Symbolic Lagrangian Multibody Dynamics

Brian Guenter*
Microsoft Research

Abstract

Symbolic Lagrangian formulations of the equations of mo-
tion of tree structured constrained mechanical systems have
the potential to be both more efficient and more numerically
robust than formulations which use nonlinear kinematic con-
straint equations. We derive a simple recursive factorization
of the Lagrangian equations of motion which, along with our
extended implementation of the D* symbolic differentiation
algorithm, yields empirically measured O(n) inverse dynam-
ics and O(n®) forward dynamics. Complex kinematic con-
straints such as point on surface, point on curve, and surface
on surface are easily handled by the new algorithm. Numer-
ous examples demonstrate the wide range of mechanical sys-
tems the algorithm can be applied to.

CR Categories: 1.3.7 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism—Animation

1 Introduction

Lagrangian mechanics is a reformulation of classical me-
chanics which is particularly useful for modeling constrained
mechanical systems. For tree structured systems, with holo-
nomic constraints that can be expressed as differentiable
parametric functions of the generalized coordinates!, it is al-
ways possible to find a set of symbolic differential equations
for the Lagrangian equations of motion. By contrast, non-
Lagrangian formulations require differential equations and
nonlinear algebraic equations (abbreviated DAE) [Ascher
and Petzold 1998] to enforce kinematic constraints. Solv-
ing DAE systems is considerably more difficult than solving
differential equations alone.

However, the difficulty of computing the complex derivatives

*email:bguenter @ microsoft.com
femail:slee @honda-ri.com

IThis may sound restrictive but a wide variety of mechanisms can be
modeled this way, as we will show in Section 5.

Sung-Hee Lee’
Honda Research Institute

in the Euler-Lagrange equations” have prevented wide accep-
tance of the approach [Herbert Goldstein 2001]. To over-
come this difficulty, researchers have manually derived ef-
ficient differentiation methods of the Euler-Lagrange equa-
tions (see [Featherstone and Orin 2000] for an overview), but
most algorithms assume a small set of simple constraint types
such as revolute or prismatic joints and thus, not surprisingly,
most of the current dynamics packages support only simple
types of constraints.*Notably, an improved version of the Ar-
ticulated Body Algorithm [Featherstone 1987] supports gen-
eral scleronomic constraints, but the complexity of the algo-
rithm makes it difficult to understand and implement [Baraff
1996]. If arbitrary parametric kinematic constraints are al-
lowed then computing the derivatives is still problematic.

Computer graphics researchers have used symbolic or auto-
matic differentiation to compute derivatives of complex func-
tions [Kass 1992; Cohen 1992; Popovi¢ et al. 2000; Grin-
spun et al. 2003]. In this paper, we create symbolic equa-
tions of motion by using symbolic differentiation. Specifi-
cally, we derive a simple recursive factorization of the La-
grangian equations of motion which, along with our extended
implementation of the D* symbolic differentiation algorithm
[Guenter 2007], yields empirically measured O(n) inverse
dynamics and O(n?) forward dynamics. (Note to review-
ers: D* symbolic differentiation software will be available to
public in late 2009.)

In mechanics, symbolic or automatic differentiation have
been employed mostly to augment multibody dynamics such
as computing the derivatives of constraint equations or the
mass matrix [Shi and McPhee 2000; Olsson et al. 2005;
Samin and Fisette 2003]. Not only is symbolic differenti-
ation used for dynamics simulation, but it is also used for
linearizing the equations of motion and optimizing design
parameters. However, for the core simulation of the dynam-
ics, they employed existing, manually derived dynamics al-
gorithms that do not require symbolic differentiation.

In contrast, we derive symbolic equations of motion by us-
ing symbolic differentiation. [Villard and Arnaldi 1996] ap-
plied symbolic differentiation to compute the equations for
the constraint forces, which are numerically calculated using
either the penalty method or the Lagrange mutltiplier tech-

2For tree structured systems naive direct approaches for evaluating these
derivatives can have computational complexity as high as O(n*), where n is
the number of degrees of freedom of the system.

