
 
 
Prism for the  
Windows Runtime for 
Windows 8.1:  
Developing a Windows Store 
business app using  
C#, XAML, and Prism 

 
 

David Britch 

Colin Campbell 

Francis Cheung 

Diego Antonio Poza 

Rohit Sharma 

Mariano Vazquez  

Blaine Wastell 

 

January 2014 

   

  



ii 

 

 
 

 

 

 

¢Ƙƛǎ ŘƻŎǳƳŜƴǘ ƛǎ ǇǊƻǾƛŘŜŘ άŀǎ-ƛǎέΦ Information and views expressed in this document, including URL 

and other Internet web site references, may change without notice.  

Some examples depicted herein are provided for illustration only and are fictitious. No real 

association or connection is intended or should be inferred. 

This document does not provide you with any legal rights to any intellectual property in any 

Microsoft product. You may copy and use this document for your internal, reference purposes.  

© 2013 Microsoft. All rights reserved. 

Microsoft, Visual Basic, Visual Studio, Windows Azure, and Windows are trademarks of the Microsoft 

group of companies. All other trademarks are property of their respective owners. 

 
  



iii 

 

Contents 
Developing a Windows Store business app using C#, XAML, and Prism for the Windows Runtime ..... 2 

Download................................................................................................................................. 2 

Prerequisites ............................................................................................................................ 2 

Exploring the guidance .............................................................................................................. 3 

What's in the box?................................................................................................................. 3 

Where to start? ..................................................................................................................... 4 

Exploring the documentation .................................................................................................... 4 

Community............................................................................................................................... 5 

Release notes ........................................................................................................................... 5 

Learning resources.................................................................................................................... 5 

Downloads for the previous release ........................................................................................... 6 

Getting started using Prism for the Windows Runtime .................................................................... 7 

Download................................................................................................................................. 7 

Building and running the sample................................................................................................ 7 

Visual Studio solution structure for a Windows Store business app that uses the MVVM pattern .. 8 

The AdventureWorks.Shopper project .................................................................................... 9 

The AdventureWorks.UILogic project ................................................................................... 10 

The AdventureWorks.WebServices project ........................................................................... 10 

The Microsoft.Practices.Prism.PubSubEvents project ............................................................ 11 

The Microsoft.Practices.Prism.StoreApps project .................................................................. 11 

Where to get more info........................................................................................................... 11 

Developer guidance summary and checklists for Windows Store business apps using C#, XAML, and 

Prism ......................................................................................................................................... 12 

Windows Store business apps developer checklists................................................................... 14 

Designing the user experience.............................................................................................. 14 

Using the Model-View-ViewModel (MVVM) pattern.............................................................. 15 

Creating and navigating between pages................................................................................ 15 

Using touch......................................................................................................................... 16 

Validating user input ........................................................................................................... 17 

Managing application data................................................................................................... 17 

Handling suspend, resume, and activation ............................................................................ 18 

Communicating between loosely coupled components ......................................................... 18 

Working with tiles ............................................................................................................... 19 



iv 

 

Implementing search ........................................................................................................... 19 

Improving performance ....................................................................................................... 20 

Testing and deploying apps .................................................................................................. 21 

Developer tasks for building a Windows Store business app using C#, XAML, and Prism ................. 22 

Windows Store business app developer tasks ........................................................................... 22 

Guidance summary and checklists for Windows Store business apps ...................................... 22 

Using Prism for the Windows Runtime.................................................................................. 23 

Designing the user experience.............................................................................................. 25 

Creating pages .................................................................................................................... 25 

Using touch......................................................................................................................... 25 

Managing application data................................................................................................... 25 

Working with tiles ............................................................................................................... 26 

Implementing search ........................................................................................................... 26 

Improving performance ....................................................................................................... 26 

Testing and deploying apps .................................................................................................. 26 

Extended splash screen Quickstart ....................................................................................... 27 

Incremental loading Quickstart ............................................................................................ 27 

Using Prism to create a Windows Store app ................................................................................. 28 

Architecture of a Windows Store business app that uses Prism.................................................. 29 

Creating a Windows Store app project using Prism and Unity .................................................... 31 

Creating a view ....................................................................................................................... 33 

Creating a view model class ..................................................................................................... 33 

Creating a model class with validation support ......................................................................... 34 

Adding items to the Settings pane............................................................................................ 35 

Changing the Prism conventions .............................................................................................. 35 

Changing the convention for naming and locating views ........................................................... 35 

Changing the convention for naming, locating, and associating view models with views ............. 36 

Registering a view model factory with views instead of using a dependency injection container.. 37 

Designing the user experience of a Windows Store business app using C#, XAML, and Prism .......... 38 

AdventureWorks Shopper user experiences ............................................................................. 39 

Deciding the user experience goals .......................................................................................... 40 

Deciding the app flow ............................................................................................................. 40 

Deciding what Windows features to use................................................................................... 42 

Deciding how to monetize the app........................................................................................... 43 



v 

 

Making a good first impression ................................................................................................ 43 

Validating the design............................................................................................................... 43 

Using the Model-View-ViewModel (MVVM) pattern in a Windows Store business app using C#, 

XAML, and Prism ........................................................................................................................ 44 

MVVM in AdventureWorks Shopper ........................................................................................ 48 

What is MVVM?...................................................................................................................... 49 

Using a dependency injection container ................................................................................... 49 

Bootstrapping an MVVM app using Prism's MvvmAppBase class ............................................... 50 

Using the ViewModelLocator class to connect view models to views ......................................... 52 

Using a convention-based approach to connect view models to views.................................... 53 

Other approaches to constructing view models and views......................................................... 53 

Creating a view model declaratively ..................................................................................... 54 

Creating a view model programmatically .............................................................................. 54 

Creating a view defined as a data template........................................................................... 54 

Updating a view in response to changes in the underlying view model or model ........................ 55 

Additional considerations when implementing property change notification .......................... 57 

UI interaction using the DelegateCommand class and Blend behaviors ...................................... 58 

Implementing command objects .......................................................................................... 58 

Invoking commands from a view .......................................................................................... 59 

Implementing behaviors to supplement the functionality of XAML elements .......................... 60 

Invoking behaviors from a view ............................................................................................ 63 

Additional MVVM considerations............................................................................................. 64 

Centralize data conversions in the view model or a conversion layer ...................................... 64 

Expose operational modes in the view model ....................................................................... 64 

Keep views and view models independent ............................................................................ 64 

Use asynchronous programming techniques to keep the UI responsive .................................. 64 

Creating and navigating between pages in Windows Store business app using C#, XAML, and Prism 65 

Creating pages and navigating between them in AdventureWorks Shopper ............................... 68 

Creating pages ........................................................................................................................ 69 

Adding design time data.......................................................................................................... 71 

Supporting multiple view states ............................................................................................... 71 

Creating a custom GridView control that responds to layout changes ........................................ 73 

Creating a custom GridView control that displays items at multiple sizes ................................... 74 

Styling controls ....................................................................................................................... 76 



vi 

 

Enabling page localization ....................................................................................................... 76 

Separate resources for each locale ....................................................................................... 76 

Ensure that each piece of text that appears in the UI is defined by a string resource ............... 76 

Add contextual comments to the app resource file................................................................ 77 

Define the flow direction for all pages .................................................................................. 77 

Ensure error messages are read from the resource file .......................................................... 77 

Enabling page accessibility ...................................................................................................... 78 

Navigating between pages....................................................................................................... 79 

Handling navigation requests ............................................................................................... 80 

Navigating to the hub page when AdventureWorks Shopper is activated ................................ 82 

Invoking navigation using behaviors ..................................................................................... 84 

Using touch in a Windows Store business app using C# and XAML ................................................. 87 

Touch in AdventureWorks Shopper.......................................................................................... 89 

Tap for primary action............................................................................................................. 89 

Slide to pan ............................................................................................................................ 92 

Swipe to select, command, and move ...................................................................................... 94 

Pinch and stretch to zoom ....................................................................................................... 97 

Swipe from edge for app commands .......................................................................................100 

Swipe from edge for system commands ..................................................................................103 

Validating user input in a Windows Store business app using C#, XAML, and Prism........................105 

Validation in AdventureWorks Shopper using Prism .................................................................106 

Specifying validation rules ......................................................................................................108 

Triggering validation when properties change .........................................................................111 

Triggering validation of all properties ......................................................................................113 

Triggering server-side validation .............................................................................................114 

Highlighting validation errors with behaviors ...........................................................................116 

Persisting user input and validation errors when the app suspends and resumes.......................119 

Managing application data in a Windows Store business app using C#, XAML, and Prism ...............122 

Managing application data in AdventureWorks Shopper ..........................................................125 

Storing data in the app data stores .........................................................................................125 

Local application data .........................................................................................................126 

Roaming application data ...................................................................................................126 

Storing and roaming user credentials...................................................................................127 

Temporary application data ................................................................................................129 



vii 

 

Exposing settings through the Settings charm..........................................................................129 

Creating data transfer objects.................................................................................................132 

Accessing data through a web service .....................................................................................133 

Consuming data .................................................................................................................134 

Exposing data.....................................................................................................................134 

Data formats ......................................................................................................................135 

Consuming data from a web service using DTOs...................................................................135 

Caching data from a web service .........................................................................................139 

Authenticating users with a web service ..............................................................................140 

Handling suspend, resume, and activation in Windows Store business app using C#, XAML, Prism .145 

Suspend and resume in AdventureWorks Shopper...................................................................147 

Understanding possible execution states.................................................................................147 

Implementation approaches for suspend and resume ..............................................................149 

Suspending an app .................................................................................................................150 

Saving view model state .....................................................................................................152 

Saving view state................................................................................................................152 

Saving state from service and repository classes ..................................................................153 

Resuming an app ...................................................................................................................153 

Activating an app ...................................................................................................................154 

Restoring view model state .................................................................................................156 

Restoring view state ...........................................................................................................156 

Restoring state from service and repository classes ..............................................................157 

Other ways to close the app ...................................................................................................157 

Communicating between loosely coupled components in a Windows Store business app using C#, 

XAML, and Prism .......................................................................................................................159 

Event aggregation in AdventureWorks Shopper .......................................................................160 

Event aggregation ..................................................................................................................161 

Defining and publishing pub/sub events ..................................................................................162 

Defining an event ...............................................................................................................162 

Publishing an event ............................................................................................................162 

Subscribing to events .............................................................................................................163 

Default subscription ...........................................................................................................163 

Subscribing on the UI thread ...............................................................................................163 

Subscription filtering ..........................................................................................................164 



viii 

 

Subscribing using strong references.....................................................................................165 

Unsubscribing from pub/sub events........................................................................................166 

Working with tiles in a Windows Store business app using C#, XAML, and Prism ...........................167 

Tiles in AdventureWorks Shopper ...........................................................................................168 

Creating app tiles ...................................................................................................................169 

Using periodic notifications to update tile content ...............................................................170 

Creating secondary tiles .........................................................................................................171 

Launching the app from a secondary tile..............................................................................174 

Implementing search in a Windows Store business app using C#, XAML, and Prism .......................176 

Search in AdventureWorks Shopper ........................................................................................177 

Adding search functionality ....................................................................................................178 

Providing query suggestions................................................................................................179 

Responding to search queries .............................................................................................180 

Populating the search results page with data .......................................................................181 

Navigating to the result's detail page ...................................................................................182 

Enabling users to type into the search box ...........................................................................183 

Improving performance in a Windows Store business app using C# and XAML ..............................185 

Performance considerations ...................................................................................................187 

Limit the startup time .........................................................................................................187 

Emphasize responsiveness ..................................................................................................188 

Trim resource dictionaries ..................................................................................................188 

Optimize the element count ...............................................................................................188 

Reuse identical brushes ......................................................................................................188 

Use independent animations ..............................................................................................188 

Minimize the communication between the app and the web service.....................................189 

Limit the amount of data downloaded from the web service ................................................189 

Use UI virtualization ...........................................................................................................189 

Use the IncrementalUpdateBehavior to implement incremental loading ...............................190 

Avoid unnecessary termination ...........................................................................................192 

Keep your app's memory usage low when it's suspended .....................................................192 

Reduce battery consumption ..............................................................................................192 

Minimize the amount of resources that your app uses..........................................................192 

Limit the time spent in transition between managed and native code ...................................193 

Reduce garbage collection time...........................................................................................193 



ix 

 

Testing and deploying Windows Store business apps using C#, XAML, and Prism...........................194 

Testing AdventureWorks Shopper...........................................................................................195 

Unit and integration testing....................................................................................................196 

Testing synchronous functionality .......................................................................................197 

Testing asynchronous functionality .....................................................................................198 

Suspend and resume testing...................................................................................................199 

Security testing ......................................................................................................................199 

Localization testing ................................................................................................................199 

Accessibility testing................................................................................................................200 

Performance testing...............................................................................................................200 

Device testing ........................................................................................................................200 

Testing your app with the Windows App Certification Kit .........................................................201 

Creating a Windows Store certification checklist......................................................................202 

Deploying and managing Windows Store apps.........................................................................202 

Meet the AdventureWorks Shopper and Prism team ...................................................................203 

Quickstarts for Windows Store business apps using C#, XAML, and Prism .....................................205 

Validation Quickstart for Windows Store apps using C#, XAML, and Prism ....................................206 

Building and running the Quickstart ........................................................................................206 

Solution structure ..................................................................................................................207 

Key classes in the Quickstart ...................................................................................................208 

Specifying validation rules ......................................................................................................209 

Triggering validation explicitly ................................................................................................210 

Triggering validation implicitly on property change ..................................................................211 

Highlighting validation errors..................................................................................................212 

Event aggregation Quickstart for Windows Store apps using C#, XAML, and Prism.........................214 

Building and running the Quickstart ........................................................................................215 

Solution structure ..................................................................................................................216 

Key classes in the Quickstart ...................................................................................................216 

Defining the ShoppingCartChangedEvent class ........................................................................218 

Notifying subscribers of the ShoppingCartChangedEvent .........................................................218 

Registering to receive notifications of the ShoppingCartChangedEvent .....................................219 

Bootstrapping an MVVM Windows Store app Quickstart using C#, XAML, and Prism .....................221 

Building and running the Quickstart ........................................................................................222 

Solution structure ..................................................................................................................223 



x 

 

Key classes in the Quickstart ...................................................................................................223 

Bootstrapping an MVVM app using MvvmAppBase class and a dependency injection container.223 

Adding app specific startup behavior to the App class ..............................................................224 

Bootstrapping without a dependency injection container.........................................................227 

Extended splash screen Quickstart for Windows Store apps using C#, XAML, and Prism.................228 

Building and running the Quickstart ........................................................................................228 

Solution structure ..................................................................................................................229 

Key classes in the Quickstart ...................................................................................................230 

Creating the extended splash screen .......................................................................................230 

Responding to resize and image opened events for the extended splash screen ........................231 

Displaying the extended splash screen and launching additional loading tasks ..........................232 

Incremental loading Quickstart for Windows Store apps using C# and XAML.................................234 

Building and running the Quickstart ........................................................................................235 

Solution structure ..................................................................................................................235 

Using the IncrementalUpdateBehavior to add incremental loading...........................................236 

Handling the ContainerContentChanging event in code-behind ................................................238 

Prism for the Windows Runtime reference..................................................................................241 

Microsoft.Practices.Prism.StoreApps library ............................................................................242 

Microsoft.Practices.Prism.PubSubEvents library ......................................................................244 

 

  



2 

 

Developing a Windows Store business app using C#, XAML, and Prism 

for the Windows Runtime  

This guide helps developers who want to create a Windows Store business app using C#, XAML, the 

Windows Runtime, and development patterns such as Model-View-ViewModel and event 

aggregation. The guide comes with source code for Prism for the Windows Runtime, source code for 

the AdventureWorks Shopper product catalog and shopping cart reference implementation, and 

documentation. The documentation provides guidance on how to implement MVVM with navigation 

and app lifecycle management, validation, manage application data, implement controls, accessible 

and localizable pages, touch, search, tiles, and tile notifications. It also provides guidance on testing 

your app and tuning its performance. 

Download  

 

 

 

Here's what you'll learn: 

¶ How to implement pages, touch, navigation, settings, suspend/resume, search, tiles, and tile 

notifications. 

¶ How to implement the Model-View-ViewModel (MVVM) pattern. 

¶ How to validate user input for correctness. 

¶ How to manage application data. 

¶ How to test your app and tune its performance. 

Note  If you're just getting started with Windows Store apps, read Create your first Windows Store 

app using C# or Visual Basic to learn how to create a simple Windows Store app with C# and XAML. 

Then download the AdventureWorks Shopper reference implementation to see a complete business 

app that demonstrates recommended implementation patterns. 

Prerequisites  

¶ Windows 8.1 

¶ Microsoft Visual Studio 2013 

¶ An interest in C# and XAML programming 

Go to Windows Store app development to download the latest tools for Windows Store app 

development. 

http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211368.aspx
http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571


3 

 

The AdventureWorks Shopper Microsoft Visual Studio solution has a number of nuget package 

dependencies, which Visual Studio will attempt to download when the solution is first loaded. The 

required nuget packages are: 

¶ Unity v3.0 

¶ Microsoft.AspNet.WebApi.Client v4.1.0-alpha-120809 

¶ Newtonsoft.Json v4.5.11 and v5.0.6 

¶ Microsoft.AspNet.Mvc v4.0.20710.0 

¶ Microsoft.AspNet.Razor v2.0.20715.0 

¶ Microsoft.AspNet.WebApi v4.0.20710.0 

¶ Microsoft.AspNet.WebApi.Client v4.1.0-alpha-120809 

¶ Microsoft.AspNet.WebApi.Core v4.0.20710.0 

¶ Microsoft.AspNet.WebApi.WebHost v4.0.20710.0 

¶ Microsoft.AspNet.WebPages v2.0.20710.0 

¶ Microsoft.Net.Http v2.0.20710.0 

¶ Microsoft.Web.Infrastructure v1.0.0.0 

Exploring the guidance  

What's in the box?  

¶ Documentation. The documentation provides guidance on how to implement MVVM with 

navigation and app lifecycle management, manage application data, implement controls, 

accessible and localizable pages, touch, validation, search, tiles, and tile notifications. It also 

provides guidance on testing your app and tuning its performance. 

¶ Portable Document Format (PDF). A PDF version of the on-line guidance, for printing or 

reading offline. 

¶ AdventureWorks Shopper reference implementation source code. A Visual Studio solution 

containing all the projects that make up the AdventureWorks Shopper product catalog and 

shopping cart reference implementation. 

¶ Quickstarts. The guidance includes a number of Quickstarts that illustrate specific concepts. 

Many of the Quickstarts use Prism for the Windows Runtime. 

¶ Prism for the Windows Runtime source code. Source code for the two libraries that help to 

accelerate the development of managed Windows Store apps. 

¶ Prism for the Windows Runtime NuGet packages. NuGet packages for the two libraries that 

help to accelerate the development of managed Windows Store apps. 

  

http://go.microsoft.com/fwlink/p/?LinkID=275571
http://go.microsoft.com/fwlink/p/?LinkID=275570


4 

 

Where to start?  

¶ Review the AdventureWorks Reference implementation. After you download the code, see 

Getting started using Prism for the Windows Runtime for instructions on how to compile and 

run the reference implementation, as well as understand the Visual Studio solution 

structure. 

¶ Review Quickstarts. The guidance provides five Quickstart samples that focus on specific 

tasksτvalidation, event aggregation, bootstrapping an MVVM app, extended splash screens, 

and incremental loading of items in GridView controls. 

¶ Create an app using the Prism for the Windows Runtime. If you want to create your own app 

using Prism see Using Prism for the Windows Runtime. 

¶ Explore developer tasks. Learn how the team implemented many of the tasks required to 

create a Windows Store app. 

¶ Review the documentation. The associated documentation outlines the key decisions and 

lessons learned to create a Windows Store business app. 

Exploring the documentation  

Here are the major topics in this guide.  

¶ Getting started using Prism for the Windows Runtime 

¶ Developer guidance summary and checklists for Windows Store business apps using C#, 

XAML, and Prism 

¶ Developer tasks for building a Windows Store business app using C#, XAML, and Prism 

¶ Using Prism to create a Windows Store app 

¶ Designing the user experience of a Windows Store business app using C#, XAML, and Prism 

¶ Using the Model-View-ViewModel (MVVM) pattern in a Windows Store business app using 

C#, XAML, and Prism 

¶ Creating and navigating between pages in a Windows Store business app using C#, XAML, 

and Prism 

¶ Using touch in a Windows Store business app using C# and XAML 

¶ Validating user input in a Windows Store business app using C#, XAML, and Prism 

¶ Managing application data in a Windows Store business app using C#, XAML, and Prism 

¶ Handling suspend, resume, and activation in a Windows Store business app using C#, XAML, 

and Prism 

¶ Communicating between loosely coupled components in a Windows Store business app 

using C#, XAML, and Prism 

¶ Working with tiles in a Windows Store business app using C#, XAML, and Prism 

¶ Implementing search in a Windows Store business app using C#, XAML, and Prism 

¶ Improving performance in a Windows Store business app using C# and XAML 

¶ Testing and deploying Windows Store business apps using C#, XAML, and Prism 

¶ Meet the AdventureWorks Shopper and Prism team 

¶ Quickstarts for Windows Store business apps using C#, XAML, and Prism 

¶ Prism for the Windows Runtime reference 



5 

 

Community  

Prism for the Windows Runtime, like many patterns & practices deliverables, has a community site. 

On the community site you can post questions, provide feedback, connect with other users to share 

ideas, and find additional content such as extensions and training material. Community members 

can also help Microsoft plan and test future releases of Prism for the Windows Runtime. For more 

info see patterns & practices: Prism for the Windows Runtime. 

Release notes 

The release notes, which include what's new in this release and a change log, can be found on the 

community site. For more info see Prism for the Windows Runtime release notes. 

Learning resour ces 

If you're new to C# programming for Windows Store apps, read Roadmap for Windows Store app 

using C# or Visual Basic. To find out about debugging Windows Store apps see Debugging Windows 

Store apps. 

If you're familiar with using XAML you'll be able to continue using your skills when you create 

Windows Store apps. For more info about XAML as it relates to Windows Store apps, see XAML 

overview. 

The Windows Runtime is a programming interface that you can use to create Windows Store apps. 

