o Microsoft

Prism for the
Windows Runtimefor
Windows 8.1

Developing a Windows Store
business app using
C#, XAML, and Prism

David Britch

Colin Campbell
Francis Cheung
Diego Antonio Poza
Rohit Sharma
Mariano Vazquez
Blaine Wastell

January 2014

patterns & practices




¢CKA A& R2Odzy Sy th avifarmatidhRugd idnS éxpréssedin this document, including URL
and other Internetveb site references, may change without notice.

Sorre examples depicted hereare provided forillugation only and are fictitiousNo real
association or connectionis intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any
Microsoft product. You may copy and ubés document for your internal, reference purposes.

© 2013 Microsoft. All rights reserved.

Microsoft, Visual Basic, Visual Studio, Windows Azure, and Wiralewsade marks of the Microsoft
group of companiesAll other trademarks are property of the®spective owners.



Contents
Developing a Windows Store business app using C#, XAML, and Prism for the Windows. Ruatime
D611V o] [0 F=To APPSR SPPPPPP 2
PrEIEQUISITES. ... . ettt ee e e ettt e e et et e e e e e et e e e e eebe e eaeees 2
EXPIoring the gQaNCe..........ooi i e e 3
WHAL'S 1N ThE DOX2. ...t e ee ettt e e e e een b e e eeeees 3
WRNETE 10 STAM?. ...ttt eee et e et e e e mmm e e e e e e eeen 4
Exploring the doCUMENTALION.........coouuuiiieie e 4
[0 1010 0 T 0] | Y2 RPN 5
REIEASE NOTES. ...t eee e et e ettt e e e e et e e e e e e s 5
LB AINING FESOUICES. ..ot ittt eet ettt aee et e et et e e et e et e e tmam e et e e et e e an e e et e et eeannmm e s eenneeanees 5
Downloads for the Previous FelEaSE. .........oiiiiiiii e 6
Getting started using Prism for the Windows RUNIME...........ccooooiiiiiiceeii e 7
D611V o] (o= To APPSR UPPPTP 7
Building and running the SamMPIE.........cooui i 7

Visual Studio solution structure for a Windows Store business app that uses the MVVM pdtern

The AdventureWorks.SNOPPET PrOJECL. .. .cviiiii et re e e 9
The AdventureWOrks.UILOQIC PrOJECL. . ... viiue et eeen e e eeens 10
The Adventure Works.WebServiCes PrOJECL.........cuuui it eee e 10
The Microsoft.Practices.Prism.PubSubEvents project..........cccoooviiviceeiiieiiieeceeeeenn, 11
The Microsoft.Practices.Prism.Store APPS ProJECT........iiiiiiiiiiieiicee et 11
Where t0 gt MOIE INTO.....coue e e e e e e et e e aarn e eeans 11

Devel@er guidance summary and checklists for Windows Store business apps using C#, XAML, and

L 1] 0 £ PP UUPPPPTRTPPPRRPPTIN 12
Windows Store business apps dier checkIlists...........coooiiiiiiiiicce e 14
Designing the USEr @XPEIIEINCE. .. ...u e ee ettt eee et e e e e e e e e nmm et e e e e e ean e eeenns 14
Using the ModeViewViewModel (MVVM) pattern............cooveiiiiiiiiiicce e 15
Creating and navigating betWeeN PAgES ......uiiiuni it ieee e e e e e e eeeans 15
(7 T I (o 18 oX o B PRSP 16

AV (o F= i T U Y= g o] o 10 PP 17
Managing appliCatiON GaLA...........uuiiiiiiiiie et eem e e eaa e e e eaas 17
Handling suspend, resume, and activVation..............cocuviiiimmeniiiiieeie e 18
Communicating between loosely coupled COMPONENTS..........cocevvuiiiiiiiieriiiieeeeeiiie e 18

WOTKING WITh TIlES ... ere et e e e e e eeeans 19



IMPIEMENLING SEAICH. ... e ern e e e e e e e e nmm e een s 19
[T e (o) T aTo N o1=T g {011 2= o o= 20
Testing and dePlOYING @IS .. .. ittt eee e ettt e e et e et e e e et e e e enen e ane 21
Developer tasks for building a Windows Store business app using C#, XAML, and Rtism....22
Windows Store business app developer tasks.........ooouuviiiiiiceeiiie e 22
Guidance summary and checklists for Windows Store business.apps..........ccooecvvveee.. 22
Using Prism for the WINdOWS RUNIME ..........oiiiuiiiiiii e eeee e e 23
DesigniNg the USEr EXPEIEINCE. ........u ittt eee ettt e et e e et e e e eai e e e eeee 25
L1 (=T 111 oo I 0 F= 1o =TSP 25
OS] T I8 (o 18 oX o DO 25
Managing appliCatioN GALA............oviiuniiiii e ere et e et aea e e een e nan 25
WOTKING Wt TIIES ... ettt e e et ee e e e e eees 26
IMPIEMENTING SEAICH......ei i e e e e e e s 26
IMProVINg PEIOMMANCE. ... ...ttt ettt e et e e e e ettt e e e e eebe e e e e eees 26
RICES gl = T To o (= o1 0}y [T =T o o T PP 26
Extended splash screen QUICKSTALL...........ooiiiiiiiiii e e 27
Incremental loading QUICKSTALL............ooiiii e e 27
Using Prism to create a Windows StOre apf........ccuuuuiiiiiiuiammaeieiiiea e eeeii e eeee e eeeees 28
Architecture of a Windows Store business app that uses PriSm...............ccovvveeeviiieennnnen. 29
Creating a Windows Store app project using Prism and Unity............cccooiiiieeinieeiineennnn. 31
(O £STo 110 = TR T 33
Creating a VIEW MOAel ClaSS.........couuuiiiiiiii et 33
Creating a model class with validation SUPPOIL..........c.oviiiiiiiiicee e eee e 34
Adding items t0 the SetiNgS PANE........cciiiiii et eee e eees 35
Changing the Prism CONVENTANS.............iiiiiiii e e ea e 35
Changing theonvention for naming and locating VIEWS...............oieiieiiicmmnn e, 35

Changing the convention for naming, locating, and associating view models with .views...36
Registering a view model factory with views instead of using a dependency injection canginer

Designing the user experience of a Windows Store business app using C#, XAML, and PriS®

AdventureWorks ShOopper USEr @XPEHENECES. ........uuuieieiruia e eeeetiaaeeeenti e e eeesiennaaaeeeenes 39
Deciding the user expenence goalS..........cccvveeviiiiicceiiieceiieeciie e e eeen e eeii e ennneeennn . 40
DecCiding the apP flO. ... .o e aann 40
Deciding what Windows featureS t0 USE........ccouuiiiiiiiiiieee e a e 42

Deciding how to monetize the apP......c..oveveviiiiiiiiii e eeeem e eeene A3



Making a good firSt IMPIESSION........ciiueeeiii et e e e e e e e e een e e e et e e e e e e eenaeeenns 43
Validating the e SIgN........oviuiii e e e e e e e e meen e en e DD
Usinghe ModelViewViewModel (MVVM) pattern in a Windows Store business app using C#,
XAML, @NG PFISIIL. ...t et eee e e e e e ettt e eee e e b e e e e e 44
MVVM in AdventureWOorkS SNOBI. ... .ccivuuieiiiii e emm e e eaaand 48
WRAE IS MV VM2, et e e e e e e e e e e e e e e e e e e e e e e e enntbae b bt ebeeeeeees 49
Using a dependency iNjeCtioN CONTAINEL ... ... .vvuunieeeieeeiaee e e e e e e e e et e e e e mm e e e eennaeees 49
Bootstrapping an MVVM app using Prism's MvvmAppBass.clas.............c.ccoevveeeennnnnn. 50
Using the ViewModelLocator class to connect view models to VIeWS............c.covevvieeennnens 52
Using a conventiohased approach to connect view models to views..............cccceevvneee. 53
Other approaches to constructing view models and VIBWS..........coouveviuiimeeiineeeineeennnnn. 53
Creating a view model declaratively.............cooiiiiiiic e 54
Creating a view model programmatiCally.............ccoouuuiiiiaaeiiiiieeei e 54
Creating a view defined as a data template................ooiiiiiieeeiiii e 54
Updating a view in response to changes in the underlying view model or model.............. 55
Additional considerations when implementing property change natification.................. 57
Ul interaction using the DelegateCommand class and Blend behaviors.............c............ 58
Implementing CoMMAaNd ODJECLS........uiiiiiiiiie et eee e 58
INVOKING COMMANGS frOM @ VIEW.......oiiviiiiiie et ee e e e eanns 59
Implementing behaviors to supplement the functionality of XAML elements.................! 60
INVOKING DENAVIOIS frOM @ VIEW.......cuviiiiii i rem e e 63
Additional MVVM CONSIAEIAtONS. ... .ceeeeiiiieeiiiiiemm e et et een e eeeaa e e e eeeanns 64
Centralize data conversions in the view model or a conversion.layer................cc.co.e.... 64
Expose operational modes in the view model..............oooooiiiiioee i 64
Keep views and view modelsindependent............oooviiiiice i, 64
Use asynchronous programming techniques to keep the Ul responsive....................... 64

Creating ad navigating between pages\Windows Store business app using C#, XAML, and &ism

Creating pages and navigating between them in AdventureWorks Shoppet.................... 68
(O 1T 110 T = U 7= P 69
AddiNg deSIgN tIME TALA. .......coeuuinie ittt ere e e et e e e e eeaens 71
Supporting MUItiple VIEW SEALES.........cciii e e e eens 71
Creating a custom GridView control that responds to layout changes...............cccouueeennnn. 73
Creating a custom GridView control that displays itetn®altiple sizes...........cc.ccoeeviniennnne. 74

SEYIING CONTIOIS ...t eee et e ettt e e e et mmm e e e et e e e e ennens 76



Vi

Enabling page [0CaliZAtION. .........couuiiiei e 76
Separate resources for €acCh l0CalB...........ovvui i 76
Ensure that each piece of text that appears in the Ul is defined by a string resource.....76
Add contextual comments to the app resource.file.............ccooiiiiicceiiiii e, 77
Define the flow direction for all PAgES..........uuiiiiii i 77
Ensure error messages are read from the resourcefile............cccooviiieei i, 77

Enabling page aCCeSSIDIlITY ... .....iiieeeeeiiie et eee e 78

Navigating DEWEEN PAGES ... oo eee e 79
Handling Navigation M QUE SIS .. ....uiiiiiieii et ere e e e e e e e et e e ea e e ean e 80
Navigating tahe hub page when AdventureWorks Shopperis activated....................... 82
Invoking navigation using DENAVIOLS..........coouiiiii e 84

Using touch in a Windows Store business app using C# and XAML..............ccoovceeiiinneeeennns 87

Touch in AdventUrEWOIKS SHOPPEE...... i ees 389

Tap fOr PriMary @CHOML.........uiiieiii ettt e e et enn e e eeeed 89

0] [0 (S (o 1 = L PSP 92

Swipe to selecommand, anNd MOVE...........uuiiiiiiiii e emm e eeees 94

Pinch and StretCh t0 ZOOM.........cooiiii e e 97

Swipe from edge for app COMMANTS..........oiiiiuiiieiiiieer e 100

Swipe from edge for System COMMANAS..........oiiiiiiiiii e ee e e 103

Validating user inputin a Windows Store business app using C#, XAML, and.Prism.......... 105

Validation in AdventureWorks Shopper using PrisSm...........ccccoiviiiiiceen i 106

Spedifying validation FUIBS.............. i eem et 108

Triggering validation when properties Change........c.cvveieiiiiiieme e 111

Triggering validation of all ProPertieS.......coouuuui i 113

Triggering serveside Validation..............cocouiiii i me e 114

Highlighting validation errors with behaviors. ..., 116

Persisting user input and validation errors when the app suspends andhessu................. 119

Managing application datain a Windows Store business app using C#, XAML, and Prism.122

Managing application data in AdventureWorks Shopper.........ccovviviiiiiiceei e, 125
Storing data in the app data STOIBS.......cooiuui e ee e e 125
Local application data.............ocoouuiiiiiiic e e eee e e enn e 126
Roaming appliCation ata.............ocuuiiiiiis e e erem e e e e e 126
Storing andoaming User CredentialS.............veviiiiiiiii e eee e 127

Temporary appliCation dat@l..........coeuuiiiiiiiicee e 129



Vil

Exposing settings through the Settings Charm..............cooiiiiieei i 129
Creating data transfalhJECTS. ......c.uuii e 132
Accessing data through a Web SErVICE..........c..uu i 133
(@70] 4151010911 oo e F= L= VSRR 134
g 0T 1S To [ =1 = PN 134
DAta FOIMALS. ...ttt et ee e et e e e e nn e 135
Consuming data from a web service Using DTQS........coouiiiiiiiiccene e 135
Caching data from a Webh SEIVICE...........uuiiii e 139
Authenticating users with @ Web ServIiCe..........oouui i 140

Handling susped, resume, and activation MWindows Store bsiness app using C#, XAMksm 145

Suspend and resuma IAdventureWorks SNOPPEL........couuiiiiiiiiii e 147
Understanding possible eXeCULION STAES...........ooivuuuiiieiiaee it 147
Implementation approaches for suspend and reSUME..........cooeuiiiiiiiiee e, 149
SUSPENTING BN GPP. ¢ttt ettt emm et e et et e e e e st are e e e e esta s e e e eesan e e e s ameeananeeaeee 150
SaVING VIE MOCE] STALE ......ceuiiiiiii e e e e e e eaaeens 152
SAVING VIBW STALE.....ee it ee ettt e e e et e emmm e e eab s 152
Saving state from service and repoSItoNy ClaSSES.........oevviiiiiiiiice e e 153
RESUMING @M BP0+ttt oottt ettt e e e e et eb e e e e e tb e e e e e meeean e eaeenees 153
F o AV 1 Lo | =T o) N 154
Restonng VIEW MOCEl STAIE.........c.uuuiiiiii e e e en 156
RESIONNG VIEBW STALE. .....iiteiiiii e et e e e e et e et e e e ens 156
Restoring state from service and repoSItory ClaSSES........ovivvvviiiiieiceeeeiiii e 157
Other ways t0 CloSE the @pp........couiii e e e aees 157
Communicating between loosely coupled components in a Windows Store business app using C#,

XAML, 8N PIISINL. ...ttt ere et e et e et e b e e e e e e e e e nnna s 159
Event aggregation in AdventureWOrks ShOPPEI.......cocuuuuiiiiiiiieeei e 160
eV =T o (=0 T= 1o o S 161
Defining and publishing pub/Sub eVeNtS..............ouiiiiiiiicer e 162
DefiNiNg @GN EVENT......ii e e e 162
PUDBIISNINGAN BVENL.......ii e 162
SUDSCHDING 10 BVENLS .. ... it erm e e e e e e et e e e emm e an e eans 163
Default SUDSCIIPLION. . .......i et e e emm e e eees 163
Subscribing onthe Ul thread.............cooouii i 163

SUBSCHPLION fIEING. ... e et e e eeees 164



viii

Subscribing using StroNg rEfEIENCES. ... ...vuii e 165
Unsubscribing from pub/sub @VENLS...........oiii i 166
Working with tiles in &Vindows Store business app using C#, XAML, and Pism................ 167
Tiles in AQVentUreWOrKS SHOPPET. ......iiiiiiiie e eee e 168
(@ (= T= 11 0o =T o] I[P PPPR 169
Using periodic atifications to update tile content...............ccoooeiiiiicceiin e, 170
Creating SECONAANY HHlES. ... i e rem e e e et e e eenns 171
Launching the app from a secondary.tile.............oooiiiiiiiiimeiiieii e 174
Implementing search in a Windows Store business app using C#, XAML, and.Rrism......... 176
Search in AdventureWOorks SNOPPEL. ......coiiiuii e eeeicee e 177
Adding search fFUNCHONAITY. ........c.uuiiiiiie e ere e maes 178
Providing qUErY SUQQESHIQNS. ......ciiiiiii et eem ettt eee e et e e e e eaaanas 179
Responding t0 SEArCN QUETIES.......uu it eee e e e et e e ennns 180
Populating the search results page with data..............cooooiiiieeniiii e 181
Navigating to the result's detail PAgE.........oovivuiiiiiiii e 182
Enabling users to type into the search DOX............coouuiiiiiiiceei e 183
Improving performance in a Windows Store business app using C# and XAML................ 185
Performance CONSIAEIAtIONS. ... .......iiiiiiiii et e e e e e e e eeeaees 187
Limit the Startup tiMe........cou e e e e e e et e e 187
EMPNaSiZe r@SPONSIVENESS ... .ceeiii ettt ettt e e n e e e e a e e e e et eeeean 188
TrM reSOUICE AICHIONANIES. ......u i ieeieitie et e re ettt e e et e e e e e e e ena e 188
Optimize the eleMENT COUNL.........ouuii e 188
Reuse identical DrUSNES.........coouuiii e 188
Use independent aniMatiONS .. .......oiiieiiuueeieiaeeit et e et e e e e e e e ean e eeeees 188
Minimize the communication between the app and the web service...........cc..oveeveee. 189
Limit the amount of data downloaded from the web service............ccoooeviiiiiceeiieeeennnnn. 189
USE Ul VIRUBHZALION.......ueiiieii e eee e emm e 189
Use tre IncrementalUpdateBehavior to implement incremental loading...................... 190
Avoid unnecessary termMINALON..........cvuuiei e e e e e e e e e e en e eens 192
Keep your app's memory usage low when it's suspended..............oooevvvimmmnneeeiiinnnnnn. 192
Reduce battery CONSUMPLON.........coiiiiiiiiiie e eee e e e e e e e e aans 192
Minimize the amount of resources that YoUr app USES...........ovvvvrieiiimmmieeeieeeiiaeeennnn 192
Limit the time spent in transition between managed and native cade.......................... 193

Reduce garbage COolleCHON TS, .........uiiiiiiee e eere e e e e 193



Testing and deploying Windows Store business apps using C#, XAML, and Prism............ 194
Testing AdventureWOrkS SNOPPEE........ciu e e e e e 195
Unit and integration t€SHNG. ... ...uuu it eee et e e e e e e e e e e e e eeea e nnes 196

Testing synchronous fuNCLONALY..............uiiiiiiiii e 197

Testing asynchronous fUNCHONAILY. ..........oovuuiieii e e e e 198
Suspend and reSUME tESTNG. ......uu i eee e e e e e e e e e e e et eeaas 199
Y= 0111 (] 1T PP 199
[oTor= 11421 110 IR (=11 1] T RSP UPPPPT 199
ACCESSIDIIITY TESTING ... ettt ettt e et ere et e et e e st e e et e e et e e e ea e e emnnn s eaeaneeen 200
PerfOrmManCe tESHING........cuuu ittt e et e e et e e e e et arn e e eeeas 200
(DY ot (=] 1 Vo PSSP 200
Testing your app with the Windows App Certification Kit.............oooveuiiiiecniiiiiiiinneeennnn, 201
Creating a Windows Store certification Checklist............cooooviiiieeeiiii e, 202
Deploying and managing Windows StOre @ppPS.......cccuuueviiiieiceeieeeiiieeeiiieeeaieeeesnenmeaens 202

Meet the AdventureWorks Shopper and PrSm team...........oovvvuiiiiiimmniiiiiiecieeeee e e 203

Quickstarts for Windows Store business apps using C#, XAML, and Prism....................... 205

Validation Quickstart for Windows Store apps using C#, XAML, and.Prism...................... 206
Building and running the QUICKSIAIL...........ccouuuniiiiiicee e 206
SOIULION STTUCTUIE. ...ttt e e ettt e e e e e e e e ee e e e eenes 207
Key dasses in the QUICKSEAIL...........ooiiiiii et e s 208
Spedifying validation TUIES............ooii i e 209
Triggenng validation eXpliCitly.............ooeiueiiiii e 210
Triggering validation implicitly on property change.............oooviiiieec e 211
Highlighting Validation EITOIS..........uuiiiiiii e ee e e eeean 212

Event aggregation Quickstart for Windows Store apps using C#, XAML, and.Rrism........... 214
Building and running the QUICKSIAIL...........ccouuuiiiiiiii e 215
SOIULION STIUCTUIE. ...ttt r e e e e e e e et ne e e e eenes 216
Key dasses in the QUICKSEAIL...........ooiiiiii e eeeeaes 216
Defining the ShoppingCartChangedEvent Class..........ccoovviiiiiicceii i 218
Notifying subscribers of the ShoppingCartChangedEVenL...............ccoviiiaeeiiiiiieeeeeiien. 218
Registering to receive notifications of the ShoppingCartChangedEvent......................... 219

Bootstrapping an MVVM Windows Store app Quickstart using C#, XAML, and.Rrism........ 221
Building and running the QUICKSEAIL............covuiiiii e e e 222

Y0 18110 TR 1 (U o1 10 [ (=TT 223



Key dasses in the QUICKSIALL..........ovuue e cee e rem e e e e e e e e e e e e cas 223
Bootstrapping an MVVM app using MvwmAppBase class and a dependency injection c@2ainer
Adding app spedific startup behavitorthe App Class..........ccoouiiiiiiiiiiec e 224
Bootstrapping without a dependency injection Container...........ccooevviiiiiiceeie v, 227

Extended splash screen Quickstart for Windows Store apps using C#, XAML, and.Prism..228

Building and running the QUICKSEAIL............covuiiiiii e eee e 228
SOIULION STIUCTUIE. ...t ettt ettt e n e e ettt e et e et e e e e e menan e e eenees 229
Key dasses in the QUICKSEAIL ..........ooiiiiiiie et e e 230
Creating the extended Splash SCIEEN..........ciiui it 230
Responding to resize amiage opened events for the extended splash screen............... 231
Displaying the extended splash screen and launching additional loadkgy.tas.................. 232
Incremental loading Quickstart for Windows Store apps using C# and. XAML.................... 234
Building and running the QUICKSTAIL...........oiiuiiiii e eere e 235
SOIULION SIUCKUIE ...ttt e e e e e e e e e e ettt e e e et eanab e e e eeeees 235
Using the IncrementalUpdateBehavior to add incremental loading...........c.ccocoevivenennnnn. 236
Handling the ContainerContentChanging eventin ebelind...............ccccoooeiiiiiiieeniiiinnnnnn. 238
Prism for the Windows RUNINTEIEIENCE. .........oouuiiiiiiii e 241
Microsoft.Practices.Prism.StoreApps IDrary..........cooouiiiiiiceei e 242

Microsoft.Practices.Prism.PubSubEvents library...........cc.coiiiiicceiiii e, 244



Developing a Windows Store business app using C#, XAML, and Prism
for the Windows Runtime

This guide helps developers who want to create a Windows Store business app using C#, XAML, the
Windows Runtime, and development patterns such as MédieViewModel and event

aggregation. The guide comes with source codé€fesm for the Windows Runtimeource code for

the AdventureWorks Shopper product catalog and shopping cart reference implementation, and
documentation. The documentation provides guidance on how to implement MVVM with navigation
and app lifecycle management, validation, manage application data, implement controls, accessible
and localizable pages, touch, search, tiles, and tile notifications. It also provides guidance on testing
your app and tuning its performance.