3SD/FAST [Hollars et al. 1994], a multibody dynamics package based on
Lagrangian formulation, supports complex, user-defined constraints only by
using the Lagrange multipler technique, which is not related to our symbolic
Lagrangian approach.

nique. By contrast, our algorithm generates minimal coor-
dinate motion equations that eliminate all constraint forces.
[Turner 2003] applied their automatic differentiation algo-
rithm to Lagrange’s equation to generate motion equations
for very simple mechanisms, but they did not generalize their
method to handle a broad scope of mechanisms.

One advantage of using symbolic differentiation for dynam-
ics simulation is that one can easily incorporate complex
constraints. In general, one needs to compute derivatives
of the constraint equations up to the second order. Com-
plex constraints have very complex derivatives, which are
difficult to derive. By employing symbolic differentiation,
one need only provide the constraint equations; the deriva-
tives are computed by the symbolic differentation. Section
5 demonstrates that some constraints whose derivatives are
very complex to derive manually can be easily simulated by
our method. Some of our example mechanical systems are
similar to those presented in [Kry and Pai 2003] and [Lee
and Terzopoulos 2008] but the dynamics algorithms to cre-
ate the examples are very different in that the former manu-
ally derived derivatives of the general surface constraints and
the latter employed easily differentiable constraint functions,
both under the framework of existing dynamics algorithms.

1.1 Contributions

To address the problem of applying symbolic Lagrangian me-
chanics to tree structured systems we present in this paper a
simple and efficient factorization of the symbolic Lagrangian
equations of motion which directly leads to an O(n) algo-
rithm for inverse dynamics. For the forward dynamics prob-
lem we have extended our implementation of the D*symbolic
differentiation algorithm [Guenter 2007] to give an O(n?) al-
gorithm. The new algorithm has several attractive properties:

e Because the symbolic Lagrangian equations always
maintain kinematic constraints it is possible, in some
cases, to use very large time steps. These large time
steps would cause convergence problems for nonlinear
constraint solvers.

e Mechanisms incorporating complex constraints which
are challenging to simulate using existing techniques,
such as point on surface, point on curve, surface on sur-
face, are easily and robustly simulated.

The remainder of this paper is organized as follows: after de-
riving the Lagrangian equations of motion from the Newton-
Euler dynamics equation (Section 2), we present a simple re-
cursive factorization of the Lagrangian equation (Section 3).
Then we show inverse and forward dynamics methods (Sec-
tion 4) followed by numerous examples (Section 5). Finally,
we report the performance of our methods (Section 6) and
conclude the paper (Section 7).

rigid body frame

world frame

Figure 1: r., and t.,, is the center of mass with respect to
the world and body frame, respectively. vV and p refer to
a point of a rigid body with respect to the world and body
frame, respectively.

2 Lagrangian Equations of Motion

We start by deriving the Langrangian equations of mo-
tion of a multibody system. We assume a tree structured
multibody system in which n generalized coordinates, q =
(qo,---,qn—1), completely specify the configuration of every
rigid body in the system. Each local transformation for rigid
body i, A;, with respect to its parent is determined by some
number of generalized coordinates q;, and its transformation
W, in world coordinates is expressed as the product of local
transformations of its ancestors, or in recursive form, as:

wia = | KW w0

where p; denotes i’s parent.

If the inertia matrix is defined in the center of mass coordi-
nate frame then the Newton-Euler equations of motion for a
system of 7 rigid bodies are:

n n
m; i:cm,- = f; ()
))3
i=1

i=1

o8

n
hcml- = Z T (3)
i=1

1

where m; is the mass of arigid body i and r.,,;, = Wt is its
center of mass (Fig. 1). h.,,, = I;®; is the angular momentum
about the center of mass where I, is the rotational inertia and

w; = (RZT R,-) 4 The force f; and torque 7; include external and
internal forces and torques, respectively; i.e., f; = fou, + £y,
and T; = Ty, + Tin;. By projecting the Newtonian motion
equations onto the kinematic constraint manifold we obtain
the Lagrangian equations of motion, which completely elim-