The Windows Runtime supports the distinctive visual style and touch-based interaction model of 

Windows Store apps as well as access to network, disks, devices, and printing. For more info about 

the Windows Runtime API, see Windows API reference for Windows Store apps. 

The .NET framework provides a subset of managed types that you can use to create Windows Store 

apps using C#. This subset of managed types is called .NET for Windows Store apps and enables .NET 

framework developers to create Windows Store apps within a familiar programming framework. You 

use these managed types with types from the Windows Runtime API to create Windows Store apps. 

You won't notice any differences between using the managed types and the Windows Runtime types 

except that the managed types reside in namespaces that start with System, and the Windows 

Runtime types reside in namespaces that start with Windows. The entire set of assemblies for .NET 

for Windows Store apps is automatically referenced in your project when you create a Windows 

Store app using C#. For more info see .NET for Windows Store apps overview. 

To learn about the components and tools that determine what platform capabilities are available to 

your app, and how to access these capabilities see App capability declarations (Windows Store 

apps). 

The AdventureWorks Shopper reference implementation makes much use of the task-based 

asynchronous pattern (TAP). To learn how to use TAP to implement and consume asynchronous 

operations see Task-based Asynchronous Pattern. 

http://go.microsoft.com/fwlink/?LinkID=288835
http://go.microsoft.com/fwlink/p/?LinkID=386786
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211377.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230302.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://go.microsoft.com/fwlink/p/?LinkID=276827


6 

 

You might also want to read Index of UX guidelines for Windows Store apps and Design Windows 

Store apps using Blend for Microsoft Visual Studio 2013 to learn more about how to implement a 

great user experience. 

Downloads for the previous release  

The previous release of Prism, which works with Windows 8 but not with Windows 8.1, can be 

downloaded using the links below. 

¶ AdventureWorks Shopper sample 

¶ Quickstarts 

¶ Prism StoreApps library 

¶ Prism PubSubEvents library 

¶ Book (PDF) 

  

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://go.microsoft.com/fwlink/p/?LinkID=389062
https://prismwindowsruntime.codeplex.com/releases/view/106870
http://go.microsoft.com/fwlink/p/?LinkID=389064
http://go.microsoft.com/fwlink/p/?LinkID=389065
http://go.microsoft.com/fwlink/p/?LinkID=389066


7 

 

Getting started using Prism for the Windows Runtime  

Learn how to build and run AdventureWorks Shopper, the reference implementation for Prism for 

the Windows Runtime, and how the source code is organized in Microsoft Visual Studio. The 

AdventureWorks Shopper reference implementation demonstrates how to accelerate the 

development of a Windows Store business app by using Prism. 

Download  

 

 

 

You will learn  

¶ How to structure the Visual Studio solution for a Windows Store business app that uses the 

Model-View-ViewModel (MVVM) pattern. 

Applies to  

¶ Windows Runtime for Windows 8.1 

¶ C# 

¶ Extensible Application Markup Language (XAML) 

Building and running the sample  

Build the AdventureWorks Shopper Visual Studio solution as you would build a standard solution. 

1. On the Visual Studio menu bar, choose Build > Build Solution. 

2. After you build the solution, you must deploy it. On the menu bar, choose Build > Deploy 

Solution. Visual Studio also deploys the project when you run the app from the debugger. 

3. After you deploy the project, you should run it. On the menu bar, choose Debug > Start 

Debugging. Make sure that AdventureWorks.Shopper is the startup project. When you run 

the app, the hub page appears. 

http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571


8 

 

 

Visual Studio solution structure for a Windows Sto re business app that uses 

the MVVM pattern  

The AdventureWorks Shopper Visual Studio solution organizes the source code and other resources 

into projects. All of the projects use Visual Studio solution folders to organize the source code and 

other resources into categories. The following table outlines the projects that make up the 

AdventureWorks Shopper reference implementation. 

Project Description 

AdventureWorks.Shopper This project contains the views for the 

AdventureWorks Shopper reference 

implementation, the package manifest, and the 

App class that defines the startup behavior of the 

app, along with supporting classes and resources. 

For more info see The AdventureWorks.Shopper 

project. 

AdventureWorks.UILogic This project contains the business logic for the 

AdventureWorks Shopper reference 

implementation, and comprises view models, 

models, repositories, and service classes. For more 

info see The AdventureWorks.UILogic project. 



9 

 

AdventureWorks.WebServices This project contains the web service for the 

AdventureWorks Shopper reference 

implementation. For more info see The 

AdventureWorks.WebServices project. 

Microsoft.Practices.Prism.PubSubEvents This project contains classes that implement the 

event aggregator. For more info see The 

Microsoft.Practices.Prism.PubSubEvents project. 

Microsoft.Practices.Prism.StoreApps This project contains interfaces and classes that 

provide MVVM support with lifecycle 

management, and core services to the 

AdventureWorks Shopper reference 

implementation. For more info see The 

Microsoft.Practices.Prism.StoreApps project. 

AdventureWorks.UILogic.Tests This project contains unit tests for the 

AdventureWorks.UILogic project. 

AdventureWorks.WebServices.Tests This project contains unit tests for the 

AdventureWorks.WebServices project. 

Microsoft.Practices.Prism.PubSubEvents.Tests This project contains unit tests for the 

Microsoft.Practices.Prism.PubSubEvents project. 

Microsoft.Practices.Prism.StoreApps.Tests This project contains unit tests for the 

Microsoft.Practices.Prism.StoreApps project. 

You can reuse some of the components in the AdventureWorks Shopper reference implementation 

in any Windows Store app with little or no modification. For your own app, you can adapt the 

organization and ideas that these files provide. 

The AdventureWorks.Shopper project  

The AdventureWorks.Shopper project contains the following folders: 

¶ The Assets folder contains images for the splash screen, tile, and other Windows Store app 

required images. 

¶ The Behaviors folder contains behaviors that are exposed to view classes. 

¶ The Common folder contains the DependencyPropertyChangedHelper class which monitors 

a dependency property for changes, and standard styles used by the app. 

¶ The Controls folder contains the AutoRotatingGridView and MultipleSizedGridView 

controls. 

¶ The Converters folder contains data converters such as the BooleanToVisibilityConverter 

and the NullToVisibleConverter. 

¶ The DesignViewModels folder contains design-time view model classes that are used to 

display sample data in the visual designer. 

¶ The Services folder contains the AlertMessageService and SecondaryTileService classes. 



10 

 

¶ The Strings folder contains resource strings used by this project, with subfolders for each 

supported locale. 

¶ The Themes folder contains the application styles used by the app. 

¶ The Views folder contains the pages and flyouts for the app. The app uses a default 

convention that attempts to locate pages in the "Views" namespace. 

The AdventureWorks.UILogic project  

The AdventureWorks.UILogic project contains the model, repository, service, and view model 

classes. Placing the model and view model classes into a separate assembly provides a simple 

mechanism for ensuring that view models are independent from their corresponding views. 

The AdventureWorks.UILogic project contains the following folders: 

¶ The Models folder contains the entities that are used by view model classes. 

¶ The Repositories folder contains repository classes that access the web service. 

¶ The Services folder contains interfaces and classes that implement services that are 

provided to the app, such as the AccountService and TemporaryFolderCacheService classes. 

¶ The Strings folder contains resource strings used by this project, with subfolders for each 

supported locale. 

¶ The ViewModels folder contains the application logic that is exposed to XAML controls. 

When a view class is associated with a view model class a default convention is used which 

will attempt to locate the view model class in the "ViewModels" namespace. 

The AdventureWorks.WebServices project  

The AdventureWorks.WebServices project is a sample web service that uses an in-memory database 

to provide data to the AdventureWorks Shopper reference implementation. When the reference 

implementation is deployed through Visual Studio this web service is deployed locally on the 

ASP.NET development server. 

The AdventureWorks.WebServices project contains the following folders: 

¶ The App_Start folder contains the configuration logic for the web service. 

¶ The Controllers folder contains the controller classes used by the web service. 

¶ The Images folder contains product images. 

¶ The Models folder contains the entities that are used by the web service. These entities 

contain the same properties as the entities in the AdventureWorks.UILogic project, with 

some containing additional validation logic. 

¶ The Repositories folder contains the repository classes that implement the in-memory 

database used by the web service. 

¶ The Strings folder contains a resource file containing strings used by the web service. 

¶ The Views folder contains the Web.config settings and configuration file for the web service. 

It does not contain views because it uses the ASP.NET Web API, which returns data rather 

than displays views. 



11 

 

Note  The AdventureWorks.WebServices project does not provide guidance for building a web 

service. 

The Microsoft.Practices.Prism.PubSubEvents project  

The Microsoft.Practices.Prism.PubSubEvents project is a Portable Class Library that contains classes 

that implement event aggregation. You can use this library for communicating between loosely 

coupled components in your own app. The project has no dependencies on any other projects. For 

more info about this library, see Prism for the Windows Runtime reference. 

The Microsoft.Practices.Prism.StoreApps project  

This project contains the reusable infrastructure of the AdventureWorks Shopper reference 

implementation, which you can use for building your own Windows Store app. It contains classes to 

build Windows Store apps that support MVVM, navigation, state management, validation, and 

commands. 

The Microsoft.Practices.Prism.StoreApps project uses Visual Studio solution folders to organize the 

source code and other resources into these categories: 

¶ The Interfaces folder contains the interfaces that are implemented by classes in this project. 

¶ The Strings folder contains resource strings used by this project, with subfolders for each 

supported locale. 

For more info about this library, see Prism for the Windows Runtime reference. 

Where to get more info  

For info about the logical architecture of a Windows Store business app that uses Prism, see 

Architecture of a Windows Store business app that uses Prism. For more info about using Prism see 

Using Prism to create a Windows Store app. For more info about the tasks that this documentation 

can help you with, see Developer tasks for building a Windows Store business app. 

  



12 

 

Developer guidance summary and checklists for Windows Store 

business apps using C#, XAML, and Prism 

Explore checklists that provide a consolidated view of the guidance included with the documentation 

and illustrated in the AdventureWorks Shopper reference implementation, a Windows Store 

business app that uses C#, XAML, and Prism for the Windows Runtime. We include checklists for the 

Model-View-ViewModel (MVVM) pattern, creating and navigating between pages, using touch, 

validating user input, managing app data, handling suspend, resume, and activation, communicating 

between loosely coupled components, working with tiles, implementing search, improving 

performance, and testing and deploying apps. 

Download  

 

 

 

After you download the code, see Getting started using Prism for the Windows Runtime for 

instructions on how to compile and run the reference implementation, as well as understand the 

Microsoft Visual Studio solution structure. 

You will learn  

¶ About the key decisions that must be made when developing a Windows Store business app. 

¶ About checklists that you can use to accelerate the development of a maintainable and 

testable Windows Store business app. 

Applies to  

¶ Windows Runtime for Windows 8.1 

¶ C# 

¶ Extensible Application Markup Language (XAML) 

Making key decisions  

This guidance provides information to developers who want to create a Windows Store app using 

C#, XAML, the Windows Runtime, and modern development practices. When you develop a new 

Windows Store app, you need to determine some key factors that will define the architecture of 

your app.  

 

 

http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571


13 

 

The following are many of the key decisions that you will need to make: 

¶ Decide on the design of the end user experience. When planning Windows Store apps, you 

should think more about what experience you want to provide to your users and less about 

what Microsoft Windows features you want to include. For more info see Designing the user 

experience. 

¶ Decide whether to use a dependency injection container. Dependency injection containers 

reduce the dependency coupling between objects by providing a facility to construct 

instances of classes with their dependencies injected, and manage their lifetime based on 

the configuration of the container. You will need to decide whether to use a dependency 

injection container, which container to use, and how to register the lifetime of components. 

For more info see Using the Model-View-ViewModel pattern. 

¶ Decide whether to provide a clean separation of concerns between the user interface 

controls and their logic. One of the most important decisions when creating a Windows 

Store app is whether to place business logic in code-behind files, or whether to create a 

clean separation of concerns between the user interface controls and their logic, in order to 

make the app more maintainable and testable. If you decide to provide a clean separation of 

concerns, there are then many decisions to be made about how to do this. For more info see 

Using the Model-View-ViewModel pattern. 

¶ Decide how to create pages and navigate between them. There are many decisions to be 

made about page design including the page layout, what content should be displayed in 

different page views, whether to include design time data on your pages, and whether to 

make pages localizable and accessible. In addition, you must also make decisions about page 

navigation including how to invoke navigation, and where navigation logic should reside. For 

more info see Creating and navigating between pages.  

¶ Choose the touch interactions that the app will support. This includes selecting the 

gestures from the Windows touch language that your app requires, and whether to design 

and implement your own custom touch interactions. For more info see Using touch. 

¶ Decide how to validate user input for correctness. The decision must include how to 

validate user input across physical tiers, and how to notify the user about validation errors. 

For more info see Validating user input. 

¶ Decide how to manage application data. This should include deciding upon which of the 

app data stores to use, what data to roam, deciding how to manage large data sets, how to 

perform authentication between your app and a web service, and how to reliably retrieve 

data from a web service. For more info see Managing application data. 

¶ Decide how to manage the lifecycle of the app. The purpose and usage patterns of your app 

must be carefully designed to ensure that users have the best possible experience when an 

app suspends and resumes. This includes deciding whether your app needs to update the UI 

when resuming from suspension, and whether the app should start fresh if a long period of 

time has elapsed since the user last accessed it. For more info see Handling suspend, 

resume, and activation. 

¶ Choose between platform provided eventing and loosely coupled eventing. Event 

aggregation allows communication between loosely coupled components in an app, 

removing the need for components to have a reference to each other. If you decide to use 



14 

 

event aggregation, you must decide how to subscribe to events and unsubscribe from them. 

For more info see Communicating between loosely coupled components. 

¶ Decide how to create tiles that are engaging for users. A tile is an app's representation on 

the Start screen and allows you to present rich and engaging content to your users when the 

app is not running. In order to create engaging tiles you must decide on their shape and size, 

how to update tile content, and how often to update tile content. For more info see Working 

with tiles. 

¶ Choose how to participate in search. If your app has content that users might want to 

search, you should add a search box to your app canvas. The search box can respond to user 

queries and display search results in a page of your own design. However, there are still 

decisions to be made that include whether to provide query and result suggestions, filtering, 

and what to display on the search results page. For more info see Implementing search. 

¶ Consider how to improve app performance. A well-performing app should respond to user 

actions quickly, with no noticeable delay. In order to deliver a well-performing app you will 

need to decide which tools to use to measure performance, and where to optimize code. For 

more info see Improving performance. 

¶ Decide how to test and deploy the app. Windows Store apps should undergo various modes 

of testing in order to ensure that reliable, high quality apps are deployed. Therefore, you will 

need to decide how to test your app, how to deploy it, and how to manage it after 

deployment. For more info see Testing and deploying Windows Store apps. 

Windows Store business apps developer checklists  

When developing a Windows Store business app you should consult the following checklists to 

accelerate development while ensuring that a maintainable and testable app is produced. 

Designing the user experience  

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and 

compelling user experience. Planning ahead for different form factors, accessibility, monetization, 

and selling in the global market can reduce your development time and make it easier to create a 

high quality app and get it certified.  

Check Description 

 Created a "great at" statement to guide user experience planning. 

 Decided the user experiences to provide in the app. 

 Followed the Index of UX guidelines for Windows Store apps for the experiences the app 

provides. 

 Storyboarded the different app flows to decide how the app behaves. 

 Designed the app for different form factors. 

 Designed the app for all users regardless of their abilities, disabilities, or preferences. 

For more info see Designing the user experience. 

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx


15 

 

Using the Model -View-ViewModel (MVVM) pattern  

MVVM provides a way for developers to cleanly separate the user interface controls from their logic. 

This separation makes it easy to test the business logic of the app. 

Check Description 

 Used a dependency injection container to decouple concrete types from the code that 

depends on those types, if appropriate. 

 Used view-first composition because the app is conceptually composed of views that 

connect to the view models they depend upon. 

 Limited view model instantiation to a single class by using a view model locator object. 

 Used a convention-based approach for view model construction to remove the need for 

some boilerplate code. 

 Used an attached property to automatically connect views to view models. 

 Promoted the testability of the app by exposing commands from the view models for 

ButtonBase-derived controls on the views. 

 Promoted the testability of the app by exposing behaviors to views for non-ButtonBase-

derived controls. 

 Supported a view model hierarchy in order to eliminate redundant code in the view model 

classes. 

For more info see Using the MVVM pattern. 

Creating and navigating between pages  

The app page is the focal point for designing your UI. It holds all of your content and controls. 

Whenever possible, you should integrate your UI elements inline into the app page. Presenting your 

UI inline lets users fully immerse themselves in your app and stay in context.  

Check Description 

 Used Visual Studio to work with the code-focused aspects of the app.  

 Used Blend for Microsoft Visual Studio 2013 or the Visual Studio designer to work on the 

visual appearance of the app. 

 Provided flexible page layouts that support landscape, portrait, and minimal view states. 

 Followed a consistent layout pattern for margins, page headers, gutter widths, and other 

page elements. 

 Maintained state in minimal view and possess feature parity across states. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx


16 

 

 Used the Windows simulator to test the app on a variety of screen sizes, orientations, and pixel 

densities. 

 
Added sample data to each page to easily view styling results and layout sizes, and to support 

the designer-developer workflow. 

 Incorporated accessible design principles into the pages, and planned for them to be localized. 

 Placed navigation logic in view model classes to promote testability. 

 Used commands to implement a navigation action in a view model class, for ButtonBase-

derived controls. 

 Used behaviors to implement a navigation action for non-ButtonBase-derived controls. 

 Used the navigation bar for navigational elements that move the user to a different page and 

used the bottom app bar for commands that act on the current page. 

 Implemented common page navigation functionality as a user control that is easily included on 

each page. 

 Used strings to specify navigation targets. 

For more info see Creating and navigating between pages. 

Using touch  

Touch interactions in Windows use physical interactions to emulate the direct manipulation of UI 

elements and provide a more natural, real-world experience when interacting with those elements 

on the screen. 

Check Description 

 Used the Windows touch language to provide a concise set of touch interactions that are 

used consistently throughout the system. 

 Used data binding to connect standard Windows controls to the view models that 

implement the touch interaction behavior. 

 Ensured that touch targets are large enough to support direct manipulation. 

 Provided immediate visual feedback to touch interactions. 

 Ensured that the app is safe to explore by making touch interactions reversible. 

 Avoided timed touch interactions. 

 Used static gestures to handle single-finger touch interactions. 

 Used manipulation gestures to handle dynamic multi-touch interactions. 

For more info see Using touch. 



17 

 

Validating user input  

Any app that accepts input from users should ensure that the data is valid. Validation has many uses 

including enforcing business rules, providing responses to user input, and preventing an attacker 

from injecting malicious data. 

Check Description 

 Performed client-side validation to provide immediate feedback to users, and server-side 

validation to improve security and enforce business rules on the server. 

 Performed synchronous validation to check the range, length, and structure of user input. 

 Derived model classes from the ValidatableBindableBase class in order to participate in 

client-side validation. 

 Specified validation rules for model properties by adding data annotation attributes to the 

properties. 

 Used dependency properties and data binding to make validation errors visible to the user 

when the properties of the model objects change. 

 Notified users about validation errors by highlighting the control that contains the invalid 

data, and by displaying an error message that informs the user why the data is invalid. 

 Saved user input and any validation error messages when the app suspends, so that the app 

can resume as the user left it following reactivation. 

For more info see Validating user input. 

Managing application data  

Application data is data that the app itself creates and manages. It is specific to the internal 

functions or configuration of an app, and includes runtime state, user preferences, reference 

content, and other settings. 

Check Description 

 Used the application data APIs to work with application data, to make the system 

responsible for managing the physical storage of data. 

 Stored passwords in the Credential Locker only if the user has successfully signed into the 

app, and has opted to save passwords. 

 Used ASP.NET Web API to create a resource-oriented web service that can pass different 

content types. 

 Cached web service data locally when accessing data that rarely changes. 

For more info see Managing application data. 



18 

 

Handling suspend, resume, and activation  

Windows Store apps should be designed to suspend when the user switches away from them and 

resume when the user switches back to them. 

Check Description 

 Saved application data when the app is being suspended. 

 Saved the page state to memory when navigating away from a page. 

 Allowed views and view models to save and restore state that's relevant to each. 

 Updated the UI when the app resumes if the content has changed. 

 Used the saved application data to restore the app state, when the app resumes after being 

terminated. 

For more info see Handling suspend, resume, and activation. 

Communicating between loosely coupled components  

Event aggregation allows communication between loosely coupled components in an app, removing 

the need for components to have a reference to each other. 

Check Description 

 Used Microsoft .NET events for communication between components that have object 

reference relationships. 

 Used event aggregation for communication between loosely coupled components. 

 Used the Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely 

coupled components. 

 Defined a pub/sub event by creating an empty class that derives from the 

PubSubEvent<TPayload> class. 

 Notified subscribers by retrieving the event from the event aggregator and called its Publish 

method. 

 Registered to receive notifications by using one of the Subscribe method overloads available 

in the PubSubEvent<TPayload> class. 

 Request that notification of the pub/sub event will occur in the UI thread when needing to 

update the UI in response to the event. 

 Filtered required pub/sub events by specifying a delegate to be executed once when the 

event is published, to determine whether or not to invoke the subscriber callback. 

 
Used strongly referenced delegates when subscribing to a pub/sub event, where 

performance problems have been observed. 

For more info see Communicating between loosely coupled components. 



19 

 

Working with tiles  

Tiles represent your app on the Start screen and are used to launch your app. They have the ability 

to display a continuously changing set of content that can be used to keep users aware of events 

associated with your app when it's not running. 

Check Description 

 Used live tiles to present engaging new content to users, which invites them to launch the 

app. 

 Made live tiles compelling by providing fresh, frequently updated content that makes users 

feel that the app is active even when it's not running. 

 Used a wide tile to display new and interesting content to the user, and periodic 

notifications to update the tile content. 

 Used peek templates to break tile content into two frames. 

 Set an expiration on all periodic tile notifications to ensure that the tile's content does not 

persist longer than it's relevant. 

 Updated the live tile as information becomes available, for personalized content. 

 Updated the live tile no more than every 30 minutes, for non-personalized content. 

 Allowed the user to create secondary tiles for any content that they wish to monitor. 

 For more info see Working with tiles. 

Implementing search  

If your app has content that users might want to search, you should add a search box to your app 

canvas. The search box should respond to user queries and display search results in an app page of 

your own design. 