Download

Download AdventureWorks Shopper sample
Download Prism StoreApps library

L Download book (PDF)

Here's what you'll learn:

1 How to implement pages, touch, navigation, settings, suspend/resume, search, tiles, and tile
notifications.

How to implement the ModeViewViewModel (MVVM) pattern.

How to validate userinput for correctness.

How to manage applation data.

How to test your app and tune its performance.

=A =4 4 =4

Note If you're just getting started with Windows Store apps, r€adate your first Windows Store

app using C# o¥isual Basito learn how to create a simple Windows Store app with C#and XAML.
Then download the AdventureWorks Shopper reference implementation to see a complete business
app that demonstrates recommended implementation patterns.

Prerequisites

f Windows8.1
f  Microsoft Visual Studig013
1 Aninterestin C#and XAML programming

Go toWindows Store app developmetat download the latest tools for Windows Store app
develgpment.



http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211368.aspx
http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571

The AdventureWorks Shopper Microsoft Visual Studio solution has a number of nuget package
dependencies, which Visual Studio will attempt to download when the solutionis first loaded. The
required nuget packages are:

=A =4 4 4 -4 -4 -4 -4 -4 A A -

Unity v3.0

Microsoft.AspNet.Webgi.Client v4.1.@alpha120809
Newtonsoft.Json v4.5.11 and v5.0.6
Microsoft.AspNet.Mvc v4.0.20710.0
Microsoft.AspNet.Razorv2.0.20715.0
Microsoft.AspNet.WebApi v4.0.20710.0
Microsoft.AspNet.WebApi.Client v4. 1alpha120809
Microsoft. AspNet.WebApi.Core v420710.0
Microsoft.AspNet.WebApi.WebHost v4.0.20710.0
Microsoft.AspNet.WebPages v2.0.20710.0
Microsoft.Net.Http v2.0.20710.0
Microsoft.Web.Infrastructure v1.0.0.0

Exploring the guidance

What's in the box?

Documentation. The documentation provides guidanoéhow to implement MVVM with
navigation and app lifecycle management, manage application data, implement controls,
accessible and localizable pages, touch, validation, search, tiles, and tile notifications. It also
provides guidance on testing your appdamining its performance.

Portable Document Format (PDB)PDF version of the dme guidance, for printing or

reading offline.

AdventureWorks Shopper reference implementation source c@d€isual Studio solution
containing all the projects that make up the AdventureWorks Shopper product catalog and
shopping cart referace implementation.

Quickstarts The guidance includes a number of Quickstarts that illustrate specific concepts.
Many of the Quickstarts use Prism for the Windows Runtime.

Prism for the Windows Runtime source co@urce code for the two libraries that help to
accelerate the development of managed Windows Store apps.

Prism for the Windows Runtime NuGet packages. NuGet packages for the two litivaties
help to accelerate the development of managed Windows Store apps.



http://go.microsoft.com/fwlink/p/?LinkID=275571
http://go.microsoft.com/fwlink/p/?LinkID=275570

Where to start?

Review the AdventureWorks Reference implementation. After you download the code, see
Getting started using Fsm for the Windows Runtimi@r instructions on how to compile and
run the reference implementation, as well as understand the Visual Studio solution
structure.

Review Quickstart§he guidance providefive Quickstart samples that focus on specific
taskg validation, event aggregation, bootstrapping an MVVM app, extended splash screens,
and incremental loading of items in GridView controls.

Create an app using the Prism for the Windows Runtime. If yaoi te create your own app
using Prism segsing Prism for the Windows Runtime

Explore developer taskkearn how the team implemented manytbé tasks required to

create a Windows Store app.

Review the documentation. The associated documentation outlines the key decisions and
lessons learned to create a Windows Store business app.

Exploring the documentation

Here are the major topics in this igie.

= =4 =4 - = =A =4 -4 -4 =

=

=A =4 4 -4 -4 -4 -4

Getting started using Prism for the Windows Runtime

Developer guidance summary and checklists for Windows Store business apps using C#,
XAML, and Prism

Developertasks for building a Windows Store business app using C#, XAML, and Prism
Using Prism to create a Windows Store app

Designing the user experience of a Windows Store business app using C#, XAML, and Prism
Using the ModeNiewViewModel (MVVM) pattern in a Wind@store business app using

C#, XAML, and Prism

Creating and navigating between pages in a Windows Store business app using C#, XAML,
and Prism

Usingouch in a Windows Store business app using C# and XAML

Validating user inputin a Windows Store business app using C#, XAML, and Prism
Managirg application data in a Windows Store business app using C#, XAML, and Prism
Handling suspend, resume, and activation in a Windows Store business app using C#, XAML,
and Prism

Communicating between loosely coupled components in a Windows Store business app
using C#, XAML, and Prism

Working with tiles in a Windows Store business app using C#, YaAPrism

Implementing search in a Windows Store business app using C#, XAML, and Prism
Improving performance in a Windows Store business appouS# and XAML

Testing and deploying Windows Store business apps using C#, XAML, and Prism

Meet the AdventureWorks Shopper and Prism team

Quickstarts for Windows Store business apps using C#, XAML, and Prism

Prism for the Windows Runtime reference




Community

Prism for the Windows Runtime, #ikmany patterns & practices deliverables, has a community site.
On the community site you can post questions, provide feedback, connect with other users to share
ideas, and find additional content such as extensions and training material. Community members
can also help Microsoft plan and test future releases of Prism for the Windows Runtime. For more
info seepatterns & practices: Prism for the Windows Runtime

Release notes

The release notes, which include what's new in this release and a change log, can be found on the
community site. For more info sé&ism for the Windows Runtime release nates

Learning resour ces

If you're new to C# programming for Windows Store apps, R@abdimap for Windows Store app
using C# or Visual Baslo find out about debugging Windows Store apps3elkugging Windows

Store apps

If you're familiar with using XAML you'll be able to continue using your skills when you create
Windows Store apps. For more info about XAMIt edates to Windows Store apps, SEAML
overview.

The Windows Runtime is a programming interface that you can use to create Windows Store apps.
The Windows Runtime suppsrthe distinctive visual style and toudfased interaction model of
Windows Store apps as well as access to network, disks, devices, and printing. For more info about
the Windows Runtime API, s&¢indows API reference for Windows Store apps

The .NET framework provides a subset of managed types that you can use to create Windows Store
apps using C#. This subset of managed types is called .NET for Windows Store apps asdNBabl
framework developers to create Windows Store apps within a familiar programming framework. You
use these managed types with types from the Windows Runfikto create Windows Store apps.

You won't notice any differences between using the managpds and the Windows Runtime types
exceptthat the managed types reside in namespaces that startSyistem and the Windows

Runtime types reside in namespaces that start Witindows. The entire set of assemblies for .NET

for Windows Store apps is auta@tically referenced in your project when you create a Windows

Store app using C#. For more info S’E&T for Windows Store apps overview

To learn about the components analdls that determine what platform capabilities are available to
your app, and how to access these capabilitiesAge capability declarations (Windows Store

apps)

The AdventureWorks Shopper reference implementation makes much use of thbaaski
asynchronous pattern (TAP). To learn how to use TAP to implement and consume asynchronous
operations sed ask-based Asynchronous Pattern



http://go.microsoft.com/fwlink/?LinkID=288835
http://go.microsoft.com/fwlink/p/?LinkID=386786
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211377.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230302.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://go.microsoft.com/fwlink/p/?LinkID=276827

You might also want to reddidex of UX guidelines for Windows Store appdDesign Windows
Store apps using Blend for Microsoft Visual Studio 2018arn more about how to implementa
great user experience.

Downloads for the previous release

The previous release of Prism, which works with Windows 8 but nbtwihdows8.1, can be
downloaded using the links below.

AdventureWorks Shopper sample
Quickstarts

Prism Store Apps library

Prism PubSubEvents library

Book (PDF)

=A =4 =4 -4 -4


http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://go.microsoft.com/fwlink/p/?LinkID=389062
https://prismwindowsruntime.codeplex.com/releases/view/106870
http://go.microsoft.com/fwlink/p/?LinkID=389064
http://go.microsoft.com/fwlink/p/?LinkID=389065
http://go.microsoft.com/fwlink/p/?LinkID=389066

Getting started using Prism for the Windows Runtime

Learn how to build and run AdventureWorks Shopper, the reference implementation for Prism for
the Windows Runtime, and how the source code is organized in Microsoft Visual Studio. The
AdventureWorks Shoppeeference implementation demonstrates how to accelerate the
development of a Windows Store business app by using Prism.

Download

Download AdventureWorks Shopper sample

Download Prism StoreApps library

L Download book (PDF)

You will learn

f How to structure the Visual Studio solution for a Windows Store business app that uses the
Model-ViewViewModel (MVVM) pattern.

Applies to

1  Windows Runtime for Window& 1
1 C#
1 Extensible Application Markup Language (XAML)

Building and running the sample
Build the AdventureWorks Shopper Visual Studio solution as you would build a standard solution.

1. On the Visual Studio menu bar, chod&ld>Build Solution

2. Afteryou build the solution, you must deploy it. On the menu bar, ch@skl> Deploy
Solution. Visual Studio also deploys the project when you run the app from the debugger.

3. Afteryoudeploy the project, you should run it. On the menu bar, ch@edsug> Start
DebuggingMake sure that AdventureWorks.Shopper is the startup project. When you run
the app, the hub page appears.


http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571

ADVENTURE o
WDRI(S sarch for a Produc

|7
$1364.50

Road-750 Black, 52 HL Mountain Frame,

Entry level adult biie; TE 3 Each frame & hand-craft

/5
\

$577.12 $229.49

Mountain-400-W Red, 42 HL Ferk LL Mountain Handlg

Thiz bike delivers a high-level of performance on a budget. it i responsive and. High-performance carbon road fork.. All-purpose bar for on o

Visual Studio solution structure for a Windows Sto re business app that uses
the MVVM pattern

The AdventureWorks Shopper Visual Studio solution organizes the source code and other resources
into projects. All of the projects use Visual Studio solution folders to organize the source code and
other resource$nto categories. The following table outlines the projects that make up the
AdventureWorks Shopper reference implementation.

Project Description

AdventureWorks.Shopper This project contains the views for the
AdventureWorks Shopper reference
implementation, the package manifest, and the
Appclass that defines the startup behavior of the
app, along with supporting classes and resource
For more info se@he AdventureWorks.Shopper
project

AdventureWorks.UlLogic This project contains the business logic for the
AdventureWorks Shopper reference
implementation, and comprises view models,
models, repositories, and service @as. For more
info seeThe AdventureWorks.UlLogic project




AdventureWorks.WebServices This project contains the web service for the
AdventureWorks Shopper reference
implementation. For more info s€Ehe
AdventureWorks.WebServices project

Microsoft.Practices.Prism.PubSubEvents This project contains classes that implement the
event aggregator. For more info s&he
Microsoft.Practices.Prism.PubSubEvents projec

Microsoft.Practices.Prism.Store Apps This project contains interfaces and classes that
provide MVVM support with lifecycle
management, and core services to the
AdventureWorks Shopper refemnee
implementation. For more info seEhe
Microsoft.Practices.Prism.Store Apps project

AdventureWorks.UlLogic.Tests This project contains unit tests for the
AdventureWorks.UlLogic project.

AdventureWorks.WebServices.Tests This project contains unit tests for the
AdventureWorks.WebServices project.

Microsoft.Practices.Prism.PubSubEvents.Te This project contains unit tests for the
Microsoft.Practices.Prism.PubSubEvents projec

Microsoft.Practices.Prism.StoreApps.Tests  This project contains unit tests for the
Microsoft.Practices.Prism.Store Apps project.

You can reuse some of the components in the AdventureWorks Shopper reference implementation
in any Windows Store app with ligtlor no modification. For your own app, you can adaptthe
organization and ideas that these files provide.

The AdventureWorks.Shopper project

The AdventureWorks.Shopper project contains the following folders:

1 TheAssetdolder contains images for the spkascreen, tile, and other Windows Store app
required images.

1 TheBehaviorsfolder contains behaviors that are exposed to view classes.

1 TheCommonfolder contains théddependencyPropertyChangedHelpeass which monitors
a dependency property for changes tstandard styles used by the app.

1 TheControlsfolder contains theAutoRotatingGridViewandMultiple SizedGridView
controls.

1 TheConverterdolder contains data converters such as BaoleanToVisibilityConverter
and theNullToVisibleConverter

1  TheDesignViewModel$older contains desigtime view model classes that are used to
display sample datain the visual designer.

1 TheServicedolder contains thAlertMessageServicandSecondaryTileServiadasses.



10

f TheStringsfolder contains resource stringsed by this project, with subfolders for each
supported locale.

1 TheThemedolder contains the application styles used by the app.

1 TheViewsfolder contains the pages and flyouts for the app. The app uses a default
convention that attempts to locate pagen the "Views" hamespace.

The AdventureWorks.UILogic project

The AdventureWorks.UlLogic project contains the model, repository, service, and view model
classes. Placing the model and view model classes into a separate assembly provides a simple
mechanisnior ensuring that view models are independent from their corresponding views.

The AdventureWorks.UlLogic project contains the following folders:

1 TheModelsfolder contains the entities that are used by view model classes.

1 TheRepositoriedolder contains repository classes that access the web service.

f TheServicedolder contains interfaces and classes thatimplement services that are
provided to the app, such as tiecountServiceand TemporaryFolderCacheServickasses.

1 TheStringsfolder contains resource strings used by this project, with subfolders for each
supported locale.

1 TheViewModelsfolder contains the application logic thatis exposed to XAML controls.
When a view class is associated with a view model class a default convisnisad which
will attempt to locate the view model class in the "ViewModels" nhamespace.

The AdventureWorks.WebServices project

The AdventureWorks.WebServices project is a sample web service that usesamiory database
to provide datato the AdventuM/orks Shopper reference implementation. When the reference
implementation is deployed through Visual Studio this web service is deployed locally on the
ASP.NET development server.

The AdventureWorks.WebServices project contains the following folders:

TheApp_Startfolder contains the configuration logic for the web service.
TheControllersfolder contains the controller classes used by the web service.
Thelmagesfolder contains productimages.
TheModelsfolder contains the entities that are used by the lvgervice. These entities
contain the same properties as the entities in the AdventureWorks.UlLogic project, with
some containing additional validation logic.
1 TheRepositoriedolder contains the repository classes that implement thenemory

database usd by the web service.
1 TheStringsfolder contains aresource file containing strings used by the web service.
1 TheViewsfolder contains the Web.config settings and configuration file for the web service.
It does not contain views because it uses the ASP.NET Web API, which returns data rather
than displays views.

=A =4 -4 =4



11

Note The AdventureWorks.WebServices project does not progiddance for building aweb
service.

The Microsoft.Practices.Prism.PubSubEvents project

TheMicrosoft.Practices.Prism.PubSubEventgject is a Portable Class Library that contains classes
that implement event aggregation. You can use this library for communicating between loosely
coupled components in your own app. The project has no dependencies on any other projects. For
more info about this library, seferism for the Windows Runtime reference

The Microsoft.Practices.Prism.StoreApps project

This project contains the reusable infrastructure of the AdventureWorks Shopper reference
implementation, which you can use for building your own WindoteseSapp. It contains classes to
build Windows Store apps that support MVVM, navigation, state management, validation, and
commands.

TheMicrosoft.Practices.Prism.StoreAgm®ject uses Visual Studiolsition folders to organize the
source code and other resources into these categories:

1 Thelnterfacesfolder contains the interfaces that are implemented by classes in this project.
1 TheStringsfolder contains resource strings used by this project, with subfolders for each
supported locale.

For more info about this library, sé&ism for the Windows Runtime reference

Where to get more info

For info about the logical architecture of a Windows Store business app that uses Prism, see
Architecture of a Windows Store business app that uses PEsmmore info about using Prism see
Using Prism to create a Windows Store appr more info about the tasks that this documentation
can help you with, seBeveloper tasks for building a Windows $tbusiness app




12

Developer guidance summary and checklists for Windows Store
business apps using C#, XAML, and Prism

Explore checklists that provide a consolidated view of the guidance included with the documentation
and illustrated in the AdventureWorl&hopper reference implementation, a Windows Store

business app that uses C#, XAML, and Prism for the Windows Runtime. We include checklists for the
Model-ViewViewModel (MVVM) pattern, creating and navigating between pages, using touch,
validating user inpt, managing app data, handling suspend, resume, and activation, communicating
between loosely coupled components, working with tiles, implementing search, improving
performance, and testing and deploying apps.

Download

Download AdventureWorks Shopper sample

Download Prism StoreApps library

i Download book (PDF)

After you download the code, s&getting started using Prism for the Windows Runtioe
instructions on how to compile and run the reference implementation, as well as understand the
Microsoft Visu&Studio solution structure.

You will learn

1 Aboutthe key decisions that must be made when developing a Windows Store business app.
1 About checklists that you can use to accelerate the development of a maintainable and
testable Windows Store business app.

Applies to

f  Windows Runtime for Window& 1
1 C#
1 Extensible Application Markup Language (XAML)

Making key decisions

This guidance provides information to developers who want to create a Windows Store app using
C#, XAML, the Windows Runtime, and modern development practices. When you develop a new
Windows Store app, you need to determine some key factors that will défenarchitecture of

your app.


http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571

13

The following are many of the key decisions that you will need to make:

1 Decide on the design of the end user experien¥®hen planning Windows Store apps, you
should think more about what experience you want to providgaar users and less about
what MicrosoftWindows features you want to include. For more info 8ssigning the user
experience

1 Decide whetherto use a dependency injection contain®ependency injd¢ion containers
reduce the dependency coupling between objects by providing a facility to construct
instances of classes with their dependencies injected, and manage their lifetime based on
the configuration of the container. You will need to decide wheteise a dependency
injection container, which container to use, and how to register the lifetime of components.
For more info se&Jsing the ModelView-ViewModel pattern

1 Decide whether to providea clean separation of concerns between the user interface
controls and their logicOne of the most important decisions when creating a Windows
Store app is whether to place business logic in ebdkind files, or whetherto create a
clean separation of gtcerns between the user interface controls and their logic, in order to
make the app more maintainable and testable. If you decide to provide a clean separation of
concerns, there are then many decisions to be made about how to do this. For mosemfo
Using the ModelViewViewModel pattern

1 Decide how to create pages and navigate between thefhere are many decisions to be
made about page design including the page layout, what content shouldspkagied in
different page views, whether to include design time data on your pages, and whether to
make pages localizable and accessible. In addition, you must also make decisions about page
navigation including how to invoke navigation, and where nawegdtgic should reside. For
more info seeCreating and navigating between pages

1 Choose the touch interactions that the app will suppoithis includes selecting the
gestures from the Windows touchriguage that your app requires, and whether to design
and implement your own custom touch interactions. For more infoldsi@g touch

1 Decide how to validate user input for correctnesthe decision musthclude how to
validate userinput across physical tiers, and how to notify the user about validation errors.
For more info se&/ alidating user input

1 Decide how to manage application datdhis shouléthclude deciding upon which of the
app data stores to use, what data to roam, deciding how to manage large data sets, how to
perform authentication between your app and a web service, and how to reliably retrieve
data from a web service. For more info 9danaging application data

1 Decide how to manage the lifecycle of the apphe purpose and usage patterns of your app
must be carefully designed to ensure that users have the best possible experience when an
app suspends and resumes. This includes deciding whether your app needs to update the Ul
when resuming from suspensiom@whether the app should start fresh if a long period of
time has elapsed since the userlast accessed it. For more infdegeting suspend,
resume, and activation

1 Choose between platform providedwenting and loosely coupled eventingvent
aggregation allows communication between loosely coupled components in an app,
removing the need for components to have areference to each other. If you decide to use




14

eventaggregation, you must decide how tdsuaribe to events and unsubscribe from them.
For more info se€ommunicating between loosely coupled components

Decide how to create tiles that are engaging for useAstile is an app's representation on

the Start screen and allows you to presentrich and engaging content to your users when the
app is not running. In order to create engaging tiles you must decide on their shape and size,
how to update tile content, atthow often to update tile content. For more info séérking

with tiles.

Choose how to participate in search your app has content that users might want to

search, you should add a search box toryapp canvas. The search box can respond to user
queries and display search results in a page of your own design. However, there are still
decisions to be made that include whether to provide query and result suggestions, filtering,
and whatto display othe search results page. For more info $elementing search

Consider how to improve app performancé weltperforming app should respond to user
actions quickly, with no noticeable delay. In ortiedeliver a weHperforming app you will

need to decide which tools to use to measure performance, and where to optimize code. For
more info sedmproving performance

Decide how to test and deploy @ app Windows Store apps should undergo various modes
of testing in order to ensure that reliable, high quality apps are deployed. Therefore, you will
need to decide how to test your app, how to deploy it, and how to manage it after
deployment. For morenfo seeTesting and deploying Windows Store apps

Windows Store business apps developer checklists

When developing a Windows Store business app you should consult the following checklists to
acceleratedevelopment while ensuring that a maintainable and testable app is produced.

Designing the user experience

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and
compelling user experience. Planning ahead foedéht form factors, accessibility, monetization,
and selling in the global market can reduce your development time and make it easierto create a
high quality app and getit certified.

Check Description

L] Created a "great at" statement to guide usxperience planning.

U Decided the user experiences to provide in the app.

| Followed thdndex of UX guidelines for Windows Store afiwshe experiences the app
provides.

H Storyboarded the different app flows to decide how the app behaves.

[ Designed the app for different form factors.

Ll Designed the app for all users regardless of their abilities, disabilities, or preferences.

Fa more info sed®esigning the user experience



http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

15

Using the Model -View-ViewModel (MVVM) pattern

MVVM provides away for developers to cleanly separate the user interface controls from their logic.
Thisseparation makes it easy to test the business logic of the app.

Check Description

L] Used a dependency injection container to decouple concrete types from the code that
depends on those types, if appropriate.