Tem;
. . . . aq,
straint forces have zero projection on this vector so they all

. Con-

inate constraint forces ; i.e., we project (2) onto

4The ~ operator converts between vector and a skew-symmetric matrix
representation; i.e., an angular velocity relates to the time derivative of the
rotation matrix R as follows:

0 —0; Oy —
0= , 0 -0, | ,RTR= 0.
-y O 0

vanish per d’ Alembert’s principle of virtual work:

U O e u 8rcm
(mi¥em; — £ ti)T -o= :
5:21 iLem, exi aCIj Z
L—o)
79Yem
a; - = O “4)
i; ' 9g; !

where a; = m;¥., — £y, and ij is the generalized force, due
to forces, associated with generalized coordinate g;. Like-
wise, we project the torques onto the constraint manifold:

Z int; w‘] j

n
i=1

(flcmf - Texfi) ! thj

-

i=1

where 0y = (RIT ?91;), b; = l.lcm,. — Text;» and er is the gener-
alized force due to torques. We get a single set of differential

equations by adding the two generalized forces.

n a s
(% ra) <o

i=1

where Q; = Or; + Or;. We have derived Lagrangain equa-
tions of motlon (Eq. (6)) from Newton-Euler motion equa-
tions (Egs. (2) and (3)) for a multibody system. However,
this is not yet a computationally efficient form of the equa-
tions; the inverse dynamics equations generated by the D*
algorithm using (6) is O(n?), n times more than today’s man-
ually optimized O(n) inverse dynamics algorithms. In Sec-
tion 3, we develop a novel factorization that yields an O(n)
inverse dynamics algorithms.

3 Factoring the Equations of Motion

The factorization of the motion equations is most easily ap-
proached by considering the force and torque equations sep-
arately. Substituting r¢,,, = Wity (Fig. 1) into (4) gives us
this set of equations for Oy, .

8W
Z aT cml Qf

i=1

For n = 3 we get this system of equations:

dW oW, oW,

T T T

ay—=—tey, ta) ey, +a5 —te, =

% dqo o 8 dqo 1 dqo n
dW, oW dW

T 0 T 1 T 2

ag——t a; —t a, —t =

0 (9(]] cm0+ 1 aql cml+ 2 aql cmy Qf1
IW dW W

T T 1 T 2

a5 — aqz cmo +a; a tcml +a; 3q2 tcmz = sz

To simplify these equations start with two observations. First,
because’

0A;
-=0 i#] ©)
dq;
Wwe can rewrite %\;\;,-
oW, 0A;
= Wi =—2A; ... A 8
aCIj Jj laqj j+1 i ()
Second 8W
=0fork>j
3‘1k

where the expression k > j means that the rigid body k is
further toward the leaves of the tree than the rigid body ;.
Apply these two observations to our equations of motion to
get an upper triangular set of equations

JA 7 9A Ao
T 920 Ao
a qutcmo +al aqo —A tum +32 a AlAztcmz = QfO
dA, dA;
a{WO a Lﬂ’ll +32 Wo—— a AZthz = Qfl
8A
T 2
32 Wl qutcmz = sz

Notice that Ai js included in every term in the LHS and

we can factor out theses common terms by moving the a!
terms from the left to the right hand side. The products

al W, %tcmi are of the form

dA;
x'y wherex! =al andy =W, , ltcm,
dq;
Using the identity
tr (yxT) = x'y, ©))
our three equations of motion become
()AO 8Ao aAO
tr (aq tcmg g+ a Altcm1 1 + aqo A1A2tcmzag = Qf[)
8A1 8A1
tr (WOqutcm@lT +WOTqIA2tcm232T> = 0O

A T
tr <Wl qutcmz a) = sz

Factoring out common terms, we get

JA
tr <aq§ (temoal + At (tom, @] +Asten,al)

J0A
tr <W086]11 (tcm| a,T + Aztcmzag)> = 0

JA
ir (w1 2 (]

SWe are ignoring a technical detail that would unnecessarily complicate
the equations at this point: the matrix A ; may be a function of up to six gen-
eralized coordinates g so the indices of the matrix A; and the generalized
coordinate may not be the same. This does not materially change the form
of the equations or the factorization.