Check Description 

 Used the SearchBox control to let users search for content in an app. 

 Implemented type to search for the app's hub, browse, and search pages. 

 Disabled type to search before showing flyouts, and restored it when flyouts close. 

 Showed placeholder text in the search box, to describe what users can search for. 

 Provided query suggestions to help the user search the app quickly. 

 Navigated to the search results page when the user selects a query suggestion. 

 Used a grid layout to display search results. 

 Showed the user's query text on the search results page. 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx


20 

 

 Used hit highlighting to highlight the user's query on the search results page. 

 Enabled users to navigate back to the last-viewed page after they look at the details for a 

search result. 

 Provided app bar navigation on the search results page. 

 Provided a suitable message if the search query returns no results. 

 Restored page state correctly upon reactivation. 

 Saved the search results page for the last query in case the user searches for that query 

again. 

For more info see Implementing search. 

Improving performance  

To deliver a well-performing, responsive Windows Store app you must think of performance as a 

feature, to be planned for and measured throughout the lifecycle of your project.  

Check Description 

 Performed app profiling to determine where code optimizations will have the greatest 

effect in reducing performance problems. 

 Measured app performance once you have code that performs meaningful work. 

 Taken performance measurements on hardware that has the lowest anticipated 

specification. 

 Optimized actual app performance and perceived app performance. 

 Limited the startup time of the app. 

 Emphasized responsiveness in the UI. 

 Trimmed resource dictionaries to reduce the amount of XAML the framework parses when 

the app starts. 

 Reduced the number of XAML elements on a page to make the app render faster. 

 
Reused brushes in order to reduce memory consumption. 

 Used independent animations to avoid blocking the UI thread. 

 Minimized the communication between the app and the web service. 

 Limited the amount of data downloaded from the web service. 

 
Used UI virtualization to only load into memory those UI elements that are near the 

viewport. 

 Used the IncrementalUpdateBehavior to implement incremental loading. 

 Avoided unnecessary app termination. 

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx


21 

 

 Kept the app's memory usage low when it's suspended. 

 Reduced the battery consumption of the app. 

 Minimized the amount of resources that the app uses. 

 Limited the time spent in transition between managed and native code. 

 Reduced garbage collection time. 

For more info see Improving performance. 

Testing and deploying apps  

Testing helps to ensure that an app is reliable, correct, and of high quality. 

Check Description 

 Performed unit testing, integration testing, user interface testing, suspend and resume 

testing, security testing, localization testing, accessibility testing, performance testing, 

device testing, and Windows certification testing. 

 Validated and test a release build of the app by using the Windows App Certification Kit. 

For more info see Testing and deploying Windows Store business apps. 

  



22 

 

Developer tasks for building a Windows Store business app using C#, 

XAML, and Prism 

Learn about the key developer tasks that you will need to perform when developing a Windows 

Store business app. Included are tasks for pages, touch, validation, application data, tiles, search, 

performance, testing, extended splash screens, incremental loading, and the Prism libraries. 

Download  

 

 

 

 

After you download the code, see Getting started using Prism for the Windows Runtime for 

instructions on how to compile and run the reference implementation, as well as understand the 

Microsoft Visual Studio solution structure. 

Applies to  

¶ Windows Runtime for Windows 8.1 

¶ C# 

¶ Extensible Application Markup Language (XAML) 

Windows Store business app developer tasks  

This article provides lists to help you accomplish different tasks when developing Windows Store 

business apps. The goal is to lessen the time it takes you to perform a developer task. While many of 

the tasks link to content that discusses how to use Prism to solve the problem, this is not always the 

case. In addition, the task lists are not meant to provide you with detailed steps required to 

complete a task. If you require more info, the content that is linked to includes links to other 

relevant documentation. 

Guidance summary and checklists for Windows Store business apps  

When developing a Windows Store business app you will need to make some key decisions that will 

define the architecture of your app. The documentation includes guidance on: 

¶ Making the key decisions that will affect the development of a Windows Store business app. 

¶ Using checklists to create a high quality, maintainable, and testable Windows Store business 

app. 

http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=296753
http://go.microsoft.com/fwlink/p/?LinkID=275571


23 

 

Using Prism for the Windows Runtime  

Prism for the Windows Runtime provides two libraries that help developers create Windows Store 

apps using C#. The libraries accelerate development by providing support for bootstrapping MVVM 

apps, state management, validation of user input, navigation, event aggregation, data binding, 

commands, and settings. The libraries can be used separately or together. 

Using the Model-View-ViewModel (MVVM) pattern 

The MVVM pattern lends itself naturally to Windows Store apps that use XAML. The documentation 

includes guidance on: 

¶ Creating a Windows Store app project using Prism and Unity. 

¶ Creating a view using Prism. 

¶ Creating a view model class using Prism. 

¶ Creating a model class with validation support using Prism. 

¶ Connecting view models to views. 

o Using Prism's ViewModelLocator class to connect view models to views. 

o Using a convention-based approach to connect view models to views. 

o Creating a view model declaratively. 

o Creating a view model programmatically. 

o Creating a view defined as a data template. 

¶ Changing the convention for naming and locating views using Prism. 

¶ Changing the convention for naming, locating, and associating view models with views using 

Prism. 

¶ Registering a view model factory with views instead of using a dependency injection 

container. 

¶ Bootstrapping an MVVM app using Prism's MvvmAppBase class and the Unity dependency 

injection container. 

¶ Updating a view in response to changes in the underlying view model or model. 

¶ Creating and invoking commands from views. 

¶ Creating and invoking Blend for Microsoft Visual Studio 2013 behaviors from views. 

Navigating between pages 

Navigation within a Windows Store app can result from the user's interaction with the UI or from the 

app itself as a result of internal logic-driven state changes. The documentation includes guidance on: 

¶ Navigating to the main page or hub page when using Prism. 

¶ Navigating to a page specified by a secondary tile using Prism when an app is activated from 

a secondary tile. 

  



24 

 

Validating user input 

Any app that accepts input from users should ensure that the data is valid. An app could, for 

example, check that the input contains only characters in a particular range, is of a certain length, or 

matches a particular format. Validation can be synchronous or asynchronous, and without it a user 

can supply data that causes the app to fail. Validation enforces business rules, and prevents an 

attacker from injecting malicious data. The documentation includes guidance on: 

¶ Validating data stored in a bound model object. 

¶ Specifying validation rules for model properties by using data annotations. 

¶ Triggering validation when property values change. 

¶ Triggering validation on all properties. 

¶ Highlighting validation errors with a custom Blend behavior. 

¶ Saving validation errors when the app suspends, and restore them when the app is 

reactivated after termination. 

Managing application data 

Application data is data that an app creates and manages. The documentation includes guidance on: 

¶ Storing passwords in the credential locker. 

¶ Adding items to the Settings pane using Prism. 

¶ Using the Settings charm to allow users to change app settings. 

Handling suspend, resume, and activation 

Windows Store apps should be designed to save their state and suspend when the user switches 

away from them. They should restore their state and resume when the user switches back to them. 

The documentation includes guidance on: 

¶ Saving state when an suspends. 

¶ Restoring state when an app reactivates. 

Communicating between loosely coupled components 

Event aggregation is a design pattern that enables communication between classes that are 

inconvenient to link by object and type references. This mechanism allows publishers and 

subscribers to communicate without having a reference to each other. The documentation includes 

guidance on: 

¶ Defining a pub/sub event. 

¶ Publishing a pub/sub event. 

¶ Subscribing to a pub/sub event. 

¶ Subscribing to a pub/sub event on the UI thread. 

¶ Performing event subscription filtering. 



25 

 

¶ Subscribing to a pub/sub event by using strong references. 

¶ Manually unsubscribing from a pub/sub event when using a strong delegate reference. 

Designing the user experience  

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and 

compelling user experience. Planning ahead for different form factors, accessibility, monetization, 

and selling in the global market can reduce your development time and make it easier to create a 

high quality app and get it certified. The documentation includes guidance on: 

¶ Planning a Windows Store app and design the user experience. 

Creating pages 

Windows Store app pages need to support a fluid layout such as landscape, portrait, and minimal 

view states to be responsive to user resizing requests and support for running on multiple devices. 

The user can change the screen size, orientation, and even input method and the app needs to 

respond to these requests. The app also needs to provide navigation between pages, accessibility, 

and optionally localization. The documentation includes guidance on: 

¶ Creating pages that support design time data. 

¶ Supporting multiple view states. 

¶ Using a custom GridView control that responds to layout changes. 

¶ Using a custom GridView control that displays items at multiple sizes. 

¶ Enabling page localization. 

¶ Ensuring your app is accessible. 

¶ Navigating between pages. 

o Passing parameters between pages, and the types of parameters that can be passed. 

Using touch  

Microsoft Windows provides a concise set of touch interactions that are used throughout the 

system. Applying this language consistently makes your app feel familiar to what users already 

know, increasing user confidence by making your app easier to learn and use. The documentation 

includes guidance on: 

¶ Using pinch and stretch to perform semantic zoom. 

¶ Adding items to the top and bottom app bar. 

Managing application data  

Application data is data that an app creates and manages. It is specific to the internal functions or 

configuration of the app, and includes runtime state, user preferences, reference content, and other 

settings. Application data is created, read, updated, deleted, and cached when an app is running.  

 



26 

 

The documentation includes guidance on: 

¶ Performing credentials-based authentication between a Windows Store app and a web 

service. 

Working with tiles  

A tile is an app's representation on the Start screen and allows you to present rich and engaging 

content to your users when the app is not running. Tiles should be appealing to users in order to give 

them great first-impression of your Windows Store app. The documentation includes guidance on: 

¶ Creating an app tile. 

¶ Using periodic notifications to update tile content. 

¶ Pinning and unpinning secondary tiles to the Start screen from within an app. 

¶ Launching the app to a specific page from a secondary tile. 

Implementing search  

You should use the SearchBox control to let users search for content in your app, in order to ensure 

that they have a consistent and predictable experience when they search. Regardless of where your 

ŀǇǇΩǎ ŎƻƴǘŜƴǘ ƛǎ ƭƻŎŀǘŜŘΣ ȅƻǳ Ŏŀƴ ǳǎŜ ǘƘŜ ǎŜŀǊŎƘ ōƻȄ ǘƻ ǊŜǎǇƻƴŘ ǘƻ ǳǎŜǊΩǎ ǉǳŜǊƛŜǎ ŀƴŘ ŘƛǎǇƭŀȅ ǎŜŀǊŎƘ 

results in an app page of your own design. The documentation includes guidance on: 

¶ Using the SearchBox control to implement search functionality. 

¶ Providing query suggestions that help the user search quickly. 

Improving performance  

Users of Windows Store apps expect their apps to remain responsive and feel natural when they use 

them. The documentation includes guidance on: 

¶ Performance considerations for Windows Store apps. 

Testing and deploying apps  

Testing helps to ensure that an app is robust, reliable, and of high quality. The documentation 

includes guidance on: 

¶ Testing synchronous functionality. 

¶ Testing asynchronous functionality. 

¶ Testing suspend and resume functionality. 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx


27 

 

Extended splash screen Quickstart  

An extended splash screen is a splash screen that stays on the screen for an extended period of time. 

Extended splash screens should be displayed when an app needs more time to prepare its initial UI. 

The documentation includes guidance on: 

¶ Creating an extended splash screen using Prism. 

¶ Responding to resize and image opened events for the extended splash screen. 

¶ Displaying an extended splash screen using Prism. 

Incremental loading Quickstart  

Incremental loading enables an item template in a GridView or ListView to render its controls in 

phases, thereby creating a more responsive and useful UI when the user scrolls through large data 

sets. The documentation includes guidance on: 

¶ Improving the perceived performance of a GridView control by using the Blend 

IncrementalUpdateBehavior. 

¶ Improving the perceived performance of a GridView control by using the 

ContainerContentChanging event. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx


28 

 

Using Prism to create a Windows Store app  

Summary 

¶ Use Prism to implement the Model-View-ViewModel (MVVM) pattern in your Windows 

Store app. 

¶ Use Prism to add validation support to your model classes and add items to the Settings 

pane. 

¶ Use Prism to change the conventions for naming and locating views and view models. 

Learn how to create a Windows Store business app using C#, Prism for the Windows Runtime, and 

Unity, and about the logical architecture of such an app. The article provides instructions on creating 

views, view models, model classes with validation support, adding items to the settings pane, and 

changing the conventions for naming and locating a view and a view model, and how to register a 

view model factory with views instead of using a dependency injection container. 

You will learn  

¶ About the logical architecture of a Windows Store business app that uses Prism. 

¶ How to create a Windows Store app project using Prism and Unity. 

¶ How to create a view, view model, and model class with validation support using Prism. 

¶ How to add items to the Settings pane using Prism. 

¶ How to change the conventions used by Prism. 

Applies to  

¶ Windows Runtime for Windows 8.1 

¶ C# 

¶ Extensible Application Markup Language (XAML) 

This article describes the general steps a developer needs to perform to use Prism to accomplish 

different tasks. It is not meant to provide you with detailed steps required to complete a task. If you 

require more info, each section has links to the relevant documentation. 

Many of the topics in this article assume that you are using the Unity dependency injection 

container, and that you are using conventions defined by Prism. This guidance is provided to make it 

easier for you to understand how to get started with Prism. However, you are not required to use 

Unity, or any other dependency injection container, and you do not have to use the default 

conventions to associate views and view models. To understand how to use Prism without a 

dependency injection container, or change the default conventions, see Changing the convention for 

naming and locating views, Changing the convention for naming, locating, and associating view 

models with views, Registering a view model factory with views instead of using a dependency 

injection container. 

http://go.microsoft.com/fwlink/p/?LinkID=290899


29 

 

For more info about the conventions defined by Prism, see Using a convention-based approach to 

connect view models to views. For more info about Prism, see Prism for the Windows Runtime 

reference. 

Architecture of a Windows Store business app that uses Prism  

Developers of Windows Store business apps face several challenges. App requirements can change 

over time. New business opportunities and challenges may present themselves. Ongoing customer 

feedback during development may significantly affect the requirements of the app. Therefore it's 

important to build an app that it is flexible and can be easily modified or extended over time. 

Prism for the Windows Runtime provides an architecture that helps to do just that. It is designed to 

help developers create apps that need to accomplish the following: 

¶ Address the common Windows Store app development scenarios. 

¶ Separate the concerns of presentation, presentation logic, and model through support for 

Model-View-ViewModel (MVVM). 

¶ Use an architectural infrastructure to produce a consistent and high quality app. 

The logical architecture of a typical Windows Store business app that uses Prism is shown in the 

following diagram. 



30 

 

 

This architecture is used by the AdventureWorks Shopper reference implementation. However, 

there are also alternative architectures that are equally valid. 



31 

 

The architecture provided by Prism helps to produce flexible, maintainable, and testable apps. It 

includes components that help to accelerate development of your app by providing support for 

MVVM, loosely coupled communication, and the core services required in Windows Store apps, 

allowing you to focus on developing the user experiences for your app. For more info see Prism for 

the Windows Runtime reference. 

Creating a Windows Store app project using Pri sm and Unity  

The following procedure shows how to update a Windows Store app to use the services provided by 

Prism. 

1. Add a reference to the Microsoft.Practices.Prism.StoreApps library to your project to use the 

services provided by the library. 

2. Derive the App class from the MvvmAppBase class, provided by the 

Microsoft.Practices.Prism.StoreApps library, in order to gain support for MVVM and the core 

services required by Windows Store apps. 

3. Delete the OnLaunched and OnSuspending methods from the App class, as these methods 

are provided by the MvvmAppBase class. 

4. Override the OnLaunchApplication abstract method of the MvvmAppBase class, in the App 

class, and add code to navigate to the first page of the app. 

C# 

protected override  Task OnLaunchApplication(LaunchActivatedEventArgs args)  

{  

   NavigationService.Navigate("PageName", null );  

   return  Task.FromResult< object >( null );  

}  

The OnLaunchApplication method returns a Task, allowing it to launch a long running 

operation. If you don't have a long running operation to launch you should return an empty 

Task. 

Note  PageName should be without the "Page" suffix. For example, use Home for 

HomePage. 

5. Add a reference to the Unity library to your project to use the Unity dependency injection 

container. 

Note  The Microsoft.Practices.Prism.StoreApps library is not dependent on the Unity library. 

To avoid using a dependency injection container see Registering a view model factory with 

views instead of using a dependency injection container.  

6. Create an instance of the UnityContainer class in the App class, so that you can use the 

Unity dependency injection container to register and resolve types and instances. 

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899
http://go.microsoft.com/fwlink/p/?LinkID=290899


32 

 

C# 

private  readonly  IUnityContainer _container = new UnityContainer();  

7. Override the OnRegisterKnownTypesForSerialization method in the App class to register 

any non-primitive types that need to be saved and restored to survive app termination. 

C# 

SessionStateService.RegisterKnownType( typeof (Address));  

8. Override the OnInitialize method in the App class in order to register types for the Unity 

container and perform any other initialization. Examples of app specific initialization 

behavior include: 

o Registering infrastructure services. 

o Registering types and instances that you use in constructors. 

o Providing a delegate that returns a view model type for a given view type. 

C# 

protected  override  void  OnInitialize(IActivatedEventArgs args)  

{  

    _container.RegisterInstance(NavigationService);  

    _container.RegisterType<IAccountService, AccountService>  

        ( new ContainerControlledLifetimeManager());  

    _container.RegisterType<IShippingAddressUserControlViewModel,  

        ShippingAddressUserControlViewModel>();  

 

    ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType)  

        => 

        {  

            ...  

            return  viewModelType;  

        });  

}  

Note  For a detailed example of an OnInitialize method see the App class in the 

AdventureWorks Shopper reference implementation. 

9. Override the Resolve method in the App class to return a constructed view model instance. 

C# 

protected  override  object  Resolve(Type type)  

{  

    return  _container.Resolve(type);  

}  



33 

 

For more info see Using the MVVM pattern, Registering a view model factory with views instead of 

using a dependency injection container, Bootstrapping an MVVM Windows Store app Quickstart, 

Creating and navigating between pages and Prism for the Windows Runtime reference.  

Creating a view  

The following procedure shows how to create a view class that has support for layout changes, 

navigation, and state management. 

1. Complete the Creating a Windows Store app project using Prism and Unity procedure. 

2. Add a folder named Views to the root folder of your project. 

3. Create a new page in the Views folder whose name ends with "Page," in order to use the 

FrameNavigationService's default convention to navigate to pages in the Views folder. 

4. Modify the page class to derive from the VisualStateAwarePage class, which provides 

support for layout changes, navigation, and state management. 

5. Add the ViewModelLocator.AutoWireViewModel attached property to your view XAML in 

order to use the ViewModelLocator class to instantiate the view model class and associate it 

with the view class. 

XAML 

 

prism:ViewModelLocator.AutoWireViewModel="true"  

6. Override the OnNavigatedTo and OnNavigatedFrom methods if your page class needs to 

perform additional logic, such as subscribing to an event or unsubscribing from an event, 

when page navigation occurs. Ensure that the OnNavigatedTo and OnNavigatedFrom 

overrides call base.OnNavigatedTo and base.OnNavigatedFrom, respectively. 

7. Override the SaveState and LoadState methods if you have view state, such as scroll 

position, that needs to survive termination and be restored when the app is reactivated. 

For more info see Creating and navigating between pages, Using the MVVM pattern, and Handling 

suspend, resume, and activation. 

Creating a view model class  

The following procedure shows how to create a view model class that has support for property 

change notification, navigation, and state management. 

1. Complete the Creating a Windows Store app project using Prism and Unity procedure. 

2. Add a folder named ViewModels to the root folder of your project. 

3. Create a new class in the ViewModels folder whose name corresponds with the name of a 

view and ends with "ViewModel," in order to use the ViewModelLocator's default 

convention to instantiate and associate view model classes with view classes. 



34 

 

4. Derive the view model class from the ViewModel base class, provided by the 

Microsoft.Practices.Prism.StoreApps library, so that you can use the base class's 

implementation of the INotifyPropertyChanged interface and gain support for navigation 

and state management. 

5. Modify the view model constructor so that it accepts the services required by the view 

model, such as an INavigationService instance. 

6. Annotate properties with the [RestorableState] custom attribute if you want their values to 

survive termination. 

For more info see Using the MVVM pattern.  

Creating a model class with validation support  

The following procedure shows how to create a model class that has support for validation. 

1. Complete the Creating a Windows Store app project using Prism and Unity procedure. 

2. Add a reference to the Behaviors SDK (XAML) library to your project to use Blend for 

Microsoft Visual Studio 2013 behaviors. 

3. Add a model class to your project and derive the model class from the 

ValidatableBindableBase class, which provides validation support. 

4. Add a property to the model class and add the appropriate attributes that derive from the 

ValidationAttribute attribute, in order to specify the client side validation. 

C# 

[Required(ErrorMessage = "First name is required." )]  

public  string  FirstName  

{  

    get  { return  _firstName; }  

    set  { SetProperty( ref  _firstName, value); }  

}  

5. Update the view XAML that binds to the property created in the previous step to show 

validation error messages. 

XAML 

<TextBox  Text =" {Binding  UserInfo.FirstName,  Mode=TwoWay}">  

    <interactivity : Interaction . Behaviors > 

        <awbehaviors : HighlightFormFieldOnErrors  PropertyErrors = 

            "{Binding UserInfo.Errors[FirstName]} " />  

    </ interactivity : Interaction.Behaviors > 

</ TextBox > 

Note  The HighlightFormFieldOnErrors behavior can be found in the AdventureWorks 

Shopper reference implementation. 

For more info Validating user input and Validation Quickstart.  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx


35 

 

Adding items to the Settings pane  

The following procedure shows how to add an item to the Settings pane that can invoke an action. 

1. Complete the Creating a Windows Store app project using Prism and Unity procedure. 

2. Override the GetSettingsCommands method in the App class and add code to add items to 

the Settings pane. 

C# 

protected  override  IList< SettingsCommand> GetSettingsCommand()  

{  

    var  settingsCommands = new List<SettingsCommand>();  

    settingsCommands.Add( new SettingsCommand(Guid.NewGuid().ToString(),  

        "Text to show in Settings pane" , ActionToBePerformed));  

    settingsCommands.Ad d( new SettingsCommand(Guid.NewGuid().ToString(),  

        "Custom setting" , () => new CustomSettingFlyout().Show()));  

    return  settingsCommands;  

}  

For more info see Managing application data. 

