

Building an On-Demand
Video Service with
Microsoft Azure
Media Services

David Britch

Martin Cabral

Ezequiel Jadib

Douglas McMurtry

Andrew Oakley

Kirpa Singh

Hanz Zhang

April 2014

2

Copyright

¢Ƙƛǎ ŘƻŎǳƳŜƴǘ ƛǎ ǇǊƻǾƛŘŜŘ άŀǎ-ƛǎέΦ LƴŦƻǊƳŀǘƛƻƴ ŀƴŘ ǾƛŜǿǎ ŜȄǇǊŜǎǎŜŘ ƛƴ ǘƘƛǎ ŘƻŎǳƳŜƴǘΣ ƛƴŎƭǳŘƛƴƎ ¦w[

and other Internet Web site references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real

association or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any

Microsoft product. You may copy and use this document for your internal, reference purposes. You

may modify this document for your internal, reference purposes.

© 2014 Microsoft Corporation. All rights reserved.

Microsoft, Azure, Internet Explorer, MSDN, PlayReady, Visual Studio, Windows, Windows Media,

Windows Phone, and Xbox are trademarks of the Microsoft group of companies. All other

trademarks are property of their respective owners.

3

Contents
Preface .. 7

Who this guidance is for ... 7

Why this guidance is pertinent now ... 7

How this guidance is structured ... 7

What you need to use the code .. 9

²ƘƻΩǎ ǿƘƻΚ .. 9

Community .. 10

Authors and contributors .. 10

1 - Introduction to Microsoft Azure Media Services ... 11

What is Microsoft Azure Media Services? .. 11

Choosing your Azure Media Services video experience ... 12

Organizing the Azure Media Services video processing workflow ... 13

Uploading video into Azure Media Services ... 14

Supported file types in Azure Media Services .. 14

Processing media with Microsoft Azure Media Services .. 15

Obtaining a media processor instance .. 15

Encoding video .. 15

Encoding for a smart phone .. 15

Encoding for Xbox ... 16

Encoding for other devices and platforms .. 16

Packaging video with Azure Media Services ... 16

Protecting video with Azure Media Services .. 17

Delivering video from Azure Media Services .. 17

Processing outbound video from Azure Media Services .. 18

Providing access to video within Azure Media Services ... 18

Consuming video from Azure Media Services .. 19

Summary ... 19

More information ... 19

2 - The Microsoft Azure Media Services Video-on-Demand Scenario .. 20

Using the Contoso Azure Media Services video application ... 20

Browsing videos .. 20

Playing videos from Azure Media Services ... 22

Capturing videos ... 22

4

Uploading videos into Azure Media Services .. 23

Understanding the Contoso Azure Media Services application architecture 26

Understanding the Windows Store application architecture ... 28

Using a dependency injection container .. 29

Understanding the Visual Studio solution .. 30

Developing the content management system .. 32

Accessing the content management system .. 33

Summary ... 34

More information ... 35

3 - Uploading Video into Microsoft Azure Media Services ... 36

Uploading content .. 36

Uploading content with the Media Services SDK for .NET.. 36

Uploading content with the Azure Management Portal .. 36

Managing assets across multiple storage accounts within Azure Media Services 37

Ingesting content with the Media Services SDK for .NET ... 37

Supported input formats for Azure Media Services ... 38

Securing media for upload into Azure Media Services ... 39

Connecting to Azure Media Services .. 41

Upload process in the Contoso Azure Media Services applications ... 43

Summary ... 50

More information ... 50

4 - Encoding and Processing Media in Microsoft Azure Media Services .. 52

Introduction to video encoding .. 52

Encoding for delivery using Azure Media Services ... 53

Creating encoding jobs in Azure Media Services .. 55

Accessing Azure Media Services media processors .. 56

Securely encoding media within Azure Media Services ... 57

Scaling Azure Media Services encoding jobs .. 58

Accessing encoded media in Azure Media Services ... 59

Encoding process in the Contoso Azure Media Services web service .. 59

Creating the video encoding pipeline for Azure Media Services .. 65

Handling job notifications from Azure Media Services ... 71

Processing the output assets from the Azure Media Services encoding job 75

Summary ... 80

5

More information ... 80

5 - Delivering and Consuming Media from Microsoft Azure Media Services 81

Delivering media from Azure Media Services ... 81

Azure Media Services Origin Service ... 82

Azure Media Services dynamic packaging .. 83

Scaling Azure Media Services delivery .. 85

Securely delivering streaming content from Azure Media Services ... 86

Progressive download of storage encrypted content ... 86

Smooth Streaming content and MPEG-DASH ... 87

Apple HLS content ... 87

Apple HLS content with PlayReady ... 87

Delivery and consumption process in the Contoso Azure Media Services applications 87

Browsing videos .. 88

Playing videos .. 92

Retrieving recommendations.. 97

Summary ... 101

More information ... 101

Appendix A - The Contoso Microsoft Azure Media Services Web Service ... 102

Understanding the web service .. 102

Routing incoming requests to a controller ... 103

Transmitting data between a controller and a client ... 105

Using the Repository pattern to access data .. 107

Retrieving and storing data in the database ... 109

Reading and writing the data for objects ... 111

Decoupling entities from the data access technology .. 113

Instantiating service and repository objects ... 114

More information ... 115

Appendix B - Microsoft Azure Media Services Encoder Presets ... 117

H.264 coding presets .. 117

VC-1 coding presets .. 120

Audio coding presets .. 122

More information ... 122

Appendix C - Understanding the Contoso Microsoft Azure Media Services Video Applications 123

Understanding the Contoso video web application ... 123

6

Browsing videos .. 123

Playing videos .. 125

Retrieving recommendations.. 127

Uploading a video ... 129

Understanding the Contoso video Windows Store application .. 133

Understanding the Contoso video Windows Phone application .. 134

Understanding the other Contoso video applications .. 135

More information ... 135

Bibliography .. 136

Chapter 1 ς Introduction to Windows Azure Media Services ... 136

Chapter 2 ς The Contoso Scenario .. 136

Chapter 3 ς Uploading Media ... 137

Chapter 4 ς Encoding and Processing Media .. 137

Chapter 5 ς Delivering and Consuming Media ... 138

Appendix A ς The Contoso Web Service ... 138

Appendix B ς Windows Azure Media Encoder Presets ... 138

Appendix C ς Understanding the Contoso Video Applications ... 139

7

Preface
Microsoft Azure Media Services allows you to build scalable, cost effective, end-to-end media

distribution solutions that can upload, encode, package, and stream media to Windows, iOS,

Android, Adobe Flash, and other devices and platforms.

The guide describes a scenario concerning a fictitious company named Contoso that has decided to

use Azure Media Services to provide a video-on-demand service as an end-to-end solution.

In addition to describing the client applications, their integration with Azure Media Services, and the

decisions made during the design and implementation, this guide discusses related factors, such as

the design patterns used, and the ways that the application could be extended or modified for other

scenarios.

The result is that, after reading this guide you will be familiar with how to design and implement

applications that consume Azure Media services.

Who this guidance is for

This guidance is intended for architects, developers, and information technology professionals who

design, build, or maintain video-on-demand or online video portal applications and services,

particularly those that integrate with a content management systems. To understand the sample

code provided with this guidance, you should be familiar with the Microsoft .NET Framework, the

Microsoft Visual Studio development system, the Azure SDK for .NET, ASP.NET MVC, and the

Microsoft Visual C# development language.

Why this guidance is pertinent now

Building the workflow for the creation, management, and distribution of media is problematic. It

involves having to integrate multiple technologies and providers, some of which may be

incompatible. In addition, it can require a huge investment in infrastructure, which may not always

be fully utilized. These issues can result in a non-standardized workflow that is not easily scaled, and

that requires coordination at different stages of the workflow.

Media Services provides everything you'll need to build and operate video-on-demand services to

multiple devices and platforms, including all the tools and services you'll need to handle media

processing, delivery, and consumption. In addition, Media Services will integrate with content

management systems to help your platform scale by using the global footprint of Azure datacenters,

without having to plan for capacity spikes or worry about idle datacenters. Together, this helps to

reduce the costs that are associated with integrating multiple products and providers when building

a media solution.

How this guidance is structured

The following figure shows the road map for the guide.

8

The guide structure

Chapter Summary

Chapter 1, "Introduction to Microsoft Azure Media

Services"

This chapter provides an overview of the workflow

used by Media Services, and discusses how to decide

what type of media experience users should have.

Chapter 2, "The Azure Media Services Video-on-

Demand Scenario"

This chapter describes the video content management

system developed by Contoso, and the business

requirements of the video applications, and

summarizes the architecture of the solution that

Contoso built, based on a web service that's consumed

by client applications.

Chapter 3, "Uploading Video into Microsoft Azure

Media Services"

This chapter describes the input formats supported by

Media Services, how to use the Media Services SDK

for .NET to upload content, and how to secure media

for upload.

Chapter 4, "Encoding and Processing Video in

Microsoft Azure Media Services"

This chapter focuses on encoding media, examining

how to encode media for efficient delivery, how to

create scalable encoding jobs, and how to control the

encoding process by using Azure Storage Queues.

Chapter 5, "Delivering and Consuming Video from

Microsoft Azure Media Services"

This chapter provides describes how to use dynamic

packaging to convert video to the required format on-

demand, how to scale media services delivery, and

how to securely deliver streaming content to the end

user.

Note: This guide also includes appendices that describe how the web service works, and task

presets you can use to configure the Azure Media Encoder.

9

What you need to use the code

These are the system requirements for building and running the sample solution:

¶ Microsoft Windows 8.1.

¶ Microsoft Visual Studio 2013 Ultimate, Premium, or Professional edition.

¶ Azure SDK for .NET.

¶ Windows Phone SDK 8.0.

¶ Microsoft Internet Information Server (IIS).

¶ A Media Services account in a new or existing Azure subscription.

You can download the sample code from http://aka.ms/amsg-code.

7ÈÏȭÓ ×ho?

This guidance uses a sample application that illustrates consuming Media Services. A panel of

experts comments on the development efforts. The panel includes a mobile app specialist, a

software developer, a database specialist, and a cloud specialist. The delivery of the sample

application can be considered from each of these points of view. The following table lists these

experts.

Christine is a mobile application specialist. She understands the special requirements inherent

in applications designed to be used on mobile devices. Her expertise is in advising architects and

developers on the way they should plan the feature set and capabilities to make the application

usable and suitable for these types of devices and scenarios.

"To build successful applications that work well on the phone, you must understand the platform,

the user's requirements, and the environment in which the application will be used."

Markus is a senior software developer. He is analytical, detail oriented, and methodical. He's

focused on the task at hand, which is building a great cloud-based application. He knows that

he's the person who's ultimately responsible for the code.

"For the most part, a lot of what we know about software development can be applied to different

environments and technologies. But, there are always special considerations that are very

important."

Poe is a database specialist. He is an expert on designing and deploying databases. Poe has a

keen interest in practical solutions; after all, he's the one who gets paged at 03:00 when there's a

problem.

"Implementing databases that are accessed by thousands of users involves some big

challenges. I want to make sure our database performs well, is reliable, and is secure. The

reputation of Contoso depends on how users perceive the applications that access the

database."

Bharath is a cloud specialist. He checks that a cloud-based solution will work for a company and

provide tangible benefits. He is a cautious person, for good reasons.

ñThe cloud provides a powerful environment for hosting large scale, well-connected applications.

The challenge is to understand how to use this environment to its best advantage to meet the

needs of your business.ò

http://aka.ms/amsg-code

10

If you have a particular area of interest, look for notes provided by the specialists whose interests

align with yours.

Community

This guide, like many patterns & practices deliverables, is associated with a community site. On this

community site, you can post questions, provide feedback, or connect with other users for sharing

ideas. Community members can also help Microsoft plan and test future guides, and download

additional content such as extensions and training material.

Authors and contributors

This guide was produced by the following individuals:

¶ Program and Product Management: Andrew Oakley (Microsoft Corporation)

¶ Development: Martin Cabral (Southworks SRL), Ezequiel Jadib (Southworks SRL), Douglas

McMurtry (Agilethought Inc.), Hanz Zhang (Microsoft Corporation)

¶ Test: Monika Jadwani (Tata Consultancy Services), Sumit Jaiswal (Tata Consultancy Services),

Gurunath Navale (Tata Consultancy Services), Kirpa Singh (Microsoft Corporation)

¶ Documentation: David Britch (Content Master Ltd)

¶ Edit: RoAnn Corbisier (Microsoft Corporation)

¶ Illustrations and book layout: Chris Burns (Linda Werner & Associates Inc)

¶ Release Management: Nelly Delgado (Microsoft Corporation)

http://wamsg.codeplex.com/

11

1 - Introduction to Microsoft Azure

Media Services
Traditionally, building the workflow for the creation, management, and distribution of media is

problematic. It involves having to integrate multiple technologies and providers, some of which may

be incompatible. In addition, it can require a huge investment in infrastructure, which may not

always be fully utilized. These issues can result in a non-standardized workflow that is not easily

scaled, and that requires coordination at different stages of the workflow.

This chapter introduces Microsoft Azure Media Services, and discusses the typical Media Services

workflow.

What is Microsoft Azure Media Services?

Azure Media Services allows you to build scalable, cost effective, end-to-end media distribution

solutions that can upload, encode, package, and stream media to Windows, iOS, Android, Adobe

Flash, and other devices and platforms.

The benefits that Media Services offers over the traditional approach to building a media workflow

are as follows:

¶ An API that allows developers to easily create, manage, and maintain custom media

workflows.

¶ A standardized workflow that improves coordination and productivity when there are

multiple participants involved in the creation and management of content.

¶ Automatic scalability by using global data centers to transcode and deliver media assets,

without having to plan for capacity spikes or worry about idle datacenters.

¶ Cost effectiveness by encoding media once, and then using dynamic packaging to deliver it

in multiple formats.

Media Services provides everything you'll need to easily build and operate the three standard media

solutions:

¶ Video-on-demand (VOD) services. Media Services provides everything you'll need to

operate VOD services to multiple devices and platforms, including all the tools and services

you'll need to handle media processing, delivery, and consumption.

¶ Online video platforms (OVP). Media Services will integrate with your OVP and Content

Management System (CMS) to help your platform gain scale by using the global footprint of

Azure datacenters, without having to plan for capacity spikes or worry about idle

datacenters.

¶ End-to-end solutions. Media Services can be used to easily build secure end-to-end media

workflows entirely in Azure, from content ingestion through to encoding, packaging, and

12

protection. This helps to reduce the costs that are associated with integrating multiple

products and providers.

Regardless of your development scenario, the first step in sharing video content is to choose your

media experience.

To see how companies are using Media Services to stream video to their customers, read the

following case studies.

¶ all3media

¶ blinkbox

¶ Xbox

Choosing your Azure Media Services video experien ce

The first step in sharing video content is deciding what type of experience you want your users to

have. This can be answered by asking a number of questions:

¶ How will your users be viewing the video content?

¶ Will your users be connected to the internet?

¶ Will your users expect the video content to be in HD?

¶ Will your users be viewing the video content on a computer or a hand-held device?

Providing answers to these questions will help to give your users the best possible experience.

Another decision that must be made is the type of viewing devices that you will support. The

following table outlines the viewing devices supported by Media Services, and the recommended

viewing approaches for those devices.

Device Description Recommended viewing

approaches

Web browsers Web browsers can be run on desktop PCs, smart

phones, and tablets. When running on desktop PCs

you can take advantage of the large screen size and

the large storage capacity, allowing you to stream HD

videos.

Offline viewing, progressive

downloading, and streaming.

Smart phones Smart phones have small screens and small storage

capacities.

Streaming.

Tablets Tablets have larger screens than smart phones, but

still typically have smaller storage capacity.

Streaming. Tablets with larger

storage capacities can take

advantage of offline viewing and

progressive downloading.

Xbox Xbox consoles have the benefit of large screens and

large storage capacity.

Offline viewing, progressive

downloading, and streaming.

