XNA Game Studio 3.1

Copyright© 2017 Microsoft Corporation

The contentin this documentis retired and is no longer updated or supported. Some links might not work. Retired content represents the
latest updated version of this content.

XNA Game Studio 3.1

XNA Game Studio 3.1

Microsoft XNA Game Studio 3.1 is a set of tools based on supported versions of Microsoft Visual Studio tools that allow
students and hobbyists to build games for Microsoft Windows, the Microsoft Xbox 360 video game and entertainment system,
and Microsoft Zune. XNA Game Studio also includes the XNA Framework, which is a set of managed libraries based on the
Microsoft .NET Framework 2.0 that are designed for game development. This documentation collection contains technology
overviews, tutorials, and reference material related to XNA Game Studio.

In This Section
Frequently Asked Questions and Known Issues
Answers some of the most commonly asked questions about using XNA Game Studio.
What's New in XNA Game Studio 3.1
Describes new features and changes in Microsoft XNA Game Studio.
Getting Started with XNA Game Studio
Provides introductory documentation for XNA Game Studio.
Using XNA Game Studio
Describes how to use XNA Game Studio. XNA Game Studio is seamlessly integrated with supported versions of Microsoft
Visual Studio tools, exposing an array of new and updated features for developing 2D and 3D games.
Programming Guide
Describes how to use the XNA Framework to develop games in XNA Game Studio. The XNA Framework is a set of managed
libraries for Windows, the Xbox 360, and Zune. These libraries enable you to be more productive by using a set of unified
class libraries to develop C# games.
XNA Framework Class Library
The XNA Framework class library is a library of classes, interfaces, and value types that are included in XNA Game Studio.
Content Pipeline Class Library
The Content Pipeline class library is a library of classes, interfaces, and value types that are included in XNA Game Studio.
This library provides access to XNA Framework Content Pipeline functionality and is designed to be the foundation on which
Content Pipeline-related applications, components, and controls are built.
White Papers
Provides technical articles and white papers on XNA Game Studio programming topics.
XNA Creators Club Online Web Site
More samples and tutorials, as well as developer community forums, are available at the XNA Creators Club Online Web site.

XNA Game Studio 3.1

Frequently Asked Questions and Known Issues

Answers some of the most commonly asked questions about using XNA Game Studio.

General Questions
3D Graphics

Input

Audio

Math

Storage

General Questions
Is XNA Game Studio 3.1 Supported on Windows 7 Beta?

XNA Game Studio 3.1 has been tested on Windows 7 Beta. Support for the final release of Windows 7 is expected after it
becomes available.

How do I file bugs or make suggestions?

e Sign up for Microsoft Connect at http://connect.microsoft.com and click the XNA Game Studio connection under
available connections.

e After you sign up, you can file a bug or make a suggestion by selecting Feedback on the Connect: XNA Game Studio
page.

Is Visual Studio supported with XNA Game Studio?

Yes. XNA Game Studio is designed to install custom extensions to supported versions of Microsoft Visual Studio tools, such as
Microsoft Visual Studio 2008 Professional Edition, Microsoft Visual Studio 2008 Standard Edition, and Microsoft Visual C#
2008 Express Edition.

For a complete list of supported editions, see Microsoft Visual Studio 2008 and Microsoft Visual C# Express Edition.
Can |l use an earlier version of an XNA Game Studio game project with XNA Game Studio 3.1?

XNA Game Studio 3.1 supports both 3.0 and 3.1 projects, and it includes support for upgrading projects from 3.0 to 3.1.
For more information, please see Upgrading XNA Game Studio Projects.

Can | target Windows, Xbox 360 and/or Zune platforms with the same solution?

Yes. See Developing Cross-Platform Games for details on how to create and manage games for multiple platforms. This
includes information on converting a game project meant for one platform into one to run on another platform, such as a
Windows game project into an Xbox 360 console and/or a Zune game project, keeping all projects in the same solution.

Do I need a connection to Xbox LIVE to play my XNA Framework game?
XNA Game Studio Connect requires a connection to Xbox LIVE at all times.
If | have written a multiplayer game, must the player with the XNA Creators Club membership sign in first?

In the event that multiple people wish to play a local multiplayer XNA Framework game, it is essential that the player with a
valid XNA Creators Club membership sign in first before launching XNA Game Studio Connect. After launch, additional profiles
can then sign in to play.

If multiple profiles on a single Xbox 360 console have a valid XNA Creators Club membership, the connection settings that are
used by XNA Game Studio Connect will always default to player one.

How do I distribute my game?
See Sharing and Distributing Your Game.
My computer cannot connect to my Xbox 360 console. What should | do?

This may indicate issues with your network settings, connection key, file names, or file system. Please see Troubleshooting
Xbox 360 Game Deployment for detailed descriptions of these issues.

My computer cannot connect to my Zune device. What should | do?

This may indicate issues with your physical connection, Zune settings or state. Please see Troubleshooting Zune Game

http://connect.microsoft.com/
https://connect.microsoft.com/feedback/default.aspx?SiteID=226

Deployment for detailed descriptions of these issues.
What do | do to fix the error message "NoSuitableGraphicsDeviceException was unhandled”?

Check the inner exception for more detail on why the graphics device could not be created. XNA Game Studio thoroughly
checks why the graphics device could not be created and reports these checks in the inner exception.

If NoSuitableGraphicsDeviceException does not have an inner exception, it is likely that your graphics card does not have a
DirectX 9 driver, that it does not support Shader Model 1.1, or that the hardware acceleration slider is not set to Full in your
settings.

To determine the version of DirectX installed on the computer
1. Click Start, and then click Run.
2. In the Open box, type dxdiag, and then click OK.
The System tab will display information about the version of DirectX that is installed on the computer.

To set hardware acceleration to Full on Windows XP

1. Right-click the desktop, and then click Properties on the menu.
2. Click the Settings tab, and then click Advanced.

3. Click the Troubleshoot tab.

4. Move the Hardware Acceleration slider until it is set to Full.
5. Click OK, and then click Close.

To set hardware acceleration to Full on Windows Vista

1. Right-click the desktop, and then click Personalize on the displayed context menu.

2. Click Display Settings

3. Click Advanced Settings....

4. Click the Troubleshoot tab.

5. Click the Change Settings button, then move the Hardware Acceleration slider until it is set to Full.

Note that for display adapters that do not allow hardware acceleration to be changed, the Change Settings button may
be disabled.

6. Click OK on the three open dialog boxes.
To determine which shader models are supported

Please see How To: Check for Shader Model 2.0 Support for information about how to programmatically query the shader
capabilities of the graphics card.

How do I playback video with XNA Game Studio?

The XNA Framework supports video playback for purposes such as opening splash and logo scenes, cut scenes, or in-game
video displays.

For more information, please see How To: Play Video and How To: Play a Video in 3D space.
Why does my application work from my local computer, but throw SecurityException when | move it to a shared network folder?

This is a security feature of the Common Language Runtime (CLR). Applications that are run from locations other than the local
system have greater security restrictions than applications run locally. Running XNA Game Studio titles from a shared network
folder is not supported.

What shader models does XNA Game Studio support?

XNA Game Studio supports all the DirectX 9 shader models (versions 1.x, 2.x, and 3.0) on Windows, along with some variants.
For a full list of supported shaders, see the ShaderProfile enumeration.

On Xbox 360, XNA Game Studio supports Shader Model 2.0 and an extended variant of 3.0 customized for the Xbox 360.

Some starter kits may have more restrictive requirements.

Can | use the delay sign feature for my Xbox 360 game?

Use of delay signing can prevent the game from running on the Xbox 360, because the console uses strong name verification.
Under strong name verification, the assemblies will not load until the signing process is complete.

When debugging, sometimes my full-screen game crashes and | am unable to return to Visual Studio. What can | do besides
rebooting my computer?

When a program takes over the graphics device, sometimes it is unable to properly return the graphics device to Windows
after a crash. Try the following:

1. Press the Windows button or CTRL+ESC to bring up the Start menu.

Sometimes this will restore the task bar, allowing you to bring up Visual Studio.
2. Press ALT+TAB to return focus to Visual Studio, then SHIFT+F5 to stop the program you are debugging.

Sometimes you may have to press ALT+TAB a few times to return the focus to Visual Studio before pressing SHIFT+F5.
3. Press CTRL+ALT+DELETE to attempt to bring up the Windows Security window.

If the Windows Security window comes up, you can use Task Manager to end the task running your game and return to
Visual Studio.

If those steps are unsuccessful, the only option might be to reboot the computer.

3D Graphics

How do I create lighting and material effects in XNA Game Studio?

Lights and materials are implemented in XNA Game Studio with effects. To implement lighting or material effects, create an
effect that contains the desired vertex or pixel color transformation. The actions of a simple effect are encapsulated in the
BasicEffect class, which provides functionality for applying lights and materials, and setting world, view, and projection
transformations. You may choose to use BasicEffect for simple functionality or create your own effects using the Effect class.

How do | create my own effects?

For a sample of a simple effect using the Effect class that sets the diffuse color of a vertex, see How To: Create and Apply
Custom Effects.

What is an effect file?

An effect is a combination of vertex and pixel shader code grouped together to encapsulate a particular rendering technique.
Effects can be written in either high-level shader language (HLSL) or assembly code.

An effect file contains effect code. You may see effect files with an .fx extension that contain HLSL code. Effects in HLSL or
assembly code must be compiled to a binary format before they can be used in an application.

For overviews of HLSL and the effect file format, see the HLSL Shaders and Effects DirectX Programming Guides on MSDN.
Complete reference documentation for HLSL, shader ASM, and the effect file format is available in the Direct3D API Reference.

After drawing using Graphics.SpriteBatch, why do my 3D objects draw incorrectly?

By default, SpriteBatch.Begin does not save your current render state, and will change certain render state properties that may
make 3D objects render incorrectly. You can choose to either reset the render state yourself after the call to SpriteBatch.End, or
call SpriteBatch.Begin and pass in SaveStateMode.SaveState, which will restore the render state after sprites are drawn.

Can | use PIX for Windows from the DirectX SDK with an XNA framework game?

Yes. PIX sees XNA Framework games as just another DirectX game and will expose information about the DirectX calls made by
your XNA Framework game, including shader rendering. To use PIX with an XNA Framework game, start a New Experiment in
PIX and enter your game executable path into the Program Path edit box. Then choose the information you want to gather and
push Start Experiment.

For more information on how to use PIX, see the DirectX SDK documentation.

Input

Can | map the Xbox Guide button on the Xbox 360 Controller to an action?
No. The Xbox Guide button is reserved.
My mouse cursor is not visible. How can | make it visible?

Mouse support is available only for Windows. Set the Game.IsMouseVisible property to true.

http://go.microsoft.com/fwlink/?LinkID=77946&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=77947&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=77948&clcid=0x409

The Xbox 360 Controller does not work properly in Windows. How can | correct this?

For the Xbox 360 Controller to work correctly in Windows, you need to install the latest Xbox 360 Controller driver. You can
download this driver from Microsoft Hardware Download Gaming Software.

Audio
Can | load and play a wave file from the Audio API without using the XACT tool?

Yes, make a call to the Play method. For more information, see How To: Play a Sound.
How can | get more information on using XACT?

For an easy guide to adding sound files to an XACT project and playing them, see How To: Add a Sound File to Your Game
Using XACT and How To: Play a Sound Using XACT. For detailed information on how to author audio in the XACT tool,
including information on categories, variables, and other advanced features, see XACT Audio Authoring.

Why does calling GetCue from SoundBank never return a cue?

In your XACT project, you may have set a sound bank property called IncludeCueNames to false. For each sound bank in
your project, this property must be set to true. Open XACT, load your project, and click each of your sound banks in the project
tree view. Check the value of IncludeCueNames in the property pane as you click each sound bank. If any of these values are
set to false, set them to true and rebuild your project.

Math

What coordinate system does the XNA Framework use?

The XNA Framework uses a right-handed coordinate system.

Storage

Why do | get an exception when | try to use Storage classes?

One possible reason is that one of your operating system folders — especially %_NTDrive%\Documents and Settings\ — is
mapped to a network drive. Storing player data or running titles from a network location is not supported in this release.

“Note
For answers to more questions about XNA Game Studio and the XNA Framework, see XNA Creators Club Online.

http://go.microsoft.com/fwlink/?LinkId=86190&clcid=0x409
http://msdn2.microsoft.com/en-us/library/bb172314.aspx
http://creators.xna.com/

XNA Game Studio 3.1

What's New in XNA Game Studio 3.1

Describes new features and changes in Microsoft XNA Game Studio.

o New Framework Features

e New Conceptual Content

e Changes to the Development Environment and Tools
e Changes to the XNA Framework API

New Framework Features

Avatars

Xbox LIVE Party
Video

Audio Enhancements

Content Pipeline Enhancements
Zune Touch-Screen and Accelerometer Support

XNA Game Studio provides support for developing applications that use input gathered from the built-in touch screen and
accelerometer of the Zune HD device.

Concepts
Zune HD Input Overview
Provides an overview of the touch screen and accelerometer input features for the Zune HD device.

Tasks
Platformer: Adding Touch Support
Extends the base Platformer starter kit code by adding touch screen and accelerometer support for input.

Reference
Accelerometer Class

Provides methods for interacting with the 3-axis accelerometer of a Zune device.
AccelerometerCapabilities Structure

Provides properties for accessing the capabilities of an accelerometer.
AccelerometerState Structure

Provides information on the current state of the accelerometer device and a helper function for rotational computation.
TouchCollection Structure

Provides methods and properties for accessing state information for the touch screen of a Zune device.
TouchLocation Structure

Provides methods and properties for interacting with a touch location on a touch screen device.
TouchPanel Class

Provides methods for retrieving touch panel device information.
TouchPanelCapabilities Structure

Provides access to information about the touch pad device.

Avatars

Avatars are three-dimensional animated characters. The Xbox Dashboard uses avatars to represent gamers who are signed in
to the local console, and players in the gamers' friends lists and LIVE Party chats. Titles can also use avatars in games, both to
represent gamers and to represent other characters in the game.

Concepts
Programming with Avatars
Discusses the support for avatars in XNA Game Studio applications targeting the Xbox 360 console.

Tasks
How To: Render and Animate an Avatar Using AvatarRenderer.
Demonstrates how to render and animate a gamer's avatar using the AvatarRenderer class and a standard animation.

Reference
AvatarAnimation

Provides methods and properties for animating an avatar using standard animations (for example, celebrate).
AvatarDescription

Provides access to the methods and properties of the description data for an avatar.

AvatarExpression

Contains the various components of the avatar's face, such as the left and right eyebrows.
AvatarRenderer

Provides properties and methods for rendering a standard avatar.
SignedinGamer.AvatarChanged

Occurs when a gamer's avatar changes.
SignedinGamer.Avatar

Description data for the avatar that represents the gamer.
AvatarAnimationPreset

Defines standard animations for avatars.
AvatarBone

Defines a list of the useful bones of the avatar model.
AvatarEyebrow

Defines the standard animation textures for an avatar's eyebrows.
AvatarEye

Defines the standard animation textures for an avatar's eyes.
AvatarMouth

Defines the standard animation textures for an avatar's mouth.

Xbox LIVE Party

Xbox LIVE Party enables gamers to communicate, even when each gamer is not playing the same game in the same
multiplayer session. LIVE Party supports up to an eight-way group voice chat for gamers. It does not matter what each gamer
is doing on his or her Xbox 360 at the time—playing games, watching videos, listening to music, or browsing the Marketplace.
LIVE Party chat keeps gamers connected before, during, and after a gameplay session, persisting across title switches.
Furthermore, LIVE Party chat provides easy and quick ways for gamers to get into multiplayer games together.

Tasks
How To: Add LIVE Party Support
Describes how to add LIVE Party support to Xbox LIVE Indie Games.

Reference
LocalNetworkGamer.SendPartylnvites

Sends game invitations to all party members that are not in the current game session.
SignedinGamer.PartySize

Gets the current party size.
LocalNetworkGamer.SendPartylnvites

Sends game invitations to all party members that are not in the current game session.
Guide.ShowPartySessions
Guide.ShowParty

Video

XNA Game Studio now supports the ability to play back video that can be used for such purposes as opening splash and logo
scenes, cut scenes, or in-game video displays.

This set of XNA Framework APIs supports the following features:

Full screen video playback

Video playback to simple textures in game

Control of playback such as pause/resume and stop

Retrieve properties of the video, such as playback time, size, and frame rate

Determine the type and usage of the audio track, such as if it has music, dialog, or music and dialog

Play back multiple video streams at the same time

Tasks
How To: Play Video
Demonstrates how to use the VideoPlayer to play back videos.
How To: Play a Video in 3D space
Demonstrates how to use the VideoPlayer to playback videos on the surface of a quad.

Reference
Video
Represents a video.
VideoPlayer
Provides methods and properties to playback, pause, resume, and stop video. VideoPlayer also exposes repeat, volume, and

play position information.
VideoSoundtrackType
Type of sounds in a video

Audio Enhancements

This version of XNA Game Studio has a new usage pattern of SoundEffect.Play. Sound instances created by Play calls are
disposed automatically when playback ends, and SoundEffect.Play returns a Boolean to indicate success or failure.

Tasks
How To: Apply Basic 3D Positional Effects to a SoundEffect
Demonstrates how to apply 3D positioning effects to SoundEffects.
How To: Change the Pitch or Volume of a Sound
Demonstrates how to change pitch and volume of a playing sound.

Content Pipeline Enhancements

This changes the semantics of the Content Pipeline, making it much easier to add custom types.

Reference
ContentSerializerRuntimeTypeAttribute

A custom Attribute that specifies the corresponding run-time type of this object.
ContentSerializerTypeVersionAttribute

A custom Attribute that specifies the corresponding run-time type version of this object.
ContentTypeWriter.CanDeserializelntoExistingObject

Determines if deserialization into an existing object is possible.

New Conceptual Content
Graphics
The XNA Rendering Pipeline
Provides a high-level view of the graphics rendering pipeline for XNA games.
What Is a Model Bone?
A model bone is a matrix that represents the position of a mesh relative to other bones in a 3D model.

Changes to the Development Environment and Tools
Visual Studio Changes

XNA Game Studio 3.1 supports both 3.0 and 3.1 projects, and it includes support for upgrading projects from 3.0 to 3.1.

Tasks
Upgrading XNA Game Studio Projects
Describes supported and unsupported XNA Game Studio project versions, provides guides for upgrade scenarios, and offers
advice on troubleshooting upgrade issues.
Upgrade Guide: XNA Game Studio 3.0 to XNA Game Studio 3.1
Describes how to upgrade your XNA Game Studio 3.0 game to XNA Game Studio 3.1 in Microsoft Visual Studio 2008.
Troubleshooting Upgrades
Describes common issues with upgrading XNA Game Studio projects.

XACT Update
XNA Game Studio 3.1 includes support for XACT3. XACT 3 has a number of new features, including the following.
Ability to enable a filter on every track.

XACT3 now exposes a filter on every track, letting the sound designer set the filter type and parameters (filter width and the
cutoff/center frequency). The filter can be set directly on a track or it can be attached to an RPC. Sound designers either can set
specific filter parameters or they can specify a range. When setting a range, they can select a random value for the parameter
each time the track is played.

Support for the x\WMA compression format.

XACT3 now supports X\WMA decoding in software on both Xbox 360 and Windows. XWMA uses the WMA bitstream format in

a lightweight wrapper, and it can provide 1.5-2x the compression compared with XMA at similar quality. X\WMA is very useful

for types of content, such as dialog or music, for which you can afford a small CPU hit to achieve much greater compression. A
quality setting similar to XMA's allows you to increase or decrease compression to adjust sound performance.

Changes to the XNA Framework API

Microsoft.Xna.Framework.Content
ContentSerializerRuntimeTypeAttribute

http://msdn.microsoft.com/en-us/library/system.attribute.aspx
http://msdn.microsoft.com/en-us/library/system.attribute.aspx

A custom Attribute that specifies the corresponding run-time type of this object.
ContentSerializerTypeVersionAttribute
A custom Attribute that specifies the corresponding run-time type version of this object.

Microsoft.Xna.Framework.Content.Pipeline.Serialization.Compiler
ContentTypeWriter.CanDeserializelntoExistingObject
Determines if deserialization into an existing object is possible.

Microsoft.Xna.Framework.GamerServices
AvatarAnimation

Provides methods and properties for animating an avatar using standard animations (for example, celebrate).
AvatarDescription

Provides access to the methods and properties of the description data for an avatar.
AvatarExpression

Contains the various components of the avatar's face, such as the left and right eyebrows.
AvatarRenderer

Provides properties and methods for rendering a standard avatar.
SignedinGamer.AvatarChanged

Occurs when a gamer's avatar changes.
SignedinGamer.Avatar

Description data for the avatar that represents the gamer.
SignedIinGamer.PartySize

Gets the current party size.
AvatarAnimationPreset

Defines standard animations for avatars.
AvatarBone

Defines a list of the useful bones of the avatar model.
AvatarEyebrow

Defines the standard animation textures for an avatar's eyebrows.
AvatarEye

Defines the standard animation textures for an avatar's eyes.
AvatarMouth

Defines the standard animation textures for an avatar's mouth.
Guide.ShowPartySessions
Guide.ShowParty

Microsoft.Xna.Framework.Media
Video
Represents a video.
VideoPlayer
Provides methods and properties to playback, pause, resume, and stop video. VideoPlayer also exposes repeat, volume, and
play position information.
VideoSoundtrackType
Type of sounds in a video

Microsoft.Xna.Framework.Net
LocalNetworkGamer.SendPartylnvites
Sends game invitations to all party members that are not in the current game session.

Microsoft.Xna.Framework.Storage
StorageDevice.DeleteContainer

http://msdn.microsoft.com/en-us/library/system.attribute.aspx
http://msdn.microsoft.com/en-us/library/system.attribute.aspx

XNA Game Studio 3.1

Getting Started with XNA Game Studio

XNA Game Studio is an integrated development environment designed to make it easier to develop games for Microsoft
Windows, Xbox 360 platforms, and Zune devices. XNA Game Studio extends supported versions of Microsoft Visual Studio
tools to support the XNA Framework. The XNA Framework is a managed-code class library that contains functionality targeted
specifically to game development tasks. In addition, XNA Game Studio includes tools for incorporating graphical and audio
content into your game.

The XNA Framework is designed to be similar to the .NET Framework in terms of its design patterns and idioms. With XNA
Game Studio, you are able to incorporate functionality in your game from both the XNA Framework and the .NET Framework.
Use the XNA Framework for game-specific tasks such as graphics rendering and managing input, and use the .NET Framework
for more general programming tasks.

In This Section
Documentation Roadmap
Describes the documentation for XNA Game Studio.
Setup and System Requirements
Describes which operating systems are supported by XNA Game Studio as well as additional software required to use XNA
Game Studio.
Connecting to Your Xbox 360 Console with XNA Game Studio 3.1
Describes how to use XNA Game Studio Connect to connect and deploy a game to your Xbox 360 console.
Connecting to your Zune Device with XNA Game Studio
Describes the steps necessary to connect and deploy a game to your Zune device using XNA Game Studio Connect.
Your First Game: Microsoft XNA Game Studio in 2D
Describes the steps necessary to create a simple sprite-based game by using XNA Game Studio.
Going Beyond: XNA Game Studio in 3D
This multipart tutorial takes you through the first steps of creating your own 3D game using XNA Game Studio.
Upgrading XNA Game Studio Projects
Describes supported and unsupported XNA Game Studio project versions, provides guides for upgrade scenarios, and offers
advice on troubleshooting upgrade issues.
Using XNA Framework Starter Kits
Describes how to create an instance of an XNA Framework Starter Kit.
Starter Kit: Platformer
Describes the Platformer Starter Kit.
Support Options and Additional Resources
Describes additional resources for developing with the XNA Framework.

XNA Game Studio 3.1

Documentation Roadmap

Describes the documentation for XNA Game Studio.

The XNA Game Studio documentation is divided into the following major sections:

e Getting Started with XNA Game Studio: This section describes how to set up and use XNA Game Studio with Microsoft
Visual Studio 2008 and the .NET Framework. It includes information about setting up your Xbox 360 or Zune device to

work with Game Studio.

This section links to many topics in the Using XNA Game Studio, Programming Guide, and Reference sections.

Using XNA Game Studio: This section provides greater detail about working with the Visual Studio Tools and IDE,
including how to set up projects for specific platforms, how to work with cross-platform titles, and how to share and

distribute your game.

Programming Guide: This section provides detail about game programming with Game Studio. It describes how to use
the XNA Framework classes to implement different features of your game. It is divided into sections based on the feature
type, such as graphics, audio, networking, and LIVE programming.

Reference: The reference section provides even greater detail about the XNA Framework. It is divided into two sub-
sections, the XNA Framework Class Library and Content Pipeline Class Library.

The XNA Game Studio documentation builds upon the existing documentation provided with Microsoft Visual Studio 2008 and
the Microsoft NET Framework. It links to these sets of documentation, where appropriate. You should have access to both of

these

sets of documentation.

The following diagram shows the relationship between these sections of the documentation, the Visual Studio 2008
documentation, and Microsoft NET Framework:

XNA Game Studio
Documentation

Getting Started with

XNA Game Studio

-
Tools

Using XNA Game Studio

Y

with Visual Studio 2008

~

Visual Studio 2008

"I—?Iatform

Programming Guide: How to
develop with the XNA
Framewaork

Documentation

Y

XNA Framework Reference

.NET Framework

Content Pipeline Reference

Documentation

Quick Links to XNA Game Studio Documentation

Getting Started with XNA Game Studio
How to Develop with the XNA Framework

XNA Framework Class Reference

.NET Compact Framework for Xbox 360
Visual C# Developer Center on MSDN
.NET Framework Class Reference on MSDN

http://go.microsoft.com/fwlink/?LinkID=78074&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=78214&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=78074&clcid=0x409

XNA Game Studio 3.1

Setup and System Requirements

Describes which operating systems are supported by XNA Game Studio as well as additional software required to use XNA
Game Studio.

In This Section
Supported Operating Systems and Hardware

Describes the operating systems that fully support XNA Game Studio, and the computing hardware you need to use XNA
Game Studio.

Required Software
Describes the software required to use XNA Game Studio 3.1.
How To: Configure Help to Use Online Content

Describes how to configure the Visual Studio Help system to use online Help content if such content is available.
Third-Party Firewall Settings

Describes required settings for third-party firewall products.

XNA Game Studio 3.1

Supported Operating Systems and Hardware

Describes the operating systems that fully support XNA Game Studio, and the computing hardware you need to use XNA
Game Studio.

Supported Operating Systems
The following operating systems fully support XNA Game Studio.

Operating system|Supported versions
Windows XP e Home Edition

e Professional
o Media Center Edition
e Tablet PC Edition

Windows Vista Home Basic
Home Premium
Business

Enterprise

Ultimate

Remarks

o XNA Game Studio 3.1 has been tested on Windows 7 Release Candidate. Support for the Windows 7 operating system is
expected after the final release.

e Windows Vista Service Pack 1 (or the latest service pack) is supported, but is not required, for XNA Game Studio.

e Windows XP requires, at a minimum, Service Pack 2.

e Although XNA Game Studio itself is available only in English and Japanese, it is supported under any of the available
language settings on Windows.

e Administrator permissions are not required to run XNA Game Studio, but they are to install it. For Windows Vista,
elevated administrator permissions are required.

o Although the setup program for XNA Game Studio will complete on the Windows Server 2003 and Windows Server
2008 operating systems, XNA Game Studio is not officially supported on these operating systems, and the XNA Game
Studio software may not work as expected.

Hardware Requirements

To run XNA Framework games on a computer running a Windows operating system, you need a graphics card that supports,
at a minimum, Shader Model 1.1, and DirectX 9.0c. We recommend using a graphics card that supports Shader Model 2.0
because some samples and starter kits may require it.

Ensure your graphics card is using the latest driver. Check with your hardware vendor or access Microsoft Update to find the
latest version of a driver.

Other hardware requirements for XNA Game Studio are identical to those for Visual Studio 2008. For more information, see
the Visual Studio documentation.

http://update.microsoft.com/
http://go.microsoft.com/fwlink/?LinkId=96269&clcid=0x409

XNA Game Studio 3.1

Required Software

Describes the software required to use XNA Game Studio 3.1.

XNA Game Studio 3.1

To download XNA Game Studio 3.1 itself, go to the Creators Club Online.

FImportant

You must uninstall previous versions of XNA Game Studio before you install XNA Game Studio 3.1. However, you can install
multiple versions of the XNA Framework Redistributable at the same time.

Visual Studio 2008

XNA Game Studio leverages the Visual Studio 2008 development environment, extending it for game development. You can
use XNA Game Studio with any supported versions of Visual Studio 2008 tools. Click one of the following links for more
information about using XNA Game Studio with Visual Studio 2008.

e Microsoft Visual C# Express Edition
e Microsoft Visual Studio 2008

¥Note

Only members of the Visual Studio 2008 product line support XNA Game Studio 3.1. XNA Game Studio 3.1 is not compatible
with Visual Studio 2005 or any previous editions.

XNA Creators Club

To develop games for Xbox 360, you need a membership in the XNA Creators Club. You can get an XNA Creators Club
membership from Xbox LIVE Marketplace, or at XNA Creators Club Online: Sign in and Membership.

XNA Creators Club and Xbox LIVE Membership Requirements

There are two types of online multiplayer games available when you create a networked game with XNA Game Studio: system
link game sessions and LIVE sessions. These two forms of online multiplayer gaming describe whether the multiplayer gaming
session is on the local area network (system link games), or if the gaming session is advertised and found through the LIVE
service. With system link games, you can search the local area network to find the gaming sessions. With LIVE sessions, you
can use the LIVE service to find available game sessions. Use the searchProperties argument of NetworkSession.Find to specify
the parameters used to search for an available game session—a game session that uses either system or the LIVE service.

Developing and testing a networked game requires at least two machines, but you only need one Xbox 360 console and one
Creators Club membership to test network code for the Xbox 360. This is because XNA Framework supports cross-platform
system links so developers can run one instance of a game on an Xbox 360, and a second on a Windows-based computer. This
functionality helps creators debug their titles without having to purchase a second console. It is also possible for more than
one Windows-based development computer to connect several machines in a system link session without any memberships
required.

Memberships are required for a player on a Windows-based computer and an Xbox 360 console in a network session,
depending on the session type that has been created.

Xbox 360 console Windows-based developmen [Zune
t computer
Run an XNA Framework Game LIVE Silver membership + Premi|No memberships required No member
um XNA Creators Club member ships requir
ship ed
Use System Link for Local Area Network ga|LIVE Silver membership + Premi|No memberships required No member
meplay um XNA Creators Club member ships requir
ship ed
Sign in to Xbox LIVE and Games for Windo |LIVE Silver membership + Premi|LIVE Silver membership + Premi[Not availabl
ws - LIVE Servers um XNA Creators Club member [um XNA Creators Club member |e on Zune
ship ship

http://go.microsoft.com/fwlink/?LinkId=129655&clcid=0x409
https://profile.xna.com/register.aspx
http://creators.xna.com/en-us/membership

Use LIVE to connect to other machines ove [LIVE Gold membership + Premi |LIVE Silver membership + Premi|Not availabl
r the Internet while the game is in develop [um XNA Creators Club member [um XNA Creators Club member |e on Zune
ment ship ship

ACaution

XNA Framework components that interact with Games for Windows - LIVE require an XNA Creators Club membership. If for
any reason a LIVE profile without a Creators Club membership is set to auto sign in to a Windows-based computer, the game
will be unable to connect to the LIVE service. Furthermore, the XNA Framework gamer services components, including the G
uide, will be unavailable. To disable auto sign in for a LIVE profile on a Windows-based computer, disconnect from the netwo
rk, launch an XNA Framework game, and then open the Guide.

Please note the following.

e [f you are running an XNA Framework Game on the Microsoft Windows operating system on a dual-core AMD
processor, and the game contacts the Xbox LIVE servers or otherwise uses the Gamer Services extensions, you may
experience unpredictable behavior such as a hanging of the game process. To work around this issue, you should install
the AMD Dual-Core Optimizer from AMD on the computer on which you are running the game. Currently, the
optimizer is available at the following location.

AMD Dual-Core Optimizer

Zune Client Version

When developing games for Zune, the Zune client needs to be running at least the 3.0 version of the firmware.

Additional Required Software Installed by XNA Game Studio 3.1 Setup
The XNA Game Studio Setup program also installs the following required software:

DirectX Runtime

XNA Game Studio Setup installs the DirectX runtime, which is required to use the XNA Framework Game API.

Microsoft Cross-Platform Audio Creation Tool

XNA Game Studio Setup installs multiple versions of the Microsoft Cross-Platform Audio Creation Tool (XACT). You can use
XACT to author audio content for your game. Games written using the 3.1 XNA Framework are required to use XACT 3
projects, which are not backwards compatible. Games written using the 3.0 XNA Framework are required to use XACT 2
projects. For more information about upgrading your projects in regard to XACT, Upgrading XNA Game Studio Projects.

Games for Windows - LIVE

XNA Game Studio Setup installs Microsoft Games for Windows — LIVE Redistributable, version 2.0.687.0. This software
provides support for various gamer services such as retrieving player preferences for local accounts, as well as
programmatically displaying various LIVE Guide user interface screens.

http://go.microsoft.com/fwlink/?LinkId=103626&clcid=0x409

XNA Game Studio 3.1

Microsoft Visual C# Express Edition

Describes how to use XNA Game Studio with Microsoft Visual C# Express Edition.

Microsoft Visual C# 2008 Express Edition

XNA Game Studio leverages the Visual C# Express development environment, extending it for game development. You can
install Visual C# Express from the Microsoft Express Editions Web site.

Microsoft .NET Framework 3.5

XNA Game Studio requires the Microsoft .NET Framework 3.5. The setup program for Microsoft Visual C# 2008 Express Edition
will install the NET Framework if it is not already installed on your computer. You can also install the .NET Framework from the
Microsoft .NET Framework Developer Center.

http://go.microsoft.com/fwlink/?LinkID=114563&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=118663&clcid=0x409

XNA Game Studio 3.1

Microsoft Visual Studio 2008

Describes how to use XNA Game Studio with Microsoft Visual Studio 2008.

Microsoft Visual Studio 2008

XNA Game Studio leverages the Microsoft Visual Studio 2008 development environment, extending it for game development.
XNA Game Studio works with any of the following Visual Studio 2008 products.

e Visual Studio 2008 Standard Edition

e Visual Studio 2008 Professional Edition

e Visual Studio Team System 2008 Architecture Edition
e Visual Studio Team System 2008 Database Edition

e Visual Studio Team System 2008 Development Edition
e Visual Studio Team System 2008 Test Edition
e Visual Studio Team System 2008 Team Suite

Microsoft .NET Framework 3.5
XNA Game Studio requires that you install the NET Framework 3.5.

The Setup program for Microsoft Visual Studio 2008 installs the .NET Framework 3.5 if it is not already installed on your
computer. You can also install the NET Framework from the Microsoft NET Framework Developer Center.

http://go.microsoft.com/fwlink/?LinkID=118663&clcid=0x409

XNA Game Studio 3.1

How To: Configure Help to Use Online Content

Describes how to configure the Visual Studio Help system to use online Help content if such content is available.

Configuring Visual Studio Help

To configure Visual Studio Help to use online content

1.

On the Tools menu, click Options.

The Options dialog box appears.

In the tree view control in the left pane of the Options dialog box, click the Help node beneath the Environment node.
You may need to check the Show all settings checkbox to make the Help node visible.

Click the Online node beneath the Help node.

You may need to click the plus sign next to the Help node to make the Online node visible.

. In the set of options labeled When loading Help content, select Try online first, then local.

Click OK.

XNA Game Studio 3.1

Third-Party Firewall Settings

The XNA Game Studio setup program adjusts Windows Firewall settings to allow the XnaTransX.exe application to send and
receive network traffic. This is necessary for your Windows-based development computer to communicate with the Xbox 360
console. Similarly, the setup program adjusts Windows Firewall settings for the XnaLiveProxy.exe application to enable
network communications for networked games.

If you are using a firewall product other than Windows Firewall—that is, a third-party firewall setting—you will need to
configure this firewall to allow XnaTransX.exe and XnaLiveProxy.exe to send and receive network traffic. Some firewall products
enable you to unblock entire applications, some enable you to unblock specific ports, and some, such as Windows Firewall,
enable you to do both.

To unblock the entire XnaTransX.exe application, specify the following executable:

<install dir>\Common Files\Microsoft Shared\XNA\XnaTrans\v3.l\XnaTransX.exe

For the XnaLiveProxy.exe application, specify the following executable:

<install dir>\Microsoft XNA\XNA Game Studiol\v3.1\Bin\XnalLiveProxy.exe

¥Note

In the above paths, <install dir> refers to the directory beneath which XNA Game Studio is installed. By default, this directory
is %ProgramFiles%.

To unblock specific ports, configure your firewall using the following information.

Application Port Protocol|Inbound or Outbound
XnaTransX.exe |1001|TCP outbound
XnaTransX.exe [1001(UDP inbound/outbound
XnaTransX.exe (3825(UDP inbound/outbound
XnaTransX.exe (3835(UDP inbound/outbound
XnaLiveProxy.exe|1000{UDP inbound/outbound
XnaLiveProxy.exe|3074|UDP inbound/outbound

Firewall Settings for Connectivity to Xbox LIVE

You may also need to unblock ports on firewall devices between your Xbox 360 console and the external network to allow the
console to connect to the Xbox LIVE service. For more information, see the following Knowledge Base article: Xbox 360: Port
settings for Xbox LIVE

http://support.microsoft.com/kb/908874

XNA Game Studio 3.1

Connecting to Your Xbox 360 Console with XNA Game Studio
3.1

Describes how to use XNA Game Studio Connect to connect and deploy a game to your Xbox 360 console.

XNA Game Studio makes it easy for you to create games for both your Windows-based computer and your Xbox 360 console.
By joining the XNA Creators Club as a premium member and downloading XNA Game Studio, you can begin developing for
your Windows-based computer. To begin developing for Xbox 360, follow these additional steps.

This guide assumes you have installed a supported version of Visual Studio tools and XNA Game Studio already. You must
install these products before you connect to an Xbox 360 console. For information about installing these products, see Setup
and System Requirements.

Step 1:Sign In to Xbox LIVE

Step 2: Download XNA Game Studio Connect

Step 3: Connect Your Xbox 360 Console and Windows-Based Computer
Step 4: Create and Deploy an Xbox 360 Project

What's Next?

Step 1: Sign In to Xbox LIVE

Turn on your Xbox 360 console, and sign in to Xbox LIVE. At the very least, you will need a Silver Xbox LIVE membership, an
XNA Creators Club premium membership, and a hard drive for your Xbox 360 console to be able to develop games for Xbox
360 using XNA Game Studio. While you are in XNA Game Studio Connect or playing an XNA Game Studio game, you need to
be connected to Xbox LIVE.

Connections between your Xbox 360 console and XNA Game Studio require a premium membership in XNA Creators Club. To
sign up, visit the XNA Creators Club Web site.
Step 2: Download XNA Game Studio Connect

You must download XNA Game Studio Connect from Xbox LIVE Marketplace, and install it on the Xbox 360 console. Go to the
Xbox LIVE Marketplace to find XNA Game Studio Connect. To download XNA Game Studio Connect, choose one of the
following options:

Browsing to All Games using the Guide
e From the Guide, navigate to the Marketplace blade.

e Select Game Marketplace, then All Games. This brings you to the All Games screen.
e Continue with Downloading XNA Game Studio Connect from the All Games screen, below.

Browsing to All Games using the New Xbox Experience (NXE) Ul

e Navigate to Game Marketplace, and select Explore Game Content. Press A on the controller.
e Select Browse, and press A. This brings you to the All Games screen.
e Continue with Downloading XNA Game Studio Connect from the All Games screen, below.

http://creators.xna.com/

All Games

Title

™ Gelect Back ™ Marketplace

Once you've arrived at the All Games screen from either the Guide or NXE, use the following procedure to download XNA
Game Studio Connect.

Downloading XNA Game Studio Connect from the All Games screen

e From All Games, browse to the Genre screen, and select Other.

“Note
You can also do this by scrolling down the Title list, and selecting X.

e Scroll to XNA Creators Club, and press A.
e From the XNA Creators Club pane, select All Downloads, then XNA Game Studio Connect.
e Press the A controller button, and select Confirm Download to begin downloading.

Step 3: Connect Your Xbox 360 Console and Windows-Based Computer

When you develop games for Xbox 360, you develop them on your Windows-based computer, then transfer them over your
local network to your Xbox 360 console. This requires that your Windows-based computer and Xbox 360 console share the
same subnet. Most home networking layouts support this configuration. If your console and computer share a router or hub, it
is likely that they share the same subnet.

With your computer and console on the same subnet, follow these steps to set up a connection between your computer and
your console.

Step 3A. On Your Xbox 360 Console, Generate a Connection Key:
1. From the Xbox Dashboard, go to My Xbox, select Game Library, and press the A controller button.

Also, you have the option of using the Xbox Guide: select the Games tab, then Game Library, and press the A controller
button.

2. From the Game Library, go to the Collections tab, select Community Games, and press A.
3. Select XNA Game Studio Connect, and press A.
4. Select Launch, and press A.

The XNA Game Studio Connect screen appears.

XNA Game Studio Connect

5. If the XNA Game Studio Connect screen displays a connection key, continue to step 3B.
If the connection key does not appear, you can generate a new key by pressing the X controller button.

If the connection key does not appear, the Xbox console could already be connected to this Windows-based computer.
XNA Game Studio allows multiple connection keys for multiple users on multiple computers. For more information, see
Using XNA Game Studio Device Center. To add a new connection key to the list of connection keys recognized by this
Xbox 360 console, press X. To reset all connection keys and generate a new connection key to connect to this Xbox 360
console, press Y.

Step 3B. On Your Windows-Based Computer, Enter the Connection Key and Initiate the Connection

1. From the Start menu, select Programs, select XNA Game Studio 3.1, and launch the XNA Game Studio Device
Center.

$Note

You can also use the XNA Game Studio Device Management toolbar to directly launch XNA Game Studio Device Ce
nter and add a device. Visual Studio 2008 displays the XNA Game Studio Device Management toolbar by default w
hen an Xbox 360 game is open in Visual Studio.

2. Click Add Device.
!_. XNA Game Studio Device Center |E|M|

Xy Game Studio Device Center

e XMNA Game Studio Device Center lets you manage and connect to multiple XMNA Game Studic
ICEs,

= Add Device (7]

3. Select the type of device you're adding. In this case, click Xbox 360.

Choose the XNA Game Studio Device type you wish to add.

Zune

4. Enter a name for this Xbox 360 console, and click Next.

Give your Xbox 360 console a name.

Please choose a name for your Xbox 360 censole, This will be used to identify the Xbox 360 console
in the XMA Game Studio Device Center,

Xbox 360 MName:
RecRoom360

This name serves only to identify your Xbox 360 console to XNA Game Studio. The name does not need to correspond to
any other computer or Xbox 360 name.

5. Enter the connection key that is displayed in XNA Game Studio Connect on the Xbox 360.

Type your Connection Key

You can find the Connection Key displayed on the XMA Game Studio Connect screen on your Xbox
360 console.

The Connection Key locks similar to this:

Type your connection key (dashes will be added automatically):
QCBB3-¥NCFK-D2FJE-2UU38-8CTWE

“Note

The connection key might be somewhat hard to read on a standard television screen. The following guide should help
you identify specific letters and numbers:

The number "1" has a small tick at its top left; the capital letter "I" does not.
The capital letter "B" has a straight line on the left; the number "8" does not.

The number "3," sometimes mistaken for a "B," also has no straight side on the left.

The number "0" and the capital letter "O" are so similar that XNA Game Studio Connect treats these characters as
the same. Therefore, the number "0" and the capital letter "O" are interchangeable.

If the connection key is still too difficult to read, press X on the Xbox 360 controller to generate a new connection key.

6. Once you are sure that the two keys match, click Next on the XNA Game Studio Devices dialog box.
XNA Game Studio Device Center will test the connection with the Xbox 360 console.

If the connection is successful, the XNA Game Studio Device Center on the Windows-based computer will display
"Successfully connected to the Xbox 360 console." XNA Game Studio Connect on the Xbox 360 console will display
"Waiting for computer connection," followed by the name you have chosen for your Xbox 360 console in the XNA Game
Studio Device Center.

If the XNA Game Studio Device Center fails to connect to the Xbox 360 console, click Try again to edit the connection key
and try again. If the connection continues to fail, make a careful note of the error message displayed at the bottom of the
XNA Game Studio Devices dialog box. This error message can help you or a technician diagnose the cause of the
connection failure, if it did not result from mismatched keys. For more information about troubleshooting a failed
connection, see Troubleshooting Xbox 360 Game Deployment.

7. Click Finish.

The name you gave to your Xbox 360 console will be listed in the XNA Game Studio Device Center. From now on, your
computer and your console can connect to each other easily.

Step 4: Create and Deploy an Xbox 360 Project
Try out the Xbox 360 console by deploying a simple, blank XNA Game Studio game to it.

1. On your Windows-based computer, at the main Visual Studio screen, select the File menu, and then click New Project.

2. From Project types, expand the Visual C#, and click XNA Game Studio 3.1.
3. In Templates, select Xbox 360 Game (3.1), and then click OK.

At this point, you should bring up XNA Game Studio Connect to prepare the Xbox 360 console to receive content from
the Windows-based computer.

4. From the Xbox Dashboard, go to My Xbox, select Game Library, and press A on the controller.
You can also use the Guide: select the Games tab, select Game Library, and then press A.

5. From the Game Library, go to the Collections tab, select Community Games, and press A.

6. Select XNA Game Studio Connect, and press A.

7. Select Launch, and press A.

The XNA Game Studio Connect screen appears.

XNA Game Studio Connect

other Computer @ Reset All Conn

8. On your Windows-based computer, with your new project open, press the F5 key.
The project will build, deploy necessary files to the Xbox 360 console, and run.

At this point, you should see a simple display on your console—just a blue screen. If you see this screen, you have
successfully deployed a game to your Xbox 360 console. You can now deploy and play any game you create on your
console.

9. To stop the game and return to the main screen of XNA Game Studio Connect, either press the BACK button on your
Xbox 360 gamepad, or press SHIFT+F5 to stop debugging on your computer.

If the deployment fails, you may need to check your network settings. See Troubleshooting Xbox 360 Game Deployment
for more information.

What's Next?

You have successfully deployed your first Xbox 360 game. This game, like every game you deploy, will now appear in the
Recent Games tab in the Game Library on your Xbox 360 console. It can also be found by selecting Community Games in
the Collections tab in your Game Library. Using Game Library, you can play any of the games you have deployed to your
Xbox 360 console. From Game Library, you can also delete games you do not want to keep.

Once your game is loaded onto the hard disk so that it appears in the Recent Games tab of the Game Library on your Xbox
360 console, it can be transferred to a memory unit if one is installed. From System Settings on your Xbox 360 console, the
Memory selection enables you to transfer a game from the hard disk to the memory unit. The memory unit can then be
installed on any other Xbox 360 console and played or copied.

ZImportant

Only XNA Framework games built and deployed with XNA Game Studio 3.0 and later can be transferred to a memory unit. If
you wish to transfer a game developed under an earlier version of XNA Game Studio, you must convert, build, and deploy th
e project using the current version of XNA Game Studio.

A good next step would be to try some of the tutorials. The code used in the tutorials works on both Windows-based
computers and on the Xbox 360 console, so you can try either platform to get a feel for how to develop for both. Start with
Tutorial 1: Displaying a 3D Model on the Screen for your first taste of game development.

See Also Troubleshooting Xbox 360 Game Deployment
Deploying an Xbox 360 Game

Using XNA Game Studio Device Center

Third-Party Firewall Settings

XNA Game Studio 3.1

Connecting to your Zune Device with XNA Game Studio

Describes the steps necessary to connect and deploy a game to your Zune device using XNA Game Studio Connect.

XNA Game Studio allows you to easily create games for your Zune device, Windows-based computer, and Xbox 360 console.
Follow this guide to develop games for the Zune platform topic.

¥Note

This guide assumes you have already installed a supported version of Visual Studio and XNA Game Studio. You must install t
hese products before you connect to a Zune device. For information about installing these products, see Setup and System R
equirements.

Step 1: Update Your Zune Device Firmware

Step 2: Add Your Zune in the XNA Game Studio Device Center
Step 3: Create and Deploy a Zune Project

What's Next?

Step 1: Update Your Zune Device Firmware

XNA Game Studio is supported on Zune devices running firmware version 3.0 or later. If your device does not already have
firmware version 3.0 or later, you'll need to update your Zune firmware to the most current version.

To determine Zune device firmware version

e On the Zune device, select settings | about | zune.

The firmware version will be displayed.
If you have a version older than 3.0, you'll need to update your Zune.
To update your Zune device

1. Make sure you have the current version of the Zune software installed on your desktop computer.

e [f you are a new Zune customer, visit http://www.zune.net/setup and install the Zune software for your computer.

e [f you already have the Zune software installed on your computer, check for updates. From the Zune software, click
Settings | GENERAL | CHECK FOR UPDATES.

2. Use the Zune sync cable to connect the Zune device to your computer. Connect the sync cable to a USB port on the
computer, not a USB hub.

$Note

If the Zune device battery is critically low, we recommend that you charge your Zune device before you continue. For m
ore information about how to charge your Zune device, see the following Microsoft Knowledge Base article: How to cha
rge the battery in your Zune device.

3. Open the Zune software on your desktop computer while the Zune device is still connected to your computer.

The Zune software searches the Internet for the latest version of the firmware. If a newer version of the Zune device
firmware is available, you will get a notice to update your device.

$Note

Do not move or disconnect the Zune device until the update is complete. The update may take several minutes. During
this time, the Zune device may restart several times. Please be patient.

You can also manually check for new device updates, if desired. To do so: from the Zune software on your desktop
computer, click Settings | device | DEVICE UPDATE.

For more information about updating your Zune device, or to troubleshoot issues with updating, please see the following
Microsoft Knowledge Base article: How to update your Zune device.

After you update your Zune firmware to version 3.0 or later, you won't need to perform this step again.

http://www.zune.net/setup
http://support.microsoft.com/default.aspx/kb/927348/
http://support.microsoft.com/kb/926770/

Step 2: Add Your Zune in the XNA Game Studio Device Center

Once you add your Zune to the XNA Game Studio Device Center, XNA Game Studio will be able to connect to your Zune so
that you can deploy and debug games.

To add your Zune to the XNA Game Studio Device Center

1. Use the Zune sync cable to connect the Zune device to your computer.

2. Start the device center by clicking Start, All Programs, Microsoft XNA Game Studio 3.1, and then click XNA Game
Studio Device Center.

3. Click Add Device, and then click Zune.
The device center will display a list of connected Zune devices.
4. In the list of connected Zunes, click the one that you want to add.
5. Click Next.
The Zune you selected will be added to the list of devices in the device center.

6. Close the XNA Game Studio Device Center.

$Note

If you are having trouble connecting to your Zune device, or the device is not showing up in the device center, close the Zune
client desktop software (if it is running).

You can also configure the Zune desktop software so it won't launch automatically when a Zune device is connected. This set
ting is located under settings | device | SYNC OPTIONS.

Step 3: Create and Deploy a Zune Project
Now you can try out Zune development by deploying a simple, blank XNA Game Studio game.

To deploy a simple, blank XNA Game Studio game

1. On your Windows-based computer, at the main Visual Studio screen, click File | New Project (or File | New | Project,
depending on your Visual Studio configuration).

2. From Project types, expand Visual C# and click XNA Game Studio 3.1.
3. In Visual Studio installed templates, click Zune Game (3.1), and then click OK.

4. On your Windows-based computer, with your new project open, press the F5 key.

The project will build. It launches XNA Game Studio Connect on the Zune device, deploys the project and other necessary
files to the Zune, and then launches the game.

At this point, you should see a simple display on your Zune: a light blue screen. If you see this screen, you have
successfully deployed a game to your Zune. You can now deploy and play any game you dream and build.

5. To stop the game and return to the main screen of XNA Game Studio Connect, either:
e Press the BACK button on your Zune.
Or

e Stop debugging by pressing SHIFT+F5 on your computer.

$Note

When an XNA Framework game exits on the Zune, the Zune device reboots. This behavior is by design—it ensures that
game and run-time resources are completely cleaned up after a game exits.

“Note

Holding down the Back button for 2 seconds forces the currently executing game to exit, regardless of the game's nor
mal exit semantics.

What's Next?

You have successfully deployed your first Zune game. This game, like the other games you deploy to your Zune, will appear
under games on your Zune device. Using the games menu, you can play or delete the games you have deployed to your
Zune.

A good next step would be to try the 2D tutorial Your First Game: Microsoft XNA Game Studio in 2D. The code in the 2D
tutorial works on Zune, Windows-based computers, and on the Xbox 360 console, so you can try any or all of the platforms to
get a feel for developing on each.

For an overview of Zune-specific features and programming concepts, see Zune Programming Considerations.

¥Note

See the Supported Platforms section on individual reference pages to check for Zune support. If Zune is not on the supported
platforms list, the APl is not supported. If listed, there is support for the API.

See Also Zune Programming Considerations
Your First Game: Microsoft XNA Game Studio in 2D
Programming Guide

XNA Game Studio 3.1

Your First Game: Microsoft XNA Game Studio in 2D

Describes the steps necessary to create a simple sprite-based game by using XNA Game Studio.
“Note

A sprite is a simple 2D graphic (such as a bitmap) that is displayed on the screen using a call to SpriteBatch.Draw.

The Complete Sample

Step 1: Install Your Software

Step 2: Create a New Project

Step 3: View the Code

Step 4: Add a Sprite

Step 5: Make the Sprite Move and Bounce

Step 6: Explore!

The Complete Sample

The code in this tutorial illustrates the technique described in the text. A complete code sample for this tutorial is available for
you to download, including full source code and any additional supporting files required by the sample.

Download MyFirstGame_Tutorial_Sample.zip.

Step 1: Install Your Software

Before you begin, make sure that you have installed all the necessary software, including a supported version of Microsoft
Visual Studio tools and XNA Game Studio. See Required Software for a list of required programs.

Step 2: Create a New Project

1. From the Start menu, click All Programs, click the XNA Game Studio 3.1 folder, and then click your supported version
of Microsoft Visual Studio tools.

2. When the Start Page appears, click the File menu, and then click New Project.
A dialog box appears with a tree list on the left pane, marked Project Types.

3. Select the XNA Game Studio 3.1 tree node underneath the Visual C# node.
A set of available projects appears in the right pane.

4. In the right pane of the dialog box that appears, click Windows Game (3.1), and then type a title for your project (such
as "MyFirstGame") in the Name box.

5. Type a path where you'd like to save your project in the Location box, and then click OK.

After creating a new project, you'll be presented with the code view of your game.

Step 3: View the Code

Some of the hard work has already been done for you. If you build and run your game now, the GraphicsDeviceManager will
set up your screen size and render a blank screen. Your game will run and update all by itself. It's up to you to insert your own
code to make the game more interesting.

Much of the code to start and run your game has already been written for you. You can insert your own code now.

e The Initialize method is where you can initialize any assets that do not require a GraphicsDevice to be initialized.
e The LoadContent method is where you load any necessary game assets such as models and textures.

e The UnloadContent method is where any game assets can be released. Generally, no extra code is required here, as
assets will be released automatically when they are no longer needed.

e The Update loop is the best place to update your game logic: move objects around, take player input, decide the outcome
of collisions between objects, and so on.

e The Draw loop is the best place to render all of your objects and backgrounds on the screen.

Step 4: Add a Sprite

http://go.microsoft.com/fwlink/?LinkId=149776&clcid=0x409

The next step is to add a graphic that can be drawn on the screen. Use a small graphics file, such as a small .bmp or jpg file. Be
creative—you can even make your own. You can even skip ahead a bit and make a sprite that "hides" parts that should not be
seen (such as edges or corners) so that it looks even better.

Once you have a graphic picked out on your computer, follow these steps.

1.

Make sure you can see the Solution Explorer for your project on the right side of the window. If you cannot see it, click
the View menu, and then click Solution Explorer.

When it appears, you will see files associated with your project in a tree structure. Inside the tree, you will see a node
named Content.

. Right-click the Content node, click Add, click Existing Item, and then browse to your graphic.

If you can't see any files, make sure you change the Files of type selection box to read Texture Files.
Click the graphic file, and then click Add.
An entry for the graphic file will appear in Solution Explorer.

Click the entry for the graphic in the Solution Explorer. If you do not see the entry, ensure the Content node is expanded
by clicking the small plus sign (+) to the left of the node, then click on the entry that appears underneath the Content
node.

When you add a graphic file, it is automatically added to the XNA Framework Content Pipeline, which will allow you to
quickly and easily load the graphic into your game.

In the Properties window below Solution Explorer, look for the "Asset Name" property. Note the name; you'll use it in
your code to load the graphic so it can be displayed in your game.

If the Properties window is not visible, press F4, or click the View menu, and then click Properties Window.

Now, you must write code that loads and displays the sprite on the screen. You can use the instructions in How To: Draw
a Sprite, or follow along here.

Back in the Code view of your game, find the LoadContent method, and add the following lines in and above the method
so it looks similar to this:

C#

// This is a texture we can render.
Texture2D myTexture;

// Set the coordinates to draw the sprite at.
Vector2 spritePosition = Vector2.Zero;

protected override void LoadContent()

{
// Create a new SpriteBatch, which can be used to draw textures.
spriteBatch = new SpriteBatch(GraphicsDevice);
myTexture = Content.Load<Texture2D>("mytexture");

}

Make sure the call to ContentManager.Load is using the "Asset Name" you saw in the Properties window in the
previous step. This code will load and prepare your graphic to be drawn, and will reload your graphic if the graphics
device is reset (such as in the case of the game window being resized).

7. Now, add code to the Draw loop so it looks like this:

C#

protected override void Draw(GameTime gameTime)

{

graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

// Draw the sprite.

spriteBatch.Begin(SpriteBlendMode.AlphaBlend);
spriteBatch.Draw(myTexture, spritePosition, Color.White);
spriteBatch.End();

base.Draw(gameTime);

This code draws the sprite on the screen each frame.

Notice the parameter passed by the Begin method, SpriteBlendMode.AlphaBlend. This parameter tells the Draw method
to use the alpha channel of the source color to create a transparency effect so that the destination color appears through
the source color. For more information, see What is Color Blending.

8. Build and run your game.

The sprite appears.

Now, it's time to give it some motion.

Step 5: Make the Sprite Move and Bounce

e Change the lines of code in and below the Update method to read this way:

C#

// Store some information about the sprite's motion.
Vector2 spriteSpeed = new Vector2(50.0f, 50.0f);

protected override void Update(GameTime gameTime)
{
// Allows the game to exit
if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==
ButtonState.Pressed)
this.Exit();

// Move the sprite around.
UpdateSprite(gameTime);

base.Update(gameTime);

void UpdateSprite(GameTime gameTime)
{
// Move the sprite by speed, scaled by elapsed time.
spritePosition +=
spriteSpeed * (float)gameTime.ElapsedGameTime.TotalSeconds;

int MaxX =

graphics.GraphicsDevice.Viewport.Width - myTexture.Width;
int MinX = 0;
int MaxyY =

graphics.GraphicsDevice.Viewport.Height - myTexture.Height;
int MinY = 0;

// Check for bounce.
if (spritePosition.X > MaxX)

{
spriteSpeed.X *= -1;
spritePosition.X = MaxX;

else if (spritePosition.X < MinX)

spriteSpeed.X *= -1;
spritePosition.X = MinX;

}
if (spritePosition.Y > MaxyY)
{
spriteSpeed.Y *= -1;
spritePosition.Y = MaxY;
}
else if (spritePosition.Y < MinY)
{
spriteSpeed.Y *= -1;
spritePosition.Y = MinY;
}

This adds a little bit of logic that will move the sprite around each frame and cause the sprite to change direction if it hits the
edges of the game window.

e Build and run your game.

