
Determining What Files Need to Be Deployed

Introduction
Deploying an ASP.NET web application entails copying the ASP.NET-related files from the

development environment to the production environment. The ASP.NET-related files include

ASP.NET web page markup and code and client- and server-side support files. Client-side

support files are those files referenced by your web pages and sent directly to the browser -

images, CSS files and JavaScript files, for example. Server-side support files include those

that are used to process a request on the server-side. This includes configuration files, web

services, class files, Typed DataSets, and LINQ to SQL files, among others.

In general, all client-side support files should be copied from the development environment

to the production environment, but what server-side support files get copied depends on

whether you are explicitly compiling the server-side code into an assembly (a .dll file) or if

you are having these assemblies auto-generated. This tutorial highlights what files need to

be deployed when explicitly compiling the code into an assembly versus having this

compilation step occur automatically.

Explicit Compilation Versus Automatic
Compilation
ASP.NET web pages are divided into declarative markup and source code. The declarative

markup portion includes HTML, Web controls, and databinding syntax; the code portion

contains event handlers written in Visual Basic or C# code. The markup and code portions

are typically separated into different files: WebPage.aspx contains the declarative markup

while WebPage.aspx.cs houses the code.

Consider an ASP.NET page named Clock.aspx that contains a Label control whose Text

property is set to the current date and time when the page loads. The declarative markup

portion (in Clock.aspx) would contain the markup for a Label Web control - <asp:Label

runat="server" id="TimeLabel" /> - while the code portion (in Clock.aspx.cs) would

have a Page_Load event hander with the following code:

protected void Page_Load(object sender, EventArgs e)

{

 TimeLabel.Text = "The time at the beep is: " + DateTime.Now.ToString();

}

In order for the ASP.NET engine to service a request for this page, the page's code portion

(the WebPage.aspx.cs file) must first be compiled. This compilation can happen explicitly or

automatically.

If the compilation happens explicitly then the entire application's source code is compiled

into one or more assemblies (.dll files) located in the application's Bin directory. If the

compilation happens automatically then the resulting auto-generated assembly is, by

default, placed in the Temporary ASP.NET Files folder, which can be found at

%WINDOWS%\Microsoft.NET\Framework\<version>, although this location is configurable

via the <compilation> element in Web.config. With explicit compilation you must take

some action to compile the ASP.NET application's code into an assembly, and this step

occurs prior to deployment. With automatic compilation the compilation process occurs on

the web server when the resource is first accessed.

Regardless of what compilation model you use, the markup portion of all ASP.NET pages

(the WebPage.aspx files) need to be copied to the production environment. With explicit

compilation you need to copy up the assemblies in the Bin folder, but you do not need to

copy up the ASP.NET pages' code portions (the WebPage.aspx.cs files). With automatic

compilation you need to copy up the code portion files so that the code is present and can

be compiled automatically when the page is visited. The markup portion of each ASP.NET

web page includes a @Page directive with attributes that indicate whether the page's

associated code was already explicitly compiled or whether it needs to be automatically

compiled. As a result, the production environment can work with either compilation model

seamlessly and you do not need to apply any special configuration settings to indicate that

explicit or automatic compilation is used.

Table 1 summarizes the different files to deploy when using explicit compilation versus

automatic compilation. Note that regardless of the compilation model used you should

always deploy the assemblies in the Bin folder, if that folder exists. The Bin folder contains

the assemblies specific to the web application, which include the compiled source code when

using the explicit compilation model. The Bin directory also contains assemblies from other

projects and any open-source or third-party assemblies you may be using, and these need

to be on the production server. Therefore, as a general rule of thumb, copy the Bin folder

up to production when deploying. (If you are using the automatic compilation model and are

not using any external assemblies then you won't have a Bin directory - that's OK!)

Compilation Model Deploy Markup

Portion File?

Deploy Source

Code File?

Deploy Assemblies

in Bin Directory?