Set-top boxes These devices typically have large screens but Streaming.

http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?CaseStudyID=710000003980
http://www.microsoft.com/casestudies/Microsoft-Azure/blinkbox/Movie-Streaming-Business-Uses-Cloud-Service-to-Save-Millions-of-Dollars-Scale-Quickly/710000004206
http://www.microsoft.com/casestudies/Windows-Azure/Xbox/Xbox-One-Game-DVR-Uses-the-Cloud-to-Scale-Store-and-Distribute-User-Video-Game-Clips/710000003945

13

and connected

TVs

minimal storage capacity.

Organizing the Azure Media Services video processing workflow

The following figure shows a high-level overview of the standard workflow used when processing

media with Media Services.

A high-level overview of the standard Media Services workflow

Media Services supports on-demand media and live streams workflows. However, the live streams

workflow is outside the scope of this guide. Therefore, the guide focuses on the on-demand media

workflow.

The steps involved in the workflow are as follows:

1. Media is uploaded to Media Services and stored in Azure Blob Storage. service

2. Uploaded media is encoded using the Azure Media Encoder, with the encoded media being

stored in Azure Storage.

3. Encoded media is packaged by the Azure Media Packager, with the result being stored in

Azure Storage.

4. Client applications playback the media located at a URL, with the Origin Service processing

the outbound stream from storage to client application.

Therefore, the typical Media Services workflow can be summarized as:

14

1. Media upload

2. Media processing

3. Delivery

4. Consumption

Each item will now be discussed in turn.

Uploading video into Azure Media Services

You must upload your content into Azure Media Services in order to be able to encode, manage, and

consume it. Media Services uses Azure Storage to store your media for processing and viewing. Your

content can be programmatically uploaded using the Media Services REST API or one of the available

client SDKs. These APIs allow you to upload one file at a time or perform bulk upload operations.

Media Services also allows you to perform secure uploading and storage of your content. Storage

encryption will encrypt your content locally prior to uploading it to Azure Storage where it will be

stored in an encrypted form.

The fundamental content in Media Services is an asset. An asset contains one or many files, such as

video, audio, closed caption files, and metadata about the files. Each asset contains one or more

asset files, with each asset file containing metadata about a specific media file. Once an asset has

been created by uploading files it can be used in Media Services workflows such as encoding and

streaming.

Each asset is mapped to a blob container in an Azure Storage account, with the files in the asset

being stored as blobs in the container. A blob container groups a set of blobs, just as a folder groups

a set of files. They are used in Media Services as a boundary point for access control. An Azure

Storage account can contain an unlimited number of blob containers and a container can store an

unlimited number of blobs.

Media Services accounts are associated with one or more Azure Storage accounts. Each account can

contain an unlimited number of blob containers, and is only subject to the limits on the underlying

account. Media Services provides SDK tooling to manage multiple storage accounts and perform

load balancing of the distribution of assets during upload. For more information see "Managing

assets across multiple storage accounts in Azure Media Services and defining load balancing

strategy."

For more information about uploading content, see "Chapter 3 ς Uploading Video."

Supported file types in Azure Media Services

Various video, audio, and image file types can be uploaded to a Media Services account, with there

being no restriction on the types or formats of files that you can upload using the Media Services

SDK. However, the Azure Management portal restricts uploads to the formats that are supported by

the Azure Media Encoder. These import formats include MPEG-1, MPEG-2, MPEG-4, and Windows

Media Video encoded video, MP3, WAVE, and Windows Media Audio encoded audio, and BMP,

JPEG, and PNG encoded images. The Azure Media Encoder can export data as Windows Media

Video, Windows Media Audio, MP4, and Smooth Streaming File Format.

http://www.gtrifonov.com/2013/08/01/managing-assets-across-multiple-storage-accounts-in-windows-azure-media-services-and-defining-load-balancing-strategy/
http://www.gtrifonov.com/2013/08/01/managing-assets-across-multiple-storage-accounts-in-windows-azure-media-services-and-defining-load-balancing-strategy/
http://www.gtrifonov.com/2013/08/01/managing-assets-across-multiple-storage-accounts-in-windows-azure-media-services-and-defining-load-balancing-strategy/

15

For more information about the supported file formats see "Supported input formats" and

"Introduction to encoding."

Processing media with Micro soft Azure Media Services

In Media Services, media processing involves obtaining a Media Processor instance, encoding,

packaging, and protecting media files.

Obtaining a media processor instance

Media Services provides a number of media processors that enable video to be processed. Media

processors handle a specific processing task, such as encoding, format conversion, encrypting, or

decrypting media content. Encoding video is the most common Media Services processing task, and

it is performed by the Azure Media Encoder.

Encoding video

Encoding is the process of taking a video and turning it into a format that can be consumed by users.

Users could be using a variety of devices to watch your videos, including desktop computers, smart

phones, tablets, Xbox consoles, set-top boxes, or Internet-connected TVs. These devices all have

features that affect the required encoding. For instance, smart phones have small screens and little

storage, while desktop computers have larger screens and larger storage. In addition, smart phones

potentially have a more limited bandwidth than desktop computers. Therefore, when you choose

how to encode a video you must bear in mind the variety of devices that users will consume the

video on.

In some cases you may want to have multiple encodings to enable the best possible experience on

a range of devices.

The Media Encoder is configured using encoder preset strings, with each preset specifying a group of

settings required for the encoder. Encoder presets are divided into two groups ς general presets and

device specific presets. Videos encoded with general presets can be used by any device that

supports the required file formats. Videos encoded with device specific presets are designed to be

used by a specific device, such as a smart phone. For a list of all the presets see "Appendix B ςAzure

Media Encoder Presets."

Encoding for a smart phone

When encoding video for a smart phone you should choose an encoding preset that matches the

resolution, supported codecs, and supported file formats of the target device. For example, for a

Windows Phone that supports H.264 video up to 1080p you should use the "H264 Smooth Streaming

Windows Phone 7 Series" preset.

Different smart phones, even those from the same company, can support different resolutions, bit

rates, codecs, and file formats.

The iPhone 5 supports H.264 video up to 1080p in HLS format. However, Media Services does not

support encoding video directly into HLS but you can encode to MP4 and then use static packaging

to convert the video to HLS. Alternatively, you can encode to Smooth Streaming or MP4 and use

dynamic packaging to convert the video to HLS in real-time. Therefore, if you wanted to encode

16

video to 1080p for an iPhone 5 you would use the "H264 Adaptive Bitrate MP4 Set 1080p for iOS

Cellular Only" preset. Similarly, for an Android phone that supports H.264 video at 480x360 you

could use the "H264 Adaptive Bitrate MP4 Set SD 4x3 for iOS Cellular Only" preset. Then dynamic

packaging would be used to convert the video to HLS in real-time.

Encoding for Xbox

When encoding video for Xbox you can choose between VC-1 and H.264 smooth streaming at

resolutions up to 1080p. For example, to encode a video to 720p using H.264 you would use the

"H264 Smooth Streaming 720p Xbox Live ADK" preset.

Encoding for other devices and platforms

General presets can be used to encode for a variety of devices including desktop machines, tablets,

and set-top boxes. To choose the appropriate encoding preset you must determine how users will

view your content, and what resolutions, bit rates, codecs, and file formats are supported on their

viewing devices.

The following table lists each type of device and the client technologies supported by Media

Services.

Device Technologies

Windows 8 Smooth streaming, progressive downloading, MPEG-DASH.

Windows RT Smooth streaming and progressive downloading.

Windows Phone Smooth streaming and progressive downloading.

Web browsers Smooth streaming is supported through additional SDKs and Player Frameworks

provided by Microsoft.

Progressive download is supported in browsers through the HTML5 video element.

Internet Explorer 11 and Chrome both support MPEG-DASH through the use of Media

Source Extensions (MSE).

Xbox Smooth streaming and progressive downloading.

Macintosh Apple HLS and progressive download.

iOS Smooth streaming, Apple HLS, and progressive downloading.

Android Smooth streaming, progressive downloading, and Apple HLS.

Set-top box,

connected TVs

Smooth streaming, progressive downloading, and Apple HLS.

For more information about encoding media with Media Services see "Chapter 4 ς Encoding and

Processing Video."

Packaging video with Azure Media Services

Once a video has been encoded it is placed in an output asset, which can then be placed into a

variety of file containers. This process is referred to as packaging. For example, you could convert an

MP4 file into smooth streaming content by using the Azure Media Packager to place the encoded

content into a different file container.

17

Note: Packaging does not re-encode a video. Instead, it rearranges the encoding and places it in a

different file container.

Media Services allow the user to decide if they will package video upfront with a media processor,

known as static packaging, or package video on demand, known as dynamic packaging.

The Azure Media Packager is a media processor capable of performing static packaging. Static

packaging involves creating a copy of your content in each format required by users. For example, an

MP4 file could be converted into smooth streaming content if both formats are required by users.

This would result in two copies of the content existing, each in a different format.

Dynamic packaging is not performed by a media processor, but by origin servers. An origin server

packages the source media when a client application requests a specific video format, allowing you

to encode your video just once, with it being converted in real time to the format requested by the

client application. With dynamic packaging your video is typically stored as an adaptive bitrate MP4

file set. When a client application requests the video it specifies the required format. The origin

server then converts the MP4 adaptive bitrate file to the format requested by the client in real time.

This ensures that only one copy of your video has to be stored, therefore reducing the storage costs.

Dynamic packaging is the preferred method for publishing a video. For more information see

"Dynamic packaging."

Protecting video with Azure Media Services

To protect your media when it is published, Media Services supports PlayReady sample-based

Common Encryption and AES 128-bit CBC Envelope Encryption. PlayReady is a Digital Rights

Management (DRM) system developed by Microsoft. DRM allows you to control who has access to

your content. When a user tries to watch PlayReady protected content, the client application

requests the content from Media Services. Media Services then redirects the client to a licensing

ǎŜǊǾŜǊ ǘƘŀǘ ŀǳǘƘŜƴǘƛŎŀǘŜǎ ŀƴŘ ŀǳǘƘƻǊƛȊŜǎ ǘƘŜ ǳǎŜǊΩǎ ŀŎŎŜǎǎ ǘƻ ǘƘŜ ŎƻƴǘŜƴǘΦ ¢ƘŜ ŎƭƛŜƴǘ ŀǇǇƭƛŎŀǘƛƻƴ Ŏŀƴ

then safely download the decryption key which will allow the content to be decrypted and viewed.

AES Envelope Encryption provides content encryption, but does not allow sophisticated digital rights

management, or secure key delivery (which is provided only by SSL). Content owners should trust

their clients if they choose AES 128-bit Envelope Encryption. It is much easier for an untrusted,

malicious end user to acquire and redistribute keys.

For more information about content protection see "Protecting Assets with Microsoft PlayReady."

Deliveri ng video from Azure Media Services

Media Services provides different mechanisms for delivering media assets that have been uploaded

to Media Services. It can be used to deliver content that has simply been stored in Media Services, or

it can also include content that has been processed or encoded in different ways.

There are typically four approaches that users can use to access videos:

¶ Offline viewing

¶ Progressive downloading

¶ Streaming

http://msdn.microsoft.com/en-us/library/windowsazure/dn189154.aspx

18

¶ Adaptive bitrate streaming

Offline viewing involves a user downloading an entire video onto their computer or device. Because

videos can be quite large, it may take some time for the download to complete, and the device must

have enough storage space to hold the entire video. However, the benefit of this approach is that

you do not need a network connection to view the video once it has been downloaded.

Progressive downloading allows a user who is connected to the internet to start viewing a video

before the entire video has been downloaded. However, it does require that the viewing device has

enough storage space to hold the entire video.

Streaming also requires an internet connection, but differs from progressive downloading in that it

only downloads a small amount of the video at once and discards it once it has been displayed. The

benefit of this approach is that it requires little storage on the viewing device.

Adaptive bitrate streaming allows client applications to determine network conditions and adapt the

data rate of the video content to the available network bandwidth. When network communication

degrades, the client can automatically select a lower bitrate version of the content, therefore

allowing the user to continue viewing the video, albeit at a lower quality. When network conditions

improve the client can automatically switch back to a higher bitrate with improved video quality. The

benefit of this approach is that the video player can automatically react to changes in bandwidth

during playback, therefore providing a better user experience.

Note: Some adaptive bitrate streaming technologies, such as Smooth Streaming, also monitor

video rendering performance in order to determine the appropriate bitrate stream for the client.

Media Services supports three adaptive bitrate streaming technologies:

¶ Smooth Streaming. This is an adaptive bitrate streaming technology developed by

Microsoft.

¶ HTTP Live Streaming (HLS). This is an adaptive bitrate streaming technology developed by

Apple.

¶ MPEG DASH. This is an adaptive bitrate streaming protocol created by the Motion

Picture Experts Group (MPEG), and is an international standard.

Processing outbound video from Azure Media Services

The Media Services Origin Service handles requests for content. It retrieves files from Azure Storage

and provides them to Content Delivery Networks (CDN) or client applications directly. The origin

servers have features that allow them to respond to several hundred requests per second, and

provide dynamic encryption and dynamic packaging services.

Providing access to video within Azure Media Services

Accessing content in Media Services requires a locator, which provides an entry point to access the

files contained in an asset. An access policy is used to define the permissions and duration that a

client has access to a given asset. Multiple locators can share an access policy so that different

locators can provide different start and stop times while all using the same permission and duration

settings provided by the access policy.

19

There are two types of locators:

¶ Shared access signature locators

¶ On-demand origin locators

A shared access signature locator grants access rights to the underlying blob container of the media

asset in Azure Storage. By specifying a shared access signature, you can grant users who have the

URL access to a specific resource for a specified period of time. You can also specify what operations

Ŏŀƴ ōŜ ǇŜǊŦƻǊƳŜŘ ƻƴ ŀ ǊŜǎƻǳǊŎŜ ǘƘŀǘΩǎ ŀŎŎŜǎǎŜŘ Ǿƛŀ ŀ ǎƘŀǊŜŘ ŀŎŎŜǎǎ ǎƛƎƴŀǘǳǊŜ ƭƻŎŀǘƻǊΦ

Note: Media Services enables the authoring of shared access signature locators to simplify complex

workflows. However, it is not expected that end-users will consume these except in special cases.

An on-demand origin locator should be used to grant access to streaming content. On-demand

origin locators are exposed by the Media Services Origin Service, which pulls the content from Azure

Storage and delivers it to the client. The on-demand origin locators obfuscate the underlying asset's

blob container and storage account URL. Instead, they always point to a Media Services Origin

Service, therefore allowing advanced scenarios such as IP restriction, cache control, and CDN

authentication. For more information about the Media Services Origin Service see "Origin Service."

Consuming video from Azure Media Services

Media Services provides support for creating media player applications that run on different devices

and platforms including PCs, Macintosh, Windows Phone, iOS devices, and Android devices.

Microsoft also provides many different SDKs and player frameworks that allow you to create

applications that consume streaming media from Media Services. For more information see

"Developing Azure Media Services Client Applications."

Summary

Media Services provides everything you'll need to build and operate video-on-demand services to

multiple devices and platforms, including all the tools and services you'll need to handle media

processing, delivery, and consumption. In addition, Media Services will integrate with content

management systems to help your platform scale by using the global footprint of Azure datacenters,

without having to plan for capacity spikes or worry about idle datacenters. Together, this helps to

reduce the costs that are associated with integrating multiple products and providers when building

a media solution.

More information

¶ The article "Managing assets across multiple storage accounts in Azure Media Services and

defining load balancing strategy" is available on a blog site.

¶ You can find information about content protection at "Protecting Assets with Microsoft

PlayReady."

¶ You can find more information about the SDKs and Player Frameworks that allow you to

create client applications that can consume streaming media from Media Services at

"Developing Azure Media Services Client Applications."

http://msdn.microsoft.com/en-us/library/windowsazure/dn223283.aspx
http://www.gtrifonov.com/2013/08/01/managing-assets-across-multiple-storage-accounts-in-windows-azure-media-services-and-defining-load-balancing-strategy/
http://www.gtrifonov.com/2013/08/01/managing-assets-across-multiple-storage-accounts-in-windows-azure-media-services-and-defining-load-balancing-strategy/
http://msdn.microsoft.com/en-us/library/windowsazure/dn189154.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dn189154.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dn223283.aspx

20

2 - The Microsoft Azure Media

Services Video-on-Demand Scenario
Contoso is a startup ISV company of approximately 20 employees that specializes in developing

solutions using Microsoft technologies. The developers at Contoso are knowledgeable about various

Microsoft products and technologies, including the .NET Framework, Microsoft Azure, the Windows

Runtime, and Windows Phone.

