
Author: Computational Ecology and Environmental Science Group, Microsoft Research
Last Saved: 7/15/2014 1:47:00 PM

Mataki Documentation v1

Mataki is an open, reconfigurable, flexible, wirelessly-enabled, low-cost GPS tracking

technology with wireless communication. Our aim is to keep Mataki low-cost and readily

reprogrammable to allow researchers to explore novel tracking approaches by developing

their own firmware and applications. We already provide firmware for tracking and base-

station applications with a flexible set of parameters that should allow researchers to

apply the devices in a number of tracking scenarios without any modifications or new

development.

This manual sets out the necessary steps to connect and communicate with the devices,

and to download logged data. It also described how to modify tracking parameters (e.g.

update rate, sleep duration) and radio parameters (how often to attempt base station

contact) to be set and updated, and outlines the process of base station/tracker

communication.

 2

Table of Contents
1. Physically connecting devices ... 4

1.1 Connecting to Support/Communication boards. ... 5
1.2 - How do I determine the correct COM port? .. 6

2. Setting up Putty.exe for communication .. 7

3. Communicating with the devices ... 11

4. Downloading Logged Data .. 13

5. Converting the downloaded data ... 15

6. Command Reference .. 16

General Commands .. 16
Debug commands ... 16
GPS Tracker Firmware specific commands ... 16
Additional Base Station Firmware Commands ... 17

7. Reprogramming the devices .. 18

7.1. Firmware source code .. 18
7.2. Building firmware .. 18

7.2.1. Installing Python 2.7.3 .. 18
7.2.2. Installing Scons 2.2.0 .. 18

7.3. Reprogramming firmware ... 19
7.3.1. Reprogramming hardware settings... 20
7.3.2. Reprogramming software settings .. 20
7.3.3. Loading and programming .. 20

8. Default Commands - Explanation and Examples .. 23

ID ... 23
APP ... 23
BATT ... 23
FORMAT ... 24
READ .. 24
LOGSIZE .. 24
CHANNEL ... 24
TIME.. 24
UPTIME .. 25
TIMERS .. 25
RR ... 25
RESET .. 26
ABORT .. 26
HELP ... 26

9. Tracking Device Commands and Configuration .. 27

SETGPS with examples.. 27
SETRADIO with examples .. 27
GPS... 29
SUPPRESS .. 29
BASE... 29

 3

F_RESET .. 30
SCPREQ ... 30
SHOWGAPS ... 30
FILLGAPS ... 31
REQUEST ... 31

10. Base Station Commands and Configuration ... 32

10.1. An overview of the automatic download process ... 32
10.2. Commands ... 34

SHOWGAPS ... 34
FILLGAPS ... 35
REQUEST ... 35
F_RESET .. 35
FORCEDL ... 36

11. Remote Commands (TBC) .. Error! Bookmark not defined.

 4

1. Physically connecting devices

There are two main ways to communicate and configure devices. The first, uses the larger
Support board (fig 1a), the second the smaller Communication/charger board (fig 1b). The
support board supports communication, charging and, with a programming cable, re-flashing
devices (to update their firmware). The smaller board just allows for charging and
communication.

Both the Support and Communication boards should be connected to a PC via a USB to
Serial FTDI cable (Black cable supplied by Farnell part number 1329311*).
Necessary Software:

 Putty.exe† (terminal emulation software for communicating with devices over the
serial port)

 USB-Serial drivers from FTDI‡ (drivers for the USB-Serial cables, although these may
now be included in Windows 7/8)

* http://uk.farnell.com/ftdi/ttl-232r-3v3/cable-usb-to-ttl-level-seri-converter/dp/1329311
† http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
‡ http://www.ftdichip.com/Drivers/CDM/CDM%202.08.24%20WHQL%20Certified.zip

Figure 1 – Support (a) and Communications/charger board (b)

a b

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://www.ftdichip.com/Drivers/CDM/CDM%202.08.24%20WHQL%20Certified.zip

 5

1.1 Connecting to Support/Communication boards.

Devices can be connected to the Support board by sliding the PCB edge connector into the
socket on the board (Figure 2, left). Take care to ensure that the battery connector wire on
the rear of the device does not get pinched during insertion.

Connecting to the Communication/charger board uses the small 4-pin connector (Figure 2,
right), the flatter contactless side of the connector orients to the top of the device (the side
with the GPS antenna).

Figure 2 – Connecting to the Support board (left) and the Communication/charger board
(right). Both boards can charge a battery connected to the device. The Support board also

enables firmware reprogramming and other debugging measurements

 6

1.2 - How do I determine the correct COM port?

In Windows, open Device Manager (see grey box below). In Device Manager, expand (click
the + icon) the section titled Ports (COM & LPT). Here, for each connected USB-Serial
cable/device, you should see a line named ‘USB Serial Port (COMX), where X is the
corresponding COM port number for that device (e.g. COM8 is port 8 – see Error! Reference
source not found.).

Windows XP:
a) From the start menu, select ‘Run...’ and type devmgmt.msc in the Open box and click OK.

b) Alternatively, right click on ‘My Computer’ select ‘Properties’, then the ‘Hardware’ tab, and
then click ‘Device Manager’

Windows Vista:

a) Click on the start button and type devmgmt.msc in the Search box and press the enter

key.
b) Alternatively, go to the Start Menu, then the Control Panel, click on the ‘Sytem and

Maintainance’ link, in the Systems and Maintainance’ window click on the device manager
link near the bottom.

a. If you’re using the Classic view of the control panel, you may not see a this link, in
this case you should simply be able to double-click on the Device Manager icon in
the control panel.

Windows 7:

a) Click on the Start button, and enter devmgmt.msc in the Search box and press the enter

key.
b) Alternatively, go to the Start Menu, then the Control Panel, click on the ‘System and

Security’ link, in the Systems and Maintenance’ window click on the device manager link
near the bottom.

a. If you’re using the Large icons or Small icons view of the control panel, you may

not see this link, in this case you should simply be able to double-click on the
Device Manager icon in the control panel.

Figure 3 – Device Manager, showing a connected USB-Serial cable/device on COM8

 7

2. Setting up Putty.exe for communication

To communicate with devices using the boards, terminal emulation software with logging
support is needed. Putty§ is a freely available terminal emulation software application for
Windows that supports serial connections and logging. Putty can be downloaded at
(http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe) and runs simply by double clicking on
the downloaded file. In order to enable logging, and to make the communication process
more straightforward, a number of settings should be enabled within Putty. These settings
can be selected once, and can then be saved for future use.