Explicit Compilation Yes No Yes

Automatic

Compilation

Yes Yes Yes

(if it exists)

Table 1: What files you deploy depends on the compilation model used.

http://msdn.microsoft.com/en-us/library/s10awwz0.aspx

Taking a Trip Down Memory Lane
What compilation approach is used depends, in part, on how the ASP.NET application is

managed in Visual Studio. Since .NET's inception in the year 2000 there have been four

different versions of Visual Studio - Visual Studio .NET 2002, Visual Studio .NET 2003,

Visual Studio 2005, and Visual Studio 2008. Visual Studio .NET 2002 and 2003 managed

ASP.NET applications using the Web Application Project model. The key features of the Web

Application Project model are:

 The files that makeup the project are defined in a single project file. Any files not

defined in the project file are not considered part of the web application by Visual

Studio.

 Uses explicit compilation. Building the project compiles the code files within the

project into a single assembly that is placed in the Bin folder.

When Microsoft released Visual Studio 2005 they dropped support for the Web Application

Project model and replaced it with the Web Site Project model. The Web Site Project model

differentiated itself from the Web Application Project model in the following ways:

 Rather than having a single project file that spells out the project's files, the file

system is used instead. In short, any files within the web application folder (or

subfolders) are considered part of the project.

 Building a project in Visual Studio does not create an assembly in the Bin directory.

Instead, building a Web Site Project reports any compile-time errors.

 Support for automatic compilation. Web Site Projects are typically deployed by

copying the markup and source code to the production environment, although the

code can be precompiled (explicit compilation).

Microsoft revived the Web Application Project model when it released Visual Studio 2005

Service Pack 1. However, Visual Web Developer continued to only support the Web Site

Project model. The good news is that this limitation was dropped with Visual Web Developer

2008 Service Pack 1. Today you can create ASP.NET applications in Visual Studio (and

Visual Web Developer) using either the Web Application Project model or the Web Site

Project model. Both models have their pros and cons. Refer to Introduction to Web

Application Projects: Comparing Web Site Projects and Web Application Projects for a

comparison of the two models and to help decide what project model works best for your

situation.

Exploring the Sample Web Application
The download for this tutorial includes an ASP.NET application called Book Reviews. The

website mimics a hobby website someone might create to share their book reviews with the

online community. This ASP.NET web application is very simple and consists of the following

resources:

http://msdn.microsoft.com/en-us/library/aa730880.aspx#wapp_topic5
http://msdn.microsoft.com/en-us/library/aa730880.aspx#wapp_topic5
http://msdn.microsoft.com/en-us/library/aa730880.aspx#wapp_topic5

 Web.config, the application's configuration file.

 A master page (Site.master).

 Seven different ASP.NET pages:

o ~/Default.aspx - the site's homepage.

o ~/About.aspx - an "About the Site" page.

o ~/Fiction/Default.aspx - a page listing the fiction books that have been

reviewed.

 ~/Fiction/Blaze.aspx - a review of the Richard Bachman novel

Blaze.

o ~/Tech/Default.aspx - a page listing the technology books that have been

reviewed.

 ~/Tech/CYOW.aspx - a review of Create Your Own Website.

 ~/Tech/TYASP35.aspx - a review of Teach Yourself ASP.NET 3.5 in 24

Hours.

 Three different CSS files in the Styles folder.

 Four image files - a Powered by ASP.NET logo and images of the covers of the three

reviewed books - all located in the Images folder.

 A Web.sitemap file, which defines the site map and is used to display menus in the

Default.aspx pages in the root directory and Fiction and Tech folders.

 A class file named BasePage.cs that defines a base Page class. This class extends

the functionality of the Page class by automatically setting the Title property based

on the page's position in the site map. In a nutshell, any ASP.NET code-behind class

that extends BasePage (instead of System.Web.UI.Page) will have its title set to a

value depending on its position in the site map. For instance, when viewing the

~/Tech/CYOW.aspx page, the title is set to "Home : Technology : Create Your Own

Website".

Figure 1 shows a screen shot of the Book Reviews website when viewed through a browser.

Here you see the page ~/Tech/TYASP35.aspx, which reviews the book Teach Yourself

ASP.NET 3.5 in 24 Hours. The breadcrumb that spans the top of the page and the menu in

the left column are based on the site map structure defined in Web.sitemap. The image in

the right upper corner is one of the book cover images located in the Images folder. The

website's look and feel are defined via cascading style sheet rules spelled out by the CSS

files in the Styles folder, while the overarching page layout is defined in the master page,

Site.master.

Figure 1: The Book Reviews website offers reviews on an assortment of titles.