L] Used viewfirst composition because the appconceptually composed of views that
connectto the view models they depend upon.

O Limited view model instantiation to a single class by using a view model locator object

1 Used a conventiothased approach for view model construction to remove tileed for
some boilerplate code.

O Used an attached property to automatically connect views to view models.

L] Promoted the testability of the app by exposing commands from the view models for
ButtonBasederived controls on the views.

H Promoted the testability of the app by exposing behaviors to views forBattonBase
derived controls.

O Supported aview model hierarchy in orde gldminate redundant code in the view model

classes.

For more info se&Jsing the MVVM pattern

Creating and navigating between pages

The app page is the focal point for designing your Ul. It hold$ gbur content and controls.
Whenever possible, you should integrate your Ul elements inline into the app page. Presenting your
Ul inline lets users fully immerse themselves in your app and stay in context.

Check Description

L Used Visual Studio to work with the coflecused aspects of the app.

O Used Blend for Microsoft Visual Stud@l3 or the Visual Studio designer to work on the
visual appearance of the app.

[

Provided flexible page layouts that support landscape, pdrtaad minimal view states.

O

Followed a consistent layout pattern for margins, page headers, gutter widths, and oth
page elements.

| Maintained state in minimal view and possess feature parity across states.



http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

16

[1 Used the Windows simulator to tetite app on a variety of screen sizes, orientations, and pi
densities.

[l Addedsample datato each page to easily view styling results and layout sizes, and to su|
the designerdeveloper workflow.

[1 Incorporated accessible design principles ithie pages, and planned for them to be localizet

[0 Placed navigation logic in view model classes to promote testability.

[ Used commands to implementa navigation action in a view model clagtonBase
derived controls.

[1 Used behaviors to implenméa navigation action for noButtonBasederived controls.

[1 Used the navigation bar for navigational elements that move the userto a different page &
used the bottom app bar for commands that act on the current page.

[l Implemented common page navitizn functionality as a user control that is easily included «
each page.

[1 Used strings to specify navigation targets.

For more info se€reating and navigating between pages

Using touch

Touchinteractions in Windows use physical interactions to emulate the direct manipulation of Ul
elements and provide a more natural, reabrld experience when interacting with those elements
on the screen.

Check Description

L]

O

I I B A

Used the Windows touch languagerovide a concise set of touch interactions that are
used consistently throughout the system.

Used data binding to connect standard Windows controls to the view models that
implement the touch interaction behavior.

Ensured that touch targets atarge enough to support direct manipulation.
Provided immediate visual feedback to touch interactions.

Ensured that the app is safe to explore by making touch interactions reversible.
Avoided timed touch interactions.

Used static gestures to hdle singlefinger touch interactions.

Used manipulation gestures to handle dynamic mtdtich interactions.

For more info se&Jsing touch



17

Validating user input

Any app that accepts input froosers should ensure that the data is valid. Validation has many uses
including enforcing business rules, providing responses to user input, and preventing an attacker
from injecting malicious data.

Check Description

L Performed clientside validation to ppvide immediate feedback to users, and sergede
validation to improve security and enforce business rules on the server.

L] Performed synchronous validation to check the range, length, and structure of usering

Ol Derived model classes from tMalidatable BindableBaselass in order to participate in
client-side validation.

H Specified validation rules for model properties by adding data annotation attributes to t
properties.

L] Used dependency properties and data binding to make valid&roors visible to the user

when the properties of the model objects change.

L] Notified users about validation errors by highlighting the control that contains the inval
data, and by displaying an error message thatinforms the user why the data iglinval

H Saved userinput and any validation error messages when the app suspends, so thatt
can resume as the user left it following reactivation.

For more info se®alidating user input

Managing application data

Application datais data that the app itself creates and manages. Itis specific to the internal
functions or configuration of an app, and includes runtime state, user preferences, reference
content, and other settings.

Check Description

L Used the application data APIs to work with application data, to make the system
responsible for managing the physical storage of data.

Ll Stored passwords in the Credential Locker only if the user has successfully signed int
app, and has opted teave passwords.

L] Used ASP.NET Web API to create a reseonemted web service that can pass different
contenttypes.

H Cached web service data locally when accessing data that rarely changes.

For more info se&lanaging application data




18

Handling suspend, resume, and activation

Windows Store apps should be designed to suspend when the user switches away from them and
resume when the user switches back to the

Check Description

L] Saved application data when the app is being suspended.

H Saved the page state to memory when navigating away from a page.

[ Allowed views and view models to save and restore state that's relevant to each.

L] Updated the Ul whethe app resumes if the content has changed.

L] Used the saved application data to restore the app state, when the app resumes after

terminated.

For more info seélandling suspend, resume, andiaetion.

Communicating between loosely coupled components

Event aggregation allows communication between loosely coupled components in an app, removing
the need for components to have a reference to each other.

Check Description

L] Used Microsoft .NEdvents for communication between components that have object
reference relationships.

l Used event aggregation for communication between loosely coupled components.

L] Used theMicrosoft.Practices.Bsm.PubSubEvenkbrary to communicate between loosely
coupled components.

H Defined a pub/sub event by creating an empty class that derives from the
PubSubEvent<TPayloadfass.

[ Notified subscribers by retrieving the event from the event aggregatdralled it$Publish
method.

H Registered to receive notifications by using one of$ubscribenethod overloads availabl

in the PubSubEvent<TPayloadtass.

H Request that notification of the pub/sub event will occur in the Ul thread when needing
update the Ul in response to the event.

L Filtered required pub/sub events by specifying a delegate to be executed once whent
eventis published, to determine whether or not to invoke the subscriber callback.

Ll Used strongly referenced delegates wisrbscribing to a pub/sub event, where
performance problems have been observed.

For more info se€ommunicating between loosely coupled components




19

Working with tiles

Tiles represent your app on théa® screen and are used to launch your app. They have the ability
to display a continuously changing set of content that can be used to keep users aware of events
associated with your app when it's not running.

Check Description

L Used live tiles tpresent engaging new content to users, which invites them to launch tt
app.
H Made live tiles compelling by providing fresh, frequently updated content that makes u

feel that the app is active even whenit's not running.

L] Used a wide tile to displenew and interesting content to the user, and periodic
notifications to update the tile content.

O Used peek templates to break tile content into two frames.

L] Setan expiration on all periodic tile notifications to ensure that the tile's content does r
persistlongerthanit's relevant.

L] Updated the live tile as information becomes available, for personalized content.

L] Updated the live tile no more than every 30 minutes, for frmersonalized content.

H Allowed the userto create secondary tifies any content that they wish to monitor.

For more info se&Vorking with tiles

Implementing search

If your app has content that users might want to search, you should add a search box to your app
canvas. The search box should respond to user queries and display search results in an app page of
your own design.

Check Description

Used theSeachBoxcontrol to let users search for contentin an app.
Implementedtype to searclfior the app's hub, browse, and search pages.
Disabledype to searclbefore showing flyouts, and restored it when flyouts close.
Showed placeholder text in treearch box, to describe what users can search for.
Provided query suggestions to help the user search the app quickly.

Navigated to the search results page when the user selects a query suggestion.

Used a grid layout to display search results.

OO0 000000 d

Showed the user's query text on the search results page.



http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

20

O O

I N I

Used hit highlighting to highlight the user's query on the search results page.

Enabled users to navigate back to the taswed page after they look at the details fora
search result.

Provided app bar navigation on the search results page.
Provided a suitable message if the search query returns no results.
Restored page state correctly upon reactivation.

Saved the search results page for the last query in case the user sefocties query
again.

For more info seémplementing search

Improving performance

To deliver a welperforming, responsive Windows Store app you must think of performance as a
feature, to be planneddr and measured throughout the lifecycle of your project.

Check Description

L]

0 d

O oOdoo0onod I

0 d

Performed app profiling to determine where code optimizations will have the greatest
effectin reducing performance problems.

Measured app performance once you have codd greaforms meaningful work.

Taken performance measurements on hardware that has the lowest anticipated
specification.

Optimized actual app performance and perceived app performance.
Limited the startup time of the app.
Emphasized responsiveneaghe Ul.

Trimmed resource dictionaries to reduce the amount of XAML the framework parsesw
the app starts.

Reduced the number of XAML elements on a page to make the app render faster.
Reused brushes in order to reduce memory consumption.

Used independent animations to avoid blocking the Ul thread.

Minimized the communication between the app and the web service.

Limited the amount of data downloaded from the web service.

Used Ul virtualization to only load into memory those Ul edeits that are near the
viewport.

Used thelncrementalUpdateBehavioio implement incremental loading.

Avoided unnecesary app termination.



http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx

21

Keptthe app's memory usage low when it's suspended.
Reduced the battery consumption of the app.
Minimized the amount of resources that the app uses.

Limited the time spentin transition between managed and native code.

I [ R B I

Reduced garbage collection time.

For more info seémproving performance

Testing and deploying apps

Testing helps to ensure thatan app is reliable, correct, and of high quality.

Check Description

L] Performed unit testing, integration testing, user interface testing, suspend and resume
testing, security testing, localization testing, accessibility testing, performance testing,
device testing, and Windows certification testing.

L Validated and tesh release build of the app by using the Windows App Certification Kit

For more info se@esting and deploying Windows Store business apps




22

Developer tasks for building a Windows Store business app using C#,
XAML, and Prism

Learn about the key developer tasks that you will need to perform when developing a Windows
Store business app. Included are tasks for pages, touch, validation, application data, tiles, search,

performance, testing, extendegplash screens, incremental loading, and the Prism libraries.

Download

Download AdventureWorks Shopper sample
Download Prism StoreApps library

Download Prism PubSubEvents library

L Download book (PDF)

After you download the code, sggetting started using Prism for the Windows Runtfiae
instructions on how to compiland run the reference implementation, as well as understand the
Microsoft Visual Studio solution structure.

Applies to

f  Windows Runtime for Window& 1
1 C#
1 Extensible Application Markup Language (XAML)

Windows Store business app developer tasks

This articlgorovides lists to help you accomplish different tasks when developing Windows Store
business apps. The goal is to lessen the time it takes you to perform a developer task. While many of
the tasks link to content that discusses how to use Prism to solvprtitdem, this is not always the

case. In addition, the task lists are not meant to provide you with detailed steps required to

complete atask. If you require more info, the contentthatis linked to includes links to other

relevant documentation.

Guidance summary and checklists for Windows Store business apps

When developing a Windows Store business app you will need to make some key decisions that will
define the architecture of your app. The documentation includes guidance on:

1 Making the key decisionbat will affect the development of a Windows Store business app.
f Using checklists to create a high quality, maintainable, and testable Windows Store business
app.


http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=296753
http://go.microsoft.com/fwlink/p/?LinkID=275571

23

Using Prism for the Windows Runtime

Prism for the Windows Runtimgrovides two libraries that help developers create Windows Store

apps using C#. The libraries accelerate development by providing support for bootstrapping MVVM
apps, state management, validation of user input, navigation, exggtegation, data binding,
commands, and settings. The libraries can be used separately ortogether.

Using the ModelView-ViewModel (MVVM) pattern

The MVVM pattern lends itself naturally to Windows Store apps that use XAML. The documentation
includesgguidance on:

1 Creating a Windows Store app project using Prism and Unity.
1 Creating a view using Prism.
1 Creating a view model class using Prism.
1 Creating a model class with validation support using Prism.
1 Connecting view models to views.
o UsingPrism's ViewMtelLocator class to connect view models to views.
o Usinga conventiofbased approach to connect view models to views.
o Creating a view model declaratively.
o Creating a view model programmatically.
o Creating a view defined as a data template.
1 Changing the convgion for naming and locating views using Prism.
1 Changing the convention for naming, locating, and associating view models with views using
Prism.
1 Registering aview model factory with views instead of using a dependency injection
container.
f Bootstrappingan MVVM app using Prism's MvvmAppBase class and the Unity dependency
injection container.
1 Updating a view in response to changes in the underlying view model or model.
1 Creating and invoking commands from views.
1 Creating and invoking Blend for Microsoft ¥asStudio 2013 behaviors from views.
Navigating between pages

Navigation within a Windows Store app can result from the user's interaction with the Ul or from the
app itself as a result of internal logiltiven state changes. The documentation includeisiginice on:

f
f

Navigating to the main page or hub page when using Prism.
Navigating to a page specified by a secondary tile using Prism when an app is activated from
a secondary tile.



24

Validating user input

Any app that accepts input from users should enghed the data is valid. An app could, for

example, check that the input contains only characters in a particular range, is of a certain length, or
matches a particular format. Validation can be synchronous or asynchronous, and without it a user
can supplyata that causes the app to fail. Validation enforces business rules, and prevents an
attacker from injecting malicious data. The documentation includes guidance on:

Validating data stored in a bound model object.

Specifying validation rules for model pmxpies by using data annotations.
Triggering validation when property values change.

Triggering validation on all properties.

Highlighting validation errors with a custom Blend behavior.

Saving validation errors when the app suspends, and restore them tileeapp is
reactivated after termination.

=A =4 4 4 - -4

Managing application data
Application data is data that an app creates and manages. The documentation includes guidance on:

1 Storing passwords in the credential locker.
1 Addingitems to the Settings pane using Prism
1 Usingthe Settings charmto allow users to change app settings.

Handling suspend, resume, and activation

Windows Store apps should be designed to save their state and suspend when the user switches
away from them. They should restore their state and meuvhen the user switches back to them.
The documentation includes guidance on:

f Saving state when an suspends.
1 Restoring state when an app reactivates.

Communicating between loosely coupled components

Eventaggregation is a design pattern that enalslmamunication between classes that are
inconvenient to link by object and type references. This mechanism allows publishers and
subscribers to communicate without having a reference to each other. The documentation includes
guidance on:

Defining a pub/sulevent.

Publishing a pub/sub event.

Subscribing to a pub/sub event.

Subscribing to a pub/sub event on the Ul thread.
Performing event subscription filtering.

= =4 =4 -4 -4



25

1 Subscribing to a pub/sub event by using strong references.
1 Manually unsubscribing from a pub/subexwt when using a strong delegate reference.

Designing the user experience

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and
compelling user experience. Planning ahead for different form factors, accessibditgtization,

and selling in the global market can reduce your development time and make it easier to create a
high quality app and get it certified. The documentation includes guidance on:

1 Planning aWindows Store app and design the user experience.
Creating pages

Windows Store app pages need to support a fluid layout such as landscape, portrait, and minimal
view states to be responsive to user resizing requests and support for running on multiple devices.
The user can change the screen size, orientatdod,even input method and the app needs to
respond to these requests. The app also needs to provide navigation between pages, accessihility,
and optionally localization. The documentation includes guidance on:

Creating pages that support design time data.
Supporting multiple view states.
Using a custom GridView control that responds to layout changes.
Using a custom GridView control that displays items at multiple sizes.
Enabling page localization.
Ensuring your app is accessible.
Navigating between pages.
o Passing parameters between pages, and the types of parameters that can be passed.

=A =4 =4 4 -4 -4 -4

Using touch

MicrosoftWindows provides a concise set of touch interactions that are used throughout the
system. Applying this language consistently makes your app feeldatonMvhat users already

know, increasing user confidence by making your app easier to learn and use. The documentation
includes guidance on:

f Using pinch and stretch to perform semantic zoom.
1 Addingitems to the top and bottom app bar.

Managing application data

Application data is data that an app creates and manages. Itis specific to the internal functions or
configuration of the app, and includes runtime state, user preferences, reference content, and other
settings. Application data is createread, updated, deleted, and cached when an app is running.



26

The documentation includes guidance on:

f Performing credentialdased authentication between a Windows Store app and a web
service.

Working with tiles

Atile isan app's representation on thia& screen and allows you to present rich and engaging
contentto your users when the app is not running. Tiles should be appealing to users in orderto give
them great firstimpression of your Windows Store app. The documentation includes guidance on:

Crating an app tile.

Using periodic notifications to update tile content.

Pinning and unpinning secondary tiles to the Start screen from within an app.
Launching the app to a specific page from a secondary tile.

=A =4 4 =4

Implementing search

You should use th8earchBoxontrol to let users search for contentin your app, in orderto ensure

that they have a consistent and predictable experience when thaycke Regardless of where your

I LILIQ&a O2yGSydG Aa f20F0SRx @2dz Oy dzaS GKS aStF ND
results in an app page of your own design. The documentation includes guidance on:

1 Usingthe SearchBox control to implemeaiarch functionality.
1 Providing query suggestions that help the user search quickly.

Improving performance

Users of Windows Store apps expect their apps to remain responsive and feel natural when they use
them. The documentation includes guidance on:

1 Perfamance considerations for Windows Store apps.
Testing and deploying apps

Testing helps to ensure thatan app is robust, reliable, and of high quality. The documentation
includes guidance on:

1 Testing synchronous functionality.
f Testing asynchronous functiolits.
1 Testing suspend and resume functionality.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

27

Extended splash screen Quickstart

An extended splash screen is a splash screen that stays on the screen for an extended period of time.
Extended splash screens should be displayed when an app needs mote pra@are its initial Ul.
The documentation includes guidance on:

1 Creating an extended splash screen using Prism.
1 Respondingto resize and image opened events for the extended splash screen.
1 Displaying an extended splash screen using Prism.

Incremental loading Quickstart

Incremental loading enables an item template i@adViewor ListViewto render its controls in
phases, thereby creating a more responsive and useful Ul when the user scrolls through large data
sets. The documentation includes guidance on:

1 Improving the perceived performance a GridView control by using the Blend
IncrementalUpdateBehaviar

1 Improving the perceived performance of a GridView control by using the
ContainerContentChangingvent.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx

28

Using Prism to create a Windows Store app

Summary

f Use Prism to implement thilodel-ViewViewModel (MVVM) pattern in your Windows
Store app.

1 Use Prismto add validation support to your model classes and add items to the Settings
pane.

1 Use Prismto change the conventions for naming and locating views and view models.

Learn how to crate a Windows Store business app using C#, Prism for the Windows Runtime, and
Unity, and about the logical architecture of such an app. The article provides instructions on creating
views, view models, model classes with validation support, adding itethe ®ettings pane, and
changing the conventions for naming and locating a view and a view model, and how to register a
view model factory with views instead of using a dependency injection container.

You will learn

About the logical architecture of\indows Store business app that uses Prism.

How to create a Windows Store app project using Prism and Unity.

How to create a view, view model, and model class with validation support using Prism.
How to add items to the Settings pane using Prism.

How to clange the conventions used by Prism.

=A =4 4 -4 -4

Applies to

f  Windows Runtime for Window& 1
T C#
1 Extensible Application Markup Language (XAML)

This article describes the general steps a developer needs to perform Rrissato accomplish
different tasks. Itis not medno provide you with detailed steps required to complete atask. If you
require more info, each section has links to the relevant documentation.

Many of the topics in this article assume that you are usindthigydependency injection

container, and that you are using conventions defined by Prism. This guidance is provided to make it
easier foryou to understand how to get started with Prism. However, you are not required to use
Unity, or ary other dependency injection container, and you do not have to use the default
conventions to associate views and view models. To understand how to use Prism without a
dependency injection container, or change the default conventions(eeging the convention for
naming and locating view€hanging the convention for naming, locating, and associating view
models with viewsRegistering view model factory with views instead of using a dependency
injection container



http://go.microsoft.com/fwlink/p/?LinkID=290899

29

For more info about the conventions defined by Prism, deig a conventiofvased approach to
connectview models to viewsor nore info about Prism, seferism for the Windows Runtime
reference

Architecture of a Windows Store business app that uses Prism

Developers of Windows Store business apps face several challenges. Apgmets can change
overtime. New business opportunities and challenges may present themselves. Ongoing customer
feedback during development may significantly affect the requirements of the app. Therefore it's
important to build an app thatit is flexibland can be easily modified or extended over time.

Prism for the Windows Runtime provides an architecture that helps to do justthat. It is designed to
help developers create apps that need to accomplish the following:

f Address the common Windows Store aggvelopment scenarios.

f Separate the concerns of presentation, presentation logic, and model through support for
Model-ViewViewModel (MVVM).

f Use an architectural infrastructure to produce a consistent and high quality app.

The logical architecture of apycal Windows Store business app that uses Prism is shown in the
following diagram.



30

4 .
Windows Store App
View View Infrastructure
Base
Bootstrap
T
App View Model App
WViews Locator Base
- [
View View Model S
Model Base App =
=
! C)
App View Delegate L
Models Command a
Mavigation =
Service m
e
Model g
Maodel Validation )
App Lifecycle E
Management
Data
Access Repositories
Event
Service Proxies 4—, iR
L
s L
Cloud or On-Premise
Services
Repositories
Domain
Model
Domain Domain Domain
Object Ohject Object
e
Legend
I:I Provided by Prism
| | Pravided by Developer
Logical Mame Class
View Base VisualStateAwarePage
View Mode| Base ViewMaodel
App Base My MAppBase

This architecture is used by the AdventureWorks Shopper reference implementation. However,

there are also alternative architectures that are equally valid.




31

The architecture provided by Prism helps to produce flexible, maintainable, and testable apps. It
includes components that help to accelerate development of your app by providing support for
MVVM, loosely coupled communication, and the core services requirWindows Store apps,
allowing you to focus on developing the user experiences for your app. For more irffoiseefor

the Windows Runtime reference

Creating a Windows Store app project using Pri sm and Unity

The following procedure shows how to update a Windows Store app to use the services provided by
Prism.

1. Adda reference to th#licrosoft.Practices.Prism.Store Agjizary to your project taise the
services provided by the library.

2. Derive theAppclass from thelvvmAppBaseclass, provided by the
Microsoft.Practices.Prism.Store Api®ary, in order to gain support for MVVM and the core
services required by Windows Store apps.

3. Delete theOnLaunche@&ndOnSuspendingnethods from theAppclass, as these methods
are provided by thévwmAppBaselass.

4. Override theOnLaunchApplicatioabstract method of théVlvvmAppBaselass, in thé\pp
classand add code to navigate to the first page of the app.

C#
protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)
{

NavigationService.Navigate("PageName", null );

return Task.FromResult< object >(null );

TheOnLaunchApplicatiomethod returns @lask allowingitto launch a long running
operation. If you don't have a long running operation to launch you should return an empty
Task

Note PageNamashould be without the "Page" suffix. For example, Hsenefor
HomePage

5. Adda reference to th&nitylibrary to your project to use the Unity dependency injection
container.

Note TheMicrosoft.Practices.Prism.StoreAgfsrary is not dependent on thenitylibrary.
To avoid using a dependency injection containerRegistering a view model factory with
views instead of using a dependency injection container

6. Create an instance of tHénityContainerclass in thé\pp class, so that you can use the
Unity dependency injection container to retgsand resolve types and instances.


http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899
http://go.microsoft.com/fwlink/p/?LinkID=290899

32

C#

private  readonly IUnityContainer _container = new UnityContainer();

Override theOnRegisterKnownTypesForSerializatimethod in theAppclass to register
any nonprimitive types that need to be saved and restored to survive app termination.

