
D∗ Tutorial

August 14, 2009

1 Introduction

D* is a language for conveniently expressing and computing e�cient symbolic
derivatives. There are many applications which require computing derivatives,
and future chapters will describe several in great detail. This chapter will teach
you how to write D* programs.

D* is implemented using a technique called language embedding. When
you write a D* program you are actually programming in C#. Each type in
the D* language has a corresponding C# class. D* mathematical operations
are implemented by overloading the standard C# arithmetic operators and by
providing special de�nitions for all the standard mathematical functions, such
as sine and cosine.

D* code and C# code can be freely intermingled, with a few caveats. The
most important is that the function Function.NewContext must be called before
beginning the de�nition of any D* program. This sets up global data structures
to keep track of all D* variable and function de�nitions.

2 D* Functions

Every D* program is a function from Rn → Rm. For example, this program
creates the R2 → R1 function f = ab:

Function.NewContext(); //must be called before defining any D*
variables or functions

Variable a = new Variable(), b = new Variable();

Function f = a*b;

f.print();

The print function displays the symbolic form of the D* program. The
console output looks like this:

v0*v1

1

Expressions are automatically named by the system if you do not provide a
name. Variable names can be assigned in the variable constructor and functions
can be named using the lhsName property:

Function.NewContext(); //must be called before defining any D*
variables or functions

Variable a = new Variable("a"), b = new Variable("b");

Function f = a*b;

f.lhsName = "f";

f.print();

This gives the more readable printout:

a*b

In general Rn → R1 functions are de�ned by a statement of the form

f = expression

where the expression can contain any combination of arithmetic operators
and function composition.

Rn → Rmfunctions are de�ned di�erently, by using the Function constructor.
The following code creates the R2 → R2 function g = (ab, sin(b)):

Variable a = new Variable("a"), b = new Variable("b");

Function g = new Function(a*b,Function.sin(b));

g.lhsName = "g"

g.print();

which prints out like this:

g[0]

a*b

g[1]

SINb

Individual range elements of a function are accessed with an indexer:

Function h = g[0]*g[1]; //(a*b)*sin(b)

3 Di�erentiation

The most powerful feature of D* is the ability to easily specify and compute
symbolic derivatives which can be evaluated very e�ciently. You specify deriva-
tives of arbitrary order with the Function.D function:

2

Variable a = new Variable(), b = new Variable();

Function f = a*b;

Function dfa = Function.D(f,a); // Df/Da

//equality of mixed partials wrt variables

Function dfab = Function.D(f,a,b); // D(Df/Da)/Db

Function dfba = Function.D(f,b,a); // D(Df/Db)/Da

// does D(Df/Db)/Da = D(Df/Da)/Db?

Console.WriteLine((dfab == dfba));

which prints out:

true

Notice that D* automatically detects that the two mixed partials are equal
and only computes one of them. This will work regardless of the order or number
of terms in the mixed partials.

For Rn → Rm functions you must specify the index of the range element you
want to take the derivative of unless you are computing a parametric partial:

Variable a = new Variable("a"), b = new Variable("b");

Function g = new Function(a*b,Function.sin(b));

Function dg0 = Function.D(g[0],a); // D(a*b)/Da

Function dg1 = Function.D(g[1],b); // D(sin(b))/Db

//take derivative of all range elements

Function dgda = Function.D(g,a);

//dgda[0] = dg[0]/da

//dgda[1] = dg[1]/da

Derivatives can be used as arguments to other functions:

Function df = Function.D(f,a);

Function sindf = Function.sin(df));

Function ddf = Function.D(df,a);

Function derivExpression = ddf*sindf/df;

You can create functions of a variable without specifying what the function
is, and you can compute derivatives of the unspeci�ed function:

Variable a = new Variable("a");

UnspecifiedFunction q = UnspecifiedFunction.functionOf("q",a);

Function h = Function.D(Function.sin(q),a);

3

You can also take derivatives with respect to functions. Given a function
f(q(t), q̇(t)) you can specify the derivatives ∂f

∂q and
∂f
∂q̇ :

