o Microsoft

Building an OADemand
Video Service with
Microsoft Azure

Media Services

David Britch
Martin Cabral
Ezequiel Jadib
Douglas McMurtry
Andrew Oakley
Kirpa Singh

Hanz Zhang

patterns & practices

April 2014

Copyright

¢tKA&a R2O0dzy Sy GA ahéad LINPFRANDGRI Ad2lya | YR @ASsa SELINB&aS
and other Internet Web site references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitiouseaNo

association or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any
Microsoft product. You may copy and use this document for your internal, reference purposes. You
may modify this document for your internal, reference purposes.

© 2014 Microsoft Corporation. All rights reserved.

Microsoft, Azure, Internet Explorer, MSDN, PlayReady, Visual Studio, Windows, Windows Media,
Windows Phone, and Xbox are trademarks of therboft group of companies. All other
trademarks are property of their respective owners.

Contents
[(= £= Vol PP PPPPRPT PPN 7
WhO thiS gUIAANCE IS TOF.......eiiiiiiiiiiie it s e e e e e e 7
Why this guidance iS PErtiNENT NQW.........c.oiuriiiiieeiiiiiiii it e e e e e e annes 7
How this guidancCe iS StIUCLUIEM..............ooii i e e e e e e e e e e e e e e e e 7
What you need t0 USE the COUE.........oooi i a e e e e e 9
2 K2 QA K2 K e 9
(7] 0010 4 18] 11 Y2 PP PP PP PPPRPTP 10
AULNOIS aNd CONTIDULOLS.eeiiiieiiiie it e e e e e e e aeeeas 10
1 - Introduction to Microsoft Azure Medial SEIVICES.couiiiiiiiiieee e 11
What is Microsoft Azure Media SEIVICES2........cccuiiiiiiiiieiiiiee e 11
Choosing your Azure Media Services Vide0 XPErENCE........cccccicurrrrrrriirirrirrreererrereereeeeees 12
Organizing the Azure Media Services video processing Workflow...................occeeiieiciinnnnns 13
Uploading video into AZure Media SEIVICES..........cooiiiiiiiiiiiieiiiiiie e 14
Supported file types in Azure Media SEIVICES..........uuiiiiiiiiiiiieiiee et 14
Processing media with Microsoft Azure Media ServiCes.............coooeviiiicccecciccnineeeeeeee 15
Obtaining a media ProCESSOr INSTANCE.uuuuiiriiiiiiieriiererer e e eeeeaeeaeaaeeaaee e e e e ae e aaaaaa 15
ENCOAING VIAEO.......cc ot e s e e e s e e e esnaaes 15
Encoding for @ SMart PROME.........coiiiiiiiiii e 15
ENCOAING TOF XDOX.....eteeieeeiiiiieeie ettt e e s e e e s s e e e e e enneees 16
Encodingdr other devices and platforms............coooiiiiiiiiie s 16
Packaging video with Azure Media SErVICES.........coooiiiiiiire e 16
Protecting video with Azure Media SEIVICES........uuuiiiiiiiiiiiiieeeieieeee e 17
Delivering video from Azure Media SEIVICES ... v 17
Processing outbound video from Azure Media ServiCes.........cccccvvvveieeiecc e 18
Providing access to video within Azure Media SErVICES.........cccuuurriiiiiieiieiieiiieiieeeeeaaaaeenns 18
Consuming video from Azure Media SEIVICES.........uvviiiiiiiiiieieee e 19
SUMMIBIY . ettt oo et ettt ettt bt oo e e e e e e e e e eet et b b oo e e e eeeeeeeeebbbba e e e e eeaaeeeeeennnnns 19
MOTE INFOIMALION.eeeeeee ettt e e e e e e e e e s s e e e e e e e e nnnneeeee s 19
2 - The Micosoft Azure Media Services Viden-Demand ScenariQ.............occvvvveeeiiiiiiinnennennn. 20
Using the Contoso Azure Media Services video application............ccccoevivcvvieeeeeeiiiiiiieeennn. 20
BrOWSING VIAEOS. ...ttt ettt e e e e e e e e e e e e e e e s annneee s 20
Playing videos from Azure Media SEIVICES.uuuuiiiiiiiiiiiiieeeeiee e 22

(@1 o] (811 oY BNV, T [T 1= S 22

Uploading vileos iNt0 Azure Medial SEIVICESccoiiiiiiiiiiiee e 23
Understanding the Contoso Azure Media Services application architecture.................... 26
Understanding the Windows Store application architecture.....................oeee oo eeieccccciinnnns 28

Using a dependency iNJeCtioN CONLAINEL...........eiiiiiiiiiiiiiieeeiee e 29
Understanding the Visual Studio SOIULION...........cooiiiiiiiiiiei e 30
Developing the content ManagemMeENt SYSTEIML.......ccoiiiiiiiriiee e 32

Accessing the content managemMent SYSTEIML..........uviriiieiiiiiiiei e 33
SUMIMIAIY ...ttt e e e ettt e e e e e e et e e e e e tee e oo e e eeeeeeeeeseess s e eaaeeeeeeseetansnanaeeeeaeeeennnnnnns 34
MOTE INTOIMALION. ...ttt e et r e e e e e s e e e s 35

3 - Uploading Video into Microsoft Azure Media SerVICES.......cccccuurrrriiriiiiiiiiiiieeeieeeeereeeeeeeeees 36
(@] o] (o= To 1 g e [MoTo] 0 1=T 0] AU OO PPP R TPPPPPPPPP 36

Uploading content with the Media Services SBKNET..........cccoooieiiiineiiiiiiiiiiieieeeeeeeeeeee 36

Uploading content with the Azure Management Portal..............cc.ccccced 36

Managing assets across multiple storage accounts within Azure Media Services.......... 37

Ingesting content with the Media Services SDK for .INET..........cccoiiiiiiiiiiiiiiiiiiieieeeeeeeee, 37
Supported input formats for Azure Media SEIVICES..........uuriiiiiiiiiiireiiiiiereeer e e ane e 38
Securing media for upload into Azure Media SEIVICES.........uuuriiiiiiiiiiieiieiiiiieieeeee e 39

Connecting to AZUre Media SEIVICES.uuiiiiiiiiiiiiiiee e e e 41
Upload process in the Contoso Azure Media Services applicatians....................ccoeoeeeenns 43
IS [] =V 2PN 50
MOTE INFOIMALION. ...ttt e e e e e s e e e e e e e 50

4 - Encoding and Processing Media in Microsoft Azure Media Services..........ccccccovvvivineeenn. 52
INtroduction tO VIAE0O €NCOTING.......cciiiuuriiiiieee it e e e e e e s s eerneeeeas 52

Encoding for delivery using Azure Media SErVICES.........ccuuuiiiieiiiiiiiiiieee e 53
Creating encoding jobs in Azure Media SErVICES...........coooiiiiiii e 55

Accessing Azure Media Services media ProCESSALS.cvviiiiiieiieeieeeee e 56

Securely encoding media within Azure Media ServiCes..........ccccooeuuiimmiiiiiiiiiiiiieeeeeeeeen 57

Scaling Azure Media Services encoding JODS........cooiiiiiiiiiiiiiii e 58

Accessing encoded media in Azure Media SErviCes...........coooeiieiicciiciniiee e 59
Encoding process in the Contoso Azure Media Services web service..........ccccceeeeeeee. 59

Creating the video encoding pipeline faruke Media Services............cooo oo 65

Handling job notifications from Azure Media Services.........ccccceeeeeeiieeiieiieceeen 1

Processing the output assets from the Azure Media Services encoding joh.................... 75

ST 10 = 2P 80

[To]l a1{0] g0 0 F=1i o] o T PP PP PPPPPPPPTPPRI 80
5 - Delivering and Consuming Media from Microsoft Azure Media Services.........c.ccccoeeeee.... 81
Delivering media from Azure Media SEIVICES. ...t 81
Azure MedigServices OrigiN SEIVICE..........ooiiii i ee e e e e e e e aaaaaaaaaaeeas 82
Azure Media Services dynamiC PACKAGING.cccciiiiuuriiiiieeeiiiii e 83
Scaling Azure Media ServiCeS AEIIVEIY........uuiiiiie et 85
Securely delivering streaming content from Azure Media ServiCes.......cccocvvveevieviiiiennne.n. 86
Progressive download of storage encrypted CONLENL...........cccccuvviviiiniiiiiiiiiiieereeeeee e 86
Smooth Streaming content and MPIBBSH............vvviiiiiiiiii 87
APPIE HLS CONTENL....ciiiiiiiiieii ettt e e e e e e e e s e e e e e e s nnnreeeeeas 87
Apple HL8oNntent With PlayReEaAAY............oiiiiiiiiieeiiiie e 87
Delivery and consumption process in the Contoso Azure Media Services applicatians.....87
ST (oINS o IR o [=ToF a8

[P2 YT o TR/ T L= 0T 92
Retrieving reCOMMENUALIONS..........uuuiiiiiiiiiiiiiereeeeee e e rreeees 97
SUIMIMIBIY e oottt e e e e e et e e et e e et e e e e aeeeaaaeeeeaaaaaaeaaassaasaaaaaannnnnnrnnrnnre 101
MO INFOIMALION. ...t ettt e s e e e e et e e e e e e s e e e e e e e e nnnnnnees 101
Appendix A The Contoso Microsoft Azure Media Services Web Service.............cccceeeeennnnd 102
Understanding the WED SEIVICE. ... 102
Routing incoming requests to @ CONIONEL.............oooiiiiiii e 103
Transmitting data between a controller and a client................ccccce e, 105
Using the Repository pattern to access data..........c.cvvvevviiiiieeeieiieie e 107
Retrieving and storing data in the database.............cooooiiiiiiiiiiiiiii e 109
Reading and writing the data for ODJECTS.........cocuiiiiiii e 111
Decoupling entities from the data access technolagy...........oevveeieeiiiiiiiii s 113
Instantiating service and PBSItOrY ODJECTS.......cccoi e 114
MOTE INFOIMALION.eeeeeiee ettt e e e e s e e e e e e e s e e e e e e e nnnnne s 115
Appendix B Microsoft Azure Media Services Encoder Presets........ccccvvvveiieeeeiiiiiiiieeeeennnns 117
H.264 COOING PrESELS. ... uueiiiiieeiiiititi it e e ettt e e e e e st e e e e e s bt e e e e e e eanbbaeeeeeeeaanne 117
V GL QOUING PrESEIS. .. eiiiiiiiiitie ittt e e e s e e e e e e e bbbt e e e e s e st e e e e e e e e e e annbeeeeees 120
W0 T [To I oo 1] o N o] £ =TS =3 1 122
MOTE INFOIMALION.eeeeeieee ittt e e e e e e e e e e e e s e e e e e e e ennnnees 122

Appendix G Understanding the Contoso Microsoft Azure Media Services Video Applicatiod23

Understanding the Contoso video web application..................oooo e 123

BrOWSING VIAEOS.eieiiieeiiitie ettt e et e e e e e e e e e e e annnees 123

[F= YT o TR/ T L= 0T 125
Retrieving reCOMMENUALIONLS.uuuiiiiiiiiiiiiiiireiee e e e e e e e e e e ae e e e e e e e e e s e e e a s asnanes 127
0T o] (o F=To [T aTo = TRV o [= o TR 129
Understanding the Contoso video Windows Store appliCation..............evveeeviiiciieieeeennnnns 133
Understanding the Contoso video Windows Phone appliCation.............cccvvveeeeeiiiiiiinnnnnn. 134
Underdanding the other Contoso video appliCations...........ccvvvvveeiiiiiiiieeee e 135
MOTE INFOIMALION. ...t e et e e e s e e e s e e e e e 135
(2]] [ToTe =T o] 0| 20PN 136
Chapter 1¢ Introduction to Windows Azure Media SErVICES.........uuvuuurireiiieiieeiieiiiieeiaeaaaeenn 136
Chapter 2, The CONLOSO SCENAIIQ.ciiuiiiiiiiee ettt e e e e s e e e e e 136
Chapter 3L Uploading MEIaL..........uuiiiiiiiiiiiiieee et e e e 137
Chapter 4 Encaling and Processing Media...........ccccciiiiiiiiiiiiiiiciieeeeeeeee e, 137
Chapter & Delivering and Consuming Media................oooooii oo 138
Appendix A The Contoso WeD SEerVICe.......ooii e 138
Appendix B; Windows Azure Media Encoder Presets.o 138

Appendix @ Understanding the Contoso Video Applications...........ccccocvvvieeeeeiiiiiiiiennenn. 139

Preface

Microsoft Azure Media Services allewou to build scalable, cost effective, etmlend media
distribution solutions that can upload, encode, package, and stream media to Windows, iOS,
Android, Adobe Flash, and other devices and platforms.

Theguidedescribes a scenario concerning a fictis@mompany named Contoso that has decided to
use Azure Media Services to provialgideson-demand service as an e#d-end solution

In addition to describing the client applications, their integration with Azure Media Services, and the
decisions made during the design and implementation, ghislediscusses related factors, such as

the design patterns used, and the ways that the aggilon could be extended or modified for other
scenarios.

The result is that, after reading thislideyou will be familiar with how to design and implement
applications that consume Azure Media services.

Who this guidance is for

Thisguidances intendedfor architects, developers, and information technology professionals who
design, build, or maintaimidec-on-demand or online video portapplications and services
particularly those that integrate with a content management systehwsunderstand the sample
code provided with thiguidance you should be familiar with the Microsoft .NET Framework, the
Microsoft Visual Studio development systetime Azure SDK for .NEASP.NET MV@nd the

Microsoft Visual C# development language.

Why this guidance is pertinent now

Building the workflow for the creation, management, and distribution of media is problematic. It
involves having to integrate multiple technologies and providers, some of which may be
incompatible. In addition, it can requieehuge investment in infrastructure, which may not always
be fully utilized. These issues can result in a-siamdardized workflow that is not easily scaled, and
that requires coordination at different stages of the workflow.

Media Services provideverything you'll need to build and operate videm-demand services to
multiple devices and platforms, including all the tools and services you'll need to handle media
processing, delivery, and consumption. In addition, Media Services will integrate wigmeont
management systems to help your platform scale by using the global footprint of Azure datacenters,
without having to plan for capacity spikes or worry about idle datacenters. Together, this helps to
reduce the costs that are associated with integratingltiple products and providers when building
amediasolution.

How this guidance is structured

The following figureshows the oad map foithe guide.

Intreduction to Azure Media Services
Choasing your medio experience,
The workflow wsed in o Media Services application

Uploading Video

Uplpading content with the Media Senvices SOK for NET,
Supported input formats,

Securing medio far uplaad

Delivering and Consuming Video

U:.l'r:l_r,'l dynamic pa:.#a_qj’ng' to convert videa to the required
format on=demand.

Scaling media services delivery,

Securely defivering streaming content

The guide structure

The Azure Media Services Video-on-Demand Scenario
Assessing the content managemant system,

Haw the wideo applicotion /s used

The orchitecture of the solution

Enceding and Processing Video

Creoting scaloble encoding jobs,

Using Azure Sterage Gueves to contral the enceding process,
Using an encoding pipeling to reliably encode videos

Chapter

Summary

Chapter 1, "Introduction to Microsoft Azure Media
Services"

This chapter provides an overview of the workflow
used by Media Services, and discusses how to decide
what type of media experience users should have.

Chapter 2, "The Azure Media Services Video-on-
Demand Scenario"

This chapter describes the video content management
system developed by Contoso, and the business
requirements of the video applications, and
summarizes the architecture of the solution that
Contoso built, based on a web service that's consumed
by client applications.

Chapter 3, "Uploading Video into Microsoft Azure
Media Services"

This chapter describes the input formats supported by
Media Services, how to use the Media Services SDK
for .NET to upload content, and how to secure media
for upload.

Chapter 4, "Encoding and Processing Video in
Microsoft Azure Media Services"

This chapter focuses on encoding media, examining
how to encode media for efficient delivery, how to
create scalable encoding jobs, and how to control the
encoding process by using Azure Storage Queues.

Chapter 5, "Delivering and Consuming Video from

Microsoft Azure Media Services"

This chapter provides describes how to use dynamic
packaging to convert video to the required format on-
demand, how to scale media services delivery, and
how to securely deliver streaming content to the end
user.

Note: This guide also includes appendices that desdrie the web serice works, and task
presets you can use to configuitee Azure Media Encoder.

What you need to use the code

These are the system requirements for building and running the sample solution:
T Microsoft Windows 8.1

Microsoft Visual Studio 2013 Ultimatéremium, or Professional edition

Azure SDK for .NET

Windows Phone SDK 8.0

Microsoft Internet Information Server (ILS)

= =4 -4 -4 -

A Media Services account in a new or existing Azure subscription

You can download the sample code frouip://aka.ms/amsgcode

7EIl 6l? x

Thisguidanceuses a sample application thidltistrates consuming Media Servicéspanel of
experts comments on the development efforts. The panel includeslile appspecialist, a
softwaredeveloper, a database specialiahd acloud specialistThe delivery of the sample
application can be considered from each of these points of view. The following table lists these
experts.

Christine is a mobile application specialist. She understands the special requirements inherent
in applications designed to be used on mobile devices. Her expertise is in advising architects and
developers on the way they should plan the feature set and capabilities to make the application
usable and suitable for these types of devices and scenarios.

"To build successful applications that work well on the phone, you must understand the platform,
the user's requirements, and the environment in which the application will be used."