Because of common subexpression elimination in D* it takes
O (n) time to compute the equations in this form.

Let us turn now to the torque equations (5):
n a T
R
T 1
LR
i=1

We will show how we can move the term dR;/dg; in front
for effecient factorization. To this end, we introduce the fol-
lowing identity

0 —a; ay 0 —b; by
tr(ﬁf)) = tr a 0 —ay b, 0 —by
—ay ay 0 —by by 0

= —2alp.

Using this relation, we can rewrite the a)qTi b; terms

o b = —.5tr(@b)
_ (RT&R l)
= tr(]aRbRT> (10)

where we used the relation ¢r (AB) = tr() for (10). Now

side where everything will factor mcely

ol b; (11)

qj
R; 1.
——b;R; 12
. (5b;)} (12)
Define two new matrices,

[RO B0
ERIE R
to rewrite the torque equations using the full transformation
W, instead of R;:

IR [1.\ OW [1.
9q; (_ZblRi> - dyq; <_2B1Ui>'

Using the same 3 degree of freedom system that we used for
the force equations we get the following three torque equa-
tions

™=

er =

I
< i
Pr——

QO

>

i=1

NS

1 {oW oW OW.

75”{ quo(oUp) + 6‘qo1 (B1U7) + 3q02 (B2U2)} -
1 [oW oW OW.

—5tr { aqo(OUO)+WII(B1U1T) aqz (BZUZ)} = O
1 [IW oW IW

,E;r{ 7 % (BoUD) + 7 LBul) + 34 2(B2U2)} = 0

As in the force relation, we transform the equations into up-
per triangular form using (7) and (8), and factor out common
terms

1 {9A
—5tr {aqo((BoUo)+A1 (BIUT+A2(B2U2)))} = 0
1 JA,
75"{“’08 (BIUT+A2(B2U2))} = O
1 oA
- tr{Wlaz(BzUz)} = QO

Algorithm 1 coefficient algorithm

nd: node to find coefficient of

Ic: true if left child graph of this contains nd
rc: true if right child graph of this contains nd
coeff(function nd)

if this is leaf return this

else

foreach (node c in this.children){c.coeff(nd)}
if (this.type not one of {+,-,*,/}) ERROR

if (this is * && lc && rc) ERROR

if (this is / && rc) ERROR

if (!(this is + Il this is -)) return this

else if (Ic && !rc){return this.leftchild}

else if (rc && !Ic){return this.rightchild}
else return this

Because they share common factors we can combine the gen-
eralized force and torque equations to get an equation for
each of the generalized forces Qy, Q1, Q> illustrated in Fig. 2.
Finally, we get the following efficient form of the Lagrangain
equations of motion:

oA ;
zr{wj,la—qj{@} =Q; (13)

¢j = tom;a — B Ul + A 1040

4 Forward and Inverse Dynamics

For the inverse dynamics problem, we can use the mo-
tion specification, q(¢), and (13) to compute the generalized
forces. Q; is a function of q(r), q(¢), q(r), all of which are
computed from the motion specification. Computing the gen-
eralized forces takes O(n) time.

The general dynamics formula of (13) is not in the proper
form to directly solve the forward dynamics problem. How-
ever, the equations of motion have the following structure:

M(q)i+c(q,q) = Q. (14)

We can see that M;;, the (i, j) entry of M is the coefficient of
g; of the i-th equation. Also, if we set § = 0, then the LHS
of (13) becomes ¢(q,q).

We derive a symbolic expression for M and ¢ using D* . For
this, we have added two new functions, coefficient and
substitute, to our implementation of D*. These make
it trivial to reorganize these equations into an easily solved
form.