Contoso has been contracted to develop a video-on-demand service as an end-to-end solution. The

service must work with multiple devices and platforms, with the client application for the Windows

Runtime expecting the highest usage. While the primary purpose of the client applications is to

consume videos whose details are stored in a Content Management System (CMS), the applications

are also required to be able to capture and upload new videos for encoding by Azure Media Services,

which can then be consumed from the CMS once encoding has completed. Access to the CMS and

Media Services is through the Contoso web service.

This chapter describes the business requirements of the Contoso Video applications, and

summarizes the architecture of their solution.

Using the Contoso Azure Media Services video application

The purpose of the Contoso video application is to enable users to consume video-on-demand,

stored in the cloud, from a CMS. The customer's experience is paramount, so the designers at

Contoso chose to implement the applications as a series of easy to use, mobile applications. The

Contoso video application is available for the Windows Runtime, Windows Phone 8, iOS, Android,

and the web.

The video application implements the features typical of many video-on-demand services. It enables

users to browse videos, and control the playback of selected videos. When viewing videos the

application also suggests other related items that the user may want to view.

Contoso expects that the Windows Store video application will gain the highest usage among their

clients' customers. Therefore, this guide focuses on the Contoso Windows Store video application,

and its interaction with the Contoso web service.

The following sections describe the primary business use cases of the Windows Store Contoso video

application in more detail.

Browsing videos

When the user starts the application the first page displays thumbnails for each video that can be

viewed, as shown by the following screenshot.

21

Thumbnails for each video that can be viewed

Users can use pointing devices or touch gestures to browse these thumbnails. Clicking on a

thumbnail navigates to a new page from where the video can be viewed. Alternatively users can use

the bottom app bar to capture a new video or upload an existing video.

 Users prefer an application that fits well with the device's design and theme. You will also

have to comply with certain UI design guidelines if you want to distribute your application through

the Windows Store.

For information on how the browsing video use case is implemented, see "Chapter 5 ς Delivering

and Consuming Video."

22

Playing videos from Azure Media Services

To play videos users must have selected a video on the initial page of the application. Users can then

control the playback of videos using pointing devices or touch gestures, as shown in the following

figure.

Video playback

As well as controlling the playback of the video, basic information is also displayed to users,

including the duration of the video, a description of it, and a list of related videos.

Capturing video s

The video application also allows users to capture video, which they can then choose to upload to

Media Services for encoding, prior to making it available for consumption for other users, as shown

in the following figure.

23

Capturing video

Users can configure their camera options, set a timed recording, and configure the recording mode

of the camera.

You should always be aware of how your application consumes the resources on a device,

such as bandwidth, memory, and battery power. These factors are far more significant on mobile

devices than on the desktop.

Uploading videos into Azure Media Services

User can choose to upload media stored on their device to Media Services for encoding, prior to

making it available for consumption by all users. Videos can be stored anywhere in the file system,

and can either have been captured on the device, or downloaded to the device from other locations.

The following figure shows the page that allows users to choose a video to upload for encoding.

24

Choosing a video to upload to Media Services

When the user selects a video, using either a pointing device or a touch gesture, the Open button

should be selected to begin the upload process. The first step in the upload process is to enter basic

video details, as shown in the following figure.

25

The video details that must be provided prior to upload

The user must enter a title, description (optional), and select the resolution they'd like the video to

be encoded to. When the Create button is selected the upload process begins, as shown in the

following figure.

26

A video uploading for processing by Media Services

The user can choose to cancel the upload at any point, or allow the upload to proceed until it

completes. A failure message is displayed to the user if the upload process fails.

When a video has been successfully uploaded the video details are saved to the CMS, and the

encoding process begins. The Contoso has opted to always encode videos to adaptive bitrate MP4s,

and then uses dynamic packaging to convert the adaptive bitrate MP4s to smooth streaming, HLS, or

MPEG DASH, on demand. For more information about dynamic packaging see "Dynamic packaging."

Once a video has been successfully encoded it can be selected for viewing from the initial page of

the application.

For information on how the uploading video use case is implemented, see "Chapter 3ςUploading

Video."

Understanding the Contoso Azure Media Se rvices application architecture

The developers at Contoso are knowledgeable about various Microsoft products and technologies,

including the .NET Framework, the Entity Framework, Azure, and the Windows Runtime, so they

decided to implement the solution using these technologies.

Building and hosting a video-on-demand service is a major undertaking and can require a significant

investment in hardware, management, and other infrastructure resources. Connectivity and security

are also major concerns because users require timely and responsive access, and at the same time

the system must maintain the integrity of the data and the privacy of users' information. To support

a potentially large number of concurrent users against an ever-expanding collection of videos, the

staff at Contoso chose to implement the video-on-demand service by using Azure Media Services.

Media Services allows you to build scalable, cost effective, end-to-end media distribution solutions

27

that can upload, encode, package, and stream media to a variety of devices and platforms. In

addition, the Azure environment provides the necessary scalability, reliability, security, and

performance necessary for supporting a large number of concurrent, distributed users.

The following figure shows a high-level overview of the solution.

A high-level overview of the Contoso Media Services solution

Client applications communicate with the video-on-demand service through a REST web interface.

This interface allows applications to retrieve, upload, and publish videos. When a video is uploaded

for processing by Media Services it is stored in Azure Storage, with the video details being stored in

the CMS. It's then encoded to a set of adaptive bitrate MP4s, which can be converted by dynamic

packaging to smooth streaming, HLS, or MPEG-DASH, on demand. For more information about

dynamic packaging see "Dynamic packaging."

When a video is consumed by applications, its URL is retrieved from the CMS and returned to the

application. The application then requests the URL content from the Media Services Origin Service,

which processes the outbound stream from storage to client app. For more information about the

Origin Service, see "Origin Service."

The solution comprises three main components:

¶ The user facing client applications, implemented for the Windows Runtime, Windows

Phone, Web, iOS, and Android. These applications allow users to browse videos, and control

the playback of videos. In addition the applications allow users to capture and upload new

videos for encoding by Media Services, which can then be consumed from the CMS once

encoding has completed.

28

The Contoso Windows Store application is used to demonstrate the Media Services functionality,

which is consumed through a REST interface. However, several other apps are also provided for

different devices and platforms, which all formulate the appropriate REST requests and consume

REST responses.

¶ The business logic, implemented as a web service. The Contoso web service exposes the

data and operations that it supports through a REST (Representational State Transfer)

interface. Separating the business logic in this way decouples it from the client applications,

minimizing the impact that any changes to the implementation of the applications will have

on this business logic.

 Using REST enables you to invoke operations and consume the responses by using any

web-enabled system that can formulate REST queries, providing great flexibility in building similar

apps for different devices and platforms.

¶ Data storage, provided by an Azure SQL database, and by Azure Storage. The CMS, which

stores details of videos and encoding jobs, is implemented as a Azure SQL database.

However, uploaded videos and encoded videos output by Media Services are stored in

Azure Storage.

Using Media Services minimizes the hardware and support investment that needs to be

made when providing a video-on-demand service. You can monitor the volume of traffic to the

web service, and if necessary simply scale the solution to use additional resources.

For more information about building and deploying applications to the cloud by using Azure, see the

patterns & practices guide "Developing Multi-tenant Applications for the Cloud, 3rd Edition" available

from MSDN.

Understanding the Windows Store application architecture

Developers of Windows Store applications face several challenges. Application requirements can

change over time. New business opportunities and challenges may present themselves. Ongoing

customer feedback during development may significantly affect the requirements of the application.

Therefore it's important to build an application that has a flexible architecture and can be easily

modified or extended over time.

The Contoso developers used a modified version of Prism for the Windows Runtime to accelerate

the development of their Windows Store application. Prism includes components that provide

support for MVVM and the core services required in Windows Store applications. This allowed the

Contoso developers to focus on developing the user experiences for their video application. For

more information about Prism for the Windows Runtime, see "Developing a Windows Store business

app using C#, XAML, and Prism for the Windows Runtime."

http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx

29

The following figure shows the architecture of the Contoso Windows Store video application and

web service in more detail. Grey items are provided by the modified version of Prism for the

Windows Runtime, with blue items being created by the Contoso development team. For clarity, the

diagram does not show all the class names.

The architecture of the Contoso Windows Store video application and web service

The advantage of this architecture is that it helps to produce flexible, maintainable, and testable

code, by addressing common Windows Store application development scenarios, and by separating

the concerns of presentation, presentation logic, and entities through support for MVVM.

For information on how to bootstrap a Windows Store application that uses Prism for the Windows

Runtime, see "Bootstrapping an MVVM Windows Store app Quickstart using C#, XAML, and Prism."

Using a dependency injection container

The Contoso developers use a dependency injection container to manage the instantiation of many

of the classes.

http://msdn.microsoft.com/en-us/library/windows/apps/xx130638.aspx

30

Dependency injection enables decoupling of concrete types from the code that depends

on these types. It uses a container that holds a list of registrations and mappings between

interfaces and abstract types and the concrete types that implement or extend these types.

The Contoso Windows Store video application uses the Unity dependency injection container to

manage the instantiation of the view model and service classes in the application. The App class

instantiates the UnityContainer object and is the only class that holds a reference to this object.

Types are then registered in the OnInitialize method in the App class.

You should consider carefully which objects you should cache and which you should

instantiate on demand. Caching objects improves the application's performance at the expense of

memory utilization.

For more information about using Unity, see "Unity Container."

Understanding the Visual Studio solution

The Visual Studio solution organizes the source code and other resources into projects. All of the

projects use Visual Studio solution folders to organize the source code and other resources into

categories. The following table outlines the projects that make up the Contoso web service and

Contoso video applications.

Project Description

Contoso.Infrastructure.ReusableComponents This project contains classes and interfaces from Prism

for the Windows Runtime, which are used by the

Contoso.Infrastructure.WindowsPhone and

Contoso.Infrastructure.WindowsStore projects.

Contoso.Infrastructure.WIndowsPhone This project contains Windows Phone specific classes

and interfaces from Prism for the Windows Runtime.

Contoso.Infrastructure.WindowsStore This project contains Windows Store specific classes

and interfaces from Prism for the Windows Runtime.

Contoso.Api.Test This project contains unit tests for the Contoso.Api

project.

Contoso.Services.Test This project contains unit tests for the

Contoso.Domain.Services.Imply project.

Contoso.Test.Shared This project contains unit test helper methods used by

the Contoso.Api.Test and Contoso.Services.Test

projects.

Contoso.UILogic.Tests This project contains unit tests for the Contoso.UILogic

project.

Contoso.UILogic.Tests.Mocks This project contains mocks used by the

Contoso.UILogic.Tests project.

http://msdn.microsoft.com/en-us/library/ff647202.aspx

31

Contoso.WindowsStore.Tests This project contains unit tests for the

Contoso.WindowsStore project.

Contoso.Api This project contains the code for the Contoso web

service.

Contoso.Azure This project defines the roles for deploying the

application to Azure, along with the service

configuration. The Contoso.Api and

Contoso.WebClient projects are deployed as web

roles, with the Contoso.EncodingWorker being

deployed as a worker role.

Contoso.Azure.Shared This project defines the CloudConfiguration and

TraceHelper classes. The CloudConfiguration class

is used to retrieve Media Services account credentials

from configuration.

Contoso.Azure.Stores This project defines classes used to manage the video

encoding process through Azure Storage Queues.

Contoso.Domain This project defines the domain entity objects that

remove the dependencies that controller classes in the

Contoso.Api project might otherwise have on the way

that data is stored.

Contoso.Domain.Services This project defines the interfaces for the domain

services that are implemented by the

Contoso.Domain.Services.Impl project.

Contoso.Domain.Services.Impl This project contains the classes that implement the

domain services that perform encoding and interact

with the repository classes.

Contoso.EncodingWorker This project contains the worker role code that

interacts with Azure Storage Queues in order to

manage the encoding process.

Contoso.Repositories This project defines the interfaces for the repository

classes that retrieve and modify data in the Contoso

Content Management System (CMS).

Contoso.Repositories.Impl.Sql This project contains the repository classes and the

data types that the repository classes use to retrieve

and modify data from the Contoso CMS.

Contoso.Shared This project defines the ContosoEventSource class

which creates events for Event Tracing for Windows

(ETW). This class is used by the Contoso.Api and

Contoso.Services.Test projects.

Contoso.UILogic The project contains the shared business logic for the

Contoso video Windows Store and Windows Phone

implementations.

Contoso.WebClient This project contains the web client implementation of

the Contoso video application.

32

Contoso.WindowsPhone This project contains the Windows Phone specific code

for the Windows Phone client implementation of the

Contoso video application.

Contoso.WindowsStore This project contains the Windows Runtime specific

code for the Windows Store client implementation of

the Contoso video application.

For information about the structure of the projects that implement the Contoso video applications

see Appendix C ς Understanding the Contoso Video Applications.

Developing the content management system

A video CMS enables you to upload, store, process, and publish media. They generally store files in a

database and allow for metadata tagging and searching.

Media Services is not a CMS but it does enable you to implement a video processing

workflow. You can upload and store your content in Azure Storage, encode and package media into

a variety of popular formats, and stream your videos online.

The requirements for the Contoso CMS were as follows:

¶ Ability to store details of videos that can be consumed by client applications.

¶ Ability to store video metadata.

¶ Ability to store thumbnail images that represent each video.

¶ Ability to store details of encoding jobs.

The developers at Contoso decided to store this information in a series of tables in third normal

form. This structure helps to reduce the probability of duplicate information, while optimizing many

of the common queries performed by the client applications. The following figure shows the table

structure of the database.

33

The table structure of the CMS

Cloud-based databases are increasingly popular because they remove the need for an organization

to maintain its own infrastructure for hosting a database. They offer elasticity that enables a system

to quickly and easily scale as the number of requests and hence the volume of work increases. An

additional advantage is that Azure SQL databases maintain multiple copies of the database, running

on different server. Therefore, if the primary server fails, all requests are transparently switched to

another server. Therefore, the developers at Contoso chose to implement the database as a Azure

SQL database.

A complete list of features available in a Azure SQL database is available at "General

Guidelines and Limitations (Windows Azure SQL Database)" on MSDN.

For best practices about designing and developing a relational database, see the patterns & practices

guide "Data Access for Highly-Scalable Solutions: Using SQL, NoSQL, and Polyglot Persistence"

available from MSDN.

Accessing the content management system

A relational database stores data as a collection of tables. However, the Contoso video applications

process data in the form of entity objects. The data for an entity object might be constructed from

one or more rows in one or more tables. In the Contoso video applications, the business logic that

manipulates objects is independent of the format of the data for that object in the database. This

offers the advantage that you can modify and optimize the database structure without affecting the

code in the applications, and vice versa.

This approach requires the use of an object-relational mapping layer (ORM). The purpose of an ORM

is to act as an abstraction of the underlying database. The Contoso video applications create and use

objects, and the ORM exposes methods that can take objects and use them to generate relational

create, retrieve, update, and delete (CRUD) operations, which it then sends to the database server.

Tabular data is then returned from the database and converted into a set of objects by the ORM.

http://msdn.microsoft.com/library/azure/ee336245.aspx
http://msdn.microsoft.com/library/azure/ee336245.aspx
http://msdn.microsoft.com/en-us/library/dn271399.aspx

34

The Contoso developers chose to use the Microsoft Entity Framework as the ORM, and also used the

Fluent API to decouple the classes in the object model from the Entity Framework. In the Entity

Framework the database is interacted with through a context object. The context object provides

the connection to the database and implements the logic performing CRUD operations on the data

in the database. The context object also performs the mapping between the object model of your

application and the tables defined in the database.

The Contoso video apps send REST requests to the Contoso web service that validates these

requests and converts them into the corresponding CRUD operations against the CMS. All incoming

REST requests are routed to a controller based on the URL that the client application specifies. The

controllers indirectly use the Microsoft Entity Framework to connect to the CMS database and

retrieve, create, update, and delete data. The developers implemented the Repository pattern to

minimize dependencies that the controllers have on the Entity Framework.

