

Windows Hardware Compatibility Program

November 6, 2015 - Microsoft makes no warranties, express or implied.

Disclaimer: This document is provided ñas-isò. Information and views expressed in this document, including URL and other
Internet website references, may change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy
and use this document for your internal, reference purposes. You may modify this document for your internal, reference
purposes. This document is confidential and proprietary to Microsoft. It is disclosed and can be used only pursuant to a non-
disclosure agreement.

© 2015 Microsoft. All rights reserved.

Windows Hardware Compatibility Program - 2

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Contents

Windows Hardware Compatibility Program ... 9
Windows Hardware Compatibility Program Requirements .. 10
Filter .. 11
Filter.Driver.AntiVirus .. 11
Filter.Driver.DeviceGuard .. 16
Filter.Driver.EarlyLaunchAntiMalware .. 17
Filter.Driver.FileSystem ... 20
Filter.Driver.Fundamentals ... 23
Filter.Driver.Network.LWF .. 24
Filter.Driver.Security ... 25
Filter.Driver.vSwitchExtension .. 26
Filter.Driver.WindowsFilteringPlatform .. 28
Components and peripherals .. 55
Device.Audio.APO ... 62
Device.Audio.Base ... 63
Device.Audio.HardwareAudioProcessing .. 72
Device.Audio.HDAudio .. 74
Device.Audio.USB .. 77
Device.BusController.Bluetooth.Base ... 78
Device.BusController.Bluetooth.NonUSB ... 82
Device.BusController.Bluetooth.USB .. 83
Device.BusController.I2C ... 84
Device.BusController.NFC.NearFieldProximity ... 89
Device.BusController.NFC.RadioManagement ... 91
Device.BusController.NFC.SecureElement.UICC ... 92
Device.BusController.NFC.SmartCard ... 93
Device.BusController.SdioController .. 95
Device.BusController.UART ... 95
Device.BusController.UsbController ... 99
Device.Cluster .. 108
Device.Connectivity.BluetoothDevices ... 109
Device.Connectivity.Network.VerticalPairing ... 111
Device.Connectivity.PciConnected .. 113
Device.Connectivity.Server ... 117
Device.Connectivity.UsbDevices ... 121
Device.Connectivity.UsbHub ... 131
Device.Connectivity.WSD .. 133
Device.DevFund.CDA ... 136
Device.Devfund.DeviceGuard ... 137
Device.DevFund.DriverFramework.KMDF .. 138
Device.DevFund.DriverFramework.UMDF .. 141
Device.DevFund.Firmware .. 144
Device.DevFund.INF .. 145
Device.DevFund.Memory .. 156
Device.DevFund.Reliability .. 158
Device.DevFund.Reliability.3rdParty ... 170
Device.DevFund.Reliability.Interrupts .. 171

Windows Hardware Compatibility Program - 3

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.DevFund.ReliabilityDisk ... 172
Device.DevFund.Security ... 173
Device.DevFund.Server ... 174
Device.DevFund.Server.PCI ... 178
Device.DevFund.Server.StaticTools ... 179
Device.Display.Monitor ... 180
Device.Graphics.AdapterBase ... 183
Device.Graphics.AdapterRender ... 188
Device.Graphics.AdapterRender.D3D101Core ... 190
Device.Graphics.AdapterRender.D3D101WDDM11 ... 190
Device.Graphics.AdapterRender.D3D101WDDM12 ... 191
Device.Graphics.AdapterRender.D3D10ComputeShader ... 192
Device.Graphics.AdapterRender.D3D10Core ... 193
Device.Graphics.AdapterRender.D3D10D3D11LogicOps ... 194
Device.Graphics.AdapterRender.D3D10Multisampling4X .. 194
Device.Graphics.AdapterRender.D3D10Multisampling8X .. 195
Device.Graphics.AdapterRender.D3D10WDDM11 ... 195
Device.Graphics.AdapterRender.D3D10WDDM12 ... 196
Device.Graphics.AdapterRender.D3D111Core ... 199
Device.Graphics.AdapterRender.D3D11ASTC ... 200
Device.Graphics.AdapterRender.D3D11ConservativeRasterization 201
Device.Graphics.AdapterRender.D3D11Core ... 202
Device.Graphics.AdapterRender.D3D11DoublePrecisionShader ... 202
Device.Graphics.AdapterRender.D3D11DriverCommandLists ... 203
Device.Graphics.AdapterRender.D3D11DriverConcurrentObjectCreation 204
Device.Graphics.AdapterRender.D3D11Level9WDDM12 ... 204
Device.Graphics.AdapterRender.D3D11Level9WDDM13 ... 205
Device.Graphics.AdapterRender.D3D11PartialPrecision .. 207
Device.Graphics.AdapterRender.D3D11RasterizerOrderedViews .. 208
Device.Graphics.AdapterRender.D3D11StencilReference .. 208
Device.Graphics.AdapterRender.D3D11TypedUAVLoad .. 209
Device.Graphics.AdapterRender.D3D11WDDM12 ... 209
Device.Graphics.AdapterRender.D3D11WDDM12DoublePrecisionShader 210
Device.Graphics.AdapterRender.D3D11WDDM13 ... 211
Device.Graphics.AdapterRender.D3D11WDDM20 ... 211
Device.Graphics.AdapterRender.D3D12ASTC ... 213
Device.Graphics.AdapterRender.D3D12ConservativeRasterization 214
Device.Graphics.AdapterRender.D3D12Core ... 215
Device.Graphics.AdapterRender.D3D12Multiadapter .. 220
Device.Graphics.AdapterRender.D3D12RasterizerOrderedViews .. 221
Device.Graphics.AdapterRender.D3D12StencilReference .. 222
Device.Graphics.AdapterRender.D3D12TypedUAVLoad .. 223
Device.Graphics.AdapterRender.D312VolumeTiledResources... 223
Device.Graphics.WDDM .. 224
Device.Graphics.WDDM.Display ... 228
Device.Graphics.WDDM.Display.HDMIorDPDCNs .. 231
Device.Graphics.WDDM.DisplayRender .. 234
Device.Graphics.WDDM.Render ... 237
Device.Graphics.WDDM11 .. 241

Windows Hardware Compatibility Program - 4

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.Graphics.WDDM11.Display ... 241
Device.Graphics.WDDM11.DisplayRender.. 242
Device.Graphics.WDDM11.DisplayRender.D3D9Overlay ... 243
Device.Graphics.WDDM11.Render ... 243
Device.Graphics.WDDM11.Render.DXVAHD .. 244
Device.Graphics.WDDM12 .. 245
Device.Graphics.WDDM12.Display ... 249
Device.Graphics.WDDM12.DisplayOnly .. 257
Device.Graphics.WDDM12.DisplayRender.. 260
Device.Graphics.WDDM12.DisplayRender.ProcessingStereoscopicVideoContent 263
Device.Graphics.WDDM12.DisplayRender.RuntimePowerMgmt... 264
Device.Graphics.WDDM12.Render ... 265
Device.Graphics.WDDM12.RenderOnly .. 277
Device.Graphics.WDDM12.StandbyHibernateFlags ... 279
Device.Graphics.WDDM13 .. 280
Device.Graphics.WDDM13.DisplayRender.. 283
Device.Graphics.WDDM13.DisplayRender.CoolingInterface .. 284
Device.Graphics.WDDM13.DisplayRender.WirelessDisplay ... 285
Device.Graphics.WDDM13.EnhancedPowerManagement ... 287
Device.Graphics.WDDM13.Render ... 288
Device.Graphics.WDDM20 .. 295
Device.Graphics.WDDM20.Core ... 299
Device.Graphics.WDDM20.Display.VirtualModeSupport ... 301
Device.Graphics.WDDM20.DisplayRender.. 301
Device.Imaging.Printer.Base ... 302
Device.Imaging.Printer.Mobile ... 311
Device.Imaging.Printer.Mobile.WSD20 ... 314
Device.Imaging.Printer.OXPS .. 317
Device.Imaging.Printer.USB .. 318
Device.Imaging.Printer.WSD ... 320
Device.Imaging.Printer.XPS ... 321
Device.Imaging.Scanner.Base.. 322
Device.Imaging.Scanner.WSD ... 326
Device.Input.Digitizer.Base ... 327
Device.Input.Digitizer.Pen ... 329
Device.Input.Digitizer.PrecisionTouchpad .. 338
Device.Input.Digitizer.Touch ... 347
Device.Input.FingerPrintReader .. 354
Device.Input.HID ... 360
Device.Input.Keyboard .. 363
Device.Input.Location.. 367
Device.Input.PointDraw .. 374
Device.Input.SmartCardMiniDriver ... 374
Device.Input.SmartCardReader ... 377
Device.Network.DevFund .. 382
Device.Network.LAN ... 383
Device.Network.LAN.Base ... 385
Device.Network.LAN.ChecksumOffload .. 389
Device.Network.LAN.CS .. 390

Windows Hardware Compatibility Program - 5

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.Network.LAN.DCB .. 393
Device.Network.LAN.GRE .. 394
Device.Network.LAN.IPsec .. 395
Device.Network.LAN.KRDMA .. 395
Device.Network.LAN.LargeSendOffload ... 396
Device.Network.LAN.MTUSize .. 397
Device.Network.LAN.PM ... 397
Device.Network.LAN.RSC .. 399
Device.Network.LAN.RSS... 400
Device.Network.LAN.SRIOV .. 403
Device.Network.LAN.SRIOV.VF ... 404
Device.Network.LAN.TCPChimney .. 405
Device.Network.LAN.VMQ .. 411
Device.Network.LAN.VXLAN ... 412
Device.Network.MobileBroadband.CDMA ... 413
Device.Network.MobileBroadband.FirmwareUpdater ... 418
Device.Network.MobileBroadband.GSM .. 419
Device.Network.Switch.Manageability ... 426
Device.Network.WLAN .. 428
Device.Network.WLAN.SupportConnectionToAP ... 428
Device.Network.WLAN.SupportDot11W .. 439
Device.Network.WLAN.SupportFIPS ... 440
Device.Network.WLAN.SupportHostedNetwork .. 441
Device.Network.WLAN.SupportHotspot2Dot0 ... 441
Device.Network.WLAN.SupportMACAddressRandomization ... 442
Device.Network.WLAN.SupportWakeFromLowPower ... 442
Device.Network.WLAN.SupportWiFiDirect ... 443
Device.Network.WLAN.SupportWiFiDirectServices .. 453
Device.Portable.Core ... 454
Device.Portable.DigitalCamera ... 483
Device.Portable.DigitalVideoCamera .. 488
Device.Portable.MediaPlayer .. 493
Device.Portable.MobilePhone .. 499
Device.Storage.Controller ... 504
Device.Storage.Controller.Ata ... 507
Device.Storage.Controller.Boot .. 508
Device.Storage.Controller.Fc ... 509
Device.Storage.Controller.Fc.NPIV .. 510
Device.Storage.Controller.Fcoe ... 511
Device.Storage.Controller.Flush .. 513
Device.Storage.Controller.Iscsi ... 513
Device.Storage.Controller.Iscsi.iSCSIBootComponent .. 515
Device.Storage.Controller.Optical ... 517
Device.Storage.Controller.PassThroughSupport ... 518
Device.Storage.Controller.Raid ... 519
Device.Storage.Controller.Raid.ContinuousAvailability .. 519
Device.Storage.Controller.Sas ... 523
Device.Storage.Controller.Sata ... 524
Device.Storage.Controller.SD .. 525

Windows Hardware Compatibility Program - 6

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.Storage.ControllerDrive.NVMe ... 526
Device.Storage.Enclosure .. 530
Device.Storage.Hd ... 534
Device.Storage.Hd.1394 .. 536
Device.Storage.Hd.Alua ... 537
Device.Storage.Hd.Ata .. 538
Device.Storage.Hd.AtaProtocol ... 539
Device.Storage.Hd.DataVerification .. 540
Device.Storage.Hd.Ehdd .. 541
Device.Storage.Hd.EMMC ... 544
Device.Storage.Hd.EnhancedStorage .. 545
Device.Storage.Hd.FibreChannel... 546
Device.Storage.Hd.Flush ... 546
Device.Storage.Hd.Iscsi ... 547
Device.Storage.Hd.Mpio ... 549
Device.Storage.Hd.MultipleAccess.. 550
Device.Storage.Hd.MultipleAccess.PersistentReservation ... 550
Device.Storage.Hd.OffloadedDataTransfer ... 551
Device.Storage.Hd.PersistentReservation... 554
Device.Storage.Hd.PortAssociation ... 555
Device.Storage.Hd.RaidArray .. 556
Device.Storage.Hd.ReadZeroOnTrimUnmap .. 560
Device.Storage.Hd.RemovableMedia ... 561
Device.Storage.Hd.Sas ... 561
Device.Storage.Hd.Sata ... 564
Device.Storage.Hd.Sata.HybridInformation .. 565
Device.Storage.Hd.Scsi .. 569
Device.Storage.Hd.Scsi.ReliabilityCounters .. 570
Device.Storage.Hd.ScsiProtocol .. 572
Device.Storage.Hd.ThinProvisioning ... 577
Device.Storage.Hd.Trim... 580
Device.Storage.Hd.Uas .. 581
Device.Storage.Hd.UasOnEHCI .. 582
Device.Storage.Hd.Usb .. 582
Device.Storage.Hd.Usb3 .. 584
Device.Storage.Hd.WindowsToGoCapableUSBDrive .. 585
Device.Storage.Optical .. 587
Device.Storage.Optical.BluRayReader .. 594
Device.Storage.Optical.BluRayWriter ... 594
Device.Storage.Optical.Sata .. 595
Device.Streaming.Camera.Base .. 595
Device.Streaming.Camera.UVC ... 599
Device.Streaming.HMFT .. 600
Appendix A: Removed Requirements ... 618
Systems.. 623
System.Client.BluetoothController.Base ... 625
System.Client.BluetoothController.NonUSB ... 629
System.Client.BluetoothController.USB .. 630
System.Client.BrightnessControls ... 630

Windows Hardware Compatibility Program - 7

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

System.Client.Camera ... 634
System.Client.Digitizer .. 638
System.Client.Digitizer.Touch ... 640
System.Client.Firmware.UEFI.GOP .. 644
System.Client.Graphics .. 646
System.Client.MobileBroadBand .. 649
System.Client.PCContainer .. 652
System.Client.RadioManagement ... 654
System.Client.RadioManagement.ConnectedStandby ... 659
System.Client.ScreenRotation ... 660
System.Client.SystemConfiguration .. 660
System.Client.SystemImage .. 661
System.Client.SystemPartition .. 662
System.Client.Tablet.Graphics .. 663
System.Client.WLAN.BasicConnectivity .. 664
System.Client.WLAN.HangDetectionAndRecovery ... 665
System.Client.WLAN.HostedNetwork ... 665
System.Client.WLAN.Miracast... 666
System.Client.WLAN.WiFiDirect .. 666
System.Fundamentals.DebugPort ... 667
System.Fundamentals.DebugPort.USB ... 669
System.Fundamentals.EnergyEstimation .. 669
System.Fundamentals.Firmware ... 672
System.Fundamentals.Firmware.Boot .. 689
System.Fundamentals.Firmware.CS .. 690
System.Fundamentals.Firmware.CS.UEFISecureBoot ... 696
System.Fundamentals.Firmware.TPR ... 696
System.Fundamentals.Graphics .. 697
System.Fundamentals.Graphics.DisplayRender .. 699
System.Fundamentals.Graphics.HybridGraphics .. 699
System.Fundamentals.Graphics.InternalDisplay... 702
System.Fundamentals.Graphics.MultipleDevice .. 703
System.Fundamentals.Graphics.RenderOnly .. 706
System.Fundamentals.HAL .. 706
System.Fundamentals.Input ... 707
System.Fundamentals.MarkerFile... 708
System.Fundamentals.Network .. 709
System.Fundamentals.NX ... 711
System.Fundamentals.PowerManagement .. 712
System.Fundamentals.PowerManagement.CS ... 714
System.Fundamentals.PXE .. 715
System.Fundamentals.Reliability .. 716
System.Fundamentals.Security ... 716
System.Fundamentals.SignedDrivers .. 718
System.Fundamentals.SMBIOS ... 719
System.Fundamentals.StorageAndBoot ... 721
System.Fundamentals.SystemAudio ... 725
System.Fundamentals.SystemPCIController ... 727
System.Fundamentals.SystemUSB .. 728

Windows Hardware Compatibility Program - 8

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

System.Fundamentals.TPM20 ... 745
System.Fundamentals.TrustedPlatformModule ... 750
System.Fundamentals.USBBoot .. 758
System.Fundamentals.USBDevice ... 759
System.Fundamentals.WatchDogTimer .. 760
System.Server.Base ... 761
System.Server.BMC ... 774
System.Server.DynamicPartitioning .. 775
System.Server.FaultTolerant ... 779
System.Server.Firmware.UEFI.GOP ... 781
System.Server.Firmware.VBE .. 783
System.Server.Graphics... 785
System.Server.PowerManageable .. 786
System.Server.RemoteFX .. 787
System.Server.SMBIOS .. 788
System.Server.SVVP .. 789
System.Server.SystemStress ... 790
System.Server.Virtualization ... 791
System.Server.WHEA .. 791
Appendix A: Removed Requirements ... 792

Windows Hardware Compatibility Program - 9

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows Hardware Compatibility Program
The new Windows Hardware Compatibility Program is an evolution of the Windows Logo Program
and the Windows Hardware Certification Programs. It is designed to help your company deliver
systems, software and hardware products that are compatible with Windows and run reliably on
Windows 10 for desktop editions (Home, Pro, Enterprise, and Education), and the next version of
Windows Server.

Like previous versions, the new Windows Hardware Compatibility Program leverages the tests in the
new Hardware Lab Kit (formerly the Hardware Certification Kit) to test your product. After passing
certain tests, the program allows you to use the Windows logo as part of your marketing. End users
trust the Windows logo as a sign of compatibility. Enterprise and government customers also look for
the logo, or consult the Microsoft Certified Products list or the server catalog to see what systems,
components and peripherals have been tested to ensure interoperability and reliability.

The new hardware compatibility program provides you with:

¶ Minimum engineering requirements that you can use to design your hardware.

¶ A subset of the tests in the new Hardware Lab Kit (formerly the Hardware Certification Kit)

that focus on compatibility, interoperability and reliability.

¶ The ƻǇǇƻǊǘǳƴƛǘȅ ǘƻ ƭƛǎǘ ȅƻǳǊ ǇǊƻŘǳŎǘ ƻƴ aƛŎǊƻǎƻŦǘΩǎ /ŜǊǘƛŦƛŜŘ tǊƻŘǳŎǘǎ [ƛǎǘ ŀŦǘŜǊ ǇŀǎǎƛƴƎ ǘƘŜ

compatibility and reliability tests.

¶ Guidance for developing, testing and distributing drivers.

¶ Access to the Windows Dev Center hardware dashboard to manage submissions, track the

performance of your device or app, review telemetry and much more.

New IHV Attested Signing Service

For Windows 10, Microsoft is creating a new service for IHVs who just need to get a driver signed for
production. IHVs can go to the Windows Dev Center ς Hardware Dashboard, when available, and
request a signed driver by attesting to the quality. This process does not require HLK test results.
Under this process the IHV would affirm the following in order to get a Microsoft signed driver:

¶ IHV attests that they have completely tested their driver

¶ IHV attests that their product and driver will not break interoperability

¶ IHV attests that they will monitor telemetry and remediate any issues (exact metrics to be

determined at a later date)

When an IHV agrees to these terms, a signed driver will be returned. This signed driver can be
distributed to end users, and eventually distributed via Windows Update. However, the driver cannot
be used in a Compatibility Test System and the product will not be listed on the Certified Products
List. The signature that is returned from this process is different than one that is returned after you
submit HLK test results to Microsoft. However, functionally there is no difference between the two
signatures.

This option is only available for Windows 10 for desktop editions operating system.

Windows Hardware Compatibility Program - 10

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

For more details about building your system, see:

¶ Minimum Hardware Specification - This specification defines the minimum hardware

requirements necessary to:

¶ Boot and run Windows 10.

¶ Update and service Windows 10.

¶ Provide a baseline user experience that is comparable with similar devices and computers.

¶ Windows Hardware Compatibility Specification - This specification defines the engineering

requirements for passing the Windows Hardware Compatibility Program.

Official Test Playlist

The Windows Hardware Compatibility Program uses an official playlist to determine which devices
meet the requirements for compatibility with Windows 10. All playlists that we have published are
acceptable to use for submissions to the Hardware Developer Portal (sysdev).

The latest playlist can be downloaded at the following location:

¶ https://sysdev.microsoft.com/en-US/Hardware/CompatibilityPlaylists/

In this section:

¶ Windows Hardware Compatibility Program Requirements

¶ Download an offline version of the Windows Hardware Compatibility Program Requirements

Send comments about this topic to Microsoft

Windows Hardware Compatibility Program Requirements

The requirements define how to build Windows-compatible devices, systems, and filter drivers
across all Windows Platforms. They were developed in collaboration with partners, and focus on
ensuring compatibility, interoperability and reliability.

The requirements are validated by HLK tests and categorized as:

¶ System requirements

¶ Device and peripheral requirements for a stand-alone device

¶ Filter driver requirements Windows Filtering Platform drivers (WPF), file system filter drivers,

antivirus, and Early Launch Anti-Malware (ELAM) filter drivers.

https://sysdev.microsoft.com/en-US/Hardware/compatibilityplaylists/
http://go.microsoft.com/fwlink/p/?LinkId=623250
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Windows%20Hardware%20Compatibility%20Program%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 11

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

When products meet the minimum requirements it ensures that the application and device are
compatible. Systems are required to use components which have also passed compatibility testing.
Products submitted with passing results will continue to be included on the Certified Products List.

In this section

¶ Filter

¶ Components and peripherals

¶ Systems

Hardware Certification Policies and Processes

The WHCP Policies and Processes document below contains certification testing policies, product
submission, and business requirements.

¶ WHCP Policies and Processes

Send comments about this topic to Microsoft

Filter

In this section:

¶ Filter.Driver.AntiVirus

¶ Filter.Driver.DeviceGuard

¶ Filter.Driver.EarlyLaunchAntiMalware

¶ Filter.Driver.FileSystem

¶ Filter.Driver.Fundamentals

¶ Filter.Driver.Network.LWF

¶ Filter.Driver.Security

¶ Filter.Driver.vSwitchExtension

¶ Filter.Driver.WindowsFilteringPlatform

Send comments about this topic to Microsoft

Filter.Driver.AntiVirus

Antivirus requirements for filter drivers

http://go.microsoft.com/fwlink/p/?LinkID=615222
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Windows%20Hardware%20Compatibility%20Program%20Requirements%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Filter%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 12

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

In this topic:

¶ Filter.Driver.AntiVirus.Functionality

¶ Filter.Driver.AntiVirus.IcarDetection

¶ Filter.Driver.AntiVirus.MiniFilter

¶ Filter.Driver.AntiVirus.NamedPipeAndMailSlots

¶ Filter.Driver.AntiVirus.RegistryAndProcess

¶ Filter.Driver.AntiVirus.Winsock

Filter.Driver.AntiVirus.Functionality

Kernel mode filter drivers must be architected to maximize the reliability and functionality of
Windows file systems, as well as interact accurately with the core components of the operating
system.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Kernel mode filter drivers must be architected to maximize the reliability and functionality of
Windows file systems, as well as interact accurately with the core components of the operating
system. Some areas of particular interest are:

¶ Local File Systems

¶ NT API, Win32 API and Win32 mapped IO API usage

¶ Object ID functionality

¶ Reparse points

¶ Oplocks

¶ System cache usage

¶ Transactional capability

¶ Remote file systems

¶ Oplock semantics over SMB

Windows Hardware Compatibility Program - 13

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Information about file system behavior: http://download.microsoft.com/download/4/3/8/43889780-
8d45-4b2e-9d3a-c696a890309f/File%20System%20Behavior%20Overview.pdf

Information about Oplock semantics over SMB, see the [MS-SMB2] protocol document at:
http://msdn.microsoft.com/en-us/library/cc246482(PROT.13).aspx

Filter.Driver.AntiVirus.IcarDetection

Anti-virus filter drivers must be architected to exercise basic anti-virus functionality, as well as
interact accurately with the core components of the operating system.

Applies to Windows 10 x64

Windows 10 x86

Window s Server 2016 Technical Preview x64

Description

Anti-virus filter drivers must be architected to exercise basic anti-virus functionality, as well as
interact accurately with the core components of the operating system. Some areas of particular
interest are:

¶ File systems

¶ Anti-virus functionality

Filter.Driver.AntiVirus.MiniFilter

A file system filter driver must be a minifilter driver that uses the file systems filter manager.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

This requirement will be tested implicitly. The driver detection mechanism of the Windows Hardware
Lab Kit will be written such that legacy file system filter drivers are not enumerated. Only minifilter
drivers will be enumerated and surfaced in the kit. As such, a user will be unable to select a legacy
filter driver for logo testing via the kit.

Information about filter manger and minifilter drivers available here:

http://msdn.microsoft.com/en-us/library/ff540402(v=VS.85).aspx

http://msdn.microsoft.com/en-us/windows/hardware/gg462968.aspx

http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-c696a890309f/File%20System%20Behavior%20Overview.pdf
http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-c696a890309f/File%20System%20Behavior%20Overview.pdf
http://msdn.microsoft.com/en-us/library/cc246482(PROT.13).aspx
http://msdn.microsoft.com/en-us/library/ff540402(v=VS.85).aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg462968.aspx

Windows Hardware Compatibility Program - 14

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Filter.Driver.AntiVirus.NamedPipeAndMailSlots

Kernel mode filter drivers must be architected to maximize the reliability and functionality of Named
Pipe and Mail Slots, as well as interact accurately with the core components of the operating system.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Kernel mode filter drivers must be architected to maximize the reliability and functionality of Named
Pipe and Mail Slots, as well as interact accurately with the core components of the operating
system. Some areas of particular interest are:

¶ Named Pipe file system

¶ Functionality and stress for common APIs

¶ Anonymous pipes

¶ Pipe modes

¶ Open modes

¶ Invalid pipe names

¶ Flushing pipe

¶ Max pipe instance

¶ Pipe direction (in/out/duplex)

¶ Input and output buffer sizes

¶ Various call semantics, such as reconnecting a pipe that has been disconnected at the

server end.

¶ Behavior validation of all named pipes operations for each distinct state of a pipe

instance.

¶ Performance for named pipe creation and connection.

¶ Throughput for different in/out buffer sizes and number of clients.

¶ Scalability of increasing number of clients to time it takes for a connection to a named

pipe instance

Windows Hardware Compatibility Program - 15

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Mail Slot file system

¶ Functionality and stress for common APIs

Information about Named Pipe and Mail Slots can be found at:

http://msdn.microsoft.com/en-us/library/aa365574(v=VS.85).aspx

Filter.Driver.AntiVirus.RegistryAndProcess

Kernel mode filter drivers must be architected to maximize the reliability and functionality of the
Windows registry and processes, as well as interact accurately with the core components of the
operating system.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Kernel mode filter drivers must be architected to maximize the reliability and functionality of the
Windows registry and processes, as well as interact accurately with the core components of the
operating system. Some areas of particular interest are:

¶ Registry

¶ NT API and Win32 API usage

¶ Key functions

¶ Transaction registry operations

¶ Symbolic link behavior

¶ Process

¶ General module management

¶ Race conditions at thread/process termination

¶ Process management callback functionality

¶ Thread and process handle operations

Filter.Driver.AntiVirus.Winsock

Kernel mode filter drivers must be architected to maximize the reliability and functionality of
Windows Sockets, as well as interact accurately with the core components of the operating system.

http://msdn.microsoft.com/en-us/library/aa365574(v=VS.85).aspx

Windows Hardware Compatibility Program - 16

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Wind ows 10 x86

Windows Server 2016 Technical Preview x64

Description

Kernel mode filter drivers must be architected to maximize the reliability and functionality of
Windows Sockets, as well as interact accurately with the core components of the operating
system. Some areas of particular interest are:

¶ Winsock

¶ Winsock API functionality

Information about Winsock APIs can be found at:

http://msdn.microsoft.com/en-us/library/ms740673(VS.85).aspx

Send comments about this topic to Microsoft

Filter.Driver.DeviceGuard

All kernel drivers must be built to be compatible with Device Guard.

In this topic:

¶ Filter.Driver.DeviceGuard.DriverCompatibility

Filter.Driver.DeviceGuard.DriverCompatibility

Applies to Windows 10 x64

Windows Server 2016 Technical Preview x64

Description

Windows 10 has a new feature called Device Guard that gives organizations the ability to lock down
devices in a way that provides advanced malware protection against new and unknown malware
variants as well as Advanced Persistent Threats (APTs). Device Guard can use hardware technology
and virtualization to isolate the Code Integrity (CI) decision-making function from the rest of the
Windows operating system. When using virtualization-based security to isolate Code Integrity, the
only way kernel memory can become executable is through a Code Integrity verification. This means
that kernel memory pages can never be Writable and Executable (W+X) and executable code cannot
be directly modified.

http://msdn.microsoft.com/en-us/library/ms740673(VS.85).aspx
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Filter.Driver.AntiVirus%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
http://go.microsoft.com/fwlink/p/?LinkId=627463
http://blogs.msdn.com/b/windows_hardware_certification/archive/2015/05/22/driver-compatibility-with-device-guard-in-windows-10.aspx

Windows Hardware Compatibility Program - 17

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Details are available in the Windows Hardware Certification blog.

