named locations, and messages represent the data sent
or received between actions and ports.
Define the flow of data between messages within business processes.
Compile XLANG schedule drawings into XLANG schedules. XLANG schedules are executable Extensible Markup Language

(XML) representations of the information contained within the drawings.

BizTalk Orchestration Services is also designed to manage business processes that might need to be altered quickly or often. In
the past, developers have created COM+ components that controlled the business processes, and more traditional COM+
components that did the work. BizTalk Orchestration Services enables you to replace the business-process-control components
with XLANG schedules. However, it is not recommended that you use BizTalk Orchestration Services to define processes at the
work level. Instead, use your existing traditional COM+ components. The value of BizTalk Orchestration Services diminishes if it is
used to control small portions of a larger business process. Ideally, it is recommended that you migrate all of your business
processes to BizTalk Orchestration Services.

Long-Running Transactions with BizTalk Server Processing
In addition to the integration of design and implementation functionality, BizTalk Orchestration Services provides another
important feature: the ability to create and manage robust, long-running, loosely coupled business processes that span
organizations, platforms, and applications. During an asynchronous, loosely coupled, long-running business process, a product
that is ordered over the Internet might have to be built from parts that are in inventory. Some of these parts might even be
temporarily out of stock. The entire business process might take weeks or months to complete. In contrast, a tightly coupled
business process involves the synchronous exchange of messages. For example, when a customer withdraws money from a bank
account, the debiting of the account is immediately followed by the delivery of the money.

By providing an integrated, graphical modeling environment, BizTalk Orchestration Services provides the following important
benefits:

When business processes change, the implementation can be quickly and easily redefined.
Concurrent processes can be easily designed, implemented, and maintained.
Transactions (long-running, short-lived, and nested) can be easily structured and maintained.

One of the key strengths of BizTalk Orchestration Services is to manage and maintain the state of long-running transactions. If
you already have a means for controlling state, you should migrate that entire process into BizTalk Orchestration Services.
Controlling state in multiple places is not recommended.

BizTalk Orchestration Services is a business process automation tool. It is not intended to be a complete workflow system
replacement. In particular, it is not intended to define role-based, hierarchical escalation in person-to-person processes. For
business processes that contain role-based aspects that are escalated in a no-response situation, these processes are more
appropriately implemented as Microsoft Exchange workflows, which can be integrated with BizTalk Orchestration Services.

BizTalk Server Orchestration

The pattern describes the use of BizTalk Orchestration to implement a business process automation engine (or orchestration hub).
The hub exposes COM interfaces and allows multiple enterprise applications and clients to invoke and participate in heavily
sequenced business processes. Responses may be returned from the hub synchronously or asynchronously. The following
illustration shows this process.

Pattern Context

This pattern addresses the need to leverage highly orchestrated business processes, made up of multiple calls to potentially

multiple enterprise applications. Such processes often return messages whose content is supplied by more than one data source,
usually in the format of an XML document.

An example of such a business process might be "GetOrderStatus" for a B2C e-commerce site that retrieves the customer's details
from a CRM application, retrieves the order's pick status from a warehouse management application, and may even interrogate a
Web service provided by the transportation company to get the estimated delivery time.

Synchronous responses are often undesirable in EAI patterns, but in a user-driven Web model as described above it would
probably be unacceptable for the user to request their order status and then return to receive the results of that request. It would
be possible to simulate synchronous processing through the use of middleware between the Web server and the business
process engine, but this complexity can be avoided by employing a synchronous processing model through COM.

Thus, in the given example, requests are received through a Web server that makes requests of the orchestration engine for the
required order status. These requests, through an orchestrated business process, are fulfilled by interrogating the appropriate
data sources, consolidating the responses, and returning the response synchronously to the Web server.

EAI Services Supported

Integration

Data Format

Through orchestration, application-specific request and response formatting can be abstracted from the client, allowing the hub
to communicate by using an open format such as an XML-based SOAP envelope. This approach means that existing enterprise
applications should require little or no modification, and that third-party Web services can be accommodated.

Furthermore, message metadata can be added and handled through orchestration. This could include timestamps, process audit
information, and standardized error reporting.

Orchestration

Transaction Integrity

COM-based interaction with the orchestrated business process allows for full use of the Distributed Transaction Coordinator in
the process call. The entire orchestration may be treated as a single transaction to be committed or rolled back as a single unit, or
individual transactions may be implemented within the orchestration.

Middleware

There may well be requirements to employ some middleware technology to enable the communication between the business
process and each of the back-end data sources. This will almost certainly be the case in cross-platform environments or when
communicating with legacy data sources such as CICS mainframe systems.

In addition to the MSMQ port supported as standard by BizTalk Orchestration (and MQSeries supported through the BizTalk
Adapter for MQSeries), any COM-enabled middleware technology, or any custom or third-party BizTalk adapter could be used to
enable the business process to interact with almost any back-end data source.

Solution Components

Microsoft BizTalk Server Orchestration
Orchestration services are provided by Microsoft BizTalk Server Orchestration. The deployed components are the XLANG
scheduler COM+ application, the XLANG schedule restart service, and the XLANG database running on Microsoft SQL Server.

Since the solution may or may not employ BizTalk Server Messaging, the Messaging service and the BTA, SQ, and BTM databases
are not necessarily required. Also, in the absence of BizTalk Messaging, the overhead created by per-orchestration-instance
MSMQ queues is also removed.

A business process is created as an XLANG schedule file in BizTalk Orchestration Designer and is compiled for deployment locally
to the business process engine. Each schedule implements a port bound to a generic COM component to maintain schedule state
and create a COM interface through which any parameters may be passed into the process with a response returned.

The following illustration shows an XLANG schedule.

Process Wrapper

A generic COM+ application abstracts the interaction between COM and the schedule. This gives the client a consistent and
simplified view of the process. This COM+ application can also take advantage of COM+ services such as object pooling to allow
for schedules to be pre-instantiated, reducing the performance overhead associated with schedule startup.

Where the business process engine is made available through the Internet, Microsoft Internet Information Services and Active
Server Pages will provide client access to the ProcessWrapper component.

Implementation Considerations

Performance and Scalability
The solution can be scaled out for performance by using Microsoft Application Center 2000 to component-load-balance the
ProcessWrapper COM+ components across multiple BizTalk Server Orchestration servers. In this instance, all XLANG schedule
files and orchestration components are installed locally to each BizTalk Server.

Where client access to the business process engine is over the Internet, further scale-out can be achieved by implementing IP
load-balancing across multiple Microsoft Internet Information Services (IIS) servers, which may then use component-load-
balancing in their requests to the orchestration hub.

When it is necessary to process high volumes of messages in a synchronous manner, then the use of BizTalk Server may not be
suitable because this is not one of the primary use cases for which the product was designed. This needs to be evaluated on a
case-by-case basis. Synchronous message processing in BizTalk Server requires the synchronous invocation of an instance of the
orchestration engine. When this occurs in high volume situations it could lead to a performance bottleneck.

Resilience
Given the requisite hardware and platform, Microsoft BizTalk Server Orchestration can be made resilient by using Microsoft
Cluster Services. This process is described in the document "Microsoft BizTalk Server: High-Availability Solutions Using Microsoft
Windows® 2000 Cluster Service."

In the COM-based business process engine solution, all COM components may also be made to fail over by using Microsoft
Cluster Services.

Security
In addition to the normal considerations given to security for a Web-enabled application, through COM+ services a fine-grained
security policy can be implemented for client access to the business process engine. COM+ security services allow access
permissions to be assigned to roles and applied at application, component, and method call levels. This can be especially useful
when integrating the orchestration hub into an existing server environment within an organization.

Solution: Web Services

Web services based on XML and SOAP provide a key way forward for integration applications, especially when those applications
are separated by the Internet or by a firewall.

There are fundamentally two types of Web services:

Application integration. This uses a Web service in much the same way as current EAI techniques to provide integration
between applications or to provide access to defined data from applications or other data sources.
Service-based integration. This extends the EAI model to provide a specific service which may include aggregation,
transformation, or some other value-added service to the raw data.

Web services enable decentralization and distribution of integration services.

The key considerations for using Web services to integrate applications at the services or process level are:

Finding a service. The Web service publishes itself with a UDDI (Universal Discovery Definition and Integration) directory.
In its simplest form this is provided by a DISCO document that resides on the Web server and lists all the services available
on that server. A more resilient approach is to provide a dedicated UDDI server that provides a directory to all Web services,
which may be running on many servers within the organization.
Identifying the structure of the service. The WSDL (Web Services Description Language) standard describes the service
that is being offered and the data format of all parameters that are passed into and out of the service.
Connecting to the service. Requests are sent to the exposed Web service in the form of a SOAP envelope over HTTP. The
SOAP envelope consists of two parts: a SOAP header and a SOAP body. Both of these are formatted in XML. The main
payload (request or response) is carried in the SOAP body. The SOAP header is extensible, and can be used to carry system-
or enterprise-specific data. Because Web services use HTTP, requests can be made across a firewall without impacting the
security envelope of the domain. A Web server receives the incoming SOAP message, identifies the service that is requested,
and instantiates the component that fulfills the service.

The following illustration shows a typical logical structure for a deploying a Web service.

The Web server exposes the internal systems as Web services. The connection to the internal system can include:

Databases
Host/legacy systems
Other Web services
Integration hub

Where multiple internal systems are involved in providing the Web service, the connection would either be to another Web
service or to an integration hub that consolidates the data from the back-end systems as described in the following section.

Exposing Legacy System Applications as Web Services
The following implementation provides the function of exposing legacy services as Web services. It assumes that the legacy
services are not capable of exposing Web services without an intermediary software service — which we have been calling a hub.
In our implementation variations BizTalk Server provides the hub, and hence it will expose an XML interface for the legacy
services that are connected to it through adapters. It will map the XML interface to a format that the legacy system understands. It
may or may not use Host Integration Server to connect to that legacy system.

This is an important area for EAI where we expect to see much activity as the GXAdrives WSDLstandards and hence more
implementation options.

Web services provide a simple way of implementing a specific business function that may be required by an application. An
example is a Web service that returns a foreign exchange rate when a request is made, passing two foreign currency identifiers.

To avoid modifying applications and therefore provide a non-intrusive environment, BizTalk Server can provide the interfaces to
existing systems.

Web Service Security

There are two aspects of security that need to be considered:

Authentication of both the service provider by the service consumer, and the service consumer by the service provider.
Encryption of the data and/or authentication credentials while in transit.

A number of options exist to implement authentication:

Digital certificates embedded in the SOAP message. This is most useful where a PKI infrastructure already exists. This
requires code in the client and server applications to handle the certificates.
Web server authentication. This can use any of the methods supported by the Web server and requires no modifications to
either the server or client code other than error handling on the client.
Passing authentication credentials as part of the SOAP packet. This would typically consist of user name and password,
either embedded in the SOAP header or as part of the SOAP payload. Because these credentials would typically be in plain
text, the link would need to be encrypted to protect the data.
Kerberos ticket. Again, this would be embedded in the SOAP headers.

The SOAP message will usually need to be encrypted to protect the contents from being changed or revealed. There are a number
of options for achieving this:

Encrypt the SOAP body and/or defined data within the SOAP header fields. This requires the SOAP message to be
intercepted before being sent on the wire and before being passed to the Web service. This can be implemented within the
.NET framework by using the SOAP extensions. Depending on the encryption technology being used, this can occur either
before or after serialization.
Use Secure Sockets Layer (SSL) to encrypt the traffic over HTTP(S). High-activity sites will need to employ hardware SSL
technology to provide acceptable throughput.
Make the connection over a VPN that is encrypted by default.

Synchronous vs. Asynchronous Modes
Using the .NET implementation, Web services can be implemented in either a synchronous or asynchronous mode.

Web Service Versioning
As Web services become a core part of the application infrastructure, more and more processes will rely on them. It is important
to maintain existing interfaces and use versioning of the Web services to add incremental functionality.

Handling Binary Payloads
SOAP payloads are carried as XML, which is a text-based standard. In order to carry a binary payload, such as a scanned image of
a document, the binary must be encoded as text. This significantly increases the size of the payload and the performance because
the XML parser has to scan through the entire encoded document.

A more efficient way is to carry the SOAP message and the binary payload as part of a MIME multipart message. This is described
in a white paper published by the W3C.

Physical Implementation

The physical implementation for a Web service infrastructure is the same as for any Web-based delivery. The incoming SOAP
messages are distributed among a number of Web servers in a Web farm by a load-balancing mechanism. Because many designs
already exist for these, this will not be described in detail here.

UDDI – EAI Service Registry

http://www.w3.org/TR/SOAP-attachments

An enterprise-scoped UDDI registry provides the ideal mechanism for the publication and discovery of the EAI services exposed
within an enterprise. In combination with the supporting Web service technologies (SOAP, WSDL, etc.) this can form the
foundation of an open EAI infrastructure within an organization.

Web Services Summary

SOAP and the associated Web service protocols offer a clear opportunity to create open EAI standards within an organization,
thus facilitating the use of the EAI services across platforms and applications.

Appendix A: Constraints
The following constraints impact an EAI solution:

Cost. Characteristics of infrastructure and environment, such as specific platforms, or specific business or technical
requirements, such as real-time integration, may have a significant impact on the cost of integration
Time to delivery. The complexity of the integration requirements; for example, complexity of business processes that need
to be integrated, or the change dependency on legacy applications can significantly extend the time required to deliver an
integration solution.
Agility. The fundamental principle of good integration may be compromised because of technical challenges of the
environment or business challenges of the processes to be integrated.
Technical risk. Ultimately all IT change incurs some technical risk and the impact on technical risk due to the complexity of
integration should never be underestimated.

The following constraints will have an impact on any number of these aspects of an integration project. There are predominantly
two categories or constraints that we have focused on:

Technical constraints. Constraints arising from technology. Explained in detail below.
Process constraints. Constraints arising from the implementation and operation of technology. Explained in detail below.

Technical Constraints

Overburdened Applications

Many business applications that have grown beyond their original planned capacity are already overburdened with demands for
resources. Opening up new interfaces can add extra burden to the limited application platform and have a serious impact on its
operation. For example, if we add a database extract/load tool to a live database application that is already reaching capacity,
particularly the load phase of the tool could exhaust the remaining resources of the application platform. Designers should take
great care to plan the impact on performance and capacity of the integration tools they wish to implement. Whatever the
technology, some existing resources will be consumed.

Secure Integration

Legacy applications and databases often have security mechanisms that were designed specifically for trusted users authenticated
within a secure and trusted environment. It is often possible to extend these authentication procedures to integration technology,
the integration connector being recognized as a user. However, integration technology often extends that environment beyond
the secure and trusted zone. The risk is that the business assumes that the integration architecture that secures the exchange of
business documents also extends to the existing application or database. If the security of the application or database cannot be
stepped up, then this will represent a security hole in the entire integration architecture. In such cases it may be necessary to
design a new security model and implement new security technology.

Brittle Applications

Some legacy applications are extremely brittle. Changes to the application can cause the application to fail. This can be for many
reasons, for example, because the application has reached the limit of its performance capacity or the application was poorly
implemented and is extremely susceptible to failure. Experience shows that businesses have often tried to address the limitations
of these applications by implementing EAI. Unfortunately, this strategy alone is rarely successful unless the problems of the legacy
application are either resolved or insulated by the EAI technology. Non-invasive middleware can be used to offload processes
from the application.

Interface Mechanisms

Some applications or databases do not have open interfaces that can be used easily by EAI technology or its adapters. This can

severely constrain the options for integrating the application or database, particularly if it is constrained by other factors in this
list. In such cases it is often necessary to develop and implement invasive middleware connectors or develop and implement an
API.

Process Constraints

Lack of Skills

The complexity of the implementation of EAI has been greatly reduced in recent years. However, this EAI technology often still
requires some specialized skills that businesses do not have easy access to. Many of these skills may be commonly available if the
technology is not proprietary and makes the greatest possible use of open standards. One of the more common standards is XML,
and the market for XML skills is growing rapidly.

Management of EAI architectures is not a trivial task and much EAI technology has complex management interfaces or poorly
implemented interfaces that require specialized management skills.

Poorly Documented Data Model

To integrate directly to a database or to an application with an underlying data store and at the same time maintain the integrity
of the data, it is extremely important that the data model is well understood. This is often not the case and can represent a
significant risk when implementing an interface. Today there are many tools that can help to build a schema of the data model,
often part of the database itself. However, these tools are unable to express the business semantics of the organization of the data
or explain the business relationships. Furthermore, many businesses implement business logic in the data store by using database
triggers or stored procedures. The business rules of this logic also need to be understood.

Ever-Shrinking Batch Window

Many applications rely on a batch window to execute processes that cannot be executed when the application is online. These
processes can be essential housekeeping or administrative tasks, or even data uploads or downloads. Integration to some legacy
applications is possible only during these batch windows when the application is offline. The implementation of new integration
technology can have a significant impact on the completion of tasks within the batch window.

The typical scenario is a business-critical application that was originally designed to operate during working hours of 08:00 and
18:00 but is now running live between 05:00 and 23:00. This means that the offline window has shrunk from 14 hours to 6 hours.
Also, because of the increased workload during the online working day, the housekeeping activities have increased from 3 hours
on average to an average of 5 hours. The design and implementation of integration technology must have a limited impact on
this essential batch window. A typical solution is to prioritize parallel tasks and allocate resources accordingly.

Poorly Defined Contract

When two or more database applications are integrated and they exchange data it should be governed by an integration contract.
This contract defines the interfaces and the service levels that are expected from the integration. When contracts are poorly
defined, the service levels of the integration will be unpredictable and more difficult to manage. If the interfaces are poorly
defined, then integrity of the data that is integrated is not guaranteed.

Unregulated Integration

When integrating any application or database it is extremely important that the interfaces and integration contracts between the
business systems are well-documented and regulated. Unfortunately, because much legacy integration has evolved over time, the
principles of quality management may not have been exercised, so the existing interfaces are poorly regulated.

Closed Operations Management

Because integration architectures extend the reach of applications and databases, connecting different operating domains that
were previously unconnected, it is necessary to consider a management environment that spans all the applications and
databases that are connected. This is often not possible because the legacy or proprietary system does not have an open
management interface.

Poorly Defined Security Strategy

Integration extends the security domain of an application or database. A business that is integrating applications and databases
must develop an integrated security strategy (if not an enterprise security strategy) that at least includes the applications and
databases that are being integrated. Many businesses do not have such a security strategy, and integrating applications and

databases that are not governed by a security strategy may compromise security.

Poorly Defined Governance Strategy

Integration extends the governance domain of an application or database. A business that is integrating applications and
databases must develop an integrated governance strategy of the applications and databases that are being integrated. Many
businesses do not have such a governance strategy, and integrating applications and databases that are not properly governed
can introduce unpredicted operational events, making systems management as a whole extremely unpredictable.

Appendix B: Logical Services

EAI Services

Integration

Pa
rs
e

After the data has been decrypted, decoded, and queued, the EAI tool is ready to start processing the business information. Fir
st the data has to be parsed so that it can be processed by the other EAI services. The Parse service takes the serialized data, a
n input stream from the network that has been stored by the Queue service, and constructs structured data out of the stream.
To do this the Parse service firsts needs to recognize the data; this is done by inspecting the stream and identifying the data ty
pe. After the data has been identified, the schema that corresponds to the data can be found and the data structure can be con
structed out of the queued data. If a corresponding schema cannot be found then the service has to raise an exception that wil
l be managed by the Management services. A likely outcome will be to send a notification to the sender, or often to return the
data to the sender.

M
ap

After the data has been validated then the Map service tries to map the data to the output data. This service uses the map crea
ted by using the Map service in the Configure services. The Map service knows which map to apply because the EAI tool has i
nspected the input data. From that inspection the EAI tool knows where the data came from, and the identity and the schema
of the input data. It may also know from inspection of the input data the map identity or the identity of the output data. Depen
ding on the intelligence of the EAI tool it may be able to work this out. After the Map service has identified the output data and
found the schemas, control is passed to the next Data Manipulation service.

Fil
ter

The Filter service provides a mechanism for users to filter out information from certain data. There may well be occasions whe
n it is either difficult to filter the information at source or perhaps the filter is only applied for certain targets. This service is ve
ry convenient for filtering out sensitive information that a business user does not want to send to certain partners. The service
will therefore use the map to identify the receiver of the data and filter on this basis.

Va
lid
at
e

One of the values of EAI tools that many businesses exploit is the ability to add validation to the processing of data. Legacy sy
stems often produce data that may not have the quality that the business now requires, or perhaps changes in business conte
xt mean that data that was once correct is now incorrect. The Validate service can be used to validate all elements of the data.
The complexity of the validation depends on the EAI tool itself but businesses can expect:

Syntax validation. Alphabetic characters only appear in alphabetic fields
Semantic validation. A date field actually holds a date
Format validation. A date field requires dates in the UK date format (24/03/2001)
Range validation. A field requires a number in the range from 10 to 10000
Dependency validation. A field must contain a certain value when another field contains a certain value
Mandatory validation. A field must contain a value

Tr
an
sf
or
m

The Transform service uses the rules specified in the map of each data element to transform the contents of each element of t
he input data to the element of the output data. Today's EAI tools have extremely rich Transform services; the following are so
me examples:

String manipulation. The data string in a field is manipulated according to some transformation rules, e.g., capitalization
of alphabetic characters, or more complex parsing of strings and replacement/modification with substitute characters.
Mathematical conversion. A numeric value is converted by using a mathematical or arithmetic equation.
Date/time conversion. Dates and times are converted to different formats.
Scientific conversion. A numeric value is converted to a scientific value, e.g., a value is converted to the cosine value.
Cumulative manipulation. A field is used as a value in a cumulative calculation such as a sum or an average, or the field i
tself is the value of the cumulative calculation.
Logical manipulation. Depending on the value in a field a rule is executed and the product of the execution is used; e.g., r
anges of values, exact match values can be used to return TRUE or FALSE values.

Fo
rm
at

The Format service is the service that actually moves the content of input data elements to the corresponding elements of the
output data as specified in the map.

Co
m
po
se
/D
ec
o
m
po
se

Some data needs to be merged together before it can be sent on. The Compose service uses the Map service to identify the da
ta to be merged and composes new data out of elements of other input data. The map tells the Compose service where the da
ta elements come from.

The Decompose service is the opposite of the Compose service. A particular piece of data may need to be broken up into seve
ral output data items. The Map service will specify the output data and the Decompose service decomposes the input data int
o the output data.

Decomposition will make use of a multicast service. This low-level service will have two important modes:

Send and Forget multicast. All messages are only sent and no receipt acknowledgement is required.
Reliable multicast. Receipt acknowledgements are required for each multicast message.

En
ric
h

When input data is being formatted into output data it is possible that the input data does not hold all the information that th
e output data requires. The Enrich service allows the business user to specify from where the EAI tool should acquire this infor
mation to enrich the output data. It is likely that this information is acquired from a data store. The EAI tool may use the Disco
very service to find this information source.

Ro
ut
e

The Delivery service actually executes the transmission or receipt of data, but the Routing service allows the EAI service to rep
resent a route to facilitate integration. The Routing service may use an address such as a business name. This would be somet
hing like the name of the person and the name of the company. This could then be mapped to an appropriate network addres
s by the Delivery and Address Translate services.

Routing can be:

Explicit. The Routing service uses an explicit address supplied with the input data or in the map.
Content based. The Routing service analyzes the content of the input data or the output data to determine where the out
put needs to be routed. This latter form of routing is supported to different degrees of complexity by different EAI tools,
but is usually based on rules for analyzing the content.

Pu
bli
sh

Some EAI solutions collect information from applications and publish it. The data may be pulled or extracted from application
s or pushed to the EAI service by the applications. After the data arrives on the EAI node the EAI services can process it. For exa
mple, the data can be transformed as necessary into a format for publication. Part of the publication process will involve ident
ifying a subject or a category under which to publish the data. The functionality of this service may resemble the Routing servi
ce in that the content of the data is inspected to determine the subject or category. After this has been determined the data wil
l be published. Publication involves storing the data in a form and in a data store that can be accessed by subscribers. A subsc
riber is a user or an application that has permission to access the publication. They will normally subscribe to a subject or cate
gory.

Orchestration

Sche
dule

The Schedule service continually examines queues managed by the Queue service and checks for data whose processing n
eeds to be scheduled for certain times. If the data is at the head of a queue but its time has not come, the Schedule service
will hold back processing of this data and allow the Queue service to process data behind it.

Trans
actio
n Int
egrit
y

Transactions can be extremely complex to manage, and distributed transactions are even more so. EAI tools are rarely able
to manage transactions in an XA-compliant fashion. Nevertheless, the EAI tool still needs to manage resources so that unit
s of work are processed in an ACID fashion. For some instances of EAI, transaction integrity needs to be maintained so that
events in the process are isolated and units of work are not lost.

Proce
ss Flo
w

Execution and management of a defined sequence of events.

Non-
Deliv
ery

When data cannot be routed to a target because the Routing service has been unable to locate the target, the Non-delivery
service needs to manage the data. Typically the sender will have established some rules or a policy for undelivered data. Th
e Non-delivery service will execute the rule for the particular data or the policy. For example, this might require the sender
being notified by e-mail.

Integ
ratio
n Eve
nts

There are several levels of events in any system composed of EAI and Middleware services. At this level we are focusing on
EAI events or integration events. For example, a schedule for a long-running transaction is due or a message on a failed del
ivery queue needs to be processed. This service effectively monitors integration events and invokes the correct process for
handling each integration event.

Metadata

Data Mode
ls

Definition of the structure and syntax of data that is received from source applications and sent to target applications
or published. The data models will also define the owners of the data.

Names Some EAI services do not have a full Repository service but they do need to reconcile names that are used by the ser
vices to system names or network addresses. This service will support an interface for defining names and the identit
ies of the entities to which they refer.

Discovery The Discovery service is used to access Web services that the Data Manipulation services may require, e.g., suppleme
ntary information required by the Enrich service.

Configurat
ions

Configurations of any service in the EAI system may need to be persisted in such a way that they can be accessed pr
ogrammatically or replicated for other systems or cloned systems.

Repository The Repository service provides a direct lookup service for specific resources that may be required by the EAI tool, e.
g., routes for output data, sources of supplementary information for the Enrich service. It contains definitions of the c
haracteristics of all entities, resources, and services within the EAI system

User Profil
es

Definition of user characteristics.

Interface P
rofiles

When implementing an EAI service, an interface catalog usually needs to be maintained to define the characteristics
of the interfaces that the EAI service needs to support. Some implementations support the definition of these interfac
es through a tool. The Interface Profiles service stores this configuration information.

Subscripti
ons

Users and interfaces may have subscriptions to certain publications. The Subscriptions service holds the details of th
ose subscriptions.

Message D
atabase

Queuing is used for persisting messages during processing, messages that are waiting processing, or messages that
cannot be processed. Some messages may need to be stored in another data store that can be accessed by other ser
vices. A typical example is a "publish and subscribe" service, where published messages are often stored in a data sto
re for access by subscribers.

Message D
atabase In
dex

If messages are stored in the message database it is highly probable that messages will need to be indexed. It is imp
ortant that a rich indexing service is available on the data store for the messages.

Message D
atabase Se
arch and Q
uery

To complement the Index service the database will also need a service that allows searching for messages and queryi
ng the data.

Transport Services

Interfacing

Di
sp
at
ch

A low-level service that manages the dispatch of procedure or method calls.

D
eli
ve
ry

Ultimately the destination of any data will be represented by a network address. The Delivery service uses the protocol of the
network to send and receive data. The network address will be determined by the network protocol that is used. However, the
EAI services may not directly use the protocol and the addressing of the network. To simplify the interface between the busine
ss user and the underlying communication infrastructure, the EAI service will often provide an interface to allow the business
user to assign business names to destinations. Therefore the Delivery service will require an Address Translate service that will
resolve these business names into network addresses and vice versa.

There are several modes of messaging; for example:

Single cast
Multicast
Sending units of data from one node to another
Request and reply
Conversational
Send and forget
Reliable
Guaranteed delivery

M
es
sa
ge
Q
ue
ue

Queuing is the management and ordering of the persistence of messages.

When data is delivered to the communication infrastructure by the Network Communications services, the Queue service pers
ists the data to a queue. A queue is essentially a mechanism to ensure that data can be reliably stored until the EAI tool is read
y to process the data further.

This service is a fundamental element of the asynchronous characteristic of the EAI tool. The Queue service allows the EAI tool
to manage resources efficiently and makes the EAI tool more resilient and scalable than synchronous integration mechanisms.

Queues can be made resilient by storing the queue to disk, though many queues will be memory resident for performance rea
sons. Some queue mechanisms use both disk storage and memory storage systems to ensure resilience and optimize perfor
mance.

Queues feed the EAI services with data on demand. Depending on the architecture of the EAI tool, many queues can serve ma
ny EAI services to balance load. Queues can also be distributed if necessary. In a sophisticated EAI product implementation tha
t is capable of handling multiple queues, the EAI tool requires a management service for managing the queues. This Queue ser
vice allows the system administrator to administer queues. The best service is one that allows the administrator to administer
queues dynamically so that changes take immediate effect while minimizing negative impacts on the processing of data. Clear
ly, queue administration requires some understanding of the EAI tool architecture and its operating qualities, but the interface
to the Queue service should make the task of administration much easier than administration through a command-line interfa
ce.

The service may have the following functions, but it heavily depends on the architecture of the EAI tool itself:

Create. A new queue is created, ordinarily to overcome a bottleneck, because of the ratio of data being processed to the
number of queues available.
Pause. Processing of data from a queue is paused for a specified time after which the queue will restart processing auto
matically.
Start. Processing of data from a queue is started from the head of the queue.
Stop. Processing of data from a queue is stopped until explicitly restarted.
Flush. Process all the data in a queue and stop the queue from processing more data.
Copy. Data that is in a queue is copied to another queue, for example, when a particular queue is overloaded.
Destroy. A queue is removed because it is no longer needed, but processing of all data in the queue must be completed f
irst.

Se
ri
ali
ze
/D
es
er
ial
iz
e

The output data structure is taken by the Serialize service and the data is serialized into a file that can be transmitted across a
network. Deserialization is the reverse.

A
d
dr
es
s
Tr
an
sl
at
e

The service that translates between the (logical) business addresses assigned to the destination of an integration interface and
the network address required by the network protocol used by the Delivery service. This address may be stored in the Reposit
ory and the Address Translate may need to use the Repository service to translate addresses.

D
ec
o
de
/E
nc
o
de

Different operating systems use different code pages for representing characters that people can read. When the EAI tool recei
ves data from a different operating system, the Decode service is invoked to convert the data to the same code page as the pla
tform that the EAI tool is running on.

If the EAI tool knows the code page of the target system, the EAI tool may encode the character set of the output data into the
code page of that system.

Security Services

Security

Au
th
en
tic
ate

Validation of the identity of the user or interface that wants to access the service. Users may be authenticated by supplying a
user account and password. They would probably be authenticated to access the configuration or administration services of t
he EAI service. The interface may be an API that is passing a token, certificate, or login data from an application or a message t
hat contains a token, certificate, or login data. The interface would in such a case probably be the means of communicating wi
th the application that needs to be integrated. Authentication will be required when the EAI service has to ensure that users or
applications that want to access any services are who or what they say they are.

Au
th
ori
ze

After a user or interface has been authenticated — in other words, the EAI system is satisfied that the user or interface is who
they claim to be — the system will want to manage what the user or interface is allowed to do. The permissions that the syste
m allows the user or interface may depend on the role of the user or interface. For example, a system administrator will have
permission to perform system administration tasks, which may be denied an application that is integrated to the EAI service.
The permissions that the user possesses are also known as privileges.

En
cry
pt/
De
cry
pt

The EAI service may need to encrypt the output data for security reasons before it is transmitted across a network. Data is usu
ally encrypted to prevent unauthorized access to the information in the data. A cipher is used to encrypt data. There are many
types of ciphers, all of varying strengths; the stronger ones will use a key to encrypt the data. The strength of the cipher will d
etermine the ease with which the data can be "deciphered" or understood by unauthorized users or applications.

When the EAI service receives encrypted data, the Decrypt service will need to be invoked to decrypt the data so that the EAI t
ool may process it. The Decrypt service will use an algorithm to decipher the data, effectively reversing the cipher that was ap
plied when the data was encrypted. Increasingly encryption services are using keys to encrypt data so the Decrypt service will
also need to know the key that was used.

The use of keys, using a digital value with an algorithm to encrypt data, is becoming common. Public/Private Key Infrastructur
es are being introduced more and more by businesses wanting to strengthen their digital security. These infrastructures mak
e use of encryption, certificates, and digital signatures.

Ma
na
ge
Ce
rtif
ica
tes

Digital certificates are used to establish the credentials of a user, interface, or application. A certificate authority that is trusted
by the user, interface, or application and the EAI system usually issues them. The certificate will conform to a standard that sp
ecifies the information required as credentials. X.509 is a common standard and requires information like the name of the ent
ity whose credentials need to be verified, a digital signature of the certificate authority, and the period of validity of the certific
ate.

Certificates therefore need to be managed. They need to be issued and stored and the credentials verified. In EAI, certificates
may be used to verify the credentials of an application that wants to integrate to the EAI system. The EAI may issue the certific
ate but it is more likely that a mutually trusted authority will issue the certificate.

Sig
n

Digital signatures may be used to authenticate the sender of a message to the EAI service or the requester of a service from t
he EAI service. Unlike a certificate that will be used to verify the credentials of a user, interface, or application that is connectin
g or initially authenticating itself to the EAI service, a signature can be sent in every communication with the EAI service so tha
t authentication can be performed at a more granular level. If digital certificates are used then the certificate authority will iss
ue the digital signature in the certificate that the EAI service will use to sign messages or data.

Au
dit

As businesses become more sensitive to security, they need to be able to see the access and activity that users and applicatio
ns have had with their systems over time. The requirements for tracking the activity within EAI systems are increasing, particu
larly where there is a requirement for non-repudiation, where a business needs proof that an event happened such as an appl
ication sending a message via the EAI system. Some Audit services may also be capable of taking copies of input and output
data for the purposes of supporting non-repudiation, for example, in order to resolve disputes between a trader who is allege
d to have sent data and one who is alleged to have been sent data.

The Audit service in the Security service is focused specifically on the events that are detected by the Authenticate and Author
ize services.

Management Services

Management

Stat
e M
ana
gem
ent

This service is responsible for the management of the integrity of the status of processes

There are several mechanisms that ensure the resilience of the EAI tool. The State service is one of them. The Queue service
ensures that messages are not stored while waiting to be processed. Transaction Integrity ensures that the EAI system mana
ges the units of work as atomic, isolated, and consistent units of work. The State service ensures that the status of an EAI pr
ocess is known. As the EAI services process any message or data the state of that message or data will change, and also the
status of the EAI system will be continually changing as messages and data pass through.

This State Management service can be used to recover processes or messages and data that are being processed. The "in-fli
ght" process is recovered to a suitable checkpoint where processing can be replayed without losing any integrity. For exam
ple, as a data element is being transformed by the Transform service the State service will take suitable checkpoints of the tr
ansformation to ensure that if the process fails then the transformation can be rerun properly.

State Management can improve the efficiency of the EAI system. The status of any process may be stored in memory or to d
isk for further resilience. There is always a natural trade-off with performance when storing to disk, however.

Reso
urce
Man
age
men
t

A resource manager is a technical component that enlists resources for the transaction manager. Depending on the integrat
ion architecture the resource manager may be a fairly simple component that is integrated quite closely with the transactio
n manager. This is typical of transaction processing managers for many applications. The following diagram shows how res
ource managers work with the transaction processing manager in this scenario.

All the major components above may be on the same platform or on different platforms connected by a network. The trans
action processing manager ensures that all the operations that are to be executed on the applications are bound within a tra
nsaction. The resource managers are therefore components that enlist the operations in the transaction but also ensure that
they participate in the rules of the transaction and can be recovered if necessary. A resource manager is therefore typically a
component that is adapted to the application and the transaction processing manager.

Resource Management differs from state in that the State management service is more concerned about maintaining the st
atus of the internal processes of the EAI system. The resource manager is focused on managing the status of operations on
applications that are integrated by the EAI system.

Eve
nt M
onit
or

There are many levels of events in any system, from low-level hardware events through operating system events to applicat
ion events. The Management services will have components that monitor various system events. This monitor serves as a "c
atch-all" for any system event excluding integration events.

Erro
r Rai
sing

The Event Monitor monitors all system events. The Error Raising service, which is usually a component integrated with the E
vent Monitor, detects events that are abnormal and raises them as Error Events. After an event is raised as an Error Event it
can be processed by the Error Handling service.

Erro
r Ha
ndli
ng

When the Error Raising service has raised an event as an error the Error Handling service will process the event. The rules
may require invocation of recovery services and so on. Error Handling should be configurable and preferably should suppo
rt programmatic access.

Noti
fy

The Notify service is used to electronically inform a business user of a particular event in the EAI tool service through a stan
dard communication channel such as e-mail, telephone, fax, or pager. This could be the completion of processing of particul
ar data, normal or abnormal. The Notify service can also be used to notify system users and administrators of system event
s, for example, when the Error Raising service raises an event as an error the Notify service can send an alert.

Conf
igur
atio
n M
ana
gem
ent/
Vers
ions

Any configuration change to an EAI component or modification of EAI metadata may need to be tracked and old versions m
aintained. Messages can have versions. Data schemas can be versioned. This service should satisfy the requirements for ver
sion management in line with the Change Management service of the organization responsible for the EAI system. The umb
rella for all these services is Configuration Management.

Trac
k

The Track service essentially provides a means of analyzing the log created by the Audit service in order to provide a trace o
f a complex series of related data. This kind of facility is extremely important for businesses that depend on the EAI tool serv
ice for supporting complex business collaborations where data go back and forth between businesses.

Mon
itor

The Monitor service monitors all processes in the EAI tool and tracks the service levels of the processes dynamically throug
h a Monitor interface or by recording them to a log. Through this service, traps and ranges on specific processes can be set t
hat are monitored specifically and alerts can be sent when the rules in the trap are detected or the service level goes outside
the range that was set. This alert will be detected as an event by the Event service.

Arch
ive

An Archive service is required to periodically archive data from the Metadata services.

Rep
ort

The EAI tool should be capable of providing a number of reports to both business users and system administrators. The bes
t Report facility is one that allows both business users and system administrators to design and implement their own custo
m reports. The reports will probably run principally against the log produced by the Audit service, though some custom syst
em reports may run against the Monitor service.

Audi
t

A service that records EAI system and service events, normal and abnormal. This is different from the Audit service that audi
ts security events. System events are of interest to operations staff, whereas security events will be more of interest to secur
ity staff. Most EAI systems have some facility for logging events but may not meet the requirements of an Audit service. A f
ull Audit service provides all the logging necessary to support a rich history of EAI tool processing events. In practice the Au
dit service may rarely be used to its full capacity, partly because the Audit service may have an impact on the performance o
f the EAI tool. Nevertheless, it should be possible to create a detailed log of events.

At the level of EAI processing the most likely characteristics for a log are:

Input data processed. When? Where from? Map, Schema, Process Flows and Rules applied.
Output data produced. When? Map, Schema, Process Flows and Rules used. Route used for target.

Rec
over
y

Any process that was "in-flight" and fails will need to be recovered to a previously known status that maintains the integrity
of the data. The Recovery service working with the State service is responsible for recovering state.

Appendix C: Integration of Heterogeneous Data Sources

The lowest level of EAI integration is the integration of the data used within the organization. In some scenarios this type of
integration will provide the entire solution; however, it does not provide for more complex EAI requirements and so is likely to be
used in conjunction with application and/or process integration.

All methods of data integration are applied directly to the data store, bypassing typical application-based business logic.
Sometimes business rules are imposed at the database level by the use of database triggers or stored procedures. Data
integration differs from application-level integration, where the integration components communicate with business applications
at a process or API level and leave the business applications to control changes to their own data stores.

The main objective of data integration is to replicate changes to data sources that are caused by the execution of a business
transaction.

Examining the data integration requirements more closely, we can see that a number of distinct elements are involved in the

process of integration at the data level. These elements are:

Data connectivity. Provides the basic connectivity to the data source, and enables reading and updating the data source.
Data connectivity can be provided by proprietary interfaces to the data or through the implementation of industry standards
such as Open Database Connectivity (ODBC), designed specifically for interoperating with SQL-accessible relational
database management systems. For non-relational data stores, the OLE DB technology provides access to various semi-
structured and unstructured data stores. The connectivity layer may include additional services such as code-page
translation or connection pooling. Data connectivity is a fundamental element of data integration and facilitates all the other
types of integration.
Transaction management. Building upon the basic connectivity to the data source, additional transaction management
services can be provided to ensure that updates are applied to multiple data sources in an atomic manner. For example, an
online bookstore would not want to schedule the shipment of books without doing the proper billing, and it would be
equally wrong to bill a customer without scheduling delivery. Without support from the system, it is difficult to coordinate
the work so that either all of it happens or none of it happens.

Transaction management facilities are provided either by the data source itself (for example, a relational database) or
through an external transaction management system.

Data replication. Data replication is a common means of applying changes in one data source to other data sources. This
provides an alternative approach to the use of synchronous transaction management to ensure that changes are applied
across the data sources. Most proprietary database management systems support replication services. Many support
replication services between different proprietary systems.
Extract, transform, and load (ETL). Data extract, transform and load (ETL) solutions were developed to add value to basic
data replication services. Most database vendors provided data replication, but they did not account for those businesses
that needed to change the data that was being replicated — for example, because of differences between database schemas,
data organization, or data syntax. Vendors therefore introduced a bulk transformation service that allowed businesses to
map data from one source to the data definition and rules of another.

There is a great deal of rich technology supporting the integration of heterogeneous data sources from the Microsoft Windows®
platform and other software vendors. The extent of this support makes the Windows platform a logical design choice as the
center for data integration.

As previously defined, the main objective of data integration is to replicate the changes to data sources that were caused by the
execution of a business transaction. As we have seen in preceding discussions, this can be achieved through data connectivity in
conjunction with transaction management, data replication, or ETL and the various products that support them. However, as
previously highlighted, integration at the data layer is not always appropriate because it can bypass important application logic
that requires integration to be performed at the application layer.

Data integration solutions are also typically synchronous in nature, and the failure of a single component of the solution has
implications for the availability of the solution as a whole. To address this, additional logical services such as queuing must be
introduced. Synchronous versus asynchronous integration was discussed in more detail in the "Conceptual Solution" section.

While the simple integration of two or more data sources in the development of a business solution may meet the immediate
business need, the approach may not provide the level of business flexibility and cost savings that can be delivered by using
additional logical services, typically provided by "integration brokers" such as BizTalk Server. This is not to say that data
integration should not be used, but rather that the technologies and products described above are often used to provide
integration with the data layer, and these are combined with other products and technologies to deliver the overall EAI services
for an organization.

Data Integration: Supporting Logical Services

The following illustration shows the typical logical services that are provided by technologies and products that provide
integration at the data layer. They concentrate on the data-related services around dispatch, data extraction, and transformation.

Products that provide basic data connectivity essentially provide the logical Dispatch service, providing delivery of data to and
from the data source. Basic connectivity may be supplemented with transaction services provided either through the data source
itself or in conjunction with a transaction monitor. However, these transactions are typically restricted to traditional synchronous
two-phase commit-style transactions and do not address the issue of long-running transactions.

Products providing ETL capabilities will also provide the related logical services to support these capabilities. The products in this
space typically do not implement these logical services as generic mechanisms, but rather implement them as specific to their
respective data sources. For example the ETL facility provided by a database will be aimed primarily at the extraction and
transformation of relational data rather than being a purely generic service suitable for any data type.

As we consider the different levels of data integration in the following sections, we will explore in more detail the relationship
between the logical services and the products and technologies that provide the physical realization for each service.

Data Connectivity

Data connectivity in the Microsoft EAI pattern is addressed through Microsoft Universal Data Access. Universal Data Access is a
unified framework for data access across the Microsoft platform, the core services of which are built directly into Windows.

Universal Data Access provides high-performance access to a variety of relational and non-relational information sources, and an
easy-to-use programming interface that is tool and language independent. These technologies enable you to integrate diverse
data sources, create easy-to-maintain solutions, and use your choice of tools, applications, and platform services.

Universal Data Access does not require expensive and time-consuming movement of data into a single data store, nor does it
require commitment to a single vendor's products. Universal Data Access is based on open industry specifications with broad
industry support, and works with all major established database platforms.

Universal Data Access is provided through a base set of components known as Microsoft Data Access Components (MDAC). This
base set of components provides access to data sources for the Windows platform in addition to some external data sources
including Oracle. MDAC is supplemented by additional drivers specific to a heterogeneous data source typically provided by the
data source vendor. Microsoft also ships a number of drivers for accessing host data for IBM mainframe and AS/400 systems as
part of Host Integration Server. In addition, SQL Server offers some advanced data connectivity features.

Universal Data Access also embraces the access of data from a managed code environment provided by the Microsoft .NET
Framework with the introduction of ADO.NET and the native managed code data provider for SQL Server.

Logical Service Mapping

The logical services provided by MDAC are centered on connectivity to data sources; this connectivity enables data consumption
by higher-level services.

Logical serv
ice

Physical realization

Integration

+
P
ar
s
e

+
M
a
p

+
Fi
lt
er

+
V
al
id
at
e

+
Tr
a
n
sf
o
r
m

+
F
o
r
m
at

+
(
D
e)
C
o
m
p
o
s
e

+
E
n
ri
c
h

MDAC

These services are provided by MDAC in the course of building parameters for queries or stored procedures and th
e manipulation of data records returned from the data store.

The ADO and OLE DB models within MDAC provide rich mechanisms for the parsing, formatting, filtering, validatio
n, composition, and mapping of data to and from the data stores.

Host Integration Server

Host Integration Server data integration services provide data access services through MDAC by exposing mechani
sms to support the invocation of queries and stored procedures on the connected data stores.

SQL Server

The integration services of SQL Server are surfaced through the OLE DB and ADO component model in the MDAC
components. These provide for the logical services.

In addition, the HTTP/XML capabilities of SQL Server 2000 provide a number of transformation, filtering, compositi
on, mapping, and parsing services in conjunction with the processing of XML requests.

Orchestratio
n

+
Tr
a
n
s
a
ct
io
n
In
te
g
ri
ty

MDAC

The components within MDAC do not directly provide transaction services; rather, they provide access to the transa
ction services of the data stores themselves and to the transaction services provided by COM+ or another transacti
on monitor, allowing integration into process orchestration.

The transaction services support the dispatch services, facilitating their enrollment in transactions.

These transactions are typically restricted to traditional synchronous two-phase commit-style transactions and do n
ot address the issue of long-running transactions.

Host Integration Server

The components within Host Integration Server data integration services do not directly provide transaction service
s; rather, they provide access (through MDAC) to the transaction services of the data stores themselves and to the t
ransaction services provided by the Windows platform (COM+) or to mainframe-based transaction monitors, allow
ing integration into process orchestration.

SQL Server

SQL Server 2000 provides transactional support for data operations carried out on the SQL Server 2000 data store.
The transactions can also be extended to enroll other systems, or to enroll in transactions initiated on other system
s.

The distributed transaction coordination capability is achieved through MS DTC (Microsoft Distributed Transaction
Coordinator)

Transport Ser
vices

+
In
te
rf
a
ci
n
g

+ Dispatch

MDAC

MDAC components provide Dispatch services through the invocation of queries and stored procedures on the con
nected data stores.

Host Integration Server

Host Integration Server data integration services provide Dispatch services through MDAC by exposing mechanism
s to support the invocation of queries and stored procedures on the connected data stores.

SQL Server

The integration with heterogeneous data stores through the SQL Server Distributed Query Processor provides the
service of dispatching relevant queries to separate data stores and composing the results.

The Dispatch service is also supported through the XML interface to SQL Server, which allows queries to be execute
d in response to an XML document delivered over an HTTP connection direct to SQL Server. The results are then for
matted and returned by using the same protocol.

Product Mapping

Microsoft Data Access Components (MDAC)

The Microsoft Data Access Components (MDAC) are the key technologies that enable Universal Data Access. Data-driven

client/server applications deployed over the Web or over a LAN can use these components to easily integrate information from a
variety of sources, both relational (SQL) and non-relational. These components include the following:

Microsoft ActiveX® Data Objects (ADO). ADO is the application programming interface (API) to data and information.
ADO provides consistent, high-performance access to data and supports a variety of development needs, including the
creation of front-end database clients and middle-tier business objects that use applications, tools, languages, or Internet
browsers. ADO is designed to be the one data interface needed for single- and multi-tier client/server and Web-based data-
driven solution development. The primary benefits of ADO are ease of use, high speed, low memory overhead, and a small
disk footprint.

ADO provides an easy-to-use interface to OLE DB, which provides the underlying access to data. ADO is implemented with
minimal network traffic in key scenarios, and a minimal number of layers between the front end and data store — all to
provide a lightweight, high-performance interface. ADO is easy to use because it uses a familiar metaphor — the COM
automation interface, available from all leading Rapid Application Development (RAD) tools, database tools, and languages
on the market today.

OLE DB. OLE DB is the Microsoft system-level programming interface to data across the organization. OLE DB is an open
specification designed to build on the success of ODBC by providing an open standard for accessing all kinds of data.
Whereas ODBC was created to specifically access relational databases as highly structured data stores, OLE DB is designed
for relational and non-relational information sources in structured, semi-structured, or unstructured formats, including
mainframe ISAM/VSAM and hierarchical databases; e-mail and file system stores; text, graphical, and geographical data;
custom business objects; and more.

OLE DB defines a collection of COM interfaces that encapsulate various database management system services. These
interfaces enable the creation of software components that implement such services. OLE DB components consist of data
providers, which contain and expose data; data consumers, which use data; and service components, which process and
transport data (such as query processors and cursor engines). OLE DB interfaces are designed to help components integrate
smoothly so that OLE DB component vendors can bring high-quality OLE DB components to market quickly. In addition,
OLE DB includes a bridge to ODBC to enable continued support for the broad range of ODBC relational database drivers
available today.

Open Database Connectivity (ODBC). The ODBC interface is an industry standard and a component of Microsoft
Windows Open Services Architecture (WOSA). The ODBC interface makes it possible for applications to access data from a
variety of database management systems (DBMSs). ODBC permits maximum interoperability — an application can access
data in diverse DBMSs through a single interface. Furthermore, that application will be independent of any DBMS from
which it accesses data. Users of the application can add software components called drivers, which create an interface
between an application and a specific DBMS.

Host Integration Server

Host Integration Server extends Microsoft Windows to other systems by providing application, data, and network integration.
Host Integration Server lets you rapidly adapt to new business opportunities while preserving existing infrastructure investments.
Click here for further information or look in the product documentation.

Host Integration Server 2000 provides the following categories of components:

Data integration components. Provide desktop or server-based applications with direct access to host data. Host
Integration Server provides a comprehensive set of data access services, which includes direct data access to relational and
non-relational mainframe and AS/400 data through open database connectivity (ODBC), OLE DB, and COM Automation
controls.
Application integration components. Allow host-based and Web- or Windows-based applications to communicate
directly with one another. Host Integration Server delivers solutions for integrating both synchronous and asynchronous
transactions.
Host Integration Server management components. Provide a wide assortment of tools to manage the components of
Host Integration Server. This includes tools for performing both interactive and scripted local and remote Web-based and
traditional client/server management of Host Integration Server components.
SNA network components. Connect System Network Architecture (SNA) networks with PC-based LANs. Host Integration
Server allows users running Windows, Macintosh, UNIX, the MS-DOS® operating system, and IBM OS/2 to share resources
on mainframes and AS/400 systems without requiring system administrators to install resource-heavy SNA protocols on
the PCs or install costly software on the host.

The data integration features included with Microsoft Host Integration Server enable you to interact with host data sources,

http://www.microsoft.com/hiserver

including AS/400 and VSAM files, AS/400 data queues, and IBM DB2 relational database systems. This access is based upon the
Universal Data Access strategy and is supported by the MDAC components.

The following data integration features are included with Host Integration Server:

Microsoft OLE DB Provider for AS/400 and VSAM
Microsoft OLE DB Provider for DB2
Microsoft ODBC Driver for DB2
Microsoft Data Queue ActiveX Control for accessing AS/400 data queues

These data integration services are surfaced through the data access models within MDAC.

The following data tools and file-sharing features are also included with Host Integration Server:

Microsoft Host File Transfer ActiveX Control enables transferring files between a local machine and an OS/390, AS/400, or
VSE/ESA host system.
Microsoft APPC File Transfer Protocol enables transferring files between a local machine and an OS/390, AS/400, or
VSE/ESA host system using the AFTP protocol.
Microsoft Shared Folders Gateway Service enables accessing AS/400 files on a Microsoft Windows 2000 network.

SQL Server

As with any other heterogeneous data source, access to data held within SQL Server is provided through Universal Data Access
with supporting components provided by Microsoft Data Access Components (MDAC). In addition, SQL Server offers additional
connectivity functionality through distributed queries and its XML and HTTP support.

Distributed Queries

The Distributed Query Processor (DQP) allows users to access data that resides on multiple distributed databases across multiple
servers. Using DQP, SQL Server administrators and developers can create linked server queries that run against multiple back-
end data sources with little or no modification. DQP enables application developers to create heterogeneous queries that join
tables in SQL Server with tables held in other database systems such as Oracle or DB2. Also, DQP can be used to create SQL
Server views over database tables held in other database systems so that developers can write directly to SQL Server and
integrate both Windows-based and non-Windows-based data in their applications.

XML and HTTP Support

Microsoft SQL Server 2000 introduces new features to support the access of relational information by using XML functionality.
The combination of these features makes SQL Server an XML-enabled database server. These new features include:

The ability to execute queries against SQL Server by using HTTP.
Support for XDR (XML-Data Reduced) schemas and the ability to specify XPath queries against these schemas.
The ability to retrieve and write XML data as follows:

Retrieve XML data by using the SELECT statement and the FOR XML clause.
Write XML data by using the OPENXML rowset provider.
Retrieve XML data by using the XPath query language.

Enhancements to the Microsoft SQL Server 2000 OLE DB provider (SQLOLEDB) that allow XML documents to be set as

command text and to return result sets as a stream.

Transaction Management

Business transactions, such as ordering a book, increasingly involve multiple servers. Credit must be verified, books must be
shipped, inventory must be managed, and customers must be billed. Updates must occur in multiple databases on multiple
servers. Developers of distributed applications must anticipate that some parts of the application may continue to run even after
other parts have failed.

Business applications are frequently required to coordinate multiple units of work as part of a single business transaction.
Developing such an application is extremely complex and can be hard to scale. To streamline application development, software
vendors began producing transaction-based software specifically designed to manage system-level services:

Database servers. Most relational database management systems (RDBMS) provide transaction processing features.
Clients call SQL statements or stored procedures in a database to make transaction-protected requests.
TP monitors. A software environment that sits between a transaction-processing application and a collection of system
services, such as user interface, operating system, communications, and database services. Instead of writing an application
that manages each independent service, you write an application to run as part of a TP monitor environment.

The main difference between transaction management methods and data replication methods is the point of intervention in the
transaction. A business transaction has temporal and spatial qualities. Each one has a beginning and an end in time. In a
computing environment the effects of the transaction are spread to at least one data store. In the EAI scenario the transaction is
usually spread across multiple data stores. If we compare these two modes of integration we see that their architecture is
different, as shown in the following illustration.

In this illustration, there are three applications that are coordinated by a transaction processing manager (TPMS). Application
events that are coordinated into a transaction have to be explicitly specified. The effects of these events on data stores are
managed by the TPMS from the moment the transaction is specified. The TPMS enlists the resources of the data stores by using
resource managers in the transactions. Through the resource managers the TPMS can apply complete control over the updates to
the data stores. The TPMS is hosted on the same platform as one of the applications, and the other applications need to have a
direct network connection to the TPMS or to be managed through a TPMS gateway. Transaction management is best suited to
supporting synchronous real-time integration.

Transaction Considerations

Transaction management provides the following advantages:

Transaction management services ensure the quality of data changes.
Transaction management services provide support for n-tier applications.
Transaction management services provide integration of multiple real-time updates.
Good transaction management solutions support transactions across heterogeneous platforms.

On the other hand, transaction management presents the following challenges:

Many transaction management solutions are platform-specific, requiring transaction gateways to support transactions
across multiple platforms.
Transaction design is complex.
Transaction management tends to require tightly coupled integration, which increases the dependency between platforms
and applications.
Transaction management services can be resource intensive, taking up significant processing power and requiring good
management tools.
Synchronous processing in transaction management can block business processes.

Transaction Boundaries

One of the most important characteristics of transactions that should be supported by TP monitors is that transactions have
boundaries.

A transaction has a beginning, an end, and occurs exactly once. During its execution, a transaction may call on resources to
accomplish one or more tasks. Each resource, such as a database or queue, falls within the boundary of the transaction. All
resources within a transactional boundary share a single transaction.

You can design transactions to span processes and computers. Thus, a transactional boundary is an abstraction for managing
consistency across process and computer boundaries.

In a traditional transaction-processing application, you control transaction boundaries with explicit instructions to begin and end
the transaction. From within one transaction boundary, you can begin a second transaction, called a nested transaction. The
parent transaction does not commit until all its subordinate transactions commit.

Transaction boundaries can be extremely complex. The complexity of the solution required is multiplied as transactions are
distributed across multiple systems. The following illustration shows a typical implementation of transactions within an
application, where the transactions have not been distributed across the multiple systems.

The transactions in this illustration are "stove-piped." System A is a client where a process has been initiated that calls Operation 1
in System B. System A could be a Web browser that has sent an order request. Operation 1 is bound within a transaction to
ensure that the integrity of all its operations is maintained. Operation 2 invokes Operation 3 on System C, which completes
normally. Operation 4 then invokes Operation 5 that fails. Unfortunately, the update made by Operation 3 has been committed
and cannot be rolled back because the transaction boundary does not extend beyond System B. Even though Operation 5 is
bound within a transaction, this is not coordinated with Operation 3. Solving this problem requires the distribution of transactions
and transaction processing monitors that can manage the complexity of distributing transactions not only across heterogeneous
application platforms but also across heterogeneous transaction processing monitors.

Logical Service Mapping

Logical servic
e

Physical realization

Orchestration

+
Tra
nsa
ctio
n In
teg
rity

SQL Server

SQL Server 2000 provides transactional support for data operations carried out on the SQL Server 2000 data sto
re. The transactions can also be extended to enroll other systems, or to enroll in transactions initiated by other sys
tems.

COM+/Windows

Transactions are exposed and utilized on the Windows platform through the COM+ transaction services.

The distributed transaction coordination capability is achieved through MS DTC (Microsoft Distributed Transactio
n Coordinator)

Product Mapping

SQL Server

SQL Server includes transactional support for the coordination of transactional updates to a single database. Distributed
transactional support across heterogeneous data sources is provided by Microsoft Distributed Transaction Coordinator (MS DTC).
However the services of MS DTC are normally enlisted through the exploitation of COM+, which provides both a TP monitor and
additional services.

COM+ Services

COM+ is the next step in the evolution of the Microsoft Component Object Model and Microsoft Transaction Server (MTS). COM+
handles many of the resource management tasks that a programmer previously had to program manually, such as thread
allocation and security. It automatically makes applications more scalable by providing thread pooling, object pooling, and just-in-
time object activation.

COM+ also protects the integrity of data by providing transaction support, even if a transaction spans multiple databases over a
network, including support for OLE DB transactions and X\Open XA transactions, as supported by many database vendors
including Oracle, INFORMIX, DB2, Sybase, and Ingres. COM+ transaction coordination also extends to non-relational resources
including MSMQ and IBM CICS mainframe applications (through Host Integration Server), thereby enabling a single coordinated
update to a database, a message queue, and a mainframe application.

COM+ provides a simple, declarative-based transactional programming model for transaction management, significantly
simplifying the development of applications. Further information about COM+, go to the COM+ home page.

Data Replication

http://www.microsoft.com/com/tech/complus.asp

Data replication is a common means of applying changes in one data source to other data sources. This provides an alternative
approach to the use of synchronous transaction management to ensure that the changes are applied across the data sources.
Most database management systems support replication services, and many support replication services between different
proprietary systems. The replication services depend on the data connectivity services to provide access to the foreign data stores.
The following illustration shows a typical architecture of a data replication service.

In this illustration, the database servers will allow each of the applications to execute their changes as transactions, but each
transaction is isolated until the change has been committed to the database. Therefore, for example, if Application A makes a
change to its data store, Database A, then the replication manager will attempt to replicate this change to the other data stores,
Database B and Database C. Data replication is therefore best suited to asynchronous integration where data changes do not have
to be made in real time.

There is much debate about the value of database replication. There are many critics who focus on issues such as:

Impact on database management system (DBMS) performance
Data consistency and integrity
Recovery of errors
Security

Some argue that data replication of changes across DBMSs is a "poor cousin" of transaction management solutions. The main
point of the argument revolves around the issue of the synchronicity of applying changes to multiple databases. Theoretically, a
transaction management system (TPMS) binds all changes into a single unit of work, applying all changes simultaneously to each
database enlisted in the transaction. In reality, the TPMS applies the changes sequentially but has the capability of rolling back
changes if any one of the changes within the transaction fails.

In the following illustration a data change that happens in an application is replicated over three databases. Updates 1, 2, and 3
are bound within a unit of work managed by the transaction processing monitor. If any resource manager reports a failure to
apply the update, then the transaction processing monitor asks the other resource managers to roll back the updates they have
made. Only when all the data changes have been made or rolled back is the transaction complete.

Some data replication tools apply a change to one data source, then to another, and so on, often independent of the success or
failure of any one of the changes. However, the more sophisticated tools are capable of participating in transactions and taking
actions upon a failure to apply a change — although this would not meet the guidelines of the two-phase commit protocol. The
following illustration shows an application making an update to Database A. The replication manager on Database A detects the
update and replicates it across to Database B and then to Database C. Compensating for any failure to update Database B or
Database C requires intelligent replication managers that are able to send alerts back to the primary source and roll back the

changes.

Logical Service Mapping

The replication services represent the logical services grouped around data integration, filtering, validation, composition, and
mapping.

Logical se
rvice

Physical realization in SQL Server 2000

Integration

+ Parse

+ Map

+ Filter

+ Validate

+ Format

+ (De)Com
pose

+ Enrich

These services are provided through a combination of SQL Server 2000 native replication services and the data conn
ectivity provided through MDAC and used during the replication process.

Orchestrati
on

+ Transacti
on Integrit
y

SQL Server 2000 provides transactional support for data operations carried out on the SQL Server 2000 data store. T
he transactions can also be extended to enroll other systems, or to enroll in transactions initiated on other systems.

The distributed transaction coordination capability is achieved through MS DTC (Microsoft Distributed Transaction Co
ordinator).

These transactions are only utilized during transactional replication.

Product Mapping

SQL Server

SQL Server supports heterogeneous data source replication, provided that organizations have an ODBC driver or an OLE DB
provider for that data source. There are three types of replication available today for heterogeneous databases: snapshot,
transactional, and merge.

As its name implies, snapshot replication takes a picture of the published data in the database at a moment in time. Transactional
replication, on the other hand, uses snapshot replication as a starting point, and then maintains the consistency between the
databases by sending database modifications to the other database on a regular basis. Transactional replication uses the
transaction log to capture changes that were made to the data in an article. SQL Server monitors INSERT, UPDATE, and DELETE
statements, or other modifications made to the data on one server, and stores those changes in the distribution database, which
acts as a reliable queue. Changes are then sent to the other database and applied in the same order.

Snapshot Replication

Snapshot replication is the process of copying and distributing data and database objects exactly as they appear at a moment in
time. Snapshot replication does not require continuous monitoring of changes because changes made to published data are not
propagated to the subscriber incrementally. Subscribers are updated with a complete refresh of the data set and not with
individual transactions. Because snapshot replication replicates an entire data set at one time, it may take longer to propagate
data modifications to subscribers. Snapshot publications are typically replicated less frequently than other types of publications.

Options available with snapshot replication allow you to filter published data, allow subscribers to make modifications to
replicated data and propagate those changes to the publisher and to other subscribers, and allow you to transform data as it is
published.

Snapshot replication can be helpful in situations when:

Data is mostly static and does not change often.
It is acceptable to have copies of data that are out of date for a period of time.
Replicating small volumes of data.
Sites are often disconnected and high latency (the amount of time between when data is updated at one site and when it is
updated at another) is acceptable.

Transactional Replication

With transactional replication, an initial snapshot of data is propagated to subscribers, and then when data modifications are
made at the publisher, the individual transactions are captured and propagated to subscribers.

SQL Server 2000 monitors INSERT, UPDATE, and DELETE statements, and changes to stored procedure executions and indexed
views. SQL Server 2000 stores the transactions affecting replicated objects and then propagates those changes to subscribers
continuously or at scheduled intervals. Transaction boundaries are preserved. If, for example, 100 rows are updated in a
transaction, either the entire transaction with all 100 data modifications is accepted and propagated to subscribers or none of the
modifications are accepted. When all changes are propagated, all subscribers will have the same values as the publisher.

Options available with transactional replication allow you to filter published data, allow users at the subscriber to make
modifications to replicated data and propagate those changes to the publisher and to other subscribers, and allow you to
transform data as it is published.

Transactional replication is typically used when:

You want data modifications to be propagated to subscribers, often within seconds of when they occur.
You need transactions to be atomic (either all or none applied at the subscriber).
Subscribers are mostly connected to the publisher.

Your application will not tolerate high latency for subscribers receiving changes.

SQL Server also supports transactional replication from SQL Server to heterogeneous databases, while third-party solutions are
available for automating transactional replication from heterogeneous databases to SQL Server. Following are just a few
examples:

Replication with Oracle

SQL Server enables bi-directional snapshot replication with Oracle, as well as transactional replication from SQL Server to
Oracle.

Replication with IBM DB2, VSAM data sets, and native AS/400 files

Using SQL Server and Host Integration Server, applications can perform bi-directional snapshot replication with IBM DB2
and perform transactional replication from SQL Server to IBM DB2.

Replication with Sybase and Informix

With a compatible OLE DB provider or ODBC driver, SQL Server can perform bi-directional snapshot replication and
transactional replication to Sybase or Informix.

Replication with Access (Microsoft Jet Database Engine 4.0)

SQL Server provides both bi-directional snapshot and transactional replication with Jet 4.0.

Merge Replication

Merge replication allows various sites to work autonomously (online or offline) and merge data modifications made at multiple
sites into a single, uniform result at a later time. The initial snapshot is applied to subscribers and then SQL Server 2000 tracks
changes to published data at the publisher and at the subscribers. The data is synchronized between servers either at a scheduled
time or on demand. Updates are made independently (no commit protocol) at more than one server, so the same data may have
been updated by the publisher or by more than one subscriber. Therefore, conflicts can occur when data modifications are
merged.

Merge replication includes default and custom choices for conflict resolution that you can define when you configure a merge
publication. When a conflict occurs, a resolver is invoked by the Merge Agent to determine which data will be accepted and
propagated to other sites.

Options available with merge replication include filtering published data horizontally and vertically, including join filters and
dynamic filters, using alternate synchronization partners, optimizing synchronization to improve merge performance, validating
replicated data to ensure synchronization, and using attachable subscription databases.

Merge replication is useful when:

Multiple subscribers need to update data at various times and propagate those changes to the publisher and to other
subscribers.
Subscribers need to receive data, make changes offline, and synchronize changes later with the publisher and other
subscribers.
Site autonomy is critical.

Heterogeneous Subscribers

Microsoft SQL Server 2000 supports publishing to heterogeneous data sources that provide 32-bit ODBC or OLE DB drivers.
Heterogeneous subscribers to SQL Server include:

Microsoft Access databases
Oracle databases
IBM DB2/AS400 subscribers (through Host Integration Server)
IBM DB2/MVS subscribers (through Host Integration Server)
Other databases on heterogeneous subscribers that comply with SQL Server ODBC or OLE DB subscriber requirements

Data Extract, Transform, and Load (ETL)

Products providing data extract, transform, and load (ETL) capabilities will also provide the related logical services to support
these capabilities. The products in this space typically do not implement these logical services as generic mechanisms, but rather
implement them as specific to their respective data sources. For example, the ETL facility provided by a database will be aimed
primarily at the extraction and transformation of relational data rather than being a purely generic service suitable for any data
type.

ETL solutions were developed to add value to basic data-replication services. Most database vendors provided data replication,
but they did not account for the need to change the data that was being replicated, for example, because of differences between
database schemas, data organization, or data syntax. Vendors therefore introduced a transformation service that allowed
businesses to map data from one source to the data definition and rules of another. Typically database solutions would rely on
stored procedures to resolve data heterogeneity. The maintenance of stored procedures can be costly and prone to change risk,
so ETL solutions offered potential improvements.

With the advent of data warehouses and data marts the requirement for ETL solutions grew. However there are many different
vendor solutions and there are many technical issues that an ETL solution must address. Some of the principal considerations that
a designer must address when choosing an ETL solution are:

What is the organization of the source data source?
What data needs to be extracted?
What is the organization of the target data source?
What data needs to be loaded?
How does the data from the source need to be mapped to the target?
What transformations of the source data need to be applied?
How often should the extract run?
Should the extract run in a scheduled batch mode or should it be triggered by a data change in the source?
If large amounts of data are being extracted, what is the impact of the ETL solution on the performance of the source data
store?
If large amounts of data are being loaded, what is the impact of the ETL solution on the performance of the target data
store?

There are also some basic implementation considerations. The following illustration shows two different topologies for the
implementation of ETL. Each one has different merits.

The hub-and-spoke solution is typical of pure ETL providers, vendors who are providing an ETL solution for a number of
databases. The extract and load services can be performed by stored procedures or by components that are created with the ETL
tool and installed on the data store. Many ETL vendors provide technology that adapts the extract and load components to most
of the major DBMS vendors. All extracts are sent to the transformation hub where they are mapped and transformed to the target
data store. The transformation hub then forwards the transformed extract to the target where the Load service loads the data to
the data store. This solution is more suitable for heterogeneous database environments, where the extracts and loads are variable
and the transformation is potentially complex. It supports central management of the ETL process.

The distributed solution is more typical of the database vendor approach to ETL. The main advantage of this solution is that point-
to-point connections between data stores can be established because no transformation hub is needed since transformation can
be performed on the source or target. This is desirable where the number of integration nodes is limited, where there are network
issues, and where the extract and load is a repetitive task with little variation.

Another solution common to certain ETL specialists is a combination of the two topologies, as shown in the following illustration.

The advantage of centralized management of the hub-and-spoke solution is maintained while supporting a distributed ETL
network. The ETL hub stores the metadata about all the extracts, transformations, and loads. The ETL Development service
supports the centralized development of ETL components while the ETL Distribution service distributes these components to the
right sources and targets and manages them. In operational terms, the solution is the same as the simple distributed ETL service.

Logical Service Mapping

Logical servic
e

Physical realization in SQL Server 2000

Integration

+
Par
se

+
Ma
p

+
Filt
er

+
Vali
dat
e

+
Tra
nsf
or
m

+
For
mat

+
(De
)Co
mp
ose

+
Enri
ch

These services are provided through a combination of SQL Server 2000 Data Transformation Services and the da
ta connectivity provided through MDAC and used during the replication process.

Orchestration

+
Tra
nsa
ctio
n In
teg
rity

SQL Server 2000 provides transactional support for data operations carried out on the SQL Server 2000 data sto
re. The transactions can also be extended to enroll other systems, or to enroll in transactions initiated on other sy
stems.

The distributed transaction coordination capability is achieved through MS DTC (Microsoft Distributed Transactio
n Coordinator).

DTS can create and orchestrate transactions as part of the ETL process.

Transport Servi
ces

+
Inte
rfac
ing

+ D
isp
atc
h

DTS is capable of dispatching queries to data sources during the ETL process.

Product Mapping

SQL Server

The data extract, transform, and load (ETL) facility provided with SQL Server 2000 is known as Data Transformation Services
(DTS). For further information about DTS, refer to the SQL Server Books Online or to "Appendix G: ETL with SQL Server 2000 and
DTS."

DTS is a set of tools that can be used to import, export, and transform heterogeneous data between one or more data sources.
Connectivity is provided through OLE DB, an open standard for data access. ODBC (Open Database Connectivity) data sources are
supported through the OLE DB Provider for ODBC.

You create a DTS solution as one or more "packages." Each package may contain an organized set of tasks that define work to be
performed, transformations on data and objects, workflow constraints that define task execution, and connections to data sources
and destinations. DTS packages also provide services, such as logging package execution details, controlling transactions, and
handling global variables.

These tools are available for creating and executing DTS packages:

The Import/Export Wizard is for building relatively simple DTS packages, and supports data migration and simple
transformations.
The DTS Designer graphically implements the DTS object model, allowing you to create DTS packages with a wide range of
functionality.
DTSRun is a command-prompt utility used to execute existing DTS packages.
DTSRunUI is a graphical interface to DTSRun, which also allows the passing of global variables and the generation of
command lines.
SQLAgent is not a DTS application; however, it is used by DTS to schedule package execution.

Using the DTS object model, you also can create and run packages programmatically, build custom tasks, and build custom
transformations.

DTS Connectivity

DTS is based on an OLE DB architecture that allows you to copy and transform data from a variety of data sources. For example:

SQL Server and Oracle directly, using native OLE DB providers
ODBC sources, using the Microsoft OLE DB Provider for ODBC
Access 2000, Excel 2000, Microsoft Visual FoxPro®, dBase, Paradox, HTML, and additional file data sources
OLE DB and ODBC sources as supported by the Microsoft Host Integration Server data integration services
Text files, using the built-in DTS flat file OLE DB provider
Microsoft Exchange Server, Microsoft Active Directory®, and other non-relational data sources
Other data sources provided by third-party vendors

Appendix D: Integration of Heterogeneous Applications

The basic objective of application integration is to invoke a "business transaction" provided by an existing application in response
to some event. The options available for integrating with an application are essentially dictated by the application being
integrated. For example, the application may provide a programmable API support; file, message, or HTTP-based interfaces; or
may only support a user interface.

While the interfaces to applications vary, one common integration requirement is that the application itself cannot be modified —
because it could be a packaged application provided by a third party, no skills exist to modify the application, or the risk and/or
cost for modification is too great.

The foundation of any application integration is basic connectivity to the application. The connectivity will either be supporting the
invocation of a business transaction provided by the application or catching an event in response to some user action within the

application. Basic connectivity is typically technology based, for example, the application supports C-API, COM, CORBA, File, HTTP,
MSMQ, or MQSeries interfaces. If you have the ability to connect to the application it is then a matter of making the correct
method calls or formatting the data appropriate to a particular application.

From this, we can subdivide the application integration area into two smaller areas:

Application connectivity
EAI services

These subdivisions are helpful in providing a context for discussing the logical service mappings and the product mappings in the
following sections.

Application Connectivity

Logical Service Mapping

The following illustration shows the logical services that are typically required in basic application connectivity. As expected, they
focus around the middleware interfacing services; in addition, transaction services may be provided for interfacing transitionally
with TP monitor-based applications such as COM+, CICS, or Tuxedo applications.

Logical service Physical realization

Orchestration

+ Transa
ction Inte
grity

Within the application connectivity layer, the transaction services are accessed through COM+ and the appli
cation integration facilities of Host Integration Server (COMTI).

The distributed transaction coordination capability and the integration with foreign TP systems are achieved
through MS DTC (Microsoft Distributed Transaction Coordinator).

Interfacing

+
Dispatch

+
Message
Queue

+
Message
Delivery

+
(De)Seria
lize

+
Address
Translate

+
Encode/
Decode

Host Integration Server, BizTalk Server, COM+

MSMQ, BizTalk Adapter for MQSeries,
MSMQ-MQSeries Bridge

MSMQ, BizTalk Adapter for MQSeries,
MSMQ-MQSeries Bridge

Host Integration Server,
MSMQ-MQSeries Bridge

Many application interfaces are synchronous by their very nature, such as COM, C-type APIs, and CORBA. When linking one or
more applications by using synchronous interfaces, the unavailability of one system (or interface) can lead to the unavailability of
the entire system. In such cases additional logical services are required to provide an asynchronous interface through message
queuing.

Product Mapping

The following table highlights some of the most common application connectivity technologies and the mapping to the Microsoft
products and technologies that support them. The table is focused primarily on technology from Microsoft, and hundreds of
additional third-party application connectivity solutions are available.

Classification Technology Product
Synchronous dire
ct

COM Windows platform (COM+)

 C-API Windows platform
 CICS, IMS Host Integration Server
 X/Open distributed transactions, e.g., BEA, Tux

edo
Open Transaction Integrator from UNISYS

 CORBA, Enterprise Java Beans Third-party COM bridging technologies, e,g., Orbix, Actional, ot
hers

Message queue MSMQ Windows platform (MSMQ)
 MQSeries BizTalk Adapter for MQSeries, MSMQ-MQSeries Bridge
HTTP based HTTP Microsoft WinInet, MSXML, Internet Information Services
 XML Web services SOAP Toolkit, .NET Framework
File File Windows platform, Microsoft Services for UNIX
Screen (UI) based IBM 3270, IBM 5250 Host Integration Server plus third-party screen scraping
 VT100, VT220 Third-party screen scraping

Windows 2000 Server

The Windows 2000 platform itself provides many built-in services that support application connectivity. These include basic

services supporting file-based interfaces, including support for file event notifications.

Windows 2000 provides distributed transactional support provided by Microsoft Distributed Transaction Coordinator (MS DTC),
which can be exploited through the COM+ programming model.

The Windows platform also provides a native asynchronous messaging system, Microsoft Message Queuing (MSMQ) within the
COM+ services. MSMQ provides a messaging service providing guaranteed once-only delivery of messages between applications
and systems irrespective of the continual availability of a supporting network.

Support for Internet-based protocols is supported on the receiving side by Internet Information Services (IIS). Sending data
through HTTP is supported by the WinInet component, and transporting XML through HTTP is supported directly by Microsoft
XML Core Services (MSXML). Other standard transports such as SMTP and FTP are also supported through platform services and
technologies.

Many application vendors also provide C-based API libraries through Windows dynamic-link libraries (DLLs).

Host Integration Server

In addition to the data integration services described earlier, Microsoft Host Integration Server also supports the following
application integration services:

COM Transaction Integrator (COMTI) to integrate COM applications with CICS and IMS transactions on IBM mainframes and
minicomputers.
MSMQ-MQSeries Bridge to develop applications to send messages between IBM MQSeries and Microsoft Message
Queuing (MSMQ) environments. (For native support of IBM MQSeries, the BizTalk Adapter for MQSeries is also available.)
SNA application interfaces

Click here for further information or look in the product documentation.

COM Transaction Integrator (COMTI)

COMTI enables Windows-based client applications to invoke mainframe-based transaction programs (TPs). COMTI provides a
COM object interface to existing mainframe transactions, handling all the mapping of data types to convert from the Intel-based
architecture to the OS/390-based architecture, and interacts with host TPs on mainframes.

The specific TPs supported in COMTI are the IBM Customer Information Control System (CICS) and the IBM Information
Management System (IMS) TPs. All COMTI processing is done on the Windows 2000 or Windows NT® Server platform. No
COMTI-related executable code is required on the mainframe; in other words, no mainframe footprint is necessary. COMTI
supports SNA (APPC/LU 6.2) and TCP/IP standard communication protocols for all communications between Windows and the
mainframe.

Through the import of a mainframe transaction COBOL copybook, the COMTI Component Builder reads the COBOL transaction
code and generates a COMTI component library object that contains the proper specialized interfaces for the mainframe. As a
generic proxy for the mainframe, the COMTI run-time environment intercepts object method calls and redirects those calls to the
appropriate mainframe program in a representation understandable by mainframe TPs.

COMTI also supports full two-phase commit (2PC) transaction coordination with the mainframe and other transaction resources
through the transaction services provided by COM+ (MS DTC). For example, this would support a coordinated update between
the mainframe and SQL Server. Support for 2PC is supported with SNA LU 6.2 sync level 2 connections only. IBM has not
implemented 2PC in the TCP/IP protocol, but for those cases where 2PC is not needed, TCP/IP can provide direct connectivity.

MSMQ-MQSeries Bridge

The MSMQ-MQSeries Bridge provides a two-way mechanism for transparently:

Accessing IBM MQSeries queues from an MSMQ environment
Accessing MSMQ queues from an IBM MQSeries environment

The philosophy behind the bridge is to expose queues in each messaging system to those in the other, in terms that are native to
each messaging system. The bridge translates and maps the fields and values of the sending environment to the fields and values
of the receiving environment. After mapping and conversion, the MSMQ-MQSeries Bridge then routes the message between the
two messaging systems.

MQSeries queue managers and queues are exposed to the MSMQ environment by defining MQSeries queue managers and
queues within MSMQ Explorer as foreign computers and foreign queues, respectively.

MSMQ computers and queues are exposed to the MQSeries environment by creating and importing MQSeries definition files into

http://www.microsoft.com/hiserver

the configuration of an MQSeries queue manager. The definitions identify the transmission queue into which MQSeries should
place messages that are destined for an MSMQ queue.

The MSMQ-MQSeries Bridge operates transparently, allowing MSMQ and MQSeries applications to use their native APIs to
deliver messages between the two environments. Neither application is aware that it has crossed between the two environments.

The Microsoft MSMQ-MQSeries Bridge provides access to message queues located on the following IBM MQSeries systems
through SNA LU6.2 or TCP/IP:

IBM MQSeries for OS/390 Version 2 Release 1 (V2.1)
IBM MQSeries for AS/400 Version 4 Release 3 (V4R3MO)
IBM MQSeries for Windows NT Version 5.1, 5.0 and 2.0

The MSMQ-MQSeries Bridge supports both MSMQ and MQSeries transactions.

SNA Application Interfaces

Host Integration Server provides SNA application programming interfaces for APPC applications, CPIC-C applications, and LUA
applications. It also provides a 3270 emulation interface and support for AFTP file transfer protocol.

XML Web Services

There are probably as many definitions of XML Web services as there are companies building them, but almost all definitions
have these things in common:

XML Web services expose useful functionality to the Web through standard Web protocols. In most cases, the protocol used
is SOAP.
XML Web services provide a standard way to describe their interfaces in enough detail to allow a user to build a client
application to access them. This description is most commonly provided in an XML document called a Web Services
Description Language (WSDL) document.
XML Web services are often registered so that potential users can find them easily. This is most frequently done with
Universal Discovery Description and Integration (UDDI).

One of the primary advantages of the XML Web services architecture is that it allows programs written in different languages on
different platforms to communicate with each other in a standards-based way. One difference between this and prior attempts at
delivering the same result is that SOAP is significantly less complex than earlier approaches, so it is easier to create a standards-
compliant SOAP implementation.

In terms of application integration connectivity, using XML Web services to expose the business transaction offers significant
benefits including:

Allowing the business transaction to be exploited from any platform or from any development language.
The ability to offer the business transaction directly to internal and external organizations over the Internet.

With the widespread support of XML Web services across the IT industry, it is expected that many applications will expose their
functionality as XML Web services in the future. Until that time, XML Web services wrappers can be relatively easily developed by
using development tools such as Microsoft Visual Studio® .NET to expose existing functionality and realize the benefits identified
above.

The development of XML Web services wrappers for existing functionality requires integration with the existing application
interfaces. The provision of an XML Web service to an existing application is therefore a typical integration solution, and the tools
and technologies for integration are therefore also directly applicable to the provision of XML Web services.

Microsoft provides tools for delivering XML Web services through the .NET Framework and Visual Studio .NET. Support is also
provided through the Microsoft SOAP Toolkit for systems that do not possess the more advanced XML Web services run-time
infrastructure.

Current Limitations of XML Web Services

XML Web services are built on XML, SOAP, WSDL, and UDDI specifications. These constitute a set of baseline specifications that
provide the foundation for application integration and aggregation. Organizations are building and deploying solutions based on
these specifications today.

The baseline specifications do, however, have gaps that require the implementation of higher-level logical services such as
security, routing, reliable messaging, and transactions. For example, XML Web services are synchronous by nature and require the

consumer of the XML Web service to be available. This is acceptable for data retrieval and user interface interaction, but may not
be applicable for business document exchange. In the future, these extended services will be addressed through additional
standards. For example, Microsoft and IBM have co-presented to W3C a layered stack of these services known as Global XML Web
Services (GXA). Until such standards are accepted and implementations are available, the provision of these services will be by
product and custom development. For example, Microsoft BizTalk Server provides an implementation for security, routing, and
reliable messaging for XML-based documents built on the SOAP standard.

Third-Party Solutions

There are many hundreds of application connectivity solutions available for the Windows platform. Application connectivity
solutions range from general technology-based connectivity to industry-specific ISV applications.

One example of an enterprise-scale connectivity solution is OpenTI from Unisys. This application connector provides services
similar to COMTI but for X/Open Distributed Transaction-based systems including Unisys Open Distributed Transaction
Processing, BEA Tuxedo, and ICL's TPMS transaction monitor. This includes full two-phase commit support with COM+ managed
transactions.

EAI Services

The deployment of EAI services (or an integration broker) around basic application connectivity can deliver solution cost savings,
particularly when the number of integrated applications increases. Solutions delivered with such a framework also provide an
organization with greater agility in responding to future requirements, such as those imposed by competitive or legislation
changes.The additional logical services provided by EAI services are centered on the integration and metadata services. For
example, the EAI services typically provide integration services for parsing, validation, transformation, formatting, and enriching
services independent of the application being integrated. In addition, the framework commonly provides metadata services for
managing interfaces, proving indexing, and searching for interchanged information.

These common EAI services are included in Microsoft BizTalk Server. BizTalk Server includes a collection of tools and services that
provide EAI logical services. In addition, BizTalk Server provides services that support integration with external organizations.

BizTalk Server consists of three major components:

A core messaging engine providing core integration services
A set of productivity tools supporting integration
An orchestration engine and design-time environment for orchestrating business process. This is described in further detail
in "Solution: Integration of Business Processes."

In addition, BizTalk Server is extended through a set of "application adapters" provided by Microsoft and third-party vendors. The
BizTalk Server architectural framework enables application adapters to be easily developed on a project-by-project basis by using
the application connectivity solutions described earlier. However, time and cost savings can be achieved by using pre-developed
adapters, such as an adapter to SAP/R3. These adapters typically include both the application connectivity element and all the
associated metadata services describing the interfaces for the application.

BizTalk Server was originally released in November 2000 as BizTalk Server 2000, and is now in its second version with the release
of BizTalk Server 2002 in January 2002.

Logical Service Mapping

As integration is focused on connecting two or more applications based on a predictable process definition, the need exists for
many additional logical services, such as the ability to map data output from one application to the format required by another. As
discussed in "Pattern Context," traditional integration methods have focused on simply linking applications together through
basic connectivity, with custom development providing the additional logical services such as data mapping. However, cost
savings and business flexibility can be achieved through the introduction of EAI technology (often referred to as an "integration
broker") to provide the additional integration logical services through a standardized framework.

The following illustration shows the logical services that are commonly supported by core EAI technology to support the
integration of heterogeneous applications. These services build upon the interfacing services and provide the additional

integration services (including parsing, transformation, formatting, and routing) through a common framework. In addition, the
metadata services are also typically supported, providing a more manageable and flexible integration solution.

See Appendix B for details of these logical services and their associated technology (physical realization).

Message-Oriented Integration Scenarios

Discussing BizTalk Server in the context of the EAI logical services means that we will be concentrating on the messaging
capabilities provided by BizTalk Server. (The orchestration capabilities are covered in the next section, "Solution: Integration of
Business Processes.")

In discussing the physical pattern for EAI services based around messaging, it is useful to consider two general messaging
challenges:

Message routing
Message transformation

Message Routing

Simple message routing between two or more applications that each leverage a standard messaging transport through code
written to that particular API is one of the most common methods of integration. It requires services to support the receipt of
messages from source applications and forwarding of messages to target applications. The following illustration shows a typical
logical configuration of a message-routing network. Three applications are connected to the message-routing network by using
components that are adapted to the network and operating system characteristics of the system.

To send messages between these applications, it is necessary to create an enterprise messaging standard that all applications and
systems can understand and use to integrate through the message router. The common messaging standard means that all
applications can freely exchange information. Using bridging products such as the MSMQ-MQSeries Bridge can extend the
messaging network to another messaging network and hence to other applications.

When a system operates as a message source (a system sending a message), data from the application — in this case Application

B — is formatted, probably by the connector, into a message. The message is essentially an envelope that contains the data
wrapped in information needed by the messaging network. The connector then forwards the message to the message router.
Most message routers then put the message to a queue. The queue adds resilience to the messaging network by persisting
messages and ensuring that they are processed in a controlled fashion.

The routing function in the message router inspects each message in sequence, determines where the message needs to be sent,
and forwards it via the input/output service to the target system.

In this case, the message from System B is targeted for System C. When the message arrives at System C, the connector removes
the envelope and delivers the data to the application.

Message Routing Considerations

Message routing provides the following advantages:

Message routing does not require the use of the transformation service within the router because all systems will share
information in the same format.
Delivery of messages can be guaranteed by implementing store and forward mechanisms with message receipt
acknowledgements.
Message routing supports asynchronous processing.
Message routing supports request and reply messaging.
Message routing can support publish and subscribe modes.
Message routing represents lighter traffic on the network than procedure calls.
Messages can be encrypted to improve security.

On the other hand, message routing presents the following challenges:

The absence of the transformation service in a pure message routing solution means that a common standard message
must be agreed on by all systems, normally requiring substantial work on the distributed applications to conform to that
format.
Each system requires a connector or application adapter in order to exchange messages with the messaging network. For
widely distributed and diverse applications this can present significant management overhead.
EAI messaging networks are generally slower than procedure call solutions.
Operational EAI messaging networks are difficult to manage without management tools that operate on the specific
network and its components.

Cross-Platform Message Queuing

Microsoft Message Queuing (MSMQ) is the message-oriented middleware product that supports messaging between Windows
platforms. Mainframes and other platforms, on the other hand, normally use a product developed by IBM called MQSeries. IBM
has extended MQSeries to other IBM and non-IBM platforms in addition to mainframes and AS/400. Although a version of
MQSeries is available for Windows NT and Windows 2000, MSMQ is native to those platforms.

To support cross-platform messaging between Windows and mainframe messaging systems, Host Integration Server 2000
includes the MSMQ-MQSeries Bridge. (As previously mentioned, for native support of IBM MQSeries, Microsoft provides the
BizTalk Adapter for MQSeries.) The MSMQ-MQSeries Bridge integrates the two messaging platforms and enables messages to be
transferred in either direction across platforms. It provides asynchronous, messaging-based communication between
heterogeneous applications. The following illustration shows this operation.

Message Transformation

By adding a transformation service to the message router, we can gain greater flexibility over the messaging network and the
systems that are integrated. Such a message hub is often known as a message broker because it brokers heterogeneous
application semantics. In the following illustration, a transform component is added to the message router.

Now each system can send messages in its own native message format. The systems do not have to abide by a common message
standard. The connectors still forward the messages from sources to the message router, but while the messages are queued they
are transformed into the message format of the target system, in this case System C.

Message Transformation Considerations

Message transformation provides the following advantages:

Message transformation solutions provide greater reach for the EAI service. Now systems can exchange information in a
native format (provided that the EAI transformation service can actually parse and serialize that format).
The resolution of the different application semantics is centralized in the message router. This helps to reduce the cost of
integration and can increase the quality of change management.

On the other hand, message transformation presents the following challenges:

Message transformation solutions require skilled staff to configure the transformations between message formats.
Message transformation solutions require access to the syntax and semantics of each native message format.
Managing the responsibility for message formatting is more complex.

Simple Routing and Transformation of XML Messages

The problem of application-to-application integration is often approached initially by understanding the external interfaces that
each system exposes, and the message formats and specifications used to transfer messages. Typically, quality of service issues,
such as security, message encoding, and reliable delivery, must also be addressed. BizTalk Messaging Services addresses these
requirements.

BizTalk Messaging Services is ideally suited for sending and receiving messages between applications within an organization. It
supports the following features:

Parsing and validation of inbound messages
Tracking of inbound and outbound messages
Generation and correlation of receipts
Use of transformation maps to change the structure and format of data
Data integrity and security

BizTalk Messaging Services can be configured either by using BizTalk Messaging Manager, a graphical user interface (UI), or
programmatically by using the BizTalk Messaging Configuration object model.

Product Mapping

Messaging Engine

The following topics describe the mapping of BizTalk Messaging features to the logical services they support. The following
illustration shows a conceptual architectural breakdown of the BizTalk Messaging engine. The base services supported by the
engine itself are supplemented by a set of user productivity tools, described later in this section.

Receive Services

BizTalk Messaging includes a built-in collection of receive services that provide a number of interfacing logical services including
dispatch, deserialization, and decoding.

In architectural terms, BizTalk Server provides a native COM interface for submitting documents (or messages) for processing. In
addition to the COM interface, pre-built services are provided to support the receipt of messages on the supported protocols.
These services monitor their respective protocols, and on the receipt of a message they call the Submit method to send the
message to BizTalk Server. The following built-in receive services are supported:

HTTP. HTTP/HTTPS support is provided natively within BizTalk Server by an ISAPI filter. HTTP support also facilitates the use
of BizTalk Server to implement and orchestrate XML Web services.
SMTP. SMTP (Simple Mail Transfer Protocol) support is provided through Microsoft Exchange Server used in conjunction
with a provided script file for monitoring a shared folder and submitting the received document to BizTalk Server.
File. BizTalk Server provides a file receive service that can be configured to monitor a specified directory and, when a file is
deposited in the directory, to automatically submit the file to BizTalk Server.

For efficiency, BizTalk Server does not poll the directory for deposited files; it instead utilizes the "file change event
notification" feature of the NTFS file system as the stimulus trigger. This has implications when integrating with alternative
file systems where applications are depositing files. The simplest solution is to host the receive directory under NTFS on
Windows 2000 and make this available to other systems, for example using NFS between Windows 2000 and a UNIX
system. In the case where the file system is located on another system and made available to NTFS, it must support the file
change notification events; for example, it is known that the latest version of SAMBA for UNIX will support this feature.
Alternative mechanisms such as FTP could be used to transfer documents between the systems.

MSMQ. BizTalk Server provides a Message Queuing (MSMQ) receive service that can be configured to monitor a specified
queue and, when a message is deposited in the queue, automatically submit the message to BizTalk Server.

A consideration in using MSMQ as a transport is that it has a storage limit of 4 megabytes (MB) per message that is stored
in a message queue, and a total limit of 2 gigabytes (GB) for all messages that can be stored in all message queues on a
single server.

MQSeries. Microsoft provides native support for IBM MQSeries through the BizTalk Adapter for MQSeries. This allows the
definition and management of a receive service that can be configured to monitor a specified queue and, when a message is
deposited in the queue, to automatically submit the message to BizTalk Server.

BizTalk Server is extensible, and custom components can be developed to support message receipt on alternative transport
protocols. Application adapters can exploit any of the technology and products providing application and data connectivity
services which were described earlier in this section. For example an application adapter can be built to connect to DB2 running
on an AS/400 through the OLE-DB provider shipped within Host Integration Server.

The built-in receive services are also extensible and preprocessing of received data can be incorporated. For example, messages
received via MSMQ may be compressed by the sending application using a particular propriety compression algorithm and
complimentary decompression will be required before the message can be processed.

Delivery Services

Complementing the receive services, BizTalk messaging also includes built-in delivery services, supporting the following transport
protocols:

COM
MSMQ
HTTP/HTTPS
SMTP
File

Like the receive services, the delivery services are also fully extensible through the exploitation of what are referred to as
application integration components (AICs) or application adapters. An AIC is a simple COM component that is recognized by the
BizTalk framework and provides the bridge between BizTalk Server and the application. Such adapters can exploit any application
or data connectivity software described in the previous sections. For example, an AIC could exploit the COMTI component of Host
Integration Server to integrate a CICS application with the BizTalk Server EAI services.

Message Queuing Services

The BizTalk Server messaging engine is highly scalable through the provision of a "Message Queuing" logical service native
within the engine. This provides an asynchronous interface for application integration that supports both increased scalability and
resilience. Synchronous interfaces are also supported for those scenarios where they are required.

Architecturally, the receive and processing services are separated, allowing the receive services to be purely responsible for
receiving messages into the engine and the processing services responsible for routing and processing messages. This separation
enables processing servers to be arranged into a "processing group," allowing the processing workload to be spread across
servers in the group. This allows an organization to simply grow the deployment of servers into the group as throughput
requirements increase, without further re-engineering. The processing group also provides a naturally resilient architecture. This
architecture has been proven to support the processing of hundreds of millions of transacted (therefore reliable through
persistence) documents per day, with 100% observed availability, in a single managed image.

Transactional Services

The BizTalk Server messaging engine supports full two-phase commit transactional services through the exploitation of COM+
transactions. This enables the interface between an application and the messaging engine to be transactional for both the receipt
and delivery of messages. For example, this can be used to ensure that an update to a database in response to the processing of a
message occurs only if the message is also removed from the messaging engine, ensuring once-only processing.

Transactional support is provided only if the resource or application itself is transactional; for example, interfacing to a CICS
application within a transaction would require the exploitation of the Host Integration Server COMTI technology within the BizTalk
Server application adapter.

Reliable Message Delivery Services

The BizTalk Server messaging engine provides a reliable messaging service that supports a protocol for the reliable delivery of
messages over non-reliable transport protocols, such as HTTP or SMTP. The reliable delivery is provided through the support of
the BizTalk Framework 2.0 envelope (built on the SOAP standard).

The reliable delivery is based on delivering the document and the receiver returning an acknowledgment within a given time
frame. The protocol allows the sender to retry sending the document until the acknowledgement is received or until the defined
retry time limit is exceeded. The receiver is required to return an acknowledgment and not to process the message again if they
have previously processed the message. This protocol is natively supported by BizTalk Server.

Routing Services

The linking of applications through BizTalk Server messages provides an organization with great flexibility through the logical
routing service supported by the framework. For example, sending applications do not need to be aware of recipients of their
information, which allows a receiving application to be replaced in the future without impacting the sending application.

BizTalk Server message routing supports the following routing mechanisms:

Declarative
Content based
Publish and subscribe

Transformation and Mapping Services

BizTalk Server messaging provides both mapping and transformation logical services, supporting transformation between any of
the following source and destination formats:

XML
Flat-file delimited
Flat-file positional
Hybrid delimited and positional flat files
EDI (X12 and UN/EDIFACT)
Custom (extensions performed through the use of an included SDK)

In supporting this flexible mapping between various document formats, BizTalk Server converts all non-native XML documents to
an intermediate XML format before applying the data transformation. The use of this intermediate XML format allows all the
transformations to be performed by using the W3C transformation standard XSLT.

The following illustration shows the process of mapping a source specification to a destination specification. The source file is an
EDI-based document, and the destination file is a flat-file document. In this example, the EDI document structure is converted to
an intermediate XML format, the structure of which is represented by an XML schema specification. The final format of the data is
a flat file. A data-driven parser (that uses the XML schema specification) creates an XML version of the source EDI specification.
The XSL engine then transforms this source XML representation to an XML representation of the destination file format. The
destination specification is later serialized to the native format of the destination file, which is a flat file in this example.

The XSLT required for the transformation is generated by using the BizTalk Mapper tool, which provides the graphical design tool
for specifying the document mapping (see the "BizTalk Mapper" topic later in this document. The Mapper supports a variety of
mapping scenarios that range from simple, parent-child tree relationships to detailed, complex looping of records and hierarchies.

Sometimes there is no simple mapping, and transformation is also required. For example, the contents of several source fields
may need to be combined to form the contents of a destination field, or some data processing may need to be performed on the
contents of the source specification field to produce the required contents of the destination field. Within the Mapper, there are
two ways to introduce intermediate data processing during the mapping process:

Functoids. Functional objects that perform simple predefined operations (for example, string manipulation or
mathematical operations). They can be used singularly or combined to perform arbitrarily complex and unique
transformations.
Scripts. Short user-written scripts, executed by the script functoid, which allow for more complex data processing. These
scripts can then become reusable objects within the mapping environment.

Functoids provide extensions to simple links that enable a data item to be transformed as it is mapped from the source to the
destination, for example converting the text to uppercase. Pre-built functoids are provided in the following categories: String,
Mathematical, Logical, Date and Time, Conversion, Scientific, Cumulative, and Database, together with a collection of Advanced
functoids.

Metadata Services

BizTalk Server supports a number of metadata logical services including schemas, configuration, and names. BizTalk Server
metadata is held centrally within a configuration database that is shared across instances deployed in the processing group. The
information may also be accessed and modified programmatically through a COM-based configuration model.

Schema Services

BizTalk Server provides comprehensive schema services that allow the definition, management, and maintenance of application
data formats.

Data formats supported out of the box are:

XML
Delimited flat files
Positional flat files
Hybrid delimited and positional flat files
EDI (X 12 and UN/EDIFACT)
Custom (extensions performed through the use of an included SDK)

Data formats are maintained as XML-based specifications, exploiting XML schema technology implemented in the XML parser
that is supplied with Internet Explorer 5.0 and later versions. XML schemas are defined by using the BizTalk Editor; see the "BizTalk
Editor" topic later in this document for further details. While XML schema technology natively supports XML data formats,
embedded XML notations support the definition of validation and processing rules for positional and delimited flat files as well as
EDI-based file formats. Predefined schemas are also provided for common EDI messages based on X12 and UN/EDIFACT EDI
standards.

All interface schemas and maps are maintained within a Web Distributed Authoring and Versioning (WebDAV) repository.
WebDAV is a standard of the Internet Engineering Task Force (IETF) for collaborative document editing over the Web.

Indexing and Searching Services

A document tracking service is also provided, supporting the ability to optionally track interchanges made through the messaging
engine together with an associated search facility. See the "BizTalk Document Tracking" topic later in this document for further
information.

Productivity Tools

BizTalk Server includes the following productivity tools:

BizTalk Editor. Supports the definition of structured business documents through a graphical tool.
BizTalk Mapper. Allows the mapping and transformation of business data to be expressed in a graphical tool.
BizTalk Messaging Manager. Provides an environment for the definition and management of application and trading
partner integrations.
BizTalk Document Tracking. Provides the ability to track and analyze business data.
BizTalk Administration Console. A standard Microsoft Management Console (MMC) for managing the system.
BizTalk Orchestration Designer. Supports the automation of distributed business processes through their definition
using a Microsoft Visio®-based graphical interface. The orchestration designer is described in further detail in "Solution:
Integration of Business Processes."

More details about these tools can be found in the BizTalk Server documentation or in Appendix H: BizTalk Server Tools.

Application Adapters

Microsoft's strategy for pre-built application adapters for BizTalk Server is:

Encourage application ISVs to build native BizTalk Server connectivity. Unlike other EAI vendors who have built the adapters
themselves, Microsoft has encouraged application and technology vendors to develop their own adapters.
Partner with adapter ISVs to deliver application and technology adapters.
Build and deliver key adapters directly. For example, Microsoft provides a native IBM MQSeries adapter in addition to the
MSMQ/MQSeries Bridge solution provided within Host Integration Server.
Engage systems integrators to build niche and industry-specific connectivity.
Provide means for customers to easily build custom adapters themselves through the use of an Adapter Development Kit
SDK included with the product.

Through the execution of this strategy, application and technology adapters are available for the following. Note that this list is
continually growing.

Application adapters (as of January 2002):

Ariba Clarus Commerce One Cove Systems
Eqos FrontStep Great Plains J.D. Edwards
Kewill Manhattan Associates Mapics McHugh

Mega Microsoft Office XP Navision Onyx
Oracle Partner Community Peachtree Peoplesoft
Peregrine Pivotal QAD Quickbooks
Remedy SAP Scala Business Systems ServiceSwitch
Siebel Slam Dunk Networks Staffware Trade Power
Ultimus VerticalNet Visibility Worldtrak

Technology adapters (as of January 2002):

Active X Data Objects ADDS ADM11/H ADM11/P
ADM11/R ADM11/W AFP Ampex 230
ANSI ASCII BizTalk Framework C API
CICS / IMS Cifer T205 Cobol COM
CORBA Dec VT DG 216 Document Archival
EBCDIC EDI Flat File FTP
GALILEO HIPAA HL7 HP 700/92/2392A
HTML HTTP HTTPS IBM 3270
IBM 5250 IBM DB2/400 IBM DB2 UDB 6.1 IBM DB2 UDB 71.
ICL 7561 ICL DRS-M10/M15 IMS IN2 SM9400j
INS SM9400g Ingres J2EE Java
Java Beans JDBC JMS Loopback
MDIS PRISM 8 / 9 Microsoft SQL Server 7.0 Microsoft SQL Server 2000 Microfusion MF-30
Monitoring MQ Series MSMQ ODBC
Oracle 8i Oracle 7.x, 8.X Oracle 9i Advanced Queuing P9 ANSI
PC Monitor PDF Progress Database 8.3b, 9.0 PT200
RosettaNet SCO ANSI SMTP Sybase
TELEVIDEO 955 TVI 920 UML VIDEOTEXT
WYSE 50/60 WYSE 50+ XML.

Appendix E: Integration of Business Processes

Business process orchestration is an approach to business process automation that involves coordinating activities that represent
steps in a defined business process as a series of messages and communication among those activities. To perform business
process orchestration, it is important to understand each piece within the system, and then understand that it is a combination of
well-designed pieces acting in concert that brings the desired result.

Orchestration

Fundamental to the concept of orchestration is being able to quickly and simply change and redeploy a business process as the
situation or organizational requirements change. Business processes need to be changed rapidly to adapt to changing business

needs, and this is even truer as you expand outside of one business and cross over into another. People move in and out of
organizations, laws change, requirements change, and feedback must be allowed to help optimize the system. The need can be
stated as follows: The system needs to be flexible yet powerful enough to adapt to all of these changes, and where appropriate
adapt automatically to the changes without intervention. This is a system that provides business process orchestration.

The Data Integration services focus predominantly on resolving the heterogeneity of applications at a data level. Business process
orchestration services, on the other hand, are concerned with integrating applications at the process level. They are concerned
with factors such as time, order, correlation, integrity, and events.

Logical serv
ice

Realization in BizTalk Server

Integration

+
F
o
r
m
at

Through orchestration, application-specific request and response formatting can be abstracted from the client, allo
wing BizTalk Orchestration to communicate using an open format such as a SOAP envelope. This approach means t
hat little or no modification should be necessary to existing enterprise applications and that third-party Web servic
es can be accommodated.

Furthermore, message metadata can be added and handled through orchestration. This could include timestamps,
process audit information, and standardized error reporting.

Orchestratio
n

+

+

+

+

+

+

+

+
Tr
a
n
s
a

One of the key benefits of an orchestrated business process is the ability to branch and synchronize subprocesses.
This enables data source requests to execute in parallel, reducing the complexity of implementing the required logi
c for each branch.

Also, an orchestrated process allows compiled logic to be leveraged in an accessible and flexible fashion that is ope
n to change in the short or medium term.

COM-based integration with the BizTalk Orchestration Engine allows for the integration of transactions in processi
ng orchestrations. The entire orchestration may be treated as a single transaction to be committed or rolled back as
a single unit, or individual transactions may be implemented within the orchestration.

The BizTalk Orchestration Service provides scheduling services for the defined process flows.

BizTalk Orchestration services provide for the definition, execution, and management of process flow.

The BizTalk Message Service provides mechanisms for handling the non-delivery of messages, as does MSMQ.

BizTalk Messaging Services.

ct
io
n
In
te
g
ri
ty

+

+

+

+

+

+

+
S
c
h
e
d
ul
e

+

+

+
P
r
o
c
e
ss
Fl
o
w

+

+

+
N
o
n
-
D
el
iv
er
y

+

+

+
In

te
g
ra
ti
o
n
E
v
e
nt
s

Product Mapping

BizTalk Server Orchestration

BizTalk Messaging Services are designed to support the receipt of messages that then flow into a business process, or to send
messages that flow out of a business process. BizTalk Orchestration is designed to manage business processes. Therefore, the two
services are designed to work together, with BizTalk Messaging Services providing a receipt and delivery support layer for BizTalk
Orchestration Services.

BizTalk Orchestration Services can also use BizTalk Messaging Services to integrate one business process with another by sending
or receiving messages between the two business processes.

To send or receive messages between two distinct business processes, you must:

Use BizTalk Orchestration Services to create an XLANG schedule that sends a message and an XLANG schedule that receives
it.
Use BizTalk Messaging Services to create a messaging port. This messaging port must be configured to instantiate a new
instance of the receiving XLANG schedule and deliver a message to a specified port in that schedule.
Use BizTalk Messaging Services to create a channel for the messaging port that you created. This channel must be
configured to receive a message from the sending XLANG schedule.

A common scenario for integrating the two services is the correlation of messages within a single running XLANG schedule
instance. That is, to have an XLANG schedule instance send a message to an internal application or a trading partner, and to
expect a message in return. An example is sending a purchase order and expecting a purchase order acknowledgement in return.

Use BizTalk Messaging Services to apply encryption, digital signatures, mapping, or tracking to message contents.

New Business Processes with BizTalk Server Orchestration

BizTalk Orchestration Services are ideally suited for developing business processes. Business-process design and implementation
have traditionally been performed in two distinct phases: the visual design phase and the coding phase. The visual design phase
typically consisted of the analysis of an existing business process (such as corporate procurement) and the creation of a workflow
diagram or an interaction diagram to describe the process. The coding phase was usually performed separately. In this paradigm,
you would build an abstract visual model of a business process and then map the model to an implementation framework.

One of the important features of BizTalk Orchestration Services is the integration of these previously distinct phases within a
unified design environment. This design environment provides a versatile drawing surface and a comprehensive set of
implementation tools. BizTalk Orchestration Services enables you to:

Create XLANG schedule drawings that describe business processes.
Implement business processes by connecting specific actions within a drawing to ports that represent locations to which
messages are sent or from which messages are received. Ports are named locations, and messages represent the data sent
or received between actions and ports.
Define the flow of data between messages within business processes.
Compile XLANG schedule drawings into XLANG schedules. XLANG schedules are executable Extensible Markup Language
(XML) representations of the information contained within the drawings.

BizTalk Orchestration Services are also designed to manage business processes that might need to be altered quickly or often. In
the past, developers have created COM+ components that controlled the business processes, and more traditional COM+
components that did the work. BizTalk Orchestration Services enable you to replace the business process control components
with XLANG schedules. However, it is not recommended that you use BizTalk Orchestration Services to define processes at the

work level. Instead, use your existing traditional COM+ components. The value of BizTalk Orchestration Services diminishes if it is
used to control small portions of a larger business process.

Long-Running Transactions with BizTalk Server Orchestration

In addition to the integration of design and implementation functionality, BizTalk Orchestration Services provides another
important feature: the ability to create and manage robust, long-running, loosely coupled business processes that span
organizations, platforms, and applications. During an asynchronous, loosely coupled, long-running business process, a product
that is ordered over the Internet might have to be built from parts that are in inventory. Some of these parts might even be
temporarily out of stock. The entire business process might take weeks or months to complete. In contrast, a tightly coupled
business process involves the synchronous exchange of messages. For example, when a customer withdraws money from a bank
account, the debiting of the account is immediately followed by the delivery of the money.

By providing an integrated, graphical modeling environment, BizTalk Orchestration Services provides the following important
benefits:

When business processes change, the implementation can be quickly and easily redefined.
Concurrent processes can be easily designed, implemented, and maintained.
Transactions (long-running, short-lived, and nested) can be easily structured and maintained.

One of the key strengths of BizTalk Orchestration Services is to manage and maintain the state of long-running transactions.

BizTalk Orchestration Services is a business process automation tool. It is not intended to be a complete workflow system
replacement. In particular, it is not intended to define role-based, hierarchical escalation in person-to-person processes. For
business processes that contain role-based aspects that are escalated in a no-response situation, these processes are more
appropriately implemented as Microsoft Exchange workflows, which can be integrated with BizTalk Orchestration Services.

Security Services

BizTalk Server can exploit base security services provided by the Windows 2000 operating system for securing message
exchanges, including:

Authentication (e.g., Kerberos)
Authorization (e.g., Windows 2000 access control lists)
Auditing (e.g., Security Event Log)
Privacy (e.g., IPSec)

In addition to these base system services, BizTalk Server Messaging supports Public Key Infrastructure (PKI) X.509 Digital
Certificates for secure interchanges between applications or trading partners. Interchanges can be secured at two layers:

Transport layer. Here the actual exchange is secured at the transport level and the document exchange can be
authenticated and encrypted. In securing at the transport level, after the document has been received and secured at the
receiving partner:

The sender of the document can no longer be authenticated from its source.
The document is no longer encrypted.
It is not possible to verify the document's origin after it has been received.

Examples of transport security technologies supported include HTTPS, Transport Layer Security (TLS version 1.0), Secure
Sockets Layer (SSL versions 2 and 3), and Private Communications Technology (PCT version 1.0).

Document layer. Here the document itself is secured and can be encrypted and/or digitally signed. BizTalk Server
implements the S/MIME standard for document integrity, authentication, and confidentiality. By using S/MIME, BizTalk
Server can store, send, and receive documents that are:

Digitally signed.
Encrypted.
Encrypted and digitally signed.

Because BizTalk Server follows the S/MIME version 3 specification, you can securely exchange documents with other applications
that implement the S/MIME standard.

Management

You can use Windows Management Instrumentation (WMI) and Microsoft Operations Manager (MOM) to monitor BizTalk Server.

These two management tools enable you to:

Monitor standard and custom alert notifications.
Consume and use Microsoft Windows NT Event Log entries for BizTalk Server.
Create performance statistics for running business processes (XLANG Scheduler) without the use of scripts.
Monitor the basic BizTalk Server components, such as the BizTalk Server databases and database tables, per-instance
queues, and services.

Further information about WMI and Microsoft Operations Manager can be found in the Windows 2000 and MOM product
documentation respectively.

To further strengthen the monitoring capabilities of Microsoft Operations Manager, the BizTalk Server 2002 Enterprise Edition
Management Pack module contains computer grouping and processing rules, as well as other information that enables you to
monitor events specific to BizTalk Server 2002. You can import the BizTalk Server 2002 Management Pack to monitor computers
in the current configuration group.

The BizTalk Server 2002 Management Pack provides an initial set of rules and counters that include all of the Messaging and
Orchestration error messages, the BizTalk Server databases, Windows NT events, and queues. You can customize the
Management Pack to reflect your monitoring needs and obtain greater detail in the areas your organization is interested in
monitoring.

The BizTalk Server 2002 Management Pack provides over 900 rules of various types including:

A processing event rule for every Windows Application event that can be generated from BizTalk Messaging and BizTalk
Orchestration.
Performance measurement rules for performance counters and database file sizes in BizTalk Server 2002. These support the
20 performance views in the Management Pack specific to BizTalk Server.
Performance threshold rules for performance counters and database file sizes in BizTalk Server 2002 (one for error severity
and one for warning severity).
Custom Counter, Suspended Queue, and three other sample rules that show how to build rules customized to your specific
BizTalk Server 2002 implementation.

Using these rules, system administrators can be notified:

When the BizTalk Messaging Service is down or how long it has been running.
When any Windows event is generated from BizTalk Messaging or BizTalk Orchestration.
Whether documents to an important customer are being suspended and how many documents to an important customer
are successfully sent per period of time.
When the BizTalk Server databases are getting to a specific predetermined size.

When the number of failed schedules per unit time becomes too large.

Appendix F: ETL with Host Integration Server 2000 Data Integration
The Data Integration layer of Microsoft® Host Integration Server 2000 provides access to both structured and non-structured
data stored on IBM mainframe or AS/400 computers. This data can be stored in a database or file system. In addition to data
access, the Data Integration layer is also responsible for providing data transfer services between Microsoft Windows® 2000
computers and host systems. The Data Integration layer consists of components that make use of existing mainframe and AS/400
software.

The Data Integration layer can be broken down further into the following categories:

Relational database access
Record file access
File transfer
AS/400 data queue access

All of these services make use of IBM host-based products that implement the IBM Distributed Data Management Architecture
(DDM). DDM is a framework or methodology for sharing and accessing data between systems. DDM defines the "how to
communicate" and leaves it up to individual platform vendors to implement the DDM architecture. IBM currently supports DDM
for most IBM platforms, including: OS/390 (MVS), AS/400, RS/6000 (AIX), and AS/36. By supporting DDM, application developers
are freed from having to write complex communications interfaces for each platform they need to support. Instead the application
and DDM handles this complexity on behalf of the application.

The following illustration shows Distributed Data Management. Components of the Host Integration Server 2000 Data
Integration layer utilize popular DDM file models when integrating host data sources with Windows-based and .NET-
based applications.

Host Integration Server 2000 offers relational database access by using the Distributed Relational Data Architecture (DRDA)
subset of DDM, non-relational access using the Record Level I/O (RLIO) implementation of DDM, while file transfer and AS/400
data queue access employ a subset of the RLIO protocol.

Relational Database Access

Much of the operational data stored on OS/390, AS/400, and RS/6000 computers is accessed via a relational database
management system. The most popular database on these host systems is IBM DB2. In the case of the AS/400, DB2 is integrated
with the operating system. For OS/390 and RS/6000 computers, it is common for organizations to deploy the IBM DB2 relational
database management system (RDBMS).

What all of these host systems have in common is that data stored in these databases are accessible as relational tables using
Structured Query Language (SQL). This allows for efficient and standardized access to the data on the local DB2 system. However,
for many years, there was no common means of accessing data across systems on remote DB2 computers. To resolve this
problem, IBM devised Distributed Relational Databases Architecture (DRDA) and has passed the architecture to The Open Group
for publication and future extension.

DRDA offers both Remote Unit of Work (RUW) and Distributed Unit of Work (DUW) access to host data. RUW is used for read-
only and simple updating of database tables using SQL statements and stored procedures. DUW is used when updates span
multiple DB2 instances or computer systems and supports the two-phase commit (2PC) protocol. The 2PC protocol ensures that
changes to multiple databases will either succeed or fail in their entirety.

Through its Universal Data Access (UDA) architecture, Microsoft supports two popular methods of accessing remote relational
databases: the industry-standard Open Database Connectivity (ODBC); and the broader Object Linking and Embedding DB (OLE
DB). ODBC is designed specifically for interoperating with SQL-accessible RDBMSs. ODBC is implemented by independent
software vendors (ISVs) in the form of either a back-end data base driver, or as a front-end application (e.g., reporting or query
tool). Microsoft and other vendors offer ODBC drivers for most of the popular RDBMSs. Microsoft defined OLE DB as a multi-tier
distributed architecture for accessing both SQL RDBMSs and non-SQL data sources (e.g., mail folders, Internet server stores, flat
file systems). In the OLE DB architecture, ISVs develop software that participates in one of three roles: (1) OLE DB provider, or
back-end data source driver, (2) OLE DB service component (e.g., query processor, cursor engine), and (3) OLE DB consumer (e.g.,
Web service or application, GUI query or reporting tool). OLE DB is based on the Component Object Model (COM) and OLE DB
providers are designed to expose a well-known set of interfaces. When a provider cannot expose specific, useful, or often-required
functionality, an OLE DB service component is employed to extend and standardize the abilities of the provider. In this way, OLE
DB consumers can be written to access multiple data sources without knowing any of the vagaries or limitations of a given back
end provider.

Host Integration Server 2000 implements access to DB2 via two features:

Microsoft ODBC Driver for DB2
Microsoft OLE DB Provider for DB2

The first of these methods is the ODBC Driver for DB2. It relies on an underlying DRDA application requester (AR) developed by
Microsoft. The DRDA AR connects the ODBC driver to DB2 on popular platforms, including OS/390, OS/400, RS/6000-AIX, and
Windows NT®, Windows 2000, Windows XP.

It provides a flexible way for developers using the ODBC API to create applications that can access DB2 records quickly and
efficiently. The driver supports the DRDA Level 3 standard and ODBC 3.x interfaces, and allows application programmers to write

C and C++ applications that issue dynamic SQL queries and call DB2 stored procedures.

The second method to access DB2 is through the OLE DB Provider for DB2. This component is also implemented to site on top of
the DRDA AR, and therefore supports the same target DB2 systems and substantially the same DB2 access features (e.g., dynamic
SQL and stored procedures, 2PC, SNA LU6.2 and TCP/IP network connectivity). Developers can use C or C++ to integrate DB2
data with Web-based and Windows-based applications. Microsoft Visual Basic® and Web developers (using scripting languages
such VBScript) can use the higher-level ActiveX® Data Objects (ADO) to develop e-commerce solutions. Additionally, DB2 is
directly accessible from productivity applications, such as Microsoft Office 2000 using Visual Basic for Applications (VBA) and
ADO from within Excel.

Many organizations want to improve corporate decision making by centralizing data that is stored in a variety of formats in a
number of different places. Database administrators can use Data Transformation Services (DTS), a feature of Microsoft SQL
Server™ 2000 and Microsoft SQL Server 7, to import and export data between multiple heterogeneous sources using the OLE DB
Provider for DB2. Using this tool, administrators can create a data warehouse using DB2 data, plus integrate most other data
sources accessible via an OLE DB provider.

The Distributed Query Processor (DQP), another feature of Microsoft SQL Server, allows users to access data that resides on
multiple, distributed databases across multiple servers. Using DQP, SQL Server administrators and developers can create linked
server queries that run against multiple back-end data sources with little or no modification. DQP enables application developers
to create heterogeneous queries that join tables in SQL Server with tables in DB2. Also, DQP can be used to create SQL Server
views over DB2 tables so that developers can write directly to SQL Server and integrate both Windows-based and host-based
data in their applications with ease.

Record File Access

Another rich source of legacy information is the large amount of data still stored in mainframe VSAM files, Partitioned Datasets,
and AS/400 files. Host Integration Server 2000 supports the following services for access to non-relational host data:

The OLE DB provider for AS/400
The OLE DB provider for VSAM

The OLE DB Provider for AS/400 supports record-level access to keyed and non-keyed physical files with external record
descriptions, as well as logical files with external record descriptions. Also, the provider can use an optional Host Column
Description (HCD) file to describe the format of the target file, mapping the AS/400 data types to OLE DB data types, allowing the
developer to access AS/400 flat data files and source files.

The OLE DB Provider for VSAM, which relies on the HCD files to define the metadata of the target data set or member, provides
access to most types of mainframe based VSAM files.

Sequential Access Method (SAM) data sets

Basic Sequential Access Method (BSAM) data sets
Queued Sequential Access Method (QSAM) data sets

Virtual Storage Access Method (VSAM) data sets

Entry-Sequenced Data Sets (ESDSs)
Key-Sequenced Data Sets (KSDSs)
Fixed-length Relative Record Data Sets (RRDSs)
Variable-length Relative Record Data Sets (VRRDSs)
VSAM Alternate Indexes to ESDSs or KSDSs

Basic Partitioned Access Method data sets

Partitioned Data Set Extended (PDSE) members
Partitioned Data Set (PDS) members
Read-only support for PDSE directories
Read-only support for PDS directories

Using Microsoft Visual Studio®, developers can build dynamic web applications that integrate host non-relational data sources
with Windows data, allowing knowledge workers to publish needed information for use by their organization's decision makers.

File Transfer

Most 3270 emulators support the ability to transfer files between a mainframe computer and a workstation using the IND$FILE

utility program. This program works in conjunction with a host operating system such as TSO or teleprocessing monitor software
such as CICS running on the mainframe. This process, is often manual and is somewhat inefficient due to the need to use 3270
terminal emulation on the client and to have the host operating system act as an intermediary in the data transfer process. Host
Integration Server 2000 provides several more efficient methods to perform file transfer. These methods are:

Host File Transfer
APPC File Transfer Protocol (AFTP)
AS/400 Shared Folders

The Host File Transfer utility lets developers move files between a host system and a local Windows computer. Host Integration
Server 2000 provides this service through a single ActiveX Control. This extends the ability of the client application to perform file
transfer operations from a large number of client development environments. Using HCD files, the Host File Transfer can access
the same mainframe data set types as the OLE DB Provider for VSAM, yet it is optimized to download or upload the entire
contents of the data set or member. Other supported environments include the AS/400 and AS/36.

The TCP/IP based File Transfer Protocol (FTP) is often used to move files between computer systems running under UNIX, VMS,
and other operating systems. This capability is typically provided as a utility program that implements a set of commands that can
be used to connect to a remote computer, log on, navigate to specific locations in the local and remote computer file systems, and
then transfer a file (or multiple files) to or from that computer. Unfortunately, to use this protocol to transfer files to a host
computer would require TCP/IP on the host. (Most data center managers are reluctant to support TCP/IP on a host computer due
to security and performance issues.) Because of the popularity of this protocol, however, IBM has implemented a similar SNA
function, the APPC File Transfer Protocol (AFTP). This allows files to be transferred between SNA systems using commands that
are so similar to FTP commands that anyone familiar with FTP can easily use AFTP to perform file transfer functions. Internally,
AFTP transfers files using the LU 6.2 program-to-program protocol, which is quite efficient for transferring files. AFTP software
can be installed either on the Host Integration Server 2000 server or client and used to transfer files to an SNA host.

The AS/400 Shared Folders feature of Host Integration Server 2000 allows a Windows NT or Windows 2000 administrator to re-
share a file on an AS/400 host as if it is a local file system directory. Because the AS/400 shared folders feature uses standard
operating system file sharing, it requires no software on the client. The client simply sees the folder as a standard Windows NT or
Windows 2000 shared directory. This feature is implemented in Host Integration Server 2000 using the same AS/400 PC Support
software that allows workstations to access AS/400 files in a pure SNA network configuration.

AS/400 Data Queue Access

AS/400 Data Queues are used on an AS/400 to send data records between separately executing programs. Multiple AS/400 client
programs can send data records to a single server program running on an AS/400. Alternatively, a single client program can send
records to an AS/400 Data Queue and multiple server programs can extract the records and process the data in parallel. This
feature proved so useful in developing AS/400 applications that IBM extended the use of AS/400 Data Queues to PC workstations.
Host Integration Server 2000 enables Windows 32-bit applications to access data queues via the AS/400 Data Queue COM
Automation Control. Host Integration Server 2000 lets developers access AS/400 data queues from a PC running Windows, so
they can move part or all of their AS/400 applications from an AS/400 computer to a PC platform and still use the PC-based
program to access a remote data queue on the AS/400.

Appendix G: ETL with SQL Server 2000 and DTS
Many organizations need to centralize data to improve corporate decision-making. However, their data may be stored in a variety
of formats and in different locations. Data Transformation Services (DTS) addresses this vital business need by providing a set of
tools that lets you extract, transform, and consolidate data from disparate sources into single or multiple destinations supported
by DTS connectivity. By using DTS tools to graphically build DTS packages or by programming a package with the DTS object
model, you can create custom data movement solutions tailored to the specialized business needs of your organization.

DTS Packages

A DTS package is an organized collection of connections, DTS tasks, DTS transformations, and workflow constraints assembled
either with a DTS tool or programmatically and saved to Microsoft® SQL Server™, SQL Server 2000 Meta Data Services, a
structured storage file, or a Microsoft Visual Basic® file.

Each package contains one or more steps that are executed sequentially or in parallel when the package is run. When executed,
the package connects to the correct data sources, copies data and database objects, transforms data, and notifies other users or
processes of events. Packages can be edited, password protected, scheduled for execution, and retrieved by version.

DTS Tasks

A DTS task is a discrete set of functionality, executed as a single step in a package. Each task defines a work item to be performed

as part of the data movement and data transformation process, or as a job to be executed.

DTS supplies a number of tasks that are part of the DTS object model and can be accessed graphically, through DTS Designer, or
programmatically. These tasks, which can be configured individually, cover a wide variety of data copying, data transformation,
and notification situations. For example:

Importing and exporting data.

DTS can import data from a text file or an OLE DB data source (for example, a Microsoft Access 2000 database) into SQL
Server. Alternatively, data can be exported from SQL Server to an OLE DB data destination (for example, a Microsoft Excel
2000 spreadsheet). DTS also allows high-speed data loading from text files into SQL Server tables.

Transforming data.

DTS Designer includes a Transform Data task that allows you to select data from a data source connection, map the columns
of data to a set of transformations, and send the transformed data to a destination connection. DTS Designer also includes a
Data Driven Query task that allows you to map data to parameterized queries.

Copying database objects.

With DTS, you can transfer indexes, views, logins, stored procedures, triggers, rules, defaults, constraints, and user-defined
data types in addition to the data. In addition, you can generate the scripts to copy the database objects. However, there are
restrictions on this capability.

Sending and receiving messages to and from other users and packages.

DTS includes a Send Mail task that allows you to send an e-mail message if a package step succeeds or fails. DTS also
includes an Execute Package task that allows one package to run another as a package step, and a Message Queue task that
allows you to use Message Queuing to send and receive messages between packages.

Executing a set of Transact-SQL statements or Microsoft ActiveX® scripts against a data source.

The Execute SQL and ActiveX® Script tasks allow you to write your own SQL statements and scripting code and execute
them as a step in a package workflow.

Because DTS is based on an extensible COM model, you can create your own custom tasks. You can integrate custom tasks into
the user interface of DTS Designer and save them as part of the DTS object model.

DTS Transformations

A DTS transformation is one or more functions or operations applied against a piece of data before the data arrives at the
destination. The source data is not changed. For example, you can extract a substring from a column of source data and copy it to
a destination table. The particular substring function is the transformation mapped onto the source column. You also can search
for rows with certain characteristics (for example, specific data values in columns) and apply functions only against the data in
those rows. Transformations make it easy to implement complex data validation, data scrubbing, and conversions during the
import and export process. Against column data, you can:

Manipulate column data.

For example, you can change the type, size, scale, precision, or nullability of a column.

Apply functions written as ActiveX scripts.

These functions can apply specialized transformations or include conditional logic. For example, you can write a function in
a scripting language that examines the data in a column for values over 1000. Whenever such a value is found, a value of -1
is substituted in the destination table. For rows with column values under 1000, the value is copied to the destination table.

Choose from among a number of transformations supplied with DTS.

An example would be a function that reformats input data using string and date formatting, various string conversion
functions, and a function that copies the contents of a file specified by a source column to a destination column.

Write your own transformations as COM objects and apply those transformations against column data.

DTS Package Workflow

You can define the sequence of step execution in a package with:

Precedence constraints that allow you to link two tasks together based on whether the first task executes, executes

successfully, or executes unsuccessfully. You can use precedence constraints to build conditional branches in a workflow.
Steps without constraints are executed immediately, and several steps can execute in parallel.
ActiveX scripts that modify workflow.

Connectivity

DTS is based on an OLE DB architecture that allows you to copy and transform data from a variety of data sources. For example:

SQL Server and Oracle directly, using native OLE DB providers
ODBC sources, using the Microsoft OLE DB Provider for ODBC
Access 2000, Excel 2000, Microsoft Visual FoxPro®, dBase, Paradox, HTML, and additional file data sources
Text files, using the built-in DTS flat file OLE DB provider
Microsoft Exchange Server, Microsoft Active Directory®, and other nonrelational data sources
Other data sources provided by third-party vendors

DTS functionality may be limited by the capabilities of specific databases, ODBC drivers, or OLE DB providers.

DTS Tools

DTS includes several tools that simplify package creation, execution, and management:

The DTS Import/Export Wizard, which is used to build packages to import, export, and transform data, or to copy database
objects.
DTS Designer, a graphical application that lets you construct packages containing complex workflows, multiple connections
to heterogeneous data sources, and event-driven logic.
The Data Transformation Services node in the SQL Server Enterprise Manager console tree, which is used to view, create,
load, and execute DTS packages, to control DTS Designer settings, and to manage execution logs.
Package execution utilities:

The dtswiz utility starts the DTS Import/Export Wizard by using command prompt options.
The dtsrun utility runs a package from a command prompt.
The DTS Run utility (dtsrunui) allows you to run a package by using dialog boxes.

DTS Query Designer, a visual database tool that makes it easy to build queries in DTS Designer.

Metadata

DTS includes features for saving package metadata and data lineage information to Metadata Services and linking those types of
information. You can store catalog metadata for databases referenced in a package and accounting information about the history
of a particular row of data for your data mart or data warehouse.

Appendix H: BizTalk Server Tools

BizTalk Editor

The exchange of structured messages is fundamental to application integration using Microsoft® BizTalk® Server. Whether those
messages use XML or some other parsed text, programmers must be able to specify the structure of a message — the schema or
specification, i.e., support for the Schema logical service.

BizTalk Editor is a graphical tool with which you can create, edit, and manage specifications. BizTalk Editor uses XML-Data
Reduced (XDR) syntax, which provides a common vocabulary to handle overlaps between syntactic, database, and conceptual
schemas. Using a common tree-structure metaphor, the editor allows the same tool to be used for specifying the message
structure, whether that structure is XML, delimited flat-file, positional flat-file, UN/EDIFACT or X12. The following illustration
shows the BizTalk Editor user interface.

BizTalk Editor also provides several templates that can be used as starting points for creating specifications for common
documents, such as purchase orders, invoices, and advance shipping notices including common X12 and UN/EDIFACT EDI
documents.

To further increase productivity, the editor supports the ability to create a schema from a well-formed XML instance or XML DTD
by using an import facility.

BizTalk Mapper

BizTalk Mapper supports the Mapping and Transformation services offered by the Messaging Engine. The mapper increases user
productivity by enabling the mapping and transformations required between application and document formats to be expressed
using a graphical tool, as shown in the following illustration.

The mapping between two application data formats is expressed in the mapper by selecting the source and destination schemas
(as previously created using the editor) and then graphically representing the mapping by dragging the source to the destination
field. Additional transformations, for example concatenating two fields, can be expressed as functoids.

BizTalk Messaging Manager

BizTalk Server provides two methods for configuring BizTalk Messaging Services to manage the exchange of
messages/documents between applications or trading partners. You can either use BizTalk Messaging Manager, which is a
graphical user interface (UI), or directly access the BizTalk Messaging Configuration object model.