Given a D* function, £i, which computes fi(q,q,q) and a
D* variable, qiddt, which corresponds to §;, the function
fi.coefficient(giddt)returns the symbolic expression
which represents the coefficient of ;. Since M is a sym-
metric matrix, we can create a symbolic expression of M by
calling this function for ¢; in each f; for i > j. The c;(q,q)
are computed by calling

,{3Ao<
dqo

1 1
<tr'm] a{ - EBIIJ{~ +A2 <tcmzag — 2B2Ug) >) } = Q()

oA, 1 1
rr{W%éwl(QWaT—ZBnﬂ1+A2(qma§—23ﬂ3>)}

01

oA, 1
tr{wlaqz (tcmzag - ZBZU;)} = O

Figure 2: Combined force and torque equations

f(q) Pr fo(a)

b fo(0)
n

Figure 3: Traveling coordinate frame defined by the tangent,
f,(q), and second derivative, £,4(q) of the curve f(q)

Figure 4: Surface-surface coordinate frame constraints

fi.substitute(new[]{q0ddt,...qnddt},
new[1{0,...,0})

This will substitute zero for all the ¢; leaving just ¢;(q,q) .
Forward dynamics is performed by solving

MG=Q-c

using standard linear algebra algorithms. The Cholesky de-
composition method is a good choice in this case since M is
positive definite.

5 Examples of Complex Constraints

Systems are built by connecting rigid bodies with motion
constraints, represented as a transformation matrix which is
a function of up to 6 generalized coordinates. To create and
simulate a mechanism the user has only to define these trans-
formation matrices of rigid bodies with respect to their par-
ents as functions of generalized coordinates. This is in con-
trast to conventional, numerical dynamics packages in which
one must provide the derivatives of the transformations up to
the second order. This can be very complicated as will be

seen in some of our examples.5

The Frenet frame along a curve could be used, for example,
to constrain beads to slide along a wire, or to make a roller
coaster or train roll along a track. If the curve f(g) has a con-
tinuous, nonzero second derivative everywhere in a region,
then it is easy to define a coordinate frame that travels along

the curve
~|b p n f
_ fy _ _bxfy _
where b = qu”,n— ||beqq”,andp—nxb.

Assume we want to constrain an object to move along a space
curve, f(g,) : R! — R3, so that the x axis in object model
space always points in the direction of the tangent, f; , to the
curve, and the object can rotate by ¢, about the axis of the
tangent vector. The combined constraint will use two trans-
formation matrices: the curve orientation and translation con-
straint matrix, and a rotation about the x axis

Apaun = C(qp)Rrorx (gr)-

An example of several systems constrained this way is shown
in Fig. 5(a).

Moving up one dimension from curves we can define a sur-
face frame whose origin is on the surface with two axes tan-
gent to the surface. For the parametric surface

f(q1,92) = [fe(q1,92), f5(q1.42). f-(q1.42)]"
we use the two tangent vectors of unit lengths

of , of of , of

POZTqI/HTqIH pl:TqZ/Hqu

and the unit normal vector n = pg X p; to create a surface
frame
S = Po nXpo n f
0 0 0 1

We can force the surface frames of two surfaces, shown in
Fig. 4, to align by using this transformation

S12=8;S;" (15)

Note that some of the example constraints have singularity problems,
but this is a separate issue from the main subject of this paper.

(d) Tong-like mechanism

soidal surface

(e) Ellipsoidal ball rolling over ellip-

(¢) Rolling constraint

A

>~

(f) Multiple systems

Figure 5: Example mechanisms

where S; and S, define the two surface frames. The
matrix S; is a function of four generalized coordinates
q1, 92, q3, q4. We can make a chain of torii, shown in
Fig. 5(b), by applying (15) to the sequence of torus objects.

It is also possible to simulate certain types of rolling contact.
In Fig. 5(c) the wheels are constrained to roll without slid-
ing. Assume the wheels lie in the xy plane and rotate about
the z axis. The relative transformation of the bigger wheel
(colored yellow and green) can be parameterized by a single
generalized coordinate g; the position of the body frame is
[cosg,sin q,O]T, and, due to the non-slip constraint, the ori-
entation is also defined as a function of ¢,

r
R= RrotZ(EQ)

where rq is the radius of the half circle and r is the radius of
the wheel. The relative transformation of the smallest wheel
can be defined similarly.