Send comments about this topic to Microsoft

Filter.Driver.EarlyLaunchAntiMalware

This section describes requirements for early launch driver.

In this topic:

¶ Filter.Driver.EarlyLaunchAntiMalware.BackupDriver

¶ Filter.Driver.EarlyLaunchAntiMalware.ELAMSignatureAttributes

¶ Filter.Driver.EarlyLaunchAntiMalware.MVIMembership

¶ Filter.Driver.EarlyLaunchAntiMalware.Performance

¶ Filter.Driver.EarlyLaunchAntiMalware.SignatureData

Filter.Driver.EarlyLaunchAntiMalware.BackupDriver

Early launch anti-malware drivers must include a backup copy in case of corruption.

Applies to Windo ws 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

The anti-malware (AM) driver is critical to the boot success of the computer. If the driver gets
corrupted, then the boot may not succeed. To provide the best user experience, it is required that
when the AM driver is installed, it also installs a copy in the driver backup store. This ensures a
smooth remediation experience in the case that the primary driver gets corrupted.

The location of the ELAM backup store is defined by Windows, and stored in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\EarlyLaunch ! BackupPath

Design Notes:

The early launch anti-malware (AM) drivers are started soon after the NTOS kernel starts. For each
subsequent boot driver, the AM driver receives a callback from the PnP manager to determine
whether the boot driver should be initialized. The AM driver evaluates the boot driver and must
return good, bad, or unknown. Based on the returned classification and defined policy, the PnP
manager decides whether to initialize the boot driver.

Filter.Driver.EarlyLaunchAntiMalware.ELAMSignatureAttributes

Requirement for the SignatureAttribute section in the ELAM INF files

http://go.microsoft.com/fwlink/p/?LinkId=627463
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Filter.Driver.DeviceGuard%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 18

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 201 6 Technical Preview x64

Description

ELAM files must be signed with a special signature as part of the submission process. The process of
determining what signature each module needs is being standardized; each INF file must now include
a SignatureAttributes section that uniquely identifies what type of signature is applicable for the
associated driver binaries. Adding this section to existing inf files is a very simple process.

An example follows:

[SignatureAttributes]

ELAMFILE.dll = SignatureAttributes.Elam

[SignatureAttributes.Elam]

Elam=true

Filter.Driver.EarlyLaunchAntiMalware.MVIMembership

Early launch anti-malware drivers may only be created by MVI members.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Any early launch anti-malware (AM) driver may only be created by Microsoft Virus Initiative (MVI)
members.

 Design Notes:

The early launch AM drivers are started soon after the NTOS kernel starts. For each subsequent boot
driver, the AM driver receives a callback from the PnP manager to determine whether the boot
driver should be initialized. The AM driver evaluates the boot driver and must return good, bad, or
unknown. Based on the returned classification and defined policy, the PnP manager decides whether
to initialize the boot driver.

Filter.Driver.EarlyLaunchAntiMalware.Performance

Early launch anti-malware drivers must be performant.

Applies to Windows 10 x64

Windows Hardware Compatibility Program - 19

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Callback Latency:

The anti-malware (AM) driver is required to return a result for each callback within 0.5 ms of
receiving the callback.

Memory Allocation:

The AM driver, including both the driver image as well as its configuration (signature) data, is
required to have a limited memory footprint of 256 KB or less.

Unload Blocking:

Each AM driver will receive a synchronous callback after the last boot driver has been initialized
indicating that the AM driver will be unloaded. At this point, the AM driver must clean up and save
any persistent status information. This must occur within 0.5 ms as measured from the time when
the kernel issues the callback to the driver to the time that the AM driver returns the callback.

Design Notes:

The early launch AM drivers are started soon after the NTOS kernel starts. For each subsequent boot
driver, the AM driver receives a callback from the PnP manager to determine whether the boot
driver should be initialized. The AM driver evaluates the boot driver and must return good, bad, or
unknown. Based on the returned classification and defined policy, the PnP manager decides whether
to initialize the boot driver.

Filter.Driver.EarlyLaunchAntiMalware.SignatureData

Early launch anti-malware drivers must only use signature data stored in the Microsoft-specific
location.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

The AM driver must get its malware signature data from a single, well-known location and no
other. The signature data shall be stored in the registry in a new "ELAM" hive under HKLM that is
loaded by Winload, and will therefore be available to the AM driver prior to the file system being
initialized. Each AM driver will have a unique key in which to store their signature blob. The
registry path and key shall be of the format HKLM\ELAM\<Vendor Name>\Measured : Binary =
<blob>.

Design Notes:

Windows Hardware Compatibility Program - 20

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

The early launch anti-malware (AM) drivers are started soon after the NTOS kernel starts. For each
subsequent boot driver, the AM driver receives a callback from the PnP manager to determine
whether the boot driver should be initialized. The AM driver evaluates the boot driver and must
return good, bad, or unknown. Based on the returned classification and defined policy, the PnP
manager decides whether to initialize the boot driver.

Send comments about this topic to Microsoft

Filter.Driver.FileSystem

In this topic:

¶ Filter.Driver.FileSystem.Functionality

¶ Filter.Driver.FileSystem.MiniFilter

¶ Filter.Driver.FileSystem.NamedPipeAndMailSlots

¶ Filter.Driver.FileSystem.RegistryAndProcess

Filter.Driver.FileSystem.Functionality

Kernel mode filter drivers must be architected to maximize the reliability and functionality of
Windows file systems, as well as interact accurately with the core components of the operating
system.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Kernel mode filter drivers must be architected to maximize the reliability and functionality of
Windows file systems, as well as interact accurately with the core components of the operating
system. Some areas of particular interest are:

¶ Local file systems

¶ NT API, Win32 API and Win32 mapped IO API usage

¶ Object ID functionality

¶ Reparse points

¶ Oplocks

¶ System cache usage

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Filter.Driver.EarlyLaunchAntiMalware%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 21

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Transactional capability

¶ Remote file systems

¶ Oplock semantics over SMB

Information about file system behavior: http://download.microsoft.com/download/4/3/8/43889780-
8d45-4b2e-9d3a-c696a890309f/File%20System%20Behavior%20Overview.pdf

Information about Oplock semantics over SMB, see the [MS-SMB2] protocol document at:
http://msdn.microsoft.com/en-us/library/cc246482(PROT.13).aspx

Filter.Driver.FileSystem.MiniFilter

A file system filter driver must be a minifilter driver using the file systems Filter Manager.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

This requirement will be tested implicitly. The gatherer will be written such that it enumerates and
surfaces only minifilter drivers for the HLK. Hence, a user will be unable to select a legacy filter driver
for certification testing.

Information about Filter Manger and minifilter drivers available here:

http://msdn.microsoft.com/en-us/library/ff540402(v=VS.85).aspx

Filter.Driver.FileSystem.NamedPipeAndMailSlots

Kernel mode filter drivers must be architected to maximize the reliability and functionality of Named
Pipe and Mail Slots, as well as interact accurately with the core components of the operating system.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Kernel Mode filter drivers must be architected to maximize the reliability and functionality of Named
Pipe and Mail Slots, as well as interact accurately with the core components of the operating
system. Some areas of particular interest are:

¶ Named Pipe file system

¶ Functionality and stress for common APIs

http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-c696a890309f/File%20System%20Behavior%20Overview.pdf
http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-c696a890309f/File%20System%20Behavior%20Overview.pdf
http://msdn.microsoft.com/en-us/library/cc246482(PROT.13).aspx
http://msdn.microsoft.com/en-us/library/ff540402(v=VS.85).aspx

Windows Hardware Compatibility Program - 22

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Anonymous pipes

¶ Pipe modes

¶ Open modes

¶ Invalid pipe names

¶ Flushing pipe

¶ Max pipe instance

¶ Pipe direction (in/out/duplex)

¶ Input and output buffer sizes

¶ Various call semantics, such as reconnecting a pipe that has been disconnected at the

server end.

¶ Behavior validation of all named pipes operations for each distinct state of a pipe

instance.

¶ Performance for named pipe creation and connection.

¶ Throughput for different in/out buffer sizes and number of clients.

¶ Scalability of increasing number of clients to time it takes for connection to a named pipe

instance

¶ Mail Slot file system

¶ Functionality and stress for common APIs

Information about Named Pipe and Mail Slots can be found at:

http://msdn.microsoft.com/en-us/library/aa365574(v=VS.85).aspx

Filter.Driver.FileSystem.RegistryAndProcess

Kernel mode filter drivers must be architected to maximize the reliability and functionality of
Windows registry and processes, as well as interact accurately with the core components of the
operating system.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

http://msdn.microsoft.com/en-us/library/aa365574(v=VS.85).aspx

Windows Hardware Compatibility Program - 23

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

Kernel mode filter drivers must be architected to maximize the reliability and functionality of
Windows registry and processes, as well as interact accurately with the core components of the
operating system. Some areas of particular interest are:

¶ Registry

¶ NT API and Win32 API usage

¶ Key functions

¶ Transaction registry operations

¶ Symbolic link behavior

¶ Process

¶ General module management

¶ Race conditions at thread/process termination

¶ Process management callback functionality

¶ Thread and process handle operations

Send comments about this topic to Microsoft

Filter.Driver.Fundamentals

Corresponds to device driver fundamentals, but for filter drivers

In this topic:

¶ Filter.Driver.Fundamentals.DriverQuality

Filter.Driver.Fundamentals.DriverQuality

A filter driver must be of high quality.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Filter.Driver.FileSystem%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 24

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Driver components must not cause the system to crash or leak resources. These resources include,
but are not limited to the following:

¶ Memory

¶ Graphics Device Interface (GDI) or user objects

¶ Kernel objects such as files, mutex, semaphore, and device handles

¶ Critical sections

¶ Disk space

¶ Printer handles

Design Notes:

Sleep & PNP with IO Before And After Test - Test cycles the system through all sleep states and does
basic PNP on all devices on the system.

This test will be run with Driver Verifier enabled with standard settings.

Send comments about this topic to Microsoft

Filter.Driver.Network.LWF

LAN requirements

In this topic:

¶ Filter.Driver.Network.LWF.Base

¶ Filter.Driver.Network.LWF.MTUSize

Filter.Driver.Network.LWF.Base

All light weight filters must be NDIS 6.30 or greater.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

All light weight filters must be NDIS 6.30 or greater and be compliant to the NDIS specification on
MSDN.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Filter.Driver.Fundamentals%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 25

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Filter.Driver.Network.LWF.MTUSize

All light weight filters must be able to accept arbitrary packet sizes which might be greater than the
miniport's MTU.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

All light weight filters must be NDIS 6.30 or greater. All light weight filters must be able to accept
arbitrary packet sizes which might be greater than the miniport's MTU.

Send comments about this topic to Microsoft

Filter.Driver.Security

Additional TDI filter driver and LSP requirements related to security

In this topic:

¶ Filter.Driver.Security.NoTDIFilterAndLSP

Filter.Driver.Security.NoTDIFilterAndLSP

No TDI filters or LSPs are installed by the driver or associated software packages during installation or
usage.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

There can be no use of TDI filters or LSPs by either kernel mode software or drivers, or user mode
software or drivers.

Send comments about this topic to Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Filter.Driver.Network.LWF%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Filter.Driver.Security%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 26

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Filter.Driver.vSwitchExtension

In this topic:

¶ Filter.Driver.vSwitchExtension.ExtensionRequirements

Filter.Driver.vSwitchExtension.ExtensionRequirements

Filter drivers that implement VM Switch Extensibility must support required functionalities, modes,
and protocols.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Filter drivers that implement VM Switch Extensibility must support required functionalities, modes,
and protocols.

Requirements

¶ An extension must pass NDIS Filter logo requirements.

¶ An extension must have a valid INF.

¶ An extension must make only NDIS, WDF, or WDM calls; any calls to other kernel mode

components are not allowed.

¶ An extension must support Hyper-V Live Migration.

¶ Don't break LM, Save/Restore, Export/Import

¶ Don't block saved data from another extension

¶ Don't block other extension interactions

¶ All traffic passing through a virtual switch coming from a VM, a host VNIC, external NIC, or

extension must not have headers modified by extensions. Exceptions from this requirement

include:

¶ Redirecting traffic to a network appliance

¶ Mutable IP header fields (as specified in RFC 4302 section 3.3.3.1.1.1 for IPv4 and section

3.3.3.1.2.1 for IPv6)

Windows Hardware Compatibility Program - 27

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ An unconfigured extension must not "break" connectivity between the host and external

network.

¶ A capture extension must not "break" connectivity between vSwitch ports.

¶ An extension must pass the following switch/port/NIC configuration OIDs down the stack of

an extension:

¶ OID_SWITCH_PARAMETERS

¶ OID_SWITCH_PORT_ARRAY

¶ OID_SWITCH_PORT_TEARDOWN

¶ OID_SWITCH_PORT_DELETE

¶ OID_SWITCH_NIC_ARRAY

¶ OID_SWITCH_NIC_CONNECT

¶ OID_SWITCH_NIC_DISCONNECT

¶ OID_SWITCH_NIC_DELETE

¶ OID_SWITCH_NIC_REQUEST

¶ An extension must pass the following policy/status OIDs that it does not consume down the

stack:

¶ OID_SWITCH_PORT_PROPERTY_ADD

¶ OID_SWITCH_PORT_PROPERTY_UPDATE

¶ OID_SWITCH_PORT_PROPERTY_DELETE

¶ OID_SWITCH_PROPERTY_ADD

¶ OID_SWITCH_PROPERTY_UPDATE

¶ OID_SWITCH_PROPERTY_DELETE

¶ OID_SWITCH_PORT_FEATURE_STATUS_QUERY

¶ OID_SWITCH_FEATURE_STATUS_QUERY

¶ An extension must pass the following policy OIDs down the stack:

¶ OID_SWITCH_PORT_PROPERTY_ENUM

Windows Hardware Compatibility Program - 28

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ OID_SWITCH_PROPERTY_ENUM

¶ An extension must pass the following up the stack:

¶ NDIS_SWITCH_NIC_STATUS_INDICATION

¶ A "capture" extension must not call any of the following functions:

Design Notes:

See the VM Switch Extensibility Specification.

Send comments about this topic to Microsoft

Filter.Driver.WindowsFilteringPlatform

In this topic:

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.AppContainers.SupportModernA

pplications

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.CleanUninstall

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.ConnectionProxying.NoDeadlock

s

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.FwpmFilters.MaintainOneTermin

ating

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.FwpmProviders.AssociateWithOb

jects

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.FwpmProviders.MaintainIdentifyi

ng

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.FwpmSublayers.UseOwnOrBuiltI

n

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.NetworkDiagnosticsFramework.H

elperClass

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.NoAccessViolations

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.NoTamperingWith3rdPartyObjec

ts

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.PacketInjection.NoDeadlocks

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Filter.Driver.vSwitchExtension%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 29

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.StreamInjection.NoStreamStarva

tion

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.SupportPowerManagedStates

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.WFPObjectACLs

¶ Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.Winsock

¶ Filter.Driver.WindowsFilteringPlatform.Firewall.DisableWindowsFirewallProperly

¶ Filter.Driver.WindowsFilteringPlatform.Firewall.NotOnlyPermitAllFilters

¶ Filter.Driver.WindowsFilteringPlatform.Firewall.Support5TupleExceptions

¶ Filter.Driver.WindowsFilteringPlatform.Firewall.SupportApplicationExceptions

¶ Filter.Driver.WindowsFilteringPlatform.Firewall.SupportMACAddressExceptions

¶ Filter.Driver.WindowsFilteringPlatform.Firewall.UseWindowsFilteringPlatform

¶ Filter.Driver.WindowsFilteringPlatform.NetworkingFundamental.SupportAddressResolution

¶ Filter.Driver.WindowsFilteringPlatform.NetworkingFundamental.SupportDynamicAddressing

¶ Filter.Driver.WindowsFilteringPlatform.NetworkingFundamental.SupportIPv4

¶ Filter.Driver.WindowsFilteringPlatform.NetworkingFundamental.SupportIPv6

¶ Filter.Driver.WindowsFilteringPlatform.NetworkingFundamental.SupportNameResolution

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.Support6to4

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportAutomaticUpdates

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportBasicWebsiteBrowsing

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportFileAndPrinterSharing

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportICMPErrorMessages

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportInternetStreaming

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportMediaExtenderStreaming

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportMobileBroadBand

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportPeerNameResolution

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportRemoteAssistance

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportRemoteDesktop

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportTeredo

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.SupportVirtualPrivateNetworking

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.vSwitch.InteropWithOtherExtensions

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.vSwitch.NoEgressModification

Windows Hardware Compatibility Program - 30

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.vSwitch.SupportLiveMigration

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.vSwitch.SupportRemoval

¶ Filter.Driver.WindowsFilteringPlatform.Scenario.vSwitch.SupportReordering

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.AppContainers.SupportMo
dernApplications

WFP-based products must not block App Container apps that are operating within their declared
network intentions by default, and should only block App Container apps when following specific
user/admin intention or protecting the system against a specific threat.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

WFP-based products must not block App Container apps that are operating within their declared
network intentions by default, and should only block App Container apps when following specific
user/admin intention or protecting the system against a specific threat.

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.CleanUninstall

WFP-based products must stop cleanly and clean up all running state upon uninstall.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

This is to ensure that host firewalls do not leave unused objects upon uninstall, thereby potentially
causing diagnostic issues if another separate host firewall is installed on the same PC.

The following WFP objects need to be cleaned up: Provider, providerContext, Filter, subLayer, or
callout.

In addition, additional installation requirements for applications (via the Software logo program)
must be met.

Design Notes:

Applications can use either an MSI, or another installer that meets this requirement to ensure a
satisfactory install/uninstall experience on a Windows® based PC.

The installation requirements for applications (in the Software Logo Program) are located in the
following link:

Windows Hardware Compatibility Program - 31

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

http://www.microsoft.com/downloads/details.aspx?FamilyID=27028822-B172-4CEC-91A3-
26B610A4DA79&displaylang=en

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.ConnectionProxying.NoDe
adlocks

WFP-based products that redirect or proxy at redirect layers (connect redirect), must use the new
proxying API so that other WFP-based products can determine that the connection has been proxied.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

WFP-based products which redirect or proxy at redirect layers (connect redirect), must use the new
proxy'ing API so that other WFP-based products can determine that the connection has been
proxy'ed.

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.FwpmFilters.MaintainOne
Terminating

WFP-based products must create and maintain at least one terminating FWPM_FILTER object.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

A terminating filter is one that returns a permit / block decision. It may exist as a static filter or within
a callout. The intent behind this requirement is to ensure that premium host firewalls perform at
least one permit or block decision and not simply maintain filters only for inspection purposes,
whereas basic host firewalls may do so through WFP or through other means such as TDI, NDIS, and
WinSock LSP filters.

Design Notes:

The definition for the FWPM_FILTER object can be found in the following URL:
http://go.microsoft.com/fwlink/p/?linkid=116902&clcid=0x409

http://www.microsoft.com/downloads/details.aspx?FamilyID=27028822-B172-4CEC-91A3-26B610A4DA79&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=27028822-B172-4CEC-91A3-26B610A4DA79&displaylang=en
http://go.microsoft.com/fwlink/p/?linkid=116902&clcid=0x409

Windows Hardware Compatibility Program - 32

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.FwpmProviders.Associate
WithObjects

WFP-based products must associate all of their provider contexts, filters, sublayers, and callouts with
their corresponding identifying provider object.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

For examples that illustrate the code behavior expected for various types of objects, please see
below:

Reference the name & product of the company within an identifying provider object:

 const PWSTR pCompanyName = L"Microsoft Corporation";

 const PWSTR pProductName = L"Windows Firewall";

 FWPM_PROVIDER0 myProvider;

 myProvider.displayData.name = pCompanyName;

 myProvider.displayData.description = pProductName;

Initialize the provider object:

 FWPM_PROVIDER_CONTEXT0 myProviderContext;

 FWPM_PROVIDER0 myProvider;

 myProviderContext.providerKey = &(myProvider.providerKey);

Initialize the subLayer object & associate it to your respective provider object:

 FWPM_SUBLAYER0 mySubLayer;

 FWPM_PROVIDER0 myProvider;

 mySubLayer.providerKey = &(myProvider.providerKey);

Initialize the callout object & associate it to your respective provider object:

 FWPM_CALLOUT0 myCallout;

 FWPM_PROVIDER0 myProvider;

 myCallout.providerKey = &(myProvider.providerKey);

Initialize the filter object & associate it to your respective provider object:

 FWPM_FILTER0 myFilter;

 FWPM_PROVIDER0 myProvider;

 myFilter.providerKey = &(myProvider.providerKey);

Windows Hardware Compatibility Program - 33

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.FwpmProviders.MaintainI
dentifying

WFP-based products must create and maintain at least one identifying FWPM_PROVIDER provider
object.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

An "identifying provider object" must reference the name & product of the company as shown in the
example below.

FWPM_PROVIDER0

¶ All vendors must create and maintain at least 1 provider.

¶ The provider.displayData.Name must contain the name of the company.

¶ The provider.displayData.Description must contain the name of the product.

All objects created & "owned" by the vendor must reference only their provider(s):

 const PWSTR pCompanyName = L"Microsoft Corporation";

 const PWSTR pProductName = L"Windows Firewall";

 FWPM_PROVIDER0 myProvider;

 myProvider.displayData.name = pCompanyName;

 myProvider.displayData.description = pProductName;

Design Notes:

The definition of the FWPM_PROVIDER object can be found in the following URL:

http://go.microsoft.com/fwlink/p/?linkid=116844&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.FwpmSublayers.UseOwn
OrBuiltIn

WFP-based products must use only their own sublayer or one of the built-in sublayers.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

http://go.microsoft.com/fwlink/p/?linkid=116844&clcid=0x409

Windows Hardware Compatibility Program - 34

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

A host firewall's own sublayer may be used to ensure that its filters must not be bypassed by a higher
weight filter from another host firewall. In addition, a host firewall must not override filters
belonging to another host firewall.

Design Notes:

The definition for the FWPM_SUBLAYERobject can be found in the following URL:

http://go.microsoft.com/fwlink/p/?linkid=116845&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.NetworkDiagnosticsFrame
work.HelperClass

WFP-based products must include a Network Diagnostics Framework (NDF) helper class that extends
the Filtering Platform helper class (FPHC).

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

The Windows Filtering Platform (WFP) includes a Network Diagnostics Framework (NDF) helper class,
called the Filtering Platform helper class (FPHC). FPHC can help to identify the root causes of
connectivity issues caused by WFP. A host firewall can invoke its own NDF helper class. FPHC
extensibility allows these third-party helper classes to be invoked during diagnostics.

FPHC can identify WFP as the cause of a connectivity issue. If available, FPHC can also identify the
provider that created the filter that is blocking network traffic. FPHC passes this information to NDF,
which in turn can then notify the user that WFP is causing the connectivity problem and give the
name of the provider blocking traffic.

However, the FPHC cannot suggest a corrective action to the user, nor can it provide the reason that
the filter is blocking traffic to the user. Only an FPHC extension can perform those tasks.

Host firewalls must be able to successfully diagnose the inbound/outbound connection failures
caused by the host firewall, and provide an appropriate response to the end-user based on the
diagnosis. (eg. Repair mechanism, message explaining to the user the reason why the connection
failed, etc).

Design Notes:

More information regarding NDF and FPHC can be found in the following links:

NDF : http:// go.microsoft.com/fwlink/p/?linkid=125463&clcid=0x409

FPHC : http://go.microsoft.com/fwlink/p/?linkid=125464&clcid=0x409

http://go.microsoft.com/fwlink/p/?linkid=116845&clcid=0x409
http://go.microsoft.com/fwlink/p/?linkid=125463&clcid=0x409
http://go.microsoft.com/fwlink/p/?linkid=125464&clcid=0x409

Windows Hardware Compatibility Program - 35

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.NoAccessViolations

WFP-based products must not be the resulting cause of any access violation under high load or
during driver load/unload.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

WFP-based products must not be the resulting cause of any access violation under high load or
during driver load/unload (while under network load or not).

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.NoTamperingWith3rdPart
yObjects

WFP-based products must not attempt to remove or alter another WFP-based product's WFP objects
and built-in objects.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

This ensures interoperability between multiple host firewalls' WFP objects within the operating
system.

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.PacketInjection.NoDeadlo
cks

WFP-based products must not continually modify network packets that have already been modified
and re-injected, so as to create potential deadlocks.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Windows Hardware Compatibility Program - 36

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Firewalls may use callouts to modify and re-inject network packets, when filtering at any layer. One
or many host firewalls may be present on the same system. When there is only one host firewall is
present on the system, continually modifying & re-injecting the same packets may result in reduced
performance and is to be avoided. When multiple host firewalls (with callouts) are present on the
system, the same network packet(s) may continually be modified by multiple callouts. When a host
firewall continually modifies and reinjects the same packet, it may result in the network packet never
getting processed and could potentially create a deadlock, which is to be avoided.

Host firewalls must not modify and reinject the same network packet more than 2 times per layer. If
such a situation occurs, host firewalls may choose to let the packet go through, or drop the network
packet.

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.StreamInjection.NoStream
Starvation

WFP-based product callouts at FWPM_LAYER_STREAM must not starve the data throughput.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

To "Not Starve" means that Stream layer callout indications should not be pended to queue up more
than 8 MB of data.

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.SupportPowerManagedSt
ates

WFP-based products must ensure network connectivity upon recovering from power managed
states.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Tests must be run on a machine that supports all the power states (standby, hibernate, hybrid,
shutdown, restart). Host Firewalls allow the system to enter into and recover from the above
mentioned power managed states. Upon resuming from those particular power managed states,
requirements from WFP should be met.

Windows Hardware Compatibility Program - 37

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Firewalls should never pend packets such that a power state change refuses to work due to the
pended packets.

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.WFPObjectACLs

WFP-based products must ACL all of their objects in a way that any other WFP-based product can at
least enumerate those objects using the corresponding WFP enumeration APIs.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

WFP-based products must ACL all of their objects in a way that any other WFP-based product can at
least enumerate those objects using the corresponding WFP enumeration APIs.

This is to make sure that all WFP objects on the system can be enumerated by any Host firewall or
application for diagnostic purposes.

Design Notes:

As an example, Filter objects must be able to be enumerated by the FwpmFilterEnum function
documented in the following URL:

http://go.microsoft.com/fwlink/p/?linkid=116839&clcid=0x409

Similarly, enumeration functions for other objects (provider, sublayer etc) can be found in the
following URL: http://go.microsoft.com/fwlink/p/?linkid=116840&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.ArchitecturalDesign.Winsock

Kernel mode filter drivers are architected to maximize the reliability and functionality of Windows
Sockets, as well as interact accurately with the core components of the operating system.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Kernel mode filter drivers are architected to maximize the reliability and functionality of Windows
Sockets, as well as interact accurately with the core components of the operating system. Some
areas of particular interest are:

¶ Winsock

¶ Winsock API functionality

http://go.microsoft.com/fwlink/p/?linkid=116839&clcid=0x409
http://go.microsoft.com/fwlink/p/?linkid=116840&clcid=0x409

Windows Hardware Compatibility Program - 38

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Information about Winsock APIs can be found at:

http://msdn.microsoft.com/en-us/library/ms740673(VS.85).aspx

Filter.Driver.WindowsFilteringPlatform.Firewall.DisableWindowsFirewallProperly

Host firewalls must disable the Windows firewall using only the supported method.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Host firewalls are provided with the ability to selectively turn parts of Windows Firewall on or off.
These parts specify different types of rules (and subsequently filter sets), and may also be referred to
as categories. Filter sets that may be selectively turned off are Boot-Time Filters, Firewall Filters,
Connection Security Filters, and Stealth Filters.

The 'Register' interface is supported by the HNetCfg.FwProducts COM object. The put_DisplayName()
call must be used to fill in your product information.

Before turning off the firewall rules category, vendor firewalls must ensure that all filters must be
installed.

This requirement ensures better interoperability with Windows. In addition, if all installed host
firewalls on the system are uninstalled for any reason, Windows Firewall is aware of this, and will
automatically turn on the firewall filters, ensuring that the system is always protected.

The Connection Security filters need to remain enabled to keep Windows scenarios protected.
Specifically, the Connection Security filters ensure that the system supports communications that
require authentication and encryption.

Design Notes:

This requirement ensures that firewall vendors disable Windows Firewall per documented guidelines.

Filter.Driver.WindowsFilteringPlatform.Firewall.NotOnlyPermitAllFilters

Host firewalls must not have only "permit_all" filters.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Host firewalls must not circumvent the intent of the Windows Filtering Platform API tests, by simply
maintaining all 'permit_all' filters for all kinds of network traffic, which essentially is not meaningful
filtering of network traffic. This applies to both, static as well as callout filters. Similarly, Host firewalls

http://msdn.microsoft.com/en-us/library/ms740673(VS.85).aspx

Windows Hardware Compatibility Program - 39

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

must not maintain only 'block_all' filters. However, that will be addressed when testing for consumer
scenarios.

Filter.Driver.WindowsFilteringPlatform.Firewall.Support5TupleExceptions

All host based firewalls must be able to block/allow by 5-tuple parts (including port (ICMP type and
code, UDP and TCP) IP address, and protocol (e.g. UDP/TCP/ICMP)).