Markus is a senior software developer. He is analytical, detail oriented, and methodical. He's
focused on the task at hand, which is building a great cloud-based application. He knows that
he's the person who's ultimately responsible for the code.

"For the most part, a lot of what we know about software development can be applied to different
environments and technologies. But, there are always special considerations that are very
important.”

Poe is a database specialist. He is an expert on designing and deploying databases. Poe has a
keen interest in practical solutions; after all, he's the one who gets paged at 03:00 when there's a
problem.

"Implementing databases that are accessed by thousands of users involves some big
challenges. | want to make sure our database performs well, is reliable, and is secure. The
reputation of Contoso depends on how users perceive the applications that access the
database."

Bharath is a cloud specialist. He checks that a cloud-based solution will work for a company and
provide tangible benefits. He is a cautious person, for good reasons.

AThe ¢l oud provides a power ful e {connectenl applieatidns. f
The challenge is to understand how to use this environment to its best advantage to meet the
needs of your business.o

http://aka.ms/amsg-code

10

If you have a particular area of interest, look for notes provided by the specialists whose interests
align with yours.

Community

This guide, like many patterns & practices deliverables, is associated @dgthraunity site On this
community site, you can post questions, provide feedback, or connect with other users for sharing
ideas. Community members can also help Microsoft plan and test future guides, and download
additional content suclas extensions and training material.

Authors and contributors

This guide was produced by the following individuals:

1
1

= =4 -4 =2

Program and Product Management: Andrew Oakley (Microsoft Corporation)

Development: Martin Cabral (Southworks SRL), Ezequiel(&udithworks SRL), Douglas
McMurtry (Agilethought Inc.), Hanz Zhang (Microsoft Corporation)

Test:Monika Jadwan(Tata Consultancy Services), Sumit Jaiswal (Tata Consultancy Services),
Gurunath Navale (Tata Consultancy Services), Kirpa Singh (Microsaftafiory)

Documentation: David Britch (Content Master Ltd)
Edit: RoAnn Corbisier (Microsoft Corporation)
lllustrations and book layout: Chris Burns (Linda Werner & Associates Inc)

Release Management: Nelly Delgado (Microsoft Corporation)

http://wamsg.codeplex.com/

11

1 - Introduction to Microsoft Azure
Media Services

Traditionally, building the workflow for the creation, management, and distribution of media is
problematic. It involves having to integrate multiple technologies and providers, some of which may
be incompatible. Iraddition, it can require a huge investment in infrastructure, which may not
always be fully utilized. These issues can result in astanmdardized workflow that is not easily

scaled, and that requires coordination at different stages of the workflow.

Thischapter introduces Microsoft Azure Media Services, and discusses the typical Media Services
workflow.

What is Microsoft Azure Media Services?

Azure Media Services allows you to build scalable, cost effectivapesad media distribution
solutions that an upload, encode, package, and stream media to Windows, iOS, Android, Adobe
Flash, and other devices and platforms.

The benefits that Media Services offers over the traditional approach to building a media workflow
are as follows:

1 An API that allows del@pers to easily create, manage, and maintain custom media
workflows.

1 A standardized workflow that improves coordination and productivity when there are
multiple participants involved in the creation and management of content.

1 Automatic scalability by usinglobal data centers to transcode and deliver media assets,
without having to plan for capacity spikes or worry about idle datacenters.

1 Cost effectiveness by encoding media once, and then using dynamic packaging to deliver it
in multiple formats.

Media ®rvices provides everything you'll need to easily build and operate the three standard media
solutions:

1 Videoon-demand (VOD) servicedledia Services provides everything you'll need to
operate VOD services to multiple devices and platforms, includitigeatbols and services
you'll need to handle media processing, delivery, and consumption.

1 Online video platforms (OVPMedia Services will integrate with your OVP and Content
Management System (CMS) to help your platform gain scale by using the gldpainfoaf
Azure datacenters, without having to plan for capacity spikes or worry about idle
datacenters.

1 Endto-end solutions Media Services can be used to easily build securdaedd media
workflows entirely in Azure, from content ingestion through to encoding, packaging, and

12

protection. This helps to reduce the costs that are associated with integrating multiple
products and providers.

Regardless of your development scenario, the first step in sharing video content is to choose your
media experience.

To see how companies are using Media Services to stream video to their custeadr)e
following case studies.

q all3media
9 blinkbox
1 Xbox

Choosing your Azure Media Services video experien ce

The first step in sharing video content is deciding what type of experience you want your users to
have. This can be answered by asking a number of questions:

T How will your users be viewing the video content?

1 Will your users be connected to the interr?et

9 Will your users expect the video content to be in HD?
1

Will your users be viewing the video content on a computer or a Haid device?

Providing answers to these questions will help to give your users the best possible experience.

Another decision thainust be made is the type of viewing devices that you will support. The
following table outlines the viewing devices supported by Media Services, and the recommended
viewing approaches for those devices.

Device Description Recommended viewing

approaches

Web browsers Web browsers can be run on desktop PCs, smart
phones, and tablets. When running on desktop PCs
you can take advantage of the large screen size and

the large storage capacity, allowing you to stream HD

Offline viewing, progressive
downloading, and streaming.

videos.
Smart phones Smart phones have small screens and small storage | Streaming.
capacities.
Tablets Tablets have larger screens than smart phones, but Streaming. Tablets with larger
still typically have smaller storage capacity. storage capacities can take
advantage of offline viewing and
progressive downloading.
Xbox Xbox consoles have the benefit of large screens and | Offline viewing, progressive

Set-top boxes

large storage capacity.

These devices typically have large screens but

downloading, and streaming.

Streaming.

http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?CaseStudyID=710000003980
http://www.microsoft.com/casestudies/Microsoft-Azure/blinkbox/Movie-Streaming-Business-Uses-Cloud-Service-to-Save-Millions-of-Dollars-Scale-Quickly/710000004206
http://www.microsoft.com/casestudies/Windows-Azure/Xbox/Xbox-One-Game-DVR-Uses-the-Cloud-to-Scale-Store-and-Distribute-User-Video-Game-Clips/710000003945

13

and connected minimal storage capacity.

TVs

Organizing the Azure Media Services video processing workflow

The following figure shows a higéwvel overview of the standard workflow used when processing
media with Meda Services.

Encoder Packager

Azure Media
Services

{0

v

Origin Service

A highlevel overview of the standard Media Services workflow

Media Services supports @atemand media and live streams workflows. However, the live streems
workflow is outside the scope of this guide. Therefore, the guide focuses on tberoand media
workflow.

The steps involved in the workflow are as follows:

1.
2.

Media is uploaded to Media Services and stored in Azure Blob Storage. service

Uploaded media is encoded using the Azure Media Encoder, with the encoded media being
stored in Azure Stage.

Encoded media is packaged by the Azure Media Packager, with the result being stored in
Azure Storage.

Client applications playback the media located at a URL, with the Origin Service processing
the outbound stream from storage to client application.

Therefore, the typical Media Services workflow can be summarized as:

14

Media upload
Media processing

Delivery

A w0 DR

Consumption

Each item will now be discussed in turn.

Uploading video into Azure Media Services

You must upload your content into Azure Media Smwiin order to be able to encode, manage, and
consume it. Media Services uses Azure Storage to store your media for processing and viewing. Your
content can be programmatically uploaded using the Media Services REST API or one of the available
client SDKsThese APIs allow you to upload one file at a time or perform bulk upload operations.

Media Services also allows you to perform secure uploading and storage of your content. Storage
encryption will encrypt your content locally prior to uploading it to #&z8torage where it will be

stored in an encrypted form.

The fundamental content in Media Services is an agsetasset contains one or many files, such as
video, audio, closed caption files, and metadata about the fifl@shassetcontains one or more

asset files with eachasset filecontaining metadata about a specific media fibmce an asset has

been created by uploading files it can be used in Media Services workflows such as encoding and
streaming.

Each asset is mapped to a blob container in amré Storage account, with the files in the asset

being stored as blobs in the container. A blob container groups a set of blobs, just as a folder groups
a set of files. They are used in Media Services as a boundary point for access control. An Azure
Storage account can contain an unlimited number of blob containers and a container can store an
unlimited number of blobs.

Media Services accounts are associated with one or more Azure Storage accounts. Each account can
contain an unlimited number of blob corters, and is only subject to the limits on the underlying
account. Media Services provides SDK tooling to manage multiple storage accounts and perform

load balancing of the distribution of assets during upload. For more information\daedging

assets across multiple storage accounts in Azure Media Services and defining load balancing

strategy.”

For more information about uploading content, seehapter 3 Uploading Vided

Supported file types in Azure Media Services

Various video, audio, and image file types can be uploaded to a Media Services asdhuthire

being no restriction on the types or formats of files that you can upload using the Media Services
SDK. However, the Azure Management portal restricts uploads to the formats that are supported by
the Azure Media Encoder. These import formatdude MPEE, MPE&, MPEG4, and Windows

Media Video encoded video, MP3, WAVE, and Windows Media Audio encoded audio, and BMP,
JPEG, and PNG encoded images. The Azure Media Encoder can export data as Windows Media
Video, Windows Media A, MP4, and Smdh Streaming File Format.

http://www.gtrifonov.com/2013/08/01/managing-assets-across-multiple-storage-accounts-in-windows-azure-media-services-and-defining-load-balancing-strategy/
http://www.gtrifonov.com/2013/08/01/managing-assets-across-multiple-storage-accounts-in-windows-azure-media-services-and-defining-load-balancing-strategy/
http://www.gtrifonov.com/2013/08/01/managing-assets-across-multiple-storage-accounts-in-windows-azure-media-services-and-defining-load-balancing-strategy/

15

For more information about the supported file formats s&upported input formatsand
"Introduction to encoding

Processing media with Micro soft Azure Media Services

In Media Services, media processing involves obtaining a Media Processor instance, encoding,
packaging, and protecting media files.

Obtaining a media processor instance

Media Services provides a numbemoédia processorhat enable video to be processed. Media
processors handle a specific processing task, such as encoding, format conversion, encrypting, or
decrypting media content. Encoding video is the most common Media Services processing task, and
it is performed by the Azurbledia Encoder.

Encoding video

Encoding is the process of taking a video and turning it into a format that can be consumed by users.
Users could be using a variety of devices to watch your videos, including desktop computers, smart
phones, tablets, Xbox ogoles, setop boxes, or Internetonnected TVs. These devices all have
features that affect the required encoding. For instance, smart phones have small screens and little
storage, while desktop computers have larger screens and larger storage. lo@adstitiart phones
potentially have a more limited bandwidth than desktop computers. Therefore, when you choose
how to encode a video you must bear in mind the variety of devices that users will consume the
video on.

In some cases you may want to have mugtipncodings to enable the best possible experience jon
a range of devices

The Media Encoder is configured using encoder preset strings, with each preset specifying a group of
settings required for the encoder. Encoder presets are divided into two grpgpaeeral presets and

device specific presets. Videos encoded with general presets can be used by any device that
supports the required file formats. Videos encoded with device specific presets are designed to be
used by a specific device, such as a smiaohp. For a list of all the presets sefgghendix B:Azure

Media Encoder Presets

Encoding for a smart phone

When encoding video for a smart phone you should choose an encoding preset that matches the
resolution, supportecodecs, and supported file formats of the target device. For example, for a
Windows Phone that supports H.264 video up to 1080p you should use the "H264 Smooth Streaming
Windows Phone 7 Series" preset.

Different smart phones, even those from the same camy can support different resolutions, bit
rates, codecs, and file formats.

The iPhone 5 supports H.264 video up to 1080p in HLS format. However, Media Services does not
support encoding video directly into HLS but you can encode to MP4 and then useatkaging

to convert the video to HLS. Alternatively, you can encode to Smooth Streaming or MP4 and use
dynamic packaging to convert the video to HLS intiesd. Therefore, if you wanted to encode

16

video to 1080p for an iPhone 5 you would use the "H&84ptive Bitrate MP4 Set 1080p for iOS
Cellular Only" preset. Similarly, for an Android phone that supports H.264 video at 480x360 you
could use the "H264 Adaptive Bitrate MP4 Set SD 4x3 for iOS Cellular Only" preset. Then dynamic
packaging would be used tonvert the video to HLS in rdahe.

Encoding for Xbox

When encoding video for Xbox you can choose betweeft ¥ H.264 smooth streaming at
resolutions up to 1080p. For example, to encode a video to 720p using H.264 you would use the
"H264 Smooth Séraming 720p Xbox Live ADK" preset.

Encoding for other devices and platforms

General presets can be used to encode for a variety of devices including desktop machines, tablets,
and settop boxes. To choose the appropriate encoding preset you must detetnaiweusers will

view your content, and what resolutions, bit rates, codecs, and file formats are supported on their
viewing devices.

The following table lists each type of device and the client technologies supported by Media
Services.

Device Technologies

Windows 8 Smooth streaming, progressive downloading, MPEG-DASH.

Windows RT Smooth streaming and progressive downloading.

Windows Phone Smooth streaming and progressive downloading.

Web browsers Smooth streaming is supported through additional SDKs and Player Frameworks

provided by Microsoft.
Progressive download is supported in browsers through the HTML5 video element.

Internet Explorer 11 and Chrome both support MPEG-DASH through the use of Media
Source Extensions (MSE).

Xbox Smooth streaming and progressive downloading.

Macintosh Apple HLS and progressive download.

i0S Smooth streaming, Apple HLS, and progressive downloading.
Android Smooth streaming, progressive downloading, and Apple HLS.
Set-top box, Smooth streaming, progressive downloading, and Apple HLS.

connected TVs

For more information about encoding media with Media Services €dagter 4 Encoding and
Processing Videb

Packaging video with Azure Media Services

Once a video has been encoded it is pthitean output asset, which can then be placed into a
variety of file containers. This process is referred tpakaging For example, you could convert an
MP4 file into smooth streaming content by using the Azure Media Packager to place the encoded
content into a different file container.

17

Note: Packaging does not+4encode a video. Instead, it rearranges the encoding and places it in a
different file container.

Media Services allow the user to decide if they will package video upfront with a mediagonces
known asstatic packagingor package video on demand, knowndgmamic packaging

The Azure Media Packager is a media processor capable of perfataiiogpackaging. Static
packaging involves creating a copy of your content in each format reqoyreders. For example, an
MP4 file could be converted into smooth streaming content if both formats are required by users.
This would result in two copies of the content existing, each in a different format.

Dynamic packaging is not performed by a medi@cpssor, but byrigin serversAn origin server
packages the source media when a client application requests a specific video format, allowing you
to encode your video just once, with it being converted in real time to the format requested by the
clientapplication. With dynamic packaging your video is typically stored as an adaptive bitrate MP4
file set. When a client application requests the video it specifies the required format. The origin
server then converts the MP4 adaptive bitrate file to the fatmequested by the client in real time.

This ensures that only one copy of your video has to be stored, therefore reducing the storage costs.

Dynamic packaging is the preferred method for publishing a video. For more information see
"Dynamic packaginy

Protecting video with Azure Media Services

To protect your media when it is published, Media Services supports PlayReady-basgile

Common Encryption and AES #8CBC Envelope Encryption. PlayReady is a DRijifiais

Management (DRM) system developed by Microsoft. DRM allows you to control who has access to
your content. When a user tries to watch PlayReady protected content, the client application
requests the content from Media Services. Media Services thdinets the client to a licensing
ASNIBSNI GKFG dziKSYyGAOFiSa yR FdziK2NAT S$& GKS dza €
then safely download the decryption key which will allow the content to be decrypted and viewed.
AES Envelope Encryptiprovides content encryption, but does not allow sophisticated digital rights
management, or secure key delivery (which is provided only by SSL). Content owners should trust
their clients if they choose AES 18 Envelope Encryption. It is much easiardo untrusted,

malicious end user to acquire and redistribute keys.

For more information about content protection seBrbtecting Assets with Microsoft PlayReddy

Deliveri ng video from Azure Media Services

Media Services provides different mechanisms for delivering media assets that have been uploaded
to Media Services. It can be used to deliver content that has simply been stored in Media Services, or
it can also includeantent that has been processed or encoded in different ways.

There are typically four approaches that users can use to access videos:
1 Offline viewing
1 Progressive downloading

1 Streaming

http://msdn.microsoft.com/en-us/library/windowsazure/dn189154.aspx

18

1 Adaptive bitrate streaming

Offline viewing involves a user downloadingentire video onto their computer or device. Because
videos can be quite large, it may take some time for the download to complete, and the device must
have enough storage space to hold the entire video. However, the benefit of this approach is that
you b not need a network connection to view the video once it has been downloaded.

Progressive downloading allows a user who is connected to the internet to start viewing a video
before the entire video has been downloaded. However, it does require that éveng device has
enough storage space to hold the entire video.

Streaming also requires an internet connection, but differs from progressive downloading in that it
only downloads a small amount of the video at once and discards it once it has been displage
benefit of this approach is that it requires little storage on the viewing device.

Adaptive bitrate streaming allows client applications to determine network conditions and adapt the
data rate of the video content to the available network bandwidtthen network communication
degrades, the client can automatically select a lower bitrate version of the content, therefore
allowing the user to continue viewing the video, albeit at a lower quality. When network conditions
improve the client can automatidly switch back to a higher bitrate with improved video quality. The
benefit of this approach is that the video player can automatically react to changes in bandwidth
during playback, therefore providing a better user experience.