The sprite moves across the screen and changes direction when it encounters the edges of the game window.

Step 6: Explore!

From here, you can do just about anything. If you're ready to jump into a more complex example, including 3D graphics, input,
and audio, see Going Beyond: XNA Game Studio in 3D.

Here are some more ideas to extend this sample:

e Experiment with the call to SpriteBatch.Draw. Change the Color parameter to tint the sprite. See How To: Tint a Sprite.

e Add a second sprite, and use BoundingBox objects to allow the sprites to collide with one another. (See How To: Detect
Whether Two Models Collide.)

e Use Keyboard, Mouse, or GamePad to make the sprite respond to movements of an input device. (See Input Overview.)

e Create some audio events so that the sprite makes sounds as it moves. (See How To: Add a Sound File to Your Game
Using XACT and How To: Play a Sound Using XACT.)

e Instead of a sprite, use a 3D primitive that moves around in 3D space. (See How To: Draw Points, Lines, and Other 3D
Primitives.)

o Get more ideas and resources at XNA Creators Club Online.

http://creators.xna.com/

XNA Game Studio 3.1

Going Beyond: XNA Game Studio in 3D

This multipart tutorial takes you through the first steps of creating your own 3D game using XNA Game Studio.

In XNA Game Studio, it is easier than ever to create games for Windows and for Xbox 360. This tutorial highlights how to load
2D and 3D resources into your game using the XNA Framework Content Pipeline; how to take user input from an Xbox 360
Controller; and how to use the Microsoft Cross-Platform Audio Creation Tool (XACT) to create audio for your game. Each step
of the way, you'll have something to see or hear so you will know you are making progress.

“Note

The code displayed in each section will work on both Xbox 360 and Windows, but not on Zune. Zune devices do not support
3D graphics, and XACT is not available on Zune. To set up your Xbox 360 console to work with XNA Game Studio, see Conne
cting to Your Xbox 360 Console with XNA Game Studio 3.1.

In This Section

Tutorial 1: Displaying a 3D Model on the Screen
This article details how to use the XNA Framework Content Pipeline to load a 3D model and its associated textures, and it
presents the code necessary to display the model on the screen.

Tutorial 2: Making Your Model Move Using Input
This article details how to use the XNA Framework Input API to take user input from an Xbox 360 Controller and apply it to
the model displayed in Tutorial 1.

Tutorial 3: Making Sounds with XNA Game Studio
Details how to use the XNA Framework Audio API to play them.

Tutorial 4: Make a Game in 60 Minutes
This tutorial helps you learn about the process of game construction, while guiding you through writing a relatively complete
game.

Tutorial 5: Adding Multiplayer and Networking Support to the Game
This tutorial adds two-player competitive game play to the game completed in Tutorial 4.

See Also

Tasks

FuelCell

Getting Started with 2D Games at XNA Creators Club Online
Getting Started with 3D Games at XNA Creators Club Online

http://go.microsoft.com/fwlink/?LinkId=128880&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=128882&clcid=0x409

XNA Game Studio 3.1

Tutorial 1: Displaying a 3D Model on the Screen

This article details how to use the XNA Framework Content Pipeline to load a 3D model and its associated textures, and it
presents the code necessary to display the model on the screen.

The Complete Sample

Introduction

Step 1: Downloading the Art Assets

Step 2: Creating the New Project

Step 3: Load the Model by Using the Content Pipeline

Step 4: Display the Model on the Screen (and Make It Rotate)
Congratulations!

Ideas to Expand

The Complete Sample

The code in this tutorial illustrates the technique described in the text. A complete code sample for this tutorial is available for
you to download, including full source code and any additional supporting files required by the sample.

Download GoingBeyond1_Tutorial_Sample.zip.

Introduction

In Your First Game: Microsoft XNA Game Studio in 2D, you saw a simple example that used the XNA Framework Content
Pipeline to load a sprite, represented by a Texture2D object. You also used the XNA Framework to draw the sprite on the
screen. This tutorial goes beyond that simple sample to help introduce you to many concepts that XNA Game Studio makes
easy, so you can focus on making fun, interactive games.

This first tutorial will introduce you to the Content Pipeline in a little more detail, and will introduce you to some of the XNA
Framework API calls you will use to draw 3D objects on the screen. When you complete this tutorial, you'll have a 3D model
drawing on your screen. The model will have textures and lighting. Let's get started!

Step 1: Downloading the Art Assets

The first thing that you will need before you start coding are some art assets to play around with. In this case, you need a 3D
model, and an associated texture file so that the model has some detail. These assets will be loaded into your game using the
XNA Framework Content Pipeline, which is a feature built right into the Solution Explorer feature of supported version of
Microsoft Visual Studio tools.

You can find these assets in this sample file (GoingBeyond1_Tutorial_Sample.zip). Download the sample file now and extract its
contents to a directory on your local drive.

Step 2: Creating the New Project

Now that the art assets are available to you, the next step is to create the actual code project that you will be writing.

e Click the File menu, and then click New Project to create a new project. A dialog box will appear with a tree list on the
left pane, marked Project Types.

o Select the XNA Game Studio 3.1 tree node underneath the Visual C# node. A set of available projects will appear in the
right pane.

e In the right pane of the dialog box, click either Windows Game (3.1) or Xbox 360 Game (3.1), depending on whether you
are developing on the Xbox 360 or Windows. If you develop for Xbox 360, be sure you have a membership in the XNA
Creators Club as described in Connecting to Your Xbox 360 Console with XNA Game Studio 3.1 Otherwise, you will not
be able to play your game!

e Type a name for your game into the Name field, and a path to where you want the game files stored in the Location
field.

e Click OK.

The code for your new game will be displayed. The project already contains many of the methods that are needed to start and
run a game. Right now, however, you need to make sure your art assets are being loaded. Then you can modify the game to
display them on the screen. Follow these steps to get some art into your project.

http://go.microsoft.com/fwlink/?LinkId=149817&clcid=0x409

e Make sure you can see the Solution Explorer for your project on the right side of the window. If you cannot see it, click
the View menu, and then click Solution Explorer. When it appears, you will see files associated with your project in a
tree structure.

o In Solution Explorer, look for a node named Content. This is where you will store the art and audio for your game. You
must add two folders underneath this one.

e Right-click the Content node, click Add, and then click New Folder. This will create a new folder under the Content
node. Name this folder Models.

e Repeat the last step, creating a new folder under the Content node. This time, call the folder Textures.

Your project structure should look similar to this:

Solution Explorer - Solution 'GoingBeyo... « 1 X

[d Solution 'GeingBeyond1Windows' (1 project)
5 &7 GoingBeyond1Windows
+ =d| Properties
+ =] References
= T Content
+ <] References
— & Models
Ao
- 4 Textures
----- i Gamne.ico
----- #] Gamel.cs
----- [z GameThumbnail.png
----- #] Program.cs

You are now ready to add the art from the previously downloaded sample file. The first is a 3D model that will go into this new
Content\Models folder, and the second is a texture that will be drawn on the 3D model; this will go in the Content\Textures
folder. The files you need are included in the Content sub-project from the GoingBeyond1_Tutorial_Sample.zip file. To add
them:

e Right-click the Models folder in the Solution Explorer, click Add, and then click Existing Item. Using the dialog box
that appears, browse back to the path you extracted the contents of the sample file to and find the Contents\Models
folder. Select p1_wedge.fbx. If you cannot see any files, make sure you change the Files of type selection box to read
Model Files. Click OK.

e Now, copy the texture associated with the model into the Textures folder. To do this, open a Windows Explorer window
and browse to the Content\Textures folder of the extracted sample. Copy wedge_p1_diff_v1.tga, and then browse to your
project folder, then into the Content\Textures folder, and paste in the file you just copied.

Note that you do not see the texture you added in Solution Explorer. When you add a model, the textures that the model uses
do not need to be added to the Content Pipeline. If you need to add textures that you will access manually (such as textures
used for 2D sprite drawing), do so via Solution Explorer. Otherwise, you can simply copy the texture files to the appropriate
folder.

When the files are added to the project, the Content Pipeline automatically identifies them as content files and sets the
appropriate processors to run when you build your project. This will happen silently; you will not need to do anything. If you
would like to learn more about the Content Pipeline, see Content Pipeline.

“Note

Model files contain path information for the textures they use. The ship model you recently added to your project expects to f
ind its texture in a Textures folder that exists alongside the folder the model is in. This will be true for all models used in this t
utorial. Models you create or retrieve from other sources may have different path requirements and therefore may require di
fferent folder setups. Determine the correct texture paths by examining the model files, or compiling the model as part of yo

ur game using XNA Game Studio and noting any Content Pipeline path errors that are returned.

At this point, you are ready to code.

Step 3: Load the Model by Using the Content Pipeline

Take a look at the code for Game1.cs. It should still be on your screen from opening up your project. You will see a lot already
done for you. Each of the methods already in the code are waiting for you to drop in your own calls to the XNA Framework. For
now, start by modifying the LoadContent method.

o |n the code, find the LoadContent method.
o Modify the code (including adding the lines shown above the method) to look like this:

C#

// Set the 3D model to draw.
Model myModel;

// The aspect ratio determines how to scale 3d to 2d projection.
float aspectRatio;

protected override void LoadContent()

{
// Create a new SpriteBatch, which can be used to draw textures.
spriteBatch = new SpriteBatch(GraphicsDevice);
myModel = Content.Load<Model>("Models\\pl_ wedge");
aspectRatio = graphics.GraphicsDevice.Viewport.AspectRatio;
}

In that step, you have told the Content Pipeline to load your model into your game when LoadContent is called at the
beginning of your game. Note how you have to pass in the path to the asset relative to your project directory. Also note that
there is no extension on the asset anymore. The name of the asset can be anything you want, but by default it is the name of
the asset file minus its extension. To see more information on how to change the name of your asset, see Game Asset
Properties.

The code now loads the model. Your next step is to get it showing on the screen.
Step 4: Display the Model on the Screen (and Make It Rotate)
You will want to modify two of the methods in your Game1.cs file.

e In the Draw method, you will draw the model on the screen with texture and lighting.
e In the Update method, you will make the model change its orientation based on time, so it appears to rotate over time.

Do the harder work first—drawing the model. The first step is to use some XNA Framework methods to set up the model's
position and lighting.

e |n the code, find the Draw method.

e Modify the code (including adding the lines shown above the method) to look like this:

C#

// Set the position of the model in world space, and set the rotation.
Vector3 modelPosition = Vector3.Zero;
float modelRotation = 0.0f;

// Set the position of the camera in world space, for our view matrix.
Vector3 cameraPosition = new Vector3(0.ef, 50.0f, 5000.0f);

protected override void Draw(GameTime gameTime)

{

graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

// Copy any parent transforms.
Matrix[] transforms = new Matrix[myModel.Bones.Count];
myModel.CopyAbsoluteBoneTransformsTo(transforms);

// Draw the model. A model can have multiple meshes, so loop.
foreach (ModelMesh mesh in myModel.Meshes)

{

// This is where the mesh orientation is set, as well
// as our camera and projection.
foreach (BasicEffect effect in mesh.Effects)
{
effect.EnableDefaultLighting();
effect.World = transforms[mesh.ParentBone.Index] *
Matrix.CreateRotationY(modelRotation)
* Matrix.CreateTranslation(modelPosition);
effect.View = Matrix.CreatelLookAt(cameraPosition,
Vector3.Zero, Vector3.Up);
effect.Projection = Matrix.CreatePerspectiveFieldOfView(
MathHelper.ToRadians(45.0f), aspectRatio,
1.0f, 10000.0f);
}
// Draw the mesh, using the effects set above.
mesh.Draw();

}

base.Draw(gameTime);

This code uses helper methods provided by the XNA Framework to set up the necessary 3D math and lighting to display the
model on the screen. Use the World matrix to change the position of the model in the world, the View matrix to change the
position and direction of the camera (your eye), and the Projection matrix to control how the view of the 3D world is turned
into a 2D image (projected) on your screen.

The call to CopyAbsoluteBoneTransformsTo and associated code inside the setup of the World matrix are not strictly necessary
for this model. However, when using more complicated models, which often use hierarchical structure (where mesh positions,

scales, and rotations are controlled by "bones"), this code ensures that any mesh is first transformed by the bone that controls

it, if such a bone exists. The mesh is then transformed relative to the bone transformation.

If you compile and run your code now, you will see your model on the screen! It is a spaceship with detail texture. But if you
can resist the urge to compile your project and run, you can easily make the model rotate in real-time so you can see all of it:

e In the code, find the Update method.
o Modify the code (including adding the lines shown above the method) to look like this:
C#

protected override void Update(GameTime gameTime)

{
// Allows the game to exit
if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==
ButtonState.Pressed)
this.Exit();

modelRotation += (float)gameTime.ElapsedGameTime.TotalMilliseconds *
MathHelper.ToRadians(0.1f);

base.Update(gameTime);

And that's it. Compile and run your project by hitting the F5 key or clicking the Debug menu, and then clicking Start
Debugging.

Congratulations!

You did it. There is a lot to making games, but you have taken the first step. A 3D model with lighting and movement in real
time. From here, there is no limit to where you could go!

For simplicity's sake, we took some shortcuts that could be optimized for better performance. An obvious improvement would
be to precalculate the View and Projection matrices instead of calculating them every time Draw is called, since they do not
change. Try out this optimization as a first step. When you are ready to make your game interactive, go to the next tutorial.

Next...

Tutorial 2: Making Your Model Move Using Input

Ideas to Expand

Got the urge to tinker with the project a bit? Try these ideas.

e Modify the lighting parameters in the Draw call. Look at BasicEffect for an idea of what you can modify.

e |Instead of looking at a blue background, try adding an image as your background. See How To: Make a Scrolling
Background for guidance. Hint: Make sure you use a call to SpriteBatch.Draw that allows you to specify a layerDepth
parameter, and set that depth to 1.0f.

o Get more ideas and resources at XNA Creators Club Online.

http://creators.xna.com/

XNA Game Studio 3.1

Tutorial 2: Making Your Model Move Using Input

This article details how to use the XNA Framework Input API to take user input from an Xbox 360 Controller and apply it to the
model displayed in Tutorial 1.

For more information on using a keyboard to control the model, see Optional Step: Controlling the Ship With Keyboard Input.

¥Note

This tutorial builds on code you have written during the previous tutorial: Tutorial 1: Displaying a 3D Model on the Screen. Fo
llow the steps in the previous tutorial before starting this tutorial.

The Complete Sample

Step 1: Connect Your Xbox 360 Controller

Step 2: Create Variables to Turn and Move the Model
Step 3: Take Input from the User

Optional Step: Controlling the Ship With Keyboard Input
Congratulations!

Ideas to Expand

The Complete Sample

The code in this tutorial illustrates the technique described in the text. A complete code sample for this tutorial is available for
you to download, including full source code and any additional supporting files required by the sample.

Download GoingBeyond2_Tutorial_Sample.zip.

Step 1: Connect Your Xbox 360 Controller

The first step in this tutorial is to make sure you can provide some input to your game. We'll use the Xbox 360 Controller.
Designed for use with both a Windows computer and an Xbox 360 console, the controller features many analog and digital
inputs, as well as vibration motors to give feedback to the user.

This tutorial uses only the Xbox 360 Controller, but there are more ways to take input: the XNA Framework has support for
keyboard and mouse devices. Mouse devices are supported only on Windows, not on Xbox 360. For more information on the
different input types, see Input Overview.

For now, connect your Xbox 360 Controller and get ready to code!

Step 2: Create Variables to Turn and Move the Model

We want our ship to move around on the screen. To do that, we'll need to create some variables to track the position and
orientation of our model in the world.

Fortunately, from our last tutorial (Tutorial 1: Displaying a 3D Model on the Screen), we have two variables to do just that:
modelPosition, which is a three-dimensional vector, and modelRotation, which is a floating-point value.

Currently, this system allows three degrees of translation (changing position in the world), but only one degree of rotation
(changing orientation). For this demonstration, we will use that limitation to simplify our input. In many 3D games, there are
three degrees of translation, and three degrees of rotation, but this is a good start.

What we can do right now to make input a little more interesting is add another vector for velocity. By updating the position
with the velocity each frame, our 3D model can accelerate and decelerate smoothly. Let's try it.

e Make sure your project from Tutorial 1: Displaying a 3D Model on the Screen is open. If it isn't, open it by selecting the
File menu, clicking Open Project, and browsing to your project.

e View the code by double-clicking Game1.cs in Solution Explorer.
e In the code, find the Update method. Modify it to look like this:

C#

// Set the velocity of the model, applied each frame to the model's position.
Vector3 modelVelocity = Vector3.Zero;

http://go.microsoft.com/fwlink/?LinkId=149818&clcid=0x409

protected override void Update(GameTime gameTime)

{
// Allows the game to exit

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)
this.Exit();

// Get some input.
UpdateInput();

// Add velocity to the current position.
modelPosition += modelVelocity;

// Bleed off velocity over time.
modelVelocity *= 0.95f;

base.Update(gameTime);

The code you've just added to input runs every frame, and does a few different things. First, it gets rid of the code that
automatically rotates the ship. You'll be controlling that by using your controller. Next, it calls a method named Updatelnput.
That method does not exist yet. You'll have to create it in the next step. Last, it adds the velocity of our model to its position,
moving it in the world by its velocity, and decays the velocity so that eventually the model will slow down.

Step 3: Take Input from the User

Now that the model is set up to move with velocity, you now need to provide some logic that will change the velocity based on
controller input.

A simple system that we can use is an orientation thrust method: in essence, you can point the front of your model in different
directions using your controller's thumbstick, then apply thrust in the direction you are pointing using your controller's trigger.
By building up thrust in a direction, the model will begin to move.

We can map our controls to the game this way.

e Pressing left or right on the left thumbstick will increase or decrease the value of the modelRotation variable by some
amount.

e Pressing on the right trigger will add a vector in the direction of our modelRotation variable to our modelVelocity vector.

e Pressing the A button will reset the position, velocity, and rotation values of the model to "warp" the ship back to the
center of the screen.

$Note

Both the triggers and the thumbsticks are analog controls, meaning that they can report their movements in varying a
mounts, rather than just on or off. On the Xbox 360 Controller, the two thumbsticks and two triggers are analog control
s, and all other buttons are digital buttons.

Let's code it!

e Find some empty space in your code below the Update method.
e Add a new method called protected void Updatelnput().

e Modify the method to look like this:
Ci#

protected void UpdateInput()
{
// Get the game pad state.
GamePadState currentState = GamePad.GetState(PlayerIndex.One);
if (currentState.IsConnected)
{
// Rotate the model using the left thumbstick, and scale it down
modelRotation -= currentState.ThumbSticks.Left.X * @.10f;

// Create some velocity if the right trigger is down.
Vector3 modelVelocityAdd = Vector3.Zero;

// Find out what direction we should be thrusting,
// using rotation.
modelVelocityAdd.X
modelVelocityAdd.Z

-(float)Math.Sin(modelRotation);
-(float)Math.Cos(modelRotation);

// Now scale our direction by how hard the trigger is down.
modelVelocityAdd *= currentState.Triggers.Right;

// Finally, add this vector to our velocity.
modelVelocity += modelVelocityAdd;

GamePad.SetVibration(PlayerIndex.One,
currentState.Triggers.Right,
currentState.Triggers.Right);

// In case you get lost, press A to warp back to the center.
if (currentState.Buttons.A == ButtonState.Pressed)

{
modelPosition = Vector3.Zero;
modelVelocity = Vector3.Zero;
modelRotation = 0.0f;

}

That method does a lot. Let's take it piece by piece to investigate exactly what you're doing with input and the model.

// Get the game pad state.
GamePadState currentState = GamePad.GetState(PlayerIndex.One);

This call to GetState retrieves a GamePadState object, which contains the information we need about the controller—in this
case, thumbstick and trigger positions.

// Rotate the model using the left thumbstick, and scale it down
modelRotation -= currentState.ThumbSticks.Left.X * 0.10f;

Retrieving the x-axis value of the left thumbstick (left and right movement) returns a value that is added to the modelrotation
variable. The value is scaled down so that the rotation isn't too fast.

// Create some velocity if the right trigger is down.
Vector3 modelVelocityAdd = Vector3.Zero;

// Find out what direction we should be thrusting,

// using rotation.

modelVelocityAdd.X = - (float)Math.Sin (modelRotation);
modelVelocityAdd.Z = - (float)Math.Cos (modelRotation);

// Now scale our direction by how hard the trigger is down.
modelVelocityAdd *= currentState.Triggers.Right;

A little math here helps translate the rotation of the ship into a vector. Taking the sine value of the rotation gives us the proper
amount of X (left and right) movement, and the cosine gives us the Z (forward and back) movement. Then, we take the vector
and lengthen it by how hard the player is holding down the right trigger.

// Finally, add this wvector to our velocity.
modelVelocity += modelVelocityAdd;

Finally, the created vector is added to the current velocity vector to create the final velocity vector that will be applied to move
the model around.

GamePad.SetVibration (PlayerIndex.One,
currentState.Triggers.Right,
currentState.Triggers.Right) ;

We're using the right trigger values to give some feedback to the player with the Xbox 360 Controller vibration motors, using
SetVibration . The Xbox 360 Controller has two motors that run at different speeds, so experiment to find the best combination
for the action that's happening in the game.

// In case you get lost, press A to warp back to the center.
if (currentState.Buttons.A == ButtonState.Pressed)
{

modelPosition Vector3.Zero;
modelVelocity Vector3.Zero;
modelRotation = 0.0f;

}

This little extra will move the model back to its original position and orientation in case it leaves the screen.

Optional Step: Controlling the Ship With Keyboard Input

An Xbox controller is not the only means of control available for your ship. You can also use the standard keyboard that is
hooked up to your computer. The following instructions assume that you have completed the previous steps in this tutorial.

sCaution

Keyboard input is not supported for the Xbox 360 platform. Controlling the ship on an Xbox 360 requires an Xbox 360 Contr
oller.

The keyboard-specific code will be added to the Game1.Update and Gamel.UpdateInput methods that were modified earlier.
Let's handle the easy stuff first — modification of the Game1.Update method.

Modifying the Update Method
Currently, you can only exit your game with the controller or by clicking the Close button. Let's modify the following code:

if (GamePad.GetState (PlayerIndex.One) .Buttons.Back == ButtonState.Pressed)

to match this:

if (GamePad.GetState (PlayerIndex.One) .Buttons.Back == ButtonState.Pressed ||
Keyboard.GetState () .IsKeyDown (Keys.Escape))

The new code now closes the game when you press the Escape key.
Modifying the Updatelnput Method

This step involves more code than the previous step. Once you have modified the code, you can control the ship's rotation with
the A (rotate left) and D (rotate Right) keys and accelerate with the Enter key.

In the Game1.UpdateInput method, after the existing declaration of the currentstate variable, add the following line of code:

KeyboardState currentKeyState = Keyboard.GetState()

This captures the current state of the keyboard, including which keys were being pressed at the time.
Remove the following line (Don't forget the matching curly brace!):

if (currentState.IsConnected)

{

This allows keyboard input to be received if a controller is not connected.

Search farther down the code and find the line that assigns the X value of the left thumbstick to mode1RrRotation. Right before
that line, add the following:

if (currentKeyState.IsKeyDown (Keys.A))
modelRotation += 0.10f;

else 1f (currentKeyState.IsKeyDown (Keys.D))
modelRotation -= 0.10f;

else

This first examines the keyboard for input (specifically, the A and D keys) and changes the rotation value accordingly. If no
keyboard input is detected, the game controller is checked for input.

Search farther down for the following line of code:

modelVelocityAdd *= currentState.Triggers.Right;

Right before that code, add the following:

if (currentKeyState.IsKeyDown (Keys.W))
modelVelocityAdd *= 1;
else

This code checks to see if the W key is pressed and, if so, increases the current velocity. If the W key is not pressed, the game
controller is checked for input.

The final modification warps the ship back to its original posiiton if the Enter key is pressed.

Look for the code that checks the state of the A button on the controller (near the end of the method). Modify this line to also
check for a key press. After the modification, it should look like this:

if (currentState.Buttons.A == ButtonState.Pressed || currentKeyState.IsKeyDown (Keys.Ent
er))

Rebuild and run the game and you can now steer the ship with the A and D keys, accelerate with the W key, and warp back
with the Enter key!

Congratulations!

At this point, your ship moves and gives you feedback through your Xbox 360 Controller. The player is in control of the action.

When you're ready, let's add the final element—audio—to get you on your way. Once the player can control the action, and
see and hear the results of their actions, you're well on your way to creating a game.

Next...

Tutorial 3: Making Sounds with XNA Game Studio

Ideas to Expand

Want to play around some more with input? Try these ideas.

e Change the game to view your model from the top, as in a top-down arcade game. (Hint: Play with the cameraPosition
vector. Note that you can't set it exactly up and down because the camera vector cannot be the same as the "up" vector.)

e Scale the vibration to occur more powerfully as the ship approaches the viewer. (Hint: Use the distance between
modelPosition and cameraPosition.)

e Try using a keyboard to control the ship. See the Keyboard class. (Hint: You can plug a USB keyboard into your Xbox 360
console.)

e Get more ideas and resources at XNA Creators Club Online.

http://creators.xna.com/

XNA Game Studio 3.1

Tutorial 3: Making Sounds with XNA Game Studio

Details how to use the XNA Framework Audio API to play them.
“Note

This tutorial builds on code you have written during the previous tutorial: Tutorial 2: Making Your Model Move Using Input. F
ollow the steps in the previous tutorial before you start this tutorial.

The Complete Sample

Step 1: Get Some Wave Files

Step 2: Loading the Wave Files by Using the Content Pipeline
Step 3: Play Sounds Using the Audio API

Congratulations!

The Complete Sample

The code in this tutorial illustrates the technique described in the text. A complete code sample for this tutorial is available for
you to download, including full source code and any additional supporting files required by the sample.

Download GoingBeyond3_Tutorial_Sample.zip.

Step 1: Get Some Wave Files

Audio in XNA Game Studio is wave based. There are two methods for using wave files in your game: using XACT to create and
play your sound effects or using the SoundEffect class. We'll use the second method because it lets you quickly get some cool
sound effects into your game.

¥Note
For more information on using XACT, see Audio Overview.

The first thing to do is get some wave files. The files used in this tutorial are included in the
(GoingBeyond3_Tutorial_Sample.zip). Download this file now and extract it to its own directory.

e Make sure your project from Tutorial 2: Making Your Model Move Using Input is open. If it is not, open it by clicking the
File menu, and then click Open Project and browse to your project.

e In Solution Explorer, right-click the Content node, click Add, and then click New Folder. Name this folder audio.
e Right-click the Audio folder you just created, click Add, and then click New Folder. Name this folder waves.

e Open Windows Explorer. Browse to the folder containing the content from your recently extracted sample file and from
there to the Content\Audio\Waves folder. Inside that folder, you will see two audio files: engine_2.wav and
hyperspace_activate.wav.

e Copy those files to the Content\Audio\Waves folder in Windows Explorer.

e Right-click the Waves folder, click Add, and then click Existing Item. Using the dialog box that appears, browse back to
the location of the extracted tutorial sample files and find the Contents\Audio\Waves folder. Select both wave files, and
click OK.

Step 2: Loading the Wave Files by Using the Content Pipeline

You probably remember that you have already used the content pipeline to load content into your game. In this step, you will
use that same technique to load sound effects into your game. With a few simple lines of code, you can play those sound
effects at the appropriate time.

Open your Game1.cs file, and take a look at the LoadContent method. This is where the ship model is loaded by the content
pipeline. You will add new code that declares two SoundEffect members and one SoundEffectinstance, and loads the recently
added sound effect files into those new member variables.

o After the code that declares the myModel class member, add the following code:
Ci#

//Set the sound effects to use
SoundEffect soundEngine;
SoundEffectInstance soundEnginelnstance;

http://go.microsoft.com/fwlink/?LinkId=149819&clcid=0x409

SoundEffect soundHyperspaceActivation;

e Modify the LoadContent code (including adding the lines shown above the method) to look like this:
C#

// The aspect ratio determines how to scale 3d to 2d projection.
float aspectRatio;

protected override void LoadContent()

{
// Create a new SpriteBatch, which can be used to draw textures.
spriteBatch = new SpriteBatch(GraphicsDevice);
myModel = Content.Load<Model>("Models\\pl_ wedge");
soundEngine = Content.Load<SoundEffect>("Audio\\Waves\\engine 2");
soundEngineInstance = soundEngine.CreateInstance();
soundHyperspaceActivation =

Content.Load<SoundEffect>("Audio\\Waves\\hyperspace_activate");

aspectRatio = graphics.GraphicsDevice.Viewport.AspectRatio;

}

In these steps, you declared two member variables, and told the content pipeline to load two wave files into your game when
LoadContent is called at the beginning of your game. You also assigned a SoundEffectinstance to one of those files, so you
can monitor the playback later.

The code now loads the wave files. Your next step is to play them at the appropriate times.

Step 3: Play Sounds Using the Audio API
You can access the sounds you wish to play in your game through a SoundEffect object, or play directly by calling Play.

For your looping engine sound, call SoundEffectinstance.Play to begin looping the engine sound effect. Use the
SoundEffectinstance to pause and resume the sound effect as your engines turn on and off when the user holds the trigger.
When the player presses the A button to warp, play the hyperspace sound by calling SoundEffect.Play. Calling SoundEffect.Play
plays the sound, but it doesn't allow us to pause it (which is okay for the hyperspace sound, but not for the engine sound).

e Find the Updatelnput method. Modify it to look like this:

C#

protected void UpdateInput()
{
// Get the game pad state.
GamePadState currentState = GamePad.GetState(PlayerIndex.One);
if (currentState.IsConnected)
{
// Rotate the model using the left thumbstick, and scale it down
modelRotation -= currentState.ThumbSticks.Left.X * @.10f;

// Create some velocity if the right trigger is down.
Vector3 modelVelocityAdd = Vector3.Zero;

// Find out what direction we should be thrusting,
// using rotation.
modelVelocityAdd.X
modelVelocityAdd.Z

-(float)Math.Sin(modelRotation);
-(float)Math.Cos(modelRotation);

// Now scale our direction by how hard the trigger is down.
modelVelocityAdd *= currentState.Triggers.Right;

// Finally, add this vector to our velocity.

modelVelocity += modelVelocityAdd;

GamePad.SetVibration(PlayerIndex.One,
currentState.Triggers.Right,
currentState.Triggers.Right);

//Play engine sound only when the engine is on.
if (currentState.Triggers.Right > 0)

{
if (soundEngineInstance.State == SoundState.Stopped)
{
soundEngineInstance.Volume = 0.75F;
soundEngineInstance.IslLooped = true;
soundEngineInstance.Play();
}
else
soundEngineInstance.Resume();
}
else if (currentState.Triggers.Right == 0)
{
if (soundEnginelInstance.State == SoundState.Playing)
soundEngineInstance.Pause();
}

// In case you get lost, press A to warp back to the center.
if (currentState.Buttons.A == ButtonState.Pressed)

{
modelPosition = Vector3.Zero;
modelVelocity = Vector3.Zero;
modelRotation = @.0f;
soundHyperspaceActivation.Play();
}

Many things are happening here. Here is a breakdown of what you are doing.

SoundEffectInstance soundEngineInstance;

The SoundEffectinstance represents an instance of a sound. In this case, soundEnginelnstance will represent the sound of
your engines when you hold the right trigger.

//Play engine sound only when the engine is on.
if (currentState.Triggers.Right > 0)
{

if (soundEngineInstance.State == SoundState.Stopped)
{
soundEngineInstance.Volume = 0.75f;
soundEngineInstance.IsLooped = true;

soundEngineInstance.Play () ;

}

else
soundEngineInstance.Resume () ;

}
else if (currentState.Triggers.Right == 0)

{
if (soundEnginelInstance.State == SoundState.Playing)
soundEngineInstance.Pause () ;

}

This code manages the engine sound. Since you enter this code once each frame, you have to make sure you do not

continually try to play the same sound. You only want to modify the state of the SoundEffectinstance if there is a change, such
as the trigger being released after being held. If the sound is stopped (which it will be at the start of the game), we call Play to
start it up.

From that point forward, each release of the trigger will call Pause and halt playback of the SoundEffectinstance. Subsequently,
holding the trigger again will call Resume, and playback will continue.

// In case you get lost, press A to warp back to the center.

if (currentState.Buttons.A == ButtonState.Pressed)
{

modelPosition = Vector3.Zero;

modelVelocity = Vector3.Zero;

modelRotation = 0.0f;
soundHyperspaceActivation.Play () ;

}

Finally, pressing the A button warps, gets, and plays a sound all at once using Play. Since you do not need to stop or pause this
sound, but can just let it play, there is no reason to hold on to the sound in a SoundEffectinstance object.
Congratulations!

At this point, you have a spaceship floating in 3D space. This spaceship moves around when you use your Xbox 360 Controller,
it makes sounds, and it gives you feedback in your controller. You have created the very beginnings of a 3D game using XNA
Game Studio, and you are only just getting started. There is so much more to explore!

Next...
Tutorial 4: Make a Game in 60 Minutes
Ideas to Expand

If you are ready to go further with this sample, why not try a few of these ideas?

e Use some of the advanced features of the Play to change the volume and pitch of your engines as you change pressure
on your right trigger.

e Add some background music and try setting different volumes for sound effects and background music.
e Get more ideas and resources at XNA Creators Club Online.

http://creators.xna.com/

XNA Game Studio 3.1

Tutorial 4: Make a Game in 60 Minutes

This tutorial helps you learn about the process of game construction, while guiding you through writing a relatively complete
game.

#Note

This tutorial builds on code you have written during the previous tutorial: Tutorial 3: Making Sounds with XNA Game Studio.
Follow the steps in the previous tutorial before starting this tutorial.

e The Complete Sample
e Introduction
e Before You Begin: Getting the Project Ready
e Step 1: Ship Shape
e Step 2: Camera Work
e Step 3: You Need Rocks. Lots of Them.
e Step 4: When Ships and Asteroids Collide
e Step 5:Boom - You're Dead
e Step 6: Revenge of the Ship
e Step 7: Space, the Final Frontier
e Finally
The Complete Sample

The code in this tutorial illustrates the technique described in the text. A complete code sample for this tutorial is available for
you to download, including full source code and any additional supporting files required by the sample.

Download GoingBeyond4_Tutorial_Sample.zip.

Introduction

Understanding the basics of game coding is the single most-difficult step for a beginning game programmer. While it is easy
to find samples that show completed games, tips and tricks, or tutorials that show you how to do specific techniques, there are
very few that help you through the process of game construction. The objective of this tutorial is to help you learn about the
process of game construction, while guiding you through writing a relatively complete game. In addition, this tutorial will use
only those assets found in the complete sample file (GoingBeyond4_Tutorial_Sample.zip), eliminating the need to install
additional content. Download the sample file now and extract its contents to a directory on your local drive.

The game you implement will be a simple clone of the popular Asteroids® game by Atari®. The place of Asteroids in video
game history is well known, and you are encouraged to read the interesting history of the game on Wikipedia. This tutorial
assumes you have a general idea of how the Asteroids game works.

A lot of initial work in this tutorial is already done for you. In fact, this tutorial picks up at the end of the Tutorial 3: Making
Sounds with XNA Game Studio tutorial. Once you have completed the first three tutorials in Going Beyond: XNA Game Studio
in 3D, you will have a moveable spaceship with sounds and rendering in 3D space. In another 60 to 90 minutes of coding time,
you will have a relatively complete Asteroids-style game.

Before You Begin: Getting the Project Ready

Begin this tutorial by completing the first three tutorials in the Going Beyond: XNA Game Studio in 3D series, or by
downloading the completed code for the third tutorial (Video Tutorial 3: Making Sounds with XNA Game Studio and XACT)
from the XNA Creators Club Online Web site.

Step 1: Ship Shape

The first three tutorials in the Going Beyond: XNA Game Studio in 3D series explained the basics of a single interactive object,
rendered in 3D. A true game, however, needs more than just one object. The first step toward making this tutorial into a game
is to prepare the game to track and render several objects.

Think of the idea of your ship on the screen. It is drawn using a Mode1 class, it has a position tracked by a vector3, and still
another vector3 tracks velocity. A f1loat tracks the rotation angle. Each of these data types is modified or checked in different
places along the code path, and while the end result looks good to the user, the drawback comes when you try to extend the
gameplay to include another object that needs similar data.

http://go.microsoft.com/fwlink/?LinkId=149820&clcid=0x409
http://en.wikipedia.org/wiki/Asteroids_(game)
http://creators.xna.com/

If, for instance, you wanted to add a second ship that would also draw on the screen, and had the ability to move and turn, you
would have to create a copy of each of the variables you were using for the first ship. You would have to duplicate the code
you wrote that checked and modified each variable. Each copied line would be nearly identical to the original line, except that it
was acting on a new variable.

For a game that will ultimately have more than a dozen objects all drawing and moving around, this is unworkable. The
duplicated code would make your code unreadable and painful to modify. However, there is a better way. If you create a code
object that holds the common variables that allow you to draw and move a 3D object, then maintain a list of these objects, you
can draw and move them all together using the same code. This process is called encapsulation, and is the beginning of object-
oriented programming, which becomes more and more important the larger your game becomes.

Start by right-clicking on your project in Solution Explorer, and select Add, then Class. Type ship.cs into the Name box, then
click Add.

When you add the new file, it will open up in the code window. This new file represents a class, or code object. This particular
class is named ship. You will notice it is very minimal now; modify it so it looks like the following:

C#

using System;

using System.Collections.Generic;

using System.Text;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace GoingBeyond4
{
class Ship
{
public Model Model;
public Matrix[] Transforms;

//Position of the model in world space
public Vector3 Position = Vector3.Zero;

//Velocity of the model, applied each frame to the model's position
public Vector3 Velocity = Vector3.Zero;

public Matrix RotationMatrix = Matrix.Identity;
private float rotation;
public float Rotation

{
get { return rotation; }
set
{
float newVal = value;
while (newVal >= MathHelper.TwoPi)
{
newVal -= MathHelper.TwoPi;
}
while (newVal < 0)
{
newVal += MathHelper.TwoPi;
}
if (rotation != newval)
{
rotation = newVal;
RotationMatrix = Matrix.CreateRotationY(rotation);
}
}
}
public void Update(GamePadState controllerState)
{

// Rotate the model using the left thumbstick, and scale it down.

Rotation -= controllerState.ThumbSticks.Left.X * @.10f;

// Finally, add this vector to our velocity.
Velocity += RotationMatrix.Forward * 1.0f *
controllerState.Triggers.Right;

You can see that the ship class now does a lot—it holds onto the ship's position, velocity, rotation, and 3D model, and has its
own Update method that will move the ship around.

Now that you have created the ship class, you need to change the code in the Game1.cs code file to take advantage of this
new, encapsulated data. Double-click on Game1.cs in your Solution Explorer.

Start with drawing the ship's model. Your original drawing code was inside the braw method, but that will not scale up to
multiple objects very well. You will be drawing Model objects on the screen, so create a method that will draw a chosen Model.
Below the Draw method, add a new method called prawModel, like so:

C#

public static void DrawModel(Model model, Matrix modelTransform,
Matrix[] absoluteBoneTransforms)

{
//Draw the model, a model can have multiple meshes, so loop
foreach (ModelMesh mesh in model.Meshes)
{
//This is where the mesh orientation is set
foreach (BasicEffect effect in mesh.Effects)
{
effect.World =
absoluteBoneTransforms[mesh.ParentBone.Index] *
modelTransform;
¥
//Draw the mesh, will use the effects set above.
mesh.Draw();
}
¥

This DrawModel method takes your model-drawing algorithm and applies it to any Model object passed into it, drawing the
Model on the screen. Next, modify the praw call so that it calls this new method:

C#

protected override void Draw(GameTime gameTime)

{
graphics.GraphicsDevice.Clear(Color.CornflowerBlue);
Matrix shipTransformMatrix = ship.RotationMatrix

* Matrix.CreateTranslation(ship.Position);

DrawModel(ship.Model, shipTransformMatrix, ship.Transforms);
base.Draw(gameTime);

}

The code from the previous tutorial contained declarations for modelPosition and modelRotation values above the braw call.
Delete those—you will not need them anymore. Also delete the cameraPosition variable—you will recreate this later.

Next, modify the Update and UpdateInput methods to use the values in the new ship class as follows:

C#

protected override void Update(GameTime gameTime)
{
// Allows the game to exit
if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==
ButtonState.Pressed)
this.Exit();

// Get some input.
UpdateInput();
// Add velocity to the current position.
ship.Position += ship.Velocity;
// Bleed off velocity over time.
ship.Velocity *= 0.95f;
base.Update(gameTime);
}
protected void UpdateInput()
{
// Get the game pad state.
GamePadState currentState = GamePad.GetState(PlayerIndex.One);
if (currentState.IsConnected)
{
ship.Update(currentState);
//Play engine sound only when the engine is on.
if (currentState.Triggers.Right > 0)
{
if (soundEnginelInstance.State == SoundState.Stopped)
{
soundEngineInstance.Volume = 0.75F;
soundEngineInstance.IslLooped = true;
soundEngineInstance.Play();
}
else
soundEngineInstance.Resume();
}
else if (currentState.Triggers.Right == 0)
{
if (soundEngineInstance.State == SoundState.Playing)
soundEngineInstance.Pause();
}
// In case you get lost, press A to warp back to the center.
if (currentState.Buttons.A == ButtonState.Pressed)
{
ship.Position = Vector3.Zero;
ship.Velocity = Vector3.Zero;
ship.Rotation = 0.0f;
soundHyperspaceActivation.Play();
}
}
}

Above the UpdateInput method, remove the modelvelocity variable above update—it is no longer needed.

Finally, you need to make a change to the way your initialization and content loading are handled. Starting from the top of the

Game class and continuing down to just above the call to update, modify the code as follows:

C#

GraphicsDeviceManager graphics;

//Camera/View information

Vector3 cameraPosition = new Vector3(0.0f, 0.0f, -5000.0f);
Matrix projectionMatrix;

Matrix viewMatrix;

//Audio Components
SoundEffect soundEngine;
SoundEffectInstance soundEnginelnstance;

SoundEffect soundHyperspaceActivation;

//Visual components
Ship ship = new Ship();

public Gamel()

{
graphics = new GraphicsDeviceManager(this);
Content.RootDirectory = "Content";

}

/// <summary>
/// Allows the game to perform any initialization it needs to before
/// starting to run. This is where it can query for any required
/// services and load any non-graphic related content.
/// Calling base.Initialize will enumerate through any components
/// and initialize them as well.
/// </summary>
protected override void Initialize()
{
projectionMatrix = Matrix.CreatePerspectiveFieldOfView(
MathHelper.ToRadians(45.0f),
GraphicsDevice.DisplayMode.AspectRatio,
1.0f, 10000.0f);
viewMatrix = Matrix.CreatelLookAt(cameraPosition,
Vector3.Zero, Vector3.Up);

base.Initialize();

}

private Matrix[] SetupEffectDefaults(Model myModel)

{
Matrix[] absoluteTransforms = new Matrix[myModel.Bones.Count];
myModel.CopyAbsoluteBoneTransformsTo(absoluteTransforms);

foreach (ModelMesh mesh in myModel.Meshes)

foreach (BasicEffect effect in mesh.Effects)
{
effect.EnableDefaultLighting();
effect.Projection = projectionMatrix;
effect.View = viewMatrix;
}
}

return absoluteTransforms;

}

protected override void LoadContent()

{
ship.Model = Content.Load<Model>("Models/pl_wedge");
ship.Transforms = SetupEffectDefaults(ship.Model);
soundEngine = Content.Load<SoundEffect>("Audio/Waves/engine 2");
soundEngineInstance = soundEngine.CreatelInstance();
soundHyperspaceActivation =

Content.Load<SoundEffect>("Audio/Waves/hyperspace_activate");

}

/// <summary>

/// UnloadContent will be called once per game and is the place to unload
/// all content.

/// </summary>

protected override void UnloadContent()

{
}

While it may seem like a lot of work, the modified code is a good example of encapsulation, and will come in handy as you
develop your game.

Step 2: Camera Work

Now that you have a ship object ready, the next step is to get the ship flying around the screen from a top-down point of view.
You will accomplish this by simply changing the camera's angle and distance. Finally, you will adjust the rotation mechanics on
the user input, so that it matches the behavior you want.

Reverse the camera position along the z-axis by simply altering the value from negative 5000 to positive 25000. The
cameraPosition member is declared near the start of the Game1 class. Now your cameraPosition declaration will look like this:

C#

Vector3 cameraPosition = new Vector3(0.ef, 0.0f, 25000.0f);
Unfortunately, if you run the tutorial with only that change, the ship does not show up. This is because the "projection matrix"
of the camera is not correct. The formal term that describes the problem is "bounding frustum culling” (also called "viewing
frustum culling"). Look in the XNA Game Studio documentation for the BoundingFrustum class, which includes a key diagram
to help you learn more about frustums and how they relate to the camera. A camera's near and far plane is set in a specific way

to (usually) address performance concerns. In this case, the camera's original near plane is 1 and the far plane is at 10,000.
When the camera was set at 5,000 units, like in Figure 1, the ship was in the camera's view space.

Far Plane

Near Plane

LSS Z Axis

Figure 1. Original camera setting and view space

That's perfectly fine when the spaceship was located 5,000 units away from the camera. But when you moved the camera
starting point to 25,000, the camera's view space was in the wrong place, as in Figure 2, leaving the ship too far away to be
seen.

Far Plane
Near Plane

Z Axis

' f

Figure 2. New camera position with incorrect view space

Correct the viewing space problem now. Inside the Initialize method of the Game1 class, you will see the method that creates
the projectionMatrix:

C#

projectionMatrix = Matrix.CreatePerspectiveFieldOfView(
MathHelper.ToRadians(45.0f),
GraphicsDevice.DisplayMode.AspectRatio,
1.0f, 10000.0f);

You need to change the near and far clipping planes of the frustum so that the ship is back in the viewing space. You determine

the near and far clipping planes by simple math. The camera is 25,000 units away from the ship, so you set the near plane
5,000 units "closer" to the camera, and the far plane 5,000 units "farther away," like this:

C#

projectionMatrix = Matrix.CreatePerspectiveFieldOfView(
MathHelper.ToRadians(45.0f),
GraphicsDevice.DisplayMode.AspectRatio,
20000.0f, 30000.0f);

This corrects the viewing space so that the ship is inside it, as in Figure 3.
Far Plane
.. Near Plane

S

j Z Axis C?Nﬂ

Figure 3. Corrected viewing space

Running the program now will show you the view facing the back end of the ship, rather than facing the nose end. If you fly the
ship toward or away from you, you will see the ship disappear as it moves outside the frustum after a few seconds. Now alter
the orientation of the ship and how it responds to your input.

In the ship class, you will change the default orientation of the ship so that it starts from a "top-down" perspective. Double-
click on Ship.cs in Solution Explorer.

If the ship is initially facing away from you, a 90-degree rotation along the x-axis will give you the top-down view. Don't forget,
you are looking at the ship down the z-axis, so from your perspective, changes in x are "left/right" and changes in y are
"up/down." Thus, rotating the ship on the x-axis flips the ship around as if it were spinning on the wings. In the XNA
Framework, angular measurements are given in radians, which means you are rotating the ship Pi/2 radians.

Replace the existing declaration of RotationMatrix with the following:
C#

public Matrix RotationMatrix =
Matrix.CreateRotationX(MathHelper.PiOver2);

Now, every time you change the ship's rotation (in the ship's Rotation property "set" method), you alter the rotation matrix to
include this default rotation, plus the rotation amount along the z-axis supplied by the player's controller. You could just as well
rotate along any other axis, provided you:

e Position the camera properly.
e Perform your translation and rotation calculations in relation to the correct axis.

Failing to properly calculate translation and rotation movement can yield some surprising, if not frustrating, results. Avoid this
by modifying the set method of the Rotation property. Change the existing if clause to match the following:

C#
if (rotation != value)
{

rotation = value;

RotationMatrix =
Matrix.CreateRotationX(MathHelper.PiOver2) *
Matrix.CreateRotationZ(rotation);

}

You should notice that your ship appears to be flying slowly now. That is because your view is much farther away than it used

to be. Just under the declaration of velocity, add a floating-point constant that you can use to adjust the ship's velocity:
C#

//amplifies controller speed input
private const float VelocityScale = 5.0f;

At the end of the ship's update method, change the current Velocity computation to use the velocityscale value to give the
ship a little extra speed (more accurately, it increases the number of units per frame in the game):

C#

Velocity += RotationMatrix.Forward * VelocityScale *
controllerState.Triggers.Right;

Running with these changes will now give you a top-down view of the ship, which you can fly around on the screen. If you fly
off the screen, press the warp button. It's a good idea to change the original use of the A button to another button, as you will
be using the A button to fire in a later step.

Step 3: You Need Rocks. Lots of Them.

You have a ship in the game, so now add asteroids to it. For the sake of simplicity, you are only going to track each asteroid's
position, direction, and speed. Create a simple class that has only those three members. Right-click on the
GoingBeyond4Windows project in Solution Explorer, click Add, and then click Class. Name it asteroid.cs. (Don't forget to
add a using statement for Microsoft.Xna.Framework). Because this class is "lightweight," you will change it from a class to a
structure. (Literally, change the word "class" to "struct" in the file.) There are many nuances about when to use and not use a
structure (called a "value type" in C# parlance), which are beyond the scope of this document. Many of the issues relate to
performance and garbage collection (GC). In a blog post by the Compact Framework team
(http://blogs.msdn.com/netcfteam/archive/2006/12/22/managed-code-performance-on-xbox-360-for-xna-part-2-gc-and-
tools.aspx) they say this about value types:

"Games typically have lots of small objects that represent game state. The obvious optimization here is to reduce live object
count. You can do that by defining those data structures as structs which are value types (to use more general terminology).
Value types stay off the GC heap... of course that assumes that your structs don't get boxed in to objects, which can often
happen unknowingly in your code."

In this case, you will use a value type for the Asteroid (and later for bullets) to reduce garbage collection events, as well as to
keep the implementation simple.

Add these three members to the structure:
C#

public Vector3 position;
public Vector3 direction;
public float speed;

Double-click on your Game1.cs file. Inside your Game1 class, you will create a simple array that contains asteroids. Add some
additional members to your Game1 class to render the asteroids. After the declaration for the ship (Ship ship = new Ship();),
add the following:

C#

Model asteroidModel;

Matrix[] asteroidTransforms;

Asteroid[] asteroidList = new Asteroid[GameConstants.NumAsteroids];
Random random = new Random();

There is something new in each of these four lines, so look at each one. The first line is an object that holds on to a lot of
information that describes the actual asteroid model loaded by the Content Pipeline processor. You will do that shortly. The
second line retains state information related to specific lighting and effect transformations on the asteroid. Because you are not
adding any special lighting effects, you will set up a default effect on the model and leave it. The third line is a simple array of
asteroids, but you will notice the introduction of the GameConstants class, which will generally hold values that you might want
to change as you develop and test the game. There will be more about that shortly. The final line creates a random number
generator, which you will use for a few purposes in the game.

http://blogs.msdn.com/netcfteam/archive/2006/12/22/managed-code-performance-on-xbox-360-for-xna-part-2-gc-and-tools.aspx

Look at this new GameConstants class briefly. One nice design trick for simple games like this is to gather game parameters,
which you might want to customize, into a single location. Create that class now. Click Add, and then click Class. Name it
GameConstants.cs. Once the file opens, add these constants to the class (you will use the Playfieldsize constants later):

C#

//camera constants

public const float CameraHeight = 25000.0f;
public const float PlayfieldSizeX = 16000f;
public const float PlayfieldSizeY = 12500f;
//asteroid constants

public const int NumAsteroids = 10;

As you might guess from the addition of the camera constants, you will want to modify the cameraPosition declaration in the
Gamel class to look like this now:

C#

Vector3 cameraPosition = new Vector3(e.0f, 0.eof,
GameConstants.CameraHeight);

And the initialization of the projectionMatrix (located in the Initialize method) to look like this:
C#

projectionMatrix = Matrix.CreatePerspectiveFieldOfView(
MathHelper.ToRadians(45.0f),
GraphicsDevice.DisplayMode.AspectRatio,
GameConstants.CameraHeight - 1000.0f,
GameConstants.CameraHeight + 1000.0f);

Turn your attention back to the asteroid structure again. To render the asteroid, you need to add an asteroid model to the
Content Pipeline. You already have a Content/Models directory in your game, since it is storing your ship model. Add the
"asteroid1.x" model to that directory by right-clicking on the directory, clicking Add, and then clicking Existing Item. Then
navigate back to the path to which you extracted the contents of the sample file. (Remember, you had to do this when you did
"Tutorial 1: Displaying a 3D Model on the Screen” from the "Going Beyond: XNA Game Studio in 3D" series). Select the
asteroid1.x file from your Content/Models directory (you might need to select files of type "Content Pipeline Files" to see it),
and add it to your Models directory. In addition to adding this model, you will also need to manually copy the asteroid's texture
file, "asteroid1.tga," from the Content/Textures directory of the sample to the Content/Textures subfolder in your game project
folder. Just manually copy it. Do not use the Add, and then Existing Item approach. Also, be very careful about the copying
process. A common beginner's mistake is to copy a Texture file into a Model directory. This is not a good idea.

Now you will visit the LoadContent method in the Game1 class. This is where you will load the mesh model for your asteroid
that you just added. Just below the line where you added the p1_wedge model, load the asteroid model and transforms:

C#

asteroidModel = Content.Load<Model>("Models/asteroidl™);
asteroidTransforms = SetupEffectDefaults(asteroidModel);

Next, you'll need a method to populate the asteroidList with several asteroids. It will be called at the end of the Tnitialize
method in the Gamel class (before the base.Initialize () call). When you create an asteroid, you will give it a starting speed
and random direction. For now, start the asteroids from the center of the screen.

Create a separate method called Resetasteroids, which will populate the list of asteroids.

private void ResetAsteroids()

{

for (int i = @; i < GameConstants.NumAsteroids; i++)

{
asteroidList[i].position = Vector3.Zero;
double angle = random.NextDouble() * 2 * Math.PI;
asteroidList[i].direction.X = -(float)Math.Sin(angle);
asteroidList[i].direction.Y = (float)Math.Cos(angle);
asteroidList[i].speed = GameConstants.AsteroidMinSpeed +

(float)random.NextDouble() * GameConstants.AsteroidMaxSpeed;

¥Note

You will need to add two floating-point constants (code given below), asteroidMinspeed and AsteroidMaxSpeed, to the Game
Constants class yourself. In this example, 100.0 is the minimum speed, and 300.0 is the maximum.

C#

100.07;
300.0f;

public const float AsteroidMinSpeed
public const float AsteroidMaxSpeed

Then add a call to ResetAsteroids () just before the call to base.Initialize () inthe Initialize method.

The direction values of the asteroids are using a basic trigonometric function to determine the x and y components of the
direction, based on the starting angle. Do not modify the z value because the game only plays in two dimensions.

Now that you have created the asteroids, you need to render them. You should recognize that this should go in the praw ()
method. Indeed, you will simply look through the asteroidrist and render each asteroid in the same manner as the ship. So,
add this code after the completion of the rendering of the ship in the braw () method.

C#
for (int i = @; i < GameConstants.NumAsteroids; i++)
{
Matrix asteroidTransform =
Matrix.CreateTranslation(asteroidList[i].position);
DrawModel(asteroidModel, asteroidTransform, asteroidTransforms);
}

If you run this code as-is right now, you will see the ship and single asteroid rendered in the center. There are actually 10
asteroids there, but they are stacked one on top of the other.

The next step is to give the asteroids some motion. This is accomplished in the update () method by simply iterating over the
list and updating their position. Do that just after you update the ship's velocity:

C#
for (int i = @; i < GameConstants.NumAsteroids; i++)
{
asteroidList[i].Update(timeDelta);
}

One thing you added is a time delta. This is a small efficiency trick. Calculate the timeDelta value once per update, rather than
repeatedly calling the property to check for the total seconds passed. This will be the first line of the update () method (in the
Gamel class):

C#

float timeDelta = (float)gameTime.ElapsedGameTime.TotalSeconds;

Notice that you are calling each asteroid's update () method in this loop, so you will need to add that method to the asteroid
structure (inside the structures braces, not outside it). Thanks to the expressiveness of the XNA Framework Math library, this
can be written in a very simple manner:

public void Update(float delta)
{

position += direction * speed * GameConstants.AsteroidSpeedAdjustment * delta;

}

‘EN ote

You will need to add the floating-point constant, AsteroidSpeedadjustment, to the GameConstants class. In this case, use a de
fault value of 5.0.

If everything went well, you will see the asteroids all flying away from the ship in random directions until they all disappear
from the screen.

What is wrong with this picture?

Keep the asteroids in the game by wrapping the asteroid around the screen. This is accomplished by allowing the asteroids to
drift off the screen, then shifting them to the other side once they have disappeared. The values of playfield size constants were
made from some rough approximations based on the actual viewing space. A properly designed game will carefully calculate
the field of view area and determine the limits based on asteroid model sizes, and other parameters. In this case, use the
PlayfieldSize constants in a simple fashion to determine the "wraparound" trigger areas. After you update the asteroid's
position in the Asteroid class's Update method, you then determine if you need to move the asteroid around:

C#

if (position.X > GameConstants.PlayfieldSizeX)
position.X -= 2 * GameConstants.PlayfieldSizeX;

if (position.X < -GameConstants.PlayfieldSizeX)
position.X += 2 * GameConstants.PlayfieldSizeX;

if (position.Y > GameConstants.PlayfieldSizeY)
position.Y -= 2 * GameConstants.PlayfieldSizeY;

if (position.Y < -GameConstants.PlayfieldSizeY)
position.Y += 2 * GameConstants.PlayfieldSizeY;

Now you should see your asteroids calmly wrapping around the screen as they drift through space. Perfect! Well, almost. This
game will not be very interesting if you start all the asteroids in the center, since that would result in a collision with the ship.
You need to add some code to start the asteroids on the left or right edge of the screen.

Choosing where to start the asteroid is a little tricky. For the x value of the asteroid's position, you must first choose to start on
the left or right side of the screen. Use the random number generator to pick either a 0 or 1. If it's 0, you will start on the left. If
it's 1, you will start on the right. To do this, call random.Next (2), which generates a number between 0 and up to, but not
including, the passed value (so it only returns a 0 or 1). For the y value of the asteroid's position, simply choose a random
number that is within the playfield's y range. This means you will modify the line that assigns the asteroid position a value of
Vector3.Zero so that the final method looks like this:

C#
private void ResetAsteroids()
{
float xStart;
float yStart;
for (int i = @; i < GameConstants.NumAsteroids; i++)
{
if (random.Next(2) == 0)
{
xStart = (float)-GameConstants.PlayfieldSizeX;
}
else
{
xStart = (float)GameConstants.PlayfieldSizeX;
}
yStart =
(float)random.NextDouble() * GameConstants.PlayfieldSizeY;
asteroidList[i].position = new Vector3(xStart, yStart, 0.0f);
double angle = random.NextDouble() * 2 * Math.PI;
asteroidList[i].direction.X = -(float)Math.Sin(angle);
asteroidList[i].direction.Y = (float)Math.Cos(angle);
asteroidList[i].speed = GameConstants.AsteroidMinSpeed +
(float)random.NextDouble() * GameConstants.AsteroidMaxSpeed;
}
}
“Note

Do not forget to declare the two floating-point values, xstart and ystart, just before the for loop.