The messaging manager provides the environment for managing all interchanges, including the configuration of applications,
organizations, document formats, document processing steps, and application/organization connectivity. The definition of
processing steps applied on an exchanged document is referred to as a channel definition. The channel definition includes
transformation, encryption, digital signing, and tracking requirements.

The following illustration shows the BizTalk Messaging Manager user interface.

Whether or not you use the user interface depends on the amount and type of information available to you in your database. The
BizTalk Messaging Configuration object model application programming interface (API) enables you to automate all or part of the
configuration process, rather than entering the data for each individual entity into BizTalk Messaging Manager. In general, the
more interfaces you have, the more it benefits you to use the API to configure your messaging service.

The BizTalk SEED Wizard, introduced with BizTalk Server 2002, enables companies to package their BizTalk Server configurations
into a SEED package and make it available to trading partners through the Internet. Companies that create a SEED package still
have to manually configure BizTalk Server to receive documents. However by creating a SEED package, trading partners are able
to configure BizTalk Server, test their configuration, and begin exchanging documents with the initiating company. A SEED
package helps companies rapidly start conducting business with partners.

BizTalk Document Tracking

BizTalk Server provides built-in tracking capabilities to record document exchanges. You can use BizTalk Document Tracking to do
the following:

Track interchanges and associated documents processed by Microsoft BizTalk Server 2000.
Fulfill legal and/or standards requirements to keep copies of all electronic business transactions.
Answer questions from partner organizations quickly and easily. For example, if they ask "When did we send this set of
clinical records?", you can locate the date, time, and whether they returned a receipt.
Aid in troubleshooting and help to resolve disputes.

The tracking of documents is divided into two distinct activities:

Recording Interchange message data and metadata
Displaying tracking data

Three basic types of information are recorded:

The actual documents interchanged
Document metadata (source organization/application, destination, data/time, etc.)
User-selected fields in the document

The Messaging Manager provides the ability to configure the requirements for tracking message data, which can be controlled at
a number of levels based on the server group, document definition, or processing channel.

Displaying Tracking Data

A pre-built query tool is provided for viewing the contents of the BizTalk Tracking database.

The three standard query parameters included in BizTalk Document Tracking are date range and time zone, source and
destination organization/application, and document type. You can find interchange and document records by defining one or
more of these criteria in a query. For example, you can search for all document types in a specified date range. Or you can find
interchanges and documents that are a certain document type and that match selected source and destination organizations.

The following illustration shows the Document Tracking user interface.

The following illustration shows the format of the output from the query tool. From the user interface you can select a particular
interchange and view the metadata, any user selected fields to be extracted, and the document itself.

The content of the Tracking database can also be accessed programmatically through a COM interface. The Tracking database is
simply implemented as an SQL database and can therefore also be accessed through custom SQL queries, or SQL data analysis
tools can be applied to its content.

BizTalk Administration Console

BizTalk Server Administration — also called the administration console — is a Microsoft Management Console (MMC) snap-in
that provides a visual representation of the Microsoft BizTalk Server components that a system administrator can manage.

The Administration console supports the administration of the following system components:

The BizTalk Server Group and all servers participating within the group
A Shared Queue database that persists all documents until they are successfully processed
The Tracking database that is used to log document and interchange activity and to run reports
Receive functions

Appendix I: Microsoft Architecture Patterns
The Microsoft Architecture Reference Model provides a standard approach to describing the business scenario and the
architectural and design characteristics of a solution. Each layer in the reference model represents a set of information that
describes particular attributes of the solution. The following illustration shows the Reference Model.

This model mirrors the normal system development process of the following steps:

1. Find out the business requirements.
2. Conceptualize the IT solution.
3. Identify in detail the logical services required (by either infrastructure or application services).
4. Identify the consequent physical services required.
5. Define the implementation topologies.

The Pattern Reference Model will therefore describe:

Business problem. What is the business trying to do?

In this we define the scope of the problem by decomposing the business topic into logical business areas from which the
requirements for business services can be defined. This allows us to identify the business services needed to solve the
business problem.

Conceptual solution. What is the shape of the IT solution?

From these services, the first sets of IT services can be deduced and defined in a conceptual solution, and their business
service levels can be described in the requirements.

Logical solution. What IT services do we need to realize the solution?

In this we refine the IT services into more granular logical components, and mechanisms that are required to create the
logical solution. In doing this we evaluate alternative ways of expressing the solution and choose the one we will take
forward to implement.

Physical solution. With what infrastructural services will the solution be created?

Now the logical solution is fully converted into a hardware and software topological diagram, with products and
connections defined. This does not take much account of non-functional business requirements at this time, because it is a
generic pattern. However it may identify variations (different options) that would be driven by a loose description of non-
functional requirements (such as "very scaleable, very resilient" versus "small, inexpensive").

Implementation solution. How should the Microsoft technology be implemented in the solution?

Finally we show more detail about how the Microsoft technology should be implemented in the particular physical
configuration.

Experience shows that as more and more solutions are developed to address what is essentially the same problem in different
industry sectors, a set of common logical services will emerge in the architecture. These common logical services will have
common characteristics with regard to their deployment, scalability, etc., leading to commonality in the lower (physical and
implementation) layers of the solution architecture. It is this commonality that the EAI pattern seeks to capture.

Microsoft BizTalk Server 2002 Technical Articles

BizTalk Server Interchange Throughput Analysis

Mak Rowshan
Microsoft Corporation

June 2002

Applies to:
 Microsoft BizTalk Server 2002
 Microsoft SQL Server 2000

Summary: This article illustrates how you can leverage SQL Server Analysis Services to analyze the BizTalk Server’s document
processing. By creating a cube using the BizTalk Server’s document tracking database, you can aggregate the number and sizes of
interchanges by source, destination, document type, transport type, and time. Using the PivotTable Office Web Component, you
can easily browse this cube and analyze your BizTalk Server’s document throughput as well.

Contents

Introduction
A View to a Cube
Create the Data Source
Create the Dimensions
Source Organization Dimension
Destination Organization Dimension
Source Application Dimension
Destination Application Dimension
Direction Dimension
Transport Dimension
Time Dimension
Build the Cube
Refreshing the Cube

Introduction
To identify data transfer trends, patterns, and possible bottlenecks in BizTalk Server EAI and B2B solutions, it is important to know
the volume, size, and type of submitted documents. Furthermore slicing and dicing these performance numbers by transport type,
source and destination, time and other important criteria is valuable. BizTalk Document Tracking allows for queries against the
interchanges and documents. As such it is very useful for tracking a given interchange and document. However to look at the big
picture and aggregate the details, an OLAP solution is more suitable.

A View to a Cube
All of the data columns used for building this cube are stored in one table, namely dta_interchange_details in the Interchange_DTA
database. However some of the columns in this table are foreign keys that refer to descriptive values in other tables. We can
create a view that provides all the necessary data for building the cube, as shown in the following diagram.

The following SQL script creates the view in the Interchange_DTA database.

Create the Data Source

1. Use the Analysis Manager to create a new database or open existing database. This database will contain the BTS
throughput cube that you will create.

2. Create a new data source in this database, by right clicking on Data Sources in the Analysis Manager explorer window, and
clicking on New

3. Select Microsoft OLE DB Provider for SQL Server as the provider on the first tab.
4. Click on the Connection tab. Enter the name of the server, where you created the view in Step 1, as the source of data.
5. Enter the user name and password for an account that has read access to the BizTalk Tracking Database.
6. Select the BizTalk Server Tracking Database (Interchange_DTA) from the server drop down list box.
7. Click on Test Connection to make sure the data source is functional. Then click on OK to save the data source.

Create the Dimensions
Creation of the following shared dimensions allows you to slice and dice BizTalk Server’s throughput from different perspectives,
namely from transport type to document type to source. Most of the dimensions presented below are simple one level dimension.
The only exceptions are Time and Transport Type dimensions which have multiple levels.

Even though what is presented in this article limits the dimensions to the content of BizTalk Server tracking database, you may
refine the dimension and measures by adding custom data to what BizTalk provides. For example, this article discusses a Source
Organization dimension that contains one level. You may categorize the source organizations into suppliers, internal applications,
external applications, etc. This will allow you to aggregate the throughput by source organization categories and then, as needed,
drill down to each category for more detailed information.

Source Organization Dimension

1. Right click on Shared Dimensions, in Analysis Manager. Select New, and then click on Editor. This allows you to use the
dimension editor to create a new shared dimension

2. In the “Choose a Dimension Table” dialog box, select the view that you created in step 1 (vBTSCube.)
3. In the Dimension Editor window right click on <new> and select New Level, then select the nvcSrcAliasId column from the

“Insert Level” dialog box.
4. Rename the newly created level to “Source Organization” by right clicking on it and selecting Rename from the pop-up

menu.

SELECT dbo.dta_interchange_details.nInterchangeKey,
dbo.dta_interchange_details.dtProcessedTimeStamp,
dbo.dta_interchange_details.nvcSrcAliasId,
dbo.dta_interchange_details.nvcDestAliasId,
 dbo.dta_transport_type_values.nvcTransportTypeName,
dbo.dta_interchange_details.nvcTransportAddress,
 dbo.dta_interchange_details.nvcServerName,
 dbo.dta_interchange_details.nNumberOfBytes,
dbo.dta_direction_values.nvcDirectionName,
 dbo.dta_interchange_details.nvcSrcAppName,
 dbo.dta_interchange_details.nvcDestAppName,
dbo.dta_interchange_details.uidInterchangeGUID,
 dbo.dta_interchange_details.dtTimeSent,
 dbo.dta_indoc_details.nvcDocType
FROM dbo.dta_interchange_details INNER JOIN
dbo.dta_transport_type_values ON
dbo.dta_interchange_details.nTransportType =
dbo.dta_transport_type_values.nTransportTypeKey INNER JOIN
dbo.dta_direction_values ON dbo.dta_interchange_details.nDirection =
dbo.dta_direction_values.nDirectionKey LEFT OUTER JOIN
dbo.dta_outdoc_details ON
dbo.dta_interchange_details.nInterchangeKey =
dbo.dta_outdoc_details.nInterchangeKey LEFT OUTER JOIN
dbo.dta_indoc_details ON dbo.dta_interchange_details.nInterchangeKey
= dbo.dta_indoc_details.nInterchangeKey

5. Save the dimension and enter “Source Organization” when prompted for its name.
6. Select Process Dimension from the Tools menu item to populate the dimension with data.

Destination Organization Dimension
Right click on Shared Dimensions, in Analysis Manager. Select New, and then click on Editor. This allows you to use the dimension
editor to create a new shared dimension.

1. In the “Choose a Dimension Table” dialog box, select the view that you created in step 1 (vBTSCube.)
2. In the Dimension Editor window right click on <new> and select New Level, then select the nvcDestAliasId column from the

“Insert Level” dialog box.
3. Rename the newly created level to “Destination Organization” by right clicking on it and selecting Rename from the pop-up

menu.
4. Save the dimension and enter “Destination Organization” when prompted for its name.
5. Select Process Dimension from the Tools menu item to populate the dimension with data.

Source Application Dimension
This article takes the approach of defining separate dimensions for source and destination organizations and applications. Since
organizations and applications are usually used differently in implementing business processes with BizTalk Server. However, an
alternative approach may be to roll both organizations and applications in the same dimension. If the later approach is used, you
may define two levels for the dimension, one being the source or organization type, and the other the actual source or
destination.

1. Right click on Shared Dimensions, in Analysis Manager. Select New, and then click on Editor. This allows you to use the
dimension editor to create a new shared dimension.

2. In the “Choose a Dimension Table” dialog box, select the view that you created in step 1 (vBTSCube.)
3. In the Dimension Editor window right click on <new> and select New Level, then select the nvcSrcAppName column from

the “Insert Level” dialog box.
4. Rename the newly created level to “Source Application” by right clicking on it and selecting Rename from the pop-up menu.
5. Save the dimension and enter “Source Application” when prompted for its name.
6. Select Process Dimension from the Tools menu item to populate the dimension with data.

Destination Application Dimension

1. Right click on Shared Dimensions, in Analysis Manager. Select New, and then click on Editor. This allows you to use the
dimension editor to create a new shared dimension.

2. In the “Choose a Dimension Table” dialog box, select the view that you created in step 1 (vBTSCube.)
3. In the Dimension Editor window right click on <new> and select New Level, then select the nvcDestAppName column from

the “Insert Level” dialog box.
4. Rename the newly created level to “Destination Application” by right clicking on it and selecting Rename from the pop-up

menu.
5. Save the dimension and enter “Destination Application” when prompted for its name.
6. Select Process Dimension from the Tools menu item to populate the dimension with data.

Direction Dimension
Direction is an attribute indicating whether the document is incoming or outgoing.

1. Right click on Shared Dimensions, in Analysis Manager. Select New, and then click on Editor. This allows you to use the
dimension editor to create a new shared dimension.

2. In the “Choose a Dimension Table” dialog box, select the view that you created in step 1 (vBTSCube.)
3. In the Dimension Editor window right click on <new> and select New Level, then select the nvcDirectionName column from

the “Insert Level” dialog box.
4. Rename the newly created level to “Direction” by right clicking on it and selecting Rename from the pop-up menu.
5. Save the dimension and enter “Direction” when prompted for its name.
6. Select Process Dimension from the Tools menu item to populate the dimension with data.

Transport Dimension

1. Right click on Shared Dimensions, in Analysis Manager. Select New, and then click on Editor. This allows you to use the
dimension editor to create a new shared dimension.

2. In the “Choose a Dimension Table” dialog box, select the view that you created in step 1 (vBTSCube.)
3. In the Dimension Editor window right click on <new> and select New Level, then select the nvcTransportTypeName column

from the “Insert Level” dialog box.
4. Rename the newly created level to “Transport Type” by right clicking on it and selecting Rename from the pop-up menu.
5. In the Dimension Editor window right click on <new> and select New Level, then select the nvcTransportAddress column

from the “Insert Level” dialog box. This will create the second level in the dimension.
6. Rename the newly created level to “Transport Address” by right clicking on it and selecting Rename from the pop-up menu.
7. Save the dimension and enter “Transport” when prompted for its name.
8. Select Process Dimension from the Tools menu item to populate the dimension with data.

Time Dimension
The following steps, unlike to ones used so far, use the Dimension Wizard to create the Time dimension. The Dimension Wizard
provides additional built-in functionality for creation of time dimensions.

1. Right click on Shared Dimensions, in Analysis Manager. Select New, and then click on Wizard.
2. Select Star Schema in response to “How you want to create the dimension”, and click on Next.
3. On the “Choose a Dimension Table” dialog box, select the view that you created in step 1 (vBTSCube.) Then click on Next.
4. Select “Time Dimension” as the dimension type. A drop down list box allows you to select the column. This list box is

populated with the existing date fields. Select dtTimeSent as the Date column. Then click on Next.
5. The “Create time dimension levels” dialog box allows to define the granularity of the time dimension. Accept the default as

Year, Quarter, Month, Day. If you’d like to drill down to more granular levels, you may add Hour and Minute to your levels.
6. Click Next on the Advanced Options page, and enter “Time” for the name of the dimension. Click on Finish to generate the

Time dimension. Finally select Process from the Tools menu item to populate the dimension.

This article uses the dtTimeSent date field from the BizTalk Server Tracking Database as the source for building the time
dimension. However, this field will not have entries for the dates when no interchanges occurred. So to have a complete time
dimension, you may use an existing time dimension such as the one provided with the Foodmart sample database, or use a
stored procedure to create a complete time table to be used as the source for your Time dimension.

The following table provides a summary of the dimensions and their sources.

Dimension

Name

Dimension

Table

Dimension

Column

Level(s) Name

Time vIntAnalysis dtTimeSent Year
Quarter
Month
Day

Source Organization vIntAnalysis nvcSrcAliasId Source Organization
Destination Organization vIntAnalysis nvcDestAliasId Destination Organization
Source Application vIntAnalysis nvcSrcAppName Source Application
Destination Application vIntAnalysis nvcDestAppName Destination Application
Direction vIntAnalysis nvcDirectionName Direction
Transport vIntAnalysis NvcTransportTypeName

nvcTransportAddress
Transport Type
Transport Address

Creating the above dimensions as shared dimensions allows you to use the dimensions in multiple cubes. This is especially useful
for a clustered BizTalk Server environment in where more than one SQL Server databases are actively tracking documents. So you
will need to create more than one cube.

Build the Cube

1. Create the cube by right clicking on Cubes in Analysis Manager, and then clicking on New and selecting Editor. This will
allow you to create a new cube using the Cube Editor.

2. Select the view created in Step 2 (vBTSCube) as the fact table.
3. Dimensions: Right click on Dimensions and select Existing Dimensions. In the “Dimension Manager” dialog box select all of

the dimensions that you created in Step 3.

4. Measures: You can easily add two measures to the cube, the number of documents, and the size of documents.
5. To create the Count measure, right click on the Measures, select New Measure, and then select the nInterchangeKey from

the “Insert Measure” dialog box. Change the measure name to Count by entering the name in the Properties under the Basic
tab. Also change the Aggregate Function to Count in the Properties under the Basic tab. This will tell the Analysis Services to
count the number of records rather than adding their values.

6. To create the Size measure, right click on the Measures, select New Measure, and then select the nNumberOfBytes from the
“Insert Measure” dialog box. Change the measure name to Size by entering the name in the Properties under the Basic tab.
This measure shows the size of the document in bytes.

7. You may create a calculated measure to show the size of the document in KB instead of bytes. To create this measure, right
click on Calculated Members in the Cube Editor and select New Calculated Member. Enter the following in the Value
Expression text box: [Measures].[Size] / 1024

8. Also change the Member name to “Size KB”. If you want to only show the size in KB, click on Size under Measures, and
change its Visible property under Advanced Properties to False.

9. Save the cube as “BTS Throughput”.
10. Click on Tools from the menu bar and select Process Cube to populate the cube with data.

Refreshing the Cube
You can create a DTS package and schedule it to refresh the cube’s data.

1. Use the SQL Server Enterprise Manager to open the database in which you want to create the DTS package.
2. Right click on Local Packages under the Data Transformation Services and select New Package.
3. Select the Analysis Services Processing Task from the task pane and drag it to the package window.
4. Select the BTS Throughput cube in the tree view.
5. Select Refresh Data as the processing option.
6. Save and close the package.
7. To schedule the package, right click on it, and select Schedule. In the Schedule dialog box, select the occurrence, frequency,

and duration, and click on OK to save the schedule.

Creating the User Interface for the Browsing the Cube

You may use Microsoft Excel, or create a form with Visual Basic, or write an ASP page to browse the cube. Following are the
instructions for browsing the cube in Excel.

Using Excel

You can create a PivotTable in Excel and link it to the BTS Throughput cube which you generated in the previous steps.

1. Open an Excel Workbook. Select Data from the menu bar, then select Import External Data, and then Import Data.
2. Define the data source type: In the Select Data Source dialog box, select “OLAP Queries/Cube Files” from the “Files of type:”

combo box.
3. Select the data source: If you have already created a data source for the BTS Throughput cube, select it. Otherwise create a

new data source as shown in the next step.
4. Create a new data source: Click on the “New Source …” button.
5. Select “Microsoft SQL Server OLAP Services” on the Data Connection Wizard and click on Next.
6. Enter the server name where the BTS Throughput resides and the Logon credentials. Click on Next.
7. Select the OLAP database from the combo box and select the BTS Throughput cube. Click on Next. Click on OK and then

Finish. This step creates the data source. Click on Open to open the new data source.
8. Accept the selected range for the PivotTable. This creates the PivotTable inside your Excel Workbook.
9. You can drag the cube fields from the PivotTable Field List pop-up and drag them to the row, column, and data areas.

The following diagram shows the PivotTable where the Date is the column field, Transport Type is the row field, and Count and
Size are the data items. This PivotTable allows you to aggregate, dice, and slice the number and sizes of the documents by
transport type and address.

Figure 2. Pivot Table Example

You can also use the PivotTable control from the Office Web Components on an HTML page or a Visual Basic form to browse the
cube.

Microsoft BizTalk Server 2002 Technical Articles

BizTalk Server 2002 WMI Programming in Microsoft .NET
Framework
Click here to download sample - BizTalkNetWMILib.exe.

Peishu Li, Senior BizTalk Architect
Microsoft Corporation

May 2002

Applies to:
 Microsoft® .NET Framework
 Microsoft BizTalk® Server 2002
 Microsoft Visual Studio® .NET

Summary: How to use WMI programming techniques for BizTalk Server 2002 in the Microsoft .NET Framework. (24 printed
pages)

Download BizTalkNetWMILib.exe.

Contents

Introduction
WMI Architecture
Programming WMI for BizTalk Server 2002 in the .NET Framework
 Enumerating Management Objects
 Retrieve a Management Object
 Creating a New Management Object
 Deleting a Management Object
 Executing Methods on a Management Object
 Monitoring Management Events
 Using WMI Extensions for VS.NET Server Explorer
BizTalk Server 2002 WMI Class Library for .NET
 Design Considerations
 The Base Class
 The Derived Classes
 Sample Applications
Conclusion

Introduction
Microsoft® BizTalk® Server 2002 uses Microsoft Windows® Management Instrumentation (WMI) for its administrations. The
BizTalk Administration MMC snap-in that ships with BizTalk Server 2002 is a WMI application that enables you to perform BizTalk
Server administration tasks through WMI. In this article, you will learn how to program WMI for BizTalk Server 2002 in Microsoft
.NET Framework, including using the classes in the System.Management namespace of the .NET. You will see how to build a
reusable .NET class library so that average developers can use it to access BizTalk Server 2002 administration functionality in the
.NET Framework without having to learn the complexity of WMI programming.

This article assumes that you are familiar with BizTalk Server 2002 environment, especially the BizTalk Server Administration tool.
It is also assumed that you have a basic understanding of the Microsoft .NET Framework and are familiar with Microsoft Visual
Studio® .NET, including Microsoft Visual C#™ .NET and Microsoft Visual Basic® .NET.

WMI Architecture
Windows Management Instrumentation (WMI) is the Microsoft implementation of the industry standard, Web-Based Enterprise
Management (WBEM), an initiative of Desktop Management Task Force (DMTF). WMI provides a consistent and richly descriptive
model of the configuration, status, and operational aspects of Windows platforms. It simplifies the task of developing well-
integrated management applications and provides scalable, effective enterprise management solutions. WMI has been integrated
with Microsoft management products, such as Microsoft System Management Server, Microsoft Operations Manager and
Microsoft Application Center for managing configurations, operations, monitoring system health and so on. Figure 1 illustrates
the architecture of WMI.

http://download.microsoft.com/download/biztalkserver2002/sample/1.00/NT5XP/EN-US/BizTalkNetWMILib.exe

Figure 1. The three-tiered architecture of WMI

As shown in Figure 1, WMI uses a three-tiered approach for collecting and distributing data, based on the Common Information
Model (CIM) schema:

Management applications—This is the client tier that consists of management applications that consume WMI data
through appropriate WMI interfaces. Traditionally, Windows management applications access WMI data through either the
IWbem COM interface or the SWbemScripting automation interface. In the Microsoft .NET Framework, the
System.Management namespace enables developers to write .NET applications (Windows Forms or Web Forms/ASP.NET
Pages) through .NET managed code.
The WMI infrastructure—This is the middle tier in which the CIM manager gathers management data from appropriate
WMI providers and makes them available to management applications through appropriate interfaces. The CIM object
repository stores object definitions and schemas. The CIM object manager is a key component that provides a collection and
manipulation point for managed objects.
WMI providers—In this tier, WMI providers act as data access API for accessing underlying instrumentation data (managed
objects). Microsoft Windows Platform SDK includes a set of WMI providers such as Registry Provider, Windows NT Event
Log Provider, Win32 Provider, SNMP Providers, and WDM Provider. BizTalk Server 2002 ships with a BizTalk WMI provider
that enables you to access BizTalk Server instrumentation data (stored in BizTalk Messaging Management and Shared
Queue databases) through WMI.

It is important to understand that in the WIM architecture, the tiers are loosely coupled in which management applications (WMI
consumers) and WMI providers are independent of each other. You can develop management applications using either traditional
WMI APIs (COM or scripting) or the .NET WMI Client API (the System.Management namespace) to consume WMI data, regardless
of the technologies that were used to provide the WMI data.

Programming WMI for BizTalk Server 2002 in the .NET Framework
BizTalk Server 2002 provides the following sixteen WMI classes for managing receive functions, shared queues and performing
other administration tasks such as managing BizTalk server, server groups, managing the BizTalk Messaging Management
database, and so on:

MicrosoftBizTalkServer_Server
MicrosoftBizTalkServer_GroupServer
MicrosoftBizTalkServer_Group
MicrosoftBizTalkServer_ReceiveFunction
MicrosoftBizTalkServer_GroupReceiveFunction
MicrosoftBizTalkServer_Queue
MicrosoftBizTalkServer_SuspendedQueue
MicrosoftBizTalkServer_WorkQueue
MicrosoftBizTalkServer_RetryQueue
MicrosoftBizTalkServer_ScheduledQueue
MicrosoftBizTalkServer_MgmtDB
MSBTS_CustomCounter

MSBTS_CustomCounterSetting
DocSuspendedEvent
ReceiveFunctionDisabledEvent
InterchangeProvError

Note Detailed information about these classes including their methods and/or properties can be found in BizTalk
Server 2002 product documentation.

To program WMI for BizTalk Server 2002 in the .NET Framework, you need to access these classes using the System.Management
namespace. First you will need to add a reference to your Visual Studio .NET IDE (Visual Basic .NET or Visual C# project). To do
this, right click the References node in the Solution Explorer and select Add Reference. In the Add Reference dialog box,
select System.Management in the .NET tab and click the Select button. Click OK. This will add the System.Management
namespace reference to your project, as shown in Figure 2.

Figure 2. Adding the System.Management namespace to a Visual Studio .NET project

You need also add the following line in the code:

Visual C# .NET

Visual Basic .NET

Now we are going to demonstrate some basic WMI programming techniques in .NET Framework for BizTalk Server 2002. We
illustrate both C# and Visual Basic .NET code. For simplicity, we stripped out the exception management code.

Enumerating Management Objects

To return a list of management objects (receive functions, for example), you create a ManagementObjectSearcher object, which
takes two parameters in the constructor:

A ManagementScope object for specifying the scope of management operations, for BizTalk Server 2002, you always pass
"\\MachineName\root\MicrosoftBizTalkServer" to the constructor. For local machine, the syntax is
"\root\MicrosoftBizTalkServer"

using System.Management;

Imports System.Management

Note For C#, you need to escape the "\" character so the syntax is
"\\\\MachineName\\root\\MicrosoftBizTalkServer" unless you use the @ prefix for a literal string, for example,
@"\\MachineName\root\MicrosoftBizTalk".

A WqlObjectQuery object, which takes a WQL statement in its constructor. To return a list of a particular WMI class, the
WQL statement is "Select * from WMI_ClassName".

The Get method of the ManagementObjectSearcher object returns a ManagementObjectCollection object, which contains a
collection of ManagementObject. You can use the foreach block in C# or the For Each. . .Next block in Visual Basic .NET to
enumerate the collection.

The code snippet below demonstrates how to return a list of receive functions and iterate the list and write the name of each
receive function to the system console.

C#

Visual Basic .NET

Retrieve a Management Object

To return a specific management object, you create a new ManagementObject object instance and specify its Scope and Path
properties with a ManagementScope object and ManagementPath object, respectively. The ManagementPath object
provides a wrapper for parsing and building paths to WMI objects. Its constructor takes a string parameter for specifying the
object path. For example, "WMI_ClassName.Name='NameOfTheManagedObject'". The Get method of the ManagementObject
object will return the specified managed object, if it exists.

The following code snippet demonstrates how to return a file receive function named "Csharp File Receive Function" and write its
channel name to the system console.

C#

string strWQL = "Select * from MicrosoftBizTalkServer_ReceiveFunction";
ManagementObjectSearcher searcher = new ManagementObjectSearcher (
 new ManagementScope("root\\MicrosoftBizTalkServer"),
 new WqlObjectQuery(strWQL));
foreach (ManagementObject obj in searcher.Get())
{
 Console.WriteLine(obj["Name"]);
}

Dim strWQL As String
strWQL = "Select * from MicrosoftBizTalkServer_ReceiveFunction"
Dim searcher As New ManagementObjectSearcher(_
 New ManagementScope("root\MicrosoftBizTalkServer"), _
 New WqlObjectQuery(strWQL))
Dim obj As ManagementObject
For Each obj in searcher.Get()
 Console.WriteLine(obj("Name"))
Next obj

ManagementObject obj = new ManagementObject();
obj.Scope = new ManagementScope("root\MicrosoftBizTalkServer");
string strPath = "MicrosoftBizTalkServer_ReceiveFunction.Name="
 + "'CSharp File Receive Function'";
obj.Path = new ManagementPath(strPath);
obj.Get();
Console.WriteLine(obj["ChannelName");

Visual Basic .NET

Creating a New Management Object

To create a new management object and save it, follow these steps:

1. Create a new ManagementObjectScope object and call its Connect method.
2. Create a new ManagementPath object.
3. Create a new ManagementClass object and call its CreateInstance method to return a ManagementObject object.
4. Set the properties of the ManagementObject object.
5. Call the Put method and specify the PutType.CreateOnly enumeration to save the newly created managed object.

The following example demonstrates how to create a new file receive function named "Csharp File Receive Function".

C#

Visual Basic .NET

Dim obj As New ManagementObject()
obj.Scope = New ManagementScope("root\MicrosoftBizTalkServer")
Dim strPath As String
strPath = "MicrosoftBizTalkServer_ReceiveFunction.Name=" _
 + "'CSharp File Receive Function'"
obj.Path = New ManagementPath(strPath)
obj.Get()
Console.WriteLine(obj(["ChannelName"))

// create the ManagementObjectScope object and get connected
ManagementObjectScope scope =
 new ManagementScope("root\\MicrosoftBizTalkServer");
scope.Connect();

// create the MangementPath object
string strPath = "MicrosoftBizTalkServer_ReceiveFunction";
ManagementPath path = new ManagementPath(strPath);

// create a ManagementClass object and spawn a ManagementObject
 instance
ManagementClass cls = new ManagementClass(scope, path, null);
ManagementObject obj = cls.CreateInstance();

// set the properties for the ManagementObject
obj["Name"] = "CSharp File Receive Function";
obj["GroupName"] = "BizTalk Server Group";
obj["ProcessingServer"] = "PLI"; //change to your server name
obj["ProtocolType"] = 1; //File receive function
obj["PollingLocation"] = "C:\\Temp\\DataIn";
obj["FilenameMask"] = "*.xml";
obj["Username"] = "";
obj["Password"] = "";
obj["OpennessFlag"] = 1; //BIZTALK_OPENNESS_TYPE_NOTOPEN
obj["ChannelName"] = "Channel_Test";

// save the ManagementObject
obj.Put(PutType.CreateOnly);

' create the ManagementObjectScope object and get connected
Dim scope As New ManagementScope("root\MicrosoftBizTalkServer")
scope.Connect()

Deleting a Management Object

To delete a management object, you simply call the Delete method of the ManagementObject, as illustrated in the following
code snippet, which deletes a file receive function:

C#

Visual Basic .NET

Executing Methods on a Management Object

To execute a method on a WMI class, you call the overloaded method of the ManagementObject, InvokeMethod. The basic
syntax is:

C#

' create the MangementPath object
Dim strPath As String
StrPath = "MicrosoftBizTalkServer_ReceiveFunction"
Dim path As New ManagementPath(strPath)

' create a ManagementClass object and spawn a ManagementObject instance
Dim cls As New ManagementClass(scope, path, Nothing)
Dim obj As ManagementObject
obj = cls.CreateInstance()

' set the properties for the ManagementObject
obj("Name") = "CSharp File Receive Function"
obj("GroupName") = "BizTalk Server Group"
obj("ProcessingServer") = "PLI" 'change to your server name
obj("ProtocolType") = 1 'File receive function
obj("PollingLocation") = "C:\Temp\DataIn"
obj("FilenameMask") = "*.xml"
obj("Username") = ""
obj("Password") = ""
obj("OpennessFlag") = 1; 'BIZTALK_OPENNESS_TYPE_NOTOPEN
obj("ChannelName") = "Channel_Test"

' save the ManagementObject
obj.Put(PutType.CreateOnly)

ManagementObject obj = new ManagementObject();
obj.Scope = new ManagementScope("root\\MicrosoftBizTalkServer");
string strPath = "MicrosoftBizTalkServer_ReceiveFunction.Name='"
 + "CSharp File Receive Function'";
obj.Path = new ManagementPath(strPath);
obj.Delete();

Dim obj As New ManagementObject()
obj.Scope = New ManagementScope("root\MicrosoftBizTalkServer")
Dim strPath As String
strPath = "MicrosoftBizTalkServer_ReceiveFunction.Name='" _
 + "CSharp File Receive Function'"
obj.Path = New ManagementPath(strPath)
obj.Delete()

outparams = obj.InvokeMethod("MethodName", inparams, options);

Visual Basic .NET

Where in outparams is a ManagementBaseObject, which contains an array of output parameters and a return value (if any).
The inparams is also a ManagementBaseObject, which enables you to pass input parameters to the method. The obj is a
ManagementObject and the options is InvokeMethodOptions class that inherits ManagementOptions class.

The code snippet below demonstrates how to invoke the Resubmit method of the MicrosoftBizTalkServer_SuspendedQueue
class. Later in this article, you will see some examples that process the output parameters when we discuss the BizTalk Server
2002 Class Library for .NET.

C#

Visual Basic .NET

Monitoring Management Events

BizTalk Server 2002 fires two types of management events through respective WMI classes:

DocSuspendedEvent—An event will be fired whenever a document ends up in the SuspendedQueue (excluding those
documents that are removed to the Suspended queue from other Shared queues such as the Work queue, the Retry queue,
and the Scheduled queue).
ReceiveFunctionDisabledEvent—An event will be fired whenever a receive function is disabled.

The following code excerpt illustrates the basic steps for monitoring the document suspended events:

1. Create a WqlEventQuery object (similar to the creation of a WqlObjectQuery object).
2. Create a ManagementEventWater object and pass the WqlEventQuery object to the constructor.
3. Call the WaitForNextEvent method of the ManagementEventWater object that returns a ManagementBaseObject

(this can be done in a loop for monitoring ongoing events).
4. Process the ManagementBaseObject in response to the event.
5. Optionally, cancel the event subscription.

C#

outparams = obj.InvokeMethod("MethodName", inparams, options)

string strWQL = "Select * from MicrosoftBizTalkServer_SuspendedQueue";
ManagementObjectSearcher searcher = new ManagementObjectSearcher (
 new ManagementScope("root\\MicrosoftBizTalkServer"),
 new WqlObjectQuery(strWQL),
 null);
foreach (ManagementObject obj in searcher.Get())
{
 obj.InvokeMethod("Resubmit", null, null);
}

Dim strWQL As String
StrWQL = "Select * from MicrosoftBizTalkServer_SuspendedQueue"
Dim searcher As New ManagementObjectSearcher (_
 New ManagementScope("root\MicrosoftBizTalkServer"), _
 New WqlObjectQuery(strWQL), _
 Nothing)
Dim obj As ManagementObject
For Each obj in searcher.Get()
 obj.InvokeMethod("Resubmit", Nothing, Nothing)
Next obj

Visual Basic .NET

Note The above code sample only illustrates the simplest way for consuming WMI events. A more robust
implementation would be using delegates to consume WMI events asynchronously. In the code download for this
article, you can find a Visual C# project solution file, SQWatcherService.sln, which is a Windows service application
that monitors the document suspended events. When a document is suspended, this Windows service will send an e-
mail message according to the recipient specified in the application configuration file, App.config.

Using WMI Extensions for VS.NET Server Explorer

Visual Studio .NET introduces the Server Explorer, a server management console through which you can do things such as
opening data connections and logging on to servers and exploring their databases and system services. The Server Explorer also
supports drag-and-drop operations so that you can drag certain nodes in the Server Explorer and drop them onto Visual Studio

using System;
using System.Management;

public class SuspendedQueueEvent {
 public static int Main(string[] args) {
 // create a query object for watching for suspended document events
 WqlEventQuery eventQuery =
 new WqlEventQuery("select * from DocSuspendedEvent");

 // initialize an event watcher
 ManagementEventWatcher watcher = new ManagementEventWatcher
 (query);

 // waite for the next suspended document event occurs
 ManagementBaseObject e = watcher.WaitForNextEvent();

 // display the GUID of the suspended document
 Console.WriteLine("Docment suspened : " +
 e["stringSuspendedGuid"]);

 // cancel the subscription
 watcher.Stop();
 return 0;
 }
}

Imports System
Imports System.Management

Public Class SuspendedQueueEvent
 Overloads Public Shared Function Main(args() As String) As Integer
 ' create a query object for watching for suspended document events
 Dim query As New WqlEventQuery("select * from DocSuspendedEvent")

 ' initialize an event watcher
 Dim watcher As New ManagementEventWatcher(query)

 ' waite for the next suspended document event occurs
 Dim e As ManagementBaseObject = watcher.WaitForNextEvent()

 ' display the GUID of the suspended document
 Console.WriteLine("Docment suspened : " + e("stringSuspendedGuid"))

 ' cancel the subscription
 watcher.Stop()
 Return 0
 End Function 'Main
End Class 'SuspendedQueueEvent

.NET designers to create pre-configured components such as a new data component.

The WMI Extensions for VS.NET Server Explorer adds two new nodes to the Server Explorer to provide WMI functionality,
Management Classes and Management Events, as shown in Figure 3 (you can display the Server Explorer in the Visual Studio
.NET IDE by clicking View|Server Explorer menu options).

Figure 3. Two WMI extensions (nodes) were added to the Server Explorer.

To add a WMI class into the Server Explorer, right click the Management Classes node and select Add Classes to bring up the
Add Classes dialog box. The Available classes list on the left displays the available WMI classes on the server you are connected
to. To add a BizTalk WMI class to the Server Explorer, expand the root\MicrosoftBizTalkServer node to display its classes and then
highlight the class you wanted to add (for example, MicrosoftBizTalkServer_SuspendedQueue) and click the Add> button to add
it to the Selected classes list on the right. Click OK to close the Add Classes dialog box. The new node with the name of the
BizTalk WMI class should be added under the Management Classes node, as shown in Figure 4.

Figure 4. A MicrosoftBizTalkServer_ReceiveFunction WMI class was added to the Server Explorer.

You can use this new WMI class in the Server Explorer to automatically generate a WMI wrapper class. For example, you can right
click the MicrosoftBizTalkServer_ReceiveFunction node and select Generate Managed Class. The Visual Studio .NET IDE will
generate a .cs or .vb class file, depending on the project type you are working on (Visual C# .NET or Visual Basic .NET project). The
generated class is an early-bound wrapper of the underlying WMI object.

The following code snippet illustrates how to retrieve a receive function and displays the name of its associated channel to the
system console, very similar to the code you saw earlier using the raw WMI Client API:

C#

ManagementScope scope =
 new ManagementScope("root\\MicrosoftBizTalkServer");
string strPath =
 "MicrosoftBizTalkServer_ReceiveFunction.Name="

http://www.microsoft.com/downloads/release.asp?ReleaseID=31155&area=search&ordinal=17

Visual Basic .NET

You may have noticed the early-bounding syntax rf.ChannelName in the above code snippet versus the late-bounding
rf["ChannelName"] or rf("ChannelName") syntax you used in the raw WMI API code. This is one of the advantages of using the
Server Explorer WMI extension. The following code snippet further demonstrates early-bounding, which allows you to use strong-
typed object ReceiveFunction instead of the generic type ManagementObject.

C#

Visual Basic .NET

Note In addition to using the Server Explorer WMI extension, you can also manually generate the strong-typed
wrapper classes by one of the following means, both are documented in Microsoft .NET Framework SDK:

Executing the MgmtClassGen.exe utility from the command line.
Calling the GetStrongTypedClassCode of the ManagementClass object.

BizTalk Server 2002 WMI Class Library for .NET
So far we have introduced some basic WMI programming techniques for BizTalk Server 2002 in the .NET environment. Using
these techniques requires knowledge of both BizTalk Server 2002 WMI classes and the .NET System.Management namespace.
These learning curves can prevent an average BizTalk developer from being productive. It would be good to encapsulate the
complexity of WMI programming into some high level and reusable .NET classes so that the average BizTalk developer can use
them as they would any regular .NET classes.

For example, instead of writing a dozen lines of code to create a new file receive function, as you saw in the section
Create a New Management Object, you may simply do this:

 + "'CSharp File Receive Function'";
ManagementPath path = new ManagementPath(strPath);
ReceiveFunction rf = new ReceiveFunction(scope,path);
Console.WriteLine(rf.ChannelName);

Dim scope As New ManagementScope("root\\MicrosoftBizTalkServer")
Dim strPath As String
strPath = "MicrosoftBizTalkServer_ReceiveFunction.Name=" _
 + "'CSharp File Receive Function'"
Dim path As New ManagementPath(strPath)
Dim rf As New ReceiveFunction(scope,path)
Console.WriteLine(rf.ChannelName)

Foreach(ReceiveFunction rf in ReceiveFunction.GetInstances())
{
 Console.WriteLine(rf.ChannelName);
}

Dim rf As ReceiveFunction
For Each rf in ReceiveFunction.GetInstances()
 Console.WriteLine(rf.ChannelName);
Next rf

ReceiveFunction rf = new ReceiveFunction(this.txtBizTalkServer.Text);
rf.CreateFileReceiveFunction(
 "CSharp File Receive Function",
 "BizTalk Server Group",
 this.txtBizTalkServer.Text,

http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28000451

Note We broke the second line of code into multiple lines to improve readability.

The BizTalk Server 2002 WMI Class Library for .NET is a single assembly DLL that makes up all the necessary .NET classes that
encapsulate the entire functionality of BizTalk Server 2002 WMI API and expose them as task-oriented high level APIs, as in the
previous example.

Design Considerations

Due to the language neutral characteristics of the .NET Framework, you can implement a .NET class library in any .NET language.
We've chosen C# language to build the BizTalk Server 2002 WMI Class Library for .NET because C# is the only .NET language
today that supports XML documentation, a key feature for implementing a class library. This greatly simplifies the process of
creating technical documentation for the users of the class library.

The class library groups BizTalk Server 2002 management functionalities into nine classes. Each class corresponds to a specific
type of administration object in BizTalk Server 2002 (a receive function, a Suspended queue item, and so forth). All of these
classes are derived from a single base class. This design leverages the inheritance feature of the C# programming language to
promote code reuse. To that end, instead of being an abstract class, the base class actually carries implementations.

The Base Class

All the non-private members (properties and methods) in the base class, BTSWMILibBaseClass, are marked as protected to
prevent them from being called directly by a client application. The following table describes the members of the base class. A
derived class may implement one or more members of the base class.

Table 1. Members of the Basic Class—BTSWMILibBaseClass

Class Member Description
BizTalkServerN
amespace

This is a read-only property, which provides a convenient means for the derived classes to retrieve the BizTalk S
erver namespace, in the form of "\\\\ServerName\\root\\MicrosoftBizTalkServer".

GetManageme
ntObjectCollec
tion

This method returns a ManagementObjectCollection that is a collection of a specific ManagementObject, f
or example, a collection of receive functions, or Suspended queue items, and so forth, depending on the type of
the derived class.

GetDataSet This method returns a list of management object in a form of ADO.NET DataSet instead of a ManagementObj
ectCollection, making it ideal for populating data aware controls (for example, the DataGrid control) in manag
ement applications.

GetAll This is an alternate method to GetManagementObjectConnection.
GetByName This method returns a ManagementObject specified by a name.
Delete This is an overloaded method, which allows you to delete a ManagementObject you are currently working on

(such as a SuspendedQueue item) or a named ManagementObject (such as a receive function).
MoveToSuspe
ndedQ

We include this method in the base class based on the consideration that three of the functional classes (WorkQ
ueue, RetryQueue, and ScheduledQueue) need to implement a MoveToSuspendedQueue method.

Most of the methods in the base class were implemented using the techniques you learned in the previous section of this article.
The GetDataSet method deserves some extra explanation. This method returns an ADO.NET DataSet object to facilitate a
management client application to consume the collection of managed objects and bind them to data-aware controls such as a
DataGrid.

You can populate a DataSet object by one of the two means:

Using existing data from a database through the DataAdapter object.
Creating a DataSet object, add a DataTable object, and populate the DataTable object with appropriate data from any
data sources.

In the GetDataSet method, we used the second approach. The method iterates the returned ManagementObjectCollection
(via the Get method of the ManagementObjectSearcher) two times to build the DataSet object and its associated DataTable
object.

In the first iteration, the foreach block, we defined the structure of the DataTable for the DataSet, as illustrated below:

 "C:\\Temp\\DataIn",
 "*.xml",
 "Channel_Test");

We specified the element name using the GetBaseName function (a helper function that is declared as private and static in the
base class). For example, in the case of receive function (MicrosoftBizTalkServer_ReceiveFunction namespace), the element name
is "btswmi_receivefunctions". Inside the nested foreach loop, we set the column name as the name of the property, using the
PropertyData object. We also set the "Name" property as the primary key of the DataTable. Notice the break keyword used in
the outer foreach loop. It ensures that we only iterate the collection once for getting the metadata, setting up column names and
primary key for the DataTable object.

In the second foreach block of the GetDataSet method, we populated each row in the DataTable with the value of each property
and then appended the row to the DataTable through the Add method:

Finally, the GetDataSetMethod returns the DataSet object to the client:

The GetDataSetMethod is inherited in several derived classes. You will see how to execute these inherited methods in client
applications later in this article.

The Derived Classes

The BizTalk Server 2002 WMI Class Library for .NET contains the nine classes that are derived from base class,
BTSWMILibBaseClass. The following table summarizes these classes and their methods:

Table 2. The Derived Classes in BizTalk Server 2002 WMI Class Library for .NET

Classes Methods

foreach (ManagementObject obj in searcher.Get())
{
 string strBaseName = GetBaseName(this.m_strNamespace);
 tb = ds.Tables.Add(strBaseName);

 foreach(PropertyData p in obj.Properties)
 {
 DataColumn col = tb.Columns.Add(p.Name, typeof(string));
 if (p.Name=="Name")
 {
 tb.PrimaryKey = new DataColumn[] {col};
 }
 }
 break;
}

foreach (ManagementObject rf in searcher.Get())
{
 DataRow row = tb.NewRow();
 foreach(PropertyData p in rf.Properties)
 {
 row[p.Name] = p.Value;
 }
 tb.Rows.Add(row);
}

Return ds;

ReceiveFunction ReceiveFunctions

DataSetReceiveFunctions

GetAllReceiveFunctions

GetReceiveFunctionByName

CreateFileReceiveFunction

CreateMSMQReceiveFunction

CreateHTTPReceiveFunction

DeleteReceiveFunction

SuspendedQueue SuspendedQueueItems

DataSetSuspendedQueueItems

GetSuspendedDocument

GetErrorDescription

Resubmit

DeleteSuspendedItem

XXXQueue XXXQueueItems*

DataSetXXXQueueItems*

MoveToSuspendedQueue

Server Servers

DataSetServers

GetAllServers

GetServerByName

CreateServer

DeleteServer

StartServer

FreeInterchanges

Group Groups

DataSetGroups

GetGroupByName

CreateGroup

DeleteGroup

PurgeSuspendedQueue

RefreshParserListFromRegistry

BTMDatabase CreateBTMDatabase

GetBTMDatabase

CustomCounter CreateCustomCounter

GetCustomCounterByName

DeleteCustomCounter

ValidateCustomCounter

GetMatchCount

*XXXQueue stands for WorkQueue, RetryQueue, and ScheduledQueue.

All the derived classes, except for the BTMDatabase class, directly inherited one or more of the five methods of the base class
(GetManagementObjectCollection, GetDataSet, GetByName, and Delete). For example, the ReceiveFunction class
implemented all these five methods in a similar fashion:

Whereas the XXXQueue classes all implemented a MoveToSuspendedQueue method by extending the MoveToSuspendeQ
method of the base class:

where obj is a ManagementObject representing a XXXQueue.

Note Passing the WMI class name (for example, the MicrosoftBizTalkServer_ReceiveFunction) in the constructor
of the derived class to the base class makes it possible for the generic methods of the basic class to be extended in the
derived class.

The derived classes may also implement some specific methods that are not found in the base class. These methods fall into two
categories:

The first category contains the CreateXXX methods (for example, CreateFileReceiveFunction, CreateServer,
CreateGroup, CreateCustomCounter, and so on), which used the techniques as described in the
Creating a New Management Object section to create an appropriate WMI managed object.
The second category includes methods such as Resubmit, StartServer, StopServer, and so on. These methods wrapped
the InvokeMethod method to call the execute methods of the underlying managed object, as we introduced in the
Executing Methods on a Management Object section. The ValidateCustomCounter method of the CustomCounter class
demonstrated how to process output parameters of an InvokeMethod method call, using a ManagementBaseObject:

base.MethodName();

base.MoveToSuspendedQ(obj);

public void ValidateCustomCounter(
 ManagementObject obj,
 ref bool bIsValidSrcOrg,
 ref bool bIsValidSrcId,
 ref bool bIsValidDestOrg,
 ref bool bIsValidDestId,
 ref bool bIsValidGroup)
{
 try
 {
 ManagementBaseObject OutParams =
 obj.InvokeMethod("IsValid",null,null);

 bIsValidSrcOrg = (bool)OutParams["bIsValidSrcOrg"];
 bIsValidSrcId = (bool)OutParams["bIsValidSrcId"];
 bIsValidDestOrg = (bool)OutParams["bIsValidDestOrg"];
 bIsValidDestId = (bool)OutParams["bIsValidDestId"];
 bIsValidGroup = (bool)OutParams["bIsValidGroup"];
 }
 catch (Exception e)

Sample Applications

The BizTalk Server 2002 WMI Class Library can be consumed by any .NET language. The sample code download associated with
this article contains two client applications, one for C# and another for Visual Basic .NET. Figure 5 shows a screenshot of the C#
client application.

Figure 5. The C# Client Application (click thumbnail for larger image)

To use the class library in Visual Studio .NET, you need to set a reference to the BTSWMILib.dll assembly and specify it in the code:

C#

Visual Basic .NET

A feature of the class library is that some of the classes return an ADO.DataSet object instead of a
ManagementObjectCollection, making it ideal for displaying the results in a DataGrid control for both Windows applications
and ASP.NET applications, as illustrated in the following code snippet:

C#

 {
 throw new Exception(e.Message,e);
 }
}

using MSDN.BTSWMILib;

Imports MSDN.BTSWMILib

ReceiveFunction rf = new ReceiveFunction(this.txtBizTalkServer.Text);
DataSet ds = rf.DataSetReceiveFunctions();
DataTable tb = ds.Tables["btswmi_receivefunctions"];

Visual Basic .NET

For comparison purposes, also included is sample code in the client applications that process the
ManagementObjectCollection and display them in the DataGrid control.

Conclusion
The loosely coupled architecture of WMI and the System.Management namespace in the Microsoft .NET Framework makes it
possible to write pure .NET managed code that accesses WMI functionality exposed by any WMI providers, without using any
interoperating wrappers.

In this article, we demonstrated how to write .NET code that accesses BizTalk Server 2002 WMI classes. We also introduced a
reusable .NET class library written in C# that encapsulates the complexity of WMI programming and exposes BizTalk Server 2002
WMI functionality as a set of high-level .NET classes. BizTalk developers without WMI programming skills can use these classes in
their own .NET applications, as they would any regular .NET classes.

About the author

Peishu Li is a BizTalk expert and the author of the book, BizTalk Server Developer's Guide by Osborne/McGraw Hill. Peishu has
implemented numerous large-scale BizTalk and .NET solutions in legal, banking, and telecommunication industries. He has also
developed many custom components, adapters, and utilities for facilitating the development, deployment, operation, and
administration of BizTalk Server. Peishu can be reached via email at pli@wt.net.

this.dgBTSWMILib.DataSource = tb;
this.dgBTSWMILib.Refresh();

Dim rf As New ReceiveFunction(Me.txtBizTalkServer.Text)
Dim ds As DataSet
ds = rf.DataSetReceiveFunctions()
Dim tb As DataTable
tb = ds.Tables("btswmi_receivefunctions")
Me.dgBTSWMILib.DataSource = tb
Me.dgBTSWMILib.Refresh()

http://www.amazon.com/exec/obidos/ASIN/0072133384/qid=1017784550/sr=1-2/ref=sr_1_2/102-2772877-5855354
mailto:pli@wt.net

Microsoft BizTalk Server 2002 Technical Articles

Building a Scalable Business Process Automation Engine Using
BizTalk Server 2002 and Visual Studio .NET

Doug Thews and Emmanuel Kothapally
divine Managed Services

February 26, 2002

Summary: Covers design and implementation of a scalable BizTalk automated business process application using BizTalk Server
2002, Visual Studio .NET, and SQL Server 2000. (61 printed pages)

Contents

Introduction
Business Process Automation System Infrastructure Design
Implementing Our Business Process Automation System Using BizTalk
Developing Code for the Core Automated Business Process
Developing Informants, Facilitators, and Automators
Summary
Appendix A: Ticket System Database Schema

Introduction
At the heart of any successful company is a business process. This can range from the assembly line process of preparing and
delivering food at your favorite fast-food restaurant, to the complexities of sending and receiving funds within an e-banking
system.

A common misconception is that business processes involve merely the routing and simple handling of information. For instance,
routine approval/denial of expense reports is commonly cited as an example of a business process. While this is a legitimate,
simple example, this idea needs to be expanded—to include the processing of dynamic information, which can move in multiple
directions based upon any number of variables.

During the design phase of one of our major development efforts, it became clear that we needed to build a automated business
process system that not only moved information, documents, and tasks from queue to queue, but it also needed to react
differently to different circumstances. We needed to build a set of intelligence into the process infrastructure that would allow for
an individual business process to be modified midstream based upon the available information.

By creating such a dynamic and scalable business process infrastructure, we could not only streamline company processes to
reduce costs, we could also reduce the cost of developer hours to handle requests for business process modifications as the
organization's processes changed.

A system for catching and responding to events is of little value without a context. It is the application of this system to a business
process that provides the value. In this article we will design and build a business process automation infrastructure, and then
build a help desk ticketing system on top of this infrastructure.

For the purposes of this article, we will reference a business process automation system as the infrastructure that moves tasks
and steps from place to place. The places are usually business applications, such as an ERP system, organizations (such as a
supplier), or singular roles, such as a person. This should not be confused with workflow collaboration, which typically involves
role-based hierarchy and ad hoc processes.

Business Process Automation System Infrastructure Design
One of the first objectives in our design meetings was to evaluate and decide on a standard set of tools upon which to build our
business process automation system infrastructure.

A common question during our design phase was, "Why not use Microsoft® Exchange as the foundation of the infrastructure?"
While routing and basic processing of information can be implemented in Microsoft Exchange, we felt that it was not as open as
we required. We were looking for a platform that could handle not only the basic core business processes, but could also:

Dynamically alter the business process based upon upstream information.
Quickly alter the production business process with a minimum amount of coding changes.
Progressively update the business process step from informant, to facilitator, to automator.

We decided to go with Microsoft® BizTalk® Server 2002, because we felt it could meet these requirements.

In our design, a business process is a set of steps that need to be executed. Each step contains a set of tasks to be completed.
When the user is working on a step, they should be able to stop midway and save the information on the steps completed to that
point.

The following characteristics apply to all steps in our business process automation system infrastructure:

Each step falls into one of three categories:

1. Informant: In this type of step, the user is presented a set of information and performs the set of tasks within the step
manually. Then the user notifies the system upon completion of the step.

2. Facilitator: In this type of step, an automated data entry screen is presented to the user allowing the user to provide
data for completion of the step. When the user completes the data entry screen(s), the step is considered complete.

3. Automator: In this type of step, a separate process called by the business process automation system infrastructure
automates the work. A notification that the step was completed can be sent, but all work in the step is handled without
user interaction.

Steps can be defined to run in parallel.
Steps can contain dependencies on other steps in order to assist parallel business processes.

By classifying step types, you can easily implement a business process with a minimum set of requirements. By building a
business process for an application with all informants, the system is easily implemented and can be put into production in a
relatively short period of time. Each informant could be a HTML screen that gives instructions on what manual work should be
performed.

Let's take a real-world example of a step in a help desk environment to explain the differences between the types of steps. Let's
say that one of the steps in a ticket is executed when it is determined that a Microsoft® SQL Server log file is full. Were the step
implemented as an informant, a HTML page giving the detailed instructions for the standard DBA policy for purging the log file
would be displayed. A facilitator would provide a data entry screen giving the user information about the problem (SQL Server,
error, date/time, and so on), with a button that would perform the desired action (per the standard DBA policy). An automator
would execute in the background and provide end results (if required) as a notification.

As you can see, this approach is very beneficial, since you can start out with a business process that is primarily a routing engine.
Then, as metrics become available, you can develop facilitators for business process steps that require large amounts of manual
effort. Once comfortable with facilitators, the same business logic can be encapsulated in an automator to eliminate all manual
work in the step. By taking this approach, you not only deliver functionality more quickly to the end user (nobody wants to wait 4
to 6 months for a business system), but you can also ensure that the effort applied to developing facilitators/automators will
deliver the greatest cost reduction.

As an aside, you might wonder, "Why not go from an informant directly to an automator?"

First, not all steps can be completely automated. Some information may have to be manually entered into a screen before the rest
of the step can be executed (through automation). Secondly, it is our experience that both users and managers are more
comfortable with an intermediate step that proves the business process is working. Allowing a user to view the information
before the step is executed builds confidence, and after a reasonable period of transition time that screen can be replaced by an
automator with little to no disruption.

The following diagram shows the structure of our business process template that the business process automation system
infrastructure acts upon. Notice that the step can have definitions for any or all of the three step types. This allows us to define a
manual step, while working on the automation of that step. When we are ready for automation, we can "flip the switch" for the
step and the system will automatically move from one type to the next.

Figure 1. Business process automation system logical design (click thumbnail for larger image)

Now that we have a robust design for our business process automation system, we can get down to the details of the business
process to be implemented. Since our design is open, the type and organization of process does not matter.

For our ticketing system, we need to define the business process that needs to be implemented. The basics needs of our ticketing
business process are:

Receive ticketing information.
Dispatch requests for approvals before work begins.
Route work to be performed on a ticket.
Generate request for parts (if required).
Receive parts (if required).
Close ticket.
Notify requestor of ticket closure.

As you can see, this is a simplistic ticketing business process, but it represents all of the challenges of a good core business
process.

Implementing Our Business Process Automation System Using BizTalk
Now that the business process has been identified, documented, and approved by the end user community we can use the
Microsoft® BizTalk Server 2002 Orchestration tool to develop the steps and relationships. Using our Help Desk ticketing system
example, we developed the following business process using the BizTalk Orchestration Manager:

Figure 2. Ticketing system business process

Creating the Core Business Process

To start developing your own business process, you will need to install BizTalk Server 2002 on your development workstation.
Then, open the BizTalk Orchestration Manager and begin drawing the business process shown in Figure 2.

During this step we will create BizTalk actions, which describe the business side of the process. The first action is to provide the
initialization logic that needs to be performed at the beginning of each and every process instance. The next action is to create a
decision tree to select the desired department based upon the Department ID passed to the business process automation system
infrastructure. Separate functional units are specified so that the dispatch of each different department's tasks can be developed
differently, if required.

The next action in the process is to wait for approval from the dispatched task. Since only 1 department "owns" the task, we will
be waiting on that department's approval/rejection of the ticket. Once the approval/rejection has been received, the process
checks for the status of the ticket to see if it has been approved or denied. If it is denied, we simply notify the requestor and end
the flow. If the ticket is approved, then the process forks itself into two parallel processes—one for the assignment task, and the
other to see if there are any parts or materials required to fulfill this request. Observe the parts/materials required branch of the
flow, and you will see that this is a conditional branch, as it dispatches a materials required task only if the ticket needs it.

Once the ticket is assigned to a worker and any required material is received (note the AND-ed join), the task to work on the ticket
is dispatched. The assignee is notified before the task to work on a ticket is dispatched. Once the worker performs the task and
closes the ticket, the requestor is notified of their request being fulfilled.

While this may be impractical for use as a production ticketing system, it utilizes the major components of a good business
process automation system and it helps us demonstrate the key features in designing a scalable business system for your
enterprise.

Now that the business logic has been identified, we need to create stub objects for each of the functional logic areas that are
identified in the diagram. These functional logic areas (procedures) do not have to be written at this time, but they must be
identified and available as COM objects, so that the BizTalk Server 2002 Orchestration Manager can be used to map the business
logic points to actual components to be called by BizTalk.

To create the class library stub in our example, we will create a Microsoft® Visual Basic® project using Microsoft Visual Studio®
.NET. Choose Class Library as the template for your project (Figure 3):

Figure 3. Creating a stubbed class library (click thumbnail for larger image)

In this class library we will define stubs for the following functions:

InitWorkflow: The initial method used to pass the ticket information into the business process automation system.
DispatchTask: The method used for dispatching various tasks.
SendTicketingEmail: The method used for sending e-mails related to the ticket.
CompleteWorkflowInstance: The method used to record when a business process ends.
PartsRequiredForTicket: A method to determine whether parts are required for this ticket.
TicketStatus: A method used to query ticket information.
StartWorkflow: The method used to kickoff the business process automation that begins the ticketing process.

Since we are building our component in .NET, we need to add a reference to the library "System.Runtime.InteropServices", and we
also need to make the Class available to COM. We can do this in two different ways: Either we create an interface and then
implement that interface, or we can specify the Class Interface Type Attribute as "AutoDual". The recommended approach is to
create an interface and implement that interface, but in this case, we used AutoDual because our component was being used by a
single process.

This indicates that a dual class interface is automatically generated for the class and exposed to COM. Type information is
produced for the class interface and published in the type library. Figure 4 shows all the stubbed methods we will tie to our
actions.

Figure 4. Creating stubbed class code (click thumbnail for larger image)

Before compiling the project, make sure that "Generate Strong Key Name" is checked in the project properties, so these
components can be put on the Global Assembly Cache (GAC) for optimum performance. Now compile the project. After the
project is compiled, register the DLLs using Regasm.exe, and put the DLLs on GAC using Gacutil.exe. Below is a script that we
created to automate this process for our ticketing system. (Please note that you need to be in the directory that has the required
DLLs.)

If there are any components that TicketingSystemUtil depends upon, you will also need to register these dynamic link libraries
and put them on the GAC. COMRUNTIME_1_0 and MSXML2_3_0 are examples of two such DLLs. These 2 DLLs are in fact the
.NET-generated wrappers for XLANG Scheduler Runtime type library, since .NET did not find a primary interop assembly for it.
You register these when you add the reference to XLANG Scheduler runtime in your project.

Note This project was created before the BizTalk Server 2002 Toolkit for Microsoft .NET. As a result, we manually
created and registered the Interop.COMRUNTIME and Interop.MSXML2 assemblies. With the
BizTalk Server 2002 Toolkit for Microsoft .NET this step is no longer necessary, as the code-signed official versions of
these assemblies are supplied in this toolkit.

Creating Ports to Link with Non-MSMQ Business Actions

Now that you have a component to work with, you can finish the XLANG schedule diagram. We will do this by telling BizTalk
Server what COM objects it needs to call when reaching a piece of business logic. Using the BizTalk Orchestration Manager to
complete this business process, we will:

Implement the ports that use COM components.
Implement the ports that use MSMQ messaging.
Tie messages between actions and ports bound to COM components through methods.
Tie messages between actions and ports bound to Message Queuing.
Create rules for decision trees.
Data handling.

The first step is to create BizTalk Server ports that will provide a map from the various business actions to and from the methods
defined in our stubbed Workflow class. In order to allow BizTalk Server to call our business logic, and then resume when the
logic is completed, a BizTalk Server input and output port is automatically created for each method within the COM object. These
ports are tied to the business actions created earlier. To prevent actions from corrupting each other, we must create separate
instantiations of a COM object (port).

In addition, separate ports for wait steps must be identified. You can do this by first creating private queues for each wait step, and
by then tying the wait step with the port that is linked to the MSMQ instantiation linked to that port.

First, let's create the ports used to get to and from each action and its COM component counterpart. From the Implementation
stencil in the BizTalk Orchestration Manager, drag the COM component shape onto the implementation area (this is on the right
side of the separator). The COM Component Binding Wizard opens, and we perform the following steps:

1. On the Welcome to the COM Component Binding Wizard page, type a name for the port that you want to create.
BizTalk Orchestration Designer provides a default port name with a number appended to it for each new port
implementation that is added. Change this name to InitPort. Click Next.

2. On the Static or Dynamic Communication page, click Static, which means the component is automatically destroyed
when the XLANG schedule instance ends. (For more information about static and dynamic communications, refer to the
BizTalk Server 2002 documentation.) Click Next.

3. On the Class Information page, click From a registered component. A tree control displays all components registered on
your computer. Find and expand the folder for the TicketingSystemUtil, and click the BizTalkUtilities class. Click Next.

4. On the Interface Information page, click the _BizTalkUtilities interface. Click Next.
5. On the Method Information page, select the following methods:

InitWorkflow

regasm /unregister TicketingSystemUtil.dll
regasm /unregister Interop.COMRUNTIME_1_0.dll
regasm /unregister Interop.MSXML2_3_0.dll
gacutil -u TicketingSystemUtil
gacutil -u Interop.COMRUNTIME_1_0
gacutil -u Interop.MSXML2_3_0
regasm Interop.COMRUNTIME_1_0.dll
regasm Interop.MSXML2_3_0.dll
regasm TicketingSystemUtil.dll /tlb:TicketingSystemUtil.tlb
gacutil -i Interop.COMRUNTIME_1_0.dll
gacutil -i Interop.MSXML2_3_0.dll
gacutil -i TicketingSystemUtil.dll

http://msdn.microsoft.com/library/default.asp?url=/downloads/list/biztalk.asp

CompleteWorkflowInstance
SendTicketingEmail
DispatchTask
TicketStatus

6. Click Next.
7. On the Advanced Port Properties page accept the defaults. Click Finish.

Your BizTalk Orchestration diagram should now look like Figure 5.

Figure 5. BizTalk Orchestration diagram after creating ports (click thumbnail for larger image)

Since we have parallel processing in our business process automation system infrastructure, we will need to repeat the above
process of adding the same COM component twice for each parallel branch, with the following exceptions:

1. For the Task Assignment branch:

Name the Port as TaskAssignment on the Welcome to the COM Component Binding page.
Select only the DispatchTask method on the Method Information page.

2. For the Receive Parts branch:

Name the Port as ReceiveParts on the Welcome to the COM Component Binding page.
Select SendTicketingEmail, PartsRequiredForTicket and DispatchTask methods on the Method Information
page.

Creating Ports to Link Wait Actions to MSMQ Private Queues

Now it's time to create links between wait actions and the message queues that will notify the wait action when to resume the
business process. To do this, we will use the BizTalk Orchestration Manager, and from the Implementation stencil we will drag the
MSMQ shape onto the implementation area on the right side of the separator. The Message Queuing Binding Wizard opens and
we perform the following steps to create a queue linked to the Wait For Approval Response action:

1. On the Welcome to the Message Queuing Binding Wizard page, click Create a new port. BizTalk Orchestration
Designer provides a default port name with a number appended to it for each new port implementation that is added.
Change this name to WaitForTasks. Click Next.

2. On the Static or Dynamic Queue Information page, click Static queue. A static queue is a known, preexisting queue.
This queue must be known at design time. (For more information about static and dynamic queues, see the BizTalk Server
2002 documentation.) Click Next.

3. On the Queue Information page, click Create a new queue for every instance. Keep the default queue prefix that is
provided. Click Next.

4. On the Advanced Port Properties page, accept the defaults. In the Security area, click Not required, and in the
Transaction support area, select the Transactions are required with this queue check box. Click Finish.

For each wait action, we need to create a separate private MSMQ queue and link it to the desired action. We can follow the same

steps above to create queues for the WaitForParts and the WaitForTaskAssignment actions, with the following changes:

1. For the Task Assignment branch:

Name the port WaitForTaskAssignment on the Welcome to the Message Queuing Binding Wizard page.

2. For the Receive Parts branch:

Name the port WaitForReceiveParts on the Welcome to the Message Queuing Binding Wizard page.

Your BizTalk Orchestration diagram should now look like Figure 6.

Figure 6. BizTalk Orchestration diagram after adding MSMQ (click thumbnail for larger image)

Mapping Business Actions to COM Object Methods

Now it's time to tie each of the actions on the business side of the Orchestration diagram to methods or wait queues (which are
associated with the ports) that we've just created.

Our first step is to tie all of our non-MSMQ actions to their respective COM component methods using the Method
Communication Wizard. We will start by connecting the InitWorkflow action to the InitPort port. This will invoke the Method
Communication Wizard. The wizard has three pages:

1. On the Welcome to the Method Communication Wizard page, you can specify whether the XLANG Scheduler Engine
will call a method or wait for a method call. Select Wait for a synchronous method call. Accept the default values for the
other fields. If you specify that the XLANG Scheduler Engine will wait for a method call, you can set a latency value to
indicate an amount of time in seconds that the XLANG Scheduler Engine is likely to have to wait before a message arrives.
(See the BizTalk Server 2002 documentation for more information on latency.) Click Next

2. On the Message Information page, you can specify whether a new message or a reference to an existing message should
be created. For InitWorkflow action we will select Create a new message. Click Next

3. On the Message Specification Information page, select InitWorkflow method. Click Finish

After performing these steps, your Orchestration diagram should look like Figure 7.

Figure 7. BizTalk Orchestration diagram after mapping InitWorkflow to InitPort (click thumbnail for larger image)

Next, we need to map actions to methods for each of the remaining non-MSMQ actions. We can do this using the same steps
outlined above, except that we want to select Initiate a Synchronous Method Call, and change the name from InitWorkflow
to the desired action in Step 3.

A synchronous method call is initiated instead of waiting for a synchronous call, because these actions need to be initiated from
outside the business process (that is, starting a ticket in the business process automation system).

The table below summarizes the relationship between the actions, ports, and methods that we just created in the BizTalk
Orchestration Manager:

Table 1. Action to port/COM object method relationships

Action Name Port Name Method Name
Dispatch Default Approval Task InitPort DispatchTask
Dispatch SD Approval Task InitPort DispatchTask
Dispatch PRD Approval Task InitPort DispatchTask
Get Ticket Status InitPort TicketStatus
Notify Requestor Denial InitPort SendTicketingEmail
Dispatch Ticket Assignment TaskAssignment DispatchTask
Parts needed to close ticket ReceiveMaterial PartsRequiredforticket
Email material requirements ReceiveMaterial SendTicketingEmail
Receive parts ReceiveMaterial DispatchTask
Notify Assignee InitPort SendTicketingEmail
Dispatch ticket for Close InitPort DispatchTask
Notify requestor closed ticket InitPort SendTicketingEmail
Complete orchestration InitPort CompleteWorkflowInstance

Now that we've tied the non-MSMQ actions to ports and methods, we need to describe the same thing for MSMQ actions. These
differ because the actions (with the exception of InitWorkflow) will all generate a call to the desired method. MSMQ actions will
be waiting until a message in the desired private message queue is received. To trigger the completion of the wait process, a
method in one of our instantiated COM objects needs to insert a message into the desired queue.

So, let's make the linkage that connects the Wait for Approval Response action to the WaitForTasks port (which is tied to the
private message queue [$WaitForTasks] created earlier). Connecting these two objects invokes the XML Communications Wizard,
and you can follow these steps to complete the linkage:

1. On the Welcome to the XML Communication Wizard page, you can specify whether the port will send a message to an
action, or receive a message from an action. Click Receive. Click Next.

2. On the Message Information page, you can specify whether a new message or a reference to an existing message should
be created. Click Create a new message and type in the name for the message. Click Next.

3. On the XML Translation Information page, you can specify whether you want messages sent to or received from the
queue as XML-formatted data or as text strings. Click Send XML messages to the Queue. Click Next.

4. On the Message Type Information page, you can specify a label that the XLANG Scheduler Engine should use to identify

messages of the type you define. Enter TaskResponse as the message label. Click Next.
5. On the Message Specification Information page, click Browse and select TaskResponse.xml as the specification. Click

Finish.

Now that we've tied the Wait for Approval action to the desired message queue, we need to do the same for the following
MSMQ actions:

Wait for Approval
Wait for Assignment
Wait for Parts
Wait for Close

You can do this by following the same steps for each MSMQ action as described above.

Creating Rules for Decision Trees

There are 3 decision trees in the diagram. The first tree is to determine which department the ticket needs to be routed to for
approval. The second is to determine if the ticket has been approved or not. The third tree is to determine if the ticket requires
parts to fulfill the request. Before doing these decision trees, you will need to click on the data page and open up the constants
window to add the following constants that are required for this business process to function correctly.

Table 2. Constant values for the ticket system

Constant Name Value
SoftwareDepartmentId 45
ProductProgramsDepartmentId 46
DefaultDepartmentId 47
TicketApprovedStatus 2
EmailRejection 1
EmailApproved 2
EmailClose 3
EmailAssigned 4
EmailMaterialRequired 5
TaskApproveSD 121
TaskApprovePRD 122
TaskApproveDefault 120
TaskAssign 123
TaskMaterialReceive 124
TaskClose 125

Next, we need to add rules that define what to do in a decision tree. To add a rule, double-click on a decision tree shape and click
Add Rule. Figure 8 shows how we added a rule for the Ticket For Software Development decision tree.

Figure 8. Adding a rule

This rule tells the XLANG schedule to set the value of the Department ID for this instance of a business process equal to the
constant for Software Development that we set up earlier. Table 3 shows the other rules that need to be set up.

Table 3. Ticketing system rules

Decision Tree Rule Name Script Expression
Department Determination Ticket for Software Develop

ment
InitWorkFlow_in.DepartmentId = Constants.SoftwareDevelopmentDe
partmentID

 Ticket is for Product Progra
ms

InitWorkFlow_in.DepartmentId = Constants.ProductProgramsDepart
mentId

Approval/Rejection Determin
ation

Ticket Approved TicketStatus_out.pRetVal = Constants.TicketApprovedStatus

Part Requirement Determinat
ion

Parts Are Needed PartsRequiredForTicket_out.pRetVal = 1

Data Handling

Click the data tab of the XLANG schedule to link all the messages. You will see:

One message shape for every message in the XLANG schedule.
One Constants message.
One Port References message containing a port field for each port within the XLANG schedule drawing.
Diagrammatic connections showing the flow of data between the message fields.

Messages consist of a set of uniquely named fields, each containing one data item of a specific data type. Every message in the
XLANG schedule is displayed on the Data page as a table. Each table displays the name of the message and a listing of field names
and their corresponding data types. Connections on the Data page point from the right side of a source message field, to the left
side of a destination message field. This connection indicates that the source message field will provide the data for the
destination message field. At run time, the XLANG Scheduler Engine will copy the data from the source message field into the
destination message field when the destination message has to be created. If the source message has not arrived yet, a run-time
error will occur. See Figure 9 below for completing data connections for the very first message that is DispatchTask_In.

Figure 9. DispatchTask_In data connections (click thumbnail for larger image)

Table 4. XLANG schedule message links

Message Field From Message Field
DispatchTask_in InstanceID InitWorkflow_In InstanceId
DispatchTask_in TaskDefinitionID Constants TaskApproveDeptSD
DispatchTask_in CallBackQ Port References WaitForTasks
DispatchTask_in_1 InstanceID InitWorkflow_In InstanceId
DispatchTask_in_1 TaskDefinitionID Constants TaskApproveDeptPRD
DispatchTask_in_1 CallBackQ Port References WaitForTasks
DispatchTask_in_2 InstanceID InitWorkflow_In InstanceId
DispatchTask_in_2 TaskDefinitionID Constants TaskApproveDefaultDept
DispatchTask_in_2 CallBackQ Port References WaitForTasks
DispatchTask_in_3 InstanceID InitWorkflow_In InstanceId
DispatchTask_in_3 TaskDefinitionID Constants Task
DispatchTask_in_3 CallBackQ Port References WaitForTasks
DispatchTask_in_4 InstanceID InitWorkflow_In InstanceId
DispatchTask_in_4 TaskDefinitionID Constants TaskreceiveParts
DispatchTask_in_4 CallBackQ Port References WaitForReceiveParts
DispatchTask_in_5 InstanceID InitWorkflow_In InstanceId
DispatchTask_in_5 TaskDefinitionID Constants TaskAssign
DispatchTask_in_5 CallBackQ Port References WaitForTaskAssignment
DispatchTask_in_6 InstanceID InitWorkflow_In InstanceId
DispatchTask_in_6 TaskDefinitionID Constants TaskClose
DispatchTask_in_6 CallBackQ Port References WaitForTasks
CompleteWorkflowInstance_In WorkflowDOM InitWorkflow_In WorkflowInfo
SendTicketingEmail_In WorkflowDOM InitWorkflow_In WorkflowInfo
SendTicketingEmail_In EmailType Constants EmailRejection
SendTicketingEmail_In_2 WorkflowDOM InitWorkflow_In WorkflowInfo
SendTicketingEmail_In_2 EmailType Constants EmailAssigned
SendTicketingEmail_In_3 WorkflowDOM InitWorkflow_In WorkflowInfo
SendTicketingEmail_In_3 EmailType Constants EmailClose
SendTicketingEmail_In_4 WorkflowDOM InitWorkflow_In WorkflowInfo
SendTicketingEmail_In_4 EmailType Constants EmailMaterialsRequired
TicketStatus_In TicketId InitWorkflow_In TicketId
PartsRequiredForTicket_In TicketId InitWorkflow_In TicketId

When mapping business actions to COM object methods, you can either wait for the synchronous call to be made by an external
agent or let the XLANG Scheduler application initiate the synchronous call. For all non-MSMQ business actions in our XLANG

schedule, the first action requires the wait for synchronous method call, as we need a way to pump the data into the business
process automation system when the Workflow Instance Starter kicks off the XLANG schedule instance. Once that data is inside
the XLANG schedule instance we can let the XLANG Scheduler application initiate the other calls.

Figure 10 shows the completed XLANG schedule. To complete the functionality of our ticketing system, we need to create the
code that executes behind the COM objects that we stubbed out earlier.

Figure 10. Completed XLANG schedule (click thumbnail for larger image)

Developing Code for the Core Automated Business Process

Overview

Up until this point, we've been working on the functional design of the ticketing system. We've created a business process
automation system using the BizTalk Orchestration Manager, and we linked business actions to stubbed object methods that will
ultimately end up running the business rules behind each step in the business process.

Now it's time to start writing the code that captures our business rules for each object method specified earlier in our COM object.

First, let's take a look at the technical design of how all of our code modules fit together inside the environment. Figure 11 shows
the technical design diagram.

Figure 11. Business process automation system technical architecture (click thumbnail for larger image)

BizTalk Utilities

Our first task is to set up the code behind the BizTalkUtilities module. The primary Purpose of BizTalkUtilities is to encapsulate all
the core business process automation functionality into methods that can be tied to actions within BizTalk XLANG schedules.
Earlier, we created the BiztalkUtilities COM object in a stubbed format to complete our XLANG Scheduler diagram. In this
section, we'll review code for some of the more important sections of this object.

This first section of code shows all of the core constants and enumerators used throughout our core business process automation

system:

StartWorkFlow

Private Enum EmailTypeEnum
 Created = 0
 Rejection = 1
 Approval = 2
 Close = 3
 Assigned = 4
 MaterialAlert = 5
End Enum
Private Const c_TicketStartupDOM As String = _
 "<Ticket>" & _
 "<Header>" & _
 "<Properties>" & _
 "<TicketID><#TICKETID#></TicketID>" & _
 "DepartmentID><#DEPTID#></DepartmentID>" & _
 "</Properties>" & _
 "</Header>" & _
 "</Ticket>"
Private Const c_ActionStartupDOM As String = _
 "<Task>" & _
 "<Header>" & _
 "<Properties>" & _
 "</Properties>" & _
 "</Header>" & _
 "</Task>"

Private Const c_TicketToken As String = "<#TICKETID#>"

Private Const c_DepartmentToken As String = "<#DEPTID#>"

Private Const c_AssignedToToken As String = "<#ASSIGNEDTO#>"

Private Const c_TicketRejection As String = _
 "Your Ticket <#TICKETID#> has been " & _
 "rejected. Please contact the Department " & _
 "<#DEPTID#> for more details"

Private Const c_TicketApproval As String = _
 "Your Ticket <#TICKETID#> has been " & _
 "Approved. Please contact the Department " & _
 "<#DEPTID#> for more details"

Private Const c_TicketClosed As String = _
 "Your Ticket <#TICKETID#> has been Closed. " & _
 "If you are not satisfied please contact the " & _
 "Department <#DEPTID#> for reopening the ticket."

Private Const c_TicketAssigned As String = _
 "Ticket <#TICKETID#> has been Assigned " & _
 "to you. If you have questions please contact the " & _
 "Department <#DEPTID#>."

Private Const c_TickeMaterialAlert As String = _
 "Please send the material required for fulfilling" & _
 "Ticket <#TICKETID#>. If you have questions please " & _
 "contact the Department <#DEPTID#>."

Private Const c_MaterialAlertEmail As String = _
 "MaterialHandling@xyz.com"

Private Const WorkflowUserGUID As String = _
 "AAAAAAAA-BBBB-CCCC-DDDD-EEEEEEEEEEEE"

The StartWorkflow function is used to kickoff an XLANG schedule instance. It requires a TicketID, DepartmentID and WorkflowID
to be passed as parameters. The TicketID represents the ticket that was created for this business process. The DepartmentID
represents the department that will handle this ticket. The WorkflowID identifies the record corresponding to the XLANG schedule
representing the ticketing business process.

The first action this function performs is to validate the input parameters. Then it instantiates the Instance object, sets the values
for user, DOM, WorkflowID and then simply calls the Start method. The remainder of the start process is handled by the Start
method. The code section below shows the StartWorkFlow function:

InitWorkflow

InitWorkflow function does nothing more than give us a way to pass data into an XLANG schedule instance. The Start method
of the Instance object automatically invokes this as soon as the XLANG schedule instance is started successfully. Here is the code
for the InitWorkFlow function:

DispatchTask

The DispatchTask function will create a WorkPool item for a given instance, a Task Definition ID, and a Callback Queue.

The function validates the passed parameters Task, Definition, and Instance IDs. Next, it creates an action record with Instance and
Task Definition IDs representing the XLANG scheduler action that is dispatching the task. Then, it instantiates the WorkPool item
and adds it to global work pool. Here is the code for the DispatchTask function.

Public Function StartWorkflow(ByVal TicketId As Integer, _
 ByVal DepartmentId As Integer, _
 ByVal WorkflowId As Integer) As Boolean
 Dim sDOM As String
 Dim oInstance As Instance

 StartWorkflow = False
 If TicketId < 1 Or DepartmentId < 1 Or WorkflowId < 1 Then
 Throw New Exception _
 ("Cannot start a process without proper parameters. " & _
 TicketId = " & TicketId & " DepartmentID = " & _
 DepartmentId & " WorkflowID = " & WorkflowId)
 End If
 Try
 oInstance = New Instance()
 oInstance.WorkflowId = WorkflowId
 oInstance.User = m_User
 sDOM = c_TicketStartupDOM
 sDOM = Replace(sDOM, c_TicketToken, CType(TicketId, String))
 sDOM = Replace(sDOM, c_DepartmentToken, CType(DepartmentId, String))
 oInstance.DOM = sDOM
 oInstance.Start()
 StartWorkflow = True
 Catch Except As Exception
 Return False
 End Try
End Function

Public Function InitWorkFlow(ByVal WorkflowInfo As String, _
 ByVal InstanceId As Integer, _
 ByVal TicketId As Integer, _
 ByVal DepartmentId As Integer) _
 As Boolean
 InitWorkFlow = True
End Function

Public Function DispatchTask(ByVal InstanceId As Integer,
 ByVal TaskDefinitionId As Integer, _
 ByVal CallbackQ As String) As Boolean

SendTicketingEmail

Various business actions use the SendTicketingEmail function to send notifications. It requires the WorkFlowDOM and
EmailType as its input parameters. Based on the EmailType enumerated type values, it builds the correct From, To, Subject, and
Body strings, and then fires the notifications. Please refer to the Constants and Enumerations code section above for these values.
Notice that this function calls GetTicketId and GetEmailForUser private functions. GetTicketId simply parses the XML DOM
and returns the node value for TicketID. The getEmailForUser function uses the Core Workflow security object ADS to get user
information and then simply returns an e-mail address by concatenating the SAMAccount and the company extension. Here is the
code for the SendTicketingEmail function.

 Dim oWPItem As WorkPoolItem
 Dim oWP As WorkPool
 Dim oTask As TaskDefinition
 Dim oTasks As Tasks
 Dim sActionName As String
 Dim sActionDescription As String
 Dim oAction As Action
 Dim sTaskDOM As String
 Dim oInstance As Instance
 Dim oInstances As Instances
 Dim sFilter As String

 oTasks = New Tasks(" TaskDefinitionId = " & TaskDefinitionId.ToString)
 If oTasks.Count() = 1 Then
 oTask = oTasks.Item(0)
 sActionName = "Dispatch Task - " & oTask.TaskName
 sActionDescription = "Action to Dispatch " & oTask.TaskName & _
 " Task for Instance " & InstanceId.ToString
 sTaskDOM = c_ActionStartupDOM
 oAction = CreateTaskAction(InstanceId, sActionName, _
 sActionDescription, sTaskDOM)
 If oAction Is Nothing Then
 Throw New Exception("Action Create failed.")
 End If
 sFilter = "InstanceId = " + InstanceId.ToString
 oInstances = New Instances(sFilter)
 If oInstances.Count = 1 Then
 oWPItem = New WorkPoolItem()
 With oWPItem
 .ActionId = oAction.ActionId
 .InstanceId = InstanceId
 .PostBackQueue = CallbackQ
 .TaskDefinitionId = TaskDefinitionId
 .StepDefinitionId = 0
 .WorkType = WorkTypeEnum.WorkTypeTask
 .User = m_User
 End With
 oWP = New WorkPool()
 oWP.Add(oWPItem)
 DispatchTask = True
 Else
 Throw New Exception("InstanceId passed to DispatchTask is " & _
 "not valid. Instance Id = " &
 InstanceId.ToString)
 End If
 Else
 Throw New Exception("TaskDefinitionId passed to DispatchTask " & _
 "is not valid. Task Id = " & _
 TaskDefinitionId.ToString)
 End If
End Function

Public Function SendTicketingEmail(ByVal WorkflowDOM As String, _
 ByVal EmailType As EmailTypeEnum) _
 As Boolean

 Try
 Dim Tostr As String
 Dim FromStr As String = "TicketingSystem@xyz.com"
 Dim EmailBody As String
 Dim SubStr As String
 Dim TicketId As Integer
 Dim DepartmentId As Integer
 Dim Ticket As Ticket

 TicketId = GetTicketId(WorkflowDOM)
 Ticket = New Ticket(TicketId)
 DepartmentId = Ticket.DepartmentId
 Select Case EmailType
 Case EmailTypeEnum.Approval
 EmailBody = c_TicketApproval
 EmailBody = Replace(EmailBody, c_TicketToken, _
 CType(TicketId, String))
 EmailBody = Replace(EmailBody, c_DepartmentToken, _
 CType(DepartmentId, String))
 Tostr = GetEmailforUser(Ticket.RequestedUser)
 SubStr = "Ticket " & Ticket.ID & " has been approved."
 Case EmailTypeEnum.Assigned
 EmailBody = c_TicketAssigned
 EmailBody = Replace(EmailBody, c_TicketToken, _
 CType(TicketId, String))
 EmailBody = Replace(EmailBody, c_DepartmentToken, _
 CType(DepartmentId, String))
 Tostr = GetEmailforUser(Ticket.AssignedUser)
 SubStr = "Ticket " & Ticket.ID & " has been assigned to you."
 Case EmailTypeEnum.Close
 EmailBody = c_TicketClosed
 EmailBody = Replace(EmailBody, c_TicketToken, _
 CType(TicketId, String))
 EmailBody = Replace(EmailBody, c_DepartmentToken, _
 CType(DepartmentId, String))
 Tostr = GetEmailforUser(Ticket.RequestedUser)
 SubStr = "Ticket " & Ticket.ID & " has been closed."
 Case EmailTypeEnum.MaterialAlert
 EmailBody = c_TickeMaterialAlert
 EmailBody = Replace(EmailBody, c_TicketToken, _
 CType(TicketId, String))
 EmailBody = Replace(EmailBody, c_DepartmentToken,_
 CType(DepartmentId, String))
 Tostr = c_MaterialAlertEmail '"myaddress@company.com"
 SubStr = "Ticket " & Ticket.ID & " needs Material."
 Case EmailTypeEnum.Rejection
 EmailBody = c_TicketRejection
 EmailBody = Replace(EmailBody, c_TicketToken, _
 CType(TicketId, String))
 EmailBody = Replace(EmailBody, c_DepartmentToken, _
 CType(DepartmentId, String))
 Tostr = GetEmailforUser(Ticket.RequestedUser)
 SubStr = "Ticket " & Ticket.ID & " has been rejected."
 End Select
 SendTicketingEmail = SendEmail(Tostr, FromStr, SubStr, EmailBody)
 Catch ex As Exception
 SendTicketingEmail = False
 End Try
End Function

Private Function SendEmail(ByVal ToStr As String, _
 ByVal FromStr As String, _
 ByVal SubStr As String, _
 ByVal EmailBody As String) As Boolean
 Try
 Dim mailobj As New SmtpMail()
 Dim msgobj As MailMessage

TicketStatus

This function instantiates a ticket object corresponding to the Ticket ID, and returns its status.

PartsRequiredForTicket

This function instantiates a ticket object based on the Ticket ID passed, and then simply returns 1 or 0 based on the value of the
TicketType property.

 msgobj = New MailMessage()
 msgobj.To = ToStr
 msgobj.From = FromStr
 msgobj.Subject = SubStr
 msgobj.Body = EmailBody
 mailobj.Send(msgobj)
 SendEmail = True
 Catch ex As Exception
 SendEmail = False
 End Try
End Function

Private Function GetEmailforUser(ByVal UserGUID As String) As String

 Dim ads As New ADS()
 Dim UserGuidInputArray As New ArrayList()
 Dim ADSUserInfoArray As ArrayList
 Dim ADSUserInfo As ADSUserInfo

 UserGuidInputArray.Add(UserGUID)
 ADSUserInfoArray = ads.GetUserInformation(UserGuidInputArray)
 If ADSUserInfoArray.Count > 0 Then
 ADSUserInfo = CType(ADSUserInfoArray(0), ADSUserInfo)
 GetEmailforUser = ADSUserInfo.SamAccount & "@xyz.com"
 Else
 GetEmailforUser = "deadletter@xyz.com"
 End If
End Function

Private Function GetTicketId(ByVal WorkflowDOM As String) As Integer

 Dim xDOM As New Xml.XmlDocument()
 Dim xNode As Xml.XmlNode
 Dim InstanceId As Integer

 GetTicketId = 0
 xDOM.LoadXml(WorkflowDOM)
 xNode = xDOM.GetElementsByTagName("TicketID").Item(0)
 If Not xNode Is Nothing Then
 InstanceId = CType(xNode.InnerText, Integer)
 End If
 GetTicketId = InstanceId
End Function

 Public Function TicketStatus(ByVal TicketID As Integer) As Integer
 Dim Ticket As New Ticket(TicketID)
 Return Ticket.TicketStatus
 End Function

Public Function PartsRequiredForTicket(ByVal TicketID As Integer) _
 As Integer
 Dim Ticket As New Ticket(TicketID)
 If Ticket.TicketType = _
 Ticket.TicketTypeEnum.RequiresMaterialsOrTools Then

CompleteWorkflowInstance

The CompleteWorkflowInstance method is called from the last business action of the XLANG schedule for the ticketing system.
The sole purpose of this function is to provide bookkeeping for the core business process automation system. It checks to see if
there are any child processes associated with this instance, and if so, makes sure all of the children have run to completion. Once
these prerequisites are met, it sets the Instance Status to Completed. Most of this functionality is accomplished by the Instance
object's Complete method.

Task Object

The Task object describes a unit of work that can be assigned to an individual. It comprises one or more steps. Our ticketing
system dispatches work at the task level. A task can have the following properties:

Name
Type
Task Wizard
Description
Status
Team Assignment
Organization Assignment

The Task type can be either Self Assignable (if the task is available, it can be assigned when the worker opens it). Grant Ownership
requires a manager to assign it to a worker. The last type is Auto Start, which provides the mechanism for the task to be
completed by an automator without any physical assignments.

 PartsRequiredForTicket = 1
 Else
 PartsRequiredForTicket = 0
End If
End Function

Public Function CompleteWorkflowInstance(ByVal WorkflowDOM As String) _
 As Boolean
 Dim oInstances As Instances
 Dim oInstance As Instance
 Dim InstanceId As Integer = 0
 Dim xDOM As New XmlDocument()

 CompleteWorkflowInstance = False
 xDOM.LoadXml(WorkflowDOM)
 InstanceId = GetInstanceId(WorkflowDOM)
 If InstanceId < 1 Then
 Throw New Exception("Cannot complete a process without InstanceId" &_
 " value within WorkflowDOM. DOM = " & WorkflowDOM)
 End If
 oInstances = New Instances("InstanceId = " + InstanceId.ToString)
 If (oInstances.Count = 1) Then
 oInstance = CType(oInstances(0), Instance)
 If (oInstance.IsOkayToEnd() = True) Then
 oInstance.User = m_User
 oInstance.Complete()
 Return True
 Else
 Throw New Exception("Cannot Complete the Instance. Child " & _
 "Instances running is the likely cause")
 End If
 Else
 CompleteWorkflowInstance = False
 Throw New Exception("Cannot create Instance object. " & _
 "Invalid Instance Id is the likely cause")
 End If
End Function

Please refer to TASKDEFINITION.VB to reference the code for this object.

Step Object

The Step object is a unit of work that can be accomplished by an informant, facilitator, or an automator. The difference between a
step and a task is that a task can have many steps, but only tasks are an assignable unit of work.

The business process for our ticketing system only uses single steps for each task. However, it is important to note that the core
business process automation system infrastructure can easily support multiple steps per task using this object model.

The step has the following properties:

Name
Description
Type (informant, facilitator, automator)
Link to the informant, facilitator, or automator

Refer to STEPDEFINITION.VB to reference the code for this object.

Workflow Object

The Workflow object provides access to the individually defined BizTalk business process we created using the BizTalk
Orchestration Manager. You must have access to this file to instantiating an instance of a particular process.

In our ticketing system, we defined only one business process, but this same object model can be easily used to support multiple
processes. This is especially useful for complex ticketing systems where a task in one process can kickoff an entirely different
process associated with the type of work to be performed.

Please refer to WORKFLOWTEMPLATE.VB to reference the code for this object.

Ticket Object

The Ticket object represents a user request to get something done that is fulfilled by running an XLANG schedule. It stores the
information about who the requestor is, what department usually approves or deals with the request, whether or not there are
any materials required to fulfill the ticket, the current status of the ticket, and who is assigned to work on the ticket.

Refer to TICKET.VB to reference the code for this object.

Instance Object

The Instance object represents a running XLANG schedule instance that is used to fulfill something, in our case a ticket. It stores
the information about who started the instance of the business process, what is the GUID that uniquely represents it, the data
passed into it (this is stored in instance header entity), and the current status of the process.

Refer to INSTANCE.VB to reference the code for this object.

Action Object

The Action object represents a significant business action in an XLANG diagram. An instance is comprised of one or more actions.
In our case, the examples of actions are all business actions in the diagram that dispatch a task.

Refer to ACTION.VB to reference the code for this object.

Global Workpool Object

You can manipulate an instance of a step for a ticket by setting up the global Workpool object. A good example is the handling of
a ticket in the Waiting For Approval step in our ticketing system.

The lifecycle of a Workpool object for each step passes through the following states:

Item is queued.
Item is assigned.
Item is in progress.
Item is completed.

Here is the code for completing a business process task:

 Public Function CompleteWork(ByVal hrs As Decimal, _
 Optional ByVal RespDOM As String = "") _
 As Boolean
 Dim parameters(4) As SqlParameter
 Dim sResp As String = WorkDoneResponse
 Dim oAct As Action
 Dim oActs As Actions
 Dim oTasks As Tasks
 Dim oTask As TaskDefinition
 Dim oWP As WorkPool
 Dim strFilter As String
 Dim bCanComplete As Boolean = True
 CompleteWork = False

 If (RespDOM <> "") Then
 'set RespDOM as response message to CallBackQ
 sResp = RespDOM
 'set the actions DOM out and call Done method on it
 oActs = New Actions("ActionId = " & m_ActionId)
 oAct = CType(oActs(0), Action)
 oAct.User = m_User
 oAct.Done(RespDOM)
 End If
 'check if this is a step or a task
 If (m_WorkType = WorkTypeEnum.WorkTypeStep Or _
 m_WorkType = WorkTypeEnum.WorkTypeReworkStep) Then
 If (DoCompleteWork(hrs) = True) Then
 oTasks = New Tasks("TaskDefinitionId = " & _
 m_TaskDefinitionId)
 If (oTasks.Count() = 1) Then
 oTask = CType(oTasks(0), TaskDefinition)
 If (oTask.TaskWizardType = _
 WizardType.SerialDispatch) Then
 DispatchTaskStepsInSerial()
 ElseIf (oTask.TaskWizardType =
 WizardType.CustomWorkFlow) Then
 'this is a custom business process
 'so try to get into it
 If (m_PostBackQueue <> "" _
 And m_PostBackQueue <> Nothing) Then
 ExecuteMSMQ(m_PostBackQueue, sResp)
 Else
 'there is no queue to get back into the
 'business process. Put error handling code
 'here if required
 End If
 End If
 End If
 Else
 Throw New Exception("DoCompleteWork() for Step Failed")
 End If
 CompleteWork = True
 ElseIf (m_WorkType = WorkTypeEnum.WorkTypeTask Or _
 m_WorkType = WorkTypeEnum.WorkTypeReworkTask) Then
 'check if all the steps are done else throw an exception
 'saying some steps are still running
 strFilter = "InstanceId = " & m_InstanceId & " and _
 ActionId = " & m_ActionId & " and _
 TaskDefinitionId = " & m_TaskDefinitionId & " _
 and isnull(StepDefinitionId,0) <> 0 and _
 WorkStateType <> " & _
 CType(WorkStateType.WorkCompleted, Integer)
 oWP = New WorkPool(strFilter)
 If (oWP.Count > 0) Then
 bCanComplete = False
 End If
 If bCanComplete = True Then
 'update workpoolitem record with hours

A facilitator calls the CompleteWork method. The facilitator passes in the hours it took to complete the task.

The WorkPool object is a collection of WorkPoolItem objects.

Workflow Instance Starter

The Workflow Instance Starter is a facilitator in the ticketing system that is used to create tickets and kickoff a business process for
the newly created ticket.

For the ticket system, our Workflow Instance Starter (CreateTickets) is a Web form presented to the user to fill in a description,
department, and expected date. When the user clicks Apply, the ticket fields are validated and the ticket is saved using the Ticket
object described in CoreWorkflow system. Then an XLANG schedule instance is kicked off using the StartWorkflow method of
the BiztalkUtilities object.

Sample code for creating a Workflow Instance Starter ticket:

 'use business process callbackq
 'to get back into business process.
 If (DoCompleteWork(hrs) = True) Then
 If (m_PostBackQueue <> "" And _
 m_WorkType <> WorkTypeEnum.WorkTypeReworkTask) _
 Then
 ExecuteMSMQ(m_PostBackQueue, sResp)
 Else
 End If
 Else
 Throw New Exception("DoCompleteWork()" & _
 "for Task Failed")
 End If
 Else
 Throw New Exception("Task Cannot be completed " & _
 "because some steps are " & _
 "still running and/or has " & _
 "dependent rework tasks " & _
 "still running")
 End If
 End If
 CompleteWork = True
 End Function

 Private Sub btnButtonApplySmall_1_Click(ByVal sender As Object,_
 ByVal e As System.Web.UI.ImageClickEventArgs) Handles _
 btnButtonApplySmall_1.Click
 Dim sValidationError As String = ""
 Dim Ticket As New Ticket()
 If ddlDepartment.SelectedItem.Value = "-1" Then
 sValidationError = _
 "A valid Department needs to be selected. "
 End If
 If ddlStatus.SelectedItem.Value = "-1" Then
 sValidationError = sValidationError & _
 " A valid Status needs to be selected. "
 End If
 If Not IsDate(txtExpectedDate.Text) Then
 sValidationError = sValidationError & _
 " Date entered is not valid."
 End If
 If sValidationError <> "" Then
 sValidationError = "Found these validation error(s). " & _
 sValidationError & " Pleas fix them and try again."
 ShowError(sValidationError)
 Else
 Try
 Ticket.DepartmentID = _
 CType(ddlDepartment.SelectedItem.Value, Integer)
 If chkRequiresMaterial.Checked Then

Developing Informants, Facilitators, and Automators

Overview

So, now we've developed the underlying business process automation system. We've also encapsulated the business logic for
moving a task/step through a specific business process, identified by a BizTalk XLANG schedule. The last step is to create
informants, facilitators, or automators, for each of the business process steps. These modules give the user the opportunity to
interact with an order that is passing through the process (with the exception of an automator, which merely performs the
business logic and then signals the business process automation system that it has completed the work).

Developing a Base Page

Before we go off and create a bunch of ASP.NET screens, we probably want to create a common appearance for all screens. One
of the best ways to do this in .NET is to create a base page that every developer can inherit from. In this base page, we can specify
what a page, data grid, or any other visual item looks like when instantiated by the developer. This page will ensure the developer
need not worry about the details of paging or filtering for objects, like a table or data grid, because they have already been
developed and tested. This will speed up the overall time required to develop data screens. The base page also further separates
presentation logic from business logic, and allows parallel UI and functional development to occur with minimal side effects.

The new feature of Visual Studio .NET gives a development team structured control over the user interface (UI), by forcing
standardization across the UI of the entire system. This inheritance also allows (if enabled) the developer to tailor the base page to
their needs. However, this feature should be carefully analyzed as too much customization defeats the purpose of creating a
standard UI.

Our base page provides the following functionality:

Security information for the current user.
Standard style sheets and images.
WorkPool ID and ticket information.
WorkDone function to get back into the instance of the business process.

Security information is a set of permissions stored as XML DOM that describes which applications the user can access. The DOM
also describes the modules and functions within a module that a user can access. Since this article is not about a security model,
we will limit our discussion to this model.

BasePage, with the help of the BasePageBuilder object loads the standard style sheets, images, and other properties based on
the skin. As mentioned above, this allows us to change our overall UI without greatly impacting the underlying application.

If a WorkPool ID is passed in the QueryString to the LoadPage method, it is stored in a private variable and a protected property

 Ticket.TicketType = _
 Ticket.TicketTypeEnum.RequiresMaterialsOrTools
 Else
 Ticket.TicketType = _
 Ticket.TicketTypeEnum.RequiresJustLabor
 End If
 Ticket.ExpectedDate = _
 CType(txtExpectedDate.Text, DateTime)
 Ticket.Description = txtDescription.Text
 Ticket.TicketStatus = _
 CType(ddlStatus.SelectedItem.Value, Integer)
 Ticket.RequestedUser = WKFSecurity.UserId
 Ticket.Add()
 Dim oBizUtil As New BizTalkUtilities()
 oBizUtil.StartWorkflow(Ticket.ID, _
 Ticket.DepartmentID, c_TicketingWorkflow)
 pnlSubmitTicket.Visible = False
 ShowInfo("Ticket has been submitted. TicketId = " + _
 Ticket.ID.ToString)
 Catch ex As Exception
 ShowError(ex.ToString)
 End Try
 End If
 End Sub

is exposed for the derived pages to use. In addition to storing the WorkPool ID, it will fetch the Ticket ID and instantiate the Ticket
object, while exposing it as a protected property for the derived pages.

Now let's talk about the WorkDone function. BasePage implements this function so the facilitators and informants can fully
utilize this functionality and concentrate on the facilitator functionality, rather than on BizTalk Orchestration. The WorkDone
function first checks to see if the call was made in the context of a WorkPool ID. If so, it will set the response and hours if the
optional parameters are not passed in. Then it calls the CompleteWork method on the WorkPoolItem object. After that, it
checks to make sure there are no additional steps associated with this task that are not completed. If this is the only step or the
last step, then it will call CompleteWork on the WorkpoolItem object that is associated with the task this step belongs to. Please
note that the CompleteWork method will set the appropriate status and then returns to the business process automation system
by posting the appropriate message to MSMQ. Here's the Base page source code:

 Protected Overridable Function LoadPage _
 (Optional ByVal pgLoad As Page = Nothing) As Page
 If Session("UserID") = "" Then
 If IsNothing(Page.Request.Cookies("UserID")) Then
 Response.Redirect(m_LoginPageURL)
 Else
 m_SecurityPermission.UserId = _
 Request.Cookies("UserID").Value
 Session("UserID") = Request.Cookies("UserID").Value
 End If
 Else
 m_SecurityPermission.UserId = CType(Session("UserID"), String)
 End If

 If m_ApplicationName <> "" Then
 m_Permissions = _
 m_SecurityPermission.GetSecurity(m_ApplicationName & _
 ".*.*", OptionType.LeastRestrictive)
 Session(m_ApplicationName & "Permissions") = m_Permissions
 End If

 If Not pgLoad Is Nothing Then
 WKFPageBuilder.LoadPageImages(pgLoad)
 End If

 If Request.QueryString("WorkPoolId") <> "" Then
 Dim WP As WorkPool
 Dim WpItem As WorkPoolItem
 m_WorkPoolId = CType(Request.QueryString("WorkPoolId"), _
 Integer)
 WP = New WorkPool("workpoolid = " & m_WorkPoolId)
 WpItem = WP(0)
 m_Ticket = New Ticket _
 (CType(WpItem.HeaderValues("TicketId").Value, _
 Integer))
 End If
 m_bLoadPage = True
 End Function

 Protected Function WorkDone(Optional ByVal hrs As System.Decimal=0, _
 Optional ByVal resp As String = "") _
 As Boolean
 Dim Hours As System.Decimal
 Dim Response As String
 Dim oWorkPool As WorkPool
 Dim oWorkPoolItem As WorkPoolItem
 Dim oTaskWorkPoolItem As WorkPoolItem
 If WorkPoolId > 0 Then
 oWorkPool = New WorkPool("workpoolid = " & WorkPoolId)
 oWorkPoolItem = oWorkPool(0)
 WorkDone = False
 With oWorkPoolItem
 oWorkPool = New WorkPool("TaskDefinitionId = " & _
 .TaskDefinitionId & " AND WorkType = " & _
 WorkTypeEnum.WorkTypeTask & _

Now that we've created the Base page functionality, it makes sense to show you a code snippet of how this can be invoked. Here's
a sample Base page inheritance .aspx file:

 "AND (StepDefinitionId IS NULL OR _
 StepDefinitionId = 0) AND InstanceId = " & _
 .InstanceId & " AND ActionId = " & .ActionId)
 If oWorkPool.Count = 1 Then
 oTaskWorkPoolItem = oWorkPool(0)
 End If
 End With
 If hrs = 0 Then
 Hours = DefaultStepHours
 Else
 Hours = hrs
 End If
 If resp = "" Then
 Response = DefaultStepResponse
 Else
 Response = resp
 End If
 oWorkPoolItem.User = WKFSecurity.UserId
 If oWorkPoolItem.CompleteWork(Hours, Response) Then
 'Check to see if Task also needs to be completed.
 If oWorkPoolItem.TaskDefinition.Steps.Count = 1 Then
 ' this was the only step so complete the task
 Response = DefaultTaskResponse
 oTaskWorkPoolItem.User = WKFSecurity.UserId
 oTaskWorkPoolItem.CompleteWork(Hours, Response)
 ElseIf oWorkPoolItem.TaskDefinition.Steps.Count > 1 Then
 ' Check if all the steps are done if so
 ' complete the task
 With oTaskWorkPoolItem
 oWorkPool = New WorkPool("TaskDefinitionId = " & _
 .TaskDefinitionId & _
 " AND WorkType = " & _
 WorkTypeEnum.WorkTypeStep & _
 "AND WorkStateType <> " & _
 WorkStateTypeEnum.WorkCompleted & _
 " AND InstanceId = " & .InstanceId & " _
 AND ActionId = " & .ActionId)
 If oWorkPool.Count = 0 Then
 ' no steps left that are not done.
 Response = DefaultTaskResponse
 oTaskWorkPoolItem.User = WKFSecurity.UserId
 oTaskWorkPoolItem.CompleteWork(Hours,Response)
 End If
 End With
 End If
 WorkDone = True
 End If
 Else
 Throw New Exception("This function cannot be invoked " & _
 "as the WorkPool ID was not available")
 End If
 End Function

<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="WebForm1.aspx.vb" Inherits="TicketingSystem.WebForm1"%>
<html>
 <head>
 <title></title>
 <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <LINK href="<%=WKFPageBuilder.WKFStyleSheet%>"
 type="text/css" rel="stylesheet">
 </head>

And here's the Base page inheritance code-behind file:

Creating an Informant

In our business process design, an informant is a read-only screen that presents some static information to the user, which is
associated with a specific step for the item (ticket) inside the process.

A good example of an informant is when a sales person calls a customer one month after buying a car, thanking them for the
purchase. In this instance, the system would bring up a static page instructing the sales person to call the customer and thank
them. An informant does not update anything in the system, other than letting the business process automation system know that
it is done with the task. Generally, an informant is used in the beginning stages of business process development. Informants are
then gradually replaced by facilitators, and then by automators to provide a totally automated step.

In our ticketing system, we implemented an informant to ask the worker to receive material before he can work on a ticket and
close it. For this, we need a set of instructions telling where to get the material from and perhaps the ticket number and requestor
name. (Note that a facilitator or automator can easily be upgraded at a later point to automate the retrieval of materials.) There is
nothing that gets saved to the ticket item here, but the work done needs to be provided so that the user can inform the business
process that the task has been completed.

Below is the ASP.NET MaterialReceiving.aspx file that implements this informant. This Web page has just a few controls on it,
providing some static instructions with a few dynamic fields, like Ticket ID and expected date.

 <body>
 <form id="Form1" method="post" runat="server">
 </form>
 </body>
</html>

Public Class WebForm1
 Inherits BasePage

#Region " Web Form Designer Generated Code "
 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()
 End Sub
 Private Sub Page_Init(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub
#End Region

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 LoadPage(Me)
 'put other initialization here..
 End Sub

End Class

<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="MaterialReceiving.aspx.vb"
Inherits="TicketingSystem.MaterialReceiving" %>
<%@ Register TagPrefix="WKF" TagName="ErrorMessagePanel"
src="..\controls\ucErrorPanel.ascx" %>
<%@ Register TagPrefix="WKF" Tagname="ucTableheader"
Src="..\controls\ucTableHeader.ASCX" %>
<HTML>
 <HEAD>
 <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">

The code behind is much simpler and smaller for an informant, since the only function that is supported is the work done. Below

 <LINK href="<%=WKFPageBuilder.WKFStyleSheet%>" type="text/css"
 rel="stylesheet">
 </HEAD>
 <body class="bodyPage">
 <form id="example" method="post" runat="server">
 <table cellpadding="0" cellspacing="0" border="0" width="600">
 <tr>
 <td class="tableBorder">
 <table cellpadding="0" cellspacing="0" border="0"
 width="100%">
 <tr>
 <td width="100%">
 <WKF:ucTableHeader id="drhHeader" Runat="Server"
 width="100%" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <TR>
 <TD class="tableBorder">
 <TABLE cellSpacing="1" cellPadding="0" width="100%"
 border="0">
 <tr>
 <td>
 <WKF:ErrorMessagePanel id="ErrorMessagePanel"
 Runat="Server" Width="600" PanelType="Error"
 visible="false" />
 <WKF:ErrorMessagePanel id="InformationMessagePanel"
 Runat="Server" Width="600" PanelType="Information"
 visible="false" />
 <asp:Panel ID="pnlSubmitTicket" Runat="server">
 <table cellSpacing="5" cellPadding="0" width="100%"
 border="0" class="tableBackground">
 <tr>
 <td align="left">
 <asp:label id="lblInstructions"
 text="Instructions: "
 runat="Server" cssclass="fontFieldLabelNorm" />
 </td>
 </tr>
 <tr>
 <td align="left">
 <asp:textbox id="txtInstructions" width="350"
 textmode="MultiLine" Rows="15" Wrap="True"
 runat="Server" maxlength="1000" Enabled="False" />
 </td>
 </tr>
 <tr>
 <td align="right">
 <asp:imagebutton id="btnButtonDoneSmall_1"
 runat="server" />
 </td>
 </tr>
 </table>
 </asp:Panel>
 </td>
 </tr>
 </TABLE>
 </TD>
 </TR>
 </table>
 </form>
 </body>
</HTML>

are the code sections for PageLoad and the Done button, and even handlers for the Receive Materials informant. The code
should be very straightforward to understand. HideError and HideInfo functions just hide the error and information panels from
previous post backs.

Creating a Facilitator

A facilitator is the next level of automation for a business process step. The facilitator provides a data entry screen to interact with
the system before completing the step and signaling the business process automation system to move on.

An example of a facilitator would be one of Microsoft's many wizards that are common across Microsoft® Office and Microsoft
Windows® XP. The thought here is that the user would be better served being walked through the process of, for example, setting
up a printer, if they are presented with easy-to-use screens that query them for simple information. The wizard actually does any
complex work behind the scenes based on the information provided by the user.

One of the facilitators in the ticketing system is the Approve Ticket facilitator. It is the job of this facilitator to give the user a
chance to approve or reject an incoming ticket. The facilitator handles behind-the-scenes work regarding what to do for approvals
or rejections (thus, it's not an informant), but user interaction is required (hence, it's not an automator). Let's take a look at the
Approve Ticket facilitator in more detail.

Approve Ticket is a simple Web form that accesses 2 user controls, one for displaying error or information messages, and the
other for table headers. At the very beginning, notice the use of WKFPageBuilder to set the standard style sheet.
WKFPageBuilder was one of the protected properties exposed off of the Base page.

The very first control on the form is a user control, ucTableHeader, which is used to display the heading for the facilitator form.
This form also uses 2 instances of ucErrorPanel control—one for displaying errors and the other for displaying information
messages. Following user control are the regular controls for entering description, selecting a department, a check box to indicate
whether materials will be required, and an Expected Date to be filled in by the user. Lastly, the form has two buttons: One button
to apply the Changes, and the other to complete this task and signal the business process to continue.

Here is the ASP.NET source code for TicketApproval.aspx file:

Private Const c_Instructions As String = _
 "Please get the Material for the Ticket <#TICKETID#>." & _
 " The Due Date for the Ticket is <#DUEDATE#>." & _
 " Click done when you are finished"

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Try
 HideError()
 HideInfo()
 LoadPage(Me)
 drhHeader.Title = "Receive Materials for Ticket"
 If Not IsPostBack Then
 txtInstructions.Text = _
 c_Instructions.Replace("<#TICKETID#>", _
 Ticket.ID.ToString).Replace("<#DUEDATE#>", _
 Ticket.ExpectedDate.ToShortDateString)
 End If
 Catch except As Exception
 ShowError(except.ToString)
 End Try
 End Sub

 Private Sub btnButtonDoneSmall_1_Click(ByVal sender As Object, _
 ByVal e As System.Web.UI.ImageClickEventArgs) _
 Handles btnButtonDoneSmall_1.Click
 Try
 WorkDone()
 ShowInfo("Task done successful.")
 pnlSubmitTicket.Visible = False
 Catch except As Exception
 ShowError(except.ToString)
 End Try
 End Sub

<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="TicketApproval.aspx.vb"
Inherits="TicketingSystem.TicketApproval" %>
<%@ Register TagPrefix="TCKT" TagName="ErrorMessagePanel"
src="..\controls\ucErrorPanel.ascx" %>
<%@ Register TagPrefix="TCKT" Tagname="ucTableheader"
Src="..\controls\ucTableHeader.ASCX" %>
<HTML>
 <HEAD>
 <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <LINK href="<%=WKFPageBuilder.WKFStyleSheet%>"
 type="text/css" rel="stylesheet">
 </HEAD>
 <body class="bodyPage">
 <form id="example" method="post" runat="server">
 <!--Open the main table-->
 <table cellpadding="0" cellspacing="0" border="0" width="600">
 <tr>
 <td class="tableBorder">
 <table cellpadding="0" cellspacing="0"
 border="0" width="100%">
 <tr>
 <td width="100%">
 <TCKT:ucTableHeader id="drhHeader"
 Runat="Server" width="100%" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <TR>
 <TD class="tableBorder">
 <TABLE cellSpacing="1" cellPadding="0"
 width="100%" border="0">
 <tr>
 <td>
 <TCKT:ErrorMessagePanel id="ErrorMessagePanel"
 Runat="Server" Width="600" PanelType="Error"
 visible="false" />
 <asp:validationsummary id="ValidSummary"
 runat="Server"
 headertext="The following errors were found:"
 cssclass="panelError" forecolor="white"
 showSummary="True" displayMode="List" />
 <TCKT:ErrorMessagePanel id="InformationMessagePanel"
 Runat="Server" Width="600" PanelType="Information"
 visible="false" />
 <asp:Panel ID="pnlSubmitTicket" Runat="server">
 <table cellSpacing="5" cellPadding="0" width="100%"
 border="0" class="tableBackground">
 <tr>
 <td align="right" width="35%">
 <asp:label id="lblTicketId" text="* Ticket ID: "
 runat="Server" cssclass="fontFieldLabelNorm" />
 </td>
 <td>
 <asp:textbox id="txtTicketID" width="150"
 runat="Server" maxlength="4" enabled="False" />
 <asp:requiredfieldvalidator id="valtxtTicketID"
 runat="Server" controltovalidate="txtTicketID"
 errorMessage="You must enter a ticket id."
 display="static">*</asp:requiredfieldvalidator>
 </td>
 </tr>
 <tr>
 <td align="right" width="35%">
 <asp:label id="lblRequestor"

text="* Requestor: "
 runat="Server" cssclass="fontFieldLabelNorm" />
 </td>
 <td>
 <asp:textbox id="txtRequestor" width="200"
 runat="Server" maxlength="25" Enabled="False"/>
 </td>
 </tr>
 <tr>
 <td align="right" width="35%">
 <asp:label id="lblDescription"
 text="* Description: " runat="Server"
 cssclass="fontFieldLabelNorm" />
 </td>
 <td>
 <asp:textbox id="txtDescription" width="350"
 textmode="MultiLine" Rows="5" Wrap="True"
 runat="Server" maxlength="1000" />
 <asp:requiredfieldvalidator id="valDescription"
runat="Server" controltovalidate="txtDescription"
 errorMessage="You must enter a description."
 display="static">*
 </asp:requiredfieldvalidator>
 </td>
 </tr>
 <tr>
 <td align="right" width="35%">
 <asp:label id="lblDepartment"
 text="* Department: "
 runat="Server" cssclass="fontFieldLabelNorm" />
 </td>
 <td>
 <asp:dropdownlist id="ddlDepartment"
 runat="Server" AutoPostBack="False"
 Enabled="False" />
 </td>
 </tr>
 <tr>
 <td align="right" width="35%">
 <asp:label id="lblRequiresMaterial"
 text="* Materials Required : " runat="Server"
 cssclass="fontFieldLabelNorm" />
 </td>
 <td>
 <asp:checkbox id="chkRequiresMaterial"
 runat="Server" />
 </td>
 </tr>
 <tr>
 <td align="right" width="35%">
 <asp:label id="lblStatus" text="* Status: "
 runat="Server" cssclass="fontFieldLabelNorm" />
 </td>
 <td>
 <asp:dropdownlist id="ddlStatus" runat="Server"
 AutoPostBack="False" />
 </td>
 </tr>
 <tr>
 <td align="right" width="35%">
 <asp:label id="lblExpectedDate"
 text="* Expected Date (MM/DD/YY): "
 runat="Server" cssclass="fontFieldLabelNorm" />
 </td>
 <td>
 <asp:textbox id="txtExpectedDate" width="150"
 runat="Server" maxlength="10" />
 <asp:requiredfieldvalidator id="valExpectedDate"

Now let's take a look at the code-behind form for the TicketApproval.aspx file.

This form inherits from the Base page. On the Page_Load event, the LoadPage method is invoked, which will do security
validations and load the necessary ticket information. If this is not a form post back, the form will populate the drop-down lists for
Department and Status; then it calls initMembers method to set the drop-down lists to their current values. HideError and
HideInfo hide previous errors or information from post back.

PopulateDepartmentList and PopulateStatusList add items to the drop-down lists that are valid. InitMembers will use the
Ticket object that is exposed as a protected property of the Base page and set the values of all controls. Each of these values
should be straightforward, other than GetRequestorName, which uses the ADS component to retrieve the username.

At this point, the form is submitted to the user and the user can either save the changes to the form and/or mark the work as
"Done" with the Approve Ticket task.

Let's examine the code behind the Apply Changes. The Apply code merely sets properties of the Ticket object with the values
from the form and calls the Save method on the Ticket object.

The Done button code validates that the status was either set to approved or rejected, and then calls the protected method
WorkDone off of the Base page. So here's the TicketApproval.aspx Visual Basic code-behind file:

 runat="Server"
 controltovalidate="txtExpectedDate"
 errorMessage=
"You must enter the expected date."
 display="static">*
 </asp:requiredfieldvalidator>
 </td>
 </tr>
 <tr>
 <td align="right" width="35%">
 <asp:label id="lblAssignedTo"
 text="* Assigned To: " runat="Server"
 cssclass="fontFieldLabelNorm" />
 </td>
 <td>
 <asp:dropdownlist id="ddlAssignedTo"
 runat="Server" AutoPostBack="False"
 enabled="False" />
 </td>
 </tr>
 <tr>
 <td align="left" valign="bottom">
 <asp:label id="Label2" text="* Required Field"
 cssclass="fontStdSmall" runat="Server" />
 </td>
 <td align="right">
 <asp:imagebutton id="btnButtonDoneSmall_1"
 runat="server" />
 <asp:imagebutton id="btnButtonApplySmall_1"
 runat="server" />
 </td>
 </tr>
 </table>
 </asp:Panel>
 </td>
 </tr>
 </TABLE>
 </TD>
 </TR>
 </table>
 </form>
 </body>
</HTML>

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles MyBase.Load
 Try

 HideError()
 HideInfo()
 LoadPage(Me)
 drhHeader.Title = "Approve Ticket for " & GetDepartmentName()
 If Not IsPostBack Then
 PopulateDepartmentList()
 PopulateStatusList()
 InitMembers()
 End If
 Catch except As Exception
 ShowError(except.ToString)
 End Try
 End Sub

 Private Sub InitMembers()
 Dim listitem As ListItem
 txtRequestor.Text = GetRequestorName()
 txtTicketID.Text = Ticket.ID.ToString
 txtDescription.Text = Ticket.Description
 txtExpectedDate.Text = Ticket.ExpectedDate
 chkRequiresMaterial.Checked = (Ticket.TicketType = _
 Ticket.TicketTypeEnum.RequiresMaterialsOrTools)
 listitem = ddlDepartment.Items.FindByValue(Ticket.DepartmentID)
 If Not IsNothing(listitem) Then
 ddlDepartment.Items.FindByValue(Ticket.DepartmentID).Selected _
 = True
 End If
 listitem = ddlStatus.Items.FindByValue(Ticket.TicketStatus)
 If Not IsNothing(listitem) Then
 ddlStatus.Items.FindByValue(Ticket.TicketStatus).Selected = True
 End If
 End Sub

 Private Function GetRequestorName() As String
 Dim oADS As New ADS()
 Dim oADSUserInfo As ADSUserInfo
 Dim UserListArray As New ArrayList()
 UserListArray.Add(Ticket.RequestedUser)
 oADSUserInfo = oADS.GetUserInformation(UserListArray)(0)
 Return oADSUserInfo.UserName
 End Function

 Private Sub btnButtonApplySmall_1_Click(ByVal sender As Object, _
 ByVal e As System.Web.UI.ImageClickEventArgs)_
 Handles btnButtonApplySmall_1.Click
 Try
 With Ticket
 If chkRequiresMaterial.Checked Then
 .TicketType = _
 Ticket.TicketTypeEnum.RequiresMaterialsOrTools
 Else
 .TicketType = _
 Ticket.TicketTypeEnum.RequiresJustLabor
 End If
 .ExpectedDate = CType(txtExpectedDate.Text, DateTime)
 .Description = txtDescription.Text
 .TicketStatus = _
 CType(ddlStatus.SelectedItem.Value, Integer)
 .Save()
 ShowInfo("Ticket ID " & .ID & " was Saved Successfully")
 End With
 Catch ex As Exception
 ShowError(ex.ToString)
 End Try
 End Sub

Creating an Automator

An automator is the ultimate level of automation for a business process step. In this example, all of the work is automated and
shielded from the user. Once the work is performed, the automator signals the business process automation system to move on
to the next step, all without any user interaction.

An example of an automator might be the last step in a purchasing system. After gaining all of the approvals and checking for the
best prices, the last step would be to actually order the item(s). In this day and age of online ordering, this could be accomplished
by using an automator to contact the vendor (possibly using Web Services and SOAP) to generate an order for the desired item.

The task for an automator needs to be setup as an AutoStart task. Then the step that uses the automator needs to have its
facilitator type set as AutoStep. The facilitator format string should hold the information about the assembly, class, and function
names that make up the automator.

Once the automator setup is completed, the DLL that has the automator business logic needs to be developed and copied to the
BizTalk Server.

Let's take a look at an example of how we created an automator for our ticketing system. In this example, we used an existing task
that was previously a facilitator, and is now being upgraded to a full automator. To do this you will need:

A .NET assembly that has the functionality to automatically assign a ticket to a worker.
To change Task Definition and Step Definition setups to be automators.

Creating an Automator Object

1. Create a new Visual Basic .NET ClassLibrary project.
2. Add reference to TicketingSystemUtil, which has the Ticket Object
3. Add 2 methods—one to retrieve the least loaded employee, and the other to assign the least loaded employee to a given

ticket.

(Since this task is so specific to ticket assignment, the second parameter TaskDefinitionId is redundant, but it is very useful in
cases where the automators are used for multiple task definitions.)

Now let's take a look at the source code for our test automator that we just created.

Setting up Tasks and Steps as Automators

A task is an automator if it runs as soon as it is dispatched to the global Workpool. This means that no manual effort is needed to
get the task started. When a task starts, the steps that are associated with it are dispatched either in serial or parallel.

For a normal task, it is dispatched, assigned, and then the user can start it by selecting it in the Workpool Management screen.

Imports TicketingSystemUtil
Public Class Assigner
 Private Function GetLeastLoadedEmployee() As String
 Return "AAAAAAAA-1111-BBBB-2222-CCCCCCCCCCCC" ' Test GUID
 End Function
 Public Function DoAssignment(ByVal TicketId As Integer,
Optional ByVal TaskDefinitionID _
 As Integer = 0) As Boolean
 Dim Ticket As Ticket
 Try
 Ticket = New Ticket(TicketId)
 Ticket.AssignedUser = GetLeastLoadedEmployee()
 Ticket.Save()
 Return True
 Catch ex As Exception
 'Log the Error to central Logging System
 'here or notify key people who can _
 recover/rerun this task
 Return False
 End Try
 End Function
End Class

That means the steps within the task are not dispatched until the user actually selects the task to be started.

For an auto-start task, steps are dispatched either in serial or parallel, based on how the task is associated with its steps during
setup.

A step is an automator if it has its facilitator type set as AutoStep and its facililitator format string has name value pairs for the
DLL, class, and function that does the automation work. When an AutoStep gets dispatched, the automator runs using the .NET
reflection. After it returns from automator, the step is marked as complete. In addition, if the task that has the current automator
step is an auto task, and if all other steps are completed, the task also is marked as complete.

The StartStep and ExecuteAutoStep functions listed below should help to understand the concept of implementing an
automator.

 Public Enum FacilitatorType
 Automatic = 46
 URL = 47
 End Enum

 Public Enum TaskType
 SelfAssignable = 43
 GrantOwnership = 44
 AutoStart = 220
 End Enum

 Private Function StartStep() As String
 Dim ds As DataSet
 Dim row As DataRow
 Dim parameters(4) As SqlParameter

 StartStep = ""
 If StepDefinition.FacilitatorType = FacilitatorType.Automatic Then
 If m_WorkStateType <> WorkStateTypeEnum.WorkCompleted Then
 ExecuteAutoStep()
 CompleteWork(0, DefaultStepResponse)
 Dim WorkPool As WorkPool
 Dim strFilter As String
 Dim TaskWorkPoolItem As WorkPoolItem
 ' if there are no steps left in this task and the task is
 ' an auto start then complete the task as well
 strFilter = "InstanceId = " & m_InstanceId & _
 " and ActionId = " & m_ActionId & _
 " and TaskDefinitionId = " & _
 TaskDefinitionId & _
 " and isnull(StepDefinitionId,0) <> 0 " &_
 " and WorkStateType <> " _
 & CType(WorkStateType.WorkCompleted, Integer)
 WorkPool = New WorkPool(strFilter)
 If WorkPool.Count = 0 Then
 strFilter = "InstanceId = " & m_InstanceId & _
 " and ActionId = " & m_ActionId & _
 " and TaskDefinitionId = " & _
 m_TaskDefinitionId & _
 " and isnull(StepDefinitionId,0) = 0 "
 WorkPool = New WorkPool(strFilter)
 TaskWorkPoolItem = WorkPool(0)
 If TaskWorkPoolItem.TaskDefinition.TaskType = _
 TaskType.AutoStart Then
 TaskWorkPoolItem.CompleteWork _
 (0, DefaultTaskResponse)
 End If
 End If
 Else
 Throw (New Exception("Step is already done"))
 End If
 ElseIf StepDefinition.FacilitatorType = FacilitatorType.URL Then
 :
 :
 Else

 Throw New Exception("Invalid Step Facilitator Type. _" &
 "Data corrupted in the WKF tables")
 End If
 End Function

 Private Function ExecuteAutoStep() As Boolean
 Dim tokfld As String
 Dim tokval As String
 Dim startdelim As String = "<#"
 Dim enddelim As String = "#>"
 Dim sindx As Integer
 Dim eindx As Integer
 Dim len As Integer
 Dim sFilter As String
 Dim strAssemblyName As String
 Dim strClassName As String
 Dim strFuncName As String
 Dim toklen As Integer
 sindx = 1
 eindx = 1
 len = m_StepDefinition.FacilitatorFormat.Length
 ' Get AppName, ModName, FuncName from the
 ' Facilitator Format String and then invoke the auto step
 While sindx + 1 < len
 sindx = InStr(eindx, m_StepDefinition.FacilitatorFormat, _
 startdelim, Microsoft.VisualBasic.CompareMethod.Text)
 If (sindx > 0) Then
 eindx = InStr(sindx, _
 m_StepDefinition.FacilitatorFormat, enddelim, _
 Microsoft.VisualBasic.CompareMethod.Text)
 If eindx > 0 Then
 tokfld = Mid(m_StepDefinition.FacilitatorFormat, _
sindx + 2, eindx - sindx - 2)
 Select Case tokfld.Substring(0, 3)
 Case "DLL"
 strAssemblyName=tokfld.Substring(4, toklen - 4)
 Case "CLS"
 strClassName = tokfld.Substring(4, toklen - 4)
 Case "FUN"
 strFuncName = tokfld.Substring(4, toklen - 4)
 Case Else
 Throw New Exception _
 ("Unrecognized token in Facilitator." &_
 " Format string in the Step Definition")
 End Select
 End If
 End If
 sindx = eindx + 2
 eindx = sindx
 End While
 If strAssemblyName <> "" And strClassName <> "" _
 And strFuncName <> "" Then
 Dim oAssembly As [Assembly]
 Dim oType As Type
 Dim oMod As [Module]
 Dim propertyInfo As PropertyInfo
 Dim methodInfo As MethodInfo
 Dim objInstance As Object
 Dim MethodParameters(1) As Object
 oAssembly = [Assembly].LoadFrom(strAssemblyName)
 If oAssembly Is Nothing Then
 Throw New Exception _
 ("Invalid AssemblyName. AssemblyName = " & _
 strAssemblyName)
 End If
 For Each oMod In oAssembly.GetModules
 For Each oType In oMod.GetTypes
 If oType.Name.ToUpper = strClassName.ToUpper Then

Note that automators have to follow the pre-defined standard format. For our ticketing system, the automator takes two
parameters. The first one is the Ticket ID and the second one is the Task Definition ID. he function must return a Boolean. The
facilitator format string should include the information about the DLL, class, and function that comprises the automator.

Now that we've developed the automator, we can perform the actual setup process. Using Enterprise Manager, open the WKF
database and then open the Task Definition table. Set the task type to 220, which implies an AutoStart task (see the enumerations
above for a listing of task types). Now open the Step Definition Table and select the step associated with the Assign Ticket task.
Change the facilitator type to 46, which implies an automatic step (see facilitator type enumeration in the code listing above). Set
the Facilitator Format String to name value pairs that represent the DLL, class, and the function for the automator itself. The
screen capture below summarizes the setup changes for task and step definitions for automation of the Ticketing Assignment
task.