C#

SessionStateService.RegisterKnownType( typeof (Address));

Override theOnlinitializemethod in theAppclass in order to register types for the Unity
container and perform any other initialization. Examples of app specific initialization
behaviorinclude:

o Registeringinfrastructure services.

o Registering types and instances that you use in constructors.

o Providing adelegate that returns aview model type for agiven view type.

C#
protected override void Oninitialize(lActivatedEventArgs args)
{
_container.Registerinstance (NavigationService);
_container.RegisterType<IAccountService, AccountService>
(new ContainerControlledLifetimeManager());
_container.RegisterType<IShippingAddressUserControlViewModel,
ShippingAddressUserControl ViewModel>();
ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType)
=>
{
return viewModelType;
D
}

Note For a detailed example of @ninitializemethod see theéAppclassin the
AdventureWorks Shopper reference implementation.

Override theResolvemethod in theAppclass to retun a constructed view model instance.

C#

protected override object Resolve(Type type)

{

return _container.Resolve(type);

}



33

For more info se&Jsing the MVVM patterrRegistering a view model factory with views instead of
using a dependency injection containBootstrapping an MVVM Windows Store app Quickstart
Creating and navigating between pagas Prism for the Windows Runtime reference

Creating a view

The following procedure shows how to create a view class that hgsosuijor layout changes,
navigation, and state management.

1. Complete theCreating a Windows Store app project using Prism and progedure.

Add a folder namediewsto the root folder of your project.

3. Create a new pagaitheViewsfolder whose name ends with "Page," in order to use the
FrameNavigationServicetiefault convention to navigate to pages in tiieewsfolder.

4. Modify the page class to derive from tMésualState Aware Pagelass, which provides
supportfor layouthanges, navigation, and state management.

5. AddtheViewModelLocator.AutoWireViewModeattached property to your view XAML in
order to use theViewModelLocatorclass to instantiate the view model class and associate it
with the view class.

N

XAML

prism:ViewModelL ocator.AutoWire ViewModel="true"

6. Override theOnNavigatedTandOnNavigatedFronmethods if your page class needs to
perform additional logic, such as subscribing to an event or unsubscribing from an event,
when page navigation occurs. Enstihat theOnNavigatedT@andOnNavigatedFrom
overrides calbase.OnNavigatedTandbase.OnNavigatedFromespectively.

7. Override theSave StatendLoadStatemethods if you have view state, such as scroll
position, that needs to survive termination and bestered when the app is reactivated.

For more info se€reating and navigating between pagdsing the MVVM patterrandHandling
suspend, resume, and activation

Creating a view model class

The following procedure shows how to create a view model class that has support for property
change notification, navigation, and state management.

1. Complet theCreating a Windows Store app project using Prism and progedure.

Add a folder name¥iewModelsto the root folder of your project.

3. Create a new class in th@ewModelsfolder whose name corresponds with the name of a
view and ends with "ViewModel," in order to use tWeewModelLocator'default
convention to instantiate and associate view model classes with view classes.

N



34

4.

Derive the view model class from tMeewModelbase class, provided by the
Microsoft.Practices.Prism.Store Agjigary, so that you can use the base class's

implementation of thelNotifyPropertyChangednterface and gain support for navigation
and state management.

Modify the view model constructor so that it accepts the services required by the view
model, such as alNavigationServicéenstance.

Annotate properties with th¢Restorable Statetustom attribute if you want their values to
survive termination.

For more info se&Jsing the MVVM pattern

Creating a model class with validation support

The following procedure shows how to create a model class that has support for validation.

=

Complete theCreating a Windows Store app project using Prism and protsedure.

Add a referenceéo the Behaviors SDK (XAML) library to your project to use Blend for
Microsoft Visual Studig013 behaviors.

Add a model class to your project and derive the model class from the
ValidatableBindableBaselass, which provides validation support.

Add a prorty to the model class and add the appropriate attributes that derive from the
ValidationAttribute attribute, in order to pecify the client side validation.

C#

[Required(ErrorMessage = "First name is required."” )
public string  FirstName

{

get { return _firstName; }
set { SetProperty( ref _firstName, value); }

Update the view XAML that binds to the property createthe previous step to show
validation error messages.

XAML
<TextBox Text ="{Binding UserInfo.FirstName, Mode=TwoWay?%
<interactivity . Interaction . Behaviors >
<awbehaviors : HighlightFormFieldOnErrors PropertyErrors =
"{Binding  Userinfo.Errors[FirstName]} ">
</ interactivity : Interaction.Behaviors >
</ TextBox >

Note TheHighlightFormFieldOnErrotsehavior can be found in the AdventureWorks
Shopper reference implementation.

For more info/alidating user inpundValidation Quickstart



http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

35

Adding items to the Settings pane
The following procedure shows how to add an item to the Settings pane that can invoke an action.

1. Complete theCreating a Windows Store app project using Prism and progedure.
2. Override theGetSettingsCommandsethod in theAppclass and add code to add items to
the Settings pane.

C#
protected override IList< SettingsCommand> GetSettingsCommand()
{
var settingsCommands = new List<SettingsCommand>();
settingsCommands.Add( new SettingsCommand(Guid.NewGuid().ToString(),
"Text to show in Settings pane" , ActionToBePerformed));
settingsCommands.Ad d( new SettingsCommand(Guid.NewGuid().ToString(),
"Custom setting” , () => new CustomSettingFlyout(). Show()));
return  settingsCommands;
}

For more info se®lanaging application data

Changing the Prism conventions

This section describes how to change the conventions for naming and locating views, naming,
locating and associating view models with views, and registering a view model factory with views
instead of using a dependency injectimmtainer.

Changing the convention for naming and locating views

The following procedure shows how to configure fframeNavigationServicelass to look for views
in a location other than th&iewsfolder.

1. Complete theCreating a Windows Store app project using Prism and gmdgedure.
2. Override theGetPage Typenethod in theAppclass and add code to define the page
location and naming convention appropriate to your app.

C#

protected override Type GetPageType( string pageToken)
{
var assemblyQualifiedAppType = this .GetType().GetTypelnfo()
AssemblyQualifiedName;
var pageNameWithParameter =
assemblyQualifiedAppType.Replace(  this .GetType().FullName, this
.GetType().Namespace + ".Pages.{O}View" );
var viewFullName = string .Format(Culturelnfo.InvariantCulture,
pageNameWithParameter, pageToken);



36

var viewType = Type.GetType(viewFullName);
return  viewType;

For more info se&sing the MVVM pattern

Changing the convention for naming, locating, and associating view models
with views

The following procedure shows how to configure WiewModelLocatorclass to look for view
modelsin a location other than théiewModelsfolder inthe same assembly.

1. Complete theCreating a Windows Store app project using Prism and progedure.

2. Override theOnlnitializemethod in theAppclass and invoke the static
ViewModelLocator.SetDefaultViewTypeToViewModel TypeResoivnethod, passing in a
delegate that specifies a view type and returns a corresponding view model type.

C#
protected override void Onlnitialize(lActivatedEventArgs args)
{
ViewModellLocat or.SetDefaultViewTypeToViewModelTypeResolver((viewType)
=>
{
var viewModelTypeName = string .Format(
Culturelnfo.InvariantCulture, "MyProject.VMs.{0}ViewModel,
MyProject, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=public_Key_Token", viewType.Name);
var viewModelType = Type.GetType(viewModelTypeName);
return viewModelType;
»;
}

For more info seé&sing the MVV Nbattern.




37

Registering a view model factory with views instead of using a dependency
injection container

The following procedure shows how to configure WiewModelLocatorclass to explicitly specify
how to construct a view model for a given view type, instead of using a container for dependency
resolution and construction.

1. Complete theCreating a Windows Store app project using Prism amtyprocedure.

2. Override theOnlnitializemethod in theAppclass and register a factory with the
ViewModelLocatorclass that will create a view model instance that will be associated with a
view.

C#

protected override void Oninitialize(lActivatedEventArg s args)

{

ViewModelLocator.Register(  typeof (MyPage).ToString(), () =>
new MyPageViewModel(NavigationService));

For more info se&Jsing the MVVM patterand Bootstrapping an MVVM Windows Store app
Quickstart




38

Designing the user experience of a Windows Store business app using
C#, XAML, and Prism

Summary

1 Focus on the user experience and not on the featdinesapp will have.

f Use storyboards to iterate quickly on the user experience.

f Use standard Windows features to provide a user experience that is consistent with other
apps. In addition, validate the user experience with iiheéex of UX guidelines for Window$

Store apps

Learn how to design the user experiences and app flow for a Windows Store business app, prior to
storyboarding and prototyping the app.

You will learn

1 How toplan a Windows Store app.
f How you can tie your "great at" statement to the app flow.
1 How storyboards and prototypes drive user experience design.

Applies to

f  Windows Runtime for Window& 1
1 C#
1 Extensible Application Markup Language (XAML)

Making key decisi ons

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and
compelling user experience. Planning ahead for different form factors, accessibility, monetization,
and selling in the global market can reduce ydeivelopment time and make it easier to create a
high quality app and getit certified. The following list summarizes the decisions to make when

planning your app:

How should | plan a Windows Store app?

What guidelines should | follow to ensure a good oWlarser experience?

What experience do you wantto provide to your users?

Should the app run on different form factors?

How do | make the app accessible to users regardless of their abilities, disabilities, or
preferences?

1 Should the app be available irglylobal market?

=A =4 =4 4 -4

When planning a Windows Store app you should think more about what experience you want to
provide to your users and less about what Microstéfindows features you want to include. We
recommend that you follow these steps:


http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

39

Decide the usegxperience goals.

Decide the app flow.

Decide what Windows features to include.
Decide how to monetize your app.

Make a good firstimpression.

Validate the design.

o s~wbdPE

For more info se@lanning Windows Store appsdAdventureWorks Shopper user experiences

There are many user experience guidelines that can help you create a good Windows Store app.
However, the exact guidelines that you will follow will be dependent on the experiences presentin
your app. For more info sdadex of UX guidelines for Windows Store apps

In orderto decide what experience you want to provide to your users we recommend that create a
"great at” statement to guide your user experience planning. keig this, you should design your
app flow. An app flow is a set of related interactions that your users have with the app to achieve
theirgoals. To validate the design you should follow these steps:

1. Outline the flow of the app. What interaction comessti? What interaction follows the
previous interaction?

2. Storyboard the flow of the app. How should users move through the Ul to complete the
flow?

3. Prototype the app. Try out the app flow with a quick prototype.

For more info seéDeciding the user experieagoalsand"Deciding the app floibelow.

Apps should be designed for different form factors, letting users manipulate the content to fit their
needs and preferences. Think of landscape view first so that your app will run on all form factors, but
remember that some screens rotate, so plan the layout of your content for different resolutions and
screen sizes. In addition, because Windows is used worldwide, you need to design your app so that
resources, such as strings and images, are separated frontthagrto help make localization

easier. Also, your app should be available to all users regardless of their abilities, disabilities, or
preferences. If you use the buiit Ul controls, you can get accessibility support with little extra

effort. For more ifio seeDeciding what Windows features to use

AdventureWorks Shopper user experiences

The AdventureWorks Shopper reference implementation is a shopping app, and so we wanted to
design experiences that would enable usershop easily and efficiently.


http://msdn.microsoft.com/en-us/library/windows/apps/hh465427.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

40

Deciding the user experience goals

Our first step was to create a "great at" statementto guide our user experience planning. Here's the
"great at" statement for the AdventureWorks Shopper reference implementation:

AdventureVdrks Shopper is great at letting users easily and efficiently order products from
AdventureWorks.

The goal of the AdventureWorks Shopper reference implementation is not to provide a complete
shopping app, but to demonstrate how to architect a Windows Starginess app. We used our

"great at” statement to guide the design tradeoffs as we built the app, making the focus on what our
users wantto do, ratherthan what the app can do.

Deciding the app flow

We then brainstormed which aspects of a shopping ajgtlae most crucial for a good user
experience, to letthese features guide us through the design process. The features that we came up
with are:

Display and navigate products.

Search for products.

Authenticate user credentials.

Validate userinput.

Order poducts.

Pay fororders.

Enable roaming data for user credentials.
Pin products to the Start screen.

=A =4 =4 4 -4 -4 -4 A

There is plenty of other functionality that we could provide in the AdventureWorks Shopper
reference implementation. But we felt that the abilityboowse, search, and order products best
demonstrate the functionality for creating a shopping app.

The app flow is connected to our "great at" statement. A flow defines how the user interacts with
the app to perform tasks. Windows Store apps should beintiand require as few interactions as
possible. We used two techniques to help meet these goals: creating storyboards andipsck

A storyboarddefines the flow of an app. Storyboards focus on how we intend the app to behave,
and not the specific detls of what it will look like. Storyboards help bridge the gap between the

idea of the app and its implementation, but are typically faster and cheaper to produce than
prototyping the app. Forthe AdventureWorks Shopper reference implementation, storyboanms
critical to helping us to define the app flow. This technique is commonly used in the film industry and
is now becoming standard in user experience design. The following storyboard shows the main app
flow for the AdventureWorks Shopper reference implentation.



41

AN 7 ©|[oAwmE™ [E—]C)
[

] 1 |——
1] CId “ EE

|® e 51 @] |[®rodiet nomation | @y
L T T T T T

LI I T [
N I |

[ |

|® ':-‘hDPP-""‘-ﬂ vt Ié Ender Information
-]
l 'I:l CooCs e =
| C ] = 1 ] ===
| — ! | L p— | [ i |
a
a k-]
@ checkow Smmany @® Seach

—

I
*

l—%—’.

Amockupdemonstrates the flow of the user experience, but more closely resembles what the end
product will look like. We created moakps based on our storyboards and iterated over their design
as ateam. These mockups also helped each teamber get afeel for what the app should look
like. The following mockup shows the hub page.



42

fADVENTURE

'WORKS

During the planning phase of the app, we also created small prototypes to validate feasibility. A
prototypeis a small app that demonstrates the flow of theosome minimal functionality. For
example, a prototype could be created that only contains page navigation and commands, but
doesn'timplement any other functionality. By making the experience real through software,
prototyping enables you to test and vaate the flow of your design on devices such as tablets. You
can also create prototypes that demonstrate core aspects of the app. For example, we created a
prototype that performs validation of user input and notifies the user of any invalid input.
Prototypes enable you to safely explore design approaches before deciding on the approach for the
app. Although you can prototype during the planning phase of your app, try not to focus too much
on writing code. Design the user experience that you want and thigahement that design when it's
ready.

For more info sekéaying out your ULaying out ampp pageandGuidelines for window sizes and
scaling to screens

Deciding what Windows features to use

When planning a new app it's important to provide an experiencesltamnsistent with other

Windows Store apps. Doing so will make your app intuitive to use. We researched the features that
the Windows platform provides by looking at thelex of UX guidelines for Windows Store afdps
prototyping and team discussion, and by brainstorming which platform features would best support
our app flow.



http://msdn.microsoft.com/en-us/library/windows/apps/hh465330.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

43

Deciding how to monetize the app

Although AdventureWorks Shopperis afree app, its purposedsve sales for AdventureWorks
through customers placing and paying for orders. In order to significantly increase the number of
users who could use the app we decided to make it woglddy. Being worldeady not only means
supporting localized string®d images, it also means being aware of how users from different
cultures will use the app. For more info sS8aeidelines for globalizaticendGuidelines for app
resources

For more info about monetizing your app Sékan for monetizatiomndAdvertising Guidelines

Making a good first impression

Windows Store apps should convey their "great at" statement to users when they first launch the
app. Afterreferring back to our "great’adtatement @AdventureWorks Shopper is great at letting
users easily and efficiently order products from Adventure\War&sealized that product

promotion was key to allowing users to easily and efficiently order products from AdventureWorks.
This coulde enabled by:

1 Havingallive tile, that uses tile notifications to promote products. When a user leaves the
app, we wanted to maintain a good impression by regularly updating the live tile with
product offers.

1 Usingthe splash screen to express the appispnality. We chose a splash screenimage
that fits the AdventureWorks branding and that reinforces the whole user experience.

1 Having a home page that clearly shows the primary purpose of the app. Users will be more
likely to explore the rest of the apptheir initial impression is favorable.

Validating the design

Before beginning development, we presented our mockups and prototypes to stakeholders in order
to gain feedback to validate and polish our design. We also-afossked the design against the

Index of UX guidelines for Windows Store ajgpsnsure that we complied with the Windows Store
user experience guidelines. This prevented us from having to make core dbaiggyes laterin the
development cycle.



http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465433.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj649139.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

44

Using the Model -View-ViewModel (MVVM) pattern in a Windows Store
business app using C#, XAML, and Prism
Summary

1 Use theMicrosoft.Practices.Prism.Store Agjisrary to accelerate the development of
managed Windows Store apps that use the MVVM pattern.

1 Use commands to implement actions in view model classes for controls that derive from
ButtonBase

f Use Blend for Microsoft Visual Studi@l3 behaviors to encapsulate interaction logic and
behavior that can be declaratively associated with controls.

Learn how to implement the ModeViewViewModel MVVM) pattern in a Windows Store business
app by using Prism for the Windows Runtime. This includes bootstrapping an MVVM app that uses
Prism, using a view model locator to connect view models to views, and Ul interaction using
delegate commands and Blebéhaviors.

You will learn

1 How to use dependency injection to decouple concrete types from the code that depends on
the types.

1 How to bootstrap a Windows Store app that uses the MVVM pattern, by using a dependency
injection container.

f How to connectviewnodels to views.

1 How aview is updated inresponse to changes in the underlying view model.

1 How to invoke commands and behaviors from views.

Applies to

f  Windows Runtime for Window& 1
1 C#
1 Extensible Application Markup Language (XAML)

Making key decisions

The MVVM patternis well documented, and it brings benefits to many categories of apps. However,
it is not always suited to every app. For example, usingdmetend may be the best choice for small
apps that have a limited life span. Nonetheless, if yoaose to use the MVVM pattern to construct
your app, you will have to make certain design decisions that will be difficult to change later on.
Generally, these decisions are appde and their consistent use throughout the app will improve
developer and dsigner productivity.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

45

The following list summarizes the decisions to make when implementing the MVVM pattern:

f Should I use Prism to provide support for MVVM?
1 Should | use a dependency injection container?
o Which dependency injection container should €@s
o Whenis itappropriate to register and resolve components with a dependency
injection container?
o Should a component's lifetime be managed by the container?
1 Should the app construct views or view models first?
f How should | connect view models to views?
Should | use XAML or codkehind to set the view'BataContexproperty?
o Shouldluse a view model locator object?
o Should luse an attaehl property to automatically connect view models to views?
o Should luse a conventidmsed approach?
Should | expose commands from my view models?
Should I use behaviors in my views?
Should linclude design time data supportin my views?
Do | need to suppta view model hierarchy?

o

=A =4 -4 -4

Prism includes components to help accelerate the development of a managed Windows Store app
that uses the MVVM pattern. It helps to accelerate development by providing core services
commonly required by a Windows Store app, alliogwyou to focus on developing the user
experiences foryour app. Alternatively, you could choose to develop the core services yourself. For
more info sedPrism for the Windows Runtime reference

Thereare several advantages to using a dependency injection container. First, a container removes
the need fora componentto locate its dependencies and manage their lifetime. Second, a container
allows mapping of implemented dependencies without affectingdbmponent. Third, a container
facilitates testability by allowing dependencies to be mocked. Forth, a container increases
maintainability by allowing new components to be easily added to the system.

In the context of a Windows Store app that uses the M\pétlern, there are specific advantages to

a dependency injection container. A container can be used for registering and resolving view models
and views. In addition, a container can be used for registering services, and injecting them into view
models. A$0, a container can create the view models and inject the views.

There are several dependency injection containers available, with two common choices being Unity
and MEF. Both Unity and MEF provide the same basic functionality for dependency injection, eve
though they work very differently. When considering which container to use, keep in mind the
capabilities shown in the following table and determine which fits your scenario better.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

46

Both containers Unity only MEF only

Registertypes and instances wi Resolves concrete types without Recomposes properties ar
the container. registration. collections as new types
are discovered.

Imperatively create instances of Resolves open generics. Automatically exports
registered types. derived types.
Injectinstances of registered Uses interception to capture call

types into constructors and to objects and add additional

properties. functionality to the target object.

Have declarative attributes for
marking types and dependencie
that need to be managed.

Resolve dependenciesin an
object graph.

If you decide to use a dependency injection container, you should also consider whetheritis
appropriate to register and resolve components using the container. Registering and resolving
instances from @ontainer has a performance cost because of the container's use of reflection for
creating each type, especially if components are being reconstructed for each page navigation in the
app. If there are many or deep dependencies, the cost of creation casase significantly. In

addition, if the component does not have any dependencies or is not a dependency for other types,
it may not make sense to put itin the container. Also, if the component has a single set of
dependencies that are integral to the tg@nd will never change, it may not make sense to put itin

the container.

You should also consider whether acomponent's lifetime should be managed by the container.
When you register a type the default behavior for the Unity container is to create armsance of

the registered type each time the type is resolved or when the dependency mechanism injects
instances into other classes. When you register an instance the default behavior for the Unity
containeris to manage the lifetime of the object asragéeéton. This means that the instance

remains in scope as long as the containeris in scope, and itis disposed when the container goes out
of scope and is garbagmllected or when code explicitly disposes the container. If you want this
singleton behaviofor an object that Unity creates when you register types, you must explicitly

specify theContainerControlledLifetimeManageaiass when registering the type. For more info see
Bootstrapping an MVVM Wdows Store app Quickstart

If you decide not to use a dependency injection container you can uséigveModelLocatorclass,
provided by theMicrosoft.Practices.Prism.StoreAdisrary, to register \vew model factories for
views, or infer the view model using a conventio&ised approach. For more info sesing the
ViewModelLocatorclass to connect view models to viearsdBootstrapping an MVVM Windows
Store app Quickstart




47

Deciding whether your app will construct views or the view models firstis an issue of preference and
complexity. With view first composition the app is conceptually composed of views whickcidon

the view models they depend upon. The primary benefit of this approach is that it makes it easy to
construct loosely coupled, unit testable apps because the view models have no dependence on the
views themselves. It's also easy to understand thedtre of an app by following its visual

structure, rather than having to track code execution in order to understand how classes are created
and connected together. Finally, view first construction aligns better with the Windows Runtime
navigation systerbecause itis responsible for constructing the pages when navigation occurs,
which makes a view model first composition complex and misaligned with the platform. View model
first compaosition feels more natural to some developers, since the view creatidmecabstracted

away allowing them to focus on the logical Rblhstructure of the app. However, this approachis

often complex, and it can become difficult to understand how the various parts of the app are
created and connected together. It can be diffliito understand the structure of an app

constructed this way, as it often involves time spent in the debugger examining what classes gets
created, when, and by whom.