Variable a = new Variable("t");

UnspecifiedFunction q = UnspecifiedFunction.functionOf("q",t);

Function dq = Function.D(Function.sin(q),q); // D(sin(q))/Dq

Function qdot = Function.D(q,t); // Dq/Dt

Function L = Function.sin(qdot);

Function dL_dqdot = Function.D(L,qdot); // DL/Dqdot

Function dL_dqdot_dt = Function.D(L,qdot,t); // D(DL/Dqdot)/Dt

Function et = Function.exp(t);

Function dsin_det = Function.D(Function.sin(et),et); // D(sin(e^t))/D(e

^t)

This type of derivative pops up occasionally, perhaps most importantly in
the Euler-Lagrange equations of the calculus of variations. These equations are
central to classical mechanics, covered in Chapter ??.

Equality of mixed partials taken in di�erent order no longer holds when you
take derivatives with respect to functions. This is because the things you are
di�erentiating with respect to are not independent. For a function f(p(t))

∂f
∂p∂t = ∂

∂p

(
∂f
∂p

∂p
∂t

)
= ∂2f

∂2p
∂p
∂t + ∂f

∂p

{
∂
∂p

(
∂p
∂t

)}
but

∂f
∂t∂p = ∂

∂t

(
∂f
∂p

)
= ∂

∂p

(
∂f
∂p

)
∂p
∂t = ∂2f

∂2p
∂p
∂t

The derivatives will be the same if the term ∂
∂p

(
∂p
∂t

)
is zero. An example

where this is not true is the function cos(et) with f = cos() and p = et

∂(cos(et)
∂t∂p = ∂

∂t (− sin(et)) = − cos(et)et

but
∂(cos(et)

∂p∂t = ∂
∂p (− sin(et)et) = − cos(et)et − sin(et)

4 More Complex Functions

So far all of the D* functions we have written have been simple expressions.
What if your function is too complicated to �t on a single line or if there are
complex conditional expressions that have to be evaluated during its creation?

Because D* is embedded in C# it is easy to write C# functions which
return D* functions. Let's write a program, revSurf, that will take as input a
two-dimensional pro�le curve, represented as an R1 → R2 D* function

f(t) := [x(t), y(t)]T

and return a new R2 → R3 D* function

g(θ, t) = [x(θ, t), y(θ, t), z(θ, t)]T

4

which represents a surface of revolution along the y axis:

Function revSurf(Variable theta, Variable t, Function f){

const int x = 0, y = 1;

Function cosTheta = Function.cos(theta),

sinTheta = Function.sin(theta);

Function df = Function.D(f, t);

Function denominator = Function.sqrt(df[x]*df[x] + df[y]*df[y]);

Function d = 1 / denominator;

return new Function(cosTheta * f[x], f[y], sinTheta * f[x]);

}

If we are given some D* function xyfunction as our pro�le curve input then
we can create the D* function representing the surface of revolution like this:

//returns a D* function from R1->R2

Function xyfunction(Variable var){...}

//make the surface of revolution

Variable theta, t;

Function surface = revSurf(theta,t,xyFunction(t));

5 Recursive Functions

It is easy to de�ne recursive C# functions which returnD* functions. We will do
a simple example here, Chebyshev polynomials, and a more complicated exam-
ple later in Section ?? . The recursion equation for the Chebyshev polynomial,
Tn, of order n is

T0(x) = 1
T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x) n ≥ 1

The C# function which implements this recursion looks almost exactly like the
mathematical equations:

//returns n degree Chebyshev polynomial

Function T(Function x, int n){

if(n == 0){return 1;}

if(n == 1){return x;}

return 2*x*T(x,n-1) - T(x,n-2);

}

Let's print out the symbolic form of the Chebyshev polynomial of degree
4 and compare that to the number of operations in the D* expression graph.
The printOperatorCounts method will print out the total number of operations
of each kind that are present in the graph.