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

All host based firewalls must be able to block/allow by 5-tuple parts (including port (ICMP type and
code, UDP and TCP) IP address, protocol (e.g. UDP/TCP/ICMP)).

Filter.Driver.WindowsFilteringPlatform.Firewall.SupportApplicationExceptions

WFP-based products must support exceptions from corresponding applications.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

In addition to supporting scenarios based on applications within Windows® it is important to support
applications (installed by the home user), that are registered with the host firewall for filtering
purposes. Firewalls may use parameters such as path, ports, etc as basis to permit or block
application specific traffic. This scenario will need to work with native IPv4, native IPv6, 6to4, and
Teredo packets.

The word 'support' refers to the host firewall's capability to ensure exceptions from applications
work with the host firewall, if the application/user/network needs it. The host firewall must also have
properly configured objects such as filters, etc to support the required functionality, even though the
functionality may not be enabled by default in the UI.

Filter.Driver.WindowsFilteringPlatform.Firewall.SupportMACAddressExceptions

All host based firewalls that have filters in L2 (Native/Mac) layers must be able to Block or Allow by
MAC address.

Applies to Windows 10 x64

Windows Hardware Compatibility Program - 40

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

All host based firewalls that have filters in L2 (Native/Mac) layers must be able to Block or Allow by
MAC address.

Filter.Driver.WindowsFilteringPlatform.Firewall.UseWindowsFilteringPlatform

Firewalls must comply with Windows Filtering Platform based APIs for filtering network traffic on
home user solutions.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

There must be no TDI, NDIS, WinSock LSP filters present upon installation of the host firewall on the
PC. Only Windows Filtering Platform (WFP) based static filters / callouts must be used on home user
products.

Design Notes:

For more information on Windows Filtering Platform, please see the following link:
http://go.microsoft.com/fwlink/p/?linkid=116899&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.NetworkingFundamental.SupportAddressReso
lution

WFP-based products must support allowing for successful ARP and ICMP Neighbor Discovery
exchanges.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

WFP-based products must support ARP (for IPv4) and ICMP Neighbor Discovery (for IPv6) exchanges.

Firewalls allow the system to send out ARP and ICMP Neighbor Discovery requests and replies, as
well as receive ARP and ICMP Neighbor Discovery requests and replies.

http://go.microsoft.com/fwlink/p/?linkid=116899&clcid=0x409

Windows Hardware Compatibility Program - 41

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

The word 'support' refers to the host firewall's capability to make ARP work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

Host firewalls should allow the PC to send out ARP requests on behalf of another node rather than
only on behalf of itself, when ICS is running on the host.

As part of Internet Connection Sharing's (ICS) DHCP functionality, ICS DHCP can send out ARP
requests on behalf of another node in the subnet.

Filter.Driver.WindowsFilteringPlatform.NetworkingFundamental.SupportDynamicAddr
essing

WFP-based products support allowing for successful DHCP exchanges over both IPv4 and IPv6.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Host firewalls support allowing successful DHCP exchanges over both IPv4 and IPv6.

DHCP DISCOVER, DHCP REQUEST & DHCP INFORM packets can be transmitted over outbound UDP
source port 68 to destination port 67. DHCP OFFER & DHCP ACK & DHCP NACK packets can be
received over inbound UDP source port 67 to destination port 68. DHCPv6 packets can be
transmitted over outbound UDP source port 546 to destination port 547. DHCPv6 packets can be
received over Inbound UDP Source Port 547 to destination port 546.

The word 'support' refers to the host firewall's capability to allow successful DHCP exchanges, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc. to support the required functionality, even though the functionality may not be
enabled by default in the UI.

Design Notes:

Details can be found in the following URL:
http://go.microsoft.com/fwlink/p/?linkid=116834&clcid=0x409

Host firewalls should allow DHCP inbound and outbound as the server over the wireless interface
when a service like ICS is running on the host.

Internet Connection Sharing (ICS) acts as a DHCP server and expects to receive incoming DHCP
clients.

DHCP DISCOVER, DHCP REQUEST & DHCP INFORM packets can be received over Inbound UDP source
port 68 to destination port 67.

http://go.microsoft.com/fwlink/p/?linkid=116834&clcid=0x409

Windows Hardware Compatibility Program - 42

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

DHCP OFFER & DHCP ACK & DHCP NACK packets can be transmitted over outbound UDP source port
67 to destination port 68.

Filter.Driver.WindowsFilteringPlatform.NetworkingFundamental.SupportIPv4

WFP-based products must support IPv4 traffic.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

This is to ensure that consumer host firewalls or other filtering components do not cause the loss of
basic IPv4 connectivity on the PC.

The word 'support' refers to the host firewall's capability to make IPv4 work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

More information about IPv4, RFCs can be found in the following link:
http://go.microsoft.com/fwlink/p/?linkid=116835&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.NetworkingFundamental.SupportIPv6

WFP-based products must support IPv6 traffic.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Windows® has IPv6 enabled by default. Host firewalls should not break native IPv6 connectivity (and
therefore, Windows scenarios based on IPv6) for customers.

The word 'support' refers to the host firewall's capability to make IPv6 work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

More information about IPv6 can be found in the following link:
http://go.microsoft.com/fwlink/p/?linkid=116832&clcid=0x409

http://go.microsoft.com/fwlink/p/?linkid=116835&clcid=0x409
http://go.microsoft.com/fwlink/p/?linkid=116832&clcid=0x409

Windows Hardware Compatibility Program - 43

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Filter.Driver.WindowsFilteringPlatform.NetworkingFundamental.SupportNameResolut
ion

WFP-based products must support allowing for successful DNS client queries.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

DNS QUERY packet can be sent out over [Outbound UDP Destination Port 53 (Domain Name Server)]
and DNS QUERY RESPONSE packet to be received over [Inbound UDP Source Port 53 (Domain Name
Server)]. Host firewalls should allow successful DNS client queries over both IPv4 and IPv6.

The word 'support' refers to the host firewall's capability to allow successful DNS client queries, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

More information about DNS, RFCs can be found in the following link:
http://go.microsoft.com/fwlink/p/?linkid=116835&clcid=0x409

Host firewalls should allow this type of DNS traffic (Host as a server) over the wireless interface when
a service like ICS is running on the host.

This requirement applies to Internet Connection Sharing that acts as a DNS server (proxy) and
expects receiving incoming DNS requests from clients on destination UDP port 53, and respond to
the DNS client with DNS response with destination UDP port 53.

Filter.Driver.WindowsFilteringPlatform.Scenario.Support6to4

WFP-based products must support 6to4.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

In certain markets, 6to4 technologies may help certain customers move to IPv6 connectivity. The
following guidelines may help meet this requirement:

¶ Host firewalls allow for the system to send and receive IPv6 packets over IPv4 protocol 41.

The word 'support' refers to the host firewall's capability to 6to4 work, if the
application/user/network needs it. The host firewall must also have properly configured objects such

http://go.microsoft.com/fwlink/p/?linkid=116835&clcid=0x409

Windows Hardware Compatibility Program - 44

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

Please refer to the following article below for further information on 6to4:

http://go.microsoft.com/fwlink/p/?linkid=116837&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportAutomaticUpdates

WFP-based products must support Automatic Updates in Windows.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

This is related to Automatic Updates / Windows Update (WU), which is a key scenario through which
important patches are installed on your PC to keep it up to date. The following guideline may help
meet this requirement:

¶ Host firewalls allow outbound TCP connections to destination ports 80 & 443.

The word 'support' refers to the host firewall's capability to make Automatic Updates work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

For more information on Windows Updates/ Automatic Updates, please see the following link:
http://go.microsoft.com/fwlink/p/?linkid=116898&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportBasicWebsiteBrowsing

WFP-based products must support basic internet browsing experiences.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

This is to ensure that basic internet browsing experiences are supported upon installation of a host
firewall on a Windows® based computer.

http://go.microsoft.com/fwlink/p/?linkid=116837&clcid=0x409
http://go.microsoft.com/fwlink/p/?linkid=116898&clcid=0x409

Windows Hardware Compatibility Program - 45

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Host firewalls must allow TCP packets over Ports 80 and 443 to support this scenario. This scenario
must work with native IPv4, native IPv6, 6to4, and Teredo packets.

The word 'support' refers to the host firewall's capability to ensure a successful internet browsing
experience, if the application/user/network needs it. The host firewall must also have properly
configured objects such as filters, etc to support the required functionality, even though the
functionality may not be enabled by default in the UI.

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportFileAndPrinterSharing

WFP-based products must support file and printer sharing.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

This is to ensure that home users will be able to share content to and from other PCs inside of their
home network, in addition to printing content on shared printers.

 Host firewalls must allow UDP packets specific to protocol 17 over Ports 137 / 138, and TCP packets
specific to protocol 6 over ports 139/445. This scenario must work with native IPv4, native IPv6, 6to4,
and Teredo packets.

TCP packets should be allowed over ports 5357/5358 & UDP packets should be allowed over port
3702. This scenario should work with native IPv4, native IPv6, 6to4 and Teredo packets.

The word 'support' refers to the host firewall's capability to make file and printer sharing work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

Please refer to the following link for more information:

 http://go.microsoft.com/fwlink/p/?linkid=116838&clcid=0x409

Please refer to the following documents for more information:

¶ HomeGroup Firewall Requirements: http://technet.microsoft.com/en-

us/appcompat/default.aspx

¶ Network Location Dialog: http://technet.microsoft.com/en-us/appcompat/default.aspx

¶ PNRP: http://technet.microsoft.com/en-us/appcompat/default.aspx

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportICMPErrorMessages

WFP-based products must support ICMP error messages and discovery functions

http://go.microsoft.com/fwlink/p/?linkid=116838&clcid=0x409
http://technet.microsoft.com/en-us/appcompat/default.aspx
http://technet.microsoft.com/en-us/appcompat/default.aspx
http://technet.microsoft.com/en-us/appcompat/default.aspx
http://technet.microsoft.com/en-us/appcompat/default.aspx

Windows Hardware Compatibility Program - 46

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

This is to ensure that host firewalls support ICMP error messages (per IETF RFCs 4890 and RFC 2979),
for inbound/outbound packets that must not be dropped. Important discovery functions must also
be supported. The specific error messages that need to be supported for both ICMPv4 and ICMPv6
are: Destination Unreachable, Time Exceeded and Parameter Problem. In addition, for ICMPv6,
Packet too big, Router solicitation, Neighbor solicitation, Router advertisement, and neighbor
advertisement discovery functions must be supported.

The word 'support' refers to the host firewall's capability to make ICMP work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

For more information, please see http://go.microsoft.com/fwlink/p/?linkid=116835&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportInternetStreaming

WFP-based products must support Internet streaming and Media sharing for media player network
sharing services.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

This is related to Automatic Updates / Windows Update (WU), which is a key scenario through which
important patches are installed on your PC to keep it up to date. The following guidelines may help
meet this requirement:

Host firewalls allow outbound TCP connections to destination ports 80 & 443.

The word 'support' refers to the host firewall's capability to make Automatic Updates work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

For more information on Windows Updates/ Automatic Updates, please see the following link:
http://go.microsoft.com/fwlink/p/?linkid=116898&clcid=0x409

http://go.microsoft.com/fwlink/p/?linkid=116835&clcid=0x409
http://go.microsoft.com/fwlink/p/?linkid=116898&clcid=0x409

Windows Hardware Compatibility Program - 47

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportMediaExtenderStreaming

WFP-based products must support media streaming scenarios based on extender technologies.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Extender technology is built into home entertainment devices such as TVs, DVD players, and cool,
quiet components that allow you to keep your PC where it makes sense and use it as a "hub" to
provide your digital entertainment to TVs throughout your house. These devices are called extender
devices.

For example: With the new Extenders for Windows Media Center, you can stream the digital media
you have on your Windows Media Center PC in as many as five rooms in your house. Home-users
may access the live and recorded TV, music, movies, videos, sports, Internet TV and other online
content on Windows® PCs through wired or wireless home networks. Windows Media Center
Extenders use network ports to communicate with Windows PCs. The following exceptions tabled
below may be useful in meeting this requirement:

Media Center Extender SPECIFIC

Binary Port Direction Scope

svchost.exe (ssdpsrv) UDP 1900 Inbound Local

Subnet

svchost.exe (termservice) TCP 3390 Inbound Local

Subnet

svchost.exe (QWave) TCP 2177 Outbound,

Inbound

Local

Subnet

svchost.exe (QWave) UDP 2177 Outbound,

Inbound

Local

Subnet

System TCP 10244 Outbound,

Inbound

Local

Subnet

ehshell.exe TCP 554 Outbound,

Inbound

Local

Subnet

Windows Hardware Compatibility Program - 48

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

ehshell.exe UDP 5004, 5005 Outbound,

Inbound

Local

Subnet

ehshell.exe TCP 8554 -8558 Outbound,

Inbound

Local

Subnet

ehshell.exe UDP 50004 -

50013

Outbound,

Inbound

Local

Subnet

ehshell.exe UDP 7777 -7781 Outbound,

Inbound

Local

Subnet

mcrmgr.exe random Outbound Internet

mc2prov.exe random Outbound Internet

Svchost.exe (mcs2svc) random Outbound Local

Subnet

Media Center Binaries/Ports

ehrecvr.exe random Outbound Internet

ehrec.exe random Outbound Internet

ehexthost.exe random Outbound,

Inbound

Internet

mcupdate.exe random Outbound Internet

Digital Cable Receiver Device

(OCUR)

ehprivjob.exe UDP 5001 -5006 Inbound Local

Subnet

svchost.exe UDP 1900 Outbound,

Inbound

Local

Subnet

System TCP 2869 Outbound,

Inbound

Local

Subnet

Windows Hardware Compatibility Program - 49

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

ehprivjob.exe TCP 554 Outbound Local

Subnet

ehprivjob.exe UDP 5757 -5772 Outbound Local

Subnet

The word 'support' refers to the host firewall's capability to make internet streaming & media sharing
for media player network sharing services, work, if the application/user/network needs it. The host
firewall must also have properly configured objects such as filters, etc to support the required
functionality, even though the functionality may not be enabled by default in the UI.

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportMobileBroadBand

WFP-based products must allow mobile broadband devices that are compliant with Windows mobile
broadband driver model to function correctly.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

WFP-based products must allow mobile broadband devices that are compliant with the Windows
mobile broadband driver model to function correctly.

This is to ensure that host firewall functionality does not block the mobile broadband connectivity
and the firewall functionality works with MB devices.

Windows provides native support for mobile broadband (MB) data cards & embedded modules to
work with Windows. The MB devices need to implement their driver as per Windows mobile
broadband driver model. The MB driver model defines how the devices should be exposed to
Windows and network packet format in which MB devices should exchange data between network
and system.

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportPeerNameResolution

WFP-based products must support Peer Name Resolution Protocol and the Peer-to-Peer Grouping
Protocol.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Windows Hardware Compatibility Program - 50

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

Host firewalls support the Peer Name Resolution Protocol (PNRP) and the Peer-to-Peer Grouping
Protocol, which are required by some Peer-to-Peer applications. The Peer Name Resolution Protocol
provides secure, serverless name resolution, and the Peer-to-Peer Grouping Protocol provides
secure, reliable multi-party communication. The following guidelines may be useful in meeting this
requirement:

¶ Host firewalls support native IPv6 (NETWORK-0244) as well as Teredo (NETWORK-0248) and

IPv6 packets to IPv4 protocol 41 (^to4) (NETWORK-0249).

¶ Host firewalls can allow for the system to send outbound, and receive inbound, UDP packets

over port 3540.

¶ Host firewalls can allow for the system to send outbound, and receive inbound, TCP packets

over port 3587.

The word 'support' refers to the host firewall's capability to allow successful DHCP exchanges, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

Please refer to the following documents for more information, these documents:

¶ HomeGroup firewall requirements: http://technet.microsoft.com/en-

us/appcompat/default.aspx

¶ Network location dialog: http://technet.microsoft.com/en-us/appcompat/default.aspx

¶ PNRP: http://technet.microsoft.com/en-us/appcompat/default.aspx

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportRemoteAssistance

WFP-based products must support Remote Assistance scenarios.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

The Remote Assistance scenario is used by a helper to connect to a computer and to show the user a
solution to the problem. The following guidelines may help meet this requirement:

http://technet.microsoft.com/en-us/appcompat/default.aspx
http://technet.microsoft.com/en-us/appcompat/default.aspx
http://technet.microsoft.com/en-us/appcompat/default.aspx
http://technet.microsoft.com/en-us/appcompat/default.aspx

Windows Hardware Compatibility Program - 51

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Host firewalls allow the computer to be reached by native IPv4, native IPv6, Teredo, and 6to4 (pass
the corresponding tests) and also allow traffic from the Remote Assistance application within
Windows® (msra.exe) through the firewall.

The word 'support' refers to the host firewall's capability to make Remote Assistance work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

For information on how Remote Assistance works in general, please see the article below:

http://go.microsoft.com/fwlink/p/?linkid=116842&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportRemoteDesktop

WFP-based products must support remote desktop.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Remote Desktop Connection is a technology that allows you to connect to a remote computer in a
different location. Remote desktop is a key Windows® scenario that would be relevant for consumers
with multiple PCs at home trying to access content that exists on one PC, from another PC.

The following guideline may help meet this requirement:

Host firewalls allow inbound TCP packets over Destination Port 3389 to support this scenario. This
scenario will need to work with native IPv4, native IPv6, 6to4, and Teredo packets.

The word 'support' refers to the host firewall's capability to make remote desktop work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

For more information on remote desktop, please see the article below:

http://go.microsoft.com/fwlink/p/?linkid=116841&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportTeredo

WFP-based products must support Teredo.

Applies to Windows 10 x64

Windows 10 x86

http://go.microsoft.com/fwlink/p/?linkid=116842&clcid=0x409
http://go.microsoft.com/fwlink/p/?linkid=116841&clcid=0x409

Windows Hardware Compatibility Program - 52

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows Server 2016 Technical Preview x64

Description

Teredo may be used as a connectivity mechanism to support certain Windows scenarios such as
remote assistance, instant messaging and others. Hence, preserving Teredo connectivity is critical to
supporting Windows consumer scenarios.

For this requirement, the following must be met:

¶ Host firewalls allow DNS resolution of teredo.ipv6.microsoft.com.

¶ To allow client to Teredo server communication, host firewalls must allow for the system to

send outbound UDP/IPv4 packets to UDP port 3544.

¶ To allow Teredo connectivity, host firewalls must allow inbound and outbound UDP/IPv4

traffic over the Teredo client system ports. These ports can be obtained using the

FWPMSystemPortsGet notification to determine the system port numbers used for

communication using the Teredo interface.

¶ Host firewalls support ICMP error messages & discovery functions (NETWORK-0250 logo

requirement).

¶ Host firewalls allow UPnP framework packets over UDP port 1900, and UPnP

frameworkpackets over TCP port 2869.

The word 'support' refers to the host firewall's capability to make Teredo work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

Please refer to the following article below for further information on Teredo:

http://go.microsoft.com/fwlink/p/?linkid=116836&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.Scenario.SupportVirtualPrivateNetworking

WFP-based products must support VPN scenarios in Windows.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

http://go.microsoft.com/fwlink/p/?linkid=116836&clcid=0x409

Windows Hardware Compatibility Program - 53

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

The following protocols and ports must be allowed:

¶ IP protocol 50: Allow ESP traffic

¶ IP protocol 51: Allow AH traffic

¶ UDP Port 500 / 4500: Allow ISAKMP traffic

¶ TCP / UDP Port 88: Allow Kerberos traffic

This ensures that firewalls support IPsec scenarios, such as IPsec VPN, which are used on client PCs to
connect securely over the internet.

In addition, host firewalls should allow successful IPsec communication over both IPv4 and IPv6. Host
firewalls should also allow UDP packets over port 1701, and TCP packets over port 443 to support
this scenario. It is also recommended that host firewalls allow TCP packets specific over port 1723. IP
protocol 47 based packets should also be allowed by the host firewall.

The word 'support' refers to the host firewall's capability to make the VPN scenarios work, if the
application/user/network needs it. The host firewall must also have properly configured objects such
as filters, etc to support the required functionality, even though the functionality may not be enabled
by default in the UI.

Design Notes:

Please refer to the following article for further information:
http://go.microsoft.com/fwlink/p/?linkid=116843&clcid=0x409

Filter.Driver.WindowsFilteringPlatform.Scenario.vSwitch.InteropWithOtherExtensions

WFP must not block traffic from another vSwitch extension (WFP or LWF) by default, and should only
do so when following specific user/admin intention or protecting the system against a specific threat.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

WFP must not block traffic from another vSwitch extension (WFP or LWF) by default, and should only
do so when following specific user/admin intention or protecting the system against a specific threat.

Filter.Driver.WindowsFilteringPlatform.Scenario.vSwitch.NoEgressModification

WFP-based products that operate in the vSwitch must not modify packets on the Egress path of the
vSwitch.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

http://go.microsoft.com/fwlink/p/?linkid=116843&clcid=0x409

Windows Hardware Compatibility Program - 54

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

WFP-based products that operate in the vSwitch must not modify packets on the Egress path of the
vSwitch.

Filter.Driver.WindowsFilteringPlatform.Scenario.vSwitch.SupportLiveMigration

WFP-based products that operate in the vSwitch must present a minimal MOF for Live Migration.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

WFP-based products that operate in the vSwitch must present a minimal MOF for Live Migration. In
the MOF, it must declare itself Logo compliant for Live Migration and allow itself to be migrated or
not block migration by default. The total time for migrations for Live Migration cannot be longer than
2 seconds.

Filter.Driver.WindowsFilteringPlatform.Scenario.vSwitch.SupportRemoval

WFP-based products that operate in the vSwitch must be allowed to be removed when the admin
disabled WFP for the vSwitch instance.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

WFP-based products that operate in the vSwitch must be allowed to be removed when the admin
disabled WFP for the vSwitch instance.

Filter.Driver.WindowsFilteringPlatform.Scenario.vSwitch.SupportReordering

WFP-based products that operate in the vSwitch must respond to WFP vmSwitch reorder events.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Windows Hardware Compatibility Program - 55

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

WFP-based products that operate in the vmSwitch must respond to WFP vmSwitch reorder events.

Send comments about this topic to Microsoft

Components and peripherals

In this section

¶ Device.Audio.APO

¶ Device.Audio.Base

¶ Device.Audio.HardwareAudioProcessing

¶ Device.Audio.HDAudio

¶ Device.Audio.USB

¶ Device.BusController.Bluetooth.Base

¶ Device.BusController.Bluetooth.NonUSB

¶ Device.BusController.Bluetooth.USB

¶ Device.BusController.I2C

¶ Device.BusController.NFC.NearFieldProximity

¶ Device.BusController.NFC.RadioManagement

¶ Device.BusController.NFC.SecureElement.UICC

¶ Device.BusController.NFC.SmartCard

¶ Device.BusController.SdioController

¶ Device.BusController.UART

¶ Device.BusController.UsbController

¶ Device.Cluster

¶ Device.Connectivity.BluetoothDevices

¶ Device.Connectivity.Network.VerticalPairing

¶ Device.Connectivity.PciConnected

¶ Device.Connectivity.Server

¶ Device.Connectivity.UsbDevices

¶ Device.Connectivity.UsbHub

¶ Device.Connectivity.WSD

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Filter.Driver.WindowsFilteringPlatform%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 56

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.DevFund.CDA

¶ Device.Devfund.DeviceGuard

¶ Device.DevFund.DriverFramework.KMDF

¶ Device.DevFund.DriverFramework.UMDF

¶ Device.DevFund.Firmware

¶ Device.DevFund.INF

¶ Device.DevFund.Memory

¶ Device.DevFund.Reliability

¶ Device.DevFund.Reliability.3rdParty

¶ Device.DevFund.Reliability.Interrupts

¶ Device.DevFund.ReliabilityDisk

¶ Device.DevFund.Security

¶ Device.DevFund.Server

¶ Device.DevFund.Server.PCI

¶ Device.DevFund.Server.StaticTools

¶ Device.Display.Monitor

¶ Device.Graphics.AdapterBase

¶ Device.Graphics.AdapterRender

¶ Device.Graphics.AdapterRender.D3D101Core

¶ Device.Graphics.AdapterRender.D3D101WDDM11

¶ Device.Graphics.AdapterRender.D3D101WDDM12

¶ Device.Graphics.AdapterRender.D3D10ComputeShader

¶ Device.Graphics.AdapterRender.D3D10Core

¶ Device.Graphics.AdapterRender.D3D10D3D11LogicOps

¶ Device.Graphics.AdapterRender.D3D10Multisampling4X

¶ Device.Graphics.AdapterRender.D3D10Multisampling8X

¶ Device.Graphics.AdapterRender.D3D10WDDM11

¶ Device.Graphics.AdapterRender.D3D10WDDM12

¶ Device.Graphics.AdapterRender.D3D111Core

¶ Device.Graphics.AdapterRender.D3D11ASTC

¶ Device.Graphics.AdapterRender.D3D11ConservativeRasterization

Windows Hardware Compatibility Program - 57

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.Graphics.AdapterRender.D3D11Core

¶ Device.Graphics.AdapterRender.D3D11DoublePrecisionShader

¶ Device.Graphics.AdapterRender.D3D11DriverCommandLists

¶ Device.Graphics.AdapterRender.D3D11DriverConcurrentObjectCreation

¶ Device.Graphics.AdapterRender.D3D11Level9WDDM12

¶ Device.Graphics.AdapterRender.D3D11Level9WDDM13

¶ Device.Graphics.AdapterRender.D3D11PartialPrecision

¶ Device.Graphics.AdapterRender.D3D11RasterizerOrderedViews

¶ Device.Graphics.AdapterRender.D3D11StencilReference

¶ Device.Graphics.AdapterRender.D3D11TypedUAVLoad

¶ Device.Graphics.AdapterRender.D3D11WDDM12

¶ Device.Graphics.AdapterRender.D3D11WDDM12DoublePrecisionShader

¶ Device.Graphics.AdapterRender.D3D11WDDM13

¶ Device.Graphics.AdapterRender.D3D11WDDM20

¶ Device.Graphics.AdapterRender.D3D12ASTC

¶ Device.Graphics.AdapterRender.D3D12ConservativeRasterization

¶ Device.Graphics.AdapterRender.D3D12Core

¶ Device.Graphics.AdapterRender.D3D12Multiadapter

¶ Device.Graphics.AdapterRender.D3D12RasterizerOrderedViews

¶ Device.Graphics.AdapterRender.D3D12StencilReference

¶ Device.Graphics.AdapterRender.D3D12TypedUAVLoad

¶ Device.Graphics.AdapterRender.D312VolumeTiledResources

¶ Device.Graphics.WDDM

¶ Device.Graphics.WDDM.Display

¶ Device.Graphics.WDDM.Display.HDMIorDPDCNs

¶ Device.Graphics.WDDM.DisplayRender

¶ Device.Graphics.WDDM.Render

¶ Device.Graphics.WDDM11

¶ Device.Graphics.WDDM11.Display

¶ Device.Graphics.WDDM11.DisplayRender

¶ Device.Graphics.WDDM11.DisplayRender.D3D9Overlay

Windows Hardware Compatibility Program - 58

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.Graphics.WDDM11.Render

¶ Device.Graphics.WDDM11.Render.DXVAHD

¶ Device.Graphics.WDDM12

¶ Device.Graphics.WDDM12.Display

¶ Device.Graphics.WDDM12.DisplayOnly

¶ Device.Graphics.WDDM12.DisplayRender

¶ Device.Graphics.WDDM12.DisplayRender.ProcessingStereoscopicVideoContent

¶ Device.Graphics.WDDM12.DisplayRender.RuntimePowerMgmt

¶ Device.Graphics.WDDM12.Render

¶ Device.Graphics.WDDM12.RenderOnly

¶ Device.Graphics.WDDM12.StandbyHibernateFlags

¶ Device.Graphics.WDDM13

¶ Device.Graphics.WDDM13.DisplayRender

¶ Device.Graphics.WDDM13.DisplayRender.CoolingInterface

¶ Device.Graphics.WDDM13.DisplayRender.WirelessDisplay

¶ Device.Graphics.WDDM13.EnhancedPowerManagement

¶ Device.Graphics.WDDM13.Render

¶ Device.Graphics.WDDM20

¶ Device.Graphics.WDDM20.Core

¶ Device.Graphics.WDDM20.Display.VirtualModeSupport

¶ Device.Graphics.WDDM20.DisplayRender

¶ Device.Imaging.Printer.Base

¶ Device.Imaging.Printer.Mobile

¶ Device.Imaging.Printer.Mobile.WSD20

¶ Device.Imaging.Printer.OXPS

¶ Device.Imaging.Printer.USB

¶ Device.Imaging.Printer.WSD

¶ Device.Imaging.Printer.XPS

¶ Device.Imaging.Scanner.Base

¶ Device.Imaging.Scanner.WSD

¶ Device.Input.Digitizer.Base

Windows Hardware Compatibility Program - 59

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.Input.Digitizer.Pen

¶ Device.Input.Digitizer.PrecisionTouchpad

¶ Device.Input.Digitizer.Touch

¶ Device.Input.FingerPrintReader

¶ Device.Input.HID

¶ Device.Input.Keyboard

¶ Device.Input.Location

¶ Device.Input.PointDraw

¶ Device.Input.SmartCardMiniDriver

¶ Device.Input.SmartCardReader

¶ Device.Network.DevFund

¶ Device.Network.LAN

¶ Device.Network.LAN.Base

¶ Device.Network.LAN.ChecksumOffload

¶ Device.Network.LAN.CS

¶ Device.Network.LAN.DCB

¶ Device.Network.LAN.GRE

¶ Device.Network.LAN.IPsec

¶ Device.Network.LAN.KRDMA

¶ Device.Network.LAN.LargeSendOffload

¶ Device.Network.LAN.MTUSize

¶ Device.Network.LAN.PM

¶ Device.Network.LAN.RSC

¶ Device.Network.LAN.RSS

¶ Device.Network.LAN.SRIOV

¶ Device.Network.LAN.SRIOV.VF

¶ Device.Network.LAN.TCPChimney

¶ Device.Network.LAN.VMQ

¶ Device.Network.LAN.VXLAN

¶ Device.Network.MobileBroadband.CDMA

¶ Device.Network.MobileBroadband.FirmwareUpdater

Windows Hardware Compatibility Program - 60

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.Network.MobileBroadband.GSM