Fig. 5(d) shows an example in which the generalized coor-
dinates can be defined for a closed loop mechanism. A total
of 32 rigid bodies is constrained such that each joint angle
of the link can be defined as a function of a single general-
ized coordinate, i.e., ¢; = ¢;(q) for all i. A “fish” object is
connected to a tong-like chain via a universal joint. In this
case, our algorithm creates an ODE with only three indepen-
dent variables. In contrast, non-symbolic, conventional La-
grangian dynamics algorithms such as the Articulated-Body
Algorithm [Featherstone 1987] cannot achieve this level of
reduction for the closed loop system because they endow in-
dependent coordinates to each mobile rigid body followed
by enforcing the loop constraints using Lagrange multipli-
ers. For this example, they will obtain a 34 dimensional ODE

coupled with 31 holonomic closed loop constraints. Newto-
nian dynamics algorithms will generate a 33 X 6 dimensional
ODE for this type of mechanism.

Fig. 5(e) shows an ellipsoidal ball rolling over an ellipsoidal
surface with the rolling constraint enforced using the La-
grange multipliers. To establish a rolling constraint between
two surfaces let (Ry,t;) and (Ra,t2) denote the orientation
and position of the surface frames of the two surfaces. When
the two surfaces do not slip, the relative velocity of the two
surface frames must be same, i.e., RT't; = R t, which yields
this constraint equation:

Pq=0,P= {RTdtl RTdtZ}

— —Ry— 16
T R (16)
Note that one must derive P, the time derivative of P, in or-
der to use Lagrange multipliers. D* computes P as well as
the derivatives in (16) so one need not worry about manually
computing them.

6 Results

Because the symbolic Lagrangian algorithm performs alge-
braic simplification and common subexpression elimination
the operations count is not just a function of the number of
degrees of freedom in the system, as it is for previously pub-
lished forward and inverse dynamics algorithms. We mea-
sured the time complexity of the new algorithm on two sys-
tems and present those results here.

Results for the inverse dynamics problem are shown in Fig.
6. Fig. 6(a) shows the total number of operations as a func-
tion of the number of degrees of freedom for a simple linear

1800 10000

1600

1400 8000

1200

1000
800
600

400 2000
200

6000

4000

operations
operations

2 3 456 7 8 9 101112 6 10 14 18 22 26 30 34 38 42 46

Degrees of freedom

(a) (b)

Degrees of freedom

Figure 6: Inverse dynamics, arithmetic operations versus
number of generalized coordinates: (a) linear revolute chain
(not illustrated). (b) torus chain (Fig. 5(b)). Growth is well
approximated by a best fit line.

18000 90000
16000 80000
14000 70000
12000 60000
§ 10000 50000
100
° 6000 30000
4000 20000
2000 10000

0 0

2 3 4 5 6 7 8 9 10 11 12 6 10 14 18 22 26 30
Degrees of freedom Degrees of freedom
(a) (b)

Figure 7: Forward dynamics, arithmetic operations versus
number of generalized coordinates: (a) linear revolute chain
(not illustrated). (b) torus chain (Fig. 5(b)). Growth is well
approximated by a best fit quadratic curve.

chain of revolute joints. Fig. 6(b) shows the total number of
operations for a linear chain of torii, of the type shown in Fig.
5(b). Both systems are well approximated by a best fit line.

For the forward dynamics problem Fig. 7 shows the mea-
sured number of operations in the equations of motion for
the same systems of Fig. 6. The operation count is increas-
ing quadratically in both cases. Because eventually the O(n?)
matrix solution time will dominate the overall complexity of
forward dynamics will be O(n?).

Existing forward and inverse dynamics algorithms are usu-
ally limited to a very restricted set of joint types, often just
revolute or translational joints — other joint types require sig-
nificant effort on the part of the end-user to implement. Both
of these facts make direct comparison of our algorithm to ex-
isting algorithms problematic; the capabilities of the two sets
of algorithms are very different so it is hard to make an apples
to apples comparison.