5

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25

operations

Order of Chebyshev polynomial

subtractions

multiplications

Figure 1: Arithmetic operations in D* Chebyshev polynomial function

Variable x = new Variable("x");

Function res = T(x,4);

res.printOperatorCounts();

res.print();

which prints out :

-:4 *:8

(x*(x*(x*(x*x*2 - 1)*2 - x)*2 - (x*x*2 - 1))*2 - (x*(x*x*2 - 1)*2 - x))

There are 4 subtractions and 8 multiplications in the D* graph but there
are 14 multiplications and 7 subtractions in the symbolic printout. This is
because there are many common subexpressions in the graph; the print function
recursively expands the graph into a tree which, in the worst case, will lead to a
symbolic printout that will be exponentially larger than the expression graph.

In Figure 1 you can see that the number of arithmetic operations in the D*

function increases linearly as the order of the Chebyshev polynomial increases;
D* has automatic common subexpression elimination, which is detecting and
eliminating the many common terms that result from the recursion.

The time it takes to compute these polynomials is a di�erent matter, how-
ever. Looking at the curve labeled not-memoized in Figure 2 you can see that
computation time is increasing exponentially as a function of polynomial order.
D* is eliminating the common subexpressions as it �nds them but they are still
being created, which is taking exponential time.

Because recursive de�nitions of mathematical functions are common, and
we don't want to waste time computing them, D* has a feature called memo-
ization. Memoization caches the values of recursive function calls so that they
do not have to be recomputed. We can rede�ne our Chebyshev function as a
lambda expression and then apply the Memoize method extension to memoize
the function:

6

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

ti
m

e
 (

se
cs

)

Order of Chebyshev polynomial

Time to compute Tn

memoized

non-memoized

Figure 2: Memoized versus non-memoized recursive function execution time

Func<Function, int, Function> T = null;

T = (Function x, int n) => {

if (n == 0) { return 1; }

if (n == 1) { return x; }

return 2 * x * T(x, n - 1) - T(x, n - 2);

};

//memoize the function

T = T.Memoize();

//create Chebyshev polynomial of order 10

Variable y = new Variable("y");

Function cheb10 = T(y,10);

There is a big di�erence in the execution time of the memoized function
vs. non-memoized function, as shown in Figure 2. The memoized function
has essentially constant execution time as a function of polynomial order1; for
n = 29 the memoised function takes approximately .02 seconds while the non-
memoized function takes 8 seconds, roughly 400 times longer.

6 Piecewise Functions

Some functions are most easily represented in piecewise fashion; piecewise poly-
nomial splines are a widely used example which we will see much more of in
Chapter ??. In a piecewise function the symbolic function de�nition itself is a

1For n < 17 the overhead of setting up the memoization is greater than the cost of eval-

uating the Chebyshev recursion. This is why you shouldn't blindly use memoization all the

time; for small functions it is faster not to memoize.

7

function of some other function or variable.
The FArray class along with the Function.�oor, Function.ceiling, Function.max,

Function.min operators provides this functionality. To create an FArray you use
Function.array. Each element in an FArray is an independent function:

Variable r = new Variable("r");

Variable s = new Variable("s");

FArray arr = Function.array(1.0, s, r * s);

arr.lhsName = "a";

arr.get(0).print();

arr.get(1).print();

arr.get(2).print();

which prints out:

a[0] // references 1.0

a[1] // references s

a[2] // references r*s

Note that the get function doesn't return the contents of the array element
being indexed. Instead it returns an instance of type Reference which is a
function which references the array element2.

We can use arrays to create a C# class which will make D* functions that
represent cubic B-splines:

Listing 1: Cubic B-spline Function

public class BSpline{

FArray P; //controlPoints

public BSpline(params Function[] controlPoints){

P = Function.array(controlPoints);

}

public Function curveValue(Function t){

IntegerValue index = Function.floor(t + 3);

t = t - Function.floor(t);

Function B3 = ((1 - t)^3);

Function B2 = 3 * (t^3) - 6 * (t^2) + 4;

Function B1 = 3 * (-(t^3) + (t^2) + t) + 1;

Function B0 = (t^3);

return (1.0 / 6.0) * (B0 * P.get(index) +

B1 * P.get(index - 1) +

B2 * P.get(index - 2) +

B3 * P.get(index - 3));

}

2Why? This is one of those technical details to be explained in Section 3.