Note: Some adaptive bittte streaming technologies, such as Smooth Streaming, also monitor
video rendering performance in order to determine the appropriate bitrate stream for the client.

Media Services supports three adaptive bitrate streaming technologies:

1 Smooth Streaming. Thiis an adaptive bitrate streaming technology developed by
Microsoft.

I HTTP Live Streaming (HLS). This is an adaptive bitrate streaming technology developed by
Apple.

1 MPEG DASH. This is an adaptive bitrate streaming protocol created by the Motion
Picture Exprts Group (MPEG), and is an international standard.

Processing outbound video from Azure Media Services

The Media Services Origin Service handles requests for content. It retrieves files from Azure Storage
and provides them to Content Delivery Network®Lg or client applications directly. The origin

servers have features that allow them to respond to several hundred requests per second, and
provide dynamic encryption and dynamic packaging services.

Providing access to video within Azure Media Services

Aacessing content in Media Services requirdscator, which provides an entry point to access the
files contained in an asset. An access policy is used to define the permissions and duration that a
client has access to a given asset. Multiple locatorssbane an access policy so that different

locators can provide different start and stop times while all using the same permission and duration
settings provided by the access policy.

19

There are two types of locators:
1 Shared access signature locators
1 Ondemand origin locators

A shared access signature locator grants access rights to the underlying blob container of the media

asset in Azure Storage. By specifying a shared access signature, you can grant users who have the

URL access to a specific ressmufor a specified period of time. You can also specify what operations

Oy 0SS LISNF2NN¥SR 2y | NBaz2dz2NOS GKIFGQa | 00SaaSR ¢

Note: Media Services enables the authoring of shared access signature locators to simplifyxcomple
workflows. However, it is hot expected that enders will consume these except in special cases.

An ondemand origin locator should be used to grant access to streaming conteitte@and

origin locators are exposed by the Media Services Origin Sewhgeh pulls the content from Azure
Storage and delivers it to the client. The-d@mand origin locators obfuscate the underlying asset's
blob container and storage account URL. Instead, they always point to a Media Services Origin
Service, therefore alloing advanced scenarios such as IP restriction, cache control, and CDN
authentication.For more information about the Media Services Origin Service@ggih Servicg

Consuming video from Azure Media Services

Media Services provides support for creating media player applications that run on different devices
and platforms including PCs, Macintosh, Windows Phone, iOS devices, and Android devices.
Microsoft also provides many different SDKs and player framewosksatlow you to create

applications that consume streaming media from Media Services. For more information see
"Developing Azure Media Services Client Applicatlons

Summary

Media Services provides everything you'll need to build and operate sadaetemand services to
multiple devices and platforms, including all the tools and services you'll need to handle media
processing, delivery, and consumption. In addition, Mediai&eswvill integrate with content
management systems to help your platform scale by using the global footprint of Azure datacenters,
without having to plan for capacity spikes or worry about idle datacenters. Together, this helps to
reduce the costs that arassociated with integrating multiple products and providers when building

a media solution.

More information

 The article'Managing assets across multiple storage accounts in Azure Media Services and
defining load balancing strate@is available on a blog site.

T You can find information about content protection"&rotecting Assets with Microsoft
PlayReady
1 You can find more information about the SDKs and Player Frameworks that allow you to

create client applications that can consume streaming media from Media Services at
"Devdoping Azure Media Services Client Applications

http://msdn.microsoft.com/en-us/library/windowsazure/dn223283.aspx
http://www.gtrifonov.com/2013/08/01/managing-assets-across-multiple-storage-accounts-in-windows-azure-media-services-and-defining-load-balancing-strategy/
http://www.gtrifonov.com/2013/08/01/managing-assets-across-multiple-storage-accounts-in-windows-azure-media-services-and-defining-load-balancing-strategy/
http://msdn.microsoft.com/en-us/library/windowsazure/dn189154.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dn189154.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dn223283.aspx

20

2 - The Microsoft Azure Media
Services Video-on-Demand Scenario

Contoso is a startup ISV company of approximately 20 employees that specializes in developing
solutions using Microsoft technologies. The depers at Contoso are knowledgeable about various
Microsoft products and technologies, including the .NET Framework, Microsoft Azure, the Windows
Runtime, and Windows Phone.

Contoso has been contracted to develop a videedemand service as an ead-endsolution. The

service must work with multiple devices and platforms, with the client application for the Windows
Runtime expecting the highest usage. While the primary purpose of the client applications is to
consume videos whose details are stored in at&at Management System (CMS), the applications

are also required to be able to capture and upload new videos for encoding by Azure Media Services,
which can then be consumed from the CMS once encoding has completed. Access to the CMS and
Media Services ihrough the Contoso web service.

This chapter describes the business requirements of the Contoso Video applications, and
summarizes the architecture of their solution.

Using the Contoso Azure Media Services video application

The purpose of the Contoso eid application is to enable users to consume videedemand,

stored in the cloud, from a CMS. The customer's experience is paramount, so the designers at
Contoso chose to implement the applications as a series of easy to use, mobile applications. The
Conbso video application is available for the Windows Runtime, Windows Phone 8, iOS, Android,
and the web.

The video application implements the features typical of many viledemand services. It enables
users to browse videos, and control the playbackedécted videos. When viewing videos the
application also suggests other related items that the user may want to view.

Contoso expects that the Windows Store video application will gain the highest usage among their
clients' customers. Therefore, this guifteeuses on the Contoso Windows Store video application,
and its interaction with the Contoso web service.

The following sections describe the primary business use cases of the Windows Store Contoso video
application in more detail.
Browsing videos

Whenthe user starts the application the first page displays thumbnails for each video that can be
viewed, as shown by the following screenshot.

21

Contoso Video

videos

Big Buck Bunny (200... 1 The Big Buck Bunny (... (Sintel (2010) Part 11

X
: ‘s\

5

o At

This is from Sintel wit... 1:4 The Big Buck Bunny (... n (Sintel (2010) Part 10

Big Buck Bunny (200... 0:02:1 The Big Buck Bunny (... 01:25 The Big Buck Bunny (... 0:09:56 Sintel (2010) Part 9

Thumbnails for each video that can be viewed

Users can use pointing devices or touch gestures to browse theséebttaits. Clicking on a
thumbnail navigates to a new page from where the video can be viewed. Alternatively users can use
the bottom app bar to capture a new video or upload an existing video.

Users prefer an application that fits well with tdevice'sdesign and theme. You will alsg
have to comply with certain Ul design guidelines if you want to distribute your application thrgugh
the Windows Store.

For information on how the browsing video use case is implemented,Geagter 5 Delivering
and Consuming Videb

22

Playing videos from Azure Media Services

To play videos users must have selected a video on the initial page of the application. Users can then
control the playback of videos using pointing devices or touchugestas shown in the following
figure.

The Big Buck Bunny (2008) Part 2

video details

Project Peach was the Blender Foundation
open movie. The movie started productiol
. 2007 and premiered April 2008. The targe
e ~- ' were to create good hair/fur editing and
more advanced support for cartoon chara

@ 0:00:08 improve performance with complex outdd
environments with grass, trees and leave

Duration 00:01:25
Big Buck Bunny was the first project creat
Blender Institute’s studio in Amsterdam. 4
rabbit finds his happy moming walk beirg
rodents who kill his two favorite butterflie
sets up a masterful plan to avenge the de:
butterflies.

You can watch the full movie on YouTube|

http://wvaw.bigbuckbunny.org/

Video playback

As well as controlling the playback of the video, basic information is also displayed to users,
including the duration of the video, a description of it, and a list of related videos.

Capturing video s

The video application also allows users to capture video, which they can then choose to upload to
Media Services for encoding, prior to making it available for consumption for other users, as shown
in the following figure.

23

Capturing video

Users carconfigure their camera options, set a timed recording, and configure the recording mode
of the camera.

You should always be aware of how your application consumes the resoureasesice
such as bandwidth, memory, and battery power. These factorsaammbre significant omobile
devicesthan on the desktop.

Uploading videos into Azure Media Services

User can choose to upload media stored on their device to Media Services for encoding, prior to
making it available for consumption by all users. Videwshe stored anywhere in the file system,

and can either have been captured on the device, or downloaded to the device from other locations.
The following figure shows the page that allows users to choose a video to upload for encoding.

24

Th'S PC v Strips

Choosing a videto upload to Media Services

When the user selects a video, using either a pointing device or a touch gestu@pdmdutton
should be selected to begin the upload process. The first step in the upload process is to enter basic
video details, as shown the following figure.

25

© New video

Title*

A new video upload

Description

Lorem lpsum Lorem [psum

Encoding Type
720p

The video details that must be provided prior to upload

The user must enter a title, description (optional), and select the resolution they'd like the video to
be encoded to. When th€reatebutton is selected the upload process begins, as shown in the
following figure.

26

New video

Uploading and creating video...

Cancel Upload

A video uploading for processing by Media Services

The user can choose to cancel the upload at any point, or allow the upload to proceed until it
completes A failure messagyis displayed to the user if the upload process fails.

When a video has been successfully uploaded the video details are saved to the CMS, and the
encoding process begins. The Contoso has opted to always encode videos to adaptive bitrate MP4s,
and then ues dynamic packaging to convert the adaptive bitrate MP4s to smooth streaming, HLS, or
MPEG DASH, on demand. For more information about dynamic packagiigyseenic packaginy

Once a video has been successfuligaded it can be selected for viewing from the initial page of
the application.

For information on how the uploading video use case is implemented,Geagter 8Uploading
Videa"

Understanding the Contoso Azure Media Se rvices application architecture

The developers at Contoso are knowledgeable about various Microsoft products and technologies,
including the .NET Framework, the Entity Framework, Azure, and the Windows Runtime, so they
decided to implement the solution ugj these technologies.

Building and hosting a videmn-demand service is a major undertaking and can require a significant
investment in hardware, management, and other infrastructure resources. Connectivity and security
are also major concerns because tsseequire timely and responsive access, and at the same time
the system must maintain the integrity of the data and the privacy of users' information. To support
a potentially large number of concurrent users against an-exg@anding collection of videpthe

staff at Contoso chose to implement the viden-demand service by using Azure Media Services.
Media Services allows you to build scalable, cost effectivet@mamd media distribution solutions

27

that can upload, encode, package, and stream medemvariety of devices and platforms. In
addition, the Azure environment provides the necessary scalability, reliability, security, and
performance necessary for supporting a large number of concurrent, distributed users.

The following figure shows a hidéwvel overview of the solution.

Encoder Packager

Azure Media _.bSubmit Job)

Services

11
1]

Contoso Web API
Web Service

2o

-
Media Services

Origin Service

A highlevel overview of the Contoso Media Services solution

Client applications communicate with the videa-demand service through a REST web interface.
This interface allows applications to retrieve, upload, and pubidéos. When a video is uploaded

for processing by Media Services it is stored in Azure Storage, with the video details being stored in
the CMS. It's then encoded to a set of adaptive bitrate MP4s, which can be converted by dynamic
packaging to smooth steening, HLS, or MPHBASH, on demand. For more information about
dynamic packaging seé®ynamic packaginy

When a video is consumed by applications, its URL is retrieved from the CMS and returned to the
application.The application then requests the URL content from the Media Services Origin Service,
which processes the outbound stream from storage to client &op.more information about the
Origin Service, s€®rigin Sevice"

The solution comprises three main components:

1 The user facing client applications, implemented for the Windows Runtime, Windows
Phone, Web, iOS, and Android. These applications allow users to browse videos, and control
the playback of videos. In aitidn the applications allow users to capture and upload new
videos for encoding by Media Services, which can then be consumed from the CMS once
encoding has completed.

28

The Contoso Windows Store application is used to demonstrate the Media Servicéarfalityt

which is consumed through a REST interface. However, several other apps are also provided for
different devices and platforms, which all formulate the appropriate REST requests and consume
REST responses.

I The business logic, implemented as a wehvice. The Contoso web service exposes the
data and operations that it supports through a REST (Representational State Transfer)
interface. Separating the business logic in this way decouples it from the client applications,
minimizing the impact that anchanges to the implementation of the applications will have
on this business logic.

Using REST enables you to invoke operations and consume the responses by usingjany
web-enabled system that can formulate REST queries, providing great flexibilityidm@similar
apps for different devices and platforms.

1 Data storage, provided by an Azure SQL database, and by Azure Storage. The CMS, which
stores details of videos and encoding jobs, is implemented as a Azure SQL database.
However, uploaded videos amshcoded videos output by Media Services are stored in
Azure Storage.

Using Media Services minimizes the hardware and support investment that needs to be
made when providing a videan-demand service. You can monitor the volume of traffic to the
web servie, and if necessary simply scale the solution to use additional resources.

For more information about building and deploying applications to the cloud by using Azure, see the
patterns & practices guideDeveloping Multitenant Applications for the CloudEditior!" available
from MSDN.

Understanding the Windows Store application architecture

Developers of Windows Store applications face several challenges. Application requirements can
change over time. New business opportunities and challenges may present themselves. Ongoing
customer feedback during development may significantly affect the requirements of the application.
Therefore it's important to build an application that has a téiarchitecture and can be easily
modified or extended over time.

The Contoso developers used a modified version of Prism for the Windows Runtime to accelerate
the development of their Windows Store application. Prism includes components that provide
support for MVVM and the core services required in Windows Store applications. This allowed the
Contoso developers to focus on developing the user experiences for their video application. For
more information about Prism for the Windows Runtime, sBeVeloping a Windows Store business
app using C#, XAML, and Prism for the Windows Ruritime

http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx

29

The following figure shows the architecture of the Contoso Windows Store video appliaation

web service in more detail. Grey items are provided by the modified version of Prism for the
Windows Runtime, with blue items being created by the Contoso development team. For clarity, the
diagram does not show all the class names.

Contoso Video Windows Store Application

4

Bootstrap
App Views

View
Models

DI Container

Contoso Web Service

Domain Object Domain Object

The architectureof the Contoso Windows Store video application and web service

The advantage of this architecture is that it helps to produce flexible, maintainable, and testable
code, by addressing common Windows Store application development scenarios, and by sgparatin
the concerns of presentation, presentation logic, and entities through support for MVVM.

For information on how to bootstrap a Windows Store application that uses Prism for the Windows
Runtime, seeBootstrapping an MVVM Windows Store app Quickstart using C#, XAML, and Prism

Using a dependency injection container

The Contoso developers use a dependency injection container to manage the instantiation of many
of the classes

http://msdn.microsoft.com/en-us/library/windows/apps/xx130638.aspx

30

Dependency injection enables decoupling of concrete types from the code that depends
on these types. It uses a container that holds a list of registrations and mappings between
interfaces and abstract types and the concrete types that implement or exieese types.

The Contoso Windows Store video application uses the Unity dependency injection container to
manage the instantiation of the view model and service classes in the applicatioApplotass
instantiates theUnityContainerobject and is the oly class that holds a reference to this object.
Types are then registered in ti@ninitializemethod in theApp class.

You should consider carefully which objects you should cache and which you should
instantiate on demand. Caching objects improves tphgligation's performance at the expense of
memory utilization.

For more information about using Unity, seddity Containef'

Understanding the Visual Studio solution

The Visual Studisolution organizes the source code and other resources into projects. All of the
projects use Visual Studio solution folders to organize the source code and other resources into
categories. The following table outlines the projects that make up the Comebaservice and
Contoso video applications.

Project Description

Contoso.Infrastructure.ReusableComponents This project contains classes and interfaces from Prism
for the Windows Runtime, which are used by the
Contoso.Infrastructure.WindowsPhone and
Contoso.Infrastructure.WindowsStore projects.

Contoso.Infrastructure.WIndowsPhone This project contains Windows Phone specific classes
and interfaces from Prism for the Windows Runtime.

Contoso.Infrastructure.WindowsStore This project contains Windows Store specific classes
and interfaces from Prism for the Windows Runtime.

Contoso.Api.Test This project contains unit tests for the Contoso.Api
project.
Contoso.Services.Test This project contains unit tests for the

Contoso.Domain.Services.Imply project.

Contoso.Test.Shared This project contains unit test helper methods used by
the Contoso.Api.Test and Contoso.Services.Test
projects.

Contoso.UlLogic.Tests This project contains unit tests for the Contoso.UILogic
project.

Contoso.UlLogic.Tests.Mocks This project contains mocks used by the

Contoso.UlLogic.Tests project.

http://msdn.microsoft.com/en-us/library/ff647202.aspx

31

Contoso.WindowsStore. Tests

This project contains unit tests for the
Contoso.WindowsStore project.

Contoso.Api

This project contains the code for the Contoso web
service.

Contoso.Azure

This project defines the roles for deploying the
application to Azure, along with the service
configuration. The Contoso.Api and
Contoso.WebClient projects are deployed as web
roles, with the Contoso.EncodingWorker being
deployed as a worker role.

Contoso.Azure.Shared

This project defines the CloudConfiguration and
TraceHelper classes. The CloudConfiguration class
is used to retrieve Media Services account credentials
from configuration.

Contoso.Azure.Stores

This project defines classes used to manage the video
encoding process through Azure Storage Queues.

Contoso.Domain

This project defines the domain entity objects that
remove the dependencies that controller classes in the
Contoso.Api project might otherwise have on the way
that data is stored.

Contoso.Domain.Services

This project defines the interfaces for the domain
services that are implemented by the
Contoso.Domain.Services.Impl project.