This application does not use a database; each review is implemented as a separate web

page in the application. This tutorial (and the next several tutorials) walk through deploying

a web application that does not have a database. However, in a future tutorial we will

enhance this application to store reviews, reader comments, and other information within a

database, and will explore what steps need to be performed to correctly deploy a data-

driven web application.

Note: These tutorials focus on hosting ASP.NET applications with a web host

provider and do not explore ancillary topics like ASP.NET's site map system or using

a base Page class. For more information on these technologies, and for more

background on other topics covered throughout the tutorial, refer to the Further

Reading section at the end of each tutorial.

This tutorial's download has two copies of the web application, each implemented as a

different Visual Studio project type: BookReviewsWAP, a Web Application Project, and

BookReviewsWSP, a Web Site Project. Both projects were created with Visual Web

Developer 2008 SP1 and use ASP.NET 3.5 SP1. To work with these projects start by

unzipping the contents to your Desktop. To open the Web Application Project

(BookReviewsWAP), navigate to the BookReviewsWAP folder and double-click the Solution

file, BookReviewsWAP.sln. To open the Web Site Project (BookReviewsWSP), launch Visual

Studio and then, from the File menu, choose the Open Web Site option, browse to the

BookReviewsWSP folder on your Desktop, and click OK.

The remaining two sections in this tutorial look at what files you will need to copy to the

production environment when deploying the application. The next two tutorials - Deploying

Your Site Using FTP and Deploying Your Site Using Visual Studio - show different ways to

copy these files to a web host provider.

Determining the Files to Deploy for the Web
Application Project
The Web Application Project model uses explicit compilation - the project's source code is

compiled into a single assembly each time you build the application. This compilation

includes the ASP.NET pages' code-behind files (~/Default.aspx.cs, ~/About.aspx.cs, and

so on), as well as the BasePage.cs class. The resulting assembly is named

BookReviewsWAP.dll and is located in the application's Bin directory.

Figure 2 shows the files that make up the Book Reviews Web Application Project.

Figure 2: The Solution Explorer lists the files that comprise the Web Application
Project.

To deploy a ASP.NET application developed using the Web Application Project model start by

building the application so as to explicitly compile the most recent source code into an

assembly. Next, copy the following files to the production environment:

 The files that contain the declarative markup for every ASP.NET page, such as

~/Default.aspx, ~/About.aspx, and so on. Also, copy up the declarative markup for

any master pages and User Controls.

 The assemblies (.dll files) in the Bin folder. You do not need to copy the program

database files (.pdb) or any XML files you may find in the Bin directory.

You do not need to copy the ASP.NET pages' source code files to the production

environment, nor do you need to copy the BasePage.cs class file.

Note: As Figure 2 shows, the BasePage class is implemented as a class file in the

project, placed in folder named HelperClasses. When the project is compiled the

code in the BasePage.cs file is compiled along with the ASP.NET pages' code-behind

classes into the single assembly, BookReviewsWAP.dll. ASP.NET has a special folder

named App_Code that is designed to hold class files for Web Site Projects. The code

in the App_Code folder is automatically compiled and therefore should not be used

with Web Application Projects. Instead, you should place your application's class files

in a normal folder named HelperClasses, or Classes, or something similar.

Alternatively, you can place class files in a separate Class Library project.

In addition to copying the ASP.NET-related markup files and the assembly in the Bin folder,

you also need to copy the client-side support files - the images and CSS files - as well as

the other server-side support files, Web.config and Web.sitemap. These client- and server-

side support files need to be copied to the production environment regardless of whether

you use explicit or automatic compilation.

Determining the Files to Deploy for the Web
Site Project Files
The Web Site Project model supports automatic compilation, a feature not available when

using the Web Application Project model. With explicit compilation you must compile your

project's source code into an assembly and copy that assembly to the production

environment. On the other hand, with automatic compilation you simply copy the source

code to the production environment and it is compiled by the runtime on demand as

needed.

The Build menu option in Visual Studio is present in both Web Application Projects and Web

Site Projects. Building a Web Application Projects compiles the project's source code into a

single assembly located in the Bin directory; building a Web Site Project checks for any

compile-time errors, but does not create any assemblies. To deploy an ASP.NET application

developed using the Web Site Project model all you need to do is copy the appropriate files

to the production environment, but I would encourage you to first build the project to

ensure that there are no compile-time errors.