It might look a little confusing, but run through the math calculations a couple times to get comfortable with what is going on.
At this point, you have a ship in the center of the screen, with several asteroids starting on the sides, moving in random
directions and speeds.

Step 4: When Ships and Asteroids Collide

Now, add a few more content items to your game, which you will use in Steps 3 and 4. You will add one model and three
sounds to the game:

1. Add "pea_projx" (the bullet model) to the Models section in your project. To do this, right-click Models, click Add, and
then click Existing Item. Do not forget you might need to change the Files of Type drop-down to Content Pipeline
Files.

The model is located in the downloaded samples directory under Content/Models —in the same place the asteroid
model was lurking. You will also need to copy the "pea_proj.tga" file from the Content/Texture location to your
Content/Textures location. Again, do not use Add and then Existing Item here.

2. As in Tutorial 3 ("Making Sounds with XNA Game Studio"), navigate to the Content/Audio/Waves directory of the
downloaded sample directory and copy weapons/explosion3.wav, explosions/explosion2.wav, and
weapons/tx0_fire1.wav into your Content/Audio/Waves directory.

Right after the existing sound effect variables, add three new ones to store the sound effects you just added:
C#

SoundEffect soundExplosion2;
SoundEffect soundExplosion3;
SoundEffect soundWeaponsFire;

Now, modify the LoadContent method to load your new sound effects:
C#

soundExplosion2 =
Content.Load<SoundEffect>("Audio/Waves/explosion2");

soundExplosion3 =
Content.Load<SoundEffect>("Audio/Waves/explosion3");

soundWeaponsFire =
Content.Load<SoundEffect>("Audio/Waves/tx0_firel");

The new explosion and weapons fire effects are now ready to be used when needed during game play.

You have something visually interesting now. You have a ship, with sound effects, that you can move around. You also have
asteroids happily flying around on the screen. Unfortunately, you cannot shoot the asteroids. On the other hand, the asteroids
also cannot hurt you—yet. Add some collision detection between the ship and the asteroids. In a later step, you will get even by
shooting back.

With the XNA Framework, simple collision detection is easy. In this step, you will be using a BoundingSphere, which is an
object that creates the smallest-sized sphere (by default) that can enclose the target model. The BoundingSphere contains
many different intersection tests, including the ability to detect intersections with planes, rays, boxes, and, of course, other
spheres (among other things). Hence, you will put an invisible bubble around each object you want to test, and then determine
if they intersect each other.

One trick to remember in gameplay is that you should consider different rules for collisions, depending on the context. In this
case, you will deliberately create a bounding sphere around the ship that is smaller than the ship. This is a little game
programming trick. Most models are uneven in shape, but a BoundingSphere only takes into account the point farthest from
the model's center when creating the sphere's radius. This results in collisions that often appear like they were nowhere near
the player's ship. In addition, creating a slightly smaller sphere gives a little more "forgiveness" in case a player gets too close
to an asteroid. So, create two constants in the GameConstants class that sets bounding sphere sizes for the asteroids and ship:

C#
public const float AsteroidBoundingSphereScale = 0.95f; //95% size
public const float ShipBoundingSphereScale = 0.5f; //50% size

Now, create the actual bounding sphere around the ship, just after you update the asteroid positions in the update method of

the came1 class. Then create a loop that visits each asteroid. Inside this loop, you create a temporary bounding sphere around
the asteroid and determine whether the ship and asteroid sphere are intersecting. If the two spheres intersect, you play an
explosion sound and break out of the loop:

C#

//ship-asteroid collision check
BoundingSphere shipSphere = new BoundingSphere(
ship.Position, ship.Model.Meshes[@].BoundingSphere.Radius *
GameConstants.ShipBoundingSphereScale);
for (int i = @; i < asteroidList.Length; i++)
{
BoundingSphere b = new BoundingSphere(asteroidlList[i].position,
asteroidModel.Meshes[@].BoundingSphere.Radius *
GameConstants.AsteroidBoundingSphereScale);
if (b.Intersects(shipSphere))

{
//blow up ship

soundExplosion3.Play();
break; //exit the loop

Running this program now gives you some great feedback. First, the collision check seems to work pretty well. Second, you
hear a collision sound. Third, the sound does not seem right. This is because as the asteroid and ship move through each other,
the collision check is constantly firing every frame, with the XNA Framework trying to play the explosion in every frame,
causing garbled sound. You can solve this problem by removing the colliding objects from the updating and rendering. In a
real game, this means the ship explodes and you lose a life. In the tutorial, simply remove the ship and the offending asteroid
from the display and then update. You'll add this feature in the next step.

Step 5: Boom - You're Dead

The code starts getting a little more complex now, but you will leverage some handy secrets in XNA Game Studio to make it
easy. To start, you need to create a Boolean flag that tells you if the ship is alive or dead. This will go in the ship class, right
after the declaration of velocityScale:

public bool isActive = true;

Before you test for a ship and asteroid collision, you need to verify the isactive flag is true. This is done by wrapping the
collision code you already wrote in an if statement. This is easy with XNA Game Studio. Highlight the entire block of code that
does the collision check (the BoundingSphere declaration and the loop right after it), then right-click the selected code and
click Surround With, then select the if statement (not the #if statement) from the list. You will see your code is now wrapped
in an if statement, awaiting a Boolean condition. Now all you have to do is replace true with ship.isActive. Finally, set
ship.isActive to false after you play the explosion sound.

This fixes the explosion sound, but both the ship and the offending asteroid are still visible in the game. First, remove the ship.
Since you have set the flag in the update () method, that still leaves you the responsibility to not draw the ship anymore. So
once again wrap a chunk of code in the praw () method with the if statement. By now you should be familiar with what portion
of the code draws the ship. Select the line of code that draws the ship, right-click, click Surround With, and insertan it
(ship.isActive) test.

Running the code now should let you merrily smash your ship into an asteroid, with an accompanying explosion and the
disappearance of your ship.

Finally, you need to remove the colliding asteroid. This requires a flag just like the ship. Each asteroid needs an isactive flag
that tells whether you should draw or update the asteroid. This is accomplished in five steps, which you should attempt to do
on your own:

1. Create an isactive flag inside the asteroid class, similar to what you did with the ship.

2. Setthe isactive flag to true when you create each asteroid in the ResetAsteroids method in the Game1 class.

3. In the code where you draw the asteroids, surround the drawing code in an if statement. This happens inside the loop
where you iterate through each asteroid.

4. Similarly, you now need to do the same thing in the update section, checking to see whether an asteroid is active before
you execute a collision test with the ship.

5. If a ship does collide with an asteroid, set that asteroid's active state to false just after you play the explosion sound.

If you did all the steps correctly, you should have an almost-functional game! Collisions, sounds, moving ships. It's all starting
to come together! This leads to the next question: What to do once you blow up the ship? Easy. Press the Warp button. In
Tutorial 2: Making Your Model Move Using Input, you wrote some code that reset the ship back to the center. It's still there and
still useful (except back then it was the A button). Now go ahead and add a ship.isActive = true statementin the code block
for pressing the B button. (Hint: Look in the UpdateInput method in the Game1 class). Also, if you have not changed the Warp
button from A to B, now is the time to do it. Instant life-regeneration!

The next step will add bullets to the game, so you can shoot back. The good news is that all the work you have done up to now
will make the bullet work seem easy.

Step 6: Revenge of the Ship

In many ways, a bullet in the game is like an asteroid: it travels in a direction and collides with things. You are going to treat
bullets just a little differently though, giving the game a little fine-tuning in the process.

Conveniently, the Bullet structure is exactly like the asteroid structure, so all you need to do is copy the asteroid
implementation file, rename the new file to Bullet.cs, and the structure name to Bullet. In addition, you will want to add these
new constants to the GameConstants class for later use:

C#

public const int NumBullets = 30;
public const float BulletSpeedAdjustment = 100.0f;

Think ahead a little bit right now, though. How long do you want the bullets to fly around in space? Do you want them to wrap
around the screen? Maybe only live for a certain number of seconds or travel a certain distance? Do you want the bullets to be
able to collide with both asteroids and the ship? Any of these approaches are legitimate ways to make the game physics
behave. In this case, though, the bullets are simply going to disappear once they go off the screen. This means the Update ()
method in the Bullet class will flag the bullet as inactive once it drifts off the view.

This is a simple check, similar to what was done with the asteroid structure:
C#

public void Update(float delta)
{

position += direction * speed *
GameConstants.BulletSpeedAdjustment * delta;
if (position.X > GameConstants.PlayfieldSizeX ||
position.X < -GameConstants.PlayfieldSizeX ||
position.Y > GameConstants.PlayfieldSizeY ||
position.Y < -GameConstants.PlayfieldSizeY)
isActive = false;

As with the Asteroid structure, you are now done with the Bullet structure. However, you have to do several things to make
the bullets actually work in the game. You have done this all before with the asteroids, but review the basic steps:

Load the model into the Content Pipeline and set the effect transforms.

Create a list to track all bullets in the game.

Create a bullet and make a firing sound when a player presses a specific button.
Draw the bullet in-flight.

Test the asteroids and bullets for collisions. If they collide, make an explosion sound and remove the colliding bullet and
asteroid.

vk wn =

Begin by creating the needed instance variables. Underneath the same place that you created the asteroidList and
asteroidModel variables, create a list to hold the bullets and a model to hold the bullet's shape.

C#

Model bulletModel;
Matrix[] bulletTransforms;
Bullet[] bulletList = new Bullet[GameConstants.NumBullets];

Then in the LoadContent () method, assign the pea_proj model to bulletModel. Remember, you added pea_proj.x to the
Content/Models directory earlier:

C#

bulletModel = Content.Load<Model>("Models/pea_proj");
bulletTransforms = SetupEffectDefaults(bulletModel);

Unlike the asteroids, you do not create bullets inside Initialize. Instead, create a bullet every time a user presses the A button
on the controller. Add a new condition to the UpdateInput () method at the very end:

C#

//are we shooting?
if (ship.isActive && currentState.Buttons.A == ButtonState.Pressed)

{

//add another bullet. Find an inactive bullet slot and use it
//if all bullets slots are used, ignore the user input
for (int i = @; i < GameConstants.NumBullets; i++)

{
if ('bulletList[i].isActive)

{

bulletList[i].direction = ship.RotationMatrix.Forward;
bulletList[i].speed = GameConstants.BulletSpeedAdjustment;
bulletList[i].position = ship.Position + (200 * bulletList[i].direction);
bulletList[i].isActive = true;

soundWeaponsFire.Play();

score -= GameConstants.ShotPenalty;

break; //exit the loop

There is an interesting trick in the above code that needs explaining. When it calculate the initial position of the bullet, it
appears as if it's firing out the nose of the ship. Thus, the code begins by determining where the bullet is starting from, which is
the ship's center. Then it translates the bullet 200 additional units in the direction of the bullet (200 is the rough approximation
of the distance from the ship's center to the nose of the ship).

This kind of "motion offset" is very common in game development. One "extra credit" feature you can do is to add the ship's
current velocity to the bullet's velocity.

Now it's actually possible to run your game and press the fire (A) button, but you will not yet be able to see the bullets
(because you have not drawn them). When you press the fire button (the A button), you might have observed that the sound
behaves just like the original problem you had with the asteroid/ship explosions. You are triggering the sound too many times.
In fact, you probably noticed that you can hold the fire button down and it will fire a continuous "stream" of bullets (until all the
bullet "slots" are used). There is a simple fix to the UpdateInput () method to fire the bullet only once every time the button is
pressed.

The problem with UpdateInput is that it is failing to track the user's previous input state. Create a variable that does this. Just
after the GraphicsbDeviceManager declaration (near the beginning of the Game1 class), add this variable:

C#

GamePadState lastState = GamePad.GetState(PlayerIndex.One);

Then, at the end of the UpdateTnput method, save the user's game pad state:
C#

lastState = currentState;

Now all you need to do is change the if statement for the "fire" effect to verify that the button was not held down the last time
the code updated:

if (ship.isActive && currentState.Buttons.A == ButtonState.Pressed &&

lastState.Buttons.A == ButtonState.Released)

When you run the program, you will now hear a firing sound for every time you individually press the A button. Now that you
see how to do this, add the same check to your hyperspace button for consistency reasons. The next step is to draw the bullet
as it is flying around the screen. Conveniently, this code is identical to the code that draws the asteroids, except you replace the
word "asteroid" with "bullet" (in the braw method):

C#
for (int i = @; i < GameConstants.NumBullets; i++)
{
if (bulletList[i].isActive)
{
Matrix bulletTransform =
Matrix.CreateTranslation(bulletList[i].position);
DrawModel(bulletModel, bulletTransform, bulletTransforms);
}
}

Then you will again do exactly the same thing in the Update method. Just after the part where you update the asteroid
positions (but before you do the asteroid/ship collision test), add the code to update the bullets:

C#
for (int i = @; i < GameConstants.NumBullets; i++)
{
if (bulletList[i].isActive)
bulletList[i].Update(timeDelta);
}
}

If you run the code at this point in time, you actually have an "almost working" game! All that is left is testing for collisions
between the bullet and the asteroids. This process is really quite easy. All you need to do is loop through each asteroid,
checking to see if a bullet is colliding with it. If so, deactivate both the colliding bullet and asteroid and continue through the list
of asteroids until you are done. The code is almost literally a copy of the ship/asteroid collision code, except instead of i
(shipalive) you have a loop through each asteroid. One thing to note: Do this collision check before checking to see if the
ship collides with an asteroid—that way, the player gets credit for a "kill" before getting destroyed!

C#

//bullet-asteroid collision check
for (int 1 = @; i < asteroidlList.Length; i++)
{
if (asteroidList[i].isActive)
{
BoundingSphere asteroidSphere =
new BoundingSphere(asteroidList[i].position,
asteroidModel.Meshes[@].BoundingSphere.Radius *
GameConstants.AsteroidBoundingSphereScale);
for (int j = 0; j < bulletList.Length; j++)

if (bulletList[j].isActive)

{

BoundingSphere bulletSphere = new BoundingSphere(
bulletList[j].position,
bulletModel.Meshes[0@].BoundingSphere.Radius);

if (asteroidSphere.Intersects(bulletSphere))

{

soundExplosion2.Play();
asteroidList[i].isActive = false;
bulletList[j].isActive = false;
break; //no need to check other bullets
)
¥

If everything went well, you can now fly a ship around, shoot asteroids, and collide with asteroids. Congratulations, you have
written your first XNA Framework game! But wait, the blue background looks, well, nothing at all like a good Asteroids game.
You need a space background and, of course, a way to keep score. That is the last step.

Step 7: Space, the Final Frontier

The last step will be to add finishing touches to the game to make it both visually appealing and to give it more of a game feel.
You will do this in two parts. The first part it to add a 2D background texture to the game to give it a nice space appearance.
The second part will be adding a simple scoring mechanism to the game. When it comes to doing either step, the first thing to
remember is that all 2D items are drawn as sprites. A background and score are no different in terms of how they are drawn,
but as you will learn, it does matter when they are drawn.

For the first step, you need to create a texture for the starry background. Begin by adding the stars Texture2D object in the
same place you declared your asteroid and Bullet models:

C#

Texture2D stars;

Just after you create the bulletModel and bulletTransforms objects, load the texture:
C#

stars = Content.Load<Texture2D>("Textures/Bl_stars");

Lastly, at the beginning of the praw () method, just after you call clear on the graphics device, draw the star background. It's
important to draw the background at the beginning instead of the end, otherwise, it will obscure everything already drawn
(asteroids, and so on) by laying the background on top of the previously drawn objects.

C#

spriteBatch.Begin(SpriteBlendMode.None, SpriteSortMode.Immediate,
SaveStateMode.None);

spriteBatch.Draw(stars, new Rectangle(®, 0, 800, 600), Color.White);

spriteBatch.End();

Now add the B1_stars.tga file into the Content/Textures area in your project (right-click Textures, click Add, and then click
Existing Item. Then browse to the Content\Textures folder of the extracted sample and select the B1_stars.tga file. When you
run your game now, you should see a pretty star field in the background, with all your gameplay in the foreground.

All that is left is keeping score in the game. This is accomplished in a few simple steps:

1. Create a sprite font and add it to the Content Pipeline processing.
2. Load the sprite font with the rest of your content.
3. Set the display string and call the brawstring method.

Creating the sprite font is simple. The first thing to do is create a new folder under the Content folder called Fonts. Then right-
click this folder, click Add, and then click New Item. From the menu, pick Sprite Font. The default file name for this file is
SpriteFont1.spritefont. While you could leave it that way, give it the same name as the font you want to use. Since you will be
using the Kootenay font, name the file Kootenay.spritefont. Feel free to experiment with different fonts later, once you are
comfortable with this process. Once you create the file, it will open to allow you to edit the different font parameters. Just
accept the settings and close it for now.

¥Note

Before you go on, it's important to understand that fonts are very technical pieces of art. The people and companies that crea
te them pour an enormous amount of work in them. In many cases, fonts are protected under copyright and licensing terms
that widely vary. Just because a font is installed on your computer does not mean you automatically have the right to redistri
bute the font to anybody else. Keep this in mind if you ever decide to share games that you write. Fortunately, the default fon
t used by the Sprite Font item is redistributable. For more information, see How To: Draw Text.

Now that you created the sprite font, add some code in the Game1 class so that you can display something. Just after you
declare the stars object, add a few more declarations:

C#

SpriteFont kootenay;
int score;
Vector2 scorePosition = new Vector2(100, 50);

The first declaration will hold the sprite font. The second is a simple counter for the score. Finally, the scorePosition object will
let you position the score in screen coordinates. You could just as well move the scorePosition into the GameConstants class,
but due to compilation rules regarding the vector2 class, you cannot make it a const value.

Loading the sprite font is a one-line addition to the end of the LoadContent method:
C#

kootenay = Content.Load<SpriteFont>("Fonts/Kootenay");

All that is left is to display the score on the screen. This is pretty simple, provided you respect the rules of drawing order. So far,
there are four very distinct drawing steps in the braw method. Draw the background and then the game elements (ship, then
asteroids, then bullets). As mentioned previously, if you draw the background after the game elements, all you see is the star
field, because drawing the star field last covers the entire screen space. This same issue applies for the game score. Draw the
game score last so that it appears overlaid on the rest of the game.

Hopefully by now, you will realize that the score will be drawn just before the base.Dpraw call is made in the braw method. The
actual code to draw the string is simply a sprite batch Begin/End pair, with the call to brawstring in between:

C#

spriteBatch.Begin(SpriteBlendMode.AlphaBlend,
SpriteSortMode.Immediate, SaveStateMode.None);

spriteBatch.DrawString(kootenay, "Score: " + score,
scorePosition, Color.LightGreen);
spriteBatch.End();

When you run the game now, you should see a score displayed in the upper-left corner. You will also notice that the game
elements appear to render underneath the score, giving the effect you want. Now think about how you want to score the game.

Good gameplay not just about "running and gunning,” it's about forcing the player to make decisions and tradeoffs to achieve
one or more goals. In this game, you are going to penalize the player for each round the player fires (offensive actions come at
a cost) and presses the Warp button (defensive actions come at a cost). You will also penalize the player for dying. In most
video games, you are given a limited number of lives, and you subtract a "life" when the player's avatar gets destroyed.
However, in this game, a multi-life system is not implemented (you should do that as "extra credit"), so simply take away
points. Also, reward points for each asteroid destroyed. First, set up some scoring values in the GameConstants class:

C#

public const int ShotPenalty = 1;
public const int DeathPenalty = 100;
public const int WarpPenalty = 50;
public const int KillBonus = 25;

Now, alter the scores in the appropriate places. For instance, the shot penalty would be added to the updateInput method, just
after it registers that the player fired a bullet, most likely just after the soundweaponsFire.pPlay () ; line:

score -= GameConstants.ShotPenalty;

You will need similar approaches in three other areas, which you should accomplish on your own:

e \When the ship is determined to have collided with an asteroid (subtract DeathPenalty from score).
o When a bullet is determined to have collided with an asteroid (add KillBonus to score).
e \When the player presses the warp button (subtract WarpPenalty from score).

Finally

The initial goal of this tutorial was to show you that the tools, materials, and knowledge to write a game are right at your
fingertips, and to guide you through the process of writing your first game. By now, you have learned how to:

Change camera views to achieve different rendering perspectives.

Write simple collision-detection routines.

Create a game environment where many things appear to be happening at once.
Integrate 2D and 3D rendering.

Render text in your game.

Create a feel of "gameplay" where the player has both benefits and penalties with their decisions.

Hopefully, you have also enjoyed the process of making the game. After all, making a game should be just as much fun as
playing one! But this is only the beginning. While the game you made is interesting, there are many things you can still do to
make the game more engaging and enjoyable. Here are several suggestions (but by no means a complete list) on how you can
take your game to the next level:

Wrap the ship around on the screen.

Vibrate the controller when a ship collides with an asteroid.
Split the big asteroids into successively smaller ones.

Add explosion effects when a bullet hits an asteroid.

Add engine particle effects as the ship flies around.

Add a smart "UFQO" that attacks the player's ship.

Add a "high score" capability to the game.

Determine when the playing field is cleared and start a new level, perhaps with more or faster asteroids.

At this point, you've been given many of the basic elements you need to build a game: graphics, input, and sound. Even so, you
may be wondering, "How do | build a game?"

Games are an expressive process, with plenty of room for creative problem solving. There is truly no one right way to make a
game. With the example you have created, there are still many missing elements. What else does the ship interact with? Does it
have a goal? What obstacles prevent the ship from reaching the goal?

Answering these questions will define your game, and make it your own. Play some games that inspire you, check out the XNA
Creators Club Online, read up on the Programming Guide, explore the XNA Framework, and have fun building a game of your
very own. We hope you enjoy XNA Game Studio!

http://creators.xna.com/

XNA Game Studio 3.1

Tutorial 5: Adding Multiplayer and Networking Support to the
Game

This tutorial adds two-player competitive game play to the game completed in Tutorial 4.
“Note

In order to test the network functionality of this sample, each instance must be running on a separate computer, each with X
NA Game Studio installed.

Before You Begin: Getting the Project Ready
Step 1: Simplify the Update Method

Step 2: Encapsulate Player Code

Step 3: Split the Screen

Step 4: Game State Management

Step 5: Receive Network Data

= Going Beyond! o] @

Score: 24

Before You Begin: Getting the Project Ready

Begin this tutorial by completing the fourth tutorial in the Going Beyond: XNA Game Studio in 3D series, or by downloading
the completed code for the fourth tutorial (Video Tutorial 4: Make a Game in 60 Minutes).

Download GoingBeyond4_Tutorial_Sample.zip.

A complete code sample for this tutorial is also available for you to download, including full source code and any additional
supporting files required by the sample.

Download GoingBeyond5_Tutorial_Sample.zip.

Step 1: Simplify the Update Method

This tutorial is going to add some details to the Update and Draw methods of your game, so as a first step we will work on
simplifying the code in these methods.

Move the bullet-asteroid collision check into a method to simplify the code.
C#

bool CheckForBulletAsteroidCollision(float bulletRadius,
float asteroidRadius)

http://go.microsoft.com/fwlink/?LinkId=149820&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=149821&clcid=0x409

for (int 1 = @; 1 < asteroidList.Length; i++)

{
if (asteroidList[i].isActive)
{
BoundingSphere asteroidSphere =
new BoundingSphere(asteroidList[i].position,
asteroidRadius *
GameConstants.AsteroidBoundingSphereScale);
for (int j = 0; j < bulletList.Length; j++)
{
if (bulletList[j].isActive)
{
BoundingSphere bulletSphere =
new BoundingSphere(bulletList[j].position,
bulletRadius);
if (asteroidSphere.Intersects(bulletSphere))
{
asteroidlList[i].isActive = false;
bulletList[j].isActive = false;
score += GameConstants.KillBonus;
return true; //no need to check other bullets
}
}
}
}
}

return false;

Similarly, we will make new methods for the ship-asteroid collision check, and replace the corresponding code in the Update
method with the call to this new CheckForShipAsteroidCollision method.

C#

public bool CheckForShipAsteroidCollision(float shipRadius,
float asteroidRadius)

//ship-asteroid collision check
if (ship.isActive)

{
BoundingSphere shipSphere = new BoundingSphere(ship.Position,
shipRadius * GameConstants.ShipBoundingSphereScale);
for (int i = @; i < asteroidList.Length; i++)
{
if (asteroidList[i].isActive)
{
BoundingSphere b =
new BoundingSphere(asteroidList[i].position,
asteroidRadius *
GameConstants.AsteroidBoundingSphereScale);
if (b.Intersects(shipSphere))
{
//blow up ship
//soundExplosion3.Play();
ship.isActive = false;
asteroidlList[i].isActive = false;
score -= GameConstants.DeathPenalty;
return true;
¥
)
}
¥

return false;

This class uses the ship model. While you perform this, add a shipModel to the Game class, and initialize it as you did the

other models. When we add a player class to the code, the players will all share the same ship model data.

C#

Model asteroidModel;

Model bulletModel;

Model shipModel;

Matrix[] asteroidTransforms;
Matrix[] bulletTransforms;
Matrix[] shipTransforms;

Initialize the ship model with the other models in the game class.

C#

protected override void LoadContent()

{

// Create a new SpriteBatch, which can be used to draw textures.
spriteBatch = new SpriteBatch(GraphicsDevice);

shipModel = Content.Load<Model>("Models/pl_wedge");
shipTransforms = SetupEffectDefaults(shipModel);
asteroidModel = Content.Load<Model>("Models/asteroidl");
asteroidTransforms = SetupEffectDefaults(asteroidModel);
bulletModel = Content.Load<Model>("Models/pea_proj");
bulletTransforms = SetupEffectDefaults(bulletModel);
stars = Content.Load<Texture2D>("Textures/Bl_stars");
soundEngine = Content.Load<SoundEffect>("Audio/Waves/engine_2");
soundEngineInstance = soundEngine.CreateInstance();
soundHyperspaceActivation =
Content.Load<SoundEffect>("Audio/Waves/hyperspace_activate");
soundExplosion2 =
Content.Load<SoundEffect>("Audio/Waves/explosion2");
soundExplosion3 =
Content.Load<SoundEffect>("Audio/Waves/explosion3");
soundWeaponsFire =
Content.Load<SoundEffect>("Audio/Waves/tx0_firel");
lucidaConsole = Content.LlLoad<SpriteFont>("Fonts/Lucida Console");

The Update method should now look something like this:

C#

protected override void Update(GameTime gameTime)

{

float timeDelta = (float)gameTime.ElapsedGameTime.TotalSeconds;

// Allows the game to exit

if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==
ButtonState.Pressed)
this.Exit();

// Get some input.
UpdateInput();

// Add velocity to the current position.
ship.Position += ship.Velocity;

// Bleed off velocity over time.
ship.Velocity *= 0.95f;

for (int i = @; i < GameConstants.NumAsteroids; i++)

{
}

asteroidList[i].Update(timeDelta);

for (int i = @; i < GameConstants.NumBullets; i++)

if (bulletList[i].isActive)
{

}

bulletList[i].Update(timeDelta);

}

if (CheckForBulletAsteroidCollision(
bulletModel.Meshes[@].BoundingSphere.Radius,
asteroidModel.Meshes[@].BoundingSphere.Radius))

{
}

soundExplosion2.Play();

bool shipDestroyed = CheckForShipAsteroidCollision(
shipModel.Meshes[0].BoundingSphere.Radius,
asteroidModel.Meshes[0].BoundingSphere.Radius);

if (shipDestroyed)

{

}

soundExplosion3.Play();

base.Update(gameTime);

Next, we will look for ways to simplify the Updatelnput method. The code used to shoot a bullet could be moved into a new
method, as well as the code to warp the ship to center and to play the engine sound.

C#

public void ShootBullet()

//add another bullet. Find an inactive bullet slot and use it
//if all bullets slots are used, ignore the user input
for (int i = @; i < GameConstants.NumBullets; i++)

{
if ('bulletList[i].isActive)
{
bulletList[i].direction = ship.RotationMatrix.Forward;
bulletList[i].speed = GameConstants.BulletSpeedAdjustment;
bulletList[i].position = ship.Position
+ (200 * bulletList[i].direction);
bulletList[i].isActive = true;
score -= GameConstants.ShotPenalty;
return;
}
}
}
C#
public void WarpToCenter()
{
ship.Position = Vector3.Zero;
ship.Velocity = Vector3.Zero;
ship.Rotation = 0.0f;
ship.isActive = true;
score -= GameConstants.WarpPenalty;
}

C#

void PlayEngineSound(GamePadState currentState)

//Play engine sound only when the engine is on.
if (currentState.Triggers.Right > 0)

if (soundEngineInstance.State == SoundState.Stopped)
{
soundEngineInstance.Volume = 0.75f;
soundEngineInstance.IslLooped = true;
soundEngineInstance.Play();

}
else
soundEngineInstance.Resume();
}
else if (currentState.Triggers.Right == 9)
{
if (soundEngineInstance.State == SoundState.Playing)
soundEngineInstance.Pause();
}

It is also possible to simplify the check for whether a current button is pressed. We will create a new method called
IsButtonPressed that takes only one parameter, the button to check. This method will check a set of global variables storing
the current and last states of the game pad.

C#

GamePadState currentState;
GamePadState lastState;

bool IsButtonPressed(Buttons button)

{
switch (button)
{
case Buttons.A:
return (currentState.Buttons.A == ButtonState.Pressed &&
lastState.Buttons.A == ButtonState.Released);
case Buttons.B:
return (currentState.Buttons.B == ButtonState.Pressed &&
lastState.Buttons.B == ButtonState.Released);
case Buttons.X:
return (currentState.Buttons.X == ButtonState.Pressed &&
lastState.Buttons.X == ButtonState.Released);
case Buttons.Back:
return (currentState.Buttons.Back == ButtonState.Pressed &&
lastState.Buttons.Back == ButtonState.Released);
case Buttons.DPadDown:
return (currentState.DPad.Down == ButtonState.Pressed &&
lastState.DPad.Down == ButtonState.Released);
case Buttons.DPadUp:
return (currentState.DPad.Up == ButtonState.Pressed &&
lastState.DPad.Down == ButtonState.Released);
}
return false;
}

Using these new methods in Updatelnput will result in the following simplified code:
C#

protected void UpdateInput()
{
// Get the game pad state.
currentState = GamePad.GetState(PlayerIndex.One);
if (currentState.IsConnected)
{
if (ship.isActive)
{
ship.Update(currentState);

PlayEngineSound(currentState);
}
// In case you get lost, press B to warp back to the center.
if (IsButtonPressed(Buttons.B))
{
WarpToCenter();
soundHyperspaceActivation.Play();

}

//are we shooting?
if (ship.isActive && IsButtonPressed(Buttons.A))

{
ShootBullet();
soundWeaponsFire.Play();
bool isFiring = true;

}

lastState = currentState;

Step 2: Encapsulate Player Code

Just as we encapsulated the ship and asteroid data in Tutorial 4, we now need to encapsulate the player data so we can easily
create multiple instances of the data needed to save the state of any player in a multiplayer game. In this step, we are going to
refactor the code, moving any relevant data and methods from the Game class and into a new Player class.

The first step is to create a new class to contain the player object code. Right-click on your game project in Solution Explorer,
and choose Add and then Class. In the Name field, enter p1ayer.cs and click Add.

In this class, we are going to use some objects from the Framework, Graphics, and Input namespaces. To do this, add a using
statement to the top of the class to include these namespaces.

using System;

using System.Collections;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace GoingBeyondb

{

public class Player

{
public Player()

{
}

Next, look at Game1.cs and determine what data should be associated with a player. The player object would keep the
information about the game pad state, ship, bullets, asteroids, and score. Move these to Player.cs. Upon inspection of the code,
you might notice that the random number generator is only used to reset the asteroids for a player, so let's move this to the
Player.cs file as well. You might also notice that the last gamepad state is something that would be associated with a player.

In addition to this data, we will store a picture for each player as a Texture2D.
C#

internal GamePadState lastState;
internal Ship ship = new Ship();
internal Asteroid[] asteroidlList =
new Asteroid[GameConstants.NumAsteroids];
internal Bullet[] bulletList = new Bullet[GameConstants.NumBullets];

internal int score;

Random random = new Random();

If you compile your project at this time, you will receive some warnings that these member variables no longer exist in
Game1.cs. These warnings can help you determine which methods in Game1.cs deal primarily with the player data.

One of the warnings indicates that the asteroidList referenced in the ResetAsteroids function does not exist in the current
context. Looking at this, you can see that the ResetAsteroids function deals with resetting the asteroids for a player. Move the
ResetAsteroids method into the Player class.

The ResetAsteroids method was previously called during game initialization, so also move the call to ResetAsteroids to the
Player constructor.

C#

using System;

using System.Collections;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace GoingBeyond5

{
public class Player

{
internal GamePadState lastState;
internal Ship ship = new Ship();
internal Asteroid[] asteroidlList =
new Asteroid[GameConstants.NumAsteroids];
internal Bullet[] bulletList = new Bullet[GameConstants.NumBullets];
internal int score;

Random random = new Random();

public Player()
{

}

ResetAsteroids();

internal void Update(GameTime gameTime)

{
float timeDelta = (float)gameTime.ElapsedGameTime.TotalSeconds;

// Add velocity to the current position.
ship.Position += ship.Velocity;

// Bleed off velocity over time.
ship.Velocity *= 0.95f;

for (int i = @; i < GameConstants.NumAsteroids; i++)

{
}

asteroidList[i].Update(timeDelta);

for (int i = @; i < GameConstants.NumBullets; i++)

{
if (bulletList[i].isActive)

{
}

bulletList[i].Update(timeDelta);

}

private void ResetAsteroids()
{
float xStart;
float yStart;
for (int i = @; i < GameConstants.NumAsteroids; i++)
{
if (random.Next(2) == @)
{

xStart = (float)-GameConstants.PlayfieldSizeX;
}
else
{

xStart = (float)GameConstants.PlayfieldSizeX;
}
yStart =

(float)random.NextDouble() * GameConstants.PlayfieldSizeY;
asteroidList[i].position = new Vector3(xStart, yStart, 0.0f);
double angle = random.NextDouble() * 2 * Math.PI;
asteroidList[i].direction.X = -(float)Math.Sin(angle);
asteroidList[i].direction.Y = (float)Math.Cos(angle);
asteroidlList[i].speed = GameConstants.AsteroidMinSpeed +

(float)random.NextDouble() * GameConstants.AsteroidMaxSpeed;
asteroidList[i].isActive = true;

Continue moving methods associated with the player data into the Player class. Here, we move the WarpToCenter,
ShootBullet, CheckForShipAsteroidCollision, and CheckForBulletAsteroidCollision methods into the Player class.

There is also some code in the Update method that applies specifically to the player. Remove this code from Game.Update
and create a new method called Player.Update with the player specific code. This requires that you add a new instance of the
Player object to your Game class.

C#

Player player = new Player();

Make these changes to create the new Update function in Player class.
C#

internal void Update(GameTime gameTime)

{
float timeDelta = (float)gameTime.ElapsedGameTime.TotalSeconds;

// Add velocity to the current position.
ship.Position += ship.Velocity;

// Bleed off velocity over time.
ship.Velocity *= 0.95f;

for (int i = @; i < GameConstants.NumAsteroids; i++)

{
}

asteroidList[i].Update(timeDelta);

for (int i = @; i < GameConstants.NumBullets; i++)

if (bulletList[i].isActive)
{

}

bulletList[i].Update(timeDelta);

Change the Update function in the Game to use the new method.
C#

protected override void Update(GameTime gameTime)

{
player.Update(gameTime);

// Allows the game to exit

if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==
ButtonState.Pressed)
this.Exit();

// Get some input.
UpdateInput();

if (player.CheckForBulletAsteroidCollision(
bulletModel.Meshes[@].BoundingSphere.Radius,
asteroidModel.Meshes[@].BoundingSphere.Radius))

{
}

soundExplosion2.Play();

bool shipDestroyed = player.CheckForShipAsteroidCollision(
shipModel.Meshes[0].BoundingSphere.Radius,
asteroidModel.Meshes[@].BoundingSphere.Radius);

if (shipDestroyed)

{

}

soundExplosion3.Play();

base.Update(gameTime);

When you are finished, your Player class will look like this:

C#

using System;

using System.Collections;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace GoingBeyond5

{

public class Player

{
internal GamePadState lastState;
internal Ship ship = new Ship();
internal Asteroid[] asteroidlList =
new Asteroid[GameConstants.NumAsteroids];
internal Bullet[] bulletList = new Bullet[GameConstants.NumBullets];
internal int score;

Random random = new Random();

public Player()
{

}

ResetAsteroids();

internal void Update(GameTime gameTime)

{
float timeDelta = (float)gameTime.ElapsedGameTime.TotalSeconds;

// Add velocity to the current position.
ship.Position += ship.Velocity;

// Bleed off velocity over time.
ship.Velocity *= 0.95f;

for (int i = @; i < GameConstants.NumAsteroids; i++)

{
}

asteroidList[i].Update(timeDelta);

for (int i = @; i < GameConstants.NumBullets; i++)

{

}

if (bulletList[i].isActive)
{

}

bulletList[i].Update(timeDelta);

private void ResetAsteroids()

{

}

float xStart;
float yStart;
for (int i = @; i < GameConstants.NumAsteroids; i++)

{
if (random.Next(2) == 0)

{

xStart = (float)-GameConstants.PlayfieldSizeX;
}
else
{

xStart = (float)GameConstants.PlayfieldSizeX;
}
yStart =

(float)random.NextDouble() * GameConstants.PlayfieldSizeY;
asteroidList[i].position = new Vector3(xStart, yStart, 0.0f);
double angle = random.NextDouble() * 2 * Math.PI;
asteroidList[i].direction.X = -(float)Math.Sin(angle);
asteroidList[i].direction.Y = (float)Math.Cos(angle);
asteroidList[i].speed = GameConstants.AsteroidMinSpeed +

(float)random.NextDouble() * GameConstants.AsteroidMaxSpeed;
asteroidList[i].isActive = true;

internal void ShootBullet()

{

}

//add another bullet. Find an inactive bullet slot and use it
//if all bullets slots are used, ignore the user input
for (int i = @; i < GameConstants.NumBullets; i++)
{
if (!bulletList[i].isActive)
{
bulletList[i].direction = ship.RotationMatrix.Forward;
bulletList[i].speed = GameConstants.BulletSpeedAdjustment;
bulletList[i].position = ship.Position
+ (200 * bulletList[i].direction);
bulletList[i].isActive = true;
score -= GameConstants.ShotPenalty;
return;

internal void WarpToCenter()

{

}

ship.Position
ship.Velocity = Vector3.Zero;
ship.Rotation = 0.0f;

ship.isActive = true;

score -= GameConstants.WarpPenalty;

Vector3.Zero;

internal bool CheckForBulletAsteroidCollision(float bulletRadius,

{

float asteroidRadius)

for (int 1 = @; i < asteroidlList.Length; i++)

{

if (asteroidList[i].isActive)

{

BoundingSphere asteroidSphere =
new BoundingSphere(
asteroidList[i].position, asteroidRadius *
GameConstants.AsteroidBoundingSphereScale);
for (int j = ©; j < bulletList.Length; j++)

if (bulletList[j].isActive)

{
BoundingSphere bulletSphere =
new BoundingSphere(bulletList[j].position,
bulletRadius);
if (asteroidSphere.Intersects(bulletSphere))
{
asteroidlList[i].isActive = false;
bulletList[j].isActive = false;
score += GameConstants.KillBonus;
return true; //no need to check other bullets
}
}

}
}
return false;
}
internal bool CheckForShipAsteroidCollision(float shipRadius,
float asteroidRadius)

{
//ship-asteroid collision check
if (ship.isActive)
{
BoundingSphere shipSphere =
new BoundingSphere(ship.Position, shipRadius *
GameConstants.ShipBoundingSphereScale);
for (int i = @; i < asteroidlList.Length; i++)
{
if (asteroidList[i].isActive)
{
BoundingSphere b =
new BoundingSphere(asteroidList[i].position,
asteroidRadius *
GameConstants.AsteroidBoundingSphereScale);
if (b.Intersects(shipSphere))
{
//blow up ship
//soundExplosion3.Play();
ship.isActive = false;
asteroidlList[i].isActive = false;
score -= GameConstants.DeathPenalty;
return true;
}
}
}
}
return false;
}

With this step complete, update the Updatelnput method of the game to use the new Player class.
C#

protected void UpdateInput()

{
// Get the game pad state.
currentState = GamePad.GetState(PlayerIndex.One);
lastState = player.lastState;

if (currentState.IsConnected)

{

if (player.ship.isActive)
{
player.ship.Update(currentState);
PlayEngineSound(currentState);
}
// In case you get lost, press B to warp back to the center.
if (IsButtonPressed(Buttons.B))
{
player.WarpToCenter();
soundHyperspaceActivation.Play();

}

//are we shooting?
if (player.ship.isActive && IsButtonPressed(Buttons.A))

player.ShootBullet();
soundWeaponsFire.Play();
bool isFiring = true;

}

player.lastState = currentState;

Finally, change the Game.Draw so that it accesses the data from the new Player class.
C#

protected override void Draw(GameTime gameTime)

{

graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

spriteBatch.Begin(SpriteBlendMode.None, SpriteSortMode.Immediate,
SaveStateMode.None);

spriteBatch.Draw(stars, new Rectangle(®, 0, 800, 600), Color.White);

spriteBatch.End();

Matrix shipTransformMatrix = player.ship.RotationMatrix
* Matrix.CreateTranslation(player.ship.Position);
if (player.ship.isActive)

{
DrawModel(shipModel, shipTransformMatrix, shipTransforms);
}
for (int i = @; i < GameConstants.NumAsteroids; i++)
{
Matrix asteroidTransform =
Matrix.CreateTranslation(player.asteroidList[i].position);
if (player.asteroidList[i].isActive)
DrawModel (asteroidModel, asteroidTransform,
asteroidTransforms);
}
}

for (int i = @; i < GameConstants.NumBullets; i++)

if (player.bulletList[i].isActive)

{
Matrix bulletTransform =
Matrix.CreateTranslation(player.bulletList[i].position);
DrawModel(bulletModel, bulletTransform, bulletTransforms);
}

}
spriteBatch.Begin(SpriteBlendMode.AlphaBlend,

SpriteSortMode.Immediate, SaveStateMode.None);

spriteBatch.DrawString(lucidaConsole, "Score: + player.score,
scorePosition, Color.LightGreen);

spriteBatch.End();

base.Draw(gameTime);

At this point, you should be able to compile and run your game! We have been making small, iterative changes to make the
code more elegant, but when you run the game, it should still look essentially the same. In the next step we will begin making
the changes to the game rendering to allow the players to see one another.

Step 3: Split the Screen

Now that we have a way to create multiple players, we need a place to display the second player. In Game1.cs, create three new
member variables to store the main viewport, the left viewport, and the right viewport.

C#

Viewport mainViewport;
Viewport leftViewport;
Viewport rightViewport;

When we use only half of the screen, the aspect ratio will change. In the constructor for the game, divide the aspect ratio by 2
to account for the split screen. If you compile and run your game after making this change, the game will be distorted due to
the fact that the aspect ratio is no longer equivalent to the width and height of the back buffer.

C#

public Gamel()

{
graphics = new GraphicsDeviceManager(this);
Content.RootDirectory = "Content";
// this game is split screen, so divide the aspect ratio by 2.
aspectRatio = (float)GraphicsDeviceManager.DefaultBackBufferWidth /

(2 * GraphicsDeviceManager.DefaultBackBufferHeight);
}

In LoadContent, initialize the values for each viewport. We first set the main viewport to equal the graphics device viewport.
The left viewport and right viewport will have a width that is half of the main viewport, with the right viewport beginning one
pixel past the center of the screen.

C#

protected override void LoadContent()

{
// Create a new SpriteBatch, which can be used to draw textures.
spriteBatch = new SpriteBatch(GraphicsDevice);

shipModel = Content.LlLoad<Model>("Models/pl_wedge");
shipTransforms = SetupEffectDefaults(shipModel);
asteroidModel = Content.Load<Model>("Models/asteroidl™);
asteroidTransforms = SetupEffectDefaults(asteroidModel);
bulletModel = Content.Load<Model>("Models/pea_proj");
bulletTransforms = SetupEffectDefaults(bulletModel);
stars = Content.LlLoad<Texture2D>("Textures/Bl_stars");
soundEngine = Content.Load<SoundEffect>("Audio/Waves/engine_ 2");
soundEngineInstance = soundEngine.CreateInstance();
soundHyperspaceActivation =
Content.Load<SoundEffect>("Audio/Waves/hyperspace_activate");
soundExplosion2 =
Content.Load<SoundEffect>("Audio/Waves/explosion2");
soundExplosion3 =
Content.Load<SoundEffect>("Audio/Waves/explosion3");
soundWeaponsFire =
Content.Load<SoundEffect>("Audio/Waves/tx0_ firel");
lucidaConsole = Content.Load<SpriteFont>("Fonts/Lucida Console");

// Initialize the values for each viewport
mainViewport = GraphicsDevice.Viewport;
leftViewport = mainViewport;

rightViewport = mainViewport;
leftViewport.Width = leftViewport.Width / 2;
rightViewport.Width = rightViewport.Width / 2;
rightViewport.X = leftViewport.Width + 1;

Notice that the Draw method in game contains all the code necessary to draw a player. Rename Draw to DrawPlayer, and
change the method so that it returns nothing and accepts two arguments, the Player to draw, and the Viewport to draw the
player in. At the beginning of DrawPlayer, set the graphics device viewport to the viewport argument. Don't forget to remove
the call to the Draw method of the base class, located at the end of the function.

C#
void DrawPlayer(Player player, Viewport viewport)
{
graphics.GraphicsDevice.Viewport = viewport;
spriteBatch.Begin(SpriteBlendMode.None, SpriteSortMode.Immediate,
SaveStateMode.None);
spriteBatch.Draw(stars, new Rectangle(©, 0, 800, 600), Color.White);
spriteBatch.End();
Matrix shipTransformMatrix = player.ship.RotationMatrix
* Matrix.CreateTranslation(player.ship.Position);
if (player.ship.isActive)
DrawModel(shipModel, shipTransformMatrix, shipTransforms);
}
for (int i = @; i < GameConstants.NumAsteroids; i++)
{
Matrix asteroidTransform =
Matrix.CreateTranslation(player.asteroidList[i].position);
if (player.asteroidList[i].isActive)
{
DrawModel (asteroidModel, asteroidTransform,
asteroidTransforms);
}
}
for (int i = @; i < GameConstants.NumBullets; i++)
{
if (player.bulletList[i].isActive)
Matrix bulletTransform =
Matrix.CreateTranslation(player.bulletList[i].position);
DrawModel(bulletModel, bulletTransform, bulletTransforms);
}
}
spriteBatch.Begin(SpriteBlendMode.AlphaBlend,
SpriteSortMode.Immediate, SaveStateMode.None);
spriteBatch.DrawString(lucidaConsole, "Score: " + player.score,
scorePosition, Color.LightGreen);
spriteBatch.End();
}

Finally, recreate the Draw method, calling DrawPlayer in this new, shorter method, and move the call to
base.Draw(gameTime) into this method.

C#

protected override void Draw(GameTime gameTime)

{
DrawPlayer(player, leftViewport);

base.Draw(gameTime);

If you run your game now, you will see that the game for the local player is now showing on the left side of the screen:

[i Beyond ol = |

Step 4: Game State Management

e The Title Screen
e The Lobby
e List Available Network Sessions

In a networked game, you will want the game to display different information depending on the state of the game. For
example, if the player has not yet signed in, you will want to display a message with instructions on how to sign in. If the player
would like to host or join an multiplayer game on the subnet, you will need to display a list of available games. Once a player
selects a game to join you will need to allow the player to wait in the lobby until all players are ready to start the game.

Player Signs In

[F nd or Create a Multiplayer Sess-icnj

Player Searches for a Session

Playar Creates a Session

View Svailable Sessions

Player Chooses A Session

Labby

All Flayers are Ready 1o Play

To do this, we will create the main Update and Draw methods so that they choose the right area to update or draw - the title
screen, the list of available sessions, the lobby, or the game. In this step of the tutorial, we will make separate update and draw
methods to handle the particular requirements of the title screen, session selection screen, lobby, and game.

Begin by declaring the new global variables we will need in the game to manage the network session. Declare a variable to
hold the current network session for the game, a collection of available network sessions, the index of the network session a
player has selected to join, and a packet reader and writer to read network data.

C#

NetworkSession networkSession;
AvailableNetworkSessionCollection availableSessions;

int selectedSessionlIndex;
PacketReader packetReader
PacketWriter packetWriter

new PacketReader();
new PacketWriter();

While you are looking at the global variables for the game, comment out the Player instance that is declared there. We are
going to instead associate the player data with a person who has signed into the session.

C#

//Player player = new Player();

To use network services in a game, we need to add a GamerServicesComponent to the game. Once this component has been
added, we can respond to the event that occurs when a gamer signs in.

In the Game constructor, add a new GamerServicesComponent to the collection of game components. Also in the Game
constructor, add a new event handler for the Signedin event.

C#

public Gamel()
{

graphics = new GraphicsDeviceManager(this);
Content.RootDirectory = "Content";

aspectRatio = (float)GraphicsDeviceManager.DefaultBackBufferWidth /
(2 * GraphicsDeviceManager.DefaultBackBufferHeight);

// Add Gamer Services
Components.Add(new GamerServicesComponent(this));

// Respond to the SignedInGamer event
SignedInGamer.SignedIn +=
new EventHandler<SignedInEventArgs>(SignedInGamer_SignedIn);

One of the arguments that is passed to the Signedin event is an instance of SignedinEventArgs. This type contains a property
called Gamer. Each Gamer has a Tag object which can be used to attach data to the gamer. We are going to use the Tag
property to store the Player that is associated with a particular gamer. Because this data does not exist yet when a gamer signs
in, we will create a new Player when responding to the Signedin event.

C#
void SignedInGamer_SignedIn(object sender, SignedInEventArgs e)
{
e.Gamer.Tag = new Player();
}

We want to look at the input for the list of signed-in gamers during gameplay. Rename the current Update function
HandleGameplaylnput and set the accessibility level to "private.” Also remove the call to base.Update. Change this method
to accept a Player argument in addition to the GameTime. Also update the network session when this method is called.

C#
private void HandleGameplayInput(Player player, GameTime gameTime)

{
if (IsButtonPressed(Buttons.Back))

this.Exit();

// change UpdateInput to take a Player
UpdateInput(player);

player.Update(gameTime);
networkSession.Update();

//base.Update(gameTime);

There is a static property called SignedinGamers that contains the list of all signed-in players. We will use this property in the
Update method to get the Player data from a SignedinGamer. Note that this loop wraps the update code that was already in
this method. We also change Updatelnput to accept an instance of Player. This method also updates the lastState and
currentState member variables, so the update of these variables can be removed from Updatelnput

C#
protected override void Update(GameTime gameTime)
{
if (!'Guide.IsVisible)
{
foreach (SignedInGamer signedInGamer in
SignedInGamer.SignedInGamers)
{
Player player = signedInGamer.Tag as Player;
lastState = player.lastState;
currentState = GamePad.GetState(signedInGamer.PlayerIndex);
if (networkSession != null)
{
// Handle the lobby input here...
}
else if (availableSessions != null)
{
// Handle the available sessions input here..
}
else
{
// Handle the title screen input here..
}
player.lastState = currentState;
}
}
base.Update(gameTime);
}

The Updatelnput method will stay the same, except that it now gets the player to update from the Player argument instead of
a global variable. There is also no need for the currentState and lastState variables to be updated in this method, so you can
comment out these lines.

C#

protected void UpdateInput(Player player)

{
//// Get the game pad state.
//currentState = GamePad.GetState(PlayerIndex.One);
//lastState = player.lastState;

//player.lastState = currentState;

}

}

Finally, rename the Draw method to DrawGameplay and set the accessibility to "private." In this method, we will check to see
if a network session has been created or joined before we start drawing the game. For each person in the networked game, we
will draw to a different area of the screen.

C#

private void DrawGameplay(GameTime gameTime)

{

GraphicsDevice.Viewport = mainViewport;
GraphicsDevice.Clear(Color.CornflowerBlue);

Player player;
if (networkSession != null)

{

foreach (NetworkGamer networkGamer in networkSession.AllGamers)

¢ player = networkGamer.Tag as Player;
if (networkGamer.IslLocal)
¢ DrawPlayer(player, leftViewport);
}
else
{

DrawPlayer(player, rightViewport);

}

}

If you compile and run your game at this point, you will see a blank screen. Do not panic! This is because we made the game
play state of the game contingent on the user signing in and creating or joining a network session. We will implement these
game states next.

The Title Screen
First, create a method to draw the title screen.

C#

private void DrawTitleScreen()

{

GraphicsDevice.Clear(Color.CornflowerBlue);

string message = H

if (SignedInGamer.SignedInGamers.Count == 0)
{
message = "No profile signed in! \n" +
"Press the Home key on the keyboard or \n" +
"the Xbox Guide Button on the controller to sign in.";

}

else
{

message += "Press A to create a new session\n" +

"X to search for sessions\nB to quit\n\n";

}
spriteBatch.Begin();
spriteBatch.DrawString(lucidaConsole, message,

new Vector2(101, 101), Color.Black);
spriteBatch.DrawString(lucidaConsole, message,

new Vector2(100, 100), Color.White);
spriteBatch.End();

Next, change the Draw method so that it draws our new title screen if there is no network session available and no available
sessions to list.

C#

protected override void Draw(GameTime gameTime)

{

if (networkSession != null)

{
}

else if (availableSessions != null)

{
}
else

{
}

// Show the available session...

DrawTitleScreen();

base.Draw(gameTime);

We also need to handle the title screen input.

C#
protected void HandleTitleScreenInput()
{
if (IsButtonPressed(Buttons.A))
{
CreateSession();
}
else if (IsButtonPressed(Buttons.X))
{
availableSessions = NetworkSession.Find(
NetworkSessionType.SystemLink, 1, null);
selectedSessionIndex = 0;
}
else if (IsButtonPressed(Buttons.B))
{
Exit();
}
}

This method creates a session if the user selects this option.
C#

void CreateSession()

{

networkSession = NetworkSession.Create(
NetworkSessionType.SystemLink,
1, 8, 2,
null);

networkSession.AllowHostMigration = true;
networkSession.AllowJoinInProgress = true;

HookSessionEvents();

When creating a session, subscribe to the GamerJoined event.

C#
private void HookSessionEvents()
{
networkSession.GamerJoined +=
new EventHandler<GamerJoinedEventArgs>(
networkSession_GamerJoined);
}

When responding to the GamerJoined event, we want to either create a new Player if the player is not local, or get the player if
the player has already signed in and has a Player object associated with it.

C#
void networkSession_GamerJoined(object sender, GamerJoinedEventArgs e)
{
if (l!e.Gamer.IslLocal)
{
e.Gamer.Tag = new Player();
}
else
{

e.Gamer.Tag = GetPlayer(e.Gamer.Gamertag);

}
}
C#
Player GetPlayer(String gamertag)
{
foreach (SignedInGamer signedInGamer in
SignedInGamer.SignedInGamers)
{
if (signedInGamer.Gamertag == gamertag)
{
return signedInGamer.Tag as Player;
}
}
return new Player();
}

If you run your game, you will see the new title screen with sign-in instructions for the player. Because we have a
GamerServicesComponent added to the game, you can now sign in or view the Guide when you follow the instructions on the
screen.

No: profiile sianed Jnl
Press the Home lkey onl the lkeyboard an
the ¥box GUide’ Buitton on| the' coptrolller to sian .

Once a player signs in, the instructions for finding or creating a new network session will also be displayed.

Press A to create a new session
X Lo seanch for Sessions
B to guait

The Lobby

First, we will create a game screen to display the players waiting in the lobby.

C#

private void Drawlobby()
{

GraphicsDevice.Clear(Color.CornflowerBlue);
spriteBatch.Begin();
float y = 100;

spriteBatch.DrawString(lucidaConsole, "Lobby (A=ready, B=leave)",
new Vector2(101, y + 1), Color.Black);

spriteBatch.DrawString(lucidaConsole, "Lobby (A=ready, B=leave)",
new Vector2(101, y), Color.White);

y += lucidaConsole.LineSpacing * 2;
foreach (NetworkGamer gamer in networkSession.AllGamers)
{

string text = gamer.Gamertag;

Player player = gamer.Tag as Player;

if (player.picture == null)
{

GamerProfile gamerProfile = gamer.GetProfile();
player.picture = gamerProfile.GamerPicture;

}

if (gamer.IsReady)
text += " - ready!";

spriteBatch.Draw(player.picture, new Vector2(100, y),
Color.White);

spriteBatch.DrawString(lucidaConsole, text, new Vector2(179, y),
Color.White);

y += lucidaConsole.LineSpacing + 64;

}
spriteBatch.End();

Next, we will need a method to handle any input from the user while the user is in the lobby.

C#

protected void HandleLobbyInput()
{
// Signal I'm ready to play!
if (IsButtonPressed(Buttons.A))
{
foreach (LocalNetworkGamer gamer in networkSession.lLocalGamers)
gamer.IsReady = true;

}

if (IsButtonPressed(Buttons.B))
{
networkSession = null;
availableSessions = null;

}

// The host checks if everyone is ready, and moves
// to game play if true.
if (networkSession.IsHost)
{
if (networkSession.IsEveryoneReady)
networkSession.StartGame();

}

// Pump the underlying session object.
networkSession.Update();

Add code to the Draw method so that it will call the DrawLobby function if the user should be in the lobby.

C#
protected override void Draw(GameTime gameTime)
{
if (networkSession != null)
{

//If the session is not null, we're either
//in the lobby or playing the game...
// Draw the Lobby

if (networkSession.SessionState == NetworkSessionState.Lobby)
DrawLobby();
}
else if (availableSessions != null)
{

// Show the available session...

}

else

{
}

DrawTitleScreen();

base.Draw(gameTime);

Finally, change the Update method of the game so it will call the method that handles the lobby input.
C#

protected override void Update(GameTime gameTime)

{
if (!Guide.IsVisible)

foreach (SignedInGamer signedInGamer in
SignedInGamer.SignedInGamers)
{

Player player = signedInGamer.Tag as Player;
lastState = player.lastState;
currentState = GamePad.GetState(signedInGamer.PlayerIndex);

if (networkSession != null)

{

if (networkSession.SessionState ==
NetworkSessionState.Lobby)
HandleLobbyInput();

}

else if (availableSessions != null)

{
}

else

{

}
player.lastState = currentState;

// Handle the available sessions input here...

HandleTitleScreenInput();

}
}

base.Update(gameTime);

Compile and run the game. Sign in and create a session to see the lobby.

Lobby (A=ready, B=leave)

onePlayer

List Available Network Sessions

Just as we created a method to draw an update the other game states, we will also create methods to draw and update the list
of available network sessions.