The purpose of the Repository pattern is to act as an intermediary between the object-relational

mapping layer (implemented by the Entity Framework) and the data mapping layer that provides the

objects for the controller classes. In the Contoso web service, each repository class provides a set of

APIs that enable a service class (invoked by a controller class) to retrieve a database-neutral object

from the repository, modify it, and store it back in the repository. The repository class has the

responsibility for converting all the requests made by a service class into commands that it can pass

to the Entity Framework. As well as removing any database-specific dependencies from the business

logic of the controller and service classes, this approach provides flexibility. If the developers

decided to switch to a different data store, they can provide an alternative implementation of the

repository classes that expose the same APIs to the service classes.

Avoid building dependencies on a specific data access technology into the business logic of

an application. Using the Repository pattern can help reduce the chances of this happening.

For more information about the Contoso web service and its use of the Repository pattern, see

Appendix A ς The Contoso Web Service.

Summary

This chapter has introduced the video application and web service built by Contoso. The Windows

Store video application is built using XAML and C#, and consumes a web service that provides a REST

interface to the CMS and Media Services. Media Services is used to encode and package video into

the required formats for consumption across a variety of platforms and devices.

This chapter also discussed why Contoso chose to store the database in the cloud by using a Azure

SQL database. It summarized how the client applications connect to the database by using the Entity

Framework, and how the Repository pattern is used to abstract the details of the Entity Framework

from the business logic of the system.

In the following chapters you will see how the developers at Contoso designed and implemented the

end-to-end solution that uploads, encodes, delivers, and consumes media.

35

More information

¶ You can find the General Guidelines and Limitations (Windows Azure SQL Database) page on

MSDN.

¶ The patterns & practices guide "Data Access for Highly-Scalable Solutions: Using SQL,

NoSQL, and Polyglot Persistence" is available from MSDN.

¶ You can find information about the Entity Framework in the Data Developer Center,

available on MSDN.

¶ The Repository pattern is described on MSDN.

¶ The patterns & practices guide "Developing Multi-tenant Applications for the Cloud, 3rd

Edition" is available on MSDN.

¶ For information about Prism for the Windows Runtime, see "Developing a Windows Store

business app using C#, XAML, and Prism for the Windows Runtime."

¶ For information about using Unity, see "Unity Container."

¶ For information on how to bootstrap a Windows Store application that uses Prism for the

Windows Runtime, see "Bootstrapping an MVVM Windows Store app Quickstart using C#,

XAML, and Prism."

http://msdn.microsoft.com/library/azure/ee336245.aspx
http://msdn.microsoft.com/en-us/library/dn271399.aspx
http://msdn.microsoft.com/en-us/library/dn271399.aspx
http://msdn.microsoft.com/data/ef.aspx
http://msdn.microsoft.com/library/ff649690.aspx
http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx
http://msdn.microsoft.com/en-us/library/ff647202.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130638.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130638.aspx

36

3 - Uploading Video into Microsoft

Azure Media Services
In order to manage, encode, and stream your videos, you must first upload your content into

Microsoft Azure Media Services. Once uploaded, your content is stored in the cloud for further

processing and streaming.

When deciding upon the media content to upload and store as an asset there are restrictions that

apply. Each asset should only contain a unique instance of media content, such as a single TV

episode or ad. Therefore, each asset should not contain multiple edits of a file, in order to reduce

difficulties submitting encoding jobs, and streaming and securing the delivery of the asset later in

the workflow. For example, an incorrect usage of an asset would be storing both the trailer and the

feature-length movie within a single asset: you may want the trailer to have wide viewership, but

restrict viewing of the movie.

This chapter describes how the Contoso developers incorporated Media Services' uploading

functionality into their web service and Windows Store client application. It summarizes the

decisions that they made in order to support their business requirements, and how they designed

the code that performs the upload process.

For more information about the Contoso web service see "Appendix A ς The Contoso Web Service."

Chapter 2, "The Azure Media Services Video-on-Demand Scenario," describes the primary business

functions of the video application.

Uploading content

Media Services is an OData-based REST service that exposes objects as entities that can be queried

in the same way as other OData entities. Media Services is built on OData v3, which means that you

can submit HTTP request bodies in atom+pub or verbose JSON, and receive your responses in the

same formats. For more information about ingesting assets using the REST API see "Ingesting Assets

with the Media Services REST API" and "Ingesting Assets in Bulk with the REST API."

Uploading content with the Media Services SDK for .NET

The Media Services SDK for .NET is a wrapper around the REST APIs. The SDK provides a simple way

to accomplish the tasks that are exposed by the REST API.

Uploading content with the Azure Management Portal

Video, audio, and images can be uploaded to a Media Services account through the Azure

Management Portal. However, this approach limits uploads to the formats that are supported by the

Azure Media Encoder. For more information see "Supported Codecs and File Types for Microsoft

Azure Media Services."

There are several limitations to consider when uploading content through the Management Portal:

¶ You can't upload multiple files in a single upload.

http://msdn.microsoft.com/en-us/library/windowsazure/jj129593.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj129593.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj853021.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh973634.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh973634.aspx

37

¶ You can't upload a file larger than 200MB. However, there's no file size limit if you're

uploading from an existing storage account.

¶ You can't upload all the file formats that are supported by Media Services. You can only

upload files with the following extensions: .asf, .avi, .m2tf, .m2v, .mp4, .mpeg, .mpg, .mts,

.ts, .wmv, .3gp, .3g2, .3gp2, .mod, .dv, .vob, .ismv, .m4a.

If you need to upload content into Media Services at high speed you can take advantage of high

speed ingest technology offered by third-party providers. For more information see "Uploading

Large Sets of Files with High Speed."

Managing assets across multiple storage accounts within Azure Media Services

Media Services accounts can be associated with one or more storage accounts, with each storage

account being limited to 200TB. Attaching multiple storage accounts to a Media Services account

provides the following benefits:

¶ Load balancing assets across multiple storage accounts.

¶ Scaling Media Services for large amounts of storage and processing.

¶ Isolating file storage from streaming or DRM protected file storage.

For more information see "Managing Media Services Assets across Multiple Storage Accounts."

Ingesting content with the Media Services SDK for .NET

To get content into Media Services you must first create an asset and add files to it, and then upload

the asset. This process is known as ingesting content.

The content object in Media Services is an IAsset, which is a collection of metadata about a set of

media files. Each IAsset contains one or more IAssetFile objects. There are two main approaches to

ingesting assets into Media Services:

¶ Create an Asset, upload your content to Media Services, and then generate AssetFiles

and associate them with the Asset.

¶ Bulk ingest a set of files by preparing a manifest that describes the asset and its

associated files. Then use the upload method of your choice to upload the associated

files to the manifest's blob container. Once a file is uploaded to the blob container

Media Services completes the asset creation based on the configuration of the asset in

the manifest.

The first approach is the preferred approach when working with a small set of media files, and is the

approach adopted by the Contoso development team. For more information about ingesting assets

in bulk see "Ingesting Assets in Bulk with the Media Services SDK for .NET."

http://msdn.microsoft.com/en-us/library/windowsazure/dn535715.aspx#upload_with_high_speed
http://msdn.microsoft.com/en-us/library/windowsazure/dn535715.aspx#upload_with_high_speed
http://msdn.microsoft.com/en-us/library/windowsazure/dn271889.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj853022.aspx

38

To create an asset you must first have a reference to the Media Services server context.

Supported input formats for Azure Media Services

Various video, audio, and image file types can be uploaded to a Media Services account, with there

being no restriction on the types or formats of files that you can upload using the Media Services

SDK. However, the Azure Management portal restricts uploads to the formats that are supported by

the Azure Media Encoder.

Content encoded with the following video codecs may be imported into Media Services for

processing by Azure Media Encoder:

¶ H.264 (Baseline, Main, and High Profiles)

¶ MPEG-1

¶ MPEG-2 (Simple and Main Profile)

¶ MPEG-4 v2 (Simple Visual Profile and Advanced Simple Profile)

¶ VC-1 (Simple, Main, and Advanced Profiles)

¶ Windows Media Video (Simple, Main, and Advanced Profiles)

¶ DV (DVC, DVHD, DVSD, DVSL)

The following video file formats are supported for import:

File format File extension

3GPP, 3GPP2 .3gp, .3g2, .3gp2

Advanced Systems Format (ASF) .asf

Advanced Video Coding High Definition (AVCHD) .mts, .m2tf

Audio-Video Interleaved (AVI) .avi

Digital camcorder MPEG-2 (MOD) .mod

Digital video (DV) camera file .dv

DVD transport stream (TS) file .ts

DVD video object (VOB) file .vob

Expression Encoder Screen Capture Codec file .xesc

MP4 .mp4

MPEG-1 System Stream .mpeg, .mpg

MPEG-2 video file .m2v

Smooth Streaming File Format (PIFF 1.3) .ismv

Windows Media Video (WMV) .wmv

39

Content encoded with the following audio codecs may be imported into Media Services for

processing by Azure Media Encoder:

¶ AC-3 (Dolby Digital audio)

¶ AAC (AAC-LC, HE-AAC v1 with AAC-LC core, and HE-AAC v2 with AAC-LC core)

¶ MP3

¶ Windows Media Audio (Standard, Professional, and Lossless)

The following audio file formats are supported for import:

File format File extension

AC-3 (Dolby digital) audio .ac3

Audio Interchange File Format (AIFF) .aiff

Broadcast Wave Format .bwf

MP3 (MPEG-1 Audio Layer 3) .mp3

MP4 audio .m4a

MPEG-4 audio book .m4b

WAVE file .wav

Windows Media Audio .wma

The following image file formats are supported for import:

File format File extensions

Bitmap .bmp

GIF, Animated GIF .gif

JPEG .jpeg, .jpg

PNG .png

TIFF .tif

WPF Canvas XAML .xaml

For more information on the codecs and file container formats that are supported by Azure Media

Encoder see "Supported input formats" and "Introduction to encoding."

Securing media for upload into Azure Media Services

Media Services allows you to secure your media from the time it leaves your computer. All media

files in Media Services are associated with an Asset object. When creating an Asset for your media

by calling Asset.Create, you must specify an encryption option as a parameter by using one of the

AssetCreationOptions enumeration values. Each file added to the Asset will then use the asset

creation options specified when the asset is created.

40

The AssetCreationOptions enumeration specifies four values:

¶ AssetCreationOptions.None

¶ AssetCreationOptions.StorageEncrypted

¶ AssetCreationOptions.CommonEncryptionProtected

¶ AssetCreationOptions.EnvelopeEncryptionProtected

Media can be uploaded without any protection by specifying AssetCreationOptions.None. This is not

recommended as the content will not be protected during the upload, or in storage. However, media

could be uploaded over an SSL connection to protect the transmission process, prior to it being

stored unprotected in Azure Storage.

If you have unencrypted media that you wish to encrypt prior to upload you should specify

AssetCreationOptions.StorageEncrypted when creating the asset. This encrypts media locally prior

to uploading it to Azure storage where it will be stored encrypted.

Assets protected with storage encryption will be automatically unencrypted and placed in an

encrypted file system prior to encoding. In addition, any storage encrypted content must be

decrypted before being streamed.

If you have pre-encoded Smooth Streaming content that is already protected with PlayReady Digital

Rights Management (DRM) you should specify AssetCreationOptions.CommonEncryptionProtected

when creating the asset. This enumeration value specifies that an assets files are protected using a

common encryption method. Therefore your content is already protected in transit and in storage.

If you have pre-encoded HLS content with AES encryption you should specify

AssetCreationOptions.EnvelopeEncryptionProtected when creating the asset. This enumeration

value specifies that an assets files are protected using an envelope encryption method, such as AES-

CBC. Therefore your content is already protected in transit and in storage.

Media Services only provides on-disk storage encryption, not over the wire encryption like

a Digital Rights Management (DRM) solution.

The following figure summarizes how media can be protected during the upload process.

41

The options for protecting media when at rest and in transit

The Contoso video application does not secure the web service with Secure Sockets Layer

(SSL), so a malicious client could impersonate the application and send malicious data. In your own

application you should protect any sensitive data that you need to transfer between the

application and a web service by using SSL.

For more information about securing your media at rest and in transit, see "Securing Your Media."

Connecting to Azure Media Services

Before you can start programming against Media Services you need to create a Media Services

account in a new or existing Azure subscription. For more information see "How to Create a Media

Services Account."

At the end of the Media Services account setup process you will have obtained the following

connection values:

¶ Media Services account name.

¶ Media Services account key.

These values are used to make programmatic connections to Media Services. You must then setup a

Visual Studio project for development with the Media Services SDK for .NET. For more information

see "Setup for Development on the Media Services SDK for .NET."

Media Services controls access to its services through an OAuth protocol that requires an Access

Control Service (ACS) token that is received from an authorization server.

To start programming against Media Services you must create a CloudMediaContext instance that

represents the server context. The CloudMediaContext includes references to important collections

including jobs, assets, files, access policies, and locators. One of the CloudMediaContext constructor

overloads takes a MediaServicesCredentials object as a parameter, and this enables the reuse of

http://msdn.microsoft.com/en-us/library/windowsazure/dn282272.aspx
http://www.windowsazure.com/en-us/documentation/articles/media-services-create-account/
http://www.windowsazure.com/en-us/documentation/articles/media-services-create-account/
http://msdn.microsoft.com/en-us/library/windowsazure/jj129588.aspx

42

ACS tokens between multiple contexts. The following code example shows how the

MediaServicesCredentials object is created.

Note: You can choose not to deal with ACS tokens, and leave the Media Service SDK to manage

them for you. However, this can lead to unnecessary token requests which can create performance

issues both on the client and server.

C#

private static readonly Lazy<MediaServicesCredentia ls> Credentials =

 new Lazy<MediaServicesCredentials>(() =>

 {

 var credentials = new MediaServicesCredentials(

 CloudConfiguration.GetConfigurationSetting ("ContosoAccountName"),

 CloudConfiguration.GetConfigurationSettin g("ContosoAccountKey"));

 credentials.RefreshToken();

 return credentials;

 });

The Credentials object is cached in memory as a static class variable that uses lazy initialization to

defer the creation of the object until it is first used. This object contains an ACS token that can be

reused if hasn't expired. If it has expired it will automatically be refreshed by the Media Services SDK

using the credentials given to the MediaServicesCredentials constructor. The cached object can then

be passed to the CloudMediaContext constructor in the constructor of the EncodingService class.

C#

public EncodingService(IVideoRepository videoRepository,

 IJobRepository jobRepository)

{

 ...

 this .context = new CloudMediaContext(EncodingService.Credentials.Value);

}

When the CloudMediaContext instance is created the Credentials object will be created. Using lazy

initialization to do this reduces the likelihood of the MediaServicesCredentials object having to

refresh its ACS token due to expiration. For more information about lazy initialization see "Lazy

Initialization."

If you don't cache your Media Services credentials in a multi-tenant application,

performance issues will occur as a result of thread contention issues.

For better scalability and performance, the EncodingService constructor uses the constructor

overload of the CloudMediaContext class that takes a MediaCredentials object.

http://msdn.microsoft.com/en-us/library/vstudio/dd997286(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd997286(v=vs.100).aspx

43

The Contoso developers store connection values, including the account name and password, in

configuration. The values in the <ConfigurationSettings> element are the required values obtained

during the Media Services account setup process.

XML

<ConfigurationSettings >
 ...
 <Setting name=" ContosoAccountName" value =" Media_Services_Account_Name " />
 <Setting name=" ContosoAccountKey " value =" Media_Services_Account_Key " />
</ ConfigurationSettings >

Configuration files can be encrypted by using the Windows Encrypting File System (EFS). Or you can

create a custom solution for encrypting selected portions of a configuration file by using protected

configuration. For more information see "Encrypting Configuration Information Using Protected

Configuration."

Upload process in the Contoso Azure Media Services applications

The following figure shows a high-level overview of the Contoso media upload process.

A high-level overview of the Contoso media upload process

Client apps communicate with the Contoso web service through a REST web interface, which allows

them to upload media assets. When a new video is uploaded a new asset is created by Media

Services, and the asset is uploaded to Azure Storage before the assets details are published to the

Content Management System (CMS).