Figure 12. Automating the Ticketing Assignment task (click thumbnail for larger image)

Summary
In this article we've demonstrated how to develop a scalable business process automation system built upon the BizTalk Server
2002 and Visual Studio .NET platforms. As you can see, this system is capable of supporting our simplistic ticketing application,
but can also easily support a more complex enterprise business system.

 methodInfo = oType.GetMethod(strFuncName)
 objInstance = Activator.CreateInstance(oType)
 If Not methodInfo Is Nothing Then
 MethodParameters(0) = _
CType(HeaderValues("TicketId").Value,_
 Integer)
 MethodParameters(1) = m_TaskDefinitionId
 Return methodInfo.Invoke(objInstance, _
 MethodParameters)
 Else
 Throw New Exception
("Invalid MethodName passed. " &_
 MethodName = " & strFuncName)
 End If
 Exit For
 End If
 Next
 Throw New Exception
 ("Invalid ClassName passed. ClassName = " & _
 strClassName)
 Next
 Else
 Throw New Exception
 ("Auto Step Cannot be executed because either the" &_
 " Applcaition Name, Module Name or Function Name" &_
 " is not set")
 End If
 End Function

In future releases of BizTalk Server, the direction will be to allow XLANG schedules, which are the heart of any business process
system, to be built and released by the business community. In doing so, you can easily see how our philosophy of informants can
be used to provide quick support for all tasks and steps. Then, as the business learns where cost savings can be realized, an
upgrade to facilitators and automators can be performed.

In our experience, this type of development activity is most successful, since the details are fixed and the users can see results
fairly quickly. Compare this with other complex development projects that you read about, where the user doesn't get to use
these new features for months.

Appendix A: Ticket System Database Schema

TABLE: m_WKF_Workflow

This table stores the Workflow template information that corresponds to an XLANG schedule. The file name represents the
compiled version of the XLANG schedule. The queue name represents the name of the queue under which the tasks are
dispatched from the instance.

TABLE: m_WKF_Instance

This table stores the running instances of XLANG schedules instantiated by the core business process system. It stores the user
who started the XLANG schedule instance, a pointer to the XLANG schedule (represented by m_WKF_Workflow entity above), the
state the instance is in, any data that is passed into the process during the start, the GUID associated with the XLANG schedule
instance, and the Module GUID associated with the GUID.

TABLE: m_WKF_Action

This table stores an action within an XLANG schedule. It stores any input data associated with the action, and the instance this
action is associated with.

TABLE: m_WKF_Task

This table stores assignable units of work that an employee/worker needs to complete. It stores the information like name of the
task, the team that usually does this type of work, the organization that usually oversees this work, whether an employee can grab
the task or needs to be assigned to an employee, and any dispatch rules that need to be adhered to.

TABLE: m_WKF_Step_Definition

This entity represents a unit of work that can be handled by a facilitator, informant, or an automator. It stores name, description,
facilitator format string, and facilitator type information that are typical of a step definition

TABLE: m_WKF_Task_Step

This table stores the mapping of tasks to steps. A task can have one or more steps associated with it, and a step can be associated
with one or more tasks.

TABLE: m_WKF_Work_Pool

This is the primary table that represents instantiation of tasks and steps that are associated with an action and an instance. It has a
WorkType attribute, that can be either a task or a step. It has a WorkStateType attribute that tells if the WorkPool item is queued,
assigned to someone, being worked on by someone, or completed. It has pointers to the task definition and step definition that
this WorkPool item represents. It has pointers to instance and action that created this WorkPool item. It also stores the
information about who is working on it, which team is responsible for handling this work, and which organization oversees this
work.

TABLE: m_WKF_Ticket

This table stores the ticketing information. It has the attributes to capture requestor, ticket ID, department this ticket will be
handled by, the description of the request, status, and whether or not parts/material are required to fulfill this request.

About the Authors

Doug Thews is the Director of Software Development for divine Managed Services. He has over 17 years of software
development experience in C/C++ and Visual Basic, and has been the program manager for divine's Visual Studio .NET JDP
partnership since December 2000. Doug can be reached at Doug.Thews@divine.com.

mailto:Doug.Thews@divine.com

Emmanuel Kothapally is a Senior Developer for divine Managed Services. He has over 10 years of software development
experience in Visual Basic and Visual C++, and is a member of the divine Visual Studio .NET JDP team. Emmanuel can be reached
at Emmanuel.Kothapally@divine.com.

mailto:Emmanuel.Kothapally@divine.com

Microsoft BizTalk Server 2002 Technical Articles

Creating Web Service Enterprise Applications by Using BizTalk
Adapter for Web Services

Microsoft Corporation

March 2003

Applies to:
 Microsoft® BizTalk® Adapter for Web Services
 Microsoft BizTalk Server 2002

Summary: This document uses two example projects to help you master all aspects of Microsoft BizTalk Adapter for Web
Services. It also describes how to test the BizTalk Adapter for Web Services solutions that you create. (2 printed pages)

Microsoft BizTalk Adapter for Web Services enables you to provide access to any enterprise server application as a collection of
Web service methods. The format translation and process coordination abilities of Microsoft BizTalk Server 2002 and the
philosophy of using configurable components—instead of custom programming—for integration, combined with the open data
format and object access standards of Web services, all quickly and effectively make back-end server applications available over
the Internet.

This document uses two examples to help you master all aspects of BizTalk Adapter for Web Services, including the following:

Installing Web services
Creating Web services and Web methods
Creating and selecting specifications, channels, and messaging ports
Invoking Web methods from a client application

This document consists of five major sections:

An example in which you create a very simple Web service so that you can focus on learning how to install and configure
BizTalk Adapter for Web Services
An example in which you learn how to use an XLANG schedule to synchronize a complex, asynchronous, multiple-document
business process and return a response document to a Web service
Techniques that you can use to incrementally construct and test the solutions that you create by using
BizTalk Adapter for Web Services and BizTalk Server
Advanced techniques for controlling the document specifications of the Web method request and response formats and
how to perform inbound and outbound mapping
A description of how to use custom .NET preprocessors and postprocessors to read and modify the SOAP headers for a
Web method

Download a copy of this document and its accompanying sample.

http://go.microsoft.com/fwlink/?LinkID=15027

Microsoft BizTalk Server 2002 Technical Articles

Database Integration with Microsoft BizTalk Server 2002
Click here to download sample - BTS_WP_DBIntegration Samples.exe. (687 KB) Click here to download sample - XML for SQL.exe.
(1.06 MB) Click here to download sample - setup.exe. (4.53 MB)

Scott Woodgate
Microsoft Corporation

May 2002

Applies to:
 Microsoft® BizTalk® Server 2002
 Microsoft SQL Server™ 2000

Summary: How to integrate BizTalk Server 2002 with databases in general, and with Microsoft SQL Server 2000 in particular,
and how to process XML into and out of a database. (39 printed pages)

Download Bts_wp_dbintegration_samples.exe.

Contents

Introduction
BizTalk Server Database Integration
 Using ADO in BizTalk Server Database Integration
 Leveraging SAX2 for Large Data Files
Integration with SQL Server
 Overview of XML and SQL Server
 Using FOR XML and OPENXML
 Using Updategrams
 Using SQL Server XML View Mapper
 Leveraging Stored Procedures and DTS in SQL Server 2000
References

Introduction
Business-to-business data processing requires data interchange that uses XML as the ubiquitous, extensible, and platform-
independent transform format. The challenge is how to reconcile the requirements of relational data stores and hierarchical XML
data. This article focuses on providing reusable samples and techniques for integrating Microsoft® BizTalk® Server 2002 and
databases, with specific reference to leveraging Microsoft SQL Server™ 2000.

A number of integration options are discussed. These include:

Using Microsoft ActiveX® Data Objects (ADO) for integration with generic databases
Leveraging the most recent version of the Simple API for XML (SAX2) for integrating large data files with generic databases
Using the FOR XML clause and the OPENXML keyword for integration with SQL Server 2000
Using Updategrams for integration with SQL Server 2000
Using SQL Server XML View Mapper for integration with SQL Server 2000
Leveraging Data Transformation Services (DTS) in SQL Server 2000

Throughout this paper, samples are provided to assist in demonstrating and explaining the concepts. These samples follow a
common structure to enable you to make comparisons.

Included with this article is a Samples directory (contained in the download) that contains several folders. Each folder contains
sample files for a specific section. For example, sample files for the section "Leveraging SAX2 for Large Data Files" are contained
in the directory Samples\SAX2. The samples assume that BizTalk Server is installed on your C drive, and you should unzip the
Samples directory to your C drive. If you have installed BizTalk Server on another drive, you need to unzip the Samples directory
to that drive and update the file paths in the samples accordingly.

Most samples involve BizTalk Server, SQL Server, and service components such as application integration components or
Microsoft Windows® Script Components. Microsoft Visual Basic® Scripting Edition (VBScript) and ADO applications are also
used extensively in the samples.

Many samples use SQLXML 3.0 and SQL Server XML View Mapper 1.0. You will need to download both SQLXML 3.0 and SQL
Server XML View Mapper 1.0 from the Downloads section of the MSDN® Web site and install them on your computer before

http://download.microsoft.com/download/biztalkserver2002/Utility/4/NT5XP/EN-US/BTS_WP_DBIntegration_Samples.exe
http://msdn.microsoft.com/downloads/

running the samples.

Stored procedures have been used whenever possible. It is preferable to use stored procedures for data access because of their
performance advantages. In addition, it is relatively simple to execute them from Visual Basic applications by using ADO
Command objects.

All examples have been simplified to make the code and the process simple to understand and follow. They are not meant to
represent examples of best practices for coding.

BizTalk Server Database Integration
BizTalk Server can integrate with many types of databases. One of the most useful tools for BizTalk Server database integration is
ActiveX Data Objects, or ADO. Other tools, including the Microsoft Simple API for XML (SAX) and the XML Document Object
Model (XML DOM), can also be leveraged in BizTalk Server database integration.

BizTalk Server can achieve the highest level of integration with SQL Server 2000 databases. This is due to the advanced XML
support that SQL Server 2000 provides. The second part of this white paper focuses on BizTalk Server integration with SQL Server
2000.

Using ADO in BizTalk Server Database Integration

ADO is a fast, powerful, and convenient mechanism for interacting from any language with many different databases, such as SQL
Server databases, Oracle databases (using the Microsoft OLE DB Provider for Oracle), and DB2 or VSAM data sources (for
example, using the OLE DB drivers packaged in Microsoft Host Integration Server 2000).

ADO recordsets allow you to navigate the records easily, and to apply filters and bookmarks. They also provide sorting, automatic
pagination, and persistence. Recordsets can be efficiently marshaled across tiers to their native and extremely compact binary
format—the Advanced Data TableGram (ADTG) format.

ADO versions 2.5 and later also provide capabilities for retrieving data in XML format by using the adPersistXML option as well
as for executing XML query templates to perform database insert, delete, and update operations. The ADO XML support can be
leveraged in BizTalk Server database integration.

BizTalk Server 2002 uses ADO internally through the XLANG Scheduler Engine to save the state of XLANG schedules to the
persistence database. You can also leverage ADO for BizTalk Server database integration through application integration
components (AICs) inside BizTalk Messaging and through script or COM components inside BizTalk Orchestration. In BizTalk
Server database integration, the ADO code is normally contained in AICs.

Retrieving XML data by using the adPersistXML switch

In ADO versions 2.5 and later, you can retrieve data by using normal Transact-SQL queries and persist the data as XML by using
the adPersistXML option of the ADO recordset.

The ADO recordset provides a Save method that persists data to a destination such as a file or an Active Server Pages (ASP) page.
By default, the ADO recordset persists data in the ADTG format using the adPersistADTG option. To persist data as an XML
document you need to execute the Save method using the adPersistXML option.

The main steps for retrieving XML data are:

Connect to a data source using the ADO Connection object.
Instantiate the ADO Recordset object, and then open a SELECT query to retrieve data.
Persist the data as an XML document using the Save method of the Recordset together with the adPersistXML switch.

Sample: using ADO

This sample demonstrates how to retrieve XML data from the Customers table in the Northwind database by using the ADO
adPersistXML option.

Note All sample files for this section are included in the Samples\ADO directory.

Step 1: define a Windows Script Component

Open Notepad and type the following code:

<?xml version="1.0"?>
<component>
<?component error="true" debug="true"?>

Save the file as ADOXML.wsc. Then register the Windows Script Component by right-clicking the .wsc file and clicking Register.
You should see a dialog box saying that the component was registered successfully.

Step 2: define a .vbs file

Open Notepad and type the following code:

Save the file as TestADOXML.vbs.

Step 3: run the program

Now you can run the program by double-clicking the TestADOXML.vbs file, and entering a unique file name and path for saving
the XML data. You can then view the XML data by browsing to the file, which will contain the following XML document:

<registration
 description="ADOXML"
 progid="ADOXML.WSC"
 version="1.00"
 classid="{71f81b28-4695-4220-bd77-c21abaca02cb}">
</registration>
<public>
 <method name="GetXML">
 <PARAMETER name="sCOnn"/>
 <PARAMETER name="sSQL"/>
 <PARAMETER name="sFileName"/>
 </method>
</public>
<script language="VBScript">
<![CDATA[
function GetXML(sConn, sSQL, sFileName)
 Dim cn, rs
 Const adPersistXML = 1
 'Connect to DB and run SQL
 Set cn = CreateObject("adodb.Connection")
 cn.Open sConn
 'Retrieve Data
 set rs = CreateObject("ADODB.Recordset")
 rs.Open sSQL, cn
 'Persist data as XML
 if len(sFileName) > 0 then
 rs.Save sFileName, adPersistXML
 else
 rs.Save "c:\ADOXMLOut.xml", adPersistXML
 end If
 rs.Close
 cn.Close
 set rs = nothing
 set cn = nothing
end function

Dim o
Dim sSQL, sFile

Set o = CreateObject("ADOXML.WSC")
sSQL = "SELECT CustomerID, CompanyName, ContactName, Country FROM
 Customers WHERE CustomerID < 'B'"
sFILE = inputbox("Enter a file name to save the XML document:")
o.GetXML "Provider=sqloledb; Data Source=(local); Initial
 Catalog=Northwind; Trusted_Connection=Yes;", sSQL, sFile
msgbox "XML string saved to: " & sFile
Set o = nothing

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882'
 xmlns:dt='uuid:C2F41010-65B3-11d1-A29F-00AA00C14882'
 xmlns:rs='urn:schemas-microsoft-com:rowset'

Sample: consuming ADO-generated XML by using BizTalk Server

The XML data retrieved by the ADO recordset uses a predefined format that BizTalk Server does not recognize. You can, however,
convert the ADO-generated XML data into a format that can be consumed by BizTalk Server applications.

ADO-generated XML combines schema and data in one XML file. From that XML file you can derive an XML data file and a
schema that can be consumed by BizTalk Server. The following steps describe the conversion process, using as an example the
ADO XML data shown in step 3 of the preceding section.

Note All sample files for this section are included in the Samples\ADO\ADOforBTS directory.

Step 1: create an XML data file

Assume that you have saved retrieved XML data in a file named RetrievedADOXML.xml, and you want to create an XML data file
with a root node of <Root>. Perform the following steps:

Open RetrievedADOXML.xml in Notepad. Remove all non-data portions of the file.
Change the tag <rs:data> to <Root>. Change the tag <z:row …> to <row …>. The contents now look like:

 xmlns:z='#RowsetSchema'>
 <s:Schema id='RowsetSchema'>
 <s:ElementType name='row' content='eltOnly' rs:CommandTimeout='30'>
 <s:AttributeType name='CustomerID' rs:number='1'
 rs:writeunknown='true'>
 <s:datatype dt:type='string' dt:maxLength='5'
 rs:fixedlength='true' rs:maybenull='false'/>
 </s:AttributeType>
 <s:AttributeType name='CompanyName' rs:number='2'
 rs:writeunknown='true'>
 <s:datatype dt:type='string' dt:maxLength='40' rs:maybenull='false'/>
 </s:AttributeType>
 <s:AttributeType name='ContactName' rs:number='3' rs:nullable='true'
 rs:writeunknown='true'>
 <s:datatype dt:type='string' dt:maxLength='30'/>
 </s:AttributeType>
 <s:AttributeType name='Country' rs:number='4' rs:nullable='true'
 rs:writeunknown='true'>
 <s:datatype dt:type='string' dt:maxLength='15'/>
 </s:AttributeType>
 <s:extends type='rs:rowbase'/>
 </s:ElementType>
 </s:Schema>
<rs:data>
 <z:row CustomerID='ALFKI' CompanyName='Alfreds Futterkiste'
 ContactName='Maria Anders' Country='Germany'/>
 <z:row CustomerID='ANATR' CompanyName='Ana Trujillo Emparedados y
 helados'
 ContactName='Ana Trujillo' Country='Mexico'/>
 <z:row CustomerID='ANTON' CompanyName='Antonio Moreno Taquería'
 ContactName='Antonio Moreno' Country='Mexico'/>
 <z:row CustomerID='AROUT' CompanyName='Around the Horn'
 ContactName='Thomas Hardy' Country='UK'/> </rs:data>
</xml>

<Root>
 <row CustomerID='ALFKI' CompanyName='Alfreds Futterkiste'
 ContactName='Maria Anders' Country='Germany'/>
 <row CustomerID='ANATR' CompanyName='Ana Trujillo Emparedados y
 helados' ContactName='Ana Trujillo' Country='Mexico'/>
 <row CustomerID='ANTON' CompanyName='Antonio Moreno Taquería'
 ContactName='Antonio Moreno' Country='Mexico'/>
 <row CustomerID='AROUT' CompanyName='Around the Horn'
 ContactName='Thomas Hardy' Country='UK'/>
</Root>

Save the contents to a unique file, for example, ADOXMLData.xml. You have created an XML data file.

Step 2: create an XML schema

To create an XML schema, do the following:

Open BizTalk Editor. On the Tools menu, click Import, and then double-click the XDR Schema icon. In the Import XDR
Schema dialog box, browse to the XML document RetrievedADOXML.xml and click Open. A schema with a root node
<row> appears in the BizTalk Editor window.
Save the schema to a new file, for example, ADOXMLSchema.xml. This process creates a schema that BizTalk Server can
recognize. The schema looks like:

Note that the schema has a root node <row>. We need to insert a new root node in the schema to match the XML data file.
BizTalk Editor does not allow insertion of a new root node into an existing schema. However, we can work around this
restriction by using a text editor such as Notepad. Close BizTalk Editor.

Open the schema ADOXMLSchema.xml in Notepad. In the <s:Schema . . .> line, change "Schema name" and
"root_reference" from "row" to "Root". Then insert the following text into the schema:

The new schema looks like:

<?xml version="1.0"?>
<!-- Generated by using BizTalk Editor on Sat, Nov 10 2001 04:45:40 PM –
 ->
<!-- Microsoft Corporation (c) 2000 (http://www.microsoft.com) -->
<s:Schema name="row" b:BizTalkServerEditorTool_Version="1.0"
 b:root_reference="row" b:standard="XML" xmlns:dt="urn:schemas-
 microsoft-com:datatypes" xmlns:s="urn:schemas-microsoft-com:xml-data"
 xmlns:b="urn:schemas-microsoft-com:BizTalkServer"
 xmlns:rs="urn:schemas-microsoft-com:rowset" xmlns:z="#RowsetSchema">
<b:SelectionFields/>

<s:ElementType
name="row" content="eltOnly" rs:CommandTimeout="30">
<b:RecordInfo/>
...
</s:ElementType>
</s:Schema>

<s:ElementType name="Root" content="eltOnly">
<b:RecordInfo/>
<s:element type="row"/>
</s:ElementType>

<?xml version="1.0"?>
<!-- Generated by using BizTalk Editor on Sat, Nov 10 2001 04:45:40 PM –
 ->
<!-- Microsoft Corporation (c) 2000 (http://www.microsoft.com) -->
<s:Schema name="Root" b:BizTalkServerEditorTool_Version="1.0"
 b:root_reference="Root" b:standard="XML" xmlns:dt="urn:schemas-
 microsoft-com:datatypes" xmlns:s="urn:schemas-microsoft-com:xml-data"
 xmlns:b="urn:schemas-microsoft-com:BizTalkServer"
 xmlns:rs="urn:schemas-microsoft-com:rowset" xmlns:z="#RowsetSchema">
<b:SelectionFields/>
<s:ElementType name="Root" content="eltOnly">
<b:RecordInfo/>
<s:element type="row"/>
</s:ElementType>

Save the schema to a file and then open the modified schema file in BizTalk Editor. Use the Validate Instance option on the
Tools menu to validate the new schema against the XML data file (ADOXMLData.xml). Ensure that no errors occur.

You have now created a data file and a schema that can be consumed by BizTalk Server.

Executing XML queries by using ADO

ADO can also be used to insert, update, and delete data against Microsoft SQL Server 2000 by using XML query templates. This is
useful for BizTalk Server database integration because data flows through BizTalk Server in the form of XML documents.

When executing XML queries using ADO, be aware of the following:

You use the ADO Command object to execute XML query templates. An ADO Command object supports three dialects:
Transact-SQL query, XML template query, and XPath query. The default dialect is Transact-SQL. To tell the SQLOLEDB
provider that the submitted query is an XML template query, you need to set the Dialect property of the Command object
to the globally unique identifier (GUID) value {5D531CB2-E6Ed-11D2-B252-00C04F681B71}. Other GUIDs are {C8B521FB-
5CF3-11CE-ADE5-00AA0044773D} for a Transact-SQL query and {EC2A4293-E898-11D2-B1B7-00C04F680C56} for an
XPath query.
To receive the XML results, you need to use the ADO Stream object. Open the Stream object and assign it to the
CommandStream property of the ADO Command object. (You can access the CommandStream property through the
Properties collection of the Command object.) Note that the CommandStream property is a provider-specific property
and is supported only by the SQLOLEDB provider.
To retrieve data as an XML document using ADO, you can use a FOR XML clause in an XML query template that contains a
reference to the Microsoft XML-SQL namespace. You then assign the XML query template to the CommandText property
of the ADO Command object.

You must also specify how the resulting XML fragment should be rendered as a well-formed XML document. The SQL
Server 2000 OLE DB provider will use the root element of the XML query template as the root element in the resulting XML
document. The following is a sample XML query template:

To insert, update, or delete data using XML instead of a Transact-SQL query, you can use the OPENXML clause in the XML
query template, or use the Updategram and Bulk Load features provided in SQLXML 3.0.

The second part of this paper, Integration with SQL Server, contains several samples that demonstrate how to access data by
using the XML query and ADO.

Leveraging SAX2 for Large Data Files

The Simple API for XML (SAX) is an interface that allows you to write applications or application components to read data in an
XML document. The SAX2 implementation, the most recently released version of SAX, provides both Microsoft Visual Basic and
Microsoft Visual C++® interfaces. All examples in this section are presented in Visual Basic.

<s:ElementType
name="row" content="eltOnly" rs:CommandTimeout="30">
<b:RecordInfo/>
...
</s:ElementType>
</s:Schema>

<Order xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:query>
 SELECT OrderID, OrderDate, Freight
 FROM Orders
 WHERE OrderID = 10248
 FOR XML AUTO
 </sql:query>
</Order>

The XML Document Object Model (DOM) is one of the most commonly used technologies for processing XML documents. While
XML DOM works well for smaller XML documents, it becomes less efficient when handling large documents. This is due to the fact
that the DOM needs to break an XML document into individual objects (including elements, attributes, and comments) and create
the entire tree structure in memory before the document can be manipulated.

SAX offers a simpler, faster, lower-overhead, and more memory-efficient alternative to the DOM for processing XML documents.
A SAX parser does not load an entire XML document into memory. Instead, it starts parsing at the beginning of a document and
generates events as it encounters the various elements in the file. As a result, SAX works much better with larger documents, or
with documents in which you want to perform a single operation, such as a search.

The distinction between SAX and the DOM is best illustrated by comparing them to the traditional database cursor. SAX is similar
to a traditional serial cursor providing read-only and forward-only, while the DOM is representative of a standard database cursor
that allows random traversal and both read and write updates.

Best uses of SAX

SAX is best used in the following situations:

When your documents are large. The biggest advantage of SAX is that it requires significantly less memory than the
DOM to process an XML document. With SAX, memory consumption does not increase with the size of the file. If you need
to process large documents, SAX is the better alternative, particularly if you do not need to change the contents of the
document because it has already been mapped by BizTalk Server.
When you need to stop parsing or document processing. SAX allows you to stop processing at any time. Due to the
nature of the data stream, you can create applications that fetch a specific piece of data and then stop processing the file. As
a result, the resources required to perform the operation are reduced.
When you want to retrieve small amounts of information. Many XML-based solutions require that you retrieve a
specific piece of information or data element. It is not necessary to read the entire document to achieve the desired results.
With SAX, your application can scan the data stream for specific contents. After the required data component is isolated, it
can be passed on as a smaller document.

Limitation of SAX

The limitation of SAX is that it provides no random access to the document. Because the document is not in memory and the data
is presented as a stream, you must handle data in the order in which it is processed.

Sample: using SAX

The following sample demonstrates a way to integrate SAX with BizTalk Server through an application integration component
(AIC). The sample also shows the key performance benefits of using SAX to process both small (100–200 records) and large
(10,000–20,000 records) XML files.

In the sample a BizTalk Server receive function is used to collect XML documents from a predefined location, C:\Temp\SAXSample.
The documents are then passed to a standard BizTalk Server channel and port, which are associated with a SAXSample AIC. The
AIC uses SAX to sequentially process the XML documents, and uses ADO to insert the records into a SQL Server database table.
The following illustration shows this process.

Figure 1.

The main steps for setting up the sample are:

Define a SQL Server database table
Register the AIC
Define a BizTalk Server port and channel
Define a BizTalk Server receive function
Run the sample

These steps are summarized in the following paragraphs.

Note All sample files for this section are included in the Samples\SAX2 directory.

Step 1: define a SQL Server database table

The SAX sample uses a Contacts table in the Pubs database to store data provided in the XML documents.

The following script creates the required database table. The script is included in the file CreateContactsTable.sql in the
Samples\SAX2\SQLScript samples directory.

Using SQL Query Analyzer, define the database and table using the preceding script. Then verify that the table has been created
correctly.

Step 2: register the AIC

1. Click Start, point to Programs, point to Administrative Tools, and then click Component Services. The Component
Services Microsoft Management Console (MMC) window appears.

2. In the Component Services console tree, expand Component Services, expand Computers, expand My Computer, and
then click COM+ Applications.

3. Right-click COM+ Applications, point to New, and then click Application. The COM Application Install Wizard opens
4. On the Welcome to the COM Application Install Wizard page, click Next.
5. On the Install or Create a New Application page, click Create an empty application. In the Enter a name for the new

application box, type SAXAIC. In the Activation type area, click Server application and then click Next.
6. On the Set Application Identity page, in the Account area, click Interactive user-the current logged on user, and then

click Next.
7. Click Finish.
8. In the console tree, expand COM+ Applications and expand the new package you created, called SAXAIC. Click the

Components folder.
9. Browse to the directory Samples\SAX2 and drag AIC4SAX2.dll to the Components folder of package SAXAIC in

Component Services.
10. Close Component Services.

Note The Visual Basic source code for AIC4SAX2.dll is provided in the same directory as AIC4SAX2.dll.

Step 3: define a BizTalk Server port and channel

1. Open Windows Explorer and create the following new directory:

C:\Program Files\Microsoft BizTalk Server\BizTalkServerRepository\DocSpecs\SAX2

2. Copy the document specification file Contacts.xml from the Samples\SAX2\SAXSpecsandSamples directory to the new
directory.

3. Click Start, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Messaging Manager.
4. On the File menu, point to New, point to Messaging Port, and then click To an Application.
5. On the General Information page, in the Name box, enter SAXSamplePort, and then click Next.
6. On the Destination Application page, select Application and click New. The Organization Properties dialog box

appears.
7. In the Organization Properties dialog box, click the Applications tab, click Add, and then enter SAXSampleApplication

use pubs

if exists (select * from dbo.sysobjects where id =
 object_id(N'[dbo].[Contacts]') and OBJECTPROPERTY(id, N'IsUserTable') =
 1)
drop table [dbo].[Contacts]
Go

CREATE TABLE [dbo].[Contacts] (
 [CompanyCode] [char] (20),
 [Name] [varchar] (50),
 [Tel] [varchar] (50),
 [Email] [varchar] (50),
 [RecordTimeStamp] [datetime] not NULL default (GetDate())
) ON [PRIMARY]
Go

in the Name box. Click OK twice to return to the Destination Application page.
8. On the Destination Application page, under Application, select SAXSampleApplication from the drop-down list. In the

Primary transport frame, click Browse. The Primary Transport dialog box appears.
9. In the Primary Transport dialog box, select Application Integration Component from the Transport type list and then

click Browse. In the Select a Component dialog box, select AIC4SAX2 Class1 from the list. Click OK twice to return to the
Destination Application page. Click Next twice to enter the Security Information page.

10. On the Security Information page, select Create a channel from this messaging port, and then select From a
application from the Channel type list. Click Finish. The New Channel wizard appears.

11. On the General Information page, enter SAXSampleChannel as the channel name, and then click Next twice to enter the
Inbound Document page.

12. On the Inbound Document page, click New. In the New Document Definition dialog box, type SAXSampleDoc in the
Document definition name box. Select Document Specification and click Browse. In the Select a Component dialog
box, double-click the SAX2 folder, click Contacts.xml, click Open, and click OK to return to the Inbound Document page.
Click Next to enter the Outbound Document page.

13. On the Outbound Document page, click Browse, select SAXSampleDoc from the list, and then click OK.
14. Click Next twice, and then click Finish. Finally, close the BizTalk Messaging Manager console.

Step 4: define a BizTalk Server receive function

1. Open Windows Explorer and create a new directory, C:\Temp\SAXSample, as the inbound directory.
2. Click Start, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Server Administration.
3. In the console tree, expand Microsoft BizTalk Server 2002, expand BizTalk Server Group, and then click Receive

Functions.
4. Right-click Receive Functions, point to New, and then click File Receive Function. The Add a File Receive Function

dialog box appears.
5. In the Add a File Receive Function dialog box, type SAXSampleReceiveFunction in the Name box. Type *.xml in the

File types to poll for box. Type C:\Temp\SAXSample in the Polling location box.
6. Click Advanced and click the Channel name drop-down list. Select SAXSampleChannel from the list. Click OK twice to

finish the process.

Step 5: run the sample

1. Place the sample document SAXSample_Small.xml in the inbound directory C:\Temp\SAXSample. Verify that the new
records defined in the XML document are inserted in the Contacts table of the Pubs database.

2. Repeat step 1 for the document SAXSample_Large.xml and ensure that all records are inserted in the SQL Server database.

Note The current logged-on user must be a member of the BizTalk Server Administrators group and must remain
logged on while running this sample.

Integration with SQL Server
The focus of this part of the article is to discuss methods for integrating BizTalk Server and SQL Server 2000. These methods
combine tools to create a way to obtain XML data from SQL Server in a highly scalable manner and with minimal coding effort. It
is worth noting that these techniques are generally applicable to other database technologies.

Overview of XML and SQL Server

SQL Server 2000 introduces many built-in features for XML support. These include:

The ability to use HTTP publishing functionality
The FOR XML clause for querying database tables and receiving the results as an XML document
The OPENXML keyword for updating database tables from XML documents

SQL Server 2000 can return the results of SELECT statements as XML documents. The SQL Server 2000 Transact-SQL SELECT
statement supports the FOR XML clause, which returns an XML document instead of a relational result set. The OPENXML
keyword allows an XML document to be treated in the same way as a table or view in the FROM clause of a Transact-SQL
statement. This allows inserting, updating, or deleting data by using an XML document.

The entire SQL Server XML functionality is implemented in SqlXml3.dll. The template files, annotated schema files, Extensible
Stylesheet Language (XSL) files, and XPath queries are handled on the Internet Information Services (IIS) server. SqlXml3.dll
translates the XPath queries against the annotated schema into SQL commands.

SQL Server HTTP publishing

To use the SQL Server HTTP publishing functionality, you must set up an appropriate virtual directory. You can do this by using
the "Configure SQL XML Support in IIS" utility to define and register a new virtual directory. This utility is shipped with SQL Server
2000, and instructs IIS to create an association between the new virtual directory and an instance of Microsoft SQL Server.

A limitation of this approach is that to access SQL Server by using HTTP, XML views of SQL Server 2000 databases must be
defined by annotating XML-Data Reduced (XDR) schemas to map the tables, views, and columns associated with the elements and
attributes of the schema. The XML views can then be referenced in XPath queries, which retrieve results from the database and
return XML documents. This task is a tedious manual process that requires time and effort. There is no out-of-box tool available in
SQL Server 2000 to automate this task. Also, this solution is based on the Internet Server Application Programming Interface
(ISAPI) and is not scalable because querying SQL Server through ISAPI yields low throughput.

The following illustration shows how HTTP requests are handled.

Figure 2.

You should also consider the potential limitation of this approach. Constructing a FOR XML clause to obtain a hierarchical XML
document based on SQL relational tables/views with multiple joins is a time-consuming and error-prone process. Hierarchical
XML documents can get very complicated because multiple tables/views must be joined to produce the desired XML document.
Some FOR XML statements are more than 30 kilobytes (KB) long. Automating this process requires a tremendous amount of
resources.

Loading XML to SQL Server 2000

Microsoft provides the following three ways to update SQL Server 2000 by using data from XML files:

The OPENXML keyword. OPENXML ships with SQL Server 2000. It is used for updating data in databases, and is natively
supported by SQL Server 2000.
XML Updategrams. Updategrams ship with SQLXML 3.0. They give developers an XML-based approach to data
modification.
XML Bulk Load. XML Bulk Load ships with SQLXML 3.0. It is for loading large amounts of XML data into a database.

To load small amounts (typically 100 KB) of XML data into SQL Server, OPENXML and XML Updategrams are good choices. To
load large amounts (typically 100 MB) of XML data, the XML Bulk Load feature is more efficient.

XML Bulk Load is similar in functionality to the bulk copy (bcp) utility and the Transact-SQL BULK INSERT statement. Unlike bcp
and BULK INSERT, which accept only tabular data representations, XML Bulk Load supports loading XML hierarchies into one or
more database tables. Also unlike OPENXML and XML Updategrams, XML Bulk Load uses Microsoft XML Core Services (MSXML)
—formerly called Microsoft XML Parser—to process data rather than parsing the entire XML dataset into memory before
processing it. Using the streaming interface lets XML Bulk Load process datasets larger than 100 MB without running out of
memory.

Both XML Bulk Load and XML Updategrams are based on annotated schema; these ISAPI-based solutions must go through IIS to
complete the task of interchanging XML with SQL Server. Therefore, they are not scalable due to the performance issue.

XML Bulk Load has another limitation. When bulk-loading XML into multiple tables, the rule is that the XML document must
include the primary/foreign key values. In practice, these key values are usually missing. For example, the XML purchase order file
from customers (which contains Order and Order Details) usually does not contain primary/foreign key values such as OrderID.

Using FOR XML and OPENXML

SQL Server 2000 provides the FOR XML clause and the OPENXML keyword that allow an XML document to be translated into a
data format used by a relational database and vice versa. These functions allow XML data to be retrieved from or inserted into a
SQL Server table.

FOR XML

Traditionally, the ActiveX Data Objects (ADO) recordset has been widely used to retrieve data from relational databases. SQL
Server 2000 extends the SELECT statement to enable the retrieval of data as an XML document through the FOR XML clause.

To use the FOR XML functionality, simply append the keywords FOR XML to a SELECT statement. This indicates to the SQL Server
query processor that you want the results to be returned as an XML stream instead of as a recordset. In addition to including the
FOR XML keywords, you must also specify a mode to indicate the format of the XML that should be returned. This mode can be
specified as RAW, AUTO, or EXPLICIT. For details about the mode, refer to the SQL Server Books Online in the MSDN library.

Within the BizTalk Server context, the FOR XML clause provides a way to retrieve data as XML documents directly without coding.
This greatly simplifies the integration between BizTalk Server and SQL Server.

In practice, one of the challenges in using the FOR XML clause is to create an SQL query that will return an XML document that
complies with a predefined XML document schema.

In the Using SQL Server XML View Mapper section, we describe an approach that simplifies the task of creating complex FOR XML
queries by using the SQL Server XML View Mapper tool.

OPENXML

The OPENXML keyword is used primarily to insert data directly from an XML document into database tables.

Before the OPENXML functionality can be utilized, the XML document provided by BizTalk Server needs to be parsed, validated as
XML, and mapped into a tree structure that represents the nodes and elements of the document. This is done through the
sp_xml_preparedocument stored procedure.

After the document has been prepared, the SQL Server OPENXML keyword is used to create an in-memory rowset from the data
tree created by sp_xml_preparedocument. This rowset can be used anywhere a table or view is used and is therefore ideal for
updating or inserting data using an UPDATE or INSERT statement.

After the XML data has been updated or inserted into the database, the sp_xml_removedocument stored procedure should be
executed to reclaim the memory used by the node tree.

The OPENXML keyword offers the following benefits:

Efficiency is increased as a result of fewer network round trips.
The data tier is conceptually simple and easy to code. It no longer needs to be aware of the underlying database structure by
sending XML to SQL Server as a single input parameter for a stored procedure. That knowledge now lies in the stored
procedures that use OPENXML to map XML nodes to tables, rows, and columns.

Process description

Within the BizTalk Server context, an application integration component (AIC), COM component, or Windows Script Component
(WSC) can be used to invoke the XML support in SQL Server. This allows an XML document to be processed through BizTalk
Orchestration and BizTalk Messaging and inserted directly into a database. The following illustration shows the overall process.

Figure 3.

In the process, an XML document is passed to BizTalk Server by an AIC, a COM component, or a WSC. ADO is then used to invoke
a custom stored procedure, supplying the XML document as a parameter. The custom stored procedure leverages the OPENXML
functionality to insert the document into the database.

Sample: using OPENXML

This section presents a BizTalk Server implementation that inserts XML data into SQL Server 2000 by using the OPENXML
keyword. The main steps are as follows:

Create a stored procedure for generating a SQL Server database table by using the OPENXML keyword and an XML
document.
Create a stored procedure for inserting XML data into the database table by using the OPENXML keyword.
Create a WSC, BTS2SQLOPENXML.wsc, which will be called from BizTalk Orchestration. The WSC accesses the stored

procedure to insert XML data into the SQL Server database.
Create a BizTalk Orchestration schedule, TestBTS2SQLOPENXML.skv, which passes an XML document to the
BTS2SQLOPENXML.wsc component. The WSC inserts the XML data into the database table.

Note All sample files for this section are included in the Samples\OpenXML directory.

Step 1: define and test the CreateNewTableAndPopulate stored procedure

The OPENXML keyword can be used to create and populate a new database table based on an XML document. The columns of the
database table correspond to the elements or attributes of the XML document.

Assume that we have the following purchase order XML document:

We want to create a PurchaseOrders table in the Pubs database according to the preceding XML document. Using SQL Query
Analyzer, define the Pubs database and use the following script, CreatePOTable.sql to create the PurchaseOrders table. The script
is included along with the other SQL scripts for this section in the Samples\OpenXML\SQLScripts directory.

Using SQL Query Analyzer, run the following script, CreatePOTableAndPopulate.sql to create a new stored procedure,
CreatePOTableAndPopulate.

Then run the stored procedure, TestCreatePOTableAndPopulate.sql, passing in an XML document as follows:

<?xml version="1.0"?>
 <Order OrderID="1001" CustomerID="ABC-001" OrderDate="01/02/2001"
 EmployeeID="001"/>

if exists (select * from dbo.sysobjects where id =
 object_id(N'[dbo].[PurchaseOrders]') and OBJECTPROPERTY(id,
 N'IsUserTable') = 1)
drop table [dbo].[PurchaseOrders]
GO

CREATE TABLE [dbo].[PurchaseOrders] (
 [OrderID] [int] NULL ,
 [CustomerID] [nchar] (5) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
 [EmployeeID] [int] NULL ,
 [OrderDate] [datetime] NULL
) ON [PRIMARY]
GO

...
CREATE PROCEDURE CreatePOTableAndPopulate @xmlOrder VARCHAR(2000) AS
DECLARE @iTree INTEGER
EXEC sp_xml_preparedocument @iTree OUTPUT, @xmlOrder
If exists (select * from dbo.sysobjects where id =
 object_id(N'[dbo].[PurchaseOrders]') and OBJECTPROPERTY(id,
 N'IsUserTable') = 1) drop table [dbo].[PurchaseOrders]
SELECT * INTO PurchaseOrders
FROM OPENXML(@iTree, 'Order', 1)
 WITH (OrderID INTEGER,
 CustomerID nCHAR(8),
 EmployeeID INTEGER,
 OrderDate DATETIME)
EXEC sp_xml_removedocument @iTree
...

Exec CreatePOTableAndPopulate '
 <?xml version="1.0"?><Order OrderID="1001" CustomerID="ABC-001"
 OrderDate="01/02/2001" EmployeeID="001"/>'

After running the stored procedure, browse the Pubs database to verify that a new PurchaseOrders table has been created and
the XML data has been inserted correctly.

Step 2: define and test the InsertPurchaseOrder stored procedure

The OPENXML keyword can also be used to insert XML data into columns of a SQL Server database table. In this case the XML
data and the database table format must match each other.

For example, we want to insert the following XML data into the PurchaseOrders table created in step 1:

We can create the following stored procedure (InsertPurchaseOrder.sql), InsertPurchaseOrder, to perform the task:

We then test the InsertPurchaseOrder procedure by using SQL Query Analyzer and the following script,
TestInsertPurchaseOrder.sql:

After running the preceding script, verify that the XML data has been correctly inserted into the PurchaseOrders table.

Step 3: create and test the BTS2SQLOPENXML.wsc component

To access the SQL Server stored procedure from BizTalk Orchestration, we can either use a WSC, a COM component, or an AIC. In
this sample we use a WSC, BTS2SQLOPENXML.wsc, to run the InsertPurchaseOrder stored procedure.

This WSC has one method, ExecSQL_Param, which takes three parameters—a connection string, an SQL query string, and an
XML document string. The following code implements the WSC:

<?xml version="1.0"?>
 <Order OrderID="1012" CustomerID="ABC-005" OrderDate="08/01/2001"
 EmployeeID="003"/>

...
CREATE PROCEDURE InsertPurchaseOrder @xmlOrder VARCHAR(2000)AS
DECLARE @iTree INTEGER
EXEC sp_xml_preparedocument @iTree OUTPUT, @xmlOrder
INSERT PurchaseOrders (OrderID, CustomerID, EmployeeID, OrderDate)
SELECT * FROM
 OPENXML(@iTree, 'Order', 1)
 WITH (OrderID INTEGER,
 CustomerID nCHAR(8),
 EmployeeID INTEGER,
 OrderDate DATETIME)
EXEC sp_xml_removedocument @iTree
...

Exec InsertPurchaseOrder '<?xml version="1.0"?><Order OrderID="1012"
 CustomerID="ABC-005" OrderDate="08/01/2001" EmployeeID="003"/>'

<?xml version="1.0"?>
 <component>
 <?component error="true" debug="true"?>
 <registration
 description="BTS2SQLOPENXML"
 progid="BTS2SQLOPENXML.wsc"
 version="1.00"
 classid="{94f80128-269a-4220-bd77-c21abaca4ed3}">
 </registration>
 <public>
 <method name="ExecSQL_Param">
 <PARAMETER name="sCOnn"/>
 <PARAMETER name="sSQL"/>
 <PARAMETER name="sXML"/>
 </method>
 </public>
 <script language="VBScript">
 <![CDATA[

After using Notepad to define the .wsc file, save it as BTS2SQLOPENXML.wsc to the Sample\OPENXML folder.

Register the component by using regsvr32.dll or by right-clicking the .wsc file in Windows Explorer and clicking Register.

Now test the WSC by using the following Visual Basic Scripting Edition (VBScript) code. Open Notepad, enter the code, and save
the file as TestBTSOPENXMLInsertData.vbs.

Test the activation and execution of BTS2SQLOPENXML.wsc by running TestBTSOPENXMLInsertData.vbs, and verify that a new
row has been added to the PurchaseOrders table in the Pubs database.

Step 4: define and test a BizTalk Orchestration schedule

Now we will build a simple BizTalk Orchestration schedule that passes an XML document to the WSC, which then calls the stored
procedure to insert the XML data into the SQL Server database table.

The BizTalk Orchestration schedule has only one action, as shown in the following illustration. The schedule instantiates the
BTS2SQLOPENXML.wsc component and calls the ExecSQL_Param method, passing in the three parameters required by the
method. One of the parameters is the XML document to be inserted into the SQL Server database.

 function ExecSQL_Param(sConn, sSQL, sXML)
 Dim cn
 Dim cmd

 'Connect to DB and run SQL
 Set cn = CreateObject("adodb.Connection")
 cn.Open sConn

 'Execute procedure
 Set cmd = CreateObject("adodb.command")
 cmd.ActiveConnection = cn
 cmd.CommandText = sSQL & " '" & sXML & "'"
 cmd.Execute

 'Clean up
 set cmd = nothing
 set cn = nothing
 ExecSQL = ""
 end function
]]>
 </script>
</component>

Dim o
Dim sXML

sXML = "<?xml version=""1.0""?><Order OrderID=""1012"" CustomerID=""ABC-
 002"" OrderDate=""11/01/2001"" EmployeeID=""102""/>"

Set o = CreateObject("BTS2SQLOPENXML.wsc")
o.ExecSQL_Param "Provider=sqloledb; Data Source=(local); Initial
 Catalog=Pubs; Trusted_Connection=Yes;", "exec InsertPurchaseOrder", sXML
MsgBox "Job done."
Set o = nothing

Figure 4. Click thumbnail for larger image.

The main steps for building the sample orchestration schedule are:

1. Drag an Action shape onto the process and name it Test SQL OPENXML. Add an End shape to the flowchart, and then
complete the flowchart as shown in the illustration.

2. Bind the BTS2SQLOPENXML.wsc to the Action shape by using the Windows Script Component Wizard.
3. Add three constants in the orchestration data page. Details of the constants are defined in the following table. The

XMLString constant contains the XML document to be inserted into the database.
Constant name Constant value
ConnectionStri
ng

Provider=sqloledb; Data Source=(local); Initial Catalog=Pubs; Trusted_Connection=yes;

SQLString Exec InsertPurchaseOrder
XMLString <?xml version="1.0"?><Order OrderID="1004" CustomerID="ABC-006" OrderDate="01/03/2001" Empl

oyeeID="108"/>
4. Connect each constant to the corresponding ExecSQL_Param_In message fields by drawing a line from the constant to the

input parameter. The following illustration shows the data page of the sample schedule.

Figure 5. Click thumbnail for larger image.
5. Save the BizTalk Orchestration schedule as TestBTS2SQLOPENXML.skv to the Sample\OPENXML folder. Compile the

schedule to generate the executable file TestBTS2SQLOPENXML.skx. Save the file to the same folder.

To test the orchestration schedule, we can create a .vbs file to launch the schedule as we did in previous sections. We can also use
the XLANGMon.exe utility to launch the schedule. Here we use the latter approach for testing.

To test the orchestration schedule

1. Open Windows Explorer and browse to the folder C:\Program Files\Microsoft BizTalk Server\SDK\XLANG Tools.
Double-click XLANGMon.exe. The XLANG Event Monitor window appears.

2. Right-click the TestBTS2SQLOPENXML.skx file and drag it onto the XLANG Scheduler node. This will run the
orchestration schedule.

3. Verify that a new row of data has been inserted into the PurchaseOrders table in the Pubs database.

Using Updategrams

SQLXML 3.0 includes a major feature, the Updategram, which allows changes to an XML document as database inserts, updates,
and deletes. An XML Updategram can be used as the source for a command against the Microsoft OLE DB Provider for SQL
Server 2000.

The Updategram is a way to specify an update to a SQL Server 2000 database through XML. You specify what the XML data looks
like now and what you want it to look like when the Updategram is executed. The Updategram processor automatically generates
and executes the SQL statements required to produce the desired change. Inserts, updates, and deletes can be specified with
Updategrams.

The Updategram uses annotated schemas to map XML data to database tables. The annotated schema was introduced in SQL
Server 2000 and is supported by BizTalk Server. Leveraging the power of annotated schemas, the Updategram is more flexible
and versatile to use than the OPENXML keyword.

Updategrams are submitted for processing through the same mechanisms as all XML SQL templates; that is, they are posted to
ISAPI, read from a file specified in a URL, or submitted with an ADO or OLE DB command.

To perform standard SQL commands on the database, the following rules are applied to Updategrams:

If a record instance appears only in the <before> block with no corresponding instance in the <after> block, the
Updategram performs a DELETE operation.
If a record instance appears only in the <after> block with no corresponding instance in the <before> block, the
Updategram performs an INSERT operation.
If a record instance appears in the <before> block and has a corresponding instance in the <after> block, it is an UPDATE
operation. In this case, the Updategram updates the record instance to the value specified in the <after> block.

Updategrams and annotated schemas

An Updategram is based on the xml-updategram namespace and contains one or more sync elements. Each sync element
represents a transactional unit of database modifications. Updategrams describe a desired change by specifying what the relevant
portion of an XML document looks like before and after the change is made. The mechanism for specifying the change is a
<sync> block. Each of these update blocks defines a group of changes that are treated as an atomic unit of work. In terms of
atomicity the <sync> block defines the transaction scope for an update.

A <sync> block consists of a <before> block and an <after> block as follows:

The <before> block contains the data values that currently exist in an XML document, and is similar to the WHERE clause in
a standard SQL statement. As in the SQL WHERE clause, the before information is used to locate which data is to be updated
The <after> block contains the new or updated values for the relevant data fields in the database.

The following is an example of an Updategram:

Because an Updategram is an XML document, it can easily be submitted to BizTalk Server as an interchange, and then processed
to perform the required database changes.

Sample: using Updategrams

<?xml version="1.0"?>
<employeeupdate xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync updg:mapping-schema="EmployeeSchema.xml">
 <updg:before>
 <Employee EmpID="1"/>
 </updg:before>
 <updg:after>
 <Employee Phone="555-112233"/>
 </updg:after>
 </updg:sync>
</employeeupdate>

The use of Updategrams is incorporated in the example in the next section.

Using SQL Server XML View Mapper

Microsoft SQL Server XML View Mapper, or XML View Mapper, is a tool that automates the process of generating annotated
schema for retrieving XML data from SQL Server.

XML View Mapper, together with other SQL Server utilities, is used to create XML schemas and database queries that retrieve XML
data directly from SQL Server. XML View Mapper is also a useful tool for integrating BizTalk Server and SQL Server.

Using XML View Mapper to generate an annotated schema

XML View Mapper is a mapping tool that relates XML-Data Reduced (XDR) schemas and SQL Server database schemas to
generate an XML annotated schema. The XML annotated schema enables SQL Server to interact with the database based on
established XDR schemas.

Within XML annotated schemas, a set of predefined annotations is used to define the links and relationships between elements
and attributes in the XDR schema and tables and fields in a database. XML annotated schemas can be created by using a text
editor, but the process is tedious, error prone, time consuming, and difficult to debug.

XML View Mapper provides a simple, visual, declarative, and integrated environment for defining XML views on a database. No
coding is required to generate annotated mapping schemas, and utilities are available to validate, test, and export the schemas
that are generated. The annotated schemas can be used to support ad hoc queries. They can also be used as the basis of an
application that retrieves XML data from a SQL Server database by using the XPath navigation language.

Getting XML data through an annotated schema requires IIS. This approach has a significant performance disadvantage when the
volume of data exchange is high. The problem can be overcome by using a stored procedure against SQL Server to generate a
targeted XML file instead of passing the annotated schema through the IIS server. This stored procedure contains the FOR XML
EXPLICIT clause in the SELECT statement to obtain XML data directly from SQL Server.

Retrieving XML from SQL Server

The FOR XML EXPLICIT clause is one of the most efficient ways to retrieve XML data directly from a SQL Server database. It is,
however, not an easy task to create SELECT . . . FOR XML EXPLICIT queries that return the desired XML data when the relationships
between data tables become complex.

XML View Mapper can be used to create annotated XML view schemas easily and visually. The XML view schemas generated in
XML View Mapper are equivalent to SQL Server mapping schemas. After a schema is generated we can test the schema by
executing an XPath query against the schema in the XML View Mapper environment. We then obtain the complex FOR XML query
by using the SQL Profiler tool. The following steps summarize the process:

1. Use XML View Mapper to create an annotated mapping schema for an XDR schema and a database. In practice, you usually
get the XDR schema based on the target XML document from BizTalk Server.

2. Test the mapping schema by using the XPath query tool in the XML View Mapper environment.
3. Capture the SELECT . . . FOR XML EXPLICIT query by running a SQL Profiler trace and the XPath query.
4. Extract the SELECT . . . FOR XML EXPLICIT query and insert it into a stored procedure or an ADO query.
5. Incorporate the stored procedure or the ADO query into a BizTalk Server application through an AIC or WSC.

The following illustration shows the preceding steps.

Figure 6.

Sample: using XML View Mapper

Before running this sample, you need to install XML View Mapper on your computer.

This sample demonstrates using the Updategram and retrieving XML data by using a complex SELECT . . . FOR XML EXPLICIT
query from the Northwind database. The query is obtained by using the XML View Mapper tool and SQL Profiler. Both the
Updategram and the FOR XML query are created and stored in .xml files.

A WSC component and a BizTalk Orchestration XLANG schedule are also generated for testing the BizTalk Server integration with
the SQL Server database.

Note All sample files for this section are included in the Samples\XMLViewMapper directory.

Step 1: create an annotated mapping schema by using XML View Mapper

If you have not used XML View Mapper, it is a good idea to go through the XML View Mapper tutorial before proceeding with this
sample. Because the mapping schemas used in this sample are the same as those in the tutorial, we will bypass the process of
creating the mapping schema and open the mapping provided in this sample package.

1. Browse to the folder Samples\XMLViewMapper and double-click OrderForm.smp. XML View Mapper is launched with
the OrderForm project loaded.

2. In the Project Explorer window, expand Map Modules and double-click OrderForm-map. A mapping screen appears.
3. Expand the SQL Modules node, right-click Northwind, and then click Database Connection. The Data Link Properties

dialog box appears.
4. Enter the name of the SQL Server computer that you will use and the log on information, and then click Test Connection.

Ensure that the test connection is successful.
5. Click OK to close the dialog box.

Step 2: test the schema by using XPath Query Tester

XPath Query Tester is a utility that comes with XML View Mapper. XPath Query Tester uses the XDR view schema that is opened in
XML View Mapper. The results of the query are returned using the element hierarchy specified in the XDR view schema, enclosed
in a <root> element. Use the following procedure to test the mapping schema:

1. On the XML View Mapper Tools menu, click XPath Query Tester. The Schema Load Log dialog box appears.
2. Click OK. The XPath Query Tester input dialog box appears.

If the database has not been connected, you will be prompted with a message box. Click OK to enter the Data Link
Properties dialog box, enter the SQL Server name and logon password, and then click OK. The XPath Query Tester input
dialog box appears.

3. Type the query Order[@OrderID="10248"] in the XPath Query box, but do not click Execute yet because we need to run
SQL Profiler to capture the SQL query string.

4. Click Start, point to Programs, point to Microsoft SQL Server, and then click Profiler.
5. Start a new trace in the SQL Profiler screen and accept all the defaults for the new trace.
6. Click Execute in XPath Query Tester to trigger the SQL trace. The XML data will be retrieved and displayed.

Step 3: get the FOR XML EXPLICIT query and create an XML query

1. Stop the trace. In the SQL Profiler window, find and select the application name SQL Server XML Mapper. The trace result
shows the desired SELECT . . . FOR XML EXPLICIT command that was generated by the XPath query.

2. Open Notepad and enter the following text:

3. Cut and paste the trace result from the SQL Profiler window to replace the BODY text in the Notepad file.
4. Save the Notepad file as C:\RetrieveXMLOrder.xml. This XML query file will be used in the sample to retrieve order data

(OrderID = 10248) as an XML document. By globally replacing the OrderID "10248" in the query with another OrderID, the
query can be used to retrieve details of another order.

5. Close all open application screens.

Step 4: create an Updategram

<Order xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
 <sql:query>
 BODY
 </sql:query>
</Order>

1. Open Notepad and type the following Updategram:

This Updategram updates the unit price for order item OrderID = 10249 and ProductID = 14. It is equivalent to the
following Transact-SQL statement:

2. Save the file as C:\UpdateOrder10249.xml.

Step 5: create a WSC component

A WSC component, XMLOrder.wsc, has been created and provided with the sample in the Samples\XMLViewMapper folder. You
need to register the component by using regsvr32.dll or by right-clicking the WSC file in Windows Explorer and clicking Register.

The WSC component has three methods:

UpdateOrderDetail(UpdategramFile). Executes the Updategram contained in the file UpdateOrder10249.xml
GetXMLOrder(OrderID, XMLQueryFile). Retrieves the XML order for a given OrderID using the XML query contained in the
file RetrieveXMLOrder.xml
WriteToFile(Document, FileName). Writes the retrieved data to a text file specified in the FileName parameter

Step 6: create a BizTalk Orchestration schedule

A BizTalk Orchestration schedule will be created that performs three tasks:

Run an Updategram to modify the unit price for order item OrderID=10249 and ProductID=14
Retrieve all order items for OrderID=10249 by using a SELECT . . . FOR XML EXPLICIT query
Write the retrieved XML data into a file

The following illustration shows the BizTalk Orchestration schedule.

<?xml version="1.0"?>
<updateorder xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
 <updg:sync>
 <updg:before>
 <_x005B_Order_x0020_Details_x005D_ OrderID="10249"
 ProductID="14" />
 </updg:before>
 <updg:after>
 <_x005B_Order_x0020_Details_x005D_ UnitPrice="$15.88" />
 </updg:after>
 </updg:sync>
</updateorder>

Update [Order Details] Set UnitPrice=15.88
Where OrderID=10249 And ProductID=14

Figure 7. Click thumbnail for larger image.

The main steps for building the sample orchestration schedule are:

1. Drag three Action shapes onto the process and name them Updategram, Retrieve XML Data, and Write Document to
File. Add an End shape to the flowchart, and then connect the Action shapes to complete the business process flowchart as
shown in the preceding illustration.

2. Bind XMLOrder.wsc to the Action shapes by using the Windows Script Component Wizard.
3. Add four constants on the orchestration data page. The following illustration shows details of the constants.

Figure 8.

4. On the data page, connect the constants to the corresponding input parameters of the three data tables. The following
illustration shows the completed data flow page.

Figure 9. Click thumbnail for larger image.

5. Save the orchestration schedule to the Sample\XMLViewMapper folder as TestXMLOrder.skv.
6. Compile the orchestration schedule to generate the executable file TestXMLOrder.skx.
7. Save the file to the Sample\XMLViewMapper folder.

Step 7: run the sample

1. Click Start, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager. Ensure that the item
[OrderID=10249, ProductID=14] in the Order Details table in the Northwind database has a unit price different from
15.88 (this is the value to be changed by the Updategram in the orchestration). Alter the value if it already has a value of
15.88.

2. Open Windows Explorer and browse to the folder C:\Program Files\Microsoft BizTalk Server\SDK\XLANG Tools\.
Double-click XLANGMon.exe. The XLANG Monitor screen appears.

3. Open Windows Explorer and browse to the TestXMLOrder.skx file. Right-click the file and drag it onto the XLANG
Scheduler node in the XLANG Monitor screen. This runs the orchestration schedule.

4. Verify that a new XML file, C:\XMLOrderDetails.xml has been created. This file contains XML data retrieved by using the
XML query in the file RetrieveXMLOrder.xml. The XML data represents the order with OrderID=10249.

5. Verify that the unit price for the order item [OrderID=10249, ProductID=14] has been modified to 15.88.

Leveraging Stored Procedures and DTS in SQL Server 2000

This section describes how to use BizTalk Server 2002 to orchestrate workflow among disparate processes. By using the BizTalk
Server 2002 Orchestration Designer, you can sequence tasks implemented in SQL Server stored procedures and Data
Transformation Services (DTS) packages.

Sample: calling stored procedures from BizTalk Orchestration

This section demonstrates how to call SQL Server stored procedures from BizTalk Orchestration. Because of the number of
components involved, we will use a structured example. The following steps are outlined:

1. Define a SQL Server database table and a stored procedure to call from BizTalk Orchestration.
2. Use the Windows Script Component Wizard to create a component file, BTS2SQL.wsc, which encapsulates the script code to

access SQL Server. This component will have one method, ExecSQL, which will be called from BizTalk Orchestration.
3. Create a BizTalk Orchestration schedule, TestSQL.skv, which has one action. This action will be bound to an implementation

that calls the ExecSQL method in the BTS2SQL.wsc component.
4. Run the sample.

Note All sample files for this section are included in the Samples\StoredProcsandDTS\BTS2SQL directory.

Step 1: define and test the LogIt stored procedure

Dependencies for the sample include a SQL Server stored procedure to call and a mechanism for verifying that the procedure was
called. Specifically this includes:

SQL Server database table—WorkflowMessages
SQL Server stored procedure—LogIt

The following script, CreateTableAndLogIt.sql creates the required database table and stored procedure in Pubs, and is included in
the Samples\StoredProcsandDTS\BTS2SQL directory:

use pubs
go

create table WorkflowMessages
(
message varchar(1024) not null,
logged datetime not null default (GetDate())
)
go

Create PROCEDURE LogIt
@strMsg varchar(1024)
AS

1. Using SQL Query Analyzer, define the databases, table, and stored procedure by using the preceding script.
2. Using SQL Query Analyzer, run the LogIt stored procedure, passing in a string as a parameter:

3. Browse the WorkflowMessages table to verify that the procedure worked properly.

Step 2: define and test the BTS2SQL component

To access SQL Server from BizTalk Orchestration, we will define a Windows Script Component, BTS2SQL.wsc, with one method,
ExecSQL. This method takes two parameters, a connection string and an SQL query. It uses ADO to connect to the database and
execute the query. The following code implements the script component. The shell was generated with the Windows Script
Component Wizard. The ExecSQL code was added by hand.

insert into WorkFlowMessages (message) values (@strMsg)

grant select on WorkflowMessages to public
grant execute on LogIt to public
go

EXEC LogIt 'Test String'

<?xml version="1.0"?>
<component>

<?component error="true" debug="false"?>

<registration
description="BTS2SQL"
progid="BTS2SQL.WSC"
version="1.00"
classid="{71f80b28-2695-4220-bd77-c21abaca02cb}"
>
</registration>
<public>
<method name="ExecSQL">
<PARAMETER name="sConn"/>
<PARAMETER name="sSQL"/>
</method>
</public>
<script language="VBScript">
<![CDATA[
function ExecSQL(sConn, sSQL)
Dim cn
Dim cmd

'Connect to the db and execute the SQL

 Set cn = CreateObject("ADOdb.connection")
 cn.Open sConn

 Set cmd = CreateObject("ADOdb.command")
 cmd.ActiveConnection = cn
 cmd.CommandText = sSQL
 cmd.Execute

'Clean up
 Set cmd=nothing
 Set cn=nothing
 ExecSQL = ""
end function
]]>
</script>
</component>

1. Define the WSC file and add the code to the ExecSQL method.
2. Register the component by using regsvr32.dll or by right-clicking the WSC file in Windows Explorer and clicking Register.
3. Now we can test the component to ensure that it is functioning properly. The following VBScript code will test the

component. Using Notepad, enter the following code and save the file as TestBTS2SQL.vbs:

4. Test the activation and execution of BTS2SQL.wsc by running TestBTS2SQL.vbs and then verifying that a row has been
added to the WorkflowMessages table in the Pubs database

Step 3: create and test the BizTalk Orchestration schedule

A simple BizTalk Orchestration that has one action is suitable.

This schedule should direct the run-time environment to instantiate a BTS2SQL.wsc component and call the ExecSQL method,
passing in parameter values defined in the ExecSQL message. In this test, the values defined for the parameters (sConn and sSQL)
on the data page within Orchestration Designer are connected to the values of the parameters in the ExecSQL message.

When creating the sample orchestration, the following points are important to making the sample functional:

Make sure that the Implementation shape is attached to the BTS2SQL.wsc component. This can be done by using the
Script Component Binding Wizard.
Two constants should be included on the orchestration data page: ConnectString and SQLString. These should be mapped
to the ExecSQL_in message by drawing a line from the constant to the input parameter.
Constant name Constant value
ConnectionString Provider=sqloledb; Data Source=(local); Initial Catalog=Pubs; Trusted_Connection=yes;
SQLString exec LogIt 'Sample Insert from BizTalk'

The result should look like the included sample in the TestSQL.skv file and the compiled form in TestSQL.skx.

Step 4: Run the BizTalk Orchestration schedule

The following VBScript code is used to run the XLANG schedule. The code is provided in the sample as TestSQLSKV.vbs.

To test the component from the BizTalk Orchestration schedule, perform the following steps:

1. In Windows Explorer, double-click TestSQLSKV.vbs.
2. After the message box appears, click OK and then go into SQL Enterprise Manager or SQL Query Analyzer to verify that

Sample Insert from BizTalk was inserted in the WorkFlowMessages database table.

Sample: calling DTS from BizTalk Orchestration

One of the more efficient ways to access DTS packages from outside SQL Server Enterprise Manager is through the SQL Server
DTS package object model. This object model ships with SQL Server 2000 and is a complete set of objects to define and run DTS
packages through COM interfaces. To demonstrate how to call DTS packages from BizTalk Orchestration, the following steps will
be outlined in this section:

dim o
set o = CreateObject("BTS2SQL.WSC")
o.ExecSQL "Provider=sqloledb; Data Source=(local);Initial Catalog=Pubs;
 Trusted_Connection=yes;", "exec LogIt 'hello world!' "
set o = nothing

Dim objSked
Dim strPath

strPath = WScript.ScriptFullName
strPath = Mid(strPath, 1, InStrRev(strPath, "\"))
strPath = "sked:///" & strPath & "TestSQL.skx"
set objSked = GetObject(strPath)
msgbox "Started " & strPath

Set oSked = Nothing

Define a DTS package named Copy Titles that copies data from one table to another.
Use the Windows Script Component Wizard to create a component file, BTS2DTS.wsc, which encapsulates the script code to
access DTS. This component will have one method, RunDTSPackage, which will be called from BizTalk Orchestration.
Create a BizTalk Orchestration schedule, TestDTS.skv, which has one action. This action will be bound to an implementation
that calls the RunDTSPackage method in the BTS2DTS.wsc component.
Create a VBScript file to run the BizTalk Orchestration schedule.
Test the BizTalk Server to SQL Server communication.

Note All sample files for this section are included in the Samples\StoredProcsandDTS\BTS2DTS directory.

Step 1: define and test the DTS package

For testing and demonstration purposes, a DTS package is required to run along with a mechanism for verifying that it was called.
This package will be defined as Copy Titles. Functionality provided by the Copy Titles package will duplicate rows from the Titles
table of the Pubs database to the Northwind database. The package will have two connection objects, one pointing to the Pubs
database and the other pointing to the Northwind database. The package will also have two tasks. First, a Transform Data task
will copy the data from the Pubs database to the Northwind database, and then an Execute SQL task will log an entry into our
WorkFlowMessages table in the Pubs database to indicate that the data was copied.

Perform the following steps to create the package:

1. Click Start, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.
2. In the tree control in the left pane, expand Microsoft SQL Servers, expand SQL Server Group, expand [your computer

name], expand Data Transformation Services, and then click Local Packages.
3. In the right pane, right-click and then click New Package.
4. Create a Microsoft OLE DB Provider for SQL Server and use the Connection Properties to name it Pubs and connect it to

the Pubs database.
5. Repeat the preceding steps to create a second Microsoft OLE DB Provider for SQL Server object, name it Northwind, and

connect it to the Northwind database.
6. Drag a Transform Data task to the design, where Pubs is the source and Northwind is the destination. On the property

page, set the Source tab to the Titles table, the Destination tab to the Titles table (which might need to be created), and
use the Transformation tab to select all records.

7. Drag an Execute SQL task to the design surface. On the property page, select the Pubs database, enter Log the Count for
the description, and enter the following code as the SQL statement. This will count the number of rows in the Titles table in
the Northwind database and write a message to the WorkFlowMessages table in the Pubs database.

8. Click OK to close the property page.
9. From the design surface, select the Northwind connection object and the Log the Count task. On the Workflow menu,

click On Completion.
10. Save the package in SQL Server, as Copy Titles.
11. For testing, run the package by clicking Execute on the Package menu. After it is complete, go into SQL Query Analyzer

and verify that a message was written to the WorkFlowMessages table and that the Titles table in the Northwind
database is populated. Each time you run the package, you should see another message in the WorkFlowMessages table
and the size of the Titles table in the Northwind database should grow.

Step 2: define and test the BTS2DTS component

To access DTS from BizTalk Orchestration, we will define a Windows Script Component that encapsulates the code to run DTS
tasks. We will define a component named BTS2DTS.wsc with one method, RunPackage. This method takes one parameter, the
name of the package to run. The following code implements the script component. The shell was generated with the Windows
Script Component Wizard. The RunPackage code was added by hand.

The only part of this script you might need to change is the UseTrustedConnection property on the objExecPkg object. If you

declare @nrows int
select @nrows = count(*) from Northwind..titles
declare @sMsg varchar(80)
select @sMsg = 'There are ' + convert(varchar(8), @nrows) + ' in the
 Northwind titles table'
exec pubs..LogIt @sMsg

typically use a user name and password to gain access to SQL Server, it might be more convenient to set the
UseTrustedConnection property to False, and set the ServerUserName and ServerPassword properties of the objExecPkg
object to the appropriate values. Similarly, if the instance of SQL Server is on another computer, set the ServerName property
appropriately.

<?xml version="1.0"?>
<component>

<?component error="true" debug="false"?>

<registration
description="BTS2DTS"
progid="BTS2DTS.WSC"
version="1.00"
classid="{a9a7f917-35ef-4d45-93f4-3bc935ec75d0}"
>
</registration>

<public>
<method name="RunPackage">
<PARAMETER name="sPackageName"/>
</method>
</public>

<script language="VBScript">
<![CDATA[
function RunPackage(sPackageName)

Dim objPackage
Dim objStep
Dim objTask
Dim objExecPkg

'Create the step and task. Specify the package to be run, and link the
 step to the task.

 Set objPackage = CreateObject("DTS.Package2")
 Set objTask = objPackage.Tasks.New("DTSExecutePackageTask")
 Set objExecPkg = objTask.CustomTask
 objExecPkg.UseRepository = False
 objExecPkg.UseTrustedConnection = True

 objExecPkg.PackageName = sPackageName
 objExecPkg.Name = "ExecPkgTask"

 Set objStep = objPackage.Steps.New
 objStep.TaskName = objExecPkg.Name
 objStep.Name = "ExecPkgStep"
 objStep.ExecuteInMainThread = True

 objPackage.Steps.Add objStep
 objPackage.Tasks.Add objTask

'Run the package

 objPackage.FailOnError = True
 objPackage.Execute

'Release references. Releases must be done before UnInitialize.

 Set objExecPkg = Nothing
 Set objTask = Nothing
 Set objStep = Nothing
objPackage.UnInitialize

end function

]]>

To register and add code to the component

1. Define the WSC file and add the code to the RunPackage method.
2. Register the component by using regsvr32.dll or by right-clicking the WSC file in Windows Explorer and clicking Register.

Step 3: create and test a BizTalk Orchestration schedule to exercise BTS2DTS

To create this workflow in Orchestration Designer:

1. Draw the business process action ("Test DTS Package") by dragging the Action shape from the left palette to the design
surface. Add an End shape to the design surface and sequence the three steps: Begin, Test DTS Package, End.

2. Drag the Script Component shape onto the implementation side and browse to BTS2DTS.wsc by using the Script
Component Binding Wizard.

3. Connect the business process action to the implementation port ("Port_1") by using the Method Communication Wizard to
create a new message and to make a synchronous method call.

This schedule directs the run-time environment to instantiate a BTS2DTS.wsc component and call the RunPackage method,
passing in parameter values defined in the RunPackage message. For this test, we will define values for the parameter
(PackageName) on the data page of the Orchestration Designer and then connect the values to the parameters in the
RunPackage message.

4. Go to the data page in Orchestration Designer and right-click the Constants block. From there, add one constant:

5. Map this constant to the RunPackage_in message by drawing a line from the constant to the input parameter.
6. This file should be saved as, and appears in the sample directory as, the TestDTS.skv file and is compiled into the

TestDTS.skx file.

Step 4: create a VBScript file to run the BizTalk Orchestration schedule

The following VBScript code will request the XLANG runtime to start the orchestration. Sample file TestDTSSKV.vbs is provided.

Step 5: test the BizTalk Server to SQL Server communication

Now you are ready to test the component from the BizTalk Orchestration schedule.

1. In Windows Explorer, double-click TestDTSSKV.vbs.
2. After the message box appears, click OK, and then go into SQL Server Enterprise Manager or SQL Query Analyzer to verify

that a message was inserted in the WorkFlowMessages table and the number of rows in the Titles table has increased.

References
Implement SAX2 Classes in VB.

Malcolm, Graeme. Programming Microsoft SQL Server 2000 with XML. Redmond, WA: Microsoft Press, 2001.

</script>

</component>

Name: DTSPackageName
Value:Copy Titles

Dim objSked
Dim strPath

strPath = WScript.ScriptFullName
strPath = Mid(strPath, 1, InStrRev(strPath, "\"))
strPath = "sked:///" & strPath & "TestDTS.skx"
set objSked = GetObject(strPath)
msgbox "Started " & strPath

Set oSked = Nothing

XML for SQL Documentation in Microsoft SQL Server 2000 Web Release 1 online documentation.

XML View Mapper Documentation in Microsoft SQL Server XML View Mapper online documentation.

http://msdn.microsoft.com/library/default.asp?url=/downloads/list/sqlserver.asp
http://msdn.microsoft.com/library/default.asp?url=/downloads/list/sqlserver.asp

Microsoft BizTalk Server 2002 Technical Articles

High-Availability Solutions Using Microsoft Windows 2000
Cluster Service

Microsoft Corporation

March 2002

Applies to:
 Microsoft® BizTalk® Server 2002
 Microsoft Windows® 2000 Cluster Service

Summary: Learn how to design and deploy a highly available implementation of Microsoft BizTalk Server 2002 using the Cluster
service component of Microsoft Windows 2000. (45 printed pages)

Part 1 contains general information about the importance of clustering and the software, hardware, and cost considerations
for its deployment.
Part 2 contains detailed steps for setting up the cluster.

Contents

Part 1
Introduction: Guaranteed Data Delivery and Uptime
How the Cluster Service Works
Using the Cluster Service with BizTalk Server
How a Failover Works
Deciding on the Right Cluster Configuration
Higher Levels of Protection Using Multiple Clusters with Server Groups

Part 2
Introduction
Cluster Resources and BizTalk Server
Planning a BizTalk Server Cluster Configuration
BizTalk Server Cluster Setup Requirements
Cluster Setup
Upgrading to Biztalk Server 2002
Troubleshooting
References

Part 1

Introduction: Guaranteed Data Delivery and Uptime
Many companies use Microsoft® BizTalk® Server to process the core data that their business depends on. These businesses have
no room for error, and a prolonged downtime due to a simple hardware outage could mean losing a large amount of money.
BizTalk Server provides guaranteed data delivery by using a robust transactional support that incorporates the ACID attributes:
atomicity, consistency, isolation, and durability. In addition, the Microsoft Windows® 2000 Cluster service should be used to
safeguard against hardware failure of any server that is used to persist data to a local disk. Both Windows 2000 Advanced Server
and Windows 2000 Datacenter Server include this component. BizTalk Server supports active/passive clustering using Microsoft
Windows 2000 Cluster service, providing high availability in Orchestration scenarios.

The Cluster service allows the combination of two or more servers to work together as a server cluster to ensure that mission-
critical applications and resources remain available to clients. Server clusters enable users and administrators to access certain
resources of the servers, or nodes, as a single system rather than as separate computers.

The design of a highly available solution is focused on minimizing the points of failure within the available budget. In conjunction
with a robust storage system (Redundant Array of Independent Disks, or RAID), the Cluster service allows for a cost-effective way
to provide reliability for servers that persist data locally by using the concept of redundant server failover.

An important distinction must be made between redundant servers, which do not persist any data on their local hard disks, and
servers that do persist data. BizTalk Server already provides an impressive degree of redundancy and scalability by allowing all
the servers within a group to access a single BizTalk Server database server over the network. Should any one of the servers in the
group fail, the others would simply take over and continue to access the database server. This is possible because none of the

servers in the group persist working data to their local disks. However, if the remote database server becomes unavailable for any
reason then all servers in the group will be rendered inactive. The Cluster service removes this single point of failure by ensuring
that the central database server is available to service database access requests even if there is a complete server failure.

The decision to use the Cluster service depends on two factors:

The downtime that the business can tolerate when a server that persists important data to a local disk becomes unavailable.
The budget available for the additional hardware and software to provide satisfactory redundancy.

At a minimum, two servers are required for simple redundancy.

How the Cluster Service Works
Figure 1 depicts a two-node cluster and illustrates a basic implementation of clustering, known as a "share-nothing" architecture.
A fundamental concept to note here is that both servers are connected to the same physical disk subsystem. However, only one of
the servers will "own" and control the disk storage at any given time. The portion of the disk subsystem that is shared between
the two servers (nodes) is referred to as shared storage.

Figure 1. Shared-nothing cluster, Server A active

Server A is currently active, which means that it has complete control over the shared storage. Server B is up and running but is in
a passive state ready to take ownership of the shared storage if the other node fails. An instance of Microsoft SQL Server™ is
running on the active node and, as a rule, always runs on the cluster node that owns the shared storage. In this case, the disks
contain all the physical files necessary to support the SQL Server databases that are needed for BizTalk Server to operate
normally. This implementation is known as an active/passive SQL Server cluster.

The instance of SQL Server and the shared storage containing the databases are referred to as "virtual" resources because they
are not permanently tied to any particular server. This means that another computer can access the SQL Server databases without
having to know which of the two servers is active. The Cluster service handles all the processes necessary to make this completely
transparent. To connect to the database server, users and applications refer to a "virtual server" name, which is unique and distinct
from the server names of the two nodes in the cluster.

If there is a hardware failure on Server A, all the virtual resources (that is, the SQL Server instance and disk storage) automatically
fail over as a group to Server B and continue running. This occurs with no loss of data. Figure 2 shows the new configuration,
known as active/passive. To make optimal use of both servers during normal operation, a more cost-effective approach is to run
different virtual resources on each server. In this type of configuration, each server acts as the failover node for the other.

Figure 2. Active-passive cluster, Server B active

The Cluster service is supported by most of the leading hardware suppliers that are certified by Microsoft as hardware-compatible
with the Windows 2000 Advanced Server operating system. Many businesses are now clustering very powerful enterprise-class
servers having up to 8 processors using Windows 2000 Advanced Server or up to 32 processors using Windows 2000 Datacenter
Server.

Using the Cluster Service with BizTalk Server

The primary purpose of using the Cluster service is to guarantee uptime for a server that is used to persist data on its disk
subsystem. To completely protect BizTalk Server against hardware failures, clustering should be implemented on the following
four areas:

SQL Server databases. BizTalk Server needs four databases to function properly: Message Management, Shared Queue,
Tracking, and Orchestration. At a minimum, these databases should be protected against server failure by using the Cluster
service.
Message queues. BizTalk Server can receive or send data using Message Queuing (also known as MSMQ), a feature of the
Windows 2000 Server operating system. Queues are often used for application-to-application integration where high
throughput is important and where transacted reads and writes are essential. Message Queuing can be clustered as a virtual
resource in much the same way as SQL Server.
File shares. BizTalk Server can receive or send standard text file formats (comma-separated values or fixed width). If the
server used to store these files experiences a failure, BizTalk Server cannot process the data. When a significant downtime
threatens a business operation, the file share can be protected by using clustering.
Web Distributed Authoring and Versioning (WebDAV) repository (optional). To guard against a failure of the local
drive of a node containing the BizTalk Server repository information, the files can be placed on a shared cluster disk
resource. In addition, this configuration allows easy access to the repository files from any of the cluster nodes.

The importance of protecting these data stores is evident when looking at the flow of data in a typical BizTalk Server
implementation. Figure 3 shows the areas of exposure.

Figure 3. Candidates for failure protection with clustering

Guaranteeing the Flow of Data into BizTalk Server by Protecting the Receive Functions

Each inbound data source is passed into BizTalk Server by using a receive function. BizTalk Server reads all data in the context of a
transaction, ensuring that no data can ever be lost. There are many ways to pass data into BizTalk Server, but two in particular—
flat files and Message Queuing queues—are persisted into a data store prior to being passed in. When BizTalk Server is fully
clustered, the data is simply read from a virtual Message Queuing instance or from a virtual file share.

Note If you do not intend to use either flat files or Message Queuing queues, it is unnecessary to cluster these
resources.

Protecting the Data While BizTalk Server Is Processing It

After BizTalk Server has successfully received the data, it immediately persists the data into a SQL Server database. This is done as
part of an all-or-nothing transaction, again guaranteeing that no data is lost. If a clustered instance of SQL Server is used as
previously described, the failure of a database server will not impact the ability of BizTalk Server to continue processing.

To carry out the normal processing of XML documents, BizTalk Server uses WebDAV to read and write the XML repository data to
disk. This important data repository contains a directory of files that are XML document specifications, map specifications, and flat
file conversion specifications known as envelopes. WebDAV is a feature that is provided as part of Internet Information Services
(IIS).

Although some caching is employed when reading the repository data, BizTalk Server eventually needs to obtain a fresh copy
directly from disk. Clustering can be used to ensure that processing is never impacted even when IIS and the disk storage that it
relies on become unavailable.

Protecting Outbound Data Coming from BizTalk Server

After BizTalk Server has completely processed the XML data, it uses an outbound port to send the data to its destination. There are
many options for sending data from BizTalk Server, but only the flat files and Message Queuing queues depend heavily on the

availability of a persisted data store. As with all other data-handling operations in BizTalk Server, the process of writing the data is
done in the context of an all-or-nothing transaction ensuring that no data can be lost.

By default, BizTalk Server employs a retry mechanism when the destination server is unavailable. However, if the throughput
requirements are stringent and downtime is a serious problem, adopting clustering is a prudent decision. The most obvious
outbound BizTalk Server ports that would benefit from clustering are Message Queuing queues and flat files.

Protecting BizTalk Orchestration

When more complex business rules are required, BizTalk Orchestration is a powerful feature that can be used for long-running or
complex transactions.

When BizTalk Orchestration is used and the throughput requirements need constant uptime, clustering should be implemented to
protect BizTalk Server repository data files, the Orchestration database, and Message Queuing queues. Figure 4 shows the role of
BizTalk Orchestration in the cluster and its interaction with the other components.

Figure 4. BizTalk Orchestration's role in the cluster

How a Failover Works
There are two types of failovers—planned (manual) failovers and those that occur as a result of a server hardware or software
problem.

Planned Failover

When a server requires maintenance or upgrades, a manual failover can be performed. Manual failover involves instructing the
Cluster service to move all resources from one node to another. In the two-node example described earlier, this would mean
moving the shared storage and the SQL Server instance. Failover occurs quickly, so after the upgrade or maintenance task is
complete on one server, the cluster resources can be restored to that server and the task can be performed on the second server.
Without the Cluster service, a server would be unavailable for significant periods of time while the maintenance work was carried
out.

Automatic Failover Due to a Server Hardware Problem

The Cluster service always runs on both cluster nodes and constantly monitors each server to ensure that all resources are
behaving normally. In the event that a serious hardware or unexpected error occurs, all resources will be moved to the remaining
node without human intervention.

In a well-organized server configuration, this failover will be detected immediately by monitoring tools such as those provided by
Microsoft Operations Manager 2000. These tools can then notify the appropriate operational staff that the server is down and
needs attention. If necessary, the monitoring tools can be configured to run additional scripts automatically.

Making the Failover Completely Transparent

The ACID attributes are considered the key factors that ensure data will never be lost. If BizTalk Server is in the middle of sending
data, it is within the context of a transaction. When a hardware failure occurs, the transaction is rolled back. After the cluster
resources have successfully been moved to the other node, BizTalk Server automatically retries the transaction. If the applications
that pass data to BizTalk Server are written to comply with standard ACID transaction rules and have an automatic retry
mechanism, there should be no noticeable impact during failover.

The technology provided by Message Queuing is a great benefit when considering the initial design of a highly available BizTalk
Server implementation. Message Queuing enables a loosely coupled messaging model and guarantees delivery of XML messages
even if the destination server is temporarily unavailable.

As an example of how a failover can be made completely transparent by using Message Queuing, Figure 5 shows a source

application that is sending multiple XML messages over the network to a virtual Message Queuing queue. The virtual queue is
running as a clustered instance and is currently active on Server A. The source server has installed Message Queuing as an
independent client, meaning that there is a local instance of Message Queuing running on the same server.

Figure 5. Source application sending XML messages to Message Queuing queue

When Server A crashes and a failover occurs, the virtual instance of Message Queuing is temporarily unavailable while the shared
storage is moved from Server A to Server B. During this time the source application can continue to send XML messages to the
message queue without interruption. This is possible because Message Queuing intercepts the messages and automatically
collects them into a local outbound queue. The application does not need to know anything about the failover.

Figure 6. Messages are cached locally in the outbound queue during the failover

After failover has successfully completed and the virtual Message Queuing instance is back online, the Message Queuing service
on the source server sends all the messages that were collected during the interruption to the destination server. Everything
continues as normal and all messages are processed.

Figure 7. After failover, cached messages are sent to the destination server

Deciding on the Right Cluster Configuration
The final decision about which servers in a BizTalk Server configuration will need to be clustered depends on the business
tolerance for downtime and the server budget available. If the volume is quite low, it is possible to design a complete BizTalk
Server clustered implementation of all exposed areas using just two relatively high-powered servers (a two-node cluster).

Many businesses have extremely high volumes of documents processed by BizTalk Server and will choose to use the scale-out
features of BizTalk Server to distribute the load. The following paragraphs describe options for both scenarios.

Warning BizTalk Server supports active/passive cluster configurations, which means that there cannot be two active
instances of BizTalk Messaging Service or two active instances of BizTalk Orchestration in a cluster. A cluster in which
a BizTalk Messaging Service instance and a BizTalk Orchestration instance are running on two different cluster nodes
still constitutes an active/passive configuration. Active/active configurations of SQL Server, Message Queuing, and
Internet Information Services (IIS) are supported.

BizTalk Server Two-Node Cluster Configuration

A complete failover solution for BizTalk Server can be configured using a two-server cluster configuration. This provides
protection against server failure for all the areas of exposure previously described.

Important This solution is not likely to be appropriate for scenarios where BizTalk Server handles a high volume of
documents. It is important to understand the data volume and peak throughput requirements before deciding on the
design of the cluster.

When deciding the size of any server in a cluster, it is assumed that all virtual resources will at some point have to run on one
node. Examples of server sizes are provided later as a guideline (in Sizing Guidelines), but only a controlled stress test will give an
accurate assessment of the server requirements for your particular implementation.

For the BizTalk Server implementation presented here, we will assume that storage is used for the following elements:

File share for file transfer in and out of BizTalk Server
Message Queuing queues
SQL Server
WebDAV repository

Figure 8 shows a cluster configuration that makes full use of both nodes and also provides failover protection for all the areas of
exposure, resulting in the two servers behaving as active/passive failover for each other.

Figure 8. Two servers act as active/passive failover for each other

In this configuration, SQL Server runs on Server A under normal circumstances and fails over to Server B if a failure occurs, while
BizTalk Server runs on Server B under normal circumstances and fails over to Server A if a failure occurs.

The choice to separate the instances of SQL Server and BizTalk Server depicted above is a logical first choice for most installations.

However, this does not mean that this configuration must remain locked down. Whenever it is necessary to optimize
performance, a manual failover can be used to move the various cluster resources to either server. For example, if BizTalk
Orchestration performance is a concern, better performance might be achieved by moving the group that has the virtual BizTalk
Orchestration instance to run on the same node as the virtual SQL Server instance.

Combining BizTalk Server Groups and the Cluster Service

A strong configuration is available when both scalability and high availability are important. Figure 9 shows this configuration,
which takes full advantage of the features of both the BizTalk Server groups and the Cluster service.

Figure 9. Strong configuration of BizTalk Server groups and the Cluster service

In this configuration the main concern is to have high availability for the BizTalk Server databases. For this reason, only the SQL
Server instance is clustered and each BizTalk Server instance in the group accesses this virtual instance. For more information on
clustering SQL Server, see the SQL Server 2000 Failover Clustering white paper.

The basic assumption is that the failure of one of the BizTalk Servers in the group is not a serious impediment because:

If a BizTalk Server within the group fails, there are three other BizTalk Server instances running that continue to process
data.
None of the BizTalk Servers is relying on a local disk to receive or send data. Alternative data interchange methods are used,
such as HTTP or Application Integration Components (AIC).

- Or -

Data is persisted locally on each BizTalk Server but downtime is not considered important enough to justify the additional
costs associated with deploying extra clusters.

Higher Levels of Protection Using Multiple Clusters with Server Groups
Some customers require complete protection against the failure of any server in their configuration. At the same time, they need
the scale-out features of BizTalk Server groups to achieve load balancing. Typically in these cases, the timely delivery of data is
absolutely critical to the business, so the additional hardware costs are of less concern.

Figure 10 shows how a customer can deploy a highly available and scalable implementation of BizTalk Server using three clusters.

http://www.microsoft.com/sql/techinfo/administration/2000/failovercluster.asp

Figure 10. Three clusters for a highly available and scalable implementation

Cluster 1 is an active/active configuration with two SQL Server instances. The most heavily used databases are the BizTalk Server
Tracking and the Queue databases, so they are distributed between the two nodes for optimal load balancing. This achieves
optimum performance for the databases while making good use of both servers in the cluster. For more information on SQL
Server clustering, see the SQL Server 2000 Failover Clustering white paper.

Cluster 2 is an active/passive implementation of BizTalk Messaging Service. This BizTalk service is the most heavily used and
handles all the receive functions as well as the processing. In this configuration the passive node is inactive to allow room for
future growth.

Cluster 3 is an active/passive implementation of BizTalk Messaging Service owned by node A. This BizTalk service is optimized to
concentrate on processing items that are placed into the database work queue by the BizTalk Server on cluster 2. For optimal
performance, BizTalk Orchestration is separated to run alone on node B of cluster 3 as an active/passive configuration, because it
is heavily used and involves calls to numerous custom components. It warrants separation for both performance and safety
reasons.

Note that Message Queuing is needed on cluster 2 to support BizTalk Messaging on node A. It is also needed on cluster 3 to
support BizTalk Messaging on node A and BizTalk Orchestration on node B.

Another highly available implementation of BizTalk Server consists of using a four-node cluster configuration, where BizTalk
Messaging is active in one node and can fail over to any of the other three nodes, BizTalk Orchestration is active in a second node
and can fail over to any of the other three nodes, and SQL Server is clustered in the remaining two nodes.

Part 2

Introduction
Part 1 covered different options for how the Cluster service component of Microsoft® Windows® 2000 can be used to provide
high availability for Microsoft BizTalk® Server. We also introduced the basic terms and concepts of clustering. This section
describes in detail how to implement BizTalk Server in the configurations described previously, and covers the following areas:

Hardware and software requirements
Setting up the BizTalk Server resources and resource groups

http://www.microsoft.com/sql/techinfo/administration/2000/failovercluster.asp

Upgrading from BizTalk Server 2000 SP1A to BizTalk Server 2002
Troubleshooting

Throughout the remainder of this article it is assumed that the cluster has already been set up and the Cluster service has been
installed and tested. For further information, the Microsoft Knowledge Base articles Q259267,
Microsoft Cluster Service Installation Resources and Q243218,
INF: Installation Order for SQL Server 2000 Enterprise Edition on Microsoft Cluster Server, and the
Windows Clustering Technologies Web site.

Cluster Resources and BizTalk Server
In a Cluster service implementation, a "virtual server" is created by grouping together the core cluster resources as follows:

Network IP address. A unique IP address identifies this virtual server on the network.
Network name. Clients can access this virtual server by a unique network name.
Physical disk. This is the disk storage that will be seen as local to the virtual server.

After these resources have been set up they can fail over together as a group. These resources must come online in the order
listed above. This group forms the basis of any virtual server, and there can be many of these groups running on a single cluster.

In a BizTalk Server implementation we add the following additional resources to a virtual server group in the order presented:

Microsoft Distributed Transaction Coordinator (MS DTC). BizTalk Messaging requires MS DTC as part of the group to
ensure that data delivery is guaranteed. It must belong to the same group in which BizTalk Messaging will run.
Message Queuing. BizTalk Server will perform "transacted" reads of the Message Queuing queues. To do this the queue
must be seen as local to the server on which BizTalk Server is running. In this case, BizTalk Server is running on the virtual
server and this virtual Message Queuing instance is considered local to the virtual server.
IIS WebDAV repository (optional). By default the IIS WebDAV repository is stored on the local drive of the first node in
the cluster where BizTalk Messaging is installed. To safeguard against a failure of that node, the IIS instance can be made
virtual and the files placed on a shared disk. Refer to the Microsoft KB article Q248025,
How to Configure Clustered IIS Virtual Servers on Windows 2000 Advanced Server for further information.
BizTalk Messaging. After all of the preceding resources are brought online in the order listed, BizTalk Messaging has
everything it needs to be brought online and start running.
XLANG Scheduler Engine (optional). This resource can run in the same group as BizTalk Messaging or in a separate
virtual server group running on the other node.
XLANG Schedule Restart Service (optional). This resource must run in the same group as the XLANG Scheduler Engine.
It ensures that the orchestration schedules are started and stopped in a controlled manner on the cluster.

Planning a BizTalk Server Cluster Configuration
It is important to understand the performance characteristics of your unique environment before planning a cluster
implementation. A good understanding of where the most likely bottlenecks could occur will feed into the overall architecture and
help you decide on the optimal configuration. Based on the unique performance characteristics and requirements of the desired
solution, choose to deploy different components of the solution on separate machines, and then decide upon the optimal
configuration for clustering those resources. For a detailed list for planning your cluster requirements, refer to
Microsoft Windows 2000 Server Deployment Planning Guide, and the Microsoft KB article Q259267,
Microsoft Cluster Service Installation Resources.

Important Decision Factors

Before deciding on a cluster configuration, you should consider the following information about the cluster elements.

BizTalk Messaging

An instance of BizTalk Server can be configured to perform receiving functions, processing/sending functions, or both. Here we
will focus primarily on receiving Message Queuing messages. You can easily scale out for additional processing after the original
setup by simply adding stand-alone servers to help carry the load. If you are planning to use Message Queuing heavily during
receiving functions then it may be appropriate to dedicate at least one cluster node to performing mainly this type of receiving
activity.

BizTalk Server and Message Queuing are well tuned for fast performance in reading and storing Message Queuing messages.
Taking the time to perform a small simulation test will help provide an estimate of the server load for this activity

http://support.microsoft.com/directory/article.asp?ID=KB;EN-US;Q259267
http://support.microsoft.com/support/kb/articles/Q243/2/18.ASP
http://www.microsoft.com/windows2000/technologies/clustering/
http://support.microsoft.com/directory/article.asp?ID=KB;EN-US;Q248025&
http://www.microsoft.com/WINDOWS2000/techinfo/reskit/dpg/
http://support.microsoft.com/directory/article.asp?ID=KB;EN-US;Q259267

SQL Server

In situations where database load is not critical, Microsoft SQL Server can be installed to run on the same cluster node as BizTalk
Server for optimal performance. The server will need to be sized appropriately, and a minimum of two processors is a frequent
choice for each cluster in this case.

However, the following situations will make it necessary to install SQL Server on its own dedicated cluster node:

Many processing servers will access the BizTalk Server databases, increasing the load significantly on the SQL Server
instance.
There will be heavy use of the BizTalk Server tracking features.
The results of a simulation test of Message Queuing and BizTalk Messaging indicate that it makes sense to dedicate a server
to perform only BizTalk Messaging and move the database activity onto a separate server.
A lot of room is required for future growth.

BizTalk Orchestration

Light use of the BizTalk Orchestration features might make it possible to run the XLANG Scheduling Engine in the same group as
BizTalk Messaging. Because BizTalk Orchestration makes heavy use of Message Queuing, this will keep the cluster configuration
simpler by limiting the number of groups and disk resources in the overall configuration.

However, heavy use of BizTalk Orchestration can result in high CPU use and increased memory consumption as multiple
schedules run concurrently. In these cases, it is important to use a pooling mechanism to prevent the number of concurrently
running schedules from overcoming the server abilities. It might also make sense to run the XLANG Scheduler Engine on a
separate computer. One option would be to have it on the passive node for Biztalk Messaging—that is, BizTalk Messaging might
normally run on node A and BizTalk Orchestration might normally run on node B.

Separating the two fundamental components of BizTalk Server in this manner will also make it easier to tune each node for
optimal performance later.

To ensure that BizTalk Orchestration offers fault tolerance, it is necessary to make sure that the data stored in memory is
persisted. This can be accomplished by using transaction control. For more information about BizTalk Orchestration transaction
control, refer to Orchestration Part 2: Transactions, Exceptions, Debugging.

Important Note that at some point all resource groups might need to run on the same cluster node for a period of
time. Therefore, each node should have enough memory and adequate CPU resources to handle such occurrences.

Hardware Considerations

One of the main considerations when planning a cluster configuration is hardware cost. A number of offerings are available from
the leading hardware vendors ranging from basic shared Small Computer System Interface (SCSI) disk arrays to a complete
storage area network (SAN) solution.

For SCSI disk arrays, a disk resource in a group typically equates to a separate array of physical disk drives. Each array will be
configured as RAID 5 (striping with parity) or sometimes as RAID 10 (both striping and mirroring). More expensive solutions like
SAN offer a much more flexible approach involving fiber channel switching. Whatever your choice of hardware, make sure it is
included in the Microsoft Windows Hardware Compatibility List.

From a simplicity standpoint, the easiest cluster configuration is an active/passive configuration with all the necessary BizTalk
Server resources belonging to a single group.

Figure 11 shows such a configuration. It is recommended that a separate disk be available to be used for the quorum disk. In this
type of configuration the disk subsystem will have two separate disk arrays.

Note Throughout this paper there will be references to a quorum disk, which is a shared disk that the Cluster service
uses to store crucial information about the cluster configuration and state of the cluster resources. For this reason it is
recommended that a separate group be used with a disk resource of approximately 500 megabytes (MB) (minimum
100 MB).

http://www.microsoft.com/biztalk/techinfo/development/2000/wp_orchestrationPart2.asp
http://www.microsoft.com/windows2000/server/howtobuy/upgrading/compat/search/devices.asp

Figure 11. A simple active/passive configuration

When performance is crucial, an additional group might be required so that SQL Server and/or BizTalk Orchestration can run on
the other cluster node, as shown in the following illustration. In this case three disk arrays are necessary. This configuration results
in both nodes acting as active/passive standby for each other.

Figure 12. Both nodes are active and serve as passive standby for each other

BizTalk Server Cluster Setup Requirements
Refer to the Microsoft KB article Q259267, Microsoft Cluster Service Installation Resources for information about ensuring that
your hardware is compatible with Windows Cluster service. The following requirements specific to BizTalk Server should also be
considered for each computer that will participate in the cluster.

Sizing Guidelines

Each computer needs enough CPU, memory, and disk space to handle the complete set of all cluster resources after a failover to a
single node. Only an analysis of the expected throughput and a load simulation test will give an accurate picture of the server
requirements. However, as a starting point, here are some general guidelines for server sizing:

CPU. Low-volume scenarios might allow for each node to have a single CPU, but this is more likely the exception in a
failover cluster situation. Whether all resources are running on a single node or there is a separation of the groups onto
both nodes, there will need to be enough capacity to handle the load during peak periods. Failover can drain the CPU
processing capacity of the node taking control over the resources of the failed node. Therefore, at least two CPUs are
recommended, and this should be verified through a load simulation test using the tools provided with this paper.
Memory. Make sure that each node has enough memory to run all the processes in case of a failover. As a general
guideline, a starting point for server memory would be 1 gigabyte (GB) if only one of BizTalk Messaging, BizTalk
Orchestration, or SQL Server will reside on the cluster node. Use at least 2 GB per node (setting the maximum for SQL
Server memory usage to 1 GB) if any two of BizTalk Messaging, BizTalk Orchestration, or SQL Server will reside on the same
node, and 3 GB if all three will reside on the same cluster node.
Disk storage requirements. Expect up to 2 GB for Message Queuing and reserve at least 50 GB for the BizTalk Server
databases. The Tracking database will consume the most space and, depending on the volume and tracking options chosen,
can grow quite quickly. If there is no requirement for tracking (unlikely) or if the throughput is very low then the disk space
requirements are considerably less.

Software Requirements

The following software products and appropriate licenses are required:

Windows 2000 Advanced Server or Windows 2000 Datacenter Server with SP2 or later
Microsoft SQL Server 2000 Enterprise Edition with SP1 or later

http://support.microsoft.com/directory/article.asp?ID=KB;EN-US;Q259267

Note Whether on the same cluster as BizTalk Server or on a separate cluster, here it is assumed that SQL
Server will be clustered as part of any high-availability solution for BizTalk Server.

BizTalk Server 2000 Enterprise Edition with SP1A or later, or BizTalk Server 2002 Enterprise Edition, which includes BizTalk
Orchestration (optional)
Microsoft Visio® 2000 Standard Edition SR-1A (optional—only needed for design-time experience on BizTalk Orchestration
nodes)

Cluster Setup
The primary focus of this article is the installation and configuration of BizTalk Server after the base cluster hardware has been set
up and the Cluster service has been installed and configured. It is assumed that at this point the following steps have been
completed:

Base cluster hardware has been assembled.
The Cluster service has been installed.
A separate group exists for the quorum disk, and includes only the network name, IP address, and quorum disk.

Important Do not add additional resources to this group.

For more information, refer to the Microsoft KB articles Q243218,
INF: Installation Order for SQL Server 2000 Enterprise Edition on Microsoft Cluster Server and Q259267,
Microsoft Cluster Service Installation Resources, as well as the Windows Clustering Technologies Web site.

Make sure that all the necessary resources are available before starting, that you have completely read this article, and that the
references are readily available.

Important Before proceeding, test all groups for correct failover.

This article details the steps of the "integrated SQL Server and BizTalk Server cluster" deployment scenario, which is the most
straightforward configuration. For other deployment designs, some steps should be omitted when configuring each cluster. The
steps that will be covered in the following sections are:

1. Create cluster groups for BizTalk Messaging, BizTalk Orchestration, and SQL Server
2. Install MS DTC (ComClust) and configure it to be cluster aware
3. Install Message Queuing
4. Add a virtual Message Queuing resource to the BizTalk Messaging Group
5. Add a Management Console for each virtual Message Queuing instance
6. Test Message Queuing failover
7. Install Microsoft Visio 2000 Standard Edition SR-1A (optional)
8. Install SQL Server 2000 on the cluster
9. Test SQL Server failover

10. Install BizTalk Server
11. Configure BizTalk Server as a cluster resource
12. Test BizTalk Server failover
13. Test XLANG Scheduler Engine failover

Create Cluster Groups for BizTalk Messaging, BizTalk Orchestration, and SQL Server

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Cluster Administrator.

2. On the File menu, point to New, and then click Group. The New Group window appears.
3. In the Name box, type BizTalk Messaging Group, and then click Next.
4. In the Preferred Owners window, move one node resource to the BizTalk Messaging Group.

Note This step is optional. It provides failback protection, but does not have an impact on failover protection.

5. Click Finish.
6. On the File menu, point to New, and then click Resource. The New Resource window appears.
7. In the Name box, type IP address. In the Description box, type IP address for BizTalk Messaging Group. In the

Resource type list, select IP address. In the Group list, select the BizTalk Messaging Group just created. Click Next.

http://support.microsoft.com/support/kb/articles/Q243/2/18.ASP
http://support.microsoft.com/directory/article.asp?ID=KB;EN-US;Q259267
http://www.microsoft.com/windows2000/technologies/clustering/

8. On the File menu, point to New, and then click Resource. The New Resource window appears.
9. In the Name box, type the network name. In the Description box, type Network name for BizTalk Messaging Group. In

the Resource type list, select Network Name. In the Group list, select the BizTalk Messaging Group just created. Click
Next.

Repeat steps 2 through 8 to create the BizTalk Orchestration Group. Repeat steps 2 through 4 to create the SQL Server Group.

Note An IP address and resource name are created for SQL Server during its installation, so they do not need to be
created at this point.

Figure 13. Cluster Administrator screen

Install MS DTC (ComClust) and Configure It to Be Cluster Aware

The Microsoft Distributed Transaction Coordinator (MS DTC) needs to be cluster aware. It is recommended that this resource be
placed into the BizTalk Messaging Group and not into the same group as the quorum disk. Carry out the following procedure on
one computer at a time, for each computer on the cluster:

1. Log on to one node and start Cluster Administrator.
2. On the File menu, click Move group to. Move to another node any groups with physical disk resources in them, except the

BizTalk Messaging Group.

Make sure there are disk, IP address, and network name resources in the group you want the MS DTC resource to be
created in.

3. Copy the DTCLog folder from the \winnt\system32 folder to the physical disk for the BizTalk Messaging Group.
4. Create a DTC resource in the group.

a. Using the Cluster Administrator application, click the BizTalk Messaging Group.
b. On the File menu, point to New and click Resource. The New Resource window appears.
c. In the Name box, type MS DTC. In the Resource type list, select Distributed Transaction Coordinator. In the

Group list, select BizTalk Messaging Group. Click Next.
d. Include every computer on the cluster as a possible resource owner. Click Next.
e. Add resource dependencies for the network name, shared disk, and IP address. Click Finish.

Note Leave this resource offline.

5. Open a Command Prompt window on the first node and run comclust.exe.
6. Open a Command Prompt window on the second node and run comclust.exe.
7. Verify that the MS DTC resource is online.
8. Test failover.

If there are problems configuring MS DTC, refer to Microsoft KB article Q243204,
Microsoft Distributed Transaction Coordinator (MSDTC) Recovery Techniques in Windows 2000 Cluster Server.

Install Message Queuing

Carry out the following procedure on one computer at a time, for every computer on the cluster:

1. Click Start, point to Settings, click Control Panel, and then double-click Add/Remove Programs.
2. Click Add/Remove Windows Components.

The Windows Component Wizard appears.

3. Select the Message Queuing Service check box, and click Next.

Notes Make sure you configure every computer as a Message Queuing server, not just as a dependent client.

Depending on whether you have Microsoft Active Directory® configured in your environment, choose the appropriate
install option for Message Queuing. Without Active Directory, BizTalk Server must always use local queues that result
in much faster performance. Using public queues allows greater flexibility and functionality.

Add a Virtual Message Queuing Resource to the BizTalk Messaging Group

Both BizTalk Messaging and BizTalk Orchestration require a local instance of Message Queuing to perform transacted reads. In a
cluster resource group, the term "local" refers to the virtual server name (network name). Because BizTalk Server will be running
in the context of this virtual server name, a virtual instance of Message Queuing must be installed in the BizTalk Messaging Group
in order to appear as local.

Important If this is the first time that Message Queuing has ever been installed as a cluster resource on this server,
then skip this paragraph. If not, use the following procedure to ensure that the registry is completely clean before
adding the virtual Message Queuing cluster resources.

If a computer was previously on another cluster with a Message Queuing resource of identical name to the one that
will now be configured, there is a known issue. It is possible that the Message Queuing resource might not come
online after it is configured due to residual incorrect entries in the registry from previous installations. If this is the
case, make sure to delete entries beneath the following registry key for each computer that was previously configured
on a different cluster:

HKEY_LOCAL_COMPUTER\SOFTWARE\Microsoft\ Message Queuing\Clustered QMs

1. Start Cluster Administrator.
2. Right-click the BizTalk Messaging Group, point to New, and then click Resource.
3. In the Name box, type Message Queuing. In the Resource type box, select Message Queuing, and then click Next.
4. In the Possible Owners window, make sure all the nodes are selected as possible owners. Click Next.
5. In the Dependencies window, add resource dependencies for the network name and shared disk. Click Finish.
6. Bring the resource online.
7. Test failover.

After the virtual Message Queuing instance has been configured and brought online, the local Message Queuing instance will be
automatically stopped, so there will be only one service running. An examination of the Services icon in Control Panel will show a
local instance and the virtual instance of Message Queuing services. The physical files for the virtual Message Queuing instance
will automatically be created on the shared disk resource under a folder called MSMQ. The startup settings do not need to be
changed for the virtual Message Queuing instance. However, if the local instance of Message Queuing is also required, as is the
case when any BizTalk Server component uses the local Message Queuing instance, it is necessary to create a generic application
resource for the cluster that will start manually for this local Message Queuing instance, and the XLANG Schedule Restart Service
must be dependent on this resource. For more information, refer to the Microsoft KB article Q310775,
INFO: Using the MSMQ Service on a Windows 2000-Based Cluster, and Installing Message Queuing on a server cluster in the
Windows 2000 Help.

Add a Management Console for Each Virtual Message Queuing Instance

Under normal circumstances, the correct way to manage Message Queuing queues is to open the Computer Manager from the
Administrative tools menu. However, to manage a virtual instance of Message Queuing, the procedure for opening the
management console is different. In this case, the management console must run in the context of the virtual server rather than
that of the local computer. This can be achieved by starting the management console automatically as follows:

http://support.microsoft.com/support/kb/articles/Q243/2/04.ASP
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q310775
http://www.microsoft.com/windows2000/en/server/help/default.asp?url=/windows2000/en/server/help/sag_msmqconcepts3_11.htm

1. Start Cluster Administrator.
2. Right-click the BizTalk Messaging Group, point to New, and then click Resource.
3. In the Name box, type Manage Virtual Message Queuing. In the Resource type list, select Generic Application, and

then click Next.

Figure 14. The New Resource screen

4. In the Possible Owners window, allow the resource to run on all servers on the cluster. Click Next.
5. In the Dependencies window, add the following dependencies to the resource:

Network name
The Message Queuing virtual instance name previously added

6. Click Next. The Generic Application Parameters screen appears.
7. In the Command line box, type CMD.exe /C compmgmt.msc.

Note This command is run locally on each node. Change the Windows system path and drive letter if they are
different on your server.

8. In the Current directory box, type the letter of the shared disk for the BizTalk Messaging Group (J:\).
9. Select the Allow application to interact with desktop and Use Network Name for computer name check boxes. Click

Next.

Figure 15. The Generic Application Parameters screen

10. In the Registry Replication window, click Finish.

11. After the resource has been created, double-click the Manage Virtual Message Queuing resource to edit the Properties.

Click the Advanced tab, clear Affect the group in the Restart section, and then select Do not restart. Click OK to accept
the changes.

When this cluster resource is brought online in the cluster, it will automatically open a command window and immediately launch
the Computer Management console in the context of the virtual server. Expanding the Message Queuing instance will show the
virtual queues. To close the console, bring the resource offline and close the console.

Note The Computer Management console will start every time failover occurs.

Test Message Queuing Failover

Use the Cluster Administrator application to test failover.

1. Select the Message Queuing resource and use the Initiate Failure menu option to simulate a failure. According to the
number of retry attempts configured for that resource (default is 3), the owner of the cluster resource group should change
after the threshold is exceeded. When a failover occurs, all the resources in the group will go offline and move over to the
other node. Each resource in the group will come online on the other node in the order the dependencies were specified.

2. You can easily move the cluster resource group back by right-clicking the virtual Message Queuing instance and clicking
Move Group. This will result in a manual failover without any retries.

Install Microsoft Visio 2000 Standard Edition SR-1A (Optional)

Microsoft Visio 2000 Standard Edition SR-1A is required for the design of XLANG schedules for BizTalk Orchestration.

Microsoft Visio 2000 only needs to be installed if XLANG schedules will be created or edited, in which case it should be installed
on all nodes in the cluster that can run BizTalk Orchestration.

Install SQL Server 2000 on the Cluster

Depending on the performance requirements there are a few options for installing SQL Server in a high-availability BizTalk Server
implementation. Refer to Part 1 for more information.

It is recommended that you install SQL Server into a group other than the BizTalk Messaging Group to allow for manual load
balancing of SQL Server and BizTalk Server across the nodes in the cluster. Do not install SQL Server in the Quorum Group.

Integrated BizTalk Server and SQL Server

Use this option if you are confident that BizTalk Server and SQL Server can run on the same server without any performance
impact. Typically, only a single instance of SQL Server is required and it can be part of the same group as BizTalk Server.

BizTalk Server on node A, SQL Server on node B

Use this option if there is a need to maximize the use of both nodes for optimal performance and if there is a concern that BizTalk
Messaging will require priority on the server it is running on.

BizTalk Messaging, BizTalk Orchestration, and Message Queuing on one cluster, SQL Server on another

Although it is more expensive from a hardware perspective, some installations require this level of separation for maximum
performance and high availability. Because SQL Server will run on a completely separate cluster, the optimal configuration is to
have two instances running in an active/active configuration.

Node A will run a SQL Server instance for the Shared Queue and Orchestration Persistence databases.
Node B will run a SQL Server instance for the Tracking and BizTalk Messaging Management databases.

Warning BizTalk Server active/active cluster configurations are not supported. Note that in all the
configurations presented in this article, BizTalk Server is configured in an active/passive configuration.

For this option, a second cluster instance must be set up with a unique IP address. Refer to the Microsoft KB article Q243218,
INF: Installation Order for SQL Server 2000 Enterprise Edition on Microsoft Cluster Server for further information about installing
SQL Server.

In this configuration, the SQL Server client utilities will still need to be installed on the BizTalk Server cluster to enable TCP
connection configuration and management of the remote SQL Server instance.

http://support.microsoft.com/support/kb/articles/Q243/2/18.ASP

Install a SQL Server instance

Make sure that all the computers on the cluster are turned on at this step, and that the external storage is turned on and is
properly recognized. Before continuing, make sure you know the following:

Static IP address to be used for the virtual SQL Server
Name for the SQL Server virtual computer
If used, the name of the SQL Server instance(s)
Name and password for the domain user configured as local administrator on every computer participating on the cluster

Start installation of the SQL Server instance from the computer that currently owns the cluster resources.

Note Use Cluster Administrator to find out which computer is currently the owner of the cluster resources.

Make sure to configure the directory for the SQL Server data files on the external shared storage.

You only need to set up the SQL Server instance once from the computer that currently owns the cluster resources. After
successful installation of the SQL Server instance on the cluster, every computer will have copies of the SQL Server application
files on local drives and will be configured to use data files on the external shared storage.

1. Insert the SQL Server 2000 Enterprise CD-ROM into your CD-ROM drive, and then click SQL Server 2000 Components.
2. Click Install Database Server, and then click Next.
3. Click Virtual Server, and then type the name you want to use for the virtual SQL Server instance.
4. In the Failover Clustering dialog box, type the IP address that will be used exclusively for SQL Server. Select the network

that is associated with that IP address from the list.
5. Select the SQL Server group that has a disk resource in it. It is recommended that this group be different from the BizTalk

Messaging and Quorum groups.
6. Leave all nodes selected as configured nodes for cluster definition, and then click Next.
7. Type the user ID and password for an account that has administrative rights on all nodes.
8. Make sure that Create a default instance is selected, and then click Next.
9. Leave the installation paths at the default settings, start a typical installation, and then click Next. SQL Server 2000 installs

the binaries to the local node, and the databases to the shared disk.
10. Click Use the same account for each service, and then type an account that will be used to start the SQL Server service.

Note that this account needs to be a domain-level account that is a member of the local administrators group.
11. Select the appropriate authentication mode (Windows Authentication mode is the default), and then click Next.
12. After the installation has finished on all nodes, click Finish.
13. Apply service packs as required.

For additional information about installing SQL Server on a cluster, see the Microsoft KB article Q243218,
INF: Installation Order for SQL Server 2000 Enterprise Edition on Microsoft Cluster Server.

Installing SQL Server client tools only (when SQL Server is running remotely)

Because the client tools are not required for a cluster, they should be installed on the local system drive of each node in the
cluster. Start the SQL Server setup program on each node and in the Installation Selection window, choose Create a new
instance of SQL Server, or install Client Tools and leave the remaining default options, making sure that in the Installation
Definition window the Client Tools Only check box is selected.

Test SQL Server Failover

Use the Cluster Administrator to test failover. After the default threshold is exceeded (the default is three retries) all resources in
the group should fail over to the other node and come online in the correct order. Select the SQL Server resource and use the
Initiate Failure menu option to simulate failures.

Install BizTalk Server

At this point, there should be a BizTalk Server cluster resource group (the BizTalk Messaging Group) that contains at least the
following resources:

IP address
Network name

http://support.microsoft.com/support/kb/articles/Q243/2/18.ASP

Shared disk
MS DTC
Virtual Message Queuing
Manage Virtual Message Queuing

To install BizTalk Server on the first node in the cluster:

1. Make the computer on which BizTalk Server is about to be installed the owner of the BizTalk Messaging Group resources. If
there is more than one resource group, be sure to use the resource group containing MS DTC as shown above.

2. Start Cluster Administrator, and move the BizTalk Messaging Group to node 1.
3. Insert the BizTalk Server 2000 Enterprise Edition CD-ROM into the node 1 computer, and run Setup.exe from the root

folder.
4. On the Welcome to Microsoft BizTalk Server 2000 Setup Wizard page, click Next.
5. On the License Agreement page, after reading the agreement, click I accept this agreement and then click Next.
6. On the Customer Information page, in the Product key boxes, type a valid product key, leave Anyone who uses this

computer selected, and then click Next.
7. On the Destination Folder page, click Next.
8. On the Setup Type page, leave Complete selected and click Next.

Note If you do not want to install BizTalk Orchestration, select a Custom installation, and select all the
components except BizTalk Orchestration.

9. On the Configure BizTalk Server Administrative Access page, leave the default information and click Next.

Note Do not confuse this with a cluster group, because this is a local security group.

10. Click This account, and then type an account that is to be used to start the BizTalk service. Clear the Start service after
setup completes check box, and then click Next.

Note It is recommended that you use the same account that is used by the Cluster service.

11. On the Ready To Install the Program page, verify the configuration settings, and click Install.

Note It takes several minutes for the product files to be installed on your server.

12. On the Welcome to Microsoft BizTalk Server 2000 Messaging Database Setup Wizard page, click Next.
13. On the Configure a BizTalk Messaging Management Database page, click Create a new BizTalk Messaging

Management database, and then under SQL Server connection parameters, type the SQL Server virtual server name (that
was created previously in the SQL Server installation section) in the Server name box, type the SQL Server user name and
password, and then click Next.

Figure 16. Entering parameters for a new BizTalk Messaging Management database

14. On the Configure a BizTalk Server Group page, click Create a new BizTalk Server group (unless you already have an
existing BizTalk Server group), and then click Next.

Note Do not confuse this with a group that is within the cluster. This is a grouping of independent BizTalk
Servers that can work together to service requests, not a cluster group for failover.

Figure 17. Creating a new BizTalk Server group

15. On the Configure a Tracking Database page, click Create a new Tracking database, and then under SQL Server
connection parameters, type the SQL Server virtual server name (that was created previously in the SQL Server
installation section) in the Server name box, and then click Next.

Figure 18. Entering parameters for a new tracking database

16. On the Configure a Shared Queue Database page, click Create a new Shared Queue database, and then under SQL
Server connection parameters, type the SQL Server virtual server name (that was created previously in the SQL Server
installation section) in the Server name box, and then click Next.

17. On the Verify BizTalk Server Group page, click Next.
18. On the Completing the Microsoft BizTalk Server 2000 Messaging Database Setup Wizard page, click Finish.
19. On the Welcome to Microsoft BizTalk Server 2000 Orchestration Persistence Database Setup Wizard page, click

Next.
20. On the Configure a Default Orchestration Persistence Database page, click Create a new default Orchestration

Persistence database, and then under SQL Server connection parameters, type the SQL Server virtual server name (that
was created previously in the SQL Server installation section) in the Server name box, and then click Next.

21. On the Completing the Microsoft BizTalk Server 2000 Setup Wizard page, click Finish.
22. On the Start menu, point to Settings and click Control Panel. Double-click Administrative Tools, and then double-click

Services. The Services window appears.
23. Double-click BizTalk Messaging Service. The BizTalk Messaging Service Properties window appears.
24. Click the Log On tab. Verify that the startup account is a domain account with sufficient permissions. This account must be a

local administrator on each node in the cluster. In addition, if BizTalk Server will need to write to Message Queuing or file
shares on other network servers, there will need to be sufficient domain-level permissions to do so.

25. Click the General tab. For Startup type select Manual. In the Service Status area, click Stop.
26. Click OK.
27. Double-click XLANG Schedule Restart Service. The XLANG Schedule Restart Service Properties window appears.
28. Click the Log On tab. Set the startup account to a domain account with sufficient permissions. This account must be a local

administrator on each node in the cluster. In addition, if BizTalk Server will need to write to Message Queuing or file shares
on other network servers, there will need to be sufficient domain-level permissions to do so.

29. Click the General tab. For Startup type select Manual. In the Service Status area, click Stop.
30. Click OK.
31. Apply BizTalk Server 2000 Service Pack 1 or later, and then reboot the node.

To install BizTalk Server on the remaining nodes in the cluster:

1. Follow steps 1 through 12 above.
2. On the Configure a BizTalk Messaging Management Database page, click Select an existing database, and then

under SQL Server connection parameters, type the SQL Server virtual server name (that was created previously in the
SQL Server installation section) in the Server name box, type the user name and password, and then click Next.

3. On the Configure a BizTalk Server Group page, click Select an existing BizTalk Server group, and then click Next.

Note The first cluster node should already be listed in the group.

4. On the Verify BizTalk Server Group page, click Next.
5. On the Completing the Microsoft BizTalk Server 2000 Messaging Database Setup Wizard page, click Finish.
6. On the Welcome to Microsoft BizTalk Server 2000 Orchestration Persistence Database Setup Wizard page, click

Next.
7. On the Configure a Default Orchestration Persistence Database page, click Select an existing database, and then

under SQL Server connection parameters, type the SQL Server virtual server name (that was created previously in the
SQL Server installation section) in the Server name box, and then click Finish.

8. On the Completing the Microsoft BizTalk Server 2000 Setup Wizard page, click Finish.
9. On the Start menu, point to Settings and click Control Panel. Double-click Administrative Tools, and then double-click

Services. The Services window appears.
10. Double-click BizTalk Messaging Service. The BizTalk Messaging Service Properties window appears.
11. Click the Log On tab. Verify that the startup account is a domain account with sufficient permissions. This account must be a

local administrator on each node in the cluster. In addition, if BizTalk Server will need to write to Message Queuing or file
shares on other network servers, there will need to be sufficient domain-level privileges to do so.

12. Click the General tab. For Startup type select Manual. In the Service Status area, click Stop.
13. Click OK.
14. Double-click XLANG Schedule Restart Service. The XLANG Schedule Restart Service Properties window appears.
15. Click the Log On tab. Set the startup account to a domain account with sufficient permissions. This account must be a local

administrator on each node in the cluster. In addition, if BizTalk Server will need to write to Message Queuing or file shares
on other network servers, there will need to be sufficient domain-level permissions to do so.

16. Click the General tab. For Startup type select Manual. In the Service Status area, click Stop.
17. Click OK.
18. Apply BizTalk Server 2000 Service Pack 1 or later, and then reboot the node.

Configure BizTalk Server as a Cluster Resource

The cluster configuration can proceed after BizTalk Server has been completely set up and successfully installed onto the local
system drive on all the cluster nodes.

Configure the BizTalk Server Group

Use the BizTalk Server Administration application to configure the server group.

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Server
Administration. The BizTalk Server Administration window appears.

2. Click the name of the virtual network in the cluster resource group where the BizTalk Server resource will be installed. The
network name needs to be online for the next set of steps.

3. Open the BizTalk Server Administration window on one of the inactive nodes within the cluster.
4. Remove all of the servers that appear in the BizTalk Server group (the names of the individual cluster nodes).

For each computer that is listed on the server group, perform the following steps:

a. In BizTalk Server Group, click the computer name. On the Action menu, click Stop.
b. To remove the server from the group, on the Action menu click Delete.
c. Repeat these steps until the group is empty.

5. Finally, click BizTalk Server Group and on the Action menu, point to New and click Server. In the BizTalk Server name
box, type the virtual cluster server name. This name replaces all of the individual nodes within the cluster.

Note Identify the virtual network name by examining the Parameters tab on the Properties of the cluster
network resource in the BizTalk Messaging Group of which BizTalk Server will become a part.

At the end of this step only the network name should be listed under the server group.

Figure 19. The finished BizTalk Server Group

Add a cluster resource for BizTalk Messaging Service (BTSSvc)

Before you perform this procedure, it is important to double-check the following:

Make sure that BizTalk Messaging Service is stopped on all of the nodes before adding the resource to the group.
Make sure that on the Properties of the BizTalk Messaging Service of each node the startup type is set to Manual.
Make sure that the network name of the group where BizTalk Messaging resides is added to the BizTalk Server group using
the BizTalk Server Administrator. Also verify that this is the only name in the group. To find the virtual network name,
examine the Properties of the cluster network name resource in the BizTalk Server group.
Make sure that MS DTC is a dependency of BizTalk Messaging. It must have MS DTC running within the same group to
function properly.

1. Using the Cluster Administrator application, click the BizTalk Messaging Group, which contains the IP address and
network name that BizTalk Server will use.

Important This group must contain the MS DTC resource.

2. On the File menu, point to New and click Resource. The New Resource window appears.
3. In the Name box, type BizTalk Messaging Service. In the Resource type list, select Generic Service. Make sure BizTalk

Messaging is selected in the Group list. Click Next. The Possible Owners window appears.
4. Include every computer on the cluster as a possible resource owner. Click Next. The Dependencies window appears.
5. Add resource dependencies for:

Network name

Shared disk
MS DTC
Virtual Message Queuing
If the SQL Server instance is also running on the same cluster and is created within the same cluster resource group,
add the SQL Server service resource to the list of dependencies.

6. Click Next.
7. In the Generic Service Parameters window, type BTSSvc in the Service name box. Select Use Network Name for

computer name. Click Next.
8. In the Registry Replication window, click Add.
9. In the Registry Key window, type System\CurrentControlSet\Services\BTSSVC. Click OK, and then click Finish.

10. After the resource has been added, right-click the BizTalk Server virtual server, and click Properties. On the Advanced tab,
make sure the Affect the group check box is cleared.

Warning If Affect the group is selected while trying to start the service and something fails, it will force a
failover loop that will be difficult to stop.

11. BizTalk Messaging should now be able to start within the cluster. Assuming that all the dependencies have been correctly
set up, you can bring the virtual BizTalk Server resource online by right-clicking it and clicking Bring Online.

Important By default, all configuration changes are stored in the BizTalk Server Messaging Management
database. However, there are some very specific performance tuning parameters that, when used, are stored in
the registry. If these registry changes are added to one node in the cluster, they will need to be replicated to all
other nodes. These tuning settings are:

 - NoValidation

 - ParserRefreshInterval

 - CacheSize

 - BatchSize

By default these registry values do not exist in the registry and should only be added when it is necessary for
performance tuning. If they are added, it is important to use the registry replication features of the Cluster
service to ensure that all nodes are consistent. For an explanation of how registry replication works, refer to the
Microsoft KB article Q174070, Registry Replication in Microsoft Cluster Server. Registry key replication is part of
the configuring of a Generic Application resource in the Cluster service. The key that must be replicated is
HKEY_LOCAL_MACHINE\System\Current Control Set\Services\BTSSVC.

Repository cluster configuration

This optional step provides an additional level of protection by safeguarding the repository files during design time. To guard
against a failure of the local drive of a node containing the BizTalk Server repository information, the files can be placed on a
shared cluster disk resource. In addition, this configuration allows you to easily access the repository files from any of the cluster
nodes. BizTalk Server and the tools provided use a feature of IIS called WebDAV to read and write the repository data.

Rather than locking IIS to a specific cluster node that could fail, the IIS instance should also be made into a virtual IIS instance that
can run transparently on either cluster node. Follow these steps to install the IIS instance:

1. Using the Cluster Administrator application, locate the first machine where BizTalk Server was installed.
2. Move to this node the BizTalk Messaging Group that contains the shared disk resource that will hold the BizTalk Server

repository.
3. Copy the <SystemDrive>:\Program Files\Microsoft BizTalk Server\BizTalkServerRepository folder to the shared storage in

the BizTalk Messaging Group.
4. Select the BizTalk Messaging Group. On the Action menu, point to New and click Resource. The New Resource window

appears.
5. In the Name box, type IIS WebDAV. In the Resource type list, select IIS Server Instance. Make sure BizTalk Messaging is

selected in the Group list. Click Next. The Possible Owners window appears.
6. Make sure every node is a possible owner of this resource and click Next. The Dependencies window appears.
7. Add resource dependencies for the following:

http://support.microsoft.com/support/kb/articles/Q174/0/70.ASP

IP address
Shared disk
Network name

8. Click Next.
9. In the Parameters window, click WWW, and in the IIS Server list select Default Web Site. Click Finish.

10. Leave the resource offline.
11. For each computer participating on the cluster:

a. Use the Cluster Administrator application to move the resource group containing the BizTalk Server and IIS virtual
resources to the computer you are working on.

b. On the Start menu, point to Settings and click Administrative Tools. Double-click Internet Services Manager. The
Internet Information Services window appears.

c. Expand the cluster node, and then expand Default Web Site. Right-click BizTalkServerRepository and click
Properties. On the Virtual Directory tab, change the path to the folder to which you copied the files on the shared
disk in step 3.

Figure 20. Setting the path to the local repository

Important Make sure you perform this step on each computer in the cluster. When complete, bring the
IIS WebDAV resource online.

Note It is a good idea to rename the original BizTalkServerRepository folder on each node to easily
distinguish them and avoid confusion.

12. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Messaging
Manager. The BizTalk Messaging Manager application appears. On the Tools menu, click Options. Make sure that
Name of the BizTalk Server to connect to is the name of the BizTalk Messaging Group network name.

13. Move the resource group to the other node and verify once again that BizTalk Messaging Manager can successfully use
the virtual IIS network name.

Add a cluster resource for the IInterchange application

A document can be submitted to BizTalk Server from a remote client running a COM+ application that uses the IInterchange
interface. This application must have a cluster resource associated with it, and must reside in the same cluster resource group as
BizTalk Messaging Service.

1. Using the Cluster Administrator application, click the BizTalk Messaging Group, which contains the IP address and
network name that BizTalk Server will use.

2. On the File menu, point to New and click Resource. The New Resource window appears.

3. In the Name box, type IInterchange application. In the Resource type list, select Generic Application. Click Next. The
Possible Owners window appears.

4. Include every computer on the cluster as a possible resource owner.
5. Add resource dependencies for:

Network name
Shared disk
MS DTC
If SQL Server is created as a resource within the same group, add SQL Server as a resource dependency.

6. Click Next. The Generic Application Parameters window appears.
7. In the Command line box, type

dllhost.exe /ProcessId:{OC9B9BBE-E0F2-4485-9BE8-C40BAC8D0677}

8. In the Current directory box, type the root directory of the shared disk resource drive in the group.
9. In the Registry Replication window, click Finish.

10. Select Allow application to interact with desktop and Use Network Name for computer name. Click Next.

After the resource for the COM+ application that uses the IInterchange interface has been added to the BizTalk Messaging
Group, right-click IInterchange application and click Properties. On the Advanced tab, clear Affect the Group.

Warning The COM+ application using the IInterchange interface runs under the account of the user currently
logged on to BizTalk Server. To avoid unnecessary security issues, this user must have Cluster service
administration privileges.

Add a cluster resource for the XLANG Scheduler Engine

The XLANG Scheduler Engine can be configured to reside in the same cluster resource group as BizTalk Messaging, or in a
separate group. The advantage of creating a separate cluster resource group for BizTalk Orchestration is that the XLANG
Scheduler Engine can optionally run on the other node in the cluster. This helps to optimize the use of both nodes in the cluster
while providing the maximum performance for each component. If the XLANG Scheduler resource is placed in a different group
from the BizTalk Messaging resource, you must use an application instead of a BizTalk Messaging port to start the XLANG
schedules. This is because BizTalk Messaging can only start XLANG schedules that are local (that is, on the same virtual server).
Refer to the following subsection about starting XLANG schedules for more details.

1. Using the Cluster Administrator application, click the BizTalk Orchestration group, which contains the IP address and
network name that BizTalk Server will use.

2. On the File menu, point to New and click Resource. The New Resource window appears.
3. In the Name box, type XLANG Scheduler. In the Resource type list, select Generic Application. Click Next. The Possible

Owners window appears.
4. Include every computer on the cluster as a possible resource owner.
5. Add resource dependencies for:

Network name
Shared disk
Message Queuing
If this is the same group as BizTalk Messaging, also add MS DTC. If this is a separate group, this dependency is not
required because MS DTC will automatically provide services across both nodes in the cluster.
If SQL Server is created as a resource within the same group, add SQL Server as a resource dependency.

6. Click Next. The Generic Application Parameters window appears.
7. In the Command line box, type

dllhost.exe /ProcessId:{DFDE2592-40A4-42BC-A35E-FD0BF76CA4D5}

8. In the Current directory box, type the root directory of the shared disk resource drive in the group.
9. Select Allow application to interact with desktop and Use Network Name for computer name. Click Next.

10. In the Registry Replication window, click Finish.
11. After the XLANG Scheduler resource has been added to the BizTalk Orchestration group, right-click XLANG Scheduler and

click Properties. On the Advanced tab clear Affect the Group, and select Do not restart.

Warning The XLANG Scheduler Engine runs under the account of the user currently logged on to BizTalk
Server. To avoid unnecessary security issues, this user must have Cluster service administration privileges.

Add a cluster resource for the XLANG Schedule Restart Service (BTWSvcMgr)

The XLANG Schedule Restart Service resource is responsible for ensuring that the XLANG Scheduler Engine is started and
stopped in a controlled fashion.