C#

private void DrawAvailableSessions()

{

GraphicsDevice.Clear(Color.CornflowerBlue);
spriteBatch.Begin();
float y = 100;

spriteBatch.DrawString(lucidaConsole,

"Available sessions (A=join, B=back)",
new Vector2(101, y + 1), Color.Black);

spriteBatch.DrawString(lucidaConsole,
"Available sessions (A=join, B=back)",
new Vector2(100, y), Color.White);

y += lucidaConsole.LineSpacing * 2;
int selectedSessionIndex = 0;

for (
int sessionIndex = 0;
sessionIndex < availableSessions.Count;
sessionIndex++)

Color color = Color.Black;

if (sessionIndex == selectedSessionIndex)
color = Color.Yellow;

spriteBatch.DrawString(lucidaConsole,
availableSessions[sessionIndex].HostGamertag,
new Vector2(100, y), color);

y += lucidaConsole.LineSpacing;

}
spriteBatch.End();

C#

protected void HandleAvailableSessionsInput()

{
if (IsButtonPressed(Buttons.A))

{
// Join the selected session.
if (availableSessions.Count > 9)
{
networkSession = NetworkSession.Join(
availableSessions[selectedSessionIndex]);
HookSessionEvents();
availableSessions.Dispose();
availableSessions = null;
}
}

else if (IsButtonPressed(Buttons.DPadUp))

// Select the previous session from the list.
if (selectedSessionIndex > @)
selectedSessionIndex--;

}
else if (IsButtonPressed(Buttons.DPadDown))

// Select the next session from the list.
if (selectedSessionIndex < availableSessions.Count
selectedSessionIndex++;

}
else if (IsButtonPressed(Buttons.B))

// Go back to the title screen.
availableSessions.Dispose();
availableSessions = null;

_1)

Change the Draw and Update methods to call these methods when the game should show the list of available sessions.

C#
protected override void Draw(GameTime gameTime)
{
if (networkSession != null)
{
//If the session is not null, we're either
//in the lobby or playing the game...
// Draw the Lobby
if (networkSession.SessionState == NetworkSessionState.Lobby)
DrawLobby();
else if (availableSessions != null)
{
DrawAvailableSessions();
}
else
{
DrawTitleScreen();
}
base.Draw(gameTime);
}
C#
protected override void Update(GameTime gameTime)
{
if (!Guide.IsVisible)
{
foreach (SignedInGamer signedInGamer in
SignedInGamer.SignedInGamers)
{
Player player = signedInGamer.Tag as Player;
lastState = player.lastState;
currentState = GamePad.GetState(signedInGamer.PlayerIndex);
if (networkSession != null)
{
if (networkSession.SessionState ==
NetworkSessionState.Lobby)
HandleLobbyInput();
}
else if (availableSessions != null)
{
HandleAvailableSessionsInput();
}
else
{
HandleTitleScreenInput();
}
player.lastState = currentState;
}
}
base.Update(gameTime);
}

Avaiiabiel sessqens (A=jeil, Bshack)

AnotherPlayer

When a player joins an available session, the other players waiting in the lobby can now be seen.

Lebby (A=ready, E=lesave)

E'é e onePlayer

o< AnotherPlayer

Step 5: Receive Network Data

We can now create a network session with mulitiple players in the session, but we need a way for players to send and receive
data from other players in the game.

First, create a method to receive the data from a network gamer.

C#

void ReceiveNetworkData(LocalNetworkGamer gamer, GameTime gameTime)

while (gamer.IsDataAvailable)

{
NetworkGamer sender;
gamer.ReceiveData(packetReader, out sender);

if (!sender.IslLocal)

{
Player player = sender.Tag as Player;
player.ship.isActive = packetReader.ReadBoolean();
player.ship.Position = packetReader.ReadVector3();
player.ship.Rotation = packetReader.ReadSingle();
player.score = packetReader.ReadInt32();
if (packetReader.ReadBoolean())

{

}
if (packetReader.ReadBoolean())

{
}

for (int 1 = @; i < GameConstants.NumAsteroids; i++)

{

player.ShootBullet();

player.ship.isActive = false;

player.asteroidList[i].isActive
packetReader.ReadBoolean();

player.asteroidList[i].position =
packetReader.ReadVector3();

}
player.Update(gameTime);

Next, change the Updatelnput method to call ReceiveNetworkData for every signed-in player on the local system that
might receive data. Note that the ReceiveNetworkData needs an instance of GameTime to pass to the Player.Update
method, so we will update Updatelnput to take the GameTime as a parameter. At the end of the Updatelnput Method, send
the data from the local gamer to any network gamers in the game.

C#

private void HandleGameplayInput(Player player, GameTime gameTime)

{

UpdateInput(player, gameTime);

C#

private void UpdateInput(Player player, GameTime gameTime)

{
bool isFiring = false;
bool shipDestroyed = false;

foreach (LocalNetworkGamer gamer in networkSession.LocalGamers)

{

ReceiveNetworkData(gamer, gameTime);

// this code is the same code we have been
// using to update the player input
if (currentState.IsConnected)

{

if (player.ship.isActive)

{
player.ship.Update(currentState);
PlayEngineSound(currentState);

}

// In case you get lost, press B to warp back to the center.

if (IsButtonPressed(Buttons.B))

{
player.WarpToCenter();
// Make a sound when we warp.
soundHyperspaceActivation.Play();

}

//are we shooting?

if (player.ship.isActive && IsButtonPressed(Buttons.A))
player.ShootBullet();
soundWeaponsFire.Play();
isFiring = true;

}

if (player.CheckForBulletAsteroidCollision(

bulletModel.Meshes[0@].BoundingSphere.Radius,
asteroidModel.Meshes[@].BoundingSphere.Radius))

{
soundExplosion2.Play();

}

shipDestroyed = player.CheckForShipAsteroidCollision(
shipModel.Meshes[@].BoundingSphere.Radius,
asteroidModel.Meshes[@].BoundingSphere.Radius);

if (shipDestroyed)

{
soundExplosion3.Play();

}

}

packetWriter.Write(player.ship.isActive);
packetWriter.Write(player.ship.Position);
packetWriter.Write(player.ship.Rotation);
packetWriter.Write(player.score);
packetWriter.Write(isFiring);
packetWriter.Write(shipDestroyed);
for (int i = @; i < GameConstants.NumAsteroids; i++)
{
packetWriter.Write(player.asteroidList[i].isActive);
packetWriter.Write(player.asteroidList[i].position);

}

gamer.SendData(packetWriter, SendDataOptions.None);

Finally, change Draw and Update so that each method calls the DrawGameplay and HandleGameplaylnput method at the
appropriate time.

C#
protected override void Draw(GameTime gameTime)
{
if (networkSession != null)
{
// Draw the Lobby
if (networkSession.SessionState == NetworkSessionState.Lobby)
DrawLobby();
else
DrawGameplay(gameTime);
}
else if (availableSessions != null)
{
DrawAvailableSessions();
}
else
{
DrawTitleScreen();
}
base.Draw(gameTime);
}
C#
protected override void Update(GameTime gameTime)
{
if (!Guide.IsVisible)
foreach (SignedInGamer signedInGamer in
SignedInGamer.SignedInGamers)
{
Player player = signedInGamer.Tag as Player;
lastState = player.lastState;
currentState = GamePad.GetState(signedInGamer.PlayerIndex);
if (networkSession != null)
{
if (networkSession.SessionState ==
NetworkSessionState.Lobby)
HandleLobbyInput();
else
HandleGameplayInput(player, gameTime);
}
else if (availableSessions != null)
{
HandleAvailableSessionsInput();
}
else
{
HandleTitleScreenInput();
}
player.lastState = currentState;
}
}
base.Update(gameTime);
}

With this final change, your game can now be played by two players over the network.

Where do you go from here? Using the Player class, you could extend the game to allow for two players on the same local

machine. You could also change the game to display more than two players by splitting the screen again, or get rid of the split-
screen and implement code to allow the players to shoot at one another.

More advanced screen management techniques are available from the XNA Creators Club Online Web site, along with
numerous other game programming techniques that can be used to add functionality to this game.

http://creators.xna.com/

XNA Game Studio 3.1

Upgrading XNA Game Studio Projects

Guides for upgrading XNA Game Studio Projects are provided in the following sections:

In This Section
Upgrade Guide: XNA Game Studio 3.0 to XNA Game Studio 3.1

Describes how to upgrade your XNA Game Studio 3.0 game to XNA Game Studio 3.1 in Microsoft Visual Studio 2008.
Upgrade Guide: XNA Game Studio 2.0 to XNA Game Studio 3.1

Describes how to upgrade your XNA Game Studio 2.0 game to XNA Game Studio 3.1 in Microsoft Visual Studio 2008.
Upgrade Guide: XNA Game Studio 2.0 to XNA Game Studio 3.0

Describes how to upgrade your XNA Game Studio 2.0 game to target XNA Framework 3.0 in Microsoft Visual Studio 2008.
Troubleshooting Upgrades

Describes common issues with upgrading XNA Game Studio projects.

Choosing an XNA Framework Version
XNA Framework 3.0 and 3.1

XNA Game Studio 3.1 supports both XNA Game Studio 3.1 and XNA Game Studio 3.0 project formats. To target XNA
Framework 3.1, use an XNA Game Studio 3.1 project. XNA Game Studio 3.0 projects will target XNA Framework 3.0.

Important

You should not mix projects that target different versions of the XNA Framework in the same solution.

Unless you have a special need to maintain an XNA Game Studio 3.0 project, you should upgrade your projects to XNA Game
Studio 3.1 to take advantage of the new features in this release. For more information, see What's New in XNA Game Studio
3.1.

XNA Game Studio 3.1 projects must use the Microsoft Cross Platform Audio Creation Tool version 3 (XACT3), which is new to
XNA Game Studio 3.1. The version of XACT provided with XNA Game Studio 3.0, XACT2, writes project files (xap) that are
incompatible with XNA Game Studio 3.1 projects. XNA Game Studio 3.0 projects must continue to use XACT2. Both versions of
XACT are available in the Start menu, under All Programs | Microsoft XNA Game Studio 3.1 | Tools.

XNA Framework 2.0

XNA Game Studio 2.0 projects, targeting XNA Framework 2.0, are not supported in this release. All XNA Game Studio 2.0
projects must be upgraded to target either XNA Framework 3.1 or XNA Framework 3.0.

For more information about upgrading XNA Game Studio 2.0 projects, see Upgrade Guide: XNA Game Studio 2.0 to XNA
Game Studio 3.0.

XNA Game Studio 3.1

Upgrade Guide: XNA Game Studio 3.0 to XNA Game Studio 3.1

To take advantage of the latest XNA Game Studio features, projects should be upgraded to XNA Game Studio 3.1. However,
unlike converting a project from XNA Game Studio 2.0 to XNA Game Studio 3.0, this operation is not enforced automatically.

For a quick understanding of the new features introduced in XNA Game Studio 3.1, see What's New in XNA Game Studio 3.1.

Upgrading Your Projects
To upgrade projects from XNA Game Studio 3.0 to XNA Game Studio 3.1

1. Right-click your solution in Visual Studio's Solution Explorer.
This opens a context sensitive menu with the option: Upgrade Solution...
2. Click Upgrade Solution... to open the Upgrade Solution dialog box.
This lists all the projects in the current solution that will be upgraded.
3. If you are sure you want to upgrade now, click Upgrade.

This upgrades all the listed projects to XNA Game Studio 3.1. You will be presented with a dialog box that prompts you to
save your existing projects.

Click Yes to save your projects and continue with the upgrade. If you click No or Cancel, your project will not be
upgraded. You must save the files before you upgrade them.

Important

This step will only save your project files and continue with the upgrade. It does not back up your projects. Be sure to b
ack up your project files before continuing with the upgrade. You cannot Undo the upgrade once it begins.

¥Note

If you have any Microsoft Cross-Platform Audio Creation Tool (XACT) project files (xap) that were created with XNA Game St
udio 3.0, they must be loaded and saved with XACT3 or they will not work with XNA Game Studio 3.1. XACT3 can be launche
d from the Start menu, by clicking All Programs, Microsoft XNA Game Studio 3.1, Tools, and Microsoft Cross-Platform
Audio Creation Tool 3 (XACT3). For more information about XACT, see Audio Overview.

The chief tasks that the Project Upgrade Wizard performs are:

e Updates XNA Framework references and properties from XNA Game Studio 3.0 to XNA Game Studio 3.1.
e Updates the import targets file references in the game project for what is required for XNA Game Studio 3.1.
e Updates the import targets file references in the content project for what is required for XNA Game Studio 3.1.

XNA Game Studio 3.1

Upgrade Guide: XNA Game Studio 2.0 to XNA Game Studio 3.1

Describes how to upgrade your XNA Game Studio 2.0 game to XNA Game Studio 3.1 in Microsoft Visual Studio 2008.

XNA Game Studio 2.0 game projects require upgrade to the new format for development in Visual Studio 2008 and XNA
Game Studio 3.1. This upgrade is necessary in every case, regardless of the complexity or simplicity of the project.

For a quick understanding of the new features introduced in XNA Game Studio 3.1, see What's New in XNA Game Studio 3.1.

Upgrading Your Projects

Projects that were created in XNA Game Studio 2.0 must be upgraded to work with Microsoft Visual Studio 2008 and at least
XNA Game Studio 3.0. There is no direct way to upgrade a project from XNA Game Studio 2.0 to XNA Game Studio 3.1.
However, to upgrade a project to XNA Game Studio 3.1, it must first be upgraded to XNA Game Studio 3.0.

To upgrade a project from XNA Game Studio 2.0 to XNA Game Studio 3.1

1. Upgrade the project from XNA Game Studio 2.0 to XNA Game Studio 3.0, using the procedure in Upgrade Guide: XNA
Game Studio 2.0 to XNA Game Studio 3.0.

2. Upgrade the project from XNA Game Studio 3.0 to XNA Game Studio 3.1, using the procedure in Upgrade Guide: XNA
Game Studio 3.0 to XNA Game Studio 3.1.

XNA Game Studio 3.1

Upgrade Guide: XNA Game Studio 2.0 to XNA Game Studio 3.0

Describes how to upgrade your XNA Game Studio 2.0 game to target XNA Framework 3.0 in Microsoft Visual Studio 2008.

XNA Game Studio 2.0 game projects must be upgraded to target either XNA Framework 3.1 or XNA Framework 3.0 for
development in Visual Studio 2008 and XNA Game Studio 3.1. This upgrade is necessary in every case, regardless of the
complexity or simplicity of the project.

“Note

To take advantage of the latest features in XNA Game Studio, you should upgrade your projects to XNA Game Studio 3.1. To
do so, first follow the procedure in this guide to upgrade the project to XNA Game Studio 3.0. When that is complete, see Up
grade Guide: XNA Game Studio 3.0 to XNA Game Studio 3.1. XNA Framework 3.0 games are still supported in XNA Game St
udio 3.1, however.

For a quick understanding of the features introduced in XNA Game Studio 3.0, see XNA Game Studio 3.0: What's New in This
Release.

Upgrading Your Projects

Projects created in XNA Game Studio 2.0 must be upgraded to work with Microsoft Visual Studio 2008 and XNA Game Studio
3.0.

The Project Upgrade Wizard for XNA Game Studio 3.0 executes automatically whenever you open a project or solution in
Visual Studio 2008 that was created for XNA Game Studio 2.0. The instructions provided by the Project Upgrade Wizard will
lead you through the upgrade process.

The chief tasks that the Project Upgrade Wizard performs are:

e Updates XNA Framework references and properties from XNA Framework 2.0 to XNA Framework 3.0.

e Updates the import targets file references in the game project for what is required for XNA Framework 3.0.
e Updates the import targets file references in the content project for what is required for XNA Framework 3.0.
e Establishes content compression properties (introduced in XNA Game Studio 3.0) to the default settings.

http://msdn.microsoft.com/en-us/library/bb417503(XNAGameStudio.30).aspx

XNA Game Studio 3.1

Troubleshooting Upgrades

Projects don’t build because a reference to assembly version X is missing, but | am not targeting X.

Be sure to check the dependencies of all assemblies included with your projects. Also, make sure that any assemblies you're
using in your projects target the same version of the XNA Framework that your project is targeting. Projects (or libraries) that
target different versions of the XNA Framework cannot interact and should not be located in the same solution.

Projects don’t build because a type can’t be converted from type Foo (assembly version X) to type
Foo (assembly version Y).

Check to see that all classes in your project use the classes, methods, properties, and events that exist in the XNA Framework
version you are targeting. In some cases, methods may have been deprecated or some parameters may have changed.

My importer or processor is missing from the list of importers or processors available in the
content pipeline.

The importer or processor used by your project may not support the version of XNA Framework that you are targeting. Be sure
that you have updated versions of all components used by your title.

My content won't build because the importer or processor can’t be found, but | have a reference
to it.

The importer or processor used by your project may not support the version of XNA Framework that you are targeting. Be sure
that you have updated versions of all components used by your title.

My audio project files are not loaded in my converted solution.

Audio project files (xap) that were created with XACT2 in XNA Game Studio 3.0 must be loaded and saved with XACT3 before
they will work with XNA Game Studio 3.1. For more information, see Upgrade Guide: XNA Game Studio 3.0 to XNA Game
Studio 3.1.

See Also Upgrading XNA Game Studio Projects

XNA Game Studio 3.1

Using XNA Framework Starter Kits

An XNA Framework Starter Kit is a complete or near-complete, self-contained game that includes both game code and game
assets. A starter kit is ready for you to load and build. Each kit comes with its own documentation, including descriptions of
programming techniques, and suggestions for how it may be customized. A starter kit provides a great way to see a working
XNA Framework game in action and to see what is possible using XNA Game Studio for game development.

To Load and Build an XNA Framework Starter Kit

1. From the File menu, click New, and then click New Project.
The New Project dialog box appears.

2. In Project types, under the Visual C# node, select XNA Game Studio 3.1.
The New Project dialog box displays the XNA Framework-specific project types.
Next, you need to select an XNA Framework Starter Kit project type.

3. Select an available starter kit and then click OK.
The selected starter kit loads into your version of Visual Studio.

4. To build and launch the starter kit project, press F5.

XNA Game Studio 3.1

Starter Kit: Platformer

The Platformer Starter Kit is a near-complete, self-contained game solution that includes both game code and game assets. The
game is a standard 2D platformer with levels, enemies, and collectable gems.

This starter kit is intentionally incomplete. Several nonessential features and systems are not finished. This makes it easier and
quicker to understand the structure of the game, and how the pieces fit together to provide a rich gaming experience. The
Platformer Starter Kit includes the following features:

e Cross-platform support for Windows, Zune, and Xbox 360.

e Control of the player character using either the keyboard or gamepad.

e Simple physics modeling (falling and jumping) and dynamic collision checking.

e Production-level sprite sheets, sound effects, and other game assets.

e High and low resolution assets, and an additional content project containing audio assets.
[]

New features from XNA Game Studio, such as the simple sound APl and multiple content projects whose usage depends
on the target platform.

P EEEEI

Figure 1. Gameplay Screen for the Platformer Starter Kit

Player Controls

The player character is controlled using either the keyboard or gamepad.

Action Keyboa (Gamepad Zune
rd
Run left, Runri (A, D Left thumbstick or analog [Device control pad (version 1) or Zune pad (version 2)
ght D-pad
Jump Space |A Click the center of either the device control pad (version 1) or the Zune p
ad (version 2)

Platformer Code Architecture

The following is a list of classes shipped with the Platformer starter kit. The file containing the implementation for each class
shares the name of the class. For example, Gem.cs contains the Gem class implementation.

Name Description

Gem . . ;
Implements a floating gem in the game. Gems are collectable by the player, and are worth a set amount of poi

nts.

Gems are used to load, draw, and update a gem. For more information, see Basic Platformer Features.

Circle (structur Implements a bounding circle for checking collision against gem objects. For more information, see Basic Platf
e) ormer Features.

Tile (structure)

Stores basic information about a game tile. For more information, see Basic Platformer Features.

TileCollision (e
numeration)

Stores the different collision types a tile can have: Passable, Impassable, Platform. For more information, see B
asic Platformer Features.

AnimationPlay
er (structure)

Implements playback of the animation stored by Animation.

For more information, see Intermediate Platformer Features.

Animation

Stores an animated texture. Used to animate the player character and enemy sprite sheets.

For more information, see Intermediate Platformer Features.

Enemy

Implements an enemy in the game. Used to load, draw, and update an enemy.

For more information, see Intermediate Platformer Features.

FaceDirection (
enumeration)

Stores the different directions an enemy can face. For more information, see Intermediate Platformer Features.

PlatformerGa
me

Implements major game components such as content and level loading, HUD management and display, and g
ame object updating.

For more information, see Advanced Platformer Features.

Level . . . s . .
Implements a level in the game. A Level object contains a multi-dimensional array of tiles, a player character, a
start and end location, point total, remaining level time, a list of gems, and a list of enemies.
For more information, see Advanced Platformer Features.

Player

Implements the player character. Used to load, draw, and update the character.

For more information, see Advanced Platformer Features.

RectangleExten
sions

Implements an extension to the standard XNA Framework structure Rectangle. For more information, see Adv

anced Platformer Features.

Execution Flow

Think of the execution flow of Platformer as follows:

1. The next level is loaded. Important methods are Plat formerGame.LoadContent and PlatformerGame.LoadNextLevel.

2. The game is updated using PlatformerGame.Update and Level.Update. If the player is dead or if time has expired, input

is ignored and the game is in a pause state. If the player has reached the exit, the remaining time is converted to points. If
there is still time and the player hasn't reached the exit location, the time remaining is decremented and all level objects
are updated (player character, enemies, gems, and so on) using their Update methods. At this time, checks are also made

for the player reaching the exit and falling off the edge of the screen.

3. The gameplay screen is drawn using PlatformerGame.Draw. This method, in turn, calls Level.Draw and

PlatformerGame.DrawHud.

Level.Draw is responsible for drawing the tiles, player character, gems and enemies using calls to the braw method of

each previously-mentioned game object.

Exploring the Platformer Starter Kit

Basic Platformer Features
Discusses basic features of the Platformer Starter Kit and offers recommendations for making basic modifications to the
Platformer game.

Intermediate Platformer Features
Discusses intermediate classes of the Platformer Starter Kit, and offers recommendations for modifying or extending
Platformer features.

Advanced Platformer Features
Discusses advanced features of the Platformer Starter Kit, and offers recommendations for modifying or extending
Platformer features.

Platformer: Adding Touch Support
Extends the base Platformer starter kit code by adding touch screen and accelerometer support for input.

See Also
Concepts

Using XNA Framework Starter Kits
Tasks

Your First Game: Microsoft XNA Game Studio in 2D
Platformer: Adding a Power-Up
Platformer: Adding a Scrolling Level

XNA Game Studio 3.1

Basic Platformer Features

Discusses basic features of the Platformer Starter Kit and offers recommendations for making basic modifications to the
Platformer game.

e Platformer Game Design

e Starter Kit Assets

e Exploring the Basic Classes
L]

Basic Modifications to the Platformer Starter Kit

Platformer Game Design

The design of Platformer should be familiar to all gamers. You must avoid the enemies and reach the level exit before time
expires (collecting gems along the way). If you complete the level with time remaining, that time is converted to a point bonus,
and it is added to your current score. You lose a life if you run into an enemy, fall off a ledge, or run out of time before
collecting all gems and reaching the exit.

v t'

Y v cocGic
EiEG

.- W 2
o T ¥ |

-

Figure 1. Gameplay Screen for the Platformer Starter Kit

Game World

The game world is composed of individual levels where each level is automatically constructed, using several square tile types,
from an existing text file. This text file uses a set of symbols to map out the level, locating the start and exit points, enemy
starting positions, gem locations and tile locations (including their type). For a complete listing of the level file format, see
Advanced Platformer Features.

Three tile types are implemented by Platformer and represent the ledges and impassable areas of a level.

Properties

Players and enemies cannot pass through the tile from any direction.

T[T T3 M3 O Z

Players and enemies can pass through the tile freely. The main purpose of this tile type is to provide decoration to the level
as|- decoration such as jungle foliage, rocks, and other scenery.

sa
bl

Pl
at
fo

Platform tiles behave like passable tiles except that players and enemies can stand on (or in the case of the player character,
fall onto) the top edge of the tile without falling.

=

This is implemented by checking for collision between the character's bounding rectangle and the top edge of the platform
Mitile. If collision occurs, the affected character's Y velocity (that is, the character's speed when falling) is forced to 0. If the char
acter stood, or fell onto, a passable tile, no collision checking is performed. This causes the character to continue falling until
the character reaches an impassable tile or passes the bottom edge of the screen. For more information on collision checkin
g and game world physics, see Advanced Platformer Features.

In addition to tiles, there are several special objects that represent special locations or objects in the game world.

Nam |Properties
e

Level |The player character begins the level at this location, facing to the right.
Start
Gem |An object that players collect for points and level completion. The player must collect all gems and reach the exit before
time expires to complete the level.

Level |The location the player must reach to complete the level before time expires. Failure to reach the exit (and collect all ge
Exit |ms) forces the player to lose a life and begin at the Level Start location.

Player Character

The player character can run and jump. The player is affected by a simple gravity implementation, and can run off platforms
without jJumping. When falling, the character is halted by any collision with a platform-type tile. If the player character is
moving and not under direct control of the player, simple pseudo-drag is implemented. This gradually stops the player
character instead of causing an instant stop.

Enemies

Initially, Platformer implements a single enemy type. This enemy slowly walks back and forth along a platform, automatically
turning around at the platform's edge. The player character cannot kill the enemy and is immediately killed by the enemy upon
contact.

Starter Kit Assets

Assets in the various content projects are platform-dependent. For Windows and Xbox 360 projects, the
HighResolutionContent content project is used. It contains fonts, level backgrounds, higher-resolution tile textures (64x48) and
single-animation sprite sheets. Each sprite list is a strip of single frames (96x96) that provide animation when displayed
sequentially. For instance, the Celebrate.png asset is a series of frames of a celebration by the player character. The entire set of
animation lists for a specific character (either enemy or player) are kept in a separate directory.

Zune projects use a lower resolution set of these level backgrounds, tile textures, fonts, and single-frame sprite lists. For
example, tile texture resolutions are 32x32 and sprite lists contain frames that are half the size of their higher-resolution
counterpart, 48x48.

In addition to the HighResolutionContent and LowResolutionContent content projects, all projects use an additional content
project, SharedContent. This content project contains the sound effects for the game. It includes sound effects used when the
player character collects a gem, reaches the level exit, or dies by falling or enemy contact. Unlike texture files, sound files are
shared between all three platforms. Having a separate set of lower fidelity sound effects for the Zune would not be worth the
effort and loss in quality when compared to the size saved when Platformer is installed.

Shared projects (such as SharedContent) are the default in XNA Game Studio, but it is also possible to set up platform-specific
game content projects. It's easier to implement if you do a little planning before adding new projects to your solution. For
more information on sharing game assets between projects, see Platform-Specific Content Projects.

Exploring the Basic Classes

The Platformer starter kit can be pretty overwhelming the first time you see it. However, it can be broken down into more
manageable pieces, based on the complexity of the game object and its usage by the Platformer game. In this section, we'll
explore Platformer's basic classes and structures. We'll talk about their purpose and design and point out features that can be
modified or expanded on. For information on more complex classes, see Intermediate Platformer Features and Advanced
Platformer Features.

Gem Class and Circle Structure

The Gem class implementation is located in Gem.cs. Important methods include:

LoadContent

Loads a grayscale gem-shaped texture.
Update

Updates the gem height at regular intervals during gameplay. This method is used to cause all gems in the level to oscillate
up and down in relation to each other. The motion is implemented with a sine curve over time. In addition, the X-coordinate

of the gem is used to produce a nice syncopated pattern.
Draw

Draws the gem using the specified color shade. The default color is yellow.
OnCollected

Plays a sound indicating retrieval by the player. This is an great place to modify the default behavior of gem collection!
Properties include the parent Level, its position in world space, and a bounding circle.

The bounding circle (implemented by the circle structure, located in Circle.cs) is used to determine if the player is colliding
with the gem. If the player collides with the gem, it is removed from the gem collection of the parent Level and points are
added to the player's score. The most important method of Circle is Intersects. This method checks for intersection with a
rectangle (used to represent the bounding area of other game objects). This method is called by Level.UpdateGems and if it
returns true, the gem is removed and the onGemcollected method is called. For more information on onx methods, see
Changing the Behavior of Existing Game Events.

Gems are the only objects that use a bounding circle. All other objects use a bounding rectangle.
Gem Animation

The default animation of gems is based on a sine wave. They slowly rise and fall as a group during gameplay. The Gem.Update
method controls this animation.

ETip
You can easily modify this behavior by changing the default height and speed of the animation.

Tile Structure and TileCollision Enumeration

The Tile structure implementation is located in Tile.cs. It has a constructor, but its main purpose is storing the properties of a
level tile.

Properties include the tile dimensions (width and height), the collision behavior of the tile object, and the texture used when
drawing the tile object.

The collision behavior (stored in the collision property) is the most important property of the Tile structure. This property
determines what kind of collision detection is done, if any. For more information on supported tile types, see Game World.

The TileCollision enumeration lists all possible collision behaviors for a tile and is located in Tile.cs.

Basic Modifications to the Platformer Starter Kit
Changing the Behavior of Existing Game Events

ETip
Modifying default behaviors in the game is as easy as modifying the related onxEvent method.

Platformer handles important events in the game using methods that follow an onx naming convention, where X is an
important event name. For instance, when the player character collects a gem, oncollected is ultimately called. The complete
list of methods called before Gem.oncollected is as follows:

1. Level.Update

2. Level.UpdateGems
3. Level.OnCollected
4

. Gem.OnCollected

When a gem is collected, the default behavior is to play a "gem collected" sound (GemCollected.wma). If you wanted to change
this behavior, there are two places you should focus on: the T.evel.onCollected and Gem.0onCollected methods. Add (or
remove existing) code to do different things. For instance, to create a "cursed" gem (subtracts points from the player's total
when collected), modify the Level.onCollected method to subtract Gem. Pointvalue form the total instead of adding to it.

See Also
Concepts
Starter Kit: Platformer

XNA Game Studio 3.1

Intermediate Platformer Features

Discusses intermediate classes of the Platformer Starter Kit, and offers recommendations for modifying or extending
Platformer features.

In this section, we'll explore Platformer's intermediate features and the classes that implement them, such as sprite animation.
We'll talk about their purpose and design, and point out features that can be modified or expanded on. For information on
basic classes, see Exploring the Basic Classes. For advanced classes, see Advanced Platformer Features.

Figure 1. Jumping Animation for Player Character

Exploring the Intermediate Classes

The following classes are more complex than the basic Platformer classes, and they implement some intermediate features of
Platformer.

AnimationPlayer Structure and Animation Class

The AnimationPlayer structure is used to animate the player character and the enemies of the current level. It stores a single
animation sprite sheet in the Animation property, of type Animation. Animation begins with a call to the PlayAnimation
method, but if the animation is already playing, the method immediately returns. This prevents the animation from being
interrupted for any reason.

The animation infrastructure is intentionally simple and customized for the base version of Platformer. It is not designed to
scale up or be used independently of Platformer. The only requirement is that the animation frame is square in shape.

Platformer provides five animations for the player character and three animations for each of the different enemies. However,
not all are initially used in the game.

$Note
For enemies, the Die animation is not used.

The AnimationPlayer structure implementation is located in AnimationPlayer.cs. Important methods include:

Draw

Advances the current time of the animation and, based on the time, draws a single frame from the related sprite sheet.
PlayAnimation

Begins playing a specified animation, using a single-animation sprite sheet. If the specified animation is already running, it is
not interrupted.

Properties include the sprite sheet used for animation, the current frame index, and the origin of the current frame.

The Animation class implementation is located in Animation.cs. It stores important attributes of an animation, such as frame
count, texture used for animation, frame width, and so on.

Enemy Class and FaceDirection Enumeration

The Enemy class implementation is located in Enemy.cs. Important methods include:

LoadContent

Loads a specific enemy sprite strip. The enemy type is determined by the level structure file. Platformer implements four
different enemy types. These types differ only in appearance. They are stored in separate directories in the appropriate
content project, under the Sprites directory. Each enemy type has two animations: Run and Idle. The third animation, Die, is
not used, but it is included for future development.

Update

Updates the enemy location. The default enemy behavior is to pace back and forth across a platform, pausing at the
platform's edge.

If an enemy detects that it will move into an impassable tile (such as a wall) or walk off the edge of a platform tile, the value
of the FaceDirection property is reversed, causing the enemy to begin walking in the opposite direction.

Draw
Draws the enemy character using the specified animation frame.

Before drawing the current animation, braw checks the current orientation of the enemy. If the enemy is facing to the right,
the current frame is flipped by specifying SpriteEffects.FlipHorizontally in the call to SpriteBatch.Draw.

Properties are similar to the Gem class: the parent revel, its position in world space, and a bounding rectangle. This differs from
the gem object implementation, which used a circle. A rectangular bounding rectangle makes more sense for enemy characters
(and the player character) because of their interaction with the rectangular tiles that make up the level — especially the platform
tiles.

The Enemy class is a simpler version of the Player class because it cannot jump and has only a single behavior: relentless
pacing upon its current platform.

Expanding Platformer

A logical expansion for Platformer is the use of power-ups in the game. In this topic, an Invincibility power-up is implemented
in the default version of the Platformer starter kit. This power-up gives the player character temporary invincibility against
enemies is indicated by a red gem. For complete details on this expansion, see Platformer: Adding a Power-Up.

See Also

Concepts

Starter Kit: Platformer

Tasks

Platformer: Adding a Scrolling Level

XNA Game Studio 3.1

Platformer: Adding a Power-Up

Extends the base Platformer starter kit code by adding a power-up gem and player character effect.
ETip

It is highly recommended that you are already familiar with the structure and features of the Platformer starter kit. This exten
sion involves modifications to several files in the Platformer starter kit. For more information on the Platformer starter kit, se
e Starter Kit: Platformer.

This extension modifies five areas of the Platformer starter kit. It is recommended that you use the base Platformer starter kit
solution as the starting point for your modifications.

Adding a power-up gem involves the following major steps:

Modifying Gem.cs to support a power-up attribute and draw the power-up gem in a special way.

Modifying AnimationPlayer.cs to draw a special effect on the player when invincible.

Modifying Player.cs to support and monitor a power-up state, drawing a special effect when the character is powered-up.
Modifying Enemy.cs to support being killed by a powered-up player character and to draw a Die animation.

Modifying Level.cs to recognize and load a power-up gem from a level structure file. The level code must also notify
other game objects that a power-up gem has been collected.

Figure 1. Power-Up Gem Extension

Modifying the Gem Class

Modification of the Gem class begins by changing some existing properties and adding a IsPowerUp property. Modify the
existing code for the Pointvalue and color properties to match the following:

C#

public readonly int PointValue;
public bool IsPowerUp { get; private set; }
public readonly Color Color;

This modification also adds the new property, IspPowerUp. Modify the existing Gem constructor to accept a new isPowerUp
parameter. After the modification, it should match the following:

C#

public Gem(Level level, Vector2 position, bool isPoweruUp)

{

In the existing constructor, after the code setting the level and position of the gem object, add the following:

C#

IsPowerUp = isPowerUp;
if (IsPowerUp)

{
PointValue = 100;

Color = Color.Red;

}

else

{
PointValue = 30;

Color = Color.Yellow;

}

This code sets the TspPowerUp property of the gem, and then raises the point value if it is a power-up.

The last modification to the Gem class is to call the Powerup method (a method added later) of the proper player character. Add
the following code after any existing code in the oncollected method:

C#

if (IsPowerUp)
collectedBy.PowerUp();

This completes the modification of Gem.cs. Let's move on to AnimationPlayer.cs, and add support for drawing the power-up
effect.

Modifying the AnimationPlayer Class

Your modifications in this class are small. You'll add code using the new color being passed in to tint the player character
sprite, and you'll add a new pDraw method.

Modify the existing braw method declaration to accept an additional parameter called color. This indicates the current color to
use as a tint when drawing the invincible player character. After the modification, it should look like the following:

C#

public void Draw(GameTime gameTime, SpriteBatch spriteBatch, Vector2 position, SpriteEf
fects spriteEffects, Color color)

{
}

Now that we have a tint color being passed in, let's use it in our praw call. Staying within this method, modify the final call to
Draw to match the following:

C#

spriteBatch.Draw(Animation.Texture, position, source, color, 0.0f, Origin, 1.0f, sprite
Effects, 0.0f);

Now add a new praw method, after the previous one, to be called when the power-up effect is not needed:

C#

public void Draw(GameTime gameTime, SpriteBatch spriteBatch, Vector2 position, SpriteEf
fects spriteEffects)

{
Draw(gameTime, spriteBatch, position, spriteEffects, Color.White);

}

That was the last of the code for the strobing tint effect. Let's move on to the P1ayer class, found in the Player.cs file, and add
that powerup method, among other modifications.

Modifying the Player Class

Modification of the player class begins by adding support for a power-up state. After the Isalive property, add the following
code:

C#

// Powerup state

private const float MaxPowerUpTime = 6.0f;
private float powerUpTime;

public bool IsPoweredUp

{
get { return powerUpTime > 0.0f; }

}

private readonly Color[] poweredUpColors = {
Color.Red,
Color.Blue,
Color.Orange,
Color.Yellow,

s
private SoundEffect powerUpSound;

This code adds some properties to monitor the power-up time, an Ispoweredup method, a Color array that stores the colors
used to produce the special tinting of the player character, and a sound effect that plays while the character is powered up.

While you're here, add the PowerUp sound effect to the SharedContent content project.

1. Right-click the Sounds directory of the SharedContent content project, and select Add, then Existing Item....
2. Select the PowerUp.wma file, and then click OK.
3. Select the new sound effect, and change the Content Processor to SoundEffect (using the Properties window).

Load the new sound effect by adding the following line to the L.oadcontent method:

C#

powerUpSound = Level.Content.Load<SoundEffect>("Sounds/PowerUp");

Modify the Reset method to set the powerUpTime property to 0.

C#

powerUpTime = 0.0f;

In the update method, you'll need to check to see if the player character is powered up and, if so, update the time remaining.
Add the following code after the applyPhysics call:

C#

if (IsPoweredUp)
powerUpTime = Math.Max(0.0f, powerUpTime - (float)gameTime.ElapsedGameTime.TotalSecon
ds);

We'll use the pbraw method to indicate that the player is temporarily invincible. A strobing tint is applied while the player is
invincible. Add the following code after the code that flips the player character sprite:

C#

// Calculate a tint color based on power up state.
Color color;
if (IsPoweredUp)

{
float t = ((float)gameTime.TotalGameTime.TotalSeconds + powerUpTime / MaxPowerUpTime)
* 20.0f;
int colorIndex = (int)t % poweredUpColors.Length;
color = poweredUpColors[colorIndex];

}

else

{
color = Color.White;

}

If the player is invincible, a color is selected from the array you added earlier and used to tint the character sprite when it is
later drawn. The final modification to this function is to add the tint color to the call to AnimationPlayer.Draw. Modify the call
to match the following:

C#

sprite.Draw(gameTime, spriteBatch, Position, flip, color);

The final bit of code is the new powerup method. Add this new code after the braw method:

C#

public void PowerUp()
{

powerUpTime = MaxPowerUpTime;
powerUpSound.Play();
}

This is a simple bit of code that sets the powerup time to a predefined value, which is 3 seconds in this case.

You're done with Player.cs. It's now time to modify his fiendish enemies.

Modifying the Enemy Class

Modification of the Enemy class begins by adding and loading the death animation. You'll need to add the Die animation
(Die.png) to both the HighResolutionContent and LowResolutionContent content projects for each monster type.

1. From Solution Explorer, expand the HighResolutionContent icon, and navigate down to the \Sprites\MonsterA
directory.

2. Right-click the MonsterA icon, and use the Add Existing Item dialog box to add the Die.png game asset.
3. Do the same for the MonsterA directory located in the LowResolutionContent content project.
4. Repeat Steps 1-3 for each remaining monster type.

Add a declaration for a new Enemy property of type animation to the existing animation list, called dieAnimation.

C#

private Animation dieAnimation;

You'll want a sound effect to play when an enemy dies, so go ahead and add the existing MonsterKilledwma game asset to the
Sounds directory of the SharedContent content project using the Add Existing Item dialog box. Now you need a new
variable for storing that sound effect. Add the following code after the animation variables:

C#

// Sounds
private SoundEffect killedSound;

Add another property after the existing BoundingRectangle variable:

C#

public bool IsAlive { get; private set; }

Now that an enemy can be killed by the player character, you need to track whether enemies are alive or dead. In the Enemy
constructor (right below the last modification), initialize Tsalive to true.

C#

this.isAlive = true;

In the LoadCcontent method, load the death animation:

C#

dieAnimation = new Animation(Level.Content.Load<Texture2D>(spriteSet + "Die"), ©.07f, f
alse);

And then the sound effect:

C#

// Load sounds.
killedSound = Level.Content.Load<SoundEffect>("Sounds/MonsterkKilled");

Since this is the first sound effect for enemies, you'll need to add a reference to Microsoft.Xna.Framework.Audio to this file. Add
the following code after any existing using code:

C#

using Microsoft.Xna.Framework.Audio;

Now that enemies can be dead, optimize the update code a bit, and only update living enemies. In the update method, add the
following code after calculating the elapsed time:

C#

if (!IsAlive)

return;

Let's modify the braw method to play the proper animation, depending on the state of the enemy. Replace the following code:

C#

if (!Level.Player.IsAlive ||
Level.ReachedExit ||
Level.TimeRemaining == TimeSpan.Zero ||
waitTime >)

{

sprite.PlayAnimation(idleAnimation);

}

else

{

sprite.PlayAnimation(runAnimation);

}

with this code:

C#

if (!IsAlive)

{
sprite.PlayAnimation(dieAnimation);

¥
else if (!Level.Player.IsAlive ||

Level.ReachedExit ||
Level.TimeRemaining == TimeSpan.Zero ||
waitTime > 0)

{
sprite.PlayAnimation(idleAnimation);

}

else

{
sprite.PlayAnimation(runAnimation);

}

Finally, add the onkilled method:

C#

public void OnKilled(Player killedBy)
{

IsAlive = false;
killedSound.Play();

}

That completes the modification of Enemy.cs.

All right, we are coming up on the home stretch now. There is one final file to modify before you can compile and check out the
power-up gem in action.

Modifying the Level Class

The modifications for the Level class are pretty extensive. You'll need to add support for a new gem type, and also support for
killing an enemy if the invincible character collides with it.

First, let's add support for the new gem type. In the Tile LoadTile(char tileType, int x, int y) method, modify the code
for the 'G' case to match the following:

C#

// Gem
case 'G':
return LoadGemTile(x, y, false);

// Power-up gem
case 'P':
return LoadGemTile(x, y, true);

This updates the code for a normal gem, passing false, and adds the ability to read in power-up gems. Now, you'll need to
update the LoadGemTile method to accept a new parameter. Modify LoadGemTile to accept an additional parameter (of type
bool) called ispowerUp. Make sure that the new parameter is last in the method declaration. It should match the following
declaration:

C#

private Tile LoadGemTile(int x, int y, bool isPowerUp)

In this same function, modify the call to gem.2dd to match the following:

C#

gems.Add(new Gem(this, new Vector2(position.X, position.Y), isPowerUp));

This modification now calls the recently modified Gem constructor.

If you remember, you earlier changed the implementation of the point value for a gem. Now is a good time to update the
OnGemCollected method to use the new Pointvalue field. In this method, modify the score assignment to match the following:

C#

score += gem.PointValue;

Now that you can recognize and load the power-up gem, let's add support for its effect when the player character collects it.

Modify the UpdateEnemies method to first check that the current enemy is alive and, if so, upon collision check for a powered
up player. If the player is powered up, you need to "kill" the enemy.

Change this code:
C#

if (enemy.BoundingRectangle.Intersects(Player.BoundingRectangle))

{
OnPlayerKilled(enemy);

}

to match the following:

C#

if (enemy.IsAlive && enemy.BoundingRectangle.Intersects(Player.BoundingRectangle))

{
if (Player.IsPoweredUp)

{
OnEnemyKilled(enemy, Player);

}

else

{
OnPlayerKilled(enemy);

}
}

Next, add the implementation of the onEnemykilled method, after the UpdateEnemies method:

C#

private void OnEnemyKilled(Enemy enemy, Player killedBy)

{
enemy.OnKilled(killedBy);

}

This follows the practice of Platformer. It implements an onx method to announce an important event has occurred.

Testing the Power-Up Extension

Before you can see the power-up gem in action, you'll need to add one to the second level structure file. Open this file now
(1.txt) and replace any G with a P. Recompile and check out the Invincibility power-up!

_—_Focicicic
EleEEEEE
s EEEEE

Figure 2. Invincible Player Character and a Dead Enemy

See Also

Concepts

Starter Kit: Platformer

Intermediate Platformer Features
Tasks

Platformer: Adding a Scrolling Level

XNA Game Studio 3.1

Advanced Platformer Features

Discusses advanced features of the Platformer Starter Kit, and offers recommendations for modifying or extending Platformer
features.

In this section, we'll explore Platformer's advanced features and the classes that implement them, such as the game levels and
the player character. We'll talk about their purpose and design, and point out features that can be modified or expanded on.
For information on basic classes and features, see Exploring the Basic Classes and for advanced classes and features, see
Advanced Platformer Features.

e Exploring the Advanced Classes
e | oading the Level

e Exploring Platformer's Physics
L]

Expanding Platformer

G SR EIE
&l TNy Iy Iy Uy

Figure 1. Gameplay Screen for the Platformer Starter Kit

Exploring the Advanced Classes

The following classes are more complex than the basic and intermediate classes, and they implement the critical features of
Platformer such as the game level, the player character, and the Platformer game structure.

PlatformerGame Class

The Plat formerGame class implementation is located in PlatformerGame.cs. Important methods include:

LoadContent
Loads the game fonts and the next level of Platformer by calling LoadNextLevel, which is another very important method.

For more information on level loading, see Exploring Platformer's Physics.
Update

Handles basic game input (for both keyboard and gamepad) and calls Level.Update, .. you guessed it, another very

important method. For more information on level updating, see the Level class description.
Draw

Draws the major components of Platformer: the gameplay screen and the HUD. The gameplay screen is drawn by calling
Level.Draw, Which in turn draws some things and calls the praw method of any level object smart enough to draw itself (for
example, the player character).

The structure of the game is easy to follow because the majority of Platformer objects are responsible for loading, updating,
and drawing themselves. The Plat formerGame class is like a conductor; it tells each object what to do and when. As discussed in
the overview, the program flow can be broken up into three common steps: initializing (loading of the level, etc.), updating, and
drawing. Each of these stages is discussed in detail in the appropriate class sections.

The LoadNextLevel method is an important step in the process of loading a level. This method locates and reads a physical file
describing the current level. Level files are numbered sequentially, starting with 0, and stored in the .\Content\Levels directory
(in the appropriate platform/build directory). For instance, the Level 0 file for the debug Windows version of Platformer is
located in the .\Platformer\Platformer\bin\x86\Debug\Content\Levels\0 directory.

4.Caution

Platformer ships with some ready-to-use levels. If you add new levels, ensure that the Copy to Output Directory property, f
or the related game asset, is set to true. In addition, follow the naming convention and directory structure for new levels. For

instance, a new level would be in the 2 directory, underneath Levels, in the appropriate game content directory. For more inf

ormation on the level structure file, see Loading the Tiles.

PlatformerGame tracks the current level using the levelIndex variable. When LoadNextLevel is called, levelIndex is pre-
incremented and an absolute path is built to the file. Once the directory is found, the file is passed to the Level constructor and
the level is created and populated. If the level needs to be reloaded (due to running out of time), ReloadCurrentLevel is called.

Level Class
The Level class implementation is located in Level.cs. Important methods include:
Draw

Draws the current state of the level and its contained elements. Level tiles are drawn by calling brawTiles. The player
character, gems, and enemies are drawn by calling their respective braw methods.

Each level has three layers of background. These backgrounds are loaded in the Level constructor. They are drawn in order,
from back to front. After all layers have been drawn, the level tiles, player character, gems, and enemies are drawn. The base
implementation of Platformer uses only the leftmost segment of the background texture assets.

ETip
For a tutorial on adding parallax scrolling to Platformer, see Platformer: Adding a Scrolling Background.

Update

Updates the level state, including all objects contained by the level. In addition, collision checking between objects (such as
the player character and platform tiles) and the time limit for the level (includes remaining time animation) are also handled
here.

While the game is paused (either through a player death or reaching the exit), all input is ignored and the Idle animation for
the enemies is played.

LoadTiles
Called during level construction, this method loads the level layout using a structure file previously located by
PlatformerGame.LoadNextLevel. For more information on this level structure file, see Loading the Tiles.
OnExitReached,OnPlayerKilled,and OnGemCollected
Called from update when important events occur in a level. These events include the player character reaching the exit, dying,
or collecting a gem. Modify these to change the default behavior of these events.

Player Class

The player class implementation is located in Player.cs. Important methods include:

ApplyPhysics
Called during player.Update, it updates the player's velocity and position based on input, gravity, and drag factors. Once
position is determined, the player character is checked for collision with surrounding tiles. This is the most math-intensive

method of the class, and it depends heavily on the game world physics model.
Draw

Orients the player correctly, and then calls AnimationPlayer.Draw to draw the current frame of the character. As mentioned

elsewhere, animation frames are intentionally square. This simplifies the animation code, making it easier to understand.
Update

Gets input from either the keyboard or a game controller, and updates the movement and isJumping fields. The player's

position and velocity are then updated by calling applyPhysics.
LoadContent

Loads the various sprite sheets and sounds used by the player character.
HandleCollisions

Implements collision detection between the player character and neighboring tiles.
Important properties include:
BoundingRectangle

Used for checking collisions between the player character and neighboring tiles and objects, like a gem or exit location. The
RectangleExtensions class is an important part of the collision checking code. For more information, see
RectangleExtensions class.

ETip

Consider using per-pixel collision detection to improve the interaction between the player character and the level elements.
This is an advanced extension, but it is worth the effort. For more information, download the 2D Per-Pixel Collision sample
found on the XNA Creators Club Web site. It's part of Collision Series 2.

Velocity
The velocity of the player character. This is affected by the game world physics, and it represents acceleration from running,
jumping, or falling. For more information, see Platformer Physics.

RectangleExtensions Class
This class is an extension to the XNA Framework Rectangle structure. RectangleExtensions implements two methods —

GetIntersectionDepth and GetBottomCenter. These methods support the conceptualization of a rectangle as a "squared circle"
with two radii.

Here is what | mean. It is given that a circle has one radius; the length from the center to its perimeter. This makes intersection
checking with another circle easy. If the distance between the centers is shorter than the sum of the radii, the circles intersect.

Now apply this concept to a rectangle. Imagine that a rectangle has two radii: one from the center to the height of the rectangle
(the "height" radius) and another from the center to the width of the rectangle (the "width" radius). Once you know the centers
of the rectangles, you can use a similar approach to check for rectangle intersection as you did earlier with the two circles. If the
X-value of the distance between the centers is greater than the sum of the width radii and the Y-value of the distance between
the centers is greater than the sum of the height radii, the rectangles do not intersect.

Loading the Level

When starting a new game, the procedure for loading a level (from a program execution viewpoint) is as follows:

1. PlatformerGame.LoadContent

2. PlatformerGame.LoadNextLevel
3. Level.Level
4

. Level.LoadTiles
A level can also be loaded in the following cases:

e When the player character reaches the exit of the current level. The next level is then loaded from
PlatformerGame.HandleInput when the player continues the game.

e When reloading the level. This is called if time runs out. These events cause a restart of the level.

Before PlatformerGame can load the level, it must first find a physical file that contains the level structure. The LoadNextLevel
method looks in the .\Content\Levels directory (underneath the appropriate platform/build directory) for these level structure
files. Once found, a new level is constructed with a call to Level.Level.

In the level constructor, the level time is initialized, the tiles are loaded (using the level structure file) and then the background
textures and "exit reached" sound are loaded. The L.oadTiles method is the important part here.

Loading the Tiles

This is the workhorse of the level loading process. This method first reads in the character-based level file and verifies that all
lines are the proper length. It then iterates over each line, reading the level structure from top to bottom until complete. A 2D
array (composed of Tile objects) is then allocated to store each tile in the level.

At this point, the text-based lines, read from the level structure file, can be converted into actual tile layers for the current level.
The LoadTile method reads a character from the current line and, based on a dictionary of characters, loads the appropriate
type and game assets for the tile. The dictionary for the level structure file is as follows:

Text Ch|Description

aracter
v Blank tile. This tile is TileCollision.Passable, and has no related texture.
X Exit tile. This tile is TileCollision.Passable, and uses the Exit.png texture.
The location is stored, and then the tile assets are loaded with a call to Level.LoadTile.
G

Gem tile. This tile is TileCollision.Passable, uses the Gem.png texture, and loads the tile by calling LoadGemTi1e.

The base implementation of Platformer adds a gem to the list of gems maintained by the level, and places the gem in
an blank tile.

http://creators.xna.com/

- Floating platform. This tile is TileCollision.Platform and uses the Platform.png texture.

C' and’ Starting tile for the various Platformer enemies. This tile is TileCollision.Passable, and contains one of the four ene

D', mies used by Platformer. They differ only in appearance; an obvious place for extending the base implementation of P
latformer!
The base implementation of Platformer instantiates an Enemy object (adding the enemy to the level's enemies list), and
places it in the level.

- Platform block. This tile is TileCollision.Platform and uses a randomly-chosen texture from the set of textures wh
ose name begins with "BlockB."
This tile is loaded by calling LoadvarietyTile, which is a method that randomly loads a tile texture from a subset of til
e textures.

' Passable block. This tile is TileCollision.Passable, and uses a randomly-chosen texture from the set of textures wh
ose name begins with "BlockB."
Starting position for Player 1. This tile is TileCcollision.Passable, and contains the player character.
The base implementation of Platformer instantiates a Player object, and places him, facing the player, in the level. The
location in the level is stored and used, in the event of player death, as a resurrection point.

o
Impassable block. This tile is TileCollision. Impassable, and uses a randomly-chosen texture from the set of texture
s whose name begins with "BlockA."

Exploring Platformer's Physics

Platformer implements a basic game physics model. It is used to perform the various actions of the player character: jumping,
running, and falling. The main implementation is provided by applyPhysics and GetJumpvelocity. Both are implemented in
the Player.cs source file.

ApplyPhysics

This method contains the bulk of the physics modeling, and is only called from Level.Update. It is responsible for computing
the base velocity of the player character using horizontal movement and downward acceleration (gravity). In addition, pseudo
drag is applied, gradually slowing the character down if he is running along a flat surface without input from the player. The
player character also has a top running speed. Once the base velocity is computed, GetJumpvelocity is called.

GetJumpVelocity

This method is called from applyPhysics and computes the Y velocity (either jumping up or falling down) of the player
character.

During jump ascension, the Y velocity is overridden by a power curve, as seen below.

Velocity

0.8
0.6
04 -

0.2

04 4

06 —

Figure 2. Velocity Curve (over Time)

During descent, gravity controls the Y velocity and clamps at a terminal velocity. The acceleration curve is graphed below.

Acceleration

Figure 3. Acceleration Curve (over Time)

Expanding Platformer

A common feature of Platformer-type games is a scrolling level. In Platformer: Adding a Scrolling Level, you'll add a scrolling
level with multiple scrolling backgrounds to the default version of the Platformer starter kit.

See Also

Concepts

Starter Kit: Platformer

Tasks

Platformer: Adding a Power-Up

XNA Game Studio 3.1

Platformer: Adding a Scrolling Level

Extends the base Platformer starter kit code by adding a scrolling level. Specifically, it provides parallax scrolling.

One of the more impressive features of platformer games in the 80s was the scrolling level. This topic details the process for
adding this feature to the Platformer game. You'll implement multiple scrolling backgrounds, with the back layer scrolling the
slowest, and the front layer scrolling the fastest. This is called parallax scrolling. It provides an illusion of depth in the game.

Figure 1. Parallax Scrolling Extension

ETip

It is highly recommended that you are already familiar with the structure and features of the Platformer starter kit. This exten
sion involves modifications to several files in the Platformer starter kit. For more information on the Platformer starter kit, se
e Starter Kit: Platformer.

This extension modifies two areas of the Platformer starter kit, and it adds a new class. It is recommended that you use the
base Platformer starter kit solution as the starting point for your modifications.

Adding parallax scrolling involves the following major steps:

e Modifying PlatformerGame.cs to call SpriteBatch.Begin and SpriteBatch.End at a different time.

e Modifying Level.cs to use a new object type for the background textures instead of Texture2D. In addition, a camera is
implemented and used to draw a portion of the background instead of the entire background.

e Adding a new class called Layer that replaces the usage of Texture2D for background textures.

Modifying the PlatformerGame Class

The only modification for this class involves modifying the braw method. You'll move the SpriteBatch.Begin and
SpriteBatch.End calls to the brawtud method. This allows the L.evel.Dbraw method to set up its own batch for drawing the
scrolling backgrounds.

In PlatformerGame.Draw, remove the spriteBatch.Begin(); and spriteBatch.Begin () ; lines of code.
In the P1lat formerGame.DrawHud method, add the following line before any existing code:

C#

spriteBatch.Begin();

At the end of the same method, add:

C#

spriteBatch.End();

The prawHud method now implements a single batch.

That completes the modifications for PlatformerGame.cs. The next step adds support for a new class, called Layer to the Level
class.

Modifying the Level Class

The main point of these modifications is to support the usage of a new kind of texture class (Layer) that enables parallax
scrolling. Each of the three background textures will use the new class; therefore, the surrounding code also needs to
accommodate the new class.

First, change the type used by the 1ayers array from Texture2D[] to Layer[]. This is the new background texture class, added
later.

C#

private Layer[] layers;

Now, look for a variable block, commented as "Level game state," and add a new variable called cameraPosition.

C#

private float cameraPosition;

This represents the leftmost world coordinate that can be seen by the player. Typically, a 3D camera sits at some position in
world space and has a field of view. In the case of Platformer, the camera is represented by the left-most coordinate in the field
of view and the field of view is inferred from the width of the viewport.

In the Level constructor, you'll need to change the initialization code for the layers array. Replace this code:

C#

layers = new Texture2D[3];
for (int 1 = @; i < layers.Length; ++i)

// Choose a random segment if each background layer for level variety.
int segmentIndex = random.Next(3);
layers[i] = Content.lLoad<Texture2D>("Backgrounds/Layer"” + i + "_" + segmentIndex);

}

with the following:

C#

layers = new Layer[3];

layers[@] = new Layer(Content, "Backgrounds/Layere", 0.2f);
layers[1] new Layer(Content, "Backgrounds/Layerl", 0.5f);
layers[2] new Layer(Content, "Backgrounds/Layer2", 0.8f);

The new code initializes the array with three new Layer objects. Each of these objects loads a different texture, and has a
different scrolling speed (the third parameter of the Layer constructor).

“Note

Platformer assumes that scrolling speed values have a range between 0 and 1. A value of 0 means no scrolling and 1 means
scrolling at the same pace as the level tiles.

It's now time to modify the drawing code for the level. Locate the 1evel.Draw method, and replace it with the following
method declaration:

C#

public void Draw(GameTime gameTime, SpriteBatch spriteBatch)

{
spriteBatch.Begin();

for (int i = @; i <= EntityLayer; ++i)
layers[i].Draw(spriteBatch, cameraPosition);
spriteBatch.End();

ScrollCamera(spriteBatch.GraphicsDevice.Viewport);

Matrix cameraTransform = Matrix.CreateTranslation(-cameraPosition, ©.0f, @.0f);

spriteBatch.Begin(SpriteBlendMode.AlphaBlend, SpriteSortMode.Immediate, SaveStateMode
.None, cameraTransform);

DrawTiles(spriteBatch);

foreach (Gem gem in gems)
gem.Draw(gameTime, spriteBatch);

Player.Draw(gameTime, spriteBatch);

foreach (Enemy enemy in enemies)
enemy.Draw(gameTime, spriteBatch);

spriteBatch.End();

spriteBatch.Begin();

for (int i = EntityLayer + 1; i < layers.Length; ++i)
layers[i].Draw(spriteBatch, cameraPosition);

spriteBatch.End();

}

Now, let's go over what just changed. Initially, the first sprite batch draws all three background layers. Then, instead of moving
a camera throughout the world, you'll move the world backwards such that the camera is always at the origin. This greatly
simplifies the drawing logic because you can now call a specialized SpriteBatch.Begin overload that uses a transform matrix
(calculated earlier in the method).