This process can be decomposed into the following steps for uploading content into Media Services:

1. Create a new empty Asset.

2. Create an AccessPolicy instance that defines the permissions and duration of access to the

asset.

http://msdn.microsoft.com/en-us/library/53tyfkaw.aspx
http://msdn.microsoft.com/en-us/library/53tyfkaw.aspx

44

3. Create a Locator instance that will provide access to the asset.

4. Upload the file that's associated with the Asset into blob storage.

5. Publish the Asset.

Ɓ Save the Asset details to the CMS.

Ɓ Generate an AssetFile for the Asset.

Ɓ Add the Asset to the encoding pipeline.

The Contoso web service does not contain an authentication mechanism. In your own

application you should implement a secure authentication mechanism so that it's possible to link

videos to the users who uploaded them.

The following figure shows the interaction of the classes in the Contoso Windows Store Video

application that implement uploading a video for processing by Media Services.

The interaction of the classes that upload a video to Media Services

For information on how the upload process works in the Contoso video web application, see

"Appendix C ς Understanding the Contoso Video Applications."

The upload process is managed by the VideoService class in the Contoso.UILogic project. In the

OnInitialize method in the App class, the VideoService class is registered as a type mapping against

the IVideoService interface with the Unity dependency injection container. Then when a view model

45

class such as the NewVideoPageViewModel class accepts an IVideoService type, the Unity container

will resolve the type and return an instance of the VideoService class

The upload process is invoked when a user selects the Create button on the NewVideoPage.

Through a binding this executes the CreateVideo method in the NewVideoPageViewModel class.

This creates a new Video object and initializes the object with data from the file chosen for upload.

Then, the upload process begins by calling the UploadFileAsync method in the VideoService class. A

CancellationToken is passed to the UploadFileAsync method so that the upload process can be

cancelled by the user if required.

C#

private async void CreateVideo()

{

 ...

 await this .videoService.UploadFileAsync(this.videoFile, video,

 this .cancellationTokenSource.Token);

 ...

}

The UploadFileAsync method manages the upload process in the client by invoking methods of the

HttpService and AzureFileUploader classes.

C#

public async Task UploadFileAsync(VideoFile file, Video video, CancellationToken

cancel l ationToken)

{

 var requestUri = new Uri(string.Format("{0}/{1}/?filename={2}" ,

 this.videosBaseUrl, "generateasset" , file.Name));

 var responseContent =

 await this .httpService.GetAsync(requestUri, cancel l ationToken);

 var videoUploadInfo =

 JsonConvert.DeserializeObject<VideoUpload>(responseContent);

 await this .azureFileUploader.UploadVideoFileToBlobStorage(file,

 videoUploadInfo.SasLocator, cancel l ationToken);

 video.AssetId = videoUploadInfo.AssetId;

 var videoUp load = JsonConvert.SerializeObject(video);

 var uploadVideoUri = new Uri(string.Format("{0}/{1}", this .videosBaseUrl,

 "publish"));

 await this .httpService.PostAsync(uploadVideoUri, videoUpload,

 cancel l ationToken);

}

This method creates a Uri that specifies that the GenerateAsset method will be called on the web

service, with the filename of the file to be uploaded being passed as a parameter. The HttpService

class, which implements the IHttpService interface, is used to make the call to the web service.

46

C#

public async Task< string > GetAsync(Uri requestUri)

{

 return await this .GetAsync(requestUri, CancellationToken.None);

}

public async Task< string > GetAsync(Uri requestUri, CancellationToken

cancel l ationToken)

{

 using (var httpClient = new HttpClient())

 {

 var response =

 await httpClient.GetAsync(requestUri).AsTask(cancel l ationToken);

 response.EnsureSuccessStatusCode();

 return await response.Content.ReadAsStringAsync();

 }

}

This method asynchronously retrieves data from the web service by using the HttpClient class to

send HTTP requests and receive HTTP responses from a URI. The call to HttpClient.GetAsync sends a

GET request to the specified URI as an asynchronous operation, and returns a Task of type

HttpResponseMessage that represents the asynchronous operation. The Task is cancellable, and will

complete after the content from the response is read. For more info about the HttpClient class see

"Connecting to an HTTP server using Windows.Web.Http.HttpClient."

When the UploadFileAsync method calls HttpService.GetAsync, this calls the GenerateAsset

method in the VideosController class in the Contoso.Api project.

C#

public async Task< HttpResponseMessage> GenerateAsset(string filename)

{

 ...

 var videoAsset = await encodingService.GenerateSasLocator(filename);

 var result = new VideoAssetDTO();

 Mapper.Map(videoAsset, result);

 return Request.CreateResponse(HttpStatusCode.Created, result);

 ...

}

This method calls the asynchronous GenerateSasLocator method in the EncodingService class. The

EncodingService class is registered as a type mapping against the IEncodingService interface with

the Unity dependency injection container. When the VideosController class accepts an

IEncodingService type, the Unity container will resolve the type and return an instance of the

EncodingService class.

When a VideoAsset object is returned from the GenerateSasLocator method a VideoAssetDTO

object is created, with the returned VideoAsset object being mapped onto the VideoAssetDTO,

which is then returned in an HttpResponseMessage to the HttpService.GetAsync method.

http://msdn.microsoft.com/en-us/library/windows/apps/dn440594.aspx

47

The GenerateSasLocator method uses Media Services types to return a new VideoAsset that

contains a new asset id to represent the asset being uploaded, and a shared access signature locator

to access the asset.

C#

public async Task<VideoAsset> GenerateSasLocator(string filename)

{

 var duration = int .Parse(

 CloudConfiguration.GetConfigurationSetting("SasLocatorTimeout"));

 IAsset asset = await this .context.Assets.CreateAsync(

 "NewAsset_" + Guid.NewGuid() + "_" + filename, AssetCreationOptions.None ,

 CancellationToken.None).ConfigureAwait(false);

 IAccessPolicy writePolicy = await this .context.AccessPolicies.CreateAsync(

 "writePolicy", TimeSpan.FromMinutes(duration), AccessPermissions.Write)

 .ConfigureAwait(false);

 ILocator destinationLocator = await this .context.Locators.CreateLocatorAsync(

 LocatorType.Sas, asset, writePolicy).ConfigureAwait(false);

 var blobUri = new UriBuilder(destinationLocator.Path);

 blobUri.Path += "/" + filename;

 // return the new VideoAsset

 return new VideoAsset()

 { SasLocator = blobUri.Uri.AbsoluteUri, AssetId = asset.Id };

}

The method creates a new asset using AssetCreationOptions.None that specifies that no encryption

is used when the asset is in transit or at rest. An access policy named writePolicy is then created that

specifies that the asset can be written to for 30 minutes. A shared access signature locator is then

created, using the access policy. The locator returns an entry point that can be used to access the

files contained in the asset. Finally, a Uri is created to which the video file will be uploaded to in blob

storage, before the VideoAsset object is created and returned.

The maximum number of assets allowed in a Media Services account is 1,000,000.

Back in the UploadFileAsync method in the VideoService class the UploadFileToBlobStorage

method of the AzureFileUploader class is used to upload the file to blob storage using the shared

access storage locator returned by the GenerateSasLocator method.

C#

public async Tas k UploadVideoFileToBlobStorage(VideoFile file, string sasLocator ,

CancellationToken cancellationToken)

{

 var blobUri = new Uri(sasLocator);

 var sasCredentials = new StorageCr edentials(blobUri.Query);

48

 var blob = new CloudBlockBlob(new

Uri(blobUri.GetComponents(UriComponents.SchemeAndServer | UriComponents.Path,

UriFormat.UriEscaped)), sasCredentials);

 StorageFile storageFile = null ;

 if (string .IsNullOrEmpty(file.F utureAccessToken))

 {

 storageFile = await

StorageFile.GetFileFromPathAsync(file.Path).AsTask(cancellationToken);

 }

 else

 {

 storageFile = await

StorageApplicationPermissions.FutureAccessList.GetFileAsync(file.FutureAccessToken

) .AsTask(cancellationToken);

 }

 cancellationToken.ThrowIfCancellationRequested();

 await blob.UploadFromFileAsync(storageFile);

}

This method uploads the video file to blob storage using a URI specified by the shared access scheme

locator. The file is uploaded by using the UploadFromFileAsync method of the CloudBlockBlob class.

The final step of the upload process is to publish the file for processing by the encoding pipeline. To

do this the UploadFileAsync method creates a Uri that specifies that the Publish method will be

called on the web service, with the address of the asset being passed as a parameter. The PostAsync

method of the HttpService class is used to make the call to the web service.

C#

public async Task<string > PostAsync(Uri requestUri, string stringifyJsonPostData,

CancellationToken cancel l ationToken)

{

 using (var httpClient = new HttpClient())

 {

 var postData = new HttpStringContent(stringifyJsonPostData,

 UnicodeEncoding.Utf8, "appl ication/json");

 var response = await httpClient.PostAsync(requestUri,

 postData).AsTask(cancel l ationToken);

 response.EnsureSuccessStatusCode();

 return await response.Content.ReadAsStringAsync();

 }

}

This method asynchronously sends data to the web service by using the HttpClient class to send

HTTP requests and receive HTTP responses from a URI. The call to HttpClient.PostAsync sends a

POST request to the specified URI as an asynchronous operation, passing data that represents a

Video instance that contains the metadata for the content to be published, and returns a Task of

type HttpResponseMessage that represents the asynchronous operation. The returned Task will

complete after the content from the response is read.

49

When the UploadFileAsync method calls HttpService.PostAsync, this calls the Publish method in the

VideosController class in the Contoso.Api project.

C#

public async Task<HttpResponseMessage> Publish(VideoSaveDTO video)

{

 ...

 var newVideo = MapSaveDTO(video);

 newVideo.EncodingStatus = EncodingState.NotStarted;

 ...

 var videoDetail = await videoService.Save(newVideo);

 ...

 await encodingService.PublishAsset(videoPublish);

 return Request.CreateResponse(HttpStatusCode.Created);

 ...

}

The method first uses the MapSaveDTO method to convert the VideoSaveDTO object to a

VideoDetail object, before setting its EncodingState to NotStarted. The Save method of the

VideoService class is then called, followed by the PublishAsset method of the EncodingService class.

In turn, the Save method in the VideoService class calls the SaveVideo method in the

VideoRepository class, which creates a VideoEntity object to persist the video details to the CMS

database in Azure Storage. The PublishAsset method in the EncodingService is shown in the

following code example.

C#

public async Task PublishAsset(VideoPublish video)

{

 var inputAsset = this .context.Ass ets .Where(

 a => a.Id == video.AssetId).SingleOrDefault();

 if (inputAsset != null)

 {

 if (inputAsset.AssetFiles.Count() == 0)

 {

 await inputAsset.GenerateFromStorageAsync().ConfigureAwait(false);

 }

 var videoEncodingMessage = new EncodeVideoMessage()

 {

 AssetId = video.AssetId,

 VideoId = video.VideoId,

 IncludeThumbnails = true ,

 Resolution = video.Resolution

 };

 ...

 IAzureQueue<EncodeVideoMessage> queue =

 new AzureQueue<EncodeVideoMessage>(

 Microsoft.WindowsAzure.CloudStorageAccount.Parse(

 CloudConfiguration.GetConfigurationSetting(

 "WorkerRoleCon nectionString")),

50

CloudConfiguration.GetConfigurationSetting("ContosoEncodingQueueName"),

 TimeSpan.FromSeconds(300));

 queue.AddMessage(videoEncodingMessage);

 }

}

This method performs two tasks. The first task is to generate an AssetFile for the Asset, using the

GenerateFromStorageAsync extension method, and associate it with the Asset. It is important to

note that the AssetFile instance and the media file are two distinct objects. The AssetFile instance

contains metadata about the media file, whereas the media file contains the actual media content.

The second task is to create an EncodeVideoMessage instance and add it to the AzureQueue

instance to begin the encoding process. For more information about the encoding process see

"Chapter 4 ς Encoding and Processing Video."

Summary

This chapter has described how the Contoso developers incorporated Media Services' uploading

functionality into their web service and Windows Store client application. It summarized the

decisions that they made in order to support their business requirements, and how they designed

the code that performs the upload process.

In this chapter, you saw how to connect to Media Services and ingest content with the Media Service

SDK for .NET. The chapter also discussed how to secure your content during the upload process,

both when it's in transit and at rest.

The following chapter discusses the next step in the Media Services workflow ς encoding and

processing uploaded media.

More information

¶ The page, "Ingesting Assets with the Media Services REST API" describing how to ingest

assets into Media Services using the REST API, is available on MSDN.

¶ You can find the page, "Ingesting Assets in Bulk with the REST API" describing how to use

the REST API to ingest assets into Media Services in bulk, on MSDN.

¶ For information about high speed ingest technology, see "Uploading Media" on MSDN.

¶ You can find the page, "Managing Media Services Assets across Multiple Storage Accounts"

on MSDN.

¶ For information about ingesting assets in bulk, see the page "Ingesting Assets in Bulk with

the Media Services SDK for .NET" on MSDN.

¶ For information about creating a Media Services account and associate it with a storage

account, see "How to Create a Media Services Account" on MSDN.

¶ The page, "Setup for Development on the Media Services SDK for .NET" describes how to set

up a Visual Studio project for Media Services development, is available on MSDN.

http://msdn.microsoft.com/en-us/library/windowsazure/jj129593.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj853021.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dn535715.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dn271889.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj853022.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj853022.aspx
http://www.windowsazure.com/en-us/documentation/articles/media-services-create-account/
http://msdn.microsoft.com/en-us/library/windowsazure/jj129588.aspx

51

¶ For more information about lazy initialization, see "Lazy Initialization" on MSDN.

¶ For a detailed description of how to encrypt configuration information see "Encrypting

Configuration Information Using Protected Configuration" on MSDN.

¶ For information about how to connect to a web service from a Windows Store application,

see "Connecting to an HTTP server using Windows.Web.Http.HttpClient" on MSDN.

http://msdn.microsoft.com/en-us/library/vstudio/dd997286(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/53tyfkaw.aspx
http://msdn.microsoft.com/en-us/library/53tyfkaw.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn440594.aspx

52

4 - Encoding and Processing Media in

Microsoft Azur e Media Services
Microsoft Azure Media Services enables you to encode your video to a variety of devices, ranging

from desktop PCs to smartphones. To do this you create processing jobs which enable you to

schedule and automate the encoding of assets.

This chapter describes how the Contoso developers incorporated Media Services' encoding and

processing functionality into their web service. It summarizes the decisions that they made in order

to support their business requirements, and how they designed the code that performs the encoding

process.

Introduction to video encoding

Uncompressed digital video files can be large and would be too big to deliver over the Internet

without first compressing them. Encoding is the process of compressing video and audio using

codecs. The quality of the encoded content is determined by the amount of data that is thrown away

when the content is compressed. There are many factors that affect what data is thrown away

during the compression process, but generally the more complex the data is and the higher the

compression ratio, the more data is thrown away. In addition, people watch videos on a variety of

devices including TVs with set top boxes, desktop PCs, tablets, and smartphones. Each of these

devices has different bandwidth and compression requirements.

Codecs both compress and decompress digital media files. Audio codecs compress and decompress

audio, while video codecs compress and decompress video. Lossless codecs preserve all of the data

during the compression process. When the file is decompressed the result is a file that is identical to

the input file. Lossy codecs throw away some of the data when encoding, and produce smaller files

than lossless codecs. The two main codecs used by Media Services to encode are H.264 and VC-1.

Encoders are software or hardware implementations that compress digital media using codecs.

Encoders usually have settings that allow you to specify properties of the encoded media, such as

the resolution, bitrate, and file format. File formats are containers that hold the compressed media

as well as data about the codecs that were used during the compression process. For a list of the

codecs and file formats supported by Media Services for import see "Supported input formats." The

following table lists the codecs and file formats that are supported for export.