1) Double click on putty.exe
2) Under ‘Connection Type’ select ‘Serial’
3) In the ‘Serial line’ box above, enter the COM port that your Support/Communication

board is connected to (see ‘how do I determine the COM port’ below). For example if
your device is connected to port 10, enter COM10

4) Set the ‘Speed’ (baud rate) to 115200
5) Click on ‘Logging’ in the left menu, under ‘Session’ (see Figure 4)

a. Select ‘All session output’ under ‘Session logging’
b. Enter a filename where the session will be logged. A good option here is to

use the support control characters for time and date, e.g. entering
putty_&Y&M&D_&T.log would create a file with the date and time that logging
started whenever a new session began (resulting, for example, in a file called
putty_20120821_134245.log). By default, the destination of the created log
files is the same directory where the file putty.exe is located. Other
destination directory can be selected by pressing the Browse button in front
of the Log file name input box.

6) Click on ‘Terminal’ in the left menu (see Figure 5)
a. Select ‘Force on’ in both cases under ‘Line discipline options’, these will

enable you to see the commands you type in the terminal, making it easier to
identify any potential errors.

7) Click on ‘Session’ in the left menu
a. Enter a name for your new settings in the box labeled ‘Saved Sessions’

i. Chose a meaningful name, such as COM10_115200 to enable you to
remember which port this saves session references.

b. Click ‘Save’ to save these settings

Once these settings have been saved, you can double click on the name of the saved
sessions in the larger box on the ‘Session’ page (Figure 6). If either Support or
Communication board is connected to the appropriate port, you should see a black
screen appear where communication to/from the device can occur. If neither Support nor
Communication board is connected, an error message will appear in small window titles
‘Putty Error’ stating “Unable to open connection to COM? Unable to open serial port.

§ http://www.chiark.greenend.org.uk/~sgtatham/putty/

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

 8

 Figure 4 - Logging panel in putty.exe. The selected setting (‘All session output’)

causes Putty to create a log file whenever a session is started (using the
filename pattern shown). Files are created in the same directory as Putty

 9

 Figure 5 – Terminal panel in putty.exe, here the selected settings (Local echo:
force on, Local line editing: force on) enable the user to see and edit the

commands they type

 10

 Figure 6 - Saved sessions panel in putty.exe. Each saved session appears in

the larger lower area and can be double clicked on to start a session with those
settings. Here sessions are given informative names including the used COM

port and baud rate

 11

3. Communicating with the devices

Once you have a connection to the device established with putty.exe, you should see a blank
putty window (Figure 7). If needed, you can test the logging capability by typing some text
and pressing enter, the log file should appear in the same directory as putty.exe and should
contain the entered text in addition to a header line with the start time and data of the logging
(Figure 8). Files should not be moved or renamed while logging is occurring, but the operating
system should prevent this.

Once communication is established and logging has begun, you can connect a device to the
Support or Communication board. The only miniature switch on the device (SW1) is used to
power up the device through either the power connection supplied by the Support board
(when SW1 is on ON mode), or otherwise, the power supplied by the device’s battery
connaction (SW1 on OFF mode).
When powered up, the devices will display a number of initialization and status messages on
the screen (Error! Reference source not found.). Once the initialization is complete, you
can enter commands. As described in the command sections below, entering the ‘abort’
command here allows you to prevent the device from entering the tracking regime (or the
automatic base station mode), thus allowing you to interact with the device until you decide to
reset it.

In general, commands modify settings on the local device and are recorded in the device log.
Some more advanced commands (such as request, forcedl effect remote devices, when
communication is available). Once a command is entered, the device should respond to
acknowledge that the command has been executed. For example, entering:

app

should return the result of the command:

[69:app] ‘Tracker’ 1.2 compiled 00:11:05.0000 28-08-2012

Here, the text in square bracket [69:app], contains the ID of the responding device, and the
command the responds relates to. Alternatively, entering

abort

displays the message OK to indicate that the command was successful.

[54:abort] OK

See the sections below for a command reference, configuration of trackers, base stations
communication and downloading logs.

Figure 7 – Blank putty window, ready to communicate with devices

 12

Figure 8 – Putty window with test text entered and logged to a file in the same directory as putty.exe.
The file contains a header line with the date and time that logging started. The file will be updated as

communication continues, but to see the changes in notepad (for example), you would need to reopen

the file. Files should not be moved or renamed while logging is occurring.