When it is brought online, it immediately starts the XLANG Scheduler Engine (because it is specified as a resource dependency)
and then rehydrates any previously persisted XLANG schedules.

When it is brought offline, the XLANG Scheduler Engine attempts to gracefully stop all currently running XLANG schedules, in
some cases persisting their state, before shutting down.

Before you perform this procedure, it is important to make sure that on the Properties of the BizTalk Messaging Service of each
node, the startup type is set to Manual.

1. Using the Cluster Administrator application, click the BizTalk Orchestration group, which contains the IP address and
network name that BizTalk Server will use.

2. On the File menu, point to New and click Resource. The New Resource window appears.
3. In the Name box, type XLANG Schedule Restart Service. In the Resource type list, choose Generic Service. Click Next.

The Possible Owners window appears.
4. Include every computer on the cluster as a possible resource owner.
5. Add resource dependencies for:

Network name
XLANG Scheduler Engine

6. Click Next. The Generic Services Parameters window appears.
7. In the Service Name box, type BTWSvcMgr, select Use Network Name for computer name, and click Next.
8. In the Registry Replication window, click Finish.
9. After the XLANG Schedule Restart Service has been added, right-click XLANG Schedule Restart Service and click

Properties. On the Advanced tab clear Affect the Group, and select Do not restart.
10. Test the resource by bringing it online. The XLANG Scheduler resource should also start automatically.

Important

To start the XLANG Scheduler Engine, always bring the XLANG Schedule Restart Service online. Because of the resource
dependency that has been set up, the XLANG Scheduler resource also comes online automatically.
To stop the XLANG Scheduler resource correctly, bring the XLANG Scheduler Engine offline. Because of the dependency
that has been set up, the XLANG Schedule Restart Service resource will be brought offline first, followed by the XLANG
Scheduler resource.
Test starting and stopping by using this method. After the test, examine the event log for the application and make sure that
there are no critical errors.
To check that the XLANG Schedule COM+ application is stopped and started correctly by the clustered instance, do the
following:

1. On the server that is actively running BizTalk Orchestration, open Component Services.
2. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services. The Component Services window appears.
3. Expand the COM+ applications.
4. Highlight the cluster node server name.
5. Check to see if there is a process ID (PID) assigned to the XLANG Schedule application. If there is, bring the XLANG

Scheduler resource offline in the Cluster Administrator. This should also stop the XLANG Schedule Restart Service
resource. This procedure should shut down the XLANG Schedule COM+ application and you should see the PID
disappear. This indicates normal operation.

6. If both the XLANG Schedule Restart Service and the XLANG Scheduler Engine have been brought offline successfully
in the Cluster Administrator, and there is still an active PID showing in the component services for the XLANG
Schedule application, then do the following.

Right-click the XLANG Schedule COM+ application in Component Services and choose Properties. Click the XLANG
tab and click Controlled Shut Down. Check the PID again. If it is still active, this may indicate that a client application
is running and is starting XLANG schedules. If this is the case, stop the application and repeat the verification
procedure.

Starting XLANG schedules in a cluster

If you plan to use a BizTalk Messaging port to start the XLANG schedules in a cluster, the following rules apply:

When referencing the XLANG schedule (.skx) file during the creation of the BizTalk Messaging port, be extremely careful to
use the correct path to the location of the XLANG schedule file. It is recommended that you place the .skx file onto the
shared disk that is part of the same BizTalk Messaging Group. Reference the .skx file using a drive letter such as F:\XLANG\
<name>.skx. In this case, the F drive must be the shared drive in the same group as the BizTalk Server virtual resource and
the XLANG Scheduler resource.
The XLANG Scheduler resource must be in the same group as the BizTalk Server virtual resource.
The same virtual Message Queuing resource should be a dependency for both the XLANG Scheduler and the BizTalk Server
virtual resources.

If you wish to start an XLANG schedule when BizTalk Orchestration is running on a different resource group, this is essentially
treated the same as starting it on a different server. This is true even if the resource group is active on the same cluster node as
the group containing the BizTalk Server virtual resource. To start a remote XLANG schedule you must use an alternative method.
Refer to the BizTalk Orchestration documentation for instructions about how to do this programmatically and for details about
using the correct moniker syntax. A remote XLANG schedule can be started using just a few lines of code, and there are various
approaches available. Under the BizTalk Server folder, there is an SDK folder containing code samples to programmatically start
an XLANG schedule. When referencing any remote schedule you must provide a URL to the file share containing the .skx file.

When starting XLANG schedules from an application, be sure to specify the cluster virtual name and not the local node name. If an
application starts a schedule under the cluster node server name, this can cause problems for the clustered instance. Applications
that start XLANG schedules must either be a cluster resource or run on remote computers independent from the cluster. Starting
an XLANG schedule from a non-clustered application running on a cluster node might result in having another copy of the non-
clustered XLANG COM+ package started.

Keep in mind that the XLANG schedule will need to run from any node. Make sure to check the BizTalk Orchestration designs for
any references to local application services or COM+ components. Make sure that any such dependencies are set up in a
consistent manner on all nodes.

Warning Prior to creating an XLANG schedule using remote activation, use Server Cluster APIs to verify that the
resource group is online and the XLANG resource is running. For more information, go to the MSDN Library and
search on "Server Cluster APIs."

Bring all the BizTalk Server cluster resources online

Using the Cluster Administrator, on the File menu, click Bring Online and select the following resources:

BizTalk Messaging Service
XLANG Schedule Restart Service

If any of these resources fail to come online, check the event log for both the application and the system, and double-check the
following:

All the other resources in the group are running.
SQL Server is running and is accessible.
BizTalk Messaging, XLANG Scheduler, and XLANG Schedule Restart Service have the correct dependencies.
The options Use Network Name as Computer Name and Allow application to interact with desktop are selected.

Test BizTalk Server Failover

Use the Cluster Administrator application to test manual failover. Select the BizTalk Messaging Group and click Move group.

All resources in the group will switch to offline pending and then move to the other node in the cluster. Each resource will then
come online in the order of dependency.

Test XLANG Scheduler Engine Failover

If BizTalk Orchestration is configured to run in a separate cluster resource group, it is necessary to independently test the BizTalk
Orchestration failover. To do so, select the BizTalk Server XLANG group and click Move group.

All resources in the group will switch to offline pending and then move to the other node in the cluster. Each resource will then
come online in the order of dependency.

Upgrading to Biztalk Server 2002
The following steps assume that you have configured BizTalk Server 2000 as described in this article, and it is running correctly
on a cluster environment.

Note Read the BizTalk Server 2002 installation instructions provided with the compact disc to make sure you have
followed all the preliminary setup steps.

1. Start Cluster Administrator, and move the BizTalk Messaging Group and BizTalk Orchestration Group to node 1.
2. Bring offline all the resources related to BizTalk Server: BizTalk Messaging Service, IInterchange application, XLANG

Scheduler, XLANG Schedule Restart Service.
3. Insert the BizTalk Server 2002 compact disc into the CD-ROM drive in node 1, and run Setup.exe from the root folder.
4. In the warning dialog box, click OK.
5. On the Customer Information page, type your name in the User name box, type the name of your company in the

Organization box, and then click Next.
6. On the Destination Folder page, click Next to upgrade the BizTalk Server installation located in the default directory.
7. On the Setup Type page, leave Complete, and click Next.

Note All existing BizTalk Server files will be removed during the upgrade process. Only the features that you
select will be installed.

8. On the Configure BizTalk Server Administrative Access page, leave the default information, and click Next.
9. On the Microsoft BizTalk Server Service Log On Properties page, accept the default setting This account, and then type

an account that is to be used to start the BizTalk service.

Note It is recommended that you use the same account that the Cluster service uses.

10. On the Ready to Install the Program page, click Install.
11. When the Welcome to the Microsoft BizTalk Server 2002 Messaging Database Setup Wizard page appears, click

Next.
12. On the Configure a BizTalk Messaging Management Database page, click Select an existing database, and then

under SQL Server connection parameters, type the SQL Server virtual server name and click Next.
13. On the warning, click Yes.
14. On the Configure a BizTalk Server Group page, click Select an existing BizTalk Server group, and then click Next.
15. In the warning dialog box, click Yes.
16. On the Verify BizTalk Server Group page, click Next.
17. On the Completing the Microsoft BizTalk Server 2002 Messaging Database Setup Wizard page, click Finish.
18. On the Welcome to the Microsoft BizTalk Server 2002 Orchestration Persistence Database Setup Wizard page, click

Next.
19. On the Configure a Default Orchestration Persistence Database page, click Select an existing database, and then

under SQL Server connection parameters, type the SQL Server virtual server name and then click Finish.
20. On the Completing the Microsoft BizTalk Server 2002 Setup Wizard page, click Finish.
21. On the Start menu, point to Settings and click Control Panel. Double-click Administrative Tools, and then double-click

Services. The Services window appears.
22. Double-click BizTalk Messaging Service. The BizTalk Messaging Service Properties window appears.
23. Click the Log On tab. Verify that the startup account is a domain account with sufficient permissions. This account must be a

local administrator on each node in the cluster. In addition, if BizTalk Server will need to write to Message Queuing or file
shares on other network servers, there will need to be sufficient domain-level privileges to do so.

24. Click the General tab. For Startup type select Manual. In the Service Status area, click Stop.
25. Click OK.
26. Double-click XLANG Schedule Restart Service. The XLANG Schedule Restart Service Properties window appears.
27. Click the Log On tab. Set the startup account to be a domain account with sufficient permissions. This account must be a

local administrator on each node in the cluster. In addition, if BizTalk Server will need to write to Message Queuing or file

shares on other network servers, there will need to be sufficient domain-level permissions to do so.
28. Click the General tab. For Startup type select Manual. In the Service Status area, click Stop.
29. Click OK.
30. Repeat steps 3 through 29 for node 2.
31. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2002, and then click BizTalk Server

Administration. The BizTalk Server Administration window appears.
32. Click the name of the virtual network in the cluster resource group where the BizTalk Server resource is installed. The

network name needs to be online for the next set of steps.
33. Open the BizTalk Server Administration window on one of the inactive nodes within the cluster.
34. Remove all of the servers that appear in the BizTalk Server group that are the names of the individual cluster nodes, until

only the BizTalk Server virtual server remains.

For each computer that is listed on the server group, perform the following steps:

a. In BizTalk Server Group click the computer name. On the Action menu click Stop.
b. To remove the server from the group, on the Action menu click Delete.

Troubleshooting
There are some known problems that can occur while setting up BizTalk Server and configuring the cluster. This small
troubleshooting guide provides some workarounds.

For updated information and late-breaking news, see the Microsoft BizTalk Server Web site and the Microsoft Support Web site,
and search for BizTalk Server Knowledge Base articles.

BizTalk Server Setup Fails to Start

It has been observed that an error message appears if the following sequence of events happens:

1. BizTalk Server is installed on a cluster from node A while that is the active node (has control of shared drives).
2. Control of the cluster resources is transferred to node B.
3. BizTalk Server is uninstalled from node A.
4. Finally, the attempt is made to reinstall BizTalk Server on node A.

Two workarounds exist to either avoid or fix this problem. To avoid it, ensure that the group is local when installing. To fix the
problem after it has occurred, use the Microsoft Platform Software Development Kit (SDK) to run the command msizap.exe to
clean up the registry so that BizTalk Server can be installed and uninstalled again.

A Second Copy of XLANG Scheduler Is Started

A second copy of the XLANG Scheduler is started when the XLANG Monitor application is opened from a command prompt
started from the Start menu. When this happens, BizTalk Server will not function correctly, and the user will have a hard time
finding out which dllhost.exe process to stop.

To avoid this problem, create a cluster resource for XLANG Monitor by following these steps:

1. Start Cluster Administrator.
2. Right-click the BizTalk Orchestration Group, point to New, and then click Resource.
3. In the Name box, type Command Prompt. In the Resource type list, select Generic Application, and then click Next.
4. In the Possible Owners window, allow the resource to run on all servers on the cluster. Click Next.
5. In the Dependencies window, add the following dependencies to the resource:

Network name

6. Click Next. The Generic Application Parameters screen appears.
7. In the Command line box, type CMD.exe

Note This command is run locally on each node. Change the Windows system path and drive letter if they are
different on your server.

8. In the Current directory box, type the letter of the shared directory for the BizTalk Orchestration Group.
9. Select the Allow application to interact with desktop and Use Network Name for computer name check boxes. Click

http://www.microsoft.com/biztalk/
http://support.microsoft.com/default.aspx?

Next.
10. In the Registry Replication window, click Finish.
11. After the resource has been created, double-click the Command Prompt resource to edit the Properties.

Click the Advanced tab, clear Affect the group in the Restart section, and then select Do not restart. Click OK to accept
the changes.

12. To start the XLANG Monitor, double-click the Command Prompt resource created, and type XLANGMon.exe.

A Second Copy of XLANG Monitor Is Started

A second copy of the XLANG Monitor application is started when the node it is started from is too slow. When this happens,
BizTalk Server will not function correctly, and the user will have a hard time finding out which dllhost.exe process to stop.

To avoid this problem, it is recommended that you start the XLANG Monitor application from a remote, non-clustered computer.

Loss of Data Can Occur After Catastrophic Failover on BizTalk Server 2002

In BizTalk Server 2002, data from non-transactional transports can be lost during catastrophic failures such as power failures.
Duplication of documents transmitted with non-transactional transports can also occur during catastrophic failures. To avoid loss
of data during such failures, you must disable disk caching. However, disabling disk caching degrades the performance of BizTalk
Server 2002.

In BizTalk Server 2000, the loss of data does not occur, but there might still be duplication of documents transmitted with non-
transactional transports.

References
Exploring Windows Clustering Technologies

Microsoft Platform SDK

Microsoft Windows 2000 Advanced Server Security Documentation

Microsoft Windows Hardware Compatibility List

Orchestration Part 2: Transactions, Exceptions, Debugging

Step-by-Step Guide to Installing Cluster Service

SQL Server 2000 Failover Clustering White Paper

Technical White Papers for Cluster Server

Microsoft Windows 2000 Server Deployment Planning Guide, Microsoft Press, 2000

Microsoft Knowledge Base articles:
FIX: Message Queuing Logger Error Processing Causes Log Data Loss at Hardware Failures (Q254294)
How to Configure Clustered IIS Virtual Servers on Windows 2000 Advanced Server (Q248025)
How to Install the Windows 2000 Recovery Console (Q216417)
How to Obtain the Latest Windows 2000 Service Pack (Q260910)
INFO: Installation Order for SQL Server 2000 Enterprise Edition on Microsoft Cluster Server (Q243218)
INFO: Using the MSMQ Service on a Windows 2000-Based Cluster (Q310775)
Microsoft Cluster Service Installation Resources (Q259267)
Microsoft Distributed Transaction Coordinator (MSDTC) Recovery Techniques in Windows 2000 Cluster Server (Q243204)
Registry Replication in Microsoft Cluster Server (Q174070)

http://www.microsoft.com/ntserver/ProductInfo/Enterprise/
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/
http://www.microsoft.com/windows2000/en/advanced/help/
http://www.microsoft.com/hcl/
http://www.microsoft.com/biztalk/techinfo/development/2000/wp_orchestrationPart2.asp
http://www.microsoft.com/windows2000/techinfo/planning/server/clustersteps.asp
http://www.microsoft.com/SQL/techinfo/administration/2000/failovercluster.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;818681
http://support.microsoft.com/support/kb/articles/Q254/2/94.ASP
http://support.microsoft.com/support/kb/articles/Q248/0/25.ASP
http://support.microsoft.com/support/kb/articles/Q216/4/17.ASP
http://support.microsoft.com/support/kb/articles/Q260/9/10.ASP
http://support.microsoft.com/support/kb/articles/Q243/2/18.ASP
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q310775
http://support.microsoft.com/support/kb/articles/Q259/2/67.ASP
http://support.microsoft.com/support/kb/articles/Q243/2/04.ASP
http://support.microsoft.com/support/kb/articles/Q174/0/70.ASP

Microsoft BizTalk Server 2002 Technical Articles

Integrating BizTalk Server with the RosettaNet Implementation
Framework

Microsoft Corporation

November 2003

Summary: This technical article provides background information for RosettaNet-centric exchanges. It also defines the
framework for an organization to fulfill its implementation scenarios using BizTalk Server and BizTalk Accelerator for RosettaNet.
It does not address the core capabilities of any particular organization or legacy integration required between an organization and
other affected systems. The latter is assumed complete as part of other related and independent projects.

BizTalk Server and the BizTalk Accelerator for RosettaNet are designed to broker interchanges between RosettaNet-compliant
trading partners. BizTalk Accelerator for RosettaNet is a Microsoft release that enables you to use RosettaNet Implementation
Framework 1.1 and RosettaNet Implementation Framework 2.0 with BizTalk Server 2002.

Download the article at the GotDotNet Web site. In the BizTalk Server section, you'll see BizTalk Server Accelerator for
RosettaNet White Paper. Click Integrating BizTalk Server with the RosettaNet Implementation Framework.

http://go.microsoft.com/fwlink/?LinkId=20144

Microsoft BizTalk Server 2002 Technical Articles

Microsoft BizTalk Adapter for MQSeries White Paper

July 2002

Summary

Learn how the Microsoft BizTalk Adapter for MQSeries will allow you to incorporate BizTalk Server into a system that is using
IBM's MQSeries enterprise integration messaging standard. (41 pages)

Contents

The BizTalk Adapter for MQSeries Connectivity Solution
Solution Scenario
Architecture
Appendix
Troubleshooting
MQSeries Overview
Additional Information

The BizTalk Adapter for MQSeries Connectivity Solution

Overview

The Microsoft® BizTalk® Adapter for MQSeries is a connectivity solution that allows the BizTalk Server family of integration
servers to be plugged into an enterprise that has chosen MQSeries as the messaging standard. The development of this solution
was motivated, in part, by the following issues:

Accommodating customer requests for simple installation and configuration, and an MQSeries connectivity solution
Leveraging BizTalk Server in enterprises where MQSeries is the chosen messaging standard
Supporting message sizes up to 100MB
Providing MQSeries Support
Providing a Plug-and-Play MQSeries messages to BizTalk Server
Defines a bridge between yesterday's messaging protocol and today's integration server

These factors were strong stimulus in the very rapid design, implementation, and release of this connectivity solution. BizTalk
Adapter for MQSeries is a key addition to the BizTalk Server suite of receive services that provide a set of listeners for various
communication protocol standards. The listeners attach a protocol, for example HTTP, FTP, and/or MQSeries, to an enterprise
application integration (EAI), business-to-business (B2B), or application-to-application integration (A2A) trading relationship.

BizTalk Adapter for MQSeries Benefits and Values

Asynchronous computing models are inherently scalable based on their ability to fully utilize the computing resources in a
manner that parallels the state of affairs in the computing world today. The BizTalk Adapter for MQSeries functions very well in
this computing environment by achieving the following:

Allowing organizations using MQSeries as their messaging standard to utilize BizTalk Server as the integration server
Simplifying installation, configuration, and deployment of BizTalk Server and MQSeries interoperability solutions
Easing the development of BizTalk Server and MQSeries solutions
Providing send and receive services between MQSeries and BizTalk Server
Including bi-directional Distributed Transaction Support (DTS) between MQSeries environments and BizTalk Server (on the
Windows platform only).
Allowing MQSeries to bridge the need for once and only once delivery of messages cross-platform

BizTalk Server provides enterprise application integration (EAI), business-to-business (B2B) integration, business process
automation, and a Plug-and-Play connectivity solution for MQSeries environments. Other solutions from Microsoft and additional
vendors already exist, but the solutions did not support the MQSeries messaging protocol in a direct manner; they were not
optimized for transporting messages to destinations or submission of documents to the BizTalk Server Messaging Engine.

The BizTalk Adapter for MQSeries removes barriers to easy adoption and use of BizTalk Server. This connectivity solution provides
a zero code solution to enterprise customers. Enterprises can build solutions using BizTalk Server as the integration server
standard without requiring any coding on the part of developers. The combination of BizTalk Server and the BizTalk Adapter for
MQSeries provides a Plug-and-Play, loosely coupled integration architecture for MQSeries and BizTalk Server. The use of a very
straightforward graphical user interface for configuration simplifies the administrative tasks required to quickly implement
various solution scenarios.

How the BizTalk Adapter for MQSeries Works

To aid in explaining how the Microsoft BizTalk Adapter for MQSeries works, the technical concepts and goals are introduced by
reviewing the following block diagram. This review is followed by a discussion of the illustration from both an outbound
perspective and an inbound perspective. The BizTalk Adapter for MQSeries includes the following components:

Application Integration Component
Receive Service
MQHelper
Microsoft Management Console (MMC) Snap-In

The specific components of the BizTalk Adapter for MQSeries are discussed in greater detail in the "Architecture" section of this
document.

The following diagram illustrates a source application delivering a document to BizTalk Server. The Messaging Engine within
BizTalk Server (BTS in Figure 2) supports the use of multiple protocols. The source application could reside on the Internet and
utilize the HTTP protocol to deliver the message to a Web server that stores the documents in an MQSeries queue or it could
reside within an enterprise and deliver the message via MSMQ, File, SMTP, or FTP.

The following diagram illustrates a solution that leverages the HTTP protocol.

Figure 2: Source Application Delivering to BizTalk Server

Outbound

In an outbound direction, where an MQSeries enabled server is the destination, the BizTalk Server Messaging Engine locates and
invokes a document processing channel. This is followed by delivery of the document through a messaging port. The messaging
port determines how the message is processed inside the BizTalk Server Messaging Engine and which communication protocol is
used to deliver the document to the destination. The Messaging Engine creates a transactional context that is joined by the
MQSeries application integration component (AIC) during its invocation. The AIC acts as the configured end point of a messaging
port. The AIC will establish contact with an instance of the MQHelper component that is deployed as a simple DLL on a
Microsoft® Windows® 2000 Server (W2KServer2 in the diagram). The document is passed to the MQHelper DLL, which
implements the MQSeries run time support required to insert the document into the target MQSeries queue on the second
server. In this diagram the process ends when the Queue Manager delivers the message to the remote server in New York.

Inbound

Reversing the flow of the diagram for an inbound message processing scenario, New York City is the source and the Source
Application is the destination. Note that many of the services and components are contained within the objects shown in the high-
level overview, and therefore not called out specifically in the diagram. The MQSeries receive service polls one or more remote
transmission queues located on the Windows 2000 server (See W2Kserver in Figure 2) looking for messages. Upon finding
messages in the target queue, a transaction is started between the receive service and an MQHelper instance on the second
server. The MQHelper contains the implementation of the MQSeries run time that provides the capability of extracting messages
in batches. The messages are extracted from the remote queue. Conversions between ANSI and Unicode are performed on the
messages. Next, the messages are transferred to a BizTalk Server instance using Distributed Component Object Model (DCOM)
and submitted into the Work Queue for asynchronous processing. The documents are processed according to the tasks requested
during definition of the messaging channel. The document is processed and routed to the appropriate destination via a
messaging port transport component.

BizTalk Messaging

Microsoft® BizTalk® Server provides an environment for developers and/or administrators to configure the various elemental
components of a solution by using visual tools. This drastically reduces the amount of programmatically developed business logic
required to create a solution. The general high-level process is summarized as follows:

Messages are submitted to BizTalk Server through a COM+ application using the IInterchange interface or one of the File,
MSMQ, or HTTP
Messages are matched against ports and channels. The matching is based either upon the submission parameters included
with the documents presented to BizTalk Server, or upon the contents of marked elements in the BizTalk Server internal
XML document format (using the XML based query language XPATH). The source identifier, destination identifier, and
message type are three key pieces of a SQL query. The query is executed to determine one or more channels to process the
documents
The information describing ports and channel definitions and all other configuration data is stored in the BizTalk Server
repository
Asynchronous messages are held in a queue until execution time. If failures in transport or processing occur, messages are
moved to the Retry Queue or the Suspended Queue. The Scheduled Queue holds messages that are processed at a
specifically scheduled time.
The Work Queue is polled by one or more BizTalk Server Messaging services. The Messaging services are generally located
on separate computers that have been clustered as a group of BizTalk Servers.
As messages are being processed and assigned to one or more channels for processing, each message passes through a
sequence of processing stages. The processing stages can include validation, transformation, enveloping, encoding, signing,
encryption, and/or serialization. The messages are then transported to a location specified in the messaging port data.
Messages are tracked in a tracking database after having been processed and prior to being forwarding to their destination.
In BizTalk Server, the trading relationship includes the channel and port. The messaging channel represents the entity that
processes a message by performing tasks such as encryption and decryption, documenting signing, document filtering and
tracking, and other processing steps inside a "pipeline".
The messaging port is first defined to be either an internal or external relationship. This definition maps to an enterprise
application integration (EAI) or a business-to-business (B2B) data trading relationship. The port is the object defined first in
the setup of a trading relationship. After the port is defined, there is an option of associating one or more channels to that
particular port

Summary

The BizTalk Adapter for MQSeries connectivity solution allows customers to combine BizTalk Server with their MQSeries
messaging protocol infrastructure. The connectivity solution extends the reach of BizTalk Server to the thirty-five platforms that
are supported by the MQSeries product line. Enterprise customers can select BizTalk Server as their integration server of choice
without having to discard and replace any of their existing MQSeries infrastructure components.

BizTalk Server plugs into the infrastructure as an integration server. This lets an enterprise break the hardwired direct connections
between heterogeneous application systems by allowing conversion of messages from one protocol and/or data format to
another. The BizTalk Server and BizTalk Adapter for MQSeries solution also simplifies administration of complex messaging
solutions, and expands the reach and depth of enterprise integration strategies. This connectivity solution links the leading
messaging-oriented products. The BizTalk Server and BizTalk for MQSeries combination connects yesterday's leading messaging
today's fastest growing integration server.

Solution Scenario

Many enterprise customers want to leverage BizTalk Server within an MQSeries messaging environment. The question most
enterprise decision makers ask with regard to implementing solutions combining these technologies is "How much effort is
required to construct a robust solution without requiring coding on the part of my developers?" To answer this question, we will
walk through the steps required to construct a solution.

Seeking Ease of Integration

Ease of integration is one of the most important factors considered by key decision makers. The common approach for quickly
integrating BizTalk Server and MQSeries is defining a remote queue on an MQSeries Server and binding that queue to BizTalk
Server as mentioned later in this document. The creation of the solution is deceptively simple considering that two totally distinct
technologies can be combined to form complex integrated solutions in a Plug-and-Play manner.

Morgan Trust and Securities Bank Scenario

This scenario walks through a process of implementing functionality that matches key tasks. The scenario is one in which Morgan
Trust and Securities Bank wants to leverage the abilities of its existing MQSeries messaging infrastructure. The CIO of the bank
has recently decided to utilize the existing messaging infrastructure based on MQSeries, and an integration server to create
better-quality solutions. To that end, the CIO has decided that Microsoft BizTalk Server is the right choice for the integration server
based on its ease of use and price per value rating.

The CIO wants to design a solution that will guarantee the delivery of various payloads coming into the main bank and responses
being routed back to each branch. The key feature he wants to see implemented is the dynamic routing of payloads via the
content-based routing and encryption and decryption capabilities of BizTalk Server. The CIO wants to use BizTalk Server because
he knows that Microsoft offers a zero code integration solution between the existing messaging infrastructure and BizTalk Server.
The following figure illustrates the bank's headquarters-to-branch architecture.

Figure 3: Morgan State Corp-To-Branch Architecture

The CIO contracted with a consultant to guide his development team members during the design and implementation of this
solution. The development team members chose to keep the solution simple to minimize the amount of custom code required to
build the solution components. In this scenario the corporate office to Los Angeles branch integration is configured first. The steps
that are necessary to construct the solutions are as follows:

Create a port and channel within BizTalk Server.
Configure the BizTalk Server MQSeries receive function.
Export the MQSeries Remote Queue definitions.
Import the MQSeries definitions via the MQSeries Explorer.
Define mapping between the BizTalk Server channel and the remote queues.
Start the BizTalk Adapter for MQSeries receive service.
Verify the receive function configuration.
Integrate the AICMQ.
Create BizTalk Server receive function.
Validate BizTalk Server receive function setup.

The following sections describe the process the development team used to develop a banking solution that links the corporate
headquarters and various local and remote branch banks.

Port Definitions

Prior to the definition of a messaging port, the development team determined applications that would be targets for integration
via BizTalk Server and the BizTalk Adapter for MQSeries. The Home organization was established and the channels to each of the
remote sites were defined on the Queue Manager servers via the MQSeries Explorer. Those first steps being complete, the next
action is to set up a port definition on the BizTalk Server instance. The port is defined by using the following steps:

To define a port

1. Load the Messaging Manager.
2. Click File, click New Messaging Port, and then click To an Application.

The following dialog box is displayed:

Figure 4: Configuring Los Angeles Messaging Port

1. In the Name field, type Los Angeles as the port, and then click Next.

Figure 5: Selection of Application Name

The Messaging Port configuration wizard prompts for the creation or selection of a destination application or XLANG schedule.
The developers and administration decide to use BizTalk Server Messaging by selecting a pre-existing or new application.

Click Browse.

Figure 6: Primary Transport - Application Integration Component

The Primary Transport dialog is displayed and the developers and administrator are given the opportunity to select from the
currently supported protocols (Application Integration Component, File, HTTP, HTTPS, Loopback, Message Queuing, and SMTP).
The developers choose Application Integration Component.

Next, click Browse.

Figure 7: Selection of AICMQ MQPipeline Component

After clicking Browse, the Select A Component dialog displays so that the developer or administrator can select an AIC. The
team highlights AICMQ MQPipeline component.

Click OK.

Figure 8: AICMQ Binding to Messaging Port

Now, the primary transport has been set as Application Integration Component and the AICMQ MQPipeline pipeline
component has been selected as the transport for this messaging port. The SMTP Return e-mail address field remains dimmed.

Click OK.

Figure 9: Messaging Port with AICMQ Selected

The team selects the destination application and defines the AICMQ MQPipeline component as the primary transport. The
combination of the application and a transport constitute two key pieces of information in the definition and setup of an
enterprise application integration (EAI) scenario in BizTalk Server. The team decides to not invoke use of a service window and so
leaves this checkbox unselected. They also do not wish to provide a back up transport for the communication between the home
office and the Los Angeles branch office during the initial setup of the solution scenario.

Click Next.

Figure 10: Envelope Selection

The team does not require a special envelop for their initial implementation so the Envelope information field is left at the
default setting of None. The Organization identifier field defaults to the Home Organization selection. The high level steps are
as follows:

Execute the primary setup.cmd command file
Obtain and install digital certificates
Create a secure port and the following channel
Create any receive functions

Detailed descriptions of the tasks necessary to complete this process are available in the online documentation.

Click Next.

Figure 11: Security Information

The Security Information dialog displays as shown above. To configure the server correctly, the team opens the BizTalk Server
2002 Help facility and searches for the Encryption and Decryption Sample topic. They follow this topic to allow the documents
flowing between the home office and the Los Angeles branch to leverage the security capabilities built into BizTalk Server. The
team opts to leave the Create a channel for this messaging port checkbox selected.

Click Finish.

The previous step concludes the Messaging Port definition and launches the New Channel wizard. The specifics of this portion of
the solution configuration lead the team into the next section.

Channel Definitions

The team members were informed of the need to define a messaging channel, during their sessions with the consultant. They
define a very straightforward channel to meet their needs to provide the appropriate amount of processing. They agree to name
the channel "Los Angeles" to facilitate a natural link between the port and channel. They start the configuration process by
completing the dialog that is displayed below in the following figure.

Figure 12: Channel Definition

The team chooses not to implement this channel as a receipt channel, so they leave the This is a receipt channel checkbox
unselected.

1. Type Los Angeles into the Name field.
2. Add any necessary comments to the Comments field.

Important Leave the This is a receipt channel checkbox unselected.

3. Click Next.

Figure 13: Organization Name

The team associates the channel with the default organization name of "Morgan State" which resides in the city of Los Angeles.
They configure the channel to generate or expect a receipt by not selecting either of the corresponding checkboxes.

Click Next.

Figure 14: Inbound Document Definition

The solution requires that certain values be generated at execution time. The date is a value that must be calculated and passed to
the target field in the format requested by the destination. The logical place for such conversion to occur is a BizTalk Server
transformation map.

One of the developers on the team loads the source and destination specifications into the BizTalk Mapper and then connects all
of the fields except the date field.

Figure 15: Map Definition with Minimal Conversions

At this point, the team creates a transformation map that references their initial specification as the source and destination
document specification. The outbound flow must have the date changed to the current date. Functoids are used to pass the
current date information to the target date field and provide a flat discount rate to the purchase order total field in each of the
detail records.

The BizTalk Server Mapper allows the development team to define, map, and then test the validity of the map. The Mapper
relieves the development team of the need to understand low-level details of XML and Extensible Style Language Transformation
(XSLT). The Mapper supports the following operations:

Copying Source content to Destination nodes
Various mathematical calculations
Logical operations
String conversion
Indexing and substring operations
Conversion of values during looping operation
Performing lookup and substitution of values at run time
Integration of VBScript and JScript snippets at design time to execute at run time
Conversion of the graphical element to their XSLT representations
Validation of the mapper via simulation instance passing though the map

Many of the items above describe the combination of the capabilities of the mapper and pre-built functoids. Further explanations
about how the BizTalk Mapper can be utilized are found in the online Help document in the "BizTalk Mapper" section.

Returning to the scenario, the team goes back to the Messaging Manager to associate the map with the channel as shown in the
next figure.

The development has defined the map associated with the document definition as shown in the Channel Properties dialog box.

Figure 16: Toggling on Transformation Using a Map

The Channel Properties dialog box (above) shows the map being associated with the Los Angeles messaging channel.

Click Browse.

Figure 17: Map Selection

The Select a Map from the WebDAV Repository dialog is displayed so that the developer or administrator may pick a specific
map. The Los Angeles map is highlighted as the map of choice.

Click Open.

Figure 18: Map Selection -Los Angeles

The figure above shows the outbound document definition with the associated map that was just created in the previous section.
The development team will return to this document at a later time to implement the document signing steps after the certificates
have been acquired and are ready for deployment in the production environment.

If transformation operations were not required and a simple pass through operation was sufficient for the processing of the
documents, there would be no need to specify a map. Neither would there be a need to leave the Map inbound document to
outbound document checkbox unselected. A transformation map would be neither created nor selected.

This scenario does not include signing the document using a certificate. BizTalk Server online documentation and samples provide
excellent examples of how to install the certificates and associate one to a document. The certificate allows trading partners to
verify that the document came from the party that obtained a digital certificate, and shared appropriate information with each
trading partner. The "Certificates Overview" topic is an excellent starting point in the online documentation. Other topics
discussed are the "Understanding Certificates" and "Certificates Needed by BizTalk Server".

To continue the scenario and procedure:

Click Next.

The messaging port metadata is stored in the BizTalk Server repository and in the New Channel dialog box Document Logging
is displayed as shown in the next figure.

Figure 19: Logging Specification

This dialog provides the development team an opportunity to determine how the inbound and outbound document data is
logged for use in audit, reporting, and other tracking and verification operations. The dialog lets the developer or administrator
turn on document tracking for both the native and XML format of inbound and outbound documents by selecting one of the
checkboxes.

After selecting one or more of the check boxes, BizTalk Server makes the data associated with the logging process available in the
repository in native format, or in BizTalk Server internal XML format.

1. Click Next.

2. Click Advanced.

The Override Messaging Port Defaults dialog box is displayed as shown in the next figure.

Figure 20: AICMQ MQPipeline Component Properties

The AICMQ MQPipeline component is shown as the Primary transport component selected as the definition of a messaging
port earlier in the configuration of this scenario. The dialog box also includes tabs for defining Backup Transport, and Envelope.

Click Properties.

The next dialog box requires parameter entries associated with the remote Windows 2000 Server instance, and the MQSeries
Queue Manager.

Figure 21: Remote Queue Manager and Queue Properties

The AICMQ MQPipeline Properties dialog box is utilized to configure components to setup a DCOM connection between the
AICMQ MQPipeline and the MQHelper DLL. The AICMQ does not implement the functionality to handle payload submission into
a transmission into an outbound queue. The MQHelper DLL residing on the Windows 2000 Server implements the various get
and put operations. In the case of the AICMQ, the MQHelper executes an MQSeries API MQPut operation on the behalf of each
AICMQ pipeline component.

1. Type Los Angeles as the MQSeries Server.
2. Type LAQMGR as the MQSeries Queue Manager Name.
3. Type LosAngelesXmitq as the MQSeries Queue Name.

The next step is to define and export queue definitions.

Definition and Export of Transmission Queues at Headquarters

Next, the development team defines and exports various transmission queue locations. The BizTalk Adapter for MQSeries requires
an MMC Snap-In as the configuration user interface. A job (object) must be created using the Snap-In. Jobs are created by doing
the following:

1. Click Start.
2. Click Programs.
3. Click Microsoft BizTalk Adapter for MQSeries.
4. Click Microsoft BizTalk Adapter for MQSeries Configuration.

The configuration Snap-in is displayed as shown in the following figure.

Figure 22: MQSeries Configuration Snap-in

The configuration Snap-in provides the user interface for defining a job, and associates mapping inbound documents to a receive
service and a BizTalk Server channel.

1. Expand the Microsoft BizTalk Adapter for MQSeries node.
2. Right-click, point to New, and then click Job.

The job parameter for MQSeries Host Name (Los Angeles), Queue Manager Name (QM_LosAngeles), and the Transmission
Queue Name (LAXmit) are chosen for the LA branch office. The job properties are typed into the following dialog box.

Figure 23: MQSeries Job Parameters

The MQSeries Host Name represents a remote Windows 2000 Server computer that has MQSeries software installed with a
Queue Manager configured and waiting for messages. The Queue Manager Name should match the name of one of the Queue
Managers setup on the remote computer via the MQSeries Explorer. The Transmission Queue Name is the name of a remote
queue that will be polled by the MQSeries receive service for message batches via the MQHelper DLL using the DCOM protocol.

Accepting the default parameters provides the following Advanced Properties dialog box:

Figure 24: Job Advanced Parameters

Click OK to accept the values in the General and Advanced tabs of the Job Properties dialog box.

The team's next step is to define a Mapping between the MQSeries receive service and the remote MQSeries Messaging Server.

Linking BizTalk Server and Remote Transmit Queues

The implementation of the BizTalk Adapter for MQSeries does not utilize local queues. All queues are described as transmission
queues in that they are all located on the Windows 2000 Server that hosts the MQSeries Queue Manager. This approach requires
that a link be established between the BizTalk Server computer and the remote MQSeries Server. This provides the BizTalk
Adapter for MQSeries with information needed to allow the receive service to poll the remote queue via the MQHelper DLL. Also
note that MQSeries names are case sensitive.

Upon finding messages in the queue, the receive function collects one or more messages in a batch and delivers them to one or
more BizTalk Server instances. The steps to create the mapping are as follows:

1. Select the Job created previously
2. Right-click, point to All Tasks, and then click Export MQS definitions.

Figure 25: Exporting MQSeries Transmit Queue Definitions

This launches the following dialog box that allows the queue definitions to be stored in the file system on the BizTalk Server
computer.

Figure 26: Saving the Queue Definition

Type a job name, and then click Save.

Clicking Save causes the queue definitions to be written to the local file system. LosAngeles.mqs is used as the file name in the
case of the Los Angeles branch office queue definition. The same naming convention is used for each of the queue definition files
of the other branches. Clicking Save, the following message box is displayed confirming that the definitions were saved to the file
LosAngeles.mqs.

Figure 27: Queue Definition files Success Message

The team duplicates the process of defining and exporting the MQSeries queue definitions for the Los Angeles office using the
previous steps for each branch office. The next section discusses accomplishing this task for a single location. Each of the previous
steps should be duplicated for each of the other branch offices.

Import of Queue Definitions at Remote Offices

Importing queue definitions at each of the branch offices is a straightforward process. The queue definitions are provided to each
branch office and local resources complete the process of importing the definitions and any additional configurations that are
required to complete the links between the BizTalk Server configuration at headquarters and each branch office.

MQSeries Explorer and a command line program (RUNMQSC) are used to import the queue definitions into the queue manager
at each branch office. The RUNMQSC program is executed at a Windows DOS prompt. The command is:
runmqsc {queue manager} <export file name> {output file name}
The syntax shown above starts a command session. This allows the local or remote queue manager to define transmission
queues. The MQSeries RUNMQSC program requires the name of export file, and optional output file names into which the
responses are routed. Please recognize that RUNMQSC is a command program that will for whatever reason, capitalize the Queue
Manager name, if you want to use a name that combines upper and lower case characters, the administrator or developer should
execute the command manually through the UI or via the command-line. The Los Angeles branch executes the following:
runmqsc QM_LosAngeles <LosAngeles.mqs> LosAngelesOut.txt
This command generates an output file that holds the responses returned by the RUNMQSC program. The branch office reviews
the file to ensure that the queue definitions completed successfully. The contents of the file are displayed in the following text:

Figure 28: MQSeries Queue Definition Import Responses

The response file shows that the queue definition task file has completed successfully by defining the LosAngelesXmit
transmission queue. The last 4 lines show that the RUNMQSC program successfully executed 2 commands. This indicates that the
queues were created on the remote server. The creation queues can be validated by loading the MQSeries Explorer on the Los
Angeles server to see that the queue shows up in the queue listings as a local queue definition. The next figure confirms the queue
was created on the correct server.

Figure 29: MQSeries Explorer Displaying LOSANGELESXMIT Queue

With defining and importing the queues completed, the team defined a small test scenario that will be utilized to ensure that
documents are successfully moved between the headquarters and the branch offices.

Each branch office can use a small test harness program to place a message in a transmit queue and a development team
member at the headquarters office can confirm the arrival of the simple message. The headquarters team will leverage a test
harness program to extract the message from BizTalk Server and process a portion of the message by making a change to a value
and sending the message back to the correct branch office.

Additional load and stress test are conducted to ensure that the configuration of the solutions perform well under various
scenarios designed to test the scalability, fault tolerance, and other areas of concern.

This MQSeries Explorer application is started by typing the program name at the prompt and then entering one or more
commands during a session. Typing END at the prompt completes the session. The program can be run on Windows NT or
Windows 2000 to create, alter, or delete queues and channels. The program can also be utilized to alter queue manager attributes.

Implementing encryption and signing of documents as required by banking standards can improve the solution. Each step in the
process of building the infrastructure and deploying the prototype solution is documented. Progress of the solution will continue
to be tracked and recorded as the various processes are completed.

Architecture
The BizTalk Adapter for MQSeries utilizes three components and a graphical user interface (GUI) to provide a simple but
extremely effective architecture. The components are:

Microsoft Management Console (MMC) Snap-in
Application Integration Component (AIC)
Receive Function
MQSeries Run Time Services

The following figure shows the components as they are naturally distributed on the BizTalk Server and the MQSeries Servers,
excluding the graphical user interface.

Figure 30: BizTalk Adapter for MQSeries Architecture

Microsoft BizTalk Adapter for MQSeries supports the following deployment models:

Receive Function – A single MQSeries Queue Manager is polled by a single BizTalk Server receive computer. Messages are
gathered in batches as configured by the user in the MMC Snap-in. The necessary conversions from ANSI to Unicode are
made prior to the payload being submitted to BizTalk Server for transformation and routing. After all messages contained in

a batch are processed, the server is reinitialized and processing can proceed based on the next batch of messages arriving
on the BizTalk Server instance.
Multiple MQSeries Queue Managers to one BizTalk Receive Server – In an enterprise that has chosen MQSeries as the
messaging standard, BizTalk Server is often chosen as the hub. In this scenario, many MQSeries Queue Managers integrate
with a single BizTalk Server instance that provides receive services.
Single MQSeries Queue Manager to Multiple BizTalk Receive Servers – Some enterprises scenarios require a very
high level of inbound message reception and processing. In this solution scenario, multiple BizTalk Server receive
computers are set up and configured to handle the inbound messages being routed to a single MQSeries transmission
queue. The messages must be read from the queue in batches without applying exclusive locks to the server. Compensate
for messages processed in an order that differs from the order in which they were inserted into the queue.

BizTalk Adapter for MQSeries Components

BizTalk Adapter for MQSeries includes design time and run time components. Design time is comprised of BizTalk Adapter for
MQSeries Configuration Console, and BizTalk Server Configuration. BizTalk Server Configuration involves port binding and
channel definitions. Run time contains the receive function component, MQSeries Helper run time library, and BizTalk Server
application integration component.

Design Time

The design time portion of the BizTalk Adapter for MQSeries utilizes

BizTalk Server Messaging Manager
MQSeries MMC Snap-in
MQSeries Explorer

These three user interfaces allow the developer or administrator to link the required BizTalk Server components to the MQSeries
environment. The next figure shows the MMC Snap-in developed for the BizTalk Adapter for MQSeries. The Snap-in provides the
design palette for creating objects that are necessary to bind MQSeries and BizTalk Server Messaging together. A Job is created
that acts as the container for the metadata describing a single relationship.

The Job object general properties are:

MQSeries Host Name
Queue Manager Name
Transmission Queue Name

The advanced properties are:

Maximum messages per transaction
Message wait interval
Maximum accumulated size
Polling interval

The linkage between an MQSeries queue and a BizTalk Server envelope, channel name, or document definition is defined in a
mapping object that is associated with its parent Job object. The Mapping Properties dialog box supports all of the document
submission parameters that are part of a BizTalk Server IInterchange.Submit call.

Figure 31: BizTalk Adapter for MQSeries MMC Snap-in

BizTalk Server Messaging Manager provides the graphical user interface required for the definition of a channel and port
combination to implement a zero code integration solution between an MQSeries environment and the BizTalk Server.

Figure 32: BizTalk Messaging Manager

The BizTalk Server Messaging Manager is the default binding and configuration interface for the integration server. Adapter
development companies are encouraged to leverage this interface as the mechanism for binding their adapter to a BizTalk Server
messaging scenario. The MQSeries channel can be linked to an MQSeries queue via the BizTalk Adapter for MQSeries by defining
a mapping. The configuration required in the BizTalk Adapter for MQSeries and Messaging Manager represent the values
required providing the metadata needed to constitute the connectivity solution implementation.

BizTalk Adapter for MQSeries Configuration Console

The MMC Snap-in portion of the BizTalk Adapter for MQSeries has been implemented according to the Windows platform
Microsoft Management Console (MMC Snap-in) standard. This graphical design pattern allows definition of graphical
configuration displays at a higher level. The connectivity solution MMC Snap-in provides the ability to create a Job. This specifies
the MQSeries Host Name (name of computer on which MQSeries is running), Queue Manager Name (Windows 2000 server
computer on which MQSeries software has been installed and configured), and a Transmission Queue Name. These represent a
transmission queue used to communicate with the MQSeries run time via the application integration component (AIC) and the
MQHelper dynamic link library. The configuration console is shown in the following figure.

Figure 33: BizTalk Adapter for MQSeries MMC Snap-in

The figure shown above shows the MMC Snap-in used to create a unit of computation, or Job. The properties of the Job include
the MQSeries Host Name, Queue Manger Name, and Transmission Queue. The properties are entered in the corresponding
fields of the General tab of the Job Properties dialog box as shown in the next figure.

Figure 34: Job Property General

Figure 35: Job Property Advanced Tabs

The Advanced tab of the Job Properties dialog box includes the Max Messages per Transaction, Message Wait Interval,
Max Accumulated Size, and Poll Interval.

BizTalk Server Configuration

Port Binding

The configuration of the BizTalk Server instance involves the creation of a port and channel combination. The port acts as the
binding interface between BizTalk Server and the MQSeries run time. The developer or administrator selects Application
Integration Component as the communication protocol in the BizTalk Server Messaging Manager as shown in the following
figure.

Figure 36: AIC Selection as Protocol

Click Browse to display the Select a Component dialog box as shown in the next figure.

Figure 37: AICMQ MQPipeline Selection

Selecting AICMQ MQPipeline as shown above allows the developer or administrator to literally plug the BizTalk Adapter for
MQSeries into the BizTalk Server Messaging Engine.

Click OK. The following dialog is displayed.

Figure 38: BizTalk Server and AICMQ Binding

The connectivity solution application integration component binds the BizTalk Adapter for MQSeries to BizTalk Server. The AIC is
called AICMQ for short. AICMQ implements the algorithms necessary to handle outbound messages moving from BizTalk Server
to a server that hosts the MQSeries Queue Manager software. The integration of the BizTalk Server capabilities can be linked to
the MQSeries run time without the developer or administrator writing a single line of custom code. After the AICMQ has been
bound to the appropriate messaging port, the BizTalk Server channel is used for processing data by providing transformation and
other services.

Channel Definition

Creating and configuring a BizTalk Server port is a prerequisite to this task. After the port is configured for use in a scenario, the
Queue Manager Server must provide information to BizTalk Server regarding processing steps on the inbound messages to a
specific instance.

Note A channel is created in the standard manner shown in the BizTalk Server online documentation.

The channel allows the definition of metadata by processing rules for converting the message from an MQSeries format to the
format of the target application system. Inbound processing converts the message from Unicode to ANSI format. The
configuration definition is illustrated in the next figure.

Figure 39: Channel Properties - Advanced Configuration

This dialog box provides access to the Advanced button. The developer or administrator can click the button and configure the
properties as shown.

Figure 40: AICMQ MQPipeline Component Properties

Two Active Server Pages (ASPs) support this interface. The ASP pages define the parameter specification and storage interfaces.
These are used to allow developers or administrators a facility for entering metadata at design time, which the adapter can use at
run time. The pages are described as Edit and Post pages in the Microsoft BizTalk Server Adapter Development Guide. Each page
is installed in the [install drive:]\ Program Files\MessagingManager\pipeline directory. The names of the ASP pages are
AICMQ_MQPipeline_1.asp and AICMQ_MQPipeline_1_post.asp. The task of configuring the design time portion of the adapter
configuration is complete once the developer or administrator clicks OK and the values are saved to the property bag or
dictionary.

Run time

The run time components of this connectivity solution are a combination of BizTalk Server specific components and one
component that requires the use of MQSeries SDK. The components provide the run time services required, allowing the BizTalk
Server computer and a server running the MQSeries Queue Manager to communicate. These components provide the support
necessary to allow inbound and outbound processing of MQSeries messages. The connectivity solution run time components are:

Receive Function
MQSeries Helper Run Time Library
BizTalk Server Application Integration Component

These three components combine to provide the non-visual adapter core. Each of these components will be discussed in this
section.

Receive Service

This part of the connectivity solution is a Windows 2000 service, which implements the monitor design pattern. The pattern
involves the use of a process initiated during the early stages of the operating system startup. In addition to Windows 2000
service functions, the service also implements an internal object called the Dispatcher. The Dispatcher configures thread level
properties and associates each worker thread with a thread procedure or worker function. While the service is running, the
worker function creates an MTBWorker object and sets the parameters and mappings for it. Each MTBWorker executes under the
context of a new (DTC) transaction.

MTBWorker

Each MTBWorker reads batches of messages from the designated queue and transports them to BizTalk Server under a
transactional context. This provides a guarantee that messages are either delivered to the BizTalk Server Work Queue (SQL Server

https://msdn.microsoft.com/en-us/library/ms684146(v=bts.10).aspx

internal table) or they are left in the source queue until they can successfully be delivered to a BizTalk Server instance. MQSeries
messages are only deleted from the transmit queue upon completion of a DTC transaction. Both BizTalk Server and the MQSeries
run time services must confirm the transaction as being completed successfully. The MQSeries run time services are implemented
in a dynamic link library called MQHelper.dll (MQHelper).

MQHelper

This component provides the implementation of the MQSeries application program interface (API) methods necessary to provide
send and receive services. This dynamic link library is necessary to provide DTC transaction contexts for each message traveling in
an inbound or outbound direction.

In an outbound transactional scenario,

1. BizTalk Server starts a transaction.
2. The application integration component enlists in the transaction.
3. The MQHelper component enlists in the transaction.
4. The MQHelper performs the task of writing a message into an MQSeries message queue located on the remote Windows

2000 computer.
5. The Windows 2000 service is deployed to host the MQSeries Server software.
6. The connectivity solution uses Distributed COM (DCOM) to move the payload to the remote server.
7. Any necessary conversion can then occur.
8. The data is written the MQSeries queue on the server in an outbound direction or picked up and packaged as a message.
9. This is sent to a BizTalk Server instance via DCOM in an inbound direction toward BizTalk Server.

The trip to the BizTalk Server instance requires installation and configuration of a receive service instance as discussed next.

Interaction with Receive Service

The receive service initiates an inbound transactional read operation, which causes this component to enlist in the transaction as
part of the request for extracting message from a local or remote MQSeries queue. The component executes under the auspices
of a surrogate process created by DLLHost.exe as a DCOM Server. This component must be installed on the server that hosts the
MQSeries Queue Manager.

Application Integration Component

The BizTalk Adapter for MQSeries AIC (AICMQ) delivers messages from BizTalk Server to an MQSeries Queue Manager. In
addition to message delivery, this component prevents message duplication, converts the messages from Unicode to ANSI, and
performs diagnostic tracing.

BizTalk Server Application Integration Component Implementation Details

AICMQ implements the BizTalk Server IPipelineComponent COM interface, which allows the entry of metadata at design time.
Meta data is represented as properties that are eventually stored as name and value pairs in a binary format in the property bag.
The AICMQ component is installed as part of the connectivity solution installation. The component is registered with BizTalk
Server by being installed as a Non-Configured COM+ Component followed by the appropriate category identifiers. The category
identifiers register the component as an application integration component that should be displayed as a choice in the BizTalk
Server Messaging Manager Select A Component dialog box when a developer or administrator chooses Application
Integration Component as the messaging protocol. The following figure displays the selection of AICMQ MQPipeline as the
component that implements the messaging protocol.

Figure 41: AIC Selection - AICMQ Pipeline Component

The figure above shows the selection of the AICMQ MQPipeline component as the transport mechanism for the associated BizTalk
Server Messaging port. The BizTalk Server design time interfaces are aware of each component that has registered the
appropriate category identifiers. This allows the BizTalk Server Messaging Manager to list the adapter as a choice in the list of
available components.

Transaction Context

The AICMQ is always invoked under the context of a transaction that is driven by the BizTalk Server Messaging Engine using the
DTC. Upon failure in AICMQ, the document will eventually be placed in the BizTalk Server suspended queue after the designated
number of BizTalk Server Messaging Engine retries fail. The data passed to AICMQ is in Unicode (BSTR) format, so the component
converts the message content to ANSI before transporting it to the MQSeries Queue Manager via communication with MQHelper.
The conversion takes place in the MQHelper component.

Application Integration Component Execution Process

As an application integration component, AICMQ will run in the same process space as the BizTalk Server service and thus does
not need to create and configure a COM+ package. At run time the BizTalk Server Messaging Engine invokes the AICMQ and
passes in the property bag. AICMQ reads the necessary parameters and sets the parameters of the component to the supplied
values prior to beginning its execution of the algorithms necessary to transport a BizTalk Server message to a remote server and
queue.

MQSeries Queue Manager Software

The Queue Manager resides on a second Windows 2000 Server. Launching the MQSeries Explorer as shown in the next figure can
configure the queue manager.

Figure 42: MQSeries Explorer

The Queue Manager Server provides the MQSeries Explorer as a MMC Snap-in. This supports

Definition of the Queue Manager
MQSeries channels
Client connections
Process definitions
Name lists
Cluster Queue Manager(s)
Transactional and non-transactional queues

Each of the components plays a key role in the acquisition and processing of messages. All of the components combined together
form the foundation for building very simple to extremely complex messaging solutions. The BizTalk Adapter for MQSeries
components combine to form a Plug-and-Play solution that integrates BizTalk Server into an MQSeries messaging environment.

Appendix

Single Machine Installation and Local Transmission Queues

A single machine configuration combines the BizTalk Server software, BizTalk Adapter for MQSeries, and the IBM MQSeries Series
Software that is used to create a Queue Manager all loaded on the same machine. Let's assume that a server exists with the name
"LAQueueServer". The configurations on this machine are very similar to the default multiple machine deployment scenario, but
the MQSeries Host Name and Queue Manager Name are the same. The properties are set properties as follows:

MQSeries Host Name: LAMQueueServer
Queue Manager Name: LAQueueServer
Transmission Queue Name: XMIT

The Queue Definition is export as mentioned previously in this document. Once you have exported the queue definition, the
remote Queue definition will show up in the MQSeries Explorer. The remote definition shows up with the same name as the Job
name defined in MQSeries Adapter MMC SnapIn. The parameter for the LAMQueueServer machine would be as follows:

Queue Name: JOB
Type Remote: Definition
Description: "Some text here"
Put Message: Allowed
Default Priority: 0
Default Persistence: Not Persistent
Scope: Queue Manager
Remote Queue Definition: TestQueue
Remote Queue Manager Name: JOB
Transmission Queue Name: XMIT

The transmission queue has the following values as its properties:

Queue Name: XMIT
Type: Local
Description: "More Text"
Put Message: Allowed
Default Priority: 0
Default Persistence: Not Persistent
Scope: Queue Manager
Usage: Transmission

This configuration does not use DCOM but instead uses local RPC calls to move the data from BizTalk Server to a transport queue
via AICMQ. The same observation applies for the message moving in an inbound to BizTalk Server direction. These messages are
written to a transport queue located on the server and a Receive Services pulls the message of the queue and submits them to
BizTalk Server.

MQSeries Trace Utility

This section provides information about the following MQSeries Trace Utility topics:

Background and Overview
Installation
Registry and Files
Running the Trace Utility
Trace Utility Details

Also included in the Appendix section are topics covering:

Troubleshooting
Other Considerations
Encoding Summary
MQSeries Overview
Things to Keep in Mind
References

Background and Overview

Beginning with Microsoft Windows 2000, the kernel provides tracing services for use by applications and device drivers. These
services allow developers to leverage a highly scalable and extensible tracing architecture for capturing events either to a file or to
a real-time trace listener. Complete documentation for Event Tracing is found in MSDN under Platform SDK Documentation\Base

Services\Debugging and Error Handling\Event Tracing.

Software Tracing - Software Tracing is a library of code and tools that abstracts the developer experience for Event Tracing.
Software Tracing uses a pre-processor to process and alter source code so that it will produce tracing information using Event
Tracing. Software Tracing tools are available in the SDK and DDK from Microsoft. Software Tracing ships with several run time
tools in addition to the compile time requirements of preprocessing source code.

Adapter Trace Utility (ATU) Interaction with Operating System (OS) Tracing - The ATU makes direct Event Trace
application programming interface (API) calls to capture trace data into a logfile. Each logfile corresponds to an event trace
session, which has parameters that include file destination, file size, and file-write behavior. The ATU makes direct use of the Event
Tracing API to create and control a single Event Trace session.

Adapters – It is important that all adapters use the same trace utility. This was designed to simplify tracing for all adapters. All
BizTalk 1.0 Adapters use this trace utility, and it will ship with all BizTalk 1.0 Adapters. If multiple adapters are installed on the
same computer, for example, BizTalk Adapter for SAP and BizTalk Adapter for MQSeries, then the trace utility (implemented as an
MMC Snap-in), will display both adapters. Enabling tracing for one component per adapter, multiple components per adapter or
multiple adapters at the same time is possible. In this scenario, trace output for all enabled components/adapters will be directed
to a single file.

Installation

If the BizTalk Adapter for MQSeries is installed using Autorun from the CD, the Microsoft MMC Adapter Trace Utility is
automatically installed during setup. The default directory for installation of all trace files is %CommonProgramFiles%\Adapter
Trace Utilities.

It can also be installed separately, by directly running the MSI package (BizTalkAdapterTraceUtility.msi)

To uninstall

1. Double-click Add/Remove Programs.
2. Select the program, and click Uninstall.

This will uninstall all created short cuts, directories and files.

To reinstall

Run the MSI package again. It will automatically switch to maintenance mode and Reinstall will update all the trace files.

Registry and Files

Adapter Trace Utility (ATU) – As part of the ATU package (BizTalkAdapterTraceUtility.msi), all registry keys used by the ATU are
in a single location, which can be found at HKEY_LOCAL_MACHINE\Software\Microsoft\Adapter Trace Utility

This root key has values and sub-keys beneath it. Valid root key values are:

File (REG_SZ) is the path to the output trace file.
Size (REG_DWORD) is the size of the output trace file.
Flags (REG_DWORD) is the creation flags of the output trace file (circular, sequential).
Format Tool (REG_SZ) is the fully qualified path to tracefmt.exe.

BizTalk Adapter for MQSeries for tracing – As a part of the BizTalk Adapter for MQSeries package
(BizTalkAdapterforMQS.msi), certain registry keys are created. Every sub-key of the root key identifies an adapter key. This key
corresponds to the friendly name of an adapter, i.e., Microsoft BizTalk Adapter for MQSeries. Valid Adapter key values are:

TMF Path (REG_SZ) is the path to the adapter installed *.TMF and *.TMC files to be used by the tracefmt.exe utility to convert
from binary trace files to human readable trace files. These files are installed with the BizTalk Adapter for MQSeries. By
default, all *.tmf and *.tmc files are located at C:\Program Files\Microsoft BizTalk Adapter for MQSeries\Trace\Trace_Format\
An Adapter key has two sub-keys. The first sub-key is a Components key. The second Adapter sub-key is a Flags key.
*.CTL files are installed with the adapter at C:\Program Files\Microsoft BizTalk Adapter for MQSeries\Trace. These files
contain the GUID for each component. When using the ATU, these files are not required since the GUID for each component
is stored in the registry. This is required only for use with the command line utility. Tracelog.exe is not documented nor is it
recommended for use.

Command Line tool (tracelog.exe) The command line utility is shipped as part of the BizTalkAdapterTraceUtility.msi package.
Tracelog.exe is not recommended for usage; the GUI Utility is the preferred utility.

Run the Trace Utility

Figure 43: Trace Utility

1. On the Start menu, click Programs, click Microsoft BizTalk Adapter Trace Utility, and then click Trace Manager. The
Trace Utility Manager will open.

2. In the left pane, right-click Default Session, and then click Properties. In the Trace Settings dialog box, either fill in the
following three properties or leave the default settings.

File Name: The default is %CommonProgramFiles%\Adapter Trace Utilities\traces\output.log.
File Size: Default is 20 MB.
Log Method: Leave the default of Create Circular. With a Circular log method, when the output log file reaches its
maximum size, it will maintain that size by overwriting the same log from the beginning. This creates a sliding window
of information, which can be useful.

Note Choosing Create Sequential, causes the output file, once it reaches its maximum size specified, to
stop recording trace information.

You can trace any or all of the BizTalk Adapter for MQSeries four components: AICMQ, MQHelper, MTBSvc, or MTBWorker.

1. To enable all components for tracing, in the left pane, right-click Microsoft BizTalk Adapter for MQSeries, and then click
Enable All Components. To disable all components for tracing, in the left pane, right-click Microsoft BizTalk Adapter for
MQSeries, and then click Disable All Components.

2. To enable or disable components individually, right-click the component, and then select Enable This Component or Disable
This Component.

3. Select an enabled component in the left pane. In the right pane, right-click the appropriate Flag Level for that component
(Debug, Error, Information, or Warning), and then click Enable. This determines the level of tracing to perform.

4. To enable or disable all components at once, right-click the component, and then click Enable All Flags or Disable All Flags.
5. Repeat Step 3 for each component to be traced.
6. Once each component is configured, right-click Default Session in the left pane, and then click Start to run the Trace Utility

on the enabled components.
7. To stop tracing, in the left pane, right-click Default Session, and then click Stop.
8. At this point the output file might be sent to a Microsoft Product Support Specialist via e-mail. However, it is possible to

view the file. In the left pane, right-click Default Session, and then click Format. This puts the output file into a readable
format. Right-click Default Session again, and then click View. The file will open in the default viewer.

9. To delete the output file, in the left pane, right-click Default Session, and then click Delete.

Tracing Utility Details

By default, trace output goes to a file called output.txt located at %CommonProgramFiles%\Adapter Trace
Utilities\traces\output.log.

Output contains many fields, each delimited by comma (,). For example, a sample output trace statement might look like this:

The fields in the trace output are in the following order:

0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,CMQPipeline::FinalConstruct,mqpipeline_
cpp55,CMQPipeline::FinalConstruct - enter

CPU, PROCESS ID, THREAD ID, TIMESTAMP (DATE/TIME), COMPONENT NAME, FLAG/LEVEL, FUNCTION NAME, NAME OF
FILE/LINE NUMBER, OUTPUT STRING

Sample 1 – Send message from BizTalk to MQSeries – In this case, tracing is enabled only for AICMQ and MQHelper
components. Also, all flags are enabled on for these 2 components.

Using the AIC for MQSeries (AICMQ), a message is sent from BizTalk Server to MQSeries Server (ANIL3), Queue Manager
(MQS_QM), Queue (LocalTest1).

Output:

EventTrace
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,CMQPipeline::FinalConstruct,mqpipeline_
cpp55,CMQPipeline::FinalConstruct - enter
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,CMQPipeline::FinalConstruct,mqpipeline_
cpp72,CMQPipeline::FinalConstruct - exit
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,CMQPipeline::SetConfigData,mqpipeline_c
pp551,SetConfigData is being called
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,CMQPipeline::SetConfigData,mqpipeline_c
pp650,SetConfigData MQServer = <ANIL3>, Queue_Manager_Name = <MQS_QM>, Queue_Name = <LocalTes
t1>
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,CMQPipeline::Execute,mqpipeline_cpp140,
Execute enter
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,CMQPipeline::Execute,mqpipeline_cpp220,
Execute get working_data 0x0
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,CMQPipeline::Execute,mqpipeline_cpp248,
Execute working_data length = 26
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,KapolaTraceMessageW,MsgTraceAICMQ_cpp32
,The message length is 26
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,KapolaTraceMessageW,MsgTraceAICMQ_cpp56
,The content is (not truncated):
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,KapolaTraceMessageW,MsgTraceAICMQ_cpp58
,test message for brown bag
0,0000,076C,10/08/2001-15:43:58.907,aicmq,MYLOG_TRACE,CMQPipeline::Execute,mqpipeline_cpp259,
Execute Create an MQHelper on ANIL3
0,0000,076C,10/08/2001-15:43:58.970,aicmq,MYLOG_TRACE,CMQPipeline::Execute,mqpipeline_cpp300,
Execute Putting message to QMgr(MQS_QM), Q(LocalTest1)
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CRemoteMQ::WriteMessage,remotemq_cpp
1204,WriteMessage: Enter
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CRemoteMQ::WriteMessage,remotemq_cpp
1277,WriteMessage The original message
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,KapolaTraceMessageW,MsgTraceMQHelper
_cpp32,The message length is 26
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,KapolaTraceMessageW,MsgTraceMQHelper
_cpp56,The content is (not truncated):
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,KapolaTraceMessageW,MsgTraceMQHelper
_cpp58,test message for brown bag
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CMQMessage::PrepareMQMessage,mqmessa
ge_cpp59,CMQMessage::PrepareMQMessage Original IN message
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,KapolaTraceMessageW,MsgTraceMQHelper
_cpp32,The message length is 26
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,KapolaTraceMessageW,MsgTraceMQHelper
_cpp56,The content is (not truncated):
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,KapolaTraceMessageW,MsgTraceMQHelper
_cpp58,test message for brown bag
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CMQMessage::PrepareMQMessage,mqmessa
ge_cpp107,CMQMessage::PrepareMQMessage Number of bytes written is 26
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CMQMessage::PrepareMQMessage,mqmessa
ge_cpp129,CMQMessage::PrepareMQMessage Buffer length = 27, Message data length = 26
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CMQMessage::PrepareMQMessage,mqmessa
ge_cpp132,CMQMessage::PrepareMQMessage After necessary conversion
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,KapolaTraceMessageC,MsgTraceMQHelper
_cpp74,The message length is 26
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,KapolaTraceMessageC,MsgTraceMQHelper
_cpp97,The content is (not truncated):
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,KapolaTraceMessageC,MsgTraceMQHelper
_cpp98,test message for brown bag
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CMQMessage::PrepareMQMessage,mqmessa

ge_cpp176,CMQMessage::PrepareMQMessage Message length after conversion to CP_ACP: 26
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp499,In
itMQ(MQS_QM, LocalTest1)
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp501,In
itMQ m_fCanBePooled = 0
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp538,In
itMQ CurrentQName = <RQD_QMTWO>, CurrentQMgrName = <QMONE>, CurrentOpenOptions = 16
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp553,In
itMQ Diff_QMgr = <yes>, Diff_Q = <yes>, Diff_OO = <no>
0,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp587,In
itMQ Queue is opened. Will close
1,0000,0A64,10/08/2001-15:43:58.970,mqhelper,MYLOG_TRACE,CRemoteMQ::Activate,remotemq_cpp1590
,****** Activate *******
1,0000,0A64,10/08/2001-15:43:59.126,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp616,In
itMQ Diff Q Mgr. Full Init required. fSameQ = FALSE
1,0000,0A64,10/08/2001-15:43:59.126,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp629,In
itMQ Disconnect QMgr anyway
1,0000,0A64,10/08/2001-15:43:59.126,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp669,In
itMQ Need to reset Q name.
1,0000,0A64,10/08/2001-15:43:59.126,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp697,In
itMQ Set queue open options to 0x10
1,0000,0A64,10/08/2001-15:43:59.126,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp720,In
itMQ fCanBePooled = 1. Return S_OK.
1,0000,0A64,10/08/2001-15:43:59.126,mqhelper,MYLOG_TRACE,CRemoteMQ::WriteMessage,remotemq_cpp
1362,WriteMessage Calling putMessage
1,0000,0A64,10/08/2001-15:43:59.126,mqhelper,MYLOG_TRACE,KapolaTraceMessageC,MsgTraceMQHelper
_cpp74,The message length is 26
1,0000,0A64,10/08/2001-15:43:59.126,mqhelper,MYLOG_TRACE,KapolaTraceMessageC,MsgTraceMQHelper
_cpp97,The content is (not truncated):
1,0000,0A64,10/08/2001-15:43:59.126,mqhelper,MYLOG_TRACE,KapolaTraceMessageC,MsgTraceMQHelper
_cpp98,test message for brown bag
0,0000,076C,10/08/2001-15:44:02.548,aicmq,MYLOG_TRACE,CMQPipeline::Execute,mqpipeline_cpp439,
Execute WriteMessage succeeded
0,0000,076C,10/08/2001-15:44:02.548,aicmq,MYLOG_TRACE,CMQPipeline::Execute,mqpipeline_cpp441,
Execute returning S_OK
0,0000,076C,10/08/2001-15:44:02.548,aicmq,MYLOG_TRACE,CMQPipeline::FinalRelease,mqpipeline_cp
p80,CMQPipeline::FinalRelease - enter
0,0000,076C,10/08/2001-15:44:02.548,aicmq,MYLOG_TRACE,CMQPipeline::FinalRelease,mqpipeline_cp
p87,CMQPipeline::FinalRelease: This was the last object
1,0000,0A64,10/08/2001-15:44:02.548,mqhelper,MYLOG_TRACE,CRemoteMQ::WriteMessage,remotemq_cpp
1386,WriteMessages(MQS_QM, LocalTest1): is successful
1,0000,0C00,10/08/2001-15:44:02.548,mqhelper,MYLOG_TRACE,CRemoteMQ::Deactivate,remotemq_cpp16
22,***** Deactivate *****
1,0000,0C38,10/08/2001-15:44:03.391,mqhelper,MYLOG_TRACE,CRemoteMQ::CanBePooled,remotemq_cpp1
612,***** CanBePooled ***** Object CanBePooled = 1

Sample 2 – Receive message in BizTalk from MQSeries - In this case, tracing is enabled for MT
BSVC, MTBWorker and MQHelper components. Also, all flags are enabled on for these three compo
nents.
Message is sent from MQSeries Server to receive function on BizTalk Server.
Remote Definition Name (JOB), Remote Queue Manager (Job), Remote Queue Name (TestQueue01), Tr
ansmission Queue Name (XMITQ1), Machine Name (ANIL3). TestQueue01 is mapped to Channel1 on Bi
zTalk Server.
Output:

EventTrace
0,0000,06F8,10/08/2001-15:58:51.896,mtbsvc,MYLOG_TRACE,CThread::ThreadProc,Thread_cpp285,Thre
adProc: Creating a worker
0,0000,0710,10/08/2001-15:58:51.896,mtbworker_hash,MYLOG_TRACE,CWorker::FinalConstruct,worker
_cpp32,CWorker::FinalConstruct - enter
0,0000,0710,10/08/2001-15:58:51.896,mtbworker_hash,MYLOG_TRACE,CWorker::FinalConstruct,worker
_cpp52,CWorker::FinalConstruct - exit
1,0000,06F8,10/08/2001-15:58:51.911,mtbsvc,MYLOG_TRACE,CThread::ThreadProc,Thread_cpp338,Thre
adProc, Set parameters
1,0000,0710,10/08/2001-15:58:51.911,mtbworker_hash,MYLOG_TRACE,CWorker::SetParameters,worker_
cpp917,CWorker::SetParameters done
0,0000,0710,10/08/2001-15:58:51.927,mtbworker_hash,MYLOG_TRACE,CWorker::Work,worker_cpp144,CW
orker::Work(ANIL3, MQS_QM, XMITQ1), m_fCanBePooled = 0

0,0000,0710,10/08/2001-15:58:51.927,mtbworker_hash,MYLOG_TRACE,CWorker::Work,worker_cpp245,CW
orker::Work: Create an MQHelper on ANIL3
1,0000,06F8,10/08/2001-15:58:51.927,mtbsvc,MYLOG_TRACE,CThread::ThreadProc,Thread_cpp457,Thre
adProc, Work(ANIL3, MQS_QM, XMITQ1)
0,0000,0710,10/08/2001-15:58:51.942,mtbworker_hash,MYLOG_TRACE,CWorker::Work,worker_cpp293,CW
orker::Work: Read messages
1,0000,0654,10/08/2001-15:58:51.942,mqhelper,MYLOG_TRACE,CRemoteMQ::Activate,remotemq_cpp1590
,****** Activate *******
1,0000,0654,10/08/2001-15:58:51.942,mqhelper,MYLOG_TRACE,CRemoteMQ::SetParameters,remotemq_cp
p1580,CRemoteMQ::SetParametersGetMsgWaitInterval = 512 MaxNumMsgsPerTxn = 10 MaxAccumulatedSi
ze = 30720
1,0000,0654,10/08/2001-15:58:51.942,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp499,In
itMQ(MQS_QM, XMITQ1)
1,0000,0654,10/08/2001-15:58:51.942,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp501,In
itMQ m_fCanBePooled = 0
1,0000,0654,10/08/2001-15:58:51.942,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp538,In
itMQ CurrentQName = <XMITQ1>, CurrentQMgrName = <MQS_QM>, CurrentOpenOptions = 34
1,0000,0654,10/08/2001-15:58:51.942,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp553,In
itMQ Diff_QMgr = <no>, Diff_Q = <no>, Diff_OO = <no>
1,0000,0654,10/08/2001-15:58:51.942,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp569,In
itMQ Same QMgr, Same Q, Same OO. CRemoteMQ object is to be reused directly.Set fCanBePooled f
lag to TRUE. Returning S_OK
1,0000,0654,10/08/2001-15:58:51.942,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadFromMQ,remotemq_cpp85
2,ReadFromMQ()
1,0000,0654,10/08/2001-15:58:51.942,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadFromMQ,remotemq_cpp88
6,ReadFromMQ fKeepReading = 1
1,0000,0654,10/08/2001-15:58:51.942,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadFromMQ,remotemq_cpp90
2,ReadFromMQ get next message from MQ
0,0000,0654,10/08/2001-15:58:52.458,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadFromMQ,remotemq_cpp99
1,ReadFromMQ: No more message in queue
0,0000,0654,10/08/2001-15:58:52.458,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadFromMQ,remotemq_cpp10
12,ReadFromMQ: returning S_OK
0,0000,0654,10/08/2001-15:58:52.458,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadMessages,remotemq_cpp
288,ReadMessages No message read. S_FALSE. Num messages left is set to 0
0,0000,0710,10/08/2001-15:58:52.458,mtbworker_hash,MYLOG_TRACE,CWorker::FinalRelease,worker_c
pp61,CWorker::FinalRelease - enter
0,0000,0710,10/08/2001-15:58:52.458,mtbworker_hash,MYLOG_TRACE,CWorker::FinalRelease,worker_c
pp71,CWorker::FinalRelease: This was the last object
0,0000,0710,10/08/2001-15:58:52.458,mqhelper,MYLOG_TRACE,CRemoteMQ::CanBePooled,remotemq_cpp1
612,***** CanBePooled ***** Object CanBePooled = 1
0,0000,06F8,10/08/2001-15:58:52.458,mtbsvc,MYLOG_TRACE,CThread::ThreadProc,Thread_cpp504,Thre
adProc Work(ANIL3, MQS_QM, XMITQ1) found 0 messages in the queue
1,0000,0710,10/08/2001-15:58:52.458,mtbworker_hash,MYLOG_TRACE,CWorker::Work,worker_cpp314,Wo
rk(ANIL3, MQS_QM, XMITQ1): MQ queue is empty
1,0000,0710,10/08/2001-15:58:52.458,mtbworker_hash,MYLOG_TRACE,CTransactionHelper::~CTransact
ionHelper,MTBWTxnHelper_cpp64,DTC SetAbort succeeded
1,0000,0654,10/08/2001-15:58:52.458,mqhelper,MYLOG_TRACE,CRemoteMQ::Deactivate,remotemq_cpp16
22,***** Deactivate *****
0,0000,0D78,10/08/2001-15:58:53.458,mtbworker_hash,MYLOG_TRACE,CWorker::FinalConstruct,worker
_cpp32,CWorker::FinalConstruct - enter
0,0000,0D78,10/08/2001-15:58:53.458,mtbworker_hash,MYLOG_TRACE,CWorker::FinalConstruct,worker
_cpp52,CWorker::FinalConstruct - exit
0,0000,06F8,10/08/2001-15:58:53.458,mtbsvc,MYLOG_TRACE,CThread::ThreadProc,Thread_cpp457,Thre
adProc, Work(ANIL3, MQS_QM, XMITQ1)
0,0000,0D78,10/08/2001-15:58:53.458,mtbworker_hash,MYLOG_TRACE,CWorker::Work,worker_cpp144,CW
orker::Work(ANIL3, MQS_QM, XMITQ1), m_fCanBePooled = 0
1,0000,06F8,10/08/2001-15:58:53.458,mtbsvc,MYLOG_TRACE,CThread::ThreadProc,Thread_cpp285,Thre
adProc: Creating a worker
1,0000,06F8,10/08/2001-15:58:53.458,mtbsvc,MYLOG_TRACE,CThread::ThreadProc,Thread_cpp338,Thre
adProc, Set parameters
1,0000,0D78,10/08/2001-15:58:53.458,mtbworker_hash,MYLOG_TRACE,CWorker::SetParameters,worker_
cpp917,CWorker::SetParameters done
0,0000,0654,10/08/2001-15:58:53.474,mqhelper,MYLOG_TRACE,CRemoteMQ::Activate,remotemq_cpp1590
,****** Activate *******
0,0000,0654,10/08/2001-15:58:53.474,mqhelper,MYLOG_TRACE,CRemoteMQ::SetParameters,remotemq_cp
p1580,CRemoteMQ::SetParametersGetMsgWaitInterval = 512 MaxNumMsgsPerTxn = 10 MaxAccumulatedSi
ze = 30720
0,0000,0654,10/08/2001-15:58:53.474,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp499,In

Troubleshooting MQSeries - FAQs

Q. Which version of MQSeries should I use?

As of this writing, MQSeries 5.2.1 is the latest version, and is recommended. It has more helpful information in the error messages
and event log entries. It also has a Prepare MQSeries Wizard, which is helpful.

Q. What are the signs that MQSeries isn't configured correctly?

Most issues with MQSeries are caused by permission problems. The following summarizes the problems or errors you may see in
either MQSeries Explorer or the event log that indicate a permission problem:

In the left pane, after expanding the Queue Managers node, you right-click a queue manager and do not see menu items
for New and Delete.
A queue manager has queue associated with it, but the queue manager node will not expand to show you those queues.

itMQ(MQS_QM, XMITQ1)
0,0000,0654,10/08/2001-15:58:53.474,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp501,In
itMQ m_fCanBePooled = 0
0,0000,0654,10/08/2001-15:58:53.474,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp538,In
itMQ CurrentQName = <XMITQ1>, CurrentQMgrName = <MQS_QM>, CurrentOpenOptions = 34
0,0000,0654,10/08/2001-15:58:53.474,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp553,In
itMQ Diff_QMgr = <no>, Diff_Q = <no>, Diff_OO = <no>
0,0000,0654,10/08/2001-15:58:53.474,mqhelper,MYLOG_TRACE,CRemoteMQ::InitMQ,remotemq_cpp569,In
itMQ Same QMgr, Same Q, Same OO. CRemoteMQ object is to be reused directly.Set fCanBePooled f
lag to TRUE. Returning S_OK
0,0000,0654,10/08/2001-15:58:53.474,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadFromMQ,remotemq_cpp85
2,ReadFromMQ()
0,0000,0654,10/08/2001-15:58:53.474,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadFromMQ,remotemq_cpp88
6,ReadFromMQ fKeepReading = 1
0,0000,0654,10/08/2001-15:58:53.474,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadFromMQ,remotemq_cpp90
2,ReadFromMQ get next message from MQ
1,0000,0D78,10/08/2001-15:58:53.474,mtbworker_hash,MYLOG_TRACE,CWorker::Work,worker_cpp245,CW
orker::Work: Create an MQHelper on ANIL3
1,0000,0D78,10/08/2001-15:58:53.474,mtbworker_hash,MYLOG_TRACE,CWorker::Work,worker_cpp293,CW
orker::Work: Read messages
0,0000,0D78,10/08/2001-15:58:53.989,mtbworker_hash,MYLOG_TRACE,CWorker::Work,worker_cpp314,Wo
rk(ANIL3, MQS_QM, XMITQ1): MQ queue is empty
0,0000,0D78,10/08/2001-15:58:53.989,mtbworker_hash,MYLOG_TRACE,CTransactionHelper::~CTransact
ionHelper,MTBWTxnHelper_cpp64,DTC SetAbort succeeded
0,0000,0654,10/08/2001-15:58:53.989,mqhelper,MYLOG_TRACE,CRemoteMQ::Deactivate,remotemq_cpp16
22,***** Deactivate *****
1,0000,0654,10/08/2001-15:58:53.989,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadFromMQ,remotemq_cpp99
1,ReadFromMQ: No more message in queue
1,0000,0654,10/08/2001-15:58:53.989,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadFromMQ,remotemq_cpp10
12,ReadFromMQ: returning S_OK
1,0000,0654,10/08/2001-15:58:53.989,mqhelper,MYLOG_TRACE,CRemoteMQ::ReadMessages,remotemq_cpp
288,ReadMessages No message read. S_FALSE. Num messages left is set to 0
1,0000,0D78,10/08/2001-15:58:53.989,mtbworker_hash,MYLOG_TRACE,CWorker::FinalRelease,worker_c
pp61,CWorker::FinalRelease - enter
1,0000,0D78,10/08/2001-15:58:53.989,mtbworker_hash,MYLOG_TRACE,CWorker::FinalRelease,worker_c
pp71,CWorker::FinalRelease: This was the last object
1,0000,0D78,10/08/2001-15:58:53.989,mqhelper,MYLOG_TRACE,CRemoteMQ::CanBePooled,remotemq_cpp1
612,***** CanBePooled ***** Object CanBePooled = 1
1,0000,06F8,10/08/2001-15:58:53.989,mtbsvc,MYLOG_TRACE,CThread::ThreadProc,Thread_cpp504,Thre
adProc Work(ANIL3, MQS_QM, XMITQ1) found 0 messages in the queue
0,0000,06F8,10/08/2001-15:58:54.989,mtbsvc,MYLOG_TRACE,CThread::ThreadProc,Thread_cpp285,Thre
adProc: Creating a worker
0,0000,06F8,10/08/2001-15:58:54.989,mtbsvc,MYLOG_TRACE,CThread::ThreadProc,Thread_cpp338,Thre
adProc, Set parameters
0,0000,0E64,10/08/2001-15:58:54.989,mtbworker_hash,MYLOG_TRACE,CWorker::SetParameters,worker_
cpp917,CWorker::SetParameters done
1,0000,0E64,10/08/2001-15:58:54.989,mtbworker_hash,MYLOG_TRACE,CWorker::FinalConstruct,worker
_cpp32,CWorker::FinalConstruct - enter
1,0000,0E64,10/08/2001-15:58:54.989,mtbworker_hash,MYLOG_TRACE,CWorker::FinalConstruct,worker
_cpp52,CWorker::FinalConstruct - exit

After right-clicking a queue manager and selecting Connect you get this error message: "Access not authorized. You are not
authorized to perform this action. (AMQ4036)"

Event log

Event Type:Warning

Event Source:MQSeries

Event Category:None

Event ID:8079

Description

Access was denied when attempting to retrieve group membership information for user 'billjoy@northamerica'.

MQSeries, running with the authority of user 'musr_mqadmin@billjoy1', was unable to retrieve group membership information
for the specified user.

Ensure Active Directory access permissions allow user 'musr_mqadmin@billjoy1' to read group memberships for user
'billjoy@northamerica'. To retrieve group membership information for a domain user, MQSeries must run with the authority of a
domain user.

Event Type:Warning

Event Source:MQSeries

Event Category:None

Event ID:8561

Description

Domain controller unavailable.

MQSeries was unable to contact the domain controller to obtain information for user 'billjoy@northamerica'.

Ensure that a domain controller for the domain on which user 'billjoy@northamerica' is defined is available. Alternatively, if you
are using a computer that is not currently connected to the network and have logged on using a domain user ID, you may wish to
log on using a local user ID instead.

Event Type:Warning

Event Source:MQSeries

Event Category:None

Event ID:8062

Description

Unexpected return code, '10', from command 'RUNMQCHI -qSYSTEM.CHANNEL.INITQ -mQueueMan'.

An unexpected return code, '10', was returned by command 'RUNMQCHI -qSYSTEM.CHANNEL.INITQ -mQueueMan'. This
command was issued by the MQSeries service for queue manager 'QueueMan'.

Verify that the command and parameters are correct.

Event Type:Error

Event Source:MQSeries

Event Category:None

Event ID:9509

Description

Program cannot open queue manager object.

The attempt to open either the queue or queue manager object 'SYSTEM.CHANNEL.INITQ' on queue manager 'QueueMan' failed
with reason code 2042.

Ensure that the queue is available and retry the operation.

Q. I have one or more of these symptoms. How do I fix it?

How to fix the permissions issue depends on how you need to be logged in to the MQSeries computer. For a more detailed
discussion than what is provided in this document, see http://www-4.ibm.com/software/ts/mqseries/support/faqs/w2k.html. In a
nutshell, the two scenarios are:

Logging in using a domain account.

Issue #1: When you are logged in using a domain account, MQSeries will always attempt to contact the domain controller (DC). If
you are not connected to the network, you will see one or more of the errors described above.

Solution: If you need to use a domain account, you must stay connected to the network where the DC is.

Issue #2: If MQSeries can contact the DC it will attempt to look up group membership information for the domain account you
used to log in. By default, it will look this information up using the local MUSR_MQADMIN account, which was created during
setup (along with a local group named MQM). This local account will typically not have the permissions it needs and you will get
event 8079 (see above) in your event log.

Solution: Using the Prepare MQSeries Wizard, select the option that says there is a Windows domain controller on the network,
and then specify domain credentials (most likely the same account you used to log in) that have permission to look up group
membership for your login account. NOTE: if you are using MQSeries 5.2 you need to run dcomcnfg.exe, select "IBM MQSeries
Services" on the Application tab, click Properties, select the Identity tab, select This user, and type the credentials there.

Issue #3: Logging in using a local computer account.

Solution: When logging in using a local account, MQSeries does not try to contact any DC, so all you need to do is make sure you
are logging in with an administrative account.

Other Considerations

When sending large messages (greater than 128 KB) to MQSeries, you will experience a long delay. See KB Article 301117
Only one instance of the BizTalk Adapter for MQSeries MMC Snap-in may be open at a given instance. Auto-refresh is not
supported. Hence, multiple Snap-ins can easily get out of sync visually.
Memory consumed by Microsoft Distributed Transaction Coordinator (msdtc.exe) continues to increase while running long
periods of stress. You will notice the increase on the BizTalk Server that is running the receive function. This is normally
noticed after receiving continuous messages for more than 24 hours. For more information see KB article 307383

Note Restarting the Distributed Transaction Coordinator Service (MSDTC) will reset the memory usage of
msdtc.exe. Stopping MSDTC will also stop Message Queuing (MSMQ), BizTalk Messaging Service and the BizTalk
Adapter for MQSeries Service (receive function). Restarting BizTalk Adapter for MQSeries service will also restart
MSDTC and BizTalk Messaging Service. You will have to manually start the MSMQ service.

If you are installing MQSeries for the first time, you will need to reboot your system before installing the BizTalk Adapter for
MQSeries.
If you want to the adapter to continue working with no user logged on to the system, you need to do the following: In
Component Services, if you configure the BizTalk Adapter for MQSeries COM+ Component to run under a specific user
(instead of the default interactive user), you must also configure the BizTalk Server Interchange Application COM+
Component to run under a specific user. Likewise, on the MQSeries system, if this is done for the MQHelper Component,
then you will need to configure the MQSeries objects to be accessed by that user. This is done by using the Setmqaut
command.
The receive Component does not support dynamic configuration. Each time a change occurs in the BizTalk Adapter for
MQSeries configuration, the receive service needs to be restarted.
You need to be a local administrator on the BizTalk Server and MQSeries Server for installation, starting the service, making
changes in the Configuration Manager of the adapter and so on.
This Adapter does not support UTF-8 format.
In MQSeries, Queue Manager must have the same CCSID property as the current system ANSI code page. When a Queue
Manager is created, this property is set accordingly by default. However, in some cases you may find that it has changed,
and needs to be adjusted manually.
When attempting to run the Adapter Trace Utility on an application that has not been started, trace information for that
application will not be available. To remedy this, stop the Default Session, start the application, and then start the Default
Session. For more information, see KB article Q307331.
Running multiple instances of the Adapter Trace Utility (ATU) is not supported. ATU writes to the registry only when it is
closed. If you make changes to one instance and load another instance, you will notice that they are out of sync.

http://www-4.ibm.com/software/ts/mqseries/support/faqs/w2k.html
http://support.microsoft.com/support/kb/articles/Q301/1/17.asp
http://support.microsoft.com/support/kb/articles/Q307/3/83.asp
http://support.microsoft.com/support/kb/articles/Q307/3/31.asp

MQSeries to BizTalk Server Encoding Summary

Figure 44: Messaging Encoding

Notes

1. The application on the AS/400 creates a document and places it on a remote queue definition defined in MQSeries. This
remote queue definition points to the alias of the MQSeries queue manager installed on Windows 2000. The encoding of
the document at this point is coded character set identifier (CCSID) 500. This is IBM-500 single byte EBCDIC encoding.

2. Because applications on the Windows 2000 Server do not understand the CCSID 500 encoding, the document must be
converted to another encoding scheme. This is accomplished by setting the CONVERT attribute on the sender channel to
'yes'.

3. Because the CONVERT attribute is set to 'yes', the MQSeries on the AS\400 will convert the document to CCSID 437 before
the document is transmitted. CCSID 437 is a single byte ASCII encoding that represents the IBM-437 codeset. A hot fix was
developed by the product team to address this issue. Specifically, the hot fix eliminates the need to set the CONVERT
attribute on the sending channel. It does this by letting the MQSeries function MQGET perform the conversion on the
receiving computer. See the MQSeries Information Center for more information.

4. When the message arrives to the queue manager on the Windows 2000 Server, it will be placed in the transmission queue
specified by the queue manager alias definition. The encoding of the document at this point is CCSID 437.

5. The BizTalk Adapter for MQSeries will monitor the transmission queue. When a document is placed into the queue with a
remote queue name that matches a mapping defined in the BizTalk Adapter for MQSeries, the BizTalk Adapter for MQSeries
will remove the document from the queue.

6. The adapter assumes that all incoming documents are ASCII encoded. Before the BizTalk Adapter for MQSeries submits the
document to BizTalk Server, the BizTalk Adapter for MQSeries will convert the document to UCS-2 encoding.

7. The BizTalk Adapter for MQSeries submits the UCS-2 encoded document to BizTalk Server.

Troubleshooting
If the document is in XML format with an encoding tag, you may receive a BizTalk parser error. This is because the encoding tag
may conflict with the document's physical encoding. An example of this would be an XML document with a UTF-8 encoding tag.
Because the BizTalk Adapter for MQSeries always converts the document to UCS-2, the document's actual encoding will differ
from the encoding specified by the document itself. The workaround for this error is straightforward – remove the encoding tag.
This can be done either by the sender of the document or by the use a BizTalk Server preprocessor.

MQSeries Overview

MQSeries Role

Provides assured delivery of messages
IBM's equivalent to Microsoft's MSMQ
Supports a wide range of platforms

OS/390 (IBM mainframe)

Microsoft Windows NT

OS/400 (IBM AS/400)

Sun Solaris

Tandem NonStop Kernel

and others

Versions

Windows NT

2.0
5.0, added MMC snap-in
5.1
5.2 (current) MS DTC support

OS/390

1.2
2.1
5.2 (current, 2.1 with hot fixes)

MQSeries Basic Components

Queue Managers

Supports multiple QM per computer (except OS/400)
QMs can be stopped & started independently
QMs have their own listeners
QM names independent of computer names
QMs all run under MQSeries service

Local Queues

Queues physically reside on local computer
Two types of Local queues

Normal queues are used for application data

Transmission queues used as transfer points for messages bound for other queue managers

Both are used by the BizTalk Adapter for MQSeries

Remote Queue Definitions

Reference to a queue that resides on a different queue manager
Definition contains the remote Queue manager's name and the Xmit queue to use
Definition can also contain a specific remote queue name.
More or less a routing table entry
Used by the BizTalk Adapter for MQSeries

Alias Queues

Reference to a queue defined on the local computer
Allows a friendly name

Channels

Define communication endpoints between Queue managers
Definition includes transmission protocol and parameters specific to that protocol

TCP/IP – sockets port

LU62 – CPIC side information

SPX – sockets port

NetBIOS – pipe name

Channels are paired

Sender – Receiver

Server – Requester

Server Conn – Client Conn

The first two pairs are for Queue manager to Queue manager communication
The third is for Queue manager to client communication
Server Conn – Client Conn

Server conn channels accessible through the MQSeries client APIs

On OS/390 requires extra software called the client connectivity feature

Client conn can be defined by two methods

Environment var MQSERVER=CHANNEL1/TCP/server-address(port) Only allows one QM to be defined
Channel table, which can be generated on any NT queue manager Allows multiple QMs to be defined

Listeners

Executable that is actually providing the endpoint defined by the channels
Setup by default on 5.2

Configuration

Command line -Runmqsc qmname

Can be run interactively

Can be feed a command file

Available on all versions

Commands fairly consistent across all platforms

Commands documented in MQSC Command Reference

MMC snap-in

Available only on NT version 5.1 and higher

Does not work over Terminal Server

Tracing and Logs

Tracing
Can be started from the MQServices snap-in
Creates trace log for every process (filename contains the PID)
Can be viewed from the snap-in or with notepad
Located in C:\Program Files\MQSeries\errors

General logs

C:\Program Files\MQSeries\errors

Logs of Queue Manager

C:\Program Files\MQSeries\qmgrs\MQS1\errors

Verify Installation

Located in C:\Program Files\MQSeries\bin

amqtsivt.exe – verifies DTC support

amqsput.exe – command line tool to put messages in a queue

amqsget.exe – command line tool to get messages from a queue

References

MQSeries platforms

Things to Keep in Mind

MQSeries is case sensitive.
You need to reboot after installing MQSeries for the BizTalk Adapter for MQSeries for COM component to get registered.
BizTalk Adapter for MQSeries works with the following versions of MQSeries Server running on Windows 2000:

IBM MQSeries Server version 5.1 with Support Pac 75 and CSD U200134 or later, or
IBM MQSeries Server version 5.2

Additional Information
http://www.microsoft.com/biztalk/evaluation/adapters/mqseries.asp

http://www.microsoft.com/biztalk

http://www.microsoft.com/biztalk/mqseries

http://www-4.ibm.com/software/ts/mqseries/platforms
http://www.microsoft.com/biztalk/evaluation/adapters/mqseries.asp
http://www.microsoft.com/biztalk
http://www.microsoft.com/biztalk/mqseries

Microsoft BizTalk Server 2002 Technical Articles

Microsoft BizTalk Server 2002 Fail Fast Tutorial and Sample AIC

Microsoft Corporation

October 2003

Summary: Describes the fail fast process in which Microsoft BizTalk Server 2002 shuts down a schedule instance even if it is not
completed. In order track schedule instances, the authors provide an Application Integration Component (AIC) that will check if all
instances were completed, and re-try instances that were not completed. (1 printed page, plus a link to additional documentation
and sample code)

Applies to:
 Microsoft® BizTalk® Server 2002

Download the documentation and sample code.

Introduction
The fail fast process involves Microsoft® BizTalk® Server 2002 shutting down a schedule instance even if it is not completed. In
an XLANG schedule, there are four instances when the schedule starts the fail fast process.

Failure to create a COM object used by the schedule
Memory corruption or AV caught by the system
Failure to create a queue
Failure to send messages to the dead letter queue

In all of these cases, the DTC transaction rolls back and the XLANG schedule shuts down without calling any On Failure or
Compensate code.

In highly sensible systems, this can force the developer to create a tracking mechanism to check if all instances were completed,
and re-try instances that were not completed.

Solution
To make this process easier, we replaced the Generic AIC (BPO.Activation) with our own Application Integration Component (AIC)
which sends a Message Queuing (also known as MSMQ) message to a tracking queue and only then sends it to the original
private queue.

The target XLANG schedule should have a Remove Message action that simply pulls the message from the tracking queue.

Notice the following:

If no fail fast operation occurs during the XLANG schedule, the copied message is simply removed from the tracking queue.
If a fail fast operation occurs at some point, the "Remove Message" operation does not occur, leaving the message in the
tracking queue. We can, of course, mark the copy message's TimeToBeReceived property to some estimated time, so it is
automatically move to the "Dead letter Queue."

Since many XLANG schedules are started using a message port we propose an AIC to automatically perform the described
behavior.

http://go.microsoft.com/fwlink/?LinkId=20077

Microsoft BizTalk Server 2002 Technical Articles

Orchestrating XML Web Services and Using the Microsoft .NET
Framework with Microsoft BizTalk Server

Ulrich Roxburgh
Microsoft Corporation

February 2002

Applies to:
 Microsoft® .NET Framework
 Microsoft BizTalk™ Server
 Microsoft Visual Studio® .NET

Summary: How to deploy scalable, highly available XML Web services using BizTalk Orchestration and the .NET Framework. (33
printed pages)

Contents

Introduction
BizTalk Server and the .NET Framework
BizTalk Orchestration and XML Web Services
BizTalk Messaging and XML Web Services
Extending BizTalk Server with .NET
Other BizTalk Server Development with the .NET Framework
Acknowledgements

Introduction
An XML Web service is programmable application logic that is accessible using standard Internet protocols. XML Web services
combine the best aspects of component-based development and the World Wide Web. Like components, XML Web services
represent black-box functionality that can be reused without regard to how the service is implemented. In Microsoft® BizTalk™
Server, XML Web services can be implemented using Microsoft SOAP Toolkit 2.0 and Microsoft Visual Studio® .NET.

BizTalk Orchestration introduces some remarkable synergies for the application developer who wants to deploy scalable, highly
available Web services. BizTalk Orchestration provides a long-running, loosely coupled business process that includes
implementation services, such as transactions—both Microsoft Distributed Transaction Coordinator (DTC)-style transactions, and
timed and long-running transactions—exception handling, and transaction compensation, to enable the application designer to
create robust business processes. A BizTalk Server Orchestration is a process created in the Microsoft Visio®-based BizTalk
Orchestration Designer, serialized in XML, and executed under the control of COM+ services (called XLANG Scheduler).

The most obvious way to extend BizTalk Server with .NET technology is to develop extensions to BizTalk Server using Visual
Studio .NET. BizTalk Server provides an application integration framework that is simple, yet extensible and flexible. This
framework takes the form of application integration components (AICs), two types of which are supported by BizTalk Server: AICs
supporting the BTSAppIntegration interface and pipeline component AICs.

When building applications using Visual Studio .NET, there are two common mechanisms to submit documents to BizTalk Server
from these applications: submitting directly, using the IInterchange interface, and submitting by writing the document to a
Message Queuing (also known as MSMQ) message for BizTalk Server to pick up using a Message Queuing receive function.

BizTalk Server and the .NET Framework
BizTalk Server is part of the Microsoft Windows Server System. BizTalk Server provides two core functions:

Message-level integration, from the enterprise (enterprise application integration, or EAI) to the Internet (business-to-
business, or B2B), through BizTalk Server Messaging.
Business process automation using BizTalk Server Orchestration services, which provide the ability to implement long-
running, loosely coupled business processes.

BizTalk Server is built on, and integrates closely with, the Component Object Model (COM). You can extend BizTalk Server
Messaging by using COM to create application integration components (AICs), pre-processors, and custom parsers and
serializers. Similarly, the implementation of actions in a BizTalk Server orchestration is typically based on COM components. The
COM extensions for both BizTalk Messaging and BizTalk Orchestration are currently built using a COM-compliant language, such

as Microsoft Visual Basic® or Microsoft Visual C++®.

The Microsoft .NET Framework is a new platform for building integrated, service-oriented applications to meet the needs of
today's Internet businesses: applications that gather information from, and interact with, a wide variety of sources, regardless of
the platforms or languages in use. The larger Microsoft .NET initiative envisions software services on the Web. The key principle of
the .NET initiative is that a new kind of application, called an "XML Web service" will become the engine for business over the
Internet. Parts of this vision are shared with other key players in the industry.

Leveraging off the .NET Framework, Visual Studio .NET is a complete set of development tools for building:

ASP.NET applications
XML Web-based services
Desktop applications
Mobile applications

Visual Studio .NET provides an integrated development environment (IDE), which is shared by Visual Basic .NET, Visual C++ .NET,
and Microsoft Visual C#™ .NET. Visual Studio .NET provides access to key technologies that simplify the development of these
sophisticated applications.

Integrating BizTalk Server with the .NET Framework (in particular XML Web services and Visual Studio .NET) provides
considerable benefit for the application developer. BizTalk Server provides significant support for the development of applications
that are widely distributed in space (EAI and B2B) and time (long-running business processes). Visual Studio .NET is a much richer
IDE than any previous developer tool, with many more services and facilities available to the application developer.

This white paper examines how BizTalk Server integrates with the .NET Framework architecture and Visual Studio .NET. It
discusses how BizTalk Server can access available XML Web services, how BizTalk Server functionality can be used to construct
XML Web services, and how Visual Studio .NET can be used to access and extend BizTalk Server.

XML Web Services, WSDL, and SOAP

An XML Web service is programmable application logic that is accessible using standard Internet protocols. XML Web services
combine the best aspects of component-based development and the World Wide Web. Like components, XML Web services
represent black-box functionality that can be reused without regard to how the service is implemented. Unlike previous
component technologies, XML Web services are not accessed through object model-specific protocols, such as the distributed
Component Object Model (DCOM), Remote Method Invocation (RMI), or Internet Inter-ORB Protocol (IIOP).

Instead, XML Web services are accessed through ubiquitous Web protocols and data formats, such as Hypertext Transfer Protocol
(HTTP), Extensible Markup Language (XML), and SOAP. Furthermore, an XML Web service interface is defined strictly in terms of
the messages the Web service accepts and generates. Consumers of an XML Web service can be implemented on any platform in
any programming language, provided they can create and consume the messages defined for the XML Web service interface.

Building or consuming XML Web services involves specifications and technologies that address five requirements for service-
based development:

A standard way to represent data
A common, extensible message format
A common, extensible service-description language
A way to discover services located on a particular Web site
A way to discover service providers

XML is the obvious choice for a standard way to represent data related to XML Web services (the format of the data transmitted to
and from the Web service). As such, the various Web service-related specifications all use XML for data representation.

XML Web services require a messaging protocol that can invoke the Web services and exchange data with them. SOAP is a
lightweight, XML-based protocol for exchanging information in a decentralized, distributed environment. SOAP is a network
protocol, with no underlying explicit programming model. Because SOAP does not mandate the technology used to implement
the client or server applications, it requires no application programming interface (API) or object model. As such, SOAP provides
an open methodology—XML Web services—for application-to-application communication.

WSDL

The Web service honors a contract with its clients regarding the messages it accepts and generates. To support this, Microsoft and
IBM jointly developed an XML-based contract language, called Web Services Description Language (WSDL), as a standard
mechanism for creating and interpreting Web service contracts. WSDL is used to create a file that identifies the services and the
set of operations within each service that the server supports. The WSDL file also describes the format that the client must follow

in requesting an operation. WSDL is analogous to the Interface Definition Language (IDL) for COM components.

Web service clients need to be able to discover where Web services are located. The Discovery Protocol (Disco) specification
defines a discovery document format based on XML, and a protocol for retrieving the discovery document, enabling developers to
discover services at a known URL. However, in many cases the developer will not know the URLs where services can be found.
Universal Description, Discovery, and Integration (UDDI) specifies an advertising mechanism for Web service providers, and a
location device for Web service consumers.

SOAP operation types

The operations in the WSDL file are defined by the style attribute of the <soap:binding> element in the file, and can be one of the
following:

Document-oriented operations. If an operation in the WSDL file is document-oriented, the input (request) and output
(response) messages specified for that operation contain XML documents.
RPC-oriented operations. RPC-oriented operations have input messages that contain the operation's input parameters
and output messages that contain the operation's results.

Implementing XML Web Services Using SOAP Toolkit

Many systems created for Microsoft platforms are based on COM. Microsoft SOAP Toolkit 2.0 provides both high-level and low-
level components for creating and consuming XML Web services by COM-based applications. These components include:

A client-side component that enables an application to invoke Web service operations described by a WSDL document.
A server-side component that maps invoked Web service operations to COM object method calls as described by the WSDL
and XML Web Services Meta Language (WSML) files.
Necessary components that construct, transmit, read, and process SOAP messages. These processes are collectively referred
to as marshalling and unmarshalling.

In addition, SOAP Toolkit 2.0 provides additional tools that simplify the development of XML Web services and client applications:

A WSDL/WSML Generator tool that generates the WSDL and WSML files.
The SOAP Messaging Object (SMO) framework, which is an alternative to using the XML DOM API to process XML
documents in SOAP messages. The SMO framework is a Microsoft Visual Basic add-in that generates message part objects
that simplify the creation and processing of XML documents contained in SOAP messages.

The following steps describe how to build a simple Web service based on a COM component named SOAPDemo.Calculator using
the Add method.

1. Start the WSDL Generator. This is used to generate the WSDL and WSML files that describe the SOAP service, and how that
service will be implemented.

2. Load a COM component dynamic-link library (DLL) that you have previously built. In this example, SOAPDemo.dll is used.
The WSDL Generator will read the type library of the DLL to determine the methods that can be exposed as XML Web
services.

Figure 1. Running the SOAP Toolkit Wizard

3. The SOAP Wizard generates either an ISAPI- or ASP-based listener, which will listen for SOAP requests, parse them,
instantiate the COM object, and call the appropriate method on the COM object, passing in the parameters that are sent in
the SOAP request. (The ISAPI listener is recommended because of its performance characteristics.)

4. The SOAP Toolkit Wizard generates the WSDL and WSML files for the Web service into the folder specified. After the SOAP
Toolkit Wizard finishes, this folder is shared as a Web folder, so that clients can access the WSDL and WSML file through
HTTP.

Implementing XML Web Services Using Visual Studio .NET

Visual Studio .NET natively provides extensive XML Web services functionality. XML Web services can be created in Visual Basic,
Visual C#, or Visual C++.

To create a Web service using Visual Studio .NET:

1. Start a new project, and select ASP .NET Web Service to build a Web service using either Visual C# or Visual Basic, or
select Managed C++ Web Service to build a Web service using Visual C++.

2. Enter a name for the Web service and a location at which the Web service will be deployed, then click OK to generate the
Web service project.

3. Visual Studio .NET creates a project (in your language of choice) that imports the namespaces System.Web.Services and
System.Web.Services.Protocols, and adds a class that is derived from System.Web.Services.XML Web services. This class will
implement the Web service.

4. Add methods to the class that implement the various Web methods. In this case, we have created methods to debit, credit,
and check a customer's credit in real time at the customer's bank. To designate the method as an XML Web service, simply
prepend each method with a WebMethod attribute.

Imports System.Web.Services
Imports System.Web.Services.Protocols

Public Class Account
Inherits System.Web.Services.WebService

<WebMethod()> Public Function CheckCredit(_
ByRef AccountNo As Integer, _
ByRef AmountToDebit As Integer) As Integer

Figure 2. Browsing the ASMX file, showing the methods exposed by the Web service

5. When the project is built, it will create a XML Web service on the specified Web server, which exposes each method that has
a WebMethod attribute.

6. Information about the Web service—such as the WSDL file—can be obtained by browsing to the .asmx file for the class that
implements the XML Web service:

http://localhost/BankVBNet/BankVBNet.asmx

BizTalk Orchestration and XML Web Services
XML Web services are a key enabling technology for the Microsoft vision of providing great software, any time, any place, and on
any device. XML Web services enable a code reuse pattern by which services are made available to an application without being
physically co-located. However, this disconnected scenario offers some significant challenges:

Interaction among XML Web services. XML Web services provide simplified access to both local and remote business
logic. However, an application that is composed of many XML Web services introduces a management challenge: How are
the interactions between and across the aggregated XML Web services managed in an agile manner so that new XML Web
services can be readily added to an application?
Transaction management and exception handling. Aggregated XML Web services provide access to remote business
logic, but how can transactions be managed across XML Web services? Also, how can exception processing be provided that
requires different XML Web services to be called?
Concurrency. Applications should be able to call XML Web services with no inter-dependencies—such as an XML Web
service that checks inventory and one that checks a customer's credit—in a parallel manner. How can this be achieved
without complex threading issues?
Interaction with non-XML applications. Application development today involves equal interaction with XML Web
services and applications that are not XML Web service-enabled. How can interactions be managed across both types of
systems in a homogeneous manner?

In many cases, it is not possible to use a simple synchronous invocation model for Web services in the way COM object
invocation is handled.

BizTalk Orchestration introduces some remarkable synergies for the application developer who wants to deploy scalable, highly
available Web services. BizTalk Orchestration provides a long-running, loosely coupled business process that includes
implementation services, such as transactions—both Microsoft Distributed Transaction Coordinator (DTC)-style transactions, and
timed and long-running transactions—exception handling, and transaction compensation, to enable the application designer to
create robust business processes.

Many requirements that have driven the need for these facilities are also found in loosely coupled XML Web services. BizTalk
Orchestration provides significant benefits to the application designer building highly distributed, long-running processes. The
following section, Calling XML Web Services from an Orchestration Schedule, discusses how XML Web services can be combined
with BizTalk Orchestration, both by orchestrations calling XML Web services to implement specific actions within those
orchestrations, and by XML Web services being implemented using a BizTalk Orchestration.

Calling XML Web Services from an Orchestration Schedule

BizTalk Orchestration Designer provides the following implementation shapes that represent technologies that can be used to
implement port communications:

COM Component. Each port is implemented by using a method call for each message that is sent or received to a COM+
component or a .NET component using COM Interop.
Script Component. Each port is implemented by using a method call for each message that is sent or received to a script
component.
Message Queuing. Each port is implemented by sending to or receiving from a message queue.
BizTalk Messaging. Each port is implemented by sending to or receiving from BizTalk Messaging Services.

Figure 3. The four implementation shapes in BizTalk Orchestration Designer

XML Web services, however, are invoked by sending SOAP-formatted requests to the Web service and receiving SOAP-formatted
responses back to the client. The easiest way to implement this from a BizTalk Orchestration schedule is by calling a COM or .NET
component, which invokes the Web service using SOAP. In effect, the COM component acts as a proxy for the Web service. The
COM component proxy can be created using either SOAP Toolkit 2.0, or Visual Studio .NET using the Interop facilities provided by
the common language runtime. Both methods require the WSDL file that provides a description for the methods exposed by the
Web service:

Figure 4. The BizTalk Orchestration schedule describes the business process, which is to be implemented

If the Web service was created using the SOAP Toolkit, the WSDL file will have been generated using the SOAP Toolkit WSDL

Generator utility. If, on the other hand, the Web service was created using Visual Studio .NET, the characteristics of the Web
service can be displayed by browsing to the service's .asmx file. This URL provides a general description of the Web service,
details about the format of the SOAP messages required to invoke the various methods, and the WSDL file for the Web service.

For example, if a Web service named BankVBNet is created and deployed on a local computer, the WSDL file for the Web service
will be located at:

http://localhost/BankVBNet/BankVBNet.asmx?WSDL

This URL can be used directly by the proxy client to access the WSDL file for the Web service.

The included sample (CreditCheck) is a BizTalk Orchestration that implements a business process that receives a document,
decides whether the document is for a purchase or a return, then calls an XML Web service at a bank to credit or debit the
customer's account. Several actions in this schedule (Purchase Goods and Return Goods) are implemented using a Web service
named BankVBNET, written in Visual Basic .NET. BankVBNET exposes three methods:

Each of these methods uses Microsoft ActiveX® Data Objects (ADO) to run a stored procedure on the database to perform the
appropriate function. The following code shows the CheckCredit method:

Notice the WebMethod attribute at the start of the Visual Basic method, exposing the method as a Web service. This Web service
can now be invoked by any client application that sends the appropriate SOAP requests to the Web service at:

http://localhost/BankVBNet/BankVBNet.asmx

Because BizTalk Orchestration Designer cannot call the Web service, a COM object that BizTalk Orchestration Designer can call is

CheckCredit(ByRef AccountNo As Integer, _
ByRef AmountToDebit As Integer) As Integer

Credit(ByRef AccountNo As Integer, _
ByRef AmountToCredit As Integer) As Boolean

Debit(ByRef AccountNo As Integer, _
ByRef AmountToDebit As Integer) As Boolean

Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebMethod()>Public Function CheckCredit(ByRef AcctNo As Integer, _
ByRef AmountToDebit As Integer) As Integer

 Dim myConn As New ADODB.Connection()
 Dim myCommand As New ADODB.Command()
 Dim myConnectionString As String

 myConnectionString = "……"
 myConn.Open(myConnectionString)

 myCommand.ActiveConnection = myConn
 myCommand.CommandType = ADODB.CommandTypeEnum.adCmdStoredProc
 myCommand.CommandText = "CheckCredit"

 myCommand.Parameters.Refresh()
 myCommand.Parameters("@AccountNo").Value = AccountNo
 myCommand.Parameters("@AmountToDebit").Value = AmountToDebit

 myCommand.Execute()

 CheckCredit = CInt(myCommand.Parameters(_
 "@AccountBalanceIfCredited").Value)

 myCommand = Nothing
 myConn = Nothing
 End Function

created. This COM object acts as a client proxy object for the XML Web service.

Figure 5. The COM object serves as a proxy for the Web service

The COM object uses the SOAPClient object from SOAP Toolkit 2.0 to call the Web service. The client proxy object either directly
mirrors the methods exposed by the Web service or performs more complex operations by aggregating several of the exposed
Web service methods. To implement each of these methods, the client object merely creates the SOAPClient object, loads the
WSDL file, and then calls the appropriate method on the Web service. For example, the Purchase method is implemented as:

This particular proxy object creates a more complex business process by combining several methods from the Web service. When
this object is compiled, it generates a COM component that is linked into the orchestration.

Implementing an XML Web Service Using Orchestration

A BizTalk Orchestration can be exposed as an XML Web service in three ways:

Programmatically
Using SOAP Toolkit 2.0
Using Visual Studio .NET

Figure 6. The COM object exposes the BizTalk Orchestration as an XML Web service

Executing orchestrations programmatically

An XLANG schedule is a process created in the Microsoft Visio-based BizTalk Orchestration Designer, serialized in XML, and
executed under the control of COM+ services (called XLANG Scheduler). It is possible to run an entire orchestration as a COM
component under the control of COM+ services. The orchestration engine effectively provides a powerful mechanism for
business process automation, implemented with COM+ components.

Public Function Purchase(AccountNo As Integer, _
PurchaseAmount As Integer) As String

 Set SoapClient = CreateObject("MSSOAP.SoapClient")
 SoapClient.mssoapinit _
"http://localhost/BankVBNet/BankVBNet.asmx?WSDL", _
 "Account", "AccountSoap"

If SoapClient.CheckCredit(AccountNo, PurchaseAmount) > 0 Then
 If SoapClient.Debit(AccountNo, PurchaseAmount) Then
 Purchase = "Successful purchase"
 Else
 Purchase = "Error while purchasing"
 End If
 Else
 Purchase = "Not enough money to buy this item"
 End If
 Set SoapClient = Nothing
End Function

Figure 7. The XLANG Scheduler application is one of the COM+ applications

By default, when BizTalk Server is installed, it creates this single COM+ package to run all schedules on that server and adds an
XLANG tab to the COM+ Applications Properties dialog box. When a new COM+ application is created, this additional tab can
be used to specify that the COM+ application is also a host for XLANG schedule instances.

A client application can invoke these XLANG schedule instances using COM by specifying the path to the .skx (XML file) and the
orchestration port, as in the following code example:

Alternatively, the common language runtime Interop Services can be used from within a Visual Studio .NET application to execute
a schedule either late bound (shown) or early bound.

The included CreditCheck sample uses several COM objects (CreditChecker and CreditCheckUtil) to implement a simple
business process within an orchestration that could be called through an ASP page. The sample shows how this orchestration can
be "published" as an XML Web service either by using COM components supplied by SOAP Toolkit 2.0, or by using Visual Studio
.NET and the common language runtime.

Figure 8. The Orchestration for the CreditCheck sample shown in BizTalk Orchestration Designer

Also, once the Web service has been created, it can be invoked by the client application either using the SOAPClient COM object
supplied by SOAP Toolkit 2.0, or using Visual Studio .NET and the common language runtime.

Implementing a Web service using SOAP Toolkit 2.0

To implement an XML Web service using SOAP Toolkit 2.0, a simple COM object is created using Visual Basic 6.0. This COM object
instantiates an instance of the schedule by binding to a moniker that represents the schedule. The code binds to a specific port on
the schedule (CreditCheck), which is implemented as a COM component method call. The method serves only to pass a supplied
value—the number of the account to be credit checked—into the port. The value is passed to successive actions in the schedule
(and hence to the ports and implementations linked to those actions) using the data flow on the schedule's Data page.

set sked = GetObject("sked:///path-to-skx-file/port-name")

The code then waits for the result of the schedule by attaching to another port at the end of the schedule, and waiting for the
result to be returned from this port (a True or False value determining whether the CreditCheck succeeded or failed), as shown in
the following code:

This code is compiled to produce a DLL. You can then create the Web service by running the SOAP Toolkit WSDL Generator utility
(see Implementing XML Web Services Using SOAP Toolkit 2.0). The COM object provides the implementation for the Web service
and acts as a proxy for the orchestration.

Implementing a Web Service using Visual Studio .NET

To implement the same code using Visual Studio .NET and the common language runtime, a Web service project is created. This
project implements a class that is derived from System.Web.Services.WebServices. This class exposes one or more class
methods as WebMethods, by prefixing the method declaration with a [WebMethod] attribute.

The method itself invokes the schedule using the Marshal.BindToMoniker method from the System.Runtime.InteropServices
namespace (see Starting an XLANG Schedule), as shown in the following code:

Public Function CheckCredit(AccountNo As Integer) As Boolean
 Dim sskedURL As String
 Dim sked As Object

 sskedURL = "sked:///" & App.Path & "\creditcheck.skx/CreditCheck"
 'Start the schedule
 Set sked = GetObject(sskedURL)

 'Start the credit check
 sked.StartCreditCheck (AccountNo)

 'Wait for the results
 CheckCredit = sked.IsCreditApproved()
End Function

[WebMethod]
public Object RunSked(string skedMoniker, int accountNo)
{
Type skedType;
Object sked = null;
try
{
sked = Marshal.BindToMoniker(skedMoniker);
skedType = sked.GetType();

// Set up the parameters
Object[] prms = new Object[1];
prms[0] = accountNo;
skedType.InvokeMember("StartCreditCheck",
System.Reflection.BindingFlags.InvokeMethod,
null, sked, prms);
result = skedType.InvokeMember("IsCreditApproved",
System.Reflection.BindingFlags.InvokeMethod,
null, sked, null);
}
catch (Exception ex)
{
System.Diagnostics.Debug.WriteLine (ex.Message);
throw new Exception(ex.Message, ex);
}
finally
{
Marshal.ReleaseComObject(sked);
}
}

This example shows late binding using reflection. It is also possible to do early binding by generating a .NET assembly
corresponding to the type library information in skedcore.dll. The tlbimp tool from the .NET Framework Software Development Kit
(SDK) is used to generate a strong named assembly, and then a reference to this assembly is added to the project, as shown in the
following code:

Implementing the Client of the Orchestration Web Service

Invoking a Web service using SOAP Toolkit 2.0

A Web service can be invoked from a client application that has been built using either the SOAPClient object from SOAP Toolkit
2.0, or the common language runtime.

If the SOAPClient COM component is used, the SOAPClient COM object is simply created, then initialized with the WSDL file that
describes the Web service. The methods on the SOAPClient object can then be invoked, as shown in the following code:

Invoking a Web service using Visual Studio .NET

To access a Web service from a client application that has been built using Visual Studio .NET, a reference to the Web service must
be added to the project. Web service discovery is the process of searching for and examining the service descriptions of available
XML Web services. The service description details which services are available and how to interact with them. Once a Web service
has been discovered, it can be added as a Web reference to the Visual Studio .NET project.

Figure 9. The Web References section of the Project Explorer in Visual Studio.NET

To add a Web reference:

1. On the Project menu of your application, click Add Web Reference.

The Add Web Reference dialog box appears.

2. In the Address box, type the URL to the .disco, .vsdisco, .wsdl, or .asmx file of the Web service to access.

Visual Studio .NET will download the service description and generate a proxy class to interface between the application and the
Web service. The proxy class is then used in the client application to represent (and invoke) the functionality of the Web service.
The following code shows the same Web service being invoked as in the previous topic:

using <namespace corresponding to skedcore typelib>;

...

IWFWorkFlowInstance oSked =
Marshal.BindToMoniker(skedMoniker) as IWFWorkflowInstance;

...

Dim SoapClient

Set SoapClient = CreateObject("MSSOAP.SoapClient")
SoapClient.mssoapinit _
"http://localhost/creditcheck/creditcheck.wsdl"
MsgBox SoapClient.CheckCredit(5555)
Set SoapClient = Nothing

Loosely Coupled Asynchronous XML Web Services and Correlation

XML Web services are a key technology for delivering highly distributed applications. However, building applications in a
distributed, loosely coupled environment introduces some challenges.

Most applications today that consume XML Web services invoke such services the same way they would invoke a COM
component on another server using DCOM. The calls are synchronous, and the calling application cannot handle situations where
the Web service is unavailable or the response from the Web service falls outside acceptable limits. In essence, the SOAP over
HTTP call has replaced the RPC call over the network.

This poses some problems for the application architect. When building an application that is distributed across an enterprise, the
architect typically has control over the responsiveness and availability of the distributed services used to build the application.
However, in the event of XML Web services, which provide services that are distributed across enterprise boundaries, the architect
typically has no control over the responsiveness or availability of the services.

Sync on async

Decoupling the Web service invocation from the invocation of the service proxy by the application can summarize possible
solutions to these concerns. That is, the application can asynchronously issue a request for service (from a proxy), and application
services ensure that the request is eventually submitted to the Web service for processing. Of course, the system must also be
able to eventually return a response to the calling application (again, asynchronously). This mechanism is sometimes called "sync
on async."

BizTalk Orchestration, a key part of BizTalk Server, applies directly to this problem. BizTalk Orchestration was built to solve the
problems associated with managing long-running, loosely coupled business processes that are distributed across organizational
boundaries. BizTalk Orchestration provides services, such as transactions (both DTC transactions, and timed and long-running
transactions), exception handling, and transaction compensation, to allow the application designer to design robust business
processes that are capable of recovering from failure. These are the facilities required to build robust XML Web services.

Web service example: Processing visa applications

Imagine an Immigration Department that has a legacy mainframe application that is capable of processing applications for visas.
This application is usually run by Immigration Department staff, which uses a terminal to manually key in application details. The
department decides to provide access to this application to immigration consultants, so they can enter applications on behalf of
their clients. Because the immigration consultants have their own applications, the Immigration Department provides a Web
service interface to the legacy application.

The XML Web service does have associated problems. For one, the mainframe application is periodically unavailable. Also,
because all applications are run in a batch every hour, the application is not capable of providing a synchronous response to the
request. To resolve these issues, BizTalk Server Orchestration uses a schedule to implement the Web service, as shown in the
following illustration.

Boolean result;
short accNo = 5555;
localhost.CreditCheck account = new localhost.CreditCheck();

result = account.CheckCredit(ref accNo);

Figure 10. Schematic representation of the visa processing application

To implement this application:

1. The Web service receives a visa application request (formatted as a SOAP message).
2. This initiates the schedule that implements the Web service. The schedule submits the visa application to the legacy

mainframe application (using BizTalk Server Messaging), where it will be batched until a later time. A unique ID or
correlation number is also attached to this submission.

3. The schedule returns the correlation number to the client application as the response from the Web service.
4. Eventually, the mainframe application processes the visa application, and generates a response. This response is sent back

to the Web service, together with the correlation number for that specific response. The correlation number ensures that the
response is linked to the appropriate initiating request.

5. At some later time, the client application requests the response from the Web service (by calling another method on the
Web service and quoting the correlation number).

The XLANG Scheduler Engine provides most of this functionality with no additional coding. The XLANG Scheduler Engine
provides the following functionality:

Each Web service request is implemented as a separate thread of execution, with automatic invocation of the correct
instance of the schedule based on the correlation coefficient.
If individual instances of the schedule are running for long periods of time, they will be automatically dehydrated to the
database, and then rehydrated when required.
BizTalk Orchestration Designer can provide additional error handling in the schedule using transactions, exception handling,
and compensation processing.

The result is a Web service that features high-availability and responsiveness, despite the fact that the implementation of the Web
service depends on an application service that is neither highly available nor responsive.

For a further example of these types of Web services, go to the Microsoft Download Center Web site, which illustrates highly
scalable business processes using BizTalk Orchestration, fed by asynchronous XML Web services and correlation.

BizTalk Messaging and XML Web Services

Converting Legacy Protocols to Web Service Requests

Imagine a legacy application that uses a custom protocol to invoke a service. For example, many banks provide credit card
authentication and transaction processing using a protocol known as ISO 8583. This protocol consists of delimited requests and
responses transmitted between a client and the bank server, transmitted over a network pipe.

The client sends the sequence to request a credit card purchase, for example:

"P" ~ Merchant ID ~ Sequence Number ~ ~ Amount ~ Card No ~ Expiry Date

Other messages are also provided by the protocol to authorize a transaction or request a refund.

The bank then builds a service to provide credit card processing capabilities to merchants, using Visual Studio .NET. The service is
delivered as a Web service, so it is easily accessible by e-commerce Web applications, and uses SOAP as the message protocol
(which Visual Studio .NET supports natively). However, because the bank still needs to support older applications that use the ISO

http://www.microsoft.com/downloads/

8583 protocol, the service must also be able to receive requests and send responses in this format.

The functionality to process the older ISO 8583 format could be provided by writing custom parser code that processes the ISO
8583 message and then calls the Web service. However, writing such string parsing code is tedious. Instead, you can use BizTalk
Server Messaging to receive and parse the ISO 8583 message, convert it to XML, and then pass the message on to an application
integration component (AIC), which calls the Web service.

The AIC can be built using Visual Studio .NET "" and can call the Web service by adding a Web reference to the Web service when
building the AIC (see Invoking a Web service using Visual Studio .NET).

Extending BizTalk Server with .NET

.NET Application Integration Components

The most obvious way to extend BizTalk Server with .NET is to develop extensions to BizTalk Server using Visual Studio .NET.
BizTalk Server provides an application integration framework that is simple, but extensible and flexible. This framework takes the
form of application integration components (AICs), two types of which are supported by BizTalk Server: AICs supporting the
BTSAppIntegration interface and pipeline component AICs.

AICs supporting the BTSAppIntegration interface

AIC components that support the BTSAppIntegration interface provide a lightweight model for application integration, one that
does not support design-time user interface or configuration properties. This model requires a single interface that contains a
single method as an entry point.

Pipeline component AICs

Pipeline component AICs support the same interfaces as Microsoft Commerce Server 2000 pipeline components. They were
originally derived from the Microsoft Site Server 3.0 Commerce Edition Order Processing pipeline (OPP) and Commerce
Interchange pipeline (CIP) components. BizTalk Server 2000 itself was derived from the CIP and the Commerce Interchange
Pipeline Manager (a free add-on to Site Server 3.0 Commerce Edition, available from Microsoft). Because BizTalk Server supports
these Commerce Server 2000 pipeline components, integration components written for the CIP and OPP are compatible. In fact,
BizTalk Server and Commerce Server 2000 share the same Microsoft Commerce Pipeline Components Type Library
(Pipecomplib.tlb).

Pipeline components must support the IPipelineComponentAdmin, as well as the more complex IPipelineComponent
interfaces. In return, these components provide a user interface where configuration properties can be specified and have access
to additional information during run time.

Building a BTSAppIntegration AIC with .NET

To build a BTSAppIntegration AIC with the .NET Framework, common language runtime, and Visual Studio .NET integrated
development environment (IDE), the standard development approach must be modified. Previously, Microsoft Visual Basic or
Visual C++ was used to build a COM component that implemented the IBTSAppIntegration interface. This interface has a single
method:

.NET assembly

With Visual Studio .NET, instead of a simple COM+ component implementing a COM interface, a .NET assembly that
interoperates with COM through the common language runtime is created. The common language runtime can call COM objects
as if they were managed objects, and managed components can be exposed as if they were COM objects. The runtime handles
marshalling data between the managed environment and the unmanaged COM component. This functionality is provided by the
ServicedComponent interface in the common language runtime.

A serviced component is a class authored in a Common Language Specification (CLS)-compliant language that implements the
System.EnterpriseServices.ServicedComponent interface. That is, the class is derived from this interface either directly or
indirectly. A class configured this way is hosted as a COM+ application and can use the COM+ services. In addition, this class will
implement the IBTSAppIntegration interface.

.NET runtime callable wrapper

ProcessMessage(ByVal bstrDocument As String) As String

The BTSAppIntegration AIC is built using the standard COM+ Interop facilities supplied by the .NET Framework. Before a COM+
interface can be implemented, or an existing COM+ component can be instantiated, a .NET runtime callable wrapper (RCW) needs
to be created for the COM+ interface. In the included sample, a RCW for the BizTalk Server Application Integration Component
Type Library is created. Because the RCW will be used within another strong name assembly, it must also have a strong name key
when it is created.

The RCW can be easily created within the Visual Studio .NET IDE by adding a reference to the BTSCompLib.tlb in the project, and
automatically generating a Primary Interop Assembly Wrapper. To do this, right-click the References section of the project and
select Add Reference from the context menu. A dialog box lists all registered COM types. Select Microsoft BizTalk Server
Interchange 1.0 Type Library. This is analogous to adding specific COM+ references to a Visual Basic 6.0 program.

Notes

If the Visual Studio .NET IDE generates the RCW for the COM Type Library automatically, a strong name key file for the
assembly must be added before adding any COM+ references. Otherwise, the COM wrapper generated by the Visual Studio
.NET IDE will not be strongly typed, thus preventing the .NET DLL from being hosted by COM+.
Visual Studio .NET uses the Output Path directory (bin\debug, by default) of the project to look for a strong name key file
when generating a Primary Interop Assembly Wrapper for referenced components. If the IDE is used to generate the
wrapper, the strong name key file must be in this directory and a reference to it must be in the Project Properties dialog
box.

The RCW for the BTSCompLib.tlb can also be created using the command line, which has the advantage that the RCW is created
once, and can then be used across multiple projects. To enable the RCW to be accessed by multiple projects, it is placed in the
Global Assembly Cache (GAC).

To create the .NET integration component:

1. To sign the wrapper assembly with a strong name, a cryptographic key pair must be supplied, so first create a strong name
file. The key pair is created using the Strong Name tool (Sn.exe). Key pair files usually have an .snk file extension, as shown
in the following code:

2. Create a RCW, which is signed with the strong name key file created in step 1, to create a strong name assembly, as shown
in the following code:

3. Place the assembly in the GAC, as shown in the following code:

4. Create a new Microsoft Visual C# Project – Class Library. Delete Class1, which was created when the project was created.
5. In Visual Studio .NET, right-click the References section of the project and select Add Reference from the context menu.