Contoso.Domain.Services.Impl

This project contains the classes that implement the
domain services that perform encoding and interact
with the repository classes.

Contoso.EncodingWorker

This project contains the worker role code that
interacts with Azure Storage Queues in order to
manage the encoding process.

Contoso.Repositories

This project defines the interfaces for the repository
classes that retrieve and modify data in the Contoso
Content Management System (CMS).

Contoso.Repositories.Impl.Sql

This project contains the repository classes and the
data types that the repository classes use to retrieve
and modify data from the Contoso CMS.

Contoso.Shared

This project defines the ContosoEventSource class
which creates events for Event Tracing for Windows
(ETW). This class is used by the Contoso.Api and
Contoso.Services.Test projects.

Contoso.UlLogic

The project contains the shared business logic for the
Contoso video Windows Store and Windows Phone
implementations.

Contoso.WebClient

This project contains the web client implementation of
the Contoso video application.

32

Contoso.WindowsPhone This project contains the Windows Phone specific code
for the Windows Phone client implementation of the
Contoso video application.

Contoso.WindowsStore This project contains the Windows Runtime specific
code for the Windows Store client implementation of
the Contoso video application.

For information about the structure of the projects that implement the Contoso video applications
seeAppendix @& Understanding the Contoso Video Applications

Developing the content management system

A\ideo CMS enables you to upload, store, process, and publish media. They generally store files in a
database and allow for metadata tagging and searching.

Media Services is not a CMS but it does enable you to implement a video processing
workflow. You campload and store your content in Azure Storage, encode and package media into
a variety of popular formats, and stream your videos online.

The requirements for the Contoso CMS were as follows:

1 Ability to store details of videos that can be consumed bynthgplications.
1 Ability to store video metadata.
1 Ability to store thumbnail images that represent each video.

9 Ability to store details of encoding jobs.

The developers at Contoso decided to store this information in a series of tables in third normal
form. This structure helps to reduce the probability of duplicate information, while optimizing many
of the common queries performed by the client applications. The following figure shows the table
structure of the database.

33

[Job |
PK |1d <—| PK | 1d < PK | Taskid
|
JobUuld Jobid PK | Assetld
CreateDateTime TaskUuld IsinputAsset
Videold
PK | 1d Metadata
PK
EncodingType Id
Videold P> MetaWalue o
IsVideoClip p PK|1d < Videold PK{id
Title AssetUuld
Description
Length
Encoding Status
VideaThumbnail LastUpdateDateTime
tlUpdat
PK | 1d LastUpdatelUser
Videold
ThumbnailUrd

The table structure of theCMS

Cloudbased databases are increasingly popular because they remove the need for an organization
to maintain its own infrastructure for hosting a database. They offer elasticity that enables a system
to quickly and easily scale as the number of requastshence the volume of work increases. An
additional advantage is that Azure SQL databases maintain multiple copies of the database, running
on different server. Therefore, if the primary server fails, all requests are transparently switched to
another ®rver. Therefore, the developers at Contoso chose to implement the database as a Azure
SQL database.

A complete list of features available in a Azure SQL database is availaBEnatl
Guidelines and Limitations (Windows Azure SQL DatdbaséyISDN.

For best practices about designing and developing a relational database, see the patterns & practices
guide 'Data Acess for HighhScalable Solutions: Using SQL, NoSQL, and Polyglot PerSistence
available from MSDN.

Accessing the content management system

A relational database stores data as a collection of tables. However, the Contoso video applications
process data ithe form of entity objects. The data for an entity object might be constructed from

one or more rows in one or more tables. In the Contoso video applications, the business logic that
manipulates objects is independent of the format of the data for thgeobin the database. This

offers the advantage that you can modify and optimize the database structure without affecting the
code in the applications, and vice versa.

This approach requires the use of an objeglational mapping layer (ORM). The purpaesen ORM

is to act as an abstraction of the underlying database. The Contoso video applications create and use
objects, and the ORM exposes methods that can take objects and use them to generate relational
create, retrieve, update, and delete (CRUD) ofiers, which it then sends to the database server.
Tabular data is then returned from the database and converted into a set of objects by the ORM.

http://msdn.microsoft.com/library/azure/ee336245.aspx
http://msdn.microsoft.com/library/azure/ee336245.aspx
http://msdn.microsoft.com/en-us/library/dn271399.aspx

34

The Contoso developers chose to use the Microsoft Entity Framework as the ORM, and also used the
Fluent APla decouple the classes in the object model from the Entity Framework. In the Entity
Framework the database is interacted with througbaamtextobject. The context object provides

the connection to the database and implements the logic performing CRURtaper on the data

in the database. The context object also performs the mapping between the object model of your
application and the tables defined in the database.

The Contoso video apps send REST requests to the Contoso web service that validates these
requests and converts them into the corresponding CRUD operations against the CMS. All incoming
REST requests are routed to a controller based on the URL that the client application specifies. The
controllers indirectly use the Microsoft Entity Framewookcbnnect to the CMS database and

retrieve, create, update, and delete data. The developers implemented the Repaository pattern to
minimize dependencies that the controllers have on the Entity Framework.

The purpose of the Repository pattern is to act asns@rmediary between the objeetelational

mapping layer (implemented by the Entity Framework) and the data mapping layer that provides the
objects for the controller classes. In the Contoso web service, each repository class provides a set of
APIs that eable a service class (invoked by a controller class) to retrieve a databasal object

from the repository, modify it, and store it back in the repository. The repository class has the
responsibility for converting all the requests made by a senlagsdnto commands that it can pass

to the Entity Framework. As well as removing any datatseeific dependencies from the business
logic of the controller and service classes, this approach provides flexibility. If the developers
decided to switch to different data store, they can provide an alternative implementation of the
repository classes that expose the same APIs to the service classes.

Avoid building dependencies on a specific data access technology into the business logic of
an application. Uag the Repository pattern can help reduce the chances of this happening.

For more information about the Contoso web service and its use of the Repository pattern, see
Appendix A The Contoso Web Service

Summary

This chater has introduced the video application and web service built by Contoso. The Windows

Store video application is built using XAML and C#, and consumes a web service that provides a REST
interface to the CMS and Media Services. Media Services is usedddesand package video into

the required formats for consumption across a variety of platforms and devices.

This chapter also discussed why Contoso chose to store the database in the cloud by using a Azure
SQL database. It summarized how the client apgtina connect to the database by using the Entity
Framework, and how the Repository pattern is used to abstract the details of the Entity Framework
from the business logic of the system.

In the following chapters you will see how the developers at Condestgned and implemented the
endto-end solution that uploads, encodes, delivers, and consumes media.

35

More information

I You can find thé&eneral Guidelines and Limitations (Windows A&@¢ Databas@age on
MSDN.

I The patterns & practices guid®ata Access for High8calable Solutions: Using SQL,
NoSQL, and Polyglot Persistehiseavailable from MSDN.

1 You can find iformation about theEntity Frameworln the Data Developer Center,
available on MSDN.

I TheRepository patterns described on MSDN.

f The patterns & practices guid®eveloping Multienant Applications for the Cloud®3
Editiort' is available on MSDN.

1 For information about Prism for the Windows Runtime, sBeveloping a Windows Store
business app using C#, XAML, and Prism for the Windows Riuntime

1 For information about using Unity, segtity Container

1 For information on how to bootstrap a Windows Store application that uses Prism for the
Windows Runtime, seeBbotstrapping an MVVM Wilows Store app Quickstart using C#,
XAML, and Prisrh

http://msdn.microsoft.com/library/azure/ee336245.aspx
http://msdn.microsoft.com/en-us/library/dn271399.aspx
http://msdn.microsoft.com/en-us/library/dn271399.aspx
http://msdn.microsoft.com/data/ef.aspx
http://msdn.microsoft.com/library/ff649690.aspx
http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx
http://msdn.microsoft.com/en-us/library/ff647202.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130638.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130638.aspx

36

3 - Uploading Video into Microsoft
Azure Media Services

In order to manage, encode, and stream your videos, you must first upload your content into
Microsoft Azure Media Services. Once uploadedyyomtent is stored in the cloud for further
processing and streaming.

When deciding upon the media content to upload and store as an asset there are restrictions that
apply. Each asset should only contain a unique instance of media content, such ds &\sing
episode or ad. Therefore, each asset should not contain multiple edits of a file, in order to reduce
difficulties submitting encoding jobs, and streaming and securing the delivery of the asset later in
the workflow. For example, an incorrect usageanfasset would bstoring both the trailer and the
feature-length movie within a single asset: you may want the trailer to have wide viewership, but
restrict viewing of the movie

This chapter describes how the Contoso developers incorporated Mesiaces' uploading
functionality into their web service and Windows Store client application. It summarizes the
decisions that they made in order to support their business requirements, and how they designed
the code that performs the upload process.

Formore information about the Contoso web service s@é@fendix A The Contoso Web Servite

Chapter 2, The Azure Media Services VidaeDemand Scenarjbdescribes the primary business
functionsof the video application.

Uploading content

Media Services is an ODdiased REST service that exposes objects as entities that can be queried
in the same way as other OData entities. Media Services is built on OData v3, which means that you
can submit HTP request bodies in atom+pub or verbose JSON, and receive your responses in the
same formats. For more information about ingesting assets using the REST ARyssintAssets

with the Media Services REST"A#Id 'Ingesting Assets in Bulk with the REST'API

Uploading content with the Media Services SDK for .NET

The Media Services SDK MWET is a wrapper around the REST APIs. The SDK provides a simple way
to accomplish the tasks that are exposed by the REST API.

Uploading content with the Azure Management Portal

Video, audio, and images can be uploaded to a Media Services account titiheulyrure

Management Portal. However, this approach limits uploads to the formats that are supported by the
Azure Media Encoder. For more information s&eifiported Codecsd File Types for Microsoft

Azure Media Servicé's

There are several limitations to consider when uploading content through the Management Portal:

1 You can't upload multiple files in a single upload.

http://msdn.microsoft.com/en-us/library/windowsazure/jj129593.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj129593.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj853021.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh973634.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh973634.aspx

37

1 You can't upload a file larger than 200MB. However, tiseme file size limit if you're
uploading from an existing storage account.

1 You can't upload all the file formats that are supported by Media Services. You can only
upload files with the following extensions: .asf, .avi, .m2tf, .m2v, .mp4, .mpeg, .mgg, .mt
s, .wmv, .3gp, .392, .3gp2, .mod, .dv, .vob, .ismv, .m4a.

If you need to upload content into Media Services at high speed you can take advantage of High
speed ingest technology offered by thipairty providers. For more information se&ploading
Large Sets of Files with High Spéed

Managing assets across multiple storage accounts within Azure Media Services

Media Services accountan be associated with one or more storage accounts, with each storage
account being limited to 200TB. Attaching multiple storage accounts to a Media Services account
provides the following benefits:

1 Load balancing assets across multiple storage accounts
1 Scaling Media Services for large amounts of storage and processing.

9 Isolating file storage from streaming or DRM protected file storage.

For more information seeManagirg Media Services Assets across Multiple Storage Accbunts

Ingesting content with the Media Services SDK for .NET

To get content into Media Services you must first create an asset and add files to it, and then upload
the asset. This process is known agsiong content.

The content object in Media Services islAaset which is a collection of metadata about a set of
media files. EactAssetcontains one or moréAssetFileobjects. There are two main approaches to
ingesting assets into Media Services:

1 Create anAsset upload your content to Media Services, and then genefateetFiles
and associate them with thAsset

1 Bulk ingest a set of files by preparing a manifest that describes the asset and its
associated files. Then use the upload method of yahice to upload the associated
files to the manifest's blob container. Once a file is uploaded to the blob container
Media Services completes the asset creation based on the configuration of the asset in
the manifest.

The first approach is the preferregpproach when working with a small set of media files, and is the
approach adopted by the Contoso development team. For more information about ingesting assets
in bulk see Ihgesting Assets in Bulk with the Media Services SDK fof' .NET

http://msdn.microsoft.com/en-us/library/windowsazure/dn535715.aspx#upload_with_high_speed
http://msdn.microsoft.com/en-us/library/windowsazure/dn535715.aspx#upload_with_high_speed
http://msdn.microsoft.com/en-us/library/windowsazure/dn271889.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj853022.aspx

38

To create an asset you must first have a reference to the Media Services server cont

2Xt.

Supported input formats for Azure Media Services

Various video, audio, and image file types can beangéd to a Media Services account, with there
being no restriction on the types or formats of files that you can upload using the Media Services
SDK. However, the Azure Management portal restricts uploads to the formats that are supported by

the Azure Meda Encoder.

Content encoded with the following video codecs may be imported into Media Services for

processing by Azure Media Encoder:

1 H.264 (Baseline, Main, and High Profiles)

MPEG1

il
il
f
f
f
il

MPEG2 (Simple and Main Profile)

DV (DVC, DVHD, DVSD, DVSL)

MPE®& v2 (Simple Visual Profile aAdvanced Simple Profile)
VGC1 (Simple, Main, and Advanced Profiles)

Windows Media Video (Simple, Main, and Advanced Profiles)

The following video file formats are supported for import:

File format File extension
3GPP, 3GPP2 .3gp, 392, .3gp2
Advanced Systems Format (ASF) .asf

Advanced Video Coding High Definition (AVCHD) .mts, .m2tf
Audio-Video Interleaved (AVI) .avi

Digital camcorder MPEG-2 (MOD) .mod

Digital video (DV) camera file .dv

DVD transport stream (TS) file s

DVD video object (VOB) file .vob
Expression Encoder Screen Capture Codec file .Xesc

MP4 .mp4

MPEG-1 System Stream .mpeg, .mpg
MPEG-2 video file .m2v

Smooth Streaming File Format (PIFF 1.3) .ismv
Windows Media Video (WMV) wmv

Content encoded witlthe following audio codecs may be imported into Media Services for

processing by Azure Media Encoder:

1 AGC3 (Dolby Digital audio)

AAC (AACC, HAAC v1 with AACC core, and HEAC v2 with AACC core)

f
1 MP3
il

Windows Media Audio (Standard, Professional, avgkless)

The following audio file formats are supported for import:

39

File format File extension
AC-3 (Dolby digital) audio .ac3

Audio Interchange File Format (AIFF) .aiff

Broadcast Wave Format .bwf

MP3 (MPEG-1 Audio Layer 3) .mp3

MP4 audio .m4a

MPEG-4 audio book .m4b

WAVE file .wav

Windows Media Audio .wma

The following image file formats are supported for import:

File format File extensions
Bitmap .bmp

GIF, Animated GIF .gif

JPEG .jpeg, .jpg

PNG .png

TIFF tif

WPF Canvas XAML xaml

Formore information on the codecs and file container formats that are supported by Azure Media

Encoder seeSupported input formatsand"Introduction to encodind

Securing media for upload into Azure Media Services

Media Services allows you to secure your media from the time it leaves your computer. All media

files in Media Services are associated wittAasetobject. When creating aAssetfor your media

by callingAssetCreate you must specify an encryption option as a parameter by using one of the
AssetCreationOptiongnumeration values. Each file added to thesetwill then use the asset

creation options specified when the asset is created.

40

TheAssetCreationOptiosenumeration specifies four values:

1 AssetCreationOptions.None
1 AssetCreationOptions.StorageEncrypted
1 AssetCreationOptions.CommonEncryptionProtected

1 AssetCreationOptions.EnvelopeEncryptionProtected

Media can be uploaded without any protection by specifydsgetCreationOptions.NoneThis is not
recommended as the content will not be protected during the upload, or in storage. However, media
could be uploaded over an SSL connection to protect the transmission process, prior to it being
stored unprotected irAzure Storage.

If you have unencrypted media that you wish to encrypt prior to upload you should specify
AssetCreationOptions.StorageEncryptadhen creating the asset. This encrypts media locally prior
to uploading it to Azure storage where it will be stdrencrypted.

Assets protected with storage encryption will be automatically unencrypted and placed in an
encrypted file system prior to encoding. In addition, any storage encrypted content must be
decrypted before being streamed.

If you have preencoded $ooth Streaming content that is already protected with PlayReady Digital
Rights Management (DRM) you should spegggetCreationOptions.CommonEncryptionProtected
when creating the asset. This enumeration value specifies that an assets files are protntpd
common encryption method. Therefore your content is already protected in transit and in storage.

If you have preencoded HLS content with AES encryption you should specify
AssetCreationOptions.EnvelopeEncryptionProtectetien creating the asset. Ehenumeration

value specifies that an assets files are protected using an envelope encryption method, such as AES
CBCTherefore your content is already protected in transit and in storage.

Media Services only provides-disk storage encryption, naiver the wire encryption like
a Digital Rights Management (DRM) solution.

The following figure summarizes how media can be protected during the upload process.

41

Euntent Over SSL

D\ Storage Encryptlon
>

Common Encryptlnn

Assets

>

/ Erwelnpe Encryption

Azure Storage

The options for protecting media when at rest and in transit

w The Contoso video applicati@oes not secure the web service with Secure Sockets Layer
(SSL), so a malicious client could impersonate the application and send malicious data. In ygur own
application you should protect any sensitive data that you need to transfer between the
application and a web service by using SSL.