8

public Function tangent(Function t){

fTangent = Function.D(fCurveValue, t);

fTangent = Function.derivative(fTangent);

return fTangent;

}

public Function acceleration(Function t){

if (fTangent == null){

fTangent = tangent(t);

}

fAcceleration = Function.D(fTangent, t);

fAcceleration = Function.derivative(fAcceleration);

return fAcceleration;

}

}

There are several new features in this code: the IntegerValue class, the Func-
tion.�oor function, and the exponentiation operator ^.

The argument to the get function for Farray must be of type IntegerValue.
Function.�oor returns a function of type IntegerValue which computes the �oor
of its argument. The ^ operator performs exponentiation by integer powers.
Because the ^ operator has the lowest precedence of the C# operators you
must enclose your exponentiation expression in parentheses to avoid unexpected
results.

Using the Bspline class you can make a Bspline with constant coe�cients:

BSpline c = new BSpline(1, 2, 3, 4, 5);

Variable t = new Variable("t");

Function ct = c.curveValue(t);

or with variable coe�cients:

Variable a0 = new Variable("a0"),

a1 = new Variable("a1"),

a2 = new Variable("a2"),

a3 = new Variable("a3"),

a4 = new Variable("a4");

BSpline c = new BSpline(a0,a1,a2,a3,a4);

Variable t = new Variable("t");

Function ct = c.curveValue(t);

You can also have coe�cients that are mixtures of functions, variables, and
constants:

9

Variable r = new Variable("t"),

s = new Variable("s");

BSpline c = new BSpline(Function.sin(r),(r^2),s*r,3,r);

Variable t = new Variable("t");

Function ct = c.curveValue(t);

You can compute derivatives of piecewise functions but not with respect to
a variable or function that is in one of the Farray elements that make up the
piecewise function.

Variable r = new Variable("r"), t = new Variable "t";

FArray arr = Function.array(1.0, r, (r^2));

Function ct = t*arr.get(Function.floor(t));

ct1 = Function.D(ct, t); // okay: t is not an element of the array

ct2 = Function.D(ct, r); // not okay: r is an element of the array

7 Evaluating D* Functions

You may have noticed that none of the previous examples had a printout of a
D* function which contained a derivative. Let's make an example that does
this right now:

Variable a = new Variable("a"), b = new Variable("b");

Function f = new Function(a * b);

Function g = Function.D(f, b); // D(a*b)/Db = a

g.lhsName = "g";

g.print();

This prints out:

(a*b derivative b)

This is surprising; instead of what you would expect, d(a∗b)
db

= a, you get

this funny (a*b derivative b) thing. What is going on here? When Function.D
executes it doesn't immediately compute a derivative; it creates a speci�cation
of a derivative, a placeholder in the expression graph for the actual derivative.
This is because the D* derivative analysis algorithm3 needs de�nitions of all

the derivatives in your function so that it can globally analyze the entire graph
to determine the most e�cient way to compute all the derivatives at once.

To actually compute the symbolic derivative you use Function.derivative.

3Explained in Chapter ??.

10

This function invokes the global derivative analysis algorithm and computes
a new symbolic expression graph which has actual symbolic derivatives rather
than placeholders. If we apply this to our example function we get:

g = Function.derivative(g);

g.print();

which prints out:

a

7.1 Compiling D* Functions

Interpretive evaluation of the function graph would be very slow so evaluation of
D* functions is done by transforming the D* expression graph to an intermediate
high level language and then compiling to an executable. The D* code generator
has two back ends: C# and C++. C# code can be dynamically compiled and
executed immediately in the calling function. C++ code must be written to a
�le, compiled o�-line, and then manually combined with the user code that calls
the D* function.