The decision on how to connect view models to views is based on complexity, perforrandce,
resilience:

1 If codebehind is used to connectview models to views it can cause problems for visual
designers such as Blend and Visual Studio.

1 Using a view model locator object has the advantage that the app has a single class thatis
responsible fothe instantiation of view models. The view model locator can also be used as
a point of substitution for alternate implementations of dependencies, such as for unit
testing or design time data.

1 A conventiorbased connection approach removes the need focimboilerplate code.

1 An attached property can be used to perform the connection automatically. This offers the
advantage of simplicity, with the view having no explicit knowledge of the view model.

Note The view willmplicitlydepend on specific properties, commands, and methods on the view
model because of the data bindings it defines.

In Windows Store apps, you typically invoke some action in response to a user action, such as a
button click that can be implemented by creagian event handler in the coeeehind file. However,
MVVM discourages placing code in the cdulshind file as it's not easily testable because it doesn't
maintain a good separation of concerns. If you wish to promote the testability of your app, by
reducing the number of event handlers in your cotéehind files, you should expose commands
from your view models foButtonBasederived contols, and use behaviors in your views for
controls that don't derive fronButtonBase in order to connect them to view model exposed
commands and actions.

If you will be using a visual designer to design and maintain your Ul you'll need to include design
time data supportin your app so that you can view layouts accurately and see realistic results for
sizing and styling decisions.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

48

You should support a view model hierarchy if it will help to eliminate redundant code in your view
model classes. If you findadtical functionality in multiple view model classes, such as code to
handle navigation, it should be refactored into a base view model class from which all view models
classes will derive.

MVVM in AdventureWorks Shopper

The AdventureWorks Shopper reference implementation uses the Unity dependency injection
container. The Unity container reduces the dependency coupling between objects by providing a
facility to instantiate instances of classes and manage their lifetimen®an object's creation, the
container injects any dependencies that the object requires into it. If those dependencies have not
yet been created, the container creates and resolves them first. For more inldseg a

dependency injection containeBootstrapping an MVVM Windows Store app QuickstadUnity
Container

In the AdventureWorks Shopperfierence implementation, views are constructed before view
models. There is one view class per page of the Ul (a page is an instance of the
Windows.UIl.Xaml.Controls.Pagelass), with design time data being supported on each view in
orderto promote the designedeveloper workflow. For more info s€&eating and navigating

between pages

Each view modas declaratively connected to a corresponding view using an attached property on a
view model locator object to automatically perform the connection. View model dependencies are
registered with the Unity dependency injection container, and resolved wwherniew modelis

created. A base view model class implements common functionality such as navigation and
suspend/resume support for view model state. View model classes then derive from this base class
in order to inheritthe common functionality. For neinfo sedJsing theviewModelLocatorclass

to connect view models to views

In order for a view model to participate in twoay data binding with the view, its properties must
raise thePropertyChangee@vent. View models satisfy this requirement by implementing the
INotifyPropertyChangednterface and raising theropertyChange@vent when a property is
changed. Listeners can respond appropriately to the property changes when they occur. For more
info seeUpdating a view in response to changes in the underlying view model or model

The AdventureWorks Shopper reference implementation uses two options for executing code on a

view model in response to interactions on aview, such as a button click osd&ution. If the

O2y iNRt A& I O2YY CgmnadddapeNtipSdataboukdo abl@oyhinand f Q &
LINPLISNIIe 2y GKS @ASg Y2RStod® 2KSy GKS O2y GNRBf Qa
will be executed. In addition to commands, behasioan be attached to an objectin the view and

can listen for an eventto be raised. In response, the behavior can then invéiaianor an

ICommandon the view model. & more info sedJl interaction using th®elegate Commandlass

and Blend behaviors



http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/018hxwa8.aspx

49

1ttt 2F GKS OAS86 Y2RSta Ay GKS ! ROSYy(GdNB2 2Nl a {K
domain model, which is often just called theodel. The model consists of classes that the view

Y2RSfa dzasS (2 AYLX SYSyd GKS FLILIQa FdzyOlAzylfAaGe
through model properties on the view model. However, if you want a strong separation between the

model and he view models, you can package model classes in a separate library.

In the AdventureWorks Shopper Visual Studio solution there are two projects that contain the view,
view model, and model classes:

1 Theview classes are located in the AdventureWorks.Shgppgect.
1 Theview model and model classes are located in the AdventureWorks.UILogic project.

Solution Explorer * 0 X
@Hle~r 248|& =8

Search Solution Explorer (Ctrl+ D -

&g Solution “AdventureWorksShopper' (9 projects)

P Auget

[ Tests

I AdventureWorks.Shopper (Windows 8.1)

[ AdventureWarks UlLogic (Windows 8.1)

[ :'1 AclventureWorks WebServices

[ .;_"_=| Micrasoft Practices. Prism, PubSubEvents

[ wlce] Microsoft Practices Prism . Storedpps (Windows 81)

What is MVVM?

MVVM is an architectural pattern that's a specialization of the presentation model pattern. It can be
used on many different platforms and itdémt is to provide a clean separation of concerns between
the user interface controls and theirlogic. For more info about MVVMWE¥M Quickstart
Implementing the MVVM PatterAdvanced MVVM Scenari@ndDeveloping a Windows Phone
Application using the MVVM Pattern

Using a dependency injection container

Dependency injection enables decoupling of concrete types from the code that depends on these
types. ltuses a container thholds a list of registrations and mappings between interfaces and
abstract types and the concrete types thatimplement or extend these types. The AdventureWorks
Shopper reference implementation uses the Unity dependency injection container to manage the
instantiation of the view model and service classes in the app.

Before you can inject dependencies into an object, the types of the dependencies need to be
registered with the container. After atype is registered, it can be resolved orinjected as a
deperdency. For more info segnity.


http://msdn.microsoft.com/en-us/library/windows/apps/gg430869.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405484.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405494.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899

50

In the AdventureWorks Shopper reference implementation, Appclass instantiates the
UnityContainerobject and is the only class in the app that holds a referencéaityContainer
object. Types are registered in t@nInitializemethod in theAppclass.

Bootstrapping an MVVM app using Prism's MvvmAppBase class

When you create a Windows Store apprfra Visual Studio template, tigpclass derives from the
Applicationclass. In the AdventureWorks Shopper reference implementationAgpelass derive
from the MvwmAppBaselass. ThdlvwmAppBaselass provides support for suspension,
navigation, settings, and resolving view types from view namesAphelass derives from the
MvvmAppBaselass and provides app specific startup behavior.

TheMvvmAppBae class, provided by thilicrosoft.Practices.Prism.StoreAdgsrary, is responsible
for providing core startup behavior foran MVVM app, and derives from\y@icationclass. The
MvvmAppBaselass onstructor is the entry point for the app. The following diagram shows a
conceptual view of how app startup occurs.

MvvmAppBase App MvvmAppBase App
Constructor Constructor CnwWindowCreated —* Onlnitialize
l App MvvmAppBase App
InitializeComponeant OnLaunched OnLaunchApplication
MvvmAppBase

InitializeFrameAsync

MwvvmAppBase

CreateNavigationService —

When deriving from thélvwmAppBaselass, a required override is ti@nLaunchApplication

method from where you will typically perform younitial navigation to a launch page, or to the
appropriate page based on a secondary tile launch of the app. The following code example shows
how to override theOnLaunchApplicatiomethod in theAppclass, in order to respond to app
activation from a tié or secondary tile.

C#: AdventureWorks.Shoppeapp.xaml.cs

protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{
if (args!= null &&! string .IsNullOrEmpty(args.Arguments))

{
/I The app was launched from a Secondary Tile
/I Navigate to the item's page
NavigationService.Navigate( "ItemDetail" , args.Arguments);

}

else


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

51

/I Navigate to the initial page
NavigationService.Navigate( "Hub", null );

}

Window.Current. Activate();
return  Task.FromResult<object>(  null );

This method navigates to teubPagean the app, when the app launches normally, or the
ltemDetailPagef the app is launched from a secondary tile. "Hub" aitefiDetail" are specified as
the logical names of the views that will be navigated to. The default convention specified in the
MvvmAppBaselass is to append "Page" to the name and look for that page in a .Views child
namespace in the project. Alternatiyelanother convention can be specified by overriding the
GetPageTypenethod in theMvvmAppBaselass. For more info sé¢andling navigation requests

Note TheOnLaunchApplicatiomethod returns alask allowingitto launch a long running
operation. If you don't have a long running operation to launch you should return an erapky

The app uses the Unity dependency injection container to reduce the dependency coupling between
objects by providing a facility to instantiate instances of classes and manage their lifetime based on
the configuration of the container. Aninstance of thentainer is created as a singleton in thpp

class, as shown in the following code example.

C#: AdventureWorks.Shoppeapp.xaml.cs

private  readonly |UnityContainer _container = new UnityContainer();

TheOnlnitializemethod in theMvvmAppBaselass is oveidden in theAppclass with app specific
initialization behavior. Forinstance, this method should be overridden if you need to initialize
services, or set a default factory or default view model resolver fovileevModelLocatoobject.
The following cde example shows some of tiiénlinitializemethod in theAppclass.

C#: AdventureWorks.Shoppeapp.xaml.cs

_container.Registerinstance<INavigationService>(NavigationService);

_container.Registerinstance<ISessionStateService>(SessionStateService);

_containe r.Registerinstance<lEventAggregator>(EventAggregator);

_container.RegisterInstance<IResourceLoader>( new ResourceLoaderAdapter(
new ResourcelLoader()));

This code registers service instances with the container as singletons, based on their respective
interfaces, so that the view model classes can take dependencies on them. This means that the
container will cache the instances on behalf of the app, withltfetime of the instances then being
tied to the lifetime of the container.


http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx

52

A view model locator objectis responsible for managing the instantiation of view models and their
association to views. For more info sggng theViewModelLocatorclass to connect view models

to views When the view model classes are instantiated the container will inject the dependencies
that are required. If the dependencies have notyet been created, the container creates and resolves
them first. This approach removes the need for an object to locate its dependencies or manage their
lifetimes, allows swapping of implemented dependencies without affecting the object, and
facilitating testability by allowing dependencies to be mocked.

Using the ViewModelLocator class to connect view models to views

The AdventureWorks Shopper reference implementation uses a view model locator object to
manage the instantiation of view models and their association to views. This has the advantage that
the app has a single class thatis responsible for the instantiation.

TheViewModelLocatorclass, in théMicrosoft. Practices.Prism.StoreAddsrary, has an attached
property,AutoWireViewModelthat is used to associate view models with views. In the view's XAML
this attached property is set tiwue to indicate that the view model should be automatically
connected to the view, as shown in the following code example.

XAML: AdventureWorks.Shoppeviews HubPage.xam

prism:ViewModelL ocator.AutoWire ViewModel="true"

TheAutoWireViewModelproperty is a dependency property that is initializedatse, and when its
value changes thautoWireViewModelChangedvent handler is called. This method resoltres
view model for the view. The following code example shows how this is achieved.

C#: Microsoft.Practices.Prism.StoreAppsewModelLocator.cs

private  static void AutoWireViewModelChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e)

{
FrameworkElementview =d  as FrameworkElement;
if (view== null ) return ; //Incorrect hookup, donoharm

/I Try mappings first
object viewModel = GetViewModelForView(view);
/I Fallback to convention based
if (viewModel== null )
{
var viewModelType = defaultViewTypeToViewModelTypeResolver(
view.GetType());
if (viewModelType == null ) return ;

/I Really need Container or Factories here to deal with injecting
/I dependencies on construction
viewModel = defaultViewModelFactory (viewModelType);

}

view.DataContext = viewModel;



53

TheAutoWireViewModelChangedhethod first attempts to resolve the view model from any

mappings that may have been registered by Registemethod of theViewModelLocatorclass. If

the view model cannot be resolved using this approach, forinstance if the mapping wasn't created,
the method falls back to using a conventibased approach to resolve the correct view model type.
This conventiomssumes that view models are in the same assembly as the view types, that view
models are in a .ViewModels child namespace, that views are in a .Views child namespace, and that
view model names correspond with view names and end with "ViewModel." For miaree ethe

next section, Using a conventioiased approach to connect view models to vié\inally, the

method sets théDataContexiproperty of the view type to the registered view model type.

Using a convention -based approach to connect view models to views

The AdventureWorks Shopper reference implementation redefines the convention for resolving
view model types from viewtypes inaer to allow views and view models to reside in separate
assemblies. This enables the business logic for the app to reside in a separate assembly that can be
easily targeted for testing.

A conventionbased approach to connecting view models to views rersdkie need for much
boilerplate code. The convention used in AdventureWorks Shopper assumes that:

1. View modeltypes are located in a separate assembly from the viewtypes.
2. View model types are located in the AdventureWorks.UILogic assembly.
3. View model typenames append "ViewModel" to the view type names.

Using this convention, a view nameldbPagevill have a view model namedubPageViewModel
The following code example shows how thgpclass overrides the
SetDefaultViewTypeToViewModel TypeResoldEiegatan the ViewModelLocatorclass, to define
how to resolve view model type names from view type names.

C#: AdventureWorks.Shoppeapp.xaml.cs

ViewModelL ocator.SetDefaultView TypeToViewModel TypeResolver((viewType) =>
{

var viewModelTypeName = string .Format(Culturelnfo.InvariantCulture,
"AdventureWorks.UILogic.ViewModels.{0}ViewModel,
AdventureWorks.UlLogic, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=634ac3171ee5190a" , viewType.Name);

var viewModelType = Type.GetType(viewModelTypeName);

return viewModelType;

D

Other approaches to constructing view models and views

There are many approaches that can be used to construct views and view models and associate
them at untime. The following sections describe three of these approaches.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

54

Creating a view model declaratively

The simplestapproach is for the view to declaratively instantiate its corresponding view modelin
XAML. When the view is constructed, the correspongiegy model object will also be constructed.
This approach can be demonstrated in the following code.

XAML

<Page.DataContext >
<HubPageViewModel />
</ Page.DataContext >

When thePageis created, an instance of thitubPageViewModels automatically constructed and
set as the view's data context. This approach requires your viewehtothave a default (parameter
less) constructor.

This declarative construction and assignment of the view model by the view has the advantage that
it is simple and works well in desigyme tools such as Blend and Visual Studio. The main
disadvantage ahis approach is that the view model requires a default constructor.

Creating a view model programmatically

A view can have code in the cotbehind file that results in the view model being assigned to its
DataContexiproperty. This is often accomplished in the view's constructor, as shown in the
following code example.

C#

public HubPage()
{

Initialize Component();
this .DataContext = new HubPageViewModel(NavigationService);

The programmatic construction and assignment of the view model within the view'sloekiad

has the advantage that it is simple and works well in desiga tools such as Blend and Visual
Studio. The main disadntage of this approach is that the view needs to provide the view model
with any required dependencies.

Creating a view defined as a data template

A view can be defined as a data template and associated with a view model type. Data templates can
be defired as resources, or they can be defined inline within the control that will display the view
model. The content of the control is the view model instance, and the datatemplate is used to
visually representit. This technique is an example of a situatiarhich the view model is

instantiated first, followed by the creation of the view.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

55

Data templates are flexible and lightweight. The Ul designer can use them to easily define the visual
representation of a view model without requiring any complex codeab&nplates are restricted

to views that do not require any Ul logic (cebdehind). Blend can be used to visually design and edit
data templates.

The following example shows tiAeitoRotatingGridViewcustom control that is bound to a
collection ofShopping@rtitemViewModels Each object in th8hoppingCartitemViewModels
collectionis aview model instance. The view for egsbppingCartitemViewModek defined by
the ItemTemplateproperty. TheShoppingCartitemTemplatspecifies that the view for each
ShoppingCartltemViewModeatonsists of &rid containing multiple child elements, including an
Imageand severalextBlocls.

XAML: AdventureWorks.Shoppeviews ShoppingCartPage.xaml

<awcontrols : AutoRotatingGridView  x:Name="ShoppingCartltemsGridView
x:Uid =" ShoppingCartltemsGridView

AutomationProperties . Automationld ="ShoppingCartltemsGridView
SelectionMode ="Single "
Width =" Auto"
Grid.Row ="2"
Grid.Column ="1"
Grid.RowSpan="2"
VerticalAlignment  ="Top"
ltemsSource ="{ Binding ShoppingCartltemViewModels }"
Selectedltem ="{Binding Selectedlitem, Mode=TwoWay
ltemTemplate ="{ StaticResource

ShoppingCartltemTemplate }"
MinimalltemTemplate ="{ StaticResource
ShoppingCartltemTemplateMinimal ~ }"

Margin ="0,0,0,0 ">

For more info about thé&utoRotatingGridViewcustom control se€reatinga custom GridView
control that responds to layout changes

Updating a view in response to changes in the underlying view model or
model

All view model and model classes that are accessible to the view should implement the
INotifyPropertyChangedhterface. Implementing théNotifyPropertyChangedhterface in your

view model or model classes allows them to provide change notifications toedaypdund controls

in the view when the underlying property value changes. However, this can be repetitive and error
prone. Therefore, thdlicrosoft.Practices.Prism.Store Adjimary provides théBindebleBaseclass

that implements thdNotifyPropertyChangeanterface. The following code example shows this
class.



http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.grid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

56

C#: Microsoft.Practices.Prism.Store ApfgndableBase.cs

public abstract class BindableBase : INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;
protected virtual bool SetProperty<T>( ref T storage, T value,
[CallerMemberName] string propertyName = null )
{
if (object .Equals(storage, value)) return false;
storage = value;
this .OnPropertyChanged(propertyName);
return true;
}
protected void OnPropertyChanged(string propertyName)
{
var eventHandler = this .PropertyChanged;
if (eventHandler != null )
{
eventHandle r( this , new PropertyChangedEventArgs(propertyName));
}
}
}

Each view model class in the AdventureWorks Shopper reference implementation derives from the
ViewModelbase class thatin turn derives from tBendableBasdase class. Therefore, each view
model class uses tHgetPropertymethod in theBindableBase&lass to provide property change
notification. The following code example shows how property change notification is implemented in
a view model class in the Advieine Works Shopper reference implementation.

C#: AdventureWorks.UlLogi¥iewModels HubPageViewModel.cs

public IReadOnlyCollection<CategoryViewModel> RootCategories
{

get {return _rootCategories; }
private set {SetProperty( ref _rootCategories, value); }

For more info about data binding in the Windows Runtime,Bata binding overview



http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx

57

Additional considerations when implementing property change notification

You should design your app for the correct use of property change notification. Here are some
points to remember:

1 Neverraise théropertyChange@vent during your object's constructor if you are
initializing a property. Dathound controls in the view cannot have subscribed to receive
change notifications at this point.

1 Always implement théNotifyPropertyChangednhterface on any view model or model
classes that are accessible to the view.

1 Always raise RropertyChangee@ventif a public ppperty's value changes. Do hot assume
that you can ignore raising tiieropertyChangee@vent because of knowledge of how XAML
binding occurs. Such assumptions lead to brittle code.

1 Neveruse a public property's get method to modify fields or raisdtopertyChanged
event.

1 Alwaysraise th@ropertyChangee@ventfor any calculated properties whose values are
used by other properties in the view model or model.

1 Neverraise BropertyChange@vent if the property does not change. This means that you
must compare the old and new values before raisingRhgpertyChangeevent.

1 Neverraise more than orferopertyChange@vent with the same property name argument
within a single synchronous invaiiton of a public method of your class. For example,
suppose you have@ountproperty whose backing store is theountfield. If a method
increments_counta hundred times during the execution of aloop, it should only raise
property change notificationn theCountproperty once after all the work is complete. For
asynchronous methods you can raise #repertyChangee@vent for a given property name
in each synchronous segment of an asynchronous continuation chain.

1 Alwaysraise th€ropertyChangee@ventat the end of the method that makes a property
change, or when your objectis known to be in a safe state. Raising the eventinterrupts your
operation by invoking the event's handlers synchronously. If this happens in the middle of
your operation, you magxpose your object to callback functions wheniitis in an unsafe,
partially updated state. Itis also possible for cascading changes to be triggered by
PropertyChangeevents. Cascading changes generally require updates to be complete
before the cascadinghange is safe to execute.



http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

58

Ul interaction using the DelegateCommand class and Blend behaviors

In Windows Store apps, you typically invoke some action in response to a user action (such as a
button click) that can be implemented by creating an event handi the codebehind file.

However, in the MVVM pattern, the responsibility forimplementing the action lies with the view
model, and you should try to avoid placing code in the cbeéind file.

Commands provide a convenient way to represent actionsdaatbe easily bound to controlsin the

Ul. They encapsulate the actual code that implements the action or operation and help to keep it
decoupled from its actual visual representation in the view. The Windows Runtime includes controls
that can be declaravely connected to a command. These controls will invoke the specified
command when the user interacts with the control in a specific way.

Behaviors also allow you to connect a control to a command declaratively. However, behaviors can
be used to invoke aaction that is associated with a range of events raised by a control. Therefore,
behaviors address many of the same scenarios as comyaaatled controls, while providing a

greater degree of flexibility and control. In addition, behaviors can also betoses$ociate

command objects or methods with controls that were not specifically designed to interact with
commandsFor more info seémplementing behaviors to supplement the functionality of XAML
elements

Implementing command objects

View models typically expose command properties, for binding from the view, that are object
instances that implement thECommandnterface. XAML inherently supports commands and
ButtonBasederived controls provide @ommandproperty that can be data bound to d@ommand
object provided by the view model. The@ommandnterface defines aixecutemethod, which
encapsulates the operation itself, andCanExecutenethod, which indicates whether the command
can be invoked at a particular time. TRicrosoft.Practices.Prism.StoreAdidsrary provides the
DelegateCommandlass to implement commands.