You'll recognize the next chunk of code because it is unchanged from the original implementation. It draws the level elements:
tiles, gems, enemies, and the player character. The last batch does nothing in the base implementation of Platformer. It is left in
for drawing foreground textures. For example, if a foreground texture (such as trees or bushes) was drawn, it would obscure
the player character when he "walked" behind the texture.

Because the scrolling extension draws tiles off-screen, you should be aware that this could impact the frame rate. To avoid any
slowdown you'll need to implement a simple culling feature that limits the amount of tiles drawn to only those on the screen at
the time. This reduces the drawing load, speeding up the game. At the beginning of the prawTiles method, add the following
code:

C#

// Calculate the visible range of tiles.

int left = (int)Math.Floor(cameraPosition / Tile.Width);

int right = left + spriteBatch.GraphicsDevice.Viewport.Width / Tile.Width;
right = Math.Min(right, Width - 1);

Below this modification, modify the first line of the inner loop (the one that loops from 0 to width) to match the following:

C#

for (int x = left; x <= right; ++x)

Now, only visible tiles are drawn but note that other items, such as gems and enemies, are still drawn even when off screen.
The culling of non-tiles is another excellent place for extending Platformer!

The last modification in this file adds the new scrolicamera method. This method calculates how much background is scrolled
when the player reaches the screen's edge. When the begin scrolling is platform-dependent. Because the Zune screen is the
narrowest of the three, it looks the farthest ahead. The other two don't look ahead as much. This factor is used to calculate the
edges of the screen and how far to scroll when the player reaches that edge. Scrolling continues until either end of the level is
reached. At that point, the camera position is clamped.

Add the following code, after the braw method:

C#
private void ScrollCamera(Viewport viewport)
{
#if ZUNE
const float ViewMargin = 0.45f;
#else
const float ViewMargin = 0.35f;
#endif
// Calculate the edges of the screen.
float marginWidth = viewport.Width * ViewMargin;
float marginLeft = cameraPosition + marginWidth;
float marginRight = cameraPosition + viewport.Width - marginWidth;
// Calculate how far to scroll when the player is near the edges of the screen.
float cameraMovement = 0.0 ;
if (Player.Position.X < marginLeft)
cameraMovement = Player.Position.X - marginLeft;
else if (Player.Position.X > marginRight)
cameraMovement = Player.Position.X - marginRight;
// Update the camera position, but prevent scrolling off the ends of the level.
float maxCameraPosition = Tile.Width * Width - viewport.Width;
cameraPosition = MathHelper.Clamp(cameraPosition + cameraMovement, ©.0f, maxCameraPos
ition);

}

The final step adds the new Layer class.

Implementing the Layer Class

Because the backgrounds will be scrolling during gameplay, you'll need something more specialized than a Texture2D class to
draw these textures. The background textures provided are divided into three segments that tile seamlessly into one scrolling
background.

Using the Add Class dialog, add a new C# class, called 1ayer, to the PlatformerWindows solution. At the top of the file, add
some useful XNA Framework references:

C#

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Content;

In this new class, add the following properties:

C#

public Texture2D[] Textures { get; private set; }

public float ScrollRate { get; private set; }

These properties store the background texture of the layer and its scroll speed.
Now add the constructor:

C#

public Layer(ContentManager content, string basePath, float scrollRate)
{
// Assumes each layer only has 3 segments.
Textures = new Texture2D[3];
for (int 1 = 0; i < 3; ++1i)
Textures[i] = content.Load<Texture2D>(basePath + "_" + i);

ScrollRate = scrollRate;

}

This constructor accepts a content manager, a base path to the background asset, and the scroll speed of the background layer.
Note that each layer has only three segments.

It loads each segment of the background in the Textures array, and then sets the scroll speed.
The final method to add is the praw method. Add this code after the constructor method:

C#

public void Draw(SpriteBatch spriteBatch, float cameraPosition)

{

// Assume each segment is the same width.
int segmentWidth = Textures[@].Width;

// Calculate which segments to draw and how much to offset them.
float x = cameraPosition * ScrollRate;

int leftSegment = (int)Math.Floor(x / segmentWidth);

int rightSegment = leftSegment + 1;

x = (x / segmentWidth - leftSegment) * -segmentWidth;

spriteBatch.Draw(Textures[leftSegment % Textures.Length], new Vector2(x, 0.0f), Color
.White);

spriteBatch.Draw(Textures[rightSegment % Textures.Length], new Vector2(x + segmentWid
th, 0.0f), Color.White);

}

This method first calculates which of the background segments to draw, and then draws them offset by the previously
calculated amount. It is assumed that two segments are enough to cover any screen.

Modifying the Level Structure File

At this point, the parallax scrolling extension is completely coded. However, if you recompile and run the game, you will see no
difference. Like the Power-Up Gem extension, you'll need to modify an existing map to enable the scrolling. However, it won't
be as easy as modifying an extra character or two. You would need to come up with a lot of new content, past the default edge
of the level, to fully illustrate the scrolling. However, since the format of the level structure file is text-based, you can just use
the following text block as a demonstration case.

C#

..

................. L a1 2 S i
................ 2
............ e G C A A
........... L L
....... L
...... HHEH. .. i i i i e i e, .GDGLGL el .. .G.G.G.G.G.G.G.G.G.G.
...................................... HHHAHHES. H#H#.G.G.G.G.G.G.G.G.G..
e GCG.G.G.GCG.G.G.GCG.
B HHHHAHHAEFH AR HAEFHAAH

Copy this text and then open the 0.txt file (located in the HighResolutionContent content project). Select all text in the level
structure file, and then paste the new text in. Save the file and do the same for the equivalent low-resolution level structure file.
Once you have made changes to both maps, recompile and run the game. You can now run far to the right in the first level,
and the three background layers scroll at different speeds. Pretty cool effect, eh?!

See Also

Concepts

Starter Kit: Platformer
Advanced Platformer Features
Tasks

Platformer: Adding a Power-Up

XNA Game Studio 3.1

Platformer: Adding Touch Support

Extends the base Platformer starter kit code by adding touch screen and accelerometer support for input.

This extension modifies five areas of the Platformer starter kit. The following steps assume that you have generated a new
Platformer starter kit project and it is loaded into XNA Game Studio.

ETip

To prevent build warnings and errors, it is recommended that you remove both the Windows and Xbox 360 versions of the p
roject from the newly-generated Platformer solution. It is also recommended that you set the solution platform to Zune.

With these changes in place, you can now build and debug the starter kit without misleading errors and warnings.

Adding touch screen and accelerometer support involves the following major steps:

e Modifying PlatformerGame.cs to center the gameplay screen and accept touch screen input.
e Modifying Level.cs to support input from the accelerometer and touch panel.
e Modifying Player.cs to control the player character using input from the accelerometer and touch screen.

e Modifying Enemy.cs to offset the enemy location. This accounts for the overall offsetting of the gameplay screen required
by the higher resolution of a Zune HD device.

e Modifying Gem.cs to offset the gem location. This accounts for the overall offsetting of the gameplay screen required by
the higher resolution of a Zune HD device.

For more information on touch screen and accelerometer support, see Zune HD Input Overview.

Modifying PlatformerGame.cs

The original Platformer starter kit was designed for Zune devices with a resolution of 240 x 320. However, the Zune HD device
supports a higher resolution: 272 x 480. If you were to install an unmodified version of Platformer on the new Zune, two things
would be obvious immediately:

e The gameplay screen does not fill the entire screen. The right edge of the level is not flush with the screen edge, and a
large portion of the default cornflower blue screen is visible on the bottom.

e There is no way to control the player character. Unlike the earlier Zune device, the Zune pad is gone and there is no
dedicated Back button.

The first set of modifications you'll make addresses the higher resolution issue. First, the preferred back buffer dimensions will
be increased, and then an offset will be used to shift the gameplay screen over and down. This offset centers gameplay much
like letterboxing centers a 4:3 image on a widescreen television. After the modification, you will see thin black bars (on the
sides) and thick black bars (on the top and bottom).

Open the PlatformerGame.cs file and, near the top of the file, modify the width and height of the back buffer to match the
following:

C#
private const int BackBufferWidth = 272;
private const int BackBufferHeight = 480;

The next modification changes the default cornflower blue screen color to black. This supports the illusion of letter boxing. In
the Draw method, modify the Clear method call to match the following:

C#

graphics.GraphicsDevice.Clear(Color.Black);

The final modification uses a 2D vector to offset the text drawn on the gameplay screen. In the same file, locate the DrawHud
method and declare a new Vector2 object with a horizontal and vertical offset at the top of the method:

C#

Vector2 screenOffset = new Vector2(16, 80);

This vector is added to the current position of any shadowed text, causing the text to be drawn farther to the right (half the
difference between the old and new screen width) and farther down (half the difference between the old and new screen
height). Let's modify those placements now. In the same method, find the two calls to brawshadowedstring. Modify the third
parameter (hudLocation) by adding the new offset vector to the current value. The code below is the result of modifying the
second call:

C#

DrawShadowedString(hudFont, "SCORE: " + level.Score.ToString(),
hudLocation + screenOffset
+ new Vector2(0.0f, timeHeight * 1.2f), Color.Yellow);

That completes the modifications needed to center the gameplay screen on the Zune device. The next modifications focus on
adding touch screen support for responding to game status messages.

First, let's add support for the state of the device's touch screen and accelerometer. After adding the back buffer constants,
insert the following code:

C#

AccelerometerState accelState;
TouchCollection touchState;

These states are used mainly by the Plat formerGame and Player objects. Due to the nature of the touch screen and
accelerometer states, you should only retrieve these device states once per frame. Then you pass the current state value (either
accelState Or touchState) to other objects that need input from those devices. It is not recommended that you call either of
the GetState methods more than once per frame as different values will result.

In the same file, locate the update method, and modify the call to L.evel.Update to pass the states of the accelerometer and
touch screen to the r.evel object:

C#

level.Update(gameTime, accelState, touchState);

Now that the device states have been passed on, you'll add new code to the HandleInput method that responds to user
touches on the screen when a status overlay message is displayed (game win or loss). The first step is to retrieve the states of
the touch screen and accelerometer with calls to the GetState method. Add the following code after the existing Getstate calls:

C#

accelState = Accelerometer.GetState();
touchState = TouchPanel.GetState();
bool buttonTouched = false;

The next modification looks at the collection of touch locations and checks each location for a TouchLocation.Pressed state. If
one is found, the buttonTouched variable is updated to true. The code used for this check is fairly common when querying the
state of the current touch locations. For demonstration purposes, the three major states are checked, but the code only reacts
to screen presses. For more information on using states, see Zune HD Input Overview. Add the following code after the check
for the exit condition:

C#

//interpert touch screen presses
foreach (TouchLocation location in touchState)

{

switch (location.State)
{
case TouchLocationState.Pressed:
buttonTouched = true;
break;
case TouchLocationState.Moved:
break;
case TouchLocationState.Released:
break;

Now that the buttonTouched variable holds the correct value, modify the continuePressed assignment to also use this value:
C#

bool continuePressed =
keyboardState.IsKeyDown(Keys.Space) ||
gamepadState.IsButtonDown(ContinueButton) || buttonTouched;

At this point, some of the gameplay screen elements are offset properly, and the game responds to touches when a status
overlay message is displayed. It's now time to move on to the modification of the Level.cs file.

Modifying Level.cs

Modifications in this file consist mainly of applying position offsets to some elements. In addition, you'll update the
Level.Update definition and pass those state values onto the player object. That's the object that will mainly use these values.

First, add the Microsoft.Xna.Framework.Input namespace to the list of namespaces at the top of the file. This provides quick
access to the new input-related types:

C#

using Microsoft.Xna.Framework.Input;

Locate the Level.Update method definition and modify it to match the following:
C#

public void Update(GameTime gameTime, AccelerometerState accelState, TouchCollection touchS
tate)

Further down in that method, find the call to Player.Update and modify it to match the following:

C#

Player.Update(gameTime, accelState, touchState);

That completes the state-related modifications. The remaining changes offset more screen elements to further improve the
letterbox appearance of the gameplay screen.

Locate the praw method and add a screen offset vector declaration to the beginning of the function:
C#

Vector2 screenOffset = new Vector2(o, 890);

You can now use this offset to move the backgrounds to the center of the screen. Modify both spriteBatch.Dpraw calls by
adding the screenoffset vector value to the second parameter:

C#

spriteBatch.Draw(layers[i], Vector2.Zero + screenOffset,
Color.White);

The next set of modifications are to the brawTiles method, located after the praw method. There is a slight difference between
the screen offset vector used earlier. The vector used in the brawTiles method also shifts the tiles to the right, centering them
in the screen. This is necessary because the maps are slightly thinner than the width of the display.

ETip

The background textures, used by the Zune version of Platformer, have always been wider than the actual screen of the Zune
device. Therefore, only the first portion of each background texture was seen even though the entire texture was loaded by th
e application. To achieve a solid edge to the gameplay screen (both tiles and background centered on the screen) you could
modify the background layers of the LowResolutionContent project by specifying a width of 320 for each background layer.
This is the original width, which matches the layout of the level tiles. However, if you do this, you will also have to change the
value of the screenoffset vector used in the Level.Update method as follows: new vector2 (16, 80);.

Add a screen offset vector declaration to the beginning of the function:
C#

Vector2 screenOffset = new Vector2(16, 80);

Modify the existing SpriteBatch.Draw call by adding the screenoffset vector value to the second parameter:
C#

spriteBatch.Draw(texture, position + screenOffset,
Color.White);

At this point, the project doesn't compile (due to the pPlayer.Update change), but the next step fixes that.

Modifying Player.cs

This is the main modification for the project. In this step, you'll modify the input code of the player character so that it responds
to accelerometer and touch screen inputs. There are many ways to modify the original control schema. This extension takes the
simple approach and uses a combination of both accelerometer and touch screen inputs. The player character is controlled by
tilting the device. Tilt it to the left and the player character runs to the left edge of the screen; tilt it to the right and he runs to
the right edge. Due to the sensitivity of the accelerometer there is a built-in dead zone that makes it easier to prevent the
player character from constantly running back and forth. This can be modified to suit your individual preference. You could
even expose this to the player as a customization feature. Finally, tapping the screen causes him to jump. The jump is
determined by his velocity and current direction.

Open the Player.cs file and locate the Update method. You'll need to modify the declaration to match the call made in the
Level.cs file. It should match the following:

C#

public void Update(GameTime gameTime, AccelerometerState accelState,
TouchCollection touchState)

In the same method, modify the first line of code to match the following:
C#

GetInput(accelState, touchState);

This passes the current states of the accelerometer and touch screen so that the player character position and jumping state
are properly updated. The next modification updates the Get Input method signature to match this new call, and it adds new
code that controls the player character through touch and the tilt of the device.

Modify the first line of the GetInput method to match the following:
C#

private void GetInput(AccelerometerState accelState,
TouchCollection touchState)

In the method body, find the location of the following comment: // Check if the player wants to jump. .Just before this
comment, insert the following code:

C#
if (Math.Abs(accelState.Acceleration.X) > 0.10f)
{
if (accelState.Acceleration.X > 0.0f)
movement = 1.0f;
else
movement = -1.0f;
}

//override digital if touch input is found
// Process touch locations.
bool touchJump = false;

foreach (TouchLocation location in touchState)

{

switch (location.State)

{

case TouchLocationState.Pressed:
touchJump = true;
break;

case TouchLocationState.Moved:
break;

case TouchLocationState.Released:
break;

This code does two things: checks for accelerometer changes and for presses on the touch screen.

Player movement is controlled by the side-to-side tilt of the device. Tilting the device to the left turns and runs the character in
that direction. Tilting to the right turns and moves the character to the right. Due to the sensitivity of the accelerometer it is
necessary to code in a "dead zone" for the accelerometer input. The tilt value, along the x-axis, must be greater than 0.1 for the
character to begin running. This allows small movement of the device along the x-axis without moving the character. If the
acceleration value exceeds the threshold, the movement variable is updated with the proper value (positive for left movement,
negative for right).

After the movement is determined, the touch screen is checked for any presses that occurred during the current frame. If any
are found, the touchJump variable is set to true.

The final modification to this method is to add the touchJump value to the calculation of the isJumping variable. Modify the
existing assignment to match the following:

C#

// Check if the player wants to jump.

isJumping =
gamePadState.IsButtonDown(JumpButton) ||
keyboardState.IsKeyDown(Keys.Space) ||
keyboardState.IsKeyDown(Keys.Up) ||
keyboardState.IsKeyDown(Keys.W) ||
touchJump;

There is one more area to modify before you're done with this file: rendering of the player character. You can do this by
modifying the existing Player.Dbraw method.

As with earlier modifications to the placement of game play elements, the player character also is offset using vector addition.
The modifications are similar to those done in the past. Locate the braw method, and add the following code to the beginning
of the method:

C#

Vector2 screenOffset = new Vector2(16, 80);

Modify the existing sprite.Draw call to match the following:
C#
sprite.Draw(gameTime, spriteBatch, Position + screenOffset, flip);

This completes the Player.cs modifications. The remaining modifications finish the letterbox effect of the gameplay screen by
shifting the enemies and gems in the current level.

Modifying Enemy.cs

In this file, the only code you need to modify is the Enemy . braw method. Open the Enemy.cs file, and locate the praw method. At
the beginning of the method, add the following code:

C#

Vector2 screenOffset = new Vector2(16, 80);

Modify the last line of code in the method (the praw method call) to match the following:

C#

sprite.Draw(gameTime, spriteBatch, Position + screenOffset, flip);

After modification, the enemy sprites are properly shifted on the gameplay screen to match the other game elements.

Modifying Gem.cs

As with the Enemy.cs file, the only modification being made is to the Gem. Draw method. Open the Gem.cs file and locate the
praw method. At the beginning of the method, add the following code:

C#

Vector2 screenOffset = new Vector2(16, 80);

Modify the braw method call to match the following:

C#

spriteBatch.Draw(texture, Position + screenOffset, null, Color,
0.0f, origin, 1.0f, SpriteEffects.None, 0.0f);

After modification, the gem sprites are properly shifted on the gameplay screen to match the other game elements.

See Also

Concepts

Starter Kit: Platformer

Zune HD Input Overview

Tasks

Platformer: Adding a Power-Up
Platformer: Adding a Scrolling Level

XNA Game Studio 3.1

Support

Options and Additional Resources

Setting Up Your Xbox 360 Console to Run Games Created with XNA Game Studio

For help with obtaining XNA Game Launcher, an XNA Creators Club membership, or in connecting your computer to an Xbox
360 console, contact Xbox 360 customer support.

1-800-4My-Xbox (1-800-469-9269)

http://www xbox.com/en-US/support/contact

Xbox 360 customer support cannot provide help with developing games in XNA Game Studio.

Developing Games with XNA Game Studio

For help with developing games with XNA Game Studio, see the following additional resources.

XNA Creators Cl
ub Online

Your primary information source for developing games with XNA Game Studio.

XNA Creators Cl
ub Online Foru
ms

Ask questions and exchange ideas with other game developers. The game development forums include foru
ms specifically for XNA Game Studio, the XNA Framework, game design, and other topics.

XNA Developer
Center on MSD
N

The MSDN site for XNA Game Studio.

XNA Game Stud
io Blog

The XNA Game Studio Blog is a great place to keep up to date with the latest information from the XNA Gam
e Studio team, including

What the team is working on, including feature roadmaps.

Insights into the people on the XNA Game Studio team.

Why and how decisions were made about the product.

Responses to questions and comments from the community.

Pointers to cool articles and information on XNA Game Studio and Xbox LIVE Indie Games.

L]
[]
L]
[]
L]
e Tips and tricks on using XNA Game Studio.

MSDN Library

The MSDN Library is an essential resource for developers using Microsoft tools, products, and technologies. |
t contains technical programming information, sample code, documentation, technical articles, and reference
guides.

Reporting Issues and Making Suggestions

To report an issue with XNA Game Studio or the XNA Framework, or suggest how we might improve these products, use MS-
Connect at the following location.

Connect: XNA Game Studio

http://www.xbox.com/en-US/support/contact
http://go.microsoft.com/fwlink/?LinkID=82963&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=86534&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=76060&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=76062&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=76063&clcid=0x409
https://connect.microsoft.com/site/sitehome.aspx?SiteID=226

XNA Game Studio 3.1

Using XNA Game Studio

Describes how to use XNA Game Studio. XNA Game Studio is seamlessly integrated with supported versions of Microsoft
Visual Studio tools, exposing an array of new and updated features for developing 2D and 3D games.

These features include:

e A game component model.
e A framework library for Microsoft Windows, Xbox 360, and Zune game development.
e Integration with the XNA Framework Content Pipeline.

XNA Game Studio brings these features together to provide an easier and quicker path for developing games for Windows,
Xbox 360, and Zune.

This section discusses what you will need in order to develop managed game titles using the features of the XNA Framework.

In This Section

Creating a Windows Game or Library Project
Describes how XNA Game Studio includes a set of project templates that will help you to develop Windows-based projects
using the XNA Framework.

Developing Xbox 360 Games
Describes how to develop games for the Xbox 360. Xbox 360 game development is similar to Windows game development
with several notable differences.

Developing Zune Games
Describes how to develop games for Zune.

Managing Game Assets
Describes game assets, which are the collection of data files used to support gameplay such as bitmaps, models, textures, or
sounds. Game assets are governed by the XNA Framework Content Pipeline.

Developing Cross-Platform Games
Describes how XNA Game Studio and the XNA Framework facilitate the development of games that work on several
platforms.

Game Studio Features
Describes how XNA Game Studio provides numerous feature extensions to Visual Studio and Visual C# Express to help
create eye-popping games.

Sharing and Distributing Your Game
Describes how to share and distribute your game to XNA Game Studio users and others.

See Also XNA Game Studio 3.1

XNA Game Studio 3.1

Creating a Windows Game or Library Project

Describes how XNA Game Studio includes a set of project templates that will help you to develop Windows-based projects
using the XNA Framework.

Starting a New Project
To start a new project

e To begin a new Windows-based project, click File, and then click New Project.

You'll be presented with a dialog box that lists a number of project templates.

New Project ‘ :
 mo——
Project types: Templates: -MET Framework 3.5

Visual C# « || Visual Studio installed templates

Windows ElWindows Game (3.1) JFWindows Game Library (3.1)
W B Xbox 360 Game 3.1) Bl Xbox 360 Game Library (3.1)
;r:f?cr’;Dewce ﬁZune Game (3.1) JZune Game Library (3.1)
Database = ECDntent Pipeline Extension Library (3.1) Platfnrmer Starter Kit (3.1)

| Reporting My Termplates
Test 2 Search Online Templates...

| WCF &

I Workflow
ANA Gamne Studic 3.0
XMA Game Studio 3.1 -

4| 1 F

A project for creating an XMA Framework 3.1 Windows game ((MET Framework 3.5)

XNA Game Studio provides template types for XNA Framework game development in the XNA Game Studio 3.1 section of
the Visual C# project types. The templates offered for developing XNA Framework games for Windows are:

e Windows Game (3.1)—A project for creating an XNA Framework 3.1 game application for Windows.

e Windows Game Library (3.1)—A project for creating an XNA Framework 3.1 game library for Windows.

e Content Pipeline Extension Library (3.1)—A project for creating an XNA Framework 3.1 Content Pipeline Extension
Library.

For information about XNA Game Studio project templates for the Xbox 360 or Zune, see Creating an Xbox 360 Game or
Library Project and Creating a Zune Game or Library Project.

#Note

XNA Game Studio 3.1 continues to support creation and use of XNA Game Studio 3.0 projects. If you'd like to create a new X
NA Game Studio 3.0 project, click the XNA Game Studio 3.0 category in the Project Types box to gain access to the 3.0 pro
ject types. For more information, see Upgrading XNA Game Studio Projects.

Windows Game (3.1)

XNA Game Studio provides a Windows Game (3.1) template that creates and loads a set of starter files. This new project
contains basic code that implements a simple, framed window with a colored background.

Results

The new starter project contains the following important features.

Solution Explorer - WindowsGamel - 1 X

= | 3 EE A
_: Selution "WindowsGamel' (1 project)
4. f;’ WindowsGamel
+ =d| Properties
5. |5 References
----- 43 Microsoft.Xna.Framework
----- 43 Microsoft.Xna.Framewerk.Game
... +3 mscorlib
4 Systemn
43 Systemn.Core
..... A3 Systemn.Xml
... 3 System.Xml.Ling

. = Content

.....] Gamne.ico

..... #] Gamel.cs

..... & GarneThumbnail.png
----- #] Program.cs

Project Properties

These properties control many aspects of your current project. Some examples include general application settings, debug
settings, and additional project resources. You can use the Project Designer to modify the values for these properties.

In addition to these properties, assembly information (such as the game title) is stored in the AssemblyInfo.cs file. You can use
the Assembly Information dialog box to modify this information, or you can manually edit the .cs file.

References

References to the following assemblies are added automatically to a new Windows Game project:

Microsoft.Xna.Framework
MicrosoftXna.Framework.Game
mscorlib

System

System.Core

System.Xml

System.Xml.Ling

In addition to these standard assembilies, you can add other assemblies as needed for your project.

Content

The nested content project stores and builds content for the game. For more information, see Game Content Project.
Game.ico File

A 32 x 32 defaulticon, representing your game.

Game1.cs File

This file is a good starting point for adding simple game logic and basic features. It implements a single class (derived from
Game and called Game1), and it overrides five methods: LoadContent, UnloadContent, Initialize, Draw, and Update. In
addition, the Gamel constructor is defined. Use these methods to initialize your game components, load and render your game
content, and handle any input from the user or changes to the game environment.

GameThumbnail.png
The icon appears when this game is packed for distribution as a .ccgame, which is described in Sharing Your Game Package.
Program.cs File

This file also implements a single class (called Program) that provides an entry point to game execution. Usually, little code is
added to this file unless the game is fairly advanced.

To create a Windows Game (3.1) project
1. On the File meny, click New Project.
2. Select the Windows Game (3.1) project type.

3. Type the name for the game project in the Name text box.

You can also modify the default values for the Location and Solution Name controls.

4. Click OK to create and load the new project.

Windows Game Library (3.1)

XNA Game Studio provides a Windows Game Library (3.1) template that creates and loads a set of starter files. Typically,
projects of this type contain managed classes that implement basic or advanced features used by a game engine or 3D
renderer. Once completed, these class libraries can be referenced by other Windows projects. They provide common
functionality without having that code reside within the game project.

The new project contains basic code that implements an empty library, usable by other Windows Game projects or Windows
Game libraries.

Results

The new starter project contains the following important features.

Selution Explorer - WindowsGamelibraryl ~ 3 X

2| & E| A
J Solution "WindowsGamelibraryl' (1 project)
=0 f:’ WindowsGamelLibraryl
+- [=d| Properties
=0 i References
.. -3 Microsoft.Xna.Framework
3 Microseft.Xna.Framework.Game
3 mscerlib
3 System
----- 3 System.Core
----- 3 System.Xml
LI | System.Xml.Ling

] '._\-J Content

i] Classl.cs

Project Properties

These properties control many aspects of your current project. Some examples include general application settings, debug
settings, and additional project resources. You can modify the values for these properties using the Project Designer.

In addition to these properties, assembly information (such as the library title) is stored in the AssemblyInfo.cs file. This
information can be modified using the Assembly Information dialog box or by manually editing the .cs file.

References

References to the following assemblies are added automatically to a new Windows Game Library project:

Microsoft.Xna.Framework
Microsoft.Xna.Framework.Game
mscorlib

System.Core

L]

[]

L]

e System
L]

e System.Xml
L]

System.Xml.Linq
In addition to these standard assembilies, you can add other assemblies as needed for your project.
Content

The nested Content project stores and builds content that is to be included in the game library. This is useful for including
reusable content assets that support the classes and methods in the game library. For more information, see Game Content
Project.

Class1.cs File
This file implements an empty C# class within a namespace. This provides a starting point for the class library.
To create a Windows Game Library (3.1) project

1. On the File menu, click New Project.

2. Select the Windows Game Library (3.1) project type.

3. Type the name for the library project in the Name text box.
You can also modify the default values for the Location and Solution Name controls.

4. Click OK to create and load the new project.

Content Pipeline Extension Library (3.1)

XNA Game Studio provides a Content Pipeline Extension Library (3.1) template that creates and loads a set of starter files. The
template provides a starting point for developers wishing to create their own custom importers and processors for their game
content. For more information on the XNA Framework Content Pipeline, and content processors in general, see Content
Pipeline.

¥Note

Content Pipeline Extension Library projects require .NET Framework 3.5. This version of the .NET Framework must be selecte
d in the combo box in the upper-right corner of the New Project dialog box. Otherwise, the Content Pipeline Extension Libra
ry (3.1) template will not be presented. The .NET Framework 3.5 is the default selection.

The new project contains basic code that implements an empty processor, usable by the XNA Framework Content Pipeline.
Solution configurations for all available platforms are created automatically. This means that the Content Pipeline extension
project builds processors and importers for any available platform without any change to the project.

¥Note

A solution configuration determines which project configurations are active, as well as which projects are built and/or deploy
ed when you invoke the Build and Run commands. By default, if a project does not have a configuration that matches the ac
tive solution configuration, the solution build will skip that project.

In addition to the project template, there are additional code templates related to projects of this type. You can use the Add
New Item dialog box to add these items to your project. Here are some basic descriptions:

Content Processor item

An item template comprised of a single code file (called ContentProcessorN.cs). The numerical suffix (N) guarantees
unigueness within the project. This file is similar to the ContentProcessor1.cs file created for the Content Pipeline Extension
Library (3.1) template. The file declares a class derived from ContentProcessor with an override of the abstract Process
method.

Content Importer item

An item template comprised of a single code file called ContentimporterN.cs. The numerical suffix (N) guarantees
unigueness within the project. The file declares a class derived from Contentimporter with an override of the abstract Import
method.

Content Type Writer item

An item template comprised of a single code file called ContentTypeWriterN.cs. The numerical suffix (V) guarantees
uniqueness within the project. The file declares a class derived from ContentTypeWriter with overrides of the abstract Write
and GetRuntimeReader methods.

Content Type Reader item

An item template comprised of a single code file called ContentTypeReaderN.cs. The numerical suffix (N) guarantees
unigueness within the project. The file declares a class derived from ContentTypeReader with an override of the abstract
Read method.

Unlike the Content Type Writer item, this item is not available when adding a new item to a Content Pipeline Extensions
Library project. It is only available for game or game library projects.

Whenever items of this type are added to a project, references to any dependent assemblies are added automatically. These
references include assemblies that are likely to be required when customizing the newly-added class.

Results

The new starter project contains the following important features.

Solution Explorer - ContentPipelineExtensionZ > 1 X
= 2E A A
_: Selution 'ContentPipelineExtension2' (1 project)

= (5] ContentPipelineExtension2

=d| Properties

| References
42 Microsoft.Xna.Framework

13 Microsoft.{na.Framework.Content.Pipeline

13 Microsoft.Xna.Framework.Game
b 3 Systern

i+ System.Core
3 Systern.Xml

Lo il System.Xml.Ling
iw] ContentProcessorl.cs

Project Properties

These properties control many aspects of your current project. Some examples include general application settings, debug
settings, and additional project resources. You can modify the values for these properties using the Project Designer.

In addition to these properties, assembly information (such as the library title) is stored in the AssemblyInfo.cs file. This
information can be modified using the Assembly Information dialog box or manually editing the .cs file.

References

References to the following assemblies are added automatically to a new Content Pipeline Extension Library project:

Microsoft.Xna.Framework
Microsoft.Xna.Framework.Content.Pipeline
Microsoft.Xna.Framework.Game

System

System.Core

System.Xml

System.Xml.Ling
In addition to these standard assemblies, you can add other assemblies as needed for your project.
ContentProcessor1.cs File
This file implements an empty C# processor within a namespace, providing a starting point for the custom content processor.
To create a Content Pipeline Extension Library (3.1) project
1. On the File menu, click New Project.
2. Select the Content Pipeline Extension Library (3.1) project type.
3. Type the name for the library project in the Name text box.
You can also modify the default values for the Location and Solution Name controls.

4. Click OK to create and load the new project.

See Also Using XNA Game Studio
Sharing Your Game Package

XNA Game Studio 3.1

Developing Xbox 360 Games

Describes how to develop games for the Xbox 360. Xbox 360 game development is similar to Windows game development
with several notable differences.

This section discusses developing Xbox 360 game titles using the XNA Game Studio development environment.

In This Section

Creating an Xbox 360 Game or Library Project
Describes how XNA Game Studio includes a set of project templates that will help you to develop game projects for Xbox
360 using the XNA Framework.

Deploying an Xbox 360 Game
Describes how XNA Game Studio can copy executable and media files to the Xbox 360 retail console once you are ready to
deploy them.

Debugging an Xbox 360 Game
Discusses issues that apply to debugging Xbox 360 games on your retail console.

Troubleshooting Xbox 360 Game Deployment
Provides some helpful troubleshooting tips for Xbox 360 deployment if you are unable to establish a successful connection
between your computer and your Xbox 360 console.

See Also Xbox 360 Programming Considerations
Using XNA Game Studio
Third-Party Firewall Settings

XNA Game Studio 3.1

Creating an Xbox 360 Game or Library Project

Describes how XNA Game Studio includes a set of project templates that will help you to develop game projects for Xbox 360
using the XNA Framework.

Starting a New Project
To start a new project

e To begin a new Xbox 360 project, click File, and then click New Project.

You'll be presented with a dialog box that lists a number of project templates.

New Project ‘ :
 mo——
Project types: Templates: -MET Framework 3.5

Visual C# « || Visual Studio installed templates

Windows ElWindows Game (3.1) JFWindows Game Library (3.1)
W B Xbox 360 Game 3.1) Bl Xbox 360 Game Library (3.1)
;r:f?rt Lot ﬁZune Game (3.1) JZune Game Library (3.1)
Datl:l:am = ECDntent Pipeline Extension Library (3.1) Eplatﬁ:rmer Starter Kit (3.1)

| Reporting My Termplates
Test 2 Search Online Templates...

| WCF &

I Worldlow
ANA Gamne Studic 3.0
XMA Game Studio 3.1 -

4| 1 F

A project for creating an XMA Framework 3.1 Windows game ((MET Framework 3.5)

XNA Game Studio provides template types for XNA Framework game development in the XNA Game Studio 3.1 section of
the Visual C# project types. The templates offered for developing XNA Framework games for Xbox 360 are:

e Xbox 360 Game (3.1)—A project for creating an XNA Framework 3.1 game application for Xbox 360.
e Xbox 360 Game Library (3.1)—A project for creating an XNA Framework 3.1 game library for Xbox 360.

e Content Pipeline Extension Library (3.1)—A project for creating an XNA Framework 3.1 Content Pipeline Extension
Library. For more information, see Creating a Windows Game or Library Project.

For information about XNA Game Studio project templates for Windows or Zune, see Creating a Windows Game or Library
Project and Creating a Zune Game or Library Project.

#Note

XNA Game Studio 3.1 continues to support creation and use of XNA Game Studio 3.0 projects. If you'd like to create a new X
NA Game Studio 3.0 project, click the XNA Game Studio 3.0 category in the Project Types box to gain access to the 3.0 pro
ject types. For more information, see Upgrading XNA Game Studio Projects.

Xbox 360 Game (3.1)

XNA Game Studio provides an Xbox 360 Game template that creates and loads a set of starter files. This new project contains
basic code that renders a colored background.

Results

The new starter project contains the following important features.

Selution Explorer - Xbox360Gamel - 3 X

2| @ E| A
o Solution 'Xbox360Gamel’ (1 project)
- @ Nbox360Gamel
+ =d| Properties
= _ References
----- <3 Microsoft.Xna.Framework

----- -3 Microsoft.Xna.Framework.Game
-3 mecorlib

..... -3 Systemn

----- -3 Systermn.Core

----- -3 Systern.Xml

‘. -3 System.Xml.Ling

- 7 Content

..... #] Gamel.cs

..... |8 GameThumbnail.png

.....] Program.cs

Project Properties

These properties control many aspects of your current project. Some examples include general application settings, debug
settings, and additional project resources. You can use the Project Designer to modify the values for these properties.

In addition to these properties, assembly information (such as the game title) is stored in the AssemblyInfo.cs file. You can use
the Assembly Information dialog box to modify this information, or you can manually edit the .cs file.

References
References to the following assemblies are added automatically to a new Xbox 360 Game project:
Microsoft.Xna.Framework

MicrosoftXna.Framework.Game
mscorlib

System.Core

L]

[]

L]

e System
L]

e System.Xml
L]

System.Xml.Ling

In addition to these standard assembilies, you can add other assemblies as needed for your project.

Content

The nested content project stores and builds content for the game. For more information, see Game Content Project.
Gamel.cs File

This file is a good starting point for adding simple game logic and basic features. It implements a single class (derived from
Game and called Game1), and it overrides five methods: LoadContent, UnloadContent, Initialize, Draw, and Update. In
addition, the Game1 constructor is defined by this file. Use these methods to initialize your game components, load and render
your game content, and handle any input from the user or changes to the game environment.

GameThumbnail.png

The icon appears in the Games Library, and when this game is packed for distribution as a .ccgame. For more information
about distribution, see Sharing Your Game Package.

Program.cs File

This file also implements a single class (called Program) that provides an entry point to game execution. Usually, little code is
added to this file unless the game is fairly advanced.

To create an Xbox 360 game (3.1) project
1. From the File menu, click New Project.
2. Select the Xbox 360 Game (3.1) project type.
3. Type the name for the game project in the Name text box.

You can also modify the default values for the Location and Solution Name controls.

4. Click OK to create and load the new project.

Xbox 360 Game Library (3.1)

XNA Game Studio provides an Xbox 360 Game Library (3.1) template that creates and loads a set of starter files. Typically,
projects of this type contain managed classes that implement basic or advanced features used by a game engine or 3D
renderer. Once completed, these class libraries can be referenced by other Xbox 360 projects, and they provide common
functionality without having that code reside within the game project.

The new project contains basic code that implements an empty library, usable by other Xbox 360 Game projects or Xbox 360
Game libraries.

Results

The new starter project contains the following important features.

Selution Explorer - Xbox360Gamelibraryl - 3 X

2| @ F|E &
& Solution 'Xbox360GameLibranyl' (1 project)
S @ Xbox360Gamelibraryl
+ =d| Properties
=9 i References
----- 3 Microsoft.Xna.Framework
----- 3 Microsoft.Xna.Framework.Game

< mscorlib

L« System

----- 3 Systermn.Core

i o System.Xml

LI System.Xml.Ling

] .-__u Content

i] Classl.cs

Project Properties

These properties control many aspects of your current project. Some examples include general application settings, debug
settings, and additional project resources. You can use the Project Designer to modify the values for these properties.

In addition to these properties, assembly information (such as the library title) is stored in the AssemblyInfo.cs file. You can use
the Assembly Information dialog box to modify this information, or you can manually edit the .cs file.

References

References to the following assemblies are added automatically to a new Xbox 360 Game Library project:

Microsoft.Xna.Framework
MicrosoftXna.Framework.Game

mscorlib

System.Core

[]

L]

[]

e System
[]

e System.Xml
[]

System.Xml.Ling
In addition to these standard assembilies, you can add other assemblies as needed for your project.
Content

The nested Content project stores and builds content that is to be included in the game library. This is useful for including
reusable content assets that support the classes and methods in the game library. For more information, see Game Content
Project.

Class1.cs File
This file implements an empty C# class within a namespace. It provides a starting point for the class library.
To create an Xbox 360 Game Library (3.1) project

1. From the File menu, click New Project.

2. Select the Xbox 360 Game Library (3.1) project type.

3. Type the name for the library project in the Name text box.

You can also modify the default values for the Location and Solution Name controls.

4. Click OK to create and load the new project.

See Also Developing Xbox 360 Games
Sharing Your Game Package

XNA Game Studio 3.1

Deploying an Xbox 360 Game

Describes how XNA Game Studio can copy executable and media files to the Xbox 360 retail console once you are ready to
deploy them. As you develop your Xbox 360 game, it is convenient to deploy your game executable to your console for testing
purposes.

However, before deploying, you need to use the XNA Game Studio Device Center dialog box to establish a connection
between the console and your computer. For a detailed explanation of this process, see Connecting to Your Xbox 360 Console
with XNA Game Studio 3.1.

“Note
For more information about troubleshooting deployment to your console, see Troubleshooting Xbox 360 Game Deployment.

Deploying Your Game

This procedure shows you how to deploy your Xbox 360 game from XNA Game Studio to a console. This assumes you
established a connection between that console and your computer.

¥Note

An XNA Framework game deployed to the Xbox 360 console cannot exceed 2 GB. Also, this means that any single file you de
ploy must be smaller than 2 GB.

To deploy your Xbox 360 game

1. Load an Xbox 360 Game project into XNA Game Studio.

Make sure the Output window is visible so you can follow the progress of your deployment in detail, and so you can tell
where a problem occurred, if one does.

2. To display the Output window, from the View menu, click Output, or press CTRL+W, and then press the letter O key.

3. From the Xbox 360 dashboard, go to the My Xbox menu, select Game Library, and press the A controller button.

$Note

Also, you have the option of using the Xbox 360 Guide: From the Games page, select Game Library, and press the A ¢
ontroller button.

4. From the Game Library page, select Community Games on the Collections tab, and press the A controller button.
5. Select XNA Game Studio Connect, and press the A controller button.

6. Select Launch, and press the A controller button.
The Waiting for computer connection page appears.

7. In XNA Game Studio, deploy the game by either right-clicking the solution name and then selecting Deploy Solution,
or, from the Build menu, selecting Deploy Solution.

During this process, both the Output window of XNA Game Studio and the Connect to Computer screen show the
deployment progress. You can view a list of the deployed files and some additional information.

8. Press B to return to the Game Library.
Your deployed game appears in the list of Recent Games.
9. Select the game you just deployed from this menu, and press the A controller button.

10. Choose Play Game, and press the A controller button again to start the game.

Incremental Deployment

Incremental deployment is enabled automatically for XNA Game Studio projects. This means that the IDE tracks which files
have been deployed already to your Xbox 360 console. Subsequently, it only deploys updated files. Also, if a file that was part
of the previous deployment is no longer in the game, that file is deleted from the console during deployment. (This only
applies to previously-deployed files, not to files that were generated on the console.) The output window reflects exactly what
actions were taken during deployment.

A full deployment, which deletes any previous game files and copies the entire game to the console, is triggered by the
following conditions:

This is the first time the project has been deployed.
A different configuration is used than in the last deployment to this device.
The game was deleted from the Xbox 360 console since the last deployment.

The solution has been cleaned since the last deployment. (For more information about cleaning the solution, see the
"Cleaning the Solution Before You Build" section that follows.)

e The last deployment to the device was from a different source than the currently loaded solution, such as a copy on
another Windows-based computer or a .ccgame package.

If you cancel during a deployment, some files may not have transferred. This leaves the game in an indeterminate state. The
next incremental deployment will behave as if the last deployment never occurred. It will update the correct files on the Xbox
360 console.

Cleaning the Solution Before You Build

Cleaning your game solution before you build removes all intermediate and output files generated by the build. This forces the
next build to regenerate everything.

If you select Rebuild on the Build menu, the build automatically regenerates everything, but you may also want to clean your
solution before you do a build. This is particularly true if you are experiencing unexpected build errors.

In Microsoft Visual C# Express Edition, the Clean Solution option is not included in the Build menu by default. However, it is
easy to add it if you want to make cleaning your solution convenient.

To add the Clean Solution option

1. In XNA Game Studio, right-click the menu or toolbar at the top of the window, and click Customize.

2. In the Customize dialog box, click the Build menu (or any other menu where you want to add the command).
This opens the menu, and leaves it open.

3. From the Customize dialog bo, click the Commands tab, and select Build from the Categories pane on the left.

4. From the Commands pane on the right, drag the Clean Solution command into the open Build menu, and then drop it
where you want it.

5. Close the dialog box.

Now, whenever you want to clean the solution, you can click Clean Solution from the menu where you added it.

Managing Several Xbox 360 Consoles with XNA Game Studio Device Center

Using the XNA Game Studio Device Center dialog box, XNA Game Studio supports deployment and debugging on multiple
Xbox 360s.

The XNA Game Studio Device Center does the following:

e C(Creates connections between your Windows-based computer and each of your Xbox 360 console devices. If you have
more than one Xbox 360, you can use XNA Game Studio Device Center to create connections between your Windows-
based computer and each of your Xbox 360 console devices. Each connection allows you to deploy and debug XNA
Framework 3.1 games to a specific Xbox 360 console device.

e Manages the list of available Xbox 360 console devices. This allows you to add and delete devices from the list of devices
available for deployment.

e Allows you to set the default Xbox 360 console device to use for deployment. Similar to the default printer in Microsoft
Windows, the default Xbox 360 console device is the device to which XNA Game Studio will deploy, unless you
specifically select a different Xbox 360 console device for deployment. If there is only one Xbox 360 console device, it is
set as the default device.

e Stores the list of Xbox 360 console devices on a per-user basis. Each user has a different list of Xbox 360 console devices
to which he or she can deploy, and a different default device to use for deployment.

XNA Game Studio installs the XNA Game Studio Device Management Toolbar into Visual Studio. The XNA Game Studio
Device Management Toolbar does the following:

e When you click the Launch XNA Game Studio Device Center button, provides easy access to the XNA Game Studio
Device Center dialog box.
e Allows you to choose a specific Xbox 360 console device for deployment. Use the XNA Game Studio Deployment

Device drop-down list. Also, do this if you want to deploy to a different Xbox 360 console device than your default
device.

The XNA Game Studio Device Management Toolbar automatically appears within Visual Studio when an Xbox 360 Game
project or Xbox 360 Library project is loaded in supported versions of Visual Studio tools.

#Note

If your startup project is not an Xbox 360 or Zune project, most of the toolbar buttons will be unavailable. To make these butt
ons available, change your startup project to an Xbox 360 Game or Library project.

For more information about how to add Xbox 360 console devices to the XNA Game Studio Device Center dialog box, see
Connecting to Your Xbox 360 Console with XNA Game Studio 3.1. For more information about using the features of XNA
Game Studio Device Center, see Using XNA Game Studio Device Center.

Managing Multiple Xbox 360 Deployments

As noted previously, XNA Game Studio Device Center gives you the option to choose a specific Xbox 360 console device for
deployment. This enables you to deploy your game to multiple Xbox 360s. Also, this supports testing and debug of networked
games.

If you want to execute the same game instance on all Xbox 360 consoles, you can deploy the same build to all consoles.

However, if you want to debug and modify one instance of the game while the game continues to execute on all other
consoles, you can do this by using a unique configuration to build and deploy the instance you want to modify. This is an
advanced scenario, but one that is common for debugging networked games.

Deployment Troubleshooting
If you are unable to deploy your Xbox 360 game successfully, see Troubleshooting Xbox 360 Game Deployment.

See Also Connecting to Your Xbox 360 Console with XNA Game Studio 3.1
Using XNA Game Studio Device Center
Developing Xbox 360 Games

XNA Game Studio 3.1

Debugging an Xbox 360 Game

Discusses issues that apply to debugging Xbox 360 games on your retail console.

$Note

These issues also apply when debugging a Zune application.

Debugging an Xbox 360 game is similar to the process for deploying your game, with one exception. Instead of clicking
Deploy Solution, click Start Debugging on the Debug menu. To run the game without actually debugging it, click Start

Without Debu

gging on the Debug menu.

The following features are not available when debugging an Xbox 360 game with XNA Game Studio:

Feature

Description

Interop Debug
ging

Debugging both managed and native code simultaneously.

Assembly Deb
ugging

Debugging only your assemblies and not system assemblies.

Edit and Contin
ue

Editing the binary content of your game without interrupting your debugging session.

Exception Inter
rupting

Stopping unhandled exceptions before they unwind, so the user can make changes and retry the operation.

Debugger Visu
alizers

Displaying a more informative view of a specific data type, such as XML data.

Exception Assis
tant Support

The additional features provided by Exception Assistant are not available when debugging Xbox 360 games. In
formation on exceptions is provided by the standard Exceptions dialog box within XNA Game Studio.

Debugging a R
unning Process

Attaching the debugger to a process that is currently executing.

See Also Developing Xbox 360 Games

http://msdn.microsoft.com/en-us/library/197c1fsc.aspx

XNA Game Studio 3.1

Troubleshooting Xbox 360 Game Deployment

Provides some helpful troubleshooting tips for Xbox 360 deployment if you are unable to establish a successful connection
between your computer and your Xbox 360 console.

Be Sure Your Console is Correctly Configured

e You must have an XNA Creators Club membership, which you can purchase from Xbox LIVE Marketplace.
o XNA Game Studio Connect must be installed on the console.

e You must be signed in to Xbox LIVE with an Xbox 360 gamer profile associated with your XNA Creators Club
membership.

e XNA Game Studio Connect must be running on the console. This means the connection to Xbox LIVE must remain active.
Oherwise, XNA Game Studio Connect closes.
Use a Freshly Generated Key

The key generated by the console in the XNA Game Studio Connect page is good only for connecting one computer to one
console under one user profile.

A key is valid until a computer connects to the Xbox 360 using that key, or until a new key is generated by the console. For
example, if you delete a console from the list of consoles available for deployment, you cannot add it back again using the
same key. Instead, you must generate a new key on the console, and use that new key to connect the computer to the console.

Your Connection Keys Might Have Been Modified

If a connection worked once and is now failing, the connection key for the console may have been changed accidentally. If this
is the problem, you can fix it simply by adding a new connection, using a new key.

If You Wish to Reset All Connections

You can reset all connections by pushing Reset All Connections. This invalidates all connections to the Xbox 360 console
device, and generates a new key for a new connection.

$Note

If you reset all connections, any Windows-based computer with a connection to this Xbox 360 console device will not be able
to connect until it reestablishes a new connection to the Xbox 360 console device.

The Computer and the Xbox Console Must Be on the same Subnet

If the computer and Xbox 360 console are on different subnets, they won't establish a proper connection. Typically, you should
connect both machines to the same hub or router. It is best not to use a wireless connection—a weak or noisy signal can cause
a failure in the connection and deployment.

To determine whether your computer and console are on the same subnet:

1. On your computer, open a command window (click Start, and then click All Programs, click Accessories, and finally
click Command Prompt).

2. At the command prompt, type ipconfig, and press ENTER.
Make note of both the IP address and of the subnet mask in the configuration listing that appears.

3. On your Xbox 360 dashboard, go to the My Xbox menu, and select System Settings.

“Note
You can use the Xbox 360 Guide to do the same thing: go to the Settings blade and select System Settings.

4. From System Settings, select Network Settings, and then click Configure Network.
Make note of the IP address and subnet mask.

5. Compare the settings to make sure that the computer and console are on the same subnet.

Check for Firewall Interference

In some cases, your firewall could be blocking communication between your computer and the Xbox 360 console. Verify that
the following conditions have been met.

e The xnatrans.exe executable is not blocked on the computer.
e Incoming communication for UDP ports 3825 and 3835 is not blocked.
e Outgoing communication for UDP port 1000 is not blocked.
e Outgoing communication for TCP port 1001 is not blocked.

See Third-Party Firewall Settings for more details.

See Also Connecting to Your Xbox 360 Console with XNA Game Studio 3.1
Developing Xbox 360 Games
Using XNA Game Studio Device Center

XNA Game Studio 3.1

Developing Zune Games

Describes how to develop games for Zune. Zune game development is similar to Windows game development.

This section discusses how to use the XNA Game Studio environment to develop Zune game titles.

In This Section
Creating a Zune Game or Library Project
Describes how XNA Game Studio includes a set of project templates that will help you to develop game projects for Zune
using the XNA Framework.
Deploying a Zune Game
Describes how XNA Game Studio can copy executable and media files to a Zune device once you are ready to deploy them.
Troubleshooting Zune Game Deployment
Provides some helpful troubleshooting tips for Zune deployment if you are unable to establish a successful connection
between your computer and your Zune device.

See Also Zune Programming

XNA Game Studio 3.1

Creating a Zune Game or Library Project

Describes how XNA Game Studio includes a set of project templates that will help you to develop game projects for Zune using
the XNA Framework.

Starting a New Project
To start a new project

e To begin a new Zune project, click File, and then click New Project.

You'll be presented with a dialog that lists a number of project templates.

New Project ‘ :
 mo——
Project types: Templates: -MET Framework 3.5

Visual C# « || Visual Studio installed templates

Windows ElWindows Game (3.1) JFWindows Game Library (3.1)
W B Xbox 360 Game 3.1) Bl Xbox 360 Game Library (3.1)
;r:f?cr’;Dewce ﬁZune Game (3.1) JZune Game Library (3.1)
Database = ECDntent Pipeline Extension Library (3.1) Eplatﬁ:rmer Starter Kit (3.1)

| Reporting My Termplates
Test 2 Search Online Templates...

| WCF &

I Workflow
ANA Gamne Studic 3.0
XMA Game Studio 3.1 -

4| 1 F

A project for creating an XMA Framework 3.1 Windows game ((MET Framework 3.5)

Project Types

XNA Game Studio provides template types for XNA Framework game development in the XNA Game Studio 3.1 section of
the Visual C# project types. The templates offered for developing XNA Framework games for Zune are:

e Zune Game (3.1)—A project for creating an XNA Framework 3.1 game application for Zune.
e Zune Game Library (3.1)—A project for creating an XNA Framework 3.1 game library for Zune.

e Content Pipeline Extension Library (3.1)—A project for creating an XNA Framework 3.1 Content Pipeline Extension
Library. For more information, see Creating a Windows Game or Library Project.

For information about XNA Game Studio project templates for Windows or Xbox 360, see Creating a Windows Game or
Library Project and Creating an Xbox 360 Game or Library Project.

“Note

XNA Game Studio 3.1 continues to support creation and use of XNA Game Studio 3.0 projects. If you'd like to create a new X
NA Game Studio 3.0 project, click the XNA Game Studio 3.0 category in the Project Types box to gain access to the 3.0 pro
ject types. For more information, see Upgrading XNA Game Studio Projects.

Zune Game (3.1)

XNA Game Studio provides an Zune Game template that creates and loads a set of starter files. This new project contains basic
code that renders a colored background.

Results

The new starter project contains the following important features.

Solution Explorer - ZuneGamel ~ 0 X

= | & E S
j Selution 'ZuneGamel' (1 project)
=0 j" ZuneGamel
+ =d| Properties
= v References
----- 43 Microsoft.Xna.Framework
----- +23 Microsoft.Xna.Framework.Game

423 mscorlib

42 Systemn

2 Systern.Core

..... 43 Systemn.Xml

o o System.Xml.Ling
£ .-__u Content

..... #] Gamel.cs

..... & GareThumbnail.png
----- #] Program.cs

Project Properties

These properties control many aspects of your current project. Some examples include general application settings, debug
settings, and additional project resources. You can use the Project Designer to modify the values for these properties.

In addition to these properties, assembly information (such as the game title) is stored in the AssemblylInfo.cs file. You can use
the Assembly Information dialog box to modify this information, or you can manually edit the .cs file.

References

References to the following assemblies are added automatically to a new Zune Game project:

MicrosoftXna.Framework
Microsoft.Xna.Framework.Game
mscorlib

System

System.Core

System.Xml

System.Xml.Ling

In addition to these standard assemblies, you can add other assemblies as needed for your project.

Content

The nested content project stores and builds content for the game. For more information, see Game Content Project.
Gamel.cs File

This file is a good starting point for adding simple game logic and basic features. It implements a single class (derived from
Game and called Game1), and it overrides five methods: LoadContent, UnloadContent, Initialize, Draw, and Update. In
addition, the Game1 constructor is defined by this file. Use these methods to initialize your game components, load and render
your game content, and handle any input from the user or changes to the game environment.

GameThumbnail.png

The icon appears in the Games Library, and when this game is packed for distribution as a .ccgame. For more information
about distribution, see Sharing Your Game Package.

Program.cs File

This file also implements a single class (called Program) that provides an entry point to game execution. Usually, little code is
added to this file unless the game is fairly advanced.

To create an Zune Game (3.1) project
1. From the File menu, click New Project.
2. Select the Zune Game (3.1) project type.
3. Type the name for the game project in the Name text box.

You can also modify the default values for the Location and Solution Name controls.

4. Click OK to create and load the new project.

Zune Game Library (3.1)

XNA Game Studio provides an Zune Game Library (3.1) template that creates and loads a set of starter files. Typically, projects
of this type contain managed classes that implement basic or advanced features used by a game engine. Once completed,
these class libraries can be referenced by other Zune projects. Also, they provide common functionality without having that
code reside within the game project.

The new project contains basic code that implements an empty library, usable by other Zune Game projects or Zune Game
libraries.

Results

The new starter project contains the following important features.

Solution Explorer - ZuneGameLibraryl - E x

=2 EE A
j Selution 'ZuneGamelibraryl' (1 project)
=B j" ZuneGamelibraryl
+- [=d| Properties
=N v References
----- 43 Microsoft.Xna.Framework
. @ Microsoft.Xna.Framewark.Game
43 mscorlib
.« System
----- 43 Systern.Core
43 Systern.Xml
LD Systemn.Xml.Ling

+- o Content

L @8] Classl.cs
Project Properties

These properties control many aspects of your current project. Some examples include general application settings, debug
settings, and additional project resources. You can use the Project Designer to modify the values for these properties.

In addition to these properties, assembly information (such as the library title) is stored in the AssemblyInfo.cs file. You can use
the Assembly Information dialog box to modify this information, or you can manually edit the .cs file.

References

References to the following assemblies are added automatically to a new Zune Game Library project:

Microsoft.Xna.Framework
Microsoft.Xna.Framework.Game
mscorlib

System

System.Core

System.Xml

System.Xml.Ling
In addition to these standard assemblies, you can add other assemblies as needed for your project.
Content

The nested Content project stores and builds content that is to be included in the game library. This is useful for including
reusable content assets that support the classes and methods in the game library. For more information, see Game Content
Project.

Class1.cs File
This file implements an empty C# class within a namespace. It provides a starting point for the class library.
To create an Zune Game Library (3.1) project

1. From the File menu, click New Project.

2. Select the Zune Game Library (3.1) project type.

3. Type the name for the library project in the Name text box.

You can also modify the default values for the Location and Solution Name controls.

4. Click OK to create and load the new project.

See Also Developing Xbox 360 Games
Creating a Windows Game or Library Project
Sharing Your Game Package

XNA Game Studio 3.1

Deploying a Zune Game

Describes how XNA Game Studio can copy executable and media files to a Zune device once you are ready to deploy them. As
you develop your Zune game, it is convenient to be able to deploy your game executable to your device for testing purposes.

However, before deploying, you need to use the XNA Game Studio Device Center dialog box to establish a connection
between the device and your computer.

“Note
For more information about troubleshooting deployment to your Zune device, see Troubleshooting Zune Game Deployment.

Deploying Your Game

This procedure shows you how to deploy your Zune game from XNA Game Studio to a Zune device. This assume you already
have a connection between that device and your computer.

To Deploy Your Zune Game

1. Load a Zune Game project into XNA Game Studio.

2. In XNA Game Studio, deploy the game by either right-clicking the solution name and then selecting Deploy Solution,
or, from the Build menu, selecting Deploy Solution.

During this process, both the Output window of XNA Game Studio and the Connect to Computer screen show the
deployment progress by displaying a list of the deployed files and other information. Also, you can see the names of the
files on the device screen as they are deployed.