We created a nonbranching system consisting of six 1 DOF
revolute joints, connected in a linear chain, and used this as a
comparison test case. Roughly best and worst case results for
the symbolic Lagrangian algorithm are compared in Table 1
to the most efficient hand derived algorithms [Balafoutis and
Patel 1991] that requires manual differentiation of the con-
straints. Our algorithm is competitive even in this restricted
class, and, of course, it can easily be applied to a much wider
range of joint types.

algorithm ‘ + ‘ * H algorithm ‘ + ‘ * ‘
Symb. best | 328 | 365 Symb. best 818 943
Balafoutis 386 | 450 Balafoutis 790 956
Symb. worst | 509 | 971 || Symb. worst | 1875 | 2389

(a) Inverse dynamics (b) Forward dynamics

Table 1: Operations count comparison for a 6 degree of free-
dom chain of revolute joints: symbolic Lagrangian vs. Bal-
afoutis.

In practice the new algorithm generates efficient dynamics
code. For example, Fig. 5(b), which has the largest number of
generalized coordinates (14) of the examples shown in Fig. 5,
requires only 0.02 miliseconds to evaluate the motion equa-
tion. Solving the matrix motion equation using Cholesky
decomposition takes an additional 1.3 x 10~3 miliseconds
on a 2.66Hz Intel Core 2 Quad CPU. Our code is not mul-
tithreaded so only a single processor is used for the mo-
tion equation computation. Comparing the compute time of
the motion equation (O(n?)) and that of the matrix solution
(O(n?)) suggests that the two procedures will take the same
amount of time when the DOFs of the system are about 200.
For models with < 200 DOFs, the algorithm is dominated
by the evaluation of the O(n*) motion equation procedure.

7 Discussion and Conclusion

Because the Lagrangian formulation always maintains kine-
matic constraints, it is possible to take very large time steps
when precise modeling of the true dynamics is unnecessary.
In computer games and animation for film or television it is
rarely necessary to model dynamics to high precision, since
human viewers don’t notice small dynamic errors. By com-
parison, kinematic constraint errors are much more notice-
able, since they result in parts of the mechanism failing to
connect properly.

Fig. 8 shows two frames, (a), (b), from a dynamic simula-
tion of a bead constrained to move along a wire: (a) shows
a step along the tangent to the constraint manifold, as would
be done when using nonlinear constraint equations, and (b)
shows the step taken by our symbolic Lagriangian formula-
tion. The tangent step moves the bead far off the constraint
manifold; convergence of a nonlinear constraint solver to the
correct point on the constraint manifold is highly unlikely.
To guarantee convergence a much smaller time step would
be necessary to correctly maintain the kinematic constraints.

We have taken advantage of this robustness property of sym-
bolic Lagrangian dynamics in all the animations, included
in the supplemental materials for this paper, which have a
timestep of one frame time (either &th or %th second).

We do not deal with simulating contact and collision in this
paper since it is a separate problem that is resolved after com-
puting the dynamics of a system. Any collision and contact

Figure 8: (a) Yellow arrow shows step along tangent to con-
straint manifold. (b) Step taken by our algorithm.

handling techniques for minimal coordinate approaches can
be used with the new algorithm. For example, [Kokkevis and
Metaxas 1998] can be used for simulating collision response,
enforcing unilateral and bilateral constraints as well as joint
limits, and computing contact or friction forces when the sys-
tem is in contact with environment.

The most significant limitation of the new algorithm is that it
can only be applied to systems with parameterizable kinemat-
ics. In general, closed loop systems do not have a closed form
parametric description, although simple closed loop systems,
such as 4 bar linkages, do. In some cases even open loop sys-
tems do not have closed form parametric kinematics. How-
ever, in practice parameterizability is not generally a limi-
tation since the universe of mechanisms which can be de-
scribed this way is very large.

Another issue is handling topology change. If we can pre-
define a set of sub-systems that a system can break into, then
we can compute the motion equations of the sub-systems off-
line and the switch between the equations in real time. How-
ever, if one wants to simulate completely general topological
changes, such as breaking a system into every single rigid
bodies, a maximal coordinate approach will probably be a
better choice.