The AdventureWorks Shopper reference implementation usediakgate Commandlass that

encapsulates two delegates that each reference a method implemented within your view model

class. It inherits from thBelegate CommandBasgass that implements thiCommandA y 4 SNF I OS Qa
Executeand CanExecutenethods by invoking these delegates. You specify the delegates to your

view model methods in thBelegate Commandlass constructor, which is defined as follows.

C#: Microsoft.Practices.Prism.Store Apjelegate Commandas

public DelegateCommand(Action<T> executeMethod, Func<T, bool > canExecuteMethod)
. base((0) => executeMethod((T)o), (0) => canExecuteMethod((T)o))
{
if (executeMethod == null || canExecuteMethod == null )
throw new ArgumentNullException(" executeMethod ");


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx

59

For example, the following code shows holdelegate Commanthstance, which represents a sign
incommand, is constructed by specifying delegates t&igmIinAsynand CanSigniriew model
methods. The command is then exposed to theaterough a reaebnly property that returns a
reference to arilCommand

C#: AdventureWorks.UlLogiZiewModels SigninFlyoutViewModel.cs

public DelegateCommand SigninCommand { get; private set;}
SigniInCommand = DelegateCommand.FromAsyncHandler(SigninAsync, CanSignlin);
The DelegateCommandlass is a generic type. The type argument specifies the type of the

command parameter passed to tliexecuteandCanExecutenethods.A nongeneric version of the
DelegateCommandlass is also provided for use when a command parameteris not required.

When theExecutemethod is called on th®elegate Commandbject, it simply forwards the call to
the method in the view model class viatlelegate that you specified in the constructor. Similarly,

when theCanExecutenethod is called, the corresponding method in the view model class is called.

The delegate to th€anExecutenethod in the constructor is optional. If a delegate is not spedif
the DelegateCommanuill always return true fo€CanExecute

¢tKS OASs Y2RSt Ol y AY RAChHE&uUtdtatudlylcaflidig$he A y G K S
RaiseCanExecuteChangaethod on theDelegate Commandbject. This causes the
CanExecuteChangevent to be raised. Any controlsin the Ul that are bound to the command will
update their enabled status to reflect the availability of theumol command.

Invoking commands from a view

Any controls that derive frorButtonBase such a8utton or HyperlinkButton can be easily data
bound to a command through th€ommandproperty. The following code example shows how the
SubmitButtonin the SigninFlyoubinds to theSigninCommanth the SigninFlyoutViewModetlass.

XAML AdventureWorks.Shoppéawiews SigninFlyout.xaml

<Button x:Uid ="SubmitButton "
x:Name=" SubmitButton "
Background ="{ StaticResource AWShopperAccentBrush}"
Content =" Submit"
HorizontalAlignment  ="Stretch "
Foreground ="{ StaticResource  AWShopperButtonForegroundBrush }"
Margin =" 0,25,0,0 "
Commare{ Binding SigniInCommang"
AutomationProperties.Automationld =" SigninSubmitButton "/>

A command parameter can also be optionaléfided using th&€ommandParameteproperty. The
type of the expected argument is specified in e cuteandCanExecutéarget methods. The
control will automatically invoke the target command when the user interacts with that control, and

oz2Y


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecutechanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.hyperlinkbutton.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.commandparameter.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx

60

0§KS O2YYFIYR LI N}YYSGSNE AF LINPOAR
method.

R Esekuteft 065 LJ &

Implementing behaviors to supplementthe fun ctionality of XAML elements

A behavior allows you to add functionality to a XAML element by writing that functionality in a
behavior class and attaching it to the element as if it was part of the element itself. Behaviors enable
you to implement code thatou would normally have to write as codeehind because it directly
interacts with the API of XAML elements, in such away that it can be concisely attached to a XAML
element and packaged for reuse across more than one view or app. In the context of MVVM,
behaviors are a useful approach for connecting items that are occurring in the view due to user
interaction, with the execution in a view model.

A behaviorthatis attached to a XAML element through attached properties is knowmataetmed
behavior Thebehavior can then use the exposed API of the element to which itis attached to add
functionality to that element or other elements in the visual tree of the view. For more info see
Dependency properties overviewttached properties overvievandCustom attachd properties

The AdventureWorks Shopper reference implementation does not contain any attached behaviors.

Blend includes a variety of buiih behaviors, which are known as Blend behaviors. These behaviors

can be reused in Windows Store apps throughBieéaviors SDRhe SDK supports adding existing

behaviors and actions to Windows Store apps, and creating new ones. A Blend behavior adds some
behaviortoa XAML element, Wit 'y | QGA2Y | RRAYy3A FdzyQuAazyltAde
met, such as an event being raised. Collectively, behaviors and actions are known as interactions.

The AdventureWorks Shopper reference implementation uses a number of interactions feom th
Behaviors SDK and also includes custom behaviors. To create a new behavior you should create a
class that derives from thBependencyObjeatlassand implements théBehaviolinterface. In the
AdventureWorks Shopper reference implementation this functionality is provided by the
Behavior<® class. This class providesAssociatedObjegbroperty that gives areference to the
elementto which the behavior is attaed, andAttach and Detachmethods. Each custom behavior
then derives from théBehavior<Txlass, overriding th&nAttachedandOnDetachedbstract
methods to provide logic that will be executed when the behavior is attached and detached from
XAML elements. The following code example show£iimboBoxKeyboardSelectidrehavior

used by the AdventureWorks Shopper reference implementatioeted theComboBoxItenthat
starts with the key pressed by the user.



http://msdn.microsoft.com/en-us/library/windows/apps/hh700353.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758282.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965327.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn457340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.dependencyobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.associatedobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.attach.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.detach.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.comboboxitem.aspx

61

C#: AdventureWorks.ShoppeBehaviors ComboBoxKeyboardSelection.cs

public class ComboBoxKeyboardSelection : Behavior<ComboBox>

{
protected override void OnAttached()
{
ComboBox comboBox = this .AssociatedObject;
if (comboBox!= null )
{
comboBox.KeyUp += comboBox_KeyUp;
}
}
private void comboBox_KeyUpfbject sender, KeyRoutedEventArgs e)
{
var comboBox = (ComboBox)sender;
foreach (var item in comboBox.ltems)
{
var comboBoxltemValue =item as ComboBoxltemValue;
if (comboBoxltemValue = null &&
comboBoxltemValue.Value.StartsWith(e.Key.ToString(),
StringComparison.OrdinallgnoreCase))
{
comboBox. Selectedltem = comboBoxltemValue;
return ;
}
}
}
protected override void OnDetached()
{
ComboBox comboBox = this .AssociatedObject;
if (comboBox!= null )
{
comboBox.KeyUp - = comboBox_KeyUp;
}
}
}

TheOnAttachedand OnDetachedmethods are simply used to register and deregister a method for

the KeyUpevent. The event handler method selects themboBoxItenthat starts with the key
pressed by the user.

One of the interactions from the Behaviors SDK that is used by the AdventureWorks Shopper
reference implementation is thBlavigde ToPageActiomnteraction, which invokes navigation to a

specific page in the app. For instance, when the shopping carticon is selected in the top app bar the

Navigate ToPageActioimteraction is used to navigate to tif&hoppingCartPages shown in the
following code example.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.keyup.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.comboboxitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx

62

XAML: AdventureWorks.Shoppeviews TopAppBarUserControl.xaml

<Button x:Uid ="ShoppingCartAppBarButton
x:Name=" ShoppingCartAppBarButton

AutomationProperties.Automationld =" ShoppingCartAppBarButton "
Margin="0,0,5,0 "
Height =" 125"

Style ="{ StaticResource CartStyle }"
Content ="Shopping Cart ">
<Interactivity . Interaction . Behaviors >
<Core: EventTriggerBehavior EventName=" Click ">
<Core: NavigateToPageAction
TargetPage =" AdventureWorks.Shopper.Views.ShoppingCartPage  "/>

</ Core: EventTriggerBehavior >

</ Interactivity : Interaction.Behaviors >

</ Button >

TheEventTriggerBehavidrinds theClickevent of theButton to the Navigate ToPageActiarSo

when theButton isselected theNavigate ToPageActiois executed, which navigates to the
ShoppingCartPagérheNavigate ToPageActiomteraction also allows Barameterto be specified.
However, itis not currently possible to specify the event arguments that are associated with the
Clickeventin theParametermproperty. To solve this problem we created the
NavigateWithEventArgsToPageActitmat invokes navigation to a specified page, and allows the
eventarguments to be passed as a parameter to the page being navigated to.

C#: AdventureWorks.ShoppeBehavior§ NavigateWithEventArgsToPageAction.cs

public class NavigateWithEventArgsToPageAction : DependencyObject, IAction
{
public string TargetPage{ get; set;}
public string EventArgsParameterPath { get; set;}
object IAction.Execute( object sender, object parameter)
{
/I Walk the Paramet erPath for nested properties.
var propertyPathParts = EventArgsParameterPath.Split(".");
object propertyValue = parameter;
foreach (var propertyPathPart in propertyPathParts)
{
var propinfo = propertyValue.GetTyp e().GetTypelnfo()
.GetDeclaredProperty(propertyPathPart);
propertyValue = propinfo.GetValue(propertyValue);

}
var pageType = Type.GetType(TargetPage);

var frame = GetFrame(sender as DependercyObject);
return frame.Navigate(pageType, propertyValue);


http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.parameter.aspx

63

private Frame GetFrame(DependencyObject dependencyObject)

{
var parent = VisualTreeHelper.GetParent(dependencyObject);
var parentFrame = parent as Frame;
if (parentFrame!= null ) return parentFrame;
return GetFrame(parent);
}

To create a new action you must create a class that derives fromépendencyObjeatlass, and
implements theActioninterface. ThdActioninterface has only one method that needs to be
implementd, namedExecute Here, theExecutemethod traverses the visual tree to obtain the
Framecontrol used by the current page, and then call$\ié&vigatemethod to navigate to the tayet
page, passing in the specified parameter.

Invoking behaviors from a view

Behaviors are particularly useful if you want to attach a method to a control that does not derive
from ButtonBase For example, the AdventureWorks Shopper reference implementation uses the
Navigate WithEventArgsToPageActiarteraction to enable thétemClickevent of the
MultipleSizedGridVievcontrol to invoke page navigation.

XAML: AdventureWorks.Shoppeviews HubPage.xaml

<awcontrols : MultipleSizedGridView x:Name="itemsGridView "

AutomationProperties.Automationlid ="HubPageltemGridView "
AutomationProperties.Name ="Grouped Items "
Margin ="0,0,0,0 "

Padding="120, 0,40,46 "

IltemsSource ="{Binding Source={StaticResource
groupedltemsViewSource}} "

ltemTemplate ="{StaticResource
AWShopperltemTemplate} "

MinimalltemTemplate ="{StaticResource

ProductTemplateMinimal} "
SelectionMode ="Noné'

ScrollViewer.IsHorizontal ScrollChainingEnabled ="False "
IsitemClickEnabled ="True"
Loaded="itemsGridView_Loaded ">
<interactivity : Interaction . Behaviors >
<core : EventTriggerBehavior EventName=" ItemClick ">
<awbehaviors : NavigateWithEventArgsToPageAction
TargetPage =" AdventureWorks. Shopper.Views.ltemDetailPage "
EventArgsParameterPath =" Clickedltem .ProductNumber " />
</ core : EventTriggerBehavior >
</ interactivity . Interaction . Behaviors >


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.dependencyobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.iaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.navigate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

64

TheEventTriggerBehavidrinds theltemClickevent of theMultiple SizedGridViewo the
NavigateWithEventArgsToPageActiddio when &ridViewltemis selected the
NavigateWithEventArgsToPageActiaexecuted, which navigates from thiabPageo the
ItemDetailPage passing in th€roductNumbeof the Clickedltento the ItemDetailPage

Additional MVVM considerations

Here are some additional considerations when applying the Myg&tikérn to Windows Store apps
in C#.

Centralize data conversions in the view model or a conversion layer

The view model provides data from the model in a form that the view can easily use. To do this the

view model sometimes has to perform data conversiBlacing this data conversion in the view

model is a good idea because it provides properties in a form that the Ul can bind to. Itis also

possible to have a separate data conversion layer that sits between the view model and the view.
Thismightoccu 2 NJ SEI YLX S 6KSy RIGF GeLlSa ySSR aLISOAl
provide.

Expose operational modes in the view model

The view model may also be responsible for defining logical state changes that affect some aspect of
the display inthe vi®, such as an indication that some operation is pending or whether a particular
command is available. You don't need ceuakeshind to enable and disable Ul elementgou can

achieve this by binding to a view model property, or with visual states.

Keep views and view models independent

The binding of views to a particular property in its data source should be a view's principal
dependency on its corresponding view model. In particular, do not reference view types or the
Windows.Currenbbject from view models. If you follow the principles we outlined here, you will
have the ability to test view models in isolation, and reduce the likelihood of software ddfgct
limiting scope.

Use asynchronous programming techniques to keep the Ul responsive

Windows Store apps are about a fast and fluid user experience. For that reason the AdventureWorks
Shopper reference implementation keeps the Ul thread unblocked. AdweWarks Shopper uses
asynchronous library methods for I/O operations and raises events to asynchronously notify the
view of a property change.


http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.current.aspx

65

Creating and navigating between pages in a Windows Store business
app using C#, XAML, and Prism

Summary

1 Createpages using the MVVM pattern if appropriate to your requirements. When using
MVVM, use XAML data binding to link each page to a view model object.

1 Designyour pages for landscape, portrait, and minimal layout. In addition, use the
VisualState Aware Pagelass, provided by théicrosoft. Practices.Prism.StoreAdpsrary, to
provide view management.

1 ImplementthelNavigationAwarenterface, provided by the
Microsoft.Practices.Prism.Store Agwary, to enable a class to participate in a navigation
operation. Use thé&rameNavigationServicelass, provided by the
Microsoft.Practices.Prism.Store Apps library, to provide navigation support to a class.

Learnhow to implement accessible pages that support a fluid layout, are localizable, include-design
time data, and that can be easily navigated between, using Prism for the Windows Runtime.

You will learn

How pages were designed in AdventureWorks Shopper.

How AdventureWorks Shopper creates pages.

How to create design time data to support designers.

How AdventureWorks Shopper pages support different layouts.

How AdventureWorks Shopper pages support localization and accessibility.
How AdventureWorks Shopper perfos navigation between pages.

=A =4 4 4 -4 -4

Applies to

f  Windows Runtime for Window& 1
1 C#
1 Extensible Application Markup Language (XAML)

Making key decisions

The app page is the focal point for designing your Ul. It holds all of your content and controls fora
single poitof interaction with the user within your app. Whenever possible, you should integrate
your Ul elements inline into the app page. Presenting your Ul inline lets users fully immerse
themselves in your app and stay in context, as opposed to usingipspdalogs, or overlapping
windows that were common in previous Windows desktop application platforms. You can create as
many app pages as you need to support your user scenarios.



66

The following list summarizes the decisions to make when creating pagesriapm

What tool should | use to create page content?

What minimum resolution should | design my pages for?

Should my page content fill the screen, regardless of resolution?

Should my pages adapt to different orientations and layouts?

How should I lay out)l elements on each page?

What should I display in minimal view?

How should | test my page layout on different screen sizes?

Should | add design time datato my pages?

Should | make my pages easily localizable?

Should | make my pages accessible?

Should tache pagesinmy app?

Where should navigation logic reside?

How should I invoke navigation from a view?

What commands belong on the navigation bar and the bottom app bar?

Should common page navigation functionality be implemented on each page, orz&n it

encapsulated into a single control for reuse on each page?

1 Should the page being navigated to reside in the same assembly that the navigation request
originates from?

1 How should | specify a navigation target?

=2 =4 =4 4 4 -4 -4 -4 A - -4 -4 -8 -4 -4

We recommend that you use Visual Studio toriwwith the codefocused aspects of your app.

Visual Studio is best suited for writing code, running, and debugging your app. We recommend that
you use Blend for Microsoft Visual Stu@ai3 to work on the visual appearance of your app. You

can use Blentb create pages and custom controls, change templates and styles, and create
animations. Blend comes with minimal cotdehind support. For more info about XAML editing

tools, seeDesign Windows Store apps using BlandCreating a Ul by using the XAML Designer

There are two primary screen resolutions that your app should support. The minrgaotution at

which Windows Store apps will runis 1024x768. However, the minimum optimal resolution required
is 1366x768. When designing pages for a minimum resolution of 1024x768 you should ensure that
all of your Ul fits on the screen without clippiMyhen designing pages for an optimal resolution of
1366x768 you should ensure that all of your Ul fits on the screen without blank regions. Page
content should fill the screen to the best of its ability and should appear to be thoughtfully designed
for vanjing screen sizes. Users who buy larger monitors expect that their apps will continue to look
good on these large screens and fill the screen with more content, where possible. For more info see
Guidelines for window sizes and scaling to screens

Users can rotate and flip their tablets, slates, and monitors, so you should ensure that you app can
handle botHandscapeandportrait orientations. In addition, because users carrkwith up to two

apps at once, you should provide a minimal layout. The default minimum width of an app is 500
pixels. If you keep this width you do not have to make any special considerations for your app at
narrow widths. You simply design your applsattit adapts fluidly when the user resizes it. You can
choose to change the minimum width to 320 pixels. If you choose to do this you should make some


http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh921077.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx

67

design changes so that the app is still functional and usable at this narrow width.
For more info se&uidelines for layoutssuidelines for window sizes and scaling to screand
Guidelines for resizing windows to tall and narrow layouts

The user interface in Microsaf¥indows strives to maintain a consistent silhouette across its apps.
The signature charactestic of the silhouette is awide margin on the top, bottom, and left edges.

This wide margin helps users understand the horizontal panning direction of the content. You should
follow a consistent layout pattern for margins, page headers, gutter widtrgspémer such elements

on your pages. For more info seaying out an app page

When you plan for full screen and minimal views, your app's Ul should reflow smoothly and
graefully to accommodate screen size, orientation, and user interactions. You should maintain state
in minimal view, even if it means showing less content or reducing functionality. In addition, you
should have feature parity across states. The user stilkketsfo be able to interact with your app
whenitis in minimal view. For more info s€eaidelines for resizing windows to tall and narrow

layouts

Most people don't have may devices at their disposal for testing page layout on different screen
sizes. However, you can use the Windows Simulator to run your app on a variety of screen sizes,
orientations, and pixel densities. In addition, Blend offers a platform menu that esatolu to

design your app on different screen sizes and pixel densities on the fly. The Blend canvas then
updates dynamically based upon the chosen screen option.

Sample data should be added to each page if you want to easily view styling results angizgsu
at design time. This has the additional advantage of supporting the de sigrnetoper workflow.

Preparing your pages for localization can help your app reach more users in international markets.
It's important to consider localization early onthre development process, as there are some issues
that will affect Ul elements across various locales. As you design your pages, keep in mind that users
have a wide range of abilities, disabilities, and preferences. If you incorporate accessible design
principles into your pages you will help to ensure that your app is accessible to the widest possible
audience, thus attracting more customers to your app. For more infad@ealizing your appnd

Design for accessibility

Deciding whether to cache pages will be dependent upon howpeafbrming and responsive the

app is. Page caching resuhlismemory consumption for views that are not currently displayed,

which would increase the chance of termination when the app is suspended. However, without page
caching it does mean that XAML parsing and construction of the page and its view modelwill occ
every time you navigate to a new page, which could have a performance impact for a complicated
page. For a welllesigned page that does not use too many controls, the performance should be
sufficient. However, if you encounter slow page load times ymutd test to see if enabling page
caching alleviates the problem. For more info §aeckstart: Navigating between pages

Navigation within a Windows Store app can result from the user's interaction with the Ul or from the
app itself as a result of internal logiltiven state changes. Page navigation requests are usually


http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh771188.aspx

68

triggered from a view, with the navigation logic eitheming in the view's codéehind, or in the data
bound view model. While placing navigation logic in the view may be the simplest approach, itis not
easily testable through automated tests. Placing navigation logic in the view model classes means
that the navigation logic can be exercised through automated tests. In addition, the view model can
then implement logic to control navigation to ensure that certain business rules are enforced. For
instance, an app may not allow the user to navigate away froage pvithout first ensuring that the
entered datais correct.

Users will trigger navigation from a view by selecting a Ul control, with the navigation logic residing
inthe appropriate view model class. For controls derived fButionBase such agutton, you

should use commands to plement a navigation action in the view model class. For controls that do

not derive fromButtonBase you should use a Blend behavior to implement a navigation action. For

more info sedJsing the MoeI-ViewViewModel (MVVM) pattern

In general, you should use the navigation bar for navigational elements that move the userto a
different page and use the bottom app bar for commands that act on the current page. If every page
of your app is going to include a navigation bar that alldvesuser to move to different pages, it

does not make sense to implement this functionality individually on each page. Rather, the
functionality should be implemented as a user control that can be easily be included on each page.
In addition, you should fitow placement conventions for commands on the bottom app bar. You
should plac&New/ Add/ Createbuttons on the far right, with view switching buttons being placed on
the far left. Also, you should plagecept Yes andOKbuttons to the left ofReject No, andCancel
buttons. For more info se@uidelines for app bars

The view classes that define your pages and the view model classes that implement the business
logic for tho® pages can reside in the same assembly or different assemblies. Thatis a design
decision to be made when architecting your app. A page type resolution strategy should be used to
navigate to a page in any assembly, regardless of the assembly from waicattgation request
originates.

One approach for specifying a navigation target is to use a navigation service, which would require
the type of the view to navigate to. Because a navigation service is usually invoked from view models
in order to promote éstability, this approach would require view models to reference views (and
particularly views that the view model isn't associated with), which is notrecommended. The
recommended approach is to use a string to specify the navigation target that carsibg massed

to a navigation service, and which is easily testable.