3. Select the top level Games menu on the device to start the game.

Incremental Deployment

Incremental deployment is enabled automatically for XNA Game Studio projects. This means that the IDE tracks which files
have already been deployed to your device. Subsequently, it only deploys updated files. Also, if a file that was part of the
previous deployment is no longer in the game, that file is deleted from the console during deployment. (This applies only to
previously-deployed files, not to files generated on the device.) The output window reflects exactly what actions were taken
during deployment.

A full deployment, which deletes any previous game files and copies the entire game to the device, is triggered by the
following conditions:

e This is the first time the project has been deployed.
o Adifferent configuration is used than in the last deployment to this device.

e The last deployment to the device was from a different source than the currently loaded solution—a source such as a
copy on another Windows-based computer or a .ccgame package.

e The game was deleted from the device since the last deployment.
e The solution has been cleaned since the last deployment. (For more information about cleaning the solution, see the
"Cleaning the Solution Before You Build" section that follows.)
Cleaning the Solution Before You Build

Cleaning your game solution before you build removes all intermediate and output files generated by the build. This forces the
next build to regenerate everything.

If you select Rebuild on the Build menu, the build automatically regenerates everything. However, you may also want to clean
your solution before doing a build. This is particularly true if you are experiencing unexpected build errors.

In Microsoft Visual C# Express Edition, the Clean Solution option is not included in the Build menu by default. However, it is
easy to add if you want to make cleaning your solution convenient.

To add the Clean Solution option
1. In XNA Game Studio, right-click the menu or toolbar at the top of the window, and then click Customize.

2. In the Customize dialog box, click on the Build menu (or on any other menu where you want to add the command).

This opens the menu, and leaves it open.
3. From the Customize dialog bo, click the Commands tab, and select Build from the Categories pane on the left.

4. From the Commands pane on the right, drag the Clean Solution command into the open Build menu, and drop it
where you want it.

5. Close the dialog box.

Now, whenever you want to clean the solution, you can click Clean Solution from the menu where you added it.

Managing Several Zunes with XNA Game Studio Device Center

Using the XNA Game Studio Device Center dialog box, XNA Game Studio supports deployment and debugging on multiple
Zune devices.

The XNA Game Studio Device Center does the following:

e Creates connections between your Windows-based computer and each of your Zune devices. Each connection allows you
to deploy and debug XNA Framework 3.1 games to a specific Zune device.

e Manages the list of available Zune devices, allowing you to add and delete devices from the available deployment list.

e Allows you to set the default Zune device to use for deployment. Similar to the default printer in Microsoft Windows, the
default Zune is the device to which XNA Game Studio will deploy unless you specifically select a different Zune device for
deployment. If there is only one Zune device, it is set as the default device.

e Stores the list of Zune devices on a per-user basis. Each user has a list of different Zune devices to which he or she can
select for deployment, and a different default device to use for deployment.

XNA Game Studio installs the XNA Game Studio Device Management Toolbar into Visual Studio. The XNA Game Studio
Device Management Toolbar does the following:

e Gives you easy access to the XNA Game Studio Device Center dialog box from within Visual Studio by clicking the
Launch XNA Game Studio Device Center button.

e Allows you to choose a specific Zune device to deploy by using the XNA Game Studio Deployment Device drop-down
list. Use this if you want to deploy to a Zune device other than your default device.

The XNA Game Studio Device Management Toolbar automatically appears within Visual Studio when an Xbox 360 (or
Zune) Game project or Xbox 360 (or Zune) Library project is loaded in supported versions of Visual Studio tools.

#Note

If your startup project is not an Xbox 360 or Zune project, most of the toolbar buttons will be unavailable. To make these butt
ons available, change your startup project to a Zune Game or Library project.

For more information about using the features of XNA Game Studio Device Center, see Using XNA Game Studio Device
Center.

See Also Zune Programming
Debugging an Xbox 360 Game

XNA Game Studio 3.1

Troubleshooting Zune Game Deployment

Provides some helpful troubleshooting tips for Zune deployment if you are unable to establish a successful connection
between your computer and your Zune device.

When XNA Game Studio Device Center fails to find and add your Zune device, or when XNA Game Studio fails during
deployment of a game to your Zune device, you will get the following error message:

Could not connect to [Zune name]. Make sure the device is connected, a game is not alre
ady

running, the screen is not locked, and the Zune software is not running on your compute
r.

One of the following conditions may have caused this failure:

e The Zune device to which you are deploying is not connected to your computer. Make sure the Zune device is securely
connected to your computer with the Zune Sync Cable.

e The Zune software currently is running on your computer. You must close the Zune software before deploying to your
Zune device.

e A game currently is running on the Zune. Close the game and wait for the Zune device to reboot before you try to deploy
again.

e The Zune screen is locked. To deploy to the Zune device, unlock the screen by entering the lock code.

After you correct the condition, wait at least 30 seconds before retrying. If you try to deploy sooner, XNA Game Studio
probably won't recognize the change.

See Also Connecting to your Zune Device with XNA Game Studio
Developing Zune Games

Using XNA Game Studio Device Center

Debugging an Xbox 360 Game

XNA Game Studio 3.1

Managing Game Assets

Describes game assets, which are the collection of data files used to support gameplay such as bitmaps, models, textures, or
sounds. Game assets are governed by the XNA Framework Content Pipeline.

This section discusses how you can manage the game assets held by a game project.

In This Section
Game Content Project
Describes a project type (nested within a standard XNA Game Studio project) designed to store all content for a game
application.
Adding Game Content Projects
Describes how XNA Game Studio supports the use of multiple content project folders within a game project.
Adding Game Assets to Your Game
Demonstrates how to add a texture asset to your game. The same procedure can also be applied to model and sound assets.
Game Asset Properties
Describes property settings indicating which actions the project system should perform on a game asset file of a supported

type.
See Also Using XNA Game Studio

XNA Game Studio 3.1

Game Content Project

Describes a project type (nested within a standard XNA Game Studio project) designed to store all content for a game
application.

Overview

A game content project uses the XNA Framework Content Pipeline to build game content (models, textures, sounds, and so
forth). You add content items to this project as project items. ltem properties define how each content item is imported and
processed as part of the build operation. Game content projects are built automatically whenever their parent projects are built.
In addition, their configurations and platforms are the same as their parent projects.

Game content projects have a References node that lists the assemblies and projects containing the importers and processors
currently used in a Content Pipeline build. Individual content items are listed and their properties are accessible using the
Properties window. You can use either the standard Add New Item dialog box or the Add Existing Item dialog box to add
items to a game content project.

#Caution

The Build Action property of any project item moved into the nested content project is set automatically to Compile. This va
lue persists even if the same item later is moved out of the nested content project.

Content in Game Libraries

Classes and methods in game libraries may rely on specific content, such as textures and shaders, to perform their game-
related functions. For this purpose, game libraries provide their own content subfolders that can contain those assets to ensure
they will be available.

When a game project includes reference to a game library, a copy of the output of the game library is included in the output
directory of the game project. In this way, both the game library's referenced assembly and its associated content are available
atrun time.

All content in the game content subproject of a successfully built game library will be compiled through the content pipeline,
just as the code of a game library is stored in its compiled form. This permits game projects that reference these reusable
elements of the game library to build more quickly.

Content within a game library may be referenced directly by the game project. There is no requirement that the classes or
methods of the game library must reference the content in a game library.

Project Designer Properties

These properties are not available to game content projects. All changeable properties are in the Content Pipeline Properties,
described below.

Content Pipeline Properties

The content project has additional properties (other than those available in the Project Designer tabs) that specify operating
parameters for the XNA Framework Content Pipeline. To access these properties, select the Content node in Solution Explorer,
then from the View menu, select Properties Window (or type the function key F4).

Content Root Directory

Specifies the name of the subdirectory that will hold the final output files of pipeline content generated from this project folder.
This may be useful if your game project has multiple content projects and you wish to keep the output of each in different
subdirectories.

Code-Only Builds

By manually editing a .csproj file, you can build your game project without also building the nested content project. If you are
using XNA Game Studio, open the related .csproj file, and add the following property:

<SkipNestedContentBuild>true</SkipNestedContentBuild>

If you are building from the command-line, use the following command to skip the nested content project:

Msbuild /p:SkipNestedContentBuild=true WindowsGamel.csproj

For more information on using MSBuild with project files, see How To: Edit Project Files and Visual Studio Integration
(MSBuild).

In addition, you can build only the nested content project from the command line by invoking MSBuild directly on the
.contentproj file of your nested content project.

See Also Adding Game Content Projects
Managing Game Assets
Using XNA Game Studio

http://msdn.microsoft.com/en-us/library/ms171487.aspx
http://msdn.microsoft.com/en-us/library/ms171468.aspx

XNA Game Studio 3.1

Adding Game Content Projects

Describes how XNA Game Studio supports the use of multiple content project folders within a game project.

When initially created, an XNA Game Studio game project contains a single subordinate content project to contain game assets
to be managed through the content pipeline. It may be convenient to create and maintain additional content projects, perhaps
to manage differing types or collections of content.

To add a new content project
1. Open an XNA Framework game or library project in XNA Game Studio.
2. In Solution Explorer, right-click the game project node.
3. Click Add, and then click New Content Project....
4. In the Add New Content Project dialog box, enter the name for the new content project.
The same procedure can also be performed by selecting Add New Content Project... from the Project menu.
To add an existing content project
Open an XNA Framework game or library project in XNA Game Studio.
In Solution Explorer, right-click the game project node.

1.

2.

3. Click Add, and then click Existing Content Project....

4. In the file selection dialog box, navigate to the existing content project file, and then select it.

The same procedure can also be performed by selecting Add Existing Content Project... from the Project menu.

$Note

It is acceptable to add the same content project to projects for different platforms (as in a cross-platform solution). However,
if your solution contains multiple projects for the same platform, do not add the same content project to these projects. This
will result in unpredictable behavior.

To remove a content project

1. Open an XNA Framework game or library project in XNA Game Studio.
2. In Solution Explorer, expand the game project node and right click the game content project.
3. Click Remove.

See Also Managing Game Assets
Using XNA Game Studio

XNA Game Studio 3.1

Adding Game Assets to Your Game

Demonstrates how to add a texture asset to your game. The same procedure can also be applied to model and sound assets. It
is assumed that an existing Windows, Xbox 360, or Zune game project is loaded in XNA Game Studio.

There are two ways to add a texture asset to your game, either by adding the asset file or by adding a link to the asset.

ETip

Adding an existing asset to your project is quite different from adding an existing item as a link to your project. The first meth
od creats a copy of the asset file and adds the copy to your project. Adding an asset as a link stores only the path to the asset
file.

Adding the Texture Asset to the Game Project

When you add a game asset (not as a link), XNA Game Studio makes a copy of the asset file and adds the copy to the content
project. For this reason, adding a game asset in this manner may be most appropriate when the asset is used by only one
developer in one project and is not expected to be changed.

To add the texture asset to the game project
1. From the Solution Explorer window, right-click the Content node, click Add, and then click Existing Item.
2. Navigate to the location of the texture, and select it.
For this example, the asset is called B1_nebula01.tga.
3. Click the Add button.
This creates a copy of the selected asset in your project.

4. Save the solution.

Adding the Texture Asset as a Link to the Game Project

Adding an asset as a link is useful if the referenced asset depends on additional external assets. It ensures that the solution
always uses the latest version. For this reason, adding a game asset as a link may be most appropriate when the asset is shared
with other people or other game projects, or is likely to be changed.

To add the texture asset as a link to the game project
1. From the Solution Explorer window, right-click the Content node, click Add, and then click Existing Item.
2. Navigate to the location of the texture, and select it.
For this example, the asset is called B1_nebula01.tga.
3. Click the small arrow to the right of the Add button, and then click Add as Link.
This creates a reference to the selected asset (and not a copy) in your project.

4. Save the solution.

Verifying the Content Importer

You should use this procedure each time you add a game asset. This ensures that the asset will be correctly recognized and
processed by the Content Pipeline.

To verify the game asset will use the correct content importer

1. After you add the asset to the solution, open the Properties window to verify that you specified the correct importer and
processor.

2. To verify, right-click on the file in Solution Explorer, and then, from the context menu, click Properties.

For this example, the Content Importer is Texture - XNA Framework and the Content Processor is Texture - XNA
Framework.

For more information on the Properties window of a game asset, see Game Asset Properties.

3. Save the solution.

See Also How To: Load Content
How To: Draw a Sprite
Content Pipeline

XNA Game Studio 3.1

Game Asset Properties

Describes property settings indicating which actions the project system should perform on a game asset file of a supported
type.

For example, you can set file properties to indicate the importer and processor to be used for the game asset file.

¥Note

When adding a game asset of a type not recognized by XNA Game Studio, you need to modify the Content Processor and C
ontent Importer properties (by specifying a custom processor and custom importer that build assets of this type) before th
e asset is built by the Content Pipeline.

To examine the properties of a game asset, right-click on the file in Solution Explorer and choose Properties on the context
menu. The Properties window then appears.

Properties ~ 1 x
terrain.bmp File Properties -

Asset Name terrain

Build Action Compile

Content Importer Texture - XNA Framework
Content Processor Texture - XNA Framework

Copy to Qutput Directory Do not copy

File Name terrain.bmp

Full Path E\Users\My Account\Documents
Asset Name

The name that will be used to reference this content at runtime.

In addition to the standard properties, XNA Game Studio content files have additional custom properties: Asset Name,
Content Importer, and Content Processor.

Asset Name

The name of the managed object, generated by the Content Pipeline from the game asset. This name is used at run time to
load the managed asset, using the ContentManager.Load method. The default name is the original file name without the file
extension.

Content Importer

The name of the importer for the related game asset. The list contains both custom importers referenced by the content project
and standard importers provided by XNA Game Studio.

Content Processor

The name of the processor for the related game asset. The list contains both custom processors referenced by the content
project and standard processors provided by XNA Game Studio. Processors that have modifiable parameters are indicated with
a small plus sign next to the Content Processor row. Clicking this expands the Content Processor row to display any supported
parameters. Modify these paramter values as you would other properties in this pane. For more information on parameterized
processors, see Parameterized Processors.

See Also Overview of the Content Pipeline
Using a Custom Importer or Content Processor
Using XNA Game Studio

http://msdn.microsoft.com/en-us/library/0c6xyb66.aspx

XNA Game Studio 3.1

Developing Cross-Platform Games

Describes how XNA Game Studio and the XNA Framework facilitate the development of games that work on several platforms.

This section discusses how you can use the features of the XNA Game Studio to develop cross-platform games.

In This Section

Creating Cross-Platform Games
Describes how Game Studio facilitates developing a game that will run on multiple platforms.

Cross-Platform Game Project Converter
Describes how XNA Game Studio facilitates the process of converting a game for Windows, Xbox 360, or Zune to any of the
other two game platforms.

Platform-Specific Content Projects
Describes how XNA Game Studio supports maintaining platform-specific game assets through the use of multiple content
projects within a game project.

Managing Cross-Platform Builds and Deployment
Describes how to build and deploy individual projects within a cross-platform solution.

Cross-Platform Conditional Compilation Symbols
Describes the conditional compilation variables available for maintaining common source code in XNA Game Studio cross-
platform projects.

How To: Create a Cross-Platform Game Solution
Demonstrates how to create a cross-platform solution and manage game assets between platform projects.

See Also Using XNA Game Studio

XNA Game Studio 3.1

Creating Cross-Platform Games

Describes how Game Studio facilitates developing a game that will run on multiple platforms.

The XNA Framework makes developing a game with rich play on any Microsoft platform easy. Even better, once your game
works on one platform, it can run on any other platform supported by the XNA Framework, using the same base source code
with minimal changes.

For example, the same XNA Framework game could be built three ways: the first to be played on a desktop computer running
Windows, the second to be downloaded to an Xbox 360, and a third to load onto a Zune device.

XNA Game Studio provides several features that facilitate development and management of games designed to run on
multiple platforms.

The Structure of a Cross-Platform Game in Game Studio

When you develop a game to run on multiple platforms, there must be a separate project for each platform. Each project may
reference the same source code files and game asset files, but building each project will create an executable that can run on its
designated platform.

Method 1: A Solution File for Each Platform.

One approach to maintaining separate projects for each platform might be to create a solution file for each supported
platform, each with its own single project. If the projects in each solution reference the same source and game asset files,
changes to those files will be reflected in each solution.

The drawback to this method is that each solution will have to be maintained separately. When you make changes to a project,
such as adding new source and game asset files, renaming or removing items, the changes you make in one solution will not
be reflected automatically in other solutions.

Method 2: A Solution File with Multiple Projects

A cross-platform game is best maintained as multiple projects within a single solution, so that Game Studio can more easily
synchronize changes across all platforms.

For example, the Game Studio solution for MyGame might house a project folder for the following:

1. Windows version of MyGame.
2. Xbox 360 version of MyGame.
3. Zune version of MyGame.

Each of these projects will reference the same C# code files and game asset file, but each will build a version that can execute
on the intended platform.

Solution Explorer > 1 X

|

] Sohstion byGame G prjects)
B- 47 MyGame

@ [=d Properties

- [References

[5 Content

..... i Gameico

..... #] Gamel.cs

..... [s&] GameThumbnail.png
----- #] Program.cs

= ? Xbox 360 Copy of MyGame
@ [=d Properties

- [References

[5 Content

..... i Gameico

..... #] Gamel.cs

..... [s&] GameThumbnail.png
----- #] Program.cs

- 58 Zune Copy of MyGame
[[=d Properties

[(=3 References

- 2y Content

.....) Gamneico

..... #] Gamel.cs

..... |8 GameThumbnail.png
..... #] Program.cs

qﬁg Solution Explarer |55 Class View

When you use the Cross-Platform Conversion Wizards to create these parallel projects, the project created is linked to the
original project.

Managing Platform-Specific Content

Source code and game asset files should be shared for all platforms as much as possible. However, some files may need to
have unique versions for different platforms.

This requirement occurs most frequently for game assets in the content pipeline. For example, to produce the highest quality
images, graphic files for a game designed to run on the Xbox 360 platform may be very high resolution bitmaps. The Zune
platform, however, has a much smaller screen and supports much lower-resolution graphics. For this reason, your game
projects are likely to reference differing game assets that are appropriate to each platform — large, high-resolution graphics for
the Xbox 360 and small, low-resolution graphics for the Zune.

At the same time, your game may still have content assets, such as menus, that are shared across all platforms. For these
assets, it will still be useful for each project to maintain a content project folder that is synchronized across all platform
projects.

To accommodate this, Game Studio enables a project to contain multiple content projects. The first project, synchronized to the
content folders of all other projects, can contain the shared assets. Subsequent content project folders may contain game
assets specific to that platform, and can be made to be exclusive to that parent project (not synchronized to other projects).

Unsynchronized content projects are created by adding a content project, then removing its synchronized versions in other
game projects. You can use the Add Game Content Project procedure to add new platform-specific content projects to code
projects.

The topic How To: Create a Cross-Platform Game Solution demonstrates how this can be used to manage platform-specific
content across multiple platforms.

You can create several content project folders within a game project. You are not restricted to the two described in our
example. If you find it convenient to maintain more, Game Studio will permit it.

See Also Developing Cross-Platform Games

XNA Game Studio 3.1

Cross-Platform Game Project Converter

Describes how XNA Game Studio facilitates the process of converting a game for Windows, Xbox 360, or Zune to any of the
other two game platforms.

The conversion process creates a new game project of the appropriate type. The new game project will be created in the same
folder as the source project, and will share content and settings from the original game project.

Limitations of Game Conversion

Cross-Platform Game Conversion

Changes Made to a Project During Conversion

Linked Projects After Conversion

References the Conversion Utility Cannot Replace

Changes that May Be Necessary after Conversion

Limitations of Game Conversion

The conversion utility is not meant to be an end-to-end conversion, but it greatly simplifies the process of converting a game
to the corresponding platform. Specific code changes will still be required. For example, if a Windows game is controlled by the
keyboard and mouse, the converted game will not be changed to respond to an Xbox 360 game controller. You can use the
cross-platform conditional compilation symbols to create sections of code that will execute only on the appropriate platform.

Cross-Platform Game Conversion
To convert a game for another platform

1. Load the game into a supported version of Visual Studio tools.

2. From the Project menu, choose the Create Copy of [project name] item, where the [project name] will be the name of

the game project.

The presented items in the Project menu will vary according to the designated platform of the currently selected project:

Windows

Xbox 360

Zune

Create Copy of [Project Name] for Xbox
360

Create Copy of [Project Name] for Zune

Create Copy of [Project Name] for Win
dows

Create Copy of [Project Name] for Zune

Create Copy of [Project Name] for Wind
ows

Create Copy of [Project Name] for Xbox
360

When complete, a new version of the game project will be added to your solution. It will be named for the platform (for
example, "Xbox 360 Copy of [Project Name]" or "Windows Copy of [Project Name]"). The new game project will be

selected.

3. Press F2 if you want to rename the project from the name given by the conversion utility.

#Note

The solution may only contain one copy of a project for each platform. Solutions that do not conform to this will be unable to
correctly synchronize projects and produce an error message during conversion.

Changes Made to a Project During Conversion

All references to XNA Framework assemblies will be replaced by their equivalents for the other platform.

All original configurations will be replaced by default configurations for the new platform.

The XnaPlatform project property will change to that of the new platform.

The Content Build Compression properties are set to the default values for the new platform.

The ProjectGuid property will be replaced. This is not the same as the GUID assembly attribute (usually found in
Assemblylnfo.cs), which will not be changed.

The default Platform property and project output type settings will be replaced with values for the appropriate target

platform.

Linked Projects After Conversion

The new project created by the conversion wizard shares code, content, and settings from the original game project by being
linked.

Projects copied through the conversion wizard are linked so that:

e An item or folder added to any project is also added to the other projects.
e An item or folder renamed in any project is also renamed in the other projects.
e An item or folder deleted from any project is also deleted from the other projects.

All other actions not specifically cited above are not synchronized between projects. Of particular note, this includes the
following actions:

e Excluding an item from a project has no effect on other projects. This is useful for items that are inappropriate for one or
more platforms, yet needed for another platform (or platforms). For an example, see How To: Create a Cross-Platform
Game Solution.

e Changing properties in a project or folder has no effect on other projects.

The exception to this behavior is items in and properties of linked content project folders (for example, the Content project or
content projects that you create) that exist within game projects. Excluding an item from a content project always excludes the
item from all of its linked content projects. (As examining the properties of the linked content project folders will show, each is
referencing the same project file. So, adding or removing an item to one will affect all.) This behavior is unique to content
projects.

“Note

Folders that are empty (as when they are first created) are not synchronized between projects. Once items are placed into a f
older (so that it is no longer empty), the folder is synchronized across all other projects.

References the Conversion Utility Cannot Replace

e HintPath metadata (added using browse-to-file) and strong name references will be changed into simple-named
references.

® Project references to non-XNA Framework projects will be deleted.

$Note

Unlike references to non-XNA Framework projects, all referenced XNA Framework game or game library projects are r

ecursively converted. This means that if an XNA Framework project references another in the solution (with a project-to
-project reference), conversion of the referencing project automatically converts the referenced project. The result is the
converted copy of the first project referencing the converted copy of the second project.

For example, if you are converting a Windows game to the Xbox 360 that references a Windows game library in the sa
me solution, conversion also occurs for the Windows game library. After a completed conversion, the result is an Xbox
360 game (a converted copy of the Windows game) that references an Xbox 360 game library (a converted copy of the
Windows game library).

e COM references will be deleted. The conversion wizard will provide a warning to the output window when this occurs.

e COM file references will be deleted. The conversion wizard will provide a warning to the output window when this
occurs.

e Web references are removed, possibly resulting in compile time errors for the converted project. For example, any code
that instantiates a Web reference-related class or invokes its methods will cause compile-time errors. The conversion
wizard will provide a warning to the output window when this occurs.

#Caution

If you need to remove a file from only one project, use the Exclude from Project command rather than the Delete co
mmand. The Delete command removes the file from disk, making it inaccessible to the other project.

Changes that May Be Necessary after Conversion

® In some cases, a converted reference (for example, a strong name reference) may fail to resolve. If this happens, either
delete the reference or replace it with a reference to an assembly version for the correct platform.

For example, if a reference to System.Data (often added automatically to Windows projects) was converted for the Xbox
360, you must remove it because System.Data are not supported on Xbox 360. However, if the converted reference was
to something like a third-party game engine, you might be able to change the reference to an Xbox 360 version of the
engine instead.

If a converted reference is deleted, ensure that any platform-specific code does not depend on that reference.

e Any code specific to one target platform, for example, mouse-based user input in a Windows game, will not be converted
for the other platform. You must manually change this code to use an Xbox 360-compatible input device.

Other common examples include any .settings files (due to missing types), code generated from any Windows Forms in
the project, and certain types of resources. For example, string or binary resources are fine but bitmap resources will fail.

See Also Developing Cross-Platform Games
Creating a Windows Game or Library Project
Creating an Xbox 360 Game or Library Project
Creating a Zune Game or Library Project

XNA Game Studio 3.1

Platform-Specific Content Projects

Describes how XNA Game Studio supports maintaining platform-specific game assets through the use of multiple content
projects within a game project.

A cross-platform solution in XNA Game Studio is composed of multiple game projects, with one project for each platform. The
projects are synchronized with each other such that adding or renaming a file in one project is reflected automatically in the
other projects.

Content projects that are added to a game project follow the same synchronization rules. This means that adding a content
project to one game project will automatically add the same content project to all other game projects in the XNA Game Studio
solution. For each of the other projects, all references to XNA Framework assemblies will be appropriate for the project's
platform.

It may be useful to maintain a content project that is exclusive to a game project, such as for game assets that are specifically
meant for use on that project's platform. For example, you may want to use high-resolution bitmaps for a project that will run
on the Windows platform, but use low-resolution versions for the Zune project.

To create content projects that are not synchronized with other game projects, you must first add a content project to the
needed game project, and then remove the synchronized projects in the game projects where they are not needed.

To create an exclusive content project for a Windows game

This example procedure assumes that the XNA Game Studio solution contains three game projects: for Windows, Xbox 360,
and Zune.

1. In Solution Explorer, right-click the Windows game project node (for example, MyGame).

2. Click Add, and then click New Content Project....

In the Add New Content Project dialog box, enter the name for the new content project (for example,
MyWindowsContent).

In Solution Explorer, expand the Xbox 360 game project node (for example, Xbox 360 Copy of MyGame).

w

Within the Xbox 360 game project, right-click the new content project (MyWindowsContent), and select Remove.
In Solution Explorer, expand the Zune game project node (for example, Zune Copy of MyGame).

N o v oA

Within the Zune game project, right-click the new content project (MyWindowsContent) and select Remove.

See Also Adding Game Content Projects
Developing Cross-Platform Games

XNA Game Studio 3.1

Managing Cross-Platform Builds and Deployment

Describes how to build and deploy individual projects within a cross-platform solution.

When you are developing a cross-platform game in XNA Game Studio, your solution will be composed of a project for each
possible platform. You need to understand how to use the features within Visual Studio that control the particular projects that
are built and deployed following the Start (F5) key and Build commands.

For example, if you are developing a cross-platform project for both Windows and Xbox 360, you will want to limit game build
and deployment solely to the Xbox 360 project when you are trying to develop and debug the Xbox 360 version of the game.

You will need to know how to do the following:

1. Set the deployment options to limit builds and deployment to the startup project.
2. Set one of the projects in your cross-platform solution as the startup project.

You can also use the Solution Configuration to control the characteristics of the build.

Setting Deployment Options
You can use the Build and Run settings to limit Start and Build commands to the startup project.

To set Build and Run options

1. From the Tools menu, click Options...
2. If you are using Visual C# Express, make sure the check box in the Options dialog box at the bottom left-hand corner
labeled Show all settings is checked.

3. In the Options dialog box, expand the Projects and Solutions node, and select the Build and Run options set.
4. Check the box labeled Only build startup projects and dependencies on Run (it is unchecked by default).

This setting will limit build and deployment to the startup project.

In addition, you may want to set the option that automatically sets the currently selected project as the startup project.

To automatically set the startup project

e Check the box labeled For new solutions use the currently selected project as the startup project (it is unchecked
by default).

This setting will establish that the currently selected project is the startup project. This option will only take effect for new
solutions.
Setting the Startup Project Manually

The startup project is the project (or projects) that will be run by Visual Studio when you start the debugger. If you set the
Build and Run settings as described previously, the Start command (also initiated by the F5 key) will be limited solely to the
startup project (or projects).

Further, if the startup project is set automatically to the currently selected project, it is not necessary to manually set the startup
project.

The startup project name always appears in boldface in Solution Explorer.
To set the startup project manually

1. In Solution Explorer, right-click the project you want to set as the startup project.
2. In the context menu, click Set as StartUp Project.

Also, you can use Solution Explorer to select the project or, from the Project menu, select the project by clicking Set as
StartUp Project.

Using Solution Configurations

Solution configurations store solution level properties that direct which style of object and executable output are produced by
the Start (F5) key and Build commands. In a cross-platform solution in XNA Game Studio, the solution configuration platform
setting is a composite of the platform settings for each project in the solution.

The Solution Configuration control in the Visual Studio toolbar establishes the "Active" (or default) configuration for all
projects in the solution. For example, the active configuration may be set to the "Debug" configuration, which includes all
symbol information and minimal compiler optimization; or it may be set to the "Release" configuration. Changing this setting
will affect the build of all projects set to the active configuration.

The Solution Platforms control in the Visual Studio toolbar establishes which platform version of the projects in a solution
will be built and deployed. In a cross-platform solution, the options may be "Mixed Platforms" (that is, all that are specified in
the solution configuration), "x86" (for Windows), “Xbox 360," or "Zune."

For example, if you set the solution platform to "Zune," only the Zune projects in the solution will be built and deployed. Xbox
360 or Windows projects are not affected.

Note that this differs from the startup project, which determines which project is run, but not which project is built and
deployed. If the Windows project is set as the startup project, but the solution platform is set to "Mixed Platforms," all projects
will be built when you press the F5 key, but only the Windows project will execute. Using the previous example, if you change
the solution platform setting to "Zune," only the Zune project will be built, but it won't run. The Windows project will not be
built, and Visual Studio will run the last built (and perhaps out of date) Windows executable.

To limit Visual Studio to both building and running only the platform version you are currently working on, the solution
platform setting should match the platform of the startup project.

You can also limit action to a specific project by right-clicking the project in Solution Explorer, and selecting the desired
action (such as Build, Deploy or Debug) that appears in the context menu.

Each project may have its own configuration settings, which may override the active configuration. The project's configurations
also will specify the target platform (for example, Windows, Xbox 360, or Zune). The platform settings are set automatically for
a project when you use the Create Copy... command to create the synchronized project for a new platform.

To change the project configuration settings

e In Solution Explorer, right-click the solution, and click Configuration Manager on the context menu.

“Note
You can also start the Configuration Manager by selecting it in the drop-down Solution Configurations menu on the
toolbar.

See Also Adding Game Content Projects
Developing Cross-Platform Games

XNA Game Studio 3.1

Cross-Platform Conditional Compilation Symbols

Describes the conditional compilation variables available for maintaining common source code in XNA Game Studio cross-
platform projects.

XNA Game Studio projects define symbols for each compatible platform for use with conditional compilation directives such as
#if. You can use this to maintain source code that acts differently on Windows, Xbox 360 or Zune when that source is shared
between projects.

The conditonal compilation symbols for each compatible platform are:

Windows PlatformXbox 360 Platform|Zune Platform
WINDOWS XBOX or XBOX360 |ZUNE

Usage

Where source code needs to support different actions when executing on different platforms, it should use the XNA Game
Studio conditional compilation symbols with the #if, #else and #elif directives.

For example, a game that needs to execute on Windows, Xbox 360, and Zune, but calls different services (such as for input
devices) for each platform might use the directives in a style similar to this:

#if WINDOWS

// Execute code that is specific to Windows
#elif XBOX

// Execute code that is specific to Xbox 360
#elif ZUNE

// Execute code that is specific to Zune
#else

// Print a compile-time error message
#error The platform is not specified or is unsupported by this game.

#endif

How To: Draw a Sprite shows an example of conditional compilation where the available screen space is calculated differently
for Xbox 360 and Windows.

Definition

The Conditional compilation symbols are defined in the Build tab of the Project Designer properties for each project. These
symbols are properly established when the XNA Game Studio project is first created or converted for another platform
through the conversion wizard.

See Also Zune Programming Considerations
Xbox 360 Programming Considerations
Developing Cross-Platform Games
EffectProcessor.Process

XNA Game Studio 3.1

How To: Create a Cross-Platform Game Solution

Demonstrates how to create a cross-platform solution and manage game assets between platform projects.

This tutorial shows how create a solution with multiple synchronized projects where each project holds the same base source
code, but the object generated from each is targeted to execute on a different XNA Game Studio-compatible platform. It also
shows how to create game content projects within each platform project that hold non-synchronized or partially synchronized

content specific to each platform.

The scope of the tutorial is limited to demonstrating how to use the synchronized project features of Visual Studio to manage a
cross-platform solution. It does not demonstrate changes to the source code that would likely be needed in order to execute
effectively on different platforms.

Creating a Cross-Platform Solution
To create a game solution with multiple projects for Windows, Xbox 360 and Zune

1. Follow the steps of Your First Game: Microsoft XNA Game Studio in 2D to create a Windows game for XNA Game Studio.

2. In Solution Explorer, select the MyFirstGame project.
3. From the Project menu, click Create Copy of MyFirstGame for Xbox 360.

When complete, a new version of the game project named "Xbox 360 Copy of MyFirstGame" will be added to your

solution.

Solution Explorer - Xbox 360 Copy of MyFirstGa.. » 1 X

2| & E R

Lo Solution 'MyFirstGame_Tutorial' (2 projects)
= j_’ MyFirstGame

+- [=d| Properties

+- [:3] References

- 5 Content

- [=d| Properties

4. [l References
o | mytexturetga

.....) Garneico

..... #] Gamel.cs

..... |28 GameThumbnail.png

..... #] Program.cs

= j:! Kbox 360 Copy of MyFirstGame
+ =d| Properties

+- [:3] References

+- 7, Content

. ¥ Game.ico

i] Gamel.cs

" |4 GameThumbnail.png

i @8] Program.cs
_:i] Solution Explarer |E5 Class View
4. In Solution Explorer, select the MyFirstGame project once again.

5. From the Project menu, click Create Copy of MyFirstGame for Zune.

When complete, a new version of the game project named "Zune Copy of MyFirstGame" will be added to your solution.

Solution Explorer - Zune Copy of MyFirstGame « 1 X

= |3 E A
b || mytexturetga -
..... i Game.ico
..... #] Gamel.cs
..... [GameThumbnail.png
----- #] Program.cs
= ? Xbox 360 Copy of MyFirstGame
@ [=d Properties
- [:2] References
- 7 Content
..... i Game.ico
..... #] Gamel.cs
..... [GameThumbnail.png
----- #] Program.cs
= 5% Zune Copy of MyFirstGame
@ [=d Properties
- [:2] References
- 7 Content
..... i) Gameico
..... #] Gamel.cs
..... |8 GameThumbnail.png
----- #] Program.cs -

.::i] Solution Explarer |5 Class View

Creating Platform-Specific Content

m

Because different devices have different characteristics, you may need to maintain different content that is specific to each
platform. In the example below, we create a content project for the Zune project that will contain low-resolution textures
compatible with that device. We will also create content projects that are synchronized between the Windows project and the
Xbox 360 project. These projects hold high-resolution textures that are compatible with both platforms, but are not part of the
Zune project.

To create content projects exclusive to each platform project

1. In Solution Explorer, right-click the Zune Copy of MyFirstGame project, select Add, and then click New Content
Project....

2. In the Add New Content Project dialog box, enter "ZuneContent" as the name for the new content project, and then
click Add.

A new "ZuneContent" project has been added to all three projects.

Solution Explorer - ZuneContent > 1 X

= | & 3]

; Selution 'MyFirstGame_Tutorial' (3 projects) -
l_:_| 53' MyFirstGame

i =d| Properties

=3 R nces

__\-J ZuneContent

#] Gamel.cs
[z GameThumbnail.png

i #] Program.cs

=S ? Xbox 360 Copy of MyFirstGame
=d| Properties

3] References

m

__\-J ZuneContent

i ¢ Gamel.cs

----- |28 GameThumbnail.png
i] Program.cs

= -’P Zune Copy of MyFirstGame
v} [=d] Properties
t- ==l References
]_ _.
H

Sy 7uneContent

..... #] Gamel.cs
..... |8 GameThumbnail.png -

.:jg Solution Explarer |5 Class View

. Right-click the ZuneContent project in MyFirstGame, and then click Remove.

. Right-click the ZuneContent project in Xbox 360 Copy of MyFirstGame, and then click Remove.

At this point, a "ZuneContent" project exists only in "Zune Copy of MyFirstGame." Any items added to this content project
will be used exclusively by the Zune version of the game.

. In Solution Explorer, right-click the MyFirstGame project, select Add, and then click New Content Project....

. In the Add New Content Project dialog box, enter "NonZuneContent" as the name for the new content project, and
then click Add.

A new "NonZuneContent" project has been added to all three projects.
. Right-click the NonZuneContent project in Zune Copy of MyFirstGame, and click Remove.

The solution now has "NonZuneContent" projects in the Windows and Xbox 360 projects, and a "ZuneContent" project in
the Zune project.

Solution Explorer - NonZuneContent > 1 X

= | & 3]

; Selution 'MyFirstGame_Tutorial' (3 projects) -
l_:_| 5_7 MyFirstGame

: =d| Properties

3] References %

i NonZuneContent]
i W] GAMEICo

#] Gamel.cs

[z GameThumbnail.png

.. @] Program.cs

= ? Xbox 360 Copy of MyFirstGame
b B Properties

m

3] References

__V MonZuneContent

i Game.ico

i ¢ Gamel.cs

----- |28 GameThumbnail.png
‘. o] Program.cs

= -‘F’ Zune Copy of MyFirstGame
- [=d| Properties

-2 References

. Cantent
-

=, ZuneContent

] Gameaco

i] Gamel.cs

.. [GameThumbnail.png -

._-\g Solution Explorer [53 Class View

To populate the platform-specific content projects

1. In Solution Explorer, in the MyFirstGame project, click and drag the bitmap asset (for example, mytexture.tga) from the
Content project to the NonZuneContent project.

2. In the Content project, right-click the bitmap asset (mytexture.tga), and select Exclude From Project.

The bitmap asset should now be in the "NonZuneContent" projects of both "MyFirstGame" and "Xbox 360 Copy of My
First Game," and no longer in any of the projects' "Content" projects.

3. In Solution Explorer, in the Zune Copy of MyFirstGame project, right-click the ZuneContent project, select Add, and
then click Existing Item.

4. In the Add Existing Item dialog box, select a bitmap file to add (for example, myZunetexture.tga).

This bitmap should be of appropriate resolution for the Zune device. You should now have the bitmap asset common to
the Windows and Xbox 360 projects (mytexture.tga) in "NonZuneContent" and the bitmap asset for Zune
(myZunetexture.tga) in "ZuneContent".

Solution Explorer - MyFirstGame - 1 X

2|5 E A
'_j Selutien 'MyFirstGame_Tutorial' (3 pmje&s]
l_:_| 5‘3 MyFirstGame
=d| Properties
3] References

& MonZuneContent
3] References
mytexture.tga

#] Gamel.cs
[z&] GameThumbnail.png

- ¢ Program.cs

- ? Xbox 360 Copy of MyFirstGame
= 5% Zune Copy of MyFirstGame

i =d| Properties

3] References

T Content

'-"-J ZuneContent
g References

|| myZunetexture.tga
] Gameics

#] Gamel.cs

|8 GameThumbnail.png
i @8] Prograrm.cs

q_‘\;] Solution Explorer :%(Zlass View
5. Right-click the newly-added file (myZunetexture.tga), and click Propertes.

6. In the Properties pane, change the AssetName property to match the same name as the AssetName property of the
version in the "NonZuneContent" project (for example, mytexture).

Setting this property to the same value will help the common source code to load the correct asset for the project's
platform.

See Also Developing Cross-Platform Games

XNA Game Studio 3.1

Game Studio Features

Describes how XNA Game Studio provides numerous feature extensions to Visual Studio and Visual C# Express to help create
eye-popping games.

This section discusses the special features of the XNA Game Studio development environment.

In This Section
Using XNA Game Studio Device Center
Describes how to use the XNA Game Studio Device Center.
Visual Studio Unsupported Features
Describes the features of Visual Studio that are not supported for XNA Game Studio.
Visual Studio Differences Between Game Platforms
Describes the differences in the appearance and behavior of the integrated development environment (IDE) of XNA Game
Studio when developing for the Xbox 360 or Zune.
Project Properties
Describes the unique property settings of Project Designer in XNA Game Studio.
Game Component Development
Describes how to use XNA Game Studio to develop custom game components for your game projects.
Extending Game Studio
Describes how XNA Game Studio can be customized to support special functions to aid development of games.

See Also Using XNA Game Studio

XNA Game Studio 3.1

Using XNA Game Studio Device Center

Describes how to use the XNA Game Studio Device Center. The XNA Game Studio Device Center enables you make one or
more game devices available for deployment of your games. These can be either Xbox 360 consoles or Zune devices. XNA
Game Studio Device Center also lets you set the default device for deployment.

Accessing the XNA Game Studio Device Center

To access the XNA Game Studio Device Center, you can click the Launch XNA Game Studio Device Center on the XNA
Game Studio Device Management toolbar from within Visual Studio.

i b
¥S, XMA Game Studio Device Center E@lﬂ_hj

XMNA Game Studio Device Center

The ¥XMA Game Studio Device Center lets you manage and connect to multiple XNA Game Studio
devices,

= Add Device
Ko 360

-
FamilyRoom3&0

@

Another way to access the XNA Game Studio Device Center is to use the Start menu.

e From the Start menu, choose Programs, choose XNA Game Studio 3.1, and then click XNA Game Studio Device
Center.

When XNA Game Studio Device Center appears, it shows a list of game devices available for deploying and debugging XNA
Game Studio games.

Adding a Game Device to the List of Devices Available for Deployment
You can use the XNA Game Studio Device Center to add a game device (either an Xbox 360 console or a Zune).
To add a game device
e Perform one of the following steps:
® On the left-hand side of the screen, click Add Device.
-or-
® From the Visual Studio XNA Game Studio Device Management toolbar, click Add a New Device.

Either action brings up the XNA Game Studio Devices dialog box. This enables you to create a connection between your
Windows-based computer and your game device.

You can find detailed step-by-step instructions on how to create a connection and add a game device to the list of devices in
the following documents:

e Connecting to Your Xbox 360 Console with XNA Game Studio 3.1

e Connecting to your Zune Device with XNA Game Studio

Setting the Default Xbox 360 Console for Deployment

The default Xbox 360 is the console automatically selected for deployment and debugging when developing Xbox 360 console
games with XNA Game Studio. The current default device is shared by all instances of XNA Game Studio that are running.

To set an Xbox 360 console as the default Xbox 360 device, right-click the icon for the device, and then click Set as Default
Xbox 360.

If you have only one Xbox 360 console, that console automatically is selected as the default device.

Setting the Default Zune for Deployment

The default Zune is the Zune device automatically selected for deployment and debugging when developing Zune games with
XNA Game Studio. The current default device is shared by all instances of XNA Game Studio that are running.

To set a Zune device as the default, right-click the icon for the device, and then click Set as Default Zune.

If you have only one Zune, that device automatically is selected as the default device.

Taking a Screen Capture from an Xbox 360 Console or Zune

The XNA Game Studio device center provides the ability to take a screen capture of an executing game on an Xbox 360 console
or Zune. To take a screen capture, the following conditions must be met:

e The Xbox 360 console or Zune must be properly connected to the PC.
e The Xbox 360 console or Zune must be executing a game that was launched from Visual Studio.
e The game executing must have been built using the Debug configuration.

To take a screen capture through the Device Center

Once your game is deployed and executing on the game device according to the above conditions:

1. Right-click the icon for the device.
2. From the context menu, select Take a Screen Capture.

The captured screen will be displayed, and you can save it as a graphics file.

Removing a Game Device from the List of Devices

To remove a game device from the list of devices, either right-click the icon for the device and click Remove, or press the
Delete key.

Using the List of Devices

The list of devices in XNA Game Studio Device Center is unique to each user. Each user can have a different list of game
devices, and a different default device.

Troubleshooting Your Connection

If you are unable to establish a successful connection between your computer and your game, see the troubleshooting guide:

e Troubleshooting Xbox 360 Game Deployment
e Troubleshooting Zune Game Deployment

See Also

General Development Topics

Game Studio Features

Xbox 360 Development

Connecting to Your Xbox 360 Console with XNA Game Studio 3.1
Troubleshooting Xbox 360 Game Deployment
Developing Xbox 360 Games

Zune Development

Connecting to your Zune Device with XNA Game Studio
Troubleshooting Zune Game Deployment

Developing Zune Games

XNA Game Studio 3.1

Visual Studio Unsupported Features

Describes the features of Visual Studio that are not supported for XNA Game Studio.

The following Microsoft Visual Studio items are not supported for XNA Game Studio projects:

Creating or running Visual Studio Team System 2008 Test Edition unit tests for an Xbox 360 or Zune Game project. For
this reason, the Create Unit Tests... command is hidden in the Code Editor context menu.

Adding Windows Form, User Control, or Component classes to an Xbox 360 or Zune Game project. For this reason, these
options are not available from the Project context menu.

Adding service references to an XNA Game Studio project. For this reason, the Add Service Reference command is not
available from the References context menu or the Project context menu.

Adding Web references to an XNA Game Studio project. For this reason, the Add Web Reference command is not
available from the References context menu or the Project context menu.

Adding data sources. Data sources are not supported on the Xbox 360 or Zune platforms. For this reason, the Data menu
is hidden when an Xbox 360 or Zune Game project is active.

Publishing the project using the Visual Studio Publish command. This command is available from the Build menu for
Windows projects only, as described in the topic Distributing Your Finished Windows Game. This command is not
available for projects on the Xbox 360 or Zune platforms. You should use the Deploy command instead. For more
information on deployment, see Deploying an Xbox 360 Game or Deploying a Zune Game.

See Also Visual Studio Differences Between Game Platforms
Game Studio Features
Developing Xbox 360 Games

XNA Game Studio 3.1

Visual Studio Differences Between Game Platforms

Describes the differences in the appearance and behavior of the integrated development environment (IDE) of XNA Game
Studio when developing for the Xbox 360 or Zune.

Assembly Information Dialog Box

XNA Game Studio Device Management Toolbar
Add Reference Dialog Box

Add New Item Dialog Box

Project Properties

Assembly Information Dialog Box
You can open the Assembly Information dialog box from the Application page in the Project Designer.

To open the Project Designer
1. Perform one of the following steps:
e Under the project node in Solution Explorer, double-click the Properties folder.
-or-
e From the Project menu, select [project name] Properties.
2. On the Application page, click Assembly Information.

Use this dialog box to change the assembly information for the current project. This information includes the game title,
company name, copyright, and trademark, plus a brief description. When the game is installed on the target device (such as an
Xbox 360 console or Zune), some of this information will be displayed in the game selection interface for that device.

The assembly information specified here only affects the values seen in the Xbox 360 Dashboard's Game Library if the project
is a game project. Assembly information of library projects is not used when deploying or displaying information about a
game.

Title

This field specifies a title for the assembly manifest, and is required to deploy a game to a game device. On most game
devices, only the first 25 characters of this field are visible.

On the Xbox 360 console, the title appears in the Game Library.
On Zune, the title appears in the Games list.
Description
This field specifies an optional description for the assembly manifest. Only the first 300 characters of this field are visible.
On the Xbox 360 console, the description appears in the Game Library.
On Zune, the description appears after you select the game from the Games list.

Company
Specifies a company name for the assembly manifest.
Product
Specifies a product name for the assembly manifest.
Copyright
Specifies a copyright notice for the assembly manifest.
Trademark
Specifies a trademark for the assembly manifest.
Assembly Version
Specifies the version of the assembly.
File Version
Specifies a version number that instructs the compiler to use a specific version for the Win32 file version resource (Windows
projects only).
GUID
Specifies a unique GUID that identifies the assembly. When you create a project, Visual Studio generates a GUID for the

assembly.
Neutral Language
Specifies which culture the assembly supports.
Make Assembly COM-Visible
Specifies whether types within the assembly will be accessible to COM (Windows projects only).

Platform Differences Summary

These are the differences in operation of the Assembly Information dialog box for specific platforms:

Platforms Differences
Xbox 360, Zune| 1. The File Version field is not available.
2. The Make Assembly COM-Visible check box is not available.

XNA Game Studio Device Management Toolbar

You can use the XNA Game Studio Device Management toolbar to maintain a list of one or more external game devices (such
as Xbox 360 consoles or Zunes) available for deployment. It is available when you load a game project or game library project
in supported versions of Visual Studio tools.

For more information, see:

e Using XNA Game Studio Device Center
e "Managing Several Xbox 360 Consoles with XNA Game Studio Device Center" in Deploying an Xbox 360 Game
e "Managing Several Zunes with XNA Game Studio Device Center" in Deploying a Zune Game

Platform Differences Summary

These are the differences in operation of the Assembly Information dialog box for specific platforms:

Platforms Differences
Xbox 360, Zune|The XNA Game Studio Device Management toolbar is available.

Add Reference Dialog Box

Use the Add Reference dialog box to add component references required by your project. Because the Xbox 360 and Zune
platforms do not have the same feature set as the Windows platform, the COM tab is hidden and the .NET tab contains only
Xbox 360 or Zune-specific assemblies. These assemblies include:

Microsoft.Xna.Framework
Microsoft.Xna.Framework.Game
mscorlib

system

system.core

system.xml

system.xml.linq

These assemblies are added automatically to an Xbox 360 or Zune project.

To open the Add References dialog box, right-click the References item in Solution Explorer, and then click Add Reference.

#Caution

The Projects tab lists all projects in the solution, regardless of platform. The assemblies in the Browse and Recent tabs may
also include references to assemblies that are not for the project's platform. Projects must only reference assemblies that are
intended for their platform. For example, Xbox 360 projects do not support references to assemblies that target platforms ot
her than Xbox 360, nor do Zune projects support assemblies that do not target Zune.

Platform Differences Summary

These are the differences in operation of the Assembly Information dialog box for specific platforms:

Platforms Differences
Xbox 360, Zune| 1. The COM tab is not available.
2. The .NET tab contains only Xbox 360 or Zune-specific assemblies.

Add New Item Dialog Box

You can open the Add New Item dialog box by right-clicking the solution in Solution Explorer, or by selecting it from the
Project menu. Use this dialog box to add new Xbox 360 or Zune—supported items. This list contains the following items.

C# Class

C# Interface

C# Code File

XML File

XML Schema

“Note

This option is available only in Microsoft Visual Studio.

o Text File

e Assembly Information File

® Resources File

#Caution

The string resource type is the only built-in resource type supported by Xbox 360 or Zune projects. Adding other resou
rce types such as bitmaps or icons to a resource file may result in compilation errors.

e (Class Diagram
“Note
This option is available only in Microsoft Visual Studio.

e Game Component
e Content Type Reader

The Assembly Information File template for Xbox 360 or Zune projects excludes the AssemblyFileVersion attribute. Neither
the Xbox 360 platform nor the Zune platform support this attribute.

Project Properties

Project properties are grouped into pages in the Project Designer. You can access the Project Designer in the Project menu by
clicking Properties, or by double-clicking the Properties item in Solution Explorer. The Project Designer property pages are
located in the same middle pane used by the code editor.

On the Application page, the Target Framework drop-down list box is disabled for Xbox 360 and Zune projects.

On the Build page:

1. The Platform target drop-down menu has been disabled in supported versions of Microsoft Visual Studio tools.

2. The Allow unsafe code property is disabled for Zune.

e On the Content Build page, the Compress content pipeline output files check box is disabled for Zune projects.

e The Debug page has been modified for Xbox 360 and Zune game projects. The Start Action and Enable Debuggers
options have been disabled. The Working Directory, Use Remote Machine, and Enable the Visual Studio hosting
process controls have also been disabled.

e The Settings project property page allows you to add a settings file to your Xbox 360 or Zune project. However, note
that the settings file is not supported for Xbox 360 or Zune projects.

e The Security and Publishing pages are hidden.

See Also Visual Studio Unsupported Features
Game Studio Features
Developing Xbox 360 Games

XNA Game Studio 3.1

Project Properties

Describes the unique property settings of Project Designer in XNA Game Studio.

Topics in this section describe the special project designer properties of the XNA Game Studio development environment.

In This Section
Application Properties Page

Enables the user to change application information for the current XNA Game Studio project.
Content Build Page, Project Designer

Describes how you can use the Content Build page of the Project Designer to specify the build configuration properties for
the content project.

See Also Game Studio Features
Using XNA Game Studio

XNA Game Studio 3.1

Application Properties Page

Enables the user to change application information for the current XNA Game Studio project.

You open the Application Properties page from Project Designer. Open Project Designer by double-clicking the Properties
item in Solution Explorer or by clicking [project name] Properties on the Project menu. Then click the Application tab.

For information about using most of the fields on this page, see Application Page, Project Designer (C#).

There is also a field specific to XNA Game Studio that lets you specify a thumbnail image for a game project, as explained
below.

Setting a Game Thumbnail

The Game Thumbnail box enables you set the thumbnail image that appears beside your game on the game device (such as
Xbox 360 or Zune) when people are selecting games to play, and on Windows when people are selecting a game to unpack.
This image is distinct from the Windows icon.

There are several things to keep in mind when specifying a thumbnail for your game.

File Requirements

e The image must be saved as a .png file.

o |[f the largest dimension of the image you provide is not exactly 64 pixels, the image will be scaled so that its aspect ratio
remains the same and its largest dimension becomes exactly 64 pixels. Such scaling can produce results you might not
expect. If you provide an image whose largest dimension is already exactly 64 pixels, you can avoid scaling.

e |f you do specify an image that needs to be scaled, it must be smaller than 2048 pixels by 2048 pixels in size, and the .png
file that contains it must be smaller than 16 KB in size.

File Location

e The thumbnail file must be specified in the game project. Files specified in the game content subproject will not be
recognized as thumbnails.

e The Game thumbnail drop-down menu lists all files with a .png extension that have been added to your project,
regardless of each file's size or resolution.

e You can also browse for any other .png files accessible from your machine by clicking the ... button beside the Game
thumbnail drop-down menu. When you select a file from the browse dialog box, that file is added to your project and is
set as the game thumbnail.

See Also Game Studio Features
Application Page, Project Designer (C#)
Developing Xbox 360 Games
Developing Zune Games

http://msdn.microsoft.com/en-us/library/ms247046.aspx
http://msdn.microsoft.com/en-us/library/ms247046.aspx

XNA Game Studio 3.1

Content Build Page, Project Designer

Describes how you can use the Content Build page of the Project Designer to specify the build configuration properties for the
content project.

This page applies to XNA Game Studio projects only.

Content Build Compression

The following options enable you to configure settings for the build process of data in the content pipeline.
Compress content pipeline output files

Produce compressed output when processing content project data to reduce content size.

The defaults for this option vary according to the platform type and build configuration:

Windows(Xbox 360/Zune

Debug |Off On Unsupported
Release|On On Unsupported
See Also Content Compression

Application Properties Page

Application Page, Project Designer (C#)
Developing Xbox 360 Games

http://msdn.microsoft.com/en-us/library/ms247046.aspx

XNA Game Studio 3.1

Game Component Development

Describes how to use XNA Game Studio to develop custom game components for your game projects. You derive the new
component either from the GameComponent class, or, if the component loads and draws graphics content, from the
DrawableGameComponent class. For more information about existing game component support in the XNA Framework, see
the Game Components section of Application Model Overview.

Developing Custom Components

XNA Game Studio supports the development of custom game components for use in your game code. You can use the Add
New Item dialog box to insert basic code for implementing a new component.

To insert a new custom game component

Open an XNA Framework game or library project in XNA Game Studio.

In Solution Explorer, right-click the game project node.

Click Add, and then click New Item.

In the Add New Item dialog box, in the Categories pane, select XNA Game Studio 3.1
In the Templates pane, select the Game Component icon.

S T A

Enter a name for the source file, and then click Add.

The new code is composed of three main methods.

Method |Purpose
Name
GameCompo|The constructor for the game component. The name matches the name you specified when you inserted the new ¢
nentl T

omponent. Add code that initializes the component here.

Initializ|Called by the framework when the component starts. Add the component-specific starting code here.
e

Update |Called by the framework when the component needs to be updated. Add the component-specific update code here.

After creating the new component, add your custom code to provide the necessary functionality.

See Also Game Studio Features
Using XNA Game Studio

XNA Game Studio 3.1

Extending Game Studio

Describes how XNA Game Studio can be customized to support special functions to aid development of games.
This section discusses extending the special features of the XNA Game Studio development environment.

In This Section
Accessing Custom Item Templates

Describes how to access custom item templates.
Game Studio Automation Extenders

Describes DTE extenders to support automation in XNA Game Studio.
How To: Export an XNA Game Studio Project to a Template

Demonstrates how to manually modify a project template that has been exported from an existing XNA Game Studio project.

See Also Game Studio Features

XNA Game Studio 3.1

Accessing Custom Item Templates

Describes how to access custom item templates. Visual Studio item templates represent items that a user can add to a project
using the Add New Item dialog box. With a few modifications to the item template, you can make custom items represented
by item templates available to XNA Game Studio projects.

“Note
You can find detailed documentation of Visual Studio item templates in the Visual Studio 2008 documentation set Creating It
em Templates.

Item templates contain a .vstemplate file that provides an XML description of the template. For Xbox 360 and Zune projects,
XNA Game Studio filters the item template list based on the contents of this file. To make an item template properly
compatible with XNA Game Studio projects, add the TemplateGrouplD element to the .vstemplate file.

Values for the TemplateGrouplID depend on the targeted XNA Framework:

e For XNA Framework 3.0: TemplateGrouplD can be "XnaFramework-v2," "XnaFramework-v2-Xbox360,"
"XnaFramework-v2-Zune," "XnaFramework-v2-Devices," and "XnaFramework-v2-Windows."

e For XNA Framework 3.1: TemplateGrouplD can be "XnaFramework-v3.1," "XnaFramework-v3.1-Xbox360,"
"XnaFramework-v3.1-Zune," "XnaFramework-v3.1-Devices," and "XnaFramework-v3.1-Windows."

“Note
For Windows projects, the ShowByDefault element will have a value of "false."

Example

The following XML example defines the TemplateGrouplD element in the .vstemplate file of an Xbox 360 game-specific item
template.

. <TemplateData>
<Name>MyX360Class</Name>
<Description>My custom Xbox 360 C# class.</Description>
<ProjectType>CSharp</ProjectType>
<TemplateGroupID>XnaFramework-v3.1-Xbox360</TemplateGroupID>
<ShowByDefault>false</ShowByDefault> ... </TemplateData> ...

See Also Extending Game Studio
Game Studio Features
Using XNA Game Studio

http://go.microsoft.com/fwlink/?LinkID=78183&clcid=0x409

XNA Game Studio 3.1

Game Studio Automation Extenders

Describes DTE extenders to support automation in XNA Game Studio.

This section describes the special extenders that are provided by XNA Game Studio to aid automation within the structure of an
XNA game project. These extenders provide mechanisms to retrieve project objects for content projects that are subordinate to
code projects, and to retrieve the code project that is parent to a content project.

Retrieving Content Projects from a Code Project

The EnvDTE.Project objects for all content projects subordinate to a code project are retrieved through the
EnvDTE.Project.Extender property for that code project. The object returned implements IEnumerable, so that it can be
enumerated in a For Each clause. The enumerable items implement EnvDTE.Project.