Changing the Prism conventions  

This section describes how to change the conventions for naming and locating views, naming, 

locating and associating view models with views, and registering a view model factory with views 

instead of using a dependency injection container. 

Changing the convention for naming and locating views  

The following procedure shows how to configure the FrameNavigationService class to look for views 

in a location other than the Views folder. 

1. Complete the Creating a Windows Store app project using Prism and Unity procedure. 

2. Override the GetPageType method in the App class and add code to define the page 

location and naming convention appropriate to your app. 

C# 

protected  override  Type GetPageType( string  pageToken)  

{  

    var  assemblyQualifiedAppType = this .GetType().GetTypeInfo()  

        .AssemblyQualifiedName;  

    var  pageNameWithParameter = 

assemblyQualifiedAppType.Replace( this .GetType().FullName, this  

        .GetType().Namespace + ".Pages.{0}View" );  

    var  viewFullName = string .Format(CultureInfo.InvariantCulture,  

        pageNameWithParameter, pageToken);  



36 

 

    var  viewType = Type.GetType(viewFullName);  

    return  viewType;  

}  

For more info see Using the MVVM pattern. 

Changing the convention for naming, locating, and associating view models 

with views  

The following procedure shows how to configure the ViewModelLocator class to look for view 

models in a location other than the ViewModels folder in the same assembly. 

1. Complete the Creating a Windows Store app project using Prism and Unity procedure. 

2. Override the OnInitialize method in the App class and invoke the static 

ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver method, passing in a 

delegate that specifies a view type and returns a corresponding view model type. 

C# 

protected  override  void  OnInitialize(IActivatedEventArgs args)  

{  

    ...  

    ViewModelLocat or.SetDefaultViewTypeToViewModelTypeResolver((viewType)  

    => 

    {  

        var  viewModelTypeName = string .Format(  

            CultureInfo.InvariantCulture, "MyProject.VMs.{0}ViewModel,  

            MyProject, Version=1.0.0.0, Culture=neutral,  

            PublicKeyToken=public_Key_Token", viewType.Name);  

        var  viewModelType = Type.GetType(viewModelTypeName);  

        return  viewModelType;  

    });  

  ...  

}  

For more info see Using the MVVM pattern. 

  



37 

 

Registering a view model factory with views instead of using a dependency 

injection container  

The following procedure shows how to configure the ViewModelLocator class to explicitly specify 

how to construct a view model for a given view type, instead of using a container for dependency 

resolution and construction. 

1. Complete the Creating a Windows Store app project using Prism and Unity procedure. 

2. Override the OnInitialize method in the App class and register a factory with the 

ViewModelLocator class that will create a view model instance that will be associated with a 

view. 

C# 

protected  override  void  OnInitialize(IActivatedEventArg s args)  

{  

    ...  

    ViewModelLocator.Register( typeof (MyPage).ToString(), () =>  

        new MyPageViewModel(NavigationService));  

    ...  

}  

For more info see Using the MVVM pattern and Bootstrapping an MVVM Windows Store app 

Quickstart. 

  



38 

 

Designing the user experience of a Windows Store business app using 

C#, XAML, and Prism 

Summary 

¶ Focus on the user experience and not on the features the app will have.  

¶ Use storyboards to iterate quickly on the user experience. 

¶ Use standard Windows features to provide a user experience that is consistent with other 

apps. In addition, validate the user experience with the Index of UX guidelines for Windows 

Store apps. 

Learn how to design the user experiences and app flow for a Windows Store business app, prior to 

storyboarding and prototyping the app. 

You will learn  

¶ How to plan a Windows Store app. 

¶ How you can tie your "great at" statement to the app flow. 

¶ How storyboards and prototypes drive user experience design. 

Applies to  

¶ Windows Runtime for Windows 8.1 

¶ C# 

¶ Extensible Application Markup Language (XAML) 

Making key decisi ons 

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and 

compelling user experience. Planning ahead for different form factors, accessibility, monetization, 

and selling in the global market can reduce your development time and make it easier to create a 

high quality app and get it certified. The following list summarizes the decisions to make when 

planning your app: 

¶ How should I plan a Windows Store app? 

¶ What guidelines should I follow to ensure a good overall user experience? 

¶ What experience do you want to provide to your users? 

¶ Should the app run on different form factors? 

¶ How do I make the app accessible to users regardless of their abilities, disabilities, or 

preferences? 

¶ Should the app be available in the global market?  

When planning a Windows Store app you should think more about what experience you want to 

provide to your users and less about what Microsoft Windows features you want to include. We 

recommend that you follow these steps: 

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx


39 

 

1. Decide the user experience goals. 

2. Decide the app flow. 

3. Decide what Windows features to include. 

4. Decide how to monetize your app. 

5. Make a good first impression. 

6. Validate the design. 

For more info see Planning Windows Store apps and AdventureWorks Shopper user experiences. 

There are many user experience guidelines that can help you create a good Windows Store app. 

However, the exact guidelines that you will follow will be dependent on the experiences present in 

your app. For more info see Index of UX guidelines for Windows Store apps. 

In order to decide what experience you want to provide to your users we recommend that create a 

"great at" statement to guide your user experience planning. Following this, you should design your 

app flow. An app flow is a set of related interactions that your users have with the app to achieve 

their goals. To validate the design you should follow these steps: 

1. Outline the flow of the app. What interaction comes first? What interaction follows the 

previous interaction? 

2. Storyboard the flow of the app. How should users move through the UI to complete the 

flow? 

3. Prototype the app. Try out the app flow with a quick prototype. 

For more info see "Deciding the user experience goals" and "Deciding the app flow" below. 

Apps should be designed for different form factors, letting users manipulate the content to fit their 

needs and preferences. Think of landscape view first so that your app will run on all form factors, but 

remember that some screens rotate, so plan the layout of your content for different resolutions and 

screen sizes. In addition, because Windows is used worldwide, you need to design your app so that 

resources, such as strings and images, are separated from their code to help make localization 

easier. Also, your app should be available to all users regardless of their abilities, disabilities, or 

preferences. If you use the built-in UI controls, you can get accessibility support with little extra 

effort. For more info see Deciding what Windows features to use. 

AdventureWorks Shopper user experiences  

The AdventureWorks Shopper reference implementation is a shopping app, and so we wanted to 

design experiences that would enable users to shop easily and efficiently. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/hh465427.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx


40 

 

Deciding the user experience goals  

Our first step was to create a "great at" statement to guide our user experience planning. Here's the 

"great at" statement for the AdventureWorks Shopper reference implementation: 

AdventureWorks Shopper is great at letting users easily and efficiently order products from 

AdventureWorks. 

The goal of the AdventureWorks Shopper reference implementation is not to provide a complete 

shopping app, but to demonstrate how to architect a Windows Store business app. We used our 

"great at" statement to guide the design tradeoffs as we built the app, making the focus on what our 

users want to do, rather than what the app can do. 

Deciding the app flow  

We then brainstormed which aspects of a shopping app are the most crucial for a good user 

experience, to let these features guide us through the design process. The features that we came up 

with are: 

¶ Display and navigate products. 

¶ Search for products. 

¶ Authenticate user credentials. 

¶ Validate user input. 

¶ Order products. 

¶ Pay for orders. 

¶ Enable roaming data for user credentials. 

¶ Pin products to the Start screen. 

There is plenty of other functionality that we could provide in the AdventureWorks Shopper 

reference implementation. But we felt that the ability to browse, search, and order products best 

demonstrate the functionality for creating a shopping app. 

The app flow is connected to our "great at" statement. A flow defines how the user interacts with 

the app to perform tasks. Windows Store apps should be intuitive and require as few interactions as 

possible. We used two techniques to help meet these goals: creating storyboards and mock-ups. 

A storyboard defines the flow of an app. Storyboards focus on how we intend the app to behave, 

and not the specific details of what it will look like. Storyboards help bridge the gap between the 

idea of the app and its implementation, but are typically faster and cheaper to produce than 

prototyping the app. For the AdventureWorks Shopper reference implementation, storyboards were 

critical to helping us to define the app flow. This technique is commonly used in the film industry and 

is now becoming standard in user experience design. The following storyboard shows the main app 

flow for the AdventureWorks Shopper reference implementation. 



41 

 

 

A mockup demonstrates the flow of the user experience, but more closely resembles what the end 

product will look like. We created mock-ups based on our storyboards and iterated over their design 

as a team. These mockups also helped each team member get a feel for what the app should look 

like. The following mockup shows the hub page. 



42 

 

 

During the planning phase of the app, we also created small prototypes to validate feasibility. A 

prototype is a small app that demonstrates the flow of the UI or some minimal functionality. For 

example, a prototype could be created that only contains page navigation and commands, but 

doesn't implement any other functionality. By making the experience real through software, 

prototyping enables you to test and validate the flow of your design on devices such as tablets. You 

can also create prototypes that demonstrate core aspects of the app. For example, we created a 

prototype that performs validation of user input and notifies the user of any invalid input. 

Prototypes enable you to safely explore design approaches before deciding on the approach for the 

app. Although you can prototype during the planning phase of your app, try not to focus too much 

on writing code. Design the user experience that you want and then implement that design when it's 

ready. 

For more info see Laying out your UI, Laying out an app page, and Guidelines for window sizes and 

scaling to screens. 

Deciding what Windows features to use  

When planning a new app it's important to provide an experience that's consistent with other 

Windows Store apps. Doing so will make your app intuitive to use. We researched the features that 

the Windows platform provides by looking at the Index of UX guidelines for Windows Store apps, by 

prototyping and team discussion, and by brainstorming which platform features would best support 

our app flow. 

http://msdn.microsoft.com/en-us/library/windows/apps/hh465330.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx


43 

 

Deciding how to monetize the app  

Although AdventureWorks Shopper is a free app, its purpose is to drive sales for AdventureWorks 

through customers placing and paying for orders. In order to significantly increase the number of 

users who could use the app we decided to make it world-ready. Being world-ready not only means 

supporting localized strings and images, it also means being aware of how users from different 

cultures will use the app. For more info see Guidelines for globalization and Guidelines for app 

resources. 

For more info about monetizing your app see Plan for monetization and Advertising Guidelines. 

Making a good first impression  

Windows Store apps should convey their "great at" statement to users when they first launch the 

app. After referring back to our "great at" statement (AdventureWorks Shopper is great at letting 

users easily and efficiently order products from AdventureWorks) we realized that product 

promotion was key to allowing users to easily and efficiently order products from AdventureWorks. 

This could be enabled by: 

¶ Having a live tile, that uses tile notifications to promote products. When a user leaves the 

app, we wanted to maintain a good impression by regularly updating the live tile with 

product offers. 

¶ Using the splash screen to express the app's personality. We chose a splash screen image 

that fits the AdventureWorks branding and that reinforces the whole user experience. 

¶ Having a home page that clearly shows the primary purpose of the app. Users will be more 

likely to explore the rest of the app if their initial impression is favorable. 

Validating the design  

Before beginning development, we presented our mockups and prototypes to stakeholders in order 

to gain feedback to validate and polish our design. We also cross-checked the design against the 

Index of UX guidelines for Windows Store apps to ensure that we complied with the Windows Store 

user experience guidelines. This prevented us from having to make core design changes later in the 

development cycle. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465433.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj649139.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx


44 

 

Using the Model -View-ViewModel (MVVM) pattern in a Windows Store 

business app using C#, XAML, and Prism 

Summary 

¶ Use the Microsoft.Practices.Prism.StoreApps library to accelerate the development of 

managed Windows Store apps that use the MVVM pattern.  

¶ Use commands to implement actions in view model classes for controls that derive from 

ButtonBase. 

¶ Use Blend for Microsoft Visual Studio 2013 behaviors to encapsulate interaction logic and 

behavior that can be declaratively associated with controls. 

Learn how to implement the Model-View-ViewModel (MVVM) pattern in a Windows Store business 

app by using Prism for the Windows Runtime. This includes bootstrapping an MVVM app that uses 

Prism, using a view model locator to connect view models to views, and UI interaction using 

delegate commands and Blend behaviors. 

You will learn  

¶ How to use dependency injection to decouple concrete types from the code that depends on 

the types. 

¶ How to bootstrap a Windows Store app that uses the MVVM pattern, by using a dependency 

injection container. 

¶ How to connect view models to views. 

¶ How a view is updated in response to changes in the underlying view model. 

¶ How to invoke commands and behaviors from views. 

Applies to  

¶ Windows Runtime for Windows 8.1 

¶ C# 

¶ Extensible Application Markup Language (XAML) 

Making key decisions  

The MVVM pattern is well documented, and it brings benefits to many categories of apps. However, 

it is not always suited to every app. For example, using code-behind may be the best choice for small 

apps that have a limited life span. Nonetheless, if you choose to use the MVVM pattern to construct 

your app, you will have to make certain design decisions that will be difficult to change later on. 

Generally, these decisions are app-wide and their consistent use throughout the app will improve 

developer and designer productivity.  

 

  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx


45 

 

The following list summarizes the decisions to make when implementing the MVVM pattern: 

¶ Should I use Prism to provide support for MVVM? 

¶ Should I use a dependency injection container? 

o Which dependency injection container should I use? 

o When is it appropriate to register and resolve components with a dependency 

injection container? 

o Should a component's lifetime be managed by the container? 

¶ Should the app construct views or view models first? 

¶ How should I connect view models to views? 

o Should I use XAML or code-behind to set the view's DataContext property? 

o Should I use a view model locator object? 

o Should I use an attached property to automatically connect view models to views? 

o Should I use a convention-based approach? 

¶ Should I expose commands from my view models? 

¶ Should I use behaviors in my views? 

¶ Should I include design time data support in my views? 

¶ Do I need to support a view model hierarchy? 

Prism includes components to help accelerate the development of a managed Windows Store app 

that uses the MVVM pattern. It helps to accelerate development by providing core services 

commonly required by a Windows Store app, allowing you to focus on developing the user 

experiences for your app. Alternatively, you could choose to develop the core services yourself. For 

more info see Prism for the Windows Runtime reference. 

There are several advantages to using a dependency injection container. First, a container removes 

the need for a component to locate its dependencies and manage their lifetime. Second, a container 

allows mapping of implemented dependencies without affecting the component. Third, a container 

facilitates testability by allowing dependencies to be mocked. Forth, a container increases 

maintainability by allowing new components to be easily added to the system. 

In the context of a Windows Store app that uses the MVVM pattern, there are specific advantages to 

a dependency injection container. A container can be used for registering and resolving view models 

and views. In addition, a container can be used for registering services, and injecting them into view 

models. Also, a container can create the view models and inject the views. 

There are several dependency injection containers available, with two common choices being Unity 

and MEF. Both Unity and MEF provide the same basic functionality for dependency injection, even 

though they work very differently. When considering which container to use, keep in mind the 

capabilities shown in the following table and determine which fits your scenario better. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx


46 

 

Both containers Unity only MEF only 

Register types and instances with 

the container. 

Resolves concrete types without 

registration. 

Recomposes properties and 

collections as new types 

are discovered. 

Imperatively create instances of 

registered types. 

Resolves open generics. Automatically exports 

derived types. 

Inject instances of registered 

types into constructors and 

properties. 

Uses interception to capture calls 

to objects and add additional 

functionality to the target object. 

 

Have declarative attributes for 

marking types and dependencies 

that need to be managed. 

  

Resolve dependencies in an 

object graph. 

  

If you decide to use a dependency injection container, you should also consider whether it is 

appropriate to register and resolve components using the container. Registering and resolving 

instances from a container has a performance cost because of the container's use of reflection for 

creating each type, especially if components are being reconstructed for each page navigation in the 

app. If there are many or deep dependencies, the cost of creation can increase significantly. In 

addition, if the component does not have any dependencies or is not a dependency for other types, 

it may not make sense to put it in the container. Also, if the component has a single set of 

dependencies that are integral to the type and will never change, it may not make sense to put it in 

the container. 

You should also consider whether a component's lifetime should be managed by the container. 

When you register a type the default behavior for the Unity container is to create a new instance of 

the registered type each time the type is resolved or when the dependency mechanism injects 

instances into other classes. When you register an instance the default behavior for the Unity 

container is to manage the lifetime of the object as a singleton. This means that the instance 

remains in scope as long as the container is in scope, and it is disposed when the container goes out 

of scope and is garbage-collected or when code explicitly disposes the container. If you want this 

singleton behavior for an object that Unity creates when you register types, you must explicitly 

specify the ContainerControlledLifetimeManager class when registering the type. For more info see 

Bootstrapping an MVVM Windows Store app Quickstart. 

If you decide not to use a dependency injection container you can use the ViewModelLocator class, 

provided by the Microsoft.Practices.Prism.StoreApps library, to register view model factories for 

views, or infer the view model using a convention-based approach. For more info see Using the 

ViewModelLocator class to connect view models to views and Bootstrapping an MVVM Windows 

Store app Quickstart. 



47 

 

Deciding whether your app will construct views or the view models first is an issue of preference and 

complexity. With view first composition the app is conceptually composed of views which connect to 

the view models they depend upon. The primary benefit of this approach is that it makes it easy to 

construct loosely coupled, unit testable apps because the view models have no dependence on the 

views themselves. It's also easy to understand the structure of an app by following its visual 

structure, rather than having to track code execution in order to understand how classes are created 

and connected together. Finally, view first construction aligns better with the Windows Runtime 

navigation system because it is responsible for constructing the pages when navigation occurs, 

which makes a view model first composition complex and misaligned with the platform. View model 

first composition feels more natural to some developers, since the view creation can be abstracted 

away allowing them to focus on the logical non-UI structure of the app. However, this approach is 

often complex, and it can become difficult to understand how the various parts of the app are 

created and connected together. It can be difficult to understand the structure of an app 

constructed this way, as it often involves time spent in the debugger examining what classes gets 

created, when, and by whom. 

The decision on how to connect view models to views is based on complexity, performance, and 

resilience: 

¶ If code-behind is used to connect view models to views it can cause problems for visual 

designers such as Blend and Visual Studio. 

¶ Using a view model locator object has the advantage that the app has a single class that is 

responsible for the instantiation of view models. The view model locator can also be used as 

a point of substitution for alternate implementations of dependencies, such as for unit 

testing or design time data. 

¶ A convention-based connection approach removes the need for much boilerplate code. 

¶ An attached property can be used to perform the connection automatically. This offers the 

advantage of simplicity, with the view having no explicit knowledge of the view model. 

Note  The view will implicitly depend on specific properties, commands, and methods on the view 

model because of the data bindings it defines. 

In Windows Store apps, you typically invoke some action in response to a user action, such as a 

button click that can be implemented by creating an event handler in the code-behind file. However, 

MVVM discourages placing code in the code-behind file as it's not easily testable because it doesn't 

maintain a good separation of concerns. If you wish to promote the testability of your app, by 

reducing the number of event handlers in your code-behind files, you should expose commands 

from your view models for ButtonBase-derived controls, and use behaviors in your views for 

controls that don't derive from ButtonBase, in order to connect them to view model exposed 

commands and actions. 

If you will be using a visual designer to design and maintain your UI you'll need to include design 

time data support in your app so that you can view layouts accurately and see realistic results for 

sizing and styling decisions. 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx


48 

 

You should support a view model hierarchy if it will help to eliminate redundant code in your view 

model classes. If you find identical functionality in multiple view model classes, such as code to 

handle navigation, it should be refactored into a base view model class from which all view models 

classes will derive.  

MVVM in AdventureWorks Shopper  

The AdventureWorks Shopper reference implementation uses the Unity dependency injection 

container. The Unity container reduces the dependency coupling between objects by providing a 

facility to instantiate instances of classes and manage their lifetime. During an object's creation, the 

container injects any dependencies that the object requires into it. If those dependencies have not 

yet been created, the container creates and resolves them first. For more info see Using a 

dependency injection container, Bootstrapping an MVVM Windows Store app Quickstart and Unity 

Container. 

In the AdventureWorks Shopper reference implementation, views are constructed before view 

models. There is one view class per page of the UI (a page is an instance of the 

Windows.UI.Xaml.Controls.Page class), with design time data being supported on each view in 

order to promote the designer-developer workflow. For more info see Creating and navigating 

between pages. 

Each view model is declaratively connected to a corresponding view using an attached property on a 

view model locator object to automatically perform the connection. View model dependencies are 

registered with the Unity dependency injection container, and resolved when the view model is 

created. A base view model class implements common functionality such as navigation and 

suspend/resume support for view model state. View model classes then derive from this base class 

in order to inherit the common functionality. For more info see Using the ViewModelLocator class 

to connect view models to views. 

In order for a view model to participate in two-way data binding with the view, its properties must 

raise the PropertyChanged event. View models satisfy this requirement by implementing the 

INotifyPropertyChanged interface and raising the PropertyChanged event when a property is 

changed. Listeners can respond appropriately to the property changes when they occur. For more 

info see Updating a view in response to changes in the underlying view model or model. 

The AdventureWorks Shopper reference implementation uses two options for executing code on a 

view model in response to interactions on a view, such as a button click or item selection. If the 

ŎƻƴǘǊƻƭ ƛǎ ŀ ŎƻƳƳŀƴŘ ǎƻǳǊŎŜΣ ǘƘŜ ŎƻƴǘǊƻƭΩǎ Command property is data-bound to an ICommand 

ǇǊƻǇŜǊǘȅ ƻƴ ǘƘŜ ǾƛŜǿ ƳƻŘŜƭΦ ²ƘŜƴ ǘƘŜ ŎƻƴǘǊƻƭΩǎ ŎƻƳƳŀƴŘ ƛǎ ƛƴǾƻƪŜŘΣ ǘƘŜ ŎƻŘŜ ƛƴ ǘƘŜ ǾƛŜǿ ƳƻŘŜƭ 

will be executed. In addition to commands, behaviors can be attached to an object in the view and 

can listen for an event to be raised. In response, the behavior can then invoke an Action or an 

ICommand on the view model. For more info see UI interaction using the DelegateCommand class 

and Blend behaviors. 

http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/018hxwa8.aspx


49 

 

!ƭƭ ƻŦ ǘƘŜ ǾƛŜǿ ƳƻŘŜƭǎ ƛƴ ǘƘŜ !ŘǾŜƴǘǳǊŜ²ƻǊƪǎ {ƘƻǇǇŜǊ ǊŜŦŜǊŜƴŎŜ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ǎƘŀǊŜ ǘƘŜ ŀǇǇΩǎ 

domain model, which is often just called the model. The model consists of classes that the view 

ƳƻŘŜƭǎ ǳǎŜ ǘƻ ƛƳǇƭŜƳŜƴǘ ǘƘŜ ŀǇǇΩǎ ŦǳƴŎǘƛƻƴŀƭƛǘȅΦ ±ƛŜǿ ƳƻŘŜƭǎ ŀǊŜ ŎƻƴƴŜŎǘŜŘ ǘƻ ǘƘŜ ƳƻŘŜƭ ŎƭŀǎǎŜǎ 

through model properties on the view model. However, if you want a strong separation between the 

model and the view models, you can package model classes in a separate library. 