File format Video codec Audio codec

Windows Media (*.wmv, *.wma) VC-1 (Simple, Main, and Advanced

profiles)

Windows Media Audio (Standard,

Professional, Voice, Lossless)

MP4 (.mp4) H.264 (Baseline, Main, and High

profiles)

AAC-LC, HE-AAC v1, HE-AAC v2,

Dolby Digital Plus

Smooth Streaming (PIFF 1.1)

(*.ismv, *.isma)

VC-1 (Advanced profile)

H.264 (Baseline, Main, and High

profiles)

Windows Media Audio (Standard,

Professional)

AAC-LC, HE-AAC v1, HE-AAC v2

53

For information about additional supported codecs and filters in Media Services, see "Codec

Objects" and "DirectShow Filters."

Resolution specifies how many lines make up a full video image. Typically resolutions are 1080p and

720p for high definition, and 480p for standard definition. The bitrate of a video is the number of

bits recorded per sec, and is usually specified as kilobits per second (kbps). The higher the bitrate the

higher the quality of video. Videos can be encoded using a constant bitrate or a variable bitrate.

In constant bitrate encoding (CBR) a maximum bitrate is specified that the encoder can generate. If

the video being encoded requires a higher bitrate then the resulting video will be of poor quality.

CBR encoding is useful when there's a requirement to stream a video at a predictable bit rate with a

consistent bandwidth utilization.

While CBR encoding aims to maintain the bit rate of the encoded media, variable bit rate (VBR)

encoding aims to achieve the best possible quality of the encoded media. A higher bitrate is used for

more complex scenes, with a lower bitrate being used for less complex scenes. VBR encoding is more

computation intensive, and often involves multiple passes when encoding video.

Encoding for delivery using Azure Media Services

Media Services provides a number of media processors that enable video to be processed. Media

processors handle a specific processing task, such as encoding, format conversion, encrypting, or

decrypting media content. Encoding video is the most common Media Services processing

operation, and it is performed by the Azure Media Encoder. The Media Encoder is configured using

encoder preset strings, with each preset specifying a group of settings required for the encoder. For

a list of all the presets see "Appendix B ςAzure Media Encoder Presets."

Media Services supports progressive download of video and streaming. When encoding for

progressive download you encode to a single bitrate. However, you could encode a video multiple

times and have a collection of single bitrate files from which a client can choose. When a client

chooses a bitrate the entire video will be displayed at that bitrate. However, if network conditions

degrade playback of the video may pause while enough data is buffered to be able to continue.

To be able to stream content it must first be converted into a streaming format. This can be

accomplished by encoding content directly into a streaming format, or converting content that has

already been encoded into H.264 into a streaming format. The second option is performed by the

Azure Media Packager, which changes the container that holds the video, without modifying the

video encoding. The Media Packager is configured through XML rather than through string presets.

For more information about the XML configuration see "Task Preset for Azure Media Packager."

There are two types of streaming offered by Media Services:

¶ Single bitrate streaming

¶ Adaptive bitrate streaming

With single bitrate streaming a video is encoded to a single bitrate stream and divided into chunks.

The stream is delivered to the client one chunk at a time. The chunk is displayed and the client then

requests the next chunk. When encoding for single bitrate streaming you can encode to a number of

different bitrate streams and clients can select a stream. With single bitrate streaming, once a

bitrate stream is chosen the entire video will be displayed at that bitrate.

http://msdn.microsoft.com/en-us/library/windows/desktop/ff819077.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff819077.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd375464.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh973635.aspx

54

When encoding for adaptive bitrate streaming you encode to an MP4 bitrate set that creates a

number of different bitrate streams. These streams are also broken into chunks. However, adaptive

bitrate technologies allow the client to determine network conditions and select from among several

bitrates. When network conditions degrade, the client can select a lower bitrate allowing the video

to continue to play at a lower video quality. Once network conditions improve the client can switch

back to a higher bitrate with improved video quality.

Media Services supports three adaptive bitrate streaming technologies:

¶ Smooth streaming, created by Microsoft

¶ HTTP Live Streaming (HLS), created by Apple

¶ MPEG-DASH, an ISO standard

Media Services enables you to encode and stream video to a variety of devices. The following table

summarizes the streaming technology supported by different device types.

Device type Supports Example presets

Windows Smooth streaming

MPEG-DASH

H264 Broadband 1080p

H264 Adaptive Bitrate MP4 Set

1080p

H264 Smooth Streaming 1080p

Xbox Smooth streaming H264 Smooth Streaming 720p

Xbox Live ADS

iOS HLS

Smooth streaming (with the Smooth

Streaming Porting Kit)

H264 Broadband 1080p

H264 Adaptive Bitrate MP4 Set

1080p

H264 Smooth Streaming 1080p

Android Smooth Streaming via the OSMF

plug-in, when the device supports

Flash

HLS (Android OS 3.1 and greater)

H264 Broadband 720p

H264 Smooth Streaming 720p

Smooth streaming is the preferred adaptive bitrate streaming technology for Microsoft platforms.

There are a number of approaches to creating smooth streaming assets:

¶ Encode your single video file using one of the H.264 smooth streaming task presets to

encode directly into smooth streaming. For more information see "Appendix B ςAzure

Media Encoder Presets."

¶ Encode your single video file using one of the H.264 adaptive bitrate task presets using the

Azure Media Encoder, and then use the Azure Media Packager to convert the adaptive

bitrate MP4 files to smooth streaming.

¶ Encode your video locally to a variety of bit rates, and then create a manifest file describing

the video files. After uploading the files to the Azure Storage account associated with your

Azure Media account, use the Azure Media Packager to convert the MP4 files into smooth

streaming files.

55

¶ Encode your video to MP4 and using dynamic packaging to automatically convert the MP4

to smooth streaming. For more information about dynamic packaging see "Dynamic

packaging."

If you intend to protect your content with PlayReady you should use the Azure Media

Encoder to encode directly to Smooth Streaming, and then use the Azure Media Packager to

protect your media.

Note: To convert WMV files to Smooth Streaming you must first encode your files from WMV to

H.264. WMV is a video codec that typically has an ASF container format, with H.264 being a video

codec that can be used with the MP4 container format. Smooth Streaming uses a variant of MP4

called fragmented MP4, or F-MP4. Smooth Streaming is an adaptive streaming format that requires

a set of files of different bitrates, all encoded with fragments that are aligned across the bitrates.

Therefore, a set of MP4 files that are encoded with aligned fragments can be converted to F-MP4

without requiring a re-encode. However, this is not the case with WMV files. For more information

see "Smooth Streaming Technical Overview."

Creating encoding jobs in Azure Media Services

After media has been uploaded into Media Services it can be encoded into one of the formats

supported by the Media Services Encoder. Media Services Encoder supports encoding using the

H.264 and VC-1 codecs, and can generate MP4 and Smooth Streaming content. However, MP4 and

Smooth Streaming content can be converted to Apple HLS v3 or MPEG-DASH by using dynamic

packaging. For more information about dynamic packaging see "Dynamic packaging." For

information about the input and output formats supported by Media Services see "Supported input

formats" and "Introduction to encoding."

Encoding jobs are created and controlled using a Job. Each Job contains metadata about the

processing to be performed, and contains one or more Tasks that specify a processing task, its input

Assets, output Assets, and a media processor and its settings. The following figure illustrates this

relationship.

http://www.microsoft.com/en-us/download/details.aspx?id=17678

56

The relationship between jobs, tasks, and assets

Tasks within a Job can be chained together, where the output asset of one task is given as the input

asset to the next task. By following this approach one Job can contain all of the processing required

for a media presentation.

The maximum number of Tasks per Job is 50.

The maximum number of Assets per Task is 50

The maximum number of Assets per Job is 100. This includes queued, finished, active, and

canceled jobs. However, it doesn't include deleted jobs.

Accessing Azure Media Services media processors

A standard task that's required for most processing jobs is to call a specific media processor to

process the job.

A media processor is a component that handles a specific processing task such as

encoding, format conversion, encryption, or decrypting media content.

The following table summarizes the media processors supported by Media Services.

Media processor name Description

Azure Media Encoder Allows you to run encoding tasks using the Media

Encoder.

Azure Media Packager Allows you to convert media assets from MP4 to

Smooth Streaming format. In addition, allows you to

57

convert media assets from Smooth Streaming format

to HLS format.

Azure Media Encryptor Allows you to encrypt media assets using PlayReady

Protection.

Storage Decryption Allows you to decrypt media assets that were

encrypted using storage encryption.

To use a specific media processor you should pass the name for the processor into the

GetLatestMediaProcessorByName method, which is shown in the following code example.

C#

private IMediaProcessor GetLatestMediaProcessorByName(string mediaProcessorName)

{

 var processor = this .context.MediaProcessors.Where(p => p.Name ==

mediaProcessorName)

 .ToList().OrderBy(p => new Version(p.Version)).LastOrDefault() ;

 if (processor == null)

 {

 throw new ArgumentException(string .Format("Unknown media processor: {0}",

mediaProcessorName));

 }

 return processor;

}

The method retrieves the specified media processor and returns a valid instance of it. The following

code example shows how you'd use the GetLatestMediaProcessorByName method to retrieve the

Azure Media Encoder processor.

C#

IMediaProcessor mediaProcessor =

this .GetLatestMediaProcessorByName(MediaProcessorNames.WindowsAzureMediaEncoder);

Securely encoding media within Azure Media Services

When encoding encrypted assets you must specify the encryption option when adding the output

asset to the processing task. The encryption of each asset created by a job is controlled by specifying

one of the AssetCreationOptions enumeration values for each task in the job.

Any encrypted assets will be decrypted before a processing operation and stored in the encrypted

file system on the Azure Compute node that is processing the task. The media processors then

perform the required operations on the media stored in the encrypted file system and the output of

each task is written to storage.

The following figure summarizes how media can be protected during the encoding and packaging

process.

58

Media encryption options during the encoding and packaging process

The Contoso web service does not use any encryption because videos are encoded for

progressive download and streaming. However, when developing a commercial video-on-demand

service you should encrypt the content both in transit and at rest.

If you want to encode a video and secure it for storage you should specify

AssetCreationOptions.StorageEncrypted when creating the output asset for the encoding task.

When a storage encrypted asset is downloaded using one of the Media Services SDKs the SDK will

automatically decrypt the asset as part of the download process.

If you want to encode and package a video for streaming or progressive download you should

specify AssetCreationOptions.None when creating the output asset for the encoding task.

Scaling Azure Media Services encoding jobs

By default each Media Services account can have one active encoding task at a time. However, you

can reserve encoding units that allow you to have multiple encoding tasks running concurrently, one

for each encoding reserved unit your purchase. New encoding reserved units are allocated almost

immediately.

The number of encoding reserved units is equal to the number of media tasks that can be processed

concurrently in a given account. For example, if your account has 5 reserved units then 5 media tasks

can run concurrently. The remaining tasks will wait in the queue and will be processed sequentially

as soon as a running task completes.

If an account doesn't have any reserved units then tasks will be processed sequentially. In this

scenario the time between one task finishing and the next one starting will depend on the

availability of system resources.

The number of encoding reserved units can be configured on the Encoding page of the Azure

Management Portal.

By default every Media Services account can scale to up to 25 encoding reserved units. A higher

limit can be requested by opening a support ticket. For more information about opening a support

ticket see "Requesting Additional Reserved Units."

For more information about scaling Media Services see "How to Scale a Media Service."

http://msdn.microsoft.com/en-us/library/windowsazure/jj872753.aspx#SpecifyNumOfRU
http://www.windowsazure.com/en-us/documentation/articles/media-services-how-to-scale/

59

Accessing encoded media in Azure Media Services

Accessing content in Media Services always requires a locator. A locator combines the URL to the

media file with a set of time-based access permissions. There are two types of locators ς shared

access signature locators and on-demand origin locators.

You cannot have more than five unique locators associated with a given asset at one time.

This is due to shared access policy restrictions set by Azure Blob Storage service.

A shared access signature locator grants access rights to a specific media asset through a URL. You

can grant users who have the URL access to a specific resource for a period of time by using a shared

access signature locator, in addition to specifying what operations can be performed on the

resource.

On-demand origin locators are used when streaming content to a client application, and are exposed

by the Media Services Origin Service which pulls the content from Azure Storage and delivers it to

the client. An on-demand origin locator URL will point to a streaming manifest file in an asset. For

more information about the origin service see "Origin Service."

Locators are not designed for managing per-user access control. To give different access

rights to different individuals, use Digital Rights Management (DRM) solutions.

Encoding process in the Contoso Azure Media Services web service

The following figure shows a high-level overview of the Contoso encoding process. The encoding

process is managed by the EncodingService class in the Contoso.Domain.Services.Impl project.

60

A high-level overview of the Contoso encoding process

The EncodingService class in the Contoso web service retrieves the asset details from the CMS

database and passes the encoding job to Media Services, where it's submitted to the Azure Media

Encoder. The encoding job and video details are saved to the CMS database while the Media

Encoder processes the job, retrieving the input asset from Azure Storage, and writing the output

assets to Azure Storage. The Contoso web service always encodes videos to adaptive bitrate MP4s,

and then uses dynamic packaging to convert the adaptive bitrate MP4s to Smooth Streaming, HLS,

or MPEG-DASH, on demand. When encoding is complete Media Services notifies the

EncodingService class, which generates locator URLs to the output assets in Azure Storage, and

updates the encoding job and video details in the CMS database. For more information about

dynamic packaging see "Dynamic packaging."

This process can be decomposed into the following steps for encoding content with Media Services:

1. Create a new VideoEncodingMessage and add it to the ContosoEncodingQueue.

2. Poll the ContosoEncodingQueue and convert the received VideoEncodingMessage to an

EncodingRequest.

3. Delete the VideoEncodingMessage from the ContosoEncodingQueue.

4. Process the EncodingRequest.

a. Create a new Job.

61

b. Retrieve Azure Media Encoder media processor to process the job.

c. Create a new EncodingPipeline to encode the video.

d. Add a VideoEncodingPipelineStep to the EncodingPipeline.

e. Add a ThumbnailEncodingPipelineStep to the EncodingPipeline, if required.

f. Add a ClipEncodingPipelineStep to the EncodingPipeline, if required.

g. Configure the Job.

i. Create a Task in the VideoEncodingPipelineStep and specify input and

output assets for the Task.

ii. Create a Task in the ThumbnailEncodingPipelineStep and specify input and

output assets for the Task.

iii. Create a Task in the ClipEncodingPipelineStep and specify input and output

assets for the Task.

h. Submit the Job to Azure Media Services.

i. A new JobNotificationMessage is added to the

ContosoJobNotificationQueue.

i. Create a new EncodingJob and populate it with job information, before storing it in

the CMS database.

j. Update the EncodingStatus of the Job from NotStarted to Encoding.

5. Poll the ContosoJobEncodingQueue and convert the received JobNotificationMessage to a

JobNotification.

6. Delete the JobNotificationMessage from the ContosoJobEncodingQueue.

7. Process the JobNotification.

a. When the JobState is Finished, retrieve the job and video details from the CMS

database.

b. Process the output assets from the Job.

i. Process the VideoEncodingPipelineStep output assets.

a. Create on-demand origin and shared access signature

locators for the output asset.

b. Generate URIs for smooth streaming, HLS, MPEG-DASH,

and progressive download versions of the output asset.

c. Add the URIs to VideoPlay objects, and add the

VideoPlay objects to the VideoDetail object.

ii. Process the ThumbnailEncodingPipelineStep output assets.

a. Create on-demand origin and shared access signature

locators for the output asset.

62

b. Generate URIs for the thumbnail images.

c. Add the URIs to VideoThumbnail objects, and add them

to the VideoDetail object.

iii. Process the ClipEncodingPipelineStep output assets.

a. Create on-demand origin and shared access signature

locators for the output asset.

b. Generate URIs for the video clip assets.

c. Add the URIs to VideoPlay objects, and add the

VideoPlay objects to the VideoDetail object.

c. Save the updated video details and job details to the CMS database.

Media Services has the ability to deliver notification messages to the Azure Storage Queues when

processing media jobs. The Contoso developers decided to use Media Services notifications during

the encoding process. The advantages of this are that it provides an easy mechanism for managing

the encoding jobs submitted by multiple clients, and encoding progress can be monitored through

job notification messages, if required.