For functions with less than 64 local variables the C# and C++ code have
eqivalent performance. However, for code with more than 64 local variables the
C# .NET jit compiler does not do register allocation4, which results in code that
can be 5 to 10 times slower than o�ine compiled C++ code5. If you have large
functions and need maximum performance you should use the C++ backend,
invoked by the function:

compileCCodeToFile(string filename)

To see how this compilation process works let's de�ne a simple R2 → R2

function g = (ab, sin(b)):

Function.newContext();

Variable a = new Variable("a"), b = new Variable("b");

Function f = new Function(a * b, Function.sin(b));

Function g = Function.D(f, b);

Function e = Function.derivative(g);

e.lhsName = "e";

e.print();

which prints:

4As of the middle of 2009.
5The more local variables the slower the code.

11

e[0]

a

e[1]

COSb

and compile this function into an executable using the compilemethod, which
by default dynamically compiles C# intermediate code. You can see the inter-
mediate C# code that the system creates by setting the Function.printCompilerSource
to true.

Function.printCompilerSource = true;

RuntimeFunction erun = e.compile();

This prints the automatically generated source code:

12

using System;

using System.Collections;

using System.IO;

namespace DifferentiableFunction {

public class newClass0:DifferentiableFunction.RuntimeFunction{

public int rangeDimension{get{return 2;}}

public int domainDimension{get{return 2;}}

protected double Square(double a){return a*a;}

public void eval(double[] result, params double[] vars){

// DOMAIN variables

// a = index:0

// b = index:1

// RANGE variables

// a = index:0

// Dv3_Db = index:1

double a,b;

double Dv3_Db;

a= vars[0];

b= vars[1];

//**** a

//**** Dv3_Db

Dv3_Db = Math.Cos(b);

result[0] = a;

result[1] = Dv3_Db;

}

}

}

To compute the value of the derivative at a particular point use the eval
method:

double[] result = new double[2], vars = {1,Math.PI};

erun.eval(result,vars);

Console.WriteLine("e[0]:" + result[0] + "e[1]:" + result[1]);

this prints out :

13

e[0]:

1

e[1]:

-1

In this case we knew that vars[0] corresponded to variable a and vars[1]
corresponded to variable b because we printed out the automatically generated
source code. It is possible, though, that if the e function was de�ned in a di�erent
context that the correspondence might be di�erent; vars[1] might correspond to
variable a and vars[0] to b. There is no way to know exactly what order D*

will put variables in since the algebraic simpli�cation rewrite rules can change
the order in which they occur in an expression. Things become even more
complicated if the expression has Unspeci�edFunction elements. For example,

given the code to compute d[ab,sin(q0(t)]
T

db
= [a, cos(q(t))q̇0(t)]T :

Variable a = new Variable("a"), t = new Variable("t");

UnspecifiedFunction q0 = UnspecifiedFunction.functionOf("q0", t);

Function f = new Function(a * t, Function.sin(q0));

Function g = Function.D(f, t);

Function e = Function.derivative(g);

e.lhsName = "e";

e.print();

e[0]

a

e[1]

COSq0*q0_d_t

the printout for the function e[1] has a new Unspeci�edFunction, q0_d_t,
corresponding to q̇0(t), which was not explicitly declared in the code. The
system has created this new Unspeci�edFunction term automatically.

You specify the correspondence between variables and indices in the vars ar-
gument of the eval function by using the Function.orderVariablesInDomain func-
tion. Once you order the variables in a function they are guaranteed to stay in
that order. Variables are always ordered �rst followed by unspeci�ed function
terms:

Function dq0db = Function.D(q0,b);

e.order(new[]{a, b}, new[]{q0,dq0db});

Function.printCompilerSource = true;

RuntimeFunction grun = e.compile();

If we look at just that portion of the automatically generated C# source

14

code which relates to the mapping between variables and indices, you see that
the mapping is the way we speci�ed it:

public void eval(double[] result, params double[] vars){// DOMAIN

variables

// a = index:0

// b = index:1

;

// UNSPECIFIED function variables

// q0 = index:2

// q0_d_b = index:3

// RANGE variables

// a = index:0

// Dv6_Db = index:1

double a,b;

double Dv6_Db,v13,v5,q0,v15,v14,q0_d_b;

a= vars[0];

b= vars[1];

q0= vars[2];

q0_d_b= vars[3];