 13

[54:L] App: 'Tracker' V: 1.2 for MSP430 with AVIAN5 [00:00:00.0045 01-01-2010]
[54:L] Compiled: 00:11:05.0000 28-08-2012 UTC [00:00:00.0159 01-01-2010]
[54:L] NodeID: 54 [00:00:00.0229 01-01-2010]
 [54:L] SMCLK: 3964928 Hz (from 1114112 Hz in 854 steps) [Aimed: 4000000 (122),
Min: 3960000, Max: 4040000 | dco: 5 mod: 22 rsel: 10] [00:00:00.0541 01-01-2010]
[54:D] CMA3000: I2C is disabled [00:00:00.0662 01-01-2010]
[54:D] CC1101: PartNumber 0, Version 4 [00:00:00.0759 01-01-2010]
[54:D] Computing RF Configuration [00:00:00.0847 01-01-2010]
[54:D] CC.Carrier: 867999936 Hz [00:00:01.0331 01-01-2010]
[54:D] CC.BaudRate: 249939 Baud [00:00:01.0431 01-01-2010]
[54:D] CC.Bandwith: 325000 Hz [00:00:01.0531 01-01-2010]
[54:D] CC.ChannelSpace: 325317 Hz [00:00:01.0633 01-01-2010]
[54:D] CC.Channel: 0 [00:00:01.0713 01-01-2010]
[54:D] CCxxx0_FREQ2 0x21 [00:00:01.0797 01-01-2010]
[54:D] CCxxx0_FREQ1 0x62 [00:00:01.0881 01-01-2010]
[54:D] CCxxx0_FREQ0 0x76 [00:00:01.0964 01-01-2010]
[54:D] CCxxx0_MDMCFG4 0x5D [00:00:01.1050 01-01-2010]
[54:D] CCxxx0_MDMCFG3 0x3B [00:00:01.1135 01-01-2010]
[54:D] CCxxx0_MDMCFG1 0x23 [00:00:01.1221 01-01-2010]
[54:D] CCxxx0_MDMCFG0 0x9A [00:00:01.1307 01-01-2010]
[54:L] CC1101 is in RX [00:00:01.1400 01-01-2010]
[54:D] Network: Registered handler for protocol 1 [00:00:01.1502 01-01-2010]
[54:D] Network: Registered handler for protocol 2 [00:00:01.1603 01-01-2010]
[54:D] Network: Registered handler for protocol 3 [00:00:01.1704 01-01-2010]
[54:L] System init completed. [00:00:01.1782 01-01-2010]
[54:L] Init sensors... [00:00:01.1854 01-01-2010]
[54:D] S25FL128P Init... [00:00:01.1937 01-01-2010]
[54:D] Capacity: 16777216 bytes [00:00:01.2044 01-01-2010]
[54:L] S25FL128P Init: OK [00:00:01.2119 01-01-2010]
[54:D] LogEngine: total slots 466032 (log entry size 36) [00:00:01.2240 01-01-
2010]
[54:D] LogEngine: slots used 473 (log entry size 36) [00:00:01.2916 01-01-2010]
[54:L] LogEngine Init: OK [00:00:01.2991 01-01-2010]
[54:D] Network: Registered handler for protocol 208 [00:00:01.3104 01-01-2010]
[54:D] Network: Registered handler for protocol 10 [00:00:01.3206 01-01-2010]
[54:D] Network: Registered handler for protocol 11 [00:00:01.3309 01-01-2010]
[54:D] Network: Registered handler for protocol 12 [00:00:01.3412 01-01-2010]
[54:D] Network: Registered handler for protocol 13 [00:00:01.3515 01-01-2010]
[54:L] LogEngine.Sync Init: OK [00:00:01.3593 01-01-2010]
[54:D] SCP Enable... [00:00:01.4152 01-01-2010]
[54:D] SCP ASIC revision number: 3 [00:00:01.4405 01-01-2010]
[54:D] SCP operation register: 0x00 [00:00:01.4497 01-01-2010]
[54:D] SCP CFG: 0x05 (0x05=17bits, 0x0D=15bits) [00:00:01.4597 01-01-2010]
[54:L] SCP Enable: OK [00:00:01.4669 01-01-2010]
[54:L] Battery: 3.77V [00:00:02.4762 01-01-2010]
[54:D] GPS Init... (up to 20 seconds) [00:00:02.4854 01-01-2010]
[54:D] GPS: Got ACK from GPS, length: 10 [00:00:08.0126 01-01-2010]
[54:D] GPS: Detected at 4800 baud. Reconfiguring to 38400... [00:00:08.0233 01-01-
2010]
[54:D] GPS: Attemping comm at 38400...attempt 0 [00:00:08.1551 01-01-2010]
[54:D] GPS: Got ACK from GPS, length: 10 [00:00:14.4720 01-01-2010]
[54:D] GPS: Detected at 38400 baud [00:00:14.4813 01-01-2010]
[54:D] GPS: NMEA Configuration..attempt 0 [00:00:14.4912 01-01-2010]
[54:D] GPS: Got ACK from GPS, length: 12 [00:00:15.0939 01-01-2010]
[54:D] GPS: NMEA configured: GGL: 0 RMC: 5 VTG 0 GGA: 1 GSA: 0 GSV: 0 GRS: 0 GST:
0 [00:00:15.1063 01-01-2010]
[54:D] GPS: Got ACK from GPS, length: 23 [00:00:15.3906 01-01-2010]
[54:D] GPS: Got ACK from GPS, length: 22 [00:00:17.5830 01-01-2010]
[54:D] GPS: Position Update Rate: 10 Hz [00:00:17.5928 01-01-2010]
[54:L] GPS Init: OK [00:00:17.6008 01-01-2010]
[54:L] Init sensors: OK [00:00:17.6082 01-01-2010]
[54:D] GPS Powered Waiting 5 seconds [00:00:17.6877 01-01-2010]
[54:D] Powering Serial line [00:00:22.6962 01-01-2010]
[54:D] Registering GPS NMEA Handler... [00:00:22.7063 01-01-2010]
[54:D] ...Registered GPS NMEA Handler. [00:00:22.7157 01-01-2010]
[54:D] Network: Registered handler for protocol 100 [00:00:22.7262 01-01-2010]
[54:D] Network: Registered handler for protocol 101 [00:00:22.7367 01-01-2010]
[54:L] Use the 'abort' command to abort the experiment! [00:00:22.7474 01-01-2010]
[54:L] App init completed. [00:00:22.7550 01-01-2010]
[54:L] UART1 RX BUFF LEN: 38 [00:00:22.7748 01-01-2010]
[54:L] UART1 RX BUFF LEN: 48 [00:00:23.1303 01-01-2010]

Figure 9 - Initialization output from device with Tracker firmware

 14

4. Downloading Logged Data

When a device is connected and communication is established (and logged) the read
command can be used to download all stored logs on the device. For example, on a device
with 47293 logs:

read

would display all the logged information on the device:

Selected range [1 - 47293]
[23:L] 1 0 0 23 6 00:01:53.1072 01-01-2010 23 \
[23:L] 2 0 0 23 6 00:01:54.7486 01-01-2010 23
 logsize
[23:L] 3 0 0 23 6 00:01:57.1984 01-01-2010 23
 setgps
[23:L] 4 0 0 23 6 00:01:58.6968 01-01-2010 23
 setradio
[23:L] 5 0 0 23 6 00:02:01.3886 01-01-2010 23 gps
6 10
[23:L] 6 0 0 23 5 00:00:01.2466 01-01-2010 11
 pw:0 rr:0 fp:0 sp:0
[23:L] 7 0 0 23 8 00:00:30.3965 01-01-2010 GPS_Off
[23:L] 8 0 0 23 2 00:00:30.4124 01-01-2010
[23:L] 9 0 0 23 8 00:00:35.5359 01-01-2010 GPS_On
[23:L] 10 0 0 23 8 00:01:40.6048 01-01-2010 GPS_On
[23:L] 11 0 0 23 8 00:01:40.6655 01-01-2010 NMEAchecksu
[23:L] 12 0 0 23 8 00:01:42.7187 01-01-2010 NMEAchecksu
[23:L] 13 0 0 23 3 00:02:11.0979 01-01-2010 GPGGA
 201426.500 5110.0154 -440.0082 1 4 3.0 141.7 OK
[23:L] 14 0 0 23 3 00:02:11.1799 01-01-2010 GPGGA
 201426.600 5110.0154 -440.0082 1 4 3.0 140.9 OK
[23:L] 15 0 0 23 3 00:02:11.2619 01-01-2010 GPGGA
 201426.700 5110.0153 -440.0079 1 4 3.0 140.2 OK
[23:L] 16 0 0 23 3 00:02:11.3437 01-01-2010 GPGGA
 201426.800 5110.0153 -440.0074 1 4 3.0 139.2 OK
[23:L] 17 0 0 23 3 00:02:11.4263 01-01-2010 GPGGA
 201426.900 5110.0152 -440.0067 1 4 3.0 138.1 OK
[23:L] 18 0 0 23 5 20:14:26.4424 16-08-2012 3
 Updated RTC from 00:02:11.4423 01-01-2010
[23:L] 19 0 0 23 3 20:14:26.5076 16-08-2012 GPGGA
 201427.000 5110.0151 -440.0069 1 4 3.0 138.0 OK
[23:L] 20 0 0 23 3 20:14:26.5895 16-08-2012 GPGGA
 201427.100 5110.0151 -440.0075 1 4 3.0 138.4 OK
[23:L] 21 0 0 23 3 20:14:26.6715 16-08-2012 GPGGA
 201427.200 5110.0151 -440.0079 1 4 3.0 138.5 OK
[23:L] 22 0 0 23 3 20:14:26.7534 16-08-2012 GPGGA
 201427.300 5110.0151 -440.0084 1 4 3.0 138.7 OK
[23:L] 23 0 0 23 3 20:14:27.0166 16-08-2012 GPGGA
 201427.400 5110.0151 -440.0090 1 4 3.0 139.2 OK
...
...
...
[23:L] 47284 0 0 23 8 00:01:41.6900 01-01-2010 GPS_Off
[23:L] 47285 0 0 23 8 00:01:41.7069 01-01-2010 GPS_Off
[23:L] 47286 0 0 23 5 00:01:44.1061 01-01-2010 11
 pw:0 rr:0 fp:0 sp:0
[23:L] 47287 0 0 23 8 00:02:13.2820 01-01-2010 GPS_Off
[23:L] 47288 0 0 23 2 00:02:13.2974 01-01-2010
[23:L] 47289 0 0 23 8 00:02:18.4219 01-01-2010 GPS_On
[23:L] 47290 0 0 23 6 00:02:20.5660 01-01-2010 23
 abort
[23:L] 47291 0 0 23 8 00:02:20.5677 01-01-2010 GPS_Off
[23:L] 47292 0 0 23 4 00:02:20.5685 01-01-2010 2327
 3.75V
[23:L] 47293 0 0 23 6 00:02:26.7828 01-01-2010 23
 read
[23:read] OK