Because the RCW was placed into the GAC, it will appear in the Add References dialog box.
6. Create another strong name key file and add it to the project, as shown in the following code:

7. Create the class that implements the IBTSAppIntegration interface. This class should be sub-classed from both the
ServicedComponent .NET class and the IBTSAppIntegration interface. Attach a GUID attribute to the class, so the same
GUID will be used for each compilation (similar to setting Binary Compatibility in a Visual Basic 6.0 DLL project), as shown in

cd C:\Program Files\Microsoft.NET\Primary Interop Assemblies
sn -k BTSAppIntegration.snk

tlbimp "c:\Program Files\Microsoft BizTalk
Server\btscomplib.tlb" /out: BTSAppIntegration.dll /namespace:
BTSAppIntegration /asmversion:1.0 /keyfile:
BTSAppIntegration.snk /primary

gacutil.exe /i BTSAppIntegrationLib.dll

cd path_to_project
sn -k BizTalkAIC.snk

the following code:

8. Edit AssemblyInfo.cs, and add references for the System.EnterpriseServices package and the generated strong name key file.
Also, set the attributes for the COM+ package that will be created to host the COM+ Interop component, as shown in the
following code:

9. Build the project and register the assembly with COM+, as shown in the following code:

Note If a class in the .NET Framework uses COM+ services, it must be registered in a COM+ application as a regular
COM component. When an instance of the class is created within .NET, registration is automatic, based on the
attributes in the assembly. However, if a new instance of the class is required from an unmanaged (COM)
environment, the assembly must be registered manually. You can register the assembly by using the tool regsvcs.

Debugging the .NET AIC

Writing numerous trace statements in code is an unsatisfactory way to debug AIC code. And with the power and sophistication of
the Visual Studio .NET IDE, there is a better way.

BizTalk Server runs as a Microsoft Windows® 2000 service. When the AIC is invoked, it runs under the control of the COM+
services, by default as a separate process. This means any bugs in the AIC will not cause BizTalk Server to fail.

[Guid("1AA73916-FB97-4049-B1AF-DF6BBB43CDB2")]
// BTSInterop Inherits ServicedComponent and IBTSAppIntegration
public class AICtoFile: ServicedComponent, IBTSAppIntegration
{
public AICtoFile()
{
}

string ProcessMessage(string strDocument)
{
// Write the Input XML to a file
XmlDocument xmlDoc = new XmlDocument();
xmlDoc.LoadXml(strDocument);
xmlDoc.SelectSingleNode("BTSAICRoot/MessageText").InnerText
= "Message from AIC";
xmlDoc.Save(@"C:\Samples\BTSAIC.NET\Reply\Output.XML");

// Simply return the Input as Output
return strDocument;
}
}

// Add a reference to the EnterpriseServices package
using System.EnterpriseServices;

// Insert reference to Strong Name Key
[assembly: AssemblyKeyFile("../../BizTalkAIC.snk")]

// Add the COM+ Application configuration
[assembly: ApplicationName("CSharpBTSAIC")]
[assembly: ApplicationID("B6A17F8D-9CFC-433c-B907-687D539AA892")]
[assembly: Description("BTS AIC Using C#")]
[assembly: ApplicationActivation(ActivationOption.Server)]

cd path_to_project/bin/Debug
regsvcs project_name.dll

Because the AIC is deployed as a DLL rather than an executable, COM+ provides an application, called dllhost.exe, in which the AIC
can run. Looking at the processes running on a server using Task Manager typically reveals one or more dllhost.exe processes
running. These are COM+ components running as applications under COM+.

To debug AICs, you could attach the Visual Studio .NET IDE to the appropriate dllhost.exe process, but it is not immediately
obvious which process is the one supporting the specific COM+ component (AIC) to be debugged. Instead of running the AIC as a
separate process, however, it can be run temporarily within the same process as the BizTalk Server service, allowing the Visual
Studio .NET IDE to be attached to this process. To do this, the BizTalk Server service is stopped, and invoked directly from the
Visual Studio .NET IDE.

To debug a custom BizTalk Server component:

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Component Services.

The COM+ applications on the system are displayed.

2. Select the AIC COM+ application (CSharpBTSAIC) and click Shut Down.
3. Set the COM+ application to run as a library package.
4. In the Component Services console, stop the BizTalk Messaging Service.
5. Load the BizTalk Server AIC project into Visual Studio .NET.
6. Set the debugging properties for the BizTalk Server AIC project so that Visual Studio .NET will start the BizTalk Server

executable (causing it to run as a normal application, not as a Windows service). Right-click the BizTalk Server AIC project in
Solution Explorer and click Properties.

7. In the left-hand pane, click Configuration Properties, then click Debugging, and set Debug Mode to Program.
8. Set Start Application to the path where BizTalk Server is installed (typically, \Program Files\Microsoft BizTalk

Server\MSCIS.exe). This is the executable for the BizTalk Messaging Service. Click OK.
9. Set a breakpoint at an appropriate place in the code and, on the Debug menu, point to Debug and click Start, to start

BizTalk Server from the Visual Studio .NET IDE.
10. Call the code in the AIC by dropping a file into the file drop directory.

The File Listener will submit the file to BizTalk Server, which will call the AIC. Visual Studio .NET will stop execution of the AIC
at the breakpoint that was set in step 9. You can now use all of the debugging features of Visual Studio .NET IDE to debug
the component, as shown in the following illustration.

Figure 11. Debugging a BizTalk Server component in Visual Studio .NET (click image to see larger picture)

After debugging, don't forget to reset the COM+ application to run as a Server application, and to restart the BizTalk Server
service.

Building a Custom Preprocessor in BizTalk Server Using .NET

A custom preprocessor can be implemented in BizTalk Server in a similar manner to the AIC. Rather than implementing the
IBTSAppIntegration interface, the customer preprocessor must implement the IBTSCustomProcess interface.

To build a custom preprocessor using C#:

1. Create the RCW with the Visual Studio .NET command prompt, sign this assembly with a strong name, and place the
assembly in the GAC, as shown in the following code:

cd C:\Program Files\Microsoft.NET\Primary Interop Assemblies

2. Create a new Visual C# Project – Class Library, and add references to BTSCompLib and System.EnterpriseServices from
the list of .NET references.

3. Create another strong name key file, and add this to the project.Delete class that was generated when the project was
created.

4. Create a new class that implements the IBTSCustomProcess interface. This class should be sub-classed from both the
ServicedComponent .NET class and the IBTSCustomProcess interface. Attach a GUID attribute to the class.

5. Edit AssemblyInfo.cs, and add references for the System.EnterpriseServices package and the generated strong name key file.
6. Set the attributes for the COM+ package that will be created to host the COM+ Interop component.
7. Build the project and register the assembly with COM+, as shown in the following code:

Step 5 automatically creates a COM+ application package, which is given the name specified in the AssemblyInfo.cs file.

However, unlike the AIC, the custom preprocessor is still not available to BizTalk Server. For example, it will not show up in the
preprocessor drop-down list when you create a File receive function. To make the preprocessor available, more information must
be added to the registry so that BizTalk Server can recognize (or discover) the custom preprocessor. This information consists of a
COM category ID, which indicates that the component created implements a specific category (IBTSCustomProcess). A simple
registry file (.reg) can be used to add the category ID.

Other BizTalk Server Development with the .NET Framework

Starting an XLANG Schedule

To start an XLANG schedule using COM+, the GetObject method is used. This accesses a Microsoft ActiveX object from a file and
assigns the object to an object variable. The parameter to GetObject is a moniker that can either create a new schedule instance
or refer to an existing instance. Applications can create new schedule instances by creating a moniker of the form:

From this, you get a COM reference that lets you communicate with the specific port on the new schedule instance.

The scheduler engine has another form of moniker that allows a port on a specific, existing schedule instance. The engine will
create these fully qualified port names if a dataflow is established from the "Port References" message to another outgoing
message. The common scenario for this is when a specific schedule instance is rehydrated later (possibly months later), when a
message arrives.

To start an XLANG schedule using the common language runtime, the .NET equivalent of GetObject, Marshal.BindToMoniker is
used. This method is found in the System.Runtime.InteropServices namespace. The following code sample is a small function you
can use to start a schedule:

sn -k BTSAppIntegration.snk

tlbimp "c:\Program Files\Microsoft BizTalk
Server\btscomplib.tlb" /out: BTSAppIntegration.dll /namespace:
BTSAppIntegration /asmversion:1.0 /keyfile:
BTSAppIntegration.snk /primary

gacutil.exe /i BTSAppIntegrationLib.dll

cd path_to_project/bin/Debug
regsvcs project_name.dll

set sked = GetObject("sked:///path-to-skx-file/port-name")

using System.Runtime.InteropServices;

static void LaunchXLANGSchedule(string skedMoniker)
{
Object sked = null;
try
{

Note The instantiation of the schedule is asynchronous (the BindToMoniker method returns immediately).

Passing data to an XLANG schedule

The following code sample illustrates how to start an XLANG schedule and pass data to a port named InputPort, which is a COM
binding port. The InvokeMember call will create the COM component and call the member function bound to this port. The
specified parameters will be passed in as parameters to this method call. The result of the method call will be returned as the
result of the InvokeMember call.

Note This COM binding port can also be set for "No Instantiation," since it can be used just to pass the value (1 in
this case) into the schedule.

The application binds to individual ports by calling the InvokeMember method to connect to specifically named ports. Values are
passed into these ports using a parameter array, and received from these ports by the return value of the call.

Submitting Documents to BizTalk Server from the .NET Framework

When building applications using Visual Studio .NET, there are two common mechanisms to submit documents to BizTalk Server
from these applications:

sked = Marshal.BindToMoniker(skedMoniker);
}
catch (Exception e)
{
System.Diagnostics.Debug.WriteLine (e.Message);
throw new Exception(e.Message, e);
}
finally
{
Marshal.ReleaseComObject(sked);
}
}

using System.Runtime.InteropServices;
using System.Reflection;

public void LaunchXLANGSchedule()
{
Object sked = null;
Type typ;

try {
string skedMoniker = @"sked:///C:\Sched.skx/InputPort";
sked = Marshal.BindToMoniker(skedMoniker);
typ = sked.GetType();

// Set up parameters
Object[] prms = new Object[1];
prms[0] = 1;
typ.InvokeMember("Submit", BindingFlags.InvokeMethod,
null, sked, prms);
}

catch (Exception e)
{
System.Diagnostics.Debug.WriteLine (e.Message);
throw new Exception(e.Message, e);
}
finally
{
Marshal.ReleaseComObject(sked);
}
}

Directly submitting using the IInterchange interface
Submitting by writing the document to a Message Queuing message for BizTalk Server to pick up using a Message Queuing
receive function

Note The second method, while appearing to be more indirect, actually performs quite well, and also increases
the fault tolerance of the application, particularly when the application is deployed across multiple servers.

Submitting documents using the IInterchange interface

Submitting a document to BizTalk Server using the IInterchange interface also leverages off the functionality supplied by the
COM Interop facilities in .NET. Once again, a .NET Primary Interop Assembly Wrapper for the COM+ IInterchange interface
needs to be created before using it.

You can create the wrapper either by adding a reference to the Visual Studio project (right-click the References section of the
project and add the Microsoft BizTalk Server Interchange 1.0 Type Library), or by creating the .NET Primary Interop Assembly
Wrapper once and sharing this across projects by placing it in the GAC, as shown in the following code:

For more information about creating the Primary Interop Assembly Wrapper, see the .NET runtime callable wrapper area of
Building a BTSAppIntegration AIC with .NET.

The following code shows how the wrapper object for the IInterchange interface is created, invoked, and released using C#:

The call to Marshal.ReleaseComObject will call the Release method on the COM object, and if the reference count of the COM
object reaches zero, the COM object will free itself. Note that the .NET Primary Interop Assembly Wrapper is not reclaimed until it
is eventually garbage-collected. This method is used to explicitly control the lifetime of a COM object.

Submitting documents using Message Queuing

Submitting documents to BizTalk Server by posting them to a message queue, and then receiving them using a BizTalk Server

REM Create a strong name
sn -k BTSInterchange.snk
REM Create a runtime-callable wrapper
tlbimp "c:\Program Files\Microsoft BizTalk Server\cisapi.tlb" /out:
 BTSInterchangeLib.dll /namespace: BTSInterchangeLib /asmversion:1.0
 /keyfile: BTSInterchange.snk
REM Place the assembly in the Global Assembly Cache
gacutil.exe /i BTSInterchangeLib.dll

using System.Runtime.InteropServices;
using System.IO;

public string SubmitToBizTalk(string document)
{
string messageid;
BTSInterchangeLib.Interchange interchange = null;
try {
interchange = new BTSInterchangeLib.Interchange();
messageid = interchange.Submit(0, document, "", "", "",
"", "", "Channel Name", "", "", 0);
}
catch (Exception e)
{
System.Diagnostics.Debug.WriteLine (e.Message);
throw new Exception(e.Message, e);
}
finally
{
Marshal.ReleaseComObject(interchange);
}
return messageid;
}

receive function, is an efficient mechanism for submitting documents to BizTalk Server, as well as adding useful failover attributes
to the application.

The common language runtime provides a mechanism to write messages to Message Queuing. This is found in the
System.Messaging namespace and consists of a number of classes, including the MessageQueue class. It is also necessary to use
the ActiveXMessageFormatter class to serialize (and de-serialize) the message into (and from) Message Queuing messages
using a binary format.

The following code sample shows how a message is sent to Message Queuing that is suitable for a BizTalk Server receive
function:

Note The code tests to see if the queue is transactional. For transactional message queues (and most message
queues used with BizTalk Server queues are transactional), the call to Send must also specify a transaction (which is
committed) in order for the call to succeed. BizTalk Server 2000 Service Pack 1a (SP1a) or later is required for this
code.

Acknowledgements
This paper summarizes the work of many people. In particular, Michael Royster, Matt Fangman, Scott Woodgate, Emil Velinov,
Grant Bolitho, Ken Circeo, and Renee Wesberry provided invaluable comments, code snippets, and reviews of this document.

void SendToMSMQ(string queueName, string body, string label)
{
MessageQueue queue = new MessageQueue();

if (MessageQueue.Exists(queueName))
{
//Set Queue Path
queue.Path = queueName;
Message msg = new Message();

// Assumes the dest queue already exists
ActiveXMessageFormatter format = new
 ActiveXMessageFormatter();
format.Write(msg, body);
if (queue.Transactional)
{
MessageQueueTransaction trans1 = new
 MessageQueueTransaction();
trans1.Begin();
queue.Send(msg, label, trans1);
trans1.Commit();
}
else
queue.Send(msg, label);
}
}

Microsoft BizTalk Server 2002 Technical Articles

Processing Large Files with BizTalk Server 2002

Microsoft Corporation

March 2003

Applies to:
 Microsoft® BizTalk® Server 2002

Summary: Learn a solution that you can use to process large XML or Comma Separated Value (CSV) files submitted to Microsoft
BizTalk Server 2002 for processing. This paper describes how to split documents into manageable chunks, submit the document
chunks to BizTalk Server, and then how to reassemble the document chunks in their original order after processing. (1 printed
page)

The accompanying sample includes two components—a custom preprocessor and a custom application integration component
(AIC)—written in Microsoft® Visual Basic® .NET that you can use as a starting point for your own solution.

Download a copy of this document.

http://go.microsoft.com/fwlink/?LinkId=14181

Microsoft BizTalk Server 2002 Technical Articles

Publish-Subscribe Toolkit Documentation for Microsoft BizTalk
Server 2002
Click here to download sample - BizTalkPubSubToolkit.exe.

Martin Chung

Microsoft Corporation

May 2002

Applies to:
 Microsoft® BizTalk® Server 2002

Summary: How to understand and use the BizTalk 2002 Publish-Subscribe Toolkit. (21 printed pages)

Download BizTalkPubSubToolkit.exe.

Contents

Introduction
Enterprise Application Integration Concepts
Integration Architectures
Implementing EAI in BizTalk
The Publish-Subscribe Toolkit
Publish-Subscribe Framework Administration
Subscription Processor AIC
Sample Applications
Installation
Quick Component Reference

Introduction

What is the Microsoft BizTalk Server 2002 Publish-Subscribe Toolkit?

The Microsoft® BizTalk® 2002 Publish-Subscribe Toolkit is an abstraction layer built upon the standard BizTalk objects (also
called "artifacts") such as receive functions, channels, ports, documents, and organizations.

Instead of requiring applications to deal with the underlying artifacts, the Toolkit provides a simplified way to create them by
using a publish-subscribe metaphor; namely through the following objects:

Publisher
Subscriber
Broker
Publication
Subscription

The Toolkit consists of the following components.

A Publish-Subscribe multithreaded COM+ component, the Publish-Subscribe Framework (PSF)
A BizTalk Application Integration Component (AIC) that shows how incoming XML documents can call the PSF to create new
subscriptions
A stock quote sample to show multiple publishers, subscribers, and dynamic updating of subscriptions
Documentation and source code

The Toolkit is meant as a starting point for publish-subscribe systems based on BizTalk Server.

Enterprise Application Integration Concepts

What is EAI?

http://msdn.microsoft.com/library/default.asp?url=/downloads/list/biztalk.asp

Enterprise Application Integration (EAI) software provides the infrastructure to connect an organization's internal applications. The
ultimate goal is to have an organization's disparate internal applications appear and act as one single unified application.

From a historical point of view, applications typically began as unconnected, unrelated applications. When data integration was
needed, it was often performed in a point-to-point manner. Point-to-point integration quickly becomes unmanageable as the
number of integration points increases.

A solution to connecting multiple applications together was to write a single monolithic application to encompass the
organization's business needs. Such ERP (Enterprise Resource Planning) applications provided the advantages of integration, but
typically had the drawback that their functionality was usually not the best available in the marketplace.

ERP systems are often essential partners in any EAI-based systems. A common technique used by organizations is to employ ERP
systems such as PeopleSoft or SAP for internal, non-value-add functionality such as accounting, payroll, human resources, and so
forth, while employing custom or best-of-breed solutions for value-add (often customer-facing) systems such as logistics, product
merchandising, e-commerce, customer relationship management, and so on.

EAI and middleware technologies were introduced to provide a means for best-of-breed applications to be integrated with each
other into a unified "virtual" application, thus enjoying the benefits of integration without the drawbacks of ERP.

EAI should be seen as an ongoing philosophy as EAI software exists to provide integration, but an organization's applications
must be written to function in an EAI environment as well.

From its beginnings as message-oriented-middleware technology, EAI has expanded beyond simply integrating data between
applications (for example, BizTalk Messaging) into providing business process integration (for example, BizTalk Orchestration).

Integration Architectures

Point-to-Point

Point-to-point integration is where data is interchanged directly between the two systems. The sending system needs to convert
its internal data format to a format acceptable for the receiving system. Examples would be direct TCP/IP sockets interfaces
between systems, flat file export/import, direct read/write to target database schema.

Advantages:

Typically better performance and tighter integration because of the tighter coupling between the two systems.
Two-way communications between applications are easier without a middleman.
In smaller cases, or where applications are static, can be simpler than an EAI solution.

Disadvantages:

Complexity. The number of integration points increases as number of systems increases and can quickly become
unmanageable.
Tighter coupling (transport, document formats) makes it harder to change either of the two systems involved in an
interchange without impacting other systems.
Static integration design does not allow for rapid changes (swapping in of new applications) often required to be
competitive in this day and age.

Hub-and-Spoke EAI

Hub-and-spoke integration is where integration between systems (spokes) occurs with an intermediary, the hub, involved in
routing messages to other spoke systems. A spoke system will send a message with a defined destination to the hub. The hub will
perform any required transformations of the message contents and send it to the destination spoke system.

Advantages:

Decoupling of sender and receiver. Documents can be transformed by the hub.
Less complexity of integration. Applications on either side of the hub can be modified independently of each other and the
hub performs any mapping of documents between different application formats.

Disadvantages:

Two-way communications is harder. The hub has to correlate messages flowing between both parties.
Applications on both sides of the hub have to work well in a decoupled fashion.
Some knowledge of the target is required by the source of a message making it somewhat harder to add or remove senders
and receivers.

Publish-Subscribe EAI

Publish-subscribe is a system whereby messages generated by publishers are sent to a central messaging hub or broker that in
turn sends these messages to subscribers that have previously subscribed to receive some or all of these messages.

This method is similar to hub-and-spoke, and the main conceptual difference is that spokes in a hub-and-spoke system typically
know the destination of the message, whereas in publish-subscribe, the publishers do not have any knowledge of the subscribers.

Advantages:

Complete decoupling of source and target. Senders (Publishers) have no idea who subscribes to their messages; Receivers
(Subscribers) have no idea who generates their messages.
Less complexity of integration. Applications on either side of the hub can be modified independently of each other and the
hub performs any mapping of documents between different application formats.
More dynamic. Subscribers can choose to subscribe and unsubscribe to messages and change their subscription properties
at any time.

Disadvantages:

Two-way communications is harder. The hub has to correlate messages flowing between both parties.
Applications on both sides of the hub have to work well in a decoupled, event-driven fashion.

Implementing EAI in BizTalk
All of the above integration architectures can be implemented in BizTalk through specific configuration patterns for BizTalk
channels, ports, and organizations. For example:

Point-to-point integration involves direct data transfer between applications, so BizTalk pass-through functionality with
preset channels could be used. BizTalk is not strictly necessary for point-to-point integration, but provides some useful
functionality such as document tracking.
Hub-and-spoke integration and Publish-subscribe integration using BizTalk channel selection (routing) and filtering.

It is important to note that a single implementation of BizTalk can provide all of these integration architectures, depending on how
the BizTalk objects are configured.

The Publish-Subscribe Toolkit

The Publish-Subscribe Terminology

The Publish-Subscribe Metaphor revolves around Publishers, Publications, Publication Location, Subscribers, Subscriptions,
Subscriber Location, and Brokers.

A Subscriber sends a Subscription request (create, update, delete) for a Publication to the Broker. The Subscription request
contains the Publication Name and Subscriber Location.
Publishers send Publications to the common Publication Location defined for each Publication.
The Broker monitors this Publication Location for new Publications.
Using the Subscriber Location defined in each Subscription, the Broker transmits copies of the new Publication to
Subscribers who have previously created a Subscription to that Publication.
Subscribers can also set a filter expression in their Subscription so that only messages matching that filter expression are
passed to them by the Broker (this is referred to as a Content-based or topic-based Subscription).
The Broker's behavior is configured programmatically through a broker configuration object. Administration applications
use the methods provided by the configuration object.
The Broker can also be configured by a subscription processor that receives XML subscription messages and calls the broker
configuration object.

Figure 1. Click thumbnail for larger image.

The Publish-Subscribe Framework Component

The Publish-Subscribe Framework Component (PSF) provides an object model to create the underlying BizTalk artifacts. Callers to
the PSF operate at Publish-Subscribe level of abstraction and do not have to know anything about BizTalk artifacts.

How It Works

The PSF leverages BizTalk Server's ability to execute multiple channels on submission of a document. BizTalk Server decides
which channels to execute by selecting the channels that match the properties configured in the receive function for a particular
document (Publication), namely the source organization, destination organization, and document type. In addition, an XPath filter
expression can be set for each subscription to allow for content-based filtering at the broker.

The channel routing is achieved by setting a standard source organization (for example, "Broker" or "Home Organization"—the
default), a specific destination (for example, "Document X Subscribers") and an existing document type as configured in BizTalk
Messaging Manager (for example, "Document X").

When a new publication is created, the PSF creates an MSMQ receive function for the Publication Location specified. Additionally,
a destination organization is created containing a specific prefix and the Publication name.

When a new subscription is created, the PSF creates a port with an MSMQ transport to the Subscription Location and creates a
channel with the appropriate document (Publication name) specification.

Publish-Subscribe objects are mapped to BizTalk artifacts in the following ways:

Brokers are implemented as organizations.
Publications are implemented as organizations and receive functions.
Subscribers are implemented as organizations.
Subscriptions are implemented as channel/port pairs with channel filtering.
Subscriber Locations are implemented as MSMQ queues (one queue per publication per subscriber). This queue is set in the
subscription port transport.
Publication Locations are implemented as MSMQ queues (one queue per Publication). The MSMQ receive function for the
Publication reads from this queue.
Receive functions are created with the Broker organization as the Source Organization, the Publication as the Destination
Organization, and the Document type as the Publication.

BizTalk objects created by the PSF have a "PSF_" prefix in their names and embed other special information in the name (GUIDs
and handles). Modification of these objects should be through the PSF component only (that is, through the AIC, Administration
application, or other custom application) and not through the BizTalk Messaging Manager as inconsistencies could result.

Implementation Steps

1. Create a document specification in BizTalk Messaging Manager.
2. Create an MSMQ Queue for the publication location. All publishers will send documents matching this specification to this

common location.
3. Use PSF Administration tool to create a publication based on the above document, setting properties such as the publication

location (MSMQ Queue).
4. Use the PSF Administration tool to create valid subscribers for this PSF installation.
5. Either using the AIC or the PSF Administration tool, create a subscription for each subscriber/publication pair. In the

subscription properties, enter the subscriber location (MSMQ Queue) for the publication to be sent to.

Implementation Notes

Co-existing with other BizTalk objects

Since the PSF is based purely upon BizTalk Server routing and the use of special naming conventions for objects, it does not
interfere with the components of BizTalk Server in any way.

Default AIC

When creating each publication, the PSF automatically creates a default BizTalk channel and port pair to a Default AIC—essentially
a default, hidden subscriber. This AIC is essentially a "null" AIC that does nothing except return control back to BizTalk. This AIC is
currently required with BizTalk so that there will always be a channel that is instantiated by BizTalk, regardless of any filtering
expressions that may exist for subscriptions to that publication. If the default AIC did not exist, and the filtering expressions
resulted in no matching channels, BizTalk would treat this as an error condition and log to the system event log.

In addition, the default AIC can also be the starting point for any customized logging for a publication—all publication documents
will be received by the default AIC.

At this time, the behavior of the PSF is to always create the default channel/port. If filtering was guaranteed to not be used, the
default channel/port could be removed either manually, or the PSF component source code could be modified.

MSMQ transport

The current release of the PSF only supports MSMQ as the underlying transport mechanism. However, other transports can be
supported in a multi-hop process (inbound transport -> Publication Location (MSMQ) -> Broker -> Subscription Transport
Location (MSMQ) -> outbound transport).

PSF component

The PSF component can be used as a regular COM component or registered as a COM+ component. It was written in Microsoft
Visual C++® and designed to better handle large numbers of calls compared to a Microsoft Visual Basic® single-threaded
apartment component.

Queue per publication

Each publication can be associated with only one publishing location (incoming MSMQ Queue). Therefore, all publishers of this
particular publication should send all messages to this queue. Multiple publications can be based upon the same underlying
document specification, but they all have to be named uniquely.

Multiple brokers

A single BizTalk Server installation can support multiple brokers, as the underlying definition for a broker is a source organization.
The default broker name is "Home Organization", the default organization for BizTalk Server. Publications are associated with a
particular broker. The PSF Administration supports setting the broker for publications.

Queue permissions

When creating MSMQ queues, ensure that the user account that BizTalk Server runs, as has the appropriate read and write
permissions to the queue.

Publish-Subscribe Framework Administration

User Interface

The Publish-Subscribe Toolkit provides a sample PSF Administration tool (PSFAdmin) that uses the Publish-Subscribe Framework
component to create, update, and delete PSF objects.

PSFAdmin initially shows a window with three tabs, Subscriptions, Publications, and Subscribers. Clicking on these tabs will bring
up a list of the corresponding objects. Each list is searchable using the search fields.

The lists have context popup menus (accessed clicking the right mouse button on the object) appropriate for the objects being
listed. Objects can be created or deleted, and in the case of publications and subscribers, subscriptions associated with the

highlighted object can be searched through the Find Subscription popup menu item.

Figure 2.

Adding/Editing Subscribers

1. Double-click the subscriber to edit an existing subscriber. To create a new subscriber, click the right mouse button in the
subscriber list and select New Subscriber, or select File | New > Subscriber.

2. Enter the new subscriber name, ensuring it is unique.

Figure 3.

Adding/Editing Publications

1. Double-click the publication list to edit an existing publication. To add a new publication, click the right mouse button in the
subscriber list and select New Publication, or select File | New > Publication.

2. Enter the new publication name, ensuring it is unique. A publication's name cannot be changed after the publication has
been created.

3. Select a document definition by clicking on the Browse. . . button to the right of the document definition field. A list of
BizTalk Messaging document definitions will appear. Select one and click OK.

4. Enter the MSMQ queue name for the publication location for this publication. This will be used by the underlying BizTalk
Server receive function. For example: direct=os:<servername>\<queuename>

5. Select a server group where the receive function will run by clicking on the Browse. . . button to the right of the server
group field. A list of BizTalk server groups will appear. Select one and click OK.

6. Select a processing server where the receive function will run by clicking on the Browse. . . button to the right of the server
group field. A list of BizTalk servers belonging to the server group will appear. Select one and click OK.

7. Click Save.

Figure 4.

Adding/Editing Subscriptions

1. Double-click the subscription list to edit an existing subscription. To add a new publication, click the right mouse button in
the subscriber list and select New Subscription, or select File | New > Subscription.

2. Select a broker for this new subscription to be associated with by clicking on the Browse. . . button to the right of the
subscription entry field. A list of valid broker names (BizTalk organizations) will appear. Select one and click OK.

3. Select a subscriber by clicking on the Browse. . . button to the right of the subscriber field. A list of subscribers will appear.
Select one and click OK.

4. Select a publication by clicking on the Browse. . . button to the right of the publication field. A list of publications will
appear. Select one and click OK.

5. Enter a valid XPath filter expression for the document, if one is required for content-based filtering. If the filter expression
result is non-empty, then the channel will be executed.

6. Enter the MSMQ queue name for the subscriber location for this subscription. Incoming publications that match the filter
expression will be sent to this queue.

7. Click Save.

Figure 5.

Subscription Processor AIC
Included in the Publish-Subscribe Toolkit is a subscription processor AIC that parses an incoming XML message and calls the
Publish-Subscribe Framework component to create, update, and delete subscriptions. The AIC will also reply to the caller with an
acknowledgement XML message. This AIC is used by the sample applications.

Two schemas are provided: one for subscription create/add/and update requests, and the other for acknowledgements. These are
meant as starting points for further development.

Subscribers create MSMQ queues to receive acknowledgement messages from the BizTalk AIC. The queue name to reply on is
passed to the AIC in the subscription message.

The flow of MSMQ messages between a subscriber, publisher, and the broker can be illustrated as follows:

Figure 6. Click thumbnail for larger image.

The supplied version of the AIC supports only subscribing, updating, and unsubscribing. It does not provide the ability for a
subscriber to query the AIC for information that the PSF component can provide such as a list of publications.

Sample Applications
The sample applications consist of a publishing application and a subscribing application. The publishing application publishes
simple stock quote messages (consisting of a stock symbol and price) every 0.5 seconds to a publishing location, in this case an
MSMQ queue.

The subscribing application monitors a subscriber location, another MSMQ queue, for stock quote messages. The subscribing
application automatically creates this queue upon startup. The queue name is suffixed by the process id of the application, so
multiple instances of the subscriber can be run, with each instance monitoring a different queue.

The subscribing application also has the ability to dynamically subscribe and subscribe to publications. It can generate
subscription request XML messages and send them to an Administration queue. BizTalk Server monitors this queue through a
receive function and messages are sent to a BizTalk AIC that processes the message and calls the PSF component to create or
delete subscriptions. The AIC will also send an acknowledgement message back to the subscriber containing the success code of
the request and a handle to the subscription.

The sample setup script will automatically create the necessary queues, document definitions, channels, ports, and receive
functions required, so very little is required to run the sample applications other than to start the publisher, start the receiver, and
send a subscription request message to the broker.

Publisher Sample Application

The publisher sample publishes stock quote messages to the designated MSMQ queue. The stock prices move randomly from a
starting point, but trend either upwards or downwards based on the alphabetical position of the first character of the stock
symbol (A-M upwards, N-Z downwards).

To run the publisher

1. Set the stock symbol.
2. Enter the MSMQ queue pathname.
3. If the queue is transactional, make sure the transactional checkbox is set.
4. Click Start to start sending messages to the queue.
5. Click Stop to stop sending messages to the queue.

Figure 7.

Subscriber Sample Application

The subscriber sample application provides a way to receive stock quote messages from a queue and display them. It also
provides a way to send subscription create, update, and delete messages to the broker and receive a reply from the broker.

The subscriber sample application creates a unique queue per instance. This queue name is displayed in the Subscriber Queue
field. Incoming stock quote messages are received on this queue.

Monitoring messages

To start monitoring queue messages, click the Start Receiving button. Incoming messages will be displayed in the Queue
Monitor list. To stop monitoring messages, click the Stop Receiving button.

Sending a subscription message

1. Verify that the Pub/Sub Admin queue field is set to the MSMQ queue configured to run the Publish-Subscribe BizTalk
Server AIC. Also verify that the transactional checkbox is set to reflect the transactional setting of the queue.

2. Enter a filter expression if needed. This should be a valid XPath expression for the underlying document.
3. Click Create. This will send a subscription request XML message to the Admin queue and will wait for an acknowledgement

message on a reply queue created by the subscriber. A message box will appear showing the actual contents of the
message. When the acknowledgement message is received, the contents of the message will be displayed in a message box
and the last error code and subscription handle fields on the window will be updated. The subscriber will wait up to 60
seconds for a response from the subscription AIC before timing out and reporting an error.

4. Once created, the subscription properties can be updated by clicking on the Update button. For example, a new filter
expression can be set by entering the expression in the filter field and clicking on Update. The last error code field will be
updated.

5. To delete the subscription, click the Delete button.

Figure 8.

Running the Publisher and Subscriber Samples

There are two ways to run the samples, broker-initiated (created by the PSF Administration tool), and subscriber-initiated
subscriptions (subscriber calls the subscription AIC). The easiest way is subscriber-initiated as the subscriber application makes
the subscription request; with the broker-initiated subscription, the user will need to create the subscription manually.

Please note that, currently, subscribers do not have a way to get a list of their subscriptions through the AIC, so they cannot
modify an existing broker-initiated subscription. Subscribers do have a way to modify their own subscriber-initiated subscriptions
because a subscription handle is passed to them when they dynamically subscribe to a message.

Subscriber-initiated subscription

1. If the sample objects have not been previously setup, run the sample setup script (Sample Setup.vbs) in the Toolkit Sample
folder.

2. Run the Quote Publisher.
3. Run the Quote Subscriber. Ensure the Administration queue is set to the MSMQ queue monitored by BizTalk Server. Also

verify that the transactional checkbox is set to reflect the transactional setting of the queue.
4. Click Start Receiving. This will start the subscriber listening for messages from the queue.
5. Enter a filter expression if needed. This should be a valid XPath expression for the underlying document.
6. Click Create. This will send a subscription request XML message to the Admin queue and will wait for an acknowledgement

message on a reply queue created by the subscriber. A message box will appear showing the actual contents of the
message. When the acknowledgement message is received, the contents of the message will be displayed in a message box
and the last error code and subscription handle fields on the window will be updated. The queue monitor should now
display messages being sent by the publisher.

7. Once created, the subscription properties can be updated by clicking on the Update button. For example, a new filter
expression can be set by entering the expression in the filter field and clicking on Update. The last error code field will be
updated.

8. To delete the subscription, click the Delete button.

Broker-initiated subscription

1. Run the Quote Publisher. Set the MSMQ queue to an existing queue such as ".\private$\psf_stock_quote_message" (create
MSMQ queues using the Computer Management tool in the Control Panel). Messages will be published to this queue and
be picked up by BizTalk.

2. In the PSF Administration tool, create a publication with the following properties (this publication should already exist if the
sample setup script has been run):

Publication name set to "PSF Stock Quote Publication"
The Publishing Location set to the MSMQ queue configured in the Quote Publisher
(".\private$\psf_stock_quote_message" in this case)
The document specification set to "PSF Stock Quote Message"
The server group and processing server set appropriately

3. In the PSF Administration tool, create a subscriber, for example, "PSF Sample Subscriber". Again, this subscriber should
already exist if the sample setup script has been run.

4. Run the Quote Subscriber.
5. In the PSF Administration tool, create a new subscription with the Subscription location set to the MSMQ queue specified in

the Subscriber queue field in the Quote Subscriber application (for example, ".\private$\psf_sample_subscription_xxxx"
where xxxx is the process ID). This is the queue that the Quote Subscriber will expect messages from the broker to arrive on.
Set the Publication to "PSF Stock Quote Publication". Set the Broker Name to "Home Organization" and the server group
and name to their appropriate values. Finally, click Save to save the changes. The subscription will now be active.

6. In the Quote Subscriber, click the Start Receiving button.
7. In the Quote Publisher, click the Start button to start sending messages. The messages should now appear in the Quote

Subscriber.
8. Using the PSF Administration tool, modify the subscription as necessary; for example, by setting the filter expression,

deleting, and creating subscriptions.

Running additional Publishers and Subscribers

Additional Publishers and Subscribers can be run together at the same time. Each instance of the Publisher will write to the same
common publishing location queue. Each instance of the Subscriber will automatically create its own unique subscription queue
to receive messages on.

Installation
The installation package contains several subfolders:

Admin: contains the PSF Administration tool.
Sample: contains the stock quote subscriber and publisher samples.
DocSpecs: contains the document specifications for the sample and AIC.
Components: contains the PSF component and AIC.
Documentation: contains the documentation for the toolkit.
Source: contains two ZIP compressed files with the Visual Basic 6.0 and Visual C++ 6.0 code for the toolkit. There is also a
file, VCReadme.txt, in the folder that provides further instructions for building the Visual C++ components.

Framework Installation

1. Unpack the installation package into a temporary folder.
2. Run setup.exe and select a target folder.
3. The setup program will then create the subfolders and files mentioned above.

Sample Installation

1. If it does not exist already, create a new Organization with the name "Home Organization". Otherwise, ensure that the
default organization is called "Home Organization" This is required because it is the default name of the broker used by the
sample setup. The sample setup script also requires the objects it creates to not already exist; if they do, they will need to be
removed before running the script.

2. Run the sample install script (Sample Setup.vbs) in the Publish-Subscribe Sample folder, typically "C:\Program Files\BizTalk
Server PST\Sample". This will create the prerequisite objects for running the sample. These objects include the following:

Private MSMQ queues: one for the subscription AIC's administration queue ("psf_admin_queue") and one for the
publication location ("psf_stock_quote_message")
Document specifications ("PSF Stock Quote Message", "PSF Subscription Request")
Publication ("PSF Stock Quote Publication")
Subscriber ("PSF Sample Subscriber")

3. Once created, the setup script will not need to be run again, unless the above objects are removed.
4. To remove the objects, use the Publish-Subscribe Administration Tool to remove them manually. The MSMQ queues may

be removed through the Computer Management control panel application.

Quick Component Reference

Requirements

Library: Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkPubSubObjectModel.dll)

Remarks

Objects used in the Publish-Subscribe Framework utilize the interfaces established by the standard BizTalk Server configuration
objects. For example, each object inherits the following common methods from IBizTalkBase:

DateModified
Handle
Name
Clear
Create
Load
LoadByName
Remove

Save

When IBizTalkPublication, IBizTalkSubscription objects are created, the PSF automatically creates some associated
IBizTalkPort and IBizTalkChannel objects, which in turn create some associated subobjects.

These subobject properties can be accessed through the IBizTalkPublication and IBizTalkSubscription objects. For example,
the underlying PrimaryTransport property for a port is exposed through the PrimaryTransport property in the
IBizTalkSubscription object.

Further documentation on these properties and methods can be found in the Microsoft BizTalk Server 2002 documentation.

IBizTalkPubSubConfig

Creates subscribers, publications, and subscriptions.

Hierarchy

IDispatch

|—IBizTalkPubSubConfig

Declaration

[Visual Basic]

Class BizTalkConfig

[C++]

interface IBizTalkPubSubConfig : IDispatch

Members

IBizTalkPubSubConfig defines the following properties:

Property Description
Publications Contains an ADO recordset that contains all IBizTalkPublication objects.
Subscribers Contains an ADO recordset that contains all IBizTalkSubscriber objects.
Subscriptions Contains an ADO recordset that contains all IBizTalkSubscription objects.

IBizTalkPubSubConfig defines the following methods:

Method Description
CreatePublication Returns a new IBizTalkPublication object.
CreateSubscriber Returns a new IBizTalkSubscriber object.
CreateSubscription Returns a new IBizTalkSubscription object.

IBizTalkPublication

Configures a publication. Publications are created as organizations and receive functions in the BizTalk Management Database.

Hierarchy

IDispatch

|—IBizTalkBase

 |—IBizTalkPublication

Declaration

[Visual Basic]

Class BizTalkPublication

[C++]

interface IBizTalkPublication : IBizTalkBase

Members

IBizTalkPublication defines the following properties:

Property Description
BrokerName String. Contains the name of the broker organization.
DateModified String. Gets the date of the last update for this object.
DocumentNa
me

Contains an ADO recordset that contains all IBizTalkSubscription objects.

GroupName String. Contains the name of the group to which the server belongs.
Handle Long. Returns a handle to the object in the database.
Name String. Returns the name of the object.
PollingLocatio
n

String. Contains the name of the directory to poll (directory, message queue, and so on) for receive functions th
at require polling.

ProcessingSer
ver

String. Contains the name of the server that is currently processing the interchange.

Subscribers Returns an ADO Recordset of the subscribers to this publication.
Subscriptions Returns an ADO Recordset of the subscriptions to this publication.

IBizTalkPublication defines the following methods:

Method Description
Clear Clears the object from memory.
Create Creates a new object in the database.
Load Loads a specified object in memory.
LoadByName Loads a specified object by name in memory.
Remove Removes the object from the database.
Save Saves the object in the database.

IBizTalkSubscriber

Configures a subscriber. Subscribers are created as organizations in the BizTalk Messaging Database.

Hierarchy

IDispatch

|—IBizTalkBase

 |—IBizTalkSubscriber

Declaration

[Visual Basic]

Class BizTalkSubscriber

[C++]

interface IBizTalkSubscriber : IBizTalkBase

Members

IBizTalkSubscriber defines the following properties:

Property Description
DateModified String. Gets the date of the last update for this object.
Handle Long. Returns a handle to the object in the database.
Name String. Returns the name of the object.
Publications Returns an ADO Recordset of the publications the subscriber subscribes to.
Subscriptions Returns an ADO Recordset of the subscriptions belonging to this subscriber.

IBizTalkSubscriber defines the following methods:

Method Description
Clear Clears the object from memory.
Create Creates a new object in the database.
Load Loads a specified object in memory.
LoadByName Loads a specified object by name in memory.
Remove Removes the object from the database.
Save Saves the object in the database.

IBizTalkSubscription

Configures a subscription. Subscriptions are created as channels and ports in the BizTalk Management Database.

Hierarchy

IDispatch

|—IBizTalkBase

 |—IBizTalkSubscription

Declaration

[Visual Basic]

Class BizTalkSubscription

[C++]

interface IBizTalkSubscription : IBizTalkBase

Members

IBizTalkSubscription defines the following properties:

Property Description
Broker Long. Contains the handle of the broker.
DateModified String. Gets the date of the last update for this object.
Filter String. Contains the XPath filter expression for this subscription.
Handle Long. Returns a handle to the object in the database.
Name String. Returns the name of the object.
Primary Transport Returns an IBizTalkTransportInfo object containing the primary transport component information.
Publication Long. Contains the handle to the publication object for this subscription.
Secondary Transport Returns an IBizTalkTransportInfo object containing the secondary transport component information.
Subscriber Long. Contains a handle to the subscriber object for this subscription.
SubscriberToken String. Contains the token provided by the subscriber to identify the subscription.

IBizTalkSubscription defines the following methods:

Method Description
Clear Clears the object from memory.
Create Creates a new object in the database.
Load Loads a specified object in memory.
LoadByName Loads a specified object by name in memory.
Remove Removes the object from the database.
Save Saves the object in the database.

Microsoft BizTalk Server 2002 Technical Articles

Using EDI with Microsoft BizTalk Server 2002

Microsoft Corporation

February 2002

Summary: Learn how Microsoft BizTalk Server can help both large businesses that are currently using EDI and smaller
businesses that do not use EDI but that want to trade with larger businesses. (19 printed pages)

Contents

Introduction
EDI Overview
Enhancing an EDI Environment by Using BizTalk Server
 Enterprise Application Integration
 New Relationships with Smaller Trading Partners
 Future Growth
Using BizTalk Server in Smaller Companies
Translating and Transforming Documents
 BizTalk Editor
 BizTalk Mapper
Comparing BizTalk Server with EDI Technology
Conclusion

Introduction
Many companies today use electronic data interchange (EDI) to exchange business documents. This article discusses how
Microsoft® BizTalk® Server can help both large businesses that are currently using EDI and smaller businesses that do not use
EDI but that want to trade with these larger businesses.

BizTalk Server can help a company that uses EDI in the following ways:

Enabling enterprise application integration (EAI).
BizTalk Server automates the exchange of internal business data as well as accepting EDI data and automatically integrating
it with internal systems.
Creating new relationships with smaller trading partners.
BizTalk Server provides a cost-effective way to exchange electronic documents with companies that choose not to use EDI.
Facilitating future growth.
BizTalk Server provides a cost-effective way to handle the expansion of a company's messaging and document interchange
requirements.

Smaller companies can benefit from BizTalk Server by using it to establish electronic document exchange relationships with larger
companies that use both EDI and XML. A smaller company can also streamline its internal business processes by employing the
EAI capabilities of BizTalk Server.

The ability of BizTalk Server to translate and transform documents is central to its EAI and document exchange capabilities. This
article introduces BizTalk Editor and BizTalk Mapper, tools that help to direct the translation and transformation of EDI documents
and other electronic documents. BizTalk Editor enables you to create and edit specifications (BizTalk Server-specific schemas).
BizTalk Mapper uses specifications to map the structure of one document instance to the structure of another document instance.

This article also discusses the relative strengths and weaknesses of BizTalk Server when compared with EDI technology.

EDI Overview
Electronic data interchange (EDI) is a set of standards for controlling the exchange of business documents (such as purchase
orders and invoices) between computers. Businesses can use EDI to ensure that the documents they exchange are interpreted
correctly, regardless of the platforms or internal applications they use. Because EDI enables electronic documents to move from
one computer to another without the need for human intervention, it is faster, cheaper, and more accurate than the exchange of
paper documents.

Standardization efforts for EDI formats began in the 1960s, and were led by the transportation industry. The need for a uniform
standard that encompassed all industries prompted the creation of the Accredited Standards Committee (ASC) X12, sanctioned by

the American National Standards Institute (ANSI), in 1979. The Accredited Standards Committee X12 created the EDI standard
commonly referred to as X12, which was used primarily for American domestic trade. Meanwhile, the European community
developed its own EDI standard called Guidelines on Trade Data Interchange (GTDI). A new standard that borrowed from both
X12 and GTDI, called Electronic Data Interchange for Administration, Commerce, and Transport (EDIFACT), was developed at the
United Nations. The International Organization for Standardization (ISO) adopted EDIFACT in 1987. Although ASC X12 members
approved the adoption of EDIFACT as the universal EDI standard in 1992, X12 continues to be a widely used EDI standard in North
America.

Although EDI has been around for nearly forty years, it has not triggered an explosion in business-to-business electronic
commerce. In fact, the number of businesses trading electronically today compared to those using phone or fax is limited. The
reasons for this are numerous and include the following:

EDI server systems are typically expensive.
The EDI document format is somewhat cryptic.
EDI document transport was historically a value-added network (VAN) that incurred both an expensive setup fee and
ongoing operational costs.

Enhancing an EDI Environment by Using BizTalk Server
Although many companies have long-term strategies that involve replacing their legacy infrastructure, a company that is heavily
invested in EDI might not want to immediately discard its investment and replace it entirely with an XML-based BizTalk Server
system. However, BizTalk Server can add a great deal of value to a company that chooses to continue using EDI in the short term.
Areas where BizTalk Server can enhance the operations of a company that uses EDI include:

Enabling EAI.
Creating new relationships with smaller trading partners.
Facilitating future growth.

Enterprise Application Integration

Integrating with business partners is only one of the challenges that face businesses today. Equally important is the integration of
internal business applications, such as accounting, inventory, and customer relationship management (CRM) systems.

EDI systems do not typically offer EAI infrastructure, and they support only a limited subset of possible electronic document
formats other than EDI. One of the strengths of BizTalk Server is its ability to automate and streamline the flow of a company's
business data both internally and externally.

The following illustration shows a simplified representation of how a company that uses EDI might use its EDI server to exchange
business documents.

Figure 1. Using EDI server to exchange business documents

Organization A's EDI server sends and receives standard EDI documents to and from Organization B over a VAN. Each transaction
over the VAN incurs an expense for Organization A. Organization A's EDI server communicates with its accounting, inventory, and
CRM applications either by manual data entry or by custom-built software.

The following illustration shows how a BizTalk Server hub can be added to this system to facilitate the integration of Organization
A's internal applications.

Figure 2. Adding a BizTalk Server hub

In this scenario, BizTalk Server becomes the hub of Organization A's internal data exchange. The BizTalk Server hub provides an
accurate and cost-effective way to automatically update the organization's line-of-business applications when a transaction with
Organization B occurs.

The key to the success of this scenario is the ability of BizTalk Server to be the universal message gateway. BizTalk Server can
automatically send data to Organization A's internal applications in XML or flat-file format, or even in custom formats with the
introduction of custom parsers and serializers. BizTalk Server uses the TCP/IP communication layer built into Microsoft
Windows® 2000, which is commonly used for communication between applications in an organization. With BizTalk Server these
EAI processes can be put in place at costs far lower than would be possible by paying developers to create custom
communications applications. BizTalk Server enables internal data exchange that is far more accurate and efficient than can ever
be achieved by manual processes.

New Relationships with Smaller Trading Partners

BizTalk Server makes it easy for a company currently using EDI with trading partners to also exchange documents with smaller
trading partners who cannot afford or do not want to use EDI. The following illustration shows how Organization A can add a new
trading partner to its existing communications network.

Figure 3. Adding a new trading partner

Organization A's BizTalk Server hub can electronically exchange business documents with Organization C using TCP/IP over the
Internet. These documents can be delivered in a format that is easy for Organization C to use, such as XML. In this scenario, both
Organization A and Organization C enjoy the accuracy and efficiency of the automated exchange of electronic business
documents. Neither company needs to incur the high costs of setting up a new EDI relationship or the ongoing expense of a VAN.

Future Growth

Organization A might find that it needs to set up new automated messaging with Organization B beyond what it has implemented
with its EDI server. Organization A will find that the least expensive and most direct solution is to use its BizTalk Server hub for
exchanging these new messages. In this way it bypasses its EDI server altogether. In time, Organization A might need to make
more significant changes in its data-exchange relationship with Organization B. This would be an ideal time for Organization A to
forgo its EDI server entirely and replace it with the BizTalk Server hub.

Using BizTalk Server in Smaller Companies
Many smaller companies could benefit from the ability to exchange electronic business documents with larger companies that
use EDI, but they cannot justify the setup and operational costs associated with traditional EDI servers. BizTalk Server provides a
cost-effective solution to this problem (and can also be leveraged with trading partners that use XML and other non-EDI formats).
BizTalk Server enables a small company to automatically transform its business documents into an electronic format that an EDI
server of a larger company can use. The following illustration shows such a relationship.

Figure 4. EDI documents sent and received by BizTalk Server

Organization D might be so small that it runs its entire business on Microsoft Office, or it might use another business tools suite
that can read and write XML documents or provide adapters for BizTalk Server. BizTalk Server can process Organization D's
documents and transport them to and from the EDI server of Organization B. Organization D might have BizTalk Server and other
business applications installed on a single computer, or it might be a larger company with business applications distributed
across several computers. In either case, Organization D's BizTalk Server hub can serve the dual purpose of exchanging EDI
documents with Organization B and automatically integrating the flow of internal business data within the company.

Translating and Transforming Documents
A key strength of BizTalk Server is its ability to accept input in a wide variety of document formats, map that input into almost any
document structure, and then output the new document structure into a wide variety of document formats. XML is central to the
translation and transformation capabilities of BizTalk Server, which is in large part what makes BizTalk Server such a powerful tool
for EAI and business-to-business electronic commerce.

The following illustration and accompanying list show how BizTalk Server internally processes a document.

Figure 5. Processing a document

1. The incoming document instance is sent to BizTalk Server.
2. The parser uses the source specification associated with the incoming document instance to translate the incoming

document instance to XML (if it is not already in this format). The source specification is created in BizTalk Editor.
3. The XML file is transformed by an Extensible Stylesheet Language Transformation (XSLT) map into another XML file of the

specified structure. (Nodes in the incoming XML file are mapped to nodes in the outgoing XML file.) The XSLT map is
created in BizTalk Mapper.

4. The serializer uses the destination specification associated with the outgoing document instance to translate the outgoing
XML file to the outgoing document instance (if it is not already in this format). The destination specification is created in
BizTalk Editor.

5. BizTalk Server outputs the outgoing document instance and transports it to a destination.

The parsers and serializers included with BizTalk Server can translate XML, EDI (X12 and EDIFACT), and flat files (delimited and
positional). Parsers and serializers for other formats might be available in the future. For more information, go to the
Microsoft BizTalk Server Web site.

If you create your own parsers and serializers, BizTalk Server can translate files of any format. Regardless of the format of an
incoming document instance, BizTalk Server translates it to an XML file so that the XSLT map can transform the incoming
document structure into the structure necessary for the outgoing document. Even if a BizTalk Server hub inputs and outputs EDI
documents, internally these documents are translated to XML. This enables BizTalk Server to take advantage of the power and
flexibility of XML when transforming documents from one structure to another.

BizTalk Editor

BizTalk Editor enables you to create the specifications used by BizTalk Server to translate document formats to and from XML, and
to create the maps that transform the translated XML files from one structure to another. The following illustration shows an EDI
purchase-order specification based on an X12_4010_850 schema displayed in BizTalk Editor. The hierarchical structure of a
document is displayed in the left pane of BizTalk Editor, regardless of whether the document format is XML, EDI, or flat-file. The
right pane contains tabs that display property settings for the nodes in the document hierarchy.

Figure 6. BizTalk Editor window

A specification that is based on an industry standard schema, such as the X12_4010_850 schema, is a subset of that standard
schema. For example, the specification in the illustration is a subset of the X12_4010_850 schema because the nodes that
ordinarily exist between the CUR and ITD nodes have been removed. With BizTalk Editor you can create a new document
specification based on a standard X12 or EDIFACT template and remove the nodes that you don't need.

BizTalk Mapper

With no coding, you can use BizTalk Mapper to create XSLT maps that BizTalk Server uses to transform the structure of an
incoming document instance to the structure of an outgoing document instance. The source specification in a map is associated
with the incoming document, and the destination specification is associated with the outgoing document.

The following illustration shows an X12-based purchase-order specification that is mapped to a purchase-order specification with
a different structure. This map represents the document transformation from the incoming EDI document to the XML format
acceptable for the accounting application in Organization A. The display is format independent—in this case the document
displayed in the left pane is an EDI file, while the document displayed in the right pane is an XML file.

http://www.microsoft.com/biztalk

Figure 7. BizTalk Mapper window

The illustration shows links from five nodes in the source specification to five corresponding nodes in the destination
specification. If you viewed the map in this illustration in BizTalk Mapper, you could see the remainder of the specifications by
scrolling and by expanding nodes in the specifications. BizTalk Mapper uses built-in, reusable functions called functoids to enable
more complex transformations than the simple links shown here.

BizTalk Mapper has a grid preview function that is useful for navigating to a particular subsection of a complex map, such as
might be required when mapping EDI documents. You can also create multiple grid pages that enable you to associate the layers
with logical or physical parts of the map. For example, if you were going to map an X12 810 schema representing an invoice, you
might want to create grid pages for the Header, Detail, and Summary sections.

Comparing BizTalk Server with EDI Technology
As explained earlier in this article, BizTalk Server offers functionality and advantages that EDI technology cannot provide. For
anyone currently using EDI who is considering deploying BizTalk Server in their business, it is important to understand the
strengths and limitations of both EDI and BizTalk Server.

EDI Strengths

Currently deployed in many businesses.
EDI is a long-established standard, and many large businesses currently use it successfully.
Uses agreed-upon standards.
EDI standards are recognized by everyone who uses EDI.
Standards are fairly rigid.
Rigid standards require conformity.

EDI Limitations

High cost.
EDI systems are costly to set up and maintain. Hiring and retaining EDI experts is expensive.
Value-added networks (VANs).
Many companies that use EDI use VANs to exchange documents. VANs are expensive to set up and incur costs each time
they are used.
Document format is not easily human-readable.

It is difficult for a person to read an EDI document.
Not well suited for EAI.
An EDI server handles connections outside the business. BizTalk Server handles connections both outside the business and
within the business.
Many industry-specific subvariations of standard documents.
In some industries, such as the automotive and aerospace industries, EDI document standards have been extended for
industry-specific purposes. This can cause document translation difficulties between variants of standard EDI documents
given the expectation for rigid standards interpretation.

BizTalk Server Strengths

Uses XML as a foundation.
BizTalk Server uses XML to translate and transform documents regardless of the document format required for input and
output. This creates an extremely flexible environment for document exchange both now and in the future. XML as a
document format has the following advantages:

XML is self-describing and creates documents that are relatively easy for people to read. This makes it easier for a
person unfamiliar with a particular BizTalk Server installation to become familiar with it.
XML experts are plentiful, and they are less expensive to employ than EDI experts.
XML is very flexible and extensible.

Easy setup and maintenance.
BizTalk Server systems are easier to set up and maintain than EDI systems.
Many schemas available.
There is a large and growing library of schemas available to users of BizTalk Server. For more information about this
schema library, go to the Microsoft BizTalk Server Web site.
EAI capabilities.
BizTalk Server handles EAI. For more information about case studies on BizTalk Server for EAI, go to the
Microsoft BizTalk Server Web site.
Orchestration capabilities.
In addition to the universal messaging capabilities described in this article, BizTalk Server has powerful orchestration
capabilities. BizTalk Orchestration enables users to design and execute long-running, loosely coupled business transactions.

BizTalk Server Limitations

Relatively new product.
BizTalk Server 2002 is the second release of the BizTalk platform. Many EDI servers have been available for many years.
While BizTalk Server 2000 and BizTalk Server 2002 have proven to be extremely robust and stable in production
environments, some of the less-commonly used EDI functionality is not currently available in the product.

Specifics of BizTalk Server Support for EDI Functionality

BizTalk Server supports a wide variety of features common to most EDI software. As of the recent release of BizTalk Server 2002,
the following tables describe the most important features of an EDI system and how those features are supported in BizTalk
Server. In the "BizTalk Server support" column, the score is effectively a rating or grade on how well the functionality, out-of-the-
box, meets what is typically expected of each feature.

Table 1. Category: Trading partner management

Feature BizTal
k Serv
er sup
port

Comments

Multiple organiza
tion IDs

100% BizTalk Server can easily handle many IDs per trading partner/organization, with the only restriction bei
ng that no two organizations are allowed to have the same ID (no ambiguity).

Variable use of st
andards within a
nd between tradi
ng partners

100% BizTalk Server allows multiple transaction types, of the same or different versions, between the same tw
o endpoints. In other words, no point-to-point EDI data flow adversely affects any other (see next point,
on routing).

http://www.microsoft.com/biztalk
http://www.microsoft.com/biztalk

Schema reuse 90% Schemas are completely reusable in the sense that one schema for, perhaps, a purchase order, can be us
ed repeatedly for any point-to-point data flow. However, because some routing data is tied to properties
called document definitions, which encapsulate the schema, effectively, there is some proliferation of do
cument definitions, all containing the same schema.

Run-time, autom
atic routing

100% BizTalk Server is completely capable of routing EDI messages based solely upon envelope content, trans
action content (for example, purchase order number), or a combination of both.

Unknown source
and directed rout
ing

100% Though BizTalk Server is typically configured to automatically route EDI, it is possible to specify and forc
e a particular routing. It is also possible to process all EDI transactions that conform to a particular sche
ma through a single processing channel, even from unknown sources, provided that the previously men
tioned specific routing is known at design time.

Uptime maintena
nce

100% BizTalk Server allows configuration changes and additions while the server is in operation.

Role shifting 100% BizTalk Server allows processing of EDI data either as an involved party to the transaction, or as an inter
mediary between the two parties in the transaction. By default, and unless otherwise specified, the serve
r assumes the former.

Table 2. Category: Data/syntax support

Feature BizT
alk S
erve
r sup
port

Comments

ANSI/X12
and EDIFA
CT transa
ction type
s

99% BizTalk Server ships with schemas for only a small subset of these libraries. However, comprehensive libraries ar
e available from Edifecs, the industry leader in EDI standards data (for more information, go to the Edifecs Web s
ite at http://www.edifecs.com). BizTalk Server can handle all transaction types for all versions provided that a sch
ema can be obtained, and all schemas are available through Edifecs.

ANSI/X12
and EDIFA
CT envelo
pe segme
nts

80% BizTalk Server handles the addition and removal of envelopes to and from EDI data completely. However, there a
re limitations to the flexibility of the content in those envelopes. Specifically, X12 group envelopes must use an 8
-digit date, this being the only X12 limitation.

EDIFACT, on the other hand, has much greater standards flexibility with respect to the content of the envelopes, a
nd BizTalk Server only automatically handles this variability to a certain point, beyond which the customer might
have to write a component for pre- or post-processing of the data to modify the envelope.

Hierarchy
and sectio
nal bound
ary segm
ents

100
%

BizTalk Server can completely handle things like Hierarchical Level (HL) segments in X12, which are present to in
terpret data where recursion of structure otherwise makes determination of scope (location in the transaction) i
mpossible.

BizTalk Server takes this one step further, and allows qualified segments and loops such that data parsed does n
ot have to exactly match the schema in terms of the sequence expected. In other words, if the schema indicates a
ship-to address followed by a bill-to address, using content-qualified tags called trigger fields, data that has the
order reversed can still be parsed and validated successfully.

X12 and E
DIFACT d
ata types

95% BizTalk Server supports the alphanumeric types in both standards. Furthermore, X12-specific items, such as impl
ied decimal, are handled at run-time during the transformation to and from XML.

The one limitation here is in the support for binary segments. Specifically, there is a size restriction (roughly equi
valent to 32-bit MAXINT) for how big a binary field's contents are allowed to be.

Floating s
egments

0% BizTalk Server does not enable a mismatch between the sequence of data specified by a schema and the sequenc
e of data present in a document instance, except as noted previously in the case of qualified segments or loops.
However, there are unqualified segments in EDI whose position can float according to the standard (for example,
the NTE segment in X12) and floating of these is not supported. Obviously, the segments can be used if their loc
ation is specified.

Table 3. Category: Document mapping and translation

Feature BizTal
k Serv
er sup
port

Comments

Validation acco
rding to user c
ontrolled sche
ma

100% The EDI schemas can and should be standards compliant, but certainly do not have to be. BizTalk Server v
alidates data at runtime according to the schema, over which the user has complete control (provided sch
emas are validated in BizTalk Editor).

Drag-and-drop
, GUI-based m
appings

100% BizTalk Mapper is a visual approach to converting data from one structure to another. These mappings ca
n include value copy, name copy, rich modification of value copy (using functoids), logically gated mappi
ngs, and looping control, all accessible through drag-and-drop operations.

Uses published
standards

100% BizTalk Server maps are XSLT that conforms to W3C standards for this style sheet language for transform
ations. As such, the maps can be shared more easily.

N-way mappin
gs

70% BizTalk Mapper addresses the 1-to-1 mapping problem. By simultaneously executing multiple maps per i
nbound message, BizTalk Mapper also handles 1-to-many mappings. However, BizTalk Mapper cannot cu
rrently draw upon multiple sources of input to a map, either for single-message or multiple-message out
put.

Mapping to/fr
om envelopes

20% BizTalk Server essentially does not handle mapping to and from envelopes in the parser. Pre- and post-pr
ocessing of the data makes it relatively easy to achieve the desired effect outside of the map itself.

Table 4. Category: Messaging operation protocols

Features BizTa
lk Ser
ver s
uppo
rt

Comments

Batching 100% Inbound to BizTalk Server, data can be batched in large, multi-group interchanges, and can also consist o
f file-based submissions containing multiple interchanges. Outbound from the server, batching of data w
ithin interchanges is not built into the core product so that, on first installation and use, outbound interch
anges will consist of a single group containing a single document.

Control numbers 80% BizTalk Server can generate control numbers automatically for outbound data based on a seed value. Ho
wever, there are features in some EDI systems that BizTalk Server does not support. For example, control
numbers in a series are always incremented by 1.

Also, relationships between control numbers at various levels (document, group, and interchange) are no
t supported. For example, the document control number cannot be based on the group control number v
alue.

Lastly, BizTalk Server does not, out-of-the-box, enable duplicate control number enforcement. The user
must build a component or BizTalk Orchestration process to provide such enforcement.

Functional ackno
wledgment conte
nt (X12/997, EDI
FACT/CONTROL)

80% BizTalk Server has full support for these transaction types, and is capable of automatically generating the
m, as needed. However, there are two limitations in this area:

One error per transaction. The server reports only on the first error encountered, at which point i
t suspends processing of that document and proceeds with the next document in the inbound grou
p.
Level of detail. The receipt error codes will provide detail on where an error occurred down to the
point of the invalid segment, but not to the field level. This complicates debugging in the event that
an error was in fact at the level of some particular field.

Functional ackno
wledgment statu
s and reconciliati
on

95% BizTalk Server can indicate when receipts are overdue (see the following tracking section for more details
). Also, BizTalk Server can reconcile inbound receipts to the substantive business transactions to which th
ey correspond. The one limitation in this area currently is that receipts that come in must match the docu
ment they are acknowledging by version of the standard (for example, 004010 of X12).

Table 5. Category: Transports

Feature BizTal
k Serv
er sup
port

Comments

VAN integration 80% BizTalk Server does not include VAN transport components, but they are available through Covast (a th
ird party partner) and cover the top VANs in use. To the extent that the transport step is also fully custo
mizable, any connectivity that a given VAN offers is possible.

TCP/IP transport
protocols (HTTP/
x, SMTP, FTP, UN
C/file)

95% BizTalk Server has full support for these protocol types. FTP is available through a partner add-on.

SNA connectivity 100% Provided through Microsoft Host Integration Server.
Custom 100% As an integration platform, BizTalk Server enables you to implement custom transport technology in fr

ont of or behind the BizTalk Server domain in the point-to-point flow. This is central to the ability of Biz
Talk Server to integrate with legacy systems. Hundreds of adapters are available to support connectivit
y to legacy systems.

Table 6. Category: Tracking and auditing

Feature BizTa
lk Ser
ver s
uppo
rt

Comments

Full tracki
ng of pert
inent EDI
metadata

100% BizTalk Server, by default, extracts and tracks information such as where EDI messages came from, where they a
re destined, what size they were, which version of the standard was used, and what the control numbers were at
each envelope level.

User inter
face for tr
acking qu
ery

100% BizTalk Server includes a Web-based tracking interface that enables users with search capabilities across the pre
viously mentioned tracking data. Tracking queries can be as specific (partner X, on Wednesday, between 1 and 2
P.M., transaction type Y, containing invoice number 123456) or general (all partners, all transactions, and so on)
as a user requires. If a user wants, tracking can also be mostly or completely disabled.

Legal app
licability

95% Most of what BizTalk Server does in the area of tracking is sufficient for legal requirements in the area of non-re
pudiation, especially on the outbound side.

However, there is one limitation in this area. Specifically, when data arrives encrypted, BizTalk Server tracks only
the post-decryption data, meaning that the initial over-the-wire form of the message is not tracked. If this is a re
quirement, users must separately track the data prior to its submission to BizTalk Server.

Table 7. Category: Security

Feature BizTalk Server suppo
rt

Comments

MIME 100% Fully supported.
Encryption 100% Fully supported.
Certificates 100% Fully supported.
Other/custo
m

100% BizTalk Server allows the use of custom compression or encryption in the processing seque
nce.

Conclusion
BizTalk Server can add value to any company that needs to automate its internal data flow or automate the exchange of business
documents with other companies. This includes companies that use EDI, as well as companies that don't use EDI but need a way
to build business relationships with EDI-based companies. BizTalk Server provides much more functionality than legacy EDI
servers. It enables you to use EDI and other formats for business-to-business integration and EAI. BizTalk Server provides a
powerful and flexible framework you can use to move your enterprise forward.

BizTalk Server has successfully replaced legacy software for some large EDI operational environments, but is also run alongside
such software in other cases. Typically, the decision to switch to BizTalk Server is made after examining both the business and
technical goals for the implementation. Some users want to use the flexibility of BizTalk Server to augment their existing EDI
servers, while others are looking to provide a single messaging bus for the enterprise replacing their current servers.

Microsoft BizTalk Server 2002 Technical Articles

Writing Parsers and Serializers in C# for Microsoft BizTalk
Server 2002

Microsoft Corporation

March 2003

Applies to:
 Microsoft® BizTalk® Server 2002
 Microsoft® .NET Framework
 Microsoft® Visual Studio® .NET

Summary: Download code, and learn how to write a pair of custom parser and serializer components using Visual C#. (2 printed
pages)

Microsoft BizTalk Server 2002 ships with built-in parsers and serializers that parse and serialize documents from or to the
following formats:

Extensible Markup Language (XML)
Delimited or positional flat files
Electronic Data Interchange (EDI) X12 or EDIFACT

To handle custom document formats not listed above, you need to write either a custom parser or serializer Component Object
Model (COM) components or both. The parser implements a corresponding interface—IBizTalkParserComplement, and the
COM components implements the IBizTalkSerializerComponent interface. Previously, because none of these interfaces support
automation, writing custom parsers and serializers could only be achieved in the C or C++ languages. However with the built-in
support for COM interoperability in the Microsoft .NET Framework, you can now write custom parsers and serializers for
BizTalk Server 2002 in any .NET-compliant language, such as C#, Visual Basic® .NET, Visual J#™, and so on. This paper describes
how to write a pair of custom parser and serializer components using Visual C#.

Download a copy of this document.

http://go.microsoft.com/fwlink/?LinkId=14941

Microsoft BizTalk Server 2002 Technical Articles

XML Tools

Microsoft Corporation

February 2002

Summary: Learn about the improvements to the XML tools BizTalk Editor and BizTalk Mapper in Microsoft BizTalk Server 2002.
(27 printed pages)

Contents

Introduction
BizTalk Editor
 Using Mixed Content in BizTalk Editor
 Creating Native Instances
 Testing with Delimiters
 Exporting XSD
 Extending the Dictionary
BizTalk Mapper
 Mapping Grid Pages
 Using Mixed Content in BizTalk Mapper
 Testing with XML and Native Instances
 Testing with Document Delimiters
 Generating XSLT Output
 Using the Looping Functoid
 Using the Logical Existence Functoid
 Using the Value Functoids
XML Tools: Tips and Tricks
 Using Subfield Delimiters with Flat Files
 Using Functoids to Perform Aggregation
 Extracting Data from a Text Document
 Declaring Global Variables
 Using Element Groups
 Using Custom Namespaces

Introduction
Microsoft® BizTalk™ Server 2002 provides the XML tools BizTalk Editor and BizTalk Mapper, which contain many improvements
over their Microsoft BizTalk Server 2000 versions. This article describes some of those improvements and also provides
information about less commonly known functionality available since BizTalk Server 2000. The improvements to BizTalk Editor
that are discussed include consuming mixed content, creating native instances, using delimiters to validate document instances,
and performing self-routing. The improvements to BizTalk Mapper that are discussed include creating multiple grid pages, testing
native instances directly in a map, and using functoids in new ways. The information in this document is intended for developers
who have worked with BizTalk Editor and BizTalk Mapper in BizTalk Server 2000.

BizTalk Editor
BizTalk Editor is an XML developer tool included in Microsoft BizTalk Server 2002 that enables you to create, edit, and manage
XML-Data Reduced (XDR) specifications. You use these specifications to uniformly structure your data so that you can set up e-
commerce business processes with your trading partners in BizTalk Server.

BizTalk Editor displays the hierarchical structure of documents on the left side of its user interface. On the right side, it displays
tabs that present the property settings for the nodes in the document hierarchy. Regardless of the document format (flat file, EDI,
XML, and so on), the representation of fields and records is always in Extensible Markup Language (XML).

The following topics discuss some of the new functionality included in BizTalk Editor:

Using Mixed Content in BizTalk Editor shows how to create a specification from text with embedded elements.
Creating Native Instances discusses the process of creating non-XML-based instance files within BizTalk Editor.
Testing with Delimiters discusses how delimiters function within BizTalk Editor.
Exporting XSD describes how to export a specification to interoperate with other systems that are currently using XML

schema definition language (XSD).
Extending the Dictionary discusses adding customized properties to create a self-routing document in BizTalk Editor.

Using Mixed Content in BizTalk Editor

The term "mixed content" refers to elements within a schema that contain both text and subelement content; a mixed-content
element can also carry attributes. Mixed content pertains only to XML. It does not apply to flat files or EDI (X12 or EDIFACT). The
ability to use mixed content is a new capability in BizTalk Server 2002, and is meant primarily for organizations that use XDR
schemas natively. You can use mixed content only with records in BizTalk Editor.

The following example is a sample used to create a mixed-content schema:

In this sample, tags are embedded within the article text. If you tried to create a schema for this sample in BizTalk Server 2000, an
error would be returned because BizTalk Server 2000 does not process mixed content.

However, in BizTalk Server 2002, the mixed-content schema for the previous sample would look like the following schema
fragment:

To create this schema in BizTalk Server 2002, the content attribute of an ElementType definition in the schema needs to be set.
To do this in BizTalk Editor, set the Content property to Mixed on the Declaration tab. The following illustration shows the
Content property set to Mixed for the NewsArticle root node.

Figure 1. Content property set to Mixed (click image to see larger picture)

When the Content property is set to Mixed in BizTalk Editor, the resulting output is represented as:

The Content property can have one of four possible values. These are:

<NewsArticle>A <Genre>Technology</Genre> article appeared on
 <Source>MSNBC</Source> during August 2001. The article is titled
 <Title>Growing up with the PC</Title> and was written by
 <ByLine>Bob Sullivan</ByLine>. <BodyText>Lucky for me,
 Dad was always bringing home the
 latest…</BodyText></NewsArticle>

<ElementType name="NewsArticle" content="mixed" model="closed">
<element type="Genre" maxOccurs="1" minOccurs="0"/>
<element type="Source" maxOccurs="1" minOccurs="0"/>
<element type="Title" maxOccurs="1" minOccurs="0"/>
<element type="ByLine" maxOccurs="1" minOccurs="0"/>
<element type="BodyText" maxOccurs="1" minOccurs="0"/>
</ElementType>

<ElementType name="NewsArticle" content="mixed" model="closed">

Element Only The element can contain only child elements.
Empty The element can contain attributes and cannot have any subelements under it.
Text Only The element can contain only textual content and cannot have any subelements under it. This is the only value
available for fields in BizTalk Editor.
Mixed The element can have both textual and subelement content.

Creating Native Instances

BizTalk Server 2002 enables you to create native instances of data and use them to test schemas in BizTalk Editor. Native data is
any non-XML data, such as electronic data interchange (EDI) or flat file. This is a significant addition to BizTalk Server 2000, which
enabled you to create only an XML instance to provide a sample file for use with a schema. For example, in BizTalk Server 2000, if
you used native data, you had to use a separate tool to create the instance file to test all specifications not based on XML.

BizTalk Server 2002 includes the Create Native Instance option on the Tools menu. When you click this option, BizTalk Editor
looks at the Structure setting on the Parse tab pertaining to the root node. It uses this setting, which indicates the type of data, to
create an instance document conforming to the schema. This is done by directly invoking the serializer (a run-time component for
non-XML generation) to generate the native output.

In addition to enabling you to create a file, BizTalk Editor shows the native instance directly on the Output tab. The Output tab,
shown in the following illustration, displays the instance data in the format represented by the schema.

Figure 2. The Output tab (click image to see larger picture)

Note If the specification being created represents an XML document, then the Create Native Instance option is
unavailable.

With flat files, you simply use the Create Native Instance option. In contrast, when your specification is based on an EDI
structure, you use the Create Native Instance option, but you also need to set delimiter values. BizTalk Editor displays the
Document Delimiters dialog box (shown in the following illustration), which you use to set the delimiter values you want or
accept the default values for the native instance. You can find this Document Delimiters box by clicking Options on the Tools
menu. You can set delimiters only once or have BizTalk Editor prompt you for specific delimiters during each instance test.

Figure 3. The Document Delimiters dialog box

Note The ability to create native instances by using the Create Native Instance functionality is for creating and
testing specifications. Use BizTalk Editor in a development/test environment to create test instances, but continue to
use the BizTalk Messaging Manager run-time infrastructure to test envelopes.

Testing with Delimiters

In BizTalk Server 2000, you could set delimiter properties to specify which characters were used to separate data within an
envelope and the documents of an interchange. Now, in BizTalk Server 2002, you can also use delimiters to validate document
instances.

When you work with delimited flat files, there are two main issues to keep in mind:

If you are creating a schema for a positional flat file, set up the root element as a positional record type. If you are creating a
schema for a delimited flat file or for a flat file that is both positional and delimited, set up the root element as a delimited
record type.
The delimiter character specified for the parent delimited record cannot appear in the data being parsed by the positional
record portion of the specification. If the delimiter appears in the data being parsed by the child positional record, you must
use an escape for that data to prevent it from being interpreted as a delimiter. This means that either a different delimiter
needs to be used, or there needs to be a preprocessing step.

When you set up a document instance, four options can be set for specifying delimiters. These options apply to both the parser
and the serializer. These options are set for the root node on the Reference tab and are available only when the Standard
property is set to CUSTOM. The following illustration shows an example of a document instance with the default delimiters set on
the Reference tab.

Figure 4. A document instance with the default delimiters set on the Reference tab (click image to see larger picture)

The default delimiters are the following:

Default Record Delimiter This is the delimiter used to notify BizTalk Server of the end of the record. This can be any of
the listed values or you can enter another value manually. In the previous illustration, the record delimiter is an asterisk (*).
Default Field Delimiter This is the delimiter used to separate the data fields within the record. In the previous illustration,
the field delimiter is a comma (,).
Default Subfield Delimiter This is the delimiter used to separate subcomponents within a field. In the previous
illustration, the subfield delimiter is a colon (:).

Important The subfield delimiter is for use with EDI document types only.

Default Escape Character This is the character that indicates to BizTalk Server that the next character should not be
evaluated as a delimiter. In the previous illustration, the escape character is a question mark (?).

After the delimiters and their associated values for the root level of a document have been set, a delimiter for the child nodes
directly below the current node must be selected. You do this by choosing one of the following options for the Delimiter Type
property on the Parse tab:

Character
Default Record Delimiter
Default Field Delimiter
Default Subfield Delimiter

If Character is selected, the Delimiter Value property is enabled and you can enter the appropriate delimiter value. If the
Default Record Delimiter, Default Field Delimiter, or Default Subfield Delimiter option is selected, BizTalk Server uses the
same value that is entered for the root node on the Reference tab. For example, if you select Default Field Delimiter for the
child node on the Parse tab, this directs BizTalk Server to use the value entered for the Default Field Delimiter property for the
root node on the Reference tab.

If you are presented with the Document Delimiters dialog box, it is because the Prompt for delimiters during instance test
check box is selected. If you change the delimiters during instance testing, those delimiters are used only to test the current
instance. The delimiters specified on the Document Delimiters tab remain the default delimiters.

Exporting XSD

BizTalk Server 2002 has the ability to export specifications created in BizTalk Editor into XSD schemas. This capability existed with
BizTalk Server 2000, in the form of an Extensible Stylesheet Language (XSL) style sheet located in the Program Files\Microsoft
BizTalk Server\SDK\Messaging Samples\XSDConverter directory. Now you invoke the same XSD style sheet on the Tools menu
in BizTalk Editor. This update provides better capability to interoperate with other systems that use XSD, and enables the creation
of standards-based XSD representations of the specifications created in BizTalk Editor.

Creating the XSD representation is a two-step process. First, you create the XDR representation of the schema as a specification in
BizTalk Editor. Then, BizTalk Editor feeds the XDR representation into the style sheet for conversion into the XSD representation.
Remember that BizTalk Editor is still using XDR natively, so you need to create a specification that can transform an XSD schema.

Trading partners can send instances of XML that are derived from an XSD schema. Those instances will be compatible with BizTalk
Server if the XSD schema on the trading partner side of the transaction/communication is a functional match of the XDR
equivalent on the BizTalk Server side.

For example, if you use XDR in your BizTalk Server configuration, but your trading partner uses XSD, you can use BizTalk Editor
with the XDR schema to create an XSD-equivalent specification. Your trading partner can then use its XSD schema to send you
XML document instances, which BizTalk Server can successfully process because the XSD data and your specification are
functionally equivalent.

Extending the Dictionary

Unlike BizTalk Server 2000, BizTalk Server 2002 enables you to do self-routing by extending the properties on the Dictionary tab
and adding customized properties to create a self-routing document in BizTalk Editor. A self-routing document contains all the
necessary routing information, such as source and destination organization identifiers and a document definition, in the routing
tags or within the document. You can also assign values to the predefined properties and to any custom properties you create.

The predefined properties on the Dictionary tab are:

Document Container Node This node is used in an envelope, and specifies the node that contains the document.
Document Name This node is used to set the path to the field that contains the document instance itself.
Source Type and Source Value These nodes are used in combination and represent values for the source organization.
The Source Type is the qualifier (such as Organization Name or Telephone) and the Source Value is the value assigned
to the type. As such, if the qualifier is set to Telephone, the Source Value would equate to the value that was set by using
the new organization functionality on the Identifier tab in BizTalk Messaging Manager.
Destination Type and Destination Value These nodes are the same as those for the Source Type and Source Value,
except that they represent the values for the destination organization.

When performing self-routing in BizTalk Server, there are two ways to specify the data for BizTalk Server to select:

You can assign fields in the document to the predefined properties on the Dictionary tab. This enables you to add the
values that are necessary to match to the required elements presented by default on the Dictionary tab.
You can use BizTalk Server to create custom properties and assign values to them on the Dictionary tab. If there are values
that already exist in the document, they can be used to provide BizTalk Server with the necessary values to perform self-
routing.

To create a custom property, you create a specification in BizTalk Editor, designate the field from which the value for the custom
property will be extracted, and then create the custom property. BizTalk Server uses an XPath query to locate and extract the
corresponding value from within the document instance and put it into the Node Path column for the new custom property on
the Dictionary tab.

After you create all the specifications and custom dictionary properties your self-routing process requires, the next step is to
create a document definition in BizTalk Messaging Manager. Then, you enter the names and values of the custom properties you
created in BizTalk Editor, so that the BizTalk routing engine can match the values in the document with the new document
definition. At this point, BizTalk Server is set up to route the document instance based on the values already contained in the
document itself.

The following illustration shows the Dictionary tab for the TRAN-ID field. This field contains two custom properties,
TransactionID and ErrorCode, located in the Property column, and their assigned values, located in the Node Path column. In
this example, the results of the transaction will contain either error information or data.

Figure 5. The Dictionary tab for the TRAN-ID field (click image to see larger picture)

The BizTalk routing engine uses the values extracted from the information provided on the Dictionary tab in BizTalk Editor. These
values are then used to search for the document definition that matches these values. After this is accomplished, the channel in
which the document definition is specified is selected. The document instance is then submitted to the channel for processing.

BizTalk Mapper
BizTalk Mapper is an XML developer tool included in Microsoft BizTalk Server 2002 that enables you to create XSL
Transformations (XSLT) maps to be used to transform the structure of an incoming document instance to the structure of an
outgoing document instance, with no coding. You use these maps to process and translate data into formats that can be shared
within your own organization and with trading partners.

Just as BizTalk Editor represents fields and records identically, regardless of the document format, so too does BizTalk Mapper.
The representation of specifications in BizTalk Mapper is format independent. BizTalk Mapper performs the same task in the same
manner no matter whether the transformation is from or to XML, EDI, or flat-file formats.

The following topics discuss some of the new functionality included in BizTalk Mapper:

Mapping Grid Pages shows how the mapping grid can be split into logical pages for easier viewing.
Using Mixed Content in BizTalk Mapper describes how to use mixed content in BizTalk Mapper.
Testing with XML and Native Instances discusses how testing can be performed with native instances.
Testing with Document Delimiters describes the new functionality available to set the delimiters for the source and
destination schemas.
Generating XSLT Output describes how to include or omit the XML declaration in an output document.
Using the Looping Functoid describes this functoid and its relationship to source and destination documents.
Using the Logical Existence Functoid describes this new functoid in the logical functoids group.
Using the Value Functoids describes the functionality of the Value Mapping and Value Mapping (Flattening) functoids.

Mapping Grid Pages

In BizTalk Server 2000, there was a large mapping grid on which to place your functoids, but only a small viewing area with which
to view complex maps. You could choose the Grid Preview option from the View menu to reposition your view, but, in some
cases, the complexity of a map that contained thousands of links resulted in a density of links and functoids that made the map
hard to read.

In BizTalk Server 2002, you have the ability to create multiple grid pages, up to 20 total. Also, you can move functoids to a new
page if the original page becomes too densely populated. These grid pages work in much the same way as the extra sheets that
can be added to a workbook in Microsoft® Excel. You can also name these grid pages to help keep track of which page contains
which parts of the map. The name for each page can be up to 32 characters in length. When the map is compiled, the compiler
collapses all the pages, treating the functoids as if they were all on one page.

These new grid pages enable you to associate the layers with logical or physical parts of the map. For example, you could create
grid pages for Header, Detail, and Summary sections of a map.

Using Mixed Content in BizTalk Mapper

As stated previously, mixed content refers to elements within a schema that contain both text and subelement content; the

elements can also carry attributes. Mixed content pertains only to XML. It does not apply to flat files or EDI (X12 or EDIFACT). The
ability to use mixed content is meant primarily for organizations that use XDR schemas natively.

With BizTalk Server 2002, you can use specifications imported from BizTalk Editor that contain mixed content. You can decide how
much of the subelement content is represented when you compile maps in BizTalk Mapper, which enables you to control how the
compiler navigates through the Destination Specification tree. To compile all the elements and subelements, you use the new
Copy text and sub-content value option. When you choose to compile all the mixed content, the concatenated values of the
node and of all the child elements are copied in the incoming document instance. Changing the compiled content changes the
outcome of the results when you test the map.

Figure 6. Copy text and sub-content value option (click image to see larger picture)

For example, if you took the following specifications and imported them into BizTalk Mapper, you would get a map with mixed
content in the source specification and no mixed content in the destination specification.

Figure 7. MixedContentRecord (click image to see larger picture)

Figure 8. EmptyContentRecord (click image to see larger picture)

In the following illustration, the map was tested with the Instance XML to XML option with the Copy text value compiler option
enabled. As you can see, the resulting output (on the Output tab) for Field2 of the destination node contains only data from the
MixedContentRecord record.

Figure 9. Instance XML to XML option with the Copy text value compiler option enabled (click image to see larger
picture)

In the following illustration, the map was tested with the Instance XML to XML option with the Copy text and sub-content
value compiler option enabled. As you can see, the resulting output (on the Output tab) for Field2 of the destination node
contains data from both the MixedContentRecord record and the eleField2 field, which is both the element and subelement
content.

Figure 10. Instance XML to XML option with the Copy text and sub-content value compiler option enabled (click
image to see larger picture)

Testing with XML and Native Instances

Just as BizTalk Editor can create native instances, BizTalk Mapper can now create native output from the map test process. BizTalk
Mapper also supports both native instances (non-XML data) and XML as input to test the created style sheet.

BizTalk Mapper has extended the Test Map option on the Tools menu. This menu now provides the following testing features:

Generated XML to XML This feature contains the same functionality as the Test Map option in BizTalk Server 2000. This
feature invokes the instance generator function to create a contrived instance of the source document. This document
instance is then submitted to the style sheet created by BizTalk Mapper and the output is represented in XML format on the
Output tab of BizTalk Mapper.
Generated XML to Native The contrived instance of the source document gets created and submitted to the style sheet.
At this point, the document gets serialized to the native format and displayed on the Output tab. If the destination schema
is EDI, then this process also prompts for the delimiters to use for the serialization process.
Instance XML to XML This feature prompts you to select the instance document to be tested in the map. The resulting
XML is displayed on the Output tab.
Instance XML to Native This feature prompts you to select the instance document and then uses that instance to
generate a document that is serialized to the native format specified by the destination document and displayed on the
Output tab.
Native Instance to XML This feature prompts you to select the instance document to be tested in the map. Unlike
Instance XML to XML, BizTalk Mapper looks for a native document instance for this feature. The native instance is assumed
to be the in same format as the source schema. The output of this feature produces the XML format and displays it on the
Output tab.

Native Instance to Native This feature prompts you to select the instance document to be tested in the map. Unlike
Instance XML to XML, BizTalk Mapper looks for a native document instance for this feature. The native instance is assumed
to be the same format as the source schema. The output of this feature produces the native format and displays it on the
Output tab.

Note For EDI native instances, the Native Instance to XML and Native Instance to Native features are
capable of automatically removing the envelopes for a wrapped EDI interchange.

In addition to creating native instances, BizTalk Mapper can also perform validations, according to the specifications, during map
tests. New in BizTalk Server 2002 are two check boxes in the BizTalk Mapper Options dialog box. These features are:

Validate content before map test The map will validate the instance against the source schema before submitting it to
the style sheet.
Validate content after map test The map will validate the instance against the destination schema after the style sheet
has created the schema.

Note For both of these validation features, if a schema used in the map was not natively created by BizTalk Editor
(such as an imported XDR specification) and you receive warnings regarding namespaces or element groups, you
should not use these features because they might cause the validation to fail.

By default, when BizTalk Mapper validates incoming and outgoing instances, it validates the source schema, applies the
appropriate style sheet, and then validates the schema again. You can turn off this validation process by clearing one or both of
the previously listed check boxes. For example, if you are trying to debug a map failure and you know validation will fail, clearing
both Validate content before map test and Validate content after map test will enable you to see the results of the map,
which will return errors that you can use to troubleshoot the problem. After you fix the problem, you should select these options
again and retry the validation to verify your fixes.

Note When BizTalk Mapper performs a test that uses a native instance, it automatically takes the schema for that
native instance and submits that as the envelope. The ability to create native instances is for creating and testing
schemas for business documents. Use BizTalk Mapper in a development/test environment to create test instances, but
continue to use the BizTalk Messaging Manager run-time infrastructure to test envelopes.

If you want envelope processing outside of this functionality, create a port and channel, identify the
inbound/outbound document specifications and the envelopes, and then perform the required testing through this
method. The standard functionality of BizTalk Mapper will provide the functionality required for the body of the
document, while the map test setup will enable you not only to test the body again, but also to test the envelope and
the entire mapping process.

Testing with Document Delimiters

In BizTalk Server 2002, BizTalk Mapper enables you to specify document delimiters when you test maps. The Document
Delimiters tab provides the ability to set the delimiters for both the source schema and the destination schema.

After you have chosen the document type, set the required delimiters for the following:

Record delimiter
Field delimiter
Subfield delimiter
Escape character

At the bottom of this tab is the Prompt for delimiters during instance test check box. This option indicates whether or not
BizTalk Mapper should display the Document Delimiters dialog box every time you validate a document instance.

If you are prompted with the Document Delimiters dialog box during the instance test, because the Prompt for delimiters
during instance test check box is selected, the delimiters specified are used only for the current instance. The delimiters chosen
on the Document Delimiters tab remain the default delimiters.

Generating XSLT Output

Microsoft BizTalk Server 2002 uses the data that you provide in a map to generate Extensible Stylesheet Language
Transformations (XSLT) between source and destination specifications. Then, the XSLT output is used by Microsoft XML Parser
(MSXML) version 3.0 at run time to transform the schema on the server. When you create a map, the XSLT can be viewed in
BizTalk Mapper. This functionality has been provided to help non-BizTalk Server trading partner recipients whose systems require
this declaration to process XML.

You can find this functionality on the XSLT output tab, which is new in BizTalk Server 2002. It presents only one option, Omit
XML declaration. If this is set to No, an XML declaration similar to <?xml version="1.0" encoding="UTF-16" ?> will be
appended to the top of the output document. If this is set to Yes, the declaration will be omitted.

Using the Looping Functoid

The Looping functoid is a functoid you use with the XSLT compiler. The purpose of the Looping functoid is to explicitly tell the
XSLT compiler what the looping relationship is between the source and destination specifications. The compiler usually infers this
behavior based on other mappings, but, in some cases, due to the ambiguous structure of a map, inference is not possible.

Consider the following illustration. The VendorPartNumber and BuyerPartNumber fields from the Source Specification tree
are linked to the Looping functoid. This, in turn, is connected to the MyPartNumbers record in the Destination Specification tree.
In addition, each of the Source Specification tree fields is directly linked to the Destination Specification tree fields.

Figure 11. The Looping functoid (click image to see larger picture)

The link between VendorPartNumber and Qualifier and the link between BuyerPartNumber and Qualifier are set up so that
the compiler directive is set to copy the name. The link between VendorPartNumber and PartNumber, and BuyerPartNumber
and PartNumber, are set up so that the compiler directive is set to copy the value. Notice also that, for example,
VendorPartNumber is mapped to three places in the destination specification, only one of which is MyPartNumbers, which
indicates the following:

One link is to the Looping functoid.
The second link is to copy the actual value in the PartNumber field.
The third link is for populating the Qualifier field, which contains the name of the part number (VendorPartNumber).
(Node-name mapping is an option that you can specify on the link.)

After setting up the direct links, there are also the links to the Looping functoid. This functoid tells the transformation engine to
create multiple output records—one for the Vendor information and the other for the Buyer information.

The following incoming document instance contains both Vendor information and Buyer information:

If this is submitted to the map, it produces the following output:

Without the Looping functoid, the XSLT compiler would incorrectly infer that there was a MyPartNumbers record in the

<Specific><PartNumbers VendorPartNumber="123456vn"
 BuyerPartNumber="987654bp" /></Specific>

<Generic>
<MyPartNumbers Number="1" Qualifier="VendorPartNumber"
 PartNumber="123456vn" />
<MyPartNumbers Number="2" Qualifier="BuyerPartNumber"
 PartNumber="987654bp" />
</Generic>

destination specification for every VendorPartNumber and BuyerPartNumber field in the source specification. A warning
would appear on the Warnings tab, stating the following:

Warning The destination node "Qualifier" has multiple inputs but none of its ancestors is connected to a Looping
functoid.

The same warning would also be received for the PartNumber record. The output of the transformation would be the following:

In this case, the transformation did not know to perform the loop and only the first record was created. If this output occurs and
two records were expected, then this is a case where the Looping functoid needs to be used. By using the Looping functoid, the
compiler can correctly infer to have a MyPartNumbers record for each field inside the VendorPartNumber and
BuyerPartNumber fields.

Logically filtered looping

In BizTalk Server 2000, the Looping functoid behavior was absolute, which means it looped explicitly from Node A to Node B.
Now, BizTalk Mapper enables you to terminate a link from the Looping functoid and a logical functoid, such as the Equal
functoid, in the same place. This means that instead of a one-to-one correlation between Node A and Node B, now there are only
as many Node Bs as there are Node As or child nodes that meet the values in the corresponding logical functoid. For this use of
functoids to work, both the Looping functoid and the logical functoid must terminate at the same node. This is referred to as
logically filtered looping.

For example, if you had a purchase order (PO) that you wanted to loop only if certain conditions or values existed, you could use
functoids to create a logically filtered looping scenario, as shown in the following illustration.

Figure 12. Logically filtered looping (click image to see larger picture)

In this example, the POHeader record is linked to the Looping functoid and the Purpose field is linked to the Equal functoid.
Both the POHeader record and the Purpose field terminate at the BEG record, creating a linking where Node B is looped only if
POHeader or Purpose is equal to BEG.

Using the Logical Existence Functoid

The Logical Existence functoid is the new logical functoid added to BizTalk Server 2002. The logical functoids, including the
Logical Existence functoid, are especially useful when you need to transform XML from one format to another using the Value
Mapping and the Value Mapping (Flattening) functoids (which are discussed in the following topic). The Logical Existence
functoid returns "true" if the input record or field exists in the source specification. This functoid requires exactly one input
parameter.

Using the Value Functoids

This section discusses the two BizTalk Server value functoids: Value Mapping and Value Mapping (Flattening).

<Generic>
<MyPartNumbers Number="1" Qualifier="BuyerPartNumber"
 PartNumber="987654bp" />
</Generic>

Value Mapping

The Value Mapping functoid enables you to transform a hierarchical XML document. This functoid transforms an attribute from
a field into an attribute of a record.

Consider this example. The following document instance has both a Name and Value attribute on the Field element:

If you want to combine all of the attributes associated with the Field element and make them attributes on the Record element,
the Value Mapping functoid can accomplish this.

After the value mapping has taken place, the XML output looks like the following:

The following illustration shows how this is accomplished in BizTalk Editor by using a pair of functoids, the Equal functoid and the
Value Mapping functoid, for each of the records in the destination document. The records consist of the Sales,
ThirtyDayMovingAvg, and SixtyDayMovingAvg fields.

Figure 13. The Equal functoid and the Value Mapping functoid (click image to see larger picture)

<Root>
 <Record>
 <Field Name="Sales" Value="1000"/>
 <Field Name="ThirtyDayMovingAvg" Value="2843"/>
 <Field Name="SixtyDayMovingAvg" Value="2198"/>
 </Record>
 <Record>
 <Field Name="Sales" Value="1876"/>
 <Field Name="ThirtyDayMovingAvg" Value="1734"/>
 <Field Name="SixtyDayMovingAvg" Value="1098"/>
 </Record>
 <Record>
 <Field Name="Sales" Value="1262"/>
 <Field Name="ThirtyDayMovingAvg" Value="3198"/>
 <Field Name="SixtyDayMovingAvg" Value="2835"/>
 </Record>
</Root>

<Root>
 <Record Sales="1000" />
 <Record ThirtyDayMovingAvg="2843" />
 <Record SixtyDayMovingAvg="2198" />
 <Record Sales="1876" />
 <Record ThirtyDayMovingAvg="1734" />
 <Record SixtyDayMovingAvg="1098" />
 <Record Sales="1262" />
 <Record ThirtyDayMovingAvg="3198" />
 <Record SixtyDayMovingAvg="2835" />
</Root>

The following illustration shows the Functoid Properties dialog box for the Equal functoid.

Figure 14. The Functoid Properties dialog box for the Equal functoid

There needs to be an Equal functoid for each pair, with the only difference between them being the value of the constant. The
Functoid Properties dialog box in the previous illustration shows the constant for the Sales field. There is also an Equal functoid
for the ThirtyDayMovingAvg and SixtyDayMovingAvg fields.

In the first functoid pair, the Equal functoid and the Value Mapping functoid work together so that the value of the Sales field is
passed from each of the records in the source specification to the Sales attribute in the schema representing the transformed
format. This also occurs for each of the other fields.

The Value Mapping functoid returns the value of the second parameter defined in the Functoid Properties dialog box only if
the first value is "true." Therefore, it is very important to ensure that the link from the Equal functoid is first in the list. The Equal
functoid linked to the Value Mapping functoid returns "true" only when the value of the field is equal to the value of the
constant. Therefore, for the first element, the Equal functoid mapped to the first attribute will return "true" only when the value is
the Sales field. The other Equal functoids, likewise, will return "true" only when the value is the same as the defined constants.

Value Mapping (Flattening)

As its name implies, the Value Mapping (Flattening) functoid enables you to transform a hierarchical XML document into a
flattened XML document. A flattened document is a document in which all the source hierarchies are flattened to the parent of the
destination node. In other words, if a record repeats three times in the Source Specification tree, only one occurrence will be
created in the Destination Specification tree.

Note The Value Mapping (Flattening) functoid demonstrates functionality similar to the Looping functoid in that
they are both used with loops; however, the Looping functoid is used to explicitly dictate the occurrence of loops,
while the Value Mapping (Flattening) functoid is used to explicitly suppress looping.

For example, in a Looping functoid (non-flattening) scenario, if there are three fields in the source specification, there
will usually be three fields in the destination specification. In a Value Mapping (Flattening) functoid scenario, if
there are three fields in the source specification, there will be only one field in the destination specification.

Consider the following sample hierarchical document instance:

<Root>
 <Record>
 <Field Name="Sales" Value="1000"/>
 <Field Name="ThirtyDayMovingAvg" Value="2843"/>
 <Field Name="SixtyDayMovingAvg" Value="2198"/>
 </Record>
 <Record>
 <Field Name="Sales" Value="1876"/>
 <Field Name="ThirtyDayMovingAvg" Value="1734"/>
 <Field Name="SixtyDayMovingAvg" Value="1098"/>
 </Record>
 <Record>
 <Field Name="Sales" Value="1262"/>
 <Field Name="ThirtyDayMovingAvg" Value="3198"/>

The output should appear in the following format:

Then, there needs to be a mechanism to transform the name and value pairs from each of the fields in the hierarchical format into
the attributes of the record in the flattened format. This is what the Value Mapping (Flattening) functoid does in the map
shown in the following illustration.

Figure 15. The Value Mapping (Flattening) functoid (click image to see larger picture)

It is important to maintain a one-to-one correspondence between the number of records in the instance document and the
records in the flattened schema. This is accomplished by using a pair of functoids, the Equal functoid and the Value Mapping
(Flattening) functoid, for each of the elements in the destination document. In this example, there are three.

The following illustration shows the Functoid Properties dialog box for the Equal functoid.

Figure 16. The Functoid Properties dialog box for the Equal functoid

There needs to be an Equal functoid for each pair with the only difference between them being the value of the constant. The

 <Field Name="SixtyDayMovingAvg" Value="2835"/>
 </Record>
</Root>

<Root>
 <Record Sales="1000" ThirtyDayMovingAvg="2843"
 SixtyDayMovingAvg="2198" />
 <Record Sales="1876" ThirtyDayMovingAvg="1734"
 SixtyDayMovingAvg="1098" />
 <Record Sales="1262" ThirtyDayMovingAvg="3198"
 SixtyDayMovingAvg="2835" />
</Root>

previous Functoid Properties dialog box shows the constant for the ThirtyDayMovingAvg field. There is also an Equal
functoid for the Sales and SixtyDayMovingAvg fields.

In the first functoid pair, the Equal functoid and the Value Mapping (Flattening) functoid work together so that the value of the
Sales field is passed from each of the records in the source specification to the Sales attribute in the schema representing the
flattened format. This also occurs for each of the other fields.

Just like the Value Mapping functoid, the Value Mapping (Flattening) functoid returns the value of the second parameter
defined in the Functoid Properties dialog box only if the first value is "true." The Equal functoid linked to the Value Mapping
(Flattening) functoid returns "true" only when the value of the field is equal to the value of the constant. So, the Equal functoid
mapped to the first attribute will return "true" only when the value is the Sales field. The other Equal functoids, likewise, will
return "true" only when the value is the same as the defined constants.

It is important to consider that if there is more than one field with an attribute that matches the second input parameter of one of
the Equal functoids, only the last matching record is mapped to the output document. For example, if there were three fields in
the first record that had name attributes of Sales, only the last value would be mapped.

XML Tools: Tips and Tricks
The following topics provide additional information for working with BizTalk Mapper and BizTalk Editor:

Using Subfield Delimiters with Flat Files describes how to use subfield delimiters with flat files.
Using Functoids to Perform Aggregation describes how to use cumulative functoids to calculate totals and perform some
basic statistical functions.
Extracting Data from a Text Document describes how to submit a text document as a file.
Declaring Global Variables describes how to declare variables outside of functions, so that all functoids can use the same
variables in their processing.
Using Element Groups discusses how to create a relationship between a set of elements, without necessarily applying that
relationship to all peers under a common parent. You can then apply ordering constraints to the element group.
Using Custom Namespaces describes how to validate document instances at run time with custom namespaces.

Using Subfield Delimiters with Flat Files

In the Testing with Document Delimiters topic earlier in this article, the functionality of the subfield delimiter was discussed. This
section discusses how to use subfield delimiters to do additional processing within BizTalk Mapper. While EDI does support the
concept of subfield delimiters natively, you can achieve a similar result with flat files.

As an example, assume the following is the format for the address information sent by a trading partner (a flat file with tabs as
field delimiters and a carriage return for the record delimiter):

Furthermore, in this example the internal format separates the ZIP Code and the ZIP Code Suffix into separate elements. You
could pull the flat file into a word-processing program and search and replace the hyphen (-) with a tab character, for example,
98020[tab]5554. This manual process would need to be done every time you received the data, and introduces the possibility of
human error, as well as the inadvertent possibility of omitting this step altogether. Alternatively, you could write a BizTalk Server
preprocessor component to automate this process. However, this still introduces an additional step of configuration.

Instead, you could submit the raw data into BizTalk Mapper and separate the fields using functoids. The map and the source and
destination document specifications would be created as shown in the following illustration.

638 Elm Street[tab] Edmonds[tab] WA[tab] 98020-5554[carriage return]

Figure 17. Subfield delimiters (click image to see larger picture)

To use this process, you need to:

Create a specification from the source file in BizTalk Editor to represent the fields in the flat file.
Create a specification from the destination file in BizTalk Editor to represent your internal representation in an XML format.
Use the functoids in BizTalk Mapper to separate the postal code information.

First, you map the data that is needed for only the Zip field. The first functoid to be placed on the map is the String Find functoid.
This functoid returns the location of a string or character within a string. This performs the equivalent of the Microsoft® Visual
Basic® InStr function. The inputs for this first functoid are the PostalCode field itself and a constant defined to be a hyphen (-).

Then, plug the return value into the Subtraction functoid (found on the Mathematical tab). This functoid will take the output
from the String Find functoid and a constant defined as 1. The output will be the position of the hyphen in the string minus 1 (in
this example, 6-1).

To finish the path, you need to use the String Left functoid. This performs the equivalent of the Visual Basic Left function.
Another link from the PostalCode field needs to be linked as the first parameter into the functoid. The functoid will then need the
output from the Subtraction functoid as its second parameter. The output will be the left portion of the PostalCode string, which
will be the entire five-digit ZIP Code. This output is directly linked to the Zip field on the destination document. After the Zip field
has been parsed, create the link for the ZIP Code Suffix.

Because you already have the String Find functoid, which is returning the location of the hyphen on the map, you can link
directly to it. Place an Addition functoid (found on the Mathematical tab) on the map. Link the output from the String Find
functoid to the Addition functoid, as its first parameter. Create a constant and set its value to 1. The output will be position of the
hyphen in the string plus 1 (in this example, 6+1, which puts you at the starting character of the suffix).

To finish processing this path, you need to use the String Extract functoid. This functoid enables you to provide the start and end
of the substring to extract. Because this functoid is expecting three parameters, the first will be the string (PostalCode), the
second is the start location provided by the Addition functoid, and the third is the end location, which is provided by a constant.
In this example, the constant has been set to a high enough number to ensure that we get the remainder of the characters in the
string. The results of this functoid are linked to the Suffix field on the destination document.

An alternative way to map the suffix is to replace the Addition functoid with a Subtraction functoid. Link the output from the
String Find functoid to the first input parameter of the Subtraction functoid. Then, create a constant as the second parameter
and set its value to 2 in the Functoid Properties dialog box.

The value is set at 2 because this value will be subtracted from the value given by the String Find functoid. Next, add a String
Right functoid. This functoid takes the string, linked directly from the PostalCode field, and also a starting point, linked from the
Subtraction functoid. The functoid will begin at this starting point and take all of the characters from the rightmost end of the
string. So, the value passed in from the String Find functoid is 6 and the Subtraction functoid takes that and subtracts the
constant value, 2. This gives you the exact number of characters counting from the right end of the string.

When the map is tested, the data output will appear as follows:

<DocumentX>
 <Address StreetAddress="638 Elm Street" City="Edmonds" State="WA">
 <PostalCode Zip="98020" Suffix="5554" />
 </Address>
</DocumentX>

Either way you decide to map the Suffix field, you will end up with the correct transformation without needing to perform any
manual steps. This will enable you to perform the whole document transformation process faster and with less potential for
errors.

Using Functoids to Perform Aggregation

Another use of functoids is for aggregation. By using the functoids on the Cumulative tab, you can calculate totals, as well as
perform some basic statistical functions.

The map in the following illustration shows the transformation from an XML document specification that represents daily
statistics values to an XML document specification that represents the same daily statistics with an added summary statistics
record. The addition of the summary statistics record is done by using nearly every functoid on the Cumulative tab.

Figure 18. Aggregation map (click image to see larger picture)

To create the summary statistics record, the Cumulative Average functoid is used to create the AvgHiTemp field. This same
functoid is also used for the AvgLoTemp field. The Cumulative Average functoid takes exactly one input parameter and works
by iterating over all instances of the source specification. This functoid takes the values of each of the source fields and adds them
together. It then takes that number and divides it by the total number of values iterated.

To create the MinDailyRainfall field, the Cumulative Minimum functoid is used. This functoid takes only one input parameter
and is linked from the Rainfall field. The functoid iterates over all the values and outputs the lowest value.

Using just the opposite method, the Cumulative Maximum functoid is used to create the MaxDailyRainfall field. Again, this
functoid takes only one input parameter and is also linked from the Rainfall field. This functoid iterates over all the values and
outputs the highest value.

To create the TotalRainfall field, the Cumulative Summary functoid is used. This functoid takes only input and is also linked to
the Rainfall field. This functoid outputs the sum of all of the values the functoid iterated over.

The last element of the SummaryStats record is the MidPeriodHiTemp field. This element will show the high temperature for
the fifteenth day of the month. This functionality is provided by the Index functoid. The Index functoid provides the ability to
specify from which record to extract a value. This functoid takes two parameters. The first is the element itself and the second
specifies from which record to extract the data. Because the middle of the month value is required, the second parameter will be a
constant set to the value of 15. This sets the Index functoid to return only one value—the value for the fifteenth day of the month.

There is only one more functoid on this map. The Scripting functoid is used to transform the SeasonCode field value and place
the new value into the Season field.

When this map is used, it will directly map the daily values over to the destination. It will also use the functoids to iterate over
each of the one-to-many values in the source document specification and create a single record for the SummaryStats records in
the destination document specification.

Extracting Data from a Text Document

Sometimes you might want to submit a text document as a file to extract the individual data elements that are important in the
document. The following BizTalk Server 2002 Help topic is an example of a schema:

In this example, the dollar sign ($) is used as a record delimiter and the colon (:) as a field delimiter. In creating a schema for a
document instance, BizTalk Editor provides the functionality to define the delimiters no matter where they might appear in the
document. In this case, the delimiters appear at the beginning of the record, so the value of the Field Order property is set to
Prefix.

After the Prefix value is set, the record separation behavior is defined. The next task is to differentiate and define the records
themselves. The numbers that appear in front of each paragraph are the source tag IDs. These can be used as Source Tag
Identifier values. The value of the Source Tag Identifier property is set to these paragraph markings for each of the records in
BizTalk Editor.

After all of these header-type records have been set up, the Identifier property of the BodyParagraph record is set to T. There
are three notable differences with regard to this record:

This record is set up as a positional record.
The Maximum Occurrences property is set to an asterisk (*). This will allow BizTalk Editor to iterate over all of the body
text paragraphs and create the correct XML hierarchy.
Because this record is set up as positional, instead of delimited as all of the other records are, BizTalk Editor needs to know
where in the positional stream to find the Source Tag Identifier value. The Source Tag Position value is set on the Parse
tab. In this example, it appears at the beginning of the record, but it could appear anywhere within the record.

The following illustration shows how the final setup looks in BizTalk Editor.

Figure 19. Final setup in BizTalk Editor (click image to see larger picture)

$00:0000090489:
$02: BizTalk Server 2002 Help
$95:BizTalk Mapper
$89:#C103# #C107# #C335#
$145:BizTalk Server 2002 ~ Mapping Data
$20:JANUARY 3, 2002
$60:USING BIZTALK MAPPER
$120:$T Microsoft BizTalk Mapper is a translation design tool that
 enables you to create a correspondence between the records and
 fields in two different specification formats. BizTalk Mapper
 uses links and functoids to accomplish this translation.
 Functoids perform operations that range from
 simple calculations to elaborate script
 functionality.
$TYou can use BizTalk Mapper to graphically represent the structural
 transformation relationship between source-specification data
 elements and destination-specification data elements. This
 cross-reference and data-manipulation functionality
 creates a map that provides a set of instructions
 that defines the relationship between two
 different specification formats. The
 specification formats are
 defined by using BizTalk
 Editor.

The following illustration shows how to map this data after the schema has been created.

Figure 20. How to map data after the schema has been created (click image to see larger picture)

Depending on the format that is required, this text file can be transformed into another text file or into an XML representation.

In this example, the destination is set to be a flat file. However, the text file is in a different layout. There are many fields in the
source document that can be directly linked to fields in the destination document. There are four functoids that provide advanced
functionality. The Scripting functoid takes the Date field as input and outputs the year portion of the date. The output is then
used as input on two Concatenate functoids, and the third Concatenate functoid is used as a constant value.

The output of the first Concatenate functoid is linked to the Copyright field. This functoid has two constants as input, as well as
the output of the Scripting functoid. The two constants are set to Copyright and Microsoft. The value that is output to the
Copyright field is Copyright 2002 Microsoft. The constants are set up to reflect the correct copyright holder of the topic.

The output of the second Concatenate functoid is linked to the ReportNo field. This Concatenate functoid has one constant as
input and the output of the Scripting functoid. The constant is set to BizTalk. The value that is output to the ReportNo field is
BizTalk Server 2002.

The last Concatenate functoid is set up to be a constant value in the Language field. This can be accomplished in different ways,
for example, you can use a Concatenate functoid or a Scripting functoid. Another way that this can be accomplished is to select
the Language field on the destination document and click the Values tab. Then, enter the constant value in the Destination
constant value box.

Declaring Global Variables

One common mistake when using functoids and BizTalk Mapper is to create local variables to hold values (such as date parts)
while, in another functoid, more local variables are created with slightly different names to hold the same values. By declaring the
variables outside of the function, all functoids can use the same variables in their processing. This is one of the less familiar
capabilities of functoids—the ability to declare global variables.

The map in the following illustration shows how this is accomplished. In this example, there are two functoids, Scripting and
Looping, with the majority of the functionality in the Scripting functoid.

Figure 21. Declaring global variables (click image to see larger picture)

The following code is from the Scripting functoid. Notice that there is no input into the functoid:

By putting the variable declaration outside of the function, the variable is now declared globally. This variable is available to all
functoids in the map.

The other functoid on this map is the Looping functoid. This functoid is linked from both fields in the source specification to the
record in the destination specification. It creates multiple output records by iterating over each input record.

The direct links to the Qualifier field are set to copy the name of the element (that is, VendorPartNumber or
BuyerPartNumber) instead of the default setting that is the value.

The output of this map is:

"1VendorPartNumber123456vn"

When there is more than one record, the first value will be incremented, and either VendorPartNumber or BuyPartNumber
will appear in the second field with the value in the last field.

Global variables can be set up in any of the functoids where you create your own functions.

Using Element Groups

An element group is a set of elements that are related without that relationship being applicable to all children under a common
parent (that is, a tagless association). The benefit to using element groups is that you can place ordering constraints on sets of
associated elements that provide more flexibility in designing your schemas and document type definitions (DTDs).

For example, if an element A had child elements B, C, D, E, and F, you can specify in your XDR schema that C, D, and E are an
element group whose constituents must appear in that order (called "sequence" order). Note that this does not affect sibling
nodes B and F.

The BizTalk Server 2002 runtime can support the use of element groups today (given that MSXML DOM supports it), but the XML
tools cannot directly support this at design time. However, the following steps offer alternatives that will enable you to use
element groups in your schemas:

Important If you are starting with a DTD instead of an XDR schema, you cannot use the first option in step 1 to use
element groups.

1. BizTalk Mapper now supports opening an XDR schema that did not come from BizTalk Editor, provided it does not contain
instance namespaces. To open the non-BizTalk Editor schema, bring the XDR schema with the groups in it into BizTalk
Mapper as the source or target, propagate the other side of the map, and then perform step 2.

-or-

Alternatively, you can view BizTalk Editor as simply a stepping stone on the way to BizTalk Mapper. For example, assume
that element groups are the only unsupported feature of XDR used by a particular schema. To successfully process data
against the schema, you import the schema that contains the element groups into BizTalk Editor, at which time the <group>
constructs are removed.

In the previous sequence order example, this means element A is still defined with child nodes B, C, D, E, and F. However, the
relationship between C, D, and E is lost. The schema is then saved and used as either a source or target document in BizTalk
Mapper. Because the group concept is relevant only at validation time (addressed in the following step), BizTalk Mapper
needs only to access all the nodes of a particular document. In other words, passing this schema through BizTalk Editor, and
then using it in BizTalk Mapper, enables you to define a valid map.

2. The schema that contains the element groups can be used directly in BizTalk Messaging Manager when configuring point-

Dim MyCounter

MyCounter=0

Function MyFunction0()
 MyCounter=MyCounter+1
 MyFunction0 = MyCounter
End Function

to-point document flows. The XDR schema with element groups, used as-is, can represent either the source or target
document in a BizTalk Server channel. The result of doing this is that the runtime will use the schema to validate instances.
Thus schemas with element groups can be used to both define a map (described in the previous step) and process instances
at run time.

Using Custom Namespaces

In BizTalk Server 2002, you can use BizTalk Editor to declare custom namespaces. Usually, these namespaces are used to associate
the annotations of a single schema. However, you can use custom namespaces instead to enable run-time validation of document
instances against (possibly) multiple schemas representing the different custom namespaces.

BizTalk Editor assumes that all the nodes in a schema, and therefore an associated instance at run time, belong to the same
namespace. As a result, you can enable run-time validation of your document instances by treating any element that might
contain elements or attributes from other namespaces as "open" content, meaning that the content is not validated.

Microsoft BizTalk Server Specifications

Business Process Execution Language for Web Services
Specification Index Page

Note: If you are implementing BPEL4WS you must review the license agreement.

Contents

Brief
Specifications
Schema
OASIS WSBPEL Technical Committee
Web Services Roadmap
Status
Implementation Agreement
License

Brief
Businesses implementing Web Services require a model for describing how individual Web Services can be interconnected to
create complex, reliable, and dependable business solutions. Business Process Execution Language for Web Services (BPEL4WS)
provides an XML-based process definition and execution language that enables the description of rich business processes capable
of consuming and providing Web services in a reliable and dependable manner. BPEL4WS enables portability and interoperability
by defining constructs to implement executable business processes and message exchange protocols, thereby supporting both
executable and abstract business processes.

The BPEL4WS Specification extends and subsumes previous specifications that were originally published individually as Microsoft
XLANG and IBM WSFL. BPEL4WS represents a convergence of the structured process orientation of XLANG with the graph-
oriented approach of WSFL, eliminating an old dichotomy in the process modeling world. As a result, BPEL4WS provides a
seamless foundation for a rich variety of business process modeling styles.

The original BPEL4WS 1.0 specification was published in August 2002 by Microsoft, IBM and BEA. In May 2003, Microsoft, IBM,
BEA, SAP and Siebel released version 1.1 of the BPEL4WS specification. The BPEL4WS 1.1 specification provides a modular
structure, enabling core process modeling concepts to be extended to support both executable models and business protocols.

The BPEL4WS 1.1 specification was jointly submitted to OASIS under royalty free (RF) and other reasonable and non-
discriminatory terms. The OASIS WSBPEL Technical Committee was established to continue working on the BPEL4WS 1.1
specification within the OASIS TC Process.

Specifications
Business Process Execution Language for Web Services Version 1.0 (Deprecated)

Business Process Execution Language for Web Services Version 1.1

Related Links

Web Services Addressing (WS-Addressing)

Schema
http://schemas.xmlsoap.org/ws/2003/03/business-process/

http://schemas.xmlsoap.org/ws/2003/03/business-process/default.xsd

http://schemas.xmlsoap.org/ws/2003/03/business-process/BPEL4WS.xsd

http://schemas.xmlsoap.org/ws/2003/03/business-process/properties.xsd

http://schemas.xmlsoap.org/ws/2003/05/partner-link/

http://schemas.xmlsoap.org/ws/2003/05/partner-link/default.xsd

http://schemas.xmlsoap.org/ws/2003/05/partner-link/partner-link.xsd

http://www.microsoft.com/mscorp/ip/standards/
http://msdn.microsoft.com/library/en-us/dnbiz2k2/html/bpel1-0.asp
http://msdn.microsoft.com/library/en-us/dnbiz2k2/html/bpel1-1.asp
https://msdn.microsoft.com/en-us/library/ms951225(v=bts.10).aspx
http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://schemas.xmlsoap.org/ws/2003/03/business-process/default.xsd
http://schemas.xmlsoap.org/ws/2003/03/business-process/BPEL4WS.xsd
http://schemas.xmlsoap.org/ws/2003/03/business-process/properties.xsd
http://schemas.xmlsoap.org/ws/2003/05/partner-link/
http://schemas.xmlsoap.org/ws/2003/05/partner-link/default.xsd
http://schemas.xmlsoap.org/ws/2003/05/partner-link/partner-link.xsd

OASIS WSBPEL Technical Committee
OASIS Web Services Business Process Execution Language TC

Web Services Roadmap
Web Services Specifications

Status
BPEL4WS 1.1 was published as a joint public specification by Microsoft, IBM, BEA, SAP, and Siebel in May 2003. The BPEL4WS 1.1
specification and was officially submitted to OASIS at the first meeting of the WSBPEL Technical Committee on 16 May 2003.

Implementation Agreement
In accordance with the OASIS Intellectual Rights Policy, Microsoft has submitted an IP disclosure statement to OASIS with respect
to the Business Process Execution Language Specification v. 1.1 dated May 5, 2003 ("BPEL4WS v. 1.1 Spec") indicating that it has
pending patent applications that it believes include claims that may be necessary to implement the BPEL4WS v. 1.1 Spec.
Microsoft has also indicated to OASIS that it will update its disclosure statement if and when such pending patent application(s)
issue. Microsoft may also have additional claims (issued or pending) that are necessary to implement the BPEL4WS v. 1.1 Spec.
The license for the BPEL4WS v. 1.1 Spec that Microsoft is offering covers all claims of patents or patent applications owned or
controlled by Microsoft or its affiliates now or in the future that meet the "Necessary Claims" definition set forth in the license.
However, the license does not release a licensee from any infringement of those claims prior to the effective date of the license.
You should consult your own counsel to determine whether or not it is appropriate for you to take Microsoft's license for the
BPEL4WS v. 1.1 Spec at this time.

You may access Microsoft's license agreement for the BPEL4WS 1.1 Spec at this page. If you want to enter into this agreement,
please print, sign, and return it to Microsoft Corporation as directed in the license.

License
The license agreement for the BPEL4WS 1.1 is available at this page.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://msdn.microsoft.com/webservices/understanding/specs/default.aspx
http://www.microsoft.com/mscorp/ip/standards/
http://www.microsoft.com/mscorp/ip/standards/

Microsoft BizTalk Server Specifications

Business Process Execution Language for Web Services

Version 1.0

August 2002

Authors (listed alphabetically):

Francisco Curbera, IBM
Yaron Goland, BEA Systems
Johannes Klein, Microsoft
Frank Leymann, IBM
Dieter Roller, IBM
Satish Thatte, Microsoft (Editor)
Sanjiva Weerawarana, IBM

Copyright© 2002 BEA Systems, International Business Machines Corporation,

The presentation, distribution or other dissemination of the information contained in this specification is not a license, either
expressed or implied, to any intellectual property owned or controlled by BEA or IBM or Microsoft and\or any other third party.
BEA, IBM, Microsoft, and\or any other third party may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of this document does not give you any
license to BEA's or IBM's or Microsoft's or any other third party's patents, trademarks, copyrights, or other intellectual property.
The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, email address, logo, person,
places, or events is intended or should be inferred.

This specification and the information contained herein is provided on an "AS IS" basis and to the maximum extent permitted by
applicable law, BEA, IBM and Microsoft provides the document AS IS AND WITH ALL FAULTS, and hereby disclaims all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties
or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of
workmanlike effort, of lack of viruses, and of lack of negligence, all with regard to the document. ALSO, THERE IS NO WARRANTY
OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-
INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THE DOCUMENT.

IN NO EVENT WILL BEA OR IBM OR MICROSOFT BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE
GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT,
OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS
OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE
POSSIBILITY OF SUCH DAMAGES.

Abstract

This document defines a notation for specifying business process behavior based on Web Services. This notation is called Business
Process Execution Language for Web Services (abbreviated to BPEL4WS in the rest of this document). Processes in BPEL4WS
export and import functionality by using Web Service interfaces exclusively.

Business processes can be described in two ways. Executable business processes model actual behavior of a participant in a
business interaction. Business protocols, in contrast, use process descriptions that specify the mutually visible message exchange
behavior of each of the parties involved in the protocol, without revealing their internal behavior. The process descriptions for
business protocols are called abstract processes. BPEL4WS is meant to be used to model the behavior of both executable and
abstract processes.

BPEL4WS provides a language for the formal specification of business processes and business interaction protocols. By doing so,
it extends the Web Services interaction model and enables it to support business transactions. BPEL4WS defines an interoperable
integration model that should facilitate the expansion of automated process integration in both the intra-corporate and the
business-to-business spaces. (128 printed pages)

Status

This is an initial public draft release of the BPEL4WS specification. We anticipate a number of extensions to the feature set of
BPEL4WS that are discussed briefly at the end of the document. BPEL4WS represents a convergence of the ideas in the XLANG
and WSFL specifications. Both XLANG and WSFL are superseded by the BPEL4WS specification.

BPEL4WS and related specifications are provided as-is and for review and evaluation only. BEA, IBM, and Microsoft hope to solicit

mailto:curbera@us.ibm.com
mailto:curbera@us.ibm.com
mailto:joklein@microsoft.com
mailto:LEY1@de.ibm.com
mailto:ROL@de.ibm.com
mailto:satisht@microsoft.com
mailto:sanjiva@us.ibm.com
http://www.bea.com/
http://www.ibm.com/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

your contributions and suggestions in the near future. BEA, IBM, and Microsoft make no warrantees or representations regarding
the specifications in any manner whatsoever.

Contents

1. Introduction
2. Notational Conventions
3. Relationship with WSDL4. Defining a Business Process
4.1. Initial Example
4.2. The Structure of a Business Process
4.3. Language Extensibility
4.4. The Lifecycle of a Business Process
5. Service Linking, Partners, and Service References
5.1. Service Linking
5.2. Partners
5.3. Service References
6. Message Properties
6.1. Motivation
6.2. Defining Properties
7. Correlation
7.1. Message Correlation
7.2. Defining and Using Correlation Sets
8. Data Handling
8.1. Expressions
8.1.1. Boolean Expressions
8.1.2. Deadline-Valued Expressions
8.1.3. Duration-Valued Expressions
8.1.4. General Expressions
8.2. Containers
8.3. Assignment
8.3.1. Atomicity of Assignment
8.3.2. Assignment Example
8.4. Summary of Differences Between Abstract and Executable Processes
9. Basic Activities
9.1. Standard Attributes for Each Activity
9.2. Standard Elements for Each Activity
9.3. Invoking Web Service Operations
9.4. Providing Web Service Operations
9.5. Updating Container Contents
9.6. Signaling Faults
9.7. Terminating the Service Instance
9.8. Waiting
9.9. Doing Nothing
10. Structured Activities
10.1. Sequence
10.2. Switch
10.3. While
10.4. Pick
10.5. Flow
10.5.1. Link Semantics
10.5.2. Dead-Path-Elimination (DPE)
10.5.3. Flow Graph Example
10.5.4. Links and Structured Activities
11. Scopes
11.1. Error Handling in Business Processes
11.2. Compensation Handlers
11.2.1. Defining a Compensation Handler
11.2.2. Invoking a Compensation Handler
11.3. Fault Handlers
11.3.1. Implicit Fault and Compensation Handlers
11.3.2. Semantics of Activity Termination
11.3.3. Handling Faults That Occur Inside Fault and Compensation Handlers
11.4. Serializable Scopes

12. Examples
12.1. Shipping Service
12.1.1. Service Description
12.1.2. Message Properties
12.1.3. Process
12.2. Loan Approval
12.2.1. Service Description
12.2.2. Process
12.3. Multiple Start Activities
12.3.1. Service Description
12.3.2. Process
13. Future Directions
13.1. Scopes
13.1.1. Containers
13.1.2. Event Handlers
13.1.3. Overlapping Scopes
13.1.4. Atomic Scopes
13.1.5. Compensation
13.2. Lifecycle and Query
13.2.1. Suspend/Resume
13.2.2. Query
13.3. Service Composition
13.4. Relationship to WS-Transaction Specification
14. Security Considerations
15. Acknowledgments
16. References
Appendix A – Standard Faults
Appendix B – Attributes and Defaults
Appendix C – Coordination Protocol
Coordination Protocol for BPEL4WS Scopes
Appendix D - XSD Schemas
BPEL4WS Schema
Service Link Type Schema
Service References Schema
Message Properties Schema

1. Introduction
The goal of the Web Services effort is to achieve universal interoperability between applications by using Web standards. Web
Services use a loosely coupled integration model to allow flexible integration of heterogeneous systems in a variety of domains
including business-to-consumer, business-to-business and enterprise application integration. The following basic specifications
originally defined the Web Services space: SOAP, Web Services Description Language (WSDL), and Universal Description,
Discovery, and Integration (UDDI). SOAP defines an XML messaging protocol for basic service interoperability. WSDL introduces a
common grammar for describing services. UDDI provides the infrastructure required to publish and discover services in a
systematic way. Together, these specifications allow applications to find each other and interact following a loosely coupled,
platform-independent model.

Systems integration requires more than the ability to conduct simple interactions by using standard protocols. The full potential
of Web Services as an integration platform will be achieved only when applications and business processes are able to integrate
their complex interactions by using a standard process integration model. The interaction model that is directly supported by
WSDL is essentially a stateless model of synchronous or uncorrelated asynchronous interactions. Models for business interactions
typically assume sequences of peer-to-peer message exchanges, both synchronous and asynchronous, within stateful, long-
running interactions involving two or more parties. To define such business interactions, a formal description of the message
exchange protocols used by business processes in their interactions is needed. The definition of such business protocols involves
precisely specifying the mutually visible message exchange behavior of each of the parties involved in the protocol, without
revealing their internal implementation. There are two good reasons to separate the public aspects of business process behavior
from internal or private aspects. One is that businesses obviously do not want to reveal all their internal decision making and data
management to their business partners. The other is that, even where this is not the case, separating public from private process
provides the freedom to change private aspects of the process implementation without affecting the public business protocol.

Business protocols must clearly be described in a platform-independent manner and must capture all behavioral aspects that
have cross-enterprise business significance. Each participant can then understand and plan for conformance to the business
protocol without engaging in the process of human agreement that adds so much to the difficulty of establishing cross-enterprise

automated business processes today.

What are the concepts required to describe business protocols? And what is the relationship of these concepts to those required
to describe executable processes? To answer these questions, consider the following:

Business protocols invariably include data-dependent behavior. For example, a supply-chain protocol depends on data such
as the number of line items in an order, the total value of an order, or a deliver-by deadline. Defining business intent in
these cases requires the use of conditional and time-out constructs.
The ability to specify exceptional conditions and their consequences, including recovery sequences, is at least as important
for business protocols as the ability to define the behavior in the "all goes well" case.
Long-running interactions include multiple, often nested units of work, each with its own data requirements. Business
protocols frequently require cross-partner coordination of the outcome (success or failure) of units of work at various levels
of granularity.

If we wish to provide precise and predictable descriptions of service behavior for cross-enterprise business protocols, we need a
rich process description notation with many features reminiscent of an executable language. The key distinction between public
message exchange protocols and executable internal processes is that internal processes handle data in rich private ways that
need not be described in public protocols.

In thinking about the data handling aspects of business protocols, it is instructive to consider the analogy with network
communication protocols. Network protocols define the shape and content of the protocol envelopes that flow on the wire, and
the protocol behavior they describe is driven solely by the data in these envelopes. In other words, there is a clear physical
separation between protocol-relevant data and "payload" data. The separation is far less clear cut in business protocols because
the protocol-relevant data tends to be embedded in other application data.

BPEL4WS uses a notion of message properties to identify protocol-relevant data embedded in messages. Properties can be
viewed as "transparent" data relevant to public aspects as opposed to the "opaque" data that internal/private functions use.
Transparent data affects the public business protocol in a direct way, whereas opaque data is significant primarily to back-end
systems and affects the business protocol only by creating nondeterminism because the way it affects decisions is opaque. We
take it as a principle that any data that is used to affect the behavior of a business protocol must be transparent and hence viewed
as a property.

The implicit effect of opaque data manifests itself through nondeterminism in the behavior of services involved in business
protocols. Consider the example of a purchasing protocol. The seller has a service that receives a purchase order and responds
with either acceptance or rejection based on a number of criteria, including availability of the goods and the credit of the buyer.
Obviously, the decision processes are opaque, but the fact of the decision must be reflected as behavior alternatives in the
external business protocol. In other words, the protocol requires something like a switch activity in the behavior of the seller's
service but the selection of the branch taken is nondeterministic. Such nondeterminism can be modeled by allowing the
assignment of a nondeterministic or opaque value to a message property, typically from an enumerated set of possibilities. The
property can then be used in defining conditional behavior that captures behavioral alternatives without revealing actual decision
processes. BPEL4WS explicitly allows the use of nondeterministic data values to make it possible to capture the essence of public
behavior while hiding private aspects.

Defining business protocols and defining executable business processes require very similar concepts. The concepts required for
defining business protocols and those required for defining executable business processes form a continuum, and BPEL4WS is
designed to cover this continuum. BPEL4WS defines a model and a grammar for describing the behavior of a business process
based on interactions between the process and its partners. The interaction with each partner occurs through Web Service
interfaces, and the structure of the relationship at the interface level is encapsulated in what we call a service link. The BPEL4WS
process defines how multiple service interactions with these partners are coordinated to achieve a business goal, as well as the
state and the logic necessary for this coordination. BPEL4WS also introduces systematic mechanisms for dealing with business
exceptions and processing faults. Finally, BPEL4WS introduces a mechanism to define how individual or composite activities
within a process are to be compensated in cases where exceptions occur or a partner requests reversal.