Function expressions with many operations6 can take a long time to di�er-
entiate. If the symbolic derivative is not changing between invocations then it
can be much faster to save the evaluation function to disk and then read it in
again when you need it. To save the code for the evaluation function to disk
use the function compileToFile. Use the function Function.compileFromFile to
compile the evaluation function stored in a �le. Here is a code snippet showing
the use of these functions:

Variable a = new Variable("a"), b = new Variable("b"),

c = new Variable("c"), d = new Variable("d");

Function f = (a + b) * (c + d);

f.compileToFile(filename);

RuntimeFunction r = Function.compileFromFile(filename);

double[] result = new double[1], vars = { 1, 1, 1, 1 };

r.eval(result, vars);

6Thousands of operations or more.

15

8 Expression Optimization

D* performs two kinds of expression optimization: common subexpression elim-
ination, and algebraic simpli�cation. Before an expression is created its hash
code is used to see if it already exists. If it does the existing value is used,
otherwise a new expression is created. Commutative operators, such as + and
∗ test both orderings of their arguments. Similarly, the variable arguments to
Function.D are sorted by their unique identi�er before computing the hash code.

This ensures that ∂2g
∂2ab and ∂2g

∂2ba will hash to the same value.
Algebraic simpli�cation is performed by creating special constructors for

each operator. For example, this constructor for the * operator

public static Function operator *(Function a,Function b)

Function alreadyExists = commutativeOperators(typeof(Times),a,b);

if (alreadyExists != null) return alreadyExists;

//do various simple constant optimizations

Constant ca = a as Constant,cb = b as Constant;

if (ca != null && cb != null) return ca * cb;

//will use Constant * operator overloading

if (ca != null){

if (ca.leafValue == 0) return 0;

if (ca.leafValue == 1) return b;

if (ca.leafValue == -1) return -b;

if (ca.leafValue < 0) return -(b * (-ca.leafValue));

return (new Times()).compose(b,a);

}

if (cb != null){

if (cb.leafValue == 0) return 0;

if (cb.leafValue == 1) return a;

if (cb.leafValue == -1) return -a;

if (cb.leafValue < 0) return -(a * (-cb.leafValue));

return (new Times()).compose(a,b);

}

return (new Times()).compose(a,b);

performs the following symbolic algebraic simpli�cations:

a ∗ 1 → a a ∗ −1 → −a
a ∗ 0 → 0 c0 ∗ c1 → Constant(c0 ∗ c1)

where a is a variable argument to the * operator, c0, c1 are constant arguments
to the * operator, and Constant() is the constructor for the Constant class which
creates a new node that has a constant value.

Similar algebraic simpli�cation rules can be incorporated in the construc-
tors for other arithmetic and functional operations. This is much less powerful
then the algebraic simpli�cation performed by a program like Mathematica but

16

powerful enough for these important common cases:

a ∗ 1 → a a ∗ −1 → −a
a ∗ 0 → 0 a± 0 → a
a/a → 1 a/− 1 → −a
a− a → 0 f(c0) → Constant(f(c0))
c0 ∗ c1 → Constant(c0 ∗ c1) c0 ± c1 → Constant(c0 ± c1)
c0/c1 → Constant(c0/c1)

9 Related Work

There are several commonly used methods of computing derivatives: �rst order
�nite di�erencing, Richardson's extrapolation to the limit (a high order form of
�nite di�erencing), automatic di�erentiation, and symbolic di�erentiation.

The �rst order �nite di�erence method is both inaccurate and much less
e�cient, in general, than other techniques so it won't be discussed further.
Richardson's extrapolation to the limit [?] can yield very accurate derivatives
but it requires many evaluations of the function to be di�erentiated, making it
extremely ine�cient. For f : Rn → Rm nk function evaluations and O(mk2)
arithmetic operations are required, where k is typically 5 t0 10. In addition the
user must specify h, the initial step size. A principled selection of h requires
knowledge of the second derivative, which is normally unavailable.