¶ Device.Network.Switch.Manageability

¶ Device.Network.WLAN

¶ Device.Network.WLAN.SupportConnectionToAP

¶ Device.Network.WLAN.SupportDot11W

¶ Device.Network.WLAN.SupportFIPS

¶ Device.Network.WLAN.SupportHostedNetwork

¶ Device.Network.WLAN.SupportHotspot2Dot0

¶ Device.Network.WLAN.SupportMACAddressRandomization

¶ Device.Network.WLAN.SupportWakeFromLowPower

¶ Device.Network.WLAN.SupportWiFiDirect

¶ Device.Network.WLAN.SupportWiFiDirectServices

¶ Device.Portable.Core

¶ Device.Portable.DigitalCamera

¶ Device.Portable.DigitalVideoCamera

¶ Device.Portable.MediaPlayer

¶ Device.Portable.MobilePhone

¶ Device.Storage.Controller

¶ Device.Storage.Controller.Ata

¶ Device.Storage.Controller.Boot

¶ Device.Storage.Controller.Fc

¶ Device.Storage.Controller.Fc.NPIV

¶ Device.Storage.Controller.Fcoe

¶ Device.Storage.Controller.Flush

¶ Device.Storage.Controller.Iscsi

¶ Device.Storage.Controller.Iscsi.iSCSIBootComponent

¶ Device.Storage.Controller.Optical

¶ Device.Storage.Controller.PassThroughSupport

¶ Device.Storage.Controller.Raid

¶ Device.Storage.Controller.Raid.ContinuousAvailability

¶ Device.Storage.Controller.Sas

Windows Hardware Compatibility Program - 61

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.Storage.Controller.Sata

¶ Device.Storage.Controller.SD

¶ Device.Storage.ControllerDrive.NVMe

¶ Device.Storage.Enclosure

¶ Device.Storage.Hd

¶ Device.Storage.Hd.1394

¶ Device.Storage.Hd.Alua

¶ Device.Storage.Hd.Ata

¶ Device.Storage.Hd.AtaProtocol

¶ Device.Storage.Hd.DataVerification

¶ Device.Storage.Hd.Ehdd

¶ Device.Storage.Hd.EMMC

¶ Device.Storage.Hd.EnhancedStorage

¶ Device.Storage.Hd.FibreChannel

¶ Device.Storage.Hd.Flush

¶ Device.Storage.Hd.Iscsi

¶ Device.Storage.Hd.Mpio

¶ Device.Storage.Hd.MultipleAccess

¶ Device.Storage.Hd.MultipleAccess.PersistentReservation

¶ Device.Storage.Hd.OffloadedDataTransfer

¶ Device.Storage.Hd.PersistentReservation

¶ Device.Storage.Hd.PortAssociation

¶ Device.Storage.Hd.RaidArray

¶ Device.Storage.Hd.ReadZeroOnTrimUnmap

¶ Device.Storage.Hd.RemovableMedia

¶ Device.Storage.Hd.Sas

¶ Device.Storage.Hd.Sata

¶ Device.Storage.Hd.Sata.HybridInformation

¶ Device.Storage.Hd.Scsi

¶ Device.Storage.Hd.Scsi.ReliabilityCounters

¶ Device.Storage.Hd.ScsiProtocol

Windows Hardware Compatibility Program - 62

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.Storage.Hd.ThinProvisioning

¶ Device.Storage.Hd.Trim

¶ Device.Storage.Hd.Uas

¶ Device.Storage.Hd.UasOnEHCI

¶ Device.Storage.Hd.Usb

¶ Device.Storage.Hd.Usb3

¶ Device.Storage.Hd.WindowsToGoCapableUSBDrive

¶ Device.Storage.Optical

¶ Device.Storage.Optical.BluRayReader

¶ Device.Storage.Optical.BluRayWriter

¶ Device.Storage.Optical.Sata

¶ Device.Streaming.Camera.Base

¶ Device.Streaming.Camera.UVC

¶ Device.Streaming.HMFT

¶ Appendix A: Removed Requirements

Send comments about this topic to Microsoft

Device.Audio.APO

This APO must match all APO tests.

In this topic:

¶ Device.Audio.APO.MicArrayRawData

Device.Audio.APO.MicArrayRawData

System effect in the capture path provides RAW data from microphone array when requested by the
client.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Components%20and%20peripherals%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 63

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

If a microphone array processing algorithm is provided in a Windows system effect audio processing
object (APO) instantiated in a stream effect (SFX) insert point in capture path, it must provide all the
individual audio streams as channels from the array when a client asks for a format with number of
channels equal to the number of microphone elements in the array. This allows the APO to provide
hardware compensation processing and microphone array processing to the client that takes
advantage of the entire APO, but allows clients that rely on the microphone array processing that
resides higher up in the audio subsystem to take advantage of hardware compensation in the APO
but not the array processing in it.

It is highly recommened for onboard fixed-position microphone array (multiple combined elements)
ƻƴ ŀ ǎȅǎǘŜƳ ǘƻ Ŧƻƭƭƻǿ ά{ǇŜŜŎƘ tƭŀǘŦƻǊƳ 5ŜǾƛŎŜ wŜŎƻƳƳŜƴŘŀǘƛƻƴǎ {ǇŜŎƛŦƛŎŀǘƛƻƴέ ŦƻǊ ŀƴ ƻǇǘƛƳƛȊŜŘ
experience.

Send comments about this topic to Microsoft

Device.Audio.Base

This device must match all base tests.

In this topic:

¶ Device.Audio.Base.AudioProcessing

¶ Device.Audio.Base.DRM

¶ Device.Audio.Base.Endpoints

¶ Device.Audio.Base.HardwareArchitecture

¶ Device.Audio.Base.PowerManagement

¶ Device.Audio.Base.SamplePositionAccuracy

¶ Device.Audio.Base.StreamingFormats

¶ Device.Audio.Base.VolumeControl

Device.Audio.Base.AudioProcessing

Audio devices must support proper audio processing discovery and control.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Drivers

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Audio.APO%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 64

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

At a minimum, a driver must support a raw mode or a default mode pin. On the pins provided to the
system the hardware must supply a post-mix volume if it supports a) mixing or b) audio offload. Also,
the hardware must supply mute on the render side, if it supports a) mixing or b) audio offload or c)
compressed.

Endpoint effects must be scenario neutral. The endpoint effects must work in all scenarios. For
effects that may harm a scenario such as real time communications or only be beneficial to one
scenario, the effect must be placed into the mode effects that are specific to that scenario. The only
allowed Endpoint effects (EFX) and Raw Mode Effects (MFX in raw mode) are speaker compensation
and speaker protection.

In addition drivers that support the RAW mode must support the following depending on your driver
structure:

¶ A driver that supports mixing without offload support (supports multiple concurrent modes

but does not support offload) shall include a KSNODETYPE_SUM node and no

KSNODETYPE_AUDIO_ENGINE node. The node shall have a single input connection coming

from the software pin factory, and represents the point where multiple instances of the pin

are mixed.

¶ The KSNODETYPE_AUDIO_ENGINE or KSNODETYPE_SUM node shall be in the path between

the software pin factories and the endpoint bridge pin. The node shall be in the same filter as

the software pin factories.

¶ The node shall support KSPROPERTY_AUDIOSIGNALPROCESSING_MODES.

¶ For Port Class drivers, the miniport shall support IMiniportAudioSignalProcessing. The port

shall add KSPROPERTY_AUDIOSIGNALPROCESSING_MODES to the appropriate pin.

¶ A driver that supports mixing (with offload and/or multiple modes) shall support a loopback

pin.

¶ Loopback pins shall be in new pin category KSPINCATEGORY_AUDIOLOOPBACK. The topology

shall have a path from the software pin factory to the loopback pin factory.

¶ A driver that does not support mixing shall support

Y{twht9w¢¸ψ!¦5Lh{LDb![twh/9{{LbDψah59{ ƻƴ ǘƘŜ ŜƴŘǇƻƛƴǘΩǎ ǎƻŦǘǿŀǊŜ Ǉƛƴ ŦŀŎǘƻǊȅΦ

¶ For Port Class drivers, the miniport shall support IMiniportAudioSignalProcessing. The port

shall add KSPROPERTY_AUDIOSIGNALPROCESSING_MODES to the appropriate pin.

¶ The software pin factory data ranges shall include

KSATTRIBUTE_AUDIO_SIGNALPROCESSINGMODE. The attribute shall not be marked

KSATTRIBUTE_REQUIRED.

Windows Hardware Compatibility Program - 65

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ The pin creation code shall check for KSDATAFORMAT_ATTRIBUTES in the data format and

process the KSATTRIBUTE_AUDIOSIGNALPROCESSINGMODE if present.

CƻǊ tƻǊǘ /ƭŀǎǎ ŘǊƛǾŜǊǎΣ ǘƘŜ ŘǊƛǾŜǊΩǎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƻŦ bŜǿ{ǘǊŜŀƳ ƻƴ LaƛƴƛǇƻǊǘ²ŀǾŜw¢Σ
IMiniportWavePci, or IMiniportWaveCyclic shall support KSDATAFORMAT_ATTRIBUTES.APOs

¶ LŦ ǘƘŜ ŘǊƛǾŜǊΩǎ !thǎ ǎǳǇǇƻǊǘ 59CAULT then the offload pin shall support DEFAULT.

¶ The APOs shall support all modes that are supported by the offload pin.

¶ APOs shall support all the modes supported by the host pin.

Discovery

Driver must expose all audio effect via the FXStreamCLSID, FXModeCLSID, and FXEndpointCLSID APOs
(or proxy APOs). The APOs must send an accurate list of effects that are enabled to the system when
queried. Drivers must support APO change notifications and only notify the system when an APO
change has occurred.

Loopback

The loopback stream should represent the stream coming out of the speaker. Drivers with hardware
processing must provide the system an accurate loopback stream.

Non-offload drivers that support mixing must support DRMRIGHTS on all pin instances. If any stream
in the graph on a given pin instance requires loopback constriction, then the audio system asserts
DRMRIGHTS.CopyProtect on that pin.

Device.Audio.Base.DRM

Audio device must implement DRM support as defined in the Windows Driver Kit.

Applies to Windo ws 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Audio devices must comply with Windows trusted audio paths for digital rights management (DRM).
Hardware that complies with Windows DRM supports DRM level 1300. The audio drivers must not
call the DrmForwardContentToFileObject function.

The DRM requirement does not apply if the underlying device is a Bluetooth audio device.

Design Notes:

See the"Digital Rights Management" topic in the Windows Driver Kit.

Device.Audio.Base.Endpoints

Audio subsystem properly reflects current system configuration

Windows Hardware Compatibility Program - 66

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Requirements Device.Audio.Base.JackDetection, Device.Audio.Base.NoUncontrollableStreamRouting
and Device.Audio.Base.ExposedAudioEndpointsAreFunctional have been merged with this one.

All Audio Devices

Any audio device that is exposed by any of the audio device enumeration APIs must reflect the
current state of all of its endpoints appropriately at all times when the system is powered on. This
includes the case, when the system is in connected standby. Built-in speakers and microphones must
work while the system is operational.

If an endpoint is exposed by any of the device enumeration APIs and its state reflects being
connected and capable of streaming, it must be functional (capable of capture/render). Exposed
audio end points need to continue to function even during system state changes such as:

¶ While the power source changes from external to battery or vice versa

¶ While the GPU switches from a to b

Devices that use Windows v10.0 Mobile

The audio driver must not perform hidden stream redirection, routing, switching, splitting, mixing,
muxing to other exposed or hidden logical audio devices, applications or other entities but it must
ensure that the audio stream from the audio system endpoint for a particular logical device is only
directed to that particular logical device that the application is streaming to, as set by the Windows
user in the Windows Sound control panel.

Headphone connectors, speaker connectors, HDMI connectors, DisplayPort connectors, devices
connected through a docking station, wireless and network connected audio devices

The driver needs to properly express the connection state of the corresponding devices.

If the connector is not plugged, or the wireless or network device is not in a connected usable state
then the driver must either:

¶ Set the KSJACK_DESCRIPTION.IsConnected member to FALSE, or

¶ Disable the KS filter interface

¶ For AvStream drivers: Declare a connector is unplugged by implementing the following

properties and events:

¶ KSPROPSETID_Jack

¶ KSPROPERTY_JACK_DESCRIPTION

Windows Hardware Compatibility Program - 67

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ KSPROPERTY_JACK_DESCRIPTION2

¶ KSEVENTSETID_PinCapsChange

¶ KSEVENT_PINCAPS_JACKINFOCHANGE

¶ For Port Class drivers: Unregister the Port Class subdevice by calling

PcUnregisterSubdevice

Similarly, when the connector is plugged, or the wireless or network device is connected an in a
usable state, then the driver must either:

¶ Set the KSJACK_DESCRIPTION.IsConnected member to TRUE, or

¶ Enable the KS filter interface:

¶ For AvStream drivers: Declare a connector is plugged by implementing the following

properties and events:

¶ KSPROPSETID_Jack

¶ KSPROPERTY_JACK_DESCRIPTION

¶ KSPROPERTY_JACK_DESCRIPTION2

¶ KSEVENTSETID_PinCapsChange

¶ KSEVENT_PINCAPS_JACKINFOCHANGE

¶ For Port Class drivers: Registers the Port Class subdevice by calling PcRegisterSubdevice

Whenever the driver changes the KSJACK_DESCRIPTION.IsConnected member, the driver must
generate the event KSEVENTSETID_PinCapsChange / KSEVENT_PINCAPS_JACKINFOCHANGE.

The above behavior ensures Windows routes audio to the connector or device only when it is truly
available for streaming.

For connectors and wireless or network devices, mechanism (a) is preferred. This makes the device
visible in the system UI (e.g. the Windows Sound control panel), even though it might not be
immediately usable, and it ensures that the device is displayed with correct status.

For devices that are in a detachable docking station, mechanism (b) is recommended.

For connectors that are on a detachable docking station, mechanism (b) is recommended to reflect
the attachment of the dock. Mechanism (a) is recommended to reflect whether the connector is
plugged.

Design notes: See the Microsoft UAA HD Audio Pin Configuration Programming Guidelines white
paper for additional clarifications on the specified jack connectors that require jack detection.

http://www.microsoft.com/whdc/device/audio/PinConfig.mspx

http://www.microsoft.com/whdc/device/audio/PinConfig.mspx

Windows Hardware Compatibility Program - 68

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.Audio.Base.HardwareArchitecture

Audio subsystems must use a technology compatible with Windows.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Requirement Device.Audio.UAACompliance.UAA has been replaced with this one.

Integrated audio devices

!ƴ ƛƴǘŜƎǊŀǘŜŘ ŀǳŘƛƻ ŘŜǾƛŎŜ ƛǎ ƻƴŜ ǘƘŀǘ ǎǳǇǇƻǊǘǎ ŀƴ ƛƴǘŜǊƴŀƭ ŎƻƳǇƻƴŜƴǘ ƻǊ ŀ ǇƻǊǘ ǘƘŀǘΩǎ ǳǎŜŘ
exclusively for media content. Here are some examples of integrated audio devices:

¶ Speakers

¶ Microphones and microphone arrays

¶ Analog audio jacks (headphone jack, line out, line in, microphone jack)

¶ S/PDIF

¶ Digital outputs like HDMI and DisplayPort

For these devices, any audio hardware architecture can be used provided at least one of the
following is true:

¶ The device provides basic functionality for all of its endpoints when used with any of the

audio class drivers packaged with Windows.

¶ A driver is available through Windows Update that will enable basic functionality for all the

ŘŜǾƛŎŜΩǎ ŜƴŘǇƻƛƴǘǎΦ

Externally connected audio devices

!ƴ ŜȄǘŜǊƴŀƭƭȅ ŎƻƴƴŜŎǘŜŘ ŀǳŘƛƻ ŘŜǾƛŎŜ ƛǎ ƻƴŜ ǘƘŀǘ ƛǎƴΩǘ ƛƴǘŜƎǊŀǘŜŘ ǘƻ ǘƘŜ ǎȅǎǘŜƳ ŀƴŘ Ƙŀǎ ŀ ŎƻƴƴŜŎǘƛƻƴ
ǘƘŀǘ ƛǎƴΩǘ ǎǇŜŎƛŦƛŎ ǘƻ ŀǳŘƛƻ ƻǊ ƳŜŘƛŀΦ IŜǊŜ ŀǊŜ ǎƻƳŜ ŜȄŀƳǇƭŜǎ ƻŦ ŜȄǘŜǊƴŀƭ audio devices:

¶ USB audio

¶ Bluetooth audio

For these devices, any audio hardware architecture can be used, but we strongly recommended that
these devices conform to standard specifications and provide basic functionality with a Windows
audio class driver. On ŎŜǊǘŀƛƴ ²ƛƴŘƻǿǎ ŘŜǾƛŎŜǎ ǘƘŀǘ ŘƻƴΩǘ ŀƭƭƻǿ ǘƘŜ ƛƴǎǘŀƭƭŀǘƛƻƴ ƻŦ ŀ ǘƘƛǊŘ-party
ŘǊƛǾŜǊǎΣ ǘƘŜ ƻƴƭȅ ǿŀȅ ŦƻǊ ŀƴ ŜȄǘŜǊƴŀƭ ŀǳŘƛƻ ŘŜǾƛŎŜ ǘƻ ŦǳƴŎǘƛƻƴ ƛǎ ƛŦ ƛǘΩǎ ŎƻƳǇŀǘƛōƭŜ ǿƛǘƘ ŀ Ŏƭŀǎǎ ŘǊƛǾŜǊΦ

All audio devices

Windows Hardware Compatibility Program - 69

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

If the PnP ID of an audio device is compatible with any of the audio class drivers packaged with
Windows, the device must provide basic functionality for all of its endpoints when using that driver.

A device provides basic functionality when it meets all the Windows Hardware Certification audio
device requirements.

For more info

Audio Device Technologies: http://msdn.microsoft.com/en-
us/library/windows/hardware/gg454527.aspx

Device.Audio.Base.PowerManagement

Audio device must comply with related power management specifications.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

All Audio Devices and Drivers

Audio devices must comply with Audio Device Class Power Management Reference Specification,
which provides definitions of the device power states (D0ςD3) for these devices. The specification
also covers the device functionality expected in each power state and the possible wake-up event
definitions for the class. The device and driver must implement support for power state D3. Support
for other device power management states is optional.

Bluetooth Audio Devices

Bluetooth audio devices must complete an HCIDisconnect before powering down.

The HCIDisconnect is required to allow for timely notification to the system that the device is no
longer available. This is used to reroute audio to an alternate audio sink seamlessly when the
Bluetooth audio device is powered off.

Reference(s)

ACPI Specification: http://www.acpi.info/

Bluetooth Specifications: https://www.bluetooth.org/en-us/specification/adopted-specifications

MSDN: http://msdn.microsoft.com/en-us/library/windows/hardware/gg463220.aspx

Device.Audio.Base.SamplePositionAccuracy

Audio driver reports render sample position with defined accuracy for stream synchronization.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

http://msdn.microsoft.com/en-us/library/windows/hardware/gg454527.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg454527.aspx
http://www.acpi.info/
https://www.bluetooth.org/en-us/specification/adopted-specifications
http://msdn.microsoft.com/en-us/library/windows/hardware/gg463220.aspx

Windows Hardware Compatibility Program - 70

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

The Device.Audio.Base.SamplingAccuracy requirement has been merged with this one.

For all audio endpoints, IAudioClock::GetPosition shall report timestamps with:

¶ |bias| <= 1ms

¶ |skew| <= 1%

¶ Jitter <= 1ms

This requirement applies to both render and capture for all formats, modes, and pins (host, offload,
loopback).

Device.Audio.Base.StreamingFormats

Audio subsystems must use formats supported by Windows.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

The following requirements have been merged with this one:

¶ Device.Audio.Base.TwoDMAEnginesAndConnections

¶ Device.Audio.Base.BasicDataFormats

¶ Device.Audio.Base.ChannelMasks

All Audio Devices

This requirement applies to both input (capture) and output (render) devices.

An audio device must expose support for at least one PCM (Pulse Code Modulation) encoded format
compatible with Windows.

At least one of the following bit depths and containers must be used:

¶ 8 bit (unsigned)

¶ 16 bit

¶ 20 bit in a 24 bit container

¶ 24 bit

¶ 24 bit in a 32 bit container

Windows Hardware Compatibility Program - 71

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ 32 bit

The samples must be either integer or IEEE 754 float.

Any sampling rate will work with the windows audio pipeline; however, it is suggested that 48 kHz
and 44.1 kHz be supported for optimal power performance in media scenarios.

If the device supports both input and output capabilities, the audio device must support independent
selection of formats and support concurrent streaming at arbitrarily selected formats.

Channel configurations must be at least one of the following:

¶ (mono)

¶ (stereo)

¶ 2.1

¶ 3.1

¶ 4.0

¶ 5.0

¶ 5.1

¶ 7.1

If the audio device supports multichannel audio formats, the audio device driver must deal with
channel masks consistent with the content and the current selected speaker configuration.

Digital Devices with External Connections

For devices where there exists a source and sink relationship (such as HDMI and Bluetooth), a source
device must support and expose all required sink formats. For example, HDMI requires a sink support
48 kHz or 44.1 kHz; therefore, an HDMI source must support (at a minimum) both 48 kHz and 44.1
kHz so that any HDMI sink device connected will function properly. It is suggested that sources
support all possible sink formats for the best user experience.

Hardware Acceleration (Offloading)

Devices that leverage a DSP for audio offloading must support a superset of formats that are
supported by the host (system) pin on the same device. This ensures that offloading is used
whenever possible and avoids unnecessary fall back to the host pin.

Reference(s)

MSDN: http://msdn.microsoft.com/en-us/library/windows/hardware/ff536189(v=vs.85).aspx

Device.Audio.Base.VolumeControl

Audio driver volume controls are linear and have adequate resolution.

Applies to Windows 10 x64

http://msdn.microsoft.com/en-us/library/windows/hardware/ff536189(v=vs.85).aspx

Windows Hardware Compatibility Program - 72

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Requirement Device.Audio.Base.VolumeGranularity has been merged with this one.

Signal response (as measured by electrical or digital signal level) changes in linearity with the volume
control within 3% tolerance. For example: a volume slider change of 10dB should result in a
measured volume change between 9.7 dB and 10.3 dB + or ς 0.3dB.

Topology volume nodes must have a resolution equal to or better than 1.5 dB and implement driver
support for volume level as defined in the Windows Driver Kit.

{ŜŜ ǘƘŜ ²ƛƴŘƻǿǎ 5ǊƛǾŜǊ YƛǘΣ ϦY{twht9w¢¸ψ!¦5Lhψ±h[¦a9[9±9[έ ŦƻǊ ƳƻǊŜ ŘŜǘŀƛƭǎΦ

Send comments about this topic to Microsoft

Device.Audio.HardwareAudioProcessing

HardwareAudioProcessing

In this topic:

¶ Device.Audio.HardwareAudioProcessing.AudioHardwareOffloading

Device.Audio.HardwareAudioProcessing.AudioHardwareOffloading

Hardware that supports offloaded audio render processing must meet this requirement.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

The requirement Device.Audio.HardwareAudioProcessing.IMiniport.xml has been merged with this
one.

If a hardware solution supports offloaded audio render processing, the driver must expose a KS
filter and a single KSNODETYPE_AUDIO_ENGINE node with appropriate pin factories connected.

If a hardware solution supports the offloading of audio render processing, mixing, or decoding, the
driver must expose a KS filter. For each rendering path through that filter that supports hardware
offloading the driver must expose a single KSNODETYPE_AUDIO_ENGINE node, connecting directly to
only the following pin factories:

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Audio.Base%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 73

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Two KS sink pin factories

¶ a single KS source pin factory for reference stream support

If a driver exposes a KSNODETYPE_AUDIO_ENGINE node, the driver and hardware must support
base-level functionality.

If a driver exposes a KSNODETYPE_AUDIO_ENGINE node, the driver and hardware must support the
following capabilities:

¶ Audio mixer with at least 3 simultaneous inputs (2 offload and 1 host process)

¶ Volume and mute capabilities both pre- and post-mixing

¶ Reference stream (support for sending the audio stream post-mix back to the Windows

audio stack)

¶ The reference stream provided should be the final output to the audio device, or, if encoding

is taking place, just prior to encoding.

If hardware supports metering reporting (support for querying per-stream peak values, both pre &
post-mix)

¶ For stream metering (pre-mixing), metering levels should be reported after the SFX and

before volume control

¶ For endpoint metering (post-mixing), metering levels should be reported:

¶ Before volume control and EFX, when the EFX is an encoder

¶ After the EFX and before volume control, when the EFX is not an encoder

If a driver exposes a KSNODETYPE_AUDIO_ENGINE node, the driver must expose certain pin
factories.

If a driver exposes a KSNODETYPE_AUDIO_ENGINE node, the driver must expose the following pin
factories:

¶ Host process pin factory

¶ Must support at least one instance

¶ Offload pin factory

¶ Must support at least two instances

¶ Loopback pin factory

¶ Must support at least a single instance

In addition, the following must be met:

Windows Hardware Compatibility Program - 74

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Loopback pins must:

¶ IŀǾŜ ŀ άtƻǎǎƛōƭŜ Dƭƻōŀƭ LƴǎǘŀƴŎŜǎέ ƻŦ ŀǘ ƭŜŀǎǘ м

¶ Support at least 1 instance regardless of what else is going on in the system

¶ To enable scenarios like cross-fade, offload-capable endpoints must support 1 loopback pin

instance + 1 host pin instance + each of the following in isolation, assuming no other offload

endpoints are being used at the time:

¶ Any of supported PCM format + Any of supported PCM format (the same, or different)

¶ The loopback pin must support

¶ The HW mix format

¶ The device format (which can be publically queried from the endpoint property store)

If a hardware solution supports offloaded audio render processing, the same functionality
provided in hardware (e.g., processing, effects, etc.) must be available on the host pin as well.

In order to provide a consistent user experience and prevent confusion when a user enables or
configures functionality that exists in only hardware or only software, the capabilities provided must
be equal in both hardware and software.

Other Considerations

Offloaded audio devices must accept and properly react to end of segment (EOS) communication
from the operating system.

If a hardware solution supports offloaded audio render processing, the driver must implement
IMiniportAudioEngineNode and IMiniportStreamAudioEngineNode2

IMiniportAudioEngineNode contains a list of methods related to the offload KS properties targeting
the audio engine node via KS filter handle. A miniport driver's WaveRT miniport class needs to inherit
not only from IMiniportWaveRT interface, it also needs to inherit IMiniportAudioEngineNode
interface and implement all the defined methods.

Send comments about this topic to Microsoft

Device.Audio.HDAudio

This audio device uses the HD audio driver.

In this topic:

¶ Device.Audio.HDAudio.HDAudioSpecCompliance

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Audio.HardwareAudioProcessing%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 75

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.Audio.HDAudio.HDAudioSpecCompliance

HD Audio codec for audio must comply with the Intel High Definition Audio specification.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

The following requirements have been merged with this one:

¶ Device.Audio.HDAudio.HDAudioCodecAdditionalReqs

¶ Device.Audio.HDAudio.HDMIDCN

¶ Device.Audio.HDAudio.INFHasDeviceID

¶ Device.Audio.AudioController.HDControllerCompliance

A High Definition Audio codec must comply with the following specifications:

¶ Intel High Definition Audio Specification and DCNs

¶ Plug and Play Guidelines for High Definition Audio Devices

Additionally, the code must implement the following features, which are not necessarily required by
the Intel High Definition Audio Specification:

Speaker compensation is the only valid scenario for audio signal processing of an audio stream by a
codec, and then it is valid only if the speakers are hardwired to the pin complex that contains the
processing node (such as integrated laptop speakers). This requirement does not apply to the
decryption of protected audio streams.

¶ When all of an HDAudio codec's widgets are configured in the benign processing state, the

codec performs no nonlinear or time-variant processing on the audio streams that pass

through it.

¶ An HDAudio codec must be accessible only through the HDAudio bus controller. The codec

must not expose registers or other hardware mechanisms that are accessible through either

memory or I/O address space. This requirement does not encompass HDMI or DisplayPort.

For HDMI or DisplayPort, please refer to the HD audio HDMI DCN.