In the AdventureWorks Shopper Visual Studio solution there are two projects that contain the view, 

view model, and model classes: 

¶ The view classes are located in the AdventureWorks.Shopper project. 

¶ The view model and model classes are located in the AdventureWorks.UILogic project. 

 

What is MVVM? 

MVVM is an architectural pattern that's a specialization of the presentation model pattern. It can be 

used on many different platforms and its intent is to provide a clean separation of concerns between 

the user interface controls and their logic. For more info about MVVM see MVVM Quickstart, 

Implementing the MVVM Pattern, Advanced MVVM Scenarios, and Developing a Windows Phone 

Application using the MVVM Pattern.  

Using a dependency injection container  

Dependency injection enables decoupling of concrete types from the code that depends on these 

types. It uses a container that holds a list of registrations and mappings between interfaces and 

abstract types and the concrete types that implement or extend these types. The AdventureWorks 

Shopper reference implementation uses the Unity dependency injection container to manage the 

instantiation of the view model and service classes in the app. 

Before you can inject dependencies into an object, the types of the dependencies need to be 

registered with the container. After a type is registered, it can be resolved or injected as a 

dependency. For more info see Unity. 

http://msdn.microsoft.com/en-us/library/windows/apps/gg430869.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405484.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405494.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899


50 

 

In the AdventureWorks Shopper reference implementation, the App class instantiates the 

UnityContainer object and is the only class in the app that holds a reference to a UnityContainer 

object. Types are registered in the OnInitialize method in the App class.  

Bootstrapping an MVVM app using Prism's MvvmAppBase class  

When you create a Windows Store app from a Visual Studio template, the App class derives from the 

Application class. In the AdventureWorks Shopper reference implementation, the App class derives 

from the MvvmAppBase class. The MvvmAppBase class provides support for suspension, 

navigation, settings, and resolving view types from view names. The App class derives from the 

MvvmAppBase class and provides app specific startup behavior. 

The MvvmAppBase class, provided by the Microsoft.Practices.Prism.StoreApps library, is responsible 

for providing core startup behavior for an MVVM app, and derives from the Application class. The 

MvvmAppBase class constructor is the entry point for the app. The following diagram shows a 

conceptual view of how app startup occurs. 

 

When deriving from the MvvmAppBase class, a required override is the OnLaunchApplication 

method from where you will typically perform your initial navigation to a launch page, or to the 

appropriate page based on a secondary tile launch of the app. The following code example shows 

how to override the OnLaunchApplication method in the App class, in order to respond to app 

activation from a tile or secondary tile. 

C#: AdventureWorks.Shopper\App.xaml.cs 

protected  override  Task OnLaunchApplication(LaunchActivatedEventArgs args)  

{  

    if  (args != null  && ! string .IsNullOrEmpty(args.Arguments))  

    {  

        // The app was launched from a Secondary Tile  

        // Navigate to the item's page  

        NavigationService.Navigate( "ItemDetail" , args.Arguments);  

    }  

    else  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx


51 

 

    {  

        // Navigate to the initial page  

        NavigationService.Navigate( " Hub", null );  

    }  

 

    Window.Current.Activate();  

    return  Task.FromResult<object>( null );  

}  

This method navigates to the HubPage in the app, when the app launches normally, or the 

ItemDetailPage if the app is launched from a secondary tile. "Hub" and "ItemDetail" are specified as 

the logical names of the views that will be navigated to. The default convention specified in the 

MvvmAppBase class is to append "Page" to the name and look for that page in a .Views child 

namespace in the project. Alternatively, another convention can be specified by overriding the 

GetPageType method in the MvvmAppBase class. For more info see Handling navigation requests.  

Note  The OnLaunchApplication method returns a Task, allowing it to launch a long running 

operation. If you don't have a long running operation to launch you should return an empty Task. 

The app uses the Unity dependency injection container to reduce the dependency coupling between 

objects by providing a facility to instantiate instances of classes and manage their lifetime based on 

the configuration of the container. An instance of the container is created as a singleton in the App 

class, as shown in the following code example. 

C#: AdventureWorks.Shopper\App.xaml.cs 

private  readonly  IUnityContainer _container = new UnityContainer();  

The OnInitialize method in the MvvmAppBase class is overridden in the App class with app specific 

initialization behavior. For instance, this method should be overridden if you need to initialize 

services, or set a default factory or default view model resolver for the ViewModelLocator object. 

The following code example shows some of the OnInitialize method in the App class. 

C#: AdventureWorks.Shopper\App.xaml.cs 

_container.RegisterInstance<INavigationService>(NavigationService);  

_container.RegisterInstance<ISessionStateService>(SessionStateService);  

_containe r.RegisterInstance<IEventAggregator>(EventAggregator);  

_container.RegisterInstance<IResourceLoader>( new ResourceLoaderAdapter(  

    new ResourceLoader()));  

This code registers service instances with the container as singletons, based on their respective 

interfaces, so that the view model classes can take dependencies on them. This means that the 

container will cache the instances on behalf of the app, with the lifetime of the instances then being 

tied to the lifetime of the container.  

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx


52 

 

A view model locator object is responsible for managing the instantiation of view models and their 

association to views. For more info see Using the ViewModelLocator class to connect view models 

to views. When the view model classes are instantiated the container will inject the dependencies 

that are required. If the dependencies have not yet been created, the container creates and resolves 

them first. This approach removes the need for an object to locate its dependencies or manage their 

lifetimes, allows swapping of implemented dependencies without affecting the object, and 

facilitating testability by allowing dependencies to be mocked. 

Using the ViewModelLocator class to connect view models to views  

The AdventureWorks Shopper reference implementation uses a view model locator object to 

manage the instantiation of view models and their association to views. This has the advantage that 

the app has a single class that is responsible for the instantiation.  

The ViewModelLocator class, in the Microsoft.Practices.Prism.StoreApps library, has an attached 

property, AutoWireViewModel that is used to associate view models with views. In the view's XAML 

this attached property is set to true to indicate that the view model should be automatically 

connected to the view, as shown in the following code example. 

XAML: AdventureWorks.Shopper\Views\HubPage.xaml 

prism:ViewModelLocator.AutoWireViewModel="true"  

The AutoWireViewModel property is a dependency property that is initialized to false, and when its 

value changes the AutoWireViewModelChanged event handler is called. This method resolves the 

view model for the view. The following code example shows how this is achieved. 

C#: Microsoft.Practices.Prism.StoreApps\ViewModelLocator.cs 

private  static  void  AutoWireViewModelChanged(DependencyObject d,  

    DependencyPropertyChangedEventArgs e)  

{  

    FrameworkElement view = d as FrameworkElement;  

    if  (view == null ) return ; // Incorrect hookup, do no harm  

 

    // Try mappings first  

    object  viewModel = GetViewModelForView(view);  

    // Fallback to convention based  

    if  (viewModel == null )  

    {  

        var  viewModelType = defaultViewTypeToViewModelTypeResolver(  

            view.GetType());  

        if  (viewModelType == null ) return ;  

 

        // Really need Container or Factories here to deal with injecting  

        // dependencies on construction  

        viewModel = defaultViewModelFactory(viewModelType);  

    }  

    view.DataContext = viewModel;  

}  



53 

 

The AutoWireViewModelChanged method first attempts to resolve the view model from any 

mappings that may have been registered by the Register method of the ViewModelLocator class. If 

the view model cannot be resolved using this approach, for instance if the mapping wasn't created, 

the method falls back to using a convention-based approach to resolve the correct view model type. 

This convention assumes that view models are in the same assembly as the view types, that view 

models are in a .ViewModels child namespace, that views are in a .Views child namespace, and that 

view model names correspond with view names and end with "ViewModel." For more info see the 

next section, "Using a convention-based approach to connect view models to views." Finally, the 

method sets the DataContext property of the view type to the registered view model type. 

Using a convention -based approach to connect view models to views  

The AdventureWorks Shopper reference implementation redefines the convention for resolving 

view model types from view types in order to allow views and view models to reside in separate 

assemblies. This enables the business logic for the app to reside in a separate assembly that can be 

easily targeted for testing. 

A convention-based approach to connecting view models to views removes the need for much 

boilerplate code. The convention used in AdventureWorks Shopper assumes that: 

1. View model types are located in a separate assembly from the view types.  

2. View model types are located in the AdventureWorks.UILogic assembly. 

3. View model type names append "ViewModel" to the view type names. 

Using this convention, a view named HubPage will have a view model named HubPageViewModel. 

The following code example shows how the App class overrides the 

SetDefaultViewTypeToViewModelTypeResolver delegate in the ViewModelLocator class, to define 

how to resolve view model type names from view type names. 

C#: AdventureWorks.Shopper\App.xaml.cs 

ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType) =>  

    {  

        var  viewModelTypeName = string .Format(CultureInfo.InvariantCulture,  

            "AdventureWorks.UILogic.ViewModels.{0}ViewModel,  

            AdventureWorks.UILogic, Version=1.0.0.0, Culture=neutral,            

            PublicKeyToken=634ac3171ee5190a" , viewType.Name);  

        var  viewModelType = Type.GetType(viewModelTypeName);  

        return  viewModelType;  

    });  

Other approaches to constructing view models and views  

There are many approaches that can be used to construct views and view models and associate 

them at runtime. The following sections describe three of these approaches. 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx


54 

 

Creating a view model declaratively  

The simplest approach is for the view to declaratively instantiate its corresponding view model in 

XAML. When the view is constructed, the corresponding view model object will also be constructed. 

This approach can be demonstrated in the following code. 

XAML 

<Page.DataContext > 

   <HubPageViewModel />  

</ Page.DataContext > 

When the Page is created, an instance of the HubPageViewModel is automatically constructed and 

set as the view's data context. This approach requires your view model to have a default (parameter-

less) constructor. 

This declarative construction and assignment of the view model by the view has the advantage that 

it is simple and works well in design-time tools such as Blend and Visual Studio. The main 

disadvantage of this approach is that the view model requires a default constructor. 

Creating a view model programmatically  

A view can have code in the code-behind file that results in the view model being assigned to its 

DataContext property. This is often accomplished in the view's constructor, as shown in the 

following code example. 

C# 

public  HubPage()  

{  

   InitializeComponent();  

   this .DataContext = new HubPageViewModel(NavigationService);  

}  

The programmatic construction and assignment of the view model within the view's code-behind 

has the advantage that it is simple and works well in design-time tools such as Blend and Visual 

Studio. The main disadvantage of this approach is that the view needs to provide the view model 

with any required dependencies. 

Creating a view defined as a data template  

A view can be defined as a data template and associated with a view model type. Data templates can 

be defined as resources, or they can be defined inline within the control that will display the view 

model. The content of the control is the view model instance, and the data template is used to 

visually represent it. This technique is an example of a situation in which the view model is 

instantiated first, followed by the creation of the view. 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx


55 

 

Data templates are flexible and lightweight. The UI designer can use them to easily define the visual 

representation of a view model without requiring any complex code. Data templates are restricted 

to views that do not require any UI logic (code-behind). Blend can be used to visually design and edit 

data templates. 

The following example shows the AutoRotatingGridView custom control that is bound to a 

collection of ShoppingCartItemViewModels. Each object in the ShoppingCartItemViewModels 

collection is a view model instance. The view for each ShoppingCartItemViewModel is defined by 

the ItemTemplate property. The ShoppingCartItemTemplate specifies that the view for each 

ShoppingCartItemViewModel consists of a Grid containing multiple child elements, including an 

Image and several TextBlocks. 

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml 

<awcontrols : AutoRotatingGridView  x:Name=" ShoppingCartItemsGridView "  

                                 x:Uid =" ShoppingCartItemsGridView "  

                               

AutomationProperties . AutomationId =" ShoppingCartItemsGridView "  

                               SelectionMode =" Single "  

                               Width =" Auto "  

                               Grid.Row =" 2"  

                               Grid.Column =" 1"  

                               Grid.RowSpan =" 2"  

                               VerticalAlignment =" Top"  

                               ItemsSource ="{ Binding  ShoppingCartItemViewModels }"  

                               SelectedItem =" { Binding  SelectedItem,  Mode=TwoWay}"  

                               ItemTemplate ="{ StaticResource   

                                              ShoppingCartItemTemplate }"  

                               MinimalItemTemplate ="{ StaticResource                

                                                 ShoppingCartItemTemplateMinimal }"  

                               Margin =" 0,0,0,0 ">  

For more info about the AutoRotatingGridView custom control see Creating a custom GridView 

control that responds to layout changes. 

Updating a view in response to changes in the underlying view model or 

model  

All view model and model classes that are accessible to the view should implement the 

INotifyPropertyChanged interface. Implementing the INotifyPropertyChanged interface in your 

view model or model classes allows them to provide change notifications to any data-bound controls 

in the view when the underlying property value changes. However, this can be repetitive and error-

prone. Therefore, the Microsoft.Practices.Prism.StoreApps library provides the BindableBase class 

that implements the INotifyPropertyChanged interface. The following code example shows this 

class. 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.grid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx


56 

 

C#: Microsoft.Practices.Prism.StoreApps\BindableBase.cs 

public  abstract  class  BindableBase : INotifyPropertyChanged  

{  

    public  event  PropertyChangedEventHandler PropertyChanged;  

 

    protected  virtual  bool  SetProperty<T>( ref  T storage, T value,  

        [CallerMemberName] string  propertyName = null )  

    {  

        if  ( object .Equals(storage, value)) return  false;  

 

        storage = value;  

        this .OnPropertyChanged(propertyName);  

 

        return  true;  

    }  

 

    protected  void  OnPropertyChanged(string propertyName)  

    {  

        var  eventHandler = this .PropertyChanged;  

        if  (eventHandler != null )  

        {  

            eventHandle r( this , new PropertyChangedEventArgs(propertyName));  

        }  

    }  

}  

Each view model class in the AdventureWorks Shopper reference implementation derives from the 

ViewModel base class that in turn derives from the BindableBase base class. Therefore, each view 

model class uses the SetProperty method in the BindableBase class to provide property change 

notification. The following code example shows how property change notification is implemented in 

a view model class in the AdventureWorks Shopper reference implementation. 

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs 

public  IReadOnlyCollection<CategoryViewModel> RootCategories  

{  

    get  { return _rootCategories; }  

    private  set  { SetProperty( ref  _rootCategories, value); }  

}  

For more info about data binding in the Windows Runtime, see Data binding overview. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx


57 

 

Additional considerations when implementing property change notification  

You should design your app for the correct use of property change notification. Here are some 

points to remember: 

¶ Never raise the PropertyChanged event during your object's constructor if you are 

initializing a property. Data-bound controls in the view cannot have subscribed to receive 

change notifications at this point. 

¶ Always implement the INotifyPropertyChanged interface on any view model or model 

classes that are accessible to the view. 

¶ Always raise a PropertyChanged event if a public property's value changes. Do not assume 

that you can ignore raising the PropertyChanged event because of knowledge of how XAML 

binding occurs. Such assumptions lead to brittle code. 

¶ Never use a public property's get method to modify fields or raise the PropertyChanged 

event. 

¶ Always raise the PropertyChanged event for any calculated properties whose values are 

used by other properties in the view model or model. 

¶ Never raise a PropertyChanged event if the property does not change. This means that you 

must compare the old and new values before raising the PropertyChanged event. 

¶ Never raise more than one PropertyChanged event with the same property name argument 

within a single synchronous invocation of a public method of your class. For example, 

suppose you have a Count property whose backing store is the _count field. If a method 

increments _count a hundred times during the execution of a loop, it should only raise 

property change notification on the Count property once after all the work is complete. For 

asynchronous methods you can raise the PropertyChanged event for a given property name 

in each synchronous segment of an asynchronous continuation chain. 

¶ Always raise the PropertyChanged event at the end of the method that makes a property 

change, or when your object is known to be in a safe state. Raising the event interrupts your 

operation by invoking the event's handlers synchronously. If this happens in the middle of 

your operation, you may expose your object to callback functions when it is in an unsafe, 

partially updated state. It is also possible for cascading changes to be triggered by 

PropertyChanged events. Cascading changes generally require updates to be complete 

before the cascading change is safe to execute. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx


58 

 

UI interaction using the DelegateCommand class and Blend behaviors  

In Windows Store apps, you typically invoke some action in response to a user action (such as a 

button click) that can be implemented by creating an event handler in the code-behind file. 

However, in the MVVM pattern, the responsibility for implementing the action lies with the view 

model, and you should try to avoid placing code in the code-behind file. 

Commands provide a convenient way to represent actions that can be easily bound to controls in the 

UI. They encapsulate the actual code that implements the action or operation and help to keep it 

decoupled from its actual visual representation in the view. The Windows Runtime includes controls 

that can be declaratively connected to a command. These controls will invoke the specified 

command when the user interacts with the control in a specific way. 

Behaviors also allow you to connect a control to a command declaratively. However, behaviors can 

be used to invoke an action that is associated with a range of events raised by a control. Therefore, 

behaviors address many of the same scenarios as command-enabled controls, while providing a 

greater degree of flexibility and control. In addition, behaviors can also be used to associate 

command objects or methods with controls that were not specifically designed to interact with 

commands. For more info see Implementing behaviors to supplement the functionality of XAML 

elements.  

Implementing command objects  

View models typically expose command properties, for binding from the view, that are object 

instances that implement the ICommand interface. XAML inherently supports commands and 

ButtonBase-derived controls provide a Command property that can be data bound to an ICommand 

object provided by the view model. The ICommand interface defines an Execute method, which 

encapsulates the operation itself, and a CanExecute method, which indicates whether the command 

can be invoked at a particular time. The Microsoft.Practices.Prism.StoreApps library provides the 

DelegateCommand class to implement commands.  

The AdventureWorks Shopper reference implementation uses the DelegateCommand class that 

encapsulates two delegates that each reference a method implemented within your view model 

class. It inherits from the DelegateCommandBase class that implements the ICommand ƛƴǘŜǊŦŀŎŜΩǎ 

Execute and CanExecute methods by invoking these delegates. You specify the delegates to your 

view model methods in the DelegateCommand class constructor, which is defined as follows. 

C#: Microsoft.Practices.Prism.StoreApps\DelegateCommand.cs 

public  DelegateCommand(Action<T> executeMethod, Func<T, bool > canExecuteMethod)  

    : base((o) => executeMethod((T)o), (o) => canExecuteMethod((T)o))  

{  

    if  (executeMethod == null  || canExecuteMethod == null )  

        throw  new ArgumentNullException(" executeMethod ");  

}  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx


59 

 

For example, the following code shows how a DelegateCommand instance, which represents a sign 

in command, is constructed by specifying delegates to the SignInAsync and CanSignIn view model 

methods. The command is then exposed to the view through a read-only property that returns a 

reference to an ICommand. 

C#: AdventureWorks.UILogic\ViewModels\SignInFlyoutViewModel.cs 

public  DelegateCommand SignInCommand { get ; private  set ; }  

 

SignInCommand = DelegateCommand.FromAsyncHandler(SignInAsync, CanSignIn);  

The DelegateCommand class is a generic type. The type argument specifies the type of the 

command parameter passed to the Execute and CanExecute methods. A non-generic version of the 

DelegateCommand class is also provided for use when a command parameter is not required. 

When the Execute method is called on the DelegateCommand object, it simply forwards the call to 

the method in the view model class via the delegate that you specified in the constructor. Similarly, 

when the CanExecute method is called, the corresponding method in the view model class is called. 

The delegate to the CanExecute method in the constructor is optional. If a delegate is not specified, 

the DelegateCommand will always return true for CanExecute. 

¢ƘŜ ǾƛŜǿ ƳƻŘŜƭ Ŏŀƴ ƛƴŘƛŎŀǘŜ ŀ ŎƘŀƴƎŜ ƛƴ ǘƘŜ ŎƻƳƳŀƴŘΩǎ CanExecute status by calling the 

RaiseCanExecuteChanged method on the DelegateCommand object. This causes the 

CanExecuteChanged event to be raised. Any controls in the UI that are bound to the command will 

update their enabled status to reflect the availability of the bound command. 

Invoking commands from a view  

Any controls that derive from ButtonBase, such as Button or HyperlinkButton, can be easily data 

bound to a command through the Command property. The following code example shows how the 

SubmitButton in the SignInFlyout binds to the SignInCommand in the SignInFlyoutViewModel class. 

XAML: AdventureWorks.Shopper\Views\SignInFlyout.xaml 

<Button x:Uid =" SubmitButton "  

        x:Name=" SubmitButton "  

        Background ="{ StaticResource  AWShopperAccentBrush}"  

        Content =" Submit "  

        HorizontalAlignment =" Stretch "  

        Foreground ="{ StaticResource  AWShopperButtonForegroundBrush }"  

        Margin =" 0,25,0,0 "  

        Command="{ Binding  SignInCommand}"  

        AutomationProperties.AutomationId =" SignInSubmitButton "/>  

A command parameter can also be optionally defined using the CommandParameter property. The 

type of the expected argument is specified in the Execute and CanExecute target methods. The 

control will automatically invoke the target command when the user interacts with that control, and 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecutechanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.hyperlinkbutton.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.commandparameter.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx


60 

 

ǘƘŜ ŎƻƳƳŀƴŘ ǇŀǊŀƳŜǘŜǊΣ ƛŦ ǇǊƻǾƛŘŜŘΣ ǿƛƭƭ ōŜ ǇŀǎǎŜŘ ŀǎ ǘƘŜ ŀǊƎǳƳŜƴǘ ǘƻ ǘƘŜ ŎƻƳƳŀƴŘΩǎ Execute 

method. 