Creating pages and navigating between them in AdventureWorks Shopper

We used Blend and the Visual StudidML Designer to work with XAML because these tools make it
straightforward to quicky add and modify page layout. Blend was useful to initially define pages and
controls; we used Visual Studio to optimize their appearances. These tools also enabled us to iterate
quickly through design choices because they give immediate visual feedivatdny cases, our user
experience designer was able to work in parallel with the developers because changing the visual


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465302.aspx

69

appearance of a page does not affect its behavior. For more infthee®ext section, Creating
pages"

Pages were designed for a nmmim resolution of 1024x768, and an optimal minimum resolution of
1366x768. In addition, pages were designed to fill the screen for varying screen sizes. Each page is
able to adapt tdandscap@ndportrait orientations, and aninimallayout. A consistentibouette is
maintained across all pages, with some pages including design time data. Page layout was tested on
a variety of devices, and in the Windows simulator. Pages maintain state when switching between
different view states, and possess feature padtross states. For more info skéding design time

data, Supporting multiple view stateendLaying out ampp page

Page caching is not used in the app. This prevents views that are not currently displayed from
consuming memory, which would increase the chance of termination when the app is suspended. All
pages are accessible, and support easy localizatiombe info sedcnabling page localizati@amd
Enabling page accessibility

In the app, the view classes that define pages are in a different assembly to the view model classes
that implementthe business logic for those pages. Therefore, a page type resolution strategy
implemented as a delegate is used to navigate to the pages in the AdventureWorks.Shopper
assembly when the navigation request originates from view model classes in the
AdventueWorks.UILogic assembly. In addition, common page navigation functionality is
implemented as a user control that is embedded in the navigation bar for each page. Both
commands and Blend behaviors are used to implement navigation actions, depending ontifué ¢
type. Navigation targets are specified by strings that represent the page to navigate to. For more
info seeNavigating between pageldandling navigation requestandinvoking navigation using
behaviors

Creating pages

Pages in Windows Store apps are user controls that support navigation and contain other controls.
All page classes are subtypes of Wendows.Ul.Xaml.Pagelass, and represent content that can be
navigated to by the user.

In apps that us@rism for the Windows Runtimeach page should derive from the
VisualState Aware Pagelass in theMicrosoft. Practices.Prism.Store Apjisary. The
VisualState Aware Pagelass provides view managememtd navigation support. The following code
example shows how thdubPagealerives from theVisual State Aware Pagelass.



http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130655.aspx

70

XAML: AdventureWorks.Shoppeviews HubPage.xaml

<prism:Visual StateAwarePage
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation
xmins:x =" http://schemas. microsoft.com/winfx/2006/xaml
xmins:d =" http://schemas.microsoft.com/expression/blend/2008

xmlns:mc ="http://schemas.openxmlformats.org/markup - compatibility/2006 "
xmlns:awbehaviors ="using:AdventureWorks.Shopper.Behaviors "
xmins:interactivity =" using:Microsoft.Xaml.Interactivity

xmins:core ="using:Microsoft.Xaml.Interactions.Core

xmlns:views ="using:AdventureWorks.Shopper.Views

xmlns:awcontrols =" using: AdventureWorks.Shopper.Controls
xmins:designViewModels =" using:Adventure Works.Shopper.DesignViewModels
xmlns:prism ="using:Microsoft.Practices.Prism.StoreApps

x:Name="pageRoot"

x:Class =" AdventureWorks.Shopper.Views.HubPage

IsTabStop=" false "

x:Uid ="Page"
mc:Ignorable ="d"
prism:ViewModelLocator.AutoWireViewModel ="true "

d:DataContext ="{d:Designinstance designViewModels:HubPageDesignViewModel,
IsDesignTimeCreatable=True} ">

Note All Flyout classes derive from tBettingsFlyoutlass.

There are twelve pages in the AdventureWorks Shopper reference implementatioritheipage s
being the views of the MVVM pattern.

Page View model

BillingAddressPage BillingAddressPageViewModel
CategoryPage CategoryPageViewModel
CheckoutHubPage CheckoutHubPageViewModel

CheckoutSummaryPag CheckoutSummaryPageViewMoc

GroupDetailPage GroupDetailPageViewModel
HubPage HubPageViewModel
ItemDetailPage ItemDetailPageViewModel

OrderConfirmationPage OrderConfirmationPageViewMod:
PaymentMethodPage PaymentMethodPageViewModel
SearchResultsPage SearchResultsPageViewModel
ShippingAddressPage ShippingAddressPageViewMode
ShoppingCartPage ShoppingCartPageViewModel



http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.settingsflyout.aspx

71

Data binding links each page to its view model class in the AdventureWorks Shopper reference
implementation. The view model class gives the page access to the underlying app logic by using the
conventions of the MVVM patteriizor more info se&sing the MVVM pattern

Tip AdventureWorks Shopper uses the MVVM pattern that abstracts the user interface for the app.
With MVVM you rarely need to customize the celdehind files. Instead, the controls of thser
interface are bound to properties of a view model object. If pagkated code is required, it should

be limited to conveying data to and from the page's view model object.

If you are interested in AdventureWorks Shopper's interaction model and hedesigned the user
experience, seBesigning the user experience of a Windows Store business app

Adding design time data

When you create a data bound user interface, yan display sample datain the visual designer to

view styling results and layout sizes. To display data in the designer you must declare itin XAML. This
is necessary because the designer parses the XAML for a page but does not run-telode In

the AdventureWorks Shopper reference implementation, we wanted to display design time datain
order to support the designedeveloper workflow.

Sample data can be displayed at design time by declaring itin XAML by using the various data
attributes from the designer namespace. This namespace is typically declared dihrefix, as
shown in the following code example.

XAML: AdventureWorks.Shoppeviews HubPage.xaml

xmlns:d= "http://schemas.microsoft.com/expression/blend/2008"

Attributes withd: prefixes arelen interpreted only at design time and are ignored at run time.

XAML: AdventureWorks.Shoppeviews HubPage.xaml

d:DataContext= "{d:Designlnstance designViewModels:HubPageDesignViewModel,
IsDesignTime Creatable=True}"

Thed:Designinstancattribute indicates that the design time source is a designer created instance
based on thdHubPageDesignViewModgfpe. ThdsDesignTimeCreateabseetting indicates that

the designer will instantiate that type directly, which is necessary to displayahmple data
generated by the type constructor.

For more info se®ata binding overview

Supporting multiple view states

The AdventureWorks Shopper reference implementati@swesigned to be viewed fidtreen in
landscape orientation. Windows Store apps must adapt to different application view states,


http://msdn.microsoft.com/en-us/library/windows/apps/xx130641.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx

72

including both landscape and portrait orientations. AdventureWorks Shopper supports
DefaultLayoutlandscape full screeratraitLayout, andMinimalLayoutiew states.
AdventureWorks Shopper uses tiesual Stateclass to specify changes to the visual display to
support each lgout. TheVisualState Manageclass, used by théisualState AwarePageass,
manages state and the logic for transitioning between states for césitFeor example, here is the
XAML specification of the layout changes forBatraitLayouview state on the hub page.

XAML: AdventureWorks.Shoppeviews HubPage.xaml

<VisualState  x:Name="PortraitLayout ">
<Storyboard >
<ObjectAnimationUsingKeyFrames  Storyboard.TargetName ="itemsGridView
Storyboard.TargetProperty ="Padding ">
<DiscreteObjectKeyFrame KeyTime="0"
Value ="40,0,0,30 "/>
</ ObjectAnimationUsingKeyFrames >
<ObjectAnimationUsingKeyFrames  Storyboard.TargetName ="semanticZoom"
Storyboard.TargetProperty ="CanChangeViews>
<DiscreteObjectKeyFrame KeyTime="0"
Value ="false " />
</ ObjectAnimationUsingKeyFrames >
<ObjectAnimationUsingKeyFrames  Storyboard.TargetName ="semanticZoom"
Storyboard.TargetProperty=" IsZoomOutButtonEnabled ">
<DiscreteObjectKeyFrame KeyTime="0"
Value ="false " />
</ ObjectAnimationUsingKeyFrames >
<ObjectAnimationUsingKeyFrames  Storyboard.TargetProperty =
" Grid.ColumnDefini  tions[0]. Width "
Storyboard.TargetName ="titleGrid ">
<DiscreteObjectKeyFrame KeyTime="0" Value ="40" />
</ ObjectAnimationUsingKeyFrames >
<ObjectAnimationUsingKeyFrames  Storyboard.TargetPropert y=
" (views:SearchUserControl.IsCompact)
Storyboard.TargetName ="searchUserControl ">
<DiscreteObjectKeyFrame  KeyTime="0">
<DiscreteObjectKeyFrame.V alue >
<x:Boolean >True</ x:Boolean >
</ DiscreteObjectKeyFrame.Value >
</ DiscreteObjectKeyFrame >
</ ObjectAnimationUsingKeyFrames >
</ Storyboard >
</ VisualState >

We directly update individual properties for XAML elements, in order to specify changes to the visual
display. For instance, here tis#oryboardspecifies that thé>addingoroperty of theGridView

control namedtemsGridViewwill change to a value of "40,0,0,30" when the view state changes to
portrait. However, you could update tHg&tyleproperty when you need to update multiple

properties or when there is a defined style that does what you want. Although styles enable you to
control multiple properties and also provide a consistent appearance throughout your app,


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.media.animation.storyboard.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.control.padding.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.style.aspx

73

providing too many can make your app difficult to maintain. Therefore, only use styles when it
makes sense to do so. For more info about styling controlsQegekstart: syling controls

Tip When you develop an app in Visual Studio, you can use the Windows Simulator debugger to test
layouts. To do this, press F5 and use the debugger tool bar to debug with the Windows Simulator.
You can also use Blend to define and tesblay.

For more info se®art 7:Adapting to different layouts

Creating a custom GridView control that responds to layout changes

Many of the pages in the AdventureWorks $per reference implementation use the
AutoRotatingGridViewcustom control, which is a view state detecti@gdViewcontrol created for

the app. When, for example, the view state changes flzefaultLayouto PortraitLayouthe items
displayed by the control will be automatically rearranged to use an appropriate layout for the view
state. The advantage of this approastthat only one control is required to handle all the view
states, rather than having to define multiple controls to handle the different view states.

In order to take advantage of the functionality provided by this control you must specify additional
properties on youAutoRotatingGridViewnstance, such as thHeortraititemsPanebnd
MinimalltemTemplateproperties. These additional properties are defined in the
AutoRotatingGridViewclass, and an example of their use is shown in the following code egampl

XAML

<awcontrols: AutoRotatingGridView  x:Name="ShoppingCartltemsGridView

x:Uid =" ShoppingCartltemsGridView

AutomationProperties.Automation|d =
" ShoppingCartltemsGridView

SelectionMode ="Single "

Width =" Auto "

Grid.Row ="2"

Grid.Column ="1"

Grid.RowSpan="2"

VerticalAlignment ~ ="Top"

ltemsSource ="{Binding ShoppingCartitemViewModels}

Selectedltem ="{Binding Selecteditem, Mode=TwoWay}

ltemTemplate =" {StaticResource

ShoppingCartltemTemplate}

MinimalltemTemplate =
" {StaticResource
ShoppingCartitemTemplateMinimal}

Margin="0,0,0,0 ">

<awcontrols: AutoRotating GridView.ltemsPanel >
<ltemsPanelTemplate >
<WrapGrid Orientation ="Vertical
ltemWidth ="400" />
</ ltemsPanelTemplate >
</ awcontrols:AutoRotatingGridView.ltemsPanel >


http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465045.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

74

<awcontrols: AutoRotating GridView. PortraititemsPanel >
<ltemsPanelTemplate >
<WrapGrid Orientation ="Horizontal "

It emWidth="400" />
</ temsPanelTemplate >
</ awcontrols:AutoRotatingGridView.PortraititemsPanel >
<awcontrols: AutoRotating GridView. MinimalltemsPanel >
<ltemsPanelTemplate >
<StackPanel HorizontalAlignment ="Left " />
</ temsPanelTemplate >
</ awcontrols:AutoRotatingGridView.MinimalltemsPanel >
<Style TargetType ="Control ">
<Setter Property ="HorizontalAlignment
Value =" Stretch " />
<Setter Property ="HorizontalContentAlignment
Value ="Left " />

</ Style >
</ awcontrols: AutoRotating GridView >

Creating a custom GridView control that displays items at multiple sizes

On the hub page we wanted the first product to be displayed at twice the dimensions of the other
products, and the category page to also display the first product in each category at this larger size.

ADVENTURE —
WORKS :

-

Dlacl/
$539.99 $1364.50

Road-750 Black, 52 HL Mountain Frame

Entry lewel adult bice; offers a. Each frame i hand-cradt
“my
Wk
?‘

$577.12 $229.49 $44.54

Mountain-400-W Red, 42 HL Fork LL Mountain Handl4

Thiz bike delivers a high-level of performance on a budget It is responsive and. High-performance carbon road fork.. M-purpase bar for on o




75

To do this we created a new class nanhdultiple SizedGridVievthat derives from the
AutoRotatingGridViewcustom control. We then overrode tHerepare ContainerForltemQOverride
method from theGridViewclass to enable the first product to span multiple rows and columns of
the Multiple SizedGridViewas shown in the following code example.

C#: AdventureWorks.ShoppeControld MultipleSizedGridView.cs

protected o verride void PrepareContainerForltemOverride(DependencyObject element,
object item)

{

base.PrepareContainerForltemOverride (element, item);
var dataltem = item as ProductViewModel;

if (dataltem != null  && dataltem.ltemPosition == 0)

{

_colvVal =( int )LayoutSizes.Primaryltem.Width;
_rowVal =( int )LayoutSizes.Primaryltem.Height;

}

else

{
_colvVal =( int )LayoutSizes.Secondaryltem.Width;

_rowVal = ( int )LayoutSizes.Secondaryltem.Height;

}

var uiElement = element as UlElement;

VariableSizedWrapGrid.SetRowSpan(uiElement, _rowVal);

VariableSizedWrapGrid.SetColumnSpan(uiElement, _colVal);
}

ThePrepareContainerForltemOverridmethod gets the firstitem in th#ultipleSizedGridVievand
sets it to span two rvs and two columns, with subsequent items occupying one row and one
column. The staticayoutSizeslass simply defines twdizeobjects that specify the nundr of rows
and columns to span for the firstitem, and subsequent items irMi#ipleSizedGridView
respectively.

C#: AdventureWorks.ShoppeControld MultipleSizedGridView.c

public static class LayoutSizes

{ public static Size Primaryltem
{ get { return new Size(2, 2);}
i)ublic static ~ Size Secondaryltem
{ get{return new Size(1, 1); }
}


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.size.aspx

76

Styling controls

AdventureWorks Shopper's appearance was customized by styling and templating the controls used
inthe ap. Styles enable you to set control properties and reuse those settings for a consistent
appearance across multiple controls. Styles are defined in XAML either inline for a control, or as a
reusable resource. Resources can be defined at the page levdgagpor in a separate resource
dictionary. A resource dictionary can be shared across apps, and an app can use multiple resource
dictionaries. For more info se@uickstat: Styling controls

The structure and appearance of a control can be customized by defining @oaveol Templatefor
the control. Templating a control can be used to avoid having to write a custom control. For more
information, seeQuickstart: Control templates

Enabling page localization

Preparing for international markets can help you reach more us&dbalizing your approvides
guidelines, checklists, and tasks to help you create a user expetigiceaches more users by
helping you to globalize and localize each page of your app. It's important to consider localization
early on in the development process, as there are some issues that will effect userinterface
elements across various localegrel's the tasks that we carried out to support page localization in
the AdventureWorks Shopper reference implementation.

Separate resources foreach locale.

Ensure that each piece of textthat appears in the Ul is defined by a string resource.
Add contextal comments to the app resource file.

Define the flow direction for all pages.

Ensure error messages are read from the resource file.

=A =4 4 -4 -4

Separate resources for each locale

We maintain separate solution folders for each locale. For exargpliegs->en-US->
Resources.reswefines the strings for the elIS locale. For more info s€miickstart: Using string
resourcesandHow to name resources using qualifiers

Ensure that each piece of text that appears in the Ul is defined by a string resource

We used thec:Uiddirective to provide a unique name for the localization process to associate
localized strings with text that appears on screen. The following example shows the XAML that
defines the app title that appearon the hub page.

XAML: AdventureWorks.Shoppeviews ShoppingCartPage.xaml

<TextBlock x:Uid ="ShoppingCartTitle
x:Name=" pageTitle
Text="Shopping Cart"
Grid.Column ="1"


http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.controltemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465374.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758297.aspx

77

TextTrimming =" WordEllipsis
Style ="{ StaticResource = PageHeaderTextStyle }" />

For the enUS locale, we defirghoppingCartTitle. Texh the resource file as "Shopping Cart." We
specify theTextpart so that the XAML runtime will override tiextproperty of theTextBlock
control with the value from the resource file. We also use this technique t8s#bn content
(ContentControl.Contenx

Add contextual comments to the app resource file

Comments in the resource file provide contextual information that helps localizers more accurately
translate stringsk-or more info seélow to prepare forlocalizatian

Define the flow direction for all pages

We define thePage.FlowDirectioproperty in the string resources file to set the flow direction for
all pages. For languages that use f@itright reading order, such as English or German, we define
"LeftToRight" aits value. For languages that read rigiieft, such as Arabic and Hebrew, you
define this value as "RightToLeft". We also defined the flow direction for all app bars by defining
TopAppBar.FlowDirectioand BottomAppBar.FlowDirectiomn the resource fe.

Ensure error messages are read from the resource file

It's important to localize error messages strings, including exception message strings, because these
strings will appearto the user. The AdventureWorks Shopper reference implementation uses an
instance of theResourceLoaderAdaptetass to retrieve error messages from the resource file for

your locale. This class uses an instance oRigourcelLoadeslass to load strings from the resource

file. When we provide an error message when an exception is thrown, we use the
ResourceLoaderAdapténstance to read the message text. The following code example shows how
the SubmitOrderTansactionAsynmethod in theCheckoutSummaryPageViewModebss uses the
ResourceLoaderAdapténstance to retrieve error message strings from the resource file.

C#: AdventureWorks.UlILodi¢iewModels CheckoutSummaryPageViewModel

catch (ModelValidationException mvex)

{
errorMessage = string .Format(CultureInfo.CurrentCulture,
_resourceLoader.GetString(" GeneralServiceErrorMessage "),
Environment.NewLine, mvex.Message);
}

if (! string .IsNullOrWhiteSpace(errorMessage))
{

await _alertMessageService.ShowAsync(errorMessage,
_resourceLoader.GetString(" ErrorProcessingOrder "));


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.text.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.contentcontrol.content.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.flowdirection.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx

78

This code displays an exception error message to the uséviatialVValidationExceptioroccurs

when submitting an order. For the dSocale, the "GeneralServiceErrorMessage" string is defined
as "The following error messages were received from the service: {0} {1}," and the
"ErrorProcessingOrder" string is defined as "There was an error processing your order.” Other
locales would have essages that convey the same error message.

Note When creating an instance of tiResourcelLoadedlass that uses strings that are defined ina
class library and not in the executable project, BesourceLoadeasiass has to be passed a path to
the resoures in the library. The path must be specified as /project name/Resources/ (for example,
/Microsoft.Practices.Prism.StoreApps/Strings/).

You can test your app's localization by configuring the list of preferred languages in Control Panel.
For more info abotiocalizing your app and making it accessible @& to prepare for localization
Guiddines for app resourcesndQuickstart: Translating Ul resources

Enabling page accessibility

Accessibility is about making your app usable by people who have limitatianisrtpede or prevent
the use of conventional user interfaces. This typically means providing support for screen readers,
implementing keyboard accessibility, and supporting Fightrast themes.

Accessibility support for Windows Store apps written in@¥#es from the integrated support for

the Microsoft Ul Automation framework that is present in the base classes and theibbithavior

of the class implementation for XAML control types. Each control class uses automation peers and
automation patterns tkat report the control's role and content to Ul automation clients. If you use
non-standard controls you will be responsible for making the controls accessible.

Here are the tasks that we carried out to support page accessibility in the AdventureBrwgper
reference implementation:

1 Setthe accessible name for each Ul element. An accessible name is a short, descriptive text
string that a screen reader uses to announce a Ul element. For example, in AdventureWorks
Shopper XAML controls specytomationProperties.Automationlcand
AutomationProperties.Nameattached properties to make the control accessible to screen
readers.

XAML: AdventureWorks.Shoppeviews ItemDetailPage.xaml

<FlipView x:Name="flipView

AutomationProperties. Automationid ="ltemsFlipView
AutomationProperties.Name ="Item Details "
Tablndex ="1"

Grid.Row ="1"

ltemsSource ="{Binding Iltems}
Selectedindex ="{Binding SelectedIndex, Mode=TwoWay}
Selectedltem ="{Binding SelectedProduct, Mode=TwoWay} ">


http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967766.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965329.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.automationid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.name.aspx

79

For more info se&xposing basic information aboutélements

1 Overridden theToStringmethod of theShippingMethod ProductViewMode)
CheckoutDataViewModelandShoppingCartltemViewModatlasses in order to support
WindowsNarrator. When instances of these classes are bound to the view they are styled
using data templates, but Windows Narrator uses the result oflibStringoverrides.

1 Implemented keyboard accessibility. Ensure that the tab order of controls corresponds to
the visual order of controls, and that Ul elements that can be clicked can also be invoked by
using the keyboard. For more info skeplementing keyboard accessibility

1 Visudly verified the Ul to ensure that the text contrast is appropriate, and that elements
render correctly in higkcontrast themes. For more info sééeeting requirements for
accessible texandSupporting high contrast themes

1 Ran accessibility tools to verify the screen reading experience. For more infestieg
your app for accessibility

1 Ensured that the app manifest follows accessibility guidelines. For more inMeseteng
requirements for accessible text

For more info seéccessibility for Windows Store apps using C#/VB/C++ and. XAML

Navigating between pages

Navigation within a Windows Stor@p.can result from the user's interaction with the Ul or from the
app itself as a result of internal logiltiven state changes. Navigation usually involves moving from
one page to another page in the app. In some cases, the app may implement complex logic
programmatically control navigation to ensure that certain business requirements are enforced. For
example, the app may not allow the user to navigate away from a page without first ensuring that
the entered datais correct.

The AdventureWorks Shopp&ference implementation typically triggers navigation requests from
user interaction in the views. These requests could be to navigate to a particular view or navigate
back to the previous view. In some scenarios, for example if the app needs to ndvigatew view
when a command completes, the view model will need to send a message to the view. In other
scenarios, you might want to trigger the navigation request directly from the view without involving
the view model directly. When you're using the MM¥Yattern, you want to be able to navigate
without using any coddehind in the view, and without introducing any dependency on the view
implementation in the view model classes.