¶ Modem and audio functionality must not be combined. Although the same piece of silicon

can house both modem and audio devices, the functions must be separate devices and must

not share any software or hardware resources (such as ADCs or DACs).

Windows Hardware Compatibility Program - 76

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ When the HD Audio link is in a running state (HD Audio controller is in D0), HD Audio codecs

must respond to commands even when powered down in all required device power-

management states. In effect, the digital section of the codec must remain powered.

¶ Codecs must respond to a verb even if addressed at a nonexistent widget or if the verb itself

is invalid.

¶ Function group nodes must have node IDs in the range 0 to 127. This restriction does not

apply to node IDs for widget nodes.

¶ The default data in the HD Audio codec pin configuration registers must not misrepresent the

hardware capabilities, and the Configuration Default Registers must not be null (all zeros).

¶ A function group in an HDAudio codec must expose a nonzero subsystem ID. The BIOS

overwrites the subsystem ID if necessary. If the BIOS cannot program the subsystem ID or if it

does so incorrectly, the hardware must supply a default, vendor-specific subsystem ID.

¶ Each HD Audio codec port connects to one and only one audio source, destination, or jack.

For compatibility with the class driver, do not double-up on input or output ports in ways

that cannot be exposed to the class driver through the information in the pin configuration

registers. Designs that use GPIOs under control of third-party function drivers must default to

an appropriate hardware configuration when the class driver is loaded.

¶ HD Audio Codec Driver Must Not Leave Function Group in D3Cold State Upon Unload. By the

exit of the IRP handler for IRP_MJ_PNP/IRP_MN_REMOVE_DEVICE, an HD Audio Codec

driver must have:

¶ Remembered or discovered the current power state of the function group

¶ If that current function group power state was D3 Cold, the driver must have changed it to

a different power state. The function group power state upon exit is required to be D3.

HD Audio controllers must comply with the following requirements:

¶ Intel High Definition Audio Controller specification

¶ Be updated to comply with future specification revisions

¶ Comply with the latest HD Audio specification ECRs in accordance with policies around new

hardware requirements.

Windows Hardware Compatibility Program - 77

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ HD Audio hardware that complies with HD Audio specification version 1.0 must set the

correct version number in the appropriate registers. The VMAJ and VMIN registers must

specify a major version number of 01h and a minor version number of 00h.

Send comments about this topic to Microsoft

Device.Audio.USB

This audio device uses the USB audio driver.

In this topic:

¶ Device.Audio.USB.HIDControls

¶ Device.Audio.USB.USB

Device.Audio.USB.HIDControls

USB audio device uses USB HID audio controls to keep the operating system informed of user
interactions with the device.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Requirement Device.Audio.USB.HIDCommunications has been merged with this one.

USB audio devices must use USB HID specification-compliant HID to control basic functions. If volume
adjustment controls are implemented on the USB audio device, it must declare itself as a consumer
control device (usage 0x01), as defined in Consumer Page (page 0x0C) in the USB Usage Tables for
HID Power Devices, Release 1.1, and in Windows support for HID-based audio controls.

Communication devices that implement a USB HID interface must be compliant with the USB Device
Class Definition for Human Interface Devices (HID), Version 1.1, and USB Usage Tables for HID Power
Devices, Version 1.12.

Devices may not use Reserved usages from any Standard Usage Page.

See "HID Audio Controls and Windows" at http://go.microsoft.com/fwlink/?LinkId=40491 and the
Windows Driver Kit, "HID and Windows" for more design information.

Device.Audio.USB.USB

USB audio device must follow UAA USB audio design guidelines.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Audio.HDAudio%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
http://go.microsoft.com/fwlink/?LinkId=40491

Windows Hardware Compatibility Program - 78

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Requirements Device.Audio.Base.ProperUSBDescriptors and Device.Audio.USB.MicArray have been
merged with this one.

Description: A USB audio-based audio device in a stand-alone external form factor, or in an AVR or in
other permutations complies with the Device.Audio.Base.HardwareArchitecture.

Special attention should be made to the following:

¶ USB audio device must properly set descriptor to indicate the purpose of device according to

the USB spec http://www.usb.org/developers/devclass_docs/termt10.pdf.

¶ An externally connected USB based microphone array device must comply with the USB

Device Class Definition for Audio Devices 2.0, and must be implemented according to the

guidelines in "Microphone Array Support in Windows Vista." The device must report itself

and its capabilities according to the design guidelines in the Microsoft USB Audio

Microphone Array Design Guidelines.

Reference:

Universal Serial Bus Device Class Definition for Audio Devices 2.0 at
http://www.usb.org/developers/docs/devclass_docs/

Send comments about this topic to Microsoft

Device.BusController.Bluetooth.Base

In this topic:

¶ Device.BusController.Bluetooth.Base.4LeSpecification

¶ Device.BusController.Bluetooth.Base.LeStateCombinations

¶ Device.BusController.Bluetooth.Base.LeWhiteList

¶ Device.BusController.Bluetooth.Base.MicrosoftBluetoothStack

¶ Device.BusController.Bluetooth.Base.HCIExtensions [If Implemented]

¶ Device.BusController.Bluetooth.Base.NoBluetoothLEFilterDriver

¶ Device.BusController.Bluetooth.Base.OnOffStateControllableViaSoftware

http://www.usb.org/developers/devclass_docs/termt10.pdf
http://www.usb.org/developers/docs/devclass_docs/
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Audio.USB%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 79

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.BusController.Bluetooth.Base.Scatternet

¶ Device.BusController.Bluetooth.Base.SimultaneousBrEdrAndLeTraffic

¶ Device.BusController.Bluetooth.Base.SpecificInformationParameters

¶ Device.BusController.Bluetooth.Base.SupportsBluetooth21AndEdr

Device.BusController.Bluetooth.Base.4LeSpecification

Bluetooth controllers must support the Bluetooth 4.0 specification requirements.

Applies to Windows 10 x64

Windows 10 x86

Description

These requirements are "If Implemented" for Client systems and apply only if a Client system
supports Bluetooth.

The Bluetooth controller must comply with the Basic Rate (BR) and Low Energy (LE) Combined Core
Configuration Controller Parts and Host/Controller Interface (HCI) Core Configuration requirements
outlined in the Compliance Bluetooth Version 4.0 specifications.

The Bluetooth radio HW shall be qualified as a "Controller Subsystem" and may additionally be
qualified as a "Component" through the Bluetooth Special Interest Group.

Device.BusController.Bluetooth.Base.LeStateCombinations

Bluetooth controllers must support a minimum set of LE state combinations.

Applies to Windows 10 x64

Windows 10 x86

Description

The Bluetooth controller must allow the spec LE state combinations (as allowed in section [Vol 6]
Part B, Section 1.1.1 of the Bluetooth version 4.0 spec): Only the following states are not required to
be supported:

¶ 0x0000000000800000 Active Scanning State and Initiating State combination supported.

¶ 0x0000000004000000 Passive Scanning state and Slave Role combination supported.

¶ 0x0000000008000000 Active Scanning state and Slave Role combination supported.

Device.BusController.Bluetooth.Base.LeWhiteList

Bluetooth controllers must support a minimum LE white list size of 25 entries.

Windows Hardware Compatibility Program - 80

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Description

The Bluetooth controller must support a minimum of 25 entries in its white list for remote Low
Energy (LE) devices.

Device.BusController.Bluetooth.Base.MicrosoftBluetoothStack

Bluetooth controllers must be tested using Microsoft's Bluetooth stack.

Applies to Windows 10 x64

Windows 10 x86

Description

The Bluetooth controllers must be tested with Microsoft's Bluetooth stack when submitting for
hardware certification.

Device.BusController.Bluetooth.Base.HCIExtensions [If Implemented]

Microsoft defined HCI extensions support for hardware offload of advertisement and RSSI
monitoring.

Applies to Windows 10 x64

Windows 10 x 86

Description

Radios that support the Microsoft defined Bluetooth HCI extensions must comply with the
specification and pass the related HLK tests. Specification details can be found on MSDN:

¶ https://msdn.microsoft.com/en-us/library/windows/hardware/dn917903(v=vs.85).aspx

Device.BusController.Bluetooth.Base.NoBluetoothLEFilterDriver

Bluetooth LE filter drivers are not allowed to load on BTHLEENUM.SYS.

Applies to Windows 10 x64

Windows 10 x86

Description

https://msdn.microsoft.com/en-us/library/windows/hardware/dn917903(v=vs.85).aspx

Windows Hardware Compatibility Program - 81

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

To ensure a uniform experience across Windows Store Apps using the Bluetooth LE (GATT) WinRT
API, filter drivers shall not be loaded on BTHLEENUM.SYS.

Device.BusController.Bluetooth.Base.OnOffStateControllableViaSoftware

.ƭǳŜǘƻƻǘƘ ŎƻƴǘǊƻƭƭŜǊǎΩ hƴκhŦŦ ǎǘŀǘŜ Ƴǳǎǘ ōŜ ŎƻƴǘǊƻƭƭŀōƭŜ Ǿƛŀ ǎƻŦǘǿŀǊŜΦ

Applies to Windows 10 x64

Windows 10 x86

Description

²ƘŜƴ ǘǳǊƴƛƴƎ ǘƘŜ ǊŀŘƛƻ άƻŦŦέΣ .ƭǳŜǘƻƻǘƘ ŎƻƴǘǊƻƭƭŜǊǎ ǎƘŀƭƭ ōŜ ǇƻǿŜǊŜŘ Řƻǿƴ ǘƻ ƛǘǎ ƭƻǿŜǎǘ ǎǳǇǇƻǊǘŜŘ
power state and no transmission/reception shall take place. Windows will terminate Bluetooth
activity by unloading the inbox protocol drivers and their children, submitting the HCI_Reset
command to the controller, and then setting the controller to the D3 logical power state, allowing
bus drivers to power down the radio as appropriate. The radio can be completely powered off if a
bus-supported method is available to turn the radio back on. No additional vendor software control
components will be supported.

On turning the radio back on, the Windows Bluetooth stack shall resume the device to D0, allowing
bus drivers to restart the device. The Windows Bluetooth stack shall then reinitialize the Bluetooth
components of the controller.

Bluetooth Radio Management in Windows 8.1 shall only be enabled for internal Bluetooth 4.0
controllers.

Device.BusController.Bluetooth.Base.Scatternet

Bluetooth host controller must support Bluetooth scatternet.

Applies to Windows 10 x64

Windows 10 x86

Description

The Bluetooth host controller must support at least two concurrent piconets (also known as a
scatternet). The host controller must also be able to allow the host to join a device that is requesting
a connection to the existing piconet when the local radio is the master of that piconet. This
requirement is described in the Specification of the Bluetooth System, Version 2.1 + Enhanced Data
Rate (EDR) (Baseband Specification), Section 8.6.6. Design Notes: The scatternet support should
follow the enhanced scatternet support errata that are defined by the Bluetooth Special Interest
Group (SIG).

Device.BusController.Bluetooth.Base.SimultaneousBrEdrAndLeTraffic

Bluetooth controllers must support simultaneous BR/EDR and LE traffic.

Windows Hardware Compatibility Program - 82

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Description

Bluetooth controllers must allow the simultaneous use of both Basic Rate (BR)/Enhanced Data Rate
(EDR) and Low Energy (LE) radios.

Device.BusController.Bluetooth.Base.SpecificInformationParameters

Bluetooth host controller must implement specific Informational parameters to provide accurate
information about the host controller's capabilities.

Applies to Windows 10 x64

Windows 10 x86

Description

The manufacturer fixes the informational parameters, which provide valuable information about the
Bluetooth device and the capabilities of the host controller. Bluetooth host controllers must
implement the HCl_Read_Local_Version_Information command and
HCI_Read_Local_Supported_Features command as described in the Specification of the Bluetooth
System, Version 2.1 + Enhanced Data Rate (EDR), Part E, Section 7.4. Required support includes the
mechanism for reporting the supported version and features.

Device.BusController.Bluetooth.Base.SupportsBluetooth21AndEdr

Bluetooth controllers must support the Bluetooth 2.1+EDR specification requirements.

Applies to Windows 10 x64

Windows 10 x86

Description

The Bluetooth host controller must comply with the requirements that are outlined in the
Specification of the Bluetooth System Version 2.1 + Enhanced Data Rate (EDR).

Send comments about this topic to Microsoft

Device.BusController.Bluetooth.NonUSB

Bluetooth Controller - NonUSB connected radios

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.Bluetooth.Base%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 83

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

In this topic:

¶ Device.BusController.Bluetooth.NonUSB.Performance

¶ Device.BusController.Bluetooth.NonUSB.ScoSupport

Device.BusController.Bluetooth.NonUSB.Performance

Non-USB Bluetooth controllers must achieve at least a throughput of 700 kbps.

Applies to Windows 10 x64

Windows 10 x86

Description

Non-USB Bluetooth controllers must achieve at least a throughput of 700 kbps at the RFCOMM layer.

Device.BusController.Bluetooth.NonUSB.ScoSupport

Non-USB connected Bluetooth controllers must use the sideband channel for SCO.

Applies to Windows 10 x64

Windows 10 x86

Description

In order to ensure a high quality audio experience, all non-USB connected Bluetooth controllers must
use a sideband channel for SCO (e.g. SCO over an I2S/PCM interface).

Send comments about this topic to Microsoft

Device.BusController.Bluetooth.USB

Bluetooth Controller - USB connected radios

In this topic:

¶ Device.BusController.Bluetooth.USB.ScoDataTransportLayer

Device.BusController.Bluetooth.USB.ScoDataTransportLayer

Bluetooth host controllers must support the SCO data transport layer as specified in the Bluetooth
2.1+EDR specifications.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.Bluetooth.NonUSB%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 84

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Description

The Bluetooth host controller must comply with the Synchronous Connection Oriented (SCO)-USB
requirements that are outlined in the specification of the Bluetooth System, Version 2.1 + Enhanced
Data Rate (EDR), Part A, Section 3.5.

Send comments about this topic to Microsoft

Device.BusController.I2C

These requirements apply only to I2C controller silicon vendors. System manufacturers may
optionally run these tests, but may need hardware customization.

In this topic:

¶ Device.BusController.I2C.CancellationOfIO

¶ Device.BusController.I2C.ClockStretching

¶ Device.BusController.I2C.HCKTestability

¶ Device.BusController.I2C.IdlePowerManagement

¶ Device.BusController.I2C.LockUnlockIOCTL

¶ Device.BusController.I2C.NACK

¶ Device.BusController.I2C.SPBRead

¶ Device.BusController.I2C.SPBSequenceIOCTL

¶ Device.BusController.I2C.SPBWrite

¶ Device.BusController.I2C.Stress

Device.BusController.I2C.CancellationOfIO

I2C controller and controller drivers must support the cancellation of I/O requests.

Applies to Windows 10 x64

Windows 10 x86

Description

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.Bluetooth.USB%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 85

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

The I2C controller and associated controller driver must conform to the SPB framework and support
the following:

¶ Driver implements SPB request cancelation logic for read/write/sequence I/O.

Device.BusController.I2C.ClockStretching

I2C controller and controller drivers must support peripheral clock stretching.

Applies to Windows 10 x64

Windows 10 x86

Description

The I2C controller and associated controller driver must conform to the SPB framework and support
the following:

¶ Controller can sustain peripheral holding clock for at least 2 seconds during read, write, and

sequence I/O.

Device.BusController.I2C.HCKTestability

Systems with I2C controllers must expose correct ACPI table information and I2C pin-outs to enable
HCK testability.

Applies to Windows 10 x64

Windows 10 x86

Description

The objective of this requirement is to enable the controller to be testable by the HCK framework.

Details:

¶ Controller under test must provide I2C external connectivity pin-out (SCL, SDA, and GND).

¶ Update ACPI to correctly describe HCK test peripheral drivers and its connection to I2C

controller under test.

¶ Other peripheral devices on the same I2C controller under test must be disabled when

running HCK tests.

Device.BusController.I2C.IdlePowerManagement

I2C controller and controller drivers must support Idle Power Management.

Applies to Windows 10 x64

Windows Hardware Compatibility Program - 86

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows 10 x86

Description

The I2C controller and associated controller driver must conform to the SPB framework and support
the following:

¶ Controller should go to the D3 state after it is idle for more than 1 second when the screen is

on.

¶ Controller should go to the D3 state after idle for more than 100ms when the screen is off.

¶ Controller takes less than 75 ms (50+ 25 to account for the timer granularity of 15ms) to

resume from the D3 state to the D0 state.

Device.BusController.I2C.LockUnlockIOCTL

I2C controller and controller drivers must support the Lock/Unlock IOCTL.

Applies to Windows 10 x64

Windows 10 x86

Description

If the Stop condition is supported, the I2C controller and associated controller driver must conform
to the SPB framework and support the following:

¶ Supports an arbitrary number of read/write operations inside Lock/Unlock pair.

¶ Generate the Start condition for the first I/O in the lock/unlock sequence, the Restart

condition for subsequent I/O, and the Stop condition when Unlock is called.

Device.BusController.I2C.NACK

I2C controller and controller drivers must support peripheral NACK.

Applies to Windows 10 x64

Windows 10 x86

Description

The I2C controller and associated controller driver must conform to the SPB framework and support
the following:

Windows Hardware Compatibility Program - 87

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Controller can detect address NACK bus condition and return STATUS_NO_SUCH_DEVICE for

request.

¶ Controller can detect device NACK during a write operation, complete the request with

STATUS_SUCCESS, and information bytes is set to a number of bytes that is less than what

was intended to be written.

¶ Controller can detect device NACK during a write operation of a sequence IOCTL, complete

the request with STATUS_SUCCESS, and information bytes is set to number of bytes that is

less than what was intended to be written.

Device.BusController.I2C.SPBRead

I2C controller and controller drivers must support SPB Read operations correctly.

Applies to Windows 10 x64

Windows 10 x86

Description

The I2C controller and associated controller driver must conform to the SPB framework and support
the following when reading data from an I2C peripheral:

¶ Must support reading from standard (100Kbps), fast (400kbps) and fast plus (1 Mbps)

peripheral targets. High Speed (3.4 MHz) is optional, but must pass all HCK requirements for

I2C if implemented in the I2C controller and controller driver.

¶ Must support read size from 1 to 4096 bytes (4 KBytes).

¶ Sizes larger than 4 KBytes must succeed or fail with STATUS_NOT_SUPPORTED.

¶ SPB read is mapped into Start, Read Data, NACK, and Stop I2C conditions.

¶ Fail any unsupported data size read request with STATUS_INVALID_PARAMETER and not

cause any bus activities.

Device.BusController.I2C.SPBSequenceIOCTL

I2C controller and controller drivers must support SPB Sequence IOCTL correctly.

Applies to Windows 10 x64

Windows 10 x86

Windows Hardware Compatibility Program - 88

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

The I2C controller and associated controller driver must conform to the SPB framework and support
the following:

¶ Supports any arbitrary I/O sequences: write-read, read-write, write-write, read-read and

complex combined such as write-read-read-write-write

¶ SPB sequence IOCTL is mapped into Start, I/O sequence 1, RŜǎǘŀǊǘΧΦLκh ǎŜǉǳŜƴŎŜ bΣ {ǘƻǇ Lн/

conditions.

¶ Controller needs to examine the sequence and determine if it is supported or fail with

STATUS_INVALID_PARAMETER before causing any bus activities.

¶ Support any valid parameters (e.g. DelayInUs) and memory format (SIMPLE, MDL, Buffer list

etc.) as defined by SPB.

Device.BusController.I2C.SPBWrite

I2C controller and controller drivers must support SPB Write operations correctly.

Applies to Windows 10 x64

Windows 10 x86

Description

The I2C controller and associated controller driver must conform to the SPB framework and support
the following when writing to an I2C peripheral:

¶ Must support writing to standard (100Kbps), fast (400kbps) and fast plus (1 Mbps) peripheral

targets. High Speed (3.4 MHz) is optional, but must pass all HCK requirements for I2C if

implemented in the I2C controller and controller driver.

¶ Must support write size from 1 to 4096 bytes (4 KBytes).

¶ Sizes larger than 4 KBytes must succeed or fail with STATUS_NOT_SUPPORTED.

¶ SPB write is mapped into Start, Write Data, and Stop I2C conditions.

¶ Fail any unsupported data size write request with STATUS_INVALID_PARAMETER and not

cause any bus activities.

Device.BusController.I2C.Stress

I2C controller and controller driver must operate correctly and recovers from bus hangs or faults
under prolonged stress conditions.

Windows Hardware Compatibility Program - 89

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Description

The I2C controller and associated controller driver must conform to the SPB framework and support
the following:

¶ Supports bus recovery when peripheral is hung (watchdog mechanism).

¶ Sustain multiple targets stress for more than 1 hour.

Send comments about this topic to Microsoft

Device.BusController.NFC.NearFieldProximity

Any technology that implements the GUID_DEVINTERFACE_NFP device driver interface specified in
the NFP Device Driver Requirements is defined as an NFP provider and must meet all the Near Field
Proximity DDI implementation requirements laid out within the specification.

In this topic:

¶ Device.BusController.NFC.NearFieldProximity.Attribute [If Implemented]

¶ Device.BusController.NFC.NearFieldProximity.Event [If Implemented]

¶ Device.BusController.NFC.NearFieldProximity.NDEF [If Implemented]

¶ Device.BusController.NFC.NearFieldProximity.PeerToPeer [If Implemented]

¶ Device.BusController.NFC.NearFieldProximity.Publish [If Implemented]

¶ Device.BusController.NFC.NearFieldProximity.Reliability [If Implemented]

¶ Device.BusController.NFC.NearFieldProximity.Subscribe [If Implemented]

¶ Device.BusController.NFC.NearFieldProximity.TagOperation [If Implemented]

Device.BusController.NFC.NearFieldProximity.Attribute [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.I2C%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
https://msdn.microsoft.com/en-us/library/windows/hardware/jj866064(v=vs.85).aspx

Windows Hardware Compatibility Program - 90

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

The NFP provider must support maximum message size no smaller than 10 KB and transmission rate
no smaller than 16KB per second.

Device.BusController.NFC.NearFieldProximity.Event [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

The NFP provider must enable clients to receive DeviceArrived and DeviceDeparted events upon
arrival or departure of a proximate device.

Device.BusController.NFC.NearFieldProximity.NDEF [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

The NFP provider must support the NDEF protocol as defined by the NFC Forum in the NDEF
specification v1.0.

Device.BusController.NFC.NearFieldProximity.PeerToPeer [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

The NFP provider must support transmitting and receiving data via the NFC Forum defined Logical
Link Control Protocol (LLCP) v1.1 and Simple NDEF Exchange Protocol (SNEP) v1.0.

Device.BusController.NFC.NearFieldProximity.Publish [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

The NFP provider must support publishing and transmitting messages.

Windows Hardware Compatibility Program - 91

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.BusController.NFC.NearFieldProximity.Reliability [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

The NFP provider must reliably read and write tags.

Device.BusController.NFC.NearFieldProximity.Subscribe [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

The NFP provider must be able to receive and deliver messages to subscribed clients.

Device.BusController.NFC.NearFieldProximity.TagOperation [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

The NFP provider must be able to read and write tags as well as perform operations such as setting
tags to read only.

Send comments about this topic to Microsoft

Device.BusController.NFC.RadioManagement

The Radio Management DDI allows callers to the NFC device driver to set the power state of the
proximity radio of the NFC device. An NFC device driver must implement the DDIs defined in the
Radio Management DDI document.

In this topic:

¶ Device.BusController.NFC.RadioManagement.Base [If Implemented]

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.NFC.NearFieldProximity%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
https://msdn.microsoft.com/en-us/library/windows/hardware/dn905577(v=vs.85).aspx

Windows Hardware Compatibility Program - 92

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.BusController.NFC.RadioManagement.Base [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

The NFC device driver must set the power states of the proximity and secure element radios of the
NFC device.

Send comments about this topic to Microsoft

Device.BusController.NFC.SecureElement.UICC

The Secure Element DDI allows callers to the NFC device driver to enumerate, communicate with,
and configure the secure elements accessible from the device.

Any technology that implements the GUID_DEVINTERFACE_NFCSE device driver interface specified in
the Secure Element DDI document is defined as an NFC Secure Element provider and must meet all
the Secure Element DDI implementation requirements laid out within the specification.

In this topic:

¶ Device.BusController.NFC.SecureElement.UICC.Emulation [If Implemented]

¶ Device.BusController.NFC.SecureElement.UICC.Enumeration [If Implemented]

¶ Device.BusController.NFC.SecureElement.UICC.Event [If Implemented]

¶ Device.BusController.NFC.SecureElement.UICC.Reliability [If Implemented]

Device.BusController.NFC.SecureElement.UICC.Emulation [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

An NFC Secure Element provider that supports UICC based card emulation must be able to
communicate with and configure the UICC and must grant exclusive access to the client to manage
card emulation mode..

Device.BusController.NFC.SecureElement.UICC.Enumeration [If Implemented]

Applies to Windows 10 x64

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.NFC.RadioManagement%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
https://msdn.microsoft.com/en-us/library/windows/hardware/dn905485(v=vs.85).aspx

Windows Hardware Compatibility Program - 93

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows 10 x86

Description

An NFC Secure Element provider that supports UICC based card emulation must be able to
enumerate all secure elements that are accessible from the device.

Device.BusController.NFC.SecureElement.UICC.Event [If Implemented]

Appl ies to Windows 10 x64

Windows 10 x86

Description

An NFC Secure Element provider that supports UICC based card emulation must support client
subscriptions for events and must be able to raise events to indicate occurrences such as
transactions with an external reader.

Device.BusController.NFC.SecureElement.UICC.Reliability [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

An NFC Secure Element provider that supports UICC based card emulation must be able to reliably
turn card emulation mode on / off.

Send comments about this topic to Microsoft

Device.BusController.NFC.SmartCard

The Smart Card DDI allows callers to the NFC device driver to perform low-level smart card
operations on NFC contactless smart cards. This includes listening on card arrival/departure
notifications, reading metadata of the smart card like ATR, UID and Historical Bytes information,
performing read/write operations on the specific NFC card using APDUs as well as the support for
translating APDUs to low-level primitive commands for some non-ISO14443-4 compliant cards.

Any technology that implements the GUID_DEVINTERFACE_SMARTCARD_READER device driver
interface specified in the Smart Card DDI document is defined as a Smart Card Reader provider and
must meet all the Smart Card DDI implementation requirements laid out within the specification.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.NFC.SecureElement.UICC%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
https://msdn.microsoft.com/en-us/library/windows/hardware/dn905602(v=vs.85).aspx

Windows Hardware Compatibility Program - 94

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

In this topic:

¶ Device.BusController.NFC.SecureElement.SmartCard.Attribute [If Implemented]

¶ Device.BusController.NFC.SecureElement.SmartCard.DataExchange [If Implemented]

¶ Device.BusController.NFC.SecureElement.SmartCard.State [If Implemented]

Device.BusController.NFC.SecureElement.SmartCard.Attribute [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

The Smart Card Reader provider must be able to get and set smart card attributes.

Device.BusController.NFC.SecureElement.SmartCard.DataExchange [If
Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

The Smart Card Reader provider must be able to communicate with supported contactless smart
cards.

Device.BusController.NFC.SecureElement.SmartCard.State [If Implemented]

Applies to Windows 10 x64

Windows 10 x86

Description

¢ƘŜ {ƳŀǊǘ /ŀǊŘ wŜŀŘŜǊ ǇǊƻǾƛŘŜǊ Ƴǳǎǘ ōŜ ŀōƭŜ ǘƻ ƎŜǘ ŀƴŘ ǎŜǘ ǘƘŜ ŎƻƴǘŀŎǘƭŜǎǎ ǎƳŀǊǘ ŎŀǊŘΩǎ ǎǘŀǘŜΦ

Send comments about this topic to Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.NFC.SmartCard%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 95

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.BusController.SdioController

In this topic:

¶ Device.BusController.SdioController.ComplyWithIndustrySpec

¶ Device.BusController.SdioController.WdfKmdfDriver

Device.BusController.SdioController.ComplyWithIndustrySpec

SDIO controller must comply with the industry standard.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Secure Digital I/O (SDIO) host controllers must comply with PCI 2.3 or later requirements for that
interface. For PCI configuration registers and interface information, see the SD Host Controller
Specification, Version 1.0, Appendix A.

Device.BusController.SdioController.WdfKmdfDriver

SDIO controller driver must be a WDF KMDF implementation.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

The SDIO controller driver must be written using the Windows Driver Framework (WDF) Kernel Mode
Driver Framework for the driver's implementation.

Send comments about this topic to Microsoft

Device.BusController.UART

The requirements apply only to silicon vendors. UART controller drivers are recommended to use
SerCXV2.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.SdioController%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 96

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

In this topic:

¶ Device.BusController.UART.Cancellation

¶ Device.BusController.UART.DMA

¶ Device.BusController.UART.FlowControl

¶ Device.BusController.UART.FlushFIFO

¶ Device.BusController.UART.HCKTestability

¶ Device.BusController.UART.IdlePowerManagement

¶ Device.BusController.UART.Performance

¶ Device.BusController.UART.ReadWrite

¶ Device.BusController.UART.Stress

¶ Device.BusController.UART.SupportedBaudRates

Device.BusController.UART.Cancellation

UART controller and controller drivers must support the cancellation of Read and Write requests.