When a video is uploaded and published it's added to a queue named ContosoEncodingQueue

which stores encoding jobs, and then moved to the ContosoJobNotificationQueue for encoding.

When the encoding job completes the next step in the content publishing workflow is triggered,

which is to process the assets output from the encoding job, and to update the CMS database.

Azure Storage Queues must be polled ς they are not a push service.

The following figure shows a high level overview of how the ContosoEncodingQueue and

ContosoJobNotification queue are used in the encoding process. The diagram shows the method

names in the EncodingService class that initiate and manage the encoding process.

63

Use of queues in the encoding process

Note: Azure Storage Queues do not provide a guaranteed first-in-first-out (FIFO) delivery. For more

information see "Azure Queues and Azure Service Bus Queues ς Compared and Contrasted."

As mentioned in the previous chapter, the PublishAsset method in the EncodingService class is

responsible for starting the encoding process.

C#

public async Task PublishAsset(VideoPublish video)

{

 ...

 var videoEncodingMessage = new EncodeVideoMessage()

 {

 AssetId = video.AssetId,

 VideoId = video.VideoId,

 IncludeThumbnail s = true ,

 Resolution = video.Resolution

 };

 ...

 IAzureQueue<EncodeVideoMessage> queue = new AzureQueue<EncodeVideoMessage>(

 Microsoft.WindowsAzure.CloudStorageAccount.Parse(

 CloudConfiguration.GetConfigurationSetting("WorkerRoleConnectionString")),

 CloudConfiguration.GetConfigurationSetting("ContosoEncodingQueueName"),

 TimeSpan.FromSeconds(300));

 queue.AddMessage(videoEncodingMessage);

}

The method creates an EncodeVideoMessage instance and adds it an AzureQueue named

ContosoEncodingQueue. Every video that will be encoded or otherwise processed by Media Services

http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx

64

must be added to this queue. Each EncodeVideoMessage instance contains properties that specify

the details of the video to be encoded.

The Contoso.Azure project specifies a worker role named Contoso.EncodingWorker that is

responsible for managing the two queues used in the encoding process. When a video is published

it's added to the ContosoEncodingQueue for encoding, and once the encoding is complete it's

moved to the ContosoJobNotificationQueue. The Contoso.EncodingWorker project contains the

classes that make up the worker role.

The Run method in the WorkerRole class in the Contoso.EncodingWorker project is responsible for

managing the two queues.

C#

public override void Run()

{

 ...

 var contosoEncodingQueue =

 this .container.Resolve<IAzureQueue<EncodeVideoMessage>>("Standard");

 var contosoEncodingCompleteQueue =

 this .container.Resolve<IAzureQueue< JobNotificationMessage>>("Standard");

 BatchMultipleQueueHandler

 .For(contosoEncodingQueue, GetStandardQueueBatchSize())

 .Every(TimeSpan.FromSeconds(GetSummaryUpdatePollingInterval()))

 .WithLessThanTheseBatchIterationsPerCyc le(

 GetMaxBatchIterationsPerCycle())

 .Do(this .container.Resolve<EncodeVideoCommand>());

 BatchMultipleQueueHandler

 .For(contosoEncodingCompleteQueue, GetStandardQueueBatchSize())

 .Every(TimeSpan.FromSeconds(Get SummaryUpdatePollingInterval()))

 .WithLessThanTheseBatchIterationsPerCycle(

 GetMaxBatchIterationsPerCycle())

 .Do(this .container.Resolve<JobNotificationCommand>());

 ...

}

This method sets up two BatchMultipleQueueHandlers to process the ContosoEncodingQueue and

the ContosoJobNotificationQueue. The BatchMultipleQueueHandler<T> class implements the For,

Every, and Do methods. The Do method in turn calls the Cycle method, which calls the PreRun, Run,

and PostRun methods of the batch command instance (any command which derives from

IBatchCommand). Therefore, the first BatchMultipleQueueHandler polls the

ContosoEncodingQueue every 10 seconds and for every EncodingVideoMessage on the queue, runs

the PreRun, Run, and PostRun methods of the EncodeVideoCommand instance. The second

BatchMultipleQueueHandler polls the ContosoJobNotificationQueue every 10 seconds and for

every JobNotificationMessage on the queue, runs the PreRun, Run, and PostRun methods of the

JobNotificationCommand instance. The 10 second time interval is set by the

SummaryUpdatePollingInterval constant stored in configuration, and is retrieved by the

GetSummaryUpdatePollingInterval method in the WorkerRole class. After the Run method of a

batch command has executed the message is deleted from the appropriate queue.

65

Therefore, when the PublishAsset method of the EncodingService class places an

EncodeVideoMessage, containing the details of the video to be encoded, onto the

ContosoEncodingQueue, when the queue is polled the Run method of the EncodeVideoCommand

class is invoked.

C#

public bool Run(EncodeVideoMessage message)

{

 var encodingRequest = new EncodingRequest()

 {

 AssetId = message.AssetId,

 ClipStartTime = message.ClipStartTime,

 ClipEndTime = message.ClipEndTime,

 IncludeThumbnails = message.IncludeThumbnails,

 Resolution = message.Resolution,

 VideoId = message.VideoId

 };

 this .encodingService.EncodeAsset(encodingRequest);

 return true;

}

This method converts the EncodeVideoMessage to a new EncodingRequest instance and then calls

the EncodeAsset method of the EncodingService class. After the Run method has executed the

EncodeVideoMessage is deleted from the ContosoEncodingQueue.

Creating the video encoding pipeline for Azure Media Services

The EncodeAsset method retrieves the media asset to be encoded and then creates a new IJob

instance and gets the media encoder from the context, before creating a new instance of the

EncodingPipeline class. The EncodingPipeline is used to place video encoding steps into a pipeline.

The following figure shows an overview of the steps in the EncodingPipeline.

An overview of the steps in the EncodingPipeline

The pipeline consists of three steps:

1. A VideoEncodingPipelineStep.

2. A ThumbnailEncodingPipelineStep.

3. A ClipEncodingPipelineStep.

66

When an encoding job completes there is no information in the tasks or output assets

associated with the job that identify what it is. By using an encoding pipeline, and pipeline steps,

you are able to append a suffix to each output asset and then match them up when the encoding

completes.

The following code example shows how the EncodeAsset method in the EncodingService class

creates the encoding pipeline.

C#

public async Task EncodeAsset(EncodingRequest encodingRequest)

{

 ...

 // create a new instance of the encoding pipeline

 EncodingPipeline encodingPipeline = new EncodingPipeline();

 // add the video to the encoding pipeline

 VideoEncod ingPipelineStep videoEncodingStep =

 new VideoEncodingPipelineStep(inputAsset, encodingRequest.Resolution);

 encodingPipeline.AddStep(videoEncodingStep);

 if (encodingRequest.IncludeThumbnails)

 {

 // add the thumbnails to the enco ding pipeline

 ThumbnailEncodingPipelineStep thumbnailEncodingStep =

 new ThumbnailEncodingPipelineStep(inputAsset);

 encodingPipeline.AddStep(thumbnailEncodingStep);

 }

 if (encodingRequest.ClipEndTime.Ticks > 0)

 {

 ClipEncodingPipelineStep clipEncodingStep = new ClipEncodingPipelineStep(

 inputAsset, encodingRequest.ClipStartTime,

 encodingRequest.ClipEndTime, encodingRequest.Resolution);

 encodingPipeline.AddStep(clipEncodingSte p);

 }

 // configure the job; adds the steps as tasks to the job

 encodingPipeline.ConfigureJob(job, mediaProcessor);

 ...

}

An EncodingPipeline instance will always have a VideoEncodingPipelineStep. However, a

ThumbnailEncodingPipelineStep will only be added to the EncodingPipeline if the

IncludeThumbnails property of the EncodingRequest is set to true. Similarly, a

ClipEncodingPipelineStep will only be added to the EncodingPipeline if the ClipEndTime.Ticks

property of the EncodingRequest is greater than zero.

67

The VideoEncodingPipelineStep, ThumbnailEncodingPipelineStep, and

ClipEncodingPipelineStep classes all implement the IEncodingPipelineStep interface, which

specifies that implementing classes must provide the ConfigureStep and ProcessOutput methods.

The following figure shows the methods involved in configuring the EncodingPipeline steps.

The methods involved in configuring the EncodingPipline steps

The ConfigureJob method of the EncodingPipeline class is shown in the following code example.

C#

public void ConfigureJob(IJob job, IMediaProcessor mediaProcessor)

{

 ...

 foreach (IEncodingPipelineStep step in this .steps)

 {

 step.ConfigureStep(job, mediaProcessor);

 }

}

This method simply calls the ConfigureStep method of any of the added IEncodingPipelineSteps.

The overall effect is to add the steps as tasks to the job.

Configuring the video encoding pipeline step

An EncodingPipeline will always contain a VideoEncodingPipelineStep, which is responsible for

encoding a video.

The VideoEncodingPipelineStep class defines a dictionary that contains the encoding presets that

can be chosen when uploading a video using the client apps. The dictionary specifies four encoding

presets:

Preset Encoder task preset

1080p H264AdaptiveBitrateMP4Set1080p

720p H264AdaptiveBitrateMP4Set720p

68

480p 16x9 H264AdaptiveBitrateMP4SetSD16x9

480p 4x3 H264AdaptiveBitrateMP4SetSD4x3

These presets produce assets at different resolutions and aspect ratios for delivery via one of many

adaptive streaming technologies after suitable packaging. If no encoding preset is specified the

pipeline defaults to using the 720p preset.

Not all videos can be encoded using these presets, for example low bitrate videos. In such cases

you should create custom encoding presets.

The following code example shows the ConfigureStep method of the VideoEncodingPiplineStep

class.

C#

public void ConfigureStep(IJob job, IMediaProcessor mediaProcessor)

{

 ITask encodingTask = job.Tasks.AddNew(

 this .inpu tAsset.Name + EncodingTaskSuffix,

 mediaProcessor,

 this .encodingPreset,

 TaskOptions.ProtectedConfiguration);

 encodingTask.InputAssets.Add(this .inputAsset);

 encodingTask.OutputAssets.AddNew(this .inputAsset.Name + EncodingOuput Suffix,

 AssetCreationOptions.None);

}

The method declares a task, passing the task a name made up of the input asset name with

"_EncodingTask" appended to it, a media processor instance, a configuration string for handling the

processing job, and a TaskCreationOptions setting that specifies that the configuration data should

be encrypted. The task is then added to the Tasks collection of the job. An input asset is then

specified for the task, along with an output asset whose filename is made up of the input asset name

with "_EncodingOutput" appended to it.

By default, all assets are created as storage encrypted assets. To output an unencrypted

asset for playback you must specify AssetCreationOptions.None.

Configuring the thumbnail encoding pipeline step

The ThumbnailEncodingPipelineStep class is responsible for producing thumbnail image files from a

video file. In the Contoso video apps these thumbnail images are used to represent each video on

the main page.

A ThumbnailEncodingPipelineStep will only be added to the EncodingPIpeline if the

IncludeThumbnails property of the EncodingRequest is set to true. In the Contoso web service this

property is always set to true.

69

The following code example shows the ConfigureStep method of the

ThumbnailEncodingPipelineStep class.

C#

public void ConfigureStep(IJob job, IMediaProcessor mediaProcessor)

{

 ITask thumbnailTask = job.Tasks.AddNew(

 this .inputAsset.Name + ThumbnailTaskSuffix,

 mediaProcessor,

 this .thumbnailPresetXml,

 TaskOptions.ProtectedConfiguration);

 thumbnailTask.InputAssets.Add(this .inputAsset);

 thumbnailTask.OutputAssets.AddNew(this .inputAsset.Name +

 ThumbnailOutputSuffix, AssetCreationOptions.None);

}

This method declares a task, passing the task a name made up of the input asset name with

"_ThumbnailTask" appended to it, a media processor instance, a custom configuration XML preset

for handling the processing job, and a TaskCreationOptions setting that specifies that the

configuration data should be encrypted. The custom configuration XML preset specifies the settings

to use when creating the task. The task is then added to the Tasks collection of the job. An input

asset is then specified for the task, along with an output asset whose filename is made up of the

input asset name with "_ThumbnailOutput" appended to it. In order to output an unencrypted asset

the AssetCreationOptions.None enumeration value is specified.

The following code example shows the XML configuration preset used to create thumbnails.

XML

<?xml version =" 1.0 " encoding =" utf - 8" ?>
<Thumbnail Size =" 50%,*" Type=" Jpeg"
 Filename =" {OriginalFilename}_{Size}_{ThumbnailTime}_{ThumbnailIndex}_{Date}
 _{Time}.{DefaultExtension} " >
 <Time Value =" 10%" /></ Thumbnail >

There are two primary elements:

¶ The <Thumbnail> element that specifies general settings for the thumbnail image that will

be generated.

¶ The <Time> element that specifies the time in the source video stream from which a

thumbnail will be generated.

The <Thumbnail> element specifies that the generated thumbnail should be a JPEG that's 50% of the

height of the video, with the aspect ratio maintained. A template is also specified for producing the

thumbnail filename. The <Time> element specifies that the thumbnail will be generated from the

video data 10% of the way through the video stream. For more information about customizing the

settings of a thumbnail file see "Task Preset for Thumbnail Generation."

Although we only generate one thumbnail image per video, the CMS allows multiple

thumbnail URLs for each video to be stored in the database.

http://msdn.microsoft.com/en-us/library/windowsazure/hh973624.aspx

70

Configuring the clip encoding pipeline step

The ClipEncodingPipelineStep class is responsible for producing a clip (a short segment of video)

from the video being encoded.

The Contoso Video web client is the only client that demonstrates producing clips from a video.

A ClipEncodingPipelineStep will only be added to the EncodingPipeline if the ClipEndTime.Ticks

property of the EncodingRequest is greater than zero.

The ClipEncodingPipelineStep class defines a dictionary that contains the encoding presets that can

be chosen when uploading a video using the client apps. The dictionary specifies the same four

encoding presets that are used by the VideoEncodingPipelineStep class. Therefore, when a user

selects an encoding preset it is used by both the VideoEncodingPipelineStep class and the

ClipEncodingPipelineStep class, with the ClipEncodingPipelineStep class also defaulting to using the

720p preset if no encoding preset is specified.

The following code example shows the ConfigureStep method of the ClipEncodingPipelineStep

class.

71

C#

public void ConfigureSt ep(IJob job, IMediaProcessor mediaProcessor)

{

 var clipXml = this .clipPresetXml.Replace("%startTime%" ,

 clipStartTime.ToString(@"hh\ :mm\ :ss"));

 clipXml = clipXml.Replace("%endTime%", this.clipEndTime.ToString(

 @"hh\ :mm\ :ss"));

 ITask clipTask = job.Tasks.AddNew(

 this .inputAsset.Name + ClipTaskSuffix,

 mediaProcessor,

 clipXml,

 TaskOptions.ProtectedConfiguration);

 clipTask.InputAssets.Add(this .inputAsset);

 clipTask.OutputAssets.AddNew(this .inputAsset.Name + ClipOuputSuffix,

 AssetCreationOptions.None);

}

This method updates the start and end time in the clip XML preset data, with the times specified by

the user. The clip XML preset data was retrieved by the ClipEncodingPipelineStep constructor. The

method then declares a task, passing the task a name made up of the input asset name with

"_ClipTask" appended to it, a media processor instance, a configuration string for handling the

processing job, and a TaskCreationOptions setting that specifies that the configuration data should

be encrypted. The task is then added to the Tasks collection of the job. An input asset is then

specified for the task, along with an output asset whose filename is made up of the input asset name

with "_ClipOutput" appended to it. In order to output an unencrypted asset the

AssetCreationOptions.None enumeration value is specified.

Handling job notifications from Azure Media Services

Once the EncodingPipline, and hence the job, has been configured it's added to the

ContosoJobNotificationQueue, as shown in the following code example.

C#

public async Task EncodeAsset(EncodingRequest encodingRequest)

{

 ...