As the session is being logged, this output will be logged to the corresponding log file. At this
point it is important to check the logfile to ensure no corruption has occurred before deleting
data from the device. Once you are happy that the data has been downloaded successfully,
and if you wish to delete the data, the device can be formatted. ***Note that data cannot be
recovered once the device is formatted.***

 15

5. Converting the downloaded data
The created logfile may be converted to the separate files for easier post-processing of
different sensor data. One tool that can help with this is available on Mataki website using the

link http://mataki.org/logfile-convertor/ . The installable file MatakiLogConvertor_Setup.exe, or

ConvertMatakiLog.dmg depending on the Operating System, once installed, creates the
folder MatakiConvertLog on the Program Files (this is based on the Windows Operating
System). This folder contains the executable file ConvertMatakiLog.exe that automatically
parses and converts the logfile to a set of spreadsheets and other file formats. All needs to be
done is selecting the logfile. The resulting converted files are compressed in zip format as
one zip file stored in the same location where the logfile is located. Figure 10 and 11 is an
example snapshots of the files created.

Figure 10 - Conversion tool generates one zip folder per each logfile

Figure 11 - Each zip folder contains spreadsheets and kml files, as well as a summary file

http://mataki.org/logfile-convertor/
http://www.mataki.org/tools/MatakiLogConvertor_Setup.exe
http://www.mataki.org/tools/ConvertMatakiLog.dmg

 16

6. Command Reference

Each of our firmware applications/device configurations uses a ‘command’ system to allow
easy configuration and control of the programmed devices. A short description of these
commands are given below. More complete description and examples are provided in
Chapters 7, 8, 9, and 10. It’s important to note that the available commands vary depending
on the specific firmware (e.g. some commands are only available in the ‘basestation’
firmware).

General Commands

 help: List the commands available on the current device/firmware.

 id: Configuration: node id

 app: Configuration: application’s metadata

 batt: Measures the battery voltage

 flashtst: Performs self test of the device.

 format: Formats the flash memory

 read: Displays log entries in specified range

 logsize: Provides the current number of stored log entries

 channel: Reconfigures the current radio channel

 time: Manage local time

 uptime: Provides the uptime of the device since the last reset

 timers: Debug command: Provides information about registered software timers.

 rr: Provides information about the reset reason of the device.

 reset: reset Forces the device to reset.

 abort: Prevent the device entering into the autonomous tracker/basestation mode.

Debug commands

 timers: Debug: Provides information about registered software timers.

 rr: Debug: Provides the recent reset reason

 reset: Resets the device

 channel: Radio: communication channel

 ccrx: Debug: reserved for firmware developers

 ccfrx: Debug: reserved for firmware developers

 ccget: Debug: reserved for firmware developers

 ccoff: Debug: reserved for firmware developers

 ccidle: Debug: reserved for firmware developers

 cc: Debug: reserved for firmware developers

 batt: Battery voltage (correct results only when GPS is enabled)

 light: Debug: reserved for firmware developers

 flashtst: Debug: reserved for firmware developers

GPS Tracker Firmware specific commands

 gps: GPS debug interface

 showgaps: Shows gaps in downloaded logs

 fillgaps: Finds gaps in downloaded logs and requests missing entries from remote

devices

 request: Requests a sequence of remote log entries

 17

 format: Formats the flash memory

 read: Displays log entries from a specified range

 logsize: Number of local log entries

 scpreq: Triggers temperature and pressure measurment

 abort: Aborts the experiment

 f_reset: Formats and resets the device

 setradio: Configures the radio experiment

 base: Brings the device to the ‘base station’ mode in the selected channel

 setgps: Configures the GPS experiment

 setacc: Configures the Accelerometer experiment

 suppress: Configures down time for the GPS (overrides setgps)

Additional Base Station Firmware Commands

 showgaps: Shows gaps in downloaded logs

 fillgaps: Finds gaps in downloaded logs and requests missing entries from remote

devices

 request: Requests a sequence of remote log entries

 scpreq: Triggers temperature and pressure measurment

 abort: Aborts the automatic base station mode

 f_reset: Formats and resets the device

 forcedl: Forces a download from a selected tracker. Restarts the base station state

machine.

 18

7. Reprogramming the devices
The open source nature of the project allows users to modify the firmware and reprogram the
processor on the device as according to their particular requirements. This chapter introduces
the tools and steps required for compiling the source code and reprogramming the device.
However, this chapter does not intend to provide description of the firmware code. Relevant
API/Firmware documentation is provided separately and can be found on Mataki website
(http://mataki.org/firmware/).

7.1. Firmware source code
A series of files that are written in C and resided in the Firmware directory comprise the
firmware for Mataki device. Relevant documentation is provided in the Documentation
subdirectory to introduce the Application configuration, commands, and data structure. It is
also explained how to create your own application based on the existing files in the
Apps\Empty subdirectory.

7.2. Building firmware
Although the classic C compiling tool can be used to compile the source code and generate
hex file, other C compiling tools may shorten this task. Amongst them is Scons software
construction tool and its requirement tool Python. The installation of these tools will be
explained in the following subsections.

7.2.1. Installing Python 2.7.3

The link http://www.python.org/getit/ points to the source of Python software where it can be
downloaded from. After Python is installed, make sure it works. You can do so by typing
'python --version' at the command line, that should show 2.7.3 or higher.