The basic concepts of BPEL4WS can be applied in one of two ways. A BPEL4WS process can define a business protocol role, using
the notion of abstract process. For example, in a supply-chain protocol, the buyer and the seller are two distinct roles, each with its
own abstract process. Their relationship is typically modeled as a service link. Abstract processes use all the concepts of BPEL4WS
but approach data handling in a way that reflects the level of abstraction required to describe public aspects of the business
protocol. Specifically, abstract processes handle only protocol-relevant data. BPEL4WS provides a way to identify protocol-
relevant data as message properties. In addition, abstract processes use nondeterministic data values to hide private aspects of
behavior.

It is also possible to use BPEL4WS to define an executable business process. The logic and state of the process determine the
nature and sequence of the Web Service interactions conducted at each business partner, and thus the interaction protocols.
While a BPEL4WS process definition is not required to be complete from a private implementation point of view, the language
effectively defines a portable execution format for business processes that rely exclusively on Web Service resources and XML

data. Moreover, such processes execute and interact with their partners in a consistent way regardless of the supporting platform
or programming model used by the implementation of the hosting environment.

Even in situations where private implementation aspects use platform-dependent functionality, which is likely in many if not most
realistic cases, the continuity of the basic conceptual model between abstract and executable processes in BPEL4WS makes it
possible to export and import the public aspects embodied in business protocols as process or role templates while maintaining
the intent and structure of the protocols. This is arguably the most attractive prospect for the use of BPEL4WS from the viewpoint
of unlocking the potential of Web Services because it allows the development of tools and other technologies that greatly
increase the level of automation, and thereby, lower the cost in establishing cross-enterprise automated business processes.

BPEL4WS is layered on top of several XML specifications: WSDL 1.1, XML Schema 1.0, and XPath1.0. WSDL messages and XML
Schema type definitions provide the data model used by BPEL4WS processes. XPath provides support for data manipulation. All
external resources and partners are represented as WSDL services. BPEL4WS provides extensibility to accommodate future
versions of these standards, specifically the XPath and related standards used in XML computation.

2. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [13].

Namespace URIs of the general form "some-URI" represent some application-dependent or context-dependent URI as defined in
RFC 2396 [14].

This specification uses an informal syntax to describe the XML grammar of the XML fragments that follow:

The syntax appears as an XML instance, but the values indicate the data types instead of values.
Grammar in bold has not been introduced earlier in the document, or is of particular interest in an example.
<-- description --> is a placeholder for elements from some "other" namespace (like ##other in XSD).
Characters are appended to elements, attributes, and <!-- descriptions --> as follows: "?" (0 or 1), "*" (0 or more), "+" (1 or
more). The characters "[" and "]" are used to indicate that contained items are to be treated as a group with respect to the
"?", "*", or "+" characters.
Elements and attributes separated by "|" and grouped by "(" and ")" are meant to be syntactic alternatives.
The XML namespace prefixes (defined below) are used to indicate the namespace of the element being defined.
Examples starting with <?xml contain enough information to conform to this specification; other examples are fragments
and require additional information to be specified in order to conform.

XSD schemas and WSDL definitions are provided as a formal definition of grammars [xml-schema1] [WSDL].

3. Relationship with WSDL
BPEL4WS depends on the following XML-based specifications: WSDL 1.1, XML Schema 1.0, and XPath 1.0. Of these, WSDL has the
most influence on the BPEL4WS language. The BPEL4WS process model is layered on top of the service model defined by WSDL
1.1. At the core of the BPEL4WS process model is the notion of peer-to-peer interaction between services described in WSDL;
both the process and its partners are modeled as WSDL services. A business process defines how to coordinate the interactions
between a process instance and its partners. In this sense, a BPEL4WS process definition provides and/or uses one or more WSDL
services, and provides the description of the behavior and interactions of a process instance relative to its partners and resources
through Web Service interfaces. That is, BPEL4WS defines the message exchange protocols followed by the business process of a
specific role in the interaction.

The definition of a BPEL4WS business process also follows the WSDL model of separation between the abstract message contents
used by the business process and deployment information (messages and portType versus binding and address information). In
particular, a BPEL4WS process represents all partners and interactions with these partners in terms of abstract WSDL interfaces
(portTypes and operations); no references are made to the actual services used by a process instance. A BPEL4WS process is a
reusable definition that can be deployed in different ways and in different scenarios, while maintaining a uniform application-level
behavior across all of them. Note that the description of the deployment of a BPEL4WS process is out of scope for this
specification.

4. Defining a Business Process
Business processes can be described in two ways. Executable business processes model actual behavior of a participant in a
business interaction. In executable processes, no attempt is made to separate externally visible or "public" aspects of a business
process from its internal workings. Business protocols, in contrast, use process descriptions that specify the mutually visible
message exchange behavior of each of the parties involved in the protocol, without revealing their internal behavior. The
processes involved in a business protocol are called abstract processes. Abstract processes are not typically executable. They are

meant to couple Web Service interface definitions with behavioral specifications that can be used to both constrain the
implementation of business roles and define in precise terms the behavior that each party in a business protocol can expect from
the others. BPEL4WS is meant to be used to define both kinds of processes. The difference between the two lies exclusively in the
different feature sets for data handling that are available in the two kinds of processes. These differences are defined precisely in
the section on Data Handling.

4.1. Initial Example

Before describing the structure of business processes in detail, this section presents a simple example of a BPEL4WS process for
handling a purchase order. The aim is to introduce the most basic structures and some of the fundamental concepts of the
language.

The operation of the process is very simple, and is represented in the following figure. Dotted lines represent sequencing. Free
grouping of sequences represents concurrent sequences. Solid arrows represent control links used for synchronization across
concurrent activities. Note that this is not meant to be a definitive graphical notation for BPEL4WS processes. It is used here
informally as an aid to understanding.

On receiving the purchase order from a customer, the process initiates three tasks in parallel: calculating the final price for the
order, selecting a shipper, and scheduling the production and shipment for the order. While some of the processing can proceed
in parallel, there are control and data dependencies between the three tasks. In particular, the shipping price is required to finalize
the price calculation, and the shipping date is required for the complete fulfillment schedule. When the three tasks are completed,
invoice processing can proceed and the invoice is sent to the customer.

Figure 1 Example BPEL4WS process

The WSDL portType offered by the service to its customers (purchaseOrderPT) is shown in the following WSDL document. Other
WSDL definitions required by the business process are included in the same WSDL document for simplicity; in particular, the
portTypes for the Web Services providing price calculation, shipping selection and scheduling, and production scheduling
functions are also defined there. Observe that there are no bindings or service elements in the WSDL document. A BPEL4WS
process is defined "in the abstract" by referencing only the portTypes of the services involved in the process, and not their
possible deployments. Defining business processes in this way allows the reuse of business process definitions over multiple
deployments of compatible services.

The service link types included at the bottom of the WSDL document represent the interaction between the purchase order
service and each of the parties with which it interacts (see Service Linking, Partners, and Service References). Service link types
can be used to represent dependencies between services, regardless of whether a BPEL4WS business process is defined for one
or more of those services. Each service link type defines up to two "role" names, and lists the portTypes that each role must
support for the interaction to be carried out successfully. In this example, two link types, "purchaseLT" and "schedulingLT", list a
single role because, in the corresponding service interactions, one of the parties provides all the invoked operations: The
"purchaseLT" service link represents the connection between the process and the requesting customer, where only the purchase
order service needs to offers a service operation ("sendPurchaseOrder"); the "schedulingLT" service link represents the interaction
between the purchase order service and the scheduling service, in which only operations of the latter are invoked. The two other
service link types, "invoiceLT" and "shippingLT", define two roles because both the user of the invoice calculation and the user of

the shipping service (the invoice or the shipping schedule) must provide callback operations to enable asynchronous notifications
to be asynchronously sent ("invoiceCallbackPT" and "shippingCallbackPT" portTypes).

<definitions targetNamespace="http://manufacturing.org/wsdl/purchase"
 xmlns:sns="http://manufacturing.org/xsd/purchase"
 xmlns:pos="http://manufacturing.org/wsdl/purchase"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:slnk="http://schemas.xmlsoap.org/ws/2002/07/service-link/">

<import namespace="http://manufacturing.org/xsd/purchase"
 location="http://manufacturing.org/xsd/purchase.xsd"/>

<message name="POMessage">
 <part name="customerInfo" type="sns:customerInfo"/>
 <part name="purchaseOrder" type="sns:purchaseOrder"/>
</message>
<message name="InvMessage">
 <part name="IVC" type="sns:Invoice"/>
</message>
<message name="orderFaultType">
 <part name="problemInfo" type="xsd:string"/>
</message>
<message name="shippingRequestMessage">
 <part name="customerInfo" type="sns:customerInfo"/>
</message>
<message name="shippingInfoMessage">
 <part name="shippingInfo" type="sns:shippingInfo"/>
</message>
<message name="scheduleMessage">
 <part name="schedule" type="sns:scheduleInfo"/>
</message>

<!-- portTypes supported by the purchase order process -->

<portType name="purchaseOrderPT">
 <operation name="sendPurchaseOrder">
 <input message="pos:POMessage"/>
 <output message="pos:InvMessage"/>
 <fault name="cannotCompleteOrder"
 message="pos:orderFaultType"/>
 </operation>
</portType>
<portType name="invoiceCallbackPT">
 <operation name="sendInvoice">
 <input message="pos:InvMessage"/>
 </operation>
</portType>
<portType name="shippingCallbackPT">
 <operation name="sendSchedule">
 <input message="pos:scheduleMessage"/>
 </operation>
</portType>

<!-- portType supported by the invoice services -->

<portType name="computePricePT">
 <operation name="initiatePriceCalculation">
 <input message="pos:POMessage"/>
 </operation>
 <operation name="sendShippingPrice">
 <input message="pos:shippingInfoMessage"/>
 </operation>
</portType>

<!-- portType supported by the shipping service -->

<portType name="shippingPT">

The business process for the order service is defined next. There are four major sections in this process definition:

The <containers> section defines the data containers used by the process, providing their definitions in terms of WSDL
message types. Containers allow processes to maintain state data and process history based on messages exchanged.
The <partners> section defines the different parties that interact with the business process in the course of processing the
order. The four partners shown here correspond to the sender of the order (customer), as well as the providers of price
(invoiceProvider), shipment (shippingProvider), and manufacturing scheduling services (schedulingProvider). Each partner
is characterized by a service link type and a role name. This information identifies the functionality that must be provided by
the business process and by the partner for the relationship to succeed, that is, the portTypes that the purchase order
process and the partner need to implement.
The <faultHandlers> section contains fault handlers that define the activities that must be executed in response to faults
resulting from the invocation of the assessment and approval services. In BPEL4WS, all faults, whether internal or resulting
from a service invocation, are identified by a qualified name. In particular, each WSDL fault is identified in BPEL4WS by a
qualified name formed by the target namespace of the WSDL document in which the relevant portType and fault are

 <operation name="requestShipping">
 <input message="pos:shippingRequestMessage"/>
 <output message="pos:shippingInfoMessage"/>
 <fault name="cannotCompleteOrder"
 message="pos:orderFaultType"/>
 </operation>
</portType>

<!-- portType supported by the production scheduling process -->

<portType name="schedulingPT">
 <operation name="requestProductionScheduling">
 <input message="pos:POMessage"/>
 </operation>
 <operation name="sendShipingSchedule">
 <input message="pos:scheduleMessage"/>
 </operation>
</portType>

<slnk:serviceLinkType name="purchaseLT">
 <slnk:role name="purchaseService">
 <slnk:portType name="pos:purchaseOrderPT"/>
 </slnk:role>
</slnk:serviceLinkType>

<slnk:serviceLinkType name="invoiceLT">
 <slnk:role name="invoiceService">
 <slnk:portType name="pos:computePricePT"/>
 </slnk:role>
 <slnk:role name="invoiceRequester">
 <portType name="pos:invoiceCallbackPT"/>
 </slnk:role>
</slnk:serviceLinkType>

<slnk:serviceLinkType name="shippingLT">
 <slnk:role name="shippingService">
 <slnk:portType name="pos:shippingPT"/>
 </slnk:role>
 <slnk:role name="shippingRequester">
 <portType name="pos:shippingCallbackPT"/>
 </slnk:role>
</slnk:serviceLinkType>

<slnk:serviceLinkType name="schedulingLT">
 <slnk:role name="schedulingService">
 <slnk:portType name="pos:schedulingPT"/>
 </slnk:role>
</slnk:serviceLinkType>

</definitions>

defined, and the ncname of the fault. It is important to note, however, that because WSDL 1.1 does not require that fault
names be unique within the namespace where the operation is defined, all faults sharing a common name and defined in
the same namespace are indistinguishable. In spite of this serious WSDL limitation, BPEL4WS provides a uniform naming
model for faults, in the expectation that future versions of WSDL will provide a better fault-naming model.
The rest of the process definition contains the description of the normal execution of a purchase request. The major
elements of this description are explained in the section following the process definition.

<process name="purchaseOrderProcess"
 targetNamespace="http://acme.com/ws-bp/purchase"
 xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 xmlns:lns="http://manufacturing.org/wsdl/purchase">

 <partners>
 <partner name="customer"
 serviceLinkType="lns:purchaseLT"
 myRole="purchaseService"/>
 <partner name="invoiceProvider"
 serviceLinkType="lns:invoiceLT"
 myRole="invoiceRequester"
 partnerRole="invoiceService"/>
 <partner name="shippingProvider"
 serviceLinkType="lns:shippingLT"
 myRole="shippingRequester"
 partnerRole="shippingService"/>
 <partner name="schedulingProvider"
 serviceLinkType="lns:schedulingLT"
 partnerRole="schedulingService"/>
 </partners>

 <containers>
 <container name="PO" messageType="lns:POMessage"/>
 <container name="Invoice"
 messageType="lns:InvMessage"/>
 <container name="POFault"
 messageType="lns:orderFaultType"/>
 <container name="shippingRequest"
 messageType="lns:shippingRequestMessage"/>
 <container name="shippingInfo"
 messageType="lns:shippingInfoMessage"/>
 <container name="shippingSchedule"
 messageType="lns:scheduleMessage"/>
 </containers>

 <faultHandlers>
 <catch faultName="lns:cannotCompleteOrder"
 faultContainer="POFault">
 <reply partner="customer"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 container="POFault"
 faultName="cannotCompleteOrder"/>
 </catch>
 </faultHandlers>

 <sequence>

 <receive partner="customer"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 container="PO">
 </receive>

 <flow>

 <links>
 <link name="ship-to-invoice"/>
 <link name="ship-to-scheduling"/>

 </links>

 <sequence>
 <assign>
 <copy>
 <from container="PO" part="customerInfo"/>
 <to container="shippingRequest"
 part="customerInfo"/>
 </copy>
 </assign>

 <invoke partner="shippingProvider"
 portType="lns:shippingPT"
 operation="requestShipping"
 inputContainer="shippingRequest"
 outputContainer="shippingInfo">
 <source linkName="ship-to-invoice"/>
 </invoke>

 <receive partner="shippingProvider"
 portType="lns:shippingCallbackPT"
 operation="sendSchedule"
 container="shippingSchedule">
 <source linkName="ship-to-scheduling"/>
 </receive>

 </sequence>

 <sequence>

 <invoke partner="invoiceProvider"
 portType="lns:computePricePT"
 operation="initiatePriceCalculation"
 inputContainer="PO">
 </invoke>
 <invoke partner="invoiceProvider"
 portType="lns:computePricePT"
 operation="sendShippingPrice"
 inputContainer="shippingInfo">
 <target linkName="ship-to-invoice"/>
 </invoke>

 <receive partner="invoiceProvider"
 portType="lns:invoiceCallbackPT"
 operation="sendInvoice"
 container="Invoice"/>

 </sequence>

 <sequence>
 <invoke partner="schedulingProvider"
 portType="lns:schedulingPT"
 operation="requestProductionScheduling"
 inputContainer="PO">
 </invoke>
 <invoke partner="schedulingProvider"
 portType="lns:schedulingPT"
 operation="sendShippingSchedule"
 inputContainer="shippingSchedule">
 <target linkName="ship-to-scheduling"/>
 </invoke>
 </sequence>
 </flow>

 <reply partner="customer"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 container="Invoice"/>

The structure of the main processing section is defined by the outer <sequence> element, which states that the three elements
contained inside are executed in order. The customer request is received (<receive> element), then processed (inside a <flow>
section that enables concurrent execution), and a reply message with the final approval status of the request is sent back to the
customer (<reply>). Note that the <receive> and <reply> elements are matched respectively to the <input> and <output>
messages of the "sendPurchaseOrder" operation invoked by the customer, while the activities executed by the process between
these elements represent the actions taken in response to the customer request, from the time the request is received to the time
the response is sent back (reply).

The example makes the implicit assumption that the customer request can be processed in a reasonable amount of time,
justifying the requirement that the invoker wait for a synchronous response (because this service is offered as a request-response
operation). When that assumption does not hold, the interaction with the customer is better modeled as a pair of asynchronous
message exchanges. In that case, the "sendPurchaseOrder" operation is a one-way operation and the asynchronous response is
sent by invoking a second one-way operation on a customer "callback" interface. In addition to changing the signature of
"sendPurchaseOrder" and defining a new portType to represent the customer callback interface, two modifications need to be
made in the preceding example to support an asynchronous response to the customer. First, the service link type "purchaseLT"
that represents the process-customer connection needs to include a second role ("customer") listing the customer callback
portType. Second, the <reply> activity in the process needs to be replaced by an <invoke> on the customer callback operation.

The processing taking place inside the <flow> element consists of three <sequence> blocks running concurrently. The
synchronization dependencies between activities in the three parallel sequences are expressed by using "links" to connect them.
The links are defined inside the flow and are used to connect a source activity to a target activity. (Note that each activity declares
itself as the source or target of a link by using the nested <source> and <target> elements.) In the absence of links, the execution
of the activities nested directly inside a flow proceeds in parallel. In the example, however, the presence of two links introduces
control dependencies between the activities executed inside each sequence. For example, while the price calculation can be started
immediately after the request is received, shipping price can only be added to the invoice after the shipper information has been
obtained; this dependency is represented by the link (named "ship-to-invoice") that connects the first call on the shipping provider
("requestShipping") with sending shipping information to the price calculation service ("sendShippingPrice"). Likewise, shipping
scheduling information can only be sent to the manufacturing scheduling service after it has been received from the shipper
service; thus the need for the second link ("ship-to-scheduling").

Observe that information is passed between the different activities in an implicit way through the sharing of globally visible data
containers. In this example, the control dependencies represented by links are related to corresponding data dependencies, in one
case on the availability of the shipper rates and in another on the availability of a shipping schedule. The information is passed
from the activity that generates it to the activity that uses it by means of two global data containers ("shippingInfo" and
"shippingSchedule"). The current version of BPEL4WS supports only global data containers, but future versions will include locally
scoped data as well. Moreover, in the future, data flow will be allowed through links in addition to using links to express
synchronization dependencies.

Certain operations can return faults, as defined in their WSDL definitions. For simplicity, it is assumed here that the two
operations return the same fault ("cannotCompleteOrder"). When a fault occurs, normal processing is terminated and control is
transferred to the corresponding fault handler, as defined in the <faultHandlers> section. In this example the handler uses a
<reply> element to return a fault to the customer (note the "faultName" attribute in the <reply> element).

Finally, it is important to observe how an assignment activity is used to transfer information between data containers. The simple
assignments shown in this example transfer a message part from a source container to a message part in a target container, but
more complex forms of assignments are also possible.

4.2. The Structure of a Business Process

This section provides a quick summary of the BPEL4WS syntax. It provides only a brief overview; the details of each language
construct are described in the rest of this document.

The basic structure of the language is:

 </sequence>

</process>

<process name="ncname" targetNamespace="uri"
 queryLanguage="anyURI"?
 expressionLanguage="anyURI"?
 suppressJoinFailure="yes|no"?
 enableInstanceCompensation="yes|no"?
 abstractProcess="yes|no"?

The top-level attributes are as follows:

queryLanguage. This attribute specifies the XML query language used for selection of nodes in assignment, property
definition, and other uses. The default for this attribute is XPath 1.0, represented by the URI of the XPath 1.0 specification:
http://www.w3.org/TR/1999/REC-xpath-19991116.
expressionLanguage. This attribute specifies the expression language used in the process. The default for this attribute is
XPath 1.0, represented by the URI of the XPath 1.0 specification: http://www.w3.org/TR/1999/REC-xpath-19991116.
suppressJoinFailure. This attribute determines whether the joinFailure fault will be suppressed for all activities in the
process. The default for this attribute is "no".
enableInstanceCompensation. This attribute determines whether the process instance as a whole can be compensated by
platform-specific means. The default for this attribute is "no".
abstractProcess. This attribute specifies whether the process being defined is abstract (rather than executable). The default
for this attribute is "no".

The token "activity" can be any of the following:

<receive>
<reply>
<invoke>
<assign>
<throw>
<terminate>
<wait>

 xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/">

 <partners>?
 <!-- Note: At least one role must be specified. -->
 <partner name="ncname" serviceLinkType="qname"
 myRole="ncname"? partnerRole="ncname"?>+
 </partner>
 </partners>

 <containers>?
 <!-- Note: The message type may be indicated with the messageType
 attribute or with an inlined <wsdl:message> element within. -->
 <container name="ncname" messageType="qname"?>
 <wsdl:message name="ncname">?
 ...
 </wsdl:message>
 </container>
 </containers>

 <correlationSets>?
 <correlationSet name="ncname" properties="qname-list"/>+
 </correlationSets>

 <faultHandlers>?
 <!-- Note: There must be at least one fault handler or default. -->
 <catch faultName="qname"? faultContainer="ncname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 </faultHandlers>

 <compensationHandler>?
 activity
 </compensationHandler>

 activity
</process>

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

<empty>
<sequence>
<switch>
<while>
<pick>
<flow>
<scope>
<compensate>

The syntax of each of these elements is considered in the following paragraphs.

The <receive> construct allows the business process to do a blocking wait for a matching message to arrive.

The <reply> construct allows the business process to send a message in reply to a message that was received through a
<receive>. The combination of a <receive> and a <reply> forms a request-response operation on the WSDL portType for the
process.

The <invoke> construct allows the business process to invoke a one-way or request-response operation on a portType offered by
a partner.

The <assign> construct can be used to update the values of containers with new data. An <assign> construct can contain any
number of elementary assignments assignments. The syntax of the assignment activity is:

 <receive partner="ncname" portType="qname" operation="ncname"
 container="ncname" createInstance="yes|no"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiation="yes|no"?>+
 </correlations>
 </receive>

 <reply partner="ncname" portType="qname" operation="ncname"
 container="ncname" faultName="qname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiation="yes|no"?>+
 </correlations>
 </reply>

 <invoke partner="ncname" portType="qname" operation="ncname"
 inputContainer="ncname" outputContainer="ncname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiation="yes|no"?
 pattern="in|out|out-in"/>+
 </correlations>
 <catch faultName="qname" faultContainer="ncname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 <compensationHandler>?
 activity
 </compensationHandler>
 </invoke>

where the various options for from-spec and to-spec tokens are:

The <throw> construct generates a fault from inside the business process.

The <terminate> construct allows you to immediately terminate a business process.

The <wait> construct allows you to wait for a given time period or until a certain time has passed. Exactly one of the expiration
criteria must be specified.

The <empty> construct allows you to insert a "no-op" instruction into a business process. This is useful for synchronization of
parallel activities, for instance.

The <sequence> construct allows you to define a collection of activities to be performed sequentially in lexical order.

 <assign standard-attributes>
 standard-elements
 <copy>+
 from-spec
 to-spec
 </copy>
 </assign>

 <from container="ncname" part="ncname"? query="queryString"?/>
 <from partner="ncname" serviceReference="myRole|partnerRole"/>
 <from container="ncname" property="qname"/>
 <from expression="general-expr"/>
 <from> ... literal value ... </from>
 <from opaque="yes"/>

 <to container="ncname" part="ncname"? query="queryString"?/>
 <to partner="ncname"/>
 <to container="ncname" property="qname"/>

 <throw faultName="qname" faultContainer="ncname"? standard-attributes>
 standard-elements
 </throw>

 <terminate standard-attributes>
 standard-elements
 </terminate>

 <wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

 <empty standard-attributes>
 standard-elements
 </empty>

 <sequence standard-attributes>
 standard-elements
 activity+
 </sequence>

The <switch> construct allows you to select exactly one branch of execution from a set of choices.

The <while> construct allows you to indicate that an activity is to be repeated until a certain success criteria has been met.

The <pick> construct allows you to block and wait for an exactly suitable message to arrive or for a time-out alarm to go off.
When one of these triggers occurs, the associated activity is executed and the pick completes.

The <flow> construct allows you to specify one or more activities to be executed in parallel. Links can be used within parallel
activities to define arbitrary control structures.

The <scope> construct allows you to define a nested activity with its own associated fault and compensation handlers.

 <switch standard-attributes>
 standard-elements
 <case condition="bool-expr">+
 activity
 </case>
 <otherwise>?
 activity
 </otherwise>
 </switch>

 <while condition="bool-expr" standard-attributes>
 standard-elements
 activity
 </while>

 <pick createInstance="yes|no"? standard-attributes>
 standard-elements
 <onMessage partner="ncname" portType="qname"
 operation="ncname" container="ncname">+
 <correlations>?
 <correlation set="ncname" initiation="yes|no"?>+
 </correlations>
 activity
 </onMessage>
 <onAlarm (for="duration-expr" | until="deadline-expr")>*
 activity
 </onAlarm>
 </pick>

 <flow standard-attributes>
 standard-elements
 <links>?
 <link name="ncname">+
 </links>

 activity+
 </flow>

<scope containerAccessSerializable="yes|no" standard-attributes>
 standard-elements
 <faultHandlers>?
 ... see above under <process> for syntax ...
 </faultHandlers>
 <compensationHandler>?
 ... see above under <process> for syntax ...
 </compensationHandler>
 activity

The <compensate> construct is used to invoke compensation on an inner scope that has already completed its execution
normally. This construct can be invoked only from within a fault handler or another compensation handler.

Note that the "standard-attributes" referred to above are:

where the default values are as follows:

name. No default value (that is, unnamed)
joinCondition. The logical OR of the liveness status of all links that are targeted at this activity
suppressJoinFailure. No

and that the "standard-elements" referred to above are:

where the default value of the "transitionCondition" attribute is "true()", the truth-value function from the default expression
language XPath 1.0.

4.3. Language Extensibility

BPEL4WS contains constructs that are generally sufficient for expressing abstract and executable business processes. In some
cases, however, it might be necessary to "extend" the BPEL4WS language with additional constructs from other XML namespaces.

BPEL4WS supports extensibility by allowing namespace-qualified attributes to appear on any BPEL4WS element and by allowing
elements from other namespaces to appear within BPEL4WS defined elements. This is allowed in the XML Schema specifications
for BPEL4WS.

All extension namespaces used in a BPEL4WS document MUST be declared. An extension namespace is declared by using the
following syntax:

Extensions MUST NOT change the semantics of any element or attribute from the BPEL4WS namespace.

4.4. The Lifecycle of a Business Process

As noted in the introduction, the interaction model that is directly supported by WSDL is essentially a stateless client-server model
of synchronous or uncorrelated asynchronous interactions. BPEL4WS, builds on WSDL by assuming that all external interactions
of the business process occur through Web Service operations. However, BPEL4WS business processes represent stateful long-
running interactions in which each interaction has a beginning, defined behavior during its lifetime, and an end. For example, in a
supply chain, a seller's business process might offer a service that begins an interaction by accepting a purchase order through an
input message, and then returns an acknowledgement to the buyer if the order can be fulfilled. It might later send further
messages to the buyer, such as shipping notices and invoices. The seller's business process remembers the state of each such
purchase order interaction separately from other similar interactions. This is necessary because a buyer might be carrying on
many simultaneous purchase processes with the same seller. In short, a BPEL4WS business process definition can be thought of
as a template for creating business process instances.

 </scope>

 <compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

 name="ncname"?
 joinCondition="bool-expr"?
 suppressJoinFailure="yes|no"?

 <target linkName="ncname"/>*
 <source linkName="ncname" transitionCondition="bool-expr"?/>*

 <extension namespace="anyURI"/>*

The creation of a process instance in BPEL4WS is always implicit; activities that receive messages (that is, receive activities and
pick activities) can be annotated to indicate that the occurrence of that activity causes a new instance of the business process to
be created. This is done by setting the createInstance attribute of such an activity to "yes". When a message is received by such
an activity, an instance of the business process is created if it does not already exist (see Providing Web Service Operations and
Pick).

To be instantiated, each business process must contain at least one such "start activity." This must be an initial activity in the sense
that there is no basic activity that logically precedes it in execution flow.

If more than one start activity is enabled for concurrent execution, then all such activities must use at least one correlation set and
must use the same correlation sets (see Correlation and the Multiple Start Activities example).

If exactly one start activity is expected to be executed, the use of correlation sets is unconstrained. This includes a pick with
multiple onMessage branches; each such branch can use different correlation sets or no correlation sets.

A business process instance is terminated in one of the following ways:

When the activity that defines the behavior of the process as a whole completes. In this case the termination is normal.
When a fault reaches the process scope, and is either handled or not handled. In this case the termination is considered
abnormal even if the fault is handled and the fault handler does not rethrow any fault. A compensation handler is never
installed for a scope that terminates abnormally.
When a process instance is explicitly terminated by a terminate activity (see Terminating the Service Instance). In this case
the termination is abnormal.
If a compensation handler is specified for the business process as a whole (see Compensation Handlers), a business process
instance can be compensated after normal completion by platform-specific means. This functionality is enabled by setting
the enableInstanceCompensation attribute of the process to "yes".

5. Service Linking, Partners, and Service References
A very important, if not the most important, use case for BPEL4WS will be in describing cross-enterprise business interactions in
which the business processes of each enterprise interact through Web Service interfaces with the processes of other enterprises.
An important requirement for realistic modeling of business processing in this environment is the ability to model a partner
process. WSDL already describes the functionality of a service provided by a partner, at both the abstract and concrete levels. The
relationship of a business process to a partner is typically peer-to-peer, requiring a two-way dependency at the service level. In
other words, a partner represents both a consumer of a service provided by the business process and a provider of a service to
the business process. This is especially the case when the interactions are based on asynchronous messaging rather than on
remote procedure calls. The notion of service links is used to directly model peer-to-peer partner relationships. Service links
define the shape of a relationship with a partner by defining the message and port types used in the interactions in both
directions. However, the actual partner service may be dynamically determined within the process. BPEL4WS defines a notion of
service reference to represent the dynamic data required to describe a partner service.

It is important to emphasize that the notions of service link and service reference used here are preliminary. There is currently no
generally agreed upon specification for these concepts as they relate to Web Services; we expect standard definitions for them to
emerge in future. The BPEL4WS specification will be updated to confirm to the expected future standard.

5.1. Service Linking

A service link type characterizes the relationship between two services by defining the "roles" played by each of the services in the
relationship and specifying the portTypes provided by each role. The following example illustrates the basic syntax of a service
link type declaration:

Each role can include any number of WSDL portTypes.

<serviceLinkType name="BuyerSellerLink"
 xmlns="http://schemas.xmlsoap.org/ws/2002/07/service-link/">
 <role name="Buyer">
 <portType name="buy:BuyerPortType"/>
 </role>
 <role name="Seller">
 <portType name="sell:SellerPortType"/>
 </role>
</serviceLinkType>

In the common case, portTypes of each role originate from a separate namespace. However, in some cases, both roles of a service
link type can be defined in terms of portTypes from the same namespace. The latter situation occurs for service link types that
define "callback" relationships between services.

The service link type definition can be a separate artifact independent of either service's WSDL document. Alternatively, the
service link type definition can be placed within the WSDL document defining the portTypes from which the different roles are
defined.

The extensibility mechanism of WSDL 1.1 is used to define serviceLinkType as a new definition type to be placed as an immediate
child element of a <wsdl:definitions> element in all cases. This allows reuse of the WSDL target namespace specification and,
more importantly, its import mechanism to import portTypes. For cases where a service link type declaration is linking the
portTypes of two different services, the service link type declaration can be placed in a separate WSDL document (with its own
targetNamespace).

The syntax for defining a service link type is:

This defines a service link type in the namespace indicated by the value of the "targetNamespace" attribute of the WSDL
document element. The portTypes identified within <slnk:role> are referenced by using QNames as for all top-level WSDL
definitions.

Note that in some cases it can be meaningful to define a service link type containing exactly one role instead of two. This defines a
service linking scenario where one service expresses a willingness to link with any other service without placing any requirements
on the other service.

Examples of serviceLinkType declarations are found in various business process examples in this specification.

5.2. Partners

The services with which a business process interacts are modeled as partners in BPEL4WS. Each partner is characterized by a
serviceLinkType. More than one partner can be characterized by the same serviceLinkType. For example, a certain procurement
process might use more than one vendor for its transactions, but might use the same serviceLinkType for all vendors.

Each partner is named, and this name is used for all service interactions with that partner. This is critical, for example, in
correlating responses to different partners for simultaneous requests of the same kind (see Invoking Web Service Operations and
Providing Web Service Operations).

The role of the business process itself is indicated by the attribute myRole and the role of the partner is indicated by the attribute
partnerRole. In the degenerate case where a serviceLinkType has only one role, one of these attributes is omitted as appropriate.

Note that the partner declarations specify the static shape of the relationships that the BPEL4WS process will employ in its
behavior. When such a process is deployed and executed, all of the partners for whom the partnerRole attribute is present must
be resolved to actual services before operations on the partner's service can be invoked. The relevant information about a partner
service can be set as part of business process deployment. This is outside the scope of BPEL4WS. However, it is also possible to

<definitions name="ncname" targetNamespace="uri"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:slnk="http://schemas.xmlsoap.org/ws/2002/07/service-link/">
 ...
 <slnk:serviceLinkType name="ncname">
 <slnk:role name="ncname">
 <slnk:portType name="qname"/>+
 </slnk:role>
 <slnk:role name="ncname">?
 <slnk:portType name="qname"/>+
 </slnk:role>
 </slnk:serviceLinkType>
 ...
</definitions>

 <partners>
 <partner name="ncname" serviceLinkType="qname"
 myRole="ncname"? partnerRole="ncname"?>+
 </partner>
 </partners>

select and assign actual partner services dynamically; BPEL4WS provides the mechanisms to do so. The dynamic content of the
information regarding a partner's service is conceptually encapsulated in a service reference. In fact, because the partners are
likely to be stateful, the service endpoint information needs to be extended with instance-specific information. BPEL4WS allows
the service references implicitly present in partner definitions to be both extracted and assigned dynamically and to be set more
than once. The form of a service reference is described in the following paragraphs. See Assignment for the mechanisms used for
dynamic assignment of service references to partners.

5.3. Service References

WSDL makes an important distinction between portTypes and ports. PortTypes define abstract functionality by using abstract
messages. Ports provide actual access information, including communication endpoints and (by using extension elements) other
deployment-related information such as public keys for encryption. Bindings provide the glue between the two. While the user of
a service must be statically dependent on the abstract interface defined by portTypes, the information contained in port
definitions can typically be discovered and used dynamically.

The fundamental use of service references is to serve as the mechanism for dynamic communication of port-specific data for
services. A service reference makes it possible in BPEL4WS to dynamically select a provider for a particular type of service and to
invoke their operations. BPEL4WS provides a general mechanism for correlating messages to stateful instances of a service, and
therefore service references that carry instance-neutral port information are often sufficient. However, in general it is necessary to
carry additional instance-identification tokens in the service reference itself.

A service reference is defined as a typed reference that includes port-specific data for a service, and optionally additional data
regarding instance-identification tokens and other relevant properties. Relevant WSDL schemas are used wherever possible to
avoid redundancy.

The syntactic structure of a service reference is:

At a minimum, a service reference is the qualified name of a <wsdl:service> element where that element is either inlined within
the service reference or assumed to be already known by the recipient of the service reference. The following is a minimal
example of a service reference:

If the service is not assumed to be already known by reference, its definition can be inlined in the service reference as a way of
dynamically communicating the service definition part of a WSDL document.

<sref:serviceReference
 xmlns:sref="http://schemas.xmlsoap.org/ws/2002/07/service-reference/">
 <wsdl:definitions> ... </wsdl:definitions>?
 <sref:service name="qname"/>
 <sref:referenceProperties>?
 <sref:property name="qname">+
 <!-- any element content -->
 </sref:property>
 </sref:referenceProperties>
</sref:serviceReference>

<sref:serviceReference
 xmlns:sref="http://schemas.xmlsoap.org/ws/2002/07/service-reference/"
 xmlns:ns="http://example.com/services/">
 <sref:service name="ns:myService"/>
</sref:serviceReference>

<sref:serviceReference
 xmlns:sref="http://schemas.xmlsoap.org/ws/2002/07/service-reference/"
 xmlns:ns="http://example.com/services/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:definitions
 targetNamespace="http://example.com/services/" ...>
 <wsdl:service name="myService">
 ...
 </wsdl:service>
 </wsdl:definitions>
 <sref:service name="ns:myService"/>

The inlined <wsdl:definitions> element MUST NOT contain more than one inline service definition. The standard use of
<wsdl:definitions> includes only a single service definition. The presence of any other definitions can affect the portability of
service references.

Finally, the service reference might require additional tokens for purposes such as identifying one or more service instances of
interest. The service reference schema does not assign any particular significance to these tokens. They are permitted as a
convenient way to carry metadata for a variety of purposes. The key point is that this data is always associated with globally
named properties (see Message Properties). As such, they have semantics that are assumed to be known by the receiver of the
service reference.

Every partner in a BPEL4WS process instance is assigned a unique service reference in the course of the deployment or during the
execution of the process.

6. Message Properties

6.1. Motivation

Conceptually, the data in a message consists of two parts: application data and protocol-relevant data, where the protocols can be
business protocols or infrastructure protocols providing higher quality of service. An example of business protocol data is the
correlation tokens that are used in correlation sets (see Correlation). Examples of infrastructure protocols are security, transaction,
and reliable messaging protocols. The business protocol data is usually found embedded in the application-visible message parts,
whereas the infrastructure protocols almost always add implicit extra parts to the message types to represent protocol headers
that are separate from application data. Such implicit parts are often called message context because they relate to security
context, transaction context, and other similar middleware context of the interaction. Business processes might need to gain
access to and manipulate both kinds of protocol-relevant data. The notion of message properties is defined as a general way of
naming and representing distinguished data elements within a message, whether in application-visible data or in message
context. For a full accounting of the service description aspects of infrastructure protocols, it is necessary to define notions of
service policies, endpoint properties, and message context. This work is outside the scope of BPEL4WS. Message properties are
defined here in a sufficiently general way to cover message context consisting of implicit parts, but the use in this specification
focuses on properties embedded in application-visible data that is used in the definition of business protocols and abstract
business processes.

6.2. Defining Properties

A property definition creates a globally unique name and associates it with an XML Schema type. The intent is not to create a new
type. The intent is to create a name that has greater significance than the type itself. For example, a sequence number can be an
integer, but the integer type does not convey this significance, whereas a globally named sequence-number property does.
Properties can occur anywhere in a message, including in the message context.

A typical use for a property in BPEL4WS is to name a token for correlation of service instances with messages. For example, a
social security number might be used to identify an individual taxpayer in a long-running multiparty business process regarding a
tax matter. A social security number can appear in many different message types, but in the context of a tax-related process it has
a specific significance as a taxpayer ID. Therefore a global name is given to this use of the type by defining a property, as in the
following example:

</sref:serviceReference>

<sref:serviceReference
 xmlns:sref="http://schemas.xmlsoap.org/ws/2002/07/service-reference/"
 xmlns:ns="http://example.com/services/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <sref:service name="ns:myService"/>
 <sref:referenceProperties>
 <sref:property name="ns:instanceID">
 74b9f5d0-33fb-4a81-b02b-5b760641c1d6
 </sref:property>
 </sref:referenceProperties>
</sref:serviceReference>

<definitions name="properties"
 targetNamespace="http://example.com/properties.wsdl"

In correlation, the property name must have global significance to be of any use. Properties such as price, risk, response latency,
and so on, which are used in conditional behavior in a business process, have similar global and public significance. It is likely that
they will be mapped to multiple messages, and therefore they need to be globally named as in the case of correlation properties.
Such properties are essential, especially in abstract processes.

The WSDL extensibility mechanism is used to define properties so that the target namespace and other useful aspects of WSDL
are available. The BPEL4WS standard namespace, "http://schemas.xmlsoap.org/ws/2002/07/business-process/", is used for
property definitions. The syntax for a property definition is a new kind of WSDL definition as follows:

Properties used in business protocols are typically embedded in application-visible message data. The notion of aliasing is
introduced to map a global property to a field in a specific message part. The property name becomes an alias for the message
part and location, and can be used as such in Expressions and Assignment in abstract business processes.

The bpws:propertyAlias defines a globally named property tns:taxpayerNumber as an alias for a location in the identification
part of the message type txmsg:taxpayerInfo.

The syntax for a propertyAlias definition is:

 xmlns:tns="http://example.com/properties.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define a correlation property -->
 <bpws:property name="taxpayerNumber"
 type="txtyp:SSN"/>
 ...
</wsdl:definitions>

<wsdl:definitions name="ncname"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2002/07/business-process/">
 <bpws:property name="ncname" type="qname"/>
 ...
</wsdl:definitions>

<definitions name="properties"
 targetNamespace="http://example.com/properties.wsdl"
 xmlns:tns="http://example.com/properties.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns:txmsg="http://example.com/taxMessages.wsdl"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define a correlation property -->
 <bpws:property name="taxpayerNumber" type="txtype:SSN"/>
 ...
 <bpws:propertyAlias propertyName="tns:taxpayerNumber"
 messageType="txmsg:taxpayerInfo" part="identification"
 query="/socialsecnumber"/>
 </bpws:propertyAlias>
</definitions>

<definitions name="ncname"
 ...
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2002/07/business-process/">

 <bpws:propertyAlias propertyName="qname"
 messageType="qname" part="ncname" query="queryString"/>
 ...
</wsdl:definitions>

The interpretation of the message, part, and query attributes is the same as in the corresponding from-spec in copy assignments
(see Assignment).

7. Correlation
The information provided so far suggests that the target for messages that are delivered to a business process service is the
WSDL port of the recipient service. This is an illusion because, by their very nature, stateful business processes are instantiated to
act in accordance with the history of an extended interaction. Therefore, messages sent to such processes need to be delivered not
only to the correct destination port, but also to the correct instance of the business process that provides the port. The
infrastructure hosting the process must do this in a generic manner, to avoid burdening every process implementation with the
need to implement a custom mechanism for instance routing. Messages, which create a new business process instance, are a
special case, as described in The Lifecycle of a Business Process.

In the object-oriented world, such stateful interactions are mediated by object references, which intrinsically provide the ability to
reach a specific object (instance) with the right state and history for the interaction. This works reasonably well in tightly coupled
implementations where a dependency on the structure of the implementation is normal. In the loosely coupled world of Web
Services, the use of such references would create a fragile web of implementation dependencies that would not survive the
independent evolution of business process implementation details at each business partner. In this world, the answer is to rely on
the business data and communication protocol headers that define the wire-level contract between partners and to avoid the use
of implementation-specific tokens for instance routing whenever possible.

Consider the usual supply-chain situation where a buyer sends a purchase order to a seller. Suppose that the buyer and seller
have a stable business relationship and are statically configured to send documents related to the purchasing interaction to the
URLs associated with the relevant WSDL service ports. The seller needs to asynchronously return an acknowledgement for the
order, and the acknowledgement must be routed to the correct business process instance at the buyer. The obvious and standard
mechanism to do this is to carry a business token in the order message (such as a purchase order number) that is copied into the
acknowledgement for correlation. The token can be in the message envelope in a header or in the business document (purchase
order) itself. In either case, the exact location and type of the token in the relevant messages is fixed and instance independent.
Only the value of the token is instance dependent. Therefore, the structure and position of the correlation tokens in each message
can be expressed declaratively in the business process description. The BPEL4WS notion of correlation set, described in the
following section, provides this feature. The declarative information allows a BPEL4WS-compliant infrastructure to use correlation
tokens to provide instance routing automatically.

The declarative specification of correlation relies on declarative properties of messages. A property is simply a "field" within a
message identified by a query—by default the query language is XPath 1.0. This is only possible when the type of the message
part or binding element is described by using an XML Schema. The use of correlation tokens and service references is restricted to
message parts described in this way. To be clear, the actual wire format of such types can still be non-XML, for example, EDI flat
files, based on different bindings for port types.

7.1. Message Correlation

During its lifetime, a business process instance typically holds one or more conversations with partners involved in its work.
Conversations can be based on sophisticated transport infrastructure that correlates the messages involved in a conversation by
using some form of conversation identity and routes them automatically to the correct service instance without the need for any
annotation within the business process. However, in many cases correlated conversations involve more than two parties or use
lightweight transport infrastructure with correlation tokens embedded directly in the application data being exchanged. In such
cases, it is often necessary to provide additional application-level mechanisms to match messages and conversations with the
business process instances for which they are intended.

Correlation patterns can become quite complex. The use of a particular set of correlation tokens does not, in general, span the
entire interaction between a service instance and a partner (instance), but spans a part of the interaction. Correlated exchanges
can nest and overlap, and messages can carry several sets of correlation tokens. For example, a buyer might start a correlated
exchange with a seller by sending a purchase order (PO) and using a PO number embedded in the PO document as the
correlation token. The PO number is used in the PO acknowledgement by the seller. The seller might later send an invoice that
carries the PO number, to correlate it with the PO, and also carries an invoice number so that future payment-related messages
need to carry only the invoice number as the correlation token. The invoice message thus carries two separate correlation tokens
and participates in two overlapping correlated exchanges.

BPEL4WS addresses correlation scenarios by providing a declarative mechanism to specify correlated groups of operations within
a service instance. A set of correlation tokens can be defined as a set of properties shared by all messages in the correlated group.
Such a set of properties is called a correlation set.

Correlation sets are instantiated within the scope of an instance of the business process. Like the instantiation of a business
process, the instantiation of a correlation set is triggered by a specially marked operation. In the current version of BPEL4WS, a
correlation set can be instantiated only once during the lifetime of a business process instance. Its value, once initialized, can be

thought of as an alias for the identity of the business process instance.

In multiparty business protocols, each participant process in a correlated message exchange acts either as the initiator or as a
follower of the exchange. The initiator process sends the first message (as part of an operation invocation) that starts the
conversation, and therefore defines the values of the properties in the correlation set that tag the conversation. All other
participants are followers that instantiate their correlation sets in the conversation by receiving an incoming message that
provides the values of the properties in the correlation set. Both initiator and followers must mark the first activity in their
respective groups as the activity that initializes the correlation set.

7.2. Defining and Using Correlation Sets

The examples in this section show correlation being used on almost every messaging activity (receive, reply, and invoke). This is
because BPEL4WS does not assume the use of any sophisticated conversational transport protocols for messaging. In cases
where such protocols are used, the explicit use of correlation in BPEL4WS can be reduced to those activities that establish the
conversational connections.

Each correlation set in BPEL4WS is a named group of properties that, taken together, serve to define a way of identifying an
application-level conversation within a business protocol instance. A given message can carry multiple correlation sets. After
initialization, the values of the properties for a correlation set in a business process instance must be identical for all the messages
in all the operations that carry the correlation set. If at execution time this constraint is violated, the standard fault
bpws:correlationViolation MUST be thrown by a compliant implementation. The same fault MUST be thrown if an activity
attempts to use a correlation set that has not been instantiated. As the following examples illustrate, a correlation set is
instantiated when the activity within which it is used applies the attribute initiation="yes" to the set.

Following is an extended example of correlation. It begins by defining four message properties: customerID, orderNumber,
vendorID and invoiceNumber. All of these properties are defined as part of the "http://example.com/supplyCorrelation.wsdl"
namespace defined by the document.

Note that these properties are global names with known (simple) XMLSchema types. They are abstract in the sense that their
occurrence in messages needs to be separately specified (see Message Properties). The example continues by defining purchase
order and invoice messages and by using the concept of aliasing to map the abstract properties to fields within the message data
identified by selection.

 <correlationSets>?
 <correlationSet name="ncname" properties="qname-list"/>+
 </correlationSets>

<definitions name="properties"
 targetNamespace="http://example.com/supplyCorrelation.wsdl"
 xmlns:tns="http://example.com/supplyCorrelation.wsdl"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define correlation properties -->
 <bpws:property name="customerID" type="xsd:string"/>
 <bpws:property name="orderNumber" type="xsd:int"/>
 <bpws:property name="vendorID" type="xsd:string"/>
 <bpws:property name="invoiceNumber" type="xsd:int"/>
</definitions>

<definitions name="correlatedMessages"
 targetNamespace="http://example.com/supplyMessages.wsdl"
 xmlns:tns="http://example.com/supplyMessages.wsdl"
 xmlns:cor="http://example.com/supplyCorrelation.wsdl"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <!—define schema types for PO and invoice information -->
 <types>
 <xsd:complexType name="PurchaseOrder">
 <xsd:element name="CID" type="xsd:string"/>
 <xsd:element name="order" type="xsd:int"/>
 ...

Finally, the portType used is defined, in a separate WSDL document.

 </xsd:complexType>
 </types>
 <types>
 <xsd:complexType name="PurchaseOrderResponse">
 <xsd:element name="CID" type="xsd:string"/>
 <xsd:element name="order" type="xsd:int"/>
 ...
 </xsd:complexType>
 </types>
 <types>
 <xsd:complexType name="PurchaseOrderReject">
 <xsd:element name="CID" type="xsd:string"/>
 <xsd:element name="order" type="xsd:int"/>
 <xsd:element name="reason" type="xsd:string"/>
 ...
 </xsd:complexType>
 </types>
 <types>
 <xsd:complexType name="Invoice">
 <xsd:element name="VID" type="xsd:string"/>
 <xsd:element name="invNum" type="xsd:int"/>
 </xsd:complexType>
 </types>
 <message name="POMessage">
 <part name="PO" type="tns:PurchaseOrder"/>
 </message>
 <message name="POResponse">
 <part name="RSP" type="tns:PurchaseOrderResponse"/>
 </message>
 <message name="POReject">
 <part name="RJCT" type="tns:PurchaseOrderReject"/>
 </message>
 <message name="InvMessage">
 <part name="IVC" type="tns:Invoice"/>
 </message>
 <bpws:propertyAlias propertyName="cor:customerID"
 messageType="tns:POMessage" part="PO"
 query="/CID"/>
 <bpws:propertyAlias propertyName="cor:orderNumber"
 messageType="tns:POMessage" part="PO"
 query="/Order"/>
 <bpws:propertyAlias propertyName="cor:vendorID"
 messageType="tns:InvMessage" part="IVC"
 query="/VID"/>
 <bpws:propertyAlias propertyName="cor:invoiceNumber"
 messageType="tns:InvMessage" part="IVC"
 query="/InvNum"/>
 ...
</definitions>

<definitions name="purchasingPortType"
 targetNamespace="http://example.com/puchasing.wsdl"
 xmlns:smsg="http://example.com/supplyMessages.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<portType name="PurchasingPT">
 <operation name="SyncPurchase">
 <input message="smsg:POMessage"/>
 <output message="smsg:POResponse"/>
 <fault name="tns:RejectPO" message="smsg:POReject"/>
 </operation>
 <operation name="AsyncPurchase">
 <input message="smsg:POMessage"/>
 </operation>

Both the properties and their mapping to purchase order and invoice messages will be used in the following correlation examples.

Correlation sets are used in invoke, receive, and reply activities (see Invoking Web Service Operations and
Providing Web Service Operations) to indicate which correlation sets occur in the messages being sent and received. The
initiation attribute is used to indicate whether the set is being initialized. When the attribute is set to "yes" the set is initialized
with the values of the properties occurring in the message being sent or received. Finally, in the case of invoke, when the
operation invoked is synchronous request/response, a pattern attribute is used to indicate whether the correlation applies to the
outbound (request) message, the inbound (response) message, or both. These ideas are explained in more detail in the context of
the use of correlation in the rest of this example.

A message can carry the tokens of one or more correlation sets. The first example shows an interaction in which a purchase order
is received in a one-way inbound request and a confirmation including an invoice is sent in the asynchronous response. The
PurchaseOrder correlationSet is used in both activities so that the asynchronous response can be correlated to the request at the
buyer. The receive activity initializes the PurchaseOrder correlationSet. The buyer is therefore the initiator and the receiving
business process is a follower for this correlationSet. The invoke activity sending the asynchronous response also initializes a new
correlationSet Invoice. The business process is the initiator of this correlated exchange and the buyer is a follower. The response
message is thus a part of two separate conversations, and forms the bridge between them.

In the following, the prefix SP: represents the namespace "http://example.com/puchasing.wsdl".

Alternatively, the response might have been a rejection (such as an "out-of-stock" message), which in this case terminates the

</portType>
<portType name="BuyerPT">
 <operation name="AsyncPurchaseResponse">
 <input message="smsg:POResponse"/>
 <fault name="tns:RejectPO" message="smsg:POReject"/>
 </operation>
 <operation name="AsyncPurchaseReject">
 <input message="smsg:POReject"/>
 </operation>
</portType>
</definitions>

 <correlationSets
 xmlns:cor="http://example.com/supplyCorrelation.wsdl">
 <!-- Order numbers are particular to a customer,
 this set is carried in application data -->
 <correlationSet name="PurchaseOrder"
 properties="cor:customerID cor:orderNumber"/>

 <!-- Invoice numbers are particular to a vendor,
 this set is carried in application data -->
 <correlationSet name="Invoice"
 properties="cor:vendorID cor:invoiceNumber"/>
 </correlationSets>

 <receive partner="Buyer" portType="SP:PurchasingPT"
 operation="AsyncPurchase"
 container="PO">
 <correlations>
 <correlation set="PurchaseOrder" initiation="yes">
 </correlations>
 </receive>

 <invoke partner="Buyer" portType="SP:BuyerPT"
 operation="AsyncPurchaseResponse" inputContainer="POResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiation="no" pattern="out">
 <correlation set="Invoice" initiation="yes" pattern="out">
 </correlations>
 </invoke>

conversation correlated by the correlationSet PurchaseOrder without starting a new one correlated with Invoice. Note that the
initiation attribute is missing. It therefore has the default value of "no".

The use of correlation with synchronous Web Service invocation is illustrated by the alternative synchronous purchasing
operation used by an invoke activity used in the buyer's business process.

Note that an invoke consists of two messages: an outgoing request message and an incoming reply message. The correlation sets
applicable to each message must be separately considered because they can be different. In this case the PurchaseOrder
correlation applies to the outgoing request that initializes it, while the Invoice correlation applies to the incoming reply and is
initialized by the reply. Because the PurchaseOrder correlation is initialized by an outgoing message, the buyer is the initiator of
that correlation but a follower of the Invoice correlation because the values of the correlation properties for Invoice are set by the
seller in the reply received by the buyer.

8. Data Handling
Business processes model stateful interactions. The state involved consists of messages received and sent as well as other
relevant data such as time-out values. The maintenance of the state of a business process requires the use of state variables,
which are called containers. Furthermore, the data from the state needs to be extracted and combined in interesting ways to
control the behavior of the process, which requires data expressions. Finally, state update requires a notion of assignment.
BPEL4WS provides these features for XML data types and WSDL message types. The XML family of standards in these areas is still
evolving, and using the process-level attributes for query and expression languages provides for the incorporation of future
standards.

The differences between abstract and executable processes are exclusively in the data-handling feature set available to each kind
of process. Executable processes are permitted to use the full range of data manipulation and assignment features but are not
permitted to use nondeterministic values. Abstract processes are restricted to limited manipulation of values contained in
message properties but are permitted to use nondeterministic values to reflect the consequences of hidden private behavior.
Detailed differences are specified in the following sections, and summarized at the end of the data-handling section.

8.1. Expressions

BPEL4WS uses several types of expressions. The kinds of expressions used are as follows (relevant usage contexts are listed in
parentheses):

Boolean-valued expressions (transition conditions, join conditions, while condition, and switch cases)
Deadline-valued expressions ("until" attribute of onAlarm and wait)
Duration-valued expressions ("for" attribute of onAlarm and wait)
General expressions (assignment)

BPEL4WS provides an extensible mechanism for the language used in these expressions. The language is specified by the

 <invoke partner="Buyer" portType="SP:BuyerPT"
 operation="AsyncPurchaseReject" inputContainer="POReject">
 <correlations>
 <correlation set="PurchaseOrder" pattern="out">
 </correlations>
 </invoke>

 <invoke partner="Seller" portType="SP:PurchasingPT" operation="SyncPurchase"
 inputContainer="sendPO"
 outputContainer="getResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiation="yes"
 pattern="out">
 <correlation set="Invoice" initiation="yes"
 pattern="in">
 </correlations>
 <catch faultName="SP:RejectPO" faultContainer="POReject">
 <!-- handle the fault -->
 </catch>
 </invoke>

expressionLanguage attribute of the process element. Compliant implementations of the current version of BPEL4WS MUST
support the use of XPath 1.0 as the expression language. XPath 1.0 is indicated by the default value of the expressionLanguage
attribute, which is:

http://www.w3.org/TR/1999/REC-xpath-19991116

Given an expression language, it must be possible to query data from containers, to extract property values, and to query the
status of links from within expressions. This specification defines those functions for XPath 1.0 only, and it is expected that other
expression-language bindings will provide equivalent functionality. The rest of this section is specific to XPath 1.0.

BPEL4WS introduces several extension functions to XPath's built-in functions to enable XPath 1.0 expressions to access
information from the process. The extensions are defined in the standard BPEL4WS namespace
"http://schemas.xmlsoap.org/ws/2002/07/business-process/". The prefix "bpws:" is associated with this namespace.

Any qualified names used within XPath expressions are resolved by using namespace declarations currently in scope in the
BPEL4WS document at the location of the expression.

The following functions are defined by this specification:

This function extracts values from containers. The first argument names the source container for the data, the second names the
part to select from that container, and the third optional argument, when present, provides an absolute location path (with '/'
meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document
fragment representing the part. The return value of this function is a node set containing the single node representing either an
entire part (if the third argument is absent) or the result of the selection based on the locationPath. If the given locationPath
selects a node set of a size other than one, then the standard fault bpws:selectionFailure MUST be thrown by a compliant
implementation.

The use of bpws:getContainerData is prohibited in expressions used within abstract processes.

This function extracts global property values from containers. The first argument names the source container for the data and the
second is the qualified name (QName) of the global property to select from that container (see Message Properties). If the given
property does not appear in any of the parts of the container's message type, then the standard fault bpws:selectionFailure
MUST be thrown by a compliant implementation. The return value of this function is a node set containing the single node
representing the property. If the given property definition selects a node set of a size other than one, then the standard fault
bpws:selectionFailure MUST be thrown by a compliant implementation.

This function returns a Boolean indicating the status of the link (see Link Semantics). If the status of the link is positive the value is
true, and if the status is negative the value is false. This function MUST NOT be used anywhere except in a join condition. The
linkName argument MUST refer to the name of an incoming link for the activity associated with the join condition. These
restrictions MUST be statically enforced.

These BPEL4WS-defined extension functions are available for use within all XPath 1.0 expressions.

The syntax of XPath 1.0 expressions for BPEL4WS is considered in the following paragraphs.

8.1.1. Boolean Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in Boolean values.

8.1.2. Deadline-Valued Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in values that are of the XML
Schema types dateTime or date. Note that XPath 1.0 is not XML Schema aware. As such, none of the built-in functions of XPath 1.0
are capable of producing or manipulating dateTime or date values. However, it is possible to write a constant (literal) that
conforms to XML Schema definitions and use that as a deadline value or to extract a field from a container (part) of one of these

bpws:getContainerData ('containerName', 'partName', 'locationPath'?)

bpws:getContainerProperty ('containerName', 'propertyName')

bpws:getLinkStatus ('linkName')

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

types and use that as a deadline value. XPath 1.0 will treat that literal as a string literal, but the result can be interpreted as a
lexical representation of a dateTime or date value.

8.1.3. Duration-Valued Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in values that are of the XML
Schema type duration. The preceding discussion about XPath 1.0's XML Schema unawareness applies here as well.

8.1.4. General Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in any XPath value type (string,
number, or Boolean).

Expressions with operators are restricted as follows:

All numeric values including arbitrary constants are permitted with the equality or relational operators (<, <=, =, !=, >=, >).
Values of integral (short, int, long, unsignedShort, and so on) type including constants are permitted in numeric expressions,
provided that only integer arithmetic is performed. In practice, this means that division is disallowed. It is difficult to enforce
this restriction in XPath 1.0 because XPath 1.0 lacks integral support for types. The restriction should be taken as a statement
of intent that will be enforced in the future when expression languages with more refined type systems become available.
Only equality operators (=, !=) are permitted when used with values of string type including constants.

These restrictions reflect XPath 1.0 syntax and semantics. Future alternative standards in this space are expected to provide
stronger type systems and therefore support more nuanced constraints. The restrictions are motivated by the fact that XPath
general expressions are meant to be used to perform business protocol-related computation such as retry loops, line-item counts,
and so on, that must be transparent in the process definition. They are not meant to provide arbitrary computation. This is the
motivation for the constraint that numerical expressions deal only with integer computation, and for disallowing arbitrary string
manipulation through expressions.

8.2. Containers

Business processes specify stateful interactions involving the exchange of messages between partners. The state of a business
process includes the messages that are exchanged as well as intermediate data used in business logic and in composing
messages sent to partners. BPEL4WS treats all state uniformly as a collection of messages.

Containers provide the means for holding messages that constitute the state of a business process. The messages held are often
those that have been received from partners or are to be sent to partners. But BPEL4WS does not require this. Containers can hold
messages that act as "temporary variables" for computation and are never exchanged with partners.

The type of each container MUST be a WSDL message type. However, BPEL4WS allows the message type to be inlined in the
container declaration rather than being defined in a WSDL document. This alternative is provided to avoid cluttering WSDL
documents with types for the "temporary variable" case. The syntax of the containers declaration is:

An example of a container declaration with an inlined message type is:

If the same message type is declared in a WSDL document with the targetNamespace "http://example.com/orders", the
declaration could be:

 <containers>
 <container name="ncname" messageType="qname"?>+
 <wsdl:message name="ncname">?
 ...
 </wsdl:message>
 </container>
 </containers>

 <container name="orderDetails">
 <wsdl:message name="orderDetails">
 <part name="processDuration" type="xsd:duration"/>
 </wsdl:message>
 </container>

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath.html

Containers can be specified as input or output containers for invoke, receive, and reply activities (see
Invoking Web Service Operations and Providing Web Service Operations). When an invoke operation returns a fault message, this
causes a fault in the current scope. The fault container in the corresponding fault handler is initialized with the fault message
received (see Scopes and Fault Handlers).

At the beginning of a process all containers are uninitialized. Containers can be initialized by a variety of means including
assignment and receiving a message. Containers can be partially initialized with property assignment or when some but not all
parts in the message type of the container are assigned values. An attempt to use any part of a container before it is initialized
MUST result in the standard bpws:uninitializedContainer fault. A compliant implementation MAY choose to perform static
(pre-execution) analysis to detect and prevent the possibility of this fault. Such analysis is necessarily pessimistic and therefore
might in some cases prevent the use of processes that would not fault, either in specific uses or in any use.

Although abstract processes are not executable, BPEL4WS requires that all message properties in a message must be initialized
before the message can be used, for example before the container of the message is used as the inputContainer in a Web Service
operation invocation.

8.3. Assignment

Copying data from one container to another is a common task within a business process. The assign activity can be used to copy
data from one container to another, as well as to construct and insert new data using expressions. The use of expressions is
primarily motivated by the need to perform simple computation (such as incrementing sequence numbers) that is required for
describing business protocol behavior. Expressions operate on message selections, properties, and literal constants to produce a
new value for a container property or selection. Finally, this activity can also be used to copy service references to and from
partner links.

The assign activity contains one or more elementary assignments.

The assign activity copies a type-compatible value from the source ("from-spec") to the destination ("to-spec"). The from-spec
MUST be one of the following forms except for the opaque form available in abstract processes:

The to-spec MUST be one of the following forms:

In all variants the container attribute provides the name of a container, and the part attribute provides the name of a part within
that container.

In the first from-spec and to-spec variants, the value of the query attribute is a query string to identify a single value within a
source or target container part. BPEL4WS provides an extensible mechanism for the language used in these queries. The language

 <container xmlns:ORD="http://example.com/orders"
 name="orderDetails" messageType="ORD:orderDetails"/>

 <assign standard-attributes>
 standard-elements
 <copy>+
 from-spec
 to-spec
 </copy>
 </assign>

<from container="ncname" part="ncname"? query="queryString"?/>
<from partner="ncname" serviceReference="myRole|partnerRole"/>
<from container="ncname" property="qname"/>
<from expression="general-expr"/>
<from> ... literal value ... </from>
<from opaque="yes">

<to container="ncname" part="ncname"? query="queryString"?/>
<to partner="ncname"/>
<to container="ncname" property="qname"/>

is specified by the attribute "queryLanguage" of the <process> element. Compliant implementations of the current version of
BPEL4WS MUST support the use of XPath 1.0 as the query language. XPath 1.0 is indicated by the default value of the
queryLanguage attribute, which is:

http://www.w3.org/TR/1999/REC-xpath-19991116

For XPath 1.0, the value of the query attribute MUST be an absolute locationPath (with '/' meaning the root of the document
fragment representing the entire part). It is used to identify the root of a subtree within the document fragment representing the
part. The location path MUST select exactly one node. If the location path selects zero nodes or more than one node, then the
standard fault bpws:selectionFailure MUST be thrown by a compliant implementation. Note that the part and query attributes
are optional. Furthermore, the use of the query attribute is prohibited in abstract processes.

The second from-spec and to-spec variants allow dynamic manipulation of the service references associated with partners. The
value of the partner attribute is the name of a partner declared in the process. In the case of from-specs, the role must also be
specified because a process might need to communicate a service reference corresponding to either its own role or the partner's
role. The value "myRole" means that the service reference of the process with respect to that partner is the source, while the value
"partnerRole" means that the partner's service reference is the source. For the to-spec, the assignment is only possible to the
partnerRole, hence there is no need to specify the role. The type of the value used in partner-style from/to-specs is always a
service reference (see Service Linking, Partners, and Service References).

The third from-spec and to-spec variants allow explicit manipulation of message properties (see Message Properties). The
property forms are especially useful for abstract processes, because they provide a way to clearly define how distinguished data
elements in messages are being used.

The fourth ("expression") from-spec variant allows processes to perform simple computations on properties and containers (for
example, increment a sequence number).

The fifth from-spec variant allows a literal value to be given as the source value to assign to a destination. The type of the literal
value MUST be the type of the destination (to-spec). The type of the literal value MAY be optionally indicated inline with the value
by using XML Schema's instance type mechanism (xsi:type).

The sixth from-spec variant (<from opaque="yes">) allows an opaque value to be assigned based on non-deterministic choice.
This variant can only appear within abstract, i.e., non-executable processes. The value of this form in the interpretation of
assignment is chosen nondeterministically from the XSD value space of the target. It can only be used in assignments where the
"to-spec" refers to a container property. The XSD type of the target property must be one of the following:

A type derived from xsd:string and restricted by enumeration
A type derived from any XSD integral numeric type restricted by either enumeration or a combination of minExclusive or
minInclusive and maxExclusive or maxInclusive

A process that uses assignment of opaque values is clearly not executable in the normal sense. However, it is feasible to emulate
possible execution traces using assignment of random values of the correct type.

For an assignment to be valid, the data referred to by the from and to specifications MUST be of compatible types. The following
points make this precise:

The from-spec is a container and the to-spec is a container. In this case both containers MUST be of the same message type,
where two message types are said to be equal if their qualified names are the same.
One of the from or to specifications is a container and the other is not. This is not legal because parts of containers,
selections of container parts, or service references cannot be assigned to/from containers directly.
In all other cases, the types of the source and destination are XML Schema types, and the constraint is that the source value
MUST possess the type associated with the destination. Note that this does not require the types associated with the source
and destination to be the same. In particular, the source type MAY be a subtype of the destination type.

If any of the matching constraints above is violated, the standard fault bpws:mismatchedAssignmentFailure MUST be thrown by a
compliant implementation.

8.3.1. Atomicity of Assignment

An important characteristic of assignment in BPEL4WS is that assignment activities are atomic. If there is any fault during the
execution of an assignment activity, the destination containers are left unchanged as they were at the start of the activity. This
applies regardless of the number of assignment elements within the overall assignment activity.

8.3.2. Assignment Example

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/xpath.html

The example assumes the following complex type definition in the namespace "http://tempuri.org/bpws/example":

Assume that the following WSDL message definition exists for the same target namespace:

Also assume the following BPEL4WS container declarations:

The first example illustrates copying one container to another:

8.4. Summary of Differences Between Abstract and Executable Processes

The use of bpws:getContainerData is prohibited in XPath expressions used in abstract processes.

In assignments used in abstract processes, the from-spec and to-spec may not use queries within a container part, that is, the use
of the query attribute is prohibited.

The special nondeterministic from-spec form for copy assignment based on the attribute opaque is permitted within abstract
processes and prohibited in executable processes.

9. Basic Activities

9.1. Standard Attributes for Each Activity

Each activity has optional standard attributes: a name, a join condition, and an indicator whether a join fault should be suppressed
if it occurs. A join condition is used to specify requirements about parallel paths reaching at an activity. See Flow for a full
discussion of the last two attributes. The default value of suppressJoinFailure is no.

<complexType name="address">
 <sequence>
 <element name="number" type="xsd:int"/>
 <element name="street" type="xsd:string"/>
 <element name="city" type="xsd:string"/>
 <element name="phone">
 <complexType>
 <sequence>
 <element name="areacode" type="xsd:int"/>
 <element name="exchange" type="xsd:int"/>
 <element name="number" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" type="x:address"/>
</message>

<container name="c1" messageType="x:person"/>
<container name="c2" messageType="x:person"/>

<assign>
 <copy>
 <from container="c1"/>
 <to container="c2"/>
 </copy>
</assign>

name="ncname"?

The value of the joinCondition attribute is a Boolean-valued expression in the expression language indicated for this document
(see Expressions). The default value of the join condition for the default expression language XPath is the logical OR of the link
status of all incoming links of this activity.

9.2. Standard Elements for Each Activity

Each BPEL4WS activity has optional nested standard elements <source> and <target>. The use of these elements is required for
establishing synchronization relationships through links (see Flow). Each link is defined independently and given a name. The link
name is used as value of the linkName attribute of the <source> element. An activity MAY declare itself to be the source of one or
more links by including one or more <source> elements. Each <source> element MUST use a distinct link name. Similarly, an
activity MAY declare itself to be the target of one or more links by including one or more <target> elements. Each <source>
element associated with a given activity MUST use a link name distinct from all other <source> elements at that activity. Each
<target> element associated with a given activity MUST use a link name distinct from all other <target> elements at that activity.
Each <source> element MAY optionally specify a transition condition that functions as a guard for following this specified link
(see Flow). If the transition condition is omitted, it is deemed to be present with the constant value true.

9.3. Invoking Web Service Operations

Web Services provided by partners (see Service Linking, Partners, and Service References) can be used to perform work in a
BPEL4WS business process. Invoking an operation on such a service is a basic activity. Recall that such an operation can be a
synchronous request/response or an asynchronous one-way operation. BPEL4WS uses the same basic syntax for both with some
additional options for the synchronous case.

An asynchronous invocation specifies only the input container of the operation because it does not expect a response as part of
the operation (see Providing Web Service Operations). A synchronous invocation specifies both an input container and an output
container. One or more correlation sets can be specified to correlate the business process instance with a stateful service at the
partner's side (see Correlation).

In the case of a synchronous invocation, the operation might return a WSDL fault message. This results in a BPEL4WS fault. Such a
fault can be caught locally by the activity, and in this case the specified activity will be performed. If a fault is not caught locally by
the activity it is thrown to the scope that encloses the activity (see Scopes and Fault Handlers).

Note that a WSDL fault is identified in BPEL4WS by a qualified name formed by the target namespace of the corresponding
portType and the fault name. This uniform naming mechanism must be followed even though it does not accurately match
WSDL's fault-naming model. Because WSDL does not require that fault names be unique within the namespace where the service
operation is defined, all faults sharing a common name and defined in the same namespace are indistinguishable in BPEL4WS. In
WSDL 1.1 it is necessary to specify a portType name, an operation name, and the fault name to uniquely identify a fault. This limits
the ability to use fault-handling mechanisms to deal with invocation faults. This is an important shortcoming of the WSDL fault
model that will be removed in future versions of WSDL.

Finally, an activity can be associated with another activity that acts as its compensation action. This compensation handler can be
invoked either explicitly or by the default compensation handler of the enclosing scope (see Scopes and Compensation Handlers).

Semantically, the specification of local fault and/or compensation handlers is equivalent to the presence of an implicit scope
immediately enclosing the activity and providing those handlers. The name of such an implicit scope is always the same as the
name of the activity it encloses.

joinCondition="bool-expr"?
suppressJoinFailure="yes|no"?>

<source linkName="ncname" transitionCondition="bool-expr"?/>*
<target linkName="ncname"/>*

 <invoke partner="ncname" portType="qname" operation="ncname"
 inputContainer="ncname" outputContainer="ncname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiation="yes|no"?
 pattern="in|out|out-in"/>+
 </correlations>
 <catch faultName="qname" faultContainer="ncname"?>*

See Correlation for an explanation of the correlation semantics. The following example shows an invocation with a nested
compensation handler. Other examples are shown throughout the specification.

9.4. Providing Web Service Operations

A business process provides services to its partners through receive activities and corresponding reply activities. A receive activity
specifies the partner it expects to receive from, and the port type and operation that it expects the partner to invoke.

In addition, receive activities play a role in the lifecycle of a business process. The only way to instantiate a business process in
BPEL4WS is to annotate a receive activity with the createInstance attribute set to "yes" (see Pick for a variant). The default
value of this attribute is "no". A receive activity annotated in this way MUST be an initial activity in the process, that is, the only
other basic activities potentially enabled to execute prior to or simultaneously with such a receive activity MUST be similarly
annotated receive activities.

It is permissible to have the createInstance attribute set to "yes" for a set of concurrent initial activities. In this case the intent is
to express the possibility that any one of a set of required inbound messages can create the process instance because the order in
which these messages arrive cannot be predicted. All such receive activities MUST use the same correlation sets (see
Correlation). Compliant implementations MUST ensure that only one of the inbound messages carrying the same correlation set
tokens actually instantiates the business process (usually the first one to arrive, but this is implementation dependent). The other
incoming messages in the concurrent initial set MUST be delivered to the corresponding receive activities in the already created
instance.

A business process instance MUST NOT simultaneously enable two receive actions for the same partner, portType, and
operation. Note that receive is a blocking operation in the sense that its execution will not complete until a matching message is
received by the process instance. The constraint expressed here therefore forbids a logical fault, but not a race condition. However,
this specification does not provide a static analysis algorithm to detect such a fault, but stipulates that if two receive actions for
the same partner, portType, and operation are in fact simultaneously enabled during execution of a business process instance,
then the standard fault bpws:conflictingReceive MUST be thrown by a compliant implementation. For the purposes of this
constraint, an onMessage clause in a pick is equivalent to a receive (see Pick).

 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 <compensationHandler>?
 activity
 </compensationHandler>
 </invoke>

 <invoke partner="Seller" portType="SP:Purchasing"
 operation="SyncPurchase"
 inputContainer="sendPO"
 outputContainer="getResponse">
 <compensationHandler>
 <invoke partner="Seller" portType="SP:Purchasing"
 operation="CancelPurchase"
 inputContainer="getResponse"
 outputContainer="getConfirmation">
 </compensationHandler>
 </invoke>

<receive partner="ncname" portType="qname" operation="ncname"
 container="ncname" createInstance="yes|no"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiation="yes|no"?>+
 </correlations>
</receive>

A reply activity is used to send a response to a request previously accepted through a receive activity. Such responses are only
meaningful for synchronous interactions. An asynchronous response is always sent by invoking the corresponding one-way
operation on the partner's service. The correlation between a request and the corresponding reply is based on the constraint that
more than one outstanding synchronous request from a specific partner for a particular portType and operation MUST NOT be
outstanding at any given time during execution. If this constraint is violated in a business process instance, then the standard fault
bpws:conflictingRequest MUST be thrown by a compliant implementation. Note that this is semantically different from the
bpws:conflictingReceive, because it is possible to create the conflictingRequest by consecutively receiving the same request
from a specific partner for a particular portType and operation. For the purposes of this constraint, an onMessage clause in a pick
is equivalent to a receive (see Pick).

9.5. Updating Container Contents

Container update occurs through the assignment activity, which is described in Assignment.

9.6. Signaling Faults

The throw activity can be used when a business process needs to signal an internal fault explicitly. Every fault is required to have a
globally unique QName. The throw activity is required to provide such a name for the fault and can optionally provide a container
of data that provides further information about the fault. A fault handler can use such data to analyze and handle the fault and
also to populate any fault messages that need to be sent to other services.

BPEL4WS does not require fault names to be defined prior to their use in a throw element. An application or process-specific fault
name can be directly used by using an appropriate QName as the value of the faultName attribute and providing a container with
the fault data if required. This provides a very lightweight mechanism to introduce application-specific faults.

A simple example of a throw activity that does not provide a container of fault data is:

9.7. Terminating the Service Instance

The terminate activity can be used to immediately abandon all execution within the business process instance that executes the
terminate activity. All currently running activities MUST be terminated as soon as possible without any fault handling or
compensation behavior.

9.8. Waiting

The wait activity allows a business process to specify a delay for a certain period of time or until a certain deadline is reached (see
Expressions for the grammar of duration expressions and deadline expressions).

 <reply partner="ncname" portType="qname" operation="ncname"
 container="ncname" faultName="qname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiation="yes|no"?>+
 </correlations>
 </reply>

 <throw faultName="qname" faultContainer="ncname"? standard-attributes>
 standard-elements
 </throw>

<throw xmlns:FLT="http://example.com/faults" faultName="FLT:OutOfStock"/>

 <terminate standard-attributes>
 standard-elements
 </terminate>

A typical use of this activity is to invoke an operation at a certain time (in this case a constant, but more typically an expression
dependent on process state):

9.9. Doing Nothing

There is often a need to use an activity that does nothing, for example when a fault needs to be caught and suppressed. The empty
activity is used for this purpose. The syntax is obvious and minimal.

10. Structured Activities
Structured activities prescribe the order in which a collection of activities take place. They describe how a business process is
created by composing the basic activities it performs into structures that express the control patterns, data flow, handling of faults
and external events, and coordination of message exchanges between process instances involved in a business protocol.

The structured activities of BPEL4WS include:

Ordinary sequential control between activities is provided by sequence, switch, and while.
Concurrency and synchronization between activities is provided by flow.
Nondeterministic choice based on external events is provided by pick.

Structured activities can be used recursively in the usual way. A key point to understand is that structured activities can be nested
and combined in arbitrary ways. This provides a somewhat unusual but very attractive free blending of the graph-like and
program-like control regimes that have traditionally been seen as alternatives rather than orthogonal composable features. A
simple example of such blended usage is found in the Initial Example.

It is important to emphasize that the word activity is used throughout the following to include both basic and structured activities.

10.1. Sequence

A sequence activity contains one or more activities that are executed sequentially, in the order in which they are listed within the
<sequence> element, that is, in lexical order. The sequence activity completes when the final activity in the sequence has
completed.

Example:

 <wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

<sequence>
 <wait until="2002-12-24T18:00+01:00"/>

 <invoke partner="CallServer" portType="AutomaticPhoneCall"
 operation="TextToSpeech"
 inputContainer="seasonalGreeting">
 </invoke>
</sequence>

 <empty standard-attributes>
 standard-elements
 </empty>

 <sequence standard-attributes>
 standard-elements
 activity+
 </sequence>

10.2. Switch

The switch structured activity supports conditional behavior in a pattern that occurs quite often. The activity consists of an
ordered list of one or more conditional branches defined by case elements, followed optionally by an otherwise branch. The case
branches of the switch are considered in the order in which they appear. The first branch whose condition holds true is taken and
provides the activity performed for the switch. If no branch with a condition is taken, then the otherwise branch is taken. If the
otherwise branch is not explicitly specified, then an otherwise branch with an empty activity is deemed to be present. The switch
activity is complete when the activity of the selected branch completes.

Example:

10.3. While

The while activity supports repeated execution of a specified iterative activity. The iterative activity is executed until the given
Boolean while condition no longer holds true.

<sequence>
 <flow>
 ...
 </flow>
 <scope>
 ...
 </scope>
 <pick>
 ...
 </pick>
</sequence>

 <switch standard-attributes>
 standard-elements
 <case condition="bool-expr">+
 activity
 </case>
 <otherwise>?
 activity
 </otherwise>
 </switch>

<switch xmlns:inventory="http://supply-chain.org/inventory"
 xmlns:FLT="http://example.com/faults">
 <case condition= "bpws:getContainerProperty(stockResult,level) > 100">
 <flow>
 <!-- perform fulfillment work -->
 </flow>
 </case>
 <case condition="bpws:getContainerProperty(stockResult,level) >= 0">
 <throw faultName="FLT:OutOfStock"
 container="RestockEstimate"/>
 </case>
 <otherwise>
 <throw faultName="FLT:ItemDiscontinued"/>
 </otherwise>
</switch>

 <while condition="bool-expr" standard-attributes>
 standard-elements
 activity
 </while>

Example:

10.4. Pick

The pick activity awaits the occurrence of one of a set of events and then executes the activity associated with the event that
occurred. The occurrence of the events is often mutually exclusive (the process will either receive an acceptance message or a
rejection message, but not both). If more than one of the events occurs, then the selection of the activity to execute depends on
which event occurred first. If the events occur almost simultaneously, there is a race and the choice of activity to be executed is
dependent on both timing and implementation.

The form of pick is a set of branches of the form event/activity, and exactly one of the branches will be selected based on the
occurrence of the event associated with it before any others. Note that after the pick activity has accepted an event for handling,
the other events are no longer accepted by that pick. The possible events are the arrival of some message in the form of the
invocation of an inbound one-way or request/response operation, or an "alarm" based on a timer (in the sense of an alarm clock).

A special form of pick is used when the creation of an instance of the business process could occur as a result of receiving one of
a set of possible messages. In this case, the pick itself has a createInstance attribute with a value of yes (the default value of the
attribute is no). In such a case, the events in the pick must all be inbound messages and each of those is equivalent to a receive
with the attribute "createInstance=yes". No alarms are permitted for this special case.

Each pick activity MUST include at least one onMessage event. Enablement of each onMessage handler is equivalent to enablement
of the corresponding receive activity for the semantics of the occurrence of the bpws:conflictingReceive and
bpws:conflictingRequest faults (see Providing Web Service Operations).

The pick activity completes when one of the branches is triggered by the occurrence of its associated event and the
corresponding activity completes. The following example shows a typical usage of pick. Such a pick activity can occur in a loop
that is accepting line items for a large order, but a completion action is enabled as an alternative event.

 ...
<container name="orderDetails">
 <wsdl:message name="orderDetails">
 <part name="numberOfItems" type="xsd:integer"/>
 </wsdl:message>
</container>
 ...
<while condition=
 "bpws:getContainerProperty(orderDetails,numberOfItems) > 100">
 <scope>
 ...
 </scope>
</while>

 <pick createInstance="yes|no"? standard-attributes>
 standard-elements
 <onMessage partner="ncname" portType="qname"
 operation="ncname" container="ncname">+
 <correlations>?
 <correlation set="ncname" initiation="yes|no"?>+
 </correlations>
 activity
 </onMessage>
 <onAlarm (for="duration-expr" | until="deadline-expr")>*
 activity
 </onAlarm>
 </pick>

<pick>
 <onMessage partner="buyer"
 portType="orderEntry"
 operation="inputLineItem"
 container="lineItem">
 <!-- activity to add line item to order -->
 </onMessage>

10.5. Flow

The flow construct provides concurrency and synchronization. The grammar for flow is:

The standard attributes and standard elements for activities nested within a flow are especially significant because the standard
attributes and elements primarily exist to provide flow-related semantics to activities.

The most fundamental semantic effect of grouping a set of activities in a flow is to enable them for concurrent execution. A flow
completes when all of the activities in the flow have completed. Completion of an activity in a flow includes the possibility that it
will be skipped if its enabling condition turns out to be false (see Dead-Path-Elimination). Thus the simplest use of flow is
equivalent to a nested concurrency construct. In the following example, the two invoke activities are started concurrently as soon
as the flow is started. The completion of the flow occurs after both the seller and the shipper respond (assuming the invoke
operations were synchronous request/response). The bank is invoked only after the flow completes.

More generally, a flow activity creates a set of concurrent activities directly nested within it. It further enables expression of
synchronization dependencies between activities that are nested directly or indirectly within it. The link construct is used to
express these synchronization dependencies. A link has a name and all the links of a flow activity MUST be defined separately
within the flow activity (see Future Directions for a discussion of the reasons why links are defined separately). The standard
source and target elements of an activity are used to link two activities. The source of the link MUST specify a source element
specifying the link's name and the target of the link MUST specify a target element specifying the link's name. The source activity
MAY also specify a transition condition through the transitionCondition attribute of the source element. If the
transitionCondition attribute is omitted, it is deemed to be present with a value of "true". Every link declared within a flow
activity MUST have exactly one activity within the flow as its source and exactly one activity within the flow as its target. The
source and target of a link MAY be nested arbitrarily deeply within the (structured) activities that are directly nested within the
flow, except for the boundary-crossing restrictions.

The following example shows that links can cross the boundaries of structured activities. There is a link named "CtoD" that starts
at activity C in sequence Y and ends at activity D, which is directly nested in the enclosing flow. The example further illustrates that
the execution of sequence X must precede the execution of sequence Y because X is the source of the link named "XtoY" that is
targeted at sequence Y.

 <onMessage partner="buyer"
 portType="orderEntry"
 operation="orderComplete"
 container="completionDetail">
 <!-- activity to perform order completion -->
 </onMessage>

 <!-- set an alarm to go after 3 days and 10 hours -->
 <onAlarm for="P3DT10H">
 <!-- handle timeout for order completion -->
 </onAlarm>
</pick>

 <flow standard-attributes>
 standard-elements
 <links>?
 <link name="ncname">+
 </links>
 activity+
 </flow>

 <sequence>
 <flow>
 <invoke partner="Seller" .../>
 <invoke partner="Shipper" .../>
 </flow>
 <invoke partner="Bank" .../>
 </sequence>

In general, a link is said to cross the boundary of a syntactic construct if the source activity for the link is nested within the
construct but the target activity is not, or vice versa, if the target activity for the link is nested within the construct but the source
activity is not.

A link MUST NOT cross the boundary of a while activity, a serializable scope, or a compensation handler (see Scopes). In addition,
a link that crosses a fault-handler boundary MUST be outbound, that is, it MUST have its source activity within the fault handler
and its target activity within a scope that encloses the scope associated with the fault handler. Finally, a link MUST NOT create a
control cycle, that is, the source activity must not have the target activity as a logically preceding activity, where an activity A
logically precedes an activity B if the initiation of B semantically requires the completion of A. Therefore, directed graphs created
by links are always acyclic.

10.5.1. Link Semantics

In the rest of this section, the links for which activity A is the source will be referred to as A's outgoing links, and the links for
which activity A is the target will be referred to as A's incoming links. If activity X is the target of a link that has activity Y as the
source, X has a synchronization dependency on Y.

Every activity that is the target of a link has an implicit or explicit joinCondition attribute associated with it. This applies even
when an activity has exactly one incoming link. If the explicit joinCondition is missing, the implicit condition requires the status
of at least one incoming link to be positive (see below for an explanation of link status). A join condition is a Boolean expression
(see Expressions). The expression for a join condition for an activity MUST be constructed using only Boolean operators and the
bpws:getLinkStatus function (see Expressions) applied to incoming links at the activity.

Without considering links, the semantics of business processes, scopes, and structured activities determine when a given activity
is ready to start execution. For example, the second activity in a sequence is ready to start execution as soon as the first activity
completes. An activity that defines the behavior of a branch in a switch is ready to execute if and when that branch is chosen for
execution. Similarly, an activity nested directly within a flow is ready to start execution as soon as the flow itself starts execution,
because flow is fundamentally a concurrency construct.

If an activity that is ready for execution in this sense has incoming links, then it does not start execution until the status of all its
incoming links has been determined and the (implicit or explicit) join condition associated with the activity has been evaluated.
The precise semantics of link status evaluation are as follows:

When activity A completes, the following steps are performed to determine the effect of the synchronization links on further
execution:

Determine the status of all outgoing links for A. The status will be either positive or negative. To determine the status for
each link its transitionCondition is evaluated. If the value is true the status is positive, otherwise it is negative.
For each activity B that has a synchronization dependency on A, check whether:

B is ready for execution (except for its dependency on incoming links) in the sense described above.
The status of all incoming links for B has been determined.

 <flow>
 <links>
 <link name="XtoY"/>
 <link name="CtoD"/>
 </links>
 <sequence name="X">
 <source linkName="XtoY"/>
 <invoke name="A" .../>
 <invoke name="B" .../>
 </sequence>
 <sequence name"Y">
 <target linkName="XtoY"/>
 <receive name="C"/>
 <source linkName="CtoD"/>
 </receive>
 <invoke name="E" .../>
 </sequence>
 <invoke partner="D">
 <target linkName="CtoD"/>
 </invoke>
 </flow>

If both these conditions are true, then evaluate the join condition for B. If the join condition evaluates to false, a standard
bpws:joinFailure fault is thrown, otherwise the execution of activity B is started.

If, during the execution of structured activity S, the semantics of S dictate that activity X nested within S will not be executed as
part of the execution of S, then the status of all outgoing links from X is set to negative. An example is an activity within a branch
that is not taken in a switch activity, or activities that were not completed in a scope in which processing was halted due to a fault,
including a bpws:joinFailure (see Scopes and Compensation Handlers).

Note that in general multiple target activities will be enabled in parallel based on the completion of an activity with multiple
outgoing links; because of this, such an activity is often called a fork activity.

10.5.2. Dead-Path-Elimination (DPE)

In cases where the control flow is largely defined by networks of links, the normal interpretation of a false join condition for
activity A is that A should not be performed, rather than that a fault has occurred. Moreover, there is a need to propagate the
consequences of this decision by assigning a negative status to the outgoing links for A. BPEL4WS makes it easy to express these
semantics by using an attribute suppressJoinFailure on an activity. A value of "yes" for this attribute has the effect of
suppressing the bpws:joinFailure fault for the activity and all nested activities, except where the effect is overridden by using
the suppressJoinFailure attribute with a value of "no" in a nested activity. Suppressing the bpws:joinFailure is equivalent to
the fault being logically caught by a special default handler attached to an implicit scope that immediately encloses just the
activity with the join condition. The default handler behavior is an empty activity, that is, the handler suppresses the fault and does
nothing about it. However, because the activity with the join condition was not executed, its outgoing links are automatically
assigned a negative status according to the rules of Link Semantics. Thus within an activity with the value of the
suppressJoinFailure attribute set to "yes", the semantics of a join condition that evaluates to false are to skip execution of the
associated activity and to set the status of all outgoing links from that activity to negative. This is called dead-path-elimination
because in a graph-like interpretation of networks of links with transition conditions, these semantics have the effect of
propagating negative link status transitively along entire paths formed by consecutive links until a join condition is reached that
evaluates to true.

Note that the name of the implicit scope (created to suppress the bpws:joinFailure) that immediately encloses an activity with a
join condition is exactly the same as the name of the activity itself. In case this is an invoke activity (see
Invoking Web Service Operations) with an inlined fault or compensation handler, the implicit scope for the fault and
compensation handlers is merged with the implicit scope described here, which adds an additional fault handler for the
bpws:joinFailure.

The default value of the suppressJoinFailure attribute is "no". This is to avoid unexpected behavior in simple use cases where
complex graphs are not involved and links without transition conditions are used for synchronization. The designers of such use
cases are likely to be naive about link semantics and are likely to be surprised by the consequences of a default interpretation that
suppresses a well-defined fault. For example, consider the interpretation of the Initial Example with the suppressJoinFailure
attribute set to "yes". Suppose further that the invocations of the shippingProvider are enclosed in a scope that provides a fault
handler (see Scopes and Fault Handlers). If one of these invocations were to fault, the status of the outgoing link from the
invocation would be negative, and the (implicit) join condition at the target of the link would be false, but the resulting
bpws:joinFailure would be implicitly suppressed and the target activity would be silently skipped within the sequence instead of
causing the expected fault.

If universal suppression of the bpws:joinFailure is desired, it is easy to achieve by using the suppressJoinFailure attribute with
a value of "yes" in the overall process element at the root of the business process definition.

10.5.3. Flow Graph Example

In the following example, the activities with the names getBuyerInformation, getSellerInformation, settleTrade,
confirmBuyer, and confirmSeller are nodes of a graph defined through the flow activity. The following links are defined:

The link named buyToSettle starts at getBuyerInformation (specified through the corresponding source element nested in
getBuyerInformation) and ends at settleTrade (specified through the corresponding target element nested in
settleTrade).
The link named sellToSettle starts at getSellerInformation and ends at settleTrade.
The link named toBuyConfirm starts at settleTrade and ends at confirmBuyer.
The link named toSellConfirm starts at settleTrade and ends at confirmSeller.

Based on the graph structure defined by the flow, the activities getBuyerInformation and getSellerInformation can run in
parallel. The settleTrade activity is not performed before both of these activities are completed. After settleTrade completes the
two activities, confirmBuyer and confirmSeller are performed in parallel again.

10.5.4. Links and Structured Activities

Links can cross the boundaries of structured activities. When this happens, care must be taken to ensure the intended behavior of
the business process. The following example illustrates the behavior when links target activities within structured constructs.

The following flow is intended to perform the sequence of activities A, B, and C. Activity B has a synchronization dependency on
the two activities X and Y outside of the sequence, that is, B is a target of links from X and Y. The join condition at B is missing, and
therefore implicitly assumed to be the default, which is the disjunction of the status of the links targeted to B. The condition is
therefore true if at least one of the incoming links has a positive status. In this case that condition reduces to the Boolean
condition P(X,B) OR P(Y,B) based on the transition conditions on the links.

In the flow, the sequence S and the two receive activities X and Y are all concurrently started when the flow starts execution.
Within S, after activity A is completed, B cannot start execution until the status of its incoming links from X and Y is determined
and the implicit join condition is evaluated. When activities X and Y complete their execution, the join condition for B is evaluated.

Suppose that the expression P(X,B) OR P(Y,B) evaluates to false. In this case, the standard fault bpws:joinFailure will be
thrown, because the environmental attribute suppressJoinFailure is set to "no". Thus the execution of the flow is interrupted
and neither B nor C will be executed.

If, on the other hand, the environmental attribute suppressJoinFailure is set to "yes", then the execution of B will be skipped
but C will execute because the bpws:joinFailure will be suppressed by the implicit scope associated with B.

<flow suppressJoinFailure="yes">
 <links>
 <link name="buyToSettle"/>
 <link name="sellToSettle"/>
 <link name="toBuyConfirm"/>
 <link name="toSellConfirm"/>
 </links>
 <receive name="getBuyerInformation">
 <source linkName="buyToSettle"/>
 </receive>
 <receive name="getSellerInformation">
 <source linkName="sellToSettle"/>
 </receive>
 <invoke name="settleTrade"
 joinCondition="buyToSettle AND sellToSettle">
 <target linkName="getBuyerInformation"/>
 <target linkName="getSellerInformation"/>
 <source linkName="toBuyConfirm"/>
 <source linkName="toSellConfirm"/>
 </invoke>
 <reply name="confirmBuyer">
 <target linkName="toBuyConfirm"/>
 </reply>
 <reply name="confirmSeller">
 <target linkName="toSellConfirm"/>
 </reply>
</flow>

<flow suppressJoinFailure="no">
 <links>
 <link name="XtoB"/>
 <link name="YtoB"/>
 </links>

 <sequence name="S">
 <receive name="A" ...>
 ...
 </receive>
 <receive name="B" ...>
 <target linkName="XtoB"/>
 <target linkName="YtoB"/>
 ...
 </receive>

Finally, assume that the preceding flow is slightly rewritten by linking A, B, and C through links (with transition conditions with
constant truth-value of "true") instead of putting them into a sequence. Now, B and thus C will always be performed. Because the
join condition is a disjunction and the transition condition of link AtoB is the constant "true", the join condition will always
evaluate to "true", independent from the values of P(X,B) and P(Y,B).

11. Scopes
The execution context for each activity is provided by a scope. A scope can provide fault handlers, a compensation handler, data
containers, and correlation sets.

In the current version of BPEL4WS, containers and correlation sets are only permitted at the global scope defined by the entire
process. See Future Directions for a discussion of expected changes in future versions.

All scope elements are syntactically optional and some have default semantics when omitted. The syntax and semantics of scopes
are explained in detail below.

 <receive name="C" ...>
 ...
 </receive>
 </sequence>

 <receive name="X" ...>
 <source linkName="XtoB" transitionCondition="P(X,B)"/>
 ...
 </receive>
 <receive name="Y" ...>
 <source linkName="YtoB" transitionCondition="P(Y,B)"/>
 ...
 </receive>
</flow>

<flow suppressJoinFailure="no">
 <links>
 <link name="AtoB"/>
 <link name="BtoC"/>
 <link name="XtoB"/>
 <link name="YtoB"/>
 </links>
 <receive name="A">
 <source linkName="AtoB"/>
 </receive>
 <receive name="B">
 <target linkName="AtoB"/>
 <target linkName="XtoB"/>
 <target linkName="YtoB"/>
 <source linkName="BtoC"/>
 </receive>
 <receive name="C">
 <target linkName="BtoC"/>
 </receive>
 <receive name="X">
 <source linkName="XtoB" transitionCondition="P(X,B)"/>
 </receive>
 <receive name="Y">
 <source linkName="YtoB" transitionCondition="P(Y,B)"/>
 </receive>
</flow>

<scope containerAccessSerializable="yes|no" standard-attributes>
 standard-elements
 <faultHandlers>?
 ...
 </faultHandlers>
 <compensationHandler>?

Each scope has a primary activity that defines its normal behavior. The primary activity can be a complex structured activity, with
many nested activities within it to arbitrary depth. The scope is shared by all the nested activities. In the following example, the
scope has a primary flow activity, which contains two concurrent invoke activities. Either of the invoke activities can receive one or
more types of fault responses. The fault handlers for the scope are shared by both invoke activities and can be used to catch the
faults caused by the possible fault responses.

11.1. Error Handling in Business Processes

Business processes are often of long duration and use asynchronous messages for communication. They also manipulate
sensitive business data in back-end databases and line-of-business applications. Error handling in this environment is both
difficult and business critical. The use of ACID transactions is usually limited to local updates because of trust issues and because
locks and isolation cannot be maintained for the long periods during which technical and business errors and fault conditions can
occur in a business process instance. As a result, the overall business transaction can fail or be cancelled after many ACID
transactions have been committed during its progress, and the partial work done must be undone as best as possible. Error
handling in business processes therefore relies heavily on the well-known concept of compensation, that is, application-specific
activities that attempt to reverse the effects of a previous activity that was carried out as part of a larger unit of work that is being
abandoned. There is a long history of work in this area regarding the use of Sagas [10] and open nested transactions [11].
BPEL4WS provides a variant of such a compensation protocol by providing the ability for flexible control of the reversal. BPEL4WS
achieves this by providing the ability to define fault handling and compensation in an application-specific manner, resulting in a
feature called Long-Running (Business) Transactions (LRTs).

It is important to understand that the notion of LRT described here is meant to be used purely within a platform-specific
implementation. There is no prescribed requirement that the business process be distributed or span multiple vendors and
platforms. For such environments, it is expected that the WS-Transaction specification [12] would be utilized to register
participants interested in the reversal notifications provided by the LRT implementation. See Appendix C for a detailed model of
BPEL4WS LRTs based on WS-Transaction concepts.

Additionally, it is important to understand that the notion of LRT described here is purely local and occurs within a single business
process instance. There is no distributed coordination regarding an agreed-upon outcome among multiple-participant services.
The achievement of distributed agreement is an orthogonal problem outside the scope of BPEL4WS, to be solved by using the
protocols described in the WS-Transaction specification. The need to compose WS-transaction with BPEL4WS is recognized. This
is addressed further in the section on Future Directions.

As an example of an LRT, consider the planning and fulfillment of a travel itinerary. This can be viewed as an LRT in which
individual service reservations can use nested transactions within the scope of the overall LRT. If the itinerary is cancelled, the
reservation transactions must be compensated for by cancellation transactions, and the corresponding payment transactions
must be compensated accordingly. For ACID transactions in databases the transaction coordinator(s) and the resources that they
control know all of the uncommitted updates and the order in which they must be reversed, and they are in full control of such
reversal. In the case of business transactions, the compensation behavior is itself a part of the business logic and protocol, and
must be explicitly specified. For example, there might be penalties or fees applied for cancellation of an airline reservation

 ...
 </compensationHandler>
 activity
 </scope>

 <scope>
 <faultHandlers>?
 ...
 </faultHandlers>
 <flow>
 <invoke partner="Seller" portType="Sell:Purchasing"
 operation="SyncPurchase"
 inputContainer="sendPO"
 outputContainer="getResponse"/>
 <invoke partner="Shipper"
 portType="Ship:TransportOrders"
 operation="OrderShipment"
 inputContainer="sendShipOrder"
 outputContainer="shipAck"/>
 </flow>
 </scope>

depending on the class of ticket and the timing. If a payroll advance has been given to pay for the travel, the reservation must be
successfully cancelled before the payroll advance for it can be reversed in the form of a payroll deduction. This means the
compensation actions might need to run in the same order as the original transactions, which is not the standard or default in
most transaction systems. Using activity scopes as the definition of logical units of work, the LRT feature of BPEL4WS addresses
these requirements.

11.2. Compensation Handlers

Scopes can delineate a part of the behavior that is meant to be reversible in an application-defined way by a compensation
handler. Scopes with compensation and fault handlers can be nested without constraint to arbitrary depth.

11.2.1. Defining a Compensation Handler

A compensation handler in the current version of BPEL4WS is simply a wrapper for a compensation activity as shown below. In
many scenarios the compensation handler needs to receive data about the current state of the world and return data regarding
the results of the compensation. This is discussed further below and in Future Directions.

As explained in Invoking Web Service Operations, there is a special shortcut for the invoke activity to inline a compensation
handler rather than explicitly using an immediately enclosing scope. For example:

In this example, the original invoke activity makes a purchase and in case that purchase needs to be compensated, the
compensationHandler invokes a cancellation operation at the same port of the same partner, using the response to the purchase
request as the input.

In standard syntax (without the invoke shortcut) this example would be equivalently expressed as follows:

 <compensationHandler>?
 activity
 </compensationHandler>

 <invoke partner="Seller" portType="SP:Purchasing"
 operation="SyncPurchase"
 inputContainer="sendPO"
 outputContainer="getResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiation="yes"
 pattern="out"/>
 </correlations>

 <compensationHandler>
 <invoke partner="Seller" portType="SP:Purchasing"
 operation="CancelPurchase"
 inputContainer="getResponse"
 outputContainer="getConfirmation">
 <correlations>
 <correlation set="PurchaseOrder" pattern="out"/>
 </correlations>
 </invoke>
 </compensationHandler>
 </invoke>

 <scope>
 <compensationHandler>
 <invoke partner="Seller" portType="SP:Purchasing"
 operation="CancelPurchase"
 inputContainer="getResponse"
 outputContainer="getConfirmation">
 <correlations>
 <correlation set="PurchaseOrder" pattern="out"/>
 </correlations>
 </invoke>
 </compensationHandler>

Note that the container getResponse can be reused later for other purposes before compensation is invoked. But the
compensation handler needs the specific response to the invoke operation that is being reversed. BPEL4WS semantics state that
the compensation handler, if invoked, will see a frozen snapshot of all containers, as they were when the execution of the scope
being compensated was completed. In other words, if the compensation handler shown here is used, the contents of getResponse
that it will see and use are exactly the contents at the time of the completion of the invoke activity it compensates. This also means
that compensation handlers cannot update live data in the containers that the business process is using. They live entirely in a
snapshot world. A compensation handler, once installed, can be thought of as a completely self-contained action that is not
affected by, and does not affect, the global state of the business process instance. It can only affect external entities.

It is not realistic to expect compensation activities to always be oblivious to the current state of the world. In fact, compensation
both affects and is affected by the current state. However, the shape of the world within which compensation is run is difficult to
anticipate. It is therefore necessary to allow the two-way interaction between compensation activities and the live world to take
place in a tightly controlled manner. In the future, BPEL4WS will add input and output parameters to compensation handlers for
this purpose (see Future Directions).

As stated in The Lifecycle of a Process, if a compensation handler is specified for the business process as a whole, a business
process instance can be compensated after normal completion by platform-specific means. This functionality is enabled by
setting the enableInstanceCompensation attribute of the process to "yes".

11.2.2. Invoking a Compensation Handler

The compensation handler can be invoked by using the compensate activity, which names the scope for which the compensation
is to be performed, that is, the scope whose compensation handler is to be executed. A compensation handler for a scope is
available for invocation only when the scope completes its execution normally. Invoking a compensation handler that has not
been installed is equivalent to the empty activity (it is a no-op)—this ensures that fault handlers do not have to rely on state to
determine which nested scopes have completed successfully. If an installed compensation handler is invoked more than once, a
compliant implementation MUST throw the standard bpws:repeatedCompensation fault.

Note that in case an invoke activity has a compensation handler defined inline, the name of the activity is the name of the scope to
be used in the compensate activity.

The ability to explicitly execute the compensate activity is the underpinning of the application-controlled error-handling
framework of BPEL4WS. This activity can be used only in the following parts of a business process:

In a fault handler of the scope that immediately encloses the scope for which compensation is to be performed.
In the compensation handler of the scope that immediately encloses the scope for which compensation is to be performed.

Example:

If a scope being compensated by name was executed in a loop, the instances of the compensation handlers in the successive
iterations are executed in reverse order.

If the compensation handler for a scope is absent, the default compensation handler invokes the compensation handlers for the
immediately enclosed scopes in the reverse order of the completion of those scopes.

 <invoke partner="Seller" portType="SP:Purchasing"
 operation="SyncPurchase"
 inputContainer="sendPO"
 outputContainer="getResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiation="yes"
 pattern="out"/>
 </correlations>
 </invoke>
 </scope>

 <compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

<compensate scope="RecordPayment"/>

The <compensate/> form, in which the scope name is omitted in a compensate activity, causes this default behavior to be invoked
explicitly. This is useful when an enclosing fault or compensation handler needs to perform additional work, such as updating
containers or sending external notifications, in addition to performing default compensation for inner scopes. Note that the
<compensate/> activity in a fault or compensation handler attached to scope S causes the default-order invocation of
compensation handlers for completed scopes directly nested within S. The use of this activity can be mixed with any other user-
specified behavior except the explicit invocation of <compensate scope="Sx"/> for scope Sx nested directly within S. Explicit
invocation of compensation for such a scope nested within S disables the availability of default-order compensation, as expected.

11.3. Fault Handlers

Fault handling in a business process can be thought of as a mode switch from the normal processing in a scope. The optional
fault handlers attached to a scope provide a way to define a set of custom fault-handling activities, syntactically defined as catch
activities. Each catch activity is defined to intercept a specific kind of fault, defined by a globally unique fault QName and a
container for the data associated with the fault. If the fault name is missing, then the catch will intercept all faults with the right
type of fault data. The fault container is optional because a fault might not have additional data associated with it. A fault response
to an invoke activity is one source of faults, with obvious name and data aspects based on the definition of the fault in the WSDL
operation. A programmatic throw activity is another source, again with explicitly given name and data. BPEL4WS defines several
standard faults with their names and data, and there might be other platform-specific faults such as communication failures that
can occur during the execution of a business process. A catchAll clause can be added to catch any fault not caught by a more
specific catch handler.

Although the use of compensation can be a key aspect of the behavior of fault handlers, each handler performs an arbitrary
activity, which can even be <empty/>. When a fault handler is present, it is in charge of handling the fault. It might rethrow the
same fault or a different one, or it might handle the fault by performing cleanup and allowing normal processing to continue in
the enclosing scope.

A scope in which a fault occurred is considered to have ended abnormally, whether or not the fault was caught and handled
without rethrow by a fault handler. A compensation handler is never installed for a scope in which a fault occurred.

When a fault handler for scope S handles a fault that occurred in S without rethrowing, links that have S as the source will be
subject to regular evaluation of status after the fault has been handled, because processing in the enclosing scope is meant to be
continued.

As explained in Invoking Web Service Operations, there is a special shortcut for the invoke activity to inline fault handlers rather
than explicitly using an immediately enclosing scope. For example:

In this example, the original invoke makes a purchase and a fault handler is inlined to handle the case where the purchase request
results in a fault response. In standard syntax (without the invoke shortcut), this example would be equivalently expressed as
follows:

 <faultHandlers>?
 <!-- there must be at least one fault handler or default -->
 <catch faultName="qname"? faultContainer="ncname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 </faultHandlers>

 <invoke partner="Seller"
 portType="SP:Purchasing"
 operation="SyncPurchase"
 inputContainer="sendPO"
 outputContainer="getResponse">
 <catch faultName="SP:POFault" faultContainer="POFault">
 <!-- handle the fault -->
 </catch>
 </invoke>

<scope>
 <faultHandlers>

The compensation handler for scope C becomes available for invocation by the fault and compensation handlers for its
immediately enclosing scope exactly when the execution of scope C completes normally. A fault handler for scope C is available
for invocation exactly when the execution of C has commenced but has not been completed. If the scope faults during execution
before completion, then the appropriate fault handler gets control and all other fault handlers are uninstalled. It is never possible
to run more than one fault handler for the same scope under any circumstances.

Note that availability also applies to Implicit Fault and Compensation Handlers.

The execution of a fault handler for scope C begins by implicitly terminating execution of all currently executing activities directly
enclosed within C (see Semantics of Activity Termination). The termination of currently executing activities occurs before the
specific behavior of a fault handler is started. This also applies to the implicit fault handlers described below.

11.3.1. Implicit Fault and Compensation Handlers

Because the visibility of scope names and therefore of compensation handlers is limited to the next enclosing scope, the ability to
compensate a scope would be lost if the enclosing scope did not have a compensation handler or was missing a fault handler for
some fault. Because many faults are not programmatic or the result of operation invocation, it is not reasonable to expect an
explicit handler for every fault in every scope. BPEL4WS therefore provides default compensation and fault handlers when these
are missing. The behavior of these implicit handlers is to run available compensation handlers in the reverse order of completion
of the corresponding scopes. This is defined in more precise terms below.

Whenever a fault handler (for any fault) or the compensation handler is missing for any given scope, they are implicitly created
with the following behavior:

Fault handler:

Run all available compensation handlers for immediately enclosed scopes in the reverse order of completion of the
corresponding scopes.
Rethrow the fault to the next enclosing scope.

Compensation handler:

Run all available compensation handlers for immediately enclosed scopes in the reverse order of completion of the
corresponding scopes.

11.3.2. Semantics of Activity Termination

As stated above, the execution of a fault handler for scope C begins by implicitly terminating execution of all currently executing
activities directly enclosed within C. The following paragraphs define what this means for all BPEL4WS activity types.

The invoke, reply, and assign activities are sufficiently short-lived that they are allowed to complete rather than being
interrupted when termination is forced. The evaluation of expressions when already started is also allowed to complete. The
receive activity is interrupted and terminated prematurely as is wait. The notion of termination does not apply to empty,
terminate, and throw.

All structured activity behavior is interrupted. The iteration of while is interrupted and termination is applied to the loop body
activity. If switch has selected a branch, then the termination is applied to the activity of the selected branch. The same applies to
pick. If either of these activities has not yet selected a branch, then the switch and the pick are terminated without further
execution. The sequence and flow constructs are terminated by terminating their execution and applying termination to all nested
activities currently active within them.

Scopes provide the ability to control the semantics of forced termination to some degree. When the activity being terminated is in
fact a scope, the execution of the scope is interrupted and the fault handler for the standard bpws:forcedTermination fault is run.

 <catch faultName="SP:POFault" faultContainer="POFault">
 <!-- handle the fault -->
 </catch>
 </faultHandlers>
 <invoke partner="Seller"
 portType="SP:Purchasing"
 operation="SyncPurchase"
 inputContainer="sendPO"
 outputContainer="getResponse">
 </invoke>
</scope>

Note that this applies only if the scope is in normal processing mode. If the scope has already experienced an internal fault and is
executing a fault handler, then as stated above, all other fault handlers including the handler for bpws:forcedTermination are
uninstalled, and the forced termination has no effect. The already executing fault handler is allowed to complete its execution.

The fault handler for the bpws:forcedTermination fault is programmed like other fault handlers, but this fault handler cannot
rethrow any fault. Even if an uncaught fault occurs during its execution, it is not rethrown to the next enclosing scope. This is
because the enclosing scope has already faulted, which is what is causing the forced termination of the nested scope.

In other respects this is a normal fault handler. Its execution begins by implicitly (recursively) terminating execution of all currently
executing activities directly enclosed within its associated scope. It can execute compensate activities. And when it is missing, it is
provided by using the same implicit behavior that is used for all other implicit fault handlers.

Note that forced termination of nested scopes occurs in innermost-first order as a result of the rule (quoted above) that execution
of any fault handler begins by implicitly (recursively) terminating execution of all currently executing activities directly enclosed
within its associated scope.

11.3.3. Handling Faults That Occur Inside Fault and Compensation Handlers

Compensation handlers are always invoked directly or indirectly as part of the processing of some fault handler E. The execution
of a compensation handler invoked by E can cause a fault to be thrown. Such a fault, if uncaught by scopes within the chain of
compensation handlers invoked by E, is treated as being a fault within E.

If, during the execution of a fault handler E for a scope C, a fault is thrown, the fault can be caught through the use of a scope
within E. If the fault is not caught by a scope within E, it is immediately thrown to the parent scope of C and the execution of E
terminates prematurely. In effect, no distinction is made between faults that E rethrows deliberately and faults that occur
inadvertently during the execution of E.

11.4. Serializable Scopes

When the containerAccessSerializable attribute is set to "yes", the scope provides concurrency control in governing access to
shared containers. Such a scope is called a serializable scope. Serializable scopes must not be nested. A scope marked with
containerAccessSerializable="yes" must be a leaf scope.

Suppose two concurrent serializable scopes, S1 and S2, access a common set of containers (external to them) for read or write
operations. The semantics of serializability ensure that the results of their execution would be no different if all conflicting
operations (read/write and write/write operations) on any shared container were conceptually reordered in such a way that either
all operations within S1 are executed before those in S2 or vice versa. The actual mechanisms used to ensure serializability are
implementation dependent.

The use of error handling features in a serializable scope is governed by the following rules:

The fault handlers for a serializable scope share the serializability domain of the associated scope, that is, in case a fault
occurs in a serializable scope, the execution of the fault handler is considered part of the serializable behavior (in commonly
used implementation terms, locks are not released when making the transition to the fault handler). This is because the
repair of the fault needs a shared isolation environment to provide predictable behavior.
The compensation handler for a serializable scope does not share the serializability domain of the associated scope.
For a serializable scope with a compensation handler, the creation of the state snapshot for compensation is part of the
serializable behavior. In other words, it is always possible to reorder execution steps as if the scope had sufficiently exclusive
access to the shared containers all the way to completion, including the creation of the snapshot.

It is useful to note that the semantics of serializable scopes are very similar to the standard isolation level "serializable" used in
database transactions.

12. Examples

12.1. Shipping Service

This example presents the use of a BPEL4WS abstract process to describe a rudimentary shipping service. This service handles the
shipment of orders. From the service point of view, orders are composed of a number of items. The shipping service offers two
types of shipment: shipments where the items are held and shipped together and shipment where the items are shipped
piecemeal until all of the order is accounted for.

12.1.1. Service Description

The context for the shipping service is a two-party interaction between a customer and the service. This is modeled in the

following serviceLinkType definition:

The corresponding message and portType definitions are as follows:

12.1.2. Message Properties

The properties relevant to the service behavior are:

The ship order ID that is used to correlate the ship notice(s) with the ship order (shipOrderID)
Whether the order is to be shipped complete or not (shipComplete)
The total number of items in the order (itemsTotal)
The number of items referred to in a ship notice so that, when partial shipments are acceptable, we can use this, along with
itemsTotal, to track the overall fulfillment of the shipment (itemsCount)

Here are the definitions for the properties and their aliases:

<slnk:serviceLinkType name="shippingLT"
 xmlns:slnk="http://schemas.xmlsoap.org/ws/2002/07/service-link/">
 <slnk:role name="shippingService">
 <slnk:portType name="shippingServicePT"/>
 </slnk:role>
 <slnk:role name="shippingServiceCustomer">
 <slnk:portType name="shippingServiceCustomerPT"/>
 </slnk:role>
</slnk:serviceLinkType>

<wsdl:definitions
 targetNameSpace="http://ship.org/wsdl/shipping"
 xmlns:ship= ...>

<message name="shippingRequestMsg">
 <part name="shipOrder" type="ship:shipOrder"/>
</message>

<message name="shippingNoticeMsg">
 <part name="shipNotice" type="ship:shipNotice"/>
</message>

<portType name="shippingServicePT">
 <operation name="shippingRequest">
 <input message="shippingRequestMsg"/>
 </operation>
</portType>

<portType name="shippingServiceCustomerPT">
 <operation name="shippingNotice">
 <input message="shippingNoticeMsg"/>
 </operation>
</portType>

</wsdl:definitions>

<wsdl:definitions
 targetNamespace="http://example.com/shipProps/"
 xmlns:sns="http://ship.org/wsdl/shipping"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2002/07/business-process/">

 <!-- types used in abstract processes are required to be finite domains.
 The itemCountType is restricted by range -->

 <wsdl:types>
 <xsd:schema>

12.1.3. Process

Next is the process definition. For brevity, the abstract process definition does not include, for example, the handling of error
conditions (business or otherwise) that a complete description would account for. The rough outline of the process is as follows:

 <xsd:simpleType name="itemCountType">
 <xsd:restriction base="xsd:int">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="50"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>

 <!-- a message type is defined here for internal use of the
 abstract process; it is not inlined because we need to
 define a property relative to it -->

 <wsdl:message name="itemsShipped">
 <part name="value" type="ship:itemCountType"/>
 </wsdl:message>
 <bpws:property name="shipOrderID" type="xsd:int"/>
 <bpws:property name="shipComplete" type="xsd:boolean"/>
 <bpws:property name="itemsTotal" type="ship:itemCountType"/>
 <bpws:property name="itemsCount" type="ship:itemCountType"/>
 <bpws:property name="numItemsShipped" type="ship:itemCountType"/>

 <bpws:propertyAlias propertyName="tns:shipOrderID"
 messageType="sns:shippingRequestMsg"
 part="shipOrder"
 query="/ShipOrderRequestHeader/shipOrderID"/>

 <bpws:propertyAlias propertyName="tns:shipOrderID"
 messageType="sns:shippingNoticeMsg"
 part="shipNotice"
 query="/ShipNoticeHeader/shipOrderID"/>

 <bpws:propertyAlias propertyName="tns:shipComplete"
 messageType="sns:shippingRequestMsg"
 part="shipOrder"
 query="/ShipOrderRequestHeader/shipComplete"/>

 <bpws:propertyAlias propertyName="tns:itemsTotal"
 messageType="sns:shippingRequestMsg"
 part="shipOrder"
 query="/ShipOrderRequestHeader/itemsTotal"/>

 <bpws:propertyAlias propertyName="tns:itemsCount"
 messageType="sns:shippingNoticeMsg"
 part="shipNotice"
 query="/ShipNoticeHeader/itemsCount"/>

 <bpws:propertyAlias propertyName="tns:numItemsShipped"
 messageType="tns:itemsShipped"
 part="value"
 query="/"/>

</wsdl:definitions>

receive shipOrder
switch
 case shipComplete
 send shipNotice
 otherwise
 itemsShipped := 0
 while itemsShipped < itemsTotal

And here is the more complete version:

 itemsCount := opaque // non-deterministic assignment
 // corresponding e.g. to
 // internal interaction with
 // back-end system
 send shipNotice
 itemsShipped = itemsShipped + itemsCount

<process name="shippingService"
 targetNameSpace="http://acme.com/shipping"
 xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:sns="http://ship.org/wsdl/shipping"
 xmlns:props="http://example.com/shipProps/"
 abstractProcess="yes">

<partners>
 <partner name="customer"
 serviceLinkType="sns:shippingLT"
 partnerRole="shippingServiceCustomer"
 myRole="shippingService"/>
</partners>

<containers>
 <container name="shipRequest"
 messageType="sns:shippingRequestMsg"/>
 <container name="shipNotice"
 messageType="sns:shippingNoticeMsg"/>
 <container name="itemsShipped"
 messageType="props:itemsShipped"/>
</containers>

<correlationSets>
 <correlationSet name="shipOrder"
 properties="props:shipOrderID"/>
</correlationSets>

<sequence>

 <receive partner="customer"
 portType="sns:shippingServicePT"
 operation="shippingRequest"
 container="shipRequest">
 <correlations>
 <correlation set="shipOrder" initiation="yes"/>
 </correlations>
 </receive>

 <switch>
 <case condition=
 "bpws:getContainerProperty('shipRequest','props:shipComplete')" >
 <sequence>
 <assign>
 <copy>
 <from container="shipRequest" property="props:itemsCount"/>
 <to container="shipNotice" property="props:itemsCount"/>
 </copy>
 </assign>
 <invoke partner="customer"
 portType="sns:shippingServiceCustomerPT"
 operation="shippingNotice"
 inputContainer="shipNotice">
 <correlations>
 <correlation set="shipOrder" pattern="out"/>
 </correlations>

12.2. Loan Approval

This example considers a simple loan approval Web Service that provides a port where customers can send their requests for
loans. Customers of the service send their loan requests, including personal information and amount being requested. Using this
information, the loan service runs a simple process that results in either a "loan approved" message or a "loan rejected" message.
The approval decision can be reached in two different ways, depending on the amount requested and the risk associated with the
requester. For low amounts (less than $10,000) and low-risk individuals, approval is automatic. For high amounts or medium and
high-risk individuals, each credit request needs to be studied in greater detail. Thus, to process each request, the loan service uses
the functionality provided by two other services. In the streamlined processing available for low-amount loans, a "risk
assessment" service is used to obtain a quick evaluation of the risk associated with the requesting individual. A full-fledged "loan
approval" service (possibly requiring direct involvement of a loan expert) is used to obtain in-depth assessments of requests
when the streamlined approval process does not apply.

12.2.1. Service Description

The WSDL portType supported by this service is shown below ("loanServicePT" portType). It is assumed that an independent
"loan.org" consortium has provided definitions of the loan service portType as well as the risk assessment and in-depth loan

 </invoke>
 </sequence>
 </case>
 <otherwise>
 <sequence>
 <assign>
 <copy>
 <from expression="0"/>
 <to container="itemsShipped" part="value"/>
 </copy>
 </assign>
 <while condition=
 "bpws:getContainerProperty('itemsShipped','props:numItemsShipped') <
 bpws:getContainerProperty('shipRequest','props:itemsTotal')">
 <sequence>
 <assign>
 <copy>
 <from opaque="yes"/>
 <to container="shipNotice" property="props:itemsCount"/>
 </copy>
 </assign>
 <invoke partner="customer"
 portType="sns:shippingServiceCustomerPT"
 operation="shippingNotice"
 inputContainer="shipNotice">
 <correlations>
 <correlation set="shipOrder" pattern="out"/>
 </correlations>
 </invoke>
 <assign>
 <copy>
 <from expression=
 "bpws:getContainerProperty('itemsShipped',
 'props:numItemsShipped')+
 bpws:getContainerProperty('shipNotice',
 'props:itemsCount')"/>
 <to container="itemsShipped" part="value"/>
 </copy>
 </assign>
 </sequence>
 </while>
 </sequence>
 </otherwise>
 </switch>
</sequence>

</process>

approval service, so all the required WSDL definitions appear in the same WSDL document. In particular, the portTypes for the
Web Services providing the risk assessment and approval functions, and all the required service link types that relate to the use of
these portTypes, are also defined there.

<definitions
 targetNamespace="http://loans.org/wsdl/loan-approval"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:slnk="http://schemas.xmlsoap.org/ws/2002/07/service-link/"
 xmlns:lns="http://loans.org/wsdl/loan-approval">

<message name="creditInformationMessage">
 <part name="firstName" type="xsd:string"/>
 <part name="name" type="xsd:string"/>
 <part name="amount" type="xsd:integer"/>
</message>

<message name="approvalMessage">
 <part name="accept" type="xsd:string"/>
</message>

<message name="riskAssessmentMessage">
 <part name="level" type="xsd:string"/>
</message>

<message name="errorMessage">
 <part name="errorCode" type="xsd:integer"/>
</message>

<portType name="loanServicePT">
 <operation name="request">
 <input message="lns:creditInformationMessage"/>
 <output message="lns:approvalMessage"/>
 <fault name="unableToHandleRequest"
 message="lns:errorMessage"/>
 </operation>
</portType>

<portType name="riskAssessmentPT">
 <operation name="check">
 <input message="lns:creditInformationMessage"/>
 <output message="lns:riskAssessmentMessage"/>
 <fault name="loanProcessFault"
 message="lns:errorMessage"/>
 </operation>
</portType>

<portType name="loanApprovalPT">
 <operation name="approve">
 <input message="lns:creditInformationMessage"/>
 <output message="lns:approvalMessage"/>
 <fault name="loanProcessFault"
 message="lns:errorMessage"/>
 </operation>
</portType>

<slnk:serviceLinkType name="loanServiceLinkType">
 <slnk:role name="customer">
 <slnk:portType name="lns:loanServicePT"/>
 </slnk:role>
</slnk:serviceLinkType>

<slnk:serviceLinkType name="loanApprovalLinkType">
 <slnk:role name="approver">
 <slnk:portType name="lns:loanApprovalPT"/>
 </slnk:role>
</slnk:serviceLinkType>

12.2.2. Process

In the business process defined below, the interaction with the customer is represented by the initial <receive> and the matching
<reply> activities. The use of risk assessment and loan approval services is represented by <invoke> elements. All these activities
are contained within a <flow>, and their (potentially parallel) execution is staged according to the dependencies expressed by
corresponding <link> elements. Note that the transition conditions attached to the <source> elements of the links determine
which links get activated. Dead path elimination is enabled by the value "yes" taken by the "suppressJoinFailure" attribute on the
<process> element. This implies that as certain links are set false the consequences of this decision can be propagated and the
excecution of certain activities can be skipped.

Because the operations invoked can return a fault of type "loanProcessFault", a fault handler is provided. When a fault occurs,
control is transferred to the fault handler, where a <reply> element is used to return a fault response of type
"unableToHandleRequest" to the loan requester.

<slnk:serviceLinkType name="riskAssessmentLinkType">
 <slnk:role name="assessor">
 <slnk:portType name="lns:riskAssessmentPT"/>
 </slnk:role>
</slnk:serviceLinkType>

</definitions>

<process name="loanApprovalProcess"
 targetNamespace="http://acme.com/loanprocessing"
 xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 xmlns:lns="http://loans.org/wsdl/loan-approval"
 suppressJoinFailure="yes">

 <partners>
 <partner name="customer"
 serviceLinkType="lns:loanServiceLinkType"
 partnerRole="customer"/>
 <partner name="approver"
 serviceLinkType="lns:loanApprovalLinkType"
 partnerRole="approver"/>
 <partner name="assessor"
 serviceLinkType="lns:riskAssessmentLinkType"
 partnerRole="assessor"/>
 </partners>

 <containers>
 <container name="request"
 messageType="lns:creditInformationMessage"/>
 <container name="risk"
 messageType="lns:riskAssessmentMessage"/>
 <container name="approval"
 messageType="lns:approvalMessage"/>
 <container name="error"
 messageType="lns:errorMessage"/>
 </containers>

 <faultHandlers>
 <catch faultName="lns:loanProcessFault"
 faultContainer="error">
 <reply partner="customer"
 portType="lns:loanServicePT"
 operation="request"
 container="error"
 faultName="unableToHandleRequest"/>
 </catch>
 </faultHandlers>

 <flow>

 <links>
 <link name="receive-to-assess"/>
 <link name="receive-to-approval"/>
 <link name="approval-to-reply"/>
 <link name="assess-to-setMessage"/>
 <link name="setMessage-to-reply"/>
 <link name="assess-to-approval"/>
 </links>

 <receive partner="customer"
 portType="lns:loanServicePT"
 operation="request"
 container="request" createInstance="yes">
 <source linkName="receive-to-assess"
 transitionCondition=
 "bpws:getContainerData('request','amount')< 10000"/>
 <source linkName="receive-to-approval"
 transitionCondition=
 "bpws:getContainerData('request','amount')>=10000"/>
 </receive>

 <invoke partner="assessor"
 portType="lns:riskAssessmentPT"
 operation="check"
 inputContainer="request"
 outputContainer="risk">
 <target linkName="receive-to-assess"/>
 <source linkName="assess-to-setMessage"
 transitionCondition=
 "bpws:getContainerData('risk','level')='low'"/>
 <source linkName="assess-to-approval"
 transitionCondition=
 "bpws:getContainerData('risk','level')!='low'"/>
 </invoke>

 <assign>
 <target linkName="assess-to-setMessage"/>
 <source linkName="setMessage-to-reply"/>
 <copy>
 <from expression="'yes'"/>
 <to container="approval" part="accept"/>
 </copy>
 </assign>

 <invoke partner="approver"
 portType="lns:loanApprovalPT"
 operation="approve"
 inputContainer="request"
 outputContainer="approval">
 <target linkName="receive-to-approval"/>
 <target linkName="assess-to-approval"/>
 <source linkName="approval-to-reply" />
 </invoke>

 <reply partner="customer"
 portType="lns:loanServicePT"
 operation="request"
 container="approval">
 <target linkName="setMessage-to-reply"/>
 <target linkName="approval-to-reply"/>
 </reply>
 </flow>

</process>

12.3. Multiple Start Activities

A process can have multiple activities that create a process instance. An example of this situation is a (simplified) business process
run by an auction house. The purpose of the business process is to collect information from the buyer and the seller of a
particular auction, report the appropriate auction results to some auction registration service, and then send the registration result
back to the seller and the buyer. Thus the business process starts with two activities, one for receiving the seller information and
one for receiving the buyer information. Because a particular auction is uniquely identified by an auction ID, the seller and the
buyer need to provide this information when sending in their data. The sequence in which the seller and buyer requests arrive at
the auction house is random. Thus, when such a request comes in, it needs to be checked whether a business process instance
exists already or not. If not, a business process instance is created. After both requests have been received, the auction registration
service is invoked. Because the invocation is done asynchronously, the auction house passes the auction ID to the auction
registration service. The auction registration service returns this auction ID in its answer so that the auction house can locate the
proper business process instance. Because there are many buyers and sellers, each of them needs to provide their service
references, so that the auction service can respond properly. In addition, the auction house needs to provide its own service
reference to the auction registration service so that the auction registration service can send the response back to the auction
house.

12.3.1. Service Description

The auction service offers two port types, called sellerPT and buyerPT, with appropriate operations for accepting the data provided
by the seller and the buyer. Because the processing time of the business process is lengthy, the auction service responds to the
seller and buyer through appropriate port types, sellerAnswerPT and buyerAnswerPT. These portTypes are properly combined
into two service link types, one for the seller called sellerAuctionHouseLT and one for the buyer called buyerAuctionHouseLT.

The auction service needs two port types, called auctionRegistrationPT and auctionRegistrationAnswerPT, that provide for the
invocation of the auction registration service. The port types are part of the appropriate service link type
auctionHouseAuctionRegistrationServiceLT.