Applies to Windows 10 x64

Windows 10 x86

Description

The UART controller and associated controller driver must conform to the Serial framework and
support the following:

¶ Controller implements necessary logic to support I/O cancellation

Device.BusController.UART.DMA

UART controller and controller drivers require DMA support for appropriate DMA transactions.

Applies to Windows 10 x64

Windows 10 x86

Description

The UART controller and associated controller driver must conform to the Serial framework and
support the following:

¶ Peripheral driver can issue read and write request to the controller max at 5 K data size.

Windows Hardware Compatibility Program - 97

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.BusController.UART.FlowControl

UART controller and controller drivers must support the setting of the flow control to on and off.

Applies to Windows 10 x64

Windows 10 x86

Description

The UART controller and associated controller driver must conform to the Serial framework and
support the following:

¶ Driver implements support for IOCTL_SERIAL_GET_HANDFLOW and

IOCTL_SERIAL_SET_HANDFLOW IOCTLs and flow control settings

Device.BusController.UART.FlushFIFO

UART controller and controller drivers must support Flush FIFOs.

Applies to Windows 10 x64

Windows 10 x86

Description

The UART controller and associated controller driver must conform to the Serial framework and
support the ability to flush FIFO queues.

Device.BusController.UART.HCKTestability

Systems with UART controllers must expose correct ACPI table information and UART pin-outs to
enable HCK testability.

Applies to Windows 10 x64

Windows 10 x86

Description

The objective of this requirement is to enable the UART controller to be testable by the HCK
framework.

Details:

¶ Controller under test must provide UART external connectivity pin-out (Rx,Tx, RTS, CTS, and

GND).

Windows Hardware Compatibility Program - 98

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Describe HCK UART test peripheral driver and its connection to UART controller under test in

ŘŜǾƛŎŜΩǎ ŦƛǊƳǿŀǊŜΦ

Device.BusController.UART.IdlePowerManagement

UART controller and controller drivers must support Idle Power Management.

Applies to Windows 10 x64

Windows 10 x86

Description

The UART controller and associated controller driver must conform to the Serial framework and
support the following:

¶ Controller transitions to the Dx state when there is no pending I/O in the controller for 200

ms.

Device.BusController.UART.Performance

UART controller and controller driver has a measured baud rate that matches the expected value.

Applies to Windows 10 x64

Windows 10 x86

Description

The UART controller and associated controller driver must conform to the Serial framework that the
measured baud rate matches the expected value.

Device.BusController.UART.ReadWrite

UART controller and controller drivers must support read/write Unicode(8 bits) data.

Applies to Windows 10 x64

Windows 10 x86

Description

The UART controller and associated controller driver must conform to the Serial framework and
support the following when reading data from an UART peripheral:

¶ Support IOCTL_SERIAL_SET_LINE_CONTROL and IOCTL_SERIAL_GET_LINE_CONTROL and be

able to transfer data according to the data length settings (8 bits).

Windows Hardware Compatibility Program - 99

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.BusController.UART.Stress

UART controller and controller driver operates correctly (and recovers appropriately from bus errors)
under prolonged stress conditions.

Applies to Windows 10 x64

Windows 10 x86

Description

The UART controller and associated controller driver must conform to the Serial framework and
support the following:

¶ Sustain stress test passes for at least 1 hour.

Device.BusController.UART.SupportedBaudRates

UART controller and controller drivers must support basic baud rate 115200 and faster speed for
higher bandwidth communications.

Applies to Windows 10 x64

Windows 10 x86

Description

The UART controller and associated controller driver must conform to the Serial framework and
support the following:

¶ Driver supports IOCTL_SERIAL_SET_BAUD_RATE and IOCTL_SERIAL_GET_BAUD_RATE IOCTL.

¶ Driver should fail baud rate setting for non-supported baud rate and is able perform I/O

using the baud rate set.

Send comments about this topic to Microsoft

Device.BusController.UsbController

In this topic:

¶ Device.BusController.UsbController.ImplementAtLeastOneXhciSpcStructForUSB2

¶ Device.BusController.UsbController.MaintainDeviceStateOnResumeS1andS3

¶ Device.BusController.UsbController.MustResumeWithoutForcedReset

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.UART%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 100

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.BusController.UsbController.PreserveDeviceStateAfterDisableEnable

¶ Device.BusController.UsbController.UsbifCertification

¶ Device.BusController.UsbController.TestedUsingMicrosoftUsbStack

¶ Device.BusController.UsbController.XhciAc64Bit

¶ Device.BusController.UsbController.XhciAddInCardsMapPortsConsistently

¶ Device.BusController.UsbController.XhciAddInCardsReportInternalDevices

¶ Device.BusController.UsbController.XhciSupportDebuggingOnAllExposedPorts

¶ Device.BusController.UsbController.XhciSupportMsiMsixInterrupts

¶ Device.BusController.UsbController.XhciSupportsMinimum31Streams

¶ Device.BusController.UsbController.XhciSupportsRuntimePowerManagement

¶ Device.BusController.UsbController.XhciVersionCompliant

Device.BusController.UsbController.ImplementAtLeastOneXhciSpcStructForUSB2

xHCI controllers must implement at least one xHCI Supported Protocol Capability structure for USB
2.0.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Extensible Host Controller Interface (xHCI) controllers must implement at least one xHCI supported
protocol capability structure for USB 2.0 as described in section 7.2 of the xHCI specification.

This affects backward compatibility with USB 2.0.

Device.BusController.UsbController.MaintainDeviceStateOnResumeS1andS3

USB host controller must maintain device state on resume from S1 or S3.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

For the host controller to maintain the device state, the USB host controller must not issue a USB bus
reset on a system sleep state transition from S3 to S0 or from S1 to S0.

Windows Hardware Compatibility Program - 101

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

USB host controllers that are integrated or embedded into the south bridge chipset must decouple
the USB bus reset from the PCI bus reset to reduce resume time. Resume operations from S1 or S3
must not generate USB bus resets. A USB bus reset is a reset signal that is sent over the USB bus to
USB devices that are connected to the USB host controller.

Systems that have a USB keyboard attached are allowed to perform USB bus resets to unlock the
system by using a password when the system resumes from S3.

For security purposes, the BIOS in a mobile system is allowed to issue a USB bus reset if the system is
attached to a docking station that has a hard disk drive (HDD) that is password-locked on first
resume.

A reset of the HDD password is allowed whether or not the mobile system is docked. The following
scenarios are allowed:

¶ Undocked systems with a password-enabled HDD

¶ Docked systems with a password-enabled HDD

¶ Addition or removal of an HDD

If the docking station does not have a native HDD or the docking station does not have a password,
the BIOS must not issue a USB bus reset.

It is acceptable to allow the controller to lose power in S3 when the system is on battery power.

Design Notes:

See the Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 1.0,
Appendix A.

This requirement does not apply to systems that support Connected Standby.

Device.BusController.UsbController.MustResumeWithoutForcedReset

All USB host controllers must work properly upon resume from sleep, hibernation, or restart without
a forced reset.

Applies to Windows 10 x64

Windows 10 x 86

Windows Server 2016 Technical Preview x64

Description

All USB host controllers work properly upon resume from sleep, hibernation, or restart without a
forced reset of the USB host controller.

Design Notes:

Windows Hardware Compatibility Program - 102

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

A reset of the entire USB host controller results in significantly increased time that it takes for all USB
devices to become available after system resume since there could be only one device at address 0 at
a time, this enumeration has to be serialized for all USB devices on the bus. We have also seen that
resetting the host controller can lead to an illegal SE1 signal state on some host controllers, which in
turn can cause some USB devices to hang or drop off the bus. Moreover, devices cannot maintain
any private state across sleep resume as that state will be lost on reset.

Device.BusController.UsbController.PreserveDeviceStateAfterDisableEnable

USB controller must preserve device states after a disable and re-enable.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

If a USB controller is disabled and then re-enabled, all devices that were attached to the controller
before the USB controller was disabled are required to be present after the USB controller is re-
enabled.

Device.BusController.UsbController.UsbifCertification

USB host controller is USB IF certified.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

USB host controllers must pass USB Implementers Forum (IF) testing.

For details, see the following link:

http://msdn.microsoft.com/en-us/windows/hardware/gg463175.aspx

Note: Since USB-IF is currently not certifying controllers for Windows on ARM systems, the Windows
on ARM controllers are exempt from needing to get full USB-IF certification. Instead, the WoA
controllers are expected to pass all Windows Hardware Certification tests which include eventing,
loop back, and registers tests that get run as part of USB-IF certification.

Device.BusController.UsbController.TestedUsingMicrosoftUsbStack

xHCI controllers must be tested with Microsoft's xHCI Stack installed.

Applies to Windows 10 x64

http://msdn.microsoft.com/en-us/windows/hardware/gg463175.aspx

Windows Hardware Compatibility Program - 103

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows 10 x86

Windows Server 2016 Technical Preview x 64

Description

Extensible Host Controller Interface (xHCI) controllers must be tested with Microsoft's xHCI stack
installed and enabled on a Windows system. Support for all USB transfer types (ISoch, Interrupt, and
Bulk) will be checked to ensure basic compatibility.

Device.BusController.UsbController.XhciAc64Bit

xHCI controllers must set the AC64 bit in the HCCPARAMS register to 1.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

xHCI controllers must set the AC64 bit in the HCCPARAMS register to 1 as described in Section 5.3.6
of the xHCI specification.

Therefore, the controller must support:

¶ 64-bit addressing, described in section 5.3.6

¶ 64-bit register access, described in section 5.1

Design notes:

Checking for AC64 to be set is a simple register check in the compliance driver.

To test 64-bit addressing, we will need to require the HLK user's client system to have at least 6 GB of
RAM. The test will use MmAllocateContiguousMemorySpecifyCache to get physical memory above 4
GB. It will validate in some way that the controller can access this memory area.

The test will try writing one or more registers using a 64-bit register access and reading back using
64-bit register access to confirm that registers are updated correctly. An example of a reasonable
register to test is: "Event Ring Segment Table Base Address Register (ERSTBA)" (section 5.3.2.3.2).

If AC64 is not set, there is nothing to test.

Device.BusController.UsbController.XhciAddInCardsMapPortsConsistently

xHCI add-in cards must map USB 3.0 and USB 2.0 ports consistently.

Applies to Windows 10 x64

Windows 10 x86

Windows Hardware Compatibility Program - 104

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows Server 2016 Technical Preview x64

Description

Consistent USB 2.0 and USB 3.0 port mapping is required to help the operating system to effectively
manage the ports.

Note: This requirement only applies to add-in cards because port mapping for integrated xHCI
controllers should be performed via Advanced Configuration and Power Interface (ACPI). For more
information, see the SYSFUND 226 requirement.

For Extensible Host Controller Interface (xHCI) add-in cards (where "add-in card" is defined as a card
that is not integrated onto the motherboard), the complexity of this requirement varies significantly
depending on whether the add-in card contains any internal (integrated or embedded) hubs.

If there are no internal hubs, then the port numbering must correlate as given in xHCI v1.x
specification. That is, the first USB 3.0 port must be connected to the same connector as the first 2.0
port, the second with the second, and so on. For example, if the USB 2.0 ports are numbered 1 and 2,
and the USB 3.0 ports are numbered 3 and 4, ports 1 and 3 must map to the same connector, and
ports 2 and 4 must map to the same connector. For more information, see the xHCI v1.x
Specification, sections 4.24.2.1 and 4.24.2.2. If the host does not have any internal hubs, then the
remaining text of this requirement can be ignored.

However, if there are internal hubs (either integrated or embedded), then the requirement is more
involved. Note that strictly speaking, XHCI specification does not allow such hubs for add-in cards
because the port mapping information cannot be communicated to the software via ACPI. But
through this requirement, we are allowing such hubs and defining the required port mapping.
However, this mechanism has some limitations and it does not allow arbitrary configurations that are
allowed for integrated controllers when described by ACPI.

For add-in cards, xHCI host controllers may implement "integrated hubs" and/or "embedded hubs"
as defined in xHCI specification sections 4.24.2.1 and 4.24.2.2. Embedded hubs need not be limited
to being on the system board. However, the following limitations apply:

¶ Embedded hubs of add-in cards must be USB 3.0 hubs (this limitation is unique to the

scenario of this requirement and not part of the xHCI specification).

¶ An add-in card may have at most 1 integrated hub.

¶ If an add-in card has an integrated hub, it must have only 1 USB2 protocol port on the root

hub. This port is the port connected to the integrated hub.

¶ An add-in xHCI card that implements an integrated hub must set the Integrated Hub

Implemented (IHI) bit in the USB 2.0 xHCI Supported Protocol Capability structure to '1' for

the root hub port connected to an integrated hub (refer to section 7.2.2.1.3.2 of the xHCI

specification).

¶ All integrated or embedded hubs must be marked non-removable in their parent ports.

Windows Hardware Compatibility Program - 105

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

The implementation of integrated hubs determines the External Ports of the controller. External
Ports are a concept defined in section 4.24.2 of the xHCI specification to order ports, so that they can
be mapped to connectors. In all cases, let there be n USB2 protocol External Ports numbered 1 to n,
and m USB3 protocol External Ports numbered n+1 to n+m.

External Port numbers are assigned to meet the following properties (not defined in the xHCI
specification). Note that integrated hubs must be USB 2.0 hubs.

¶ If the xHCI implements an integrated hub, then n, the number of USB2 protocol External

Ports, equals the number of downstream facing ports on the integrated hub.

¶ Otherwise, n equals the number of downstream facing USB2 protocol ports on the root hub.

¶ m, the number of USB3 protocol External Ports, equals the number of downstream facing

USB3 protocol ports on the root hub.

¶ Assign External Port numbers such that External Ports 1 through n are USB2 protocol ports

and External Ports n+1 through n+m are USB3 protocol external ports, and the ordering ports

within each protocol is preserved.

If embedded hub(s) are not present: The USB2 protocol External Ports and USB3 protocol External
Ports must be mapped to connectors using the "default" mapping described in section 4.24.2.2 of the
xHCI specification under the heading "When an Embedded hub is not implemented".

If embedded hub(s) are present: The embedded hubs must be USB 3.0 hubs. First, determine the
connector mapping as it would be without any embedded hubs, using the "default" mapping from
section 4.24.2.2 of the xHCI specification. For each embedded hub, both upstream ports must be
connected to the same connector. The embedded hubs' downstream ports map to new connectors
in the same way as the ports of a non-embedded USB 3.0 hub.

Non-exposed connectors: Devices embedded in the host controller must be marked non-removable
in their parent ports. If, according to the connector mapping above, a non-removable peripheral
device's connector is shared with a second port, the second port must not be connected or
connectable to any device. On the other hand, any connector whose port(s) are all marked as
removable is considered to be an exposed connector, i.e. it must be physically connectable.

Note that if there is no ACPI information, a root hub cannot have both an embedded USB2 device
and an integrated USB2 hub; instead, the embedded device must be attached to the integrated hub.

Device.BusController.UsbController.XhciAddInCardsReportInternalDevices

xHCI controller add-in cards must correctly report internally attached devices.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Windows Hardware Compatibility Program - 106

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

Extensible Host Controller Interface (xHCI) controllers must indicate internally attached devices by
setting the device removable (DR) bit in the PORTSC register to 1 for every port that has an internally
attached device. This applies to controllers that do not have ACPI information. For more information,
see section 5.4.8 of the xHCI Specification.

¶ This requirement will prevent the operating system from flagging non-removable devices as

removable.

¶ Add-in cards are defined as host controllers that are not integrated onto the motherboard.

Design Notes:

Note: This requirement only applies to add-in cards because port mapping for integrated xHCI
controllers should be performed via Advanced Configuration and Power Interface (ACPI).

Device.BusController.UsbController.XhciSupportDebuggingOnAllExposedPorts

xHCI controllers must support USB debugging on all exposed ports.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Extensible Host Controller Interface (xHCI) host controllers are debug-capable on all ports. Ports that
have embedded non-removable devices attached do not need to report debug capability.

¶ USB debugging is defined in section 7.6 of the xHCI specification.

¶ This requirement does not apply to add-in card host controllers.

Device.BusController.UsbController.XhciSupportMsiMsixInterrupts

xHCI controllers must support MSI and/or MSI-X interrupts.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Windows Hardware Compatibility Program - 107

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Extensible Host Controller Interface (xHCI) controllers support Message Signaled Interrupts (MSI) and
MSI-X interrupts as defined in section 6.8 of the PCI Local Bus Specification, revision 3.0 and section
5.2.6 of the xHCI Specification.

Device.BusController.UsbController.XhciSupportsMinimum31Streams

xHCI controllers must support at least 31 primary streams per endpoint.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Refer to the eXtensible Host Controller Interface specification, section 4.12.2.

This requirement is for the MaxPSASize in the HCCPARAMS to be set to 4 at the minimum to enable
ultimate data transfer rate with UAS devices.

Storage devices based on the USB Attached SCSI Protocol (UASP) will utilize streams to achieve faster
data transfer rates. To enable the best experience with these devices, every xHCI controller will need
to support at least 31 primary streams.

Device.BusController.UsbController.XhciSupportsRuntimePowerManagement

USB xHCI host controllers must support runtime power management including, if implemented,
runtime wake.

App lies to Windows 10 x64

Windows 10 x86

Description

All USB xHCI host controllers must support runtime power management, as required by the
eXtensible Host Controller Interface specification, version 1.0, Section 4.15.

Runtime is defined as the system working state (S0), including the Connected Standby sub-state of S0
if the controller is tested on a system that supports Connected Standby.

Power management of the host controller encompasses software-initiated idle power down
(controller low power state such as D3), software-initiated power up, and, optionally, hardware-
initiated wake signaling.

If the xHCI controller is reported to support runtime wake signaling, it must be able to wake itself
successfully upon any of the following events:

A) Any port detecting device wake signaling

B) Any port detecting connect, disconnect, or overcurrent, when the corresponding PORTSC Wake on
Xxx bit is set to '1'.

Windows Hardware Compatibility Program - 108

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

For more details, see Section 4.15 of the xHCI specification.

To report whether the controller supports runtime wake signaling:

- For add-in controllers, the controller's PCI configuration space must accurately report whether the
controller is capable of waking up via PME. Note: reporting that the controller supports waking up
via PME implies that the controller can both successfully perform PCI wake at runtime, and
successfully wake the system from a system low power state, in accordance with the appropriate PCI
specification.

- For integrated controllers, the ACPI _S0W object must report whether the controller is capable of
runtime wake signaling.

Device.BusController.UsbController.XhciVersionCompliant

USB 3.0 controllers are XHCI version compliant.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

USB 3.0 controllers must comply with the Extensible Host Controller Interface (xHCI) Specification
version 1.0 and any USB-IF Errata that are released by the USB-IF.

Send comments about this topic to Microsoft

Device.Cluster

In this topic:

¶ Device.Cluster.Core.ClusterInABox

Device.Cluster.Core.ClusterInABox

Cluster in a Box

Applies to Windows Server 2016 Technical Preview x64

Description

A minimum of two or more Windows Server Certified systems grouped together in a shared storage
cluster, running the Failover Clustering feature of Windows Storage Server, Windows Server, or
Hyper-V Server, as a pre-configured Cluster in a Box product that is self-contained and purchasable as
a single SKU, must have:

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.BusController.UsbController%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 109

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

All components of the clustered server systems, such as devices, associated drivers, and filter drivers
that are used in any system in the Cluster in a Box product, or are part of the Network or Storage
Connected Devices of the Cluster in a Box product, and that have a defined Product Type must be
certified for the version of Windows Server for which the Cluster in a Box product is being tested and
submitted for certification.

All components of the clustered server systems, such as devices, associated drivers, and filter drivers
that are used in any system in the Cluster in a Box product, but which do not have a defined Product
Type must have a signature provided by Microsoft for the version of Windows Server for which the
Cluster in a Box product is being tested and submitted.

For all the components above with a defined Product Type, and all those components above without
a defined Product Type, all testing must be done using the Hardware Lab Kit [or successor] for the
version of Windows Server operating system for which the Cluster in a Box product is being
submitted.

All server systems must have all supported features of the included devices, drivers, filters and
Network and Storage Connected Devices enabled during server system testing.

All server systems used in the Cluster in a Box product must be certified for the version of Windows
Server for which the Cluster in a Box product is being submitted.

All server systems used in the Cluster in a Box testing must have all supported features of the
included devices, drivers, filters and Network and Storage Connected Devices enabled and used
during testing.

The complete Cluster in a Box product with all components must pass the Cluster in a Box tests
included in the Hardware Lab Kit [or successor], in order for the test results submitted to Microsoft
to be awarded the certification for a Cluster in a Box product.

Send comments about this topic to Microsoft

Device.Connectivity.BluetoothDevices

Devices that connect to the PC via Bluetooth.

In this topic:

¶ Device.Connectivity.BluetoothDevices.BluetoothDeviceIdProfileVer13

¶ Device.Connectivity.BluetoothDevices.BluetoothHidLimitedDiscoverableMode

¶ Device.Connectivity.BluetoothDevices.ComplementarySubsystemList

¶ Device.Connectivity.BluetoothDevices.HidInitiatedReconnect

¶ Device.Connectivity.BluetoothDevices.KeyboardsSupportPasskeyAuthentication

¶ Device.Connectivity.BluetoothDevices.SupportBluetooth21

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Cluster%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 110

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.Connectivity.BluetoothDevices.BluetoothDeviceIdProfileVer13

Devices which support Bluetooth must implement the Device ID (DI) profile version 1.3 or Device
Information Service (DIS), as applicable.

Applies to Windows 10 x64

Windows 10 x86

Description

Bluetooth PC peripherals must include the Device ID record as specified in the Device ID profile,
version 1.3, for BR/EDR Bluetooth or the Device Information Service (DIS), version 1.1, Bluetooth LE.

Device.Connectivity.BluetoothDevices.BluetoothHidLimitedDiscoverableMode

Bluetooth HID devices must be discoverable only in Limited Discoverable Mode.

Applies to Windows 10 x64

Windows 10 x86

Description

Bluetooth HID devices must be discoverable only in Limited Discoverable Mode.

Device.Connectivity.BluetoothDevices.ComplementarySubsystemList

Bluetooth wireless technology subsystem end product must list Windows operating system in its
complementary subsystem list.

Applies to Windows 10 x64

Windows 10 x86

Description

The Bluetooth subsystem end product must list the Windows operating system in the
complementary subsystem list as described in Bluetooth Qualification Program Reference Document,
Version 2.1, Section 6.1, "Bluetooth Subsystems."

Device.Connectivity.BluetoothDevices.HidInitiatedReconnect

HID devices that support Bluetooth must support HID-initiated re-connect.

Applies to Windows 10 x64

Windows 10 x86

Windows Hardware Compatibility Program - 111

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

The HIDReconnectInitiate attribute (defined in Bluetooth HID Profile, 1.0, Section7.11.5,
"HIDReconnectInitiate") must be enabled. To automatically reconnect to the host if the connection is
dropped, the device must enter the page mode.

Device.Connectivity.BluetoothDevices.KeyboardsSupportPasskeyAuthentication

Bluetooth keyboards that implement Secure Simplified Pairing must support the Passkey
authentication method.

Applies to Windows 10 x64

Windows 10 x86

Description

Keyboards that implement Secure Simplified Pairing must support the Passkey authentication
method.

Device.Connectivity.BluetoothDevices.SupportBluetooth21

Devicesthat support Bluetooth must implement the Bluetooth 2.1 requirements.

Applies to Windows 10 x64

Windows 10 x86

Description

The Bluetooth devices must comply with the Bluetooth 2.1 + EDR requirements outlined in Bluetooth
Version 2.1 + EDR specifications.

Send comments about this topic to Microsoft

Device.Connectivity.Network.VerticalPairing

Root for former Rally technologies

In this topic:

¶ Device.Connectivity.Network.VerticalPairing.WCN

Device.Connectivity.Network.VerticalPairing.WCN

An 802.11 network-enabled device that operates as a station (STA) must implement WCN-NET and
meet basic 802.11 requirements.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Connectivity.BluetoothDevices%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 112

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Description

An 802.11 network-enabled device that operates as a station (STA) must meet the following
requirements:

¶ The device must implement WCN-NET and comply with the specification.

¶ The device must implement WCN-NET vertical-pairing extensions and indicate whether it

supports a PnP-X transport protocol. If the device supports a PnP-X transport protocol, it

must ensure correct universally unique identifier (UUID) alignment.

¶ If WCN-UFD is implemented, it must comply with the specification.

¶ If the device has a display that is capable of showing a four-digit or eight-digit number, it

must support displaying a dynamic Windows Connect Now (WCN) PIN without user

intervention. The PIN must be displayed for a minimum of two minutes after the device

receives a Wireless Provisioning Services (WPS) M2D message with the value of "Windows"

in the WPS Model Name attribute.

¶ If the device does not have a display that is capable of showing a four-digit or eight-digit

number, it must provide a physical label affixed to the device that includes the eight-digit PIN

and clearly labels the PIN value as a PIN (for example, PIN: 12345670).

¶ The device must be certified by the Wi-Fi Alliance, including Wi-Fi certification, Wi-Fi

Protected Access 2 (WPA2) certification, and Wi-Fi Protected Setup certification.

Design Notes:

For implementation details, see the WCN-NET specification at
http://go.microsoft.com/fwlink/?LinkId=109371 and the WCN-UFD specification at
http://go.microsoft.com/fwlink/?LinkId=109372.

For more information, see the "Installing Wi-Fi Devices Using Rally Vertical Pairing" white paper at
http://www.microsoft.com/whdc/connect/rally/WiFiVerticalPair.mspx.

Additional information can be found at http://go.microsoft.com/fwlink/?LinkId=109373 and
http://go.microsoft.com/fwlink/?LinkId=109368.

WCN-NET is required. WCN-UFD is optional and is supported in Windows for backward compatibility
with devices that are designed to support WCN functionality for Windows XP with Service Pack 2.

A device uses WCN-NET vertical-pairing extensions to indicate that its supports PnP-X. The device
must provide a single UUID that is provided in both the WCN-NET exchange and the UPnP/Web
Services for Devices (WSD) device file or provide the UPnP/WSD device UUID in the TransportUUID

http://go.microsoft.com/fwlink/?LinkId=109371
http://go.microsoft.com/fwlink/?LinkId=109372
http://www.microsoft.com/whdc/connect/rally/WiFiVerticalPair.mspx
http://go.microsoft.com/fwlink/?LinkId=109373
http://go.microsoft.com/fwlink/?LinkId=109368

Windows Hardware Compatibility Program - 113

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

attribute of the WCN-NET vertical-pairing extension. The UUID that is provided in UPnP or WSD must
be in lowercase (decimal digits can also be used).

For WSD implementations, the WSD UUID is provided as the endpoint reference address and must be
of the form urn:uuid:. For UPnP implementations, the UPnP UUID is provided as the root device
UUID.

Send comments about this topic to Microsoft

Device.Connectivity.PciConnected

In this topic:

¶ Device.Connectivity.PciConnected.64BitPrefetchableBar

¶ Device.Connectivity.PciConnected.ConfigurationSpaceCorrectlyPopulated

¶ Device.Connectivity.PciConnected.ExpressCardImplementsSerialNumber

¶ Device.Connectivity.PciConnected.InterruptDisableBit

¶ Device.Connectivity.PciConnected.MsiOrMsixSupport

¶ Device.Connectivity.PciConnected.PciAndPcixDevicesArePciCompliant

¶ Device.Connectivity.PciConnected.PCIExpress

¶ Device.Connectivity.PciConnected.SubsystemIdsRequired

Device.Connectivity.PciConnected.64BitPrefetchableBar

PCI-X and PCI Express devices that use prefetchable memory BARs, implement 64-bit prefetchable
memory base address registers (BARs)

Applies to Windows Server 2016 Technical Preview x64

Description

Devices that sit on the PCI-X or PCI Express bus and use prefetchable memory BARs must implement
64-bit prefetchable memory BARs on x64-based systems.

Design Notes:

See "Firmware Allocation of PCI Device Resources in Windows"

http://www.microsoft.com/whdc/system/bus/pci/PCI-rsc.mspx

If the device supports 64-bit prefetchable memory BARs, Windows attempts to assign a region above
4 GB. In a PCI bridge, Windows ignores boot configuration for an entire device path emanating from
the bridge in whose scope this method is defined. For the bridge and devices below it to be assigned
a region above 4 GB, all devices in the path must support 64-bit prefetchable BARs. If this is not true,

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Connectivity.Network.VerticalPairing%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
http://www.microsoft.com/whdc/system/bus/pci/PCI-rsc.mspx

Windows Hardware Compatibility Program - 114

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

the rebalance code runs and moves all resource assignments below 4 GB, because the goal is to start
as many devices as possible

Device.Connectivity.PciConnected.ConfigurationSpaceCorrectlyPopulated

Configuration space for PCI device is correctly populated

Applies to Windows Server 2016 Technical Preview x6 4

Description

PCI2.3 describes the configuration space that the system uses to identify and configure each device
that is attached to the bus. The configuration space is made up of a header region and a device-
dependent region. Each configuration space must have a 64-byte header at offset0. All the device
registers that the device circuit uses for initialization, configuration, and catastrophic error handling
must fit within the space between byte64 and byte255.

All other registers that the device uses during normal operation must be located in normal I/O or
memory space. Unimplemented registers or reads to reserved registers must finish normally and
return zero. Writes to reserved registers must finish normally, and the data must be discarded.

All registers that the device requires at interrupt time must be in I/O or memory space.