In addition, add path to the installed Python to the PATH Environment Variables (see the
snapshot in Figure 12).

Figure 12 - Add path to Python software to the Environment Variable Path. Similar task may be

repeated for other purpose, e.g. add path to Scons software in the following section

7.2.2. Installing Scons 2.2.0

The link http://www.scons.org/download.php points to the source of Scons software when it
can be downloaded from. Install SCons, for example on Windows systems type ‘python

http://www.python.org/getit/
http://www.scons.org/download.php

 19

setup.py install’ command on the command prompt when it is in the scons-x.x.x directory.
After Scons is installed, make sure it works. You can do so by typing scons at the command
line, that should result in Scons running, but not finding any files. To do this, you'll need to
make sure that the python scripts directory is on your PATH system environment variable as
well (e. g. C:\Python27\Scripts).

Then download the installer file from the link Mataki Device Build Pack (701.9 kB) on the
following web page:

http://mataki.org/make-devices/

Run the installer and let it install to the default location (should be C:\MatakiBuilder). Then, it
will create some directories in that location (mataki and mspgcc). Now, open a command
prompt and navigate to C:\MatakiBuilder\mataki\Firmware\Apps\Tracker_NewBuild and type
'scons' to build. If the build task completes with no error it will end up with the message
“scons: done building targets.” On your command prompt (see Figure 13).

Figure 13 - Scons software has built the target

7.3. Reprogramming firmware
The programming software that supports the microprocessor on the device is Olimex MSP
Programmer. The software can be found at www.olimex.com and its installation process is
fairly straight forward.

Running the software will open up the following application window shown in Figure 14.

http://mataki.org/make-devices/
http://www.olimex.com/

 20

Figure 14 - Olimex programmer software window

There are a few settings that you need to do before you could read or write firmware into the
Mataki’s processor through this software.

7.3.1. Reprogramming hardware settings
To start with, you need to connect the Support board to the USB port on your computer, then
to connect one end of the JTAG cable to another USB port of your computer and the other
end of the JTAG cable to the Support board. The snapshot in Figure 11 shows these
connections.

As it could be seen on the same snapshot in Figure 12, the Mataki board should be also
connected to the Support board. The power switch SW1 on the Support board should be set
to ‘on’ position to power up the Mataki board. Mataki board is now at program execution
status that can be checked by observing the execution messages using Putty software. It is
optional to set the Charger switch SW2 on the Support board to ‘on’ position (the same side
as the switch SW1). This will charge the battery if it is connected to the Mataki board.

7.3.2. Reprogramming software settings
On the Olimex window select the correct microcontroller target, i.e. MSP430F2618 on the
‘Device’ drop-down-menu above the screen. Also, make sure the little-endian mode is
checked by clicking on the button ‘little’ that turns it to red colour, like shown in figure 14. The
‘Port’ setting must be set on ‘USB’. It is optional, and somehow better, if you also check
‘Hardware reset’ and ‘Run’ checkboxes on the right side of the screen. Depending on the type
of programming, i.e. if it is required to program the program memory in the microcontroller, or
its data memory, the associated boxes on the ‘Operations’ area below the screen can be
checked or unchecked. In the case of reprogramming the microcontroller with the original
firmware that is left available, all ‘Operation’ boxes can be checked.

7.3.3. Loading and programming
To deploy a program into the microcontroller memory, the program should first be loaded into
the Olimex software. This is achieved in two steps;

 21

1) Depending on the type of programming, you may need to clear the memory
of the Olimex software prior to populating it with the new code that you want
to take by Olimex software and deploy. You can do so by clearing the Data
Memory and Program Memory as shown in figure 16. In the case of
reprogramming the microcontroller with the original firmware that is left
available, it is recommended that you clear the two memory areas of Olimex
every time before loading the code.

2) Load the program into the Olimex software by opening the executable code,
i.e. the file with extension name ‘.hex’. like in the snapshot in figure 17.

Figure 15 - Hardware connections before reprogramming the Mataki board

After Mataki board is powered up via the Support board, and the program code is loaded into
the Olimex software, pressing the button ‘Erase & Write & Verify & Run’ on the ‘Quick & Easy’
area below the screen will do the neat job of replacing the whole memory of the
microcontroller with the loaded program. If Putty software is running on your computer at the
same time, the immediate consequence of the deployment after it is finished, is resetting and
the new execution of the firmware.

Further checks that the new firmware is running in the device is using the App command on
the Putty software when connected to the device. The App command is introduced in the next
chapter together with the other useful commands. If you have changed the Version number of
the application on the SConstruct file in the App folder of your code, then you will see the new
version number as a result of the App command.

Of course, any of the ‘Erase’, ‘Verify’, ‘Write’, and ‘Read’ can be used individually depending
on the requirements.

 22

Figure 16 - Clear Data Memory and Program Memory before loading new program

Figure 17 - Loading new Program code into Olimex software

 23

8. Default Commands - Explanation and Examples

ID

Displays/sets the current identity of the device. For example, on a device configured as
number 69:

id

would return

[69:id] 69

This command can also be used to update/change the identity of a device. For example,
changing device number 69 to 169, and back again:

id 169
[69:id] 169
id 69
[169:id] 69

This allows the naming of the devices to be flexible, but users should be particularly cautious
not to create devices that share a common ID (causing later confusion in base-station
communication, and in the resulting recorded data). However, it may be useful to name
devices in a particular pattern to distinguish them more easily in the field.

APP

Outputs the name of currently installed firmware on the device. For example, on device
number 69, with the ‘Tracker’ firmware installed, the command

app

may return:

[69:app] ‘Tracker’ 1.2 compiled 00:11:05.0000 28-08-2012

Alternatively, on device number 66 with the ‘Base’ firmware installed, the same command
would return:

[66:app] ‘Base’ 1.2 compiled 00:11:05.0000 28-08-2012

BATT

Measures the battery voltage. For example,

batt

may return

[69:batt] 3.73V (raw: 2318)(7 ticks)

indicating that the connected battery voltage is 3.73 V. When communicating with a device
without a battery attached (powered via the support board), this may result in a reading of 0 V
or, if the charge switch is set to ON, to a higher voltage corresponding to the system power.
When …

 24

FORMAT

Formats the flash memory

format

READ

Display all log entries. Alternatively, parameters can be used to only display log entries in
specified range. For example,

read

LOGSIZE

Provides the current number of stored log entries. For example on a recently formatted
device,

logsize

may return

[69:logsize] {163} slots used

indicating that the device contains 163 logs. On a device with significant amounts of data, the
same command may return

[69:logsize] {12499} slots used

indicating that the device contains 12,499 logs.