<definitions
 targetNamespace="http://www.auction.com/wsdl/auctionService"
 xmlns:tns="http://www.auction.com/wsdl/auctionService"
 xmlns:slnk="http://schemas.xmlsoap.org/ws/2002/07/service-link/"
 xmlns:sref="http://schemas.xmlsoap.org/ws/2002/07/service-reference/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- Messages for communication with the seller -->

 <message name="sellerData">
 <part name="creditCardNumber" type="xsd:string"/>
 <part name="shippingCosts" type="xsd:integer"/>
 <part name="auctionId" type="xsd:integer"/>
 <part name="serviceReference" type="sref:serviceReferenceType"/>
 </message>
 <message name="sellerAnswerData">
 <part name="thankYouText" type="xsd:string"/>
 </message>

<!-- Messages for communication with the buyer -->

 <message name="buyerData">
 <part name="creditCardNumber" type="xsd:string"/>
 <part name="phoneNumber" type="xsd:string"/>
 <part name="ID" type="xsd:integer"/>
 <part name="serviceReference" type="sref:serviceReferenceType"/>
 </message>
 <message name="buyerAnswerData">
 <part name="thankYouText" type="xsd:string"/>
 </message>

<!-- Messages for communication with the auction registration service -->

 <message name="auctionDetails">
 <part name="auctionId" type="xsd:integer"/>
 <part name="amount" type="xsd:integer"/>

 </message>
 <message name="auctionDetailsAnswer">
 <part name="registrationId" type="xsd:integer"/>
 <part name="auctionId" type="xsd:integer"/>
 <part name="auctionHouseServiceReference"
 type="sref:serviceReferenceType"/>
 </message>

<!-- Port types for interacting with the seller -->

 <portType name="sellerPT">
 <operation name="submit">
 <input message="tns:sellerData"/>
 </operation>
 </portType>
 <portType name="sellerAnswerPT">
 <operation name="answer">
 <input message="tns:sellerAnswerData"/>
 </operation>
 </portType>

<!-- Port types for interacting with the buyer -->

 <portType name="buyerPT">
 <operation name="submit">
 <input message="tns:buyerData"/>
 </operation>
 </portType>
 <portType name="buyerAnswerPT">
 <operation name="answer">
 <input message="tns:buyerAnswerData"/>
 </operation>
 </portType>

<!-- Port types for interacting with the auction registration service -->

 <portType name="auctionRegistrationPT">
 <operation name="process">
 <input message="tns:auctionDetails"/>
 </operation>
 </portType>
 <portType name="auctionRegistrationAnswerPT">
 <operation name="answer">
 <input message="tns:auctionRegAnswer"/>
 </operation>
 </portType>

<!-- Context type used for locating business process via auction Id -->

 <bpws:property name="auctionId"
 type="xsd:string"/>

 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:sellerData"
 part="auctionId"/>

 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:buyerData"
 part="ID"/>
 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:auctionDetailsAnswer"
 part="auctionId"/>
 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:auctionDetails"
 part="auctionId"/>

<!-- Service link type for seller/auctionHouse -->

12.3.2. Process

The BPEL4WS definition for the business process offered by the auction house follows:

 <slnk:serviceLinkType name="tns:sellerAuctionHouseLT">
 <slnk:role name="auctionHouse">
 <slnk:portType name="tns:sellerPT"/>
 </slnk:role>
 <slnk:role name="seller">
 <slnk:portType name="tns:sellerAnswerPT"/>
 </slnk:role>
 </slnk:serviceLinkType>

<!-- Service link type for buyer/auctionHouse -->

 <slnk:serviceLinkType name="buyerAuctionHouseLT">
 <slnk:role name="auctionHouse">
 <slnk:portType name="tns:buyerPT"/>
 </slnk:role>
 <slnk:role name="buyer">
 <slnk:portType name="tns:buyerAnswerPT"/>
 </slnk:role>
 </slnk:serviceLinkType>

<!-- Service link type for auction house/auction
 registration service -->

 <slnk:serviceLinkType name="auctionHouseAuctionRegistrationServiceLT">
 <slnk:role name="auctionRegistrationService">
 <slnk:portType name="tns:auctionRegistrationPT"/>
 </slnk:role>
 <slnk:role name="auctionHouse">
 <slnk:portType name="tns:auctionRegistrationAnswerPT"/>
 </slnk:role>
 </slnk:serviceLinkType>
</definitions>

<process name="auctionService"
 targetNamespace="http://www.auction.com"
 containerAccessSerializable="no"
 xmlns:as="http://www.auction.com/wsdl/auctionService"
 xmlns:sref="http://schemas.xmlsoap.org/ws/2002/07/service-reference/"
 xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/">

<!-- Partners -->

 <partners>
 <partner name="seller"
 serviceLinkType="as:sellerAuctionHouseLT"
 myRole="auctionHouse" partnerRole="seller"/>
 <partner name="buyer"
 serviceLinkType="as:buyerAuctionHouseLT"
 myRole="auctionHouse" partnerRole="buyer"/>
 <partner name="auctionRegistrationService"
 serviceLinkType=
 "as:auctionHouseAuctionRegistrationServiceLT"
 myRole="auctionHouse"
 partnerRole="auctionRegistrationService"/>
 </partners>

<!-- Containers -->

 <containers>
 <container name="sellerData" messageType="as:sellerData"/>

 <container name="sellerAnswerData" messageType="as:sellerAnswerData"/>
 <container name="buyerData" messageType="as:buyerData"/>
 <container name="buyerAnswerData" messageType="as:buyerAnswerData"/>
 <container name="auctionRegistrationData"
 messageType="as:auctionDetails"/>
 <container name="auctionRegistrationResponse"
 messageType="as:auctionRegAnswer"/>
 </containers>

<!-- Correlation set for correlating buyer and seller request
 as well as auction house and auction registration service
 exchange -->

 <correlationSets>
 <correlationSet name="auctionIdentification"
 properties="as:auctionId"/>

 </correlationSets>

<!-- Structure of the business process -->

 <sequence>

<!-- Process buyer and seller request in parallel
 Either one can create a process instance -->

 <flow>

<!-- Process seller request -->

 <receive name="acceptSellerInformation"
 partner="seller"
 portType="as:sellerPT"
 operation="provide"
 container="sellerData"
 createInstance="yes">
 <correlations>
 <correlation set="auctionIdentification"
 initiation="yes"/>
 </correlations>

 </receive>

<!-- Process buyer request -->

 <receive name="acceptBuyerInformation"
 partner="buyer"
 portType="as:buyerPT"
 operation="provide"
 container="buyerData"
 createInstance="yes">
 <correlations>
 <correlation set="auctionIdentification"
 initiation="yes"/>
 </correlations>
 </receive>

 </flow>

<!-- Invoke auction registration service
 by setting the target service reference
 and setting my own service reference for call back
 and receiving the answer
 Correlation of request and answer is via auction Id -->

 <assign>
 <copy>

 <from>
 <sref:serviceReference>
 <sref:service name="ars:RegistrationService"
 xmlns:ars="http://auctionRegistration.com"/>
 </sref:serviceReference>
 </from>
 <to partner="auctionRegistrationService"/>
 </copy>
 </assign>

 <assign>
 <copy>

 <from partner="auctionRegistrationService"
 serviceReference="myRole"/>
 <to container="auctionRegistrationData"
 part="auctionHouseServiceRef"/>
 </copy>
 </assign>

 <invoke name="registerAuctionResults"
 partner="auctionRegistrationService"
 portType="as:auctionRegistrationPT"
 operation="process"
 inputContainer="auctionRegistrationData">
 <correlations>
 <correlation set="auctionIdentification"/>
 </correlations>
 </invoke>

 <receive name="receiveAuctionRegistrationInformation"
 partner="auctionRegistrationService"
 portType="as:auctionRegistrationAnswerPT"
 operation="answer"
 container="auctionRegistrationAnswerData">

 <correlations>
 <correlation set="auctionIdentification"/>
 </correlations>
 </receive>

<!-- Send responses back to seller and buyer -->

 <flow>

<!-- Process seller response by
 setting the seller to the service reference provided by the seller
 and invoking the response -->

 <sequence>

 <assign>
 <copy>
 <from container="sellerData"
 part="serviceReference"/>
 <to partner="seller"/>
 </copy>
 </assign>

 <invoke name="respondToSeller"
 partner="seller"
 portType="as:sellerAnswerPT"
 operation="answer"
 inputContainer="sellerAnswerData"/>

 </sequence>

<!-- Process buyer response by

13. Future Directions
BPEL4WS is a work in progress. A number of required features are absent from the specification. These features will be included
in future versions. The following sections discuss a few of the salient extensions that will be added.

13.1. Scopes

Scopes provide the capability of grouping activities together and assigning properties to the scope, such as fault handlers and
compensation handlers. The following characteristics need to be added to scopes.

13.1.1. Containers

Containers can currently be declared only at the process level, making the entire process the scope in which a container is
accessible. In other words, all containers are global. In the future, the declaration of containers within all scopes will be permitted,
providing the capability to define containers that are visible and accessible only within local scopes. This simplifies, among other
things, the writing of compensation handlers.

Local containers also make it attractive to transmit data through links in addition to synchronization signals. The combination of
local containers and link-based data transmission is expected to greatly reduce the need for explicit concurrency control using
serializable scopes.

Further analysis of the issues raised by concurrent access to shared containers will reveal opportunities for feature simplification
and improved avoidance of deadlock and interference. The language will be improved in these respects in future versions.

13.1.2. Event Handlers

A business process often needs to be prepared for unscheduled business events that can occur at any time during a specified
section of the process execution. Scopes are used to delineate process execution sections, and a notion of event handlers will be
added to scopes to model processing of asynchronous events. The whole process might have a set of event handlers that are
available throughout process execution. Two types of events will be supported. First, events will be supported that correspond to
an inbound request/response or one-way operation in WSDL. For example, a status query is likely to be a request/response
operation, whereas a cancellation might be a one-way operation. Second, events can be timer alarms that go off after user-set
times. Event handlers are expected to be considered a part of the normal behavior of the scope, unlike fault and compensation
handlers.

13.1.3. Overlapping Scopes

 setting the buyer to the service reference provided by the buyer
 and invoking the response -->

 <sequence>

 <assign>
 <copy>
 <from container="buyerData"
 part="serviceReference"/>
 <to partner="buyer"/>
 </copy>
 </assign>

 <invoke name="respondToBuyer"
 partner="buyer"
 portType="as:buyerAnswerPT"
 operation="answer"
 inputContainer="buyerAnswerData"/>

 </sequence>

 </flow>

 </sequence>

</process>

Scopes are currently nested within each other. Because scopes are associated with many different properties, it is often the case
that scopes with different properties have some activities in common. This might require that scopes are allowed to overlap. This
is an area for further investigation.

13.1.4. Atomic Scopes

Business processes are often "transactional" in the sense that they perform activities that require predictable and consistent
outcomes. Although durability is in some sense a private implementation matter, there is often a requirement to perform a set of
activities in such a way that either all complete successfully or they are not performed (or their effects erased). For example,
receiving a request, performing some data manipulation, and then answering the request can often be coupled together in this
way. This is usually referred to as atomicity, and the ability to define scopes with the atomicity property will be added in the
future.

13.1.5. Compensation

Compensation is the means by which the effects of parts of as well as the whole business process can be undone. The current
specification provides for basic support. Further refinements for compensation behavior need to be added. For example,
compensations are currently entirely self-contained. They are not influenced by the current live state of the process instance in
which they run, nor are they able to influence that state. This is clearly unrealistic in general. Input and output parameters will be
added to compensation handlers to allow the live state to be influenced in both directions in a controlled way. Other potential
enhancements include compensation retry in case of failure, and new default compensation modes in addition to the "reverse
order" mode currently supported.

13.2. Lifecycle and Query

13.2.1. Suspend/Resume

Sometimes it is necessary to suspend (halt) the execution of a business process for some time or until explicitly resumed by an
appropriate action. The suspend/resume type of activities are mainly intended to be used in event handlers to suspend and
resume the processing of either the complete business process or of a particular scope only. Also, the terminate activity currently
terminates the whole process. There are situations where it is sufficient to only terminate the processing within a particular scope.

13.2.2. Query

The current draft does not support the capability of querying the state of a business process, something that is needed when
business processes are carried out. The specification of options, for example the details of the information provided, must be
supported.

13.3. Service Composition

Because a BPEL4WS process in general provides and consumes multiple Web Service interfaces, such a process can be thought of
as composing a set of Web Services from other Web Services. The relationship concepts enabled by service links are also
important in establishing patterns of composition. This is clearly an area that needs further development, and future versions of
BPEL4WS will play a part in these developments.

13.4. Relationship to WS-Transaction Specification

BPEL4WS defines a notion of long-running business transactions (LRTs) based on the syntactic construct of scopes. For
environments where a business process is distributed or spans vendor implementations, it is expected that the WS-Transaction
specification [12] will provide the mechanism to:

Define a global agreement context for a distributed scope that can be understood across the business transaction.
Allow participants across the distributed process to register for fault handling and compensation notifications (according to
the behavior outlined for an LRT).

See Appendix C for a detailed model of BPEL4WS LRTs based on WS-Transaction concepts.

Additionally, it is often the case that multiple business process instances need to work together to achieve consistent completion
of a shared unit of work. Coordination of individual LRTs in these processes can also require the use of coordination protocols
listed in the WS-Transaction specification (according to the agreement behaviors outlined in WS-Transaction).

14. Security Considerations

Because messages can be modified or forged, it is strongly RECOMMENDED that business process implementations use WS-
Security to ensure messages have not been modified or forged while in transit or while residing at destinations. Similarly, invalid
or expired messages could be re-used or message headers not specifically associated with the specific message could be
referenced. Consequently, when using WS-Security, signatures MUST include the semantically significant headers and the
message body (as well as any other relevant data) so that they cannot be independently separated and re-used.

Messaging protocols used to communicate among business processes are subject to various forms of replay attacks. In addition
to the mechanisms listed above, messages SHOULD include a message timestamp (as described in WS-Security) within the
signature. Recipients can use the timestamp information to cache the most recent messages for a business process and detect
duplicate transmissions and prevent potential replay attacks.

It should also be noted that business process implementations are subject to various forms of denial-of-service attacks.
Implementers of business process execution systems compliant with this specification should take this into account.

15. Acknowledgments
Achille Fokoue, Ashok Malhotra, and Bob Schloss for their help with developing and verifying the XML Schemas.

Tony Andrews and Marc Levy for their help in defining abstract processes.

Tony Hoare and Marc Shapiro for thoughtful comments on the language concepts.

Jonathan Marsh for suggesting the generalization of the dependency on external (query and expression) languages.

Tom Freund and Tony Storey for inducing us to precisely define the relationship with the coordination framework in WS-
Transaction.

Martin Nally for his help on improving the usability of the language.

16. References
[1] W3C Recommendation "The XML Specification"
[2] W3C Note "Simple Object Access Protocol (SOAP) 1.1"
[3] W3C Note "Web Services Definition Language (WSDL) 1.1"
[4] Industry Initiative "Universal Description, Discovery and Integration"
[5] XLANG: Web Services for Business Process Design
[6] WSFL: Web Service Flow Language 1.0
[7] W3C Proposed Recommendation "XML Schema Part 1: Structures"
[8] W3C Proposed Recommendation "XML Schema Part 2: Datatypes"
[9] W3C Recommendation "XML Path Language (XPath) Version 1.0"
[10] "Sagas," H. Garcia-Molina and K. Salem, Proc. ACM SIGMOD (1987).
[11] " Trends in systems aspects of database management," I.L. Traiger, Proc. 2nd Intl. Conf. on Databases (ICOD-2), Wiley & Sons
1983.
[12] "Web Services Transaction", BEA, IBM & Microsoft, 2002.
[13] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner, Harvard University, March 1997.
[14] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R. Fielding, L. Masinter, MIT/LCS, U.C. Irvine,
Xerox Corporation, August 1998.

Appendix A – Standard Faults
The following list specifies the standard faults defined within the BPEL4WS specification. All these faults are named within the
BPEL4WS namespace standard prefix bpws: corresponding to URI "http://schemas.xmlsoap.org/ws/2002/07/business-process/".

Fault name Reason
selectionFailure Thrown when a selection operation performed either in a function such as bpws:getContainerData, or in an as

signment, encounters an error.
conflictingReceive Thrown when more than one receive activity or equivalent (currently, onMessage branch in a pick activity) are

enabled simultaneously for the same partner, port type, and operation.
conflictingRequest Thrown when more than one synchronous inbound request from the same partner for a particular port type a

nd operation are active.
mismatchedAssig
nmentFailure

Thrown when incompatible types are encountered in an assign activity.

joinFailure Thrown when the join condition of an activity evaluates to false.
forcedTermination Thrown as the result of a fault in an enclosing scope.

http://www.w3.org/TR/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.uddi.org/specification.html
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt

correlationViolatio
n

Thrown when the contents of the messages that are processed in an invoke, receive, or reply activity do not m
atch specified correlation information.

uninitializedContai
ner

Thrown when there is an attempt to access the value of an uninitialized part in a message container.

repeatedCompens
ation

Thrown when an installed compensation handler is invoked more than once.

Appendix B – Attributes and Defaults
The following list specifies the defaults for all standard attributes at the process and activity level. The table does not include
activity-specific attributes (such as partner in an invoke activity).

Parameter Default
queryLanguage http://www.w3.org/TR/1999/REC-xpath-19991116
expressionLanguage http://www.w3.org/TR/1999/REC-xpath-19991116
suppressJoinFailure no
containerAccessSerializable no
abstractProcess no
initiation no
pattern No default
createInstance no
enableInstanceCompensation no
joinCondition Disjunction of the status of the incoming links

Appendix C – Coordination Protocol
It is valuable to express the fault and compensation handling relationship between scopes by using the protocol framework of
WS-Transaction [16]. Specifically, this section shows how the relationship between an enclosing scope and each of its nested
scopes can be modeled using the BusinessAgreement protocol defined in the WS-Transaction specification. The
BusinessAgreement protocol is designed to enable distributed coordination of business activities. BPEL4WS usage of the protocol
makes the assumption of localized behavior in a single service, and as a result several of the features of the protocol, including the
acknowledgement signal Forget, and the Error and Replay messages, are not actually needed in BPEL4WS.

Coordination Protocol for BPEL4WS Scopes

1. The execution of a nested scope may complete successfully. In this case a compensation handler is installed for the nested
scope. This is modeled with a Completed signal from the nested scope to its parent scope.

2. The execution of a nested scope may encounter a fault internally. In this case the scope always terminates unsuccessfully.
a. If the fault handler rethrows a fault to its enclosing scope, this is modeled as a Faulted signal from the nested scope to

its parent scope.
b. If the fault is handled and not rethrown, the scope exits gracefully from the work of its parent scope. This is modeled

as an Exited signal from the nested scope to its parent scope.
3. After a nested scope has completed, (a fault or compensation handler for) the parent scope may ask it to compensate itself

by invoking its compensation handler. The compensate action is modeled with a Compensate signal from the parent scope
to the nested scope.

4. Upon successful completion of the compensation, the nested scope sends the Compensated signal to its parent scope.
5. The compensation handler may itself fault internally. In this case

a. If the fault is not handled by a scope within the compensation handler, it is rethrown to the parent scope. This is
modeled as a Faulted signal from the nested scope to its parent scope.

b. If the fault is handled and not rethrown, we assume that the compensation was able to complete successfully. In this
case the nested scope sends the Compensated signal to its parent scope.

6. If there is a fault in the parent scope independent of the work of the nested scope, the parent scope will ask the nested scope
to prematurely abandon its work by sending a Cancel signal.

7. The nested scope, upon receiving the cancel signal, will interrupt and terminate its execution (as though there were an
internal fault), and returns a Canceled signal to the parent.

8. Finally, when a parent scope decides that the compensation for a completed nested scope is not needed any more it sends a
Close signal to the nested scope. After discarding the compensation handler the nested scope responds with a Closed signal.

9. In case there is a race between the Completed signal from the nested scope and the Cancel signal from the parent scope,

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

the Completed signal wins, i.e., the nested scope is deemed to have completed and the Cancel signal is ignored.
10. In case a Cancel signal is sent to a nested scope that has already faulted internally, the Cancel signal is ignored and the

scope will eventually send either a Faulted or an Exited signal to the parent.

Figure 2 BusinessAgreement Protocol State Diagram

The BusinessAgreement protocol state diagram above summarizes the preceding discussion. In the diagram, the parent
(enclosing) scope generates Cancel, Compensate, Forget and Close signals and the nested scope generates Completed, Faulted,
Exited, Compensated, Canceled and Closed signals. It is important to emphasize that the states represent the state of the
relationship between the parent scope and one specific nested scope. However, it is very nearly the case that the states represent
the state of the nested scope itself, except in case of signal races. Note that the signal races discussed in points I and J above are
not reflected in the diagram since the diagram only reflects real protocol states.

Appendix D - XSD Schemas

BPEL4WS Schema

<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 targetNamespace="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 elementFormDefault="qualified">

 <import namespace="http://schemas.xmlsoap.org/wsdl/"/>

 <complexType name="tExtensibleElements">
 <annotation>
 <documentation>This type is extended by other component types to allow elements a
nd attributres from other namespaces to be added. .</documentation>
 </annotation>
 <sequence>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax
"/>
 </sequence>
 <anyAttribute namespace="##other" processContents="lax"/>

 </complexType>

 <element name="process" type="bpws:tProcess"/>
 <complexType name="tProcess">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="partners" type="bpws:tPartners" minOccurs="0"/>
 <element name="containers" type="bpws:tContainers" minOccurs="0"/>
 <element name="correlationSets" type="bpws:tCorrelationSets" minOccurs="0
"/>
 <element name="faultHandlers" type="bpws:tFaultHandlers" minOccurs="0"/>
 <element name="compensationHandler" type="bpws:tCompensationHandler" minO
ccurs="0"/>
 <group ref="bpws:activity"/>

 </sequence>
 <attribute name="name" type="NCName"/>
 <attribute name="targetNamespace" type="anyURI"/>
 <attribute name="suppressJoinFailure" type="bpws:tBoolean" default="no"/>
 <attribute name="containerAccessSerializable" type="bpws:tBoolean" default="n
o"/>
 <attribute name="enableInstanceCompensation" type="bpws:tBoolean" default="no
"/>
 <attribute name="abstractProcess" type="bpws:tBoolean" default="no"/>
 </extension>
 </complexContent>
 </complexType>

 <group name="activity">
 <choice>
 <element name="empty" type="bpws:tEmpty"/>
 <element name="invoke" type="bpws:tInvoke"/>
 <element name="receive" type="bpws:tReceive"/>
 <element name="reply" type="bpws:tReply"/>
 <element name="assign" type="bpws:tAssign"/>
 <element name="wait" type="bpws:tWait"/>
 <element name="throw" type="bpws:tThrow"/>
 <element name="terminate" type="bpws:tTerminate"/>
 <element name="flow" type="bpws:tFlow"/>
 <element name="switch" type="bpws:tSwitch"/>
 <element name="while" type="bpws:tWhile"/>
 <element name="sequence" type="bpws:tSequence"/>
 <element name="pick" type="bpws:tPick"/>
 <element name="scope" type="bpws:tScope"/>
 </choice>
 </group>

 <complexType name="tPartners">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <sequence>
 <element name="partner" type="bpws:tPartner" minOccurs="1" maxOccurs="unb
ounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tPartner">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="serviceLinkType" type="QName" use="required"/>
 <attribute name="myRole" type="NCName"/>
 <attribute name="partnerRole" type="NCName"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tFaultHandlers">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <sequence>
 <element name="catch" type="bpws:tCatch" minOccurs="0" maxOccurs="unbound
ed"/>
 <element name="catchAll" type="bpws:tActivityOrCompensateContainer" minOc
curs="0"/>
 </sequence>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tCatch">
 <complexContent>
 <extension base="bpws:tActivityOrCompensateContainer">
 <attribute name="faultName" type="QName" use="optional"/>
 <attribute name="faultContainer" type="NCName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tActivityContainer">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <group ref="bpws:activity"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tActivityOrCompensateContainer">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <choice>
 <group ref="bpws:activity"/>
 <element name="compensate" type="bpws:tCompensate"/>
 </choice>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tOnMessage">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <sequence>
 <element name="correlations" type="bpws:tCorrelations" minOccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="partner" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="required"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="container" type="NCName" use="required"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tOnAlarm">
 <complexContent>
 <extension base="bpws:tActivityContainer">
 <attribute name="for" type="bpws:tDuration-expr" use="optional"/>
 <attribute name="until" type="bpws:tDeadline-expr" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCompensationHandler">
 <complexContent>
 <extension base="bpws:tActivityOrCompensateContainer"/>
 </complexContent>
 </complexType>

 <complexType name="tContainers">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <sequence>
 <element name="container" type="bpws:tContainer" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tContainer">

 <!-- container does not allow extensibility elements because otherw
ise its content model would be non-deterministic -->
 <sequence>
 <element name="message" type="wsdl:tMessage"
 minOccurs="0">
 <unique name="part">
 <selector xpath="wsdl:part"/>
 <field xpath="@name"/>
 </unique>
 </element>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="messageType" type="QName" use="optional"/>
 <anyAttribute namespace="##other" processContents="lax"/>

 </complexType>

 <complexType name="tCorrelationSets">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <sequence>
 <element name="correlationSet" type="bpws:tCorrelationSet" maxOccurs="unb
ounded"/>
 </sequence>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tCorrelationSet">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <attribute name="properties" use="required">
 <simpleType>
 <list itemType="QName"/>
 </simpleType>
 </attribute>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tActivity">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <sequence>
 <element name="target" type="bpws:tTarget" minOccurs="0" maxOccurs="unbou
nded"/>
 <element name="source" type="bpws:tSource" minOccurs="0" maxOccurs="unbou
nded"/>

 </sequence>
 <attribute name="name" type="NCName" use="optional"/>
 <attribute name="joinCondition" type="bpws:tBoolean-expr" use="optional"/>
 <attribute name="suppressJoinFailure" type="bpws:tBoolean" use="optional"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tSource">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <attribute name="linkName" type="NCName" use="required"/>
 <attribute name="transitionCondition" type="bpws:tBoolean-expr" use="optional
"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tTarget">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <attribute name="linkName" type="NCName" use="required"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tEmpty">
 <complexContent>
 <extension base="bpws:tActivity"/>
 </complexContent>
 </complexType>

 <complexType name="tCorrelations">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlation" type="bpws:tCorrelation" minOccurs="1" maxOccurs="unb
ounded" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tCorrelation">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="set" type="NCName" use="required"/>
 <attribute name="initiation" type="bpws:tBoolean" use="optional" default="no"
/>
 <attribute name="pattern" use="optional">
 <simpleType>
 <restriction base="string">
 <enumeration value="in" />
 <enumeration value="out" />
 <enumeration value="out-in" />
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tInvoke">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations" minOccurs="0" max
Occurs="1"/>
 <element name="catch" type="bpws:tCatch" minOccurs="0" maxOccurs="unbound
ed"/>
 <element name="catchAll" type="bpws:tActivityOrCompensateContainer" minOc
curs="0"/>
 <element name="compensationHandler" type="bpws:tCompensationHandler" minO
ccurs="0"/>
 </sequence>
 <attribute name="partner" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="required"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="inputContainer" type="NCName" use="required"/>
 <attribute name="outputContainer" type="NCName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tReceive">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations" minOccurs="0"/>
 </sequence>
 <attribute name="partner" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="required"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="container" type="NCName" use="required"/>
 <attribute name="createInstance" type="bpws:tBoolean" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tReply">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations" minOccurs="0"/>
 </sequence>
 <attribute name="partner" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="required"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="container" type="NCName" use="required"/>
 <attribute name="faultName" type="QName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tAssign">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="copy" type="bpws:tCopy" minOccurs="1" maxOccurs="unbounded
"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCopy">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <sequence>
 <element ref="bpws:from"/>
 <element ref="bpws:to"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="from" type="bpws:tFrom"/>
 <complexType name="tFrom">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <attribute name="container" type="NCName"/>
 <attribute name="part" type="NCName"/>
 <attribute name="select" type="string"/>
 <attribute name="property" type="QName"/>
 <attribute name="partner" type="NCName"/>
 <attribute name="expression" type="string"/>
 <attribute name="opaque" type="bpws:tBoolean"/>
 </extension>
 </complexContent>

 </complexType>
 <element name="to">
 <complexType>
 <complexContent>
 <restriction base="bpws:tFrom">
 <attribute name="expression" type="string" use="prohibited"/>
 <attribute name="opaque" type="bpws:tBoolean" use="prohibited"/>
 </restriction>
 </complexContent>
 </complexType>
 </element>

 <complexType name="tWait">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="for" type="bpws:tDuration-expr" use="optional"/>
 <attribute name="until" type="bpws:tDeadline-expr" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tThrow">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="faultName" type="QName" use="required"/>
 <attribute name="faultContainer" type="NCName"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCompensate">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="scope" type="NCName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tTerminate">
 <complexContent>
 <extension base="bpws:tActivity"/>
 </complexContent>
 </complexType>

 <complexType name="tFlow">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="links" type="bpws:tLinks" minOccurs="0"/>
 <group ref="bpws:activity" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tLinks">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="link" type="bpws:tLink" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tLink">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tSwitch">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="case" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension base="bpws:tActivityContainer">
 <attribute name="condition" type="bpws:tBoolean-expr" use
="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name="otherwise" type="bpws:tActivityContainer" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tWhile">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="condition" type="bpws:tBoolean-expr" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tSequence">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <group ref="bpws:activity" maxOccurs="unbounded"/>

Service Link Type Schema

 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tPick">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="onMessage" type="bpws:tOnMessage" maxOccurs="unbounded"></
element>
 <element name="onAlarm" type="bpws:tOnAlarm" minOccurs="0" maxOccurs="unb
ounded"/>
 </sequence>
 <attribute name="createInstance" type="bpws:tBoolean" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tScope">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="faultHandlers" type="bpws:tFaultHandlers" minOccurs="0"/>
 <element name="compensationHandler" type="bpws:tCompensationHandler" minO
ccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="containerAccessSerializable" type="bpws:tBoolean" use="requi
red"/>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="tListOfNCNames">
 <list itemType="NCName"/>
 </simpleType>

 <simpleType name="tBoolean-expr">
 <restriction base="string"/>
 </simpleType>

 <simpleType name="tDuration-expr">
 <restriction base="string"/>
 </simpleType>

 <simpleType name="tDeadline-expr">
 <restriction base="string"/>
 </simpleType>

 <simpleType name="tBoolean">
 <restriction base="string">
 <enumeration value="yes"/>
 <enumeration value="no"/>
 </restriction>
 </simpleType>
</schema>

<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:slnk="http://schemas.xmlsoap.org/ws/2002/07/service-link/"
 targetNamespace="http://schemas.xmlsoap.org/ws/2002/07/service-link/"
 elementFormDefault="qualified">

Service References Schema

Message Properties Schema

 <element name="serviceLinkType" type="slnk:tServiceLinkType"/>

 <complexType name="tServiceLinkType">
 <sequence>
 <element name="role" type="slnk:tRole" minOccurs="1" maxOccurs="2"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </complexType>

 <complexType name="tRole">
 <sequence>
 <element name="portType" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="QName" use="required"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </complexType>
</schema>

<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:sref="http://schemas.xmlsoap.org/ws/2002/07/service-reference/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://schemas.xmlsoap.org/ws/2002/07/service-reference/"
 elementFormDefault="qualified">

 <import namespace="http://schemas.xmlsoap.org/wsdl/"/>

 <element name="serviceReference" type="sref:serviceReferenceType"/>

 <complexType name="serviceReferenceType">
 <sequence>
 <element ref="wsdl:definitions" minOccurs="0"/>
 <element name="service" type="QName"/>
 <element name="referenceProperties" minOccurs="0">
 <complexType>
 <sequence>
 <element name="property" type="sref:referencePropertyType"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="referencePropertyType">
 <sequence>
 <any namespace="##other" minOccurs="0"/>
 </sequence>
 <attribute name="name" type="QName"/>
 </complexType>
</schema>

<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
 xmlns:wsbp="http://schemas.xmlsoap.org/ws/2002/07/business-process/"

 elementFormDefault="qualified">

 <element name="property">
 <complexType>
 <attribute name="name" type="NCName"/>
 <attribute name="type" type="QName"/>
 </complexType>
 </element>

 <element name="propertyAlias">
 <complexType>
 <attribute name="propertyName" type="QName" />
 <attribute name="messageType" type="QName"/>
 <attribute name="part" type="NCName"/>
 <attribute name="select" type="string"/>
 </complexType>
 </element>
</schema>

Microsoft BizTalk Server Specifications

Business Process Execution Language for Web Services Version
1.1

5 May 2003

Authors (listed alphabetically):

Tony Andrews, Microsoft
Francisco Curbera, IBM
Hitesh Dholakia, Siebel Systems
Yaron Goland, BEA
Johannes Klein, Microsoft
Frank Leymann, IBM
Kevin Liu, SAP
Dieter Roller, IBM
Doug Smith, Siebel Systems
Satish Thatte, (Editor) Microsoft
Ivana Trickovic, SAP
Sanjiva Weerawarana, IBM

Copyright© 2002, 2003 BEA Systems, International Business Machines Corporation, , SAP AG, Siebel Systems. All rights reserved.

Permission to copy and display the "Business Process Execution Language for Web Services Specification, version 1.1 dated May
5, 2003" (hereafter "the BPEL4WS Specification"), in any medium without fee or royalty is hereby granted, provided that you
include the following on ALL copies of the BPEL4WS Specification, or portions thereof, that you make:

1. A link to the BPEL4WS Specification at these locations:

http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbiz2k2/html/bpel1-1.asp

http://ifr.sap.com/bpel4ws/

http://www.siebel.com/bpel

2. The copyright notice as shown in the BPEL4WS Specification:

BEA, IBM, Microsoft, SAP AG and Siebel Systems (collectively, the "Authors") agree to grant you a royalty-free license, under
reasonable, non-discriminatory terms and conditions, to patents that they deem necessary to implement the Business Process
Execution Language for Web Services Specification.

THE Business Process Execution Language for Web Services SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
BPEL4WS SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE BPEL4WS SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or publicity pertaining to the
BPEL4WS Specification or its contents without specific, written prior permission. Title to copyright in the BPEL4WS Specification
will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract

This document defines a notation for specifying business process behavior based on Web Services. This notation is called Business
Process Execution Language for Web Services (abbreviated to BPEL4WS in the rest of this document). Processes in BPEL4WS
export and import functionality by using Web Service interfaces exclusively.

Business processes can be described in two ways. Executable business processes model actual behavior of a participant in a

mailto:tandrews@microsoft.com
mailto:curbera@us.ibm.com
mailto:Hitesh.Dholakia@siebel.com
mailto:ygoland@bea.com
mailto:joklein@microsoft.com
mailto:LEY1@de.ibm.com
mailto:kevin.liu@sap.com
mailto:ROL@de.ibm.com
mailto:Doug.Smith@siebel.com
mailto:satisht@microsoft.com
mailto:ivana.trickovic@sap.com
mailto:sanjiva@us.ibm.com
http://www.bea.com/
http://www.ibm.com/
http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbiz2k2/html/bpel1-1.asp
http://ifr.sap.com/bpel4ws/
http://www.siebel.com/bpel

business interaction. Business protocols, in contrast, use process descriptions that specify the mutually visible message exchange
behavior of each of the parties involved in the protocol, without revealing their internal behavior. The process descriptions for
business protocols are called abstract processes. BPEL4WS is meant to be used to model the behavior of both executable and
abstract processes.

BPEL4WS provides a language for the formal specification of business processes and business interaction protocols. By doing so,
it extends the Web Services interaction model and enables it to support business transactions. BPEL4WS defines an interoperable
integration model that should facilitate the expansion of automated process integration in both the intra-corporate and the
business-to-business spaces.

Status

This is a second public draft release of the BPEL4WS specification. BPEL4WS represents a convergence of the ideas in the XLANG
and WSFL specifications. Both XLANG and WSFL are superseded by the BPEL4WS specification.

Contents

1 Introduction
2 Notational Conventions
3 Relationship with WSDL
4 What Changed from BPEL4WS 1.0
 4.1.1 Core Concepts Clarification
 4.1.2 Terminology Changes
 4.1.3 Feature Changes
5 Core Concepts and Usage Patterns
6 Defining a Business Process
 6.1 Initial Example
 6.2 The Structure of a Business Process
 6.3 Language Extensibility
 6.4 The Lifecycle of a Business Process
7 Partner Link Types, Partner Links, and Endpoint References
 7.1 Partner Link Types
 7.2 Partner Links
 7.3 Business Partners
 7.4 Endpoint References
8 Message Properties
 8.1 Motivation
 8.2 Defining Properties 9 Data Handling
 9.1 Expressions
 9.1.1 Boolean Expressions
 9.1.2 Deadline-Valued Expressions
 9.1.3 Duration-Valued Expressions
 9.1.4 General Expressions
 9.2 Variables
 9.3 Assignment
 9.3.1 Type Compatibility in Assignment
 9.3.2 Assignment Example
10 Correlation
 10.1 Message Correlation
 10.2 Defining and Using Correlation Sets
11 Basic Activities
 11.1 Standard Attributes for Each Activity
 11.2 Standard Elements for Each Activity
 11.3 Invoking Web Service Operations
 11.4 Providing Web Service Operations
 11.5 Updating Variable Contents
 11.6 Signaling Faults
 11.7 Waiting
 11.8 Doing Nothing
12 Structured Activities
 12.1 Sequence
 12.2 Switch
 12.3 While
 12.4 Pick

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

 12.5 Flow
 12.5.1 Link Semantics
 12.5.2 Dead-Path-Elimination (DPE)
 12.5.3 Flow Graph Example
 12.5.4 Links and Structured Activities
13 Scopes
 13.1 Data Handling
 13.2 Error Handling in Business Processes
 13.3 Compensation Handlers
 13.3.1 Defining a Compensation Handler
 13.3.2 Invoking a Compensation Handler
 13.4 Fault Handlers
 13.4.1 Implicit Fault and Compensation Handlers
 13.4.2 Semantics of Activity Termination
 13.4.3 Handling Faults That Occur Inside Fault and Compensation Handlers
 13.5 Event Handlers
 13.5.1 Message Events
 13.5.2 Alarm events
 13.5.3 Enablement of Events
 13.5.4 Processing of Events
 13.5.4.1 Alarm Events
 13.5.4.2 Message Events
 13.5.5 Disablement of Events
 13.5.6 Fault Handling Considerations
 13.5.7 Concurrency Considerations
 13.6 Serializable Scopes
14 Extensions for Executable Processes
 14.1 Expressions
 14.2 Variables
 14.3 Assignment
 14.4 Correlation
 14.5 Web Service Operations
 14.6 Terminating a Service Instance
 14.7 Compensation
 14.8 Event Handlers
15 Extensions for Business Protocols
 15.1 Variables
 15.2 Assignment
16 Examples
 16.1 Shipping Service
 16.1.1 Service Description
 16.1.2 Message Properties
 16.1.3 Process
 16.2 Loan Approval
 16.2.1 Service Description
 16.2.2 Process
 16.3 Multiple Start Activities
 16.3.1 Service Description
 16.3.2 Process
17 Security Considerations
18 Acknowledgments
19 References
Appendix A – Standard Faults
Appendix B – Attributes and Defaults
Appendix C – Coordination Protocol
 Coordination Protocol for BPEL4WS Scopes
Appendix D - XSD Schemas
 BPEL4WS Schema
 Partner Link Type Schema
 Message Properties Schema

1 Introduction

The goal of the Web Services effort is to achieve universal interoperability between applications by using Web standards. Web
Services use a loosely coupled integration model to allow flexible integration of heterogeneous systems in a variety of domains
including business-to-consumer, business-to-business and enterprise application integration. The following basic specifications
originally defined the Web Services space: SOAP, Web Services Description Language (WSDL), and Universal Description,
Discovery, and Integration (UDDI). SOAP defines an XML messaging protocol for basic service interoperability. WSDL introduces a
common grammar for describing services. UDDI provides the infrastructure required to publish and discover services in a
systematic way. Together, these specifications allow applications to find each other and interact following a loosely coupled,
platform-independent model.

Systems integration requires more than the ability to conduct simple interactions by using standard protocols. The full potential
of Web Services as an integration platform will be achieved only when applications and business processes are able to integrate
their complex interactions by using a standard process integration model. The interaction model that is directly supported by
WSDL is essentially a stateless model of synchronous or uncorrelated asynchronous interactions. Models for business interactions
typically assume sequences of peer-to-peer message exchanges, both synchronous and asynchronous, within stateful, long-
running interactions involving two or more parties. To define such business interactions, a formal description of the message
exchange protocols used by business processes in their interactions is needed. The definition of such business protocols involves
precisely specifying the mutually visible message exchange behavior of each of the parties involved in the protocol, without
revealing their internal implementation. There are two good reasons to separate the public aspects of business process behavior
from internal or private aspects. One is that businesses obviously do not want to reveal all their internal decision making and data
management to their business partners. The other is that, even where this is not the case, separating public from private process
provides the freedom to change private aspects of the process implementation without affecting the public business protocol.

Business protocols must clearly be described in a platform-independent manner and must capture all behavioral aspects that
have cross-enterprise business significance. Each participant can then understand and plan for conformance to the business
protocol without engaging in the process of human agreement that adds so much to the difficulty of establishing cross-enterprise
automated business processes today.

What are the concepts required to describe business protocols? And what is the relationship of these concepts to those required
to describe executable processes? To answer these questions, consider the following:

Business protocols invariably include data-dependent behavior. For example, a supply-chain protocol depends on data such
as the number of line items in an order, the total value of an order, or a deliver-by deadline. Defining business intent in
these cases requires the use of conditional and time-out constructs.
The ability to specify exceptional conditions and their consequences, including recovery sequences, is at least as important
for business protocols as the ability to define the behavior in the "all goes well" case.
Long-running interactions include multiple, often nested units of work, each with its own data requirements. Business
protocols frequently require cross-partner coordination of the outcome (success or failure) of units of work at various levels
of granularity.

If we wish to provide precise predictable descriptions of service behavior for cross-enterprise business protocols, we need a rich
process description notation with many features reminiscent of an executable language. The key distinction between public
message exchange protocols and executable internal processes is that internal processes handle data in rich private ways that
need not be described in public protocols.

In thinking about the data handling aspects of business protocols it is instructive to consider the analogy with network
communication protocols. Network protocols define the shape and content of the protocol envelopes that flow on the wire, and
the protocol behavior they describe is driven solely by the data in these envelopes. In other words, there is a clear physical
separation between protocol-relevant data and "payload" data. The separation is far less clear cut in business protocols because
the protocol-relevant data tends to be embedded in other application data.

BPEL4WS uses a notion of message properties to identify protocol-relevant data embedded in messages. Properties can be
viewed as "transparent" data relevant to public aspects as opposed to the "opaque" data that internal/private functions use.
Transparent data affects the public business protocol in a direct way, whereas opaque data is significant primarily to back-end
systems and affects the business protocol only by creating nondeterminism because the way it affects decisions is opaque. We
take it as a principle that any data that is used to affect the behavior of a business protocol must be transparent and hence viewed
as a property.

The implicit effect of opaque data manifests itself through nondeterminism in the behavior of services involved in business
protocols. Consider the example of a purchasing protocol. The seller has a service that receives a purchase order and responds
with either acceptance or rejection based on a number of criteria, including availability of the goods and the credit of the buyer.
Obviously, the decision processes are opaque, but the fact of the decision must be reflected as behavior alternatives in the
external business protocol. In other words, the protocol requires something like a switch activity in the behavior of the seller's
service but the selection of the branch taken is nondeterministic. Such nondeterminism can be modeled by allowing the
assignment of a nondeterministic or opaque value to a message property, typically from an enumerated set of possibilities. The

property can then be used in defining conditional behavior that captures behavioral alternatives without revealing actual decision
processes. BPEL4WS explicitly allows the use of nondeterministic data values to make it possible to capture the essence of public
behavior while hiding private aspects.

The basic concepts of BPEL4WS can be applied in one of two ways. A BPEL4WS process can define a business protocol role, using
the notion of abstract process. For example, in a supply-chain protocol, the buyer and the seller are two distinct roles, each with its
own abstract process. Their relationship is typically modeled as a partner link. Abstract processes use all the concepts of BPEL4WS
but approach data handling in a way that reflects the level of abstraction required to describe public aspects of the business
protocol. Specifically, abstract processes handle only protocol-relevant data. BPEL4WS provides a way to identify protocol-
relevant data as message properties. In addition, abstract processes use nondeterministic data values to hide private aspects of
behavior.

It is also possible to use BPEL4WS to define an executable business process. The logic and state of the process determine the
nature and sequence of the Web Service interactions conducted at each business partner, and thus the interaction protocols.
While a BPEL4WS process definition is not required to be complete from a private implementation point of view, the language
effectively defines a portable execution format for business processes that rely exclusively on Web Service resources and XML
data. Moreover, such processes execute and interact with their partners in a consistent way regardless of the supporting platform
or programming model used by the implementation of the hosting environment.

Even where private implementation aspects use platform-dependent functionality, which is likely in many if not most realistic
cases, the continuity of the basic conceptual model between abstract and executable processes in BPEL4WS makes it possible to
export and import the public aspects embodied in business protocols as process or role templates while maintaining the intent
and structure of the protocols. This is arguably the most attractive prospect for the use of BPEL4WS from the viewpoint of
unlocking the potential of Web Services because it allows the development of tools and other technologies that greatly increase
the level of automation and thereby lower the cost in establishing cross-enterprise automated business processes.

In summary, we believe that the two usage patterns of business protocol description and executable business process description
require a common core of process description concepts. In this specification we clearly separate the core concepts from the
extensions required specifically for the two usage patterns. The BPEL4WS specification is focused on defining the common core,
and adds only the essential extensions required for each usage pattern.

BPEL4WS defines a model and a grammar for describing the behavior of a business process based on interactions between the
process and its partners. The interaction with each partner occurs through Web Service interfaces, and the structure of the
relationship at the interface level is encapsulated in what we call a partner link. The BPEL4WS process defines how multiple
service interactions with these partners are coordinated to achieve a business goal, as well as the state and the logic necessary for
this coordination. BPEL4WS also introduces systematic mechanisms for dealing with business exceptions and processing faults.
Finally, BPEL4WS introduces a mechanism to define how individual or composite activities within a process are to be
compensated in cases where exceptions occur or a partner requests reversal.

BPEL4WS is layered on top of several XML specifications: WSDL 1.1, XML Schema 1.0, and XPath1.0. WSDL messages and XML
Schema type definitions provide the data model used by BPEL4WS processes. XPath provides support for data manipulation. All
external resources and partners are represented as WSDL services. BPEL4WS provides extensibility to accommodate future
versions of these standards, specifically the XPath and related standards used in XML computation.

2 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [13].

Namespace URIs of the general form "some-URI" represent some application-dependent or context-dependent URI as defined in
RFC 2396 [14].

This specification uses an informal syntax to describe the XML grammar of the XML fragments that follow:

The syntax appears as an XML instance, but the values indicate the data types instead of values.
Grammar in bold has not been introduced earlier in the document, or is of particular interest in an example.
<-- description --> is a placeholder for elements from some "other" namespace (like ##other in XSD).
Characters are appended to elements, attributes, and <!-- descriptions --> as follows: "?" (0 or 1), "*" (0 or more), "+" (1 or
more). The characters "[" and "]" are used to indicate that contained items are to be treated as a group with respect to the
"?", "*", or "+" characters.
Elements and attributes separated by "|" and grouped by "(" and ")" are meant to be syntactic alternatives.
The XML namespace prefixes (defined below) are used to indicate the namespace of the element being defined.
Examples starting with <?xml contain enough information to conform to this specification; other examples are fragments
and require additional information to be specified in order to conform.

XSD schemas and WSDL definitions are provided as a formal definition of grammars [xml-schema1] [WSDL].

3 Relationship with WSDL
BPEL4WS depends on the following XML-based specifications: WSDL 1.1, XML Schema 1.0, XPath 1.0 and WS-Addressing.

Among these, WSDL has the most influence on the BPEL4WS language. The BPEL4WS process model is layered on top of the
service model defined by WSDL 1.1. At the core of the BPEL4WS process model is the notion of peer-to-peer interaction between
services described in WSDL; both the process and its partners are modeled as WSDL services. A business process defines how to
coordinate the interactions between a process instance and its partners. In this sense, a BPEL4WS process definition provides
and/or uses one or more WSDL services, and provides the description of the behavior and interactions of a process instance
relative to its partners and resources through Web Service interfaces. That is, BPEL4WS defines the message exchange protocols
followed by the business process of a specific role in the interaction.

The definition of a BPEL4WS business process also follows the WSDL model of separation between the abstract message contents
used by the business process and deployment information (messages and portType versus binding and address information). In
particular, a BPEL4WS process represents all partners and interactions with these partners in terms of abstract WSDL interfaces
(portTypes and operations); no references are made to the actual services used by a process instance.

However, the abstract part of WSDL does not define the constraints imposed on the communication patterns supported by the
concrete bindings. Therefore a BPEL4WS process may define behavior relative to a partner service that is not supported by all
possible bindings, and it may happen that some bindings are invalid for a BPEL4WS process definition.

A BPEL4WS process is a reusable definition that can be deployed in different ways and in different scenarios, while maintaining a
uniform application-level behavior across all of them. Note that the description of the deployment of a BPEL4WS process is out of
scope for this specification.

The dependency on WS-Addressing [16] is meant to avoid inventing a private BPEL4WS mechanism for web service endpoint
references—such references are obviously a very general requirement in the usage of web services.

4 What Changed from BPEL4WS 1.0
The BPEL4WS 1.1 specification is an enhancement of the BPEL4WS 1.0 specification [15]. The 1.1 version has five new authors
who brought a fresh viewpoint and deep industry experience. Their contributions are reflected in a number of enhancements in
this version.

The 1.1 version incorporates numerous corrections and clarifications based on the feedback received on the 1.0 version. In
addition, the 1.1 version differs from the 1.0 version in the following substantive ways.

4.1.1 Core Concepts Clarification

We believe that the two usage patterns of business protocol description and executable business process description require a
common core of process description concepts. In the 1.1 version of the specification we clearly separate the core concepts from
the extensions required specifically for the two usage patterns. The main body of the specification defines the core concepts. The
Extensions for Executable Processes and the Extensions for Business Protocols are defined in separate sections at the end of the
specification. The separation of core concepts from extensions allows features required for specific usage patterns to be defined in
a composable manner. It is conceivable that further extensions will be developed over time as the usage of the specification
matures.

4.1.2 Terminology Changes

The following terminology changes have occurred

Service Links are now called Partner Links
Service Link Types are now called Partner Link Types
Service References are now called Endpoint References
Containers are now called Variables

The formal syntax has also been changed to reflect these terminology changes, including the replacement of the current partner
element with a partnerLink element to reflect the fact that such a link is a conversational interface rather than reflective of a
business relationship. A partner element reflective of a business relationship is added as described in the next section.

4.1.3 Feature Changes

The following changes have been made

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/wsdl

The terminate activity is now strictly limited to executable processes.
Partner Link Type Roles are now limited to a single WSDL portType.
A new partner element is added to allow grouping of Partner Links based on expected business enterprise relationships.
Endpoint references (formerly service references) are now defined as given in WS-Addressing [16].
Message Properties are now limited to only be simple types.
Web service interactions in abstract processes are now permitted to omit references to variables for inbound and outbound
message data.
Opaque assignment in abstract processes may now target Boolean variables, and variables of simple but unbounded types.
In the latter case the semantics requires creation of a unique value similar to a GUID.
The syntax for defining variables has been changed to use three mutually exclusive attributes messagetype, type and
element. The first points to a WSDL message type definition. The second points to an XML Schema simple type. The third
points to an XML Schema global element definition. This allows one to define variables using something other than WSDL
message types. Only variables that are defined using messagetypes can be used as input or output targets in messaging
operations.
The ability to provide an in-line WSDL message type has been removed, since the vast majority of the uses of this feature
will be replaced by the usage of XML Schema simple types and global elements.
Correlation sets have now been added to the uniqueness requirement so that it is not legal to have two web service
interactions outstanding if they have the same partner, port type, operation and correlation set(s).
In case of activity termination, the activities wait, reply and invoke are added to receive as being instantly terminated
rather than being allowed to finish.
The variable provided as the value of the faultVariable attribute in a catch handler to hold fault data is now scoped to the
fault handler itself rather than being inherited from the associated scope.
Variables and correlation sets can now be associated with local scopes rather than with the process as a whole. This permits
easier management of visibility and lifetime for variables and repeated initiation of local correlation sets to allow multiple
correlated conversations during, e.g., iterative behavior.
Event handlers can now be associated with scopes, to permit a process or scope to be prepared to receive external events
and requests concurrently with the main activity of the process or scope. This is especially helpful for events and requests
that cannot be "scheduled" relative to the main activity, but may occur at unpredictable times.
The Future Directions section has been dropped since this version forms the starting point for a formal standards process,
which will define those directions.

5 Core Concepts and Usage Patterns
As noted in the introduction, we believe that the two usage patterns of business protocol description and executable business
process description require a common core of process description concepts. In this specification we clearly separate the core
concepts from the extensions required specifically for the two usage patterns. The BPEL4WS specification is focused on defining
the common core, and adds only the essential extensions required for each usage pattern. These extensions are described in
separate sections (Extensions for Executable Processes and the Extensions for Business Protocols).

In a number of cases, the behavior of a process in a certain combination of circumstances is undefined, e.g., when a variable is
used before being initialized. In the definition of the core concepts we simply note that the semantics in such cases is not defined.

BPEL4WS takes it as a general principle that compliant implementations MAY choose to perform static analysis to detect and
reject process definitions that may have undefined semantics. Such analysis is necessarily pessimistic and therefore might in
some cases prevent the use of processes that would not, in fact, create situations with undefined semantics, either in specific uses
or in any use.

In the executable usage pattern for BPEL4WS, situations of undefined semantics always result in standard faults in the BPEL4WS
namespace. These cases will be described as part of the Extensions for Executable Processes in the specification. However, it is
important to note that BPEL4WS uses two standard internal faults for its core control semantics, namely, bpws:forcedTermination
and bpws:joinFailure. These are the only two standard faults that play a role in the core concepts of BPEL4WS. Of course, the
occurrence of faults specified in WSDL portType definitions during web service invocation is accounted for in the core concepts as
well.

6 Defining a Business Process

6.1 Initial Example

Before describing the structure of business processes in detail, this section presents a simple example of a BPEL4WS process for
handling a purchase order. The aim is to introduce the most basic structures and some of the fundamental concepts of the

language.

The operation of the process is very simple, and is represented in the following figure. Dotted lines represent sequencing. Free
grouping of sequences represents concurrent sequences. Solid arrows represent control links used for synchronization across
concurrent activities. Note that this is not meant to be a definitive graphical notation for BPEL4WS processes. It is used here
informally as an aid to understanding.

On receiving the purchase order from a customer, the process initiates three tasks concurrently: calculating the final price for the
order, selecting a shipper, and scheduling the production and shipment for the order. While some of the processing can proceed
concurrently, there are control and data dependencies between the three tasks. In particular, the shipping price is required to
finalize the price calculation, and the shipping date is required for the complete fulfillment schedule. When the three tasks are
completed, invoice processing can proceed and the invoice is sent to the customer.

The WSDL portType offered by the service to its customers (purchaseOrderPT) is shown in the following WSDL document. Other
WSDL definitions required by the business process are included in the same WSDL document for simplicity; in particular, the
portTypes for the Web Services providing price calculation, shipping selection and scheduling, and production scheduling
functions are also defined there. Observe that there are no bindings or service elements in the WSDL document. A BPEL4WS
process is defined "in the abstract" by referencing only the portTypes of the services involved in the process, and not their
possible deployments. Defining business processes in this way allows the reuse of business process definitions over multiple
deployments of compatible services.

The partner link types included at the bottom of the WSDL document represent the interaction between the purchase order
service and each of the parties with which it interacts (see Partner Link Type Schema). Partner link types can be used to represent
dependencies between services, regardless of whether a BPEL4WS business process is defined for one or more of those services.
Each partner link type defines up to two "role" names, and lists the portTypes that each role must support for the interaction to be
carried out successfully. In this example, two partner link types, "purchasingLT" and "schedulingLT", list a single role because, in
the corresponding service interactions, one of the parties provides all the invoked operations: The "purchasingLT" partner link
represents the connection between the process and the requesting customer, where only the purchase order service needs to
offers a service operation ("sendPurchaseOrder"); the "schedulingLT" partner link represents the interaction between the purchase
order service and the scheduling service, in which only operations of the latter are invoked. The two other partner link types,
"invoicingLT" and "shippingLT", define two roles because both the user of the invoice calculation and the user of the shipping
service (the invoice or the shipping schedule) must provide callback operations to enable asynchronous notifications to be
asynchronously sent ("invoiceCallbackPT" and "shippingCallbackPT" portTypes).

<definitions targetNamespace="http://manufacturing.org/wsdl/purchase"
 xmlns:sns="http://manufacturing.org/xsd/purchase"
 xmlns:pos="http://manufacturing.org/wsdl/purchase"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

<import namespace="http://manufacturing.org/xsd/purchase"
 location="http://manufacturing.org/xsd/purchase.xsd"/>

<message name="POMessage">
 <part name="customerInfo" type="sns:customerInfo"/>
 <part name="purchaseOrder" type="sns:purchaseOrder"/>
</message>
<message name="InvMessage">
 <part name="IVC" type="sns:Invoice"/>
</message>
<message name="orderFaultType">
 <part name="problemInfo" type="xsd:string"/>
</message>
<message name="shippingRequestMessage">
 <part name="customerInfo" type="sns:customerInfo"/>
</message>
<message name="shippingInfoMessage">
 <part name="shippingInfo" type="sns:shippingInfo"/>
</message>
<message name="scheduleMessage">
 <part name="schedule" type="sns:scheduleInfo"/>
</message>

<!-- portTypes supported by the purchase order process -->

<portType name="purchaseOrderPT">
 <operation name="sendPurchaseOrder">
 <input message="pos:POMessage"/>
 <output message="pos:InvMessage"/>
 <fault name="cannotCompleteOrder"
 message="pos:orderFaultType"/>
 </operation>
</portType>
<portType name="invoiceCallbackPT">
 <operation name="sendInvoice">
 <input message="pos:InvMessage"/>
 </operation>
</portType>
<portType name="shippingCallbackPT">
 <operation name="sendSchedule">
 <input message="pos:scheduleMessage"/>
 </operation>
</portType>

<!-- portType supported by the invoice services -->

<portType name="computePricePT">
 <operation name="initiatePriceCalculation">
 <input message="pos:POMessage"/>
 </operation>
 <operation name="sendShippingPrice">
 <input message="pos:shippingInfoMessage"/>
 </operation>
</portType>

<!-- portType supported by the shipping service -->

<portType name="shippingPT">
 <operation name="requestShipping">
 <input message="pos:shippingRequestMessage"/>
 <output message="pos:shippingInfoMessage"/>
 <fault name="cannotCompleteOrder"
 message="pos:orderFaultType"/>
 </operation>
</portType>

<!-- portType supported by the production scheduling process -->

<portType name="schedulingPT">
 <operation name="requestProductionScheduling">

The business process for the order service is defined next. There are four major sections in this process definition:

The <variables> section defines the data variables used by the process, providing their definitions in terms of WSDL
message types, XML Schema simple types, or XML Schema elements. Variables allow processes to maintain state data and
process history based on messages exchanged.
The <partnerLinks> section defines the different parties that interact with the business process in the course of processing
the order. The four partnerLinks shown here correspond to the sender of the order (customer), as well as the providers of
price (invoicingProvider), shipment (shippingProvider), and manufacturing scheduling services (schedulingProvider). Each
partner link is characterized by a partner link type and a role name. This information identifies the functionality that must be
provided by the business process and by the partner service for the relationship to succeed, that is, the portTypes that the
purchase order process and the partner need to implement.
The <faultHandlers> section contains fault handlers defining the activities that must be performed in response to faults
resulting from the invocation of the assessment and approval services. In BPEL4WS, all faults, whether internal or resulting
from a service invocation, are identified by a qualified name. In particular, each WSDL fault is identified in BPEL4WS by a
qualified name formed by the target namespace of the WSDL document in which the relevant portType and fault are
defined, and the ncname of the fault. It is important to note, however, that because WSDL 1.1 does not require that fault
names be unique within the namespace where the operation is defined, all faults sharing a common name and defined in
the same namespace are indistinguishable. In spite of this serious WSDL limitation, BPEL4WS provides a uniform naming
model for faults, in the expectation that future versions of WSDL will provide a better fault-naming model.
The rest of the process definition contains the description of the normal behavior for handling a purchase request. The
major elements of this description are explained in the section following the process definition.

 <input message="pos:POMessage"/>
 </operation>
 <operation name="sendShipingSchedule">
 <input message="pos:scheduleMessage"/>
 </operation>
</portType>

<plnk:partnerLinkType name="purchasingLT">
 <plnk:role name="purchaseService">
 <plnk:portType name="pos:purchaseOrderPT"/>
 </plnk:role>
</plnk:partnerLinkType>

<plnk:partnerLinkType name="invoicingLT">
 <plnk:role name="invoiceService">
 <plnk:portType name="pos:computePricePT"/>
 </plnk:role>
 <plnk:role name="invoiceRequester">
 <plnk:portType name="pos:invoiceCallbackPT"/>
 </plnk:role>
</plnk:partnerLinkType>

<plnk:partnerLinkType name="shippingLT">
 <plnk:role name="shippingService">
 <plnk:portType name="pos:shippingPT"/>
 </plnk:role>
 <plnk:role name="shippingRequester">
 <plnk:portType name="pos:shippingCallbackPT"/>
 </plnk:role>
</plnk:partnerLinkType>

<plnk:partnerLinkType name="schedulingLT">
 <plnk:role name="schedulingService">
 <plnk:portType name="pos:schedulingPT"/>
 </plnk:role>
</plnk:partnerLinkType>

</definitions>

<process name="purchaseOrderProcess"
 targetNamespace="http://acme.com/ws-bp/purchase"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 xmlns:lns="http://manufacturing.org/wsdl/purchase">

 <partnerLinks>
 <partnerLink name="purchasing"
 partnerLinkType="lns:purchasingLT"
 myRole="purchaseService"/>
 <partnerLink name="invoicing"
 partnerLinkType="lns:invoicingLT"
 myRole="invoiceRequester"
 partnerRole="invoiceService"/>
 <partnerLink name="shipping"
 partnerLinkType="lns:shippingLT"
 myRole="shippingRequester"
 partnerRole="shippingService"/>
 <partnerLink name="scheduling"
 partnerLinkType="lns:schedulingLT"
 partnerRole="schedulingService"/>
 </partnerLinks>

 <variables>
 <variable name="PO" messageType="lns:POMessage"/>
 <variable name="Invoice"
 messageType="lns:InvMessage"/>
 <variable name="POFault"
 messageType="lns:orderFaultType"/>
 <variable name="shippingRequest"
 messageType="lns:shippingRequestMessage"/>
 <variable name="shippingInfo"
 messageType="lns:shippingInfoMessage"/>
 <variable name="shippingSchedule"
 messageType="lns:scheduleMessage"/>
 </variables>

 <faultHandlers>
 <catch faultName="lns:cannotCompleteOrder"
 faultVariable="POFault">
 <reply partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="POFault"
 faultName="cannotCompleteOrder"/>
 </catch>
 </faultHandlers>

 <sequence>

 <receive partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="PO">
 </receive>

 <flow>

 <links>
 <link name="ship-to-invoice"/>
 <link name="ship-to-scheduling"/>
 </links>

 <sequence>
 <assign>
 <copy>
 <from variable="PO" part="customerInfo"/>
 <to variable="shippingRequest"
 part="customerInfo"/>
 </copy>
 </assign>

The structure of the main processing section is defined by the outer <sequence> element, which states that the three activities
contained inside are performed in order. The customer request is received (<receive> element), then processed (inside a <flow>
section that enables concurrent behavior), and a reply message with the final approval status of the request is sent back to the
customer (<reply>). Note that the <receive> and <reply> elements are matched respectively to the <input> and <output>
messages of the "sendPurchaseOrder" operation invoked by the customer, while the activities performed by the process between
these elements represent the actions taken in response to the customer request, from the time the request is received to the time

 <invoke partnerLink="shipping"
 portType="lns:shippingPT"
 operation="requestShipping"
 inputVariable="shippingRequest"
 outputVariable="shippingInfo">
 <source linkName="ship-to-invoice"/>
 </invoke>

 <receive partnerLink="shipping"
 portType="lns:shippingCallbackPT"
 operation="sendSchedule"
 variable="shippingSchedule">
 <source linkName="ship-to-scheduling"/>
 </receive>

 </sequence>

 <sequence>

 <invoke partnerLink="invoicing"
 portType="lns:computePricePT"
 operation="initiatePriceCalculation"
 inputVariable="PO">
 </invoke>
 <invoke partnerLink="invoicing"
 portType="lns:computePricePT"
 operation="sendShippingPrice"
 inputVariable="shippingInfo">
 <target linkName="ship-to-invoice"/>
 </invoke>

 <receive partnerLink="invoicing"
 portType="lns:invoiceCallbackPT"
 operation="sendInvoice"
 variable="Invoice"/>

 </sequence>

 <sequence>
 <invoke partnerLink="scheduling"
 portType="lns:schedulingPT"
 operation="requestProductionScheduling"
 inputVariable="PO">
 </invoke>
 <invoke partnerLink="scheduling"
 portType="lns:schedulingPT"
 operation="sendShippingSchedule"
 inputVariable="shippingSchedule">
 <target linkName="ship-to-scheduling"/>
 </invoke>
 </sequence>
 </flow>

 <reply partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="Invoice"/>
 </sequence>

</process>

the response is sent back (reply).

The example makes the implicit assumption that the customer request can be processed in a reasonable amount of time,
justifying the requirement that the invoker wait for a synchronous response (because this service is offered as a request-response
operation). When that assumption does not hold, the interaction with the customer is better modeled as a pair of asynchronous
message exchanges. In that case, the "sendPurchaseOrder" operation is a one-way operation and the asynchronous response is
sent by invoking a second one-way operation on a customer "callback" interface. In addition to changing the signature of
"sendPurchaseOrder" and defining a new portType to represent the customer callback interface, two modifications need to be
made in the preceding example to support an asynchronous response to the customer. First, the partner link type "purchasingLT"
that represents the process-customer connection needs to include a second role ("customer") listing the customer callback
portType. Second, the <reply> activity in the process needs to be replaced by an <invoke> on the customer callback operation.

The processing taking place inside the <flow> element consists of three <sequence> blocks running concurrently. The
synchronization dependencies between activities in the three concurrent sequences are expressed by using "links" to connect
them. The links are defined inside the flow and are used to connect a source activity to a target activity. (Note that each activity
declares itself as the source or target of a link by using the nested <source> and <target> elements.) In the absence of links, the
activities nested directly inside a flow proceed concurrently. In the example, however, the presence of two links introduces control
dependencies between the activities performed inside each sequence. For example, while the price calculation can be started
immediately after the request is received, shipping price can only be added to the invoice after the shipper information has been
obtained; this dependency is represented by the link (named "ship-to-invoice") that connects the first call on the shipping provider
("requestShipping") with sending shipping information to the price calculation service ("sendShippingPrice"). Likewise, shipping
scheduling information can only be sent to the manufacturing scheduling service after it has been received from the shipper
service; thus the need for the second link ("ship-to-scheduling").

Observe that information is passed between the different activities in an implicit way through the sharing of globally visible data
variables. In this example, the control dependencies represented by links are related to corresponding data dependencies, in one
case on the availability of the shipper rates and in another on the availability of a shipping schedule. The information is passed
from the activity that generates it to the activity that uses it by means of two global data variables ("shippingInfo" and
"shippingSchedule").

Certain operations can return faults, as defined in their WSDL definitions. For simplicity, it is assumed here that the two
operations return the same fault ("cannotCompleteOrder"). When a fault occurs, normal processing is terminated and control is
transferred to the corresponding fault handler, as defined in the <faultHandlers> section. In this example the handler uses a
<reply> element to return a fault to the customer (note the "faultName" attribute in the <reply> element).

Finally, it is important to observe how an assignment activity is used to transfer information between data variables. The simple
assignments shown in this example transfer a message part from a source variable to a message part in a target variable, but
more complex forms of assignments are also possible.

6.2 The Structure of a Business Process

This section provides a quick summary of the BPEL4WS syntax. It provides only a brief overview; the details of each language
construct are described in the rest of this document.

The basic structure of the language is:

<process name="ncname" targetNamespace="uri"
 queryLanguage="anyURI"?
 expressionLanguage="anyURI"?
 suppressJoinFailure="yes|no"?
 enableInstanceCompensation="yes|no"?
 abstractProcess="yes|no"?
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

 <partnerLinks>?
 <!-- Note: At least one role must be specified. -->
 <partnerLink name="ncname" partnerLinkType="qname"
 myRole="ncname"? partnerRole="ncname"?>+
 </partnerLink>
 </partnerLinks>

 <partners>?
 <partner name="ncname">+
 <partnerLink name="ncname"/>+
 </partner>
 </partners>

The top-level attributes are as follows:

queryLanguage. This attribute specifies the XML query language used for selection of nodes in assignment, property
definition, and other uses. The default for this attribute is XPath 1.0, represented by the URI of the XPath 1.0 specification:
http://www.w3.org/TR/1999/REC-xpath-19991116.
expressionLanguage. This attribute specifies the expression language used in the process. The default for this attribute is
XPath 1.0, represented by the URI of the XPath 1.0 specification: http://www.w3.org/TR/1999/REC-xpath-19991116.
suppressJoinFailure. This attribute determines whether the joinFailure fault will be suppressed for all activities in the
process. The effect of the attribute at the process level can be overridden by an activity using a different value for the
attribute. The default for this attribute is "no".
enableInstanceCompensation. This attribute determines whether the process instance as a whole can be compensated by
platform-specific means. The default for this attribute is "no".
abstractProcess. This attribute specifies whether the process being defined is abstract (rather than executable). The default
for this attribute is "no".

The token "activity" can be any of the following:

<receive>
<reply>
<invoke>
<assign>
<throw>

 <variables>?
 <variable name="ncname" messageType="qname"?
 type="qname"? element="qname"?/>+
 </variables>

 <correlationSets>?
 <correlationSet name="ncname" properties="qname-list"/>+
 </correlationSets>

 <faultHandlers>?
 <!-- Note: There must be at least one fault handler or default. -->
 <catch faultName="qname"? faultVariable="ncname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 </faultHandlers>

 <compensationHandler>?
 activity
 </compensationHandler>

 <eventHandlers>?
 <!-- Note: There must be at least one onMessage or onAlarm handler. -->
 <onMessage partnerLink="ncname" portType="qname"
 operation="ncname" variable="ncname"?>
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?>+
 <correlations>
 activity
 </onMessage>
 <onAlarm for="duration-expr"? until="deadline-expr"?>*
 activity
 </onAlarm>
 </eventHandlers>

 activity
</process>

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

<terminate>
<wait>
<empty>
<sequence>
<switch>
<while>
<pick>
<flow>
<scope>
<compensate>

The syntax of each of these elements, except <terminate>, is considered in the following paragraphs. Although <terminate> is
permitted as an interpretation of the token activity, it is only available in executable processes and as such is defined in the section
on Extensions for Executable Processes. The <receive> construct allows the business process to do a blocking wait for a matching
message to arrive.

The <reply> construct allows the business process to send a message in reply to a message that was received through a
<receive>. The combination of a <receive> and a <reply> forms a request-response operation on the WSDL portType for the
process.

The <invoke> construct allows the business process to invoke a one-way or request-response operation on a portType offered by
a partner.

 <receive partnerLink="ncname" portType="qname" operation="ncname"
 variable="ncname"? createInstance="yes|no"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?>+
 </correlations>
 </receive>

 <reply partnerLink="ncname" portType="qname" operation="ncname"
 variable="ncname"? faultName="qname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?>+
 </correlations>
 </reply>

 <invoke partnerLink="ncname" portType="qname" operation="ncname"
 inputVariable="ncname"? outputVariable="ncname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?
 pattern="in|out|out-in"/>+
 </correlations>
 <catch faultName="qname" faultVariable="ncname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 <compensationHandler>?
 activity
 </compensationHandler>
 </invoke>

The <assign> construct can be used to update the values of variables with new data. An <assign> construct can contain any
number of elementary assignments. The syntax of the assignment activity is:

The <throw> construct generates a fault from inside the business process.

The <wait> construct allows you to wait for a given time period or until a certain time has passed. Exactly one of the expiration
criteria must be specified.

The <empty> construct allows you to insert a "no-op" instruction into a business process. This is useful for synchronization of
concurrent activities, for instance.

The <sequence> construct allows you to define a collection of activities to be performed sequentially in lexical order.

The <switch> construct allows you to select exactly one branch of activity from a set of choices.

The <while> construct allows you to indicate that an activity is to be repeated until a certain success criteria has been met.

 <assign standard-attributes>
 standard-elements
 <copy>+
 from-spec
 to-spec
 </copy>
 </assign>

 <throw faultName="qname" faultVariable="ncname"? standard-attributes>
 standard-elements
 </throw>

 <wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

 <empty standard-attributes>
 standard-elements
 </empty>

 <sequence standard-attributes>
 standard-elements
 activity+
 </sequence>

 <switch standard-attributes>
 standard-elements
 <case condition="bool-expr">+
 activity
 </case>
 <otherwise>?
 activity
 </otherwise>
 </switch>

 <while condition="bool-expr" standard-attributes>
 standard-elements
 activity

The <pick> construct allows you to block and wait for a suitable message to arrive or for a time-out alarm to go off. When one of
these triggers occurs, the associated activity is performed and the pick completes.

The <flow> construct allows you to specify one or more activities to be performed concurrently. Links can be used within
concurrent activities to define arbitrary control structures.

The <scope> construct allows you to define a nested activity with its own associated variables, fault handlers, and compensation
handler.

The <compensate> construct is used to invoke compensation on an inner scope that has already completed normally. This
construct can be invoked only from within a fault handler or another compensation handler.

 </while>

 <pick createInstance="yes|no"? standard-attributes>
 standard-elements
 <onMessage partnerLink="ncname" portType="qname"
 operation="ncname" variable="ncname"?>+
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?>+
 </correlations>
 activity
 </onMessage>
 <onAlarm (for="duration-expr" | until="deadline-expr")>*
 activity
 </onAlarm>
 </pick>

 <flow standard-attributes>
 standard-elements
 <links>?
 <link name="ncname">+
 </links>

 activity+
 </flow>

<scope variableAccessSerializable="yes|no" standard-attributes>
 standard-elements
 <variables>?
 ... see above under <process> for syntax ...
 </variables>
 <correlationSets>?
 ... see above under <process> for syntax ...
 </correlationSets>
 <faultHandlers>?
 ... see above under <process> for syntax ...
 </faultHandlers>
 <compensationHandler>?
 ... see above under <process> for syntax ...
 </compensationHandler>
 <eventHandlers>?
 ...
 </eventHandlers>
 activity
 </scope>

 <compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

Note that the "standard-attributes" referred to above are:

where the default values are as follows:

name. No default value (that is, unnamed)
joinCondition. The logical OR of the liveness status of all links that are targeted at this activity
suppressJoinFailure. No

and that the "standard-elements" referred to above are:

where the default value of the "transitionCondition" attribute is "true()", the truth-value function from the default expression
language XPath 1.0.

6.3 Language Extensibility

BPEL4WS contains constructs that are generally sufficient for expressing abstract and executable business processes. In some
cases, however, it might be necessary to "extend" the BPEL4WS language with additional constructs from other XML namespaces.

BPEL4WS supports extensibility by allowing namespace-qualified attributes to appear on any BPEL4WS element and by allowing
elements from other namespaces to appear within BPEL4WS defined elements. This is allowed in the XML Schema specifications
for BPEL4WS.

Extensions MUST NOT change the semantics of any element or attribute from the BPEL4WS namespace.

6.4 The Lifecycle of a Business Process

As noted in the introduction, the interaction model that is directly supported by WSDL is essentially a stateless client-server model
of synchronous or uncorrelated asynchronous interactions. BPEL4WS, builds on WSDL by assuming that all external interactions
of the business process occur through Web Service operations. However, BPEL4WS business processes represent stateful long-
running interactions in which each interaction has a beginning, defined behavior during its lifetime, and an end. For example, in a
supply chain, a seller's business process might offer a service that begins an interaction by accepting a purchase order through an
input message, and then returns an acknowledgement to the buyer if the order can be fulfilled. It might later send further
messages to the buyer, such as shipping notices and invoices. The seller's business process remembers the state of each such
purchase order interaction separately from other similar interactions. This is necessary because a buyer might be carrying on
many simultaneous purchase processes with the same seller. In short, a BPEL4WS business process definition can be thought of
as a template for creating business process instances.

The creation of a process instance in BPEL4WS is always implicit; activities that receive messages (that is, receive activities and
pick activities) can be annotated to indicate that the occurrence of that activity causes a new instance of the business process to
be created. This is done by setting the createInstance attribute of such an activity to "yes". When a message is received by such
an activity, an instance of the business process is created if it does not already exist (see Providing Web Service Operations and
Pick).

To be instantiated, each business process must contain at least one such "start activity." This must be an initial activity in the sense
that there is no basic activity that logically precedes it in the behavior of the process.

If more than one start activity is enabled concurrently, then all such activities must use at least one correlation set and must use
the same correlation sets (see Correlation and Multiple Start Activities, for example).

If exactly one start activity is expected to instantiate the process, the use of correlation sets is unconstrained. This includes a pick
with multiple onMessage branches; each such branch can use different correlation sets or no correlation sets.

A business process instance is terminated in one of the following ways:

 name="ncname"?
 joinCondition="bool-expr"?
 suppressJoinFailure="yes|no"?

 <target linkName="ncname"/>*
 <source linkName="ncname" transitionCondition="bool-expr"?/>*

When the activity that defines the behavior of the process as a whole completes. In this case the termination is normal.
When a fault reaches the process scope, and is either handled or not handled. In this case the termination is considered
abnormal even if the fault is handled and the fault handler does not rethrow any fault. A compensation handler is never
installed for a scope that terminates abnormally.

When a process instance is explicitly terminated by a terminate activity (see Terminating a Service Instance). In this case the
termination is abnormal.

If a compensation handler is specified for the business process as a whole (see Compensation), a business process instance can be
compensated after normal completion by platform-specific means. This functionality is enabled by setting the
enableInstanceCompensation attribute of the process to "yes".

7 Partner Link Types, Partner Links, and Endpoint References
A very important, if not the most important, use case for BPEL4WS will be in describing cross-enterprise business interactions in
which the business processes of each enterprise interact through Web Service interfaces with the processes of other enterprises.
An important requirement for realistic modeling of business processing in this environment is the ability to model the required
relationship with a partner process. WSDL already describes the functionality of a service provided by a partner, at both the
abstract and concrete levels. The relationship of a business process to a partner is typically peer-to-peer, requiring a two-way
dependency at the service level. In other words, a partner represents both a consumer of a service provided by the business
process and a provider of a service to the business process. This is especially the case when the interactions are based on
asynchronous messaging rather than on remote procedure calls. The notion of Partner links is used to directly model peer-to-
peer conversational partner relationships. Partner links define the shape of a relationship with a partner by defining the message
and port types used in the interactions in both directions. However, the actual partner service may be dynamically determined
within the process. BPEL4WS uses a notion of endpoint reference [16] to represent the dynamic data required to describe a
partner service endpoint.

It is important to emphasize that the notions of partner link and endpoint reference used here are preliminary. The specification
for these concepts as they relate to Web Services is still evolving, and we expect normative definitions for them to emerge in
future. The BPEL4WS specification will be updated to conform to the expected future standards.

7.1 Partner Link Types

A partner link type characterizes the conversational relationship between two services by defining the "roles" played by each of
the services in the conversation and specifying the portType provided by each service to receive messages within the context of
the conversation. The following example illustrates the basic syntax of a partner link type declaration:

Each role specifies exactly one WSDL portType.

In the common case, portTypes of the two roles originate from separate namespaces. However, in some cases, both roles of a
partner link type can be defined in terms of portTypes from the same namespace. The latter situation occurs for partner link types
that define "callback" relationships between services.

The partner link type definition can be a separate artifact independent of either service's WSDL document. Alternatively, the
partner link type definition can be placed within the WSDL document defining the portTypes from which the different roles are
defined.

The extensibility mechanism of WSDL 1.1 is used to define partnerLinkType as a new definition type to be placed as an immediate
child element of a <wsdl:definitions> element in all cases. This allows reuse of the WSDL target namespace specification and,
more importantly, its import mechanism to import portTypes. For cases where a partnerLinkType declaration is linking the
portTypes of two different services, the partnerLinkType declaration can be placed in a separate WSDL document (with its own
targetNamespace).

The syntax for defining a partnerLinkType is:

<partnerLinkType name="BuyerSellerLink"
 xmlns="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">
 <role name="Buyer">
 <portType name="buy:BuyerPortType"/>
 </role>
 <role name="Seller">
 <portType name="sell:SellerPortType"/>
 </role>
</partnerLinkType>

This defines a partner link type in the namespace indicated by the value of the "targetNamespace" attribute of the WSDL
document element. The portTypes identified within roles are referenced by using QNames as for all top-level WSDL definitions.

Note that in some cases it can be meaningful to define a partner link type containing exactly one role instead of two. That defines
a partner linking scenario where one service expresses a willingness to link with any other service, without placing any
requirements on the other service.

Examples of partnerLinkType declarations are found in various business process examples in this specification.

7.2 Partner Links

The services with which a business process interacts are modeled as partner links in BPEL4WS. Each partner link is characterized
by a partnerLinkType. More than one partner link can be characterized by the same partnerLinkType. For example, a certain
procurement process might use more than one vendor for its transactions, but might use the same partnerLinkType for all
vendors.

Each partnerLink is named, and this name is used for all service interactions via that partnerLink. This is critical, for example, in
correlating responses to different partnerLinks for simultaneous requests of the same kind (see Invoking Web Service Operations
and Providing Web Service Operations).

The role of the business process itself is indicated by the attribute myRole and the role of the partner is indicated by the attribute
partnerRole. In the degenerate case where a partnerLinkType has only one role, one of these attributes is omitted as appropriate.

Note that the partnerLink declarations specify the static shape of the relationships that the BPEL4WS process will employ in its
behavior. Before operations on a partner's service can be invoked via a partnerLink, the binding and communication data for the
partner service must be available. The relevant information about a partner service can be set as part of business process
deployment. This is outside the scope of BPEL4WS. However, it is also possible to select and assign actual partner services
dynamically, and BPEL4WS provides the mechanisms to do so via assignment of endpoint references. In fact, because the partners
are likely to be stateful, the service endpoint information needs to be extended with instance-specific information. BPEL4WS
allows the endpoint references implicitly present in partnerLinks to be both extracted and assigned dynamically, and also to be set
more than once. See Assignment for the mechanisms used for dynamic assignment of endpoint references to partner services.

7.3 Business Partners

While a partner link represents a conversational relationship between two partner processes, relationships with a business
partner in general require more than a single conversational relationship to be established. To represent the capabilities required
from a business partner, BPEL4WS uses the partner element. A partner is defined as a subset of the partner links of the process,
as shown in the example below.

<definitions name="ncname" targetNamespace="uri"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">
 ...
 <plnk:partnerLinkType name="ncname">
 <plnk:role name="ncname">
 <plnk:portType name="qname"/>
 </plnk:role>
 <plnk:role name="ncname">?
 <plnk:portType name="qname"/>
 </plnk:role>
 </plnk:partnerLinkType>
 ...
</definitions>

 <partnerLinks>
 <partnerLink name="ncname" partnerLinkType="qname"
 myRole="ncname"? partnerRole="ncname"?>+
 </partnerLink>
 </partnerLinks>

<partner name="SellerShipper"
 xmlns="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

Partner definitions are optional and need not cover all the partner links defined in the process. From the process perspective a
partner definition introduces a constraint on the functionality that a business partner is required to provide. In the example above,
the partner definition states that the same business partner ("SellerShipper") is required to provide the services associated with
the the roles of seller and shipper. Partner definitions MUST NOT overlap, that is, a partner link MUST NOT appear in more than
one partner definition.

The syntax for partner definitions is given below:

7.4 Endpoint References

WSDL makes an important distinction between portTypes and ports. PortTypes define abstract functionality by using abstract
messages. Ports provide actual access information, including communication endpoints and (by using extension elements) other
deployment-related information such as public keys for encryption. Bindings provide the glue between the two. While the user of
a service must be statically dependent on the abstract interface defined by portTypes, some of the information contained in port
definitions can typically be discovered and used dynamically.

The fundamental use of endpoint references is to serve as the mechanism for dynamic communication of port-specific data for
services. An endpoint reference makes it possible in BPEL4WS to dynamically select a provider for a particular type of service and
to invoke their operations. BPEL4WS provides a general mechanism for correlating messages to stateful instances of a service,
and therefore endpoint references that carry instance-neutral port information are often sufficient. However, in general it is
necessary to carry additional instance-identification tokens in the endpoint reference itself.

BPEL4WS uses the notion of endpoint reference defined in [16]. Every partner role in a partnerLink in a BPEL4WS process
instance is assigned a unique endpoint reference in the course of the deployment of the process or dynamically by an activity
within the process.

8 Message Properties

8.1 Motivation

The data in a message consists conceptually of two parts: application data and protocol-relevant data, where the protocols can be
business protocols or infrastructure protocols providing higher quality of service. An example of business protocol data is the
correlation tokens that are used in correlation sets (see Correlation). Examples of infrastructure protocols are security, transaction,
and reliable messaging protocols. The business protocol data is usually found embedded in the application-visible message parts,
whereas the infrastructure protocols almost always add implicit extra parts to the message types to represent protocol headers
that are separate from application data. Such implicit parts are often called message context because they relate to security
context, transaction context, and other similar middleware context of the interaction. Business processes might need to gain
access to and manipulate both kinds of protocol-relevant data. The notion of message properties is defined as a general way of
naming and representing distinguished data elements within a message, whether in application-visible data or in message
context. For a full accounting of the service description aspects of infrastructure protocols, it is necessary to define notions of
service policies, endpoint properties, and message context. This work is outside the scope of BPEL4WS. Message properties are
defined here in a sufficiently general way to cover message context consisting of implicit parts, but the use in this specification
focuses on properties embedded in application-visible data that is used in the definition of business protocols and abstract
business processes.

8.2 Defining Properties

A property definition creates a globally unique name and associates it with an XML Schema simple type. The intent is not to create
a new type. The intent is to create a name that has greater significance than the type itself. For example, a sequence number can
be an integer, but the integer type does not convey this significance, whereas a globally named sequence-number property does.
Properties can occur anywhere in a message, including in the message context.

A typical use for a property in BPEL4WS is to name a token for correlation of service instances with messages. For example, a

 <partnerLink name="Seller"/>
 <partnerLink name="Shipper"/>
</partner>

<partners>
 <partner name="ncname">+
 <partnerLink name="ncname"/>+
 </partner>
</partners>

social security number might be used to identify an individual taxpayer in a long-running multiparty business process regarding a
tax matter. A social security number can appear in many different message types, but in the context of a tax-related process it has
a specific significance as a taxpayer ID. Therefore a global name is given to this use of the type by defining a property, as in the
following example:

In correlation, the property name must have global significance to be of any use. Properties such as price, risk, response latency,
and so on, which are used in conditional behavior in a business process, have similar global and public significance. It is likely that
they will be mapped to multiple messages, and therefore they need to be globally named as in the case of correlation properties.
Such properties are essential, especially in abstract processes.

The WSDL extensibility mechanism is used to define properties so that the target namespace and other useful aspects of WSDL
are available. The BPEL4WS standard namespace, "http://schemas.xmlsoap.org/ws/2003/03/business-process/", is used for
property definitions. The syntax for a property definition is a new kind of WSDL definition as follows:

Properties used in business protocols are typically embedded in application-visible message data. The notion of aliasing is
introduced to map a global property to a field in a specific message part. The property name becomes an alias for the message
part and location, and can be used as such in Expressions and Assignment in abstract business processes.

The bpws:propertyAlias defines a globally named property tns:taxpayerNumber as an alias for a location in the identification
part of the message type txmsg:taxpayerInfo.

The syntax for a propertyAlias definition is:

<definitions name="properties"
 targetNamespace="http://example.com/properties.wsdl"
 xmlns:tns="http://example.com/properties.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define a correlation property -->
 <bpws:property name="taxpayerNumber"
 type="txtyp:SSN"/>
 ...
</wsdl:definitions>

<wsdl:definitions name="ncname"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">
 <bpws:property name="ncname" type="qname"/>
 ...
</wsdl:definitions>

<definitions name="properties"
 targetNamespace="http://example.com/properties.wsdl"
 xmlns:tns="http://example.com/properties.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns:txmsg="http://example.com/taxMessages.wsdl"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define a correlation property -->
 <bpws:property name="taxpayerNumber" type="txtype:SSN"/>
 ...
 <bpws:propertyAlias propertyName="tns:taxpayerNumber"
 messageType="txmsg:taxpayerInfo" part="identification"
 query="/socialsecnumber"/>
 </bpws:propertyAlias>
</definitions>

<definitions name="ncname"
 ...
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

The interpretation of the message, part, and query attributes is the same as in the corresponding from-spec in copy assignments
(see Assignment).

9 Data Handling
Business processes model stateful interactions. The state involved consists of messages received and sent as well as other
relevant data such as time-out values. The maintenance of the state of a business process requires the use of state variables,
which are called variables in BPEL4WS. Furthermore, the data from the state needs to be extracted and combined in interesting
ways to control the behavior of the process, which requires data expressions. Finally, state update requires a notion of
assignment. BPEL4WS provides these features for XML data types and WSDL message types. The XML family of standards in
these areas is still evolving, and using the process-level attributes for query and expression languages provides for the
incorporation of future standards.

The extensions required for abstract and executable processes are concentrated in the data-handling feature set. Executable
processes are permitted to use the full power of data selection and assignment but are not permitted to use nondeterministic
values. Abstract processes are restricted to limited manipulation of values contained in message properties but are permitted to
use nondeterministic values to reflect the consequences of hidden private behavior. Detailed differences are specified in the
following sections.

9.1 Expressions

BPEL4WS uses several types of expressions. The kinds of expressions used are as follows (relevant usage contexts are listed in
parentheses):

Boolean-valued expressions (transition conditions, join conditions, while condition, and switch cases)
Deadline-valued expressions ("until" attribute of onAlarm and wait)
Duration-valued expressions ("for" attribute of onAlarm and wait)
General expressions (assignment)

BPEL4WS provides an extensible mechanism for the language used in these expressions. The language is specified by the
expressionLanguage attribute of the process element. Compliant implementations of the current version of BPEL4WS MUST
support the use of XPath 1.0 as the expression language. XPath 1.0 is indicated by the default value of the expressionLanguage
attribute, which is:

http://www.w3.org/TR/1999/REC-xpath-19991116

)Given an expression language, it must be possible to query data from variables, to extract property values, and to query the
status of links from within expressions. This specification defines those functions for XPath 1.0 only, and it is expected that other
expression-language bindings will provide equivalent functionality. The rest of this section is specific to XPath 1.0.

BPEL4WS introduces several extension functions to XPath's built-in functions to enable XPath 1.0 expressions to access
information from the process. The extensions are defined in the standard BPEL4WS namespace
"http://schemas.xmlsoap.org/ws/2003/03/business-process/". The prefix "bpws:" is associated with this namespace.

Any qualified names used within XPath expressions are resolved by using namespace declarations currently in scope in the
BPEL4WS document at the location of the expression.

The following functions are defined by this specification:

This function extracts global property values from variables. The first argument names the source variable for the data and the
second is the qualified name (QName) of the global property to select from that variable (see Message Properties). If the given
property does not appear in any of the parts of the variable's message type, then the semantics of the process is undefined. The
return value of this function is a node set containing the single node representing the property. If the given property definition
selects a node set of a size other than one, then the semantics of the process is undefined.

 <bpws:propertyAlias propertyName="qname"
 messageType="qname" part="ncname" query="queryString"/>
 ...
</wsdl:definitions>

bpws:getVariableProperty ('variableName', 'propertyName')

bpws:getLinkStatus ('linkName')

http://www.w3.org/TR/1999/REC-xpath-19991116

This function returns a Boolean indicating the status of the link (see Link Semantics). If the status of the link is positive the value is
true, and if the status is negative the value is false. This function MUST NOT be used anywhere except in a join condition. The
linkName argument MUST refer to the name of an incoming link for the activity associated with the join condition. These
restrictions MUST be statically enforced.

These BPEL4WS-defined extension functions are available for use within all XPath 1.0 expressions.

The syntax of XPath 1.0 expressions for BPEL4WS is considered in the following paragraphs.

9.1.1 Boolean Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in Boolean values.

9.1.2 Deadline-Valued Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in values that are of the XML
Schema types dateTime or date. Note that XPath 1.0 is not XML Schema aware. As such, none of the built-in functions of XPath 1.0
are capable of producing or manipulating dateTime or date values. However, it is possible to write a constant (literal) that
conforms to XML Schema definitions and use that as a deadline value or to extract a field from a variable (part) of one of these
types and use that as a deadline value. XPath 1.0 will treat that literal as a string literal, but the result can be interpreted as a
lexical representation of a dateTime or date value.

9.1.3 Duration-Valued Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in values that are of the XML
Schema type duration. The preceding discussion about XPath 1.0's XML Schema unawareness applies here as well.

9.1.4 General Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in any XPath value type (string,
number, or Boolean).

Expressions with operators are restricted as follows:

All numeric values including arbitrary constants are permitted with the equality or relational operators (<, <=, =, !=, >=, >).
Values of integral (short, int, long, unsignedShort, and so on) type including constants are permitted in numeric expressions,
provided that only integer arithmetic is performed. In practice, this means that division is disallowed. It is difficult to enforce
this restriction in XPath 1.0 because XPath 1.0 lacks integral support for types. The restriction should be taken as a statement
of intent that will be enforced in the future when expression languages with more refined type systems become available.
Only equality operators (=, !=) are permitted when used with values of string type including constants.

These restrictions reflect XPath 1.0 syntax and semantics. Future alternative standards in this space are expected to provide
stronger type systems and therefore support more nuanced constraints. The restrictions are motivated by the fact that XPath
general expressions are meant to be used to perform business protocol-related computation such as retry loops, line-item counts,
and so on, that must be transparent in the process definition. They are not meant to provide arbitrary computation. This is the
motivation for the constraint that numerical expressions deal only with integer computation, and for disallowing arbitrary string
manipulation through expressions.

9.2 Variables

Business processes specify stateful interactions involving the exchange of messages between partners. The state of a business
process includes the messages that are exchanged as well as intermediate data used in business logic and in composing
messages sent to partners.

Variables provide the means for holding messages that constitute the state of a business process. The messages held are often
those that have been received from partners or are to be sent to partners. Variables can also hold data that are needed for holding
state related to the process and never exchanged with partners.

The type of each variable may be a WSDL message type, an XML Schema simple type or an XML Schema element. The syntax of
the variables declaration is:

 <variables>
 <variable name="ncname" messageType="qname"?

http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath.html

The name of a variable should be unique within its own scope. If a local variable has the same name and same
messageType/type/element as a variable defined in an enclosing scope, the local variable will be used in local assignments and/or
getVariableProperty functions. It is not permitted to have variables with same name but different messageType/type/element
within an enclosing scope hierarchy. The behavior of such variables is not defined.

The messageType, type or element attributes are used to specify the type of a variable. Exactly one of these attributes must be
used. Attribute messageType refers to a WSDL message type definition. Attribute type refers to an XML Schema simple type.
Attribute element refers to an XML Schema element. An XML Schema complex type must be associated with an element to be
used by a BPEL4WS variable

An example of a variable declaration using a message type declared in a WSDL document with the targetNamespace
"http://example.com/orders":

Variables associated with message types can be specified as input or output variables for invoke, receive, and reply activities (see
Invoking Web Service Operations and Providing Web Service Operations). When an invoke operation returns a fault message, this
causes a fault in the current scope. The fault variable in the corresponding fault handler is initialized with the fault message
received (see Scopes and Fault Handlers).

Each variable is declared within a scope and is said to belong to that scope. Variables that belong to the global process scope are
called global variables. Variables may also belong to other, non-global scopes, and such variables are called local variables. Each
variable is visible only in the scope in which it is defined and in all scopes nested within the scope it belongs to. Thus, global
variables are visible throughout the process. It is possible to "hide" a variable in an outer scope by declaring a variable with an
identical name in an inner scope. These rules are exactly analogous to those in programming languages with lexical scoping of
variables.

A global variable is in an uninitialized state at the beginning of a process. A local variable is in an uninitialized state at the start of
the scope it belongs to. Note that non-global scopes in general start and complete their behavior more than once in the lifetime of
the process instance they belong to. Variables can be initialized by a variety of means including assignment and receiving a
message. Variables can be partially initialized with property assignment or when some but not all parts in the message type of the
variable are assigned values.

9.3 Assignment

Copying data from one variable to another is a common task within a business process. The assign activity can be used to copy
data from one variable to another, as well as to construct and insert new data using expressions. The use of expressions is
primarily motivated by the need to perform simple computation (such as incrementing sequence numbers) that is required for
describing business protocol behavior. Expressions operate on message selections, properties, and literal constants to produce a
new value for a variable property or selection. Finally, this activity can also be used to copy endpoint references to and from
partner links.

The assign activity contains one or more elementary assignments.

The assign activity copies a type-compatible value from the source ("from-spec") to the destination ("to-spec"). The from-spec
MUST be one of the following forms except for the opaque form available in abstract processes:

 type="qname"? element="qname"?/>+
 </variables>

 <variable xmlns:ORD="http://example.com/orders"
 name="orderDetails" messageType="ORD:orderDetails"/>

 <assign standard-attributes>
 standard-elements
 <copy>+
 from-spec
 to-spec
 </copy>
 </assign>

<from variable="ncname" part="ncname"?/>
<from partnerLink="ncname" endpointReference="myRole|partnerRole"/>

The to-spec MUST be one of the following forms:

In the first from-spec and to-spec variants the variable attribute provides the name of a variable. If the type of the variable is a
WSDL messge type the optional part attribute MAY be used to provide the name of a part within that variable. When the variable
is defined using XML Schema simple type or element, the part attribute MUST NOT be used.

The second from-spec and to-spec variants allow dynamic manipulation of the endpoint references associated with partner links.
The value of the partnerLink attribute is the name of a partnerLink declared in the process. In the case of from-specs, the role
must also be specified because a process might need to communicate an endpoint reference corresponding to either its own role
or the partner's role within the partnerLink. The value "myRole" means that the endpoint reference of the process with respect to
that partnerLink is the source, while the value "partnerRole" means that the partner's endpoint reference for the partnerLink is the
source. For the to-spec, the assignment is only possible to the partnerRole, hence there is no need to specify the role. The type of
the value used in partnerLink-style from/to-specs is always an endpoint reference (see
Partner Link Types, Partner Links, and Endpoint References).

The third from-spec and to-spec variants allow explicit manipulation of message properties (see Message Properties) occurring in
variables. The property forms are especially useful for abstract processes, because they provide a way to clearly define how
distinguished data elements in messages are being used.

The fourth ("expression") from-spec variant allows processes to perform simple computations on properties and variables (for
example, increment a sequence number).

The fifth from-spec variant allows a literal value to be given as the source value to assign to a destination. The type of the literal
value MUST be the type of the destination (to-spec). The type of the literal value MAY be optionally indicated inline with the value
by using XML Schema's instance type mechanism (xsi:type).

9.3.1 Type Compatibility in Assignment

For an assignment to be valid, the data referred to by the from and to specifications MUST be of compatible types. The following
points make this precise:

The from-spec is a variable of a WSDL message type and the to-spec is a variable of a WSDL message type. In this case both
variables MUST be of the same message type, where two message types are said to be equal if their qualified names are the
same.
The from-spec is a variable of a WSDL message type and the to-spec is not, or vice versa. This is not legal because parts of
variables, selections of variable parts, or endpoint references cannot be assigned to/from variables of WSDL message types
directly.
In all other cases, the types of the source and destination are XML Schema types or elements, and the constraint is that the
source value MUST possess the element or type associated with the destination. Note that this does not require the types
associated with the source and destination to be the same. In particular, the source type MAY be a subtype of the destination
type. In the case of variables defined by reference to an element, moreover, both the source and the target MUST be the
same element.

The semantics of a process in which any of the matching constraints above is violated is undefined.

9.3.2 Assignment Example

The example assumes the following complex type definition in the namespace "http://tempuri.org/bpws/example":

<from variable="ncname" property="qname"/>
<from expression="general-expr"/>
<from> ... literal value ... </from>

<to variable="ncname" part="ncname"?/>
<to partnerLink="ncname"/>
<to variable="ncname" property="qname"/>

<complexType name="tAddress">
 <sequence>
 <element name="number" type="xsd:int"/>
 <element name="street" type="xsd:string"/>

Assume that the following WSDL message definition exists for the same target namespace:

Also assume the following BPEL4WS variable declarations:

The example illustrates copying one variable to another as well as copying a variable part to a variable of compatible element
type:

10 Correlation
The information provided so far suggests that the target for messages that are delivered to a business process service is the
WSDL port of the recipient service. This is an illusion because, by their very nature, stateful business processes are instantiated to
act in accordance with the history of an extended interaction. Therefore, messages sent to such processes need to be delivered not
only to the correct destination port, but also to the correct instance of the business process that provides the port. The
infrastructure hosting the process must do this in a generic manner, to avoid burdening every process implementation with the
need to implement a custom mechanism for instance routing. Messages, which create a new business process instance, are a
special case, as described in The Lifecycle of a Business Process.

In the object-oriented world, such stateful interactions are mediated by object references, which intrinsically provide the ability to
reach a specific object (instance) with the right state and history for the interaction. This works reasonably well in tightly coupled
implementations where a dependency on the structure of the implementation is normal. In the loosely coupled world of Web
Services, the use of such references would create a fragile web of implementation dependencies that would not survive the
independent evolution of business process implementation details at each business partner. In this world, the answer is to rely on
the business data and communication protocol headers that define the wire-level contract between partners and to avoid the use
of implementation-specific tokens for instance routing whenever possible.

Consider the usual supply-chain situation where a buyer sends a purchase order to a seller. Suppose that the buyer and seller
have a stable business relationship and are statically configured to send documents related to the purchasing interaction to the
URLs associated with the relevant WSDL service ports. The seller needs to asynchronously return an acknowledgement for the

 <element name="city" type="xsd:string"/>
 <element name="phone">
 <complexType>
 <sequence>
 <element name="areacode" type="xsd:int"/>
 <element name="exchange" type="xsd:int"/>
 <element name="number" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>

<element name = "address" type = "tAddress"/>

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" element="x:address"/>
</message>

<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="x:address"/>

<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>
 <copy>
 <from variable="c1" part = "address"/>
 <to variable="c3"/>
 </copy>
</assign>

order, and the acknowledgement must be routed to the correct business process instance at the buyer. The obvious and standard
mechanism to do this is to carry a business token in the order message (such as a purchase order number) that is copied into the
acknowledgement for correlation. The token can be in the message envelope in a header or in the business document (purchase
order) itself. In either case, the exact location and type of the token in the relevant messages is fixed and instance independent.
Only the value of the token is instance dependent. Therefore, the structure and position of the correlation tokens in each message
can be expressed declaratively in the business process description. The BPEL4WS notion of correlation set, described in the
following section, provides this feature. The declarative information allows a BPEL4WS-compliant infrastructure to use correlation
tokens to provide instance routing automatically.

The declarative specification of correlation relies on declarative properties of messages. A property is simply a "field" within a
message identified by a query—by default the query language is XPath 1.0. This is only possible when the type of the message
part or binding element is described by using an XML Schema. The use of correlation tokens and endpoint references is restricted
to message parts described in this way. To be clear, the actual wire format of such types can still be non-XML, for example, EDI flat
files, based on different bindings for port types.

10.1 Message Correlation

During its lifetime, a business process instance typically holds one or more conversations with partners involved in its work.
Conversations may be based on sophisticated transport infrastructure that correlates the messages involved in a conversation by
using some form of conversation identity and routes them automatically to the correct service instance without the need for any
annotation within the business process. However, in many cases correlated conversations involve more than two parties or use
lightweight transport infrastructure with correlation tokens embedded directly in the application data being exchanged. In such
cases, it is often necessary to provide additional application-level mechanisms to match messages and conversations with the
business process instances for which they are intended.

Correlation patterns can become quite complex. The use of a particular set of correlation tokens does not, in general, span the
entire interaction between a service instance and a partner (instance), but spans a part of the interaction. Correlated exchanges
may nest and overlap, and messages may carry several sets of correlation tokens. For example, a buyer might start a correlated
exchange with a seller by sending a purchase order (PO) and using a PO number embedded in the PO document as the
correlation token. The PO number is used in the PO acknowledgement by the seller. The seller might later send an invoice that
carries the PO number, to correlate it with the PO, and also carries an invoice number so that future payment-related messages
need to carry only the invoice number as the correlation token. The invoice message thus carries two separate correlation tokens
and participates in two overlapping correlated exchanges.

BPEL4WS addresses correlation scenarios by providing a declarative mechanism to specify correlated groups of operations within
a service instance. A set of correlation tokens is defined as a set of properties shared by all messages in the correlated group. Such
a set of properties is called a correlation set.

Correlation sets are declared within scopes and associated with them in a manner that is analogous to variable declarations. Each
correlation set is declared within a scope and is said to belong to that scope. Correlation sets that belong to the global process
scope are called global correlation sets. Correlation sets may also belong to other, non-global scopes, and such correlation sets
are called local correlation sets. Each correlation set is only visible in the scope in which it is defined and in all scopes nested
within the scope it belongs to. Thus, global correlation sets are visible throughout the process. It is possible to "hide" a correlation
set in an outer scope by declaring a correlation set with an identical name in an inner scope.

A global correlation set is in an uninitiated state at the beginning of a process. A local correlation set is in an uninitiated state at
the start of the scope it belongs to. Note that non-global scopes in general start and complete their behavior more than once in
the lifetime of the process instance they belong to.

Correlation sets resemble late-bound constants rather than variables in their semantics. The binding of a correlation set is
triggered by a specially marked message send or receive operation. A correlation set can be initiated only once during the lifetime
of the scope it belongs to. Thus, a global correlation set can only be initiated at most once during the lifetime of the process
instance. Its value, once initiated, can be thought of as an alias for the identity of the business process instance. A local correlation
set is available for binding each time the corresponding scope starts, but once initiated must retain its value until the scope
completes.

In multiparty business protocols, each participant process in a correlated message exchange acts either as the initiator or as a
follower of the exchange. The initiator process sends the first message (as part of an operation invocation) that starts the
conversation, and therefore defines the values of the properties in the correlation set that tag the conversation. All other
participants are followers that bind their correlation sets in the conversation by receiving an incoming message that provides the
values of the properties in the correlation set. Both initiator and followers must mark the first activity in their respective groups as
the activity that binds the correlation set.

10.2 Defining and Using Correlation Sets

The examples in this section show correlation being used on almost every messaging activity (receive, reply, and invoke). This is
because BPEL4WS does not assume the use of any sophisticated conversational transport protocols for messaging. In cases
where such protocols are used, the explicit use of correlation in BPEL4WS can be reduced to those activities that establish the
conversational connections.

Each correlation set in BPEL4WS is a named group of properties that, taken together, serve to define a way of identifying an
application-level conversation within a business protocol instance. A given message can carry multiple correlation sets. After a
correlation set is initiated, the values of the properties for a correlation set must be identical for all the messages in all the
operations that carry the correlation set and occur within the corresponding scope until its completion. The semantics of a process
in which this consistency constraint is violated is undefined. Similarly undefined is the semantics of a process in which an activity
with the initiate attribute set to no attempts to use a correlation set that has not been previously initiated.

As the following examples illustrate, a correlation set is initiated when the activity within which it is used applies the attribute
initiate="yes" to the set.

Following is an extended example of correlation. It begins by defining four message properties: customerID, orderNumber,
vendorID and invoiceNumber. All of these properties are defined as part of the "http://example.com/supplyCorrelation.wsdl"
namespace defined by the document.

Note that these properties are global names with known (simple) XMLSchema types. They are abstract in the sense that their
occurrence in messages needs to be separately specified (see Message Properties). The example continues by defining purchase
order and invoice messages and by using the concept of aliasing to map the abstract properties to fields within the message data
identified by selection.

 <correlationSets>?
 <correlationSet name="ncname" properties="qname-list"/>+
 </correlationSets>

<definitions name="properties"
 targetNamespace="http://example.com/supplyCorrelation.wsdl"
 xmlns:tns="http://example.com/supplyCorrelation.wsdl"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define correlation properties -->
 <bpws:property name="customerID" type="xsd:string"/>
 <bpws:property name="orderNumber" type="xsd:int"/>
 <bpws:property name="vendorID" type="xsd:string"/>
 <bpws:property name="invoiceNumber" type="xsd:int"/>
</definitions>

<definitions name="correlatedMessages"
 targetNamespace="http://example.com/supplyMessages.wsdl"
 xmlns:tns="http://example.com/supplyMessages.wsdl"
 xmlns:cor="http://example.com/supplyCorrelation.wsdl"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <!—define schema types for PO and invoice information -->
 <types>
 <xsd:schema>
 <xsd:complexType name="PurchaseOrder">
 <xsd:element name="CID" type="xsd:string"/>
 <xsd:element name="order" type="xsd:int"/>
 ...
 </xsd:complexType>
 <xsd:complexType name="PurchaseOrderResponse">
 <xsd:element name="CID" type="xsd:string"/>
 <xsd:element name="order" type="xsd:int"/>
 ...
 </xsd:complexType>

 <xsd:complexType name="PurchaseOrderReject">
 <xsd:element name="CID" type="xsd:string"/>

Finally, the portType used is defined, in a separate WSDL document.

Both the properties and their mapping to purchase order and invoice messages will be used in the following correlation examples.

 <xsd:element name="order" type="xsd:int"/>
 <xsd:element name="reason" type="xsd:string"/>
 ...
 </xsd:complexType>
 <xsd:complexType name="Invoice">
 <xsd:element name="VID" type="xsd:string"/>
 <xsd:element name="invNum" type="xsd:int"/>
 </xsd:complexType>
 </xsd:schema>
 </types>
 <message name="POMessage">
 <part name="PO" type="tns:PurchaseOrder"/>
 </message>
 <message name="POResponse">
 <part name="RSP" type="tns:PurchaseOrderResponse"/>
 </message>
 <message name="POReject">
 <part name="RJCT" type="tns:PurchaseOrderReject"/>
 </message>
 <message name="InvMessage">
 <part name="IVC" type="tns:Invoice"/>
 </message>
 <bpws:propertyAlias propertyName="cor:customerID"
 messageType="tns:POMessage" part="PO"
 query="/PO/CID"/>
 <bpws:propertyAlias propertyName="cor:orderNumber"
 messageType="tns:POMessage" part="PO"
 query="/PO/Order"/>
 <bpws:propertyAlias propertyName="cor:vendorID"
 messageType="tns:InvMessage" part="IVC"
 query="/IVC/VID"/>
 <bpws:propertyAlias propertyName="cor:invoiceNumber"
 messageType="tns:InvMessage" part="IVC"
 query="/IVC/InvNum"/>
 ...
</definitions>

<definitions name="purchasingPortType"
 targetNamespace="http://example.com/puchasing.wsdl"
 xmlns:smsg="http://example.com/supplyMessages.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<portType name="PurchasingPT">
 <operation name="SyncPurchase">
 <input message="smsg:POMessage"/>
 <output message="smsg:POResponse"/>
 <fault name="tns:RejectPO" message="smsg:POReject"/>
 </operation>
 <operation name="AsyncPurchase">
 <input message="smsg:POMessage"/>
 </operation>
</portType>
<portType name="BuyerPT">
 <operation name="AsyncPurchaseResponse">
 <input message="smsg:POResponse"/>
 <fault name="tns:RejectPO" message="smsg:POReject"/>
 </operation>
 <operation name="AsyncPurchaseReject">
 <input message="smsg:POReject"/>
 </operation>
</portType>
</definitions>

Correlation set names are used in invoke, receive, and reply activities (see Invoking Web Service Operations and
Providing Web Service Operations), in the onMessage branches of pick activities, and in the onMessage variant of event handlers
(see Pick and Message Events). These sets are used to indicate which correlation sets (i.e., the corresponding property sets) occur
in the messages being sent and received. The initiate attribute is used to indicate whether the set is being initiated. When the
attribute is set to "yes" the set is initiated with the values of the properties occurring in the message being sent or received.
Finally, in the case of invoke, when the operation invoked is synchronous request/response, a pattern attribute is used to indicate
whether the correlation applies to the outbound (request) message, the inbound (response) message, or both. These ideas are
explained in more detail in the context of the use of correlation in the rest of this example.

A message can carry the tokens of one or more correlation sets. The first example shows an interaction in which a purchase order
is received in a one-way inbound request and a confirmation including an invoice is sent in the asynchronous response. The
PurchaseOrder correlationSet is used in both activities so that the asynchronous response can be correlated to the request at the
buyer. The receive activity initiates the PurchaseOrder correlationSet. The buyer is therefore the initiator and the receiving
business process is a follower for this correlationSet. The invoke activity sending the asynchronous response also initiates a new
correlationSet Invoice. The business process is the initiator of this correlated exchange and the buyer is a follower. The response
message is thus a part of two separate conversations, and forms the bridge between them.

In the following, the prefix SP: represents the namespace "http://example.com/puchasing.wsdl".

Alternatively, the response might have been a rejection (such as an "out-of-stock" message), which in this case terminates the
conversation correlated by the correlationSet PurchaseOrder without starting a new one correlated with Invoice. Note that the
initiate attribute is missing. It therefore has the default value of "no".

The use of correlation with synchronous Web Service invocation is illustrated by the alternative synchronous purchasing
operation used by an invoke activity used in the buyer's business process.

 <correlationSets
 xmlns:cor="http://example.com/supplyCorrelation.wsdl">
 <!-- Order numbers are particular to a customer,
 this set is carried in application data -->
 <correlationSet name="PurchaseOrder"
 properties="cor:customerID cor:orderNumber"/>

 <!-- Invoice numbers are particular to a vendor,
 this set is carried in application data -->
 <correlationSet name="Invoice"
 properties="cor:vendorID cor:invoiceNumber"/>
 </correlationSets>

 <receive partnerLink="Buyer" portType="SP:PurchasingPT"
 operation="AsyncPurchase"
 variable="PO">
 <correlations>
 <correlation set="PurchaseOrder" initiate="yes">
 </correlations>
 </receive>

 <invoke partnerLink="Buyer" portType="SP:BuyerPT"
 operation="AsyncPurchaseResponse" inputVariable="POResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiate="no" pattern="out">
 <correlation set="Invoice" initiate="yes" pattern="out">
 </correlations>
 </invoke>

 <invoke partnerLink="Buyer" portType="SP:BuyerPT"
 operation="AsyncPurchaseReject" inputVariable="POReject">
 <correlations>
 <correlation set="PurchaseOrder" pattern="out">
 </correlations>
 </invoke>

Note that an invoke consists of two messages: an outgoing request message and an incoming reply message. The correlation sets
applicable to each message must be separately considered because they can be different. In this case the PurchaseOrder
correlation applies to the outgoing request that initiates it, while the Invoice correlation applies to the incoming reply and is
initiated by the reply. Because the PurchaseOrder correlation is initiated by an outgoing message, the buyer is the initiator of that
correlation but a follower of the Invoice correlation because the values of the correlation properties for Invoice are initiated by
the seller in the reply received by the buyer.

11 Basic Activities

11.1 Standard Attributes for Each Activity

Each activity has optional standard attributes: a name, a join condition, and an indicator whether a join fault should be suppressed
if it occurs. A join condition is used to specify requirements about concurrent paths reaching at an activity. See Flow for a full
discussion of the last two attributes. The default value of suppressJoinFailure is no.

The value of the joinCondition attribute is a Boolean-valued expression in the expression language indicated for this document
(see Expressions). The default value of the join condition for the default expression language XPath is the logical OR of the link
status of all incoming links of this activity.

11.2 Standard Elements for Each Activity

Each BPEL4WS activity has optional nested standard elements <source> and <target>. The use of these elements is required for
establishing synchronization relationships through links (see Flow). Each link is defined independently and given a name. The link
name is used as value of the linkName attribute of the <source> element. An activity MAY declare itself to be the source of one or
more links by including one or more <source> elements. Each <source> element MUST use a distinct link name. Similarly, an
activity MAY declare itself to be the target of one or more links by including one or more <target> elements. Each <source>
element associated with a given activity MUST use a link name distinct from all other <source> elements at that activity. Each
<target> element associated with a given activity MUST use a link name distinct from all other <target> elements at that activity.
Each <source> element MAY optionally specify a transition condition that functions as a guard for following this specified link
(see Flow). If the transition condition is omitted, it is deemed to be present with the constant value true.
<source linkName="ncname" transitionCondition="bool-expr"?/>*
<target linkName="ncname"/>*

11.3 Invoking Web Service Operations

Web Services provided by partners (see Partner Link Types, Partner Links, and Endpoint References) can be used to perform work
in a BPEL4WS business process. Invoking an operation on such a service is a basic activity. Recall that such an operation can be a
synchronous request/response or an asynchronous one-way operation. BPEL4WS uses the same basic syntax for both with some
additional options for the synchronous case.

An asynchronous invocation requires only the input variable of the operation because it does not expect a response as part of the
operation (see Providing Web Service Operations). A synchronous invocation requires both an input variable and an output

 <invoke partnerLink="Seller" portType="SP:PurchasingPT" operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiate="yes"
 pattern="out">
 <correlation set="Invoice" initiate="yes"
 pattern="in">
 </correlations>
 <catch faultName="SP:RejectPO" faultVariable="POReject">
 <!-- handle the fault -->
 </catch>
 </invoke>

name="ncname"?
joinCondition="bool-expr"?
suppressJoinFailure="yes|no"?>

variable. One or more correlation sets can be specified to correlate the business process instance with a stateful service at the
partner's side (see Correlation). However, these attributes are both syntactically optional since they are absolutely required only in
executable processes.

In the case of a synchronous invocation, the operation might return a WSDL fault message. This results in a BPEL4WS fault. Such a
fault can be caught locally by the activity, and in this case the specified activity will be performed. If a fault is not caught locally by
the activity it is thrown to the scope that encloses the activity (see Scopes and Fault Handlers).

Note that a WSDL fault is identified in BPEL4WS by a qualified name formed by the target namespace of the corresponding
portType and the fault name. This uniform naming mechanism must be followed even though it does not accurately match
WSDL's fault-naming model. Because WSDL does not require that fault names be unique within the namespace where the service
operation is defined, all faults sharing a common name and defined in the same namespace are indistinguishable in BPEL4WS. In
WSDL 1.1 it is necessary to specify a portType name, an operation name, and the fault name to uniquely identify a fault. This limits
the ability to use fault-handling mechanisms to deal with invocation faults. This is an important shortcoming of the WSDL fault
model that will be removed in future versions of WSDL.

Finally, an activity can be associated with another activity that acts as its compensation action. This compensation handler can be
invoked either explicitly or by the default compensation handler of the enclosing scope (see Scopes and Compensation Handlers).

Semantically, the specification of local fault and/or compensation handlers is equivalent to the presence of an implicit scope
immediately enclosing the activity and providing those handlers. The name of such an implicit scope is always the same as the
name of the activity it encloses.

See Correlation for an explanation of the correlation semantics. The following example shows an invocation with a nested
compensation handler. Other examples are shown throughout the specification.

11.4 Providing Web Service Operations

A business process provides services to its partners through receive activities and corresponding reply activities. A receive activity
specifies the partner link it expects to receive from, and the port type and operation that it expects the partner to invoke. In
addition, it may specify a variable that is to be used to receive the message data received. However, this attribute is syntactically
optional since it is absolutely required only in executable processes.

 <invoke partnerLink="ncname" portType="qname" operation="ncname"
 inputVariable="ncname"? outputVariable="ncname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?
 pattern="in|out|out-in"/>+
 </correlations>
 <catch faultName="qname" faultVariable="ncname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 <compensationHandler>?
 activity
 </compensationHandler>
 </invoke>

 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="CancelPurchase"
 inputVariable="getResponse"
 outputVariable="getConfirmation">
 </compensationHandler>
 </invoke>

In addition, receive activities play a role in the lifecycle of a business process. The only way to instantiate a business process in
BPEL4WS is to annotate a receive activity with the createInstance attribute set to "yes" (see Pick for a variant). The default
value of this attribute is "no". A receive activity annotated in this way MUST be an initial activity in the process, that is, the only
other basic activities may potentially be performed prior to or simultaneously with such a receive activity MUST be similarly
annotated receive activities.

It is permissible to have the createInstance attribute set to "yes" for a set of concurrent initial activities. In this case the intent is
to express the possibility that any one of a set of required inbound messages can create the process instance because the order in
which these messages arrive cannot be predicted. All such receive activities MUST use the same correlation sets (see
Correlation). Compliant implementations MUST ensure that only one of the inbound messages carrying the same correlation set
tokens actually instantiates the business process (usually the first one to arrive, but this is implementation dependent). The other
incoming messages in the concurrent initial set MUST be delivered to the corresponding receive activities in the already created
instance.

A business process instance MUST NOT simultaneously enable two or more receive activities for the same partnerLink, portType,
operation and correlation set(s). Note that receive is a blocking activity in the sense that it will not complete until a matching
message is received by the process instance. The semantics of a process in which two or more receive actions for the same
partnerLink, portType, operation and correlation set(s) may be simultaneously enabled is undefined. For the purposes of this
constraint, an onMessage clause in a pick and an onMessage event handler are equivalent to a receive (see Pick and
Message Events).

A reply activity is used to send a response to a request previously accepted through a receive activity. Such responses are only
meaningful for synchronous interactions. An asynchronous response is always sent by invoking the corresponding one-way
operation on the partner link. A reply activity may specify a variable that contains the message data to be sent in reply. However,
this attribute is syntactically optional since it is absolutely required only in executable processes.

The correlation between a request and the corresponding reply is based on the constraint that more than one outstanding
synchronous request from a specific partner link for a particular portType, operation and correlation set(s) MUST NOT be
outstanding simultaneously. The semantics of a process in which this constraint is violated is undefined. For the purposes of this
constraint, an onMessage clause in a pick is equivalent to a receive (see Pick). Moreover, a reply activity must always be
preceded by a receive activity for the same partner link, portType and (request/response) operation, such that no reply has been
sent for that receive activity. The semantics of a process in which this constraint is violated is undefined.

Note that the <reply> activity corresponding to a given request has two potential forms. If the response to the request is normal,
the faultName attribute is not used and the variable attribute, when present, will indicate a variable of the normal response
message type. If, on the other hand, the response indicates a fault, the faultName attribute is used and the variable attribute,
when present, will indicate a variable of the message type for the corresponding fault.

11.5 Updating Variable Contents

Variable update occurs through the assignment activity, which is described in Assignment.

11.6 Signaling Faults

<receive partnerLink="ncname" portType="qname" operation="ncname"
 variable="ncname"? createInstance="yes|no"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?>+
 </correlations>
 </receive>

 <reply partnerLink="ncname" portType="qname" operation="ncname"
 variable="ncname"? faultName="qname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?>+
 </correlations>
 </reply>

The throw activity can be used when a business process needs to signal an internal fault explicitly. Every fault is required to have a
globally unique QName. The throw activity is required to provide such a name for the fault and can optionally provide a variable
of data that provides further information about the fault. A fault handler can use such data to analyze and handle the fault and
also to populate any fault messages that need to be sent to other services.

BPEL4WS does not require fault names to be defined prior to their use in a throw element. An application or process-specific fault
name can be directly used by using an appropriate QName as the value of the faultName attribute and providing a variable with
the fault data if required. This provides a very lightweight mechanism to introduce application-specific faults.

A simple example of a throw activity that does not provide a variable of fault data is:

11.7 Waiting

The wait activity allows a business process to specify a delay for a certain period of time or until a certain deadline is reached (see
Expressions for the grammar of duration expressions and deadline expressions).

A typical use of this activity is to invoke an operation at a certain time (in this case a constant, but more typically an expression
dependent on process state):

11.8 Doing Nothing

There is often a need to use an activity that does nothing, for example when a fault needs to be caught and suppressed. The empty
activity is used for this purpose. The syntax is obvious and minimal.

12 Structured Activities
Structured activities prescribe the order in which a collection of activities take place. They describe how a business process is
created by composing the basic activities it performs into structures that express the control patterns, data flow, handling of faults
and external events, and coordination of message exchanges between process instances involved in a business protocol.

The structured activities of BPEL4WS include:

Ordinary sequential control between activities is provided by sequence, switch, and while.
Concurrency and synchronization between activities is provided by flow.

 <throw faultName="qname" faultVariable="ncname"? standard-attributes>
 standard-elements
 </throw>

<throw xmlns:FLT="http://example.com/faults" faultName="FLT:OutOfStock"/>

 <wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

<sequence>
 <wait until="'2002-12-24T18:00+01:00'"/>

 <invoke partnerLink="CallServer" portType="AutomaticPhoneCall"
 operation="TextToSpeech"
 inputVariable="seasonalGreeting">
 </invoke>
</sequence>

 <empty standard-attributes>
 standard-elements
 </empty>

Nondeterministic choice based on external events is provided by pick.

Structured activities can be used recursively in the usual way. A key point to understand is that structured activities can be nested
and combined in arbitrary ways. This provides a somewhat unusual but very attractive free blending of the graph-like and
program-like control regimes that have traditionally been seen as alternatives rather than orthogonal composable features. A
simple example of such blended usage is found in the Initial Example.

It is important to emphasize that the word activity is used throughout the following to include both basic and structured activities.

12.1 Sequence

A sequence activity contains one or more activities that are performed sequentially, in the order in which they are listed within the
<sequence> element, that is, in lexical order. The sequence activity completes when the final activity in the sequence has
completed.

Example:

12.2 Switch

The switch structured activity supports conditional behavior in a pattern that occurs quite often. The activity consists of an
ordered list of one or more conditional branches defined by case elements, followed optionally by an otherwise branch. The case
branches of the switch are considered in the order in which they appear. The first branch whose condition holds true is taken and
provides the activity performed for the switch. If no branch with a condition is taken, then the otherwise branch is taken. If the
otherwise branch is not explicitly specified, then an otherwise branch with an empty activity is deemed to be present. The switch
activity is complete when the activity of the selected branch completes.

Example:

 <sequence standard-attributes>
 standard-elements
 activity+
 </sequence>

<sequence>
 <flow>
 ...
 </flow>
 <scope>
 ...
 </scope>
 <pick>
 ...
 </pick>
</sequence>

 <switch standard-attributes>
 standard-elements
 <case condition="bool-expr">+
 activity
 </case>
 <otherwise>?
 activity
 </otherwise>
 </switch>

<switch xmlns:inventory="http://supply-chain.org/inventory"
 xmlns:FLT="http://example.com/faults">
 <case condition= "bpws:getVariableProperty(stockResult,level) > 100">
 <flow>
 <!-- perform fulfillment work -->
 </flow>

12.3 While

The while activity supports repeated performance of a specified iterative activity. The iterative activity is performed until the given
Boolean while condition no longer holds true.

Example:

12.4 Pick

The pick activity awaits the occurrence of one of a set of events and then performs the activity associated with the event that
occurred. The occurrence of the events is often mutually exclusive (the process will either receive an acceptance message or a
rejection message, but not both). If more than one of the events occurs, then the selection of the activity to perform depends on
which event occurred first. If the events occur almost simultaneously, there is a race and the choice of activity to be performed is
dependent on both timing and implementation.

The form of pick is a set of branches of the form event/activity, and exactly one of the branches will be selected based on the
occurrence of the event associated with it before any others. Note that after the pick activity has accepted an event for handling,
the other events are no longer accepted by that pick. The possible events are the arrival of some message in the form of the
invocation of an inbound one-way or request/response operation, or an "alarm" based on a timer (in the sense of an alarm clock).

A special form of pick is used when the creation of an instance of the business process could occur as a result of receiving one of
a set of possible messages. In this case, the pick itself has a createInstance attribute with a value of yes (the default value of the
attribute is no). In such a case, the events in the pick must all be inbound messages and each of those is equivalent to a receive
with the attribute "createInstance=yes". No alarms are permitted for this special case.

Each pick activity MUST include at least one onMessage event. The semantics of the onMessage event is identical to a receive
activity regarding the optional nature of the variable attribute and the constraint regarding simultaneous enablement of
conflicting receive actions. For the latter, recall that the semantics of a process in which two or more receive actions for the same
partner link, portType, operation and correlation set(s) may be simultaneously enabled is undefined (see
Providing Web Service Operations). Enablement of each onMessage handler is equivalent to enablement of the corresponding
receive activity for the purposes of this constraint.

 </case>
 <case condition="bpws:getVariableProperty(stockResult,level) >= 0">
 <throw faultName="FLT:OutOfStock"
 variable="RestockEstimate"/>
 </case>
 <otherwise>
 <throw faultName="FLT:ItemDiscontinued"/>
 </otherwise>
</switch>

 <while condition="bool-expr" standard-attributes>
 standard-elements
 activity
 </while>

 ...
<variable name="orderDetails" type="xsd:integer"/>
 ...
<while condition=
 "bpws:getVariableData(orderDetails) > 100">
 <scope>
 ...
 </scope>
</while>

 <pick createInstance="yes|no"? standard-attributes>
 standard-elements
 <onMessage partnerLink="ncname" portType="qname"
 operation="ncname" variable="ncname"?>+

The pick activity completes when one of the branches is triggered by the occurrence of its associated event and the
corresponding activity completes. The following example shows a typical usage of pick. Such a pick activity can occur in a loop
that is accepting line items for a large order, but a completion action is enabled as an alternative event.

12.5 Flow

The flow construct provides concurrency and synchronization. The grammar for flow is:

The standard attributes and standard elements for activities nested within a flow are especially significant because the standard
attributes and elements primarily exist to provide flow-related semantics to activities.

The most fundamental semantic effect of grouping a set of activities in a flow is to enable concurrency. A flow completes when all
of the activities in the flow have completed. Completion of an activity in a flow includes the possibility that it will be skipped if its
enabling condition turns out to be false (see Dead-Path-Elimination (DPE)). Thus the simplest use of flow is equivalent to a nested
concurrency construct. In the following example, the two invoke activities are enabled to start concurrently as soon as the flow is
started. The completion of the flow occurs after both the seller and the shipper respond (assuming the invoke operations were
synchronous request/response). The bank is invoked only after the flow completes.

 <correlations>?
 <correlation set="ncname" initiate="yes|no"?>+
 </correlations>
 activity
 </onMessage>
 <onAlarm (for="duration-expr" | until="deadline-expr")>*
 activity
 </onAlarm>
 </pick>

<pick>
 <onMessage partnerLink="buyer"
 portType="orderEntry"
 operation="inputLineItem"
 variable="lineItem">
 <!-- activity to add line item to order -->
 </onMessage>
 <onMessage partnerLink="buyer"
 portType="orderEntry"
 operation="orderComplete"
 variable="completionDetail">
 <!-- activity to perform order completion -->
 </onMessage>

 <!-- set an alarm to go after 3 days and 10 hours -->
 <onAlarm for="'P3DT10H'">
 <!-- handle timeout for order completion -->
 </onAlarm>
</pick>

 <flow standard-attributes>
 standard-elements
 <links>?
 <link name="ncname">+
 </links>
 activity+
 </flow>

 <sequence>
 <flow>
 <invoke partnerLink="Seller" .../>
 <invoke partnerLink="Shipper" .../>
 </flow>
 <invoke partnerLink="Bank" .../>

More generally, a flow activity creates a set of concurrent activities directly nested within it. It further enables expression of
synchronization dependencies between activities that are nested directly or indirectly within it. The link construct is used to
express these synchronization dependencies. A link has a name and all the links of a flow activity MUST be defined separately
within the flow activity. The standard source and target elements of an activity are used to link two activities. The source of the
link MUST specify a source element specifying the link's name and the target of the link MUST specify a target element
specifying the link's name. The source activity MAY also specify a transition condition through the transitionCondition attribute
of the source element. If the transitionCondition attribute is omitted, it is deemed to be present with a value of "true". Every
link declared within a flow activity MUST have exactly one activity within the flow as its source and exactly one activity within the
flow as its target. The source and target of a link MAY be nested arbitrarily deeply within the (structured) activities that are directly
nested within the flow, except for the boundary-crossing restrictions.

The following example shows that links can cross the boundaries of structured activities. There is a link named "CtoD" that starts
at activity C in sequence Y and ends at activity D, which is directly nested in the enclosing flow. The example further illustrates that
sequence X must be performed prior to sequence Y because X is the source of the link named "XtoY" that is targeted at sequence
Y.

In general, a link is said to cross the boundary of a syntactic construct if the source activity for the link is nested within the
construct but the target activity is not, or vice versa, if the target activity for the link is nested within the construct but the source
activity is not.

A link MUST NOT cross the boundary of a while activity, a serializable scope, an event handler or a compensation handler (see
Scopes for the specification of event, fault and compensation handlers). In addition, a link that crosses a fault-handler boundary
MUST be outbound, that is, it MUST have its source activity within the fault handler and its target activity within a scope that
encloses the scope associated with the fault handler. Finally, a link MUST NOT create a control cycle, that is, the source activity
must not have the target activity as a logically preceding activity, where an activity A logically precedes an activity B if the
initiation of B semantically requires the completion of A. Therefore, directed graphs created by links are always acyclic.

12.5.1 Link Semantics

In the rest of this section, the links for which activity A is the source will be referred to as A's outgoing links, and the links for
which activity A is the target will be referred to as A's incoming links. If activity X is the target of a link that has activity Y as the
source, X has a synchronization dependency on Y.

Every activity that is the target of a link has an implicit or explicit joinCondition attribute associated with it. This applies even
when an activity has exactly one incoming link. If the explicit joinCondition is missing, the implicit condition requires the status
of at least one incoming link to be positive (see below for an explanation of link status). A join condition is a Boolean expression
(see Expressions). The expression for a join condition for an activity MUST be constructed using only Boolean operators and the
bpws:getLinkStatus function (see Expressions) applied to incoming links at the activity.

Without considering links, the semantics of business processes, scopes, and structured activities determine when a given activity
is ready to start. For example, the second activity in a sequence is ready to start as soon as the first activity completes. An activity

 </sequence>

 <flow>
 <links>
 <link name="XtoY"/>
 <link name="CtoD"/>
 </links>
 <sequence name="X">
 <source linkName="XtoY"/>
 <invoke name="A" .../>
 <invoke name="B" .../>
 </sequence>
 <sequence name"Y">
 <target linkName="XtoY"/>
 <receive name="C" ...>
 <source linkName="CtoD"/>
 </receive>
 <invoke name="E" .../>
 </sequence>
 <invoke partnerLink="D" ...>
 <target linkName="CtoD"/>
 </invoke>
 </flow>

that defines the behavior of a branch in a switch is ready to start if and when that branch is chosen. Similarly, an activity nested
directly within a flow is ready to start as soon as the flow itself starts, because flow is fundamentally a concurrency construct.