ThelNavigationAwarenterface, provided by th&licrosoft.Practices.Prism.StoreAdgsrary, allows
an implementing class to participate in a navigation operation. The interface defines two methods,
as shown in the following code example.


http://msdn.microsoft.com/en-us/library/windows/apps/hh868160.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/aa939428.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868161.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452680.aspx

80

C#:Microsoft.Practices.Prism.Store AppNavigationAware.cs

public interface | navigationAware

{

void OnNavigatedTo( object navigationParameter, NavigationMode navigationMode,
Dictionary< string , object > viewModelState);

void OnNavigatedFrom(Dictionary< string , object > viewModelState,
bool suspending);

TheOnNavigatedFronand OnNavigatedTanethods are called during a navigation operation. In the
view model class for the page being navigated fronQidlavigatedFronrmethod is called before
navigation takes place. Ti@nNavigatedFrormethod allows the page to save any state before itis
disposed of. In the view model class for the page being navigated @nNswvigatedTonethod is
called after navigation is complet€éheOnNavigatedTonethod allows the newly displayed page to
initialize itself by loading any page state, and by using any navigation parameters passedto it. For
example, theOnNavigatedTanethod in theltemDetailPageViewModetlass accepts a product
number as a parameter thatis used to load the product information for display on the
ItemDetailPage

TheViewModelbase class implements thiavigationAwaranterface, providing virtual
OnNavigatedFronand OnNavigatedTanethods that save and load view modgthte, respectively.

This avoids each view model class having to implement this functionality to support the suspend and
resume process. The view model classes for each page derive frofiethvdlodelclass. The
OnNavigatedFronand OnNavigatedTanethods ca then be overridden in the view model class for

the page if any additional navigation logic is required, such as processing a navigation parameter
that has been passed to the page.

Note TheOnNavigatedFronand OnNavigatedTaenethods in theviewModelbaseclass control
loading and saving page state during navigation operations. For more inféegsgking suspend,
resume, and activation

Handling navigation requests

The XAML Ul framework provides a buhavigation model that usdgameandPageelements
and works much like the navigation in a web browser. Ffznecontrol hostPagesand has a
navigation history that you can use to go back and forward through pages you've visited.

Prism provides th&rameNaigationServiceclass that allows view models to perform navigation
operations without taking a dependency on Ul types such as-theeclass. This cés, which
implements thelNavigationServicenterface, uses th&rameinstance created in the

Initialize FrameAsynmethod in theMvvmAppBaselass to perform the navigation request for the
app. TheMvwmAppBaselass creates an instance of themmeNavigatnServiceclass by calling the
CreateNavigationServiamethod, which is shown in the following code example.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

81

C#: Microsoft.Practices.Prism.Store AppévvmAppBase.cs

private  INavigationService CreateNavigationService(IlFrameFacade rootFrame,
ISessionStateService sessionState Service)

{
var navigationService = new FrameNavigationService(rootFrame, GetPageType,
sessionStateService);
return  navigationService;
}

TheCreateNavigationServicemethod creates an instance of tii@gameNavigationServiceass,

which takes th&setPage Typdelegate to implement a page type resolution strategy. This strategy
assumes that the views that define pages are in the AdventureWorks.Shopper assembly and that the
view names end with "Page".

After creating the instance of therameNavigationServicelass theMvvmAppBaselass calls the
Onlnitializeoverride in theAppclass to register service instances with the Unity dependency
injection container. When view model classes are instantiated, tiacoer will inject the
dependencies that are required including tRemmeNavigationServiagastance. View models can
then invoke theNavigatemethod on theFrameNavigationServidastance to cause the app to
navigate to a particular view in the app or tB®Backmethod to return to the previous view. The
following code example shows tiNavigatemethod in theFrameNavigationServiceass.

C#: Microsoft.Practices.Prism.Store ApgpsameNavigationService.cs

public bool Navigate( string pageToken, object parameter)

{
Type pageType = _navigationResolver(pageToken);
if (pageType == null )
{

var resourceLoader = ResourcelLoader.GetForCurrentView
(Constants.Store Appsinfrastructure ResourceMapld);
var error=  string .Format(Culturelnfo.CurrentCulture,
resourcelLoader.GetString
("FrameNavigationService UnableResolveMessage" ),
pageToken);
throw new ArgumentException(error, "pageToken");

}

/I Get the page type and parameter of the last navigation to check if we

/[ are trying to navigate to the exact same page that we are currently on

var lastNavigationParameter =
_sessionStateService.SessionState.ContainsKey(LastNavigati onParameterKey)
? _sessionStateService.SessionState[LastNavigationParameterKey] : null;

var lastPageTypeFullName =
_sessionStateService.SessionState.ContainsKey(LastNavigationPageKey) ?
_sessionStateService.SessionState[La stNavigationPageKey] as string :
string.Empty;



82

if (lastPageTypeFullName != pageType.FullName ||
IAreEquals(lastNavigationParameter, parameter))

{

return _frame.Navigate(pageType, parameter);

}

return false;

TheNavigatemethod accepts a string parameter that represents the page to be navigated to, and a
navigation parameter that represents the data to pass to the page being navigated to. Any data
being passed to the page being navigated to will be received b@tidavigitedTomethod of the

view model class for the page typenéll value is used as the navigation parameter if no data needs
to be passed to the page being navigated to.

Note TheFrameNavigationServicelass uses thErameclass to perform the navigation process.

This includes managing the navigation history, the parameters passed in each navigation request,
and seridizing the navigation state in order to save and restore the app state when itresumes
following termination. Therefore, any parameter passed during navigation must be supported for
serialization by thé&rameclass, which limits the parameter to basic tgmich as string, char,

numeric and GUID types.

Placing the navigation logic in view model classes means that the navigation logic can be exercised
through automated tests. In addition, the view model can then implement logic to control navigation
to ensue that certain business rules are enforced. Forinstance, an app may not allow the user to
navigate away from a page without first ensuring that the entered datais correct.

Navigating to the hub page when AdventureWorks Shopper is activated

When the AdvetureWorks Shopper reference implementation starts up, and after the
bootstrapping process has completed, tBaLaunchApplicatiomethod in theAppclass navigates
to the app's hub page, provided that the app hasn't been launched from a secondary tile.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

83

WoRE o a ()

A

$1364.50

HL Mountain Frame|

Each frame is hand-cradt

\ T f7

$577.12 $229.49 $44.54

Mountain-400-W Red, 42 HL Ferk LL Mountain Handlg

This bike delivers a high-level of performance on a budget. It i responsive and. High-performance carbon road fock.. il-purpose bar for on o

The Appclass derives from thelvwvmAppBaselass in théMicrosoft.Practices.Prism.Store Apps
library that in turn derives from th&Vindows.Ul.Xaml.Applicatiolass and overrides the
OnLaunchedanethod. TheOnLaunchednethod override calls th®nLaunchApplicatiomethod in
the Appclass, which is shown in the following code example.



http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx

84

C#: AdventureWorks.Shoppeapp.xaml.cs

protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)
{

if (args!= null &&! string .IsNullOrEmpty(args.Arguments))

{

/l The app was launched from a Secondary Tile
/I Navigate to the item's page

NavigationService.Navigate( "ItemDetail" , args.Arguments);
}
else
{
/I Navigate to the initial page
NavigationService.Navigate( "Hub", null );
}

Window.Current. Activate();
return  Task.FromResult< object >(null );

This code example shows how AdventureWorks Shopper calidaigatemethod of the
NavigationServicebject to load content that is specified by the page type.

Note TheOnLaunchApplicatiomethod returns alask allowingitto launch a long running
operation. If you don't have a long running operation to launch you should return an efhgsty

Invoking navigation using behaviors

Navigation is usually triggered from a view by a user action. For instance, each page in the app has a
navigation bar which contairutton controls hat allow the user to navigate to the hub page and

the shopping cart page. Rather than implement this functionality separately on each page, itis
implemented as a user control nam@&dpAppBarUserContrdhat is added to each page. The

following code examlg shows theButton controls from theTopAppBarUserContrahat allow the

user to navigate to the hub page and the shopping cart page.

XAML: AdventureWorks.Shoppeviews TopAppBarUserControl.xaml

<StackPanel Orientation ="Horizontal " HorizontalAlignment ="Left " Height ="125"
Margin ="0,15,0,0 ">
<Button x:Name="HomeAppBarButton" x:Uid ="HomeAppBarButton"
AutomationProperties.Automationld =" HomeAppBarButton"
Margin ="5,0 "
Style ="{StaticResource HouseStyle} "
Content ="Home
Height =" 125">
<Interactivity : Interaction.Behaviors >
<Core: EventTriggerBehavior EventName="Click ">
<Core: NavigateToPageAction
TargetPage =" AdventureWorks.Shopper.Views.HubPage "/>
</ Core: EventTriggerBehavior >


http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx

85

</ Interactivity : Interaction.Behaviors >
</ Button >
<Button x:Uid =" ShoppingCartAppBarButton " x:Name="ShoppingCartAppBarButton "
AutomationProperties.Automationld =" ShoppingCartAppBarButton "
Margin ="0,0,5,0 "
Height =" 125"

Style ="{StaticResource CartStyle}
Content ="Shopping Cart ">
<Interactivity : Interaction.Behaviors >
<Core: EventTriggerBehavior EventName="Click ">
<Core: NavigateToPageAction
TargetPage =" AdventureWorks.Shopper.Views.ShoppingCartPage  "/>
</ Core: EventTriggerBehavior >
</ Interactivity . Interaction.Behaviors >
</ Button >
</ StackPanel >

Note Button controls are used in th€opAppBarUserControhther thanAppBaButton controls,
because their default appearance is rectangular. AppBarButtoncontrol's default appearance is
circular instead of rectangular.

In this scenario, navigation is triggered from #Bigtton controls by using th&ventTriggerBehavior
andNavigate ToPageActiomteractions provided by thBehaviors SDRheNavigateToPageAction
interaction'sTargetPag@roperty specifis the page that will be navigated to.

When you want to pass event arguments to a navigation interaction you should use the custom
Navigate WithEventArgsToPageActiarteraction, which enables thkemClickevent of the

Multiple SizedGridViewo invoke navigation to a new page, and passes a property value as a
parameter that's specified by the actiofEsentArgsParameterPatbroperty.

XAML:AdventureWorks.ShoppaViews HubPage.xaml

<awcontrols:MultipleSizedGridView x:Name="itemsGridView "
AutomationProperties. Automationld =
"HubPageltemGridView "
AutomationProperties.Name =" Grouped Items
Margin ="0,0,0,0 "
Padding ="120,0,40,46 "
ltemsSource ="{Binding Source=
{StaticResource  groupedltemsViewSource}}
ltemTemplate ="{StaticResource
AW ShopperltemTemplate} "
MinimalltemTem plate =" {StaticResource
ProductTemplateMinimal} "
SelectionMode ="Noné¢'
ScrollViewer.IsHorizontalScrollChainingEnabled =
"False "
IsitemClickEnabled ="True"
Loaded="itemsGridView_Loaded ">


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbarbutton.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn457340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.targetpage.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

86

<interactivity:Interaction.Behaviors >

<core:EventTriggerBehavior EventName" ItemClick ">
<awbehaviors:Na vigateWithEventArgsToPageAction
TargetPage ="AdventureWorks.Shopper.Views.ltemDetailPage

EventArgsParameterPath ="Clickedltem.ProductNumber " />
</ core:EventTriggerBehavior >

</interactivity:Interac tion.Behaviors >

TheEventTriggerBehavidrinds theltemClickevent of theMultiple SizedGridViewo the
Navigate WithEventArgsToPageActiorherefore, when &ridViewltemis selected the
NavigateWithEventArgsToPageActicnexecuted, which navigates from thiebPageo the
ltemDetailPage passing in th@roductNumbeof the Clickedltento the temDetailPage

For more info seémplementing behavior® supplement the functionality of XAML elements



http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx

87

Using touch in a Windows Store business app using C# and XAML

Summary

f When possible, use the standard touch gestures and controls that Micrdéattows
provides.

1 Provide visual feedback when a touckaraction occurs.

f Use data binding to connect standard Windows controls to the view models that implement
the touch interaction behavior.

Learn how to implement the tap, slide, swipe, pinch, and stretch touch interactions in a Windows
Store business apPata binding is used to connect standard Windows controls that use touch
gestures to the view models thatimplement those gestures.

You will learn

1 How the Windows touch language was used in AdventureWorks Shopper.

Applies to

1 Windows Runtime for Window& 1
1 C#
1 Extensible Application Markup Language (XAML)

Making key decisions

Touch interactions in Windows use physical interactions to emulate the direct manipulation of Ul
elements and provide a more natural, reabrld experience when interacting with thoséeenents

on the screen. The following list summarizes the decisions to make when implementing touch
interactions in your app:

1 Does the Windows touch language provide the experience your app requires?
1 What size should your touch targets be?

1 Whendisplaying st of items, do the touch targets for each item need to be identically
sized?

1 Should you provide feedback to touch interactions?

f Shouldtouch interactions be reversible?

1 How long should atouch interaction last?

1 When should you use static gesturesrsus manipulation gestures?

71 Do you needto design and implementa custom interaction?

o Doesthe custom interaction require specific hardware support such as a minimum
number of touch points?
o How will the custom interaction be provided on a rtouchdevice?



88

Windows provides a concise set of touch interactions that are used throughout the system. Applying
this language consistently makes your app feel familiar to what users already know, increasing user
confidence by making your app easier to learn asd. Most apps will not require touch interactions
that are not part of the Windows touch language. For more infoBaé&ch interaction design

There are no definitive reecomendations for how large a touch target should be or where it should
be placed within your app. However, there are some guidelines that should be followed. The size
and target area of an object depend on various factors, including the user experienegisseand
interaction context. They should be large enough to support direct manipulation and provide rich
touch interaction data. It is acceptable in some user experience scenarios fortouch targetsin a
collection of items to be different sizes. For iaste, when displaying a collection of products you
could choose to display some products at a larger size than the majority of the collection, in order to
draw attention to specific products. Touch targets should react by changing color, changing size, or
by moving. Normoving elements should return to their default state when the user slides or lifts
their finger off the element. In addition, touch interactions should be reversible. You can make your
app safe to explore using touch by providing visual bes#t to indicate what will happen when the
user lifts their finger. For more info s€iidelines for targetingndGuidelines for visual feedback

Touch interactions that require compound or custom gestures need to be performed within a
certain amount of time. Try to avoid timed interactions like these because they can often be
triggered accidatally and can be difficult to time correctly. For more info §&esponding to user
interaction

Static gestures events are triggered after an interaction is complete andgsad to handle singte
fingerinteractions such as tapping. Manipulation gesture events indicate an ongoing interaction and
are used for dynamic muHttiouch interactions such as pinching and stretching, and interactions that
use inertia and velocity datch as panning. This data is then used to determine the manipulation
and perform the interaction. Manipulation gesture events start firing when the user touches the
elementand continue until the user lifts their finger or the manipulation is cancel@@anbre info
seeGestures, manipulations, and interactions

Only create a custom interaction and if there is a clear,wefined requirement and no interaction
from the Windows touch language can support your scenario. If an existing interaction provides the
experience your app requires, adapt your app to support that interaction. If you do need to design
and implement a custom interaction you will need to consider yougriadtion experience. If the
interaction depends on items such as the number of touch points, velocity, and inertia, ensure that
these constraints and dependencies are consistent and discoverable. For example, how users
interpret speed can directly affedhé functionality of your app and the users satisfaction with the
experience. In addition, you will also have to design and implement an equivalent version of the
interaction for nonrtouch devices. For more info s&esponding to user interaction

Important To avoid confusing users, do not create custom interactions that duplicate or redefine
existing, standard interactions.


http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465342.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj883700.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx

89

Touch in AdventureWorks Shopper

As previously desibed inDesigning the UXouch is more than simply an alternative to using a

mouse. We wanted to make touch an integrated part of the app because touch can add a personal
connection between the usamnd the app. Touch is also a natural way to enable users to browse and
select products. In addition, we use Semantic Zoom to highlight how levels of related complexity can
easily be navigated. With Semantic Zoom users can easily visualize high level soctes

categories, and then zoom into those categories to view category items.

The AdventureWorks Shopper reference implementation uses the Windows touch language. We use
the standard touch interactions that Windows provides for these reasons:

1 The Windavs Runtime provides an easy way to work with them.

f We don'twant to confuse users by creating custom interactions.

1 We wantusersto use the interactions that they already know to explore the app, and not
need to learn new interactions.

We also wanted AdvanreWorks Shopper to be intuitive for users who use a mouse or similar
pointing device. The buHn controls work as well with a mouse or other pointing device as they do
with touch. So when you design for touch, you also get mouse and pen functioRaligyxample,

you can use the left mouse button to invoke commands. In addition, mouse and keyboard
equivalents are provided for many commands. For example, you can use the right mouse button to
activate the app bar, and holding the Ctrl key down while l$iagpthe mouse wheel controls

Semantic Zoom interaction. For more info $&@idelines for common user interactians

The documentouch interaction desigexplains the Windows touch language. The following
sections describe how we applied the Windows touch language in AdventureWorks Shopper.

Tap for primary action

Tapping an elementinvokes its primary action. For example, o6thapDetailPageyou tap on a
product to navigate to thétemDetailPage The following diagram shows an example of the tap for
primary action gesture in the AdventureWorks Shopper referemgae mentation.


http://msdn.microsoft.com/en-us/library/windows/apps/jj883702.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx

90

Mountain-500 Red, 40 Mountain-500 Red, 5
$564.99 $£564.99
Mountain-500 Red, 42 Mountain-500 Black,
$564.99 40

$£539.99
Mountain-500 Red, 44 ntain-500 Black,
Mountain-500 Red, 48 rkunhln 500 Black,

5539 99

$564.99

1 Reviews

ok Aok

Products are displayed on tiig&roupDetailPagén the AutoRotatingGridViewcustom control. This
control displays a collection of items in a view state aware grid. This controltesaaControl so it

can contain a collection of items of any type. A benefit of using this control is that it derives from the
GridViewcontrol that has touch capabilities builtin.

To populate theAutoRotatingGridViewcustom control you can add objects directly tolttans
collection or bind itstemsSourceroperty to a collection of dataitems. When youkitems to a
GridViewderived control they are automatically placed i@adViewltemcontainer that can be
styled to change how an itemis digged.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx

XAML: AdventureWorks.Shoppeviews GroupDetailPage.xaml

<awcontrols:AutoRotatingGrid View
Grid.Row ="1"
x:Name="itemsGridView "

AutomationProperties. Automationld ="ItemsGridView "
AutomationProperties.Name ="Items In Category "
Tablndex ="1"

Margin ="0,0,0,0 "

Padding="120,0,30,50 "

ltemsSource ="{ Binding Items }"

ltemTemplate ="{ StaticResource ProductTemplate

MinimalltemTemplate ="{ StaticResource ProductTem

SelectionMode ="Nong'

IsltemClickEnabled ="True"

Loaded="itemsGridView_Loaded ">

<interactivity:Interaction.Behaviors >
<core:EventTriggerBehavior EventName=" ItemClick

<awbehaviors:NavigateWithEventArgsToPageAction

p

plateMinimal }"

"

TargetPage =" AdventureWorks.Shopper.Views.ltemDetailPage "
EventArgsParameterPath =" Clickedltem.ProductNumber "/>

</ core:EventTriggerBehavior >
</interactivity:In teraction.Behaviors >
<awcontrols: AutoRotating GridView. ltemsPanel >
<ltemsPanelTemplate >
<WrapGrid Orientation ="Vertical "/>
</ ltemsPanelTemplate >
</ awcontrols:AutoRotatingGridView.ltemsPanel >

<awcontrols: AutoRotatingG  ridView.PortraititemsPanel >

<ltemsPanelTemplate >
<WrapGrid Orientation ="Horizontal "/>
</ ltemsPanelTemplate >
</ awcontrols:AutoRotatingGridView.PortraititemsPanel
<awcontrols: AutoRotating GridView. MinimalltemsPanel >
<ltemsPanelTemplate >

<StackPanel HorizontalAlignment ="Stretch " Margin="0,0,5,0 "/>

</ ltemsPanelTemplate >

</ awcontrols:AutoRotatingGridView.MinimalltemsPanel >
<awcontrols: AutoRotating GridView. ltemContainerStyle >

<Style TargetType ="Control ">
<Setter Property ="HorizontalContentAlignment
<Setter Property ="Padding" Value="55,55 "/>
</ Style >
</ awcontrols:AutoRotatingGridView.ltemContainerStyle
</ awcontrols: AutoRotating GridView >

" Value ="Stretch " />

91

TheltemsSourceroperty specifies that thé&utoRotatingGridViewwill bind to theltemsproperty

of the GroupDetailPageViewModallass. Théemsproperty is initialized to a collection of type

ProductViewModelwhen theGroupDetailPagés navigated to.



92

The appearance of individual items in thatoRotatingGridViews defined by thétemTemplate
property. ADataTemplateis assigned to thkemTemplateproperty that specifies that each itemin
the AutoRotatingGridViewwvill display the product subtitle, imagend description.

When a user clicks an item in tAeitoRotatingGridVievithe app navigates to theemDetailPage
This behavior is enabled by setting thelectionModgroperty toNone, setting the
IsltemClickEnabledroperty totrue, and handling thééemClickevent. he EventTriggerBehavior
binds theltemClickevent of theAutoRotatingGridViewo the
NavigateWithEventArgsToPageActiddio wheraGridViewltemis selected the

Navigate WithEventArgsToPageActi®executed, which navigates from tlioupDetailPagé¢o
the ItemDetailPage passing in the’roductNumbeiof the Clickedltento the ltemDetailPage For
more info about behaviors sdenplementing behaviors to supplement the functionality of XAML
elements

For more info seé&dding ListView and GridView contrdfr more infabout the
AutoRotatingGridViewcustom control se€reating a custom GridView control that responds to

layout changes

Slide to pan

The slide gesture is primarily used for panning interactions. Panning is a technique for navigating
short distances over small sets of content within a single view. Panning is only necessary when the
amount of contentin the view causes the content areat@rflow the viewable area. For more info
seeGuidelines for panningOne of the uses of the slide gesture in the Adventure Works Shopper
reference implementation is to paamong products in a category. For example, when you browse to
a product, you can use the slide gesture to navigate to the previous or next productin the
subcategory. The following diagram shows an example of the slide to pan gesture in
AdventureWorks Shqger.



http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.datatemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.selectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewselectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isitemclickenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780618.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465310.aspx

93

In AdventureWorks Shopper this gesture is implemented byHI@/iewcontrol. The~lipView
control displays a collection of items, and lgtai flip through them one at a time. TikdipView
control is derived from thé¢emsControlclass, like th&ridViewcontrol, and so it shares many of
the same features. A benefit of using tRBpViewcontrol is that it has touch capabilities builtin,
removing the need for additional code.

To populate &lipViewyou can add objects directly to itemscollection or bind itstemsSource
property to a collection of data items. When you add items tigViewthey are automatically
placed in &lipViewltemcontainer that can be styled to change how an itemis displayed.


http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipviewitem.aspx






































































































































































































































































































































































































































