Implementing behaviors to supplement the fun ctionality of XAML elements  

A behavior allows you to add functionality to a XAML element by writing that functionality in a 

behavior class and attaching it to the element as if it was part of the element itself. Behaviors enable 

you to implement code that you would normally have to write as code-behind because it directly 

interacts with the API of XAML elements, in such a way that it can be concisely attached to a XAML 

element and packaged for reuse across more than one view or app. In the context of MVVM, 

behaviors are a useful approach for connecting items that are occurring in the view due to user 

interaction, with the execution in a view model. 

A behavior that is attached to a XAML element through attached properties is known as an attached 

behavior. The behavior can then use the exposed API of the element to which it is attached to add 

functionality to that element or other elements in the visual tree of the view. For more info see 

Dependency properties overview, Attached properties overview, and Custom attached properties. 

The AdventureWorks Shopper reference implementation does not contain any attached behaviors. 

Blend includes a variety of built-in behaviors, which are known as Blend behaviors. These behaviors 

can be reused in Windows Store apps through the Behaviors SDK. The SDK supports adding existing 

behaviors and actions to Windows Store apps, and creating new ones. A Blend behavior adds some 

behavior to a XAML element, witƘ ŀƴ ŀŎǘƛƻƴ ŀŘŘƛƴƎ ŦǳƴŎǘƛƻƴŀƭƛǘȅ ǘƘŀǘΩǎ ƛƴǾƻƪŜŘ ǿƘŜƴ ŀ ŎƻƴŘƛǘƛƻƴ ƛǎ 

met, such as an event being raised. Collectively, behaviors and actions are known as interactions. 

The AdventureWorks Shopper reference implementation uses a number of interactions from the 

Behaviors SDK and also includes custom behaviors. To create a new behavior you should create a 

class that derives from the DependencyObject class, and implements the IBehavior interface. In the 

AdventureWorks Shopper reference implementation this functionality is provided by the 

Behavior<T> class. This class provides an AssociatedObject property that gives a reference to the 

element to which the behavior is attached, and Attach and Detach methods. Each custom behavior 

then derives from the Behavior<T> class, overriding the OnAttached and OnDetached abstract 

methods to provide logic that will be executed when the behavior is attached and detached from 

XAML elements. The following code example shows the ComboBoxKeyboardSelection behavior 

used by the AdventureWorks Shopper reference implementation to select the ComboBoxItem that 

starts with the key pressed by the user. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/hh700353.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758282.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965327.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn457340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.dependencyobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.associatedobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.attach.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.detach.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.comboboxitem.aspx


61 

 

C#: AdventureWorks.Shopper\Behaviors\ComboBoxKeyboardSelection.cs 

public  class  ComboBoxKeyboardSelection : Behavior<ComboBox>  

{  

    protected  override  void  OnAttached()  

    {  

        ComboBox comboBox = this .AssociatedObject;  

 

        if  (comboBox != null )  

        {  

            comboBox.KeyUp += comboBox_KeyUp; 

        }  

    }  

 

    private  void  comboBox_KeyUp(object  sender, KeyRoutedEventArgs e)  

    {  

        var  comboBox = (ComboBox)sender;  

        foreach  ( var  item in  comboBox.Items)  

        {  

            var  comboBoxItemValue = item as ComboBoxItemValue;  

            if  (comboBoxItemValue != null  &&  

               comboBoxItemValue.Value.StartsWith(e.Key.ToString(),    

               StringComparison.OrdinalIgnoreCase))  

            {  

                comboBox.SelectedItem = comboBoxItemValue;  

                return ;  

            }  

        }  

    }  

    protected  override  void  OnDetached()  

    {  

        ComboBox comboBox = this .AssociatedObject;  

 

        if  (comboBox != null )  

        {  

            comboBox.KeyUp - = comboBox_KeyUp; 

        }  

    }  

}  

The OnAttached and OnDetached methods are simply used to register and deregister a method for 

the KeyUp event. The event handler method selects the ComboBoxItem that starts with the key 

pressed by the user. 

One of the interactions from the Behaviors SDK that is used by the AdventureWorks Shopper 

reference implementation is the NavigateToPageAction interaction, which invokes navigation to a 

specific page in the app. For instance, when the shopping cart icon is selected in the top app bar the 

NavigateToPageAction interaction is used to navigate to the ShoppingCartPage, as shown in the 

following code example. 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.keyup.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.comboboxitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx


62 

 

XAML: AdventureWorks.Shopper\Views\TopAppBarUserControl.xaml 

<Button x:Uid =" ShoppingCartAppBarButton "  

        x:Name=" ShoppingCartAppBarButton "  

        AutomationProperties.AutomationId =" ShoppingCartAppBarButton "  

        Margin =" 0,0,5,0 "  

        Height =" 125"  

        Style ="{ StaticResource  CartStyle }"  

        Content =" Shopping  Cart ">  

        <Interactivity : Interaction . Behaviors > 

        <Core: EventTriggerBehavior  EventName=" Click ">  

            <Core: NavigateToPageAction    

                TargetPage =" AdventureWorks.Shopper.Views.ShoppingCartPage "/>  

        </ Core: EventTriggerBehavior > 

    </ Interactivity : Interaction.Behaviors > 

</ Button > 

The EventTriggerBehavior binds the Click event of the Button to the NavigateToPageAction. So 

when the Button is selected the NavigateToPageAction is executed, which navigates to the 

ShoppingCartPage. The NavigateToPageAction interaction also allows a Parameter to be specified. 

However, it is not currently possible to specify the event arguments that are associated with the 

Click event in the Parameter property. To solve this problem we created the 

NavigateWithEventArgsToPageAction that invokes navigation to a specified page, and allows the 

event arguments to be passed as a parameter to the page being navigated to. 

C#: AdventureWorks.Shopper\Behaviors\NavigateWithEventArgsToPageAction.cs 

public class  NavigateWithEventArgsToPageAction : DependencyObject, IAction  

{  

    public  string  TargetPage { get ; set ; }  

    public  string  EventArgsParameterPath { get ; set ; }  

    object IAction.Execute( object  sender, object  parameter)  

    {  

        //  Walk the Paramet erPath for nested properties.  

        var  propertyPathParts = EventArgsParameterPath.Split('.');  

        object  propertyValue = parameter;  

        foreach  (var propertyPathPart in  propertyPathParts)  

        {  

            var  propInfo = propertyValue.GetTyp e().GetTypeInfo()  

                .GetDeclaredProperty(propertyPathPart);  

            propertyValue = propInfo.GetValue(propertyValue);     

        }  

 

        var  pageType = Type.GetType(TargetPage);  

         

        var  frame = GetFrame(sender as DependencyObject);  

        return  frame.Navigate(pageType, propertyValue);  

    }  

 

 

 

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.parameter.aspx


63 

 

    private  Frame GetFrame(DependencyObject dependencyObject)  

    {  

        var  parent = VisualTreeHelper.GetParent(dependencyObject);  

        var  parentFrame = parent as Frame;  

        if  (parentFrame != null ) return  parentFrame;  

        return  GetFrame(parent);  

    }  

}  

To create a new action you must create a class that derives from the DependencyObject class, and 

implements the IAction interface. The IAction interface has only one method that needs to be 

implemented, named Execute. Here, the Execute method traverses the visual tree to obtain the 

Frame control used by the current page, and then calls its Navigate method to navigate to the target 

page, passing in the specified parameter. 

Invoking behaviors from a view  

Behaviors are particularly useful if you want to attach a method to a control that does not derive 

from ButtonBase. For example, the AdventureWorks Shopper reference implementation uses the 

NavigateWithEventArgsToPageAction interaction to enable the ItemClick event of the 

MultipleSizedGridView control to invoke page navigation. 

XAML: AdventureWorks.Shopper\Views\HubPage.xaml 

<awcontrols : MultipleSizedGridView  x:Name=" itemsGridView "  

                                

AutomationProperties.AutomationId =" HubPageItemGridView "  

                                AutomationProperties.Name =" Grouped Items "  

                                Margin =" 0,0,0,0 "  

                                Padding =" 120, 0,40,46 "  

                                ItemsSource =" {Binding Source={StaticResource   

                                              groupedItemsViewSource}} "  

                                ItemTemplate =" {StaticResource  

                                               AWShopperItemTemplate} "  

                                MinimalItemTemplate =" {StaticResource  

                                                     ProductTemplateMinimal} "  

                                SelectionMode =" None"  

                                

ScrollViewer.IsHorizontalScrollChainingEnabled =" False "  

                                IsItemClickEnabled =" True "  

                                Loaded=" itemsGridView_Loaded ">  

    <interactivity : Interaction . Behaviors > 

        <core : EventTriggerBehavior  EventName=" ItemClick ">  

            <awbehaviors : NavigateWithEventArgsToPageAction   

                         TargetPage =" AdventureWorks.Shopper.Views.ItemDetailPage "   

                         EventArgsParameterPath =" ClickedItem .ProductNumber " />  

        </ core : EventTriggerBehavior > 

    </ interactivity : Interaction . Behaviors > 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.dependencyobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.iaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.navigate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx


64 

 

The EventTriggerBehavior binds the ItemClick event of the MultipleSizedGridView to the 

NavigateWithEventArgsToPageAction. So when a GridViewItem is selected the 

NavigateWithEventArgsToPageAction is executed, which navigates from the HubPage to the 

ItemDetailPage, passing in the ProductNumber of the ClickedItem to the ItemDetailPage. 

Additional MVVM considerations  

Here are some additional considerations when applying the MVVM pattern to Windows Store apps 

in C#. 

Centralize data conversions in the view model or a conversion layer  

The view model provides data from the model in a form that the view can easily use. To do this the 

view model sometimes has to perform data conversion. Placing this data conversion in the view 

model is a good idea because it provides properties in a form that the UI can bind to. It is also 

possible to have a separate data conversion layer that sits between the view model and the view. 

This might occur, ŦƻǊ ŜȄŀƳǇƭŜΣ ǿƘŜƴ Řŀǘŀ ǘȅǇŜǎ ƴŜŜŘ ǎǇŜŎƛŀƭ ŦƻǊƳŀǘǘƛƴƎ ǘƘŀǘ ǘƘŜ ǾƛŜǿ ƳƻŘŜƭ ŘƻŜǎƴΩǘ 

provide. 

Expose operational modes in the view model  

The view model may also be responsible for defining logical state changes that affect some aspect of 

the display in the view, such as an indication that some operation is pending or whether a particular 

command is available. You don't need code-behind to enable and disable UI elementsτyou can 

achieve this by binding to a view model property, or with visual states. 

Keep views and view models independent  

The binding of views to a particular property in its data source should be a view's principal 

dependency on its corresponding view model. In particular, do not reference view types or the 

Windows.Current object from view models. If you follow the principles we outlined here, you will 

have the ability to test view models in isolation, and reduce the likelihood of software defects by 

limiting scope. 

Use asynchronous programming techniques to keep the UI responsive  

Windows Store apps are about a fast and fluid user experience. For that reason the AdventureWorks 

Shopper reference implementation keeps the UI thread unblocked. AdventureWorks Shopper uses 

asynchronous library methods for I/O operations and raises events to asynchronously notify the 

view of a property change. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.current.aspx


65 

 

Creating and navigating between pages in a Windows Store business 

app using C#, XAML, and Prism 

Summary 

¶ Create pages using the MVVM pattern if appropriate to your requirements. When using 

MVVM, use XAML data binding to link each page to a view model object. 

¶ Design your pages for landscape, portrait, and minimal layout. In addition, use the 

VisualStateAwarePage class, provided by the Microsoft.Practices.Prism.StoreApps library, to 

provide view management. 

¶ Implement the INavigationAware interface, provided by the 

Microsoft.Practices.Prism.StoreApps library, to enable a class to participate in a navigation 

operation. Use the FrameNavigationService class, provided by the 

Microsoft.Practices.Prism.StoreApps library, to provide navigation support to a class. 

Learn how to implement accessible pages that support a fluid layout, are localizable, include design-

time data, and that can be easily navigated between, using Prism for the Windows Runtime. 

You will learn  

¶ How pages were designed in AdventureWorks Shopper. 

¶ How AdventureWorks Shopper creates pages. 

¶ How to create design time data to support designers. 

¶ How AdventureWorks Shopper pages support different layouts. 

¶ How AdventureWorks Shopper pages support localization and accessibility. 

¶ How AdventureWorks Shopper performs navigation between pages. 

Applies to  

¶ Windows Runtime for Windows 8.1 

¶ C# 

¶ Extensible Application Markup Language (XAML) 

Making key decisions  

The app page is the focal point for designing your UI. It holds all of your content and controls for a 

single point of interaction with the user within your app. Whenever possible, you should integrate 

your UI elements inline into the app page. Presenting your UI inline lets users fully immerse 

themselves in your app and stay in context, as opposed to using pop-ups, dialogs, or overlapping 

windows that were common in previous Windows desktop application platforms. You can create as 

many app pages as you need to support your user scenarios.  

  



66 

 

The following list summarizes the decisions to make when creating pages in your app: 

¶ What tool should I use to create page content? 

¶ What minimum resolution should I design my pages for? 

¶ Should my page content fill the screen, regardless of resolution? 

¶ Should my pages adapt to different orientations and layouts? 

¶ How should I lay out UI elements on each page? 

¶ What should I display in minimal view? 

¶ How should I test my page layout on different screen sizes? 

¶ Should I add design time data to my pages? 

¶ Should I make my pages easily localizable? 

¶ Should I make my pages accessible? 

¶ Should I cache pages in my app? 

¶ Where should navigation logic reside? 

¶ How should I invoke navigation from a view? 

¶ What commands belong on the navigation bar and the bottom app bar? 

¶ Should common page navigation functionality be implemented on each page, or can it be 

encapsulated into a single control for reuse on each page? 

¶ Should the page being navigated to reside in the same assembly that the navigation request 

originates from? 

¶ How should I specify a navigation target? 

We recommend that you use Visual Studio to work with the code-focused aspects of your app. 

Visual Studio is best suited for writing code, running, and debugging your app. We recommend that 

you use Blend for Microsoft Visual Studio 2013 to work on the visual appearance of your app. You 

can use Blend to create pages and custom controls, change templates and styles, and create 

animations. Blend comes with minimal code-behind support. For more info about XAML editing 

tools, see Design Windows Store apps using Blend and Creating a UI by using the XAML Designer. 

There are two primary screen resolutions that your app should support. The minimum resolution at 

which Windows Store apps will run is 1024x768. However, the minimum optimal resolution required 

is 1366x768. When designing pages for a minimum resolution of 1024x768 you should ensure that 

all of your UI fits on the screen without clipping. When designing pages for an optimal resolution of 

1366x768 you should ensure that all of your UI fits on the screen without blank regions. Page 

content should fill the screen to the best of its ability and should appear to be thoughtfully designed 

for varying screen sizes. Users who buy larger monitors expect that their apps will continue to look 

good on these large screens and fill the screen with more content, where possible. For more info see 

Guidelines for window sizes and scaling to screens. 

Users can rotate and flip their tablets, slates, and monitors, so you should ensure that you app can 

handle both landscape and portrait orientations. In addition, because users can work with up to two 

apps at once, you should provide a minimal layout. The default minimum width of an app is 500 

pixels. If you keep this width you do not have to make any special considerations for your app at 

narrow widths. You simply design your app so that it adapts fluidly when the user resizes it. You can 

choose to change the minimum width to 320 pixels. If you choose to do this you should make some 

http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh921077.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx


67 

 

design changes so that the app is still functional and usable at this narrow width.  

For more info see Guidelines for layouts, Guidelines for window sizes and scaling to screens, and 

Guidelines for resizing windows to tall and narrow layouts. 

The user interface in Microsoft Windows strives to maintain a consistent silhouette across its apps. 

The signature characteristic of the silhouette is a wide margin on the top, bottom, and left edges. 

This wide margin helps users understand the horizontal panning direction of the content. You should 

follow a consistent layout pattern for margins, page headers, gutter widths, and other such elements 

on your pages. For more info see Laying out an app page. 

When you plan for full screen and minimal views, your app's UI should reflow smoothly and 

gracefully to accommodate screen size, orientation, and user interactions. You should maintain state 

in minimal view, even if it means showing less content or reducing functionality. In addition, you 

should have feature parity across states. The user still expects to be able to interact with your app 

when it is in minimal view. For more info see Guidelines for resizing windows to tall and narrow 

layouts. 

Most people don't have many devices at their disposal for testing page layout on different screen 

sizes. However, you can use the Windows Simulator to run your app on a variety of screen sizes, 

orientations, and pixel densities. In addition, Blend offers a platform menu that enables you to 

design your app on different screen sizes and pixel densities on the fly. The Blend canvas then 

updates dynamically based upon the chosen screen option. 

Sample data should be added to each page if you want to easily view styling results and layout sizes 

at design time. This has the additional advantage of supporting the designer-developer workflow. 

Preparing your pages for localization can help your app reach more users in international markets. 

It's important to consider localization early on in the development process, as there are some issues 

that will affect UI elements across various locales. As you design your pages, keep in mind that users 

have a wide range of abilities, disabilities, and preferences. If you incorporate accessible design 

principles into your pages you will help to ensure that your app is accessible to the widest possible 

audience, thus attracting more customers to your app. For more info see Globalizing your app and 

Design for accessibility. 

Deciding whether to cache pages will be dependent upon how well-performing and responsive the 

app is. Page caching results in memory consumption for views that are not currently displayed, 

which would increase the chance of termination when the app is suspended. However, without page 

caching it does mean that XAML parsing and construction of the page and its view model will occur 

every time you navigate to a new page, which could have a performance impact for a complicated 

page. For a well-designed page that does not use too many controls, the performance should be 

sufficient. However, if you encounter slow page load times you should test to see if enabling page 

caching alleviates the problem. For more info see Quickstart: Navigating between pages. 

Navigation within a Windows Store app can result from the user's interaction with the UI or from the 

app itself as a result of internal logic-driven state changes. Page navigation requests are usually 

http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh771188.aspx


68 

 

triggered from a view, with the navigation logic either being in the view's code-behind, or in the data 

bound view model. While placing navigation logic in the view may be the simplest approach, it is not 

easily testable through automated tests. Placing navigation logic in the view model classes means 

that the navigation logic can be exercised through automated tests. In addition, the view model can 

then implement logic to control navigation to ensure that certain business rules are enforced. For 

instance, an app may not allow the user to navigate away from a page without first ensuring that the 

entered data is correct. 

Users will trigger navigation from a view by selecting a UI control, with the navigation logic residing 

in the appropriate view model class. For controls derived from ButtonBase, such as Button, you 

should use commands to implement a navigation action in the view model class. For controls that do 

not derive from ButtonBase, you should use a Blend behavior to implement a navigation action. For 

more info see Using the Model-View-ViewModel (MVVM) pattern. 

In general, you should use the navigation bar for navigational elements that move the user to a 

different page and use the bottom app bar for commands that act on the current page. If every page 

of your app is going to include a navigation bar that allows the user to move to different pages, it 

does not make sense to implement this functionality individually on each page. Rather, the 

functionality should be implemented as a user control that can be easily be included on each page. 

In addition, you should follow placement conventions for commands on the bottom app bar. You 

should place New/Add/Create buttons on the far right, with view switching buttons being placed on 

the far left. Also, you should place Accept, Yes, and OK buttons to the left of Reject, No, and Cancel 

buttons. For more info see Guidelines for app bars. 

The view classes that define your pages and the view model classes that implement the business 

logic for those pages can reside in the same assembly or different assemblies. That is a design 

decision to be made when architecting your app. A page type resolution strategy should be used to 

navigate to a page in any assembly, regardless of the assembly from which the navigation request 

originates. 

One approach for specifying a navigation target is to use a navigation service, which would require 

the type of the view to navigate to. Because a navigation service is usually invoked from view models 

in order to promote testability, this approach would require view models to reference views (and 

particularly views that the view model isn't associated with), which is not recommended. The 

recommended approach is to use a string to specify the navigation target that can be easily passed 

to a navigation service, and which is easily testable. 

Creating pages and navigating between them in AdventureWorks Shopper  

We used Blend and the Visual Studio XAML Designer to work with XAML because these tools make it 

straightforward to quickly add and modify page layout. Blend was useful to initially define pages and 

controls; we used Visual Studio to optimize their appearances. These tools also enabled us to iterate 

quickly through design choices because they give immediate visual feedback. In many cases, our user 

experience designer was able to work in parallel with the developers because changing the visual 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465302.aspx


69 

 

appearance of a page does not affect its behavior. For more info see the next section, "Creating 

pages." 

Pages were designed for a minimum resolution of 1024x768, and an optimal minimum resolution of 

1366x768. In addition, pages were designed to fill the screen for varying screen sizes. Each page is 

able to adapt to landscape and portrait orientations, and a minimal layout. A consistent silhouette is 

maintained across all pages, with some pages including design time data. Page layout was tested on 

a variety of devices, and in the Windows simulator. Pages maintain state when switching between 

different view states, and possess feature parity across states. For more info see Adding design time 

data, Supporting multiple view states and Laying out an app page. 

Page caching is not used in the app. This prevents views that are not currently displayed from 

consuming memory, which would increase the chance of termination when the app is suspended. All 

pages are accessible, and support easy localization. For more info see Enabling page localization and 

Enabling page accessibility. 

In the app, the view classes that define pages are in a different assembly to the view model classes 

that implement the business logic for those pages. Therefore, a page type resolution strategy 

implemented as a delegate is used to navigate to the pages in the AdventureWorks.Shopper 

assembly when the navigation request originates from view model classes in the 

AdventureWorks.UILogic assembly. In addition, common page navigation functionality is 

implemented as a user control that is embedded in the navigation bar for each page. Both 

commands and Blend behaviors are used to implement navigation actions, depending on the control 

type. Navigation targets are specified by strings that represent the page to navigate to. For more 

info see Navigating between pages, Handling navigation requests, and Invoking navigation using 

behaviors.  

Creating pages 

Pages in Windows Store apps are user controls that support navigation and contain other controls. 

All page classes are subtypes of the Windows.UI.Xaml.Page class, and represent content that can be 

navigated to by the user. 