If an activity that is ready to start in this sense has incoming links, then it does not start until the status of all its incoming links has
been determined and the (implicit or explicit) join condition associated with the activity has been evaluated. The precise semantics
of link status evaluation are as follows:

When activity A completes, the following steps are performed to determine the effect of the synchronization links on other
activities:

Determine the status of all outgoing links for A. The status will be either positive or negative. To determine the status for
each link its transitionCondition is evaluated. Note that the evaluation is carried out with the actual values of the variables
referenced in the transition condition expression. If some of the variables are modified in a concurrent behavior path, the
result of the transition condition evaluation may depend nondeterministically on the timing of behavior among concurrent
activities. If the value is true the status is positive, otherwise it is negative.
For each activity B that has a synchronization dependency on A, check whether:

B is ready to start (except for its dependency on incoming links) in the sense described above.
The status of all incoming links for B has been determined.

If both these conditions are true, then evaluate the join condition for B. If the join condition evaluates to false, a standard
bpws:joinFailure fault is thrown, otherwise activity B is started.

If, during the performance of structured activity S, the semantics of S dictate that activity X nested within S will not be performed
as part of the behavior of S, then the status of all outgoing links from X is set to negative. An example is an activity within a branch
that is not taken in a switch activity, or activities that were not completed in a scope in which processing was halted due to a fault,
including a bpws:joinFailure (see Scopes and Compensation Handlers).

Note that in general multiple target activities will be enabled based on the completion of an activity with multiple outgoing links;
because of this, such an activity is often called a fork activity.

12.5.2 Dead-Path-Elimination (DPE)

In cases where the control flow is largely defined by networks of links, the normal interpretation of a false join condition for
activity A is that A should not be performed, rather than that a fault has occurred. Moreover, there is a need to propagate the
consequences of this decision by assigning a negative status to the outgoing links for A. BPEL4WS makes it easy to express these
semantics by using an attribute suppressJoinFailure on an activity. A value of "yes" for this attribute has the effect of
suppressing the bpws:joinFailure fault for the activity and all nested activities, except where the effect is overridden by using
the suppressJoinFailure attribute with a value of "no" in a nested activity. Suppressing the bpws:joinFailure is equivalent to
the fault being logically caught by a special default handler attached to an implicit scope that immediately encloses just the
activity with the join condition. The default handler behavior is an empty activity, that is, the handler suppresses the fault and does
nothing about it. However, because the activity with the join condition was not performed, its outgoing links are automatically
assigned a negative status according to the rules of Link Semantics. Thus within an activity with the value of the
suppressJoinFailure attribute set to "yes", the semantics of a join condition that evaluates to false are to skip the associated
activity and to set the status of all outgoing links from that activity to negative. This is called dead-path-elimination because in a
graph-like interpretation of networks of links with transition conditions, these semantics have the effect of propagating negative
link status transitively along entire paths formed by consecutive links until a join condition is reached that evaluates to true.

Note that the name of the implicit scope (created to suppress the bpws:joinFailure) that immediately encloses an activity with a
join condition is exactly the same as the name of the activity itself. In case this is an invoke activity (see
Invoking Web Service Operations) with an inlined fault or compensation handler, the implicit scope for the fault and
compensation handlers is merged with the implicit scope described here, which adds an additional fault handler for the
bpws:joinFailure.

The default value of the suppressJoinFailure attribute is "no". This is to avoid unexpected behavior in simple use cases where
complex graphs are not involved and links without transition conditions are used for synchronization. The designers of such use
cases are likely to be naive about link semantics and are likely to be surprised by the consequences of a default interpretation that
suppresses a well-defined fault. For example, consider the interpretation of the Initial Example with the suppressJoinFailure
attribute set to "yes". Suppose further that the invocations of the shippingProvider are enclosed in a scope that provides a fault
handler (see Scopes and Fault Handlers). If one of these invocations were to fault, the status of the outgoing link from the
invocation would be negative, and the (implicit) join condition at the target of the link would be false, but the resulting
bpws:joinFailure would be implicitly suppressed and the target activity would be silently skipped within the sequence instead of
causing the expected fault.

If universal suppression of the bpws:joinFailure is desired, it is easy to achieve by using the suppressJoinFailure attribute with
a value of "yes" in the overall process element at the root of the business process definition.

12.5.3 Flow Graph Example

In the following example, the activities with the names getBuyerInformation, getSellerInformation, settleTrade,
confirmBuyer, and confirmSeller are nodes of a graph defined through the flow activity. The following links are defined:

The link named buyToSettle starts at getBuyerInformation (specified through the corresponding source element nested in
getBuyerInformation) and ends at settleTrade (specified through the corresponding target element nested in
settleTrade).
The link named sellToSettle starts at getSellerInformation and ends at settleTrade.
The link named toBuyConfirm starts at settleTrade and ends at confirmBuyer.
The link named toSellConfirm starts at settleTrade and ends at confirmSeller.

Based on the graph structure defined by the flow, the activities getBuyerInformation and getSellerInformation can run
concurrently. The settleTrade activity is not performed before both of these activities are completed. After settleTrade
completes the two activities, confirmBuyer and confirmSeller are performed concurrently again.

12.5.4 Links and Structured Activities

Links can cross the boundaries of structured activities. When this happens, care must be taken to ensure the intended behavior of
the business process. The following example illustrates the behavior when links target activities within structured constructs.

The following flow is intended to perform the sequence of activities A, B, and C. Activity B has a synchronization dependency on
the two activities X and Y outside of the sequence, that is, B is a target of links from X and Y. The join condition at B is missing, and
therefore implicitly assumed to be the default, which is the disjunction of the status of the links targeted to B. The condition is
therefore true if at least one of the incoming links has a positive status. In this case that condition reduces to the Boolean
condition P(X,B) OR P(Y,B) based on the transition conditions on the links.

In the flow, the sequence S and the two receive activities X and Y are all concurrently enabled to start when the flow starts. Within
S, after activity A is completed, B cannot start until the status of its incoming links from X and Y is determined and the implicit join
condition is evaluated. When activities X and Y complete, the join condition for B is evaluated.

Suppose that the expression P(X,B) OR P(Y,B) evaluates to false. In this case, the standard fault bpws:joinFailure will be
thrown, because the environmental attribute suppressJoinFailure is set to "no". Thus the behavior of the flow is interrupted and
neither B nor C will be performed.

<flow suppressJoinFailure="yes">
 <links>
 <link name="buyToSettle"/>
 <link name="sellToSettle"/>
 <link name="toBuyConfirm"/>
 <link name="toSellConfirm"/>
 </links>
 <receive name="getBuyerInformation">
 <source linkName="buyToSettle"/>
 </receive>
 <receive name="getSellerInformation">
 <source linkName="sellToSettle"/>
 </receive>
 <invoke name="settleTrade"
 joinCondition="bpws:getLinkStatus('buyToSettle') and
 bpws:getLinkStatus('sellToSettle')">
 <target linkName="getBuyerInformation"/>
 <target linkName="getSellerInformation"/>
 <source linkName="toBuyConfirm"/>
 <source linkName="toSellConfirm"/>
 </invoke>
 <reply name="confirmBuyer">
 <target linkName="toBuyConfirm"/>
 </reply>
 <reply name="confirmSeller">
 <target linkName="toSellConfirm"/>
 </reply>
</flow>

If, on the other hand, the environmental attribute suppressJoinFailure is set to "yes", then B will be skipped but C will be
performed because the bpws:joinFailure will be suppressed by the implicit scope associated with B.

Finally, assume that the preceding flow is slightly rewritten by linking A, B, and C through links (with transition conditions with
constant truth-value of "true") instead of putting them into a sequence. Now, B and thus C will always be performed. Because the
join condition is a disjunction and the transition condition of link AtoB is the constant "true", the join condition will always
evaluate to "true", independent from the values of P(X,B) and P(Y,B).

<flow suppressJoinFailure="no">
 <links>
 <link name="XtoB"/>
 <link name="YtoB"/>
 </links>

 <sequence name="S">
 <receive name="A" ...>
 ...
 </receive>
 <receive name="B" ...>
 <target linkName="XtoB"/>
 <target linkName="YtoB"/>
 ...
 </receive>
 <receive name="C" ...>
 ...
 </receive>
 </sequence>

 <receive name="X" ...>
 <source linkName="XtoB" transitionCondition="P(X,B)"/>
 ...
 </receive>
 <receive name="Y" ...>
 <source linkName="YtoB" transitionCondition="P(Y,B)"/>
 ...
 </receive>
</flow>

<flow suppressJoinFailure="no">
 <links>
 <link name="AtoB"/>
 <link name="BtoC"/>
 <link name="XtoB"/>
 <link name="YtoB"/>
 </links>
 <receive name="A">
 <source linkName="AtoB"/>
 </receive>
 <receive name="B">
 <target linkName="AtoB"/>
 <target linkName="XtoB"/>
 <target linkName="YtoB"/>
 <source linkName="BtoC"/>
 </receive>
 <receive name="C">
 <target linkName="BtoC"/>
 </receive>
 <receive name="X">
 <source linkName="XtoB" transitionCondition="P(X,B)"/>
 </receive>
 <receive name="Y">
 <source linkName="YtoB" transitionCondition="P(Y,B)"/>
 </receive>
</flow>

13 Scopes
The behavior context for each activity is provided by a scope. A scope can provide fault handlers, event handlers, a compensation
handler, data variables, and correlation sets.

All scope elements are syntactically optional and some have default semantics when omitted. The syntax and semantics of scopes
are explained in detail below.

Each scope has a primary activity that defines its normal behavior. The primary activity can be a complex structured activity, with
many nested activities within it to arbitrary depth. The scope is shared by all the nested activities. In the following example, the
scope has a primary flow activity, which contains two concurrent invoke activities. Either of the invoke activities can receive one or
more types of fault responses. The fault handlers for the scope are shared by both invoke activities and can be used to catch the
faults caused by the possible fault responses.

13.1 Data Handling

A scope can have defined variables that live only within the scope. For further information see the chapter about Data Handling.

13.2 Error Handling in Business Processes

Business processes are often of long duration and use asynchronous messages for communication. They also manipulate
sensitive business data in back-end databases and line-of-business applications. Error handling in this environment is both
difficult and business critical. The use of ACID transactions is usually limited to local updates because of trust issues and because
locks and isolation cannot be maintained for the long periods during which technical and business errors and fault conditions can
occur in a business process instance. As a result, the overall business transaction can fail or be cancelled after many ACID
transactions have been committed during its progress, and the partial work done must be undone as best as possible. Error

<scope variableAccessSerializable="yes|no" standard-attributes>
 standard-elements
 <variables>?
 ...
 </variables>
 <correlationSets>?
 ...
 </correlationSets>
 <faultHandlers>?
 ...
 </faultHandlers>
 <compensationHandler>?
 ...
 </compensationHandler>
 <eventHandlers>?
 ...
 </eventHandlers>
 activity
 </scope>

 <scope>
 <faultHandlers>?
 ...
 </faultHandlers>
 <flow>
 <invoke partnerLink="Seller" portType="Sell:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse"/>
 <invoke partnerLink="Shipper"
 portType="Ship:TransportOrders"
 operation="OrderShipment"
 inputVariable="sendShipOrder"
 outputVariable="shipAck"/>
 </flow>
 </scope>

handling in business processes therefore relies heavily on the well-known concept of compensation, that is, application-specific
activities that attempt to reverse the effects of a previous activity that was carried out as part of a larger unit of work that is being
abandoned. There is a long history of work in this area regarding the use of Sagas [10] and open nested transactions [11].
BPEL4WS provides a variant of such a compensation protocol by providing the ability for flexible control of the reversal. BPEL4WS
achieves this by providing the ability to define fault handling and compensation in an application-specific manner, resulting in a
feature called Long-Running (Business) Transactions (LRTs).

It is important to understand that the notion of LRT described here is meant to be used purely within a platform-specific
implementation. There is no prescribed requirement that the business process be distributed or span multiple vendors and
platforms. For such environments, it is expected that the WS-Transaction specification [12] would be utilized to register
participants interested in the reversal notifications provided by the LRT implementation. See Appendix C – Coordination Protocol
for a detailed model of BPEL4WS LRTs based on WS-Transaction concepts.

Additionally, it is important to understand that the notion of LRT described here is purely local and occurs within a single business
process instance. There is no distributed coordination regarding an agreed-upon outcome among multiple-participant services.
The achievement of distributed agreement is an orthogonal problem outside the scope of BPEL4WS, to be solved by using the
protocols described in the WS-Transaction specification. The need to compose WS-transaction with BPEL4WS is recognized.

As an example of an LRT, consider the planning and fulfillment of a travel itinerary. This can be viewed as an LRT in which
individual service reservations can use nested transactions within the scope of the overall LRT. If the itinerary is cancelled, the
reservation transactions must be compensated for by cancellation transactions, and the corresponding payment transactions
must be compensated accordingly. For ACID transactions in databases the transaction coordinator(s) and the resources that they
control know all of the uncommitted updates and the order in which they must be reversed, and they are in full control of such
reversal. In the case of business transactions, the compensation behavior is itself a part of the business logic and protocol, and
must be explicitly specified. For example, there might be penalties or fees applied for cancellation of an airline reservation
depending on the class of ticket and the timing. If a payroll advance has been given to pay for the travel, the reservation must be
successfully cancelled before the payroll advance for it can be reversed in the form of a payroll deduction. This means the
compensation actions might need to run in the same order as the original transactions, which is not the standard or default in
most transaction systems. Using activity scopes as the definition of logical units of work, the LRT feature of BPEL4WS addresses
these requirements.

13.3 Compensation Handlers

Scopes can delineate a part of the behavior that is meant to be reversible in an application-defined way by a compensation
handler. Scopes with compensation and fault handlers can be nested without constraint to arbitrary depth.

13.3.1 Defining a Compensation Handler

A compensation handler in the current version of BPEL4WS is simply a wrapper for a compensation activity as shown below. It is
recognized that in many scenarios the compensation handler needs to receive data about the current state of the world and
return data regarding the results of the compensation.

As explained in Invoking Web Service Operations, there is a special shortcut for the invoke activity to inline a compensation
handler rather than explicitly using an immediately enclosing scope. For example:

 <compensationHandler>?
 activity
 </compensationHandler>

 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiate="yes"
 pattern="out"/>
 </correlations>

 <compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="CancelPurchase"
 inputVariable="getResponse"
 outputVariable="getConfirmation">

In this example, the original invoke activity makes a purchase and in case that purchase needs to be compensated, the
compensationHandler invokes a cancellation operation at the same port of the same partnerLink, using the response to the
purchase request as the input.

In standard syntax (without the invoke shortcut) this example would be equivalently expressed as follows:

Note that the variable getResponse can be reused later for other purposes before compensation is invoked. But the compensation
handler needs the specific response to the invoke operation that is being reversed. BPEL4WS semantics state that the
compensation handler, if invoked, will see a frozen snapshot of all variables, as they were when the scope being compensated was
completed. In other words, if the compensation handler shown here is used, the contents of getResponse that it will see and use
are exactly the contents at the time of the completion of the invoke activity it compensates. This also means that compensation
handlers cannot update live data in the variables that the business process is using. They live entirely in a snapshot world. A
compensation handler, once installed, can be thought of as a completely self-contained action that is not affected by, and does not
affect, the global state of the business process instance. It can only affect external entities.

It is not realistic to expect compensation activities to always be oblivious to the current state of the world. In fact, compensation
both affects and is affected by the current state. However, the shape of the world within which compensation is run is difficult to
anticipate. It is therefore necessary to allow the two-way interaction between compensation activities and the live world to take
place in a tightly controlled manner. In the future, BPEL4WS will add input and output parameters to compensation handlers for
this purpose.

As stated in The Lifecycle of a Business Process, if a compensation handler is specified for the business process as a whole, a
business process instance can be compensated after normal completion by platform-specific means. This functionality is enabled
by setting the enableInstanceCompensation attribute of the process to "yes".

13.3.2 Invoking a Compensation Handler

The compensation handler can be invoked by using the compensate activity, which names the scope for which the compensation
is to be performed, that is, the scope whose compensation handler is to be invoked. A compensation handler for a scope is
available for invocation only when the scope completes normally. Invoking a compensation handler that has not been installed is
equivalent to the empty activity (it is a no-op)—this ensures that fault handlers do not have to rely on state to determine which
nested scopes have completed successfully. The semantics of a process in which an installed compensation handler is invoked
more than once is undefined.

Note that in case an invoke activity has a compensation handler defined inline, the name of the activity is the name of the scope to

 <correlations>
 <correlation set="PurchaseOrder" pattern="out"/>
 </correlations>
 </invoke>
 </compensationHandler>
 </invoke>

 <scope>
 <compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="CancelPurchase"
 inputVariable="getResponse"
 outputVariable="getConfirmation">
 <correlations>
 <correlation set="PurchaseOrder" pattern="out"/>
 </correlations>
 </invoke>
 </compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiate="yes"
 pattern="out"/>
 </correlations>
 </invoke>
 </scope>

be used in the compensate activity.

The ability to explicitly invoke the compensate activity is the underpinning of the application-controlled error-handling framework
of BPEL4WS. This activity can be used only in the following parts of a business process:

In a fault handler of the scope that immediately encloses the scope for which compensation is to be performed.
In the compensation handler of the scope that immediately encloses the scope for which compensation is to be performed.

Example:

If a scope being compensated by name was nested in a loop, the instances of the compensation handlers in the successive
iterations are invoked in reverse order.

If the compensation handler for a scope is absent, the default compensation handler invokes the compensation handlers for the
immediately enclosed scopes in the reverse order of the completion of those scopes.

The <compensate/> form, in which the scope name is omitted in a compensate activity, causes this default behavior to be invoked
explicitly. This is useful when an enclosing fault or compensation handler needs to perform additional work, such as updating
variables or sending external notifications, in addition to performing default compensation for inner scopes. Note that the
<compensate/> activity in a fault or compensation handler attached to scope S causes the default-order invocation of
compensation handlers for completed scopes directly nested within S. The use of this activity can be mixed with any other user-
specified behavior except the explicit invocation of <compensate scope="Sx"/> for scope Sx nested directly within S. Explicit
invocation of compensation for such a scope nested within S disables the availability of default-order compensation, as expected.

13.4 Fault Handlers

Fault handling in a business process can be thought of as a mode switch from the normal processing in a scope. Fault handling in
BPEL4WS is always treated as "reverse work" in that its sole aim is to undo the partial and unsuccessful work of a scope in which
a fault has occurred. The completion of the activity of a fault handler, even when it does not rethrow the fault handled, is never
considered successful completion of the attached scope and compensation is never enabled for a scope that has had an
associated fault handler invoked.

The optional fault handlers attached to a scope provide a way to define a set of custom fault-handling activities, syntactically
defined as catch activities. Each catch activity is defined to intercept a specific kind of fault, defined by a globally unique fault
QName and a variable for the data associated with the fault. If the fault name is missing, then the catch will intercept all faults with
the right type of fault data. The fault variable is specified using the faultVariable attribute in a catch handler. The variable is
deemed to be declared by virtue of being used as the value of this attribute and is local to the fault handler. It is not visible or
usable outside the fault handler in which it is declared. The fault variable is optional because a fault might not have additional data
associated with it.

A fault response to an invoke activity is one source of faults, with obvious name and data aspects based on the definition of the
fault in the WSDL operation. A programmatic throw activity is another source, again with explicitly given name and data. The core
concepts and exexutable pattern extensions of BPEL4WS define several standard faults with their names and data, and there
might be other platform-specific faults such as communication failures that can occur in a business process instance. A catchAll
clause can be added to catch any fault not caught by a more specific catch handler.

 <compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

<compensate scope="RecordPayment"/>

 <faultHandlers>?
 <!-- there must be at least one fault handler or default -->
 <catch faultName="qname"? faultVariable="ncname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 </faultHandlers>

Because of the flexibility allowed in expressing the faults that a catch activity can handle, it is possible for a fault to match more
than one fault handler. The following rules are used to select the catch activity that will process a fault:

1. If the fault has no associated fault data, a catch activity that specifies a matching faultName value will be selected if present.
Otherwise, the default catchAll handler is selected if present.

2. If the fault has associated fault data, a catch activity specifying a matching faultName value and a faultVariable whose
type (WSDL message type) matches the type of the fault's data will be selected if present. Otherwise, a catch activity with
no specified faultName and with a faultVariable whose type matches the type of the fault data will be selected if present.
Otherwise, the default catchAll handler is selected if present.

If no catch or catchall is selected, the fault is not caught by the current scope and is rethrown to the immediately enclosing
scope (see Implicit Fault and Compensation Handlers for a more complete description of the default fault and compensation
handling behavior). If the fault occurs in (or is rethrown to) the global process scope, and there is no matching fault handler for
the fault at the global level, the process terminates abnormally, as though a terminate activity had been performed.

Consider the following example:

Assume that a fault named "x:foo" is thrown. The first catch will be selected if the fault carries no fault data. If there is fault data
associated with the fault, the third catch will be selected if and only if the type of the fault's data matches the type of variable
"bar", otherwise the default catchall handler will be selected. Finally, a fault with a fault variable whose type matches the type of
"bar" and whose name is not "x:foo" will be processed by the second catch. All other faults will be processed by the default
catchall handler.

Although the use of compensation can be a key aspect of the behavior of fault handlers, each handler performs an arbitrary
activity, which can even be <empty/>. When a fault handler is present, it is in charge of handling the fault. It might rethrow the
same fault or a different one, or it might handle the fault by performing cleanup and allowing normal processing to continue in
the enclosing scope.

A scope in which a fault occurred is considered to have ended abnormally, whether or not the fault was caught and handled
without rethrow by a fault handler. A compensation handler is never installed for a scope in which a fault occurred.

When a fault handler for scope S handles a fault that occurred in S without rethrowing, links that have S as the source will be
subject to regular evaluation of status after the fault has been handled, because processing in the enclosing scope is meant to be
continued.

As explained in Invoking Web Service Operations, there is a special shortcut for the invoke activity to inline fault handlers rather
than explicitly using an immediately enclosing scope. For example:

<faulthandlers>
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <catch faultVariable="bar">
 <empty/>
 </catch>
 <catch faultName="x:foo" faultVariable="bar">
 <empty/>
 </catch>
 <catchAll>
 <empty/>
 </catchAll>
</faulthandlers>

 <invoke partnerLink="Seller"
 portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <catch faultName="SP:POFault" faultVariable="POFault">
 <!-- handle the fault -->
 </catch>
 </invoke>

In this example, the original invoke makes a purchase and a fault handler is inlined to handle the case where the purchase request
results in a fault response. In standard syntax (without the invoke shortcut), this example would be equivalently expressed as
follows:

The compensation handler for scope C becomes available for invocation by the fault and compensation handlers for its
immediately enclosing scope exactly when scope C completes normally. A fault handler for scope C is available for invocation
exactly when C has commenced but has not been completed. If the scope faults before completion, then the appropriate fault
handler gets control and all other fault handlers are uninstalled. It is never possible to run more than one fault handler for the
same scope under any circumstances.

Note that availability also applies to Implicit Fault and Compensation Handlers.

The behavior of a fault handler for scope C begins by implicitly terminating all activities that are currently active and directly
enclosed within C (see Semantics of Activity Termination). The termination of these activities occurs before the specific behavior
of a fault handler is started. This also applies to the implicit fault handlers described below. The activity of a fault handler is
deemed to occur in the scope to which the fault handler is attached.

13.4.1 Implicit Fault and Compensation Handlers

Because the visibility of scope names and therefore of compensation handlers is limited to the next enclosing scope, the ability to
compensate a scope would be lost if the enclosing scope did not have a compensation handler or was missing a fault handler for
some fault. Because many faults are not programmatic or the result of operation invocation, it is not reasonable to expect an
explicit handler for every fault in every scope. BPEL4WS therefore provides default compensation and fault handlers when these
are missing. The behavior of these implicit handlers is to run available compensation handlers in the reverse order of completion
of the corresponding scopes. This is defined in more precise terms below.

Whenever a fault handler (for any fault) or the compensation handler is missing for any given scope, they are implicitly created
with the following behavior:

Fault handler:

Run all available compensation handlers for immediately enclosed scopes in the reverse order of completion of the
corresponding scopes.
Rethrow the fault to the next enclosing scope.

Compensation handler:

Run all available compensation handlers for immediately enclosed scopes in the reverse order of completion of the
corresponding scopes.

13.4.2 Semantics of Activity Termination

As stated above, the behavior of a fault handler for scope C begins by implicitly terminating all activities directly enclosed within C
that are currently active. The following paragraphs define what this means for all BPEL4WS activity types.

The assign activities are sufficiently short-lived that they are allowed to complete rather than being interrupted when termination
is forced. The evaluation of expressions when already started is also allowed to complete. Each wait, receive, reply and invoke
activity is interrupted and terminated prematurely. When a synchronous invoke activity (corresponding to a request/reply
operation) is interrupted and terminated prematurely, the response (if received) for such a terminated activity is silently discarded.
The notion of termination does not apply to empty, terminate, and throw.

<scope>
 <faultHandlers>
 <catch faultName="SP:POFault" faultVariable="POFault">
 <!-- handle the fault -->
 </catch>
 </faultHandlers>
 <invoke partnerLink="Seller"
 portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 </invoke>
</scope>

All structured activity behavior is interrupted. The iteration of while is interrupted and termination is applied to the loop body
activity. If switch has selected a branch, then the termination is applied to the activity of the selected branch. The same applies to
pick. If either of these activities has not yet selected a branch, then the switch and the pick are terminated immediately. The
sequence and flow constructs are terminated by terminating their behavior and applying termination to all nested activities
currently active within them.

Scopes provide the ability to control the semantics of forced termination to some degree. When the activity being terminated is in
fact a scope, the behavior of the scope is interrupted and the fault handler for the standard bpws:forcedTermination fault is run.
Note that this applies only if the scope is in normal processing mode. If the scope has already experienced an internal fault and
invoked a fault handler, then as stated above, all other fault handlers including the handler for bpws:forcedTermination are
uninstalled, and the forced termination has no effect. The already active fault handler is allowed to complete. .

The fault handler for the bpws:forcedTermination fault is designed like other fault handlers, but this fault handler cannot rethrow
any fault. Even if an uncaught fault occurs during its behavior, it is not rethrown to the next enclosing scope. This is because the
enclosing scope has already faulted, which is what is causing the forced termination of the nested scope.

In other respects this is a normal fault handler. Its behavior begins by implicitly (recursively) terminating all activities directly
enclosed within its associated scope that are currently active. It can invoke compensate activities. And when it is missing, it is
provided by using the same implicit behavior that is used for all other implicit fault handlers.

Note that forced termination of nested scopes occurs in innermost-first order as a result of the rule (quoted above) that the
behavior of any fault handler begins by implicitly (recursively) terminating all activities directly enclosed within its associated
scope that are currently active.

13.4.3 Handling Faults That Occur Inside Fault and Compensation Handlers

Compensation handlers are always invoked directly or indirectly as part of the processing of some fault handler E. The behavior of
a compensation handler invoked by E can cause a fault to be thrown. Such a fault, if uncaught by scopes within the chain of
compensation handlers invoked by E, is treated as being a fault within E.

If a fault occurs in a fault handler E for a scope C, the fault can be caught through the use of a scope within E. If the fault is not
caught by a scope within E, it is immediately thrown to the parent scope of C and the behavior of E terminates prematurely. In
effect, no distinction is made between faults that E rethrows deliberately and faults that occur as undesired faults in E.

13.5 Event Handlers

The whole process as well as each scope can be associated with a set of event handlers that are invoked concurrently if the
corresponding event occurs. The actions taken within an event handler can be any type of activity, such as sequence or flow, but
invocation of compensation handlers using the <compensate/> activity is not permitted. As stated earlier, the <compensate/>
activity can only be used in fault and compensation handlers. There are two types of events. First, events can be incoming
messages that correspond to a request/response or one-way operation in WSDL. For instance, a status query is likely to be a
request/response operation, whereas a cancellation may be a oneway operation. Second, events can be alarms, that go off after
user-set times. The grammar for the set of event handlers associated with a scope or process is

It is important to emphasize that event handlers are considered a part of the normal behavior of the scope, unlike fault and
compensation handlers.

13.5.1 Message Events

 <eventHandlers>?
 <!-- there must be at least one onMessage or
 onAlarm handler -->
 <onMessage partnerLink="ncname" portType="qname"
 operation="ncname"
 variable="ncname"?>*

 <correlations>?
 <correlation set="ncname" initiate="yes|no">+
 </correlations>
 activity
 </onMessage>
 <onAlarm for="duration-expr"? until="deadline-expr"?>*
 activity
 </onAlarm>
 </eventHandlers>

The onMessage tag indicates that the event specified is an event that waits for a message to arrive. The interpretation of this tag
and its attributes is very similar to a receive activity. The partnerLink attribute defines the partner link on which the request is
expected to arrive; the partnerLink must be defined in the partnerLinks section. The portType and operation attributes define
the appropriate port type and operation that is invoked by the partner in order to cause the event. The variable attribute identifies
the variable which contains the message received from the partner. Note that the operation may be either an asynchronous
(oneway) or a synchronous (request/response) operation. In the latter case the event handler is expected to use a reply activity to
send the response. The usage and interpretation of correlation is exactly the same as for receive activities. It should also be noted
that an event cannot create a process instance.

The semantics of the onMessage event is identical to a receive activity regarding the optional nature of the variable attribute and
the constraint regarding simultaneous enablement of conflicting receive actions. For the latter, recall that the semantics of a
process in which two or more receive actions for the same partner link, portType, operation and correlation set(s) may be
simultaneously enabled is undefined (see Providing Web Service Operations). Enablement of each onMessage event handler is
equivalent to enablement of the corresponding receive activity for the purposes of this constraint.

As specified in the grammar above, event handlers for message events are not permitted to carry the createInstance attribute. A
business process instance cannot be created by a message event. This is because the event handler cannot be enabled until the
instance is created.

When the message constituting an event arrives, the activity specified in the corresponding handler is carried out. The key point to
understand is that the business process is enabled to receive such messages concurrently with the normal activity of the scope to
which the event handler is attached. This allows such events to occur (or not occur) at arbitrary times and an arbitrary number of
times while the corresponding scope (which may be the entire business process instance) is active.

The following example shows the usage of an event handler to support the termination of a process instance through an external
message. Alternatively, the event handler could throw a fault to cause the ongoing work to be undone and compensated.

In this example, if the buyer invokes the cancel operation on the port type car, the terminate activity is carried out, which results
in immediate termination of the process instance without the ongoing work being undone and compensated. And this event is
attached to the global process scope and is therefore available during the lifetime of the entire business process instance.

13.5.2 Alarm events

The onAlarm tag marks a timeout event. The for attribute specifies the duration after which the event will be signaled. The clock for
the duration starts at the point in time when the associated scope starts. The alternative until attribute specifies the specific point
in time when the alarm will be fired. Exactly one of these two attributes must occur in any onAlarm event.

13.5.3 Enablement of Events

The event handlers associated with a scope are enabled when the associated scope starts .

If the event handler is associated with the global process scope, the event handler is enabled as soon as the process instance is
created. The process instance is created when the first receive activity that provides for the creation of a process instance
(indicated via the createInstance attribute set to yes) has received and processed the corresponding message. This allows the
alarm time for a global alarm event to be specified using the data provided within the message that creates a process instance, as
shown in the following example:

<process name="orderCar">
 ...
 <eventHandlers>
 <onMessage partnerLink="buyer"
 portType="car"
 operation="cancel"
 variable="cancelDetails">
 <terminate/>
 </onMessage>
 ...
 </eventHandlers>
 ...
</process>

<wsdl:definitions
 targetNamespace="http://www.example.com/wsdl/exmple"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 ...>

The message type above is used in

The onAlarm tag specifies a timer event that is fired when the duration specified in the processDuration field in the orderDetails
variable is exceeded. The value of the field is provided via the getOrder activity that receives message containing the order details
and causes the creation of a process instance for that order.

13.5.4 Processing of Events

13.5.4.1 Alarm Events

The counting of time for an alarm event with a duration starts when the enclosing event handler is activated. An alarm event goes
off when the specified time or duration has been reached. An alarm event is carried out at most once while the corresponding
scope is active. The event is disabled for the rest of the activity of the corresponding scope after it has occurred and the specified
processing has been carried out.

13.5.4.2 Message Events

A message event occurs when the appropriate message is received on the specified partner link using the specified port type and
operation. When such an event occurs, the corresponding activity is carried out. However, the event remains enabled, even for
concurrent use. Thus a particular message event can occur multiple times while the corresponding scope is active. See below for
concurrency considerations.

13.5.5 Disablement of Events

All event handlers associated with a scope are disabled when the normal processing of the scope is complete. The already
dispatched event handlers are allowed to complete. The completion of the scope as a whole is delayed until all active event
handlers have completed.

13.5.6 Fault Handling Considerations

As we stated above, event handlers are considered a part of the normal processing of the scope, i.e., active event handlers are
concurrent activities within the scope. Faults within event handlers are therefore faults within the associated scope. Moreover, if a
fault occurs within a scope, the behavior of the fault handler begins by implicitly terminating all activities directly enclosed within

 <wsdl:message name="orderDetails">
 <part name="processDuration"
 type="xsd:duration"/>
 </wsdl:message>
</wsdl:definitions>

<process name="orderCar"
 xmlns:def="http://www.example.com/wsdl/example" ...>
 ...
 <eventHandlers>
 <onAlarm for=
 "bpws:getVariableData(orderDetails,processDuration)"
 >
 ...
 </onAlarm>
 ...
 </eventHandlers>
 ...
 <variable name="orderDetails" messageType="def:orderDetails"/>
 </variable>
 ...
 <receive name="getOrder"
 partnerLink="buyer"
 portType="car"
 operation="order"
 variable="orderDetails"
 createInstance="yes"/>
 ...
</process>

the scope that are currently active. This includes the activities within currently active event handlers.

13.5.7 Concurrency Considerations

Multiple message and alarm events can occur concurrently and they are treated as concurrent activities even if they are
request/response events representing the same partner link, port type, operation and correlation sets. The constraint that there
can be at most one outstanding synchronous request on a given partner link at a given port type and operation applies here as
well (see Providing Web Service Operations). Concurrent invocation of event handlers necessarily relies heavily on the use of
serializable scoping to ensure consistent access to shared variables.

13.6 Serializable Scopes

When the variableAccessSerializable attribute is set to "yes", the scope provides concurrency control in governing access to
shared variables. Such a scope is called a serializable scope. Serializable scopes must not be nested. A scope marked with
variableAccessSerializable="yes" must be a leaf scope.

Suppose two concurrent serializable scopes, S1 and S2, access a common set of variables (external to them) for read or write
operations. The semantics of serializability ensure that the results of their behavior would be no different if all conflicting activities
(read/write and write/write activities) on any shared variable were conceptually reordered in such a way that either all activities
within S1 are completed before those in S2 or vice versa. The actual mechanisms used to ensure serializability are
implementation dependent.

The use of error handling features in a serializable scope is governed by the following rules:

The fault handlers for a serializable scope share the serializability domain of the associated scope, that is, in case a fault
occurs in a serializable scope, the behavior of the fault handler is considered part of the serializable behavior (in commonly
used implementation terms, locks are not released when making the transition to the fault handler). This is because the
repair of the fault needs a shared isolation environment to provide predictable behavior.
The compensation handler for a serializable scope does not share the serializability domain of the associated scope.
For a serializable scope with a compensation handler, the creation of the state snapshot for compensation is part of the
serializable behavior. In other words, it is always possible to reorder behavior steps as if the scope had sufficiently exclusive
access to the shared variables all the way to completion, including the creation of the snapshot.

It is useful to note that the semantics of serializable scopes are very similar to the standard isolation level "serializable" used in
database transactions.

14 Extensions for Executable Processes
In this section we define the essential extensions required for the use of BPEL4WS to define executable processes. The extensions
are grouped by the core concepts to which they apply.

14.1 Expressions

These extensions refer to the Expressions feature of BPEL4WS.

The first extension defines a standard fault for errorneous use of the XPath 1.0 function defined for extracting global property
values from variables.
bpws:getVariableProperty ('variableName', 'propertyName')

The first argument names the source variable for the data and the second is the qualified name (QName) of the global property to
select from that variable (see Message Properties). If the given property does not appear in any of the parts of the variable's
message type or the given property definition selects a node set of a size other than one, then the standard fault
bpws:selectionFailure MUST be thrown by a compliant implementation.

The second extension defines an additional XPath 1.0 function usable only in executable processes. This function extracts arbitrary
values from variables.

The first argument names the source variable for the data, the second and third arguments are optional. When present, the
second names the part to select from that variable, and the third optional argument, when present, provides an absolute location
path (with '/' meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the
document fragment representing the part.

bpws:getVariableData ('variableName', 'partName'?, 'locationPath'?)

When only the first argument is present, the function extracts the value of the variable, which in this case must be defined using
an XML Schema simple type or element. Otherwise, the return value of this function is a node set containing the single node
representing either an entire part of a message type(if the second argument is present and the third argument is absent) or the
result of the selection based on the locationPath (if both optional arguments are present). If the given locationPath selects a node
set of a size other than one during execution, then the standard fault bpws:selectionFailure MUST be thrown by a compliant
implementation.

14.2 Variables

These extensions apply to the Variables feature of BPEL4WS.

An attempt during process execution to use any part of a variable before it is initialized MUST result in the standard
bpws:uninitializedVariable fault.

14.3 Assignment

These extensions apply to the Assignment feature of BPEL4WS.

The first extension adds an additional assignment form.

In the first from-spec and to-spec variants of assignment, an optional query attribute may be used in executable processes,
yielding the forms

The value of the query attribute is a query string to identify a single value within a source or target variable part. BPEL4WS
provides an extensible mechanism for the language used in these queries. The language is specified by the attribute
"queryLanguage" of the <process> element. Compliant implementations of the current version of BPEL4WS MUST support the
use of XPath 1.0 as the query language. XPath 1.0 is indicated by the default value of the queryLanguage attribute, which is:

http://www.w3.org/TR/1999/REC-xpath-19991116

For XPath 1.0, the value of the query attribute MUST be an absolute locationPath (with '/' meaning the root of the document
fragment representing the entire part). It is used to identify the root of a subtree within the document fragment representing the
part. The location path MUST select exactly one node. If the location path selects zero nodes or more than one node during
execution, then the standard fault bpws:selectionFailure MUST be thrown by a compliant implementation.

The second extension defines a standard fault for violation of type matching constraints. If any of the matching constraints
defined in the section Type Compatibility in Assignment is violated during execution, the standard fault
bpws:mismatchedAssignmentFailure MUST be thrown by a compliant implementation.

The second extension defines the behavior of assignment in the presence of failure during execution. An important characteristic
of assignment in BPEL4WS is that assignment activities are atomic. If there is any fault during the execution of an assignment
activity, the destination variables are left unchanged as they were at the start of the activity. This applies regardless of the number
of assignment elements within the overall assignment activity.

14.4 Correlation

After a correlation set is initiated, the values of the properties for a correlation set must be identical for all the messages in all the
operations that carry the correlation set and occur within the corresponding scope until its completion. If at execution time this
constraint is violated, the standard fault bpws:correlationViolation MUST be thrown by a compliant implementation. The same
fault MUST be thrown if an activity with the initiate attribute set to no attempts to use a correlation set that has not been
previously initiated.

14.5 Web Service Operations

The first extension defines a standard fault for the case where multiple conflicting receive activities create ambiguity about
message delivery.

If during the execution of a business process instance, two or more receive activities for the same partner link, portType,
operation and correlation set(s) are in fact simultaneously enabled, then the standard fault bpws:conflictingReceive MUST be
thrown by a compliant implementation.

The second extension defines a standard fault for the case where multiple outstanding synchronous requests create an ambiguity

<from variable="ncname" part="ncname"? query="queryString"?/>
<to variable="ncname" part="ncname"? query="queryString"?/>

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/xpath.html

about response correlation.

If more than one outstanding synchronous request on a specific partner link for a particular portType, operation and correlation
set(s) is outstanding simultaneously during the execution of a business process instance, then the standard fault
bpws:conflictingRequest MUST be thrown by a compliant implementation. Note that this is semantically different from the
bpws:conflictingReceive, because it is possible to create the conflictingRequest by consecutively receiving the same request
on a specific partner link for a particular portType, operation and correlation set(s). If a reply activity is being carried out during
the execution of a business process instance and no synchronous request is outstanding for the specified partnerLink, portType,
operation and correlation set(s), then the standard fault bpws:invalidReply MUST be thrown by a compliant implementation.

The third extension specifies that the inputVariable attribute for invoke and the variable attribute for receive and reply
activities are not optional in executable processes. In addition, the outputVariable attribute is not optional for invoke when the
operation concerned is a request/response operation.

14.6 Terminating a Service Instance

The terminate activity can be used to immediately terminate the behavior of a business process instance within which the
terminate activity is performed. All currently running activities MUST be terminated as soon as possible without any fault
handling or compensation behavior.

14.7 Compensation

If an installed compensation handler is invoked more than once during the execution of a process instance, a compliant
implementation MUST throw the standard bpws:repeatedCompensation fault.

14.8 Event Handlers

This extension explains the relationship of onMessage event handlers to the standard fault extension in Web Service Operations for
multiple conflicting receive activities create ambiguity about message delivery

Enablement of an onMessage event handler is equivalent to enablement of a receive activity for the semantics of the occurrence
of the bpws:conflictingReceiveFault fault (see Providing Web Service Operations).

The inputVariable attribute for omMessage handlers is not optional in executable processes. In addition, the outputVariable
attribute is not optional for invoke when the operation concerned is a request/response operation.

15 Extensions for Business Protocols
There are two extensions for the business protocol usage pattern.

15.1 Variables

This extension clarifies the rules regarding variable initialization in abstract processes. Unlike executable processes, variables in
abstract processes do not need to be fully initialized before being used since some computation is left implicit in abstract
processes. However, since message properties are meant to represent "transparent," i.e., protocol relevant data, BPEL4WS requires
that all message properties in a message must be initialized before the message can be used, for example before the variable of
the message is used as the inputVariable in a Web Service operation invocation.

In many cases, the level of abstraction appropriate in abstract processes makes it unnecessary to use message variables in web
service interaction activities, when the intent is to simply constrain the sequencing of such activities, and the actual message data
is not relevant. To simplify these common cases it is permissible, in abstract processes, to omit the variable reference attributes
from the <invoke/>, <receive/>, and <reply/> activities. The meaning of such an omission must be stated clearly. If no variable is
specified for an incoming message, then the abstract process may not refer subsequently to the message or its properties (if any).
If the variable reference is omitted for an outgoing message, then any properties of the message are considered to have been
initialized through opaque assignment, as described in the following section.

When variable references are omitted, correlation set references may be interpreted as follows:

1. For an incoming message which initializes a correlation set (initiator case), the correlation set is deemed to be initialized.
2. For an outgoing message which initializes a correlation set (initiator case), the correlation tokens (which are message

 <terminate standard-attributes>
 standard-elements
 </terminate>

properties) are initialized through implicit opaque assignment as described above.
3. For an outgoing message which references but does not initialize a correlation set (follower case), the proper initialization of

the message properties is implicit. In this case, the already initialized correlation set itself provides the token values for the
outgoing message.

Note that it is not possible to mix the variable-using and variable-less web service interaction styles freely. If a correlation set is
initialized by rule 1 or 2 above, then outgoing messages in the same correlated exchange must also refrain from referencing a
message variable. This restriction applies because it is not possible to initialize the properties of the outgoing messages from the
correlation set alone.

15.2 Assignment

This extension adds a special form of assignment to abstract processes to permit the modeling of the non-deterministic effects of
private computation on external protocol behavior.

Abstract processes add a sixth from-spec variant to allow an opaque value to be assigned based on non-deterministic choice,
yielding the form:

The value of this form in the interpretation of assignment is chosen nondeterministically from the XSD value space of the target. It
can only be used in assignments where the "to-spec" refers to a variable property. Two distinct use cases exist for opaque
assignment. If the value space of the target is suitably constrained, then opaque assignment is a useful way to describe behavioral
alternatives where the mechanism for choosing the alternative is private or otherwise external to the process specification. For
this use case, the XSD type of the target property must be one of the following:

xsd:boolean
A type derived from xsd:string and restricted by enumeration
A type derived from any XSD integral numeric type restricted by either enumeration or a combination of minExclusive or
minInclusive and maxExclusive or maxInclusive

A second use cases exists for target properties which don't meet these requirements. When the target's value space is not
constrained, it is useful to think of opaque assignment as providing a unique identifier. Semantically, each opaque assignment of
this form should be considered to generate a unique value similar to a GUID. This style of opaque assignment is most useful to
model the initialization of properties used for correlation.

A process that uses assignment of opaque values is clearly not executable in the normal sense. However, it is feasible to emulate
possible execution traces using assignment of random values of the correct type.

16 Examples

16.1 Shipping Service

This example presents the use of a BPEL4WS abstract process to describe a rudimentary shipping service. This service handles the
shipment of orders. From the service point of view, orders are composed of a number of items. The shipping service offers two
types of shipment: shipments where the items are held and shipped together and shipment where the items are shipped
piecemeal until all of the order is accounted for.

16.1.1 Service Description

The context for the shipping service is a two-party interaction between a customer and the service. This is modeled in the
following partnerLinkType definition:

<from opaque="yes">

<plnk:partnerLinkType name="shippingLT"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">
 <plnk:role name="shippingService">
 <plnk:portType name="shippingServicePT"/>
 </plnk:role>
 <plnk:role name="shippingServiceCustomer">
 <plnk:portType name="shippingServiceCustomerPT"/>
 </plnk:role>
</plnk:partnerLinkType>

The corresponding message and portType definitions are as follows:

16.1.2 Message Properties

The properties relevant to the service behavior are:

The ship order ID that is used to correlate the ship notice(s) with the ship order (shipOrderID)
Whether the order is to be shipped complete or not (shipComplete)
The total number of items in the order (itemsTotal)
The number of items referred to in a ship notice so that, when partial shipments are acceptable, we can use this, along with
itemsTotal, to track the overall fulfillment of the shipment (itemsCount)

Here are the definitions for the properties and their aliases:

<wsdl:definitions
 targetNameSpace="http://ship.org/wsdl/shipping"
 xmlns:ship= ...>

<message name="shippingRequestMsg">
 <part name="shipOrder" type="ship:shipOrder"/>
</message>

<message name="shippingNoticeMsg">
 <part name="shipNotice" type="ship:shipNotice"/>
</message>

<portType name="shippingServicePT">
 <operation name="shippingRequest">
 <input message="shippingRequestMsg"/>
 </operation>
</portType>

<portType name="shippingServiceCustomerPT">
 <operation name="shippingNotice">
 <input message="shippingNoticeMsg"/>
 </operation>
</portType>

</wsdl:definitions>

<wsdl:definitions
 targetNamespace="http://example.com/shipProps/"
 xmlns:sns="http://ship.org/wsdl/shipping"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

 <!-- types used in abstract processes are required to be finite domains.
 The itemCountType is restricted by range -->

 <wsdl:types>
 <xsd:schema>
 <xsd:simpleType name="itemCountType">
 <xsd:restriction base="xsd:int">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="50"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>

 <bpws:property name="shipOrderID" type="xsd:int"/>
 <bpws:property name="shipComplete" type="xsd:boolean"/>
 <bpws:property name="itemsTotal" type="ship:itemCountType"/>
 <bpws:property name="itemsCount" type="ship:itemCountType"/>
 <bpws:property name="numItemsShipped" type="ship:itemCountType"/>

16.1.3 Process

Next is the process definition. For brevity, the abstract process definition does not include, for example, the handling of error
conditions (business or otherwise) that a complete description would account for. The rough outline of the process is as follows:

And here is the more complete version:

 <bpws:propertyAlias propertyName="tns:shipOrderID"
 messageType="sns:shippingRequestMsg"
 part="shipOrder"
 query="/ShipOrderRequestHeader/shipOrderID"/>

 <bpws:propertyAlias propertyName="tns:shipOrderID"
 messageType="sns:shippingNoticeMsg"
 part="shipNotice"
 query="/ShipNoticeHeader/shipOrderID"/>

 <bpws:propertyAlias propertyName="tns:shipComplete"
 messageType="sns:shippingRequestMsg"
 part="shipOrder"
 query="/ShipOrderRequestHeader/shipComplete"/>

 <bpws:propertyAlias propertyName="tns:itemsTotal"
 messageType="sns:shippingRequestMsg"
 part="shipOrder"
 query="/ShipOrderRequestHeader/itemsTotal"/>

 <bpws:propertyAlias propertyName="tns:itemsCount"
 messageType="sns:shippingNoticeMsg"
 part="shipNotice"
 query="/ShipNoticeHeader/itemsCount"/>

</wsdl:definitions>

receive shipOrder
switch
 case shipComplete
 send shipNotice
 otherwise
 itemsShipped := 0
 while itemsShipped < itemsTotal
 itemsCount := opaque // non-deterministic assignment
 // corresponding e.g. to
 // internal interaction with
 // back-end system
 send shipNotice
 itemsShipped = itemsShipped + itemsCount

<process name="shippingService"
 targetNamespace="http://acme.com/shipping"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:sns="http://ship.org/wsdl/shipping"
 xmlns:props="http://example.com/shipProps/"
 abstractProcess="yes">

<partnerLinks>
 <partnerLink name="customer"
 partnerLinkType="sns:shippingLT"
 partnerRole="shippingServiceCustomer"
 myRole="shippingService"/>
</partnerLinks>

<variables>

 <variable name="shipRequest"
 messageType="sns:shippingRequestMsg"/>
 <variable name="shipNotice"
 messageType="sns:shippingNoticeMsg"/>
 <variable name="itemsShipped"
 type="props:itemCountType"/>
</variables>

<correlationSets>
 <correlationSet name="shipOrder"
 properties="props:shipOrderID"/>
</correlationSets>

<sequence>

 <receive partnerLink="customer"
 portType="sns:shippingServicePT"
 operation="shippingRequest"
 variable="shipRequest">
 <correlations>
 <correlation set="shipOrder" initiate="yes"/>
 </correlations>
 </receive>

 <switch>
 <case condition=
 "bpws:getVariableProperty('shipRequest','props:shipComplete')" >
 <sequence>
 <assign>
 <copy>
 <from variable="shipRequest" property="props:itemsCount"/>
 <to variable="shipNotice" property="props:itemsCount"/>
 </copy>
 </assign>
 <invoke partnerLink="customer"
 portType="sns:shippingServiceCustomerPT"
 operation="shippingNotice"
 inputVariable="shipNotice">
 <correlations>
 <correlation set="shipOrder" pattern="out"/>
 </correlations>
 </invoke>
 </sequence>
 </case>
 <otherwise>
 <sequence>
 <assign>
 <copy>
 <from expression="0"/>
 <to variable="itemsShipped"/>
 </copy>
 </assign>
 <while condition=
 "bpws:getVariableData('itemsShipped') <
 bpws:getVariableProperty('shipRequest','props:itemsTotal')">
 <sequence>
 <assign>
 <copy>
 <from opaque="yes"/>
 <to variable="shipNotice" property="props:itemsCount"/>
 </copy>
 </assign>
 <invoke partnerLink="customer"
 portType="sns:shippingServiceCustomerPT"
 operation="shippingNotice"
 inputVariable="shipNotice">
 <correlations>
 <correlation set="shipOrder" pattern="out"/>

16.2 Loan Approval

This example considers a simple loan approval Web Service that provides a port where customers can send their requests for
loans. Customers of the service send their loan requests, including personal information and amount being requested. Using this
information, the loan service runs a simple process that results in either a "loan approved" message or a "loan rejected" message.
The approval decision can be reached in two different ways, depending on the amount requested and the risk associated with the
requester. For low amounts (less than $10,000) and low-risk individuals, approval is automatic. For high amounts or medium and
high-risk individuals, each credit request needs to be studied in greater detail. Thus, to process each request, the loan service uses
the functionality provided by two other services. In the streamlined processing available for low-amount loans, a "risk
assessment" service is used to obtain a quick evaluation of the risk associated with the requesting individual. A full-fledged "loan
approval" service (possibly requiring direct involvement of a loan expert) is used to obtain in-depth assessments of requests
when the streamlined approval process does not apply.

16.2.1 Service Description

The WSDL portType supported by this service is shown below ("loanServicePT" portType). It is assumed that an independent
"loan.org" consortium has provided definitions of the loan service portType as well as the risk assessment and in-depth loan
approval service, so all the required WSDL definitions appear in the same WSDL document. In particular, the portTypes for the
Web Services providing the risk assessment and approval functions, and all the required partner link types that relate to the use
of these portTypes, are also defined there.

 </correlations>
 </invoke>
 <assign>
 <copy>
 <from expression=
 "bpws:getVariableData('itemsShipped')
 +
 bpws:getVariableProperty('shipNotice',
 'props:itemsCount')"/>
 <to variable="itemsShipped"/>
 </copy>
 </assign>
 </sequence>
 </while>
 </sequence>
 </otherwise>
 </switch>
</sequence>

</process>

<definitions
 targetNamespace="http://loans.org/wsdl/loan-approval"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:lns="http://loans.org/wsdl/loan-approval">

<message name="creditInformationMessage">
 <part name="firstName" type="xsd:string"/>
 <part name="name" type="xsd:string"/>
 <part name="amount" type="xsd:integer"/>
</message>

<message name="approvalMessage">
 <part name="accept" type="xsd:string"/>
</message>

<message name="riskAssessmentMessage">
 <part name="level" type="xsd:string"/>
</message>

<message name="errorMessage">

16.2.2 Process

In the business process defined below, the interaction with the customer is represented by the initial <receive> and the matching
<reply> activities. The use of risk assessment and loan approval services is represented by <invoke> elements. All these activities
are contained within a <flow>, and their (potentially concurrent) behavior is staged according to the dependencies expressed by
corresponding <link> elements. Note that the transition conditions attached to the <source> elements of the links determine
which links get activated. Dead path elimination is enabled by the value "yes" taken by the "suppressJoinFailure" attribute on the
<process> element. This implies that as certain links are set false the consequences of this decision can be propagated and the
excecution of certain activities can be skipped.

Because the operations invoked can return a fault of type "loanProcessFault", a fault handler is provided. When a fault occurs,
control is transferred to the fault handler, where a <reply> element is used to return a fault response of type
"unableToHandleRequest" to the loan requester.

 <part name="errorCode" type="xsd:integer"/>
</message>

<portType name="loanServicePT">
 <operation name="request">
 <input message="lns:creditInformationMessage"/>
 <output message="lns:approvalMessage"/>
 <fault name="unableToHandleRequest"
 message="lns:errorMessage"/>
 </operation>
</portType>

<portType name="riskAssessmentPT">
 <operation name="check">
 <input message="lns:creditInformationMessage"/>
 <output message="lns:riskAssessmentMessage"/>
 <fault name="loanProcessFault"
 message="lns:errorMessage"/>
 </operation>
</portType>

<portType name="loanApprovalPT">
 <operation name="approve">
 <input message="lns:creditInformationMessage"/>
 <output message="lns:approvalMessage"/>
 <fault name="loanProcessFault"
 message="lns:errorMessage"/>
 </operation>
</portType>

<plnk:partnerLinkType name="loanPartnerLinkType">
 <plnk:role name="loanService">
 <plnk:portType name="lns:loanServicePT"/>
 </plnk:role>
</plnk:partnerLinkType>

<plnk:partnerLinkType name="loanApprovalLinkType">
 <plnk:role name="approver">
 <plnk:portType name="lns:loanApprovalPT"/>
 </plnk:role>
</plnk:partnerLinkType>

<plnk:partnerLinkType name="riskAssessmentLinkType">
 <plnk:role name="assessor">
 <plnk:portType name="lns:riskAssessmentPT"/>
 </plnk:role>
</plnk:partnerLinkType>

</definitions>

<process name="loanApprovalProcess"
 targetNamespace="http://acme.com/loanprocessing"

 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:lns="http://loans.org/wsdl/loan-approval"
 suppressJoinFailure="yes">

 <partnerLinks>
 <partnerLink name="customer"
 partnerLinkType="lns:loanPartnerLinkType"
 myRole="loanService"/>
 <partnerLink name="approver"
 partnerLinkType="lns:loanApprovalLinkType"
 partnerRole="approver"/>
 <partnerLink name="assessor"
 partnerLinkType="lns:riskAssessmentLinkType"
 partnerRole="assessor"/>
 </partnerLinks>

 <variables>
 <variable name="request"
 messageType="lns:creditInformationMessage"/>
 <variable name="risk"
 messageType="lns:riskAssessmentMessage"/>
 <variable name="approval"
 messageType="lns:approvalMessage"/>
 <variable name="error"
 messageType="lns:errorMessage"/>
 </variables>

 <faultHandlers>
 <catch faultName="lns:loanProcessFault"
 faultVariable="error">
 <reply partnerLink="customer"
 portType="lns:loanServicePT"
 operation="request"
 variable="error"
 faultName="unableToHandleRequest"/>
 </catch>
 </faultHandlers>

 <flow>

 <links>
 <link name="receive-to-assess"/>
 <link name="receive-to-approval"/>
 <link name="approval-to-reply"/>
 <link name="assess-to-setMessage"/>
 <link name="setMessage-to-reply"/>
 <link name="assess-to-approval"/>
 </links>

 <receive partnerLink="customer"
 portType="lns:loanServicePT"
 operation="request"
 variable="request" createInstance="yes">
 <source linkName="receive-to-assess"
 transitionCondition=
 "bpws:getVariableData('request','amount')< 10000"/>
 <source linkName="receive-to-approval"
 transitionCondition=
 "bpws:getVariableData('request','amount')>=10000"/>
 </receive>

 <invoke partnerLink="assessor"
 portType="lns:riskAssessmentPT"
 operation="check"
 inputVariable="request"
 outputVariable="risk">
 <target linkName="receive-to-assess"/>

16.3 Multiple Start Activities

A process can have multiple activities that create a process instance. An example of this situation is a (simplified) business process
run by an auction house. The purpose of the business process is to collect information from the buyer and the seller of a
particular auction, report the appropriate auction results to some auction registration service, and then send the registration result
back to the seller and the buyer. Thus the business process starts with two activities, one for receiving the seller information and
one for receiving the buyer information. Because a particular auction is uniquely identified by an auction ID, the seller and the
buyer need to provide this information when sending in their data. The sequence in which the seller and buyer requests arrive at
the auction house is random. Thus, when such a request comes in, it needs to be checked whether a business process instance
exists already or not. If not, a business process instance is created. After both requests have been received, the auction registration
service is invoked. Because the invocation is done asynchronously, the auction house passes the auction ID to the auction
registration service. The auction registration service returns this auction ID in its answer so that the auction house can locate the
proper business process instance. Because there are many buyers and sellers, each of them needs to provide their endpoint
references, so that the auction service can respond properly. In addition, the auction house needs to provide its own endpoint
reference to the auction registration service so that the auction registration service can send the response back to the auction
house.

16.3.1 Service Description

The auction service offers two port types, called sellerPT and buyerPT, with appropriate operations for accepting the data provided
by the seller and the buyer. Because the processing time of the business process is lengthy, the auction service responds to the
seller and buyer through appropriate port types, sellerAnswerPT and buyerAnswerPT. These portTypes are properly combined
into two partner link types, one for the seller called sellerAuctionHouseLT and one for the buyer called buyerAuctionHouseLT.

The auction service needs two port types, called auctionRegistrationPT and auctionRegistrationAnswerPT, that provide for the
invocation of the auction registration service. The port types are part of the appropriate partner link type
auctionHouseAuctionRegistrationServiceLT.

 <source linkName="assess-to-setMessage"
 transitionCondition=
 "bpws:getVariableData('risk','level')='low'"/>
 <source linkName="assess-to-approval"
 transitionCondition=
 "bpws:getVariableData('risk','level')!='low'"/>
 </invoke>

 <assign>
 <target linkName="assess-to-setMessage"/>
 <source linkName="setMessage-to-reply"/>
 <copy>
 <from expression="'yes'"/>
 <to variable="approval" part="accept"/>
 </copy>
 </assign>

 <invoke partnerLink="approver"
 portType="lns:loanApprovalPT"
 operation="approve"
 inputVariable="request"
 outputVariable="approval">
 <target linkName="receive-to-approval"/>
 <target linkName="assess-to-approval"/>
 <source linkName="approval-to-reply" />
 </invoke>

 <reply partnerLink="customer"
 portType="lns:loanServicePT"
 operation="request"
 variable="approval">
 <target linkName="setMessage-to-reply"/>
 <target linkName="approval-to-reply"/>
 </reply>
 </flow>

</process>

<definitions
 targetNamespace="http://www.auction.com/wsdl/auctionService"
 xmlns:tns="http://www.auction.com/wsdl/auctionService"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- Messages for communication with the seller -->

 <message name="sellerData">
 <part name="creditCardNumber" type="xsd:string"/>
 <part name="shippingCosts" type="xsd:integer"/>
 <part name="auctionId" type="xsd:integer"/>
 <part name="endpointReference" type="wsa:EndpointReferenceType"/>
 </message>
 <message name="sellerAnswerData">
 <part name="thankYouText" type="xsd:string"/>
 </message>

<!-- Messages for communication with the buyer -->

 <message name="buyerData">
 <part name="creditCardNumber" type="xsd:string"/>
 <part name="phoneNumber" type="xsd:string"/>
 <part name="ID" type="xsd:integer"/>
 <part name="endpointReference" type="wsa:EndpointReferenceType"/>
 </message>
 <message name="buyerAnswerData">
 <part name="thankYouText" type="xsd:string"/>
 </message>

<!-- Messages for communication with the auction registration service -->

 <message name="auctionData">
 <part name="auctionId" type="xsd:integer"/>
 <part name="amount" type="xsd:integer"/>
 </message>
 <message name="auctionAnswerData">
 <part name="registrationId" type="xsd:integer"/>
 <part name="auctionId" type="xsd:integer"/>
 <part name="auctionHouseEndpointReference"
 type="wsa:EndpointReferenceType"/>
 </message>

<!-- Port types for interacting with the seller -->

 <portType name="sellerPT">
 <operation name="submit">
 <input message="tns:sellerData"/>
 </operation>
 </portType>
 <portType name="sellerAnswerPT">
 <operation name="answer">
 <input message="tns:sellerAnswerData"/>
 </operation>
 </portType>

<!-- Port types for interacting with the buyer -->

 <portType name="buyerPT">
 <operation name="submit">
 <input message="tns:buyerData"/>
 </operation>
 </portType>
 <portType name="buyerAnswerPT">
 <operation name="answer">

 <input message="tns:buyerAnswerData"/>
 </operation>
 </portType>

<!-- Port types for interacting with the auction registration service -->

 <portType name="auctionRegistrationPT">
 <operation name="process">
 <input message="tns:auctionData"/>
 </operation>
 </portType>
 <portType name="auctionRegistrationAnswerPT">
 <operation name="answer">
 <input message="tns:auctionAnswerData"/>
 </operation>
 </portType>

<!-- Context type used for locating business process via auction Id -->

 <bpws:property name="auctionId"
 type="xsd:string"/>

 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:sellerData"
 part="auctionId"/>

 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:buyerData"
 part="ID"/>
 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:auctionData"
 part="auctionId"/>
 <bpws:propertyAlias propertyName="tns:auctionId"
 messageType="tns:auctionAnswerData"
 part="auctionId"/>

<!-- Partner link type for seller/auctionHouse -->

 <plnk:partnerLinkType name="tns:sellerAuctionHouseLT">
 <plnk:role name="auctionHouse">
 <plnk:portType name="tns:sellerPT"/>
 </plnk:role>
 <plnk:role name="seller">
 <plnk:portType name="tns:sellerAnswerPT"/>
 </plnk:role>
 </plnk:partnerLinkType>

<!-- Partner link type for buyer/auctionHouse -->

 <plnk:partnerLinkType name="buyerAuctionHouseLT">
 <plnk:role name="auctionHouse">
 <plnk:portType name="tns:buyerPT"/>
 </plnk:role>
 <plnk:role name="buyer">
 <plnk:portType name="tns:buyerAnswerPT"/>
 </plnk:role>
 </plnk:partnerLinkType>

<!-- Partner link type for auction house/auction
 registration service -->

 <plnk:partnerLinkType name="auctionHouseAuctionRegistrationServiceLT">
 <plnk:role name="auctionRegistrationService">
 <plnk:portType name="tns:auctionRegistrationPT"/>
 </plnk:role>
 <plnk:role name="auctionHouse">
 <plnk:portType name="tns:auctionRegistrationAnswerPT"/>

16.3.2 Process

The BPEL4WS definition for the business process offered by the auction house follows:

 </plnk:role>
 </plnk:partnerLinkType>
</definitions>

<process name="auctionService"
 targetNamespace="http://www.auction.com"
 variableAccessSerializable="no"
 xmlns:as="http://www.auction.com/wsdl/auctionService"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

<!-- Partners -->

 <partnerLinks>
 <partnerLink name="seller"
 partnerLinkType="as:sellerAuctionHouseLT"
 myRole="auctionHouse" partnerRole="seller"/>
 <partnerLink name="buyer"
 partnerLinkType="as:buyerAuctionHouseLT"
 myRole="auctionHouse" partnerRole="buyer"/>
 <partnerLink name="auctionRegistrationService"
 partnerLinkType=
 "as:auctionHouseAuctionRegistrationServiceLT"
 myRole="auctionHouse"
 partnerRole="auctionRegistrationService"/>
 </partnerLinks>

<!-- Variables -->

 <variables>
 <variable name="sellerData" messageType="as:sellerData"/>
 <variable name="sellerAnswerData" messageType="as:sellerAnswerData"/>
 <variable name="buyerData" messageType="as:buyerData"/>
 <variable name="buyerAnswerData" messageType="as:buyerAnswerData"/>
 <variable name="auctionData"
 messageType="as:auctionData"/>
 <variable name="auctionAnswerData"
 messageType="as:auctionAnswerData"/>
 </variables>

<!-- Correlation set for correlating buyer and seller request
 as well as auction house and auction registration service
 exchange -->

 <correlationSets>
 <correlationSet name="auctionIdentification"
 properties="as:auctionId"/>

 </correlationSets>

<!-- Structure of the business process -->

 <sequence>

<!-- Process buyer and seller request concurrently
 Either one can create a process instance -->

 <flow>

<!-- Process seller request -->

 <receive name="acceptSellerInformation"

 partnerLink="seller"
 portType="as:sellerPT"
 operation="provide"
 variable="sellerData"
 createInstance="yes">
 <correlations>
 <correlation set="auctionIdentification"
 initiate="yes"/>
 </correlations>

 </receive>

<!-- Process buyer request -->

 <receive name="acceptBuyerInformation"
 partnerLink="buyer"
 portType="as:buyerPT"
 operation="provide"
 variable="buyerData"
 createInstance="yes">
 <correlations>
 <correlation set="auctionIdentification"
 initiate="yes"/>
 </correlations>
 </receive>

 </flow>

<!-- Invoke auction registration service
 by setting the target endpoint reference
 and setting my own endpoint reference for call back
 and receiving the answer
 Correlation of request and answer is via auction Id -->

 <assign>
 <copy>
 <from>
 <wsa:EndpointReference>
 <wsa:Address>xs:anyURI</wsa:Address>
 <wsa:ServiceName>ars:RegistrationService</wsa:ServiceName>
 </wsa:EndpointReference>
 </from>
 <to partnerLink="auctionRegistrationService"/>
 </copy>
 </assign>

 <assign>
 <copy>

 <from partnerLink="auctionRegistrationService"
 endpointReference="myRole"/>
 <to variable="auctionData"
 part="auctionHouseServiceRef"/>
 </copy>
 </assign>

 <invoke name="registerAuctionResults"
 partnerLink="auctionRegistrationService"
 portType="as:auctionRegistrationPT"
 operation="process"
 inputVariable="auctionData">
 <correlations>
 <correlation set="auctionIdentification"/>
 </correlations>
 </invoke>

 <receive name="receiveAuctionRegistrationInformation"

17 Security Considerations
Because messages can be modified or forged, it is strongly RECOMMENDED that business process implementations use WS-

 partnerLink="auctionRegistrationService"
 portType="as:auctionRegistrationAnswerPT"
 operation="answer"
 variable="auctionAnswerData">

 <correlations>
 <correlation set="auctionIdentification"/>
 </correlations>
 </receive>

<!-- Send responses back to seller and buyer -->

 <flow>

<!-- Process seller response by
 setting the seller to the endpoint reference provided by the seller
 and invoking the response -->

 <sequence>

 <assign>
 <copy>
 <from variable="sellerData"
 part="endpointReference"/>
 <to partnerLink="seller"/>
 </copy>
 </assign>

 <invoke name="respondToSeller"
 partnerLink="seller"
 portType="as:sellerAnswerPT"
 operation="answer"
 inputVariable="sellerAnswerData"/>

 </sequence>

<!-- Process buyer response by
 setting the buyer to the endpoint reference provided by the buyer
 and invoking the response -->

 <sequence>

 <assign>
 <copy>
 <from variable="buyerData"
 part="endpointReference"/>
 <to partnerLink="buyer"/>
 </copy>
 </assign>

 <invoke name="respondToBuyer"
 partnerLink="buyer"
 portType="as:buyerAnswerPT"
 operation="answer"
 inputVariable="buyerAnswerData"/>

 </sequence>

 </flow>

 </sequence>

</process>

Security to ensure messages have not been modified or forged while in transit or while residing at destinations. Similarly, invalid
or expired messages could be re-used or message headers not specifically associated with the specific message could be
referenced. Consequently, when using WS-Security, signatures MUST include the semantically significant headers and the
message body (as well as any other relevant data) so that they cannot be independently separated and re-used.

Messaging protocols used to communicate among business processes are subject to various forms of replay attacks. In addition
to the mechanisms listed above, messages SHOULD include a message timestamp (as described in WS-Security) within the
signature. Recipients can use the timestamp information to cache the most recent messages for a business process and detect
duplicate transmissions and prevent potential replay attacks.

It should also be noted that business process implementations are subject to various forms of denial-of-service attacks.
Implementers of business process execution systems compliant with this specification should take this into account.

18 Acknowledgments
Achille Fokoue, Ashok Malhotra, and Bob Schloss for their help with developing and verifying the XML Schemas.

Tony Andrews and Marc Levy for their help in defining abstract processes.

Tony Hoare and Marc Shapiro for thoughtful comments on the language concepts.

Jonathan Marsh for suggesting the generalization of the dependency on external (query and expression) languages.

Tom Freund and Tony Storey for inducing us to precisely define the relationship with the coordination framework in WS-
Transaction.

Martin Nally for his help on improving the usability of the language.

19 References
[1] W3C Recommendation The XML Specificationhttp://www.w3.org/TR/REC-xml

[2] W3C Note Simple Object Access Protocol (SOAP) 1.1

[3] W3C Note "Web Services Definition Language (WSDL) 1.1

[4] Industry Initiative Universal Description, Discovery and Integration

[5] XLANG: Web Services for Business Process Design

[6] WSFL: Web Service Flow Language 1.0

[7] W3C Proposed Recommendation XML Schema Part 1: Structures

[8] W3C Proposed Recommendation XML Schema Part 2: Datatypes

[9] W3C Recommendation XML Path Language (XPath) Version 1.0

[10] "Sagas," H. Garcia-Molina and K. Salem, Proc. ACM SIGMOD (1987).

[11] " Trends in systems aspects of database management," I.L. Traiger, Proc. 2nd Intl. Conf. on Databases (ICOD-2), Wiley & Sons
1983.

[12] "Web Services Transaction", IBM & Microsoft, 2002.

[13] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner, Harvard University, March 1997.

[14] "Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, MIT/LCS, U.C. Irvine, Xerox
Corporation, August 1998.

[15] "Business Process Execution Language for Web Services Version 1.0," BEA, IBM and Microsoft, August 2002:

http://dev2dev.bea.com/techtrack/BPEL4WS.jsp

106.ibm.com/developerworks/library/ws-bpel/

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbiz2k2/html/bpel1-0.asp

[16] "Web Services Addressing (WS-Addressing)," BEA, IBM and Microsoft, March 2003:

http://msdn.microsoft.com/ws/2003/03/ws-addressing/

http://www-106.ibm.com/developerworks/library/ws-bpel/

http://dev2devbea.com/technologies/webservices/ws-addressing.jsp

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.uddi.org/specification.html
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt
http://dev2dev.bea.com/techtrack/BPEL4WS.jsp
http://106.ibm.com/developerworks/library/ws-bpel/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbiz2k2/html/bpel1-0.asp
http://msdn.microsoft.com/ws/2003/03/ws-addressing/
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://dev2devbea.com/technologies/webservices/ws-addressing.jsp

Appendix A – Standard Faults
The following list specifies the standard faults defined within the BPEL4WS specification. All these faults are named within the
BPEL4WS namespace standard prefix bpws: corresponding to URI "http://schemas.xmlsoap.org/ws/2003/03/business-process/".

Fault name Reason
selectionFailure Thrown when a selection operation performed either in a function such as bpws:getVariableData, or in an assig

nment, encounters an error.
conflictingReceiv
e

Thrown when more than one receive activity or equivalent (currently, onMessage branch in a pick activity) are e
nabled simultaneously for the same partner link, port type, operation and correlation set(s).

conflictingReque
st

Thrown when more than one synchronous inbound request on the same partner link for a particular port type,
operation and correlation set(s) are active.

mismatchedAssi
gnmentFailure

Thrown when incompatible types are encountered in an assign activity.

joinFailure Thrown when the join condition of an activity evaluates to false.
forcedTerminati
on

Thrown as the result of a fault in an enclosing scope.

correlationViolat
ion

Thrown when the contents of the messages that are processed in an invoke, receive, or reply activity do not mat
ch specified correlation information.

uninitializedVari
able

Thrown when there is an attempt to access the value of an uninitialized part in a message variable.

repeatedCompe
nsation

Thrown when an installed compensation handler is invoked more than once.

invalidReply Thrown when a reply is sent on a partner link, portType and operation for which the corresponding receive with
the same correlation has not been carried out.

Appendix B – Attributes and Defaults
The following list specifies the defaults for all standard attributes at the process and activity level. The table does not include
activity-specific attributes (such as partnerLink in an invoke activity).

Parameter Default
queryLanguage http://www.w3.org/TR/1999/REC-xpath-19991116
expressionLanguage http://www.w3.org/TR/1999/REC-xpath-19991116
suppressJoinFailure no
variableAccessSerializable no
abstractProcess no
initiate no
pattern No default
createInstance no
enableInstanceCompensation no
joinCondition Disjunction of the status of the incoming links
transitionCondition true

Appendix C – Coordination Protocol
It is valuable to express the fault and compensation handling relationship between scopes by using the protocol framework of
WS-Transaction [16]. Specifically, this section shows how the relationship between an enclosing scope and each of its nested
scopes can be modeled using the BusinessAgreement protocol defined in the WS-Transaction specification. The
BusinessAgreement protocol is designed to enable distributed coordination of business activities. BPEL4WS usage of the protocol
makes the assumption of localized behavior in a single service, and as a result several of the features of the protocol, including the
acknowledgement signal Forget, and the Error and Replay messages, are not actually needed in BPEL4WS.

Coordination Protocol for BPEL4WS Scopes

1. A nested scope may complete successfully. In this case a compensation handler is installed for the nested scope. This is
modeled with a Completed signal from the nested scope to its parent scope.

2. A nested scope may encounter a fault internally. In this case the scope always terminates unsuccessfully.
a. If the fault handler rethrows a fault to its enclosing scope, this is modeled as a Faulted signal from the nested scope to

its parent scope.

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

b. If the fault is handled and not rethrown, the scope exits gracefully from the work of its parent scope. This is modeled
as an Exited signal from the nested scope to its parent scope.

3. After a nested scope has completed, (a fault or compensation handler for) the parent scope may ask it to compensate itself
by invoking its compensation handler. The compensate action is modeled with a Compensate signal from the parent scope
to the nested scope.

4. Upon successful completion of the compensation, the nested scope sends the Compensated signal to its parent scope.
5. The compensation handler may itself fault internally. In this case

a. If the fault is not handled by a scope within the compensation handler, it is rethrown to the parent scope. This is
modeled as a Faulted signal from the nested scope to its parent scope.

b. If the fault is handled and not rethrown, we assume that the compensation was able to complete successfully. In this
case the nested scope sends the Compensated signal to its parent scope.

6. If there is a fault in the parent scope independent of the work of the nested scope, the parent scope will ask the nested scope
to prematurely abandon its work by sending a Cancel signal.

7. The nested scope, upon receiving the cancel signal, will interrupt and terminate its behavior (as though there were an
internal fault), and return a Canceled signal to the parent.

8. Finally, when a parent scope decides that the compensation for a completed nested scope is not needed any more it sends a
Close signal to the nested scope. After discarding the compensation handler the nested scope responds with a Closed signal.

9. In case there is a race between the Completed signal from the nested scope and the Cancel signal from the parent scope,
the Completed signal wins, i.e., the nested scope is deemed to have completed and the Cancel signal is ignored.

10. In case a Cancel signal is sent to a nested scope that has already faulted internally, the Cancel signal is ignored and the
scope will eventually send either a Faulted or an Exited signal to the parent.

The BusinessAgreement protocol state diagram above summarizes the preceding discussion. In the diagram, the parent
(enclosing) scope generates Cancel, Compensate, Forget and Close signals and the nested scope generates Completed, Faulted,
Exited, Compensated, Canceled and Closed signals. It is important to emphasize that the states represent the state of the
relationship between the parent scope and one specific nested scope. However, it is very nearly the case that the states represent
the state of the nested scope itself, except in case of signal races. Note that the signal races discussed in points I and J above are
not reflected in the diagram since the diagram only reflects real protocol states.

Appendix D - XSD Schemas

BPEL4WS Schema

<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 targetNamespace="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 elementFormDefault="qualified">

 <import namespace="http://schemas.xmlsoap.org/wsdl/"
 schemaLocation="http://schemas.xmlsoap.org/wsdl/"/>

 <complexType name="tExtensibleElements">
 <annotation>
 <documentation>
 This type is extended by other component types
 to allow elements and attributes from

 other namespaces to be added.
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax"/>
 </sequence>
 <anyAttribute namespace="##other" processContents="lax"/>

 </complexType>

 <element name="process" type="bpws:tProcess"/>
 <complexType name="tProcess">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="partnerLinks" type="bpws:tPartnerLinks"
 minOccurs="0"/>
 <element name="partners" type="bpws:tPartners"
 minOccurs="0"/>
 <element name="variables"
 type="bpws:tVariables"
 minOccurs="0"/>
 <element name="correlationSets"
 type="bpws:tCorrelationSets" minOccurs="0"/>
 <element name="faultHandlers" type="bpws:tFaultHandlers"
 minOccurs="0"/>
 <element name="compensationHandler"
 type="bpws:tCompensationHandler" minOccurs="0"/>
 <element name="eventHandlers"
 type="bpws:tEventHandlers" minOccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="name" type="NCName"
 use="required"/>
 <attribute name="targetNamespace" type="anyURI"
 use="required"/>
 <attribute name="queryLanguage" type="anyURI"
 default="http://www.w3.org/TR/1999/REC-xpath-19991116"/>
 <attribute name="expressionLanguage" type="anyURI"
 default="http://www.w3.org/TR/1999/REC-xpath-19991116"/>
 <attribute name="suppressJoinFailure" type="bpws:tBoolean"
 default="no"/>
 <attribute name="enableInstanceCompensation"
 type="bpws:tBoolean" default="no"/>
 <attribute name="abstractProcess" type="bpws:tBoolean"
 default="no"/>
 </extension>
 </complexContent>
 </complexType>

 <group name="activity">
 <choice>
 <element name="empty" type="bpws:tEmpty"/>
 <element name="invoke" type="bpws:tInvoke"/>
 <element name="receive" type="bpws:tReceive"/>
 <element name="reply" type="bpws:tReply"/>
 <element name="assign" type="bpws:tAssign"/>
 <element name="wait" type="bpws:tWait"/>
 <element name="throw" type="bpws:tThrow"/>
 <element name="terminate" type="bpws:tTerminate"/>
 <element name="flow" type="bpws:tFlow"/>
 <element name="switch" type="bpws:tSwitch"/>
 <element name="while" type="bpws:tWhile"/>
 <element name="sequence" type="bpws:tSequence"/>
 <element name="pick" type="bpws:tPick"/>
 <element name="scope" type="bpws:tScope"/>
 </choice>

 </group>

 <complexType name="tPartnerLinks">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="partnerLink" type="bpws:tPartnerLink"
 minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tPartnerLink">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="partnerLinkType" type="QName"
 use="required"/>
 <attribute name="myRole" type="NCName"/>
 <attribute name="partnerRole" type="NCName"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tPartners">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="partner" type="bpws:tPartner"
 minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tPartner">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="partnerLink" minOccurs="1"
 maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="name" type="NCName"
 use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tFaultHandlers">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <sequence>
 <element name="catch" type="bpws:tCatch"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="catchAll" type="bpws:tActivityOrCompensateContainer"
 minOccurs="0"/>

 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCatch">
 <complexContent>
 <extension base="bpws:tActivityOrCompensateContainer">
 <attribute name="faultName" type="QName"/>
 <attribute name="faultVariable" type="NCName"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tActivityContainer">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <group ref="bpws:activity"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tActivityOrCompensateContainer">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <choice>
 <group ref="bpws:activity"/>
 <element name="compensate" type="bpws:tCompensate"/>
 </choice>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tEventHandlers">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="onMessage" type="bpws:tOnMessage"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="onAlarm" type="bpws:tOnAlarm"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tOnMessage">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations"
 minOccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="partnerLink" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="required"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="variable" type="NCName"
 use="optional"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tOnAlarm">

 <complexContent>
 <extension base="bpws:tActivityContainer">
 <attribute name="for" type="bpws:tDuration-expr"/>
 <attribute name="until" type="bpws:tDeadline-expr"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCompensationHandler">
 <complexContent>
 <extension base="bpws:tActivityOrCompensateContainer"/>
 </complexContent>
 </complexType>

 <complexType name="tVariables">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="variable"
 type="bpws:tVariable"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tVariable">

 <!-- variable does not allow extensibility elements
because otherwise its content model would be non-deterministic -->
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="messageType" type="QName" use = "optional"/>
 <attribute name="type" type="QName" use = "optional"/>
 <attribute name="element" type="QName" use = "optional"/>
 <anyAttribute namespace="##other" processContents="lax"/>

 </complexType>

 <complexType name="tCorrelationSets">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlationSet"
 type="bpws:tCorrelationSet"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tCorrelationSet">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="properties" use="required">
 <simpleType>
 <list itemType="QName"/>
 </simpleType>
 </attribute>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tActivity">
 <complexContent>

 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="target" type="bpws:tTarget"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="source" type="bpws:tSource"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="NCName"/>
 <attribute name="joinCondition"
 type="bpws:tBoolean-expr"/>
 <attribute name="suppressJoinFailure"
 type="bpws:tBoolean" default="no"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tSource">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="linkName" type="NCName" use="required"/>
 <attribute name="transitionCondition"
 type="bpws:tBoolean-expr"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tTarget">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="linkName" type="NCName" use="required"/>
 </extension>
 </complexContent>

 </complexType>

 <complexType name="tEmpty">
 <complexContent>
 <extension base="bpws:tActivity"/>
 </complexContent>
 </complexType>

 <complexType name="tCorrelations">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlation" type="bpws:tCorrelation"
 minOccurs="1" maxOccurs="unbounded" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCorrelation">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="set" type="NCName" use="required"/>
 <attribute name="initiate" type="bpws:tBoolean"
 default="no"/>

 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCorrelationsWithPattern">
 <complexContent>
 <extension base="bpws:tExtensibleElements">

 <sequence>
 <element name="correlation"
 type="bpws:tCorrelationWithPattern"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCorrelationWithPattern">
 <complexContent>
 <extension base="bpws:tCorrelation">
 <attribute name="pattern">
 <simpleType>
 <restriction base="string">
 <enumeration value="in" />
 <enumeration value="out" />
 <enumeration value="out-in" />
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tInvoke">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations"
 type="bpws:tCorrelationsWithPattern"
 minOccurs="0" maxOccurs="1"/>
 <element name="catch" type="bpws:tCatch"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="catchAll"
 type="bpws:tActivityOrCompensateContainer"
 minOccurs="0"/>
 <element name="compensationHandler"
 type="bpws:tCompensationHandler" minOccurs="0"/>
 </sequence>
 <attribute name="partnerLink" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="required"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="inputVariable"
 type="NCName" use="optional"/>
 <attribute name="outputVariable" type="NCName"
 use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tReceive">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations"
 type="bpws:tCorrelations" minOccurs="0"/>
 </sequence>
 <attribute name="partnerLink" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="required"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="variable" type="NCName" use="optional"/>
 <attribute name="createInstance" type="bpws:tBoolean"
 default="no"/>
 </extension>

 </complexContent>
 </complexType>

 <complexType name="tReply">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations"
 type="bpws:tCorrelations" minOccurs="0"/>
 </sequence>
 <attribute name="partnerLink" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="required"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="variable" type="NCName"
 use="optional"/>
 <attribute name="faultName" type="QName"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tAssign">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="copy" type="bpws:tCopy"
 minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCopy">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element ref="bpws:from"/>
 <element ref="bpws:to"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="from" type="bpws:tFrom"/>
 <complexType name="tFrom">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="variable" type="NCName"/>
 <attribute name="part" type="NCName"/>
 <attribute name="query" type="string"/>
 <attribute name="property" type="QName"/>
 <attribute name="partnerLink" type="NCName"/>
 <attribute name="endpointReference" type="bpws:tRoles"/>
 <attribute name="expression" type="string"/>
 <attribute name="opaque" type="bpws:tBoolean"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="to">
 <complexType>
 <complexContent>
 <restriction base="bpws:tFrom">
 <attribute name="expression" type="string"
 use="prohibited"/>
 <attribute name="opaque" type="bpws:tBoolean"
 use="prohibited"/>
 <attribute name="endpointReference" type="bpws:tRoles"
 use="prohibited"/>

 </restriction>
 </complexContent>
 </complexType>
 </element>

 <complexType name="tWait">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="for"
 type="bpws:tDuration-expr"/>
 <attribute name="until"
 type="bpws:tDeadline-expr"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tThrow">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="faultName" type="QName" use="required"/>
 <attribute name="faultVariable" type="NCName"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tCompensate">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="scope" type="NCName"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tTerminate">
 <complexContent>
 <extension base="bpws:tActivity"/>
 </complexContent>
 </complexType>

 <complexType name="tFlow">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="links" type="bpws:tLinks" minOccurs="0"/>
 <group ref="bpws:activity" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tLinks">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="link"
 type="bpws:tLink"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tLink">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 </extension>

 </complexContent>
 </complexType>

 <complexType name="tSwitch">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="case" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension base="bpws:tActivityContainer">
 <attribute name="condition"
 type="bpws:tBoolean-expr"
 use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name="otherwise"
 type="bpws:tActivityContainer"
 minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tWhile">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="condition"
 type="bpws:tBoolean-expr"
 use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tSequence">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <group ref="bpws:activity" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tPick">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="onMessage"
 type="bpws:tOnMessage"
 maxOccurs="unbounded"/>
 <element name="onAlarm"
 type="bpws:tOnAlarm" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="createInstance"
 type="bpws:tBoolean" default="no"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="tScope">
 <complexContent>

Partner Link Type Schema

 <extension base="bpws:tActivity">
 <sequence>
 <element name="variables"
 type="bpws:tVariables"
 minOccurs="0"/>
 <element name="correlationSets"
 type="bpws:tCorrelationSets"
 minOccurs="0"/>
 <element name="faultHandlers"
 type="bpws:tFaultHandlers"
 minOccurs="0"/>
 <element name="compensationHandler"
 type="bpws:tCompensationHandler"
 minOccurs="0"/>
 <element name="eventHandlers"
 type="bpws:tEventHandlers"
 minOccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="variableAccessSerializable"
 type="bpws:tBoolean"
 default="no"/>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="tBoolean-expr">
 <restriction base="string"/>
 </simpleType>

 <simpleType name="tDuration-expr">
 <restriction base="string"/>
 </simpleType>

 <simpleType name="tDeadline-expr">
 <restriction base="string"/>
 </simpleType>

 <simpleType name="tBoolean">
 <restriction base="string">
 <enumeration value="yes"/>
 <enumeration value="no"/>
 </restriction>
 </simpleType>

 <simpleType name="tRoles">
 <restriction base="string">
 <enumeration value="myRole"/>
 <enumeration value="partnerRole"/>
 </restriction>
 </simpleType>
</schema>

<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 targetNamespace="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 elementFormDefault="qualified">

 <element name="partnerLinkType" type="plnk:tPartnerLinkType"/>

 <complexType name="tPartnerLinkType">
 <sequence>
 <element name="role" type="plnk:tRole" minOccurs="1" maxOccurs="2"/>
 </sequence>

Message Properties Schema

 <attribute name="name" type="NCName" use="required"/>
 </complexType>

 <complexType name="tRole">
 <sequence>
 <element name="portType" minOccurs="1" maxOccurs="1">
 <complexType>
 <attribute name="name" type="QName" use="required"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </complexType>
</schema>

<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:wsbp="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 elementFormDefault="qualified">

 <element name="property">
 <complexType>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="type" type="QName" use="required"/>
 </complexType>
 </element>

 <element name="propertyAlias">
 <complexType>
 <attribute name="propertyName" type="QName" use="required"/>
 <attribute name="messageType" type="QName" use="required"/>
 <attribute name="part" type="NCName"/>
 <attribute name="query" type="string"/>
 </complexType>
 </element>
</schema>

BizTalk Server 2002 Online Books

Windows Server System Online Books complement the Microsoft Windows Server System product documentation by offering:

Customer-based integration stories that demonstrate how Microsoft customers are integrating Windows Server System
into their enterprises in order to operate more efficiently and save money.
Scenario-based Windows Server System Development books whose comprehensive code examples demonstrate how you
can use Windows Server System and their related APIs to create solutions to real-world business problems.
Task-based Windows Server System IT books that go beyond the boundaries of Help files and white papers to deliver
comprehensive guidance on how to perform tasks such as planning, deployment, migration, and disaster recovery.

Customer-Based Integration Books

Automating Supply Chain Operations in Order Systems MSDN (November 2003, Online Book)

Demonstrates how to use BizTalk Server 2002, enterprise application integration (EAI), and Web services to implement an
automated order system. Based on Ford Motor Company's eSmart inventory replenishment system, this book and its
sample code show how Windows Server System products, including BizTalk Server 2002, Microsoft SQL Server 2000, Web
services, and ASP.NET, integrate into the enterprise to ensure the continuous supply of parts to a manufacturer's assembly
line.

Programming Security and Inventory Visibility in Order Systems MSDN (November 2003, Online Book)

Demonstrates how you can use Microsoft Windows Server System technologies to implement a secure order system. This
book features BizTalk Server 2002, Visual Studio .NET, Web Services Enhancements for Microsoft .NET 1.0 (WSE), ASP.NET,
business-to-business (B2B) Web service security, and principles of the real-time enterprise (RTE). It discusses how Ford
Motor Company uses technologies to build and maintain a secure and reliable order system to feed its just-in-time (JIT)
supply chains.

Scenario-Based Developer Books

Implementing Secure Business Transactions Across Organizations MSDN (November 2003, Online Book)

Demonstrates how you can use the features of the Web Services Enhancements for Microsoft .NET 1.0 (WSE) to create
secure Web services that implement business transactions across organizations. WSE is an implementation of the Web
Services Architecture specifications that define standards for the development and deployment of Web services. This book
shows how you can integrate BizTalk Server 2002, Web services, and WSE to create secure and adaptable B2B Web services.

Integrating Applications That Require a Persistent Client Connection MSDN (November 2003, Online Book)

Describes best practices for using Microsoft BizTalk Server to integrate applications that require a persistent client
connection to them. This book is written for advanced application integrators and for advanced developers responsible for
integrating BizTalk Server with session-based applications within an enterprise. The sample included with this book
demonstrates how a persistent TCP/IP connection can be maintained to a host server across multiple calls to an application
integration component (AIC).

Performance Tuning and Optimization in Time-Critical Networks MSDN (January 2004, Online Book)

Describes the use of Microsoft BizTalk Server 2002 and Microsoft Host Integration Server 2000 to implement an optimized
payment system for a fictitious bank. Examines the application architecture, analyzes the code, discusses deployment
strategies, and shows how the application was tuned for optimum performance. Includes a simplified sample application
that you can run to see how the payment system operates.

Task-Based IT Books

Planning EAI and B2B Solutions for Business MSDN (November 2003, Online Book)

Describes some best practices for planning an enterprise application integration (EAI) or business-to-business (B2B) project
using Microsoft® BizTalk® Server 2002. This book focuses on using the Microsoft Solutions Framework (MSF), which
provides proven practices for envisioning, planning, developing, stabilizing, and deploying successful EAI and B2B
integration projects with BizTalk Server. This book is written for project managers, team leads, enterprise developers, system
architects, and information technology (IT) professionals. It includes an Excel spreadsheet that contains a sample costing

model, which the reader can use as a training tool for developing a costing model as described in the appendix.

Related Links

Windows Server System Online Books

Automating Supply Chain Operations in Order Systems

Microsoft Corporation

November 2003

Applies to:
Microsoft® BizTalk® Server 2002

Summary: This book shows you how to use Microsoft BizTalk Server 2002, enterprise application integration (EAI), Web services,
and ASP.NET to implement an automated order system. Based on the eSmart inventory replenishment system used by Ford
Motor Company, Automating Supply Chain Operations in Order Systems provides a starting point that you can use for building
your own e-procurement system. This book:

Demonstrates the integration of Windows Server System products.
Explains common-sense security practices.
Showcases important product features such as document correlation, handling disparate data formats, business process
orchestration, and Web services.
Illustrates how Windows Server System products can be used to solve a real-world problem.

Table of Contents

Introduction

Chapter 1. Setup

Chapter 2. Examining and Adapting Ford's Inventory Replenishment System

Chapter 3. Consuming and Replenishing Inventory on the Assembly Line

Chapter 4. Converting Legacy Data Formats into XML

Chapter 5. Configuring Messaging and Orchestrating the Business Process

Chapter 6. BizTalk Server and Web Services

Chapter 7. Exchanging Documents with a Web Service

Chapter 8. Tracking the Transaction and XLANG Schedule Correlation

Chapter 9. What's Next

Downloads

Download a copy of this document (4,747 KB).

Download a copy of the sample code (2,403 KB).

Related Links

BizTalk Server 2002 Online Books

Windows Server System Online Books

http://download.microsoft.com/download/d/b/b/dbb07fed-7d24-4c80-bea4-1ada38b29a2b/Automating_Order_Systems.exe
http://download.microsoft.com/download/3/1/7/317a46f1-b6a2-4b86-ac76-c68c99d7497c/SupplyChainOperations.msi

Implementing Secure Business Transactions Across
Organizations

Microsoft Corporation

November 2003

Applies to:
Microsoft® BizTalk® Server 2002

Summary: This book demonstrates how you can use the features of the Web Services Enhancements for Microsoft .NET 1.0
(WSE) to create secure Web services that implement business transactions across organizations. WSE is an implementation of the
Web Services Architecture specifications that define standards for the development and deployment of Web services. Early
implementation of several of these proposed standards are provided in WSE to enhance Web services security and configuration.
To demonstrate how you can use WSE to create secure Web services for business-to-business (B2B) transactions, this book:

Provides a sample B2B application that demonstrates the use of some of the common security and routing features of the
WSE.
Shows how to secure Web services by digitally signing and encrypting the SOAP message representing the purchase order
exchanged between two trading partners.
Demonstrates how to implement a routing service using WSE.
Shows how to integrate BizTalk Server 2002, Web services, and WSE to create secure and adaptable B2B Web services.

Table of Contents

Introduction

Chapter 1, Setup

Chapter 2, Securing Web Services

Chapter 3, Using WSE at the Supplier

Chapter 4, Using WSE at the Manufacturer

Chapter 5, Configuring Messaging and Orchestrating the Business Process

Chapter 6, Correlating the Transaction

Chapter 7, Lessons Learned and Final Thoughts

Downloads

Download a copy of this document (2,131 KB).

Download a copy of the sample code (1,246 KB).

Related Links

BizTalk Server 2002 Online Books

Windows Server System Online Books

http://download.microsoft.com/download/1/2/e/12eba989-2cbf-4d15-b7d6-9b33ce691b3d/Secure_Business_Transactions.exe
http://download.microsoft.com/download/9/e/e/9eee7a13-769d-4fb5-a690-d12edf12c4bd/Secure Business Transactions.msi

Integrating Applications That Require a Persistent Client
Connection

Microsoft Corporation

November 2003

Applies to:
Microsoft® BizTalk® Server 2002

Summary: This book describes best practices for using Microsoft BizTalk Server to integrate applications that require a persistent
client connection to them. It is written for advanced application integrators and for advanced developers responsible for
integrating BizTalk Server with session-based applications within an enterprise. The sample included with this book demonstrates
how a persistent TCP/IP connection can be maintained to a host server across multiple calls to an application integration
component (AIC). The sample was developed using the Microsoft .NET Framework. In particular, the book and its sample code
take a look at developing a communication manager using two separate approaches:

COM+ object pooling
Custom pooling

Both the COM+ object pooling approach and the custom pooling approaches will show you how to build a communication
manager that:

Establishes a connection
Persists the connection
Multiplexes the connection
Limits the number of connections
Manages the lifetime of the connection

Table of Contents

Introduction

Chapter 1. Setup

Chapter 2. Problem Summary

Chapter 3. Solution Approaches

Appendix A. For More Information

Downloads

Download a copy of this document (1,487 KB).

Download a copy of the sample code (683 KB).

Related Links

BizTalk Server 2002 Online Books

Windows Server System Online Books

http://download.microsoft.com/download/5/7/7/57727dfa-ecaf-43e1-8447-ba128e37e701/PersistentConnection.exe
http://download.microsoft.com/download/d/0/d/d0de5ea3-9fbd-465e-826d-237367f7386d/PersistentConnection.msi

Programming Security and Inventory Visibility in Order
Systems

Microsoft Corporation

November 2003

Applies to:
Microsoft® BizTalk® Server 2002

Summary: This book shows you how to implement a secure order system by integrating Microsoft Windows Server System
technologies. It features Microsoft BizTalk Server 2002, Microsoft Visual Studio .NET, Web Services Enhancements (WSE) for
Microsoft .NET, ASP.NET, business-to-business (B2B) Web service security, and principles of the real-time enterprise (RTE). It
discusses how Ford Motor Company uses technologies to build and maintain a secure and reliable order system to feed its just-
in-time (JIT) supply chains, and provides sample applications that illustrate these technologies. This book:

Demonstrates the integration of Windows Server System products.
Explains common-sense security practices.
Shows hard-to-get information about security and large-scale deployments.
Explains and demonstrates inventory management and inventory replenishment.
Showcases important product features such as disparate data format handling, business process implementation, and Web
services.

Table of Contents

Introduction

Chapter 1. Setup

Chapter 2. Just-in-Time Inventory in the RTE

Chapter 3. Is Your Enterprise Safe?

Chapter 4. Secure Web Services

Chapter 5. Real-Time Inventory Queries

Chapter 6. Deploying the Order System with Visual Studio .NET

Chapter 7. Multitier Configuration

Chapter 8. Lessons Learned and Final Thoughts

Appendix A. A Look at Our Common Utilities: Database Access

Appendix B. Next Steps for Ford

Downloads

Download a copy of this document (3,159 KB).

Download a copy of the sample code (4,320 KB).

Related Links

BizTalk Server 2002 Online Books

Windows Server System Online Books

http://download.microsoft.com/download/a/0/4/a041062d-9edc-4449-bee3-8c10eace1141/Securing_and_Enhancing_Order_Systems.exe
http://download.microsoft.com/download/4/e/c/4ecb99cb-e059-436f-a6fd-ed80e96da065/Security and Inventory Visibility.msi

Performance Tuning and Optimization in Time-Critical
Networks

Microsoft Corporation

January 2004

Applies to:
Microsoft® BizTalk® Server 2002

Summary: This book discusses how the Microsoft EBizX Design Wins team and Microsoft Consulting Services used Microsoft
BizTalk Server 2002 and Microsoft Host Integration Server 2000 to implement an optimized payment system for a fictitious bank.
The Payment System Solution was developed to help the local bank meet requirements stipulated by a central banking authority.
In this book we discuss the Payment System Solution in detail, and also present a simplified sample application—the Sample
Payment System—that you can run to see how the payment system operates.

This book:

Details the development, deployment, and performance testing of the Payment System Solution.
Discusses the basic concepts behind the application design.
Examines the application architecture in depth, highlighting specific optimizations and discussing how the design was tuned
for performance.
Analyzes the application code, showing you step-by-step how to use code generation classes and implement virtual
methods, taking full advantage of object-oriented programming.
Discusses deployment topologies, including lessons learned and principles that you can apply to your own enterprise
projects.

Table of Contents

Introduction

Chapter 1. Setting up the Sample Payment System

Chapter 2. Investigating and Understanding the Payment System Solution

Chapter 3. Examining and Detailing the Payment System Solution

Chapter 4. Brief Planner's Guide

Chapter 5. Developer's Guide to the Payment System Solution

Chapter 6. Ready for Rollout

Chapter 7. Testing Methodologies, Topologies, and Metrics

Chapter 8. Lessons Learned

Appendix A. Sample Payment System: Configuring BizTalk Server

Appendix B. Sample Payment System: E-Business Foundation Layer Code

Appendix C. Sample Payment System: Application Layer Code

Downloads

Download a copy of this document (3,372 KB).

Download a copy of the sample code (1,998 KB).

Related Links

BizTalk Server 2002 Online Books

Windows Server System Online Books

http://download.microsoft.com/download/2/a/d/2addd34c-50a0-4362-bd19-5977e13d5833/Performance_Tuning_and_Optimization.exe
http://download.microsoft.com/download/a/e/4/ae414529-2369-47d1-b103-cd69998243db/PaymentSystem.msi

Planning EAI and B2B Solutions for Business

Microsoft Corporation

November 2003

Applies to:
Microsoft® BizTalk® Server 2002

Summary: This book describes some best practices for planning an enterprise application integration (EAI) or business-to-
business (B2B) project using Microsoft BizTalk Server 2002. The processes and techniques described in this book are suitable for
guiding a project from conception to planning to execution and then to delivery. In particular, it describes how to use the
Microsoft Solutions Framework (MSF), which provides proven practices for planning, building, and deploying successful EAI and
B2B integration projects with BizTalk Server.

Included with the download of this online book is an Excel spreadsheet that contains a sample costing model. You can use this
model as a training tool for developing your own costing models as described in the appendix.

This book:

Describes the five phases of the Microsoft Solution Framework (MSF) and how to apply them to a BizTalk Server project.
Provides best practices for developing and deploying BizTalk Server.
Explains some core concepts of creating a project costing model.
Provides a sample project costing model.

Table of Contents

Introduction

Chapter 1. Process Framework

Chapter 2. Envisioning Phase

Chapter 3. Planning Phase

Chapter 4. Developing Phase

Chapter 5. Stabilizing Phase

Chapter 6. Deploying Phase

Chapter 7. BizTalk Server Best Practices

Chapter 8. Final Thoughts

Appendix. Costing Model

Downloads

Download a copy of this document (1,739 KB).

Related Links

BizTalk Server 2002 Online Books

Windows Server System Online Books

http://download.microsoft.com/download/7/c/3/7c3ca712-4144-4317-b0d4-67415156067f/Planning_EAI_and_B2B_Solutions.exe

	Cover Page
	BizTalk Server 2002
	Toolkit for Microsoft .NET
	Getting Started with BizTalk Server Toolkit for Microsoft .NET
	Getting Started with BizTalk Server Toolkit for Microsoft .NET
	Introducing BizTalk Server and Visual Studio .NET
	BizTalk Server Toolkit for Microsoft .NET Overview
	XML Web Services

	How to Use Help
	Finding a Help Topic
	Bookmarking a Help Topic
	Bookmark a Help topic
	Remove a topic from your list of Favorites

	Copying a Help Topic
	Printing a Help Topic
	Print a single topic or all topics within a book

	Changing the Font Size
	Help Viewer Shortcut Keys

	Accessibility for People with Disabilities
	Hardware and Software Requirements
	Minimum Hardware Requirements
	Software Requirements

	Understanding BizTalk Server and Visual Studio .NET
	BizTalk Messaging Services and Visual Studio .NET
	Messaging Components and Visual Studio .NET
	Legacy Protocols and Web Service Requests

	BizTalk Orchestration Services and Visual Studio .NET
	Asynchronous XML Web Services and BizTalk Orchestration
	Asynchronous XML Web Service and XLANG Schedule Correlation

	Synchronous XML Web Services and BizTalk Orchestration

	Using BizTalk Server with Visual Studio .NET
	Creating XML Web Services with Visual Studio .NET
	BizTalk Messaging and XML Web Services
	Submitting Documents to BizTalk Server from an XML Web Service
	Using Message Queuing to Submit Documents
	Using BTSInterchange to Submit Documents

	Submitting Documents to an XML Web Service from BizTalk Server
	Building an AIC with Visual Studio .NET
	Registering Pipeline and Preprocessor COM Components
	Debugging an AIC with Visual Studio .NET

	BizTalk Orchestration and XML Web Services
	Calling XML Web Services from Orchestration
	Creating and Using an XML Web Service Client

	Calling Orchestration from XML Web Services
	Using BizTalk Orchestration from an XML Web Service
	Starting an XLANG Schedule
	Passing Data to an XLANG Schedule

	BizTalk Server Toolkit for Microsoft .NET Samples
	BizTalk Messaging Services Samples
	Application Integration Component
	Configuration Application
	Custom Preprocessor
	Data Tracking and Interchange Application
	Pipeline Component

	BizTalk Orchestration Services Samples
	Orchestration Calling an XML Web Service
	XML Web Service Calling an Orchestration

	E-Procurement Sample
	User's Guide
	Preliminary Setup
	Run the E-Procurement Sample

	Programming Notes
	Hub: Send Purchase Order to Supplier
	Supplier: Receive PO and Send Invoice to Hub
	Hub: Receive Invoice and Send Payment to Supplier
	Supplier: Receive Payment and Send Acknowledgement to Hub
	XLANG Schedule Activation
	E-Procurement XLANG Schedule Correlation
	Creating XML Web Services
	Converting a BizTalk Document to a C# Class
	Calling an XML Web Service from an AIC

	Uninstalling the E-Procurement Sample

	BizTalk Server Toolkit for Microsoft .NET Reference
	BizTalkTrackData
	GetInDocDetails Method
	GetInterchanges Method
	GetOutDocDetails Method

	BTSConfig
	Channels Property
	CreateChannel Method
	CreateDocument Method
	CreateEnvelope Method
	CreateOrganization Method
	CreatePort Method
	CreatePortGroup Method
	DataSetChannels Property
	DataSetDocuments Property
	DataSetEnvelopes Property
	DataSetOrganizations Property
	DataSetPortGroups Property
	DataSetPorts Property
	Documents Property
	Envelopes Property
	get_Certificates Method
	Organizations Property
	PortGroups Property
	Ports Property

	BTSInterchange
	Submit Method
	SubmitSync Method

	IBizTalkChannel
	IBizTalkDocument
	IBizTalkEnvelope
	IBizTalkOrganization
	IBizTalkPort
	IBizTalkPortGroup
	IBTSAppIntegration
	ProcessMessage Method

	IBTSCustomProcess
	Execute Method
	SetContext Method

	IPipelineComponent
	EnableDesign Method
	Execute Method

	IPipelineComponentAdmin
	GetConfigData Method
	SetConfigData Method

	Product Documentation
	Introducing Microsoft BizTalk Server 2002
	Introducing Microsoft BizTalk Server 2002
	Getting Started
	 What's New in BizTalk Server 2002
	 Who Is BizTalk Server For?
	 How BizTalk Server Fits into an Organization's IT Infrastructure
	 How BizTalk Server Fits into the .NET Platform

	 How Does BizTalk Server Work?
	 BizTalk Messaging Services
	 BizTalk Orchestration Services
	 Building a BizTalk Server Solution
	 Manageability, Reliability, Flexibility
	 BizTalk Server Accelerators

	 BizTalk Server Features
	 BizTalk Server Application Model
	 BizTalk Server Administration Model

	 Using BizTalk Server 2002 Help
	 About Help
	 How to Perform Help Tasks
	 Find a Help Topic
	 Copy a Help Topic
	 Print a Help Topic
	 Change the Font Size
	 Help Viewer Shortcut Keys

	 Accessibility for People with Disabilities
	 Contacting Microsoft Product Support Services

	Learning to Use BizTalk Server 2002
	 BizTalk Server 2002 Tutorial
	 Preliminary Setup
	 Module 1: Modeling Business Processes
	 Creating the XLANG Schedule for the Buyer
	 Module 1 Summary

	 Module 2: Creating Specifications and Maps
	 Using BizTalk Editor
	 Using BizTalk Mapper
	 Module 2 Summary

	 Module 3: Configuring BizTalk Messaging Services
	 Module 3 Summary

	 Module 4: Completing the XLANG Schedule
	 Run the Completed XLANG Schedule
	 Module 4 Summary

	 Tutorial Summary
	 Appendix: Creating Auxiliary Components
	 Creating the Application
	 Creating the Windows Script Component
	 Creating the Application Integration Component (AIC)

	 Learning BizTalk Server 2002
	 Lesson 1: Introduction to BizTalk Server
	 What Is BizTalk Server?
	 Why Use BizTalk Server?
	 Why Use XML?
	 Integrated Solutions
	 Installing BizTalk Server
	 The Scenario
	 Running the Scenario

	 Lesson 2: Configuring BizTalk Messaging Services
	 Configuring BizTalk Messaging Services
	 Configuring File Receive Functions
	 Configuring Messaging Ports and Channels
	 Defining Document Specifications
	 Running the Scenario

	 Lesson 3: Designing BizTalk Orchestration Services
	 BizTalk Orchestration Services
	 Defining the Business Process
	 Implementing the Business Process
	 Creating the Communication Flow
	 Running the Scenario

	 Lesson 4: Understanding Implementation
	 Sending and Receiving Documents in BizTalk Orchestration Services
	 Adding Fields to Message Specifications
	 Working with COM Components
	 Creating a Script Component
	 Northwind Traders Data Page

	 Lesson 5: Using BizTalk Mapper
	 Creating the Map
	 Using the Map
	 Running the Scenario

	 Lesson 6: Sending and Receiving Documents
	 Choosing a Protocol
	 Receiving Documents over HTTP
	 Using the Queue
	 Running the Scenario

	 Lesson 7: Completing the Transaction
	 Message Queuing
	 Processing the Order
	 Running the Scenario

	 Conclusion

	 E-Procurement Sample
	 User's Guide
	 Preliminary Setup
	 Run the E-Procurement Sample

	 Programming Notes
	 Optional Monitoring and Deployment Procedures
	 Using Application Center for E-Procurement Deployment
	 Creating a SEED Package
	 Creating a MOM Custom Counter for the E-Procurement Sample

	BizTalk Server 2002 Administration
	 Installing BizTalk Server 2002
	 Installation Checklist
	 Hardware and Software Requirements
	 Minimum Hardware Requirements
	 Recommended Configuration to Optimize Performance for Document Messaging
	 Software Requirements
	 Windows 2000 Prerequisites and Installation Requirements
	 SQL Server Prerequisites and Installation Requirements
	 SQL Server and BizTalk Server 2002 Database Interactions
	 Installing Visio 2002
	 Installing Application Center 2000

	 Installation Instructions
	 Complete Installation
	 Tools Installation
	 Custom Installation
	 Upgrade Installation
	 Silent Installation
	 Removing BizTalk Server 2002

	 Understanding Security
	 Logon Properties
	 Local Policies
	 Security Guidelines
	 BizTalk Server Administrators Group
	 BizTalk Messaging Service
	 BizTalk Server Interchange Application Security
	 Security for Applications That Host XLANG Schedule Instances
	 Best Practices for Securing COM+ Applications
	 Securing the Orchestration Persistence Database
	 Confirming the Sender's Identity

	 BizTalk Server Report Users Group
	 Transport Services
	 HTTP and HTTPS
	 SMTP
	 Message Queuing 2.0
	 File

	 Certificates Overview
	 Understanding Certificates
	 Certificates Needed by BizTalk Server
	 Certificate Name Restrictions

	 CryptoAPI
	 Collaboration Data Objects
	 Configuring Firewalls

	 Enhancing Performance and Scalability
	 Performance Optimization
	 Tuning the Performance of Your BizTalk Server Architecture
	 Architecture Design, Testing, and Analysis
	 Maintaining Performance

	 Scaling BizTalk Server
	 Scaling BizTalk Server Vertically
	 Scaling BizTalk Server Horizontally

	Administering Servers and Applications
	 About BizTalk Server Administration
	 Groups and Servers
	 BizTalk Server Administration Environment
	 Administration Cache
	 Managing BizTalk Server Databases
	 Handling Server Errors
	 Receive Functions
	 Using Queues
	 Administration Privileges

	 Why Perform BizTalk Server Administration Tasks
	 How to Perform BizTalk Server Administration Tasks
	 Add, Delete, and Configure a Server Group
	 Add, Delete, and Configure Servers in a Group
	 Manage Servers in a Group
	 Manage Queues
	 Manage Databases for a Server Group
	 Manage Receive Functions for a Server Group
	 Manage BizTalk Services
	 Manage Event Viewer
	 Manage XLANG Applications and Databases

	 Troubleshooting BizTalk Server Administration

	 Tracking Documents
	 About BizTalk Document Tracking
	 BizTalk Document Tracking Environment
	 Using BizTalk Document Tracking
	 Understanding the Tracking Database Schema
	 Understanding How to Find Interchanges and Associated Documents
	 Understanding Query Results
	 Understanding Integrated XLANG Schedule Status for an Interchange

	 Why Perform BizTalk Document Tracking Tasks
	 How to Perform BizTalk Document Tracking Tasks
	 Maintain the Tracking Database
	 Use Queries to Search and Sort Interchange and Document Data
	 Use Advanced Queries
	 Save Interchange, Document, and Custom Search Data

	 Troubleshooting BizTalk Document Tracking

	 Monitoring Documents
	 About Windows Management Instrumentation
	 Custom Counters Overview
	 Suspended Queue Overview

	 About Microsoft Operations Manager
	 BizTalk Server 2002 Enterprise Edition Management Pack

	BizTalk Server 2002 Application Development
	 BizTalk SEED Wizard
	 About BizTalk SEED Wizard
	 Initiating a SEED Package
	 Receiving a SEED Package
	 Example of Initiator and Recipient Relationship
	 Understanding the ASP Pages in SEED

	 Why Perform BizTalk SEED Wizard Tasks
	 How To Perform BizTalk SEED Tasks
	 Troubleshooting BizTalk SEED Wizard

	 Deploying BizTalk Server Resource Applications
	 About BizTalk Server Deployment
	 About Clusters
	 Creating New Applications
	 Adding Resources
	 Deploying Applications

	 Why Perform BizTalk Server Deployment Tasks
	 How To Perform BizTalk Server Deployment Tasks
	 Troubleshooting BizTalk Server Deployment

	Designing BizTalk Orchestrations
	 About BizTalk Orchestration Designer
	 BizTalk Orchestration Services
	 Understanding Business Processes
	 BizTalk Orchestration Designer Environment
	 XLANG Schedules

	 Creating XLANG Schedule Drawings
	 Designing Business Processes
	 Handling Exceptions
	 Implementing Business Processes

	 Compiling XLANG Schedules
	 Debugging XLANG Schedules
	 Running XLANG Schedules
	 Moniker Syntax
	 Creating an Instantiating Application

	 Pooling XLANG Schedules
	 Managing Session State
	 Updating XLANG Schedules

	 Why Perform BizTalk Orchestration Designer Tasks
	 How to Perform BizTalk Orchestration Designer Tasks
	 Use BizTalk Orchestration Designer
	 Open and Save XLANG Schedule Drawings
	 View Pages, Shapes, and Stencils
	 Add, Delete, and Connect Shapes
	 Set Conditional Properties
	 Set Concurrency Properties
	 Set Transaction Properties
	 Set Error Handling Properties
	 Implement Ports
	 Send or Receive Messages
	 Draw the Flow of Data Between Messages

	 Run XLANG Schedules
	 Compile and Debug XLANG Schedules
	 Create and Configure an XLANG Schedule Host Application

	Configuring BizTalk Messaging Services
	Using BizTalk Messaging Manager
	 About BizTalk Messaging Manager
	 BizTalk Messaging Manager Environment
	 Configuring BizTalk Messaging Manager Options
	 BizTalk Messaging Manager User Interface
	 BizTalk Messaging Manager Shortcut Keys
	 Security

	 Understanding Channels
	 Channel Elements
	 Valid Channel and Messaging Port Combinations

	 Understanding Messaging Ports
	 Messaging Port Elements
	 Open Messaging Ports

	 Understanding Organizations
	 Organization Identifiers

	 Understanding Document Definitions
	 Tracking Document Data Fields
	 Understanding Selection Criteria

	 Understanding Envelopes
	 Using Envelopes for Inbound Processing
	 Using Envelopes for Outbound Processing

	 Understanding Receipts
	 Processing Receipts Using Channels
	 Processing Receipts Using Reliable Messaging

	 Understanding Distribution Lists

	 Why Perform BizTalk Messaging Manager Tasks
	 How to Perform BizTalk Messaging Manager Tasks
	 Create and Manage Channels
	 Set Channel Properties

	 Create and Manage Messaging Ports
	 Set Messaging Port Properties

	 Create and Manage Organizations
	 Set Organization Properties

	 Create and Manage Document Definitions
	 Set Document Definition Properties

	 Create and Manage Envelopes
	 Use Distribution Lists

	Creating Specifications and Mapping Data
	 Using BizTalk Editor
	 About BizTalk Editor
	 Understanding Specifications
	 BizTalk Editor Environment
	 Importing Files
	 Exporting Files
	 Records, Fields, and Properties
	 General Purpose Triggers
	 Namespace Support
	 Adding SQL Annotations
	 Creating XML and Native Instances
	 Validating Instances and Specifications

	 Why Perform BizTalk Editor Tasks
	 How to Perform BizTalk Editor Tasks
	 Create and Validate Specifications
	 Open Specifications
	 Save, Export, and Close Specifications
	 Manage Records and Fields
	 Specify Properties for Records and Fields
	 Edit Notes and View Syntax Rules
	 Manage Document Instances
	 Manage Invalid Character Maps
	 Manage Views
	 BizTalk Editor Shortcut Keys

	 Using BizTalk Mapper
	 About BizTalk Mapper
	 Mapping Specifications
	 Mapping Scenarios
	 BizTalk Mapper Environment
	 Creating Links
	 Matching Node-Hierarchy Levels
	 Viewing Record, Field, Link, and Functoid Properties
	 Understanding Functoids
	 Integrating BizTalk Services Using Maps
	 Compiling Maps
	 Testing Maps

	 Why Perform BizTalk Mapper Tasks
	 How to Perform BizTalk Mapper Tasks
	 Change BizTalk Mapper Options
	 Create New Maps
	 Open Maps
	 Save, Store, and Close Maps
	 Replace Specifications
	 Work with Grid Pages
	 Manage Functoids
	 Manage Links
	 Create and Manage Compiled Maps
	 Perform Map Testing
	 Manage Views
	 Customize the User Interface
	 BizTalk Mapper Shortcut Keys

	 Troubleshooting BizTalk Editor and BizTalk Mapper

	 Integrating BizTalk Services
	 Using an HTTP Transport
	 Configuring the Source System to Use an HTTP Transport
	 Configuring the Destination System to Use an HTTP Transport

	 Using a Non-HTTP Transport
	 Configuring the Source System to Use a Non-HTTP Transport
	 Configuring the Destination System to Use a Non-HTTP Transport

	BizTalk Server 2002 Developer Solutions
	BizTalk Messaging Services
	 Introducing Messaging Services
	 Messaging Configuration Objects
	 Referential Integrity
	 Security

	 Understanding Messaging Services
	 Channels
	 Identification
	 Document Processing
	 Configuring
	 Channel Filtering
	 Document Storage
	 Document Tracking

	 Messaging Ports
	 Port Groups

	 Openness
	 Organizations
	 Document Definitions
	 Envelopes
	 Certificates

	BizTalk Documents
	 Understanding Documents
	 Submitting
	 Routing

	 Using Documents
	 Submitting a Document
	 Submitting a Document from a Remote Client
	 Reading the Tracking Database
	 Preprocessing Documents in a Receive Function
	 Accessing the Suspended Queue

	BizTalk Custom Components
	 Understanding Custom Components
	 Custom Component Types
	 Application Integration Components
	 Pipeline Application Integration Components
	 Lightweight Application Integration Components

	 Parsers
	 Serializers

	 Using Custom Components
	 Creating Pipeline Components
	 Creating Receipt Correlator Components
	 Working with Parsers
	 Working with Serializers
	 Registering Custom Components
	 Handling Data Passed to AICs
	 Supporting the Tracking Database with Parser and Serializer Components

	 BizTalk Orchestration Services
	 Understanding Orchestration Services
	 XLANG Interfaces
	 XLANG Schedule Correlation

	 Using Orchestration Services
	 Activating an XLANG Schedule Instance
	 Accessing a Running XLANG Schedule Instance
	 Accessing the XLANG Scheduler System Manager
	 Accessing Group Managers

	 BizTalk Managing and Monitoring
	 Understanding Managing and Monitoring
	 BizTalk Server Namespace
	 BizTalk Server Provider and Registration
	 Custom Counters

	 Using Managing and Monitoring
	 Creating an Event Consumer Using WMI
	 Creating a Custom Counter Using WMI
	 Handling WMI Errors

	 BizTalk Server Developer's Toolbox
	 BizTalk Messaging Services Tasks
	 Clear BizTalk Messaging Configurations
	 Update Messaging Configurations with ADO Objects

	 BizTalk Orchestration Services Tasks
	 Access a Messaging Port

	 BizTalk Managing and Monitoring Tasks
	 WMI Tasks

	 Miscellaneous Tasks
	 Determine if BizTalk Server is Installed
	 Modify the XML Encoding
	 Retrieve BizTalk Server Product Information
	 Validate an XML Document

	BizTalk Server Samples
	 BizTalk Messaging Services Code Samples
	 Application Integration in Visual Basic
	 Application Integration in Visual C++
	 BizTalk Framework Developers' Toolkit
	 Configuration Assistant
	 Custom Counters
	 Custom Import Module
	 Custom Preprocessor in Visual Basic
	 Custom Preprocessor in Visual C++
	 Date Functoid
	 Date Functoid with .NET
	 Direct Integration
	 Distribution List
	 EDI and Receipts
	 EDI Introduction
	 Encryption and Decryption
	 Flat-File Delimited
	 Flat-File Positional
	 HTTP Receive Function
	 Mapping Twice
	 Message Queuing 4 MB Limit
	 Multi-Part MIME Attachment
	 Pipeline Component in Visual Basic
	 Pipeline Component in Visual C++
	 Queue Sniffer
	 Receive Scripts
	 Refresh Messaging Manager
	 Reliable Messaging
	 Self-Routing
	 Send to Remote Queue
	 Submitting Documents
	 Submitting Documents with Receipts
	 Submitting Documents to a Port Group
	 Suspended Queue Monitoring
	 Synchronous Orchestration Component
	 Tracking Database Tasks
	 Windows Management Instrumentation

	 BizTalk Orchestration Services Code Samples
	 BizTalk Framework Correlation
	 BizTalk Services Integration
	 Dispatcher Application
	 Dynamic Binding with COM
	 Dynamic Binding with Message Queuing
	 Exception Handling
	 Iteration
	 Nested Transactions
	 Orchestration Services Audit
	 Orchestration Services Audit Client
	 Personalized Queues
	 Queue Listener
	 While Shape
	 XLANG and ASP
	 XLANG Interfaces
	 XLANG Schedule Pooling
	 XLANG Submit Synchronously and Query Asynchronously
	 XLANG Trace
	 XML Translation

	BizTalk Server Reference
	Messaging Services Reference
	Interfaces
	 IBizTalkBase
	 Clear Method
	 Create Method
	 DateModified Property
	 Handle Property
	 Load Method
	 LoadByName Method
	 Name Property
	 Remove Method
	 Save Method

	 IBizTalkCertificateInfo
	 Name Property
	 Reference Property
	 Store Property
	 Usage Property

	 IBizTalkChannel
	 Comments Property
	 ControlNumberValue Property
	 DecryptionCertificateInfo Property
	 ExpectReceiptTimeout Property
	 Expression Property
	 GetConfigComponent Method
	 GetConfigData Method
	 InputDocument Property
	 IsReceiptChannel Property
	 LoggingInfo Property
	 MapContent Property
	 MapReference Property
	 OutputDocument Property
	 Port Property
	 PortGroup Property
	 ReceiptChannel Property
	 RetryCount Property
	 RetryInterval Property
	 SetConfigComponent Method
	 SetConfigData Method
	 SignatureCertificateInfo Property
	 SourceEndpoint Property
	 TrackFields Property
	 VerifySignatureCertificateInfo Property

	 IBizTalkConfig
	 Certificates Property
	 Channels Property
	 CreateChannel Method
	 CreateDocument Method
	 CreateEnvelope Method
	 CreateOrganization Method
	 CreatePort Method
	 CreatePortGroup Method
	 Documents Property
	 Envelopes Property
	 Organizations Property
	 PortGroups Property
	 Ports Property

	 IBizTalkDocument
	 Content Property
	 LoadByPropertySet Method
	 NameSpace Property
	 PropertySet Property
	 Reference Property
	 TrackFields Property
	 Type Property
	 Version Property

	 IBizTalkEndPoint
	 Alias Property
	 Application Property
	 Openness Property
	 Organization Property

	 IBizTalkEnvelope
	 Content Property
	 Format Property
	 NameSpace Property
	 Reference Property
	 Version Property

	 IBizTalkLoggingInfo
	 LogNativeInputDocument Property
	 LogNativeOutputDocument Property
	 LogXMLInputDocument Property
	 LogXMLOutputDocument Property

	 IBizTalkOrganization
	 Aliases Property
	 Applications Property
	 Comments Property
	 CreateAlias Method
	 CreateApplication Method
	 GetDefaultAlias Method
	 IsDefault Property
	 LoadAlias Method
	 LoadApplication Method
	 RemoveAlias Method
	 RemoveApplication Method
	 SaveAlias Method
	 SaveApplication Method

	 IBizTalkPort
	 Channels Property
	 Comments Property
	 ControlNumberValue Property
	 Delimiters Property
	 DestinationEndpoint Property
	 EncodingType Property
	 EncryptionCertificateInfo Property
	 EncryptionType Property
	 Envelope Property
	 PrimaryTransport Property
	 SecondaryTransport Property
	 ServiceWindowInfo Property
	 SignatureType Property

	 IBizTalkPortGroup
	 AddPort Method
	 Channels Property
	 Ports Property
	 RemovePort Method

	 IBizTalkServiceWindowInfo
	 FromTime Property
	 IsEnabled Property
	 ToTime Property

	 IBizTalkTransportInfo
	 Address Property
	 Parameter Property
	 Type Property

	 IDictionary
	 Count Property
	 GetMultiple Method
	 Prefix Property
	 PutMultiple Method
	 Value Property

	 ISimpleList
	 Add Method
	 Count Property
	 Delete Method
	 Item Property

	 Enumerations
	 BIZTALK_CONFIGDATA_TYPE
	 BIZTALK_ENCODING_TYPE
	 BIZTALK_ENCRYPTION_TYPE
	 BIZTALK_OPENNESS_TYPE
	 BIZTALK_OPENNESS_TYPE_EX
	 BIZTALK_SIGNATURE_TYPE
	 BIZTALK_STORE_TYPE
	 BIZTALK_TRANSPORT_TYPE
	 BIZTALK_USAGE_TYPE

	Documents Reference
	Interfaces
	 IBizTalkTrackData Interface
	 GetInDocDetails Method
	 GetInterchanges Method
	 GetOutDocDetails Method

	 IBTSCustomProcess
	 Execute Method
	 SetContext Method

	 IBTSCustomProcessContext
	 ChannelName Property
	 DestID Property
	 DestQualifier Property
	 DocName Property
	 EnvelopeName Property
	 Openness Property
	 PassThrough Property
	 SourceID Property
	 SourceQualifier Property

	 IInterchange
	 CheckSuspendedQueue Method
	 DeleteFromSuspendedQueue Method
	 GetSuspendedQueueItemDetails Method
	 Submit Method
	 SubmitSync Method

	 Enumerations
	 CISReasonToQueue

	Custom Components Reference
	Interfaces
	 IBizTalkAcknowledge
	 AckDocument Method
	 AckGroup Method
	 AckInterchange Method

	 IBizTalkCorrelation
	 Correlate Method

	 IFunctoid
	 FunctionsCount Property
	 GetFunctionDescripter Method
	 GetFunctionParameter Method
	 GetScriptBuffer Method
	 Version Property

	 IBizTalkParserComponent
	 GetGroupDetails Method
	 GetGroupSize Method
	 GetInterchangeDetails Method
	 GetNativeDocumentOffsets Method
	 GetNextDocument Method
	 GroupsExist Method
	 ProbeInterchangeFormat Method

	 IBizTalkSerializerComponent
	 AddDocument Method
	 GetDocInfo Method
	 GetGroupInfo Method
	 GetInterchangeInfo Method
	 Init Method

	 IBTSAppIntegration
	 ProcessMessage Method

	 IPipelineComponent
	 EnableDesign Method
	 Execute Method

	 IPipelineComponentAdmin
	 GetConfigData Method
	 SetConfigData Method

	 ISchemaImporter
	 ExtractXMLSchema Method
	 ImportFormatDescription Property
	 ImportFormatIcon Property
	 NumberOfSupportedImportFormats Property

	 ISchemaImporterError
	 IsWarning Property
	 NodePath Property
	 Text Property

	 ISchemaImporterErrorProvider
	 Error Property
	 NumberOfErrors Property

	 Enumerations
	 CONNECTION_TYPE
	 DTA_ACK_STATUS
	 FUNC_CATEGORY
	 FUNC_TYPE
	 GeneratedReceiptLevel
	 SCRIPT_CATEGORY

	Orchestration Services Reference
	Interfaces
	 IWFGroupAdmin
	 Count Property
	 FullyQualifiedName Property
	 InstanceIsResident Property
	 InstanceIsSuspended Property
	 Name Property
	 ResumeInstance Method
	 Shutdown Method
	 Startup Method
	 SuspendInstance Method
	 TerminateInstance Method
	 UseFileDSN Property

	 IWFProxy
	 FullyQualifiedName Property
	 WorkflowInstance Property

	 IWFSystemAdmin
	 Count Property
	 FullyQualifiedName Property
	 IsWorkflowHost Property
	 Item Property
	 ShutdownAll Method
	 ShutdownApp Method
	 StartUp Method
	 TestAdminStatus Method
	 UseFileDSN Property

	 IWFWorkflowInstance
	 CompletionStatus Property
	 FullPortName Property
	 FullyQualifiedName Property
	 InstanceId Property
	 IsCompleted Property
	 ModuleId Property
	 ModuleName Property
	 ParentInstanceID Property
	 Port Property
	 WaitForCompletion Method

	Managing and Monitoring Reference
	WMI Classes
	 DocSuspendedEvent
	 InterchangeProvError
	 MicrosoftBizTalkServer_Group
	 MicrosoftBizTalkServer_GroupReceiveFunction
	 MicrosoftBizTalkServer_GroupServer
	 MicrosoftBizTalkServer_MgmtDB
	 MicrosoftBizTalkServer_Queue
	 MicrosoftBizTalkServer_ReceiveFunction
	 MicrosoftBizTalkServer_RetryQueue
	 MicrosoftBizTalkServer_ScheduledQueue
	 MicrosoftBizTalkServer_Server
	 MicrosoftBizTalkServer_SuspendedQueue
	 MicrosoftBizTalkServer_WorkQueue
	 MSBTS_CustomCounter
	 MSBTS_CustomCounterSetting
	 ReceiveFunctionDisabledEvent

	 Error Messages
	 Messaging Services Error Messages
	 Orchestration Services Error Messages
	 Standard COM Error Messages

	BizTalk Server Glossary

	Technical Articles
	@NoTitle
	Applying Microsoft Patterns to Solve EAI Problems
	BizTalk Server Interchange Throughput Analysis
	BizTalk Server 2002 WMI Programming in Microsoft .NET Framework
	Building a Scalable Business Process Automation Engine Using BizTalk Server 2002 and Visual Studio .NET
	Creating Web Service Enterprise Applications by Using BizTalk Adapter for Web Services
	Database Integration with Microsoft BizTalk Server 2002
	High-Availability Solutions Using Microsoft Windows 2000 Cluster Service
	Integrating BizTalk Server with the RosettaNet Implementation Framework
	Microsoft BizTalk Adapter for MQSeries White Paper
	Microsoft BizTalk Server 2002 Fail Fast Tutorial and Sample AIC
	Orchestrating XML Web Services and Using the Microsoft .NET Framework with Microsoft BizTalk Server
	Processing Large Files with BizTalk Server 2002
	Publish-Subscribe Toolkit Documentation for Microsoft BizTalk Server 2002
	Using EDI with Microsoft BizTalk Server 2002
	Writing Parsers and Serializers in C# for Microsoft BizTalk Server 2002
	XML Tools

	Specifications
	BPEL4WS Specification Index Page
	BPEL4WS Specification Index Page
	Business Process Execution Language for Web Services Version 1.0
	Business Process Execution Language for Web Services Version 1.1

	Online Books
	Online Books
	Automating Supply Chain Operations in Order Systems
	Implementing Secure Business Transactions Across Organizations
	Integrating Applications That Require a Persistent Client Connection
	Programming Security and Inventory Visibility in Order Systems
	Performance Tuning and Optimization in Time-Critical Networks
	Planning EAI and B2B Solutions for Business