The extender objects for subordinate content projects are referenced by the string:

"Microsoft.Xna.GameStudio.CodeProject.NestedContentProjectsExtender"

The following example outputs the name of all content projects within the current code project:

Visual Basic
Sub ShowNestedContentProjects ()
Dim proj As Project
proj = DTE.Solution.Projects.Item(1)

MsgBox (proj.Name & " has extenders " & Strings.Join(proj.ExtenderNames, ", "))

For Each nestedProj As Project In proj.Extender ("Microsoft.Xna.GameStudio.CodeProje
ct.NestedContentProjectsExtender")

MsgBox (proj.Name & " has nested project " & nestedProj.Name)
ShowParentCodeProjects (nestedProj)
Next
End Sub

Retrieving Code Projects from a Content Project

The EnvDTE.Project object that is parent to any content project is retrieved through the EnvDTE.Project.Extender property for
the content project. The object returned implements I[Enumerable, so that it can be enumerated in a For Each clause. The
enumerable items implement EnvDTE.Project.

The extender objects for parent code projects are referenced by the string:

"Microsoft.Xna.GameStudio.ContentProject.ParentProjectsExtender"

The following example outputs the name of all of a content project's parent code projects:

Visual Basic

Sub ShowParentCodeProjects (ByVal contentProj As Project)
Dim parents = New System.Collections.Generic.List (Of String)

For Each parentProj As Project In contentProj.Extender ("Microsoft.Xna.GameStudio.Co
ntentProject.ParentProjectsExtender")
parents.Add (parentProj.Name)
Next

MsgBox (contentProj.Name & " has parent projects " & Strings.Join(parents.ToArray(),
" , "))
End Sub

A content project may have multiple parent code projects (as in a cross-platform solutions, where content is common to all
platforms).

See Also Game Studio Features

XNA Game Studio 3.1

How To: Export an XNA Game Studio Project to a Template

Demonstrates how to manually modify a project template that has been exported from an existing XNA Game Studio project. It
is assumed that an existing Windows or Xbox 360 game project is loaded in XNA Game Studio.

Creating an XNA Game Studio Project Template

This procedure enables you to create a template using the Export Template wizard, and to modify it to incorporate Game
Content into the resulting template.

#Note

The Export Template wizard of Visual Studio will create a template from an XNA Game Studio project, but it does not recog
nize the Content subfolder. To create a complete project template, it must be modified using the following manual process.

To create a template, you need to perform these procedures:

1. Export a game project template

2. Export a content project template

3. Merge the two templates manually into a custom template
4. Integrate the result into Visual Studio

You can perform the procedures shown here in either Visual Studio or Visual C# Express.
To create a game project template with the Export Template wizard
1. On the File menu, click Export Template.
The Export Template wizard opens.
2. Click Project Template.
3. Select the type of template that you want to create, and click Next.
4. Select an icon for your template.
This icon will appear in the New Project dialog box.
5. Enter a template name and description.
6. Uncheck the box labeled Automatically import the template into Visual Studio.
7. Click Finish.
Your project is exported into a .zip file and placed in the specified output location.
At this point in the procedure, you have created the base game project template that will be manually modifed.
To create a content project template with the Export Template wizard
1. From the File menu, click Close Solution.
This closes the current solution.
2. From the File menu, click Open, and then click Project/Solution.
3. Type *.* in the File name field, and press Enter.
4. Browse to the Content subfolder of the game project that you just exported.
5. Open the Content.contentproj file to open the content project in its own solution.
6. On the File menu, click Export Template.
7. If prompted to save the solution, save it to a temporary location.
You can delete it later.

8. Using the wizard in the same manner as the previous sequence, complete the export process, and then click Finish.

If you did not uncheck the option to "Display an explorer window on the output files folder," an explorer window presents the
folder containing the two ZIP (.zip) files created by the export process.

Next, you need to combine the two exported templates.
To extract the ZIP template

The templates created by the previous procedures are in the form of compressed ZIP files in the "My Exported Templates"
folder. This procedure requires extracting the files contained in the ZIP templates, modifying the XML file that describe the
project, and compressing the results to a new ZIP template.

1. From the Explorer window, extract the ZIP template for the game project to a temporary location:

Right click the zip file, click Extract All, and then specify C:\CustomTemplate as the folder to which files will be
extracted.

2. From the Explorer window, extract the ZIP template for the content project to a Content subfolder directly beneath the
temporary location used in the previous step:

Right-click the zip file, click Extract All, and then specify C:\CustomTemplate\Content as the folder to which files will
be extracted.

To merge the two templates manually into a custom template
1. In Visual Studio, from the File menu, click Open to open the template (.vstemplate) file for the game project.
Specify the file C:\CustomTemplate\MyTemplate.vstemplate.

2. In the newly opened XML file, add the following element as a child of the <TemplateData> element:

Game Project XML File

<PromptForSaveOnCreation>true</PromptForSaveOnCreation>

Specifying this element will ensure that the user is prompted to name a new project when the template is used. If not
specified, Visual Studio will default to creating a zero-impact project, which is not supported in XNA Game Studio.

3. Add the following XML after the <TemplateContent> element (still inside the <vsTemplate> element):

Game Project XML File

<WizardExtension>

<Assembly>Microsoft.Xna.GameStudio, Version=2.0.0.0, Culture=neutra
1, PublicKeyToken=6d5c3888ef60e27d</Assembly>

<FullClassName>Microsoft.Xna.GameStudio.Wizards.NestedProjectWizard<
/FullClassName>

</WizardExtension>

<WizardData>

<Folder Name="Content" TargetFolderName="Content">

<ProjectItem ReplaceParameters="true" TargetFileName="Content.contentproj">Conte
nt.contentproj</ProjectItem>

<!-- Content goes here! -->

</Folder>

</WizardData>

4. In Visual Studio, from the File menu, click Open to open the template (.vstemplate) file for the content project.
Specify the file C:\CustomTemplate\Content\MyTemplate.vstemplate.
5. In the newly opened XML file, locate the <Project> element.

Its child elements will consist of zero or more <ProjectItem> elements, one for each item that was in your exported
Content project.

Content Project XML File

<TemplateContent>
<Project TargetFileName="Content.contentproj" File="Content.contentproj" ReplaceParameters="true" />
<ProjectItem ReplaceParameters="false" TargetFileName="Miramonte.spritefont">Miramonte.spritef
ont</ProjectItem>
<Project>
</TemplateContent>

6. Select the <ProjectItem> elements from the content project file, and click Copy.

7. Paste the <ProjectItem> elements into the game project file—replacing the comment <!-- content goes here! -->—
and then click Save.

Game Project XML File

<WizardExtension>
<Assembly>Microsoft.Xna.GameStudio, Version=2.0.0.0, Culture=neutral, PublicKeyToke
n=6d5c3888ef60e27d</Assembly>
<FullClassName>Microsoft.Xna.GameStudio.Wizards.NestedProjectWizard</FullClassName>
</WizardExtension>
<WizardData>
<Folder Name="Content" TargetFolderName="Content">
<ProjectItem ReplaceParameters="true" TargetFileName="Content.contentproj">Content.contentproj
</ProjectItem>
<ProjectItem ReplaceParameters="false" TargetFileName="Miramonte.spritefont">Miramonte.spritef
ont</ProjectItem>
</Folder>
</WizardData>

8. In Explorer, browse to the folder where you extracted the game template (for example, C:\CustomTemplate).

9. Press CTRL+A to select all files and folders in the directory.

“Note
Do not select the CustomTemplate directory itself.

10. Right-click the selection, and then click Send To and Compressed (zipped) folder to create a .zip file.
It should be created in the same directory. The resulting file is your new, custom project template.
To integrate the custom template into Visual Studio
First, you need to find the path for your user templates folder.
1. From the Tools menu, click Options.
2. In the resulting dialog box, click the Projects and Solutions node.

The path is identified in the Visual Studio user project templates location setting. The default setting is a subfolder
named ProjectTemplates.

3. Copy the .zip file into a subdirectory called Visual CHAXNA Game Studio 3.7\,

When you complete this lengthy procedure correctly, your custom template will appear below the standard XNA Game Studio
projects in the New Project dialog box. You can use it now.

rNeanﬂeﬂ - li
s o e =
Project types: Templates: {MET Framework 3.5 ']
Visual C# = || Visual Studio installed templates
Windows EWindows Game (3.1) JWindows Game Library (3.1)
L B Xbox 360 Game 3.1) Bl Xbox 360 Game Library (3.1)
;r:f?rt Lot _Tqune Game (3.1) U_"JZune Game Library (3.1)
ice L L :
Database ECDntent Pipeline Extension Library (3.1) Eplatﬁ:rmer Starter Kit (3.1)
Reporting 1 My Termplates
Test 3 E MyCustormXMATemplate #jd Search Online Templates...
WCF
Workflow
XNA Garne Studic 3.0
XNA Gamne Studic 3.1

See Also Extending Game Studio
Game Studio Features
Using XNA Game Studio

XNA Game Studio 3.1

Sharing and Distributing Your Game

When you've created something incredible and want to show it off to others, XNA Game Studio makes it easy.

The XNA Creators Club offers the best way to share your game with a wide community of gamers, to get feedback and build
enthusiasm for your game.

There are a variety of ways to share and distribute your game.

e For all platforms, you can use the XNA Game Studio Package utility (xnapack.exe) to create a special package that other
XNA Game Studio users can unpack and play. Using this utility allows you to share your game without exposing your
source code or assets to other XNA Game Studio users.

You can share games packaged in this format with XNA Creators Club members through the XNA Creators Club Web site
for peer review, and possible listing on Xbox LIVE Marketplace.

e For all platforms, you can choose to share your source code and assets with other XNA Game Studio users. This is useful
if you would like someone to review or modify your code or assets.

e For Windows games only, you can make your game available to any Windows user by distributing your completed game
executables, along with a set of prerequisite software (called "redistributables"). All Windows users can play your game,
even if they do not have XNA Game Studio installed on their computer.

The following are the available sharing options for Windows, Xbox 360 and Zune.

Sharing Your Game Package Sharing Your Source Code and |Distributing Your Finished Windows
Assets Game
Windo |..with XNA Game Studio users ..with XNA Game Studio users ..with any Windows user
ws
Xbox 3) ..with XNA Creators Club member
60 ..with XNA Creators Club members S
..through Xbox LIVE Marketplace (after a
pproval)
Zune |..with XNA Game Studio users ..with XNA Game Studio users

See the sections below for more information on each sharing and distribution type, including how to prepare your game to be
shared or distributed, and how to play a game someone has shared with you.

In This Section
Sharing Your Game Package
Describes how to distribute your game to other XNA Game Studio users in a package that protects your source code and
assets.
Sharing Your Source Code and Assets
Presents information about sharing your game's source code and assets with other XNA Game Studio users.
Distributing Your Finished Windows Game
Presents information about how to share your game with any Windows user, even if the user does not have XNA Game
Studio installed.

http://go.microsoft.com/fwlink?LinkId=128059&clcid=0x409

XNA Game Studio 3.1

Sharing Your Game Package

Describes how to distribute your game to other XNA Game Studio users in a package that protects your source code and
assets.

Quick Information

Platform Source C |Format Windows User Requ|Xbox 360 User Requirements |Zune User Require
ode Visib irements ments
le
Windows, Xbo [No .ccgame XNA Creator| e Must have XNA o Must have XNA Game Stu ® Must have XNA
x 360 and Zun s Club Game Packag Game Studio in dio installed. Game Studio ins
€ € stalled. e Must have an active memb talled.
ership in the XNA Creators
Club.

If you would like to share your XNA Game Studio game with other XNA Game Studio users, but do not want to share your
source code and assets, you can use the XNA Game Studio package utility (xnapack.exe). You can use the package utility from
within supported versions of Microsoft Visual Studio tools, or from the command line.

You can share games packaged in this format with XNA Creators Club members through the XNA Creators Club Web site for
peer review and possible listing on the Xbox LIVE Marketplace.

“Note
Currently, only Xbox 360 games can be shared through XNA Creators Club.

There are two fundamental ways that a game package can be used:

e Sharing a Game with Another User

e Sharing a Game from Another User

Sharing with Another User

The XNA Game Studio package utility compresses your game's built executable and assets into a special compressed format
that other XNA Game Studio users can open and play. You may package only XNA Game Studio game projects. The package
utility does not support XNA Game Studio library projects.

To package your game using the XNA Game Studio package utility from the Visual Studio development environment

1. In XNA Game Studio, open the project you want to package.

2. On the Build menu, click Package [projname] as XNA Creators Club Game, where [projname] is the name of the
current project.

The output window indicates the status of the packing operation. If the packing operation is successful, the package file
will be created with a .ccgame extension, and placed in the appropriate output folder of the project. For example, the
package file for the release version of your Windows game would be located in the bin\x86\Release folder. This example
assumes that the default project settings have not been modified.

You may share this .ccqame file with other XNA Game Studio users. It is a compressed version of your project that contains no
source code or source assets. Other users can play it, but they will not be able to view or modify your source files.

To package your game using the XNA Game Studio package utility from the command line

1. To open an XNA Game Studio command line, open the Start menu, click XNA Game Studio 3.1, click Tools, and then
click XNA Game Studio Command Prompt.

2. From the command line, use the cd command to change the active folder to the appropriate output folder of the project
you want to package.

3. Enter a packing command using the following syntax:
xnapack assembly [platform] [/nologo] [/output:file] [/quiet] [/thumbnailfile]

The command-line parameters are:

http://go.microsoft.com/fwlink/?LinkId=128059&clcid=0x409

Paramete |Usage
r

assembly |The startup assembly of your project. This is the .exe built by your XNA Game Studio project.

[platform] |Deprecated and optional. Specifies the platform for which the project is built. This value can be "Windows," "X
box360," or "Zune," and must match your game's project type.

[/nologo] [Suppresses logo/copyright messages.

[/output:f|Specifies the path and file name of the output file. By default, your game is created in the same folder as the s

ile] tartup assembly with the same name. (Short form: /o:)

[/quiet] |Suppresses all non-error messages.

[/thumbn

ail:file] Specifies the path to an optional thumbnail that is displayed with your game. (Short form: /th:)

For a Windows game, this thumbnail appears in the graphical unpacking utility.
For an Xbox 360 game, the thumbnail also appears in the Game Library.

For a Zune game, the thumbnail appears in the Games list.

The following example packs a Windows game called MywinGame and suppresses the logo/copyright messages.
xnapack MyWinGame.exe /nologo

The Command-line window indicates the current status of the packing operation. If the packing operation is successful,
you created the package file, and it is in the same folder as the startup assembly, with a .ccgame extension.

After you packed a game, you may share the .ccgame file with other XNA Game Studio users. It is a compressed version of
your project that contains no source code or source assets. Other users can play it, but they will not be able to view or modify
your source files.

Sharing from Another User

When you receive a .ccgame file from another XNA Game Studio user, you can use either the graphical unpacking utility or the
command-line utility to unpack it.

Consider the following before unpacking.
e You must have XNA Game Studio installed.
e Unpacking a .ccgame file automatically deploys the assets and game assembly to the target platform.

e For a Windows project, you must have the same version of the XNA Framework installed with which the .ccqame
file was built.

e For an Xbox 360 project, you must have at least one Xbox 360 console specified already in XNA Game Studio
Device Center, you must have a valid XNA Creators Club membership, and you must have XNA Game Studio
Connect running on the Xbox 360 console to which you are deploying the assets and game assembly.

e For a Zune project, you must have at least one Zune digital media device specified in XNA Game Studio Device
Center.

To unpack a packaged game from Windows Explorer
1. From Windows Explorer, double-click the .ccgame file you want to unpack.
A dialog box appears.
2. Click Unpack to begin the unpacking process.

3. When the unpacking process is complete, the next step depends on the platform.

e For a Windows project, when the unpacking is complete, a folder containing the game executable opens in
Windows Explorer. Run the game by double-clicking the executable.

e For an Xbox 360 project, when the unpacking is complete, you can run the game from the Game Library.
e For a Zune project, when the unpacking is complete, you can run the game from the Games list.

#Caution

If the intended destination of an unpacked game already exists, the XNA Game Studio package utility deletes the existing dest
ination and its contents. It then creates a new container or folder containing the contents of the new game package. This appl
ies to games targeting Xbox 360, Zune, and Windows platforms.

To unpack a packaged game from the command line

1. To open an XNA Game Studio command prompt, open the Start menu, click XNA Game Studio 3.1, click Tools, and
then click XNA Game Studio Command Prompt.

2. From the command line, use the cd command to change the active folder to the folder containing the appropriate

package.

3. Enter an unpacking command using the following syntax.

xnapack unpack package [/listplatforms] [/listtargets] [/nologo] [/platform:name] [/quiet] [/run] [/showui]
[/target:name]

The command-line parameters are:

Paramet
er

Usage

package

An XNA Framework game package, previously created with the XNA Game Studio package utility.

If the game is intended for the Xbox 360 console, see Connecting to Your Xbox 360 Console with XNA Game S
tudio 3.1 for information about adding registered consoles to your computer.

If the game is intended for the Zune digital media device, see Connecting to your Zune Device with XNA Game
Studio for information about adding registered devices to your computer.

[/listplat|Lists the platforms that support the XNA Creators Club game package.

forms]

[/listtarg|Lists the platform instances for a given platform. Must be used with /platform option.

ets]

[/nologo|Suppresses logo/copyright messages.

]

[/platfor |Specifies the platform to which the game package is being deployed. Required if the package supports more t
m:name] |han one platform and the target cannot be resolved.

[/quiet] |Suppresses all non-error messages.

[/run] |Runs the game once installation is complete. Applies only to Xbox 360 and Zune games.

[/showui|Displays the user interface for confirming and copying files.

]

[/target: . . . N : .
namel Specifies the named platform instance to which the game package is being deployed. If no platform instance is

specified, the default target is used. For a list of available targets, use the /listtargets option.

Note
This option replaces the obsolete option /console.

The following example unpacks an XNA Creators Club game package containing a Windows game called MyWinGame, and

suppresses all non-error messages.

xnapack unpack MyWinGame-Windows.ccgame /quiet

4. When the

unpacking process is complete, the next step depends on the platform.

e For a Windows project, when the unpacking is complete, a folder containing the game executable opens in
Windows Explorer. Run the game by double-clicking the executable.

e For an Xbox 360 project, when the unpacking is complete, you can run the game from the Game Library on your
Xbox 360 console.

e For a Zune project, when the unpacking is complete, you can run the game from the Games list on your Zune
device.

sCaution

If the intended destination of an unpacked game already exists, the XNA Game Studio package utility deletes the existing dest
ination and its contents. It then creates a new container or folder containing the contents of the new game package. This appl

ies to games targeting Xbox 360, Zune, and Windows platforms.

See Also Sharing Your Source Code and Assets
Distributing Your Finished Windows Game

XNA Game Studio 3.1

Sharing Your Source Code and Assets

Presents information about sharing your game's source code and assets with other XNA Game Studio users.

Quick Information

Platform Source Co [Format Windows User Requi Xbox 360 User Requirements |Zune User Requirem
de Visible rements ents
Windows, Xbox|Yes Zip or other co o Must have XNA ® Must have XNA Game Studi o Must have XNA
360 and Zune mpressed forma Game Studio inst o installed. Game Studio inst
t alled. ® Must have an active membe alled.
rship in the XNA Creators Cl
ub.

Sharing your entire project, including source code and content, is useful when you want other users to review your code or
content, or make modifications. However, in some cases you may not want others to see your source code or assets. If you

want feedback on gameplay or existing game art, and don't explicitly need your code to be reviewed, consider the method

described in Sharing Your Game Package.

Sharing to Another User

To share your project, including source code, with an XNA Game Studio user

1.

2.

3.

4.

In XNA Game Studio, open the project you want to share.
On the Build menu, click Clean Solution.

This removes any built and intermediate files, leaving only the source code and assets. If you do not have this menu item,
see "Cleaning the Solution Before You Build" in Deploying an Xbox 360 Game.

Open Windows Explorer, and browse to the folder that contains the project you want to share.

Right-click on the project folder in Windows Explorer, click Send To, and then click Compressed (zipped) Folder.

The compressed file is ready to share.

Sharing from Another User
To open a project with source code as an XNA Game Studio user

1.

Upon receiving a compressed file with source code and assets, extract the contents into a folder.

ETip
If itis a .zip file, you can right-click the file in Windows Explorer, click Open With, and then click Compressed (zipped
) Folders to begin the extraction process.

2. After the files are extracted, start XNA Game Studio.

3. In XNA Game Studio, click the File menu, and then click Open Project.
4.

5. Click Open.

Use the dialog box to browse to the project folder you specified in Step 1, and select the .csproj file.

The project is loaded into XNA Game Studio and ready for viewing or modification.

See Also Sharing Your Game Package
Distributing Your Finished Windows Game

XNA Game Studio 3.1

Distributing Your Finished Windows Game

Presents information about how to share your game with any Windows user, even if the user does not have XNA Game Studio
installed.

Quick Information

Platfo |Source Code Vi |Format Windows User Requirements

rm sible

Windo [No Setup.exe and manifest, or .zip or other compr| e Must be running at least Windows XP Service Pa
ws essed format ck 2.

e Must have a video card that supports at least Sh
ader Model 1.1.

HImportant

Games for Windows - LIVE is not available to finished games. This functionality is not included in the redistributable version
of the XNA Framework. A game that attempts to use these components without XNA Game Studio installed will result in a Ga
merServicesNotAvailableException.

Also, the XNA Framework Redistributable file does not contain the Content Pipeline Build Runtime. Building content at run ti
me is supported only when XNA Game Studio has been installed on the Windows-based development computer.

If you would like to share your XNA Game Studio game with other Windows users, but do not want to share your source code
and assets, you can create an installable package that contains your game binaries and the necessary redistributable files.

The ClickOnce publishing feature of Visual Studio provides a convenient way to produce a portable installation package for
distribution on a CD, Web site, or other media.

Sharing With Another Windows User
You may package XNA Game Studio game projects for use without XNA Game Studio installed only for the Windows platform.
You can use one of the following methods to create a portable install package:

Using ClickOnce Deployment
You can use the ClickOnce feature of Visual Studio to build and create an installation package for your XNA Game Studio
game. This method automatically ensures that all required supporting files are included in your installation package.
Using Another Installation Package Tool
You can use an installation package tool of your choice. With this method, you must take more care to include all of the
required supporting files for an XNA Game Studio game.

Using ClickOnce Deployment

ClickOnce is a deployment technology that allows you to create self-updating Windows-based applications that can be
installed and run with minimal user interaction.

To build a ClickOnce installation package
1. In Solution Explorer, select the game project for the Windows platform to which you want to deploy.
2. From the Build menu, click Publish.
The Publish Wizard appears.

3. Inthe Where do you want to publish the application? page, enter the file path or FTP location where the application
will be deployed.

The default location is a folder named "publish" beneath the project's folder.

4. Click Next to continue.

5. In the How will users install the application? page, select the From a CD-ROM or DVD-ROM option if that is your
choice (the default), and then click Next to continue.

6. In the Where will the application check for updates? page, choose an update option:

o [f the application checks for updates, click The application will check for updates from the following

http://go.microsoft.com/fwlink/?LinkId=125542

location, and enter the location where updates will be posted. This can be a file location, Web site, or FTP Server.
o [f the application will not check for updates, click The application will not check for updates.
e Click Next to continue.

7. Click Finish to deploy the application.

Visual Studio builds your XNA Game Studio game project and, if successful, deploys your application to the location specified
in step 3. A Windows Explorer window then opens to show the Setup.exe file produced and the manifest.

The ClickOnce feature for XNA Game Studio automatically includes all of the required software packages as part of the
installation package.

An alternate method of initiating ClickOnce is through the Publish properties of the Project Designer. These can be accessed
by double-clicking the Properties item in Solution Explorer or by clicking [project name] Properties on the Project menu.
Then click the Publish tab. This tab provides the facility to set several more options, including the version number of the
deployed application.

If you wish to distribute your game on a CD, use a CD-Rewriter or DVD-Rewriter to copy the files from the specified location to
the CD-ROM or DVD-ROM media.

Special Considerations for Game Data Files

Your game may require the use of a data file to read and store information. For example, the starter kit provided with XNA
Game Studio uses an XML file to read and store game settings. Other games may use a text file or other format.

The default behavior of the ClickOnce publishing wizard assigns any XML, text or other data files in a project to "Data File" as
its Publish Status. However, this status is for files containing data used by the installer package, not for files accessible to your
game when it executes. Files assigned to this type will be placed in the path denoted in the .NET Framework's
ApplicationDeployment.DataDirectory property.

This is likely to be inconvenient, as the file will not be accesible to your game through conventional storage APIs. The
recommended actions to correct this are as follows:

1. Ensure that the Build Action property of the data file is set to "Content." This specifies that the data file is to be included
in the install package.

2. Reassign the Publish Status to "Include.”
The Build Type setting may be changed through the file's property window.
The Publish Status is changed through the Application Files dialog box of the Publish properties section of Project Designer.
To change the Publish Status
Double-click the Properties item of your project in Solution Explorer.
Navigate to the Publish tab in Project Designer.
Click the Application Files button.

Select the drop-down box in the Publish Status column of the dialog box to change the setting.
Click OK.

Using Another Installation Package Tool

To use an installation package tool other than ClickOnce, you will need to build your game binaries and include the required
software packages.

To compile your game binaries for distribution with another installation package tool
1. In XNA Game Studio, open the project you want to package.
2. From the Build menu, click Build Solution.
This creates the necessary files needed to run your game on other computers.

3. Using an installation package tool of your choice, package all files located in the appropriate output directory of your
project.

Required Software Packages

In addition to the requirements listed in the previous table, there are additional software prerequisites that must be installed on
a player's machine if the computer does not have XNA Game Studio installed.

The following software packages must be installed on the player's computer in order for your game to run.
e The .NET Framework 3.5 Redistributable.

o The XNA Framework Redistributable 3.1.

ETip
You can verify that your game was built with the XNA Framework 3.1 by loading your project in XNA Game Studio, and
clicking the project node in Solution Explorer. The XNA Framework Version property is visible in the property pane.

To determine whether the player already has the redistributable installed, use the Windows Installer function
MsiQueryProductState with the product code for the version of the redistributable that you want to verify. The following
table lists the product code for the XNA Framework Redistributable 3.1.

Redistributable Version Corresponding To...Product Code
XNA Game Studio 3.1 (English) 19BFDA5D-1FE2-4F25-97F9-1A79DD04EE20
XNA Game Studio 3.1 (Japanese) FO37A396-7FA3-4FB4-ACB8-3C6FE57B02BD

An alternative to checking the product code for the version of the XNA Framework Redistributable for XNA Game Studio
3.1 is to check the registry for the following value:

[HKEY LOCAL MACHINE\Software\Microsoft\XNA\Framework\v3.1]
Installed=1

e The following files from the DirectX 9.0c Redistributable.

OCT2006_d3dx9_31_x86.cab
APR2007_d3dx9_33_x86.cab
APR2007_xinput_x86.cab
Mar2009_xact_x86.cab
Mar2009_XAudio_x86.cab
Mar2009_X3DAudio_x86.cab
DSETUP.dII

dsetup32.dll

DXSETUP.exe

dxupdate.cab

These files are installed automatically as part of the XNA Framework Redistributable install package for XNA Game
Studio 3.1. You don't need to follow a separate install step when you create games with this version of XNA Game Studio.

See Also Sharing Your Source Code and Assets
Sharing Your Game Package

http://go.microsoft.com/fwlink/?LinkID=118663
http://go.microsoft.com/fwlink/?LinkID=148786
http://msdn.microsoft.com/en-us/library/aa370363.aspx
http://go.microsoft.com/fwlink/?LinkID=56513

XNA Game Studio 3.1

Programming Guide

Describes how to use the XNA Framework to develop games in XNA Game Studio. The XNA Framework is a set of managed
libraries for Windows, the Xbox 360, and Zune. These libraries enable you to be more productive by using a set of unified class
libraries to develop C# games.

How To Get Started

If you are new to game programming, or just want to review the basic steps toward getting a simple game up and running in
XNA Game Studio, see the how-to articles in Game Programming Basics.

Extended Tutorials

To see how to integrate XNA Framework features and follow best practices for creating a complete game, see the articles in
Extended Tutorials.

How-to articles are available in the following categories.

In This Section
Game Programming Basics
To get started writing games in XNA Game Studio, you may wish to review these key how-to topics.
Content Pipeline
Provides an overview of the Content Pipeline. The XNA Game Studio Content Pipeline builds art assets that you have
included in your project into a form your game can load at run time on either Windows or the Xbox 360 game machines by
calling ContentManager.Load.
Application Model
Provides functionality to accomplish common game development tasks.
Graphics
Describes how the XNA Framework Graphics libraries provide low-level resource loading and rendering capabilities.
Math
Provides classes and methods for manipulating vectors and matrices.
Input
Provides classes and methods for retrieving user input for keyboard, mouse, and Xbox 360 controller devices.
Audio
Provides classes and methods for playing audio files.
Media
Describes how the XNA Framework Microsoft.Xna.Framework.Media namespace provides classes and methods for retrieving
system media, including pictures and songs.
Storage
Provides classes that allow reading and writing of files.
Gamer Services
Contains introductory articles describing how to use gamer services: working with player profiles and preferences, the Xbox
Guide user interface, Guide-based messaging, and other features provided by Xbox LIVE.
Networking
Contains introductory articles describing how to create and join multiplayer game sessions, manage game state across
clients, and interact with the friends list.
Hardware and Platforms
Provides information about programming for specific hardware types and platforms using the XNA Framework.
Extended Tutorials
Describes how to integrate XNA Framework features and follow best practices for creating games.

XNA Game Studio 3.1

Game Programming Basics

To get started writing games in XNA Game Studio, you may wish to review these key how-to topics.

Fundamental How-To Topics
In This Section

Adding Game Assets to Your Game
Demonstrates how to add a texture asset to your game. The same procedure can also be applied to model and sound assets.
How To: Load Content
Demonstrates how you can load content and ensure that the content will be reloaded at the appropriate times.
How To: Draw a Sprite
Demonstrates how to draw a sprite by using the SpriteBatch class.
How To: Draw Text
Demonstrates how to import a SpriteFont into a project and draw text using DrawString.
How To: Make a First-Person Camera
Demonstrates how to create a first-person camera.
How To: Render a Model
Demonstrates how to load and render a model using the XNA Framework Content Pipeline.
How To: Use BasicEffect
Demonstrates how to create and initialize an instance of BasicEffect, initialize a vertex buffer that can be rendered by
BasicEffect, apply the effect, and render the geometry.
How To: Detect Whether a Controller Button Is Pressed
Demonstrates how to detect whether a user has pressed a digital button on a connected Xbox 360 Controller.
How To: Play a Sound
Demonstrates how to play a sound.
How To: Write Games for Less Capable Hardware
Demonstrates how to write games for a variety of computer configurations. Specifically, this topic addresses ways to write a
game so it will work on high-end hardware, yet continue to give adequate performance when the game is run on a computer
that is less capable.
How To: Open a File
Demonstrates how to use the StorageContainer class to open a save game file in the title storage area on a device specified
by the gamer.

Related Topics
For step-by-step guidance through creating a simple game, see the following sections.
Your First Game: Microsoft XNA Game Studio in 2D

Going Beyond: XNA Game Studio in 3D

XNA Game Studio 3.1

Content Pipeline

Provides an overview of the Content Pipeline. The XNA Game Studio Content Pipeline builds art assets that you have included
in your project into a form your game can load at run time on either Windows or the Xbox 360 game machines by calling
ContentManager.Load.

This build process for art assets is controlled by Content Pipeline importers and content processors. When you press F5 to
build a game created with XNA Game Studio, the appropriate Content Pipeline importer and processor for each asset is
invoked, and that asset is automatically built into your game.

The flexibility of this process enables you create and update art assets using a wide variety of digital content creation (DCC)
tools. XNA Game Studio supplies importers for several popular export formats supported by DCC tools, and also lets you
develop custom importers for other formats.

In This Section

Overview of the Content Pipeline
Describes how the XNA Game Studio Content Pipeline lets you build art assets into your game automatically from the file
formats in which they are maintained.

Model Processing with the XNA Framework Content Pipeline
Describes the model conversion process implemented by XNA Framework Content Pipeline.

Content Pipeline Architecture
Describes the architecture of the XNA Game Studio Content Pipeline build process. The process is designed to be extensible,
so that it can easily support new input file formats and new types of conversion.

Content Compression
XNA Game Studio offers data compression - an easy way to decrease the size of certain built game assets (e.g. textures,
shaders, and meshes). This reduces the size required for media storage and downloads, and it reduces the deploy time
required when debugging a game.

Standard Importers and Processors
Describes the standard Content Pipeline importers and content processors of XNA Game Studio that support various
common art-asset file formats.

Parameterized Processors
Describes how parameterized processors work in XNA Game Studio. Many of the standard Content Pipeline content
processors shipped with XNA Game Studio support parameter usage.

Developing with Parameterized Processors
Describes how developing with parameterized processors, both standard and custom, requires additional thought and care.

Using a Custom Importer or Content Processor
Describes how to use a custom processor or importer in an existing game solution.

Extending an XNA Framework Standard Processor
Describes how XNA Game Studio lets you modify or extend the behavior of any of the standard Content Pipeline processors
that ship with the product.

Sprite Font XML Schema Reference
Describes the valid tags and values for Sprite-Font (.spritefont) XML files used by the Content Pipeline to create SpriteFont
textures.

How To: Write a Custom Importer and Processor
Describes how a content importer adds support for a new art asset file format.

How To: Extend the Font Description Processor to Support Additional Characters
Describes the process of developing a custom content processor needed to add additional characters to a FontDescription
object based on the text that is required by the game.

See Also

Concepts

Programming Guide

Content Pipeline Content Catalog at XNA Creators Club Online

http://go.microsoft.com/fwlink/?LinkId=128876&clcid=0x409

XNA Game Studio 3.1

Overview of the Content Pipeline

Describes how the XNA Game Studio Content Pipeline lets you build art assets into your game automatically from the file
formats in which they are maintained.

Most games use art in the form of models, meshes, sprites, textures, effects, terrains, animations, and so on. Such art assets can
be created in many different ways and stored in many different file formats. They tend to change frequently in the course of
game development.

The Content Pipeline is designed to help you include such art assets in your game easily and automatically. For example, an
artist working on a car model can add the resulting file to the XNA Game Studio game project, assign the model a name, and
choose an importer and content processor for it. Then a developer who wants to make the car drive can load it, by name, using
a call to ContentManager.Load. This simple flow enables the artist to focus on creating assets and the developer to focus on
using them, without either having to spend time worrying about content transformation.

Purpose of the Content Pipeline

The XNA Framework Content Pipeline is designed to:

e Enable game artists to use the digital content creation (DCC) tools of their choice.
e Provide a mechanism to decouple digital content's dependency on a particular game engine.
e Provide a simple, expandable content build system that meets the needs of both artists and developers.

Basics of the Content Pipeline

Recognizing that DCC tools save content in many different file formats, the XNA Game Studio Content Pipeline enables you
build art assets into your game automatically from the file formats in which they are maintained. Here's a high-level view of
how it works.

o XNA Game Studio supplies standard importers and processors for a number of popular DCC file formats (see Standard
Importers and Processors).

e Third parties also create custom importers and processors for XNA Game Studio to support additional formats.

e [f you have enough information about a DCC file format, you can write your own custom importer and processor for it
using classes provided by the Content Pipeline class library (see How To: Write a Custom Importer and Processor).

e When you include an art asset file in your XNA Game Studio game project, you use its Properties sheet to specify the
appropriate importer and processor. Thereafter, when you press F5 to build your game, the proper importer and
processor for each asset is invoked automatically. The asset is built into your game in a form that can be loaded at run
time on Windows or the Xbox 360 by using ContentManager.Load.

Importers vs. Content Processors

e An importer takes art assets saved in a particular DCC file format and converts them into objects in the XNA Game Studio
Content DOM (document object model) that standard content processors can consume, or into some other custom form
that a particular custom processor can consume.

e A processor takes one specific type of imported art asset, such as a set of meshes, and compiles it into a managed code
object that can be loaded and used by XNA Game Studio games on Windows and the Xbox 360.

Automatic Serialization of .XNB Files

Custom content types are processed by the Content Pipeline with a custom importer and run-time processor, which are
supplied by you or by an external developer. Part of the process is handled by the Content Pipeline's XNB Serializer. It is
responsible for writing to and reading from the intermediate format (XNB) used by XNA GS. Before XNA GS 3.1, a custom
writer (implemented by a user-defined class based on ContentTypeWriter) was needed to write the custom content data to the
XNB file. In addition, a custom reader (implemented by a user-defined class based on ContentTypeReader) was needed to read
the custom content data from the .XNB file and initialize the proper type with that data.

Starting with XNA Game Studio 3.1, the serialization of custom data to the XNB format is done automatically for simple types
that do not have an existing content type writer. This means that it is no longer necessary to implement a separate writer and
reader class for each custom data type.

$Note

If your run-time class matches the layout of the design-time class, the Content Pipeline XNB Serializer automatically recogniz
es the relationship of the two types, and the run-time object is properly loaded with the serialized data. However, if the two di
ffer in a significant way, the ContentSerializerRuntimeType attribute must be applied to the design time type. This specifies th
e correct class to initialize with the serialized data.

For instance, the previous version of the SpriteSheet sample implemented a custom writer (called spritesheettriter) and a
custom reader type (spriteSheetReader). These classes serialized the output data from the processor into XNB format
(spriteSheetwriter), and deserialized that same data at run time (SpriteSheetReader) into a SpriteSheet object.

As mentioned previously, if the output type from the Content Pipeline differs from the run-time type, you will need to use the
ContentSerializerRuntimeType attribute. This is demonstrated in the updated SpriteSheet sample, available on the Creator’s
Club Web site. The spritesheetContent class declaration has the following line of code:

[ContentSerializerRuntimeType ("SpriteSheetRuntime.SpriteSheet, SpriteSheetRuntime")]

This tells the serializer into which type the content should be loaded when ContentManager.Load is called. This is required
because the texture field differs in type between the two classes: Texture2D versus Texture2DContent.

%Note

If you move the run-time spritesheet class into a different namespace or assembly, you must also update the type’s locatio
n, which is specified in the ContentSerializerRuntimeType attribute.

In addition to the ContentSerializerRuntimeType attribute, you can also version-type your custom content types by applying
the ContentSerializerTypeVersion attribute.

See Also

Concepts

Content Pipeline

Content Pipeline Architecture

Content Pipeline Content Catalog at XNA Creators Club Online

http://creators.xna.com/
http://go.microsoft.com/fwlink/?LinkId=128876&clcid=0x409

XNA Game Studio 3.1

Model Processing with the XNA Framework Content Pipeline

Describes the model conversion process implemented by XNA Framework Content Pipeline.

The conversion of a game asset in your project is a complex and detailed process comprised of many steps. The detailed
description of the general process can be found here. However, it can also be helpful to follow the process from the perspective
of a single game asset type—specifically, a model. This discussion focuses on one section (a horizontal cross-section, starting
with the top asset group) of the Content DOM graphic, shown here.

Output from the Content Importer

The content pipeline content DOM represents an exported scene (from a modeling package) as a hierarchy of NodeContent
objects. This means that a content importer designed to import a 3D scene or model must convert a 3D file into a NodeContent
hierarchy containing a parent, a transform, and a collection of children. Some of these nodes will be of type MeshContent,
derived from NodeContent. They represent the 3D objects in the scene with a mesh of triangles.

A MeshContent object is composed of a collection of GeometryContent objects. All triangles within a GeometryContent object
have the same material applied to them. Their vertices contain the same type of per-vertex data, such as normals and texture
coordinates. Since each GeometryContent collection is contained by a single MeshContent object, they share the same world
transform.

Each GeometryContent object contains a VertexContent object (storing the values of all per-vertex data channels, and also
indices into the shared Positions collection in the parent MeshContent) and an IndexCollection Class, containing indices into
the VertexContent object.

The content pipeline content DOM represents a model material by the MaterialContent class. MaterialContent has two derived
classes often used by the content pipeline: BasicMaterialContent and EffectContent. Think of BasicMaterialContent as the
content pipeline equivalent of BasicEffect. In the same vein, EffectContent is the content pipeline equivalent of Effect.

Output from the Model Processor

The scene hierarchy (previously created by the content importer) is the input of the model processor (implemented by
ModelProcessor) and is converted into a format usable by your game at run time. Optimization, such as reordering mesh
triangles to maximize cache coherency, is also performed at this time. The conversion of content importer output to a run-time
type or types, is the main goal of the model processor.

The types output by ModelProcessor are close to the final XNA Framework run-time types. For example, the ModelProcessor
output type ModelContent corresponds to the XNA Framework run-time type Model Class. This class is similar to the run-time
type but stores the model data as simple managed objects, rather than GPU data types. This approach avoids the instantiation
of actual GPU objects during the XNA Game Studio Content Pipeline build process. This is essential when building graphics for
the Xbox 360 platform because instantiation of these types on the Windows GPU during the build process would not be
feasible.

Conversion of the scene hierarchy is broken down as follows:

The entire scene hierarchy, represented by a root NodeContent and its children, is converted to a ModelContent object.

#Note

Children of type NodeContent are turned into ModelBoneContent Class objects, and children of type MeshContent are turne
d into ModelMeshContent objects.

All GeometryContent objects, containing the actual triangles, are converted to ModelMeshPart objects. As mentioned
previously, a GeometryContent object contains a VertexContent, IndexCollection, and MaterialContent object. Although the
ModelProcessor modifies the data in the IndexCollections, it does not change the type. The VertexContent object, received as
input, has two corresponding output types: a VertexBufferContent Class, containing the optimized triangle data, and an array of
VertexElement Structure objects, specifying the data contained in the VertexBufferContent Class.

The last step hands off any MaterialContent objects in the scene by chaining to the MaterialProcessor.

See Also Content Pipeline
Content Pipeline Architecture

XNA Game Studio 3.1

Content Pipeline Architecture

Describes the architecture of the XNA Game Studio Content Pipeline build process. The process is designed to be extensible, so that it can
easily support new input file formats and new types of conversion.

While most users of the Content Pipeline can ignore its inner workings, if you are a game developer who wants to create a new importer
and processor to support a new file format or game-engine capability, it is useful to understand the stages that the Content Pipeline passes
through as an asset is transformed from a digital-content creation (DCC) output file to part of the game binary.

Build-Management Functionality

Once an art asset (such as a car model) is added to an XNA Game Studio project, the Content Pipeline integrates it into the Visual Studio
build just as it would any other source file, providing error handling, status information, and other standard build features. For information
on how to set Content Pipeline build options, see Game Asset Properties.

In the course of a build, the Content Pipeline invokes four principal components to perform different parts of the transformation from a
DCC output file into a binary part of an XNA Game Studio game.

1. Importer

2. Content Processor
3. Content Compiler
4. Content Loader

The following figure shows the flow of this build process.

[,—Coﬂtent Pipeline {Design Time} - ~Game Runtime
Intermediate
("Format
Content Content Frocasmen Content
Processor —[(Loader
P Compiled >
Asset
e
. e _

Importer and Content DOM Types

XNA Game Studio provides a number of standard importers, which are listed in Standard Importers and Processors. This includes an
importer for the Autodesk .fox format, and one for the DirectX x format. These importers simplify the importing of art assets, since many
DCC tools can export content to one of these formats as well as to their own native formats.

For art assets that are available only in formats not supported by XNA Game Studio standard importers, custom importers may be available
as well. Such custom importers can be developed by DCC vendors, game-engine developers, or interested game hobbyists. For more
information about how to do this, see How To: Write a Custom Importer and Processor. Once you install a custom importer on your
computer, you can associate those art files with the importer in order to invoke the importer whenever you build the art files (see Using a
Custom Importer or Content Processor).

In many cases, Content Pipeline importers convert any content they can into managed objects based on the Content Document Object
Model (DOM), which includes strong typing for assets such as meshes, vertices, and materials.

The Content Pipeline can use XML cache files in subsequent passes to speed up game content builds as well as to debug. When a content
processor requests that a specified file be imported (typically using the BuildAndLoadAsset method in its Process function) and there is an
up-to-date cache file already, the Content Pipeline deserializes the cache file instead of invoking the importer. These XML cache files are not
used externally, however, because their format may well change in future releases.

Instead of producing standard Content DOM objects, a custom importer may produce custom objects for a particular custom content
processor to consume.

Content Processor

A content processor accepts as input the output generated by an importer. Each content processor is tied to specific object types. For
instance, the Effect Processor accepts only EffectContent objects, representing a DirectX Effect asset. As discussed previously, in many cases,
this output consists of standard Content DOM objects, but may also consist of custom objects.

A content processor then produces managed objects that can be used in a game at run time. In the case of standard Content DOM objects,
this transformation can be performed by classes in the Content Pipeline class library. However, if a content processor generates custom
managed objects, you must provide full functionality for them, including saving and loading to and from a binary file. For more information,
see How To: Write a Custom Importer and Processor.

Content Compiler

After you add the various game assets to the project and the content processors generate managed code, the managed code is serialized
into a compact binary format (also referred to as an intermediate format) by the Content Pipeline content compiler. This format is tightly
coupled to the XNA Framework. It is not designed for use by other run-time libraries. At this point, the asset has been processed by the
Content Pipeline and is in a format that can be used by your game at runtime. See the diagram above for details.

Content Loader

When you need the compiled asset in a game, call the ContentManager.Load method to invoke the content loader. The content loader then
locates and loads the asset into the memory space of the game where you can access it.

See Also Content Pipeline
Overview of the Content Pipeline

XNA Game Studio 3.1

Content Compression

XNA Game Studio offers data compression - an easy way to decrease the size of certain built game assets (e.g. textures,
shaders, and meshes). This reduces the size required for media storage and downloads, and it reduces the deploy time
required when debugging a game.

Transparent Compression

Compression and decompression of game assets is a transparent operation to games. You don't need to modify your game to
make use of compressed data.

e Compression occurs as part of the content pipeline portion of the build process. It is performed automatically when you
select the property in the Content Build page of the Project Designer.

e Decompression occurs automatically when you access the assets through ContentManager.Load.

$Note

Compression of game assets is not available for Zune projects. Microsoft has concluded that the small benefit gained by com
pressing data for Zune is exceeded by the performance requirements of the Zune processor for decompression.

Compression Algorithm

The compression used by XNA Game Studio uses a variant of the LZ family of compression algorithms, which is an efficient,
lossless method.

The ratio of compressed data to source data can vary significantly depending on the character of the source data. However, the
average compression ratio for most game asset types is around 60 percent.

The automatic compression algorithms will not compress source data that is very small (a file size less than one disk sector), as
the performance benefits of compression are typically lost or even made worse by the execution overhead to decompress the
data. These assets will be saved in uncompressed format.

Disabling Compression

Some content types, such as Song Class and SoundEffect Class data, may not benefit from a general lossless compression
algorithm. This is especially true if the data is already compressed in a specialized format.

When implementing a custom content importer, compression can be disabled by overriding the method
ContentTypeWriter.ShouldCompressContent, which must return false.

If compression is to be permitted, no action is required. The base class definition of
ContentTypeWriter.ShouldCompressContent returns true.

See Also Content Pipeline

XNA Game Studio 3.1

Standard Importers and Processors

Describes the standard Content Pipeline importers and content processors of XNA Game Studio that support various common
art-asset file formats.

Importers and content processors are implemented as assemblies. In addition to the standard ones provided by XNA Game
Studio and listed below, you can also use custom importers and processors that you or other third parties develop. Use the

Properties window to assign an appropriate importer and processor for each game asset you add to your game project (see
Game Asset Properties for more information).

Standard Importers

The table below describes the standard importers shipped with XNA Game Studio and the type of game asset each supports.

All standard importers are declared as part of the Microsoft.Xna.Framework.Content.Pipeline namespace.

Name

Typ
eN
am

e

(o)
ut
p
ut
Ty
P
e

Description

Autode
sk FBX
- XNA
Frame
work

FbxI
mp
orte

N
od
eC
on
te
nt

Imports game assets specified with the Autodesk FBX format (.fbx).

This importer is designed to work with assets exported with the 2006.11 version of the FBX exporter.

Effect -
XNA Fr
amewo
rk

Effe

ctim
port
er

Eff
ec
tC
on
te
nt

Imports a game asset specified with the DirectX Effect file format (.fx).

Sprite

Font D
escripti
on - X

NA Fra
mewor
k

Fon
tDe
scri
ptio
nim
port
er

Fo
nt
D

es
cri
pti
on

Imports a font description specified in a .spritefont file.

Texture
- XNA
Frame
work

Text
urel
mp

orte

Te
xt

ur
eC
on
te

nt

Imports a texture. The following types are supported: .bmp, .dds, .dib, .hdr, jpg, .pfm, .png, .ppm, and .tga.

X File -
XNA Fr
amewo
rk

Xlm
port

N
od
eC
on
te
nt

Imports game assets specified with the DirectX X file format (x). This importer expects the coordinate system t
o be left-handed.

XACT P|N/A|N/ . e . . .

roject - A Imports game audio specified in the Microsoft Cross-Platform Audio Creation Tool (XACT) format (.xap).

XNA Fr =Tip

amewo Associating an xap file with XACT allows you to automatically open XACT when editing any xap file. Associat

rk e the file in XNA Game Studio by right-clicking the .xap file in Solution Explorer, and clicking Open With. O
nce the dialog box is open, select the XACT-specific string, and then click Set As Default. If the XACT-specific
option is not available, you must run XACT before this option appears. The application is available from the M
icrosoft XNA Game Studio group. From the Start Menu, click Tools, and then click Microsoft Cross-Platfo
rm Audio Creation Tool (XACT).

XML C [Xml |ob

ontent |Imp |je Imports XML Fohtent used for editing the vaIues' ?f a custom object at runtime. For instance, you could pa.s's X

“XNA lortelct ML code to this importer that looks for the specified property of a custom type and changes it to the specified

Frame |r value. You could then process the custom object with a processor or pass it to your game untouched using the

work No Processing Required processor.
This importer is designed for scenarios like importing an XML file that describes game data at runtime (similar
to the Sprite Font Description importer) or importing terrain data in an XML file that is then passed to a proces
sor that generates a random terrain grid using that data.

Standard Content Processors

XNA Game Studio ships with a variety of processors that support several common game asset types. Many of the standard
processors, such as the TextureProcessor, support parameters for modifying the default behavior of the processor. For more
information, see Parameterized Processors.

The following table describes the standard processors and the type of game asset each supports.

Name

Type Na |Input T |Output Description
me ype Type

mework

Effect - XNA Fra

EffectProc|EffectCo|Compile|Compiles the string in EffectContent to the appropriate platform.
essor ntent |dEffect

mework

Model - XNA Fra|ModelPro |[NodeCo|ModelC

A parameterized processor that outputs models as a ModelContent Class object.
cessor ntent Cl [ontent

ass Class |Available parameters:

e Color Key Color - Any valid Color. Magenta is the default value.

e Color Key Enabled - A Boolean value indicating if color keying is enabled. T
he default value is true.

e Generate Mipmaps - A Boolean value indicating if mipmaps are generated.
The default value is false.

® Generate Tangent Frames - A Boolean value indicating if tangent frames ar
e generated. The default value is false.

e Resize Textures to Power of Two - A Boolean value indicating if a texture is
resized to the next largest power of 2. The default value is false.

e Scale - Any valid float value. The default value is 1.0.

e Swap Winding Order - A Boolean value indicating if the winding order is s
wapped. This is useful for models that appear to be drawn inside out. The d
efault value is false.

e Texture Format - Any valid SurfaceFormat value. Textures are either uncha
nged, converted to the Color format, or DXT Compressed. For more inform
ation, see TextureProcessorOutputFormat.

e X Axis Rotation - Amount, in degrees of rotation. The default value is 0.
e Y Axis Rotation - Amount, in degrees of rotation. The default value is 0.
e 7 Axis Rotation - Amount, in degrees of rotation. The default value is 0.

http://msdn.microsoft.com/en-us/library/system.single.aspx

No Processing R [PassThro |Object |Object) .
. Performs no processing on the file.
equired ughProce
ssor Select this processor if your content is already in a game-ready format (for exam

ple, an externally prepared DDS file) or a specialized XML format (.xml) designed
for use with XNA Game Studio.

Sprite Font Desc |[FontDescr|FontDes|SpriteFo|Converts a .spritefont file specifying a font description into a font.

ription - XNA Fr |iptionProc|cription [ntConte

amework essor nt

Sprite Font Text |FontTextu [Texture |SpriteFo) . .

ure - XNA FramelreProcess |Content IntConte A para‘meterlzed processor that outputs a sprite font texture as a SpriteFontCont

work or nt ent object.
Available parameters:

e First Character - Any valid character. The space character is the default valu
e.

Sprite Font Text [FontTextu |Texture |SpriteFo|Converts a specially marked 2D bitmap file (.bmp) into a font. Pixels of Color.Ma
ure - XNA Frame|reProcess |2DCont |ntConte |genta are converted to Color.TransparentBlack.
work or ent nt
Texture - XNA Fr|TexturePr (Texture |Texture . .
amework ocessor |Content [Content A parameterized processor that outputs textures as a TextureContent Class objec
Class |Class
Available parameters:

e Color Key Color - Any valid Color. Magenta is the default value.

e Color Key Enabled - A Boolean value indicating if color keying is enabled. T
he default value is true.

® Generate Mipmaps - A Boolean value indicating if mipmaps are generated.
The default value is false.

e Resize to Power of Two - A Boolean value indicating if a texture is resized t
o the next largest power of 2. The default value is false.

e Texture Format - Any valid SurfaceFormat value. Textures are either uncha
nged, converted to the Color format, or DXT Compressed. For more inform
ation, see TextureProcessorOutputFormat.

XACT Project - X [N/A N/A N/A Generates audio assets from an XACT project.

NA Framework

See Also Content Pipeline
Overview of the Content Pipeline
How To: Write a Custom Importer and Processor
Using a Custom Importer or Content Processor

XNA Game Studio 3.1

Parameterized Processors

Describes how parameterized processors work in XNA Game Studio. Many of the standard Content Pipeline content
processors shipped with XNA Game Studio support parameter usage. Parameterization makes any standard or custom
processor more flexible and better able to meet the needs of your XNA Framework application. In addition to specifying values
for standard parameters, you can easily implement parameter support for a new or existing custom processor. For more
information, see Developing with Parameterized Processors.

When you select a game asset, the Properties window displays the parameters for the related asset processor. Use the
Properties window at any time to modify these parameter values.

$Note

If you change the processor for a game asset to a different processor, all parameter values are reset to their default values. T
his means that if you modify the Generate Mipmaps parameter value for the TextureProcessor, then switch to a different pr
ocessor (for example, FontTextureProcessor Class), the parameters would be switched to the default values for that processor
. If you then swith back again, the modified values are reset to the default values of the original processor. The values do not
revert to the modified values you set originally.

Standard Parameterized Processors

The following table describes only standard processors that accept parameters, the parameter types, and their default value.
For more information on all standard processors, see Standard Importers and Processors.

Friendly Name [Type Na |Input Ty|Output [Description

me pe Type
Model - XNA Fra|ModelPr |[NodeCo ModelCo . .
A parameterized processor that outputs models as a ModelContent Class object
mework ocessor |ntent Cla|ntent Cla
ss Ss ’

Available parameters:

e Color Key Color—Any valid Color. Magenta is the default value.

e Color Key Enabled—A Boolean value indicating if color keying is enabled.
The default value is true.

e Generate Mipmaps—A Boolean value indicating if mipmaps are generate
d. The default value is false.

e Generate Tangent Frames—A Boolean value indicating if tangent frames
are generated. The default value is false.

e Resize Textures to Power of Two—A Boolean value indicating if a texture i
s resized to the next largest power of 2. The default value is false.

e Scale—Any valid float value. The default value is 1.0.

e Swap Winding Order—A Boolean value indicating if the winding order is
swapped. This is useful for models that appear to be drawn inside out. Th
e default value is false.

e Texture Format—Any valid value from TextureProcessorOutputFormat. Te
xtures are either unchanged, converted to the Color format, or DXT Comp
ressed.

e X Axis Rotation—Amount, in degrees of rotation. The default value is 0.
e Y Axis Rotation—Amount, in degrees of rotation. The default value is 0.
e 7 Axis Rotation—Amount, in degrees of rotation. The default value is 0.

Sprite Font Text |FontText |TextureC |SpriteFo
ure - XNA Frame|ureProce |ontent Cl{ntConten
work ssor ass t

A parameterized processor that outputs a sprite font texture as a SpriteFontCon
tent object.

Available parameters:

e First Character—Any valid character. The space character is the default val
ue.

http://msdn.microsoft.com/en-us/library/system.single.aspx

Texture - XNA Fr
amework

TexturePr
ocessor

TextureC
ontent Cl
ass

TextureC
ontent Cl
ass

A parameterized processor that outputs textures as a TextureContent Class obje

ct.

Available parameters:

Color Key Color—Any valid Color. Magenta is the default value.

Color Key Enabled—A Boolean value indicating if color keying is enabled.
The default value is true.

Generate Mipmaps—A Boolean value indicating if mipmaps are generate
d. The default value is false.

Resize to Power of Two—A Boolean value indicating if a texture is resized
to the next largest power of 2. The default value is false.

Texture Format—Any valid value from TextureProcessorOutputFormat. Te

xtures are either unchanged, converted to the Color format, or DXT Comp
ressed.

Texture Processing with XNA Game Studio

In versions before XNA Game Studio 2.0, the following standard processors were used for texture processing.

e TextureProcessor

o ModelTextureProcessor

e SpriteTextureProcessor

In XNA Game Studio, the Texture - XNA Framework processor replaces the functionality of this entire group. For new XNA
Game Studio projects and projects converted by the Project Upgrade Wizard for XNA Game Studio 2.0, the correct processor is
selected automatically. However, for existing custom processors that make calls to any processor from the list above, the code
must be modified to use the new TextureProcessor with the proper parameters. The following table describes the parameter
values required for emulating each previous texture processor.

Processor Type Name

Required Parameters and Values

TextureProcessor

GenerateMipmaps: false
Destination format: NoChange

Colorkey Value: Magenta
Resize:

false

Call the Texture—XNA Framework processor (TextureProcessor) with the following parameter values:

[]
[J
e Colorkey Enabled: false
[J
[]

ModelTextureProcessor

Resize:

false

Call the Texture—XNA Framework processor (TextureProcessor) with the following parameter values:

GenerateMipmaps: true

Destination format: DXTCompressed
Colorkey Enabled: true

Colorkey Value: Magenta

SpriteTextureProcessor

Call the Texture—XNA Framework processor (TextureProcessor) with the following parameter values:

GenerateMipmaps: false
Destination format: Color
Colorkey Enabled: true

Colorkey Value: Magenta

For more information on modifying and declaring parameter values programmatically, see Developing with Parameterized

Processors.

See Also Content

Pipeline

XNA Game Studio 3.1

Developing with Parameterized Processors

Describes how developing with parameterized processors, both standard and custom, requires additional thought and care.
This topic discusses a method for programmatically modifying existing parameter values, and adding new parameters to your
OWN Processors.

Programmatically Setting Parameter Values

When you need to pass parameter values from one processor to another (also referred to as chaining), use the BuildAsset and
BuildAndLoadAsset methods. Pass the parameter and its value using the ProcessorParameters argument of the respective
function. For example, a custom model processor would invoke a second processor for model textures with a call to BuildAsset
and pass any parameter values in the ProcessorParameters argument.