For more information about securing your media at rest and in transit, Seeuring Your Media

Connecting to Azure Media Services

Beforeyou can start programming against Media Services you need to create a Media Services
account in a new or existing Azure subscription. For more informationtsee to Create a Media
Services Accourit

At the end of the Media Services account setup process you will have obtained the following
connection values:

1 Media Services account name.

1 Media Services account key.

These values are used to make prograatic connections to Media Services. You must then setup a
Visual Studio project for development with the Media Services SDK for .NET. For more information
see 'Setup for Deelopment on the Media Services SDK for .NET

Media Services controls access to its services through an OAuth protocol that requires an Access
Control Service (ACS) token that is received from an authorization server.

To start programming against Mediar8ices you must create@oudMediaContexinstance that
represents the server context. TidoudMediaContexincludes references to important collections
including jobs, assets, files, access policies, and locators. One@iotidMediaContextonstructor
overloads takes MediaServicesCredentialsbject as a parameter, and this enables the reuse of

http://msdn.microsoft.com/en-us/library/windowsazure/dn282272.aspx
http://www.windowsazure.com/en-us/documentation/articles/media-services-create-account/
http://www.windowsazure.com/en-us/documentation/articles/media-services-create-account/
http://msdn.microsoft.com/en-us/library/windowsazure/jj129588.aspx

42

ACS tokens between multiple contexts. The following code example shows how the
MediaServicesCredentialsbject is created.

Note: You can choose nod deal with ACS tokens, and leave the Media Service SDK to manage
them for you. However, this can lead to unnecessary token requests which can create performance
issues both on the client and server.

C#
private static readonly Lazy<MediaServicesCredentia Is> Credentials =
new Lazy<MediaServicesCredentials>(() =>
{
var credentials = new MediaServicesCredentials(
CloudConfiguration.GetConfigurationSetting ("ContosoAccountName"),
CloudConfiguration.GetConfigurationSettin g("ContosoAccountKey"));

credentials.RefreshToken();
return credentials;

D;

TheCredentialsobject is cached in memory as a static class variable that uses lazy initialization to
defer the creation of the object until it is first used. This object contains an ACS token that can be
reused if hasn't expired. If it has expired it will automatice#yrefreshed by the Media Services SDK
using the credentials given to thediaServicesCredentialsonstructor. The cached object can then

be passed to th€loudMediaContextonstructor in the constructor of thEncodingServicelass.

C#

public EncodingService(lVideoRepository videoRepository,
IJobRepository jobRepository)

{

this .context= new CloudMediaContext(EncodingService.Credentials.Value);

}

When theCloudMediaContexinstance is created th€redentialsobject will be createdUsing &zy
initialization to do this reduces the likelihood of tMediaServicesCredentialsbject having to
refresh its ACS token due to expiration. Farre information about lazy initialization sekdzy
Initialization"

If you don't cache your Media Services credentials in a ftariint application,
performance issues will occur as a result of thread contentisues.

For better scalability and performance, tB®codingServiceonstructor uses the constructor
overload of theCloudMediaContextlass that takes BlediaCredentialobject.

http://msdn.microsoft.com/en-us/library/vstudio/dd997286(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd997286(v=vs.100).aspx

43

The Contoso developers store connection values, including the account nanpasswlord, in
configuration. The values in the <ConfigurationSettings> element are the required values obtained
during the Media Services account setup process.

XML
<ConfigurationSettings >

<Setting name" ContosoAccountName" value ="Media_Services_Account_Name " />
<Setting name" ContosoAccountKey " value ="Media_Services_Account_Key " />
</ ConfigurationSettings >

Configuration files can be encrypted by using the Windows Encrypting File System (EFS). O1 you can
create a custonsolution for encrypting selected portions of a configuration file by using protected
configuration. For more information se&ficrypting Configuration Information Using Protected

Configuration."

Upload process in the Contoso Azure Media Services applications

The following figure shows a hidgwvel overview of the Contoso media upload process.

Azure Media
Services
REST API Contoso Web API
44— . +—>
Web Service
Azure Datacenter
Azure Storage
>
CMS

A highlevel overview of the Contoso media upload process

Client apps communicate with theéontoso web service through a REST web interface, which allows
them to upload media assets. When a new video is uploaded a new asset is created by Media
Services, and the asset is uploaded to Azure Storage before the assets details are published to the
Cortent Management System (CMS).

This process can be decomposed into the following steps for uploading content into Media Services:

1. Create a new emptisset

2. Create amAccessPolicinstance that defines the permissions and duration of access to the
asset.

http://msdn.microsoft.com/en-us/library/53tyfkaw.aspx
http://msdn.microsoft.com/en-us/library/53tyfkaw.aspx

44

3. Create alLocatorinstance that will provide access to the asset.
4. Upload the file that's associated with tessetinto blob storage.
5. Publish theAsset

B Save theAssetdetails to the CMS.

B Generate arAssetFilefor the Asset

B Add theAssetto the encoding pipéhe.

e

o =/h

w The Contoso web service does not contain an authentication mechanism. In your ow
application you should implement a secure authentication mechanism so that it's possible to
videos to the users who uploaded them.

—

nk

The following figure shows thateraction of the classes in the Contoso Windows Store Video
application that implement uploading a video for processing by Media Services.

Video app Contoso web service

VideosControll EnrodingService | VideoService | VideoRepos

E
%

I
I
1
I
I
1
I
I
1
I
1
I
UploadFileAsync 1
1

GetAsync
Y GetAsync

GenerateAsset
GenerateSasLocator

VideoAsset

response
response

UploadVideoFileToBlobStorage

PostAsync
PostAsync

Save

SaveVideo

PublishAsset
response

response

The interaction of the classes that upload a video to Media Services

For information on how the upload process fke in the Contoso video web application, see
"Appendix @& Understanding the Contoso Video Applicatigns

The upload process is managed by YhdeoServicelass in theContosoUlLogigroject. In the
Onlnitializemethod in theApp class, theVideoServiceclass is registered as a type mapping against
the IVideoServicenterface with the Unity dependency injection container. Then when a view model

45

class such as thdewVideoPageViewModatlass accepts d¥ideoServie type, the Unity container
will resolve the type and return an instance of tMigleoServicelass

The upload process is invoked when a user select€thatebutton on theNewVideoPage

Through a binding this executes tBeeateVideanethod in theNewVideoPageViewModetlass.

This creates a neWideoobject and initializes the object with data from the file chosen for upload.
Then, the upload process begins by callingWipdoadFileAsynenethod in theVideoServiceslass. A
CancellationTokels passd to the UploadFileAsynemethod so that the upload process can be
cancelled by the user if required.

C#

private async void CreateVideo()

{

await this .videoService.UploadFileAsync(this.videoFile, video,
this .cancellationTokenSource.Token);

}

TheUploadFileAsyneethod manages the upload process in the client by invoking methods of the
HttpServiceand AzureFileUploadeclasses.

C#

public async Task UploadFileAsync(VideoFile file, Video video, CancellationToken
cancel | ationToken)

{
var requestUri= new Uri(string.Format("{0}{1}/?filename={2}" ,
this.videosBaseUrl, "generateasset” |, file.Name));

var responseContent =
await this .httpService.GetAsync(requestUri, cancel | ationToken);

var videoUploadinfo =
JsonConvert.DeserializeObject<VideoUpload>(responseContent);

await this .azureFileUploader.UploadVideoFileToBlobStorage(file,
videoUploadinfo.SasLocator, cancel | ationToken);

video.Assetld = videoUploadInfo.Assetld;
var videoUp load = JsonConvert.SerializeObject(video);

var uploadVideoUri = new Uri(string.Format("{0}/{1}", this .videosBaseUrl,
"publish"));

await this .httpService.PostAsync(uploadVideoUri, videoUpload,
cancel | ationToken);

}

This method creates a Uri that specifies that enerateAsseiethod will be called on the web
service, with the filename of the file to be uploaded being passed as a parametdtt{plservice
class, which implements theélttpServiceinterface, is usetio make the call to the web service.

46

C#

public async Task< string > GetAsync(Uri requestUri)
{

return await this .GetAsync(requestUri, CancellationToken.None);

}

public async Task< string > GetAsync(Uri requestUri, CancellationToken
cancel | ationToken)

{
using (var httpClient = new HttpClient())
{
var response =
await httpClient.GetAsync(requestUri).AsTask(cancel | ationToken);
response.EnsureSuccessStatusCode();
return await response.Content.ReadAsStringAsync();
}
}

This method asynchronously retrieves data from the web service by usindttii€lientclass to
send HTTP requests and receive HTTP responses from a URI. Thdtgatltent. GetAsynsends a
GET request to the specified URI as an asynchronarsitign, and returns daskof type
HttpResponseMessagthat represents the asynchronous operation. Treskis cancellable, and will
complete after the content from the response is read. For more info abouHti@Clientclass see
"Connecting to an HTTP server using Windows.Web.Http.HttpClient

When theUploadFileAsynenethod calldHttpServiceGetAsyng this calls the&senerateAsset
method in theVideosControllerclass in theContosoApi project.

C#

public async Task< HttpResponseMessage> GenerateAsset(string filename)

{

var videoAsset = await encodingService.GenerateSasLocator(filename);
var result = new VideoAssetDTO();

Mapper.Map(videoAsset, result);
return Request.CreateResponse(HttpStatusCode.Created, result);

}

This method calls the asynchrond@snerateSaslLocatanethod in theEncodingServicelass. The
EncodingServicelass is registered as a type mapping againstEmeodingServiceterface with
the Unity dependency injection container. When tiieleosControllerclass accepts an
IEncodingServicty/pe, the Unity container will resolve the type and return an instance of the
EncodingServicelass.

When aVideoAssebbject is returned from thé&senerateSasLocatanethod aVideoAssetDTO
object is created, with the returnedideoAssebbject being mapped onto th¥ideoAssetDTO
which is then returned in aHttpResponseMessag® the HttpService.GetAsynmethod.

http://msdn.microsoft.com/en-us/library/windows/apps/dn440594.aspx

a7

TheGeneraté&SasLocatomethod uses Media Services types to return a NddeoAssethat
contains a new asset id to represent the asset being uploaded, and a shared access signature locator
to access the asset.

C#
public async Task<VideoAsset> GenerateSasLocator(string filename)
{

var duration = int .Parse(

CloudConfiguration.GetConfigurationSetting("SaslLocatorTimeout"));

IAsset asset = await this .context.Assets.CreateAsync(

"NewAsset " + Guid.NewGuid() + "_" + filename, AssetCreationOptions.None ,
CancellationToken.None).ConfigureAwait(false);

IAccessPolicy writePolicy = await this .context.AccessPolicies.CreateAsync(
"writePolicy", TimeSpan.FromMinutes(duration), AccessPermissions.Write)
.ConfigureAwait(false);

ILocator destinationLocator = await this .context.Locators.CreateLocatorAsync(
LocatorType.Sas, asset, writePolicy).ConfigureAwait(false);

var blobUri = new UriBuilder(destinationLocator.Path);

blobUri.Path +="/" + filename;

/I return the new VideoAsset
return new VideoAsset()
{ SasLocator = blobUri.Uri.AbsoluteUri, Assetld = asset.ld };

}

The method creates a new asset uskgsetCreationOptions.Nonthat specifies that a encryption

is used when the asset is in transit or at rest. An access policy nariteBolicyis then created that
specifies that the asset can be written to for 30 minutes. A shared access signature locator is then
created, using the access policy. Toeator returns an entry point that can be used to access the

files contained in the asset. Finally, a Uri is created to which the video file will be uploaded to in blob
storage, before th&/ideoAssebbject is created and returned.

The maximum number afssets allowed in a Media Services account is 1,000,000.

Back in theJploadFileAsynenethod in theVideoServicelass thdJploadFileToBloBtorage
method of theAzureFileUploadeclass is used to upload the file to blob storage using the shared
access stage locator returned by th&enerateSaslLocatanethod.

C#

public async Tas k UploadVideoFileToBlobStorage(VideoFile file, string sasLocator ,
CancellationToken cancellationToken)
{

var blobUri = new Uri(sasLocator);

var sasCredentials = new StorageCr edentials(blobUri.Query);

48

var blob = new CloudBlockBlob(new
Uri(blobUri.GetComponents(UriComponents.SchemeAndServer | UriComponents.Path,
UriFormat.UriEscaped)), sasCredentials);

StorageFile storageFile = null ;

if (string .IsNullOrEmpty(file.F utureAccessToken))
{

storageFile = await
StorageFile.GetFileFromPathAsync(file.Path).AsTask(cancellationToken);
}

else

{

storageFile = await
StorageApplicationPermissions.FutureAccessList.GetFileAsync(file.FutureAccessToken
) .AsTask(cancellationToken);

}

cancellationToken.ThrowlfCancellationRequested();
await blob.UploadFromFileAsync(storageFile);

}

This method uploads the video file to blob storage using a URI specified by the shared access scheme
locator. The fi¢é is uploaded by using théploadFromFileAsynmethod of theCloudBlockBb class.

The final step of the upload process is to publish the file for processing by the encoding pipeline. To
do this theUploadFileAsynenethod creates a Uri that specifies thitae Publishmethod will be

called on the web service, with the address of the asset being passed as a parameRosiAsync
method of theHttpServiceclass is used to make the call to the web service.

C#
public async Task<string > PostAsync(Uri requestUri, string stringifyJsonPostData,
CancellationToken cancel | ationToken)
{
using (var httpClient = new HttpClient())
{
var postData = new HttpStringContent(stringifyJsonPostData,
UnicodeEncoding.Utf8, "appl ication/json");
var response = await httpClient.PostAsync(requestUri,
postData).AsTask(cancel | ationToken);
response.EnsureSuccessStatusCode();
return await response.Content.ReadAsStringAsync();
}
}

This method asyehronously sends data to the web service by usingHtipClientclass to send
HTTP requests and receive HTTP responses from a URI. ThéltplCtent PostAsyncsends a
POST request to the specified URI as an asynchronous operation, passing dapréssnts a
Videoinstance that contains the metadata for the content to be published, and retufiressiof
type HttpResponseMessagihat represents the asynchronous operation. The returiiegkwill

complete after the content from the response is read.

49

When theUploadFileAsynenethod callsHttpServicePostAsyng this calls thd?ublishmethod in the
VideosControllerclass in theContosoApiproject.

C#

public async Task<HttpResponseMessage> Publish(VideoSaveDTO video)
{

var newVideo = MapSaveDTO(video);
newVideo.EncodingStatus = EncodingState.NotStarted,;

var videoDetail = await videoService.Save(newVideo);
await encodingService.PublishAsset(videoPublish);

return Request.CreateResponse(HttpStatusCode.Created);

}

The method first uses thlapSaveDT@nethod to convert theVideoSaveDT®bject to a
VideoDetailobject, before setting itEncodingStatdo NotStarted TheSavemethod of the
VideoServicelass isttien called, followed by thBublishAssetethod of theEncodingServicelass.
In turn, theSavemethod in theVideoServicelass calls th&aveVideanethod in the
VideoRepositoryclass, which creates\dideoEntityobject to persist the video details to the CMS
database in Azure Storage. TiReblishAssemethod in theEncodingServices shown in the
following code example.

C#

public async Task PublishAsset(VideoPublish video)
{
var inputAsset = this .context.Ass ets .Where(
a => a.ld == video.Assetld).SingleOrDefault();
if (inputAsset != null)
{
if (inputAsset.AssetFiles.Count() == 0)

{

await inputAsset.GenerateFromStorageAsync().Configure Await(false);

}

var videoEncodingMessage = new EncodeVideoMessage()
{

Assetld = video.Assetld,

Videold = video.Videold,

IncludeThumbnails = true ,

Resolution = video.Resolution

IAzureQueue<EncodeVideoMessage> queue =
new AzureQueue<EncodeVideoMessage>(
Microsoft.WindowsAzure.CloudStorageAccount.Parse(
CloudConfiguration.GetConfigurationSetting(
"WorkerRoleCon nectionString")),

50

CloudConfiguration.GetConfigurationSetting("ContosoEncodingQueueName"),
TimeSpan.FromSeconds(300));
queue.AddMessage(videoEncodingMessage);

}

This method performs two tasks. The first task is to generatasmetFilefor the Asset using the
GenerateFromStoragksyncextension method, and associate it with tAsset It is important to

note that the AssetFileinstance and the media file are twastinct objects. Thé\ssetFilenstance
contains metadata about the media file, whereas the media file contains the actual media content.
The second task is to create BncodeVideoMessagastance and add it to th&zureQueue

instance to begin the encodinprocess. For more information about the encoding process see
"Chapter 4c Encoding and Processing Video

Summary

This chapter has described how the Contoso developers incorporated Media Services' uploading
functionality into their web service and Wiods Store client application. It summarized the
decisions that they made in order to support their business requirements, and how they designed
the code that performs the upload process.

In this chapter, you saw how to connect to Media Services and icgegtnt with the Media Service
SDK for .NET. The chapter also discussed how to secure your content during the upload process,
both when it's in transit and at rest.

The following chapter discusses the next step in the Media Services work#ioaoding and
processing uploaded media.

More information

1 The page,lhgesting Assets with the Media Services RESTda&dribing how to ingest
assets into Media Services using the REYTIis available on MSDN.

1 You can find the pageldgesting Assets in Bulk with the REST @d¢3cribing how to use
the REST API to ingest assets into Media ServiceskiminuMSDN.

1 Forinformation about high speed ingest technology, dépl6ading Mediaon MSDN.

1 You can find the pageManaging Media Services Assets across Multiple Storage Actounts
on MSDN.

1 Forinformation about ingesting assets in bulk, see the paupgeStng Assets in Bulk with
the Media Services SDK for .NBm MSDN.