CHANNEL

Queries and reconfigures the current radio channel. For example,

channel

Should return the current radio channel of the device (e.g. 0)

channel 3

Would set the current device to radio channel 3. 128 channels are currently supported, one
‘public’ channel 0, and 127 private channels (1-128). Unless

TIME

This command queries and set the current local time of the device. For example,

time

will return the current device time, setting the time can be achieved by also entering a
datetime in the syntax ‘HH:MM:SS DD.MM.YYYY’

 25

For Example:

time 12:30:00 14.02.2011

would set the time of the current device to be 12:30pm on the 14th February 2011. For the
tracker firmware, local time is continually updated from obtained satellite time, so this
command will be overridden whenever a GPS fix is obtained.

UPTIME

Provides the uptime of the device since the last reset. For example, on device number 69,
which had been turned on for 25 minutes (without a reset), the command

uptime

will respond with

[69:uptime] 00d 00:25:15

TIMERS

Debug command: Provides information about registered software timers (events that are
scheduled to happen on the device (e.g. start trying to acquire a fix, go into sleep mode). As
an example,

timers

may return:

[69:app] 0 timer(s)

if no timers are registered, or:

1: 0x9ca8 in 250160 ticks (30 seconds)
[69:timers] 1 timer(s)

if 1 event is scheduled to occur in 30 seconds.

RR

Provides information about the reset reason of the device.

rr

Returns:
0 for WD_RESET_REASON_UNKNOWN
1 for WD_RESET_REASON_WATCHDOGGUARDVIOLATION
2 for WD_RESET_REASON_REQUESTED (e.g. the “reset” command)
3 for WD_RESET_REASON_RADIO (e.g. the radio driver crashed)
4 for WD_RESET_REASON_WATCHDOG (e.g. a long running operation was too long or a
function hung)
5 for WD_RESET_REASON_USER1 (unused)
6 for WD_RESET_REASON_USER2 (unused)

 26

7 for WD_RESET_REASON_USER3 (unused)
8 for WD_RESET_REASON_USER4 (unused)

RESET

Resets the device

reset

Forces the device to reset, setting the reset reason to 2
(WD_RESET_REASON_REQUESTED), see ‘rr’

ABORT

Aborts the current schedule, preventing the devices from entering into autonomous tracking
or base-station mode. Allows the user to continue to interact with the device without
scheduled events occurring.

abort

HELP

Displays help on the commands available on the device. A list of commands, with brief
descriptions of their function is presented. For example, on a tracking device:

help

responds with the following;

Commands:
 help [0x34fa]
 id [0x38c8] Configuration: node id
 app [0x3ae6] Configuration: application's metadata
 uptime [0x42ce] Uptime since last reset
 time [0x435a] Manage local time.
 timers [0x4778] Debug: Provides information about registered software timers.
 reset [0x53ae] Resets the device
 rr [0x53c4] Debug: Provides the recent reset reason
 cc [0x5f7c] Debug: reserved for firmware developers
 ccidle [0x5f9e] Debug: reserved for firmware developers
 ccoff [0x5fda] Debug: reserved for firmware developers
 ccget [0x5fe0] Debug: reserved for firmware developers
 ccfrx [0x609a] Debug: reserved for firmware developers
 ccrx [0x5f94] Debug: reserved for firmware developers
 channel [0x60ee] Radio: communication channel
 light [0x64ae] Debug: reserved for firmware developers
 batt [0x6426] Battery voltage (correct results only when GPS is enabled)
 flashtst [0x667c] Debug: reserved for firmware developers
 gps [0x6f7a] GPS debug interface
 logsize [0x7266] Number of local log entries
 read [0x7bac] Displays log entries from a specified range
 format [0x7aae] Formats the flash memory
 request [0x87f8] Requests a sequence of remote log entries
 fillgaps [0x86d4] Finds gaps in downloaded logs and requests missing entries from
remote devices
 showgaps [0x859a] Shows gaps in downloaded logs
 scpreq [0x9274] Triggers temperature and pressure measurment
 f_reset [0x9612] Formats and resets the device
 abort [0x9646] Aborts the experiment
 base [0x9d38] Brings the device to the 'base station' mode in the selected
channel
 setradio [0x9834] Configures the radio experiment
 suppress [0x9f08] Configures down time for the GPS (overrides setgps)
 setgps [0x9f7c] Configures the GPS experiment

 27

9. Tracking Device Commands and Configuration

Two key sets of parameters are available to configure the devices for tracking. These control
the gps tracking schedule (setgps), and the radio communication schedule (setradio).

SETGPS with examples

Here, four parameters control the pattern of GPS tracking that the device engages in:

setgps <initial on time> <sleep time between fixes> <max time to wait
for fix> <logging time after a fix>

e.g. setgps 60 300 60 1

Would set the device to initially stay awake for 60 seconds then, every 300 seconds, try to get

a GPS fix for 60 seconds and, once a fix is obtained, continue to record fixes for 1 second.

Example 2:

setgps 300 600 60 10

Would set the device to initially stay awake for 300 seconds (5 minutes) then, every 600

seconds (10 minutes), try to get a GPS fix for 60 seconds and, once a fix is obtained,

continue to record fixes for 10 seconds.

Example 3:

setgps 60 300 60 0

Here, as 0 effectively stands for infinite duration this would initially set the device to try and

obtain a fix for 60 seconds and, if this fails, wake up every 5 minutes, trying to obtain a fix for

60 seconds. However, once a fix is obtained, the device will continue recording fixes till the

battery is exhausted. This may be useful if a continuous log is desired, but the device is likely

to initially be in conditions where a fix may be hard to obtained (e.g. in a nest for a burrow

nesting species).

Example 4:

setgps 0 1 0 0

Again, as 0 effectively stands for infinite duration this would set the device to start logging

immediately, and continue recording until the battery was exhausted.

SETRADIO with examples

Here, three parameters control the pattern of Radio communication that the device engages

in:

 28

setradio <initial on time> <sleep time between radio heartbeats> <max
time to wait for a response>

Example 1:

setradio 60 300 10

Would set the device to initially stay awake (in radio contact) for 60 seconds then, every 300
seconds, send a heartbeat (see XX), and wait 10 seconds for a response.

Example 2:

setradio 60 0 1

Would set the device to initially stay awake (in radio contact) for 60 seconds then
turn the radio off and maintain that state until the device is reconfigured (0 stands for
infinite duration, so here the ‘sleep period’ is set to infinite).

Example 3:

setradio 0 1 0 0

Again, as 0 effectively stands for infinite duration this would set the device to start logging
immediately, and continue recording until the battery was exhausted.

SETACC with examples

Here, three parameters control the pattern of accelerometer sensing that the device engages

in:

setacc <initial on time> <sleep period between measurements>
<measurement and logging period>

Example 1:

setacc 60 300 10

Would set the device to initially stay awake (in accelerometer measurement and logging) for
60 seconds then, every 300 seconds, measure acceleration and log for 10 seconds.