Figure 3 shows the files that make up the Book Reviews Web Site Project.

Figure 3: The Solution Explorer lists the files that comprise the Web Site Project..

Deploying a Web Site Project involves copying all of the ASP.NET-related files to the

production environment - that includes the markup pages for ASP.NET pages, master pages,

and User Controls, along with their code files. You also need to copy up any class files, such

as BasePage.cs. Note that the BasePage.cs file is located in the App_Code folder, which is a

special ASP.NET folder used in Web Site Projects for class files. The special folder needs to

be created on production, as well, as the class files in the App_Code folder on the

development environment must be copied to the App_Code folder on production.

In addition to copying the ASP.NET markup and source code files, you also need to copy the

client-side support files - the images and CSS files - as well as the other server-side support

files, Web.config and Web.sitemap.

Note: Web Site Projects can also use explicit compilation. A future tutorial will

examine how to explicitly compile a Web Site Project.

Summary
Deploying an ASP.NET application entails copying the necessary files from the development

environment to the production environment. The precise set of files that need to be synced

depends on whether the ASP.NET application's code is explicitly or automatically compiled.

The compilation strategy employed is influenced by whether Visual Studio is configured to

manage the ASP.NET application using the Web Application Project model or the Web Site

Project model.

The Web Application Project model uses explicit compilation and compiles the project's code

into a single assembly in the Bin folder. When deploying the application, the markup portion

of the ASP.NET pages and the contents of the Bin folder must be pushed up to the

production environment; the source code in the application - the code files and code-behind

classes, for example - do not need to be copied to the production environment.

The Web Site Project model uses automatic compilation by default, although it is possible to

explicitly compile a Web Site Project, as we will see in future tutorials. Deploying an

ASP.NET application that uses automatic compilation requires that the markup portion and

source code must be copied to the production environment. The code is automatically

compiled on the production environment when it is requested for the first time.

Now that we have examined what files need to be synced between the development and

production environments we are ready to deploy the Book Reviews application to a web host

provider.

Happy Programming!

Further Reading
For more information on the topics discussed in this tutorial, refer to the following

resources:

 ASP.NET Compilation Overview

 ASP.NET User Controls

 Examining ASP.NET's Site Navigation

 Introduction to Web Application Projects

 Master Page Tutorials

 Sharing Code Between Pages

 Using a Custom Base Class For Your ASP.NET Pages' Code-Behind Classes

 Visual Studio 2005's Web Site Project System: What Is It and Why Did We Do It?

http://msdn.microsoft.com/en-us/library/ms178466.aspx
http://msdn.microsoft.com/en-us/library/y6wb1a0e.aspx
http://aspnet.4guysfromrolla.com/articles/111605-1.aspx
http://msdn.microsoft.com/en-us/library/aa730880.aspx
http://www.asp.net/learn/master-pages/
http://quickstarts.asp.net/QuickStartv20/aspnet/doc/pages/code.aspx
http://aspnet.4guysfromrolla.com/articles/041305-1.aspx
http://weblogs.asp.net/scottgu/archive/2005/08/21/423201.aspx

 Walkthrough: Converting a Web Site Project to a Web Application Project in Visual

Studio

About the Author
Scott Mitchell, author of multiple ASP/ASP.NET books and founder of 4GuysFromRolla.com,

has been working with Microsoft Web technologies since 1998. Scott works as an

independent consultant, trainer, and writer. His latest book is Sams Teach Yourself ASP.NET

3.5 in 24 Hours. Scott can be reached at mitchell@4guysfromrolla.com or via his blog at

http://ScottOnWriting.NET.

Special Thanks To…
Interested in reviewing my upcoming MSDN articles? If so, drop me a line at

mitchell@4GuysFromRolla.com.

http://msdn.microsoft.com/en-us/library/aa983476.aspx
http://msdn.microsoft.com/en-us/library/aa983476.aspx
http://www.4guysfromrolla.com/ScottMitchell.shtml
http://www.amazon.com/exec/obidos/ASIN/0672329972/4guysfromrollaco
http://www.amazon.com/exec/obidos/ASIN/0672329972/4guysfromrollaco
http://www.amazon.com/exec/obidos/ASIN/0672329972/4guysfromrollaco
mailto:mitchell@4guysfromrolla.com
http://scottonwriting.net/
mitchell@4GuysFromRolla.com