1 Forinformation about creating a Media Services account and associate it with a storage
account, seeHow to Create a Media Services Accduwmt MSDN.

I The page, Setup for Development on the Media Services SDK for' ##sTribes how to set
up a Visual Studiproject for Media Services development, is available on MSDN.

http://msdn.microsoft.com/en-us/library/windowsazure/jj129593.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj853021.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dn535715.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dn271889.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj853022.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj853022.aspx
http://www.windowsazure.com/en-us/documentation/articles/media-services-create-account/
http://msdn.microsoft.com/en-us/library/windowsazure/jj129588.aspx

51

For more information about lazy initialization, sdeazy Initializatiohon MSDN.

For a detailedlescription of how to encrypt configuration information seentrypting
Configuration Information Using Protected Configuration MSDN.

For information about how to connect to a webrgiee from a Windows Store application,
see 'Connecting to an HTTP server using Windows.Web.Http.HttpCbari1SDN.

http://msdn.microsoft.com/en-us/library/vstudio/dd997286(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/53tyfkaw.aspx
http://msdn.microsoft.com/en-us/library/53tyfkaw.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn440594.aspx

52

4 - Encoding and Processing Media In
Microsoft Azur e Media Services

Microsoft Azure Media Services enables you to encode your video to a variety of devices, ranging
from desktop PCs to smartphones. To do this you create processing jobs which enable you to
schedule and automate the encoding of assets.

Thischapter describes how the Contoso developers incorporated Media Services' encoding and
processing functionality into their web servidesummarizes the decisions that they made in order
to support their business requirements, and how they designed thie ¢bat performs the encoding
process.

Introduction to video encoding

Uncompressed digital video files can be large and would be too big to deliver over the Internet
without first compressing them. Encoding is the process of compressing video and andio usi
codecs. The quality of the encoded content is determined by the amount of data that is thrown away
when the content is compressed. There are many factors that affect what data is thrown away
during the compression process, but generally the more contplexiata is and the higher the
compression ratio, the more data is thrown away. In addition, people watch videos on a variety of
devices including TVs with set top boxes, desktop PCs, tablets, and smartphones. Each of these
devices has different bandwid#émd compression requirements.

Codecs both compress and decompress digital media files. Audio codecs compress and decompress
audio, while video codecs compress and decompress video. Lossless codecs preserve all of the data
during the compression process.héh the file is decompressed the result is a file that is identical to

the input file. Lossy codecs throw away some of the data when encoding, and produce smaller files
than lossless codecs. The two main codecs used by Media Services to encode are ¢tH\2B4. an

Encoders are software or hardware implementations that compress digital media using codecs.
Encoders usually have settings that allow you to specify properties of the encoded media, such as
the resolution, bitrate, and file format. File formats arentainers that hold the compressed media

as well as data about the codecs that were used during the compression process. For a list of the
codecs and file formats supported by Media Services for import Sapported input formats The
following tablelists the codecs and file formats that are supported for export.

File format Video codec Audio codec

Windows Media (*.wmv, *.wma) VC-1 (Simple, Main, and Advanced | Windows Media Audio (Standard,
profiles) Professional, Voice, Lossless)

MP4 (.mp4) H.264 (Baseline, Main, and High AAC-LC, HE-AAC v1, HE-AAC v2,
profiles) Dolby Digital Plus

Smooth Streaming (PIFF 1.1) VC-1 (Advanced profile) Windows Media Audio (Standard,

(“.ismv, *.isma) H.264 (Baseline, Main, and High Professional)

profiles) AAC-LC, HE-AAC v1, HE-AAC v2

53

For information about additional supported codecs and filters in Media ServicesCseec¢
Objects and 'DirectShow Filters

Resolution specifies how many lines make up a full video image. Typically resolutions are 1080p and
720p for high definition, and 480p for standard definition. The bitrate of a video is the nushber

bits recorded per sec, and is usually specified as kilobits per second (kbps). The higher the bitrate the
higher the quality of video. Videos can be encoded using a constant bitrate or a variable bitrate.

In constant bitrate encoding (CBR) a maximumelstis specified that the encoder can generate. If

the video being encoded requires a higher bitrate then the resulting video will be of poor quality.
CBR encoding is useful when there's a requirement to stream a video at a predictable bit rate with a
consistent bandwidth utilization.

While CBR encoding aims to maintain the bit rate of the encoded media, variable bit rate (VBR)
encoding aims to achieve the best possible quality of the encoded media. A higher bitrate is used for
more complex scenes, withlawer bitrate being used for less complex scenes. VBR encoding is more
computation intensive, and often involves multiple passes when encoding video.

Encoding for delivery using Azure Media Services

Media Services provides a numbemoédia processorhat enable video to be processed. Media
processors handle a specific processing task, such as encoding, format conversion, encrypting, or
decrypting media content. Encoding video is the most common Media Services processing
operation, and it is performed bye Azure Media Encoder. The Media Encoder is configured using
encoder preset strings, with each preset specifying a group of settings required for the encoder. For
a list of all the presets seé\ppendix BtAzure Media Encoder Preséts

Media Services gports progressive download of video and streaming. When encoding for
progressive download you encode to a single bitrate. However, you could encode a video multiple
times and have a collection of single bitrate files from which a client can choose. V¢henta
chooses a bitrate the entire video will be displayed at that bitrate. However, if network conditions
degrade playback of the video may pause while enough data is buffered to be able to continue.

To be able to stream content it must first be conesttinto a streaming format. This can be
accomplished by encoding content directly into a streaming format, or converting content that has
already been encoded into H.264 into a streaming format. The second option is performed by the
Azure Media Packagerhich changes the container that holds the video, without modifying the
video encoding. The Media Packager is configured through XML rather than through string presets.
For more information about the XML configuration sd@sk Preset for Azure Media Packager

There are two types of streaming offered by Media Services:
1 Single bitrate streaming
1 Adaptive bitrate streaming

With single bitrate streaming a video is encoded &irgle bitrate stream and divided into chunks.

The stream is delivered to the client one chunk at a time. The chunk is displayed and the client then
requests the next chunk. When encoding for single bitrate streaming you can encode to a number of
different bitrate streams and clients can select a stream. With single bitrate streaming, once a

bitrate stream is chosen the entire video will be displayed at that bitrate.

http://msdn.microsoft.com/en-us/library/windows/desktop/ff819077.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff819077.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd375464.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh973635.aspx

54

When encoding for adaptive bitrate streaming you encode to an MP4 bitrate set that cieeates
number of different bitrate streams. These streams are also broken into chunks. However, adaptive
bitrate technologies allow the client to determine network conditions and select from among several
bitrates. When network conditions degrade, the clienbczlect a lower bitrate allowing the video

to continue to play at a lower video quality. Once network conditions improve the client can switch
back to a higher bitrate with improved video quality.

Media Services supports three adaptive bitrate streantéaipnologies:
1 Smooth streaming, created by Microsoft
1 HTTP Live Streaming (HLS), created by Apple
1 MPEGDASH, an ISO standard

Media Services enables you to encode and stream video to a variety of devices. The following table
summarizes the streaming technglp supported by different device types.

Device type Supports Example presets
Windows Smooth streaming H264 Broadband 1080p
MPEG-DASH H264 Adaptive Bitrate MP4 Set
1080p

H264 Smooth Streaming 1080p

Xbox Smooth streaming H264 Smooth Streaming 720p
Xbox Live ADS

i0S HLS H264 Broadband 1080p
Smooth streaming (with the Smooth | H264 Adaptive Bitrate MP4 Set
Streaming Porting Kit) 1080p

H264 Smooth Streaming 1080p

Android Smooth Streaming via the OSMF H264 Broadband 720p
plug-in, when the device supports H264 Smooth Streaming 720p
Flash

HLS (Android OS 3.1 and greater)
Smooth streaming is the preferred adaptive bitrate streaming technology for Microsoft platforms.
There are a number of approaches to creating smooth streaming assets:

1 Encode your single viddide using one of the H.264 smooth streaming task presets to
encode directly into smooth streaming. For more information sépgendix BAzure
Media Encoder Presets.

1 Encode your single video file using one of the H.264 adaptive bitrate task pvsgegsthe
Azure Media Encoder, and then use the Azure Media Packager to convert the adaptive
bitrate MP4 files to smooth streaming.

1 Encode your video locally to a variety of bit rates, and then create a manifest file describing
the video files. After uplading the files to the Azure Storage account associated with your
Azure Media account, use the Azure Media Packager to convert the MP4 files into smooth
streaming files.

55

1 Encode your video to MP4 and using dynamic packaging to automatically convert the MP4
to smooth streaming. For more information about dynamic packaging3geamic

packagind'

If you intend to protect your content with PlayReady you should use the Azure Media
Encoder to encode directly to SmodBtreaming, and then use the Azure Media Packager to
protect your media.

Note: To convert WMV files to Smooth Streaming you must first encode your files from WMV |to
H.264. WMV is a video codec that typically has an ASF container format, with H.264 Vidiegy a
codec that can be used with the MP4 container format. Smooth Streaming uses a variant of MP4
called fragmented MP4, orFAP4. Smooth Streaming is an adaptive streaming format that requires
a set of files of different bitrates, all encoded with fragmeethat are aligned across the bitrates.
Therefore, a set of MP4 files that are encoded with aligned fragments can be convertddRd F
without requiring a reencode. However, this is not the case with WMV files. For more information
see 'Smooth Streaming Technical Overviéw

Creating encoding jobs in Azure Media Services

After media has been uploaded into Media Services it can be encoded into one of the formats
supported by theMedia Services Encoder. Media Services Encoder supports encoding using the
H.264 and V@ codecs, and can generate MP4 and Smooth Streaming content. However, MP4 and
Smooth Streaming content can be converted to Apple HLS v3 or IMRBA by using dynamic
packaging. For more information about dynamic packagind Bgaamic packaginyFor

information about the input and output formats supported by Media Services Seppored input
formats' and"Introduction to encoding

Encoding jobs are created and controlled usidgla Eachlobcontains metadata about the
processing to be performed, and contains one or mbaskghat specify grocessing task, its input
Assets output Assets and a media processor and its settings. The following figure illustrates this
relationship.

http://www.microsoft.com/en-us/download/details.aspx?id=17678

56

Job

1 Task

LiLl
L1111

Input asset

—

Output Assets

The relationship between jobs, tasks, and assets

Taskswithin aJobcan be chained together, where the output asset of one task is given as the input
asset to the next task. By following this approach dakcan contain all of the processing required
for a media presentation.

The maximum number dfaskgper Jobis 50.
The maximum number oAssetsper Taskis 50

The maximum number d&ssetsper Jobis 100. This includes queued, finished, active, and
canceled jobs. However, it doesn't include deleted jobs.

Accessing Azure Media Services media processors

A standard task th& required for most processing jobs is to call a specific media processor to
process the job.

A media processor is a component that handles a specific processing task such as
encoding, format conversion, encryption, or decrypting media content.

The folbwing table summarizes the media processors supported by Media Services.

Media processor name Description

Azure Media Encoder Allows you to run encoding tasks using the Media
Encoder.

Azure Media Packager Allows you to convert media assets from MP4 to
Smooth Streaming format. In addition, allows you to

57

convert media assets from Smooth Streaming format
to HLS format.

Azure Media Encryptor Allows you to encrypt media assets using PlayReady
Protection.
Storage Decryption Allows you to decrypt media assets that were

encrypted using storage encryption.

To use a specific media processor you should pass the name for the processor into the
GetlLatestMediaProcessorByNanmeethod, which is shown in the following codgample.

C#

private IMediaProcessor GetLatestMediaProcessorByName(string mediaProcessorName)

{

var processor = this .context.MediaProcessors.Where(p => p.Name ==
mediaProcessorName)
.ToList().OrderBy(p => new Version(p.Version)).LastOrDefault() ;

if (processor== null)

{

throw new ArgumentException(string .Format("Unknown media processor: {0}",
mediaProcessorName));

}

return processor;

}

The method retrieves the specified media processor and returns a valid instance of it. The following
code example shows how you'd use BetLatestMediaProcessorByNanmeethod to retrieve the
Azure Media Encoder processor.

C#

IMediaProcessor mediaProcessor =
this .GetLatestMediaProcessorByName(MediaProcessorNames.WindowsAzureMediaEncoder);

Securely encoding media within Azure Media Services

When encoding encrypted assets you must specify the encryption option when adding the out
asset to the processing task. The encryption of each asset created by a job is controlled by specifying
one of theAssetCreationOptiongnumeration values for each task in the job.

Any encrypted assets will be decrypted before a processing operatibstared in the encrypted

file system on the Azure Compute node that is processing the task. The media processors then
perform the required operations on the media stored in the encrypted file system and the output of
each task is written to storage.

The bllowing figure summarizes how media can be protected during the encoding and packaging
process.

58

Clea
Submit d
Job
Azure Media > E.f:?;ﬂ%ﬁn
Services Encrypted <
File System Azure
Storage
Encoder

Media encryption options during the encoding and packaging process

The Contoso web service does not use any encryption because videos are encoded for
progressive download and streaming. However, when developing a commerciatoidéemand
service you should encrypt the content both in transit and at rest.

If you want to encode a video and secure it for storage you should specify
AssetCreationOptions.StorageEryptedwhen creating the output asset for the encoding task.

When a storage encrypted asset is downloaded using one of the Media Services SDKs the SDK will
automatically decrypt the asset as part of the download process.

If you want to encode and packagevideo for streaming or progressive download you should
specifyAssetCreationOptions.None/hen creating the output asset for the encoding task.

Scaling Azure Media Services encoding jobs

By default each Media Services account can have one active egdadlat a time. However, you

can reserve encoding units that allow you to have multiple encoding tasks running concurrently, one
for each encoding reserved unit your purchase. New encoding reserved units are allocated almost
immediately.

The number of ecoding reserved units is equal to the number of media tasks that can be processed
concurrently in a given account. For example, if your account has 5 reserved units then 5 media tasks
can run concurrently. The remaining tasks will wait in the queue anhdevprocessed sequentially

as soon as a running task completes.

If an account doesn't have any reserved units then tasks will be processed sequentially. In this
scenario the time between one task finishing and the next one starting will depend on the
avalability of system resources.

The number of encoding reserved units can be configured on the Encoding page of the Azure
Management Portal.

By default every Media Services account can scale to up to 25 encoding reserved units. A higher
limit can berequested by opening a support ticket. For more information about opening a support
ticket see Requesting Additional Reserved Units

For more informatn about scaling Media Services sé®iv to Scale a Media Servite

http://msdn.microsoft.com/en-us/library/windowsazure/jj872753.aspx#SpecifyNumOfRU
http://www.windowsazure.com/en-us/documentation/articles/media-services-how-to-scale/

59

Accessing encoded media in Azure Media Services

Accessing content in Media Servicesals requires a locator. A locator combines the URL to the
media file with a set of timdased access permissions. There are two types of locatshared
access signature locators and-damand origin locators.

You cannot have more than five unique ltara associated with a given asset at one time.
This is due to shared access policy restrictions set by Azure Blob Storage service.

A shared access signature locator grants access rights to a specific media asset through a URL. You
can grant users who havbe URL access to a specific resource for a period of time by using a shared
access signature locator, in addition to specifying what operations can be performed on the
resource.

Ondemand origin locators are used when streaming content to a clientegifn, and are exposed
by the Media Services Origin Service which pulls the content from Azure Storage and delivers it to
the client. An ordemand origin locator URL will point to a streaming manifest file in an asset. For
more information about theorigin service seeQrigin Servicé

Locators are not designed for managingHueer access control. To give different access
rights to different individuals, use Digital Rights Management (DRM) solutions.
Encoding process in the Contoso Azure Media Services web service

The following figure shows a higgwvel overview of the Contoso encoding process. The encoding
process is managed by tlincodingServicelass in theContosoDomain.Sevices.Impbproject.

60

Encoder
Azure Media D >
Services
I Azure Storage

EncodingService s 14

!