Example 2:

setacc 60 0 1

Would set the device to initially stay awake (in accelerometer measurement and
logging) for 60 seconds then turn the accelerometer off and maintain that state until
the device is reconfigured (0 stands for infinite duration, so here the ‘sleep period’ is
set to infinite).

Example 3:

setacc 0 1 0

 29

Again, as 0 effectively stands for infinite duration this would set the device to start logging
immediately, and continue recording until the battery was exhausted.

GPS

GPS debug interface. Typing gps results in usage information:

Usage: gps [operation]

 1: Full NMEA debug mode (one way, reset to disable)

 2: Toggle NMEA preview mode

 3: Toggle Power of the GPS Chip

 4: Toggle NMEA Debug Handler

 5: Enable GPS, Start Logging (one way)

 6 X: Set the position update rate to X (X = 1, 4, 5, or 10)

Many of these functions are for debugging (to enable preview of the GPS NMEA data), but a

key option is option 6 which allows the default update rate of the device to be modified. Here,

4 updates rates are available (1Hz, 4Hz, 5Hz or 10Hz). For example:

gps 6 10

would set the update rate of the GPS receiver to 10Hz, all future would then be attempted at
10Hz (so 1 second of logging may result in 10 positions – however, obtaining this logs per
second appears easier over longer periods, perhaps due to the amount of time taken getting
the initial fix).

SUPPRESS

Configures down time for the GPS (overrides setgps)

suppress <hh of suppress activation> <hh of suppress deactivation>

For example:

suppress 10 13

would result in the GPS being disabled when time >= 10 hrs and time < 13 hrs (UTC)
resulting in GPS activity from 10:00:00 till 12:59:59.

suppress has no effect when the time isn't correct (when a correct time has not been
received from GPS data, thus the suppression requires at least one correct fix to be
obtained).

suppress 10 10

disables this feature (when HH are equal the condition above is always false).

BASE

Brings the device to the ‘base station’ mode on the specified channel, for example

base 23

 30

would put the tracking device into radio communication mode and move it to channel 23:

base 23
[69:base] at channel {23}

Querying the channel shows that the device is now on channel 23:

channel
[69:channel] 23

F_RESET

Formats and resets the device

f_reset

Would cause the current device to erase all logs from it’s memory, and then reset
(and therefore enter the configured logging regime). This command can be send
remotely to cause devices that have been downloaded to erase previous logs and
reset

SCPREQ

On devices with a pressure sensor installed, this command triggers temperature and pressure

measurement, and stores the result in the log.

SHOWGAPS

Shows gaps in downloaded logs

showgaps <local sequence no> <nodeid> <first remote sequence no>

<last remote sequence no>

For example,

showgaps 2300 32 0 1000

*** Importantly, once the device has entered the base communication mode, it sets a
timeout of 10 minutes (600 seconds), after which it will reset to channel 0 and continue
logging. This prevents problems with scenarios where the device may only have
intermittent contact with a base station, and might otherwise have been stuck in base
communication mode. However, manually setting the channel causes no such timeout,
and can leave devices stuck on non-public channels unable to communicate with available
base-stations ***

*** This command is irreversible, use with caution ***

 31

would search the local memory (already downloaded logs) from sequence id 2300 to identify
missing logs from the sequency of logs from node 32 from 0 to 1000 (the first 1000 log entries
from node 32).

FILLGAPS

Finds gaps in downloaded logs and requests missing entries from remote devices

fillgaps <local> <nodeid> <first> <last>

For example,

fillgaps 2300 32 0 1000

similarly, to showgaps would search the local memory (already downloaded logs) from
sequence id 2300 to identify missing logs from the sequence of logs from node 32 from 0 to
1000 (the first 1000 log entries from node 32), and would then additionally request those
missing log entries form node 32.

REQUEST

Requests a sequence of remote log entries

request <nodeid> <first> <last>

For example,

request 32 0 1000

would request the first 1000 log entries from node 32.

 32

10. Base Station Commands and Configuration

Devices configured with the base-station firmware are configured to listen for ‘heartbeats’
from tracking devices on the public channel (channel 0). When a heartbeat is detected, the
base station will request that the tracking device move to a private channel (the channel
corresponds to the base stations ID, so a base station with ID 42 would request a move to
private channel 42). Once on a private channel the base station will start to request and
download logs from the tracking device. This process can be noisy (due to environmental
factors, or radio collisions), so the base station will initially request all logs, then search for
missing entries, and request those entries. This process is repeated a number of times, until
the less than 5% of entries are missing (this prevents devices spending undue time and
power trying to acquire a small number of missing logs).

10.1. An overview of the automatic download process

Heartbeats are send my tracking devices whenever the wake from radio sleep. Three
heartbeats are sent to mitigate against possible radio packet loss. Heartbeats contain
information on device ID, uptime, numbers of logs, etc. For example, the following shows
three heartbeats from device 69 (received by base station 12):

[12:L] Heartbeat from 69 [Uptime: 89(0h), LogSize: 1147, New Logs: 101, New
Fix: 0, Voltage 0.00V (0)]
[12:L] Heartbeat from 69 [Uptime: 89(0h), LogSize: 1147, New Logs: 101, New
Fix: 0, Voltage 0.00V (0)]
[12:L] Heartbeat from 69 [Uptime: 89(0h), LogSize: 1147, New Logs: 101, New
Fix: 0, Voltage 0.00V (0)]

On detecting these heartbeats the base station (12) requests a move to a private channel and
begins the process of downloading:

[12:L] Connecting to device id {69} on channel {12}... [00:30:59.0202 01-01-
2010]
 [12:L] Connected to device id {69} on channel {12} [00:31:04.5350 01-01-
2010]
 [12:L] Requesting newest data from {69} [00:31:06.1696 01-01-2010]
Local Sequence No: 2845
Target NodeID: 69
First Sequence No: 1047
Last Sequence No: 1147
..
.............
[12:L] Received {89} of {101} new entries from {69} [00:31:13.3368 01-01-
2010]
[12:L] Requesting missing data from {69} [00:31:13.3564 01-01-2010]
[12:L] Scheduled the operation. Wait for the schedule to complete!
[00:31:13.3759 01-01-2010]

[12:L] Processing remaining 1147 items... [00:31:14.3752 01-01-2010]
Local Sequence No: 1
Target NodeID: 69
First Sequence No: 1
Last Sequence No: 416
Missing sequence numbers (searching...):
Detected missing: 100% (416/416)
..
..
..
..
..
[12:L] Processing remaining 731 items... [00:31:20.2325 01-01-2010]
Local Sequence No: 1
Target NodeID: 69
First Sequence No: 417
Last Sequence No: 832
Missing sequence numbers (searching...):
Detected missing: 100% (416/416)

 33

..