Device.Connectivity.PciConnected.ExpressCardImplementsSerialNumber

A single ExpressCard module that supports both USB and PCI Express interfaces implements a
common serial number

Applies to Windows Server 2016 Technical Preview x64

Description

An ExpressCard module that supports both USB and PCI Express interfaces on a single module must
implement the common serial number as described in the PCI ExpressCard Electromechanical
Specification.

This is the only method that Windows will use to determine the relationship of USB and PCI Express
on one module.

Device.Connectivity.PciConnected.InterruptDisableBit

PCI and PCI-X devices, that are PCI 2.3 compliant, support the interrupt-disable bit

Applies to Windows Server 2016 Technical Preview x64

Description

Windows Hardware Compatibility Program - 115

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

All PCI and PCI-X devices that claim support for PCI Local Bus Specification Revision 2.3 or later, must
support the interrupt-disable bit.

Design Notes:

See PCI Local Bus Specification, Revision2.3, Section6.2.2.

Device.Connectivity.PciConnected.MsiOrMsixSupport

PCI device that reports PCI-X capability in the PCI configuration space and that generates interrupts
may support MSI or MSI-X but is not required to do so

Appl ies to Windows Server 2016 Technical Preview x64

Description

As part of the PCI Conventional Specification 2.2 or later, PCI-X Addendum, Section 3.2, all PCI-X
devices that generate interrupts must support message-signaled interrupts.

For MSI implementation, MSI capabilities must be implemented in the configuration space.

For MSI-X implementation, MSI-X capabilities must be implemented in the configuration space.

However, because PCI-X is being replaced by PCI Express and many existing implementations do not
support MSI or MSI-X, this requirement is being relaxed. Any device that claims to support MSI or
MSI-X must do so or will fail the relevant WDK tests.

Design Notes:

Message Signaled Interrupt for PCI-X device is required by industry standard specification. However,
see above.

Device.Connectivity.PciConnected.PciAndPcixDevicesArePciCompliant

PCI and PCI-X devices, at a minimum, are PCI 2.1 compliant

Applies to Windows Server 2016 Technical Preview x64

Description

All PCI and PCI-X devices must comply with the PCI Local Bus Specification, Revision 2.1 or later. This
requirement applies to devices on X86, IA64 and x64 systems.

Design Notes:

See PCI Local Bus Specification, Revision 2.1 or later.

Device.Connectivity.PciConnected.PCIExpress

PCI Express requirement

Applies to Windows Server 2016 Technical Preview x64

Windows Hardware Compatibility Program - 116

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

1. Device driver for PCI Express device does not modify VC Enable settings:

The device driver must not modify the "VC Enable" bit (PCI Express Base Specification, Version1.0a,
Section7.11.7, VC Resource Control Register: bit 31) for any of the device's extended (non-VC0)
virtual channel or channels.

2.PCI Express link active state L1 exit latency does not exceed 64 µS:

A PCI Express link, between root complex and device or bridge, cannot have an active state L1 exit
latency of more than 64 microseconds on systems unless the link is associated with a PCI Express
cable; that is, a value of 111b cannot be reported in the link capabilities register field 17:15. See PCIe
Express Base Specification, Revision 1.0a, Section 7.8.6.

3.PCI Express hot-plug port that supports firmware-controlled hot plug uses the _OSC control
method for enable and disable:

All PCI Express hot-plug ports that support firmware-controlled hot-plugs must support the_OSC
control method for enabling and disabling firmware-controlled hot-plug as described in the PCI
Firmware Specification Version 3.0. See PCI Express Base Specification, Revision 1.1, Section 6.7.4.

4.PCI Express component implements a single device number on its primary interface:

Every PCI Express component (that is, physical device) is restricted to implementing a single device
number on its primary interface (upstream port), but it may implement up to eight independent
functions within that device number. See PCI Express Base Specification, Revision1.1 (or later),
Section 7.3.1.

5. PCI Express device implements support for MSI or MSI-X:

MSI support, which is optional for PCI 2.1, PCI 2.2, and PCI 2.3 devices, is required for PCI Express
devices. This capability can be either implemented as MSI or MSI-X. See PCI Express Base
Specification, Revision1.0a, Section 6.1.

6. PCI Express root complex supports the enhanced (memory-mapped) configuration space access
mechanism:

The root complex must support the enhanced configuration space access mechanism as defined in
PCI Express Base Specification, Revision 1.1 (or later), Section 7.9.

7.PCI Express device that can interrupt supports the interrupt disable bit:

If an interrupt is implemented, PCI Express devices must support the interrupt disable functionality
described in PCI Local Bus Specification, Revision2.3. This bit disables the device or function from
asserting INTx. A value of 0 enables the assertion of its INTx signal. A value of 1 disables the assertion
of its INTx signal. This bit's state upon reset is 0

Device.Connectivity.PciConnected.SubsystemIdsRequired

Device IDs include PCI subsystem IDs

Applies to Windows Server 2016 Technical Preview x64

Windows Hardware Compatibility Program - 117

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

The SID and SVID fields must comply with the SID requirement in PCI Local Bus Specification 2.3 and
the implementation details in "PCI Device Subsystem IDs and Windows."

AMR devices and MR devices on the system board are not exempt from the requirement for SID and
SVID.

SVID is not required for PCIe to PCI/PCI-X bridges.

Design Notes:

See "PCI Device Subsystem IDs and Windows" at http://go.microsoft.com/fwlink/?LinkId=36804.

Send comments about this topic to Microsoft

Device.Connectivity.Server

In this topic:

¶ Device.Connectivity.Server.ServerOutOfBandManageability

Device.Connectivity.Server.ServerOutOfBandManageability

Server Baseboard Management Controller (BMC) devices must support out-of-band management
capabilities.

Applies to Windows Server 2016 Technical Preview x64

Description

BMC devices must support server hardware out-of-band management capability, using IPMI 2.0
through a LAN and/or Serial interfaces, as well as in-band through the KCS system channel via the
IPMI Driver.

It is not necessary that the BMC implements the full IPMI 2.0 specification, as only a subset of
functionality is required for out-of-band management. The BMC must support the following
capabilities:

¶ ¢ƘŜ ǎȅǎǘŜƳΩǎ ōƻƻǘ ǎƻǳǊŎŜ ƛǎ ŎƻƴŦƛƎǳǊŀōƭŜ ǘƘǊƻǳƎƘ ǘƘŜ .a/Φ

¶ The BMC must support the following operations being performed on the server system.

This functionality is implemented using the Set System Boot Options command.

¶ The server can be configured to boot from the PXE server the next time it is reset

¶ The server can be configured to boot from the hard-disk the next time it is reset

¶ The server can be configured to always boot from the PXE server

http://go.microsoft.com/fwlink/?LinkId=36804
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Connectivity.PciConnected%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 118

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ The server can be configured to always boot from the hard-disk

¶ ¢ƘŜ ǎȅǎǘŜƳΩǎ .a/ ŦƛǊƳǿŀǊŜ ŀƴŘ .Lh{ ǾŜǊǎƛƻƴ ƛƴŦƻǊƳŀǘƛƻƴ ƛǎ ŜȄǇƻǎŜŘ ǘƘǊƻǳƎƘ ǘƘŜ .a/Φ

¶ The BMC must expose the version information for the following components:

¶ BIOS (through Get System Info Parameters command).

¶ BMC management firmware (through Get Device Id command).

¶ The OOB management LAN configuration can be updated through the BMC.

¶ This requirement is only applicable for systems that expose the BMC through the

IPMI/LAN channel. The management operations are carried out over the in-band channel

through the IPMI driver. The BMC must expose the following information about its own

LAN configuration through the Get LAN Configuration Parameters command:

¶ Indicator of whether the BMC is configured with a static IP address or if one is assigned

by DHCP

¶ IP Address

¶ Subnet mask

¶ Default Gateway

¶ Primary and secondary DNS

¶ The BMC must support the following operations being performed through the Set LAN

Configuration Parameters command:

¶ BMC can be configured with a static IP address, Subnet Mask, Default Gateway IP

address, and primary and secondary DNS

¶ BMC can be configured to get its IP address from the DHCP server

¶ The systeƳΩǎ ǇƻǿŜǊ ǎǘŀǘŜ Ŏŀƴ ōŜ ƳŀƴŀƎŜŘ ǘƘǊƻǳƎƘ ǘƘŜ .a/Φ

¶ The BMC must expose the following server system information:

¶ Current power state of the server (through the Get Chassis Status command)

¶ The BMC must support the following operations being performed on the server system

through the Chassis Control command:

¶ The server power can be turned off

Windows Hardware Compatibility Program - 119

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ The server power can be turned on

¶ The server power can be reset

¶ The BMC prevents untrusted access to the server system.

¶ The authentication mechanism used by IPMI presents a number of vulnerabilities that are

exploitable in a BMC with unsecure configuration. To mitigate some of these

vulnerabilities, the following configuration is present on certified BMCs:

¶ BMC must not allow remote access on the LAN channel using the RAKP-none

Authentication Algorithm.

¶ BMC must not have an anonymous user account configured by default. If this account

exists, it must be disabled.

¶ ¢ƘŜ ǎȅǎǘŜƳΩǎ ōŀǎƛŎ ƛƴǾŜƴǘƻǊȅ ƛǎ ŜȄǇƻǎŜŘ ǘƘǊƻǳƎƘ ǘƘŜ .a/Φ

¶ The BMC must expose the following server system information:

¶ Manufacturer of the server hardware (Read FRU Data command)

¶ Model of the server hardware (Read FRU Data command)

¶ Server SMBIOS GUID (Get System GUID command)

¶ The expected format of the GUID on the wire conforms to the format described in

the SMBIOS 2.8 Specification (DSP0134). That is, the GUID 00112233-4455-6677-

8899-AABBCCDDEEFF is transmitted as 33 22 11 00 55 44 77 66 88 99 AA BB CC DD

EE FF by the Get System GUID command.

¶ Asset Tag of the server (Read FRU Data command)

¶ Serial Number of the server (Read FRU Data command)

¶ System Event Log time of the server (Get SEL Time command)

¶ System Event Log capacity information (Get SEL Info command)

¶ The BMC allows remote credential management.

¶ The BMC must support its Administrator password being changed through the Set User

Password command. This operation is executed using the in-band channel through the

IPMI driver.

¶ The System Event Log (SEL) can be managed through the BMC

Windows Hardware Compatibility Program - 120

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ The SEL entries can be read (Get SEL Entry command)

¶ The SEL can be cleared (Clear SEL command)

Below is a list of the IPMI commands that are being used to manage BMC devices:

¶ Open Session

¶ RAKP Messages

¶ Set Session Privilege Level

¶ Get Session Info

¶ Close Session

¶ Get Device Id

¶ Get System GUID

¶ Get System Info Parameters

¶ Read FRU Data

¶ Chassis Control

¶ Get Chassis Status

¶ Get Channel Info

¶ Get LAN Configuration Parameters

¶ Set LAN Configuration Parameters

¶ Warm Reset

¶ Get SEL Entry

¶ Get SEL Info

¶ Reserve SEL

¶ Clear SEL

¶ Get SEL Time

¶ Get System Boot Options

¶ Set System Boot Options

Windows Hardware Compatibility Program - 121

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Get User Name

¶ Set User Password

Enforcement

¢Ƙƛǎ ƛǎ ŀƴ άLŦ-LƳǇƭŜƳŜƴǘŜŘέ ƻǇǘƛƻƴŀƭ ŘŜǾƛŎŜ ǊŜǉǳƛǊŜƳŜƴǘΦ ¢Ƙƛǎ ƛǎ ŀ ǇǊŜǊŜǉǳƛǎƛǘŜ ŘŜǾƛŎŜ ǊŜǉǳƛǊŜƳŜƴǘ
for server claiming to be out-of-band manageable using the de facto IPMI standard. This requirement
becomes in effect at the release of Windows Server vNext.

Send comments about this topic to Microsoft

Device.Connectivity.UsbDevices

Applies to all devices connected via USB including USB hubs. Does not apply to USB controllers.

In this topic:

¶ Device.Connectivity.UsbDevices.DebugCompliesWithDebugSpec

¶ Device.Connectivity.UsbDevices.DebugCompliesWithDebugSpecUSB3

¶ Device.Connectivity.UsbDevices.DeviceAttachLessThan100ms

¶ Device.Connectivity.UsbDevices.FunctionSuspendSelectiveSuspend

¶ Device.Connectivity.UsbDevices.InternalDevicesMustSupportSuspend

¶ Device.Connectivity.UsbDevices.IsochronousDeviceAndDriver

¶ Device.Connectivity.UsbDevices.MsOsContainerId

¶ Device.Connectivity.UsbDevices.MustBeFunctionalAfterResume

¶ Device.Connectivity.UsbDevices.MustNotDisconnectDuringSuspend

¶ Device.Connectivity.UsbDevices.MustResumeWithoutForcedReset

¶ Device.Connectivity.UsbDevices.MustSignalAttachWithin500ms

¶ Device.Connectivity.UsbDevices.MustSupportSuspend

¶ Device.Connectivity.UsbDevices.RespondAllStringRequests

¶ Device.Connectivity.UsbDevices.ResponsesLimitedByWlengthField

¶ Device.Connectivity.UsbDevices.SerialNumbers

¶ Device.Connectivity.UsbDevices.SerialNumbersUseValidCharacters

¶ Device.Connectivity.UsbDevices.SuperSpeedOnConnectViaUsb3Port

¶ Device.Connectivity.UsbDevices.TestedUsingMicrosoftUsbStack

¶ Device.Connectivity.UsbDevices.UsbifCertification

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Connectivity.Server%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 122

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.Connectivity.UsbDevices.UseUsbClassOnlyForControllerOrHub

¶ Device.Connectivity.UsbDevices.WirelessUsbObtainsWusbLogoFromUsbif

¶ Device.Connectivity.UsbDevices.WirelessUsbWiMediaAlliace

Device.Connectivity.UsbDevices.DebugCompliesWithDebugSpec

USB debug device must comply with the USB2 debug device specification.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

USB devices designed for debug purposes over USB 2.0 must comply with USB2 Debug Device
Functional Specification, which includes details on the device framework, commands, and additional
operational requirements.

Device.Connectivity.UsbDevices.DebugCompliesWithDebugSpecUSB3

USB 3.0 debug cables must comply with the USB 3.0 specification.

Applies to Wind ows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

USB cables designed for USB 3.0 host debugging must comply with the Universal Serial Bus 3.0
Specification, section 5.5.2.

Device.Connectivity.UsbDevices.DeviceAttachLessThan100ms

USB device that signals device-attach must respond after at least 100 ms.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

When the USB device has signaled device-attach, the operating system provides a debounce interval
of 100ms. The device must respond at the end of that interval. This is described in USB Specification,

Windows Hardware Compatibility Program - 123

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Revision2.0, Section 7.1.7.3. This requirement ensures that the electrical and mechanical connections
are stable before the attached device is reset.

Device.Connectivity.UsbDevices.FunctionSuspendSelectiveSuspend

USB 3.0 devices must correctly implement Function Suspend and Selective Suspend.

Applies to Window s 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Any function that is in a suspend state before a device is selectively suspended remains in the
function suspend state when the device is resumed from the selective suspend state. Devices must
not place all device functions in the function suspend state. Devices must report the selective
suspend state.

SuperSpeed devices ignore the DEVICE_REMOTE_WAKEUP feature selector.

When all functions of a SuperSpeed device are in the function suspend state and the
PORT_U2_TIMEOUT field is programmed to 0xFF, the device initiates U2 after 10 milliseconds (ms) of
link inactivity. For more information, see section 9.2 of the USB 3.0 Specification.

Devices that are resumed from the selective suspend state retain a minimum set of device state
information as specified in section 9.2.5.2 of the USB 3.0 Specification.

Device.Connectivity.UsbDevices.InternalDevicesMustSupportSuspend

All internally connected USB devices must go to Selective Suspend after periods of inactivity.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

All internally connected USB devices must be capable of entering the suspend state after device
drivers for those devices initiate the USB Selective Suspend process. Third-party drivers for internal
devices on applicable systems must implement USB Selective Suspend.

Devices belonging to these device classes can opt out of supporting USB Selective Suspend:

¶ Printers

¶ Scanners

¶ Fax

Windows Hardware Compatibility Program - 124

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.Connectivity.UsbDevices.IsochronousDeviceAndDriver

Isochronous USB device and driver requirement

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

1. ISO USB device and driver provide multiple alternate settings to support maximum flexibility of
hardware interface options:

If any alternate setting consumes isochronous bandwidth, devices and drivers must provide multiple
alternate settings for each interface.

2. USB device and driver do not use isochronous bandwidth for alternate setting 0:

Devices and drivers must not use isochronous bandwidth for alternate setting 0. Devices must
consume bandwidth only when they are in use.

3.USB isochronous full-speed or high-speed device that uses more than 50 percent of USB bus
bandwidth provides alternate settings:

If a USB isochronous full-speed or high-speed device uses more than 50 percent of USB bus
bandwidth, it must provide alternative settings that allow the device to switch to a setting that uses
less than 50 percent of the bus bandwidth and operate as a device of that particular class (ex. if it is a
camera then it must continue to stream video), even though it may be in a lower quality mode.

Devices with attached host controllers are exempt from this requirement.

4. USB device with interfaces containing isochronous endpoints has at least one alternative
interface for low bandwidth scenarios:

USB device must provide at least one alternative interface for low bandwidth as described in USB
Specification, Revision 2.0 or later, Section 9.6.5.

Design Notes:

See section 9.6.5 in the Universal Serial Bus Specification, Revision 2.0.

If two or more devices are connected that use more than 50 percent of the bus bandwidth and do
not provide alternate settings, only one of the devices works at a time.

See USB Specification, Revision 2.0 or later, Sections 5.6 and 5.7.

Device.Connectivity.UsbDevices.MsOsContainerId

USB devices that implement the Microsoft OS Container ID descriptor must implement it correctly.

Applies to Windows 10 x64

Windows 10 x86

Windows Hardware Compatibility Program - 125

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows Server 2016 Technical Preview x64

Description

If a multifunction USB device implements the Microsoft® operating system ContainerID descriptor,
the device does this in the Microsoft operating system feature descriptor.

The Microsoft operating system ContainerID descriptor allows Windows® to correctly detect
multifunction devices. The descriptor provides a way for all the device nodes to appear as one
physical object in the Devices and Printers user interface (UI).

Device.Connectivity.UsbDevices.MustBeFunctionalAfterResume

Attached USB devices must be functional after resuming from system power states.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Devices not entering a timely ready state will be marked code 10 or other by the system. Certain
classes of devices do not properly respond to system events, such as resume, and require upper
driver or expect precise boot timings in order to function properly. A device must be able to function
without a port reset upon resume, but must also remain functional if a reset does occur.

A device must be in the attached state (USB Specification 2.0, section 9.1) to be configured and the
device must be in the configured state before its functions maybe used (aka, the device is useable).
This is per the USB spec 2.0 as in sections 9.1 and 9.2.6.2 "After a port is reset or resumed, the USB
System Software is expected to provide a "recovery" interval of 10 ms before the device attached to
the port is expected to respond to data transfers. The device may ignore any data transfers during
the recovery interval."

Clarification:

Devices must be functional after resuming from system power states whether a port reset is issued
or not.

Device.Connectivity.UsbDevices.MustNotDisconnectDuringSuspend

USB devices must not disconnect from the upstream port while going to or resuming from selective
suspend.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Windows Hardware Compatibility Program - 126

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

USB devices must not disconnect from the upstream port during the selective suspend process.

To test this requirement, we will cause the device to go into the selective suspend state and then
resume the device. During this process, we will observe the port status bits of the upstream port and
verify that the device does not disconnect during this time. We will repeat this process serveral
times.

Device.Connectivity.UsbDevices.MustResumeWithoutForcedReset

All USB devices work properly upon resume from sleep, hibernation, or restart without a forced reset
of the USB host controller.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

All USB devices work properly upon resume from sleep, hibernation, or restart without a forced reset
of the USB host controller.

Design Notes:

Registry key ForceHCResetOnResume documented at the KB below is not needed for devices to
function properly upon resume in Windows 7: http://support.microsoft.com/kb/928631.

Note that a known set of currently existing devices do require a forced reset upon resume, these
devices should be covered in a list kept by the OS which will reset these devices upon resume. The
goal of this requirement is to ensure that this list of devices that must be reset to appear after
resume does not grow and that devices can properly handle sleep state transitions without being
reset.

A reset of the entire USB Host Controller results in significantly increased time that it takes for all USB
devices to become available after system resume since there could be only one device at address 0 at
a time, this enumeration has to be serialized for all USB devices on the bus. We have also seen that
resetting the host controller can lead to an illegal SE1 signal state on some host controllers, which in
turn can cause some USB devices to hang or drop off the bus. Moreover, devices cannot maintain
any private state across sleep resume as that state will be lost on reset.

Device.Connectivity.UsbDevices.MustSignalAttachWithin500ms

Devices must signal attach within 500 ms after the system resumes.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Previe w x64

http://support.microsoft.com/kb/928631

Windows Hardware Compatibility Program - 127

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

After the system resumes from sleep, the hub driver will fetch the status of the port to which the
device is connected. If the device does not show as connected, the hub driver will wait
500 milliseconds (ms) before the hub driver queries the port status again. If the device appears as
connected within that time, the hub will not need to re-enumerate the device for Plug and Play,
which will result in a better user experience. This requirement already exists for bus-powered devices
in the USB specification. The requirement will now also apply to self-powered devices.

Device.Connectivity.UsbDevices.MustSupportSuspend

All bus powered USB devices must support USB Suspend after periods of inactivity.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 T echnical Preview x64

Description

The device driver for a bus-powered device initiates the USB Selective Suspend process. The device
can enter the suspend state from any powered state. The device must begin the transition to the
suspend state after it sees a constant idle state on its upstream facing bus lines for more than 3.0 ms.
In suspend state, the device must only draw suspend current from the bus after no more than 10 ms
of bus inactivity on all its ports, as described in the USB Specification, Revision 2.0, Sections 7.1.7.6, 6
9.1.1.6 and 9.2.6.2.

Clarification about USB Selective Suspend in embedded USB devices can be found in the following
requirement: Device.Connectivity.UsbDevices.InternalDevicesMustSupportSuspend.

Clarification about USB Selective Suspend in Windows RT systems can be found in the following
requirements: Device.Connectivity.UsbDevices.MustSupportSuspendOnRT.

Device.Connectivity.UsbDevices.RespondAllStringRequests

A USB device must respond to all string requests that the host sends to indexes.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

USB devices must respond accordingly to string requests that the host sends. Devices must stall if no
string is stored at the index being queried or if a request error exists. Devices must not reset
themselves or stop functioning. This is described in USB Specification, Revision 2.0 or later, Section
9.6.

Windows Hardware Compatibility Program - 128

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.Connectivity.UsbDevices.ResponsesLimitedByWlengthField

USB device responses to host requests are limited in size by the wLength field.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

All USB device requests contain a wLength field. Responses by the USB device to host requests must
be of size <= wLength field of the device request as defined in the USB Specification, Revision1.1 or
later, Section 9.3.5.

Device.Connectivity.UsbDevices.SerialNumbers

USB serial numbers are implemented for specific device classes and are unique across specific device
models.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

USB serial numbers must be implemented for the following device classes:

¶ Bluetooth (Class Code 0xE0, SubClass 0x01, Protocol 0x01)

¶ Communication device class (Class Code 0x02)

¶ Mass storage (Class Code 0x08)

¶ Scanning/imaging (Class Code 0x06)

¶ Printing (Class Code 0x07)

¶ Host Wire Adapters and Device Wire Adapters (Class Code 0xE0, subclass 02)

USB serial numbers are optional for all other device classes. Additionally, if serial numbers are
implemented on the device's model, all devices of the same model must have unique serial numbers.

Design Notes:

For more information on USB device class details, see "Defined 1.0 Class Codes" at:
http://go.microsoft.com/fwlink/?LinkId=40497.

http://go.microsoft.com/fwlink/?LinkId=40497

Windows Hardware Compatibility Program - 129

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

For more information on implementation of serial numbers, see USB Specification, Revision 2.0 or
later, Section 9.6.

Device.Connectivity.UsbDevices.SerialNumbersUseValidCharacters

A USB device that implements manufacturer-defined serial numbers must contain valid characters.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

A USB serial number must be a string that contains a manufacturer-determined ID composed of valid
characters. Valid characters are defined in the Windows Driver Kit, "USB_DEVICE_DESCRIPTOR."

Device.Connectivity.UsbDevices.SuperSpeedOnConnectViaUsb3Port

If upstream SuperSpeed termination is on, devices must always connect on the USB 3.0 port and
never connect on the USB 2.0 port.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

In a USB 3.0 hub, two downstream ports, a USB 2.0 port and a Superspeed port share the same
connector. When a SuperSpeed (that is, non-hub) device is plugged into such a connector, the device
must always connect on the SuperSpeed port. The device must never connect on the USB 2.0 port.

To test this requirement, the software will verify that the USB 3.0 port status bits show a connected
device and that the USB 2.0 port status bits do not show a connected device.

For a definition of "connect", see section 2 of the USB 3.0 Specification under "connected".

Device.Connectivity.UsbDevices.TestedUsingMicrosoftUsbStack

USB devices must be tested with Microsoft's xHCI Stack installed.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Windows Hardware Compatibility Program - 130

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

All USB Devices (Low, Full, High, and Super Speed devices) must be tested with Microsoft's Extensible
Host Controller Interface (xHCI) Stack installed and enabled on a Windows system.

Note: During USB-IF self-testing a specific USB Test Stack is installed for testing purposes, this is
expected and acceptable.

Device.Connectivity.UsbDevices.UsbifCertification

USB devices must either pass USB IF tests or be USB IF certified.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

USB devices must pass USB Implementers Forum (IF) tests or be USB-IF certified.

See white paper on Windows Logo Kit USB-IF Testing

At http://www.microsoft.com/whdc/connect/usb/wlk-usb-if-testing.mspx

Device.Connectivity.UsbDevices.UseUsbClassOnlyForControllerOrHub

Third-party INF files include the class "USB" only if the device is a USB host controller, a root, or an
external hub.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Class USB is often used incorrectly for devices that do not have a predefined class. For example, a
USB mouse uses class HID, whereas a USB smartcard uses class smartcard reader. Class USB is
reserved for host controllers and root or external USB hubs. If the vendor has a device that has no
Windows-defined class but uses USB as the bus, it must define its own class or class GUID. The setup
class associated with the type of USB device, not with the bus type, must be used. The setup class
"USB" (ClassGuid = {36fc9e60-c465-11cf-8056-444553540000}) is reserved for USB host controllers
and root or external USB hubs. It must not be used for other device categories.

Design Notes:

Microsoft provides system-defined setup classes for most device types. System-defined setup class
GUIDs are defined in the Windows Driver Kit, "Devguid.h."

http://www.microsoft.com/whdc/connect/usb/wlk-usb-if-testing.mspx

Windows Hardware Compatibility Program - 131

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

If you choose the wrong class, the device appears in an incorrect location in Device Manager and in
the Windows Vista UI. Using this class incorrectly may cause the device driver to fail hardware
compatibility testing.

For a list of Windows class GUIDs, see the Windows Driver Kit, "System-Supplied Device Setup
Classes" at: http://msdn.microsoft.com/en-us/library/ff553419(VS.85).aspx.

Device.Connectivity.UsbDevices.WirelessUsbObtainsWusbLogoFromUsbif

Wireless USB device or host must obtain a Certified Wireless USB logo from the USB-IF.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

All Wireless USB devices must get a Certified Wireless USB Logo from the USB-IF.

Device.Connectivity.UsbDevices.WirelessUsbWiMediaAlliace

Certified Wireless USB device or host must pass all required WiMedia Alliance compliance tests.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Wireless USB device must pass WiMedia Alliance radio compliance tests.

Send comments about this topic to Microsoft

Device.Connectivity.UsbHub

Requirements that apply only to USB Hubs

In this topic:

¶ Device.Connectivity.UsbHub.IdentifyNumOfUserAccessiblePorts

¶ Device.Connectivity.UsbHub.SupportSuspend

¶ Device.Connectivity.UsbHub.Usb3HubCompliesWithUsb3Spec

¶ Device.Connectivity.UsbHub.Usb3ReportPortStatusBitsCorrectly

http://msdn.microsoft.com/en-us/library/ff553419(VS.85).aspx
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Connectivity.UsbDevices%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 132

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.Connectivity.UsbHub.IdentifyNumOfUserAccessiblePorts

A USB hub must correctly identify and report the number of ports that the user can access.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

The USB hub must include details in its hub descriptor that provide the operating system with an
accurate count of the number of downstream-facing ports that the hub supports and that are
exposed to the user. See USB Specification, Revision 2.0, Section11.23, and USB 3.0 Specification,
Section 10.14. Root hubs are exempt from this requirement.

Device.Connectivity.UsbHub.SupportSuspend

USB hubs must support the selective suspend state, and downstream devices must not drop off the
bus when the hub resumes from selective suspend.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

USB hubs must support the selective suspend state, as stated in both the USB Specification and other
compatibility program requirements. After a hub is resumed from the selective suspend state, all
devices that were attached downstream of the hub, and that were not removed while the hub was
suspended, must be present.