The following code example demonstrates this technique. First, add several parameters to a data dictionary:

//create a dictionary to hold the processor parameter
OpagqueDataDictionary parameters = new OpaqueDataDictionary();

//add several parameters to the dictionary
parameters.Add("ColorKeyColor", Color.Magenta);
parameters.Add("ColorKeyEnabled", true);
parameters.Add("ResizeToPowerOfTwo", true);

After adding the necessary parameters, pass the dictionary to the chained processor:

context.BuildAsset<TextureContent, TextureContent=""> (
texture, typeof(TextureProcessor) .Name,

parameters,

null,

null);

This call passes all parameters (stored in parameters) to a texture processor.

As stated earlier, any parameters not recognized by the receiving processor are ignored. Therefore, if the parameter
ColorKeyCode was entered into the dictionary as ColourkeyCode, it would be ignored by the receiving processor.

Declaring Process Parameters

Adding one or more parameters to your custom processor requires additonal code in your processor's definition. Parameters
support the following types:

bool
byte
sbyte
char
decimal
double
float

int

uint
long
ulong
short
ushort
string
enum
Vector2, Vector3, and Vector4
Color

Parameters of other types are ignored by the processor.

ETip
Apply the Browsable attribute (with a value of false) to an individual parameter to prevent that parameter from being displa
yed in the Properties window.

The following code example defines a simple custom processor that switches the coordinate system of a model using a single
parameter (called switchCoordinateSystem):

public class SwitchCoordSystemProcessor : ModelProcessor
{

#region Processor Parameters

private bool switchCoordinateSystem = false;

[DisplayName ("Switch Coordinate System")]

[DefaultValue (false)]

[Description ("Switches the coordinate system of a model.")]
public bool SwitchCoordinateSystem
{

get { return switchCoordinateSystem; }
set { switchCoordinateSystem = wvalue; }

}

//additional class code follows...

In this code, the switchCoordsystemProcessor class is derived from ModelProcessor. This indicates that the processor accepts
a model as input. The next few lines declare a single property called switchCoordinateSystem of type bool. Please note that
every parameter must have a set method. The property also has several attributes applied to it:

Attribu |Usage
te Nam
e

Display |[Name of the property when it appears in the Properties window of XNA Game Studio. If not specified, the internal pro
Name |perty name, declared in the source code, is used. For this example, "Switch Coordinate System" would be displayed.
Default |A Ul hint specifying the default value the property could have. This value is used only as a Ul hint. It will not be set on
Value [the property or override the default value declared in the code.

Descript|Descriptive text displayed when you select the property in the Properties window of XNA Game Studio.
ion

This completes the definition of the switchCoordinateSystem property.
In the next code example, the class definition is continued with an override of the Process method:

//additional class code precedes...

public override ModelContent Process (NodeContent input, ContentProcessorContext c
ontext)

{
if (switchCoordinateSystem)
{
Matrix switchMatrix = Matrix.Identity;
switchMatrix.Forward = Vector3.Backward;
MeshHelper.TransformScene (input, switchMatrix);

}

return base.Process (input, context);

This code passes the switchCoordinateSystem property (declared earlier) value to TransformScene, which is a helper method
that applies a transform to a scene hierarchy.

See Also Content Pipeline
Parameterized Processors

XNA Game Studio 3.1

Using a Custom Importer or Content Processor

Describes how to use a custom processor or importer in an existing game solution. XNA Game Studio provides standard
importers and processors for a number of common file formats used to store basic game assets such as models, materials
effects, sprites, textures, and so on.

“Note
For a list of the file formats that these standard importers and processors support, see Standard Importers and Processors.

If you have game assets saved in a format that the standard importers and processors do not support, you may be able to find
a custom third-party importer or a processor for XNA Game Studio that supports that file format. If you have enough
information about the file format, you can even build your own custom importer or processor, as described in How To: Write a
Custom Importer and Processor.

aSecurity Note

Before you open an existing project or component, determine the trustworthiness of the code outside of the Visual Studio de
signer. Opening projects or components in the Visual Studio designer automatically executes that code on your local machin
e in the trusted process of VCSExpress.exe or DevEnv.exe.

The following procedure shows how to add such a custom importer and processor to an existing game project. These steps
assume that you have copied the new importer or processor to a local subfolder of the game project in question.

To Add a Custom Importer or Processor to a Game Project

Open XNA Game Studio.

Load the solution associated with your game.

From Solution Explorer, right-click the nested content project node, and click Add Reference.

Navigate to the directory containing the assembly with the custom importer or processor, and then add it to the solution.

vk wn o=

Save the solution.

The new importer or processor now appears as one of the available choices for importing or processing a newly added game
asset.

See Also Content Pipeline
Standard Importers and Processors

XNA Game Studio 3.1

Extending an XNA Framework Standard Processor

Describes how XNA Game Studio lets you modify or extend the behavior of any of the standard Content Pipeline processors
that ship with the product. See Standard Importers and Processors for a description of the standard processors.

Because there are so many asset variants supported by different digital content creation (DCC) tools, it is often useful to be
able to modify how one of the standard processors operates. The following examples illustrate some of the kinds of things you
might want to do.

¥Note

The following code samples are for demonstration purpose only. Most of the functionality described is already available by u
sing parameters on a standard processor.

Adding a Scaling Operation to a Processor

There are many reasons why you might want to modify the existing functionality of a standard processor. Here is one example.
If your source assets and your game are at different scales, you might want the processor to scale each model automatically at
build time. You can implement such automatic scaling by overriding the Process method of the ModelProcessor class, which
generates a Model. In the override, you would first scale the entire scene and then invoke the base class functionality to
process as usual.

The following code illustrates this technique:

[ContentProcessor]
class ScalingModelProcessor : ModelProcessor

{
public override ModelContent Process (
NodeContent input, ContentProcessorContext context)

{
MeshHelper.TransformScene (input, Matrix.CreateScale(10.0f));
return base.Process(input, context);

Generating Additional Data

In some cases, you might want to add information to a game asset that a standard processor would not. For example, if a
custom effect you want to apply requires tangent or binormal data, you can extend the standard model processor to build this
additional data into the asset. To do this, you would override the Process method of the ModelProcessor class. In the override,
navigate the NodeContent hierarchy of the game asset, and call CalculateTangentFrames for each MeshContent object you
find.

The following code shows how you would do this:

[ContentProcessor]
class ModelProcessorWithTangents : ModelProcessor
{
public override ModelContent Process(NodeContent input, ContentProcessorContext co
ntext)

{
GenerateTangentFramesRecursive (input);
return base.Process(input, context);

}

private void GenerateTangentFramesRecursive (NodeContent node)

{

MeshContent mesh = node as MeshContent;
if (mesh != null)

{

MeshHelper.CalculateTangentFrames (mesh, VertexChannelNames.TextureCoordina

VertexChannelNames.Tangent (0), VertexChannelNames.Binormal(0));

}

foreach (NodeContent child in node.Children)
{

GenerateTangentFramesRecursive (child);

Changing the Processors Called for Child Objects

Another technique that can be useful is to override a standard processor and change the way child objects are processed by
changing the processors that are used for them.

Consider, for example, the hierarchy of calls through which textures in a model are processed:

e The standard ModelProcessor.Process method is called to process a NodeContent object that represents the root of a
scene.

® ModelProcessor.Process in turn calls the ModelProcessor.ConvertMaterial method once for every MaterialContent
object used in the scene.

® ModelProcessor.ConvertMaterial in turn invokes the MaterialProcessor.Process method on the MaterialContent object
passed to it.

® MaterialProcessor.Process in turn calls the MaterialProcessor.BuildTexture method once for each texture in the
MaterialContent.Textures collection in the MaterialContent object passed to it.

® MaterialProcessor.BuildTexture in turn invokes the ModelTextureProcessor.Process method on the TextureContent
object passed to it.

One reason that you might want to change how this works is that the Mode1TextureProcessor.Process method applies DXT1
or DXT5 compression to all textures it processes. If textures in your game assets are compressed already, you might well wish
to avoid a second compression.

Here is how to prevent compression from being applied to model textures during processing:

1. Create an override of the standard MaterialProcessor.BuildTexture method, and invoke the TextureProcessor.Process
method, which does no compression, instead of Mode1TextureProcessor. Process.

2. Create an override of ModelProcessor.ConvertMaterial that invokes your override of
MaterialProcessor.BuildTexture instead of the standard one.

The first of these overrides could be coded as follows:

[ContentProcessor]
class NoCompressionMaterialProcessor : MaterialProcessor

{

protected override ExternalReference<TextureContent> BuildTexture (
string textureName, ExternalReference<TextureContent> texture, ContentProcessor
Context context)

{

return context.BuildAsset<TextureContent, TextureContent>(texture, "TexturePro
cessor");
}
}

There are several things to note about this code:

e An ExternalReference is an asset object that is shared between multiple classes, such as a diffuse texture used by more
than one material. When such an asset is specified, the Content Manager loads only one copy of the ExternalReference
at run time and builds it only once, no matter how many references there are to it.

e The ContentProcessorContext BuildAsset method lets you invoke a processor by name to build the content in an object.

e Although textureName, the first argument to BuildTexture, is ignored in the override above, you could use it if you
wanted to process textures differently depending on normal maps or other criteria.

Given the processor created by your first override above, you could code the second override as follows:

[ContentProcessor]
class NoCompressionModelProcessor : ModelProcessor
{
protected override MaterialContent ConvertMaterial (
MaterialContent material, ContentProcessorContext context)

{

return context.Convert<MaterialContent, MaterialContent> (

material, "NoCompressionMaterialProcessor");

}

Because this override is processing MaterialContent objects in memory rather than ExternalReference objects, it uses the
ContentProcessorContext.Convert function instead of BuildAsset to invoke the processor created by your first override.

After building and installing your new NoCompressionModelProcessor (see Using a Custom Importer or Content Processor),
you can assign it to any models whose textures are already compressed and no further compression will be applied to them.

See Also

Concepts

Overview of the Content Pipeline

Content Pipeline Architecture

Standard Importers and Processors

Using a Custom Importer or Content Processor

Content Pipeline Content Catalog at XNA Creators Club Online

http://go.microsoft.com/fwlink/?LinkId=128876&clcid=0x409

XNA Game Studio 3.1

Sprite Font XML Schema Reference

Describes the valid tags and values for Sprite-Font (.spritefont) XML files used by the Content Pipeline to create SpriteFont
textures.

Content
Type

Content Description

string

The name of the font to be imported. This is not the name of a font file, but rather the friendly name that identi
fies the font once it is installed on your computer. You can use the Fonts folder in Control Panel to see the na
mes of fonts installed on your system, and to install new ones as well. The Content Pipeline supports the same
fonts as the System.Drawing.Font class, including TrueType fonts but not bitmap (.fon) fonts.

<Siz
e>

float

The point size of the font to be imported.

<Spa
cing

float

The number of pixels to add between each character when the string is rendered.

<Use
Kern
ing>

Boolean

Specifies whether to use kerning information when rendering the font. Default value is true.

<Sty
le>

“Regular,"
"Bold," "It
alic," or "
Bold, Itali
"

The style of the font to be imported.

<Def
ault
Char
acte
r>

char

The Unicode character to substitute any time an attempt is made to render characters that are not in the font.
Specifying this element is optional.

<Cha
ract
erRe
gion
s>

Oneorm

ore <Char
acterReg

ion> tags

One or more numerical ranges indicating which subset of Unicode characters to import.

<Cha
ract
erRe
gion
>

One <sta
rt>and o
ne <End>

tag

The beginning and end of a region of Unicode characters.

<Sta
rt>

char

The first Unicode character to include in a <CharacterRegion>.

<End
>

char

The last Unicode character to include in a <CharacterRegion>.

Example

Here is a sample .spritefont file:

<?xml version="1.0" encoding="utf-8"?2>

<XnaContent xmlns:Graphics="Microsoft.Xna.Framework.Content.Pipeline.Graphics">
<Asset Type="Graphics:FontDescription">
<FontName>Courier New</FontName>

<Size>1

8</Size>

<Spacing>0</Spacing>
<UseKerning>true</UseKerning>
<Style>Regular</Style>
<CharacterRegions>
<CharacterRegion>
<Start>32</Start>
<End>127</End>
</CharacterRegion>
</CharacterRegions>
</Asset>
</XnaContent>

See Also
Concepts

http://msdn.microsoft.com/en-us/library/system.drawing.font.aspx

2D Graphics Overview
Tasks

How To: Draw Text
Reference

SpriteFont

XNA Game Studio 3.1

How To: Write a Custom Importer and Processor

Describes how a content importer adds support for a new art asset file format.

You will need to write a new content importer to add support. Also, you may need to write a custom processor, writer, and
reader for the new art asset type after it has been imported.

The Complete Sample

The code in this topic shows you the technique. You can download a complete code sample for this topic, including full source
code and any additional supporting files required by the sample.

Download CPExtPixelShader_Sample.zip.

Overview

XNA Game Studio already provides standard content pipeline importers and processors to support common art-asset file
formats, as described in Standard Importers and Processors. Third parties also provide custom importers and processors to
support additional formats. Currently, the XNA Game Studio Content Document Object Model (DOM) provides support for
meshes, materials, textures, sprite-fonts, and animations. Outside of these, a custom importer can return a Contentltem with
custom information in its opaque data, or a custom type you have developed.

The following diagram lists the complete Content DOM.

Ea ~
"m_“/“'“""‘“"""""— G 0N Tipes—., ~Comant Prooess or———_~FTogsssor CUlpi Ties—- :::”Tmmhdlm’imxﬁ—

e | 2 mr
HodeGomant (il —1— 1 Mad2iohent 1 Mads!

|

/4 Hiepiar /r hgl:omtent e e Moo = scosom
f MasnConnst —1— =] Modeblearlonmes [——] — — —— L
Gumtomimgorte
GromsinyConinzl —— Modaltroomeor [Wossttat kst 1 f— — —— scderseaniun
| e vsnBabenossn (=— |— F— = omasBute
VertecToniant =t
e B I S B F— | vensemion
IndexCoiesion t— |tee] iieeobmiin fetel i I e et
R = = Materiaionsen |

Ereussttniet et Wit Frosessor [T - |
|

Speraron

Sipritaramtizmns)

Fozibascinion

1T

-I FoniEasstnion P roca s If’

4 Amimpoio [
j CusgnmConienl I—.I CuiomProosne I—-pi CustomConian I—— — — CumtnmTyps
'l CHETNTI KT

Nt anisnt —— e . hart
g« | |E
= F4 = F
& o8 BasikEde:
2l— = 5
5] I
Eftaciinpactar Fftecienimt EftaciProcessn: Cornplindf et i =]
HIREID
&
S 2 1
HEH L
? b g I—-pl TasturaContem 11— -pl Tashmionbn (1 — b —-| Tasute
Tenpra2Dlaenrn ety =il TeowredOComom et e I — TanluraiD
TamhnProoessr
TeatamICaniar li_] TesioDCoren (1 f— = —= Testmn
TiahwiCubatoston —f S R e e | T e
Fun(TaskerPres ser

However, if you want to support a new type in the content pipeline, writing your own importer and processor can be fairly
straightforward.

For example, suppose you want to compile HLSL source files into pixel shaders. You want the result to be somewhat like the
Effectimporter and EffectProcessor classes built into XNA Game Studio, but you want to process individual pixel shaders
rather than complete effects. This topic provides a simple example to show you the steps you take to write an importer and
processor, and also the writer and reader you need to save and load the results. The sections below describe each of the steps.

Creating a Content Pipeline Extension Library
Implementing a Simple Importer

Implementing a Processor to Compile the Shader
Implementing a Writer for the Compiled Shader
Implementing a Reader for the Pixel Shaders

Using the Output of the New Processor in Your Game

Creating a Content Pipeline Extension Library

http://go.microsoft.com/fwlink/?LinkId=149768&clcid=0x409

The first step in writing an importer and processor is to create a new project for them. You need to do this because your
importer and processor are used by the content pipeline when your game is being built. They are not part of the game itself. As
a result, you need to provide them as a separate library assembly that the content pipeline can link to when it needs to build
the new file format you are supporting.

To create a content pipeline extension library
1. In XNA Game Studio, load a game solution you are developing (the sample uses "CPExtPixelShader").
2. From Solution Explorer, right-click the Solution node, click Add, and then click New Project.

3. From the Add New Project dialog box, under the Visual C# node, from the Project types: pane, select the XNA Game
Studio 3.1 node.

4. Select the Content Pipeline Extension Library (3.1) template, assign a name to the new project at the bottom of the
dialog box (name this project psProcessorLib), and click OK.

5. From Solution Explorer, right-click the ContentProcessor1.cs item, and click Delete.
The remaining steps create a reference to the psprocessorLib content extension project.
6. From Solution Explorer, right-click the Content node of the cPExtPixelshader project, and then click Add Reference.
7. From the Projects tab, select your content extension project, and click OK.
The new project is now ready for your custom importer and processor implementation.
Implementing a Simple Importer

Follow these steps to add a content importer to your processor.

To implement a simple importer
1. Create a class to hold the input data you are importing.
In this case, it takes the form of a string of HLSL source code.
2. Add a new C# class named PSSourceCode to the processor project.

The first thing to do in the file containing your new class definition is add the following using statement at the beginning
of the file:

C#

using Microsoft.Xna.Framework.Content.Pipeline;

3. Now define the class as follows:
C#

class PSSourceCode

{ public PSSourceCode(string sourceCode)
{
this.sourceCode = sourceCode;
}
private string sourceCode;
public string SourceCode { get { return sourceCode; } }
}

4. Write an importer class to import the HLSL source code.

This class must be derived from Contentimporter and implement the Import method. All it does is read a text file
containing HLSL source code into your PSSourceCode class.

5. Using the New Item dialog box, add a new Content Importer item (called PSImporter) to the processor project.

6. Now define the class as follows:

C#

[ContentImporter("”.psh”, DefaultProcessor = "PSProcessor",
DisplayName = "Pixel Shader Importer")]
class PSImporter : ContentImporter<PSSourceCode>

{
public override PSSourceCode Import(string filename,
ContentImporterContext context)
{
string sourceCode = System.IO.File.ReadAllText(filename);
return new PSSourceCode(sourceCode);
}
}

The Contentimporter attribute applied to the PSImporter class provides some context for the user interface of XNA Game
Studio. Since this importer supports files with a .psh extension, XNA Game Studio automatically selects the PSImporter

importer when a .psh file is added to the project. In addition, the DefaultProcessor argument specifies which processor XNA
Game Studio selects when a .psh file is added.

%Note

To specify multiple file types, separate with a comma the file extensions listed in the ContentimporterAttribute. For example,

[ContentImporter (".bmp",".dds",".tga")] declares an importer that accepts .omp, .dds, and .tga file types. Normally, an

importer that accepts multiple file formats is specialized to generate one particular kind of output type, such as textures. How
ever, aside from difficulties of maintenance, there is nothing to prevent a single importer from being written to handle many
different content types.

When the game is built, the Contentimporter.Import function is called once for each XNA content item in the current project.

When invoked against an input file in the appropriate format, a custom importer is expected to parse the file and produce as
output one or more content objects of appropriate types. Since an importer's output is passed directly to a content pipeline
processor, each type that an importer generates must have at least one processor available that can accept it as input.

ETip

An importer that generates DOM objects may also automatically generate an intermediate XML cache file that serializes thes
e objects. For this to happen, the importer must be implemented with the CachelmportedData attribute flag set to true. This f
lag is false by default. To set the attribute flag to true, begin the implementation of your Importer class like this:
[ContentImporter (".MyExt", CacheImportedData = true)]
class PSImporter : ContentImporter<PSSourceCode>

{

}

Implementing a Processor to Compile the Shader

After the new importer has read in the pixel shader source code from a text file, your content processor takes over and
compiles the shader into binary form.

To write the processor

1. Create a class to store the compiled output, which in this case takes the form of an array of bytes.

2. Add a C# class called CompiledPS to the processor project, and define the new class as follows:

C#

class CompiledPS
{
public CompiledPS(byte[] compiledShader)
{
this.compiledShader = compiledShader;

private byte[] compiledShader;
public byte[] CompiledShader {
get { return (byte[])compiledShader.Clone(); }

Now you are ready to write the processor class, which converts a PSSourceCode object into a CompiledPS object.
3. Using the New Item dialog box, add a new Content Processor item (called PSProcessor) to the processor project.

4. Now define the class as follows:

C#
[ContentProcessor(DisplayName = "Pixel Shader Processor")]
class PSProcessor : ContentProcessor<PSSourceCode, CompiledPS>
{
public override CompiledPS Process(PSSourceCode input,
ContentProcessorContext context)
{

CompiledShader shader =
ShaderCompiler.CompileFromSource(input.SourceCode, null, null,
CompilerOptions.None, "main",

ShaderProfile.PS_2_ 0, context.TargetPlatform);

if (!shader.Success)

{
throw new InvalidContentException(shader.ErrorsAndWarnings);

}

return new CompiledPS(shader.GetShaderCode());

}
}

The Framework.Graphics.ShaderCompiler class compiles the shader to binary code that runs on the platform targeted by your
game. The context.TargetPlatform argument targets the platform. If an error occurs during compilation, PSProcessor throws
an InvalidContentException. The error appears in the Error List window of XNA Game Studio.

Implementing a Writer for the Compiled Shader

The final design-time class to implement is a writer that saves the compiled pixel shader produced by your processor as a
binary xnb file.

To implement the writer for the compiled shader

1. Using the New Item dialog box, add a new Content Type Writer item (called PSWriter) to the processor project.
2. Define the new class as follows:
C#

[ContentTypeWriter]
class PSWriter : ContentTypeWriter<CompiledPS>
{

protected override void Write(ContentWriter output, CompiledPS value)

{
output.Write(value.CompiledShader.Length);

output.Write(value.CompiledShader);

}
public override string GetRuntimeType(TargetPlatform targetPlatform)

{
return typeof(PixelShader).AssemblyQualifiedName;

public override string GetRuntimeReader(TargetPlatform targetPlatform)

{
return "CPExtPixelShader.PSReader, CPExtPixelShader," +

" Version=1.0.0.0, Culture=neutral”;

The GetRuntimeType method identifies the type of object your game should load from the xnb file written by the writer
object. In this instance, the xnb file contains the binary array from your custom CompiledPS type, and this method
identifies how that array will be mapped to a standard Framework.Graphics.PixelShader object type at load time.

The GetRuntimeReader method specifies what reader should be invoked to load the xnb file in your game. It returns the
namespace and name of the reader class, followed by the name of the assembly in which that class is physically located.

3. In your code, change the assembly name to match the actual name of your game and its assembly, since that is where
you will be loading the shaders.

At this point, the code for your PSProcessorLib library is complete.

Implementing a Reader for the Pixel Shaders

Now move from the PSProcessorLib library project back to your game project and write the class that your game uses to load
the xnb files that your processor creates. This is the class that your writer specified previously as its reader.

To implement a reader for the pixel shaders
1. In your game project, add a C# class called PSReader to your game project.
2. Add the using statements you will need at the top of the file:

C#

using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;

3. Deriving from the ContentTypeReader generic class for the PixelShader type, override the Read method, and define your
class as follows:

C#
class PSReader : ContentTypeReader<PixelShader>
{
/// <summary>
/// Loads an imported shader.
/// </summary>
protected override PixelShader Read(ContentReader input,
PixelShader existingInstance)
{
int codeSize = input.ReadInt32();
byte[] shaderCode = input.ReadBytes(codeSize);
IGraphicsDeviceService graphicsDeviceService =
(IGraphicsDeviceService)input.ContentManager.ServiceProvider.
GetService(typeof(IGraphicsDeviceService));
return new PixelShader(graphicsDeviceService.GraphicsDevice,
shaderCode);
}
}

4. At this point, build the processor project.

Once it has completed, you are ready to use the new importer and processor to build pixel shaders into your game.

Using the Output of the New Processor in Your Game

Try adding a test HLSL source file with a .psh extension to your game project and see how it works.

To test your output

1. Copy into a folder in your game project a simple HLSL source file that you know is free of bugs, and rename the file
"Ripple.psh.”

2. Right-click on your game project in Solution Explorer, click Add, click Existing Item, and then click Ripple.psh.
3. Once you add the file, right-click it in Solution Explorer, and click Properties.

You should now see entries in its Properties dialog box assigning PSImporter as its content importer and PSProcessor
as its content processor. Next time you build your game, Ripple.psh will be built into TestShader.xnb in a form
appropriate for your target platform.

4. To use the resulting pixel shader in your game, load it using ContentManager.Load as follows:

PixelShader shader = content.Load<PixelShader>("TestShader");

Tips for Developing Custom Importers
The following information should help you when you develop content pipeline extensions.

Importing Basic Graphics Objects
The following information should help you import basic graphics objects.
e Make your coordinate system right-handed.

From the standpoint of the observer, the positive x-axis points to the right, the positive y-axis points up, and the positive
z-axis points toward you (out from the screen).

e C(reate triangles that have a clockwise winding order.
The default culling mode removes triangles that have a counterclockwise winding order.
e Call SwapWindingOrder to change the winding order of a triangle.
e Set the scale for graphical objects to 1 unit = 1 meter.
e Call TransformScene to change the scale of an object.
Taking Advantage of Content Pipeline Mesh Classes

There are several properties and classes that are particularly useful when using NodeContent objects to represent a 3D scene
or mesh.

e The NodeContent.Children property represents hierarchical information.

e The NodeContent.Transform property contains the local transform of the 3d object.

e The Pipeline.Graphics.MeshContent class (a subclass of Pipeline.Graphics.NodeContent) is used to represent meshes.
The content pipeline provides two classes that make it easier to create and work with Pipeline.Graphics.MeshContent objects.

e The Pipeline.Graphics.MeshBuilder class creates new Pipeline.Graphics.MeshContent objects, when necessary.

e The Pipeline.Graphics.MeshHelper class implements useful operations on existing Pipeline.Graphics.MeshContent objects.
Debugging Custom Importers and Processors

In a way that is similar to projects that create a DLL, content pipeline extension projects cannot be directly run or debugged.
However, after completing a few simple steps, you can debug any custom importers and processors used by your game. The
following procedure details these steps.

$Note

The Start External program: control (located on the Debug page of a project's property pages) is not available in the Microsof
t Visual C# Express Edition development environment.

To Debug a Custom Importer or Processor

9.
10.

. Load an existing XNA Game Studio content pipeline extension project (later referred to as ProjCP) containing the custom

importers and/or processors to be debugged.

. Create a separate test game project (later referred to as "ProjG").

In the References node of ProjG's nested content project, add a project-to-project reference to ProjCP.

Add one or two appropriate items of test content to ProjG, and ensure they are set to use the importer or processor (in
ProjCP) you wish to debug.

Open the property pages for ProjCP.

Click the Debug tab, and select Start external program:.

. Enter the path to the local version of MSBuild.exe.

For example, CAWINDOWS\Microsoft. NET\Framework\v3.5\msbuild.exe.

For the Command line arguments control, enter the path to ProjG's nested content project.
If this path contains spaces, quote the entire path.

Set any required breakpoints in the importer or processor code in ProjCP.

Build and debug ProjCP.

Debugging ProjCP causes MSBuild to compile your test content while running under the debugger. This enables you to hit
your breakpoints in ProjCP and step through your code.

See Also Overview of the Content Pipeline
Content Pipeline Architecture
Extending an XNA Framework Standard Processor

XNA Game Studio 3.1

How To: Extend the Font Description Processor to Support
Additional Characters

Describes the process of developing a custom content processor needed to add additional characters to a FontDescription
object based on the text that is required by the game.

In a font description (.spritefont) file, the <CharacterRegions> area can be used to add additional characters to a font
description. This enables you to use a SpriteFont to render an additional range of characters.

For some languages, this approach is not ideal. For example, Chinese and Japanese both have many thousands of characters.
Adding the full range of characters to <CharacterRegions> dramatically increases the size of the font asset and the time
required to build the font asset. A better solution adds individual characters whenever the specific characters are needed. You
can create a custom content processor to implement this solution.

In this example, a file called messages.txt contains all the text rendered by the game. The custom processor adds all the
characters contained in the text in this file to a FontDescription. Then it processes the object in the standard way using the base
FontDescriptionProcessor functionality. All the characters in messages.txt will then be available to the SpriteFont object at run
time.

The Complete Sample

The code in the topic shows you the technique. You can download a complete code sample for this topic, including full source
code and any additional supporting files required by the sample.

Download CPFontProcessor_Sample.zip.

Using the Font Description Processor
To specify the character regions and messages to process

1. To add a new Sprite Font called DefaultFont to a game project, go to Solution Explorer, right-click the nested Content
node, click Add, and then click New Item.

2. To add the new sprite font to the game, select the Sprite Font template, and then click Add.
3. Modify this file to use an existing font and any additional characteristics you prefer.
For more information, see Sprite Font XML Schema Reference.
4. Add a file named messages.txt to the game project.
5. Right-click on the game project node in Solution Explorer, click Add, and then click New Item.
6. Select the Text File template, enter messages.txt for the file name, and then click Add to add the text file to the game.

7. In the new text file, enter any messages that will be printed by the font described in the Sprite Font file.

#Caution

We will use the method File.ReadAllText to read the text in this file. This method requires a carriage return ("\r") or line f
eed ("\n") after the last string, so be sure to follow the last line of text in the file with a carriage return or line feed.

To create the new content processor project

The Content Pipeline is part of the build process, and it is separate from your game code. Therefore, you need to create a new
assembly that contains the code developed in this topic. Creating this new assembly project is the first step in developing a
new processor.

$Note

It is assumed that you have an existing game project that you will modify. For the purposes of this example, the game project
is called "FontGame."

1. To add the new processor project to the game solution, go to Solution Explorer, right-click the Solution node, click Add,
and then click New Project.

2. In the dialog box, select the Content Pipeline Extension Library (3.1) template, enter FontProcessor in the Name field,
and then click OK. The new project automatically contains references to the XNA Framework run-time and designa€“time

http://go.microsoft.com/fwlink/?LinkId=149769&clcid=0x409
http://msdn.microsoft.com/en-us/library/ms143369.aspx

Content Pipeline assemblies.

To extend the font processor

1.

Add the following lines of code, after the last using statement:

C#

using System.IO;
using System.ComponentModel;

In ContentProcessor1.cs, remove the code near the top of the file, and replace it with the processor and input types.

. Using attributes, add a processor parameter to the beginning of the class declaration.

This parameter stores the name of the text file that stores the messages displayed by the game.

C#

[DefaultValue("messages.txt")]

[DisplayName("Message File")]

[Description("The characters in this file will be automatically added to the font.")]
public string MessageFile

{
get { return messageFile; }
set { messageFile = value; }
}
private string messageFile = "..\\messages.txt";

. Change the derivation of ContentProcessor1 from ContentProcessor to FontDescriptionProcessor.

. Modify the Process method override to match the following code:

C#

public override SpriteFontContent Process(FontDescription input, ContentProcessorConte
xt context)

This modification replaces the template parameter and return types with the proper types needed for the extended font
processor.

. Register a Content Pipeline dependency on messages.txt.

This dependency tells the Content Pipeline that if messages.txt changes, the font must be rebuilt.

C#

string fullPath = Path.GetFullPath(MessageFile);

context.AddDependency(fullPath);

. Read the contents of the file, and add each letter to the input font one by one. Note that the Characters collection keeps

track of duplicates automatically. It is not necessary for the user to make sure that each letter is added only once. The
Characters collection will contain only one instance of each character, no matter how many times Add has been called.

C#

string letters = File.ReadAllText(fullPath, System.Text.Encoding.UTF8);

foreach (char c in letters)

{
input.Characters.Add(c);

In this example, messages.txt has been saved with Unicode UTF-8 encoding, which is why this encoding format is
specified in the call to File.ReadAllText. The default file encoding format for text files that have been added to a Visual
Studio project is Western European (Windows) encoding, corresponding to code page 1252. If your text file uses the
default encoding, specify the character encoding as follows:

string letters = File.ReadAllText(fullPath, System.Text.Encoding.GetEncoding(1252
))i

8. Call the existing Process method of the base FontDescriptionProcessor to build the font with the newly requested
characters.

C#

return base.Process(input, context);

To associate the custom font processor with the sprite font

1. Compile the solution to build MyFontProcessor.

Now you need to add your custom font processor as an available content processor for the game.
2. From Solution Explorer, right-click the Content node, and then click Add Reference.
3. From the Projects tab, select your content extension project (FontProcessor) node, and click OK.

To ensure that the processor project is always up to date when the main game is built, you need to create a project
dependency.

4. In Solution Explorer, right-click the game project (FontGame) node, and then click Project Dependencies.

5. Select the check box next to FontProcessor, and then click OK to add a new dependency so that FontGame depends on
FontProcessor.

6. Change the content processor for the .spritefont file from Sprite Font Description - XNA Framework to the newly
created processor.

7. Select the spritefont file, and then in the Properties window, choose your custom processor from the drop-down list
associated with the ContentProcessor field.

When you build the solution, the new processor adds the characters in the messages.txt file to the list of characters available to
the SpriteFont.

ETip

To debug a Content Pipeline importer or processor, add the following line to the processor code to launch the debugger.

System.Diagnostics.Debugger.Launch () ;

See Also XNA Game Studio 3.1
Extending an XNA Framework Standard Processor

http://msdn.microsoft.com/en-us/library/ms143369.aspx

XNA Game Studio 3.1

Application Model

Provides functionality to accomplish common game development tasks.

In This Section
Application Model Overview
The XNA Framework Game class provides a framework for processing game simulation based on a fixed or variable time
interval.
How To: Load Content
Demonstrates how you can load content and ensure that the content will be reloaded at the appropriate times.
How To: Allow the Player to Resize a Game Window
Demonstrates how to let the player resize the game window.
How To: Pause a Game
Demonstrates how to add pause functionality to a game.
How To: Exit a Game
Demonstrates how to exit a game without finishing the current update.
How To: Display a Game in Full-Screen Mode
Demonstrates how to start a game in full-screen mode.
How To: Restrict Graphics Devices to Widescreen Aspect Ratios in Full-Screen Mode
Demonstrates how to create a custom GraphicsDeviceManager that only selects graphics devices with widescreen aspect
ratios in full-screen mode.
How To: Make a Game Time Out
Demonstrates how to make a game time out after a period of inactivity.
How To: Make a Game Use a Variable Time Step
Demonstrates how to make a game use a variable time step.

XNA Game Studio 3.1

Application Model Overview

The XNA Framework Game class provides a framework for processing game simulation based on a fixed or variable time
interval.

This overview covers the following topics.

Making a New Game

Game Loop Timing

Starting the Game

Game Components

Game Services

Game Components Consuming Game Services
Tasks

Making a New Game

The first step in creating a new game is to make a class that derives from Game. The new class needs to override Update, Draw,
and Initialize. The Update method is responsible for handling game logic, and the Draw method is responsible for drawing
each frame. The Initialize method is responsible for game setup before the first frame of the game.

Game Loop Timing

A Game is either fixed step or variable step, defaulting to fixed step. The type of step determines how often Update will be
called and affects how you need to represent time-based procedures such as movement and animation.

Fixed-Step Game Loops

A fixed-step Game tries to call its Update method on the fixed interval specified in TargetElapsedTime. Setting
Game.lsFixedTimeStep to true causes a Game to use a fixed-step game loop. A new XNA project uses a fixed-step game loop
with a default TargetElapsedTime of 1/60th of a second.

In a fixed-step game loop, Game calls Update once the TargetElapsedTime has elapsed. After Update is called, if it is not time to
call Update again, Game calls Draw. After Draw is called, if it is not time to call Update again, Game idles until it is time to call
Update.

If Update takes too long to process, Game sets IsRunningSlowly to true and calls Update again, without calling Draw in
between. When an update runs longer than the TargetElapsedTime, Game responds by calling Update extra times and
dropping the frames associated with those updates to catch up. This ensures that Update will have been called the expected
number of times when the game loop catches up from a slowdown. You can check the value of IsRunningSlowly in your
Update if you want to detect dropped frames and shorten your Update processing to compensate. You can reset the elapsed
times by calling ResetElapsedTime.

When your game pauses in the debugger, Game will not make extra calls to Update when the game resumes.
Variable-Step Game Loops

A variable-step game calls its Update and Draw methods in a continuous loop without regard to the TargetElapsedTime.
Setting Game.IsFixedTimeStep to false causes a Game to use a variable-step game loop.

Animation and Timing

For operations that require precise timing, such as animation, the type of game loop your game uses (fixed-step or variable-
step) is important.

Using a fixed step allows game logic to use the TargetElapsedTime as its basic unit of time and assume that Update will be
called at that interval. Using a variable step requires the game logic and animation code to be based on ElapsedGameTime to
ensure smooth gameplay. Because the Update method is called immediately after the previous frame is drawn, the time
between calls to Update can vary. Without taking the time between calls into account, the game would seem to speed up and
slow down. The time elapsed between calls to the Update method is available in the Update method's gameTime parameter.
You can reset the elapsed times by calling ResetElapsedTime.

When using a variable-step game loop, you should express rates—such as the distance a sprite moves—in game units per
millisecond (ms). The amount a sprite moves in any given update can then be calculated as the rate of the sprite times the
elapsed time. Using this approach to calculate the distance the sprite moved ensures that the sprite will move consistently if
the speed of the game or computer varies.

Starting the Game

Calling the Game.Run method starts a game. This method starts a loop that will call Update and Draw multiple times a second
until Exit is called.

Game Components

Game components provide a modular way of adding functionality to a game. You create a game component by deriving the
new component either from the GameComponent class, or, if the component loads and draws graphics content, from the
DrawableGameComponent class. You then add game logic and rendering code to the game component by overriding
GameComponent.Update,DrawableGameComponent.Draw and GameComponent.Initialize. A game component is registered
with a game by passing the component to Game.Components.Add. A registered component will have its draw, update, and
initialize methods called from the Game.Initialize, Game.Update, and Game.Draw methods.

Game Services

Game services are a mechanism for maintaining loose coupling between objects that need to interact with each other. Services
work through a mediator—in this case, Game.Services. Service providers register with Game.Services, and service consumers
request services from Game.Services. This arrangement allows an object that requires a service to request the service without
knowing the name of the service provider.

Game services are defined by an interface. A class specifies the services it provides by implementing interfaces and registering
the services with Game.Services. A service is registered by calling Game.Services. AddService specifying the type of service
being implemented and a reference to the object providing the service. For example, to register an object that provides a
service represented by the interface IMyService, you would use the following code.

Services.AddService (typeof(IMyService), myobject);

Once a service is registered, the object providing the service can be retrieved by Game.Services.GetService and specifying the
desired service. For example, to retrieve IGraphicsDeviceService, you would use the following code.

IGraphicsDeviceService graphicsservice = (IGraphicsDeviceService)Services.GetService(t
ypeof (IGraphicsDeviceService));

Game Components Consuming Game Services

The GameComponent class provides the Game property so a GameComponent can determine what Game it is attached to.
With the Game property, a GameComponent can call Game.Services.GetService to find a provider of a particular service. For
example, a GameComponent would find the IGraphicsDeviceService provider by using the following code.

IGraphicsDeviceService graphicsservice = (IGraphicsDeviceService)Game.Services.GetServi
ce(typeof(IGraphicsDeviceService));
Tasks

Your First Game: Microsoft XNA Game Studio in 2D

XNA Game Studio 3.1

How To: Load Content

Demonstrates how you can load content and ensure that the content will be reloaded at the appropriate times.

“Note

The methods used to load and unload resources have changed in XNA Game Studio 3.0. LoadGraphicsContent and UnloadGr
aphicsContent have become simply LoadContent and UnloadContent, and the Boolean parameters are no longer necessary.
For backward compatibility, this version still includes LoadGraphicsContent and UnloadGraphicsContent.

The Complete Sample

The code in this topic shows you the technique. You can download a complete code sample for this topic, including full source
code and any additional supporting files required by the sample.

Download AppModelDemo_Sample.zip.

Loading Content
To load content and ensure it will be reloaded when necessary

1. Derive a class from Game.
2. Override the LoadContent method of Game.

3. In the LoadContent method, load your content, including resources loaded by the ContentManager.

C#

protected override void LoadContent()

{
// Create a new SpriteBatch, which can be used to draw textures.
spriteBatch = new SpriteBatch(GraphicsDevice);
// TODO: Load your game content here
Box = Content.Load<Model>("box");

}

4. Override the UnloadContent method of Game.

5. In the UnloadContent method, unload resources that are not managed by the ContentManager.

C#
protected override void UnloadContent()
{
// TODO: Unload any non ContentManager content here
}

Loading Content from a Game Library

XNA Game Studio allows code and content to be run from Game Library projects that are added as references to Game
projects. If you use a Game Library, you can embed binary resources directly in the Game Library and load them from within.
This allows you to distribute code that displays textures, models, or fonts (such as a DrawableGameComponent) in a .DLL
without distributing the xnb files separately. Note that embedded resources are loaded into memory with the .DLL, and cannot
be unloaded from main memory.

To add content to a Game Library

1. Build an existing project containing the content you wish to add.

2. Inalibrary project, choose Add, New Item and select "Resources File."

3. If the Resource Designer is not opened automatically, double-click the .resx file in the Solution Explorer.
4. From the Resource Designer, choose Add Resource, Add Existing File.

http://go.microsoft.com/fwlink/?LinkId=149759&clcid=0x409

5. Navigate to the "bin\x86\Debug\Content" directory of the project that built the content you wish to add.
This assumes it was built as an x86 Debug project.
6. Select the xnb file for the content you wish to add to the library.

Make sure the dialog box is displaying "All Files."

Once content has been added to the Resource Designer, any code running from within the Library can load the content with a
special ContentManager.

To load content from a Game Library
1. Define a new ContentManager.
2. Create a new instance of the ResourceContentManager class and assign it to your ContentManager.

The second parameter to the ResourceContentManager constructor identifies the resource project that contains your
embedded resources.

C#

ContentManager content;
public GameComponentl(Game game)

: base(game)
{
content = new ResourceContentManager(game.Services,
Resourcel.ResourceManager);
}
3. In the LoadContent method, load your content normally using your ContentManager.
Ci#
Model box;
protected override void LoadContent()
{
box = content.Load<Model>("box2");
base.LoadContent();
}
See Also
Concepts

Application Model Overview
How To: Draw a Sprite

Reference
Game Class LoadContent UnloadContent Game Members Microsoft.Xna.Framework Namespace

XNA Game Studio 3.1

How To: Allow the Player to Resize a Game Window

Demonstrates how to let the player resize the game window.

The Complete Sample

The code in this topic shows you the technique. You can download a complete code sample for this topic, including full source
code and any additional supporting files required by the sample.

Download AppModelDemo_Sample.zip.

Adding Window Resizing Functionality

To add player window resizing to a game
1. Derive a class from Game.
2. Set Game.GameWindow.AllowUserResizing to true.

3. Add an event handler for the ClientSizeChanged event of Game.Window.

C#
public Gamel()
{
graphics = new GraphicsDeviceManager(this);
Content.RootDirectory = "Content";
this.Window.AllowUserResizing = true;
this.Window.ClientSizeChanged += new EventHandler(Window_ClientSizeChanged);
}

4. Implement a method to handle the ClientSizeChanged event of Game.Window.
C#

void Window_ClientSizeChanged(object sender, EventArgs e)

{

// Make changes to handle the new window size.

http://go.microsoft.com/fwlink/?LinkId=149759&clcid=0x409

XNA Game Studio 3.1

How To: Pause a Game

Demonstrates how to add pause functionality to a game.

The Complete Sample

The code in this topic shows you the technique. You can download a complete code sample for this topic, including full source
code and any additional supporting files required by the sample.

Download AppModelDemo_Sample.zip.

Adding Pause Functionality to a Game

Typically, there are two circumstances when you want to pause your game—at the request of the user, and when the Guide
appears on the screen (obscuring the playfield). A user request could take several different forms. For example, the user might
launch a menu, or the user might execute a specific keystroke. You have to decide for yourself how users can pause your game.

Checking for the presence of the Guide is more straightforward. You can just query the Guide.IsVisible property.

When the user requests a pause, you don't want to unpause until the user tells you to do so. When you pause for the Guide,
you should unpause as soon as the Guide is dismissed.

Pausing your game often means more than just halting your simulation. It could also require pausing or muting any sounds
that might be playing, halting controller vibrations, sending a network message, and so on. To handle those tasks, you need to
declare a BeginPause and EndPause method. EndPause resumes anything that was halted by BeginPause.

To add pause functionality to a game
1. Add a variable to track the pause state.
2. Add a variable to track the state of the pause key.
3. Add a variable to track if the pause is due to the Guide or to user action.
C#

private bool paused = false;
private bool pauseKeyDown = false;
private bool pausedForGuide = false;

4. Add a BeginPause method to initiate a pause, setting the variables appropriately:
C#

private void BeginPause(bool UserInitiated)

{
paused = true;
pausedForGuide = !UserInitiated;
//TODO: Pause audio playback
//TODO: Pause controller vibration
}

5. Add an EndPause method to resume from a paused state, resetting variables appropriately:
C#

private void EndPause()
{
//TODO: Resume audio
//TODO: Resume controller vibration
pausedForGuide = false;
paused = false;

http://go.microsoft.com/fwlink/?LinkId=149759&clcid=0x409

6. Add a function to poll the state of the pause key with Keyboard.GetState and KeyboardState.IsKeyDown.

If the key has changed from down to up, toggle the pause state using BeginPause or EndPause.

C#
private void checkPauseKey(KeyboardState keyboardState,
GamePadState gamePadState)
{
bool pauseKeyDownThisFrame = (keyboardState.IsKeyDown(Keys.P) ||
(gamePadState.Buttons.Y == ButtonState.Pressed));
// If key was not down before, but is down now, we toggle the
// pause setting
if (!pauseKeyDown && pauseKeyDownThisFrame)
{
if (!paused)
BeginPause(true);
else
EndPause();
}
pauseKeyDown = pauseKeyDownThisFrame;
}

7. Add a function to poll the state of the Guide.
If the Guide is newly visible, call BeginPause.

If the Guide is not visible, but the game was paused for the guide, call EndPause.

C#

private void checkPauseGuide()
{
// Pause if the Guide is up
if (!paused && Guide.IsVisible)
BeginPause(false);
// If we paused for the guide, unpause if the guide
// went away
else if (paused && pausedForGuide && !Guide.IsVisible)
EndPause();

8. During Update, check to see if the user paused, or if the Guide is active.

Add a conditional around any update code so it will be called only if the game is not paused. Be sure to call base.Update
even if the simulation is paused.

C#

// Check to see if the user has paused or unpaused
checkPauseKey (keyboardState, gamePadState);

checkPauseGuide();

// If the user hasn't paused, Update normally
if (!paused)
{

Simulate(gameTime);

}
base.Update(gameTime);

Remarks

»Best Practice

You might choose to implement a menu of options to display when a game is paused. This might include options to resume,
purchase, save, or quit the game. In multiplayer games, pausing will usually disable local input without pausing the game for
remote players.

Some situations in which you may want to pause the simulation update or input are when:
e GuidelsVisible is true, as the guide will block user inputs from reaching the game.

e Game.lsActive is false, indicating that trial mode may have ended for the game.
e GamePadState.lsConnected is false, indicating that the game controller is disconnected.

XNA Game Studio 3.1

How To: Exit a Game

Demonstrates how to exit a game without finishing the current update.

The Complete Sample

The code in this topic shows you the technique. You can download a complete code sample for this topic, including full source
code and any additional supporting files required by the sample.

Download AppModelDemo_Sample.zip.

Exiting a Game Without Finishing the Current Update

To exit the game loop without running any remaining code in the update handler
1. Derive a class from Game.
You need to create a method that checks KeyboardState.IskeyDown for the state of the ESC key.
2. If the ESC key has been pressed, call Game.Exit and return true.
C#

bool checkExitKey(KeyboardState keyboardState,
GamePadState gamePadState)

{
// Check to see whether ESC was pressed on the keyboard
// or BACK was pressed on the controller.
if (keyboardState.IsKeyDown(Keys.Escape) ||
gamePadState.Buttons.Back == ButtonState.Pressed)
{
Exit();
return true;
}
return false;
}

3. Call the method in Game.Update, and return from Update if the method returned true.
C#

// Check to see if the user has exited
if (checkExitKey(keyboardState, gamePadState))

{
base.Update(gameTime);

return;

4. Create a method to handle the Game.Exiting event.

The Exiting event will be issued at the end of the tick in which Game.Exit is called.

C#
public Gamel()
{
graphics = new GraphicsDeviceManager(this);
Content.RootDirectory = "Content";
this.Exiting += new EventHandler(Gamel_ Exiting);
}

void Gamel_ Exiting(object sender, EventArgs e)

http://go.microsoft.com/fwlink/?LinkId=149759&clcid=0x409

// Add any code that must execute before the game ends.

XNA Game Studio 3.1

How To: Display a Game in Full-Screen Mode

Demonstrates how to start a game in full-screen mode.

The Complete Sample

The code in this topic shows you the technique. You can download a complete code sample for this topic, including full source
code and any additional supporting files required by the sample.

Download AppModelDemo_Sample.zip.

Starting a Game in Full-Screen Mode
To start a game in full-screen mode

1. Derive a class from Game.

2. After creating the GraphicsDeviceManager, set its PreferredBackBufferWidth and PreferredBackBufferHeight to the
desired screen width and height.

3. Set IsFullScreen to true.
C#

public Gamel()

{
this.graphics.PreferredBackBufferWidth = 1280;

this.graphics.PreferredBackBufferHeight = 720;

this.graphics.IsFullScreen = true;

http://go.microsoft.com/fwlink/?LinkId=149759&clcid=0x409

XNA Game Studio 3.1

How To: Restrict Graphics Devices to Widescreen Aspect Ratios
in Full-Screen Mode

Demonstrates how to create a custom GraphicsDeviceManager that only selects graphics devices with widescreen aspect ratios
in full-screen mode.

The Complete Sample

The code in this topic shows you the technique. You can download a complete code sample for this topic, including full source
code and any additional supporting files required by the sample.

Download AspectRatio_Sample.zip.

Restricting Graphics Devices
To restrict graphics devices to widescreen aspect ratios in full-screen mode

1. Create a class that derives from GraphicsDeviceManager.

C#

public class CustomGraphicsDeviceManager : GraphicsDeviceManager
{

public CustomGraphicsDeviceManager(Game game)

: base(game)

{

}
}

2. Add a WideScreenOnly property to the class.
The property will be used to turn the widescreen-only behavior on and off.
C#

private bool isWideScreenOnly;
public bool IsWideScreenOnly

{

get { return isWideScreenOnly; }
set { isWideScreenOnly = value; }

3. Determine the minimum desired aspect ratio.
C#

static float WideScreenRatio = 1.6f; //1.77777779f;

4. Override the RankDevices method of GraphicsDeviceManager.

Note the call to base.RankDevices. This call ensures that the new version of RankDevices has an already-ranked list of
available devices with which to work.

C#

protected override void RankDevices(
List<GraphicsDeviceInformation> foundDevices)

base.RankDevices(foundDevices);

http://go.microsoft.com/fwlink/?LinkId=149760&clcid=0x409

5. Add a check to see if the WideScreenOnly property is true.

C#

if (IsWideScreenOnly)
{

6. In the if block, loop through all of the found devices, and check whether the PresentationParameters indicate the device
is full-screen.

7. If the device is full-screen, determine the aspect ratio of the device by dividing the BackBufferWidth by the
BackBufferHeight.

8. If the aspect ratio is less than the desired aspect ratio, remove the device from the list of found devices.

C#
for (int i = @; i < foundDevices.Count;)
{
PresentationParameters pp =
foundDevices[i].PresentationParameters;
if (pp.IsFullScreen == true)
{
float aspectRatio = (float)(pp.BackBufferWidth) /
(float) (pp.BackBufferHeight);
// If the device does not have a widescreen aspect
// ratio, remove it.
if (aspectRatio < WideScreenRatio)
{
foundDevices.RemoveAt(i);
}
else { i++; }
}
else i++;
}

9. Replace the default GraphicsDeviceManager with the derived GraphicsDeviceManager.
10. To test the new component, set the WideScreenOnly and IsFullScreen properties to true.

C#

public Gamel()

{
graphics = new CustomGraphicsDeviceManager(this);
Content.RootDirectory = "Content";

this.graphics.PreferMultiSampling = false;
this.graphics.PreferredBackBufferWidth = 1280;
this.graphics.PreferredBackBufferHeight = 720;

this.graphics.IsFullScreen = true;
this.graphics.IsWideScreenOnly = true;
graphics.ApplyChanges();

XNA Game Studio 3.1

How To: Make a Game Time Out

Demonstrates how to make a game time out after a period of inactivity.

The Complete Sample

The code in this topic shows you the technique. You can download a complete code sample for this topic, including full source
code and any additional supporting files required by the sample.

Download AppModelDemo_Sample.zip.

Adding Time-Out Functionality to a Game

To make a game time out

1. Create a class that derives from Game.
2. Determine the desired time-out limit in milliseconds.
C#

// Time out 1limit in ms.
static private int TimeOutLimit = 80000;

3. Add a variable for tracking the elapsed time since the most recent user activity.
C#

// Amount of time that has passed.
private double timeoutCount = O;

4. When user input is checked, set a flag indicating whether any user activity has taken place.
C#

GamePadState blankGamePadState = new GamePadState(
new GamePadThumbSticks(), new GamePadTriggers(),
new GamePadButtons(), new GamePadDPad());

bool checkActivity(KeyboardState keyboardState,
GamePadState gamePadState)

{
// Check to see if the input states are different from last frame
GamePadState nonpacketGamePadState = new GamePadState(
gamePadState.ThumbSticks, gamePadState.Triggers,
gamePadState.Buttons, gamePadState.DPad);
bool keybidle = keyboardState.GetPressedKeys().Length == 0;
bool gamepidle = blankGamePadState == nonpacketGamePadState;
if (keybidle && gamepidle)
{
// no activity;
return false;
}
return true;
}

5. In Update, if there has not been any user activity, increment the tracking variable by the elapsed time since the last call to
Update.

6. If there has been some user activity, set the tracking variable to zero.
Ci#

// Check to see if there has been any activity

http://go.microsoft.com/fwlink/?LinkId=149759&clcid=0x409

if (checkActivity(keyboardState, gamePadState) == false)
{

timeoutCount += gameTime.ElapsedGameTime.Milliseconds;

}

else
timeoutCount = 0;

7. Check whether the value of the tracking variable is greater than the time-out limit.

8. If the variable is greater than the limit, perform some time-out logic such as playing an idle animation or, in this case, exit
the game.

C#

// Timeout if idle long enough
if (timeoutCount > TimeOutLimit)
{
Exit();
base.Update(gameTime);
return;

XNA Game Studio 3.1

How To: Make a Game Use a Variable Time Step

Demonstrates how to make a game use a variable time step.

The Complete Sample

The code in this topic shows you the technique. You can download a complete code sample for this topic, including full source
code and any additional supporting files required by the sample.

Download AppModelDemo_Sample.zip.

Making a Game Use a Variable Time Step

To make a game use a variable time step
1. Create a class that derives from Game.
2. Set IsFixedTimeStep to false.
This causes Update to be called as often as possible instead of being called on a fixed interval.

C#

this.IsFixedTimeStep = false;

3. Since the amount of time between calls to Update will vary, specify any rates used in the game as units per millisecond
(ms).

C#

// Speed in world units per ms.
private double speed = 0.02f;

4. In Update, get the value of gameTime.ElapsedGameTime.TotalMilliseconds.
This indicates the amount of time that has passed since the last call to Update.

C#

// Time elapsed since the last call to update.
double elapsedTime = gameTime.ElapsedGameTime.TotalMilliseconds;

5. Determine the change that occurred since the last update by multiplying any rates being used by the elapsed time.

C#

// Multiply speed by elapsed time to get the distance moved.
double distance = (speed * elapsedTime);

http://go.microsoft.com/fwlink/?LinkId=149759&clcid=0x409

XNA Game Studio 3.1

Graphics
Describes how the XNA Framework Graphics libraries provide low-level resource loading and rendering capabilities.

In This Section
The XNA Rendering Pipeline
Provides a high-level view of the graphics rendering pipeline for XNA games.
Displays, Client Bounds, Viewports, and Back Buffers
Describes the relationships between the display, client, viewport, and back buffer size properties.
Render Targets
Describes how render targets can be an important part of your XNA Framework game when you render simple or complex
scenes. For a description of a render target, see What Is a Render Target?.
Effect States
Provide a mechanism for effects to control the graphics device state. Setting a state through an effect file has exactly the
same effect as setting the corresponding render state or sampler state from your C# code.
2D Graphics
Discusses the basics of 2D rendering and includes examples of how to display sprites.
3D Graphics
Provides an overview of the 3D Graphics classes as well as tutorials to demonstrate low-level 3D rendering.
"What Is" Articles
Provides brief overviews of some 3D graphics concepts.

See Also

Concepts

Getting Started with 2D Games at XNA Creators Club Online
Getting Started with 3D Games at XNA Creators Club Online
Shader Content Catalog at XNA Creators Club Online

http://go.microsoft.com/fwlink/?LinkId=128880&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=128882&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=128870&clcid=0x409

XNA Game Studio 3.1

The XNA Rendering Pipeline

Provides a high-level view of the graphics rendering pipeline for XNA games.

The XNA Framework renders graphics by calling into the DirectX 9 rendering pipeline. The following figure shows the subset of
the DirectX 9 rendering pipeline used by the XNA Framework:

Wertex
Data I
Vertex Geomnetry Pixel Pixel
Processing > Processing > Processing > Rendering
PrEmITwEI
Cata +‘
Texture
Sampler

Figure 1. The DirectX 9 rendering pipeline

Pipe|Description Related Topics
line
Co
mp
one
nt
Vert |Vertex memory buffers provide storage for the untransformed model vertices. Typically, you can use a V |VertexBuffer, Ve
ex D |ertexDeclaration to describe what information (position, color, texture coordinates, normals, and so on) i |rtexDeclaration
ata |s defined for each vertex. Vertex buffers may contain either indexed or non-indexed vertex data.
Prim .)) i i i) .[IndexBuffer
itive Geometric primitives, including points, lines, triangles, and polygons, are referenced in the vertex data wi How To: Draw P
Data th index buffers. If a vertex buffer is not indexed, all of the vertices are placed in the vertex buffer in the o oints, Lines, and
rder they are to be rendered. Because 3D-line lists or triangle lists often reference the same vertices mult Other 3D Primit
iple times, this can result in a large amount of redundant data. ives
Index buffers allow you to list each vertex only once in the vertex buffer. An index buffer is a list of indice
s in the vertex buffer, given in the order that you want the vertices to render.
Vert |The vertex shader of an Effect transforms the vertices stored in the vertex buffer. You can use the world, |Effect, BasicEffe
ex Pr|view, and projection matrices defined for the Effect by the game to transform the vertices. ct, HLSL Shader
oces s,
sing How To: Use Ba
sicEffect,
How To: Render
a Model,
How To: Draw a
Model with a C
ustom Effect
Geo |Clipping, back face culling, attribute evaluation, and rasterization are applied to the transformed vertices.|ScissorTestEnab
metr|Clipping is the process of removing triangles (or parts of triangles) that do not appear on screen (or into |le, Render Targ
y Pr |the scissor rectangle if scissor testing is enabled). Back face culling removes triangles that are not facing |ets, CullMode,
oces |the camera. Rasterization is the process of assigning pixels to each triangle that remains on screen after tRasterization R
sing |he clipping and culling is complete. ules
Text [Texture level-of-detail filtering is applied to textures that will be used by the pixel shader component of a|SamplerState,
ure |n Effect. This includes the TextureAddressMode of each texture coordinate, and the TextureFilter, to use i |What Is Texture
Sam |n resizing the texture to fit the object on screen. Mapping?
pler

http://go.microsoft.com/fwlink/?LinkID=77946&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=144529&clcid=0x409

Pixel [The pixel shader of an Effect uses geometry data to combine input vertex and texture data with lighting e|Effect, BasicEffe
Proc|quations, which in turn yields the