 // create a NotificationEndPoint queue based on the endPointAddress

 string endPointAddress = Cloud Configuration

 .GetConfigurationSetting("ContosoJobNotificationQueueName");

 // setup the notificationEndPoint based on the queue and endPointAddress

 this .notificationEndPoint =

 this .context.NotificationEndPoints.Create(Guid.NewGuid ().ToString(),

 NotificationEndPointType.AzureQueue, endPointAddress);

 if (this .notificationEndPoint != null)

 {

 job.JobNotificationSubscriptions

 .AddNew(NotificationJobState.FinalStatesOnly,

72

 this.notificationEndPoint);

 await job.SubmitAsync().ConfigureAwait(false);

 // save the job information to the CMS database

 var encodingJob = new EncodingJob()

 {

 EncodingJobUuId = job.Id,

 EncodingTasks = new List<EncodingTask>(),

 VideoId = encodingRequest.VideoId

 };

 foreach (var task in job.Tasks)

 {

 var encodingTask = new EncodingTask() { EncodingTaskUuId = task.Id };

 f oreach (var asset in task.InputAssets)

 {

 encodingTask.AddEncodingAsset(new EncodingAsset()

 { EncodingAssetUuId = asset.Id, IsInputAsset = true });

 }

 encodingJob.EncodingTasks.Add(enco dingTask);

 }

 await this .jobRepository.SaveJob(encodingJob).ConfigureAwait(false);

 await this .UpdateEncodingStatus(job,EncodingState.Encoding)

 .ConfigureAwait(false);

 }

}

This code first retrieves the endpoint address for the ContosoJobNotificationQueue from the

configuration file. This queue will receive notification messages about the encoding job, with the

JobNotificationMessage class mapping to the notification message format. Therefore, messages

received from the queue can be deserialized into objects of the JobNotificationMessage type. The

notification endpoint that is mapped to the queue is then created, and attached to the job with the

call to the AddNew method. NotificationJobState.FinalStatesOnly is passed to the AddNew method

to indicate that we are only interested in the final states of the job processing.

If NotificationJobState.All is passed you will receive all the state changes (Queued -> Scheduled ->

Processing -> Finished). However, because Azure Storage Queues don't guarantee ordered delivery

it would be necessary to use the Timestamp property of the JobNotificationMessage class to order

messages. In addition, duplicate notification messages are possible, so the ETag property on the

JobNotificationMessage can be used to query for duplicates.

It is possible that some state change notifications will be skipped.

Note: While the recommended approach to monitor a job's state is by listening to notification

messages, an alternative is to check on a job's state by using the IJob.State property. However, a

notification message about a job's completion could arrive before the IJob.State property is set to

Finished.

73

The job is then asynchronously submitted, before the job information is saved to the CMS database,

with an EncodingJob object (which contains EncodingTask and EncodingAsset objects) representing

the job information. Finally, the UpdateEncodingStatus method is called to update the

EncodingState for the video from NotStarted to Encoding (the Publish method in the

VideosController class was responsible for setting the EncodingState for a newly uploaded video to

NotStarted). For more information about how the repository pattern is used to store information in

the CMS database, see "Appendix A ς The Contoso Web Service."

The EncodingState enumeration is defined in the Contoso.Domain project and has four

possible values ς NotStarted, Encoding, Complete, and Error.

The ContosoJobNotificationQueue is polled every 10 seconds to examine the state of the job. This

process is managed by the Run method in the WorkerRole class in the Contoso.EncodingWorker

project. When the queue is polled and a JobNotificationMessage is received the Run method of the

JobNotificationCommand class is invoked.

C#

public bool Run(JobNotificationMessage message)

{

 var encodingJobComplete = new JobNotification()

 {

 EventTypeDescription = message.EventType,

 JobId = (string)message.Properties.Where(j => j.Key ==

 "JobId").FirstOrDefault().Value,

 OldJobStateDescription = (string)message.Propertie s.Where(j =>

 j.Key == "OldState").FirstOrDefault().Value,

 NewJobStateDescription = (string)message.Properties.Where(j =>

 j.Key == "NewState").FirstOrDefault().Value

 };

 this .encodingService.ProcessJobNotification(encodingJobComplete);

 return true ;

}

This method converts the JobNotificationMessage to a new JobNotification instance and then calls

the ProcessJobNotification method of the EncodingService class. After the Run method has

executed the JobNotificationMessage is deleted from the ContosoJobNotificationQueue.

The following code example shows the ProcessJobNotificationMethod in the EncodingService class.

C#

public async Task ProcessJobNotification(JobNotification job Notification)

{

 if (jobNotification.EventTypeDescription != "JobStateChange")

 {

 return ;

 }

74

 JobState newJobState = (JobState)Enum.Parse(typeof (JobState),

 jobNotification.NewJobStateDescription);

 var job = th is .context.Jobs. Where(j =>

 j.Id == jobNotification.JobId).SingleOrDefault() ;

 if (job == null)

 {

 return ;

 }

 switch (newJobState)

 {

 case JobState.Finished:

 await this .ProcessEncodingOutput(job).ConfigureAwait(false);

 break ;

 case JobState.Error:

 await this .UpdateEncodingStatus(job, EncodingState.Error)

 .ConfigureAwait(false);

 break ;

 }

}

When this method is first called the EventTypeDescription property of the JobNotification instance

will be set to NotificationEndPointRegistration. Therefore the method will return.

The JobState enumeration is defined in the Microsoft.WindowsAzure.MediaServices.Client

namespace and has seven possible values ς Queued, Scheduled, Processing, Finished, Error,

Canceled, and Canceling.

When the JobState of the encoding Job changes, a new JobNotificationMessage is added to the

ContosoJobNotificationQueue. When the queue is polled and the message is received the Run

method of the ProcessJobNotification method of the EncodingService class is invoked again. In turn

this calls the ProcessJobNotification method of the EncodingService class again. On this call the

EventTypeDescription property of the JobNotification instance will be set to JobStateChange.

Therefore the job details are retrieved from the CMS database and the ProcessEncodingOutput

method will be called, provided that the JobState is Finished. Alternatively, the

UpdateEncodingStatus method is called to update the EncodingState for the video to Error, if an

error has occurred during the job processing.

Prior to the encoding job being submitted to the ContosoJobNotificationQueue the

NotificationJobState.FinalStatesOnly was passed to the AddNew method to indicate that we are

only interested in the final states of the job processing. This avoids the ProcessJobNotification

method being called for every single JobState change.

The following code example shows the ProcessEncodingOuput method in the EncodingService class.

75

C#

private async Task ProcessEncodingOutput(IJob job)

{

 // retrieve the job from the CMS database

 var encodingJob = await this .jobRepository.GetJob(job.Id)

 .ConfigureAwait(false);

 // retrieve the video detail from the CMS database

 var videoDetail = await this .videoRepository.GetVideo(encodingJob.VideoId)

 .ConfigureAwait(false);

 EncodingPipeline pipeline = new EncodingPipeline();

 // process the output from the job

 pipeline.ProcessJobOutput(job, this .context, encodingJob, videoDetail);

 // save the into to the CMS database

 await this .videoRepository.SaveVideo(videoDetail).ConfigureAwait(false);

 await this .jobRepository.SaveJob(encodingJob).ConfigureAwait(false);

}

This method retrieves the job and video details from the CMS database, before creating a new

instance of the EncodingPipeline class in order to process the output assets from the job. Finally, the

updated job and video details are saved to the CMS database.

Processing the output assets from the Azure Media Services encoding job

The following figure shows the methods involved in processing output assets from Media Services in

each step of the EncodingPipeline.

The methods involved in processing output assets in each step of the EncodingPipeline

The ProcessJobOutput method in the EncodingPipeline class is responsible for processing the

encoding job retrieved from the CMS database. The following code example shows this method.

76

C#

public void ProcessJobOutput(IJob job, CloudMediaContext context,

 EncodingJob encodingJob, VideoDetail videoDetail)

{

 ...

 foreach (var task in job.Tasks)

 {

 var encodingTask = encodingJob.Encodin gTasks.SingleOrDefault(

 t => t.EncodingTaskUuId == task.Id);

 if (encodingTask != null)

 {

 foreach (var outputAsset in task.OutputAssets)

 {

 encodingTask.AddEncodingAsset(new EncodingAsset()

 { EncodingAssetUuId = outputAsset.Id, IsInputAsset = false });

 foreach (var step in pipelineSteps)

 {

 if (outputAsset.Name.Contains(step.Key))

 {

 var pipelineStep = (IEncodingPipelineStep)Activator

 .CreateInstance(step.Value);

 pipelineStep.ProcessOutput(context, outputAsset,

 videoDetail);

 }

 }

 }

 }

 }

 videoDetail.EncodingStatus = EncodingState.Complete;

}

Each encoding job contains a number of encoding tasks, with each encoding task potentially

resulting in a number of assets being output. Therefore, this code loops through each task in the job

and then each output asset in the task, and then each step in the pipeline to perform string

matching on the suffix (_EncodingOutput, _ThumbnailOutput, or _ClipOutput) that is appended to

each output asset. Then, the ProcessOutput method is called on the newly instantiated pipeline step

that matches up to the output asset suffix.

Finally, the EncodingStatus of the video is set to Complete.

Processing the video encoding pipeline step output assets

As previously mentioned, the VideoEncodingPipelineStep class is responsible for encoding a video.

Therefore, its ProcessOutput method, which is shown in the following code example, is responsible

for processing the adaptive bitrate encoded video assets.

C#

public void ProcessOutput(CloudMediaContext context, IAsset outputAsset,

 VideoDetail videoDetail)

{

 context.Locators.Create(LocatorType.OnDemandOrigin, outputAsset,

77

 AccessPermissions.Read, TimeSpan.FromDays(30));

 context.Locators.Crea te(LocatorType.Sas, outputAsset, AccessPermissions.Read,

 TimeSpan.FromDays(30));

 var mp4AssetFiles = outputAsset.AssetFiles.ToList().Where(

 f => f.Name.EndsWith(".mp4" , StringComparison.OrdinalIgnoreCase));

 var xmlAssetFile = outp utAsset.AssetFiles.ToList().SingleOrDefault(

 f => f.Name.EndsWith("_manifest.xml" ,

 StringComparison.OrdinalIgnoreCase));

 Uri smoothStreamingUri = outputAsset.GetSmoothStreamingUri();

 Uri hlsUri = outputAsset.GetHlsUri();

 Uri m pegDashUri = outputAsset.GetMpegDashUri();

 foreach (var mp4Asset in mp4AssetFiles)

 {

 ILocator originLocator = outputAsset.Locators.ToList().Where(

 l => l.Type == LocatorType.OnDemandOrigin).OrderBy(

 l => l.Expiratio nDateTime).FirstOrDefault();

 var uri = new Uri(string .Format(CultureInfo.InvariantCulture,

 BaseStreamingUrlTemplate, originLocator.Path.TrimEnd('/'),

 mp4Asset.Name), UriKind.Absolute);

 videoDetail.AddVideo(new Video Play()

 {

 EncodingType = "video/mp4" ,

 Url = uri.OriginalString,

 IsVideoClip = false

 });

 }

 videoDetail.AddVideo(new VideoPlay()

 {

 EncodingType = "application/vnd.ms - sstr+xml" ,

 Url = smoothStreamingUri.OriginalString,

 IsVideoClip = false

 });

 videoDetail.AddVideo(new VideoPlay()

 {

 EncodingType = "application/vnd.apple.mpegurl" ,

 Url = hlsUri.OriginalString,

 IsVideoClip = fal se

 });

 videoDetail.AddVideo(new VideoPlay()

 {

 EncodingType = "application/dash+xml" ,

 Url = mpegDashUri.OriginalString,

 IsVideoClip = false

 });

 this .ParseManifestXml(xmlAssetFile.GetSasUri().OriginalString, videoDetail);

}

78

 The Windows Store and Windows Phone Contoso Video apps both play smooth streaming

assets. The Android and iOS Contoso video apps play HLS assets. However, all apps will fall back to

playing the first available multi-bitrate MP4 URL if streaming content is unavailable.

This method creates an on-demand origin locator, and a shared access signature locator, to the

output asset, with both locators allowing read access for 30 days. The shared access locator provides

direct access to a media file in Azure Storage through a URL. The on-demand origin locator provides

access to smooth streaming or Apple HLS content on an origin server, through a URL that references

a streaming manifest file.

When you create a locator for media content there may be a 30-second delay due to

required storage and propagation processes in Azure Storage.

A list of the multi-bitrate MP4 files produced by the encoding job is then created, along with the

XML file that references the MP4 collection. Extension methods then generate URIs to smooth

streaming, HLS, MPEG-DASH, and MP4 progressive download versions of the output asset, with the

smooth streaming, HLS, and MPEG-DASH content being packaged on demand. For more information

about packaging see "Dynamic packaging."

Media Services uses the value of the IAssetFile.Name property when building URLs for streaming

content. Therefore, the value of the Name property cannot have any of the percent-encoding

reserved characters (!#$&'()*+,/:;=?@[]). In addition, there must be only one '.' for the filename

extension. For more information see "Percent-encoding."

The URIs to the different versions of the content (smooth streaming, HLS, MPEG-DASH, progressive

MP4s) are then stored in new VideoPlay instances, which also specify the EncodingType of the

content. The VideoPlay instances are then added to the VideoDetail object. Through this

mechanism encoded content can be played back in client apps across a variety of devices.

Note: The URIs for the encoded assets can be very long. In this guide the URIs have been left

unaltered so that you can understand how Media Services functionality works. However, in your

own application you may choose to have a mechanism for handling long URIs, such as retrieving a

base URI for an asset and then retrieving relative URIs for each asset file.

Processing the thumbnail encoding pipeline step output assets

As previously mentioned, the ThumbnailEncodingPipelineStep class is responsible for producing

thumbnail images from a video file. Therefore, its ProcessOutput method, which is shown in the

following code example, is responsible for processing the thumbnail images produced from a video

file.

C#

public void ProcessOutput(CloudMediaContext context, IAsset outputAsset,

 VideoDetail videoDetail)

{

http://en.wikipedia.org/wiki/Percent-encoding

79

 context.Locators.Create(LocatorType.OnDemandOrigin, outputAsset,

 AccessPermissions.Read, TimeSpan.FromDays(30));

 context.Locators.Create(LocatorT ype.Sas, outputAsset, AccessPermissions.Read,

 TimeSpan.FromDays(30));

 foreach (var assetFile in outputAsset.AssetFiles)

 {

 videoDetail.AddThumbnailUrl(new VideoThumbnail()

 { Url = assetFile.GetSasUri().OriginalString });

 }

}

This method creates a shared access signature locator to the output asset that allows read access for

30 days. The shared access locator provides direct access to a media file in Azure storage through a

URL. A VideoThumbnail instance is then created for each thumbnail image that uses the shared

access signature locator to specify a URL to a thumbnail image, and is added to the VideoDetail

instance.

Note: The URIs for thumbnails can be very long. In this guide the URIs have been left unaltered so

that you can understand how Media Services functionality works. However, in your own

application you may choose to have a mechanism for handling long URIs, such as retrieving a base

URI for an asset and then retrieving relative URIs for each asset file.

Processing the clip encoding pipeline step output assets

As previously mentioned, the ClipEncodingPipelineStep class is responsible for producing a clip from

the video being encoded. Therefore, its ProcessOutput method, which is shown in the following

code example, is responsible for processing the clip produced from a video file.

C#

public void ProcessOutput(CloudMediaContext context, IAsset outputAsset,

 VideoDetail videoDetail)

{

 context.Locators.Creat e(LocatorType.OnDemandOrigin, outputAsset,

 AccessPermissions.Read, TimeSpan.FromDays(30));

 context.Locators.Create(LocatorType.Sas, outputAsset, AccessPermissions.Read,

 TimeSpan.FromDays(30));

 var mp4AssetFiles = outputAsset.Asse tFiles.ToList().Where(

 f => f.Name.EndsWith(".mp4" , StringComparison.OrdinalIgnoreCase));

 List<Uri> mp4ProgressiveDownloadUris = mp4AssetFiles.Select(

 f => f.GetSasUri()).ToList();

 mp4ProgressiveDownloadUris.ForEach(v => videoDetai l.AddVideo(new VideoPlay()

 {

 EncodingType = "video/mp4" ,

 Url = v.OriginalString,

 IsVideoClip = true

 }));

}