..

..

..

..
[12:L] Processing remaining 315 items... [00:31:24.2967 01-01-2010]
Local Sequence No: 1
Target NodeID: 69
First Sequence No: 833
Last Sequence No: 1147
Missing sequence numbers (searching...):
Detected missing: 71% (226/315)
..
..
..
[12:L] Schedule processing completed. [00:31:27.4229 01-01-2010]
 [12:L] Requested {1058}, received {940} ({940} in total) [00:31:27.4560 01-
01-2010]
[12:L] Requesting missing data from {69} [00:31:29.0914 01-01-2010]
[12:L] Scheduled the operation. Wait for the schedule to complete!
[00:31:29.1106 01-01-2010]

[12:L] Processing remaining 1147 items... [00:31:30.1100 01-01-2010]
Local Sequence No: 1
Target NodeID: 69
First Sequence No: 1
Last Sequence No: 416
Missing sequence numbers (searching...):
Detected missing: 11% (46/416)
..
[12:L] Processing remaining 731 items... [00:31:34.6307 01-01-2010]
Local Sequence No: 1
Target NodeID: 69
First Sequence No: 417
Last Sequence No: 832
Missing sequence numbers (searching...):
Detected missing: 11% (46/416)
..
[12:L] Processing remaining 315 items... [00:31:37.0584 01-01-2010]
Local Sequence No: 1
Target NodeID: 69
First Sequence No: 833
Last Sequence No: 1147
Missing sequence numbers (searching...):
Detected missing: 8% (26/315)
........................
[12:L] Schedule processing completed. [00:31:39.2210 01-01-2010]
 [12:L] Requested {118}, received {106} ({1046} in total) [00:31:39.2541 01-
01-2010]
 [12:L] Requesting missing data from {69} [00:31:40.7087 01-01-2010]
[12:L] Scheduled the operation. Wait for the schedule to complete!
[00:31:40.7281 01-01-2010]

[12:L] Processing remaining 1147 items... [00:31:41.7275 01-01-2010]
Local Sequence No: 1
Target NodeID: 69
First Sequence No: 1
Last Sequence No: 416
Missing sequence numbers (searching...):
Detected missing: 0% (4/416)
....
[12:L] Processing remaining 731 items... [00:31:46.3141 01-01-2010]
Local Sequence No: 1
Target NodeID: 69
First Sequence No: 417
Last Sequence No: 832
Missing sequence numbers (searching...):
Detected missing: 1% (6/416)
.....
[12:L] Processing remaining 315 items... [00:31:48.4007 01-01-2010]
Local Sequence No: 1
Target NodeID: 69
First Sequence No: 833
Last Sequence No: 1147
Missing sequence numbers (searching...):
Detected missing: 0% (2/315)
..

 34

[12:L] Schedule processing completed. [00:31:50.4651 01-01-2010]
 [12:L] Requested {12}, received {11} ({1057} in total) [00:31:50.4975 01-
01-2010]
[12:L] Detected less than 5 percent missing and got some data.
[00:31:50.5179 01-01-2010]
 [12:L] Returning to channel {0} [00:31:52.5594 01-01-2010]
[12:L] Got {89}/{101} new and {1057}/{1058} missing from {69}.
[00:31:52.5832 01-01-2010]
[12:L] Waiting for new trackers... [00:31:52.6031 01-01-2010]

A number of things are worth noting here. The first request from the base station (12) to the
tracker (69) tried to obtain only the newest logs from the tracking device (each dot
corresponds to a log entry):

[12:L] Requesting newest data from {69} [00:31:06.1696 01-01-2010]
Local Sequence No: 2845
Target NodeID: 69
First Sequence No: 1047
Last Sequence No: 1147
..
.............
[12:L] Received {89} of {101} new entries from {69} [00:31:13.3368 01-01-
2010]

The local sequence number is the point in the base stations memory to search for any
missing entries from (here it’s at the end of the memory as this is new connection to a
tracking device and no new logs have been downloaded). The target nodeID is the tracker ID,
the ‘First Sequence No’ and ‘Last Sequence No’ correspond to the reported logsize in the
tracker heartbeat:

[12:L] Heartbeat from 69 [Uptime: 89(0h), LogSize: 1147, New Logs: 101, New
Fix: 0, Voltage 0.00V (0)]

minus the number of new logs (therefore specifying the sequence numbers of the remote
logs). The base station then reports that is received 89 of these 101 entries. The base station
then searches for and requests missing data from the tracker. This is done in blocks of 416
logs for memory & efficiency purposes:

[12:L] Requesting missing data from {69} [00:31:13.3564 01-01-2010]
[12:L] Scheduled the operation. Wait for the schedule to complete!
[00:31:13.3759 01-01-2010]

[12:L] Processing remaining 1147 items... [00:31:14.3752 01-01-2010]
Local Sequence No: 1
Target NodeID: 69
First Sequence No: 1
Last Sequence No: 416
Missing sequence numbers (searching...):
Detected missing: 100% (416/416)
..
..
..
..
..

Here, the base station searches it’s whole memory (from sequence number 1) for any missing
entries on the remote device (in the first 416 remote logs). As the tracker has not been
downloaded before, all entries are detected as missing and download is attempted.

This process is repeated for each chunk of logs up to the total logsize, and then repeated until
the percentage of missing logs in < 5%.

10.2. Commands

SHOWGAPS

 35

Shows gaps in downloaded logs

showgaps <local sequence no> <nodeid> <first remote sequence no>

<last remote sequence no>

For example,

showgaps 2300 32 0 1000

would search the local memory (already downloaded logs) from sequence id 2300 to identify
missing logs from the sequency of logs from node 32 from 0 to 1000 (the first 1000 log entries
from node 32).

FILLGAPS

Finds gaps in downloaded logs and requests missing entries from remote devices

fillgaps <local> <nodeid> <first> <last>

For example,

fillgaps 2300 32 0 1000

behaves in a similar way as showgaps, searching the local memory (already downloaded
logs) from sequence id 2300 to identify missing logs from the sequency of logs from node 32
from 0 to 1000 (the first 1000 log entries from node 32), and would then additionally request
those missing log entries form node 32.

REQUEST

Requests a sequence of remote log entries

request <nodeid> <first> <last>

For example,

request 32 0 1000

would request the first 1000 log entries from node 32.

F_RESET

Formats and resets the device

f_reset

 36

Would cause the current device to erase all logs from it’s memory, and then reset
(and therefore enter the configured logging regime). This command can be send
remotely to cause devices that have been downloaded to erase previous logs and
reset

FORCEDL

Forces a download from a selected tracker. Restarts the base station state machine.

forcedl <nodeid> <r.logsize> <r.newlogs>

For example:

forcedl 32 500 [r.newlogs]

*** This command is irreversible, use with caution ***