Azure Datacenter

CcMS

A high-level overview of the Contoso encoding process

TheEncodingServicelass in the Contoso web service retrievesdlsetdetails from the CMS

database and passes the encoding job to Media Services, where it's submitted to the Azure Media
Encoder. The encodingb and video details are saved to the CMS database while the Media
Encoder processes the job, retrieving the input asset from Azure Storage, and writing the output
assets to Azure Storage. The Contoso web service always encodes videos to adaptivielBdsate

and then uses dynamic packaging to convert the adaptive bitrate MP4s to Smooth Streaming, HLS,
or MPEGEDASH, on demand. When encoding is complete Media Services notifies the
EncodingServicelass, which generates locator URLSs to the output assétglire Storage, and

updates the encoding job and video details in the CMS database. For more information about
dynamic packaging seé®ynamic packaginy

This process can be decomposed into the following steps fomding content with Media Services:
1. Create a newideoEncodingMessagand add it to theContosdEncodingQueue

2. Poll theContosdEncodingQueuand convert the receivelfideoEncodingMessag® an
EncodingRequest

3. Delete theVideoEncodingMessageom the Contosd&EncodingQueue
4. Process thé&ncodingRequest

a. Create a newloh

61

b. Retrieve Azure Media Encoder media processor to process the job.

c. Create a nevEncodingPipelingo encode the video.

d. Add aVideoEncodingPipelineStego the EncodingPipeline

e. Add aThumbnalEncodingPipelineStefo the EncodingPipelingif required.
f. Add aClipEncodingPipelineStep the EncodingPipelingif required.

g. Configure theJoh

i. Create araskin the VideoEncodingPipelineStegnd specify input and
output assets for th& ask

ii. Create araskin the ThumbnailEncodingPipelineStegnd specify input and
output assets for the Task.

iii. Create araskin the ClipEncodingPipelineStegnd specify input and output
assets for théask

h. Submit theJobto Azure Media Services.

i. A newJobNotificationMessagés added to the
ContosalobNatificationQueue

i. Create a neviEncodingJoland populate it with job information, before storing it in
the CMS database.

j- Update theEncodingStatusf the Jobfrom NotStartedto Encoding

Poll theContosoJokncodingQueuand conert the receivedlobNotificatiorMessageo a
JobNotification

Delete theJobNatificationMessagérom the ContosoJobEncodirigueue
Process thddobNotification

a. When theJobStateis Finished retrieve the job and video details from the CMS
database.

b. Process the output assets from tlieh
i. Process th&/ideoEncodingPipelineSteputput assets.

a. Create ordemand origin and shared access signature
locators for the output asset.

b. Generate URIs for smooth streaming, HLS, MBEGH,
and progressive download \&ons of the output asset.

c. Add the URIs t®¥ideoPlayobjects, and add the
VideoPlayobjects to theVideoDetailobject.

ii. Process th@humbnailEncodingPipelineStemutput assets.

a. Create ondemand origin and shared access signature
locators for the output asge

62

b. Generate URIs for the thumbnail images.

c. Add the URIs t¥ideoThumbnaibbjects, and add them
to the VideoDetailobject.

iii. Process the&lipEncodingPipelineSteputput assets.

a. Create ondemand origin and shared access signature
locators for the output asset

b. Generate URIs for the video clip assets.

c. Add the URIs t®¥ideoPlayobjects, and add the
VideoPlayobjects to theVideoDetailobject.

c. Save the updated video details and job details to the CMS database.

Media Services has the ability to delivertification messages to the Azure Storage Queues when
processing media jobs. The Contoso developers decided to use Media Services notifications during
the encoding process. The advantages of this are that it provides an easy mechanism for managing
the enmding jobs submitted by multiple clients, and encoding progress can be monitored through
job notification messages, if required.

When a video is uploaded and published it's added to a queue n&oatbsd&ncodingQueue
which stores encoding jobs, and then vea to theContosalobNotificationQueudor encoding.
When the encoding job completes the next step in the content publishing workflow is triggered,
which is to process the assets output from the encoding job, and to update the CMS database.

Azure Storag€ueues must be pollegthey are not a push service.

The following figure shows a high level overview of howGatosd&ncodingQueuand
Contosa@obNotificationqueue are used in the encoding process. The diagram shows the method
names in theencodingSereie class that initiate and manage the encoding process.

63

PublishAsset
Ol o ContosoEncodingQueue
o+ .b | -b e ‘» o lh | .h
SRS
EncodeVideoMessage

ol

EncodingWorker

ProcessJob o i f"\ o
Notification 4 JobNotification #/ EncodingRequest

Process
Encoding
Output

r

6 @ (s ‘
EncodeAsset

JobNotificationMessage

ContosoJobNotification

Use ofqueuesin the encoding process

Note: Azure Storage Queues do not provide a guaranteedifirfitst-out (FIFO) delivery. For more
information see Azure Queues and Azure Service Bus Que@snpared and Contrasted

As mentioned in the previous chapter, tReiblishAssetmethod in theEncodingServicelass is
responsiblefor starting the encoding process.

C#
public async Task PublishAsset(VideoPublish video)
{
var videoEncodingMessage = new EncodeVideoMessage()
{
Assetld = video.Assetld,
Videold = video.Videold,
IncludeThumbnail s = true ,
Resolution = video.Resolution
k

IAzureQueue<EncodeVideoMessage> queue = new AzureQueue<EncodeVideoMessage>(
Microsoft.WindowsAzure.CloudStorageAccount.Parse(
CloudConfiguration.GetConfigurationSetting("WorkerRoleConnectionString"),
CloudConfiguration.GetConfigurationSetting("ContosoEncodingQueueName"),
TimeSpan.FromSeconds(300));

gueue.AddMessage(videoEncodingMessage);

}

The method creates aBncodeVideoMessagastance and adds &n AzureQueuenamed
ContosdncodingQueueEvery video that will be encoded or otherwise processed by Media Services

http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx

64

must be added to this queue. EaEhcodeVideoMessag@stance contains properties that specify
the details of the video to be encoded.

The ©ntoso.Azure project specifies a worker role named Contoso.EncodingWorker that is
responsible for managing the two queues used in the encoding process. When a video is published
it's added to theContosdEncodingQueudor encoding, and once the encodingc@mplete it's

moved to theContosaobNotificationQueue The Contoso.EncodingWorker project contains the
classes that make up the worker role.

TheRunmethod in theWorkerRoleclass in the Contoso.EncodingWorker project is responsible for
managing the two geues.

C#

public override void Run()

{

var contosoEncodingQueue =

this .container.Resolve<lAzureQueue<EncodeVideoMessage>>("Standard");
var contosoEncodingCompleteQueue =

this .container.Resolve<lAzureQueue< JobNotificationMessage>>("Standard");

BatchMultipleQueueHandler
.For(contosoEncodingQueue, GetStandardQueueBatchSize())
.Every(TimeSpan.FromSeconds(GetSummaryUpdatePollinginterval()))
.WithLessThanTheseBatchlterationsPerCyc le(
GetMaxBatchlterationsPerCycle())
.Do(this .container.Resolve<EncodeVideoCommand>());

BatchMultipleQueueHandler
.For(contosoEncodingCompleteQueue, GetStandardQueueBatchSize())
.Every(TimeSpan.FromSeconds(Get SummaryUpdatePollinginterval()))
.WithLessThanTheseBatchlterationsPerCycle(
GetMaxBatchlterationsPerCycle())
.Do(this .container.Resolve<JobNotificationCommand>());

}

This method sets up twBatchMultipleQueueHandles to process th€ontosdncodingQueuand
the Contosd@obNotificationQueue TheBatchMultipleQueueHandler<Telass implements théor,
Every andDomethods. Thédomethod in turn calls th&€yclemethod, which calls th@€reRun Run
andPostRunmethods of he batch command instance (any command which derives from
IBatchCommanyl Therefore, the firsBatchMultipleQueueHandlepolls the
ContosdncodingQueuevery 10 seconds and for evdepcodingVideoMessagan the queue, runs
the PreRun Run andPostRummethods of theEncodeVideoCommanithstance. The second
BatchMultipleQueueHandlepolls theContos@obNotificationQueueevery 10 seconds and for
everyJobNotificationMessag®n the queue, runs th€reRun Run andPostRummethods of the
JobNotificationCommandnstance. The 10 second time interval is set by the
SummaryUpdatePollingIintervatonstant stored in configuration, and is retrieved by the
GetSummaryUpdatePollingintervahethod in theWorkerRoleclass. After thé&Runmethod of a
batch command has executdlde message is deleted from the appropriate queue.

65

Therefore, when thé&?ublishAssetmethod of theEncodingServicelass places an
EncodeVideoMessage&ontaining the details of the video to be encoded, onto the
ContosdEncodingQueugwhen the queue is poltethe Runmethod of theEncodeVideoCommand
class is invoked.

C#
public bool Run(EncodeVideoMessage message)
{
var encodingRequest = new EncodingRequest()
{
Assetld = message.Assetld,
ClipStartTime = message.ClipStartTime,
ClipEndTime = message.CIlipEndTime,
IncludeThumbnails = message.IncludeThumbnails,
Resolution = message.Resolution,
Videold = message.Videold
I

this .encodingService.EncodeAsset(encodingRequest);
return true;

}

This méhod converts theEncodeVideoMessag® a newEncodingRequeshstance and then calls
the EncodeAssemethod of theEncodingServicelass. After thd&Runmethod has executed the
EncodeVideoMessags deleted from theContosdncodingQueue

Creating the video encoding pipeline for Azure Media Services

TheEncodeAssemethod retrieves the media asset to be encoded and then creates dJww
instance and gets the media encoder from the context, before creating a new instance of the
EncodingPipelinelass TheEncodingPipelinds used to place video encoding steps into a pipeline.
The following figure shows an overview of the steps inEheodingPipeline

EncodingPipeline

An overview of thesteps in theEncodingPipeline
The pipeline consists of three steps:
1. AVideoEncodingPipelineStep
2. AThumbnailEncodingPipelineStep
3. ACIlipEncodingPipelineStep

66

When an encoding job completes there is no information in the tasks or output assets
associated with the job that identify what it is. By using an encoding pipelitepipeline steps,

you are able to append a suffix to each output asset and then match them up when the encoding
completes.

The following code example shows how tBecodeAssemethod in theEncodingServicelass
creates the encoding pipeline.

C#

public async Task EncodeAsset(EncodingRequest encodingRequest)

{

/I create a new instance of the encoding pipeline
EncodingPipeline encodingPipeline = new EncodingPipeline();

/I add the video to the encoding pipeline
VideoEncodingPipelineStep videoEncodingStep =

new VideoEncodingPipelineStep(inputAsset, encodingRequest.Resolution);
encodingPipeline.AddStep(videoEncodingStep);

if (encodingRequest.IncludeThumbnails)

{

/I add the thumbnails to the enco ding pipeline

ThumbnailEncodingPipelineStep thumbnailEncodingStep =
new ThumbnailEncodingPipelineStep(inputAsset);

encodingPipeline.AddStep(thumbnailEncodingStep);

}
if (encodingRequest.ClipEndTime.Ticks > 0)
{

ClipEncodingPipelineStep clipEncodingStep = new ClipEncodingPipelineStep(
inputAsset, encodingRequest.ClipStartTime,
encodingRequest.ClipEndTime, encodingRequest.Resolution);

encodingPipeline.AddStep(clipEncodingSte p);

}

/I configure the job; adds the steps as tasks to the job
encodingPipeline.ConfigureJob(job, mediaProcessor);

}

AnEncodingPipelinénstance will always have\ddeoEncodingPipelineSteplowever, a
ThumbnailEncodingPipelineStepill only be added to th&ncodingPipelinéf the
IncludeThumbnailgproperty of theEncodingRequess set totrue. Similarly, a
ClipEncodingPipelineStepill only be added to th&ncodingPipelindf the ClipEndTime.Ticks
property of theEncodingRequesds greater than zero.

67

w TheVideoEncodingPipelineStefhumbnailEncodingPipelineStepnd
ClipEncodingPipelineSteglasses all implement th&ncodingPipelineStejmterface, which
specifies that implementing classes must provide @anfigureSteand ProcessOutputmethods.

The following figureshows the methods involved in configuring tBacodingPipelinateps.

EncodingPipeline

Configure Configure
Step Step

The methods involved in configuring the EncodingPipline steps
TheConfigureJobmethod of theEncodingPipelinelass is shown in the following caéxample.

C#

public void ConfigureJob(lJob job, IMediaProcessor mediaProcessor)

{
foreach (IEncodingPipelineStep step in this .steps)
{
step.ConfigureStep(job, mediaProcessor);
}
}

This method simply calls th@onfigureStepmethod of any of the addetEncodingPipelineStep
The overall effect is to add the steps as tasks to the job.

Configuring the video encoding pipeline step

An EncodingPipelinavill always contain &ideoEncodingPipelineStepvhich is responsible for
encoding a video.

TheVideoEncodingPipelineSteglass defines a dictionary that contains the encoding presets that
can be chosen when uploading a video using the client apps. The dictionary specifies four encoding
presets:

Preset Encoder task preset

1080p H264AdaptiveBitrateMP4Set1080p

720p H264AdaptiveBitrateMP4Set720p

68

480p 16x9 H264AdaptiveBitrateMP4SetSD16x9

480p 4x3 H264AdaptiveBitrateMP4SetSD4x3

These presets produce assets at different resolutions and aspect ratios for delivery via one of many
adaptive streaming technologies after suitable packaging. If no encoding preset is specified the
pipeline defaults to using the 720p preset.

Not all videos can be encoded using these presets, for example low bitrate videos. In such cases
you should createustom encoding presets.

The following code example shows t@enfigureStepnethod of theVideoEncodingPiplineStep
class.

C#

public void ConfigureStep(lJob job, IMediaProcessor mediaProcessor)

{
ITask encodingTask = job.Tasks.AddNew(

this .inpu tAsset.Name + EncodingTaskSuffix,
mediaProcessor,
this .encodingPreset,
TaskOptions.ProtectedConfiguration);
encodingTask.InputAssets.Add(this .inputAsset);
encodingTask.OutputAssets.AddNew(this .inputAsset.Name + EncodingOuput Suffix,
AssetCreationOptions.None);

}

The method declares a task, passing the task a name made up of the input asset name with

" _EncodingTask" appended to it, a media processor instance, a configuration string for handling the
processing job, and TaskCreationOptionsetting that specifies that the configuration data should

be encrypted. The task is then added to freskscollection of the job. An input asset is then

specified for the task, along with an output asset whose filename is madethp ofput asset name

with "_EncodingOutput" appended to it.

By default, all assets are created as storage encrypted assets. To output an unencrypted
asset for playback you must spedifgsetCreationOptions.None

Configuring the thumbnail encoding pipeline step

TheThumbnailEncodingPipelineStegass is responsible for producing thumbnail image files from a
video file. In the Contoso video apps these thumbnail images are used to represent each video on
the main page.

AThumbnailEncodingPipelineStegill only be added to th&ncodingPlpeling the
IncludeThumbnailgproperty of theEncodingRequess set totrue. In the Contoso web service this
property is always set tobue.

69

The following code example shows t@enfigureStepnethod of the
ThumbnaillcodingPipelineSteglass.

C#

public void ConfigureStep(lJob job, IMediaProcessor mediaProcessor)

{
ITask thumbnailTask = job.Tasks.AddNew(

this .inputAsset.Name + ThumbnailTaskSuffix,

mediaProcessor,

this .thumbnailPresetXml,

TaskOptions.ProtectedConfiguration);
thumbnailTask.InputAssets.Add(this .inputAsset);
thumbnailTask.OutputAssets.AddNew(this .inputAsset.Name +

ThumbnailOutputSuffix, AssetCreationOptions.None);

}

This method declares a task, passing the task a name made up of the input asset name with

" ThumbnailTask" appended to it, a media processor instance, a custom configuration XML preset
for handling the processing job, and'askCreationOptionsetting thatspecifies that the

configuration data should be encrypted. The custom configuration XML preset specifies the settings
to use when creating the task. The task is then added tortekscollection of the job. An input

asset is then specified for the tagkpng with an output asset whose filename is made up of the

input asset name with "_ThumbnailOutput" appended to it. In order to output an unencrypted asset
the AssetCreationOptions.Nonenumeration valuas specified

The following code example shows tH&L configuration preset used to create thumbnails.

XML

<?xml version ="1.0" encoding ="utf -8"?>
<Thumbnail Size ="50%,*" Type="Jpeg"
Filename ="{OriginalFilename} {Size} {ThumbnailTime} {Thumbnailindex} {Date}
_{Time}.{DefaultExtension} ">
<Time Value="10% /></ Thumbnail >

There are two primary elements:

1 The<Thumbnail>element that specifies general settings for the thumbnail image that will
be generated.

1 The<Time>element that specifies the time in the source video stream from which a
thumbnail will be generated.

The<Thumbnail>element specifies that the generated thumbnail should be a JPEG that's 50% of the
height of the video, with the aspect ratio maintained. A template is also specified for producing the
thumbnail filename. TheTime>element specifies that the thumbnail will be generated from the

video data 10% of the way through the video stream. For more information about customizing the
settings of a thumbnail file sedask Preset for Thumbnail Generatlon

EEE Although we only generate one thumbnail image per video, the CMS allows multiple
thumbnail URLSs for each video to be stored in the database.

http://msdn.microsoft.com/en-us/library/windowsazure/hh973624.aspx

70

Configuring the clip encoding pipeline step

TheClipEncodingPipelineSteglass is responsible for producing a clip (a short segment of video)
from the video being encoded.

The Contoso Video web client is the only client that demonstrates producing clips from a video.

A ClipEncodingPipelineStepill only be added to thézncodingPipelinéf the ClipEndTime.Ticks
property of theEncodingRequess greater than zero.

TheClipEncodingPipelineStegass defines a dictionary that contains the encoding presets that can
be chosen when uploading a video using tient apps. The dictionary specifies the same four
encoding presets that are used by thi@eoEncodingPipelineStegdass. Therefore, when a user
selects an encoding preset it is used by both\ideoEncodingPipelineSteglass and the
ClipEncodingPipeteStepclass, with theClipEncodingPipelineStegass also defaulting to using the
720p preset if no encoding preset is specified.

The following code example shows t@enfigureStepnethod of theClipEncodingPipelineStep
class.