In apps that use Prism for the Windows Runtime, each page should derive from the 

VisualStateAwarePage class in the Microsoft.Practices.Prism.StoreApps library. The 

VisualStateAwarePage class provides view management and navigation support. The following code 

example shows how the HubPage derives from the VisualStateAwarePage class. 

http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130655.aspx


70 

 

XAML: AdventureWorks.Shopper\Views\HubPage.xaml 

<prism:VisualStateAwarePage  

    xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation "  

    xmlns:x =" http://schemas.microsoft.com/winfx/2006/xaml "  

    xmlns:d =" http://schemas.microsoft.com/expression/blend/2008 "  

    xmlns:mc =" http://schemas.openxmlformats.org/markup - compatibility/2006 "  

    xmlns:awbehaviors =" using:AdventureWorks.Shopper.Behaviors "  

    xmlns:interactivity =" using:Microsoft.Xaml.Interactivity "  

    xmlns:core =" using:Microsoft.Xaml.Interactions.Core "  

    xmlns:views =" using:AdventureWorks.Shopper.Views "  

    xmlns:awcontrols =" using:AdventureWorks.Shopper.Controls "  

    xmlns:designViewModels =" using:AdventureWorks.Shopper.DesignViewModels "  

    xmlns:prism =" using:Microsoft.Practices.Prism.StoreApps "  

    x:Name=" pageRoot"  

    x:Class =" AdventureWorks.Shopper.Views.HubPage "  

    IsTabStop=" false "  

    x:Uid =" Page"  

    mc:Ignorable =" d"  

    prism:ViewModelLocator.AutoWireViewModel =" true "  

    d:DataContext =" {d:DesignInstance designViewModels:HubPageDesignViewModel,  

    IsDesignTimeCreatable=True} ">  

Note  All Flyout classes derive from the SettingsFlyout class. 

There are twelve pages in the AdventureWorks Shopper reference implementation, with the pages 

being the views of the MVVM pattern. 

Page View model 

BillingAddressPage BillingAddressPageViewModel 

CategoryPage CategoryPageViewModel 

CheckoutHubPage CheckoutHubPageViewModel 

CheckoutSummaryPage CheckoutSummaryPageViewModel 

GroupDetailPage GroupDetailPageViewModel 

HubPage HubPageViewModel 

ItemDetailPage ItemDetailPageViewModel 

OrderConfirmationPage OrderConfirmationPageViewModel 

PaymentMethodPage PaymentMethodPageViewModel 

SearchResultsPage SearchResultsPageViewModel 

ShippingAddressPage ShippingAddressPageViewModel 

ShoppingCartPage ShoppingCartPageViewModel 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.settingsflyout.aspx


71 

 

Data binding links each page to its view model class in the AdventureWorks Shopper reference 

implementation. The view model class gives the page access to the underlying app logic by using the 

conventions of the MVVM pattern. For more info see Using the MVVM pattern. 

Tip  AdventureWorks Shopper uses the MVVM pattern that abstracts the user interface for the app. 

With MVVM you rarely need to customize the code-behind files. Instead, the controls of the user 

interface are bound to properties of a view model object. If page-related code is required, it should 

be limited to conveying data to and from the page's view model object. 

If you are interested in AdventureWorks Shopper's interaction model and how we designed the user 

experience, see Designing the user experience of a Windows Store business app. 

Adding design time data  

When you create a data bound user interface, you can display sample data in the visual designer to 

view styling results and layout sizes. To display data in the designer you must declare it in XAML. This 

is necessary because the designer parses the XAML for a page but does not run its code-behind. In 

the AdventureWorks Shopper reference implementation, we wanted to display design time data in 

order to support the designer-developer workflow. 

Sample data can be displayed at design time by declaring it in XAML by using the various data 

attributes from the designer namespace. This namespace is typically declared with a d: prefix, as 

shown in the following code example. 

XAML: AdventureWorks.Shopper\Views\HubPage.xaml 

xmlns:d= "http://schemas.microsoft.com/expression/blend/2008"  

Attributes with d: prefixes are then interpreted only at design time and are ignored at run time. 

XAML: AdventureWorks.Shopper\Views\HubPage.xaml 

d:DataContext= "{d:DesignInstance designViewModels:HubPageDesignViewModel,  

                IsDesignTimeCreatable=True}"  

The d:DesignInstance attribute indicates that the design time source is a designer created instance 

based on the HubPageDesignViewModel type. The IsDesignTimeCreateable setting indicates that 

the designer will instantiate that type directly, which is necessary to display the sample data 

generated by the type constructor. 

For more info see Data binding overview. 

Supporting multiple view states  

The AdventureWorks Shopper reference implementation was designed to be viewed full-screen in 

landscape orientation. Windows Store apps must adapt to different application view states, 

http://msdn.microsoft.com/en-us/library/windows/apps/xx130641.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx


72 

 

including both landscape and portrait orientations. AdventureWorks Shopper supports 

DefaultLayout (landscape full screen), PortraitLayout, and MinimalLayout view states. 

AdventureWorks Shopper uses the VisualState class to specify changes to the visual display to 

support each layout. The VisualStateManager class, used by the VisualStateAwarePage class, 

manages state and the logic for transitioning between states for controls. For example, here is the 

XAML specification of the layout changes for the PortraitLayout view state on the hub page. 

XAML: AdventureWorks.Shopper\Views\HubPage.xaml 

<VisualState x:Name=" PortraitLayout ">  

    <Storyboard > 

        <ObjectAnimationUsingKeyFrames  Storyboard.TargetName =" itemsGridView "  

                                       Storyboard.TargetProperty =" Padding ">  

            <DiscreteObjectKeyFrame  KeyTime=" 0"  

                                    Value =" 40,0,0,30 " />  

        </ ObjectAnimationUsingKeyFrames > 

        <ObjectAnimationUsingKeyFrames  Storyboard.TargetName =" semanticZoom"  

                                       Storyboard.TargetProperty =" CanChangeViews">  

            <DiscreteObjectKeyFrame  KeyTime=" 0"  

                                    Value =" false " />  

        </ ObjectAnimationUsingKeyFrames > 

        <ObjectAnimationUsingKeyFrames  Storyboard.TargetName =" semanticZoom"  

            Storyboard.TargetProperty=" IsZoomOutButtonEnabled ">  

            <DiscreteObjectKeyFrame  KeyTime=" 0"  

                                    Value =" false " />  

        </ ObjectAnimationUsingKeyFrames > 

        <ObjectAnimationUsingKeyFrames  Storyboard.TargetProperty = 

                                           " Grid.ColumnDefini tions[0].Width "  

                                       Storyboard.TargetName =" titleGrid ">  

            <DiscreteObjectKeyFrame  KeyTime=" 0" Value =" 40" />  

        </ ObjectAnimationUsingKeyFrames > 

        <ObjectAnimationUsingKeyFrames  Storyboard.TargetPropert y= 

                                           " (views:SearchUserControl.IsCompact) "  

                                       Storyboard.TargetName =" searchUserControl ">  

            <DiscreteObjectKeyFrame  KeyTime=" 0">  

                <DiscreteObjectKeyFrame.V alue > 

                    <x:Boolean >True</ x:Boolean > 

                </ DiscreteObjectKeyFrame.Value > 

            </ DiscreteObjectKeyFrame > 

        </ ObjectAnimationUsingKeyFrames > 

    </ Storyboard > 

</ VisualState > 

We directly update individual properties for XAML elements, in order to specify changes to the visual 

display. For instance, here the Storyboard specifies that the Padding property of the GridView 

control named itemsGridView will change to a value of "40,0,0,30" when the view state changes to 

portrait. However, you could update the Style property when you need to update multiple 

properties or when there is a defined style that does what you want. Although styles enable you to 

control multiple properties and also provide a consistent appearance throughout your app, 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.media.animation.storyboard.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.control.padding.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.style.aspx


73 

 

providing too many can make your app difficult to maintain. Therefore, only use styles when it 

makes sense to do so. For more info about styling controls, see Quickstart: styling controls. 

Tip  When you develop an app in Visual Studio, you can use the Windows Simulator debugger to test 

layouts. To do this, press F5 and use the debugger tool bar to debug with the Windows Simulator. 

You can also use Blend to define and test layouts. 

For more info see Part 7: Adapting to different layouts. 

Creating a custom GridView control that responds to layout changes  

Many of the pages in the AdventureWorks Shopper reference implementation use the 

AutoRotatingGridView custom control, which is a view state detecting GridView control created for 

the app. When, for example, the view state changes from DefaultLayout to PortraitLayout the items 

displayed by the control will be automatically rearranged to use an appropriate layout for the view 

state. The advantage of this approach is that only one control is required to handle all the view 

states, rather than having to define multiple controls to handle the different view states.  

In order to take advantage of the functionality provided by this control you must specify additional 

properties on your AutoRotatingGridView instance, such as the PortraitItemsPanel and 

MinimalItemTemplate properties. These additional properties are defined in the 

AutoRotatingGridView class, and an example of their use is shown in the following code example. 

XAML 

<awcontrols: AutoRotatingGridView  x:Name=" ShoppingCartItemsGridView "  

                                 x:Uid =" ShoppingCartItemsGridView "  

                                 AutomationProperties.AutomationId = 

                                     " Shoppi ngCartItemsGridView "  

                                SelectionMode =" Single "  

                                Width =" Auto "  

                                Grid.Row =" 2"  

                                Grid.Column =" 1"  

                                Grid.RowSpan=" 2"  

                                VerticalAlignment =" Top"  

                                ItemsSource =" {Binding ShoppingCartItemViewModels} "  

                                SelectedItem =" {Binding SelectedItem, Mode=TwoWay} "  

                                ItemTemplate =" {StaticResource  

                                             ShoppingCartItemTemplate} "  

                                MinimalItemTemplate = 

                                    " {StaticResource  

                                    ShoppingCartItemTemplateMinimal} "  

                                Margin =" 0,0,0,0 " > 

    <awcontrols:AutoRotatingGridView.ItemsPanel > 

        <ItemsPanelTemplate > 

            <WrapGrid  Orientation =" Vertical "  

                      ItemWidth =" 400"  />  

        </ ItemsPanelTemplate > 

    </ awcontrols:AutoRotatingGridView.ItemsPanel > 

http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465045.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx


74 

 

    <awcontrols:AutoRotatingGridView.PortraitItemsPanel > 

        <ItemsPanelTemplate > 

            <WrapGrid  Orientation =" Horizontal "  

                      It emWidth=" 400"  />  

        </ ItemsPanelTemplate > 

    </ awcontrols:AutoRotatingGridView.PortraitItemsPanel > 

    <awcontrols:AutoRotatingGridView.MinimalItemsPanel > 

        <ItemsPanelTemplate > 

            <StackPanel  HorizontalAlignment =" Left "  />  

        </ ItemsPanelTemplate > 

    </ awcontrols:AutoRotatingGridView.MinimalItemsPanel > 

    <Style TargetType =" Control " > 

        <Setter Property =" HorizontalAlignment "  

                    Value =" Stretch "  />  

        <Setter Property =" HorizontalContentAlignment "  

                    Value =" Left "  />  

    </ Style > 

</ awcontrols:AutoRotatingGridView > 

Creating a custom GridView control that displays items at multiple sizes  

On the hub page we wanted the first product to be displayed at twice the dimensions of the other 

products, and the category page to also display the first product in each category at this larger size. 

 



75 

 

To do this we created a new class named MultipleSizedGridView that derives from the 

AutoRotatingGridView custom control. We then overrode the PrepareContainerForItemOverride 

method from the GridView class to enable the first product to span multiple rows and columns of 

the MultipleSizedGridView, as shown in the following code example. 

C#: AdventureWorks.Shopper\Controls\MultipleSizedGridView.cs 

protected o verride  void  PrepareContainerForItemOverride(DependencyObject element,  

                                                        object  item)  

{  

    base.PrepareContainerForItemOverride(element, item);  

    var dataItem = item as ProductViewModel;  

 

    if (dataItem != null && dataItem.ItemPosition == 0)  

    {  

 

        _colVal = ( int )LayoutSizes.PrimaryItem.Width;  

        _rowVal = ( int )LayoutSizes.PrimaryItem.Height;  

 

    }  

    else  

    {  

        _colVal = ( int )LayoutSizes.SecondaryItem.Width;  

        _rowVal = ( int )LayoutSizes.SecondaryItem.Height;  

 

    }  

 

    var uiElement = element as UIElement;  

    VariableSizedWrapGrid.SetRowSpan(uiElement, _rowVal);  

    VariableSizedWrapGrid.SetColumnSpan(uiElement, _colVal);  

}  

The PrepareContainerForItemOverride method gets the first item in the MultipleSizedGridView and 

sets it to span two rows and two columns, with subsequent items occupying one row and one 

column. The static LayoutSizes class simply defines two Size objects that specify the number of rows 

and columns to span for the first item, and subsequent items in the MultipleSizedGridView, 

respectively. 

C#: AdventureWorks.Shopper\Controls\MultipleSizedGridView.cs 

public  static  class  LayoutSizes  

{  

    public  static  Size PrimaryItem  

    {  

        get  { return  new Size(2, 2); }  

    }  

    public  static  Size SecondaryItem  

    {  

        get { return  new Size(1, 1); }  

    }  

}  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.size.aspx


76 

 

Styling controls  

AdventureWorks Shopper's appearance was customized by styling and templating the controls used 

in the app. Styles enable you to set control properties and reuse those settings for a consistent 

appearance across multiple controls. Styles are defined in XAML either inline for a control, or as a 

reusable resource. Resources can be defined at the page level, app level, or in a separate resource 

dictionary. A resource dictionary can be shared across apps, and an app can use multiple resource 

dictionaries. For more info see Quickstart: Styling controls. 

The structure and appearance of a control can be customized by defining a new ControlTemplate for 

the control. Templating a control can be used to avoid having to write a custom control. For more 

information, see Quickstart: Control templates. 

Enabling page localiza tion  

Preparing for international markets can help you reach more users. Globalizing your app provides 

guidelines, checklists, and tasks to help you create a user experience that reaches more users by 

helping you to globalize and localize each page of your app. It's important to consider localization 

early on in the development process, as there are some issues that will effect user interface 

elements across various locales. Here's the tasks that we carried out to support page localization in 

the AdventureWorks Shopper reference implementation. 

¶ Separate resources for each locale. 

¶ Ensure that each piece of text that appears in the UI is defined by a string resource. 

¶ Add contextual comments to the app resource file. 

¶ Define the flow direction for all pages. 

¶ Ensure error messages are read from the resource file. 

Separate resources for each locale  

We maintain separate solution folders for each locale. For example, Strings -> en-US -> 

Resources.resw defines the strings for the en-US locale. For more info see Quickstart: Using string 

resources, and How to name resources using qualifiers. 

Ensure that each piece of text that appears in the UI is defined by a string resource  

We used the x:Uid directive to provide a unique name for the localization process to associate 

localized strings with text that appears on screen. The following example shows the XAML that 

defines the app title that appears on the hub page. 

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml 

<TextBlock x:Uid =" ShoppingCartTitle "  

           x:Name=" pageTitle "  

           Text =" Shopping  Cart "  

           Grid.Column =" 1"  

http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.controltemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465374.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758297.aspx


77 

 

           TextTrimming =" WordEllipsis "  

           Style ="{ StaticResource  PageHeaderTextStyle }" />  

For the en-US locale, we define ShoppingCartTitle.Text in the resource file as "Shopping Cart." We 

specify the .Text part so that the XAML runtime will override the Text property of the TextBlock 

control with the value from the resource file. We also use this technique to set Button content 

(ContentControl.Content). 

Add contextual comments to the app resource file  

Comments in the resource file provide contextual information that helps localizers more accurately 

translate strings. For more info see How to prepare for localization. 

Define the flow direction for all pages  

We define the Page.FlowDirection property in the string resources file to set the flow direction for 

all pages. For languages that use left-to-right reading order, such as English or German, we define 

"LeftToRight" as its value. For languages that read right-to-left, such as Arabic and Hebrew, you 

define this value as "RightToLeft". We also defined the flow direction for all app bars by defining 

TopAppBar.FlowDirection and BottomAppBar.FlowDirection in the resource file. 

Ensure error messages are read from the resource file  

It's important to localize error messages strings, including exception message strings, because these 

strings will appear to the user. The AdventureWorks Shopper reference implementation uses an 

instance of the ResourceLoaderAdapter class to retrieve error messages from the resource file for 

your locale. This class uses an instance of the ResourceLoader class to load strings from the resource 

file. When we provide an error message when an exception is thrown, we use the 

ResourceLoaderAdapter instance to read the message text. The following code example shows how 

the SubmitOrderTransactionAsync method in the CheckoutSummaryPageViewModel class uses the 

ResourceLoaderAdapter instance to retrieve error message strings from the resource file. 

C#: AdventureWorks.UILogic\ViewModels\CheckoutSummaryPageViewModel.cs 

catch (ModelValidationException mvex)  

{  

    errorMessage = string .Format(CultureInfo.CurrentCulture,  

        _resourceLoader.GetString(" GeneralServiceErrorMessage "),  

        Environment.NewLine, mvex.Message);  

}  

 

if  (! string .IsNullOrWhiteSpace(errorMessage))  

{  

    await  _alertMessageService.ShowAsync(errorMessage,  

        _resourceLoader.GetString(" ErrorProcessingOrder "));  

}  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.text.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.contentcontrol.content.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.flowdirection.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx


78 

 

This code displays an exception error message to the user, if a ModelValidationException occurs 

when submitting an order. For the en-US locale, the "GeneralServiceErrorMessage" string is defined 

as "The following error messages were received from the service: {0} {1}," and the 

"ErrorProcessingOrder" string is defined as "There was an error processing your order." Other 

locales would have messages that convey the same error message. 

Note  When creating an instance of the ResourceLoader class that uses strings that are defined in a 

class library and not in the executable project, the ResourceLoader class has to be passed a path to 

the resources in the library. The path must be specified as /project name/Resources/ (for example, 

/Microsoft.Practices.Prism.StoreApps/Strings/). 

You can test your app's localization by configuring the list of preferred languages in Control Panel. 

For more info about localizing your app and making it accessible, see How to prepare for localization, 

Guidelines for app resources, and Quickstart: Translating UI resources. 

Enabling page accessibility  

Accessibility is about making your app usable by people who have limitations that impede or prevent 

the use of conventional user interfaces. This typically means providing support for screen readers, 

implementing keyboard accessibility, and supporting high-contrast themes. 

Accessibility support for Windows Store apps written in C# comes from the integrated support for 

the Microsoft UI Automation framework that is present in the base classes and the built-in behavior 

of the class implementation for XAML control types. Each control class uses automation peers and 

automation patterns that report the control's role and content to UI automation clients. If you use 

non-standard controls you will be responsible for making the controls accessible. 

Here are the tasks that we carried out to support page accessibility in the AdventureWorks Shopper 

reference implementation: 

¶ Set the accessible name for each UI element. An accessible name is a short, descriptive text 

string that a screen reader uses to announce a UI element. For example, in AdventureWorks 

Shopper XAML controls specify AutomationProperties.AutomationId and 

AutomationProperties.Name attached properties to make the control accessible to screen 

readers. 

XAML: AdventureWorks.Shopper\Views\ ItemDetailPage.xaml 

<FlipView x:Name=" flipView "  

          AutomationProperties.AutomationId =" ItemsFlipView "  

          AutomationProperties.Name =" Item  Details "  

          TabIndex =" 1"  

          Grid.Row =" 1"  

          ItemsSource =" {Binding Items} "  

          SelectedIndex =" {Binding SelectedIndex, Mode=TwoWay} "  

          SelectedItem =" {Binding SelectedProduct, Mode=TwoWay} ">  

http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967766.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965329.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.automationid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.name.aspx


79 

 

For more info see Exposing basic information about UI elements. 

¶ Overridden the ToString method of the ShippingMethod, ProductViewModel, 

CheckoutDataViewModel, and ShoppingCartItemViewModel classes in order to support 

Windows Narrator. When instances of these classes are bound to the view they are styled 

using data templates, but Windows Narrator uses the result of the ToString overrides. 

¶ Implemented keyboard accessibility. Ensure that the tab order of controls corresponds to 

the visual order of controls, and that UI elements that can be clicked can also be invoked by 

using the keyboard. For more info see Implementing keyboard accessibility. 

¶ Visually verified the UI to ensure that the text contrast is appropriate, and that elements 

render correctly in high-contrast themes. For more info see Meeting requirements for 

accessible text and Supporting high contrast themes. 

¶ Ran accessibility tools to verify the screen reading experience. For more info see Testing 

your app for accessibility. 

¶ Ensured that the app manifest follows accessibility guidelines. For more info see Meeting 

requirements for accessible text. 

For more info see Accessibility for Windows Store apps using C#/VB/C++ and XAML. 

Navigating between pages  

Navigation within a Windows Store app can result from the user's interaction with the UI or from the 

app itself as a result of internal logic-driven state changes. Navigation usually involves moving from 

one page to another page in the app. In some cases, the app may implement complex logic to 

programmatically control navigation to ensure that certain business requirements are enforced. For 

example, the app may not allow the user to navigate away from a page without first ensuring that 

the entered data is correct. 

The AdventureWorks Shopper reference implementation typically triggers navigation requests from 

user interaction in the views. These requests could be to navigate to a particular view or navigate 

back to the previous view. In some scenarios, for example if the app needs to navigate to a new view 

when a command completes, the view model will need to send a message to the view. In other 

scenarios, you might want to trigger the navigation request directly from the view without involving 

the view model directly. When you're using the MVVM pattern, you want to be able to navigate 

without using any code-behind in the view, and without introducing any dependency on the view 

implementation in the view model classes. 

The INavigationAware interface, provided by the Microsoft.Practices.Prism.StoreApps library, allows 

an implementing class to participate in a navigation operation. The interface defines two methods, 

as shown in the following code example. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/hh868160.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/aa939428.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868161.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452680.aspx


80 

 

C#: Microsoft.Practices.Prism.StoreApps\ INavigationAware.cs 

public interface  I navigationAware  

{  

    void  OnNavigatedTo( object  navigationParameter, NavigationMode navigationMode,  

        Dictionary< string , object > viewModelState);  

    void  OnNavigatedFrom(Dictionary< string , object > viewModelState,  

        bool  suspending);  

}  

The OnNavigatedFrom and OnNavigatedTo methods are called during a navigation operation. In the 

view model class for the page being navigated from, its OnNavigatedFrom method is called before 

navigation takes place. The OnNavigatedFrom method allows the page to save any state before it is 

disposed of. In the view model class for the page being navigated to, its OnNavigatedTo method is 

called after navigation is complete. The OnNavigatedTo method allows the newly displayed page to 

initialize itself by loading any page state, and by using any navigation parameters passed to it. For 

example, the OnNavigatedTo method in the ItemDetailPageViewModel class accepts a product 

number as a parameter that is used to load the product information for display on the 

ItemDetailPage. 