Device.Connectivity.UsbHub.Usb3HubCompliesWithUsb3Spec

USB 3.0 hubs are compliant with the USB 3.0 specification.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

USB 3.0 hubs must be compliant with the Universal Serial Bus (USB) 3.0 specification.

USB 3.0 hubs must:

¶ Pass the USB-IF interoperability tests

Windows Hardware Compatibility Program - 133

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Pass the USB 3.0 Hub compliance test suite

¶ Pass the USB 3.0 CV test

Device.Connectivity.UsbHub.Usb3ReportPortStatusBitsCorrectly

USB 3.0 hubs must always report the port status bits correctly as per the USB 3.0 specification.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

In the current stack, a number of invalid port status bit combinations that the hub reports are
ignored. Any invalid combination of port status bits will be treated as an error. In particular, checks
will follow these actions:

¶ Resetting a port

¶ Suspending and resuming a port

¶ System resume

A hub should not report spurious change interrupts. A hub should complete the port status interrupt
transfer without reporting changes.

Send comments about this topic to Microsoft

Device.Connectivity.WSD

In this topic:

¶ Device.Connectivity.WSD.DPWS

¶ Device.Connectivity.WSD.DPWSExtensibility

¶ Device.Connectivity.WSD.MetadataExchange

¶ Device.Connectivity.WSD.MetadataValid

¶ Device.Connectivity.WSD.Schema

¶ Device.Connectivity.WSD.WSDiscovery

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Connectivity.UsbHub%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 134

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Device.Connectivity.WSD.DPWS

Devices which use or interact with the Web Services on Devices API (WSDAPI) comply with Device
Profiles for Web Services (DPWS) specification

Applies

to

Windows 10 for desktop editions (Home, Pro, Enterprise, and Education)

x86

Windows 10 for desktop editions x64

Windows Server 2016 Technical Preview x64

Description

Devices which plan to use or interact with Microsoft Windows' implementation of DPWS, the Web
Services on Devices API (WSDAPI), must implement the DPWS specification themselves. (WSDAPI)

Design Notes:

DPWS Specification available at

http://go.microsoft.com/fwlink/?LinkId=109231

Device.Connectivity.WSD.DPWSExtensibility

Devices Profile for Web Services Devices must accept messages that contain extensibility sections,
and process the messages as appropriate.

Applies to Windows 10 for desktop editions x86

Windows 10 for desktop editions x64

Windows Server 2016 Technical Preview x64

Description

Devices Profile for Web Services (DPWS) devices must accept messages where the XML has been
extended. If the device understands the content in the extensible section, it may process it.

Design Notes:

DPWS Specification available at

http://go.microsoft.com/fwlink/?LinkId=109231

Device.Connectivity.WSD.MetadataExchange

Devices Profile for Web Services (DPWS) Devices support metadata exchange

Applies to Windows 10 for desktop editions x86

Windows 10 for desktop editions x64

Windows Server 2016 Technical Preview x64

http://go.microsoft.com/fwlink/?LinkId=109231
http://go.microsoft.com/fwlink/?LinkId=109231

Windows Hardware Compatibility Program - 135

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

DPWS Devices which interact with the Web Services on Devices API (WSDAPI) must support
metadata exchange as defined in the metadata exchange specification.

Design Notes:

Metadata Exchange specification can be obtained at http://go.microsoft.com/fwlink/?LinkId=109248

Device.Connectivity.WSD.MetadataValid

Devices which interact with the Web Services on Devices (WSDAPI) produce metadata that conforms
to the Devices Profile for Web Services

Applies to Windows 10 for desktop editions x86

Windows 10 for desktop editions x64

Windows Server 2016 Technical Preview x64

Description

Devices which interact with WSDAPI must populate the Metadata as defined in the Device Profile for
Web Services Specification of February 2006.

Design Notes:

The Device Profile for Web Services Specification of February 2006 is available at
http://go.microsoft.com/fwlink/?LinkId=109231

Device.Connectivity.WSD.Schema

A network-enabled device that implements Devices Profile for Web Services (DPWS) must adhere to
the protocol and schema.

Applies t o Windows 10 for desktop editions x86

Windows 10 for desktop editions x64

Windows Server 2016 Technical Preview x64

Description

A network-enabled device that implements Devices Profile for Web Services (DPWS) must adhere to
the Devices Profile for Web Services as described by the schema.

The device must also reference the namespace URI as described in The Devices Profile for Web
Service specification.

A device the implements DPWS must adhere to the Web Services Description Language (WSDL)
associated with the logo device class. The WSDL defines services as collections of network endpoints,
or ports. WSDL specification provides an XML format for documents for this purpose. Devices must
implement the WSDL version 1.1.

http://go.microsoft.com/fwlink/?LinkId=109248
http://go.microsoft.com/fwlink/?LinkId=109231

Windows Hardware Compatibility Program - 136

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Design Notes:

See the Web Services Description Language (WSDL) Version 1.1 at
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

See the Devices Profile for Web Services schema at
http://schemas.xmlsoap.org/ws/2006/02/devprof/devicesprofile.xsd.

See the Devices Profile for Web Service specification at
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf.

Additional information can be found in the Windows Rally Development Kit at
http://go.microsoft.com/fwlink/?LinkId=109368.

Device.Connectivity.WSD.WSDiscovery

Devices Profile for Web Services (DPWS) Devices interacting with the Web Services on Devices API
(WSDAPI) implement WS-Discovery

Applies to Window s 10 for desktop editions x86

Windows 10 for desktop editions x64

Windows Server 2016 Technical Preview x64

Description

DPWS Devices must implement WS-Discovery to work with WSDAPI.

Design Notes:

WS-Discovery specification can be obtained at http://go.microsoft.com/fwlink/?LinkId=109247

Send comments about this topic to Microsoft

Device.DevFund.CDA

Custom Driver Access for privileged application usage.

In this topic:

¶ Device.DevFund.CDA.Application

Device.DevFund.CDA.Application

Custom Driver Access

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://schemas.xmlsoap.org/ws/2006/02/devprof/devicesprofile.xsd.
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf.
http://go.microsoft.com/fwlink/?LinkId=109368.
http://go.microsoft.com/fwlink/?LinkId=109247
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Connectivity.WSD%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 137

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

If a device driver supports a privileged app performing Custom Driver Access, it must declare a
restricted interface.

By declaring a restricted interface, the following requirements must be met:

¶ Assert that the device io control interfaces provided by this device driver are intended to be

accessed by a privileged app running in an app container that accesses hardware

functionality using CreateDeviceAccessInstance() and IDeviceIoControl() on Windows 10.

¶ The restricted interface cannot be opened directly from an app container.

A device driver declares an interface is restricted by setting the DEVPKEY_DeviceInterface_Restricted
property to true on that interface.

Send comments about this topic to Microsoft

Device.Devfund.DeviceGuard

All kernel drivers must be built to be compatible with Device Guard.

In this topic:

¶ Device.DevFund.DeviceGuard.DriverCompatibility

Device.DevFund.DeviceGuard.DriverCompatibility

Applies to Windows 10 x64

Windows Server 2016 Technical Preview x64

Description

Windows 10 has a new feature called Device Guard that gives organizations the ability to lock down
devices in a way that provides advanced malware protection against new and unknown malware
variants as well as Advanced Persistent Threats (APTs). Device Guard can use hardware technology
and virtualization to isolate the Code Integrity (CI) decision-making function from the rest of the
Windows operating system. When using virtualization-based security to isolate Code Integrity, the
only way kernel memory can become executable is through a Code Integrity verification. This means
that kernel memory pages can never be Writable and Executable (W+X) and executable code cannot
be directly modified.

Details are available in the Windows Hardware Certification blog.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.DevFund.CDA%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
http://go.microsoft.com/fwlink/p/?LinkId=627463
http://blogs.msdn.com/b/windows_hardware_certification/archive/2015/05/22/driver-compatibility-with-device-guard-in-windows-10.aspx
http://go.microsoft.com/fwlink/p/?LinkId=627463

Windows Hardware Compatibility Program - 138

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Send comments about this topic to Microsoft

Device.DevFund.DriverFramework.KMDF

Driver framework requirements for KMDF

In this topic:

¶ Device.DevFund.DriverFramework.KMDF.Reliability

¶ Device.DevFund.DriverFramework.KMDF.WDFProperINF

Device.DevFund.DriverFramework.KMDF.Reliability

Kernel Mode Driver Framework (KMDF) drivers must be architected to maximize reliability and
stability and do not "leak" resources such as memory and KMDF objects.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Kernel-Mode Driver Framework (KMDF) drivers must use pool memory responsibly. Handles that the
drivers pass to device driver interfaces (DDIs) must conform to the pattern of the parameter. The
state of the drivers must be consistent with the use of WDFREQUEST objects and WDFQUEUE
objects.

Event callback functions that the driver registers must adhere to interrupt request level (IRQL)
restrictions.

Design Notes:

For more information about developing drivers that meet this requirement, visit the following
websites:

http://msdn.microsoft.com/en-us/library/aa973499.aspx

http://www.microsoft.com/whdc/driver/wdf/KMDF.mspx

The following tools can be enabled to validate this requirement for all KMDF drivers:

¶ Windows® Driver Foundation (WDF) Verifier.

¶ Handle tracking. Handle tracking will be enabled on all KMDF objects.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.Devfund.DeviceGuard%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
http://msdn.microsoft.com/en-us/library/aa973499.aspx
http://www.microsoft.com/whdc/driver/wdf/KMDF.mspx

Windows Hardware Compatibility Program - 139

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Enhanced Verifier for Framework 1.9 KMDF drivers. Enhanced Verifier is new for Framework

1.9. This tool can be enabled by using the EnhancedVerifierOptions registry value. To enable

Enhanced Verifier, set the following registry values for the driver's Parameters\Wdf key:

HKLM\System\CurrentControlSet\Services\ \Parameters\Wdf

EnhancedVerifierOptions REG_DWORD 1

VerifierOn REG_DWORD 1

TrackHandles MULTI_SZ *

¶ Driver Verifier. To enable Driver Verifier, use the following command:

Verifier /flags 0xfb /driver

This command will run the KMDF driver under Driver Verifier with all flags set except the Low
Resource Simulation flag. For more information about Driver Verifier, visit the following website:

http://msdn.microsoft.com/en-us/library/ff545448.aspx

In the Windows Hardware Lab Kit, the WDF Test can be run to validate this requirement.

Device.DevFund.DriverFramework.KMDF.WDFProperINF

Windows Driver Framework (WDF) driver INF files must be properly structured.

Appl ies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

¶ All information (INF) files in Windows Driver Foundation (WDF) driver packages must call

WDF-specific sections properly. Correctly structured INF sections help to ensure that the

driver will be installed properly. However, even when a driver is installed, a poorly or wrongly

configured section can cause unpredictable problems during the operation of the driver or

device. These problems can be prevented by following the guidelines for WDF INF settings.

To meet this requirement, all WDF INF files must have the following:

¶ A coinstaller section, as follows:

[DDInstall.Coinstallers]

CopyFiles=

AddReg=

http://msdn.microsoft.com/en-us/library/ff545448.aspx

Windows Hardware Compatibility Program - 140

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ A WDF section, as follows:

For Kernel-Mode Driver Framework (KMDF) drivers:

[DDInstall.Wdf]

KmdfService= <ServiceName>, <Kmdf_Install>

[Kmdf_Install]

KmdfLibraryVersion=

For User-Mode Driver Framework (UMDF) drivers:

[DDInstall.Wdf]

UmdfService=<ServiceName>,<Umdf_Install>

UmdfServiceOrder=

UmdfDispatcher [Only for USB Drivers and Drivers with file handle I/O

targets]=

UmdfImpersonationLevel[optional]=

[Umdf_Install]

UmdfLibraryVersion=

DriverCLSID=

ServiceBinary=

¶ All UMDF driver INF files must have a WUDFRD service installation section, as follows:

[WUDFRD_ServiceInstall]

DisplayName = "Windows Driver Foundation - User - mode Driver Framework

Reflector"

ServiceType = 1

StartType = 3

ErrorControl = 1

ServiceBinary = %12% \ WUDFRd.sys

LoadOrderGroup = Base

¶ All WDF drivers that use a WinUSB driver must have the following service installation

settings:

[WinUsb_ServiceInstall]

DisplayName = "WinUSB Driver"

ServiceType = 1

StartType = 3

Windows Hardware Compatibility Program - 141

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

ErrorControl = 1

ServiceBinary = %12% \ WinUSB.sys

¶ Service names, hardware IDs (HWIDs), display names, and UMDF class identifiers (CLSIDs)

cannot be pasted from WDF samples.

Design Notes:

For more information about WDF-specific INF settings, visit the following websites:

http://www.microsoft.com/whdc/driver/wdf/wdfbook.mspx

http://msdn.microsoft.com/en-us/library/ff560526.aspx

http://msdn.microsoft.com/en-us/library/ff560526.aspx

Send comments about this topic to Microsoft

Device.DevFund.DriverFramework.UMDF

Driver framework requirements for UMDF

In this topic:

¶ Device.DevFund.DriverFramework.UMDF.Reliability

¶ Device.DevFund.DriverFramework.UMDF.WDFProperINF

Device.DevFund.DriverFramework.UMDF.Reliability

User Mode Driver Framework (UMDF) drivers must be secure, stable, reliable, and not have
application compatibility issues.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

To help ensure that all User-Mode Driver Framework (UMDF) drivers meet security standards, are
stable and reliable, and do not have application compatibility issues, drivers must not have any
object leaks.

Object leaks can be diagnosed by enabling object tracking. If a memory leak occurs, set the Reference
Count Tracking setting to "On." This setting logs the history for "add of reference" and "release of
reference" counts.

These features can be set to "On" by using the following registry values:

http://www.microsoft.com/whdc/driver/wdf/wdfbook.mspx
http://msdn.microsoft.com/en-us/library/ff560526.aspx
http://msdn.microsoft.com/en-us/library/ff560526.aspx
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.DevFund.DriverFramework.KMDF%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 142

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

HKLM\Software\Microsoft\WindowsNT\CurrentVersion\WUDF\Services\ {193a1820-d9ac-4997-
8c55-be817523f6aa}

TrackObjects REG_DWORD 1

TrackRefCounts REG_DWORD 1

UMDF drivers must also meet the following requirements:

¶ The drivers must not attempt to use invalid handles.

¶ The drivers must use critical sections and file locks properly. The primary purpose of the locks

test is to help ensure that the application properly uses critical sections.

¶ The drivers must not cause heap memory corruption.

¶ The drivers must correctly use virtual address space manipulation functions, such as

VirtualAlloc, VirtualFree, and MapViewOfFile.

¶ The drivers must not hide access violations by using structured exception handling.

¶ The drivers must correctly use thread local storage functions.

¶ The drivers must use COM correctly.

Partners can verify that the drivers meet these requirement by enabling Microsoft® Application
Verifier's handles, locks, heaps, memory, exceptions, and Transport Layer Security (TLS) settings for
the UMDF host process (that is, WUDFHost.exe) during driver development and testing.

For more information, see the Developing Drivers with the Windows Driver Foundation book at the
following website:

http://www.microsoft.com/whdc/driver/wdf/wdfbook.mspx.

Design Notes:

Application Verifier will help check UMDF drivers extensively to help ensure stable and reliable
drivers.

For all UMDF drivers, Application Verifier will be enabled when driver reliability tests are executed.

Application Verifier can be downloaded from the following Microsoft website:

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=c4a25ab9-649d-4a1b-b4a7-
c9d8b095df18.

To enable Application Verifier for WUDFHost.exe, run the following command:

appverif -enable handles locks heaps memory COM exceptions TLS -for WUDFHost.exe.

For more information about UMDF, visit the following website:
http://www.microsoft.com/whdc/driver/wdf/UMDF.mspx.

Device.DevFund.DriverFramework.UMDF.WDFProperINF

Windows Driver Framework (WDF) driver INF files must be properly structured.

http://www.microsoft.com/whdc/driver/wdf/wdfbook.mspx
http://www.microsoft.com/whdc/driver/wdf/UMDF.mspx

Windows Hardware Compatibility Program - 143

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

All information (INF) files in Windows Driver Foundation (WDF) driver packages must call WDF-
specific sections properly. Correctly structured INF sections help ensure that the driver will be
installed properly. However, even when a driver is installed, a poorly or wrongly configured section
can cause unpredictable problems during the operation of the driver or device. These problems can
be prevented by following the guidelines for WDF INF settings.

To meet this requirement, all WDF INF files must have the following:

¶ A coinstaller section, as follows: [DDInstall.Coinstallers]

[DDInstall.Coinstallers]

CopyFiles=

AddReg=

¶ A WDF section, as follows:

For Kernel-Mode Driver Framework (KMDF) drivers:

[DDInstall.Wdf]

KmdfService= <ServiceName>, <Kmdf_Install>

[Kmdf_Install]

KmdfLibraryVersion=

For User-Mode Driver Framework (UMDF) drivers:

[DDInstall.Wdf]

UmdfService=<ServiceName>,<Umdf_Install>

UmdfServiceOrder=

UmdfDispatcher [Only for USB Drivers and Drivers with file handle I/O

targets]=

UmdfImpersonationLevel[optional]=

[Umdf_Install]

UmdfLibraryVersion=

DriverCLSID=

ServiceBinary=

¶ All UMDF driver INF files must have a WUDFRD service installation section, as follows:

Windows Hardware Compatibility Program - 144

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

[WUDFRD_ServiceInstall]

DisplayName = "Windows Driver Foundation - User - mode Driver Framework

Reflector"

ServiceType = 1

StartType = 3

ErrorControl = 1

ServiceBinary = %12% \ WUDFRd.sys

LoadOrderGroup = Base

¶ All WDF drivers that use a WinUSB driver must have the following service installation

settings:

[WinUsb_ServiceInstall]

DisplayName = "WinUSB Driver"

ServiceType = 1

StartType = 3

ErrorControl = 1

ServiceBinary = %12% \ WinUSB.sys

¶ Service names, hardware IDs (HWIDs), display names, and UMDF class identifiers (CLSIDs)

cannot be pasted from WDF samples.

Design Notes:

For more information about WDF-specific INF settings, visit the following websites:

http://www.microsoft.com/whdc/driver/wdf/wdfbook.mspx

http://msdn.microsoft.com/en-us/library/ff560526.aspx

http://msdn.microsoft.com/en-us/library/ff560526.aspx

Send comments about this topic to Microsoft

Device.DevFund.Firmware

Driver package requirements for firmware update package

In this topic:

¶ Device.DevFund.Firmware.UpdateDriverPackage

Device.DevFund.Firmware.UpdateDriverPackage

These requirements apply to any firmware update driver package that is submitted to Microsoft for
approval and signing.

http://www.microsoft.com/whdc/driver/wdf/wdfbook.mspx
http://msdn.microsoft.com/en-us/library/ff560526.aspx
http://msdn.microsoft.com/en-us/library/ff560526.aspx
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.DevFund.DriverFramework.UMDF%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 145

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

In addition to standard driver requirements, the following requirements apply to firmware update
driver package:

¶ A firmware package must payload the update for only one resource.

¶ A firmware package must be configurable (see Device.DevFund.INF.* for more details).

¶ After a successful firmware upgrade, the firmware version in the .INF file of the driver

package, the resource version (in ESRT), and the last attempted version (in ESRT) for that

resource must match.

¶ The name of the binary file in the firmware package must not conflict with any of the

previous firmware versions.

¶ A successful firmware upgrade must not reduce or eliminate the functionality of any devices

in the system.

Send comments about this topic to Microsoft

Device.DevFund.INF

INF restictions

In this topic:

¶ Device.DevFund.INF.AddReg

¶ Device.DevFund.INF.AddService

¶ Device.DevFund.INF.ClassInstall32

¶ Device.DevFund.INF.ComplexDeviceMatching

¶ Device.DevFund.INF.DDInstall.CoInstallers

¶ Device.DevFund.INF.DeviceConfigOnly

¶ Device.DevFund.INF.DeviceResourceConfig

¶ Device.DevFund.INF.FileCopyRestriction

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.DevFund.Firmware%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 146

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Device.DevFund.INF.FileOrRegistryModification

¶ Device.DevFund.INF.InstallManagement

¶ Device.DevFund.INF.LegacySyntax

¶ Device.DevFund.INF.TargetOSVersion

Device.DevFund.INF.AddReg

When using an AddReg directive, each AddReg entry must specify HKR as the registry root.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

HKR (meaning "relative root") is the only registry root identifier that can be referenced in an AddReg
section in an INF file. Other root identifiers, including HKCR, HKCU, HKLM, and HKU, are restricted
from use in an AddReg section. The AddReg directive is intended to be used for device installation
and configuration purposes only.

Design Notes:

All registry keys declared in an AddReg section of an INF file must use the relative root identifier
(HKR) as the registry root value, unless an explicit exception exists as outlined in this requirement.

The following example shows the registration of a COM object using AddReg directives. Building on
this example, it is possible to customize all of the object's parameters:

[COMobj.AddReg]

HKCR,CLSID\ {<CLSID>},,,"<MFT DLL description>"

HKCR,CLSID\ {<CLSID>} \ InprocServer32,,%REG_EXPAND_SZ%,"%%SystemRoot%% \ Syst

em32\ mftxyz.dll"

HKCR,CLSID\ {<CLSID>} \ InprocServer32,ThreadingModel,,"Both"

A complete list of COM registry entries with details on their use can be found in the MSDN at:
http://msdn.microsoft.com/en-us/library/ms694355(v=vs.85).aspx.

The following example shows the registration of an MFT filter using AddReg directives:

[MFT.AddReg]

HKCR,CLSID\ {<CLSID>},,,"<MFT DLL description>"

HKCR,CLSID\ {<CLSID>} \ InprocServer32,,%REG_EXPAND_SZ%,"%%SystemRoot%% \ Syst

em32\ mftxyz.dll"

HKCR,CLSID\ {<CLSID>} \ InprocServer32,ThreadingModel,,"Both"

HKCR,MediaFoundation \ Transforms \ <CLSID>,InputTypes,%REG_BINARY%,76,45,87,

2d,5e,23,...

Windows Hardware Compatibility Program - 147

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

HKCR,MediaFoundation \ Transforms \ <CLSID>,OutputTypes,%REG_BINARY%,22,5e,23

,46,43,10,...

HKCR,MediaFoundation \ Transforms \ <CLSID>,,%REG_SZ%,"MFT Friendly Name"

HKCR,MediaFoundation \ Transforms \ <CLSID>,MFTFlags,%REG_DWORD%, 0x00000004

HKCR,MediaFoundation \ Transforms \ <CLSID>,Attribu tes,REG_BINARY%, 41,46,4d,

HKCR,MediaFoundation \ Transforms \ Categories \ <MFTCategoryGUID> \ <CLSID>

HKLM,SOFTWARE\ Microsoft \ Windows Media

Foundation \ ByteStreamHandlers \ audio/xyz,<CLSID>,,"XYZ Stream Handler"

Additionally, when registering a DECODE or ENCODE HMFT, one of the following registry keys must
also be set:

DECODE HMFT

HKLM,SOFTWARE\ Microsoft \ Windows Media

Foundation \ HardwareMFT,EnableDecoders, %REG_DWORD%, 1

 ENCODE HMFT

HKLM,SOFTWARE\ Microsoft \ Windows Media

Foundation \ HardwareMFT,EnableEncoders, %REG_DWORD%, 1

More details on MFTs can be found in the MSDN at: http://msdn.microsoft.com/en-
us/library/windows/desktop/ms703138(v=vs.85).aspx.

Additional Information

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for desktop editions (Home, Pro, Enterprise, and Education) and

Windows Server Technical Preview.It will be required in the future for those

architectures.N ote that there are some exceptions to this requirement to

accommodate the registration of Component Object Model (COM) objects

and Media Foundation Transforms (MFT) using the AddReg directive. Refer

to the Design Notes section of this requirement for addit ional details.

Device.DevFund.INF.AddService

INF files can only install driver-related services.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

An INF AddService directive can only reference services that are driver related. Services that are not
driver related, such as a Microsoft Win32 service, cannot be referenced or installed using an INF file.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms703138(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms703138(v=vs.85).aspx

Windows Hardware Compatibility Program - 148

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Design Notes:

An INF AddService directive service-install-section may only specify a ServiceType type-code of the
following:

¶ SERVICE_DRIVER

¶ SERVICE_KERNEL_DRIVER

¶ SERVICE_FILE_SYSTEM_DRIVER

Additional Information

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for desktop editions and Windows Server Technical Preview.It

will be required in the future for those architectures.

Device.DevFund.INF.ClassInstall32

INF files must not define a custom class installer within a ClassInstall32 section.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

An INF file may not specify a custom class installer within a ClassInstall32 section. Therefore, a driver
package cannot execute a custom class installer during device installation.

Design Notes:

Developers should use one of the existing inbox device setup classes for their device. If it is necessary
to define a new device setup class, the new setup class cannot employ a class installer as part of the
device installation process. The following example shows an INF ClassInstall32 section, which defines
a custom class installer and therefore fails this requirement.

[ClassInstall32.ntx86] ; Declare a ClassInstall32 section for the x86

 ; architecture.

AddReg=SetupClassAddReg ; Reference to the ClassInstall32 AddReg section.

; Place additional class specific directives here

[SetupClassAddReg] ; Declare a class specific AddReg section.

; Device class specific AddReg entries appear here.

; The next line defines the class installer that will be executed when

; installing devices of this device-class type. Defining a registry entry

Windows Hardware Compatibility Program - 149

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

; of this type is no longer supported and the driver package fails to meet

; this device fundamental requirement.

[HKR,,Installer32,,"class-installer.dll,class-entry-point"]

Additional Information

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for desktop editions and Windows Server Technical Preview.It

will be required in the future for those architectures.

Device.DevFund.INF.ComplexDeviceMatching

INF directives related to complex device matching logic are not supported.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

INF files will not support complex device matching logic. Specifically, the capability to specify a
DeviceID for a device that should not be installed, when a matching HardwareID or CompatibleID
exists in the DDInstall section, will not be supported.

Design Notes:

The following INF directive may not be referenced in an INF file:

¶ ExcludeID

Additional Information

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for desktop editions and Windows Server Technical Preview.It

will be required i n the future for those architectures.

Device.DevFund.INF.DDInstall.CoInstallers

INF files must not reference any co-installers within a DDInstall.CoInstallers section.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Windows Hardware Compatibility Program - 150

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Description

An INF file may not reference any co-installers within a DDInstall.CoInstallers section. Therefore, a
driver package cannot execute any co-installers during device installation.

Design Notes:

Execution of co-installers is prohibited during device installation. The following examples show the
registration of a device-specific co-installer and a device-class co-installer. Both types of co-installers
are not permitted in an INF file and inclusion will result in failure to meet the requirement.

Device-specific co-installer example:

; Registering one or more device-specific co-installers requires adding

; adding a REG_MULTI_SZ value using an AddReg directive. The following

; shows the general form for registering a device-specific co-installer.

; :

; :

[DestinationDirs] ; Destination dir for the co-installer dll

XxxCopyFilesSection = 11 ; DIRID_for %WINDIR%\System32 dir

 ; Xxx = driver or device prefix

; :

; :

[XxxInstall.OS-platform.CoInstallers] ; Define co-installers section

CopyFiles = XxxCopyFilesSection ; Copy files directive

AddReg = Xxx.OS-platform.CoInstallers_AddReg ; Add registry directive

[XxxCopyFilesSection] ; Define the co-installer copy files

XxxCoInstall.dll ; section

[Xxx.OS-platform.CoInstallers_AddReg] ; Define the co-installer AddReg

 ; section

; The next line defines the co-installer that will be executed when

; installing this device. Defining a registry entry of this type is no

; longer supported and the driver package fails to meet this device

; fundamental requirement.

HKR,,CoInstallers32,0x00010000,"XxxCoInstall.dll, \

 XxxCoInstallEntryPoint"

Device-class co-installer example:

[Xxx.OS-platform.CoInstallers_AddReg] ; Define the co-installer AddReg

 ; section

Windows Hardware Compatibility Program - 151

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

; Similar format to the device-specific co-installer example, except the

; registry location is under HKLM. The next line defines the co-installer

; executed after any installation operations complete for the given device

; setup class GUID. Defining a registry entry of this type is no

; longer supported and the driver package fails to meet this device

; fundamental requirement.

HKLM,System\ CurrentControlSet\ Control\ CoDeviceInstallers, \

{SetupClassGUID}, 0x00010008,"DevClssCoInst.dll[,DevClssEntryPoint]"

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Win dows 10 for desktop editions and Windows Server Technical Preview.It

will be required in the future for those architectures.

Device.DevFund.INF.DeviceConfigOnly

INF files cannot reference INF directives that are not directly related to the configuration of a device.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

INF directives that provide configuration functionality beyond what is necessary to configure device
hardware are no longer supported. The INF file and all supporting files in the driver package must be
used only for device installation and configuration.

Design Notes:

The following INF directives may not be referenced in an INF file:

¶ RegisterDlls

¶ UnregisterDlls

¶ ProfileItems

¶ UpdateInis

¶ UpdateIniFields

¶ Ini2Reg

Windows Hardware Compatibility Program - 152

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Note that while the RegisterDlls directive can no longer be declared in an INF file, it is still possible to
register Component Object Model (COM) and Media Foundation Transform (MFT) objects from an
INF file using the AddReg directive. The AddReg directive allows the declaration of COM/MFT
registration keys under the HKLM registry hive. For information on the use of the AddReg directive
for this purpose