The great strength of the new algorithm is that complex joints
can be easily specified and robustly and rapidly simulated.
For example, a common weakness of human figure anima-
tions is that the knee joint is modeled as a hinge when it is
more accurately modeled as a four bar linkage. This gives
natural human knees a significantly larger range of motion
than artificial knee joints, which are simple hinges. Similarly,
the human scapula is a complex joint which can be modeled
as a surface-surface joint type. Incorporating these complex
joints in a human body simulation would be straightforward
with our algorithm but considerably more problematic using
existing algorithms. In addition, the robustness, efficiency,
and simplicity of the algorithm make it an attractive choice
for real-time applications, such as computer simulations or
games, where numerical simulation failure is not an option.

References

ASCHER, U. M., AND PETZOLD, L. R. 1998. Com-

puter Methods for Ordinary Differential Equations and
Differential-Algebraic Equations. SIAM.

BALAFOUTIS, C. A., AND PATEL, R. V. 1991. Dynamic
Analysis of Robot Manipulators: A Cartesion Tensor Ap-
proach. Kluwer Academic Publishers.

BARAFF, D. 1996. Linear-time dynamics using lagrange
multipliers. In Proceedings of SIGGRAPH 96, Computer
Graphics Proceedings, Annual Conference Series, 137-
146.

COHEN, M. F. 1992. Interactive spacetime control for ani-
mation. Computer Graphics (Proceedings of SSIGGRAPH
92 (July), 293-302.

FEATHERSTONE, R., AND ORIN, D. 2000. Robot dynamics:
equations and algorithms. [EEE Int’l Conf. on Robotics
and Automation (IROS) 2000, 826-834.

FEATHERSTONE, R. 1987. Robot Dynamics Algorithms.
Kluwer Adademic Publishers, Boston.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND
SCHRCDER, P. 2003. Discrete shells. 2003 ACM SIG-
GRAPH / Eurographics Symposium on Computer Anima-
tion (aug), 62-67.

GUENTER, B. 2007. Efficient symbolic differentiation for
graphics applications. ACM Transactions on Graphics 26,
3 (July), 108:1-108:12.

HERBERT GOLDSTEIN, CHARLES P. POOLE, J. L. S. 2001.
Classical Mechanics.

HOLLARS, M. G., ROSENTHAL, D. E., AND SHERMAN,
M. A. 1994. SD/FAST User’s Manual.

KAsS, M. 1992. Condor: Constraint-based dataflow. Com-
puter Graphics (Proceedings of SIGGRAPH 92) (July),
321-330.

KOKKEVIS, E., AND METAXAS, D. 1998. Efficient dy-
namic constraints for animating articulated figures. Multi-
body System Dynamics, 89-114.

KRy, P. G., AND PAI, D. K. 2003. Continuous contact simu-

lation for smooth surfaces. ACM Transactions on Graphics
22,1 (Jan.), 106-129.

LEE, S.-H., AND TERZOPOULOS, D. 2008. Spline joints
for multibody dynamics. ACM Transactions on Graphics
27,3 (aug), 22:1-22:8.

OLSSON, H., TUMMESCHEIT, H., AND ELMQVIST, H.
2005. Using automatic differentiation for partial deriva-
tives of functions in modelica. Proceedings of the 4th In-
ternational Modelica Conference (Mar.), 105-112.

Porovic¢, J., SEITZ, S. M., ERDMANN, M., POPOVIC, Z.,
AND WITKIN, A. P. 2000. Interactive manipulation of
rigid body simulations. Proceedings of ACM SIGGRAPH
2000 (July), 209:1-209:9.

SAMIN, J.-C., AND FISETTE, P. 2003. Symbolic Modeling
of Multibody Systems. Springer.

SHI, P., AND MCPHEE, J. 2000. Dynamics of flexible multi-
body systems using virtual work and linear graph theory.
Multibody System Dynamics 4, 4, 355-381.

TURNER, J. D. 2003. Automated generation of high-order
partial derivative models. AIAA Journal 41, 8, 1590-1598.

VILLARD, D., AND ARNALDI, B. 1996. Symbolic differen-
tiation library for simulation of multibody rigid systems.
Mathematics and Computers in Simulation 42, 4-6, 659—
673.