Forward and reverse automatic di�erentiation are non-symbolic techniques
independently developed by several groups in the 60s and 70s respectively7 [?, ?].
In the forward method derivatives and function values are computed together in
a forward sweep through the expression graph. In the reverse method function
values and partial derivatives at each node are computed in a forward sweep
and then the �nal derivative is computed in a reverse sweep. Users generally
must choose which of the two techniques to use on the entire expression graph,
or whether to apply forward to some subgraphs and reverse to others. Some
tools such as ADIFOR [?] and ADIC [?] automatically apply one form at the
statement level and a di�erent one at the global level. Forward and reverse are
the most widely used of all automatic di�erentiation algorithms.

The forward method is e�cient for R1 → Rn functions but may do n times as
much work as necessary for Rn → R1 functions. Conversely, the reverse method
is e�cient for f : Rn → R1 but may do n times as much work as necessary
for f : R1 → Rn. For f : Rn → Rm both methods may do more work than
necessary.

E�cient di�erentiation can also be cast as the problem of computing an e�-
cient elimination order for a sparse matrix [?, ?] using heuristics which minimize
�ll in. However, as of the time of [?] good elimination heuristics that worked
well on a wide range of problems remained to be developed.

An extensive list of downloadable automatic di�erentiation software packages
can be found at http://www.autodiff.org.

7See Section ?? for symbolic versions of these algorithms

17

Symbolic di�erentiation has traditionally been the domain of expensive, pro-
prietary symbolic math systems such as Mathematica. These systems work well
for simple expressions but computation time and space grow rapidly, often ex-
ponentially, as a function of expression size, in practice frequently exceeding
available memory or acceptable computation time.

10 Advantages of the D* Algorithm

D* combines some of the best features of current automatic and symbolic dif-
ferentiation methods. Like automatic di�erentiation D* can be applied to rela-
tively large, complex problems but instead of generating a numerical derivative,
as automatic di�erentiation does, D* generates a true symbolic derivative ex-
pression; consequently any order of derivative can be easily computed by apply-
ing D* successively. Unlike forward and reverse techniques the user does not
have to make any choices about which algorithm to apply - the symbolic deriva-
tive expression is generated completely automatically with no user intervention.

D* exploits the special nature of the sum of products graph that repre-
sents the derivative of a function using two new greedy algorithms. The �rst
computes a factorization of the derivative graph and the second computes a
grouping of common product terms into subexpressions. While not guaranteed
to be optimal, in practice these two algorithms together produce extremely e�-
cient derivatives. D* also symbolically executes the expression graph at compile
time to eliminate common subexpressions and perform simple algebraic simpli�-
cation. Because D* is embedded in a conventional programming language8 D*

programs can be seamlessly interleaved with other code, which is very bene�cial
from a software engineering perspective.

11 Limitations of the Current Implementation

The current implementation of D* inlines all functions and unrolls all loops at
expression analysis time. Inlining is not required for the factorization algorithm
to work; it is a software engineering choice analogous to the inlining trade-o�s
made in conventional compilers. This approach exposes maximum opportunities
for optimization, and it simpli�es the embedding of D* in C#. A side e�ect of
this design choice is that the compiled derivative functions may be larger than
desired for some applications. It also requires loop iteration bounds to be known
at compile time. For our initial set of applications this design trade-o� worked
quite well but future implementations may perform less inlining to allow for a
broader range of application of the algorithm.

The time to compute the symbolic derivative is guaranteed to be polynomial
in the size of the expression graph. For an expression graph f : Rn → Rm with v
nodes the worst-case time to compute the symbolic derivative is O(nmv3). More

8D* is currently embedded in C# but can easily be embedded in other languages, such as

C++, which support operator overloading.

18

details are provided in Sections ?? and ??. In practice, the current algorithm
is fast enough to compute the symbolic derivative of expression graphs with
hundreds to thousands of nodes in a few seconds and tens of thousands of nodes
in an hour or less.

19