71

C#

public void ConfigureSt ep(lJob job, IMediaProcessor mediaProcessor)

{

var clipXml = this .clipPresetXml.Replace("YstartTime%" ,
clipStartTime.ToString(@"hA :mm :ss"));

clipXml = clipXml.Replace("%endTime%; this.clipEndTime.ToString(
@"hA :mm :ss"));

ITask clipTask = job.Tasks.AddNew(
this .inputAsset.Name + ClipTaskSuffix,
mediaProcessor,
clipXml,
TaskOptions.ProtectedConfiguration);

clipTask.InputAssets.Add(this .inputAsset);
clipTask.OutputAssets.AddNew(this .inputAsset.Name + ClipOuputSuffix,
AssetCreationOptions.None);

}

This method updates the start and end time in the clip XML preset data, with the times specified by
the user. The clip XML preset data was retrieved byQleEncodingPipelineStegonstructor. The

method then declares a task, passing the task a name made up of the input asset name with

" ClipTask" appended to it, a media processor instance, a configuration string for handling the
processing job, and BaskCreationOptionsetting tha specifies that the configuration data should

be encrypted. The task is then added to freskscollection of the job. An input asset is then

specified for the task, along with an output asset whose filename is made up of the input asset name
with "_ClipQutput" appended to it. In order to output an unencrypted asset the
AssetCreationOptions.Nonenumeration valués specified

Handling job notifications from Azure Media Services

Once theEncodingPiplineand hence the job, has been configured it's addeth&o
ContosdobNotificationQueue as shown in the following code example.

C#

public async Task EncodeAsset(EncodingRequest encodingRequest)

{

/I create a NotificationEndPoint queue based on the endPointAddress
string endPointAddress = Cloud Configuration
.GetConfigurationSetting("ContosoJobNotificationQueueName");

/I setup the notificationEndPoint based on the queue and endPointAddress
this .notificationEndPoint =
this .context.NotificationEndPoints.Create(Guid.NewGuid (). ToString(),
NotificationEndPointType.AzureQueue, endPointAddress);

if (this .notificationEndPoint = null)

{

job.JobNotificationSubscriptions
AddNew(NotificationJobState.FinalStatesOnly,

72

this.notificationEndPoint);
await job.SubmitAsync().ConfigureAwait(false);

/I save the job information to the CMS database

var encodingJob = new EncodingJob()

{
EncodingJobUuld = job.Id,
EncodingTasks = new List<EncodingTask>(),
Videold = encodingRequest.Videold

h
foreach (vartask in job.Tasks)
{
var encodingTask = new EncodingTask() { EncodingTaskUuld = task.Id };
f oreach (var asset in task.InputAssets)
{
encodingTask.AddEncodingAsset(new EncodingAsset()
{ EncodingAssetUuld = asset.Id, IsInputAsset = true });
}
encodingJob.EncodingTasks.Add(enco dingTask);
}
await this .jobRepository.SaveJob(encodingJob).ConfigureAwait(false);

await this .UpdateEncodingStatus(job,EncodingState.Encoding)
.ConfigureAwait(false);

}

This code first retrieves the endpoint address for @antosa@obNotificationQueudrom the
configuration file. This queue will receive notification messages about the encoding job, with the
JobNotificationMessagelass mapping to the notification messdgemat. Therefore, messages
received from the queue can be deserialized into objects ofittENotificationMessagdype. The
notification endpoint that is mapped to the queue is then created, and attached to the job with the
call to theAddNewmethod. NotificationJobState.FinalStatesOniy passed to thé&ddNewmethod

to indicate that we are only interested in the final states of the job processing.

If NotificationJobState.Alis passed you will receive all the state changes (Quer&theduled>
Processig-> Finished). However, because Azure Storage Queues don't guarantee ordered dglivery
it would be necessary to use tii@mestampproperty of theJobNotificationMessagelass to order
messages. In addition, duplicate notification messages are possititee EF agoroperty on the
JobNotificationMessagean be used to query for duplicates.

It is possible that some state change notifications will be skipped.

Note: While the recommended approach to monitor a job's state is by listening to notification
messages, an alternative is to check on a job's state by usinddheStateproperty. However, a
notification message about a job's completion could arrive befoed Ibb.Stateproperty is set to
Finished

73

The job is then asynchronously submitted, before the job information is saved to the CMS database,
with anEncodingJolmbject (which containEncodingTasknd EncodingAssebbjects) representing

the job information Finally, thdJpdateEncodingStatumethod is called to update the

EncodingStatdor the video fromNotStartedto Encodingthe Publishmethod in the
VideosControllerclass was responsible for setting tBacodingStatdor a newly uploaded video to
NotStartted). For more information about how the repository pattern is used to store information in
the CMS database, se@gpendix A The Contoso Web Servite

TheEncodingStatenumeration is defined in the Contoso.Domain pmjand has four
possible valueg NotStarted Encoding Complete andError.

TheContosdobNotificationQueuds polled every 10 seconds to examine the state of the job. This
process is managed by tiRunmethod in theWorkerRoleclass in the Contoso.EncodingWorker
project. When the queue is polled andabNotificationMessagés received thd&Runmethod of the
JobNotificationCommandalass is invoked.

C#
public bool Run(JobNoatificationMessage message)
{
var encodingJobComplete = new JobNoatification()
{
EventTypeDescription = message.EventType,
Jobld = (string)message.Properties.Where(j => j.Key ==
"Jobld").FirstOrDefault().Value,
OldJobStateDescription = (string)message.Propertie s.Where(j =>
j-Key == "OldState").FirstOrDefault().Value,
NewJobStateDescription = (string)message.Properties.Where(j =>
j-Key == "NewsState").FirstOrDefault().Value
Ji
this .encodingService.ProcessJobNatification(encodingJobComplete);
return true
}

This method converts th@obNotificationMessagéo a newJobNotificationinstance and then calls
the ProcessJobNotificatiomethod of theEncodingServicelass. After th&Runmethod has
executed theJobNotificationMessagés deleted from theContos@obNotificationQueue

The following code example shows tReocessJobNotificationMethoth the EncodingServicelass.

C#

public async Task ProcessJobNotification(JobNotification job Notification)
{
if (jobNotification.EventTypeDescription != "JobStateChange")
{
return ;

}

74

JobState newJobState = (JobState)Enum.Parse(typeof (JobState),
jobNotification.NewJobStateDescription);

varjob = this .context.Jobs. Where(j =>
j-1d == jobNoatification.Jobld).SingleOrDefault() ;
if (job==null)

{
return ;
}
switch (newJobState)
{
case JobState.Finished:
await this .ProcessEncodingOutput(job).Configure Await(false);
break ;
case JobState.Error:
await this .UpdateEncodingStatus(job, EncodingState.Error)
.ConfigureAwait(false);
break ;
}

}

When this method idirst called theEventTypeDescriptioproperty of theJobNotificationinstance
will be set toNotificationEndPointRegistrationTherefore the method will return.

TheJobStateenumeration is defined in the Microsoft.WindowsAzure.MediaServices.Client
namesm@ce and has seven possible valg€dueued ScheduledProcessingFinished Error,
CanceledandCanceling

When theJobStateof the encodinglobchanges, a newobNotificationMessagés added to the
ContosaobNotificationQueue When the queue is polled and the message is receive&thme
method of theProcessJobNotificatiomethod of theEncodingServicelasss invoked again. In turn
this calls theProcessJobNotificatiomethod of theEncodingServicelass again. On this ctike
EventTypeDescriptioproperty of theJobNotificationinstance will be set tdobStateChange
Therefore the job details are retrieved from the CMS database an@itbeessEncodingOutput
method will be called, provided that thiobStateis Finished Alternatively, the
UpdateEncodingStatumethod is called to update thEncodingStatdor the video toError, if an
error has occurred during the job processing.

Prior to the encoding job being submitted to t®ntosaobNotificationQueudhe
NotificationJobSate.FinalStatesOnlyvas passed to thAddNewmethod to indicate that we are
only interested in the final states of the job processing. This avoidBitheessJobNotification
method being called for every singlebStatechange.

The following code examplésws theProcessEncodingOuputethod in theEncodingServicelass.

75

C#

private async Task ProcessEncodingOutput(lJob job)

{
/I retrieve the job from the CMS database

var encodingJob = await this .jobRepository.GetJob(job.Id)
.ConfigureAwait(false);

/I retrieve the video detail from the CMS database

var videoDetalil = await this .videoRepository.GetVideo(encodingJob.Videold)
.ConfigureAwait(false);

EncodingPipeline pipeline = new EncodingPipeline();

/I process the output from the job
pipeline.ProcessJobOutput(job, this .context, encodingJob, videoDetalil);

/I save the into to the CMS database
await this .videoRepository.SaveVideo(videoDetail).ConfigureAwait(false);
await this .jobRepository.SaveJob(encodingJob).ConfigureAwait(false);

}

This method retrieves the job and video details from the CMS database, before creating a new
instance of theEncodingPipelinglass in order to process the output assets from the job. Finie
updated job and video details are saved to the CMS database.

Processing the output assets from the Azure Media Services encoding job

The following figure shows the methods involved in processing output assets from Media Services in
each step of th&ncalingPipeline

EncodingPipeline

The methods involved in processing output assets in each step of the EncodingPipeline

TheProcessJobOutpumethod in theEncodingPipelinelass is responsible for processing the
encoding job retrieved from the CMS database. The follgwimde example shows this method.

76

C#

public void ProcessJobOutput(lJob job, CloudMediaContext context,
EncodingJob encodingJob, VideoDetail videoDetail)

{
foreach (vartask in job.Tasks)
{
var encodingTask = encodingJob.Encodin gTasks.SingleOrDefault(
t => t.EncodingTaskUuld == task.ld);
if (encodingTask!= null)
{
foreach (var outputAsset in task.OutputAssets)
{
encodingTask.AddEncodingAsset(new EncodingAsset()
{ EncodingAssetUuld = outputAsset.ld, IsinputAsset = false });
foreach (varstep in pipelineSteps)
{
if (outputAsset.Name.Contains(step.Key))
{
var pipelineStep = (IEncodingPipelineStep)Activator
.Createlnstance(step.Value);
pipelineStep.ProcessOutput(context, outputAsset,
videoDetalil);
}
}
}
}
}
videoDetail.EncodingStatus = EncodingState.Complete;
}

Each encoding job contains a number of encoding tasks, with each encoding task potentially
resulting in a number of assets being outpliherefore, this code loops through each task in the job
and then each output asset in the task, and then each step in the pipeline to perform string
matching on the suffix (_EncodingOutput, _ThumbnailOutput, or _ClipOutput) that is appended to
each outpt asset. Then, thProcessOutputethod is called on the newly instantiated pipeline step
that matches up to the output asset suffix.

Finally, theEncodingStatusf the video is set t€€omplete

Processing the video encoding pipeline step output assets

Aspreviously mentioned, th&ideoEncodingPipelineStegass is responsible for encoding a video.
Therefore, itdProcessOutputnethod, which is shown in the following code example, is responsible
for processing the adaptive bitrate encoded video assets.

C#
public void ProcessOutput(CloudMediaContext context, IAsset outputAsset,

VideoDetail videoDetail)
{

context.Locators.Create(LocatorType.OnDemandOrigin, outputAsset,

77

AccessPermissions.Read, TimeSpan.FromDays(30));
context.Locators.Crea te(LocatorType.Sas, outputAsset, AccessPermissions.Read,
TimeSpan.FromDays(30));

var mp4AssetFiles = outputAsset.AssetFiles. ToList().Where(
f =>f.Name.EndsWith(".mp4" , StringComparison.OrdinallgnoreCase));
var xmlAssetFile = outp utAsset.AssetFiles.ToList().SingleOrDefault(
f =>f.Name.EndsWith("_manifest.xml" ,
StringComparison.OrdinallgnoreCase));

Uri smoothStreamingUri = outputAsset.GetSmoothStreamingUri();
Uri hisUri = outputAsset.GetHIsUri();
Uri m pegDashUri = outputAsset.GetMpegDashUri();

foreach (var mp4Asset in mp4AssetFiles)

{

ILocator originLocator = outputAsset.Locators.ToList().Where(
| => |.Type == LocatorType.OnDemandOrigin).OrderBy(
| => |.Expiratio nDateTime).FirstOrDefault();

var uri = new Uri(string .Format(Culturelnfo.lnvariantCulture,
BaseStreamingUrlTemplate, originLocator.Path. TrimEnd('/"),
mp4Asset.Name), UriKind.Absolute);

videoDetail. AddVideo(new Video Play()

{

EncodingType = "video/mp4" ,
Url = uri.OriginalString,
IsVideoClip = false
b
}
videoDetail. AddVideo(new VideoPlay()
{

EncodingType = "application/vnd.ms - sstr+xml”

Url = smoothStreamingUri.OriginalString,

IsVideoClip = false

D
videoDetail. AddVideo(new VideoPlay()
{

EncodingType = "application/vnd.apple.mpegurl” ,

Url = hisUri.OriginalString,

IsVideoClip = fal se

D
videoDetail. AddVideo(new VideoPlay()
{

EncodingType = "application/dash+xml" ,

Url = mpegDashUri.OriginalString,

IsVideoClip = false

D

this .ParseManifestXml(xmlAssetFile.GetSasUri().OriginalString, videoDetalil);

78

The Windows Store and Windows Phone Contoso Video apps both play smooth streaming
assets. The Android and iOS Contoso video apps play HLS assets. However, all apps will fall back to
playing the first available mulbitrate MP4 URL Htreaming content is unavailable.

This method creates an edtemand origin locator, and a shared access signature locator, to the

output asset, with both locators allowing read access for 30 days. The shared access locator provides
direct access to a medfde in Azure Storage through a URL. Thalemand origin locator provides

access to smooth streaming or Apple HLS content on an origin server, through a URL that references
a streaming manifest file.

When you create a locator for media content there nieya 30second delay due to
required storage and propagation processes in Azure Storage.

A list of the multibitrate MP4 files produced by the encoding job is then created, along with the
XML file that references the MP4 collection. Extension methods glemerate URIs to smooth
streaming, HLS, MPHBASH, and MP4 progressive download versions of the output asset, with the
smooth streaming, HLS, and MRB&SH content being packaged on demand. For more information
about packaging seiynamic packagint

Media Services uses the value of tAssetFile.Namgroperty when building URLSs for streaming
content. Therefore, the value of the Name property cannot have any of the peswding
reserved characters (1#$&'()*+;£?@[]). In addition, there must be only one ".' for the filename
extension. For more information se@ércentencoding’

The URIs to the different versions of the content (smooth streaming, MBEGDASH, progressive
MP4s) are then stored in neMideoPlayinstances, which also specify tBacodingTypef the
content. TheVideoPlayinstances are then added to thédeoDetailobject. Through this
mechanism encoded content can be played backi@mthpps across a variety of devices.

Note: The URIs for the encoded assets can be very long. In this guide the URIs have been left
unaltered so that you can understand how Media Services functionality works. However, in ypur
own application you may choedo have a mechanism for handling long URIs, such as retrieving a
base URI for an asset and then retrieving relative URIs for each asset file.

Processing the thumbnail encoding pipeline step output assets

As previously mentioned, thEhumbnailEncodingPigmeStepclass is responsible for producing
thumbnail images from a video file. Therefore Ri®cessOutpumethod, which is shown in the
following code example, is responsible for processing the thumbnail images produced from a video
file.

C#

public void ProcessOutput(CloudMediaContext context, IAsset outputAsset,
VideoDetail videoDetail)

{

http://en.wikipedia.org/wiki/Percent-encoding

79

context.Locators.Create(LocatorType.OnDemandOrigin, outputAsset,
AccessPermissions.Read, TimeSpan.FromDays(30));

context.Locators.Create(LocatorT ype.Sas, outputAsset, AccessPermissions.Read,
TimeSpan.FromDays(30));

foreach (var assetFile in outputAsset.AssetFiles)

{
videoDetail. AddThumbnailUrl(new VideoThumbnail()

{ Url = assetFile.GetSasUri().OriginalString });

}

This method creates a shared access signature locator to the output asset that allows read access for
30 days. The shared access locator provides direct access to a media file in Azure storage through a
URL. A/ideoThumbnailnstance is then created for each thumbnail image that uses the shared

access signature locator to specify a URL to a thumbnail image, and is adde&idabBetalil

instance.

Note: The URIs for thumbnails can be very long. In this guide the URIs havéeftaunaltered so

that you can understand how Media Services functionality works. However, in your own

application you may choose to have a mechanism for handling long URIs, such as retrieving |a base
URI for an asset and then retrieving relative URI®&zh asset file.

Processing the clip encoding pipeline step output assets

As previously mentioned, th€lipEncodingPipelineStegass is responsible for producing a clip from
the video being encoded. Therefore, RsocessOutpumethod, which is shown in the following
code example, is responsible for processing the clip produced from a video file.

C#

public void ProcessOutput(CloudMediaContext context, IAsset outputAsset,
VideoDetail videoDetail)
{
context.Locators.Creat e(LocatorType.OnDemandOrigin, outputAsset,
AccessPermissions.Read, TimeSpan.FromDays(30));
context.Locators.Create(LocatorType.Sas, outputAsset, AccessPermissions.Read,
TimeSpan.FromDays(30));

var mp4AssetFiles = outputAsset.Asse tFiles.ToList().Where(

f =>f.Name.EndsWith(".mp4" , StringComparison.OrdinallgnoreCase));
List<Uri> mp4ProgressiveDownloadUris = mp4AssetFiles.Select(

f => f.GetSasUri()). ToList();

mp4ProgressiveDownloadUris.ForEach(v => videoDetai [.AddVideo(new VideoPlay()
{

EncodingType = "video/mp4" ,

Url = v.OriginalString,

IsVideoClip = true

h);