The ViewModel base class implements the INavigationAware interface, providing virtual 

OnNavigatedFrom and OnNavigatedTo methods that save and load view model state, respectively. 

This avoids each view model class having to implement this functionality to support the suspend and 

resume process. The view model classes for each page derive from the ViewModel class. The 

OnNavigatedFrom and OnNavigatedTo methods can then be overridden in the view model class for 

the page if any additional navigation logic is required, such as processing a navigation parameter 

that has been passed to the page. 

Note  The OnNavigatedFrom and OnNavigatedTo methods in the ViewModel base class control 

loading and saving page state during navigation operations. For more info see Handling suspend, 

resume, and activation.  

Handling navigation requests  

The XAML UI framework provides a built-in navigation model that uses Frame and Page elements 

and works much like the navigation in a web browser. The Frame control hosts Pages, and has a 

navigation history that you can use to go back and forward through pages you've visited. 

Prism provides the FrameNavigationService class that allows view models to perform navigation 

operations without taking a dependency on UI types such as the Frame class. This class, which 

implements the INavigationService interface, uses the Frame instance created in the 

InitializeFrameAsync method in the MvvmAppBase class to perform the navigation request for the 

app. The MvvmAppBase class creates an instance of the FrameNavigationService class by calling the 

CreateNavigationService method, which is shown in the following code example. 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx


81 

 

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs 

private  INavigationService CreateNavigationService(IFrameFacade rootFrame,  

    ISessionStateService sessionStateService)  

{  

    var  navigationService = new FrameNavigationService(rootFrame, GetPageType,  

        sessionStateService);  

    return  navigationService;  

}  

The CreateNavigationService method creates an instance of the FrameNavigationService class, 

which takes the GetPageType delegate to implement a page type resolution strategy. This strategy 

assumes that the views that define pages are in the AdventureWorks.Shopper assembly and that the 

view names end with "Page". 

After creating the instance of the FrameNavigationService class the MvvmAppBase class calls the 

OnInitialize override in the App class to register service instances with the Unity dependency 

injection container. When view model classes are instantiated, the container will inject the 

dependencies that are required including the FrameNavigationService instance. View models can 

then invoke the Navigate method on the FrameNavigationService instance to cause the app to 

navigate to a particular view in the app or the GoBack method to return to the previous view. The 

following code example shows the Navigate method in the FrameNavigationService class. 

C#: Microsoft.Practices.Prism.StoreApps\FrameNavigationService.cs 

public  bool  Navigate( string  pageToken, object  parameter)  

{  

    Type pageType = _navigationResolver(pageToken);  

 

    if  (pageType == null )  

    {  

        var  resourceLoader = ResourceLoader.GetForCurrentView  

            (Constants.StoreAppsInfrastructureResourceMapId);  

        var  error = string .Format(CultureInfo.CurrentCulture,  

            resourceLoader.GetString  

                ( "FrameNavigationServiceUnableResolveMessage" ),  

                pageToken);  

        throw  new ArgumentException(error, "pageToken" );  

    }  

 

    // Get the page type and parameter of the last navigation to check if we  

    // are trying to navigate to the exact same page that we are currently on  

    var  lastNavigationParameter =  

        _sessionStateService.SessionState.ContainsKey(LastNavigati onParameterKey)    

        ? _sessionStateService.SessionState[LastNavigationParameterKey] : null;  

    var  lastPageTypeFullName =  

        _sessionStateService.SessionState.ContainsKey(LastNavigationPageKey) ?   

        _sessionStateService.SessionState[La stNavigationPageKey] as string :  

        string.Empty;  

 



82 

 

    if  (lastPageTypeFullName != pageType.FullName ||  

        !AreEquals(lastNavigationParameter, parameter))  

        {  

            return  _frame.Navigate(pageType, parameter);  

        }  

 

    return  false;  

}  

 

The Navigate method accepts a string parameter that represents the page to be navigated to, and a 

navigation parameter that represents the data to pass to the page being navigated to. Any data 

being passed to the page being navigated to will be received by the OnNavigatedTo method of the 

view model class for the page type. A null value is used as the navigation parameter if no data needs 

to be passed to the page being navigated to. 

Note  The FrameNavigationService class uses the Frame class to perform the navigation process. 

This includes managing the navigation history, the parameters passed in each navigation request, 

and serializing the navigation state in order to save and restore the app state when it resumes 

following termination. Therefore, any parameter passed during navigation must be supported for 

serialization by the Frame class, which limits the parameter to basic types such as string, char, 

numeric and GUID types. 

Placing the navigation logic in view model classes means that the navigation logic can be exercised 

through automated tests. In addition, the view model can then implement logic to control navigation 

to ensure that certain business rules are enforced. For instance, an app may not allow the user to 

navigate away from a page without first ensuring that the entered data is correct. 

Navigating to the hub page when AdventureWorks Shopper is activated  

When the AdventureWorks Shopper reference implementation starts up, and after the 

bootstrapping process has completed, the OnLaunchApplication method in the App class navigates 

to the app's hub page, provided that the app hasn't been launched from a secondary tile. 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx


83 

 

 

The App class derives from the MvvmAppBase class in the Microsoft.Practices.Prism.StoreApps 

library that in turn derives from the Windows.UI.Xaml.Application class and overrides the 

OnLaunched method. The OnLaunched method override calls the OnLaunchApplication method in 

the App class, which is shown in the following code example. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx


84 

 

C#: AdventureWorks.Shopper\App.xaml.cs 

protected override  Task OnLaunchApplication(LaunchActivatedEventArgs args)  

{  

    if  (args != null  && ! string .IsNullOrEmpty(args.Arguments))  

    {  

        // The app was launched from a Secondary Tile  

        // Navigate to the item's page  

        NavigationService.Navigate( "ItemDetail" , args.Arguments);  

    }  

    else  

    {  

        // Navigate to the initial page  

        NavigationService.Navigate( "Hub" , null );  

    }  

 

    Window.Current.Activate();  

    return  Task.FromResult< object >( null );  

}  

This code example shows how AdventureWorks Shopper calls the Navigate method of the 

NavigationService object to load content that is specified by the page type. 

Note  The OnLaunchApplication method returns a Task, allowing it to launch a long running 

operation. If you don't have a long running operation to launch you should return an empty Task. 

Invoking navigation using behaviors  

Navigation is usually triggered from a view by a user action. For instance, each page in the app has a 

navigation bar which contains Button controls that allow the user to navigate to the hub page and 

the shopping cart page. Rather than implement this functionality separately on each page, it is 

implemented as a user control named TopAppBarUserControl that is added to each page. The 

following code example shows the Button controls from the TopAppBarUserControl that allow the 

user to navigate to the hub page and the shopping cart page.  

XAML: AdventureWorks.Shopper\Views\TopAppBarUserControl.xaml 

<StackPanel Orientation =" Horizontal " HorizontalAlignment =" Left " Height =" 125"   

            Margin =" 0,15,0,0 ">  

    <Button  x:Name=" HomeAppBarButton" x:Uid =" HomeAppBarButton"  

        AutomationProperties.AutomationId =" HomeAppBarButton"  

        Margin =" 5,0 "  

        Style =" {StaticResource HouseStyle} "  

        Conte nt =" Home"  

        Height =" 125">  

        <Interactivity : Interaction.Behaviors > 

            <Core: EventTriggerBehavior  EventName=" Click ">  

                <Core: NavigateToPageAction     

                    TargetPage =" AdventureWorks.Shopper.Views.HubPage "/>  

            </ Core: EventTriggerBehavior > 

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx


85 

 

        </ Interactivity : Interaction.Behaviors > 

    </ Button > 

    <Button  x:Uid =" ShoppingCartAppBarButton " x:Name=" ShoppingCartAppBarButton "  

        AutomationProperties.AutomationId =" ShoppingCartAppBarButton "  

        Margin =" 0,0,5,0 "  

        Height =" 125"  

        Style =" {StaticResource CartStyle} "  

        Content =" Shopping Cart ">  

        <Interactivity : Interaction.Behaviors > 

            <Core: EventTriggerBehavior  EventName=" Click ">  

                <Core: NavigateToPageAction   

                 TargetPage =" AdventureWorks.Shopper.Views.ShoppingCartPage "/>  

            </ Core: EventTriggerBehavior > 

        </ Interactivity : Interaction.Behaviors > 

    </ Button > 

</ StackPanel > 

Note  Button controls are used in the TopAppBarUserControl rather than AppBarButton controls, 

because their default appearance is rectangular. The AppBarButton control's default appearance is 

circular instead of rectangular. 

In this scenario, navigation is triggered from the Button controls by using the EventTriggerBehavior 

and NavigateToPageAction interactions provided by the Behaviors SDK. The NavigateToPageAction 

interaction's TargetPage property specifies the page that will be navigated to. 

When you want to pass event arguments to a navigation interaction you should use the custom 

NavigateWithEventArgsToPageAction interaction, which enables the ItemClick event of the 

MultipleSizedGridView to invoke navigation to a new page, and passes a property value as a 

parameter that's specified by the action's EventArgsParameterPath property. 

XAML: AdventureWorks.Shopper\Views\HubPage.xaml 

<awcontrols:MultipleSizedGridView  x:Name=" itemsGridView "  

                                  AutomationProperties.AutomationId = 

                                      " HubPageItemGridView "  

                                  AutomationProperties.Name =" Grouped Items "  

                                  Margin =" 0,0,0,0 "  

                                  Padding =" 120,0,40,46 "  

                                  ItemsSource =" {Binding Source=  

                                      {StaticResource  groupedItemsViewSource}} "  

                                  ItemTemplate =" {StaticResource   

                                      AWShopperItemTemplate} "  

                                  MinimalItemTem plate =" {StaticResource   

                                      ProductTemplateMinimal} "  

                                  SelectionMode =" None"  

                                  ScrollViewer.IsHorizontalScrollChainingEnabled = 

                                      " False "  

                                  IsItemClickEnabled =" True "  

                                  Loaded=" itemsGridView_Loaded ">  

 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbarbutton.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn457340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.targetpage.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx


86 

 

    <interactivity:Interaction.Behaviors > 

        <core:EventTriggerBehavior  EventName=" ItemClick ">  

            <awbehaviors:Na vigateWithEventArgsToPageAction  

                 TargetPage =" AdventureWorks.Shopper.Views.ItemDetailPage "  

                 EventArgsParameterPath =" ClickedItem.ProductNumber " />   

        </ core:EventTriggerBehavior > 

    </ interactivity:Interac tion.Behaviors > 

The EventTriggerBehavior binds the ItemClick event of the MultipleSizedGridView to the 

NavigateWithEventArgsToPageAction. Therefore, when a GridViewItem is selected the 

NavigateWithEventArgsToPageAction is executed, which navigates from the HubPage to the 

ItemDetailPage, passing in the ProductNumber of the ClickedItem to the ItemDetailPage. 

For more info see Implementing behaviors to supplement the functionality of XAML elements.  

  

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx


87 

 

Using touch in a Windows Store business app using C# and XAML 

Summary 

¶ When possible, use the standard touch gestures and controls that Microsoft Windows 

provides. 

¶ Provide visual feedback when a touch interaction occurs. 

¶ Use data binding to connect standard Windows controls to the view models that implement 

the touch interaction behavior. 

Learn how to implement the tap, slide, swipe, pinch, and stretch touch interactions in a Windows 

Store business app. Data binding is used to connect standard Windows controls that use touch 

gestures to the view models that implement those gestures. 

You will learn  

¶ How the Windows touch language was used in AdventureWorks Shopper. 

Applies to  

¶ Windows Runtime for Windows 8.1 

¶ C# 

¶ Extensible Application Markup Language (XAML) 

Making key decisions  

Touch interactions in Windows use physical interactions to emulate the direct manipulation of UI 

elements and provide a more natural, real-world experience when interacting with those elements 

on the screen. The following list summarizes the decisions to make when implementing touch 

interactions in your app: 

¶ Does the Windows touch language provide the experience your app requires? 

¶ What size should your touch targets be? 

¶ When displaying a list of items, do the touch targets for each item need to be identically 

sized? 

¶ Should you provide feedback to touch interactions? 

¶ Should touch interactions be reversible? 

¶ How long should a touch interaction last? 

¶ When should you use static gestures versus manipulation gestures? 

¶ Do you need to design and implement a custom interaction? 

o Does the custom interaction require specific hardware support such as a minimum 

number of touch points? 

o How will the custom interaction be provided on a non-touch device? 



88 

 

Windows provides a concise set of touch interactions that are used throughout the system. Applying 

this language consistently makes your app feel familiar to what users already know, increasing user 

confidence by making your app easier to learn and use. Most apps will not require touch interactions 

that are not part of the Windows touch language. For more info see Touch interaction design. 

There are no definitive recommendations for how large a touch target should be or where it should 

be placed within your app. However, there are some guidelines that should be followed. The size 

and target area of an object depend on various factors, including the user experience scenarios and 

interaction context. They should be large enough to support direct manipulation and provide rich 

touch interaction data. It is acceptable in some user experience scenarios for touch targets in a 

collection of items to be different sizes. For instance, when displaying a collection of products you 

could choose to display some products at a larger size than the majority of the collection, in order to 

draw attention to specific products. Touch targets should react by changing color, changing size, or 

by moving. Non-moving elements should return to their default state when the user slides or lifts 

their finger off the element. In addition, touch interactions should be reversible. You can make your 

app safe to explore using touch by providing visual feedback to indicate what will happen when the 

user lifts their finger. For more info see Guidelines for targeting and Guidelines for visual feedback. 

Touch interactions that require compound or custom gestures need to be performed within a 

certain amount of time. Try to avoid timed interactions like these because they can often be 

triggered accidentally and can be difficult to time correctly. For more info see Responding to user 

interaction. 

Static gestures events are triggered after an interaction is complete and are used to handle single-

finger interactions such as tapping. Manipulation gesture events indicate an ongoing interaction and 

are used for dynamic multi-touch interactions such as pinching and stretching, and interactions that 

use inertia and velocity data such as panning. This data is then used to determine the manipulation 

and perform the interaction. Manipulation gesture events start firing when the user touches the 

element and continue until the user lifts their finger or the manipulation is cancelled. For more info 

see Gestures, manipulations, and interactions. 

Only create a custom interaction and if there is a clear, well-defined requirement and no interaction 

from the Windows touch language can support your scenario. If an existing interaction provides the 

experience your app requires, adapt your app to support that interaction. If you do need to design 

and implement a custom interaction you will need to consider your interaction experience. If the 

interaction depends on items such as the number of touch points, velocity, and inertia, ensure that 

these constraints and dependencies are consistent and discoverable. For example, how users 

interpret speed can directly affect the functionality of your app and the users satisfaction with the 

experience. In addition, you will also have to design and implement an equivalent version of the 

interaction for non-touch devices. For more info see Responding to user interaction. 

Important  To avoid confusing users, do not create custom interactions that duplicate or redefine 

existing, standard interactions. 

http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465342.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj883700.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx


89 

 

Touch in AdventureWorks Shopper  

As previously described in Designing the UX, touch is more than simply an alternative to using a 

mouse. We wanted to make touch an integrated part of the app because touch can add a personal 

connection between the user and the app. Touch is also a natural way to enable users to browse and 

select products. In addition, we use Semantic Zoom to highlight how levels of related complexity can 

easily be navigated. With Semantic Zoom users can easily visualize high level content such as 

categories, and then zoom into those categories to view category items. 

The AdventureWorks Shopper reference implementation uses the Windows touch language. We use 

the standard touch interactions that Windows provides for these reasons: 

¶ The Windows Runtime provides an easy way to work with them. 

¶ We don't want to confuse users by creating custom interactions. 

¶ We want users to use the interactions that they already know to explore the app, and not 

need to learn new interactions. 

We also wanted AdventureWorks Shopper to be intuitive for users who use a mouse or similar 

pointing device. The built-in controls work as well with a mouse or other pointing device as they do 

with touch. So when you design for touch, you also get mouse and pen functionality. For example, 

you can use the left mouse button to invoke commands. In addition, mouse and keyboard 

equivalents are provided for many commands. For example, you can use the right mouse button to 

activate the app bar, and holding the Ctrl key down while scrolling the mouse wheel controls 

Semantic Zoom interaction. For more info see Guidelines for common user interactions. 

The document Touch interaction design explains the Windows touch language. The following 

sections describe how we applied the Windows touch language in AdventureWorks Shopper. 

Tap for primary action  

Tapping an element invokes its primary action. For example, on the GroupDetailPage, you tap on a 

product to navigate to the ItemDetailPage. The following diagram shows an example of the tap for 

primary action gesture in the AdventureWorks Shopper reference implementation. 

http://msdn.microsoft.com/en-us/library/windows/apps/jj883702.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx


90 

 

 

Products are displayed on the GroupDetailPage in the AutoRotatingGridView custom control. This 

control displays a collection of items in a view state aware grid. This control is an ItemsControl, so it 

can contain a collection of items of any type. A benefit of using this control is that it derives from the 

GridView control that has touch capabilities built in. 

To populate the AutoRotatingGridView custom control you can add objects directly to its Items 

collection or bind its ItemsSource property to a collection of data items. When you add items to a 

GridView-derived control they are automatically placed in a GridViewItem container that can be 

styled to change how an item is displayed. 

  

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx


91 

 

XAML: AdventureWorks.Shopper\Views\GroupDetailPage.xaml 

<awcontrols:AutoRotatingGridView  

          Grid.Row =" 1"  

          x:Name=" itemsGridView "  

          AutomationProperties.AutomationId =" ItemsGridView "  

          AutomationProperties.Name =" Items In Category "  

          TabIndex =" 1"  

          Margin =" 0,0,0,0 "  

          Padding =" 120,0,30,50 "  

          ItemsSource ="{ Binding Items }"  

          ItemTemplate ="{ StaticResource ProductTemplate }"  

          MinimalItemTemplate ="{ StaticResource ProductTem plateMinimal }"  

          SelectionMode =" None"  

          IsItemClickEnabled =" True "  

          Loaded=" itemsGridView_Loaded ">  

    <interactivity:Interaction.Behaviors > 

        <core:EventTriggerBehavior  EventName=" ItemClick ">  

            <awbehaviors:NavigateWithEventArgsToPageAction         

                TargetPage =" AdventureWorks.Shopper.Views.ItemDetailPage "   

                EventArgsParameterPath =" ClickedItem.ProductNumber "/>  

        </ core:EventTriggerBehavior > 

    </ interactivity:In teraction.Behaviors > 

    <awcontrols:AutoRotatingGridView.ItemsPanel > 

        <ItemsPanelTemplate > 

            <WrapGrid  Orientation =" Vertical " />  

        </ ItemsPanelTemplate > 

    </ awcontrols:AutoRotatingGridView.ItemsPanel > 

    <awcontrols:AutoRotatingG ridView.PortraitItemsPanel > 

        <ItemsPanelTemplate > 

            <WrapGrid Orientation =" Horizontal "/>  

        </ ItemsPanelTemplate > 

    </ awcontrols:AutoRotatingGridView.PortraitItemsPanel > 

    <awcontrols:AutoRotatingGridView.MinimalItemsPanel > 

        <ItemsPanelTemplate > 

            <StackPanel HorizontalAlignment =" Stretch " Margin =" 0,0,5,0 "/>  

        </ ItemsPanelTemplate > 

    </ awcontrols:AutoRotatingGridView.MinimalItemsPanel > 

    <awcontrols:AutoRotatingGridView.ItemContainerStyle > 

        <Style TargetType =" Control ">  

            <Setter Property =" HorizontalContentAlignment " Value =" Stretch " />  

            <Setter Property =" Padding " Value =" 5,5,5,5 "/>  

        </ Style > 

    </ awcontrols:AutoRotatingGridView.ItemContainerStyle > 

</ awcontrols:AutoRotating GridView > 

The ItemsSource property specifies that the AutoRotatingGridView will bind to the Items property 

of the GroupDetailPageViewModel class. The Items property is initialized to a collection of type 

ProductViewModel when the GroupDetailPage is navigated to. 



92 

 

The appearance of individual items in the AutoRotatingGridView is defined by the ItemTemplate 

property. A DataTemplate is assigned to the ItemTemplate property that specifies that each item in 

the AutoRotatingGridView will display the product subtitle, image, and description. 

When a user clicks an item in the AutoRotatingGridView the app navigates to the ItemDetailPage. 

This behavior is enabled by setting the SelectionMode property to None, setting the 

IsItemClickEnabled property to true, and handling the ItemClick event. The EventTriggerBehavior 

binds the ItemClick event of the AutoRotatingGridView to the 

NavigateWithEventArgsToPageAction. So when a GridViewItem is selected the 

NavigateWithEventArgsToPageAction is executed, which navigates from the GroupDetailPage to 

the ItemDetailPage, passing in the ProductNumber of the ClickedItem to the ItemDetailPage. For 

more info about behaviors see Implementing behaviors to supplement the functionality of XAML 

elements. 

For more info see Adding ListView and GridView controls. For more info about the 

AutoRotatingGridView custom control see Creating a custom GridView control that responds to 

layout changes. 

Slide to pan 

The slide gesture is primarily used for panning interactions. Panning is a technique for navigating 

short distances over small sets of content within a single view. Panning is only necessary when the 

amount of content in the view causes the content area to overflow the viewable area. For more info 

see Guidelines for panning. One of the uses of the slide gesture in the AdventureWorks Shopper 

reference implementation is to pan among products in a category. For example, when you browse to 

a product, you can use the slide gesture to navigate to the previous or next product in the 

subcategory. The following diagram shows an example of the slide to pan gesture in 

AdventureWorks Shopper. 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.datatemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.selectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewselectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isitemclickenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780618.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465310.aspx


93 

 

 

In AdventureWorks Shopper this gesture is implemented by the FlipView control. The FlipView 

control displays a collection of items, and lets you flip through them one at a time. The FlipView 

control is derived from the ItemsControl class, like the GridView control, and so it shares many of 

the same features. A benefit of using the FlipView control is that it has touch capabilities built in, 

removing the need for additional code. 

To populate a FlipView you can add objects directly to its Items collection or bind its ItemsSource 

property to a collection of data items. When you add items to a FlipView they are automatically 

placed in a FlipViewItem container that can be styled to change how an item is displayed. 

 

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipviewitem.aspx















































































































































































































































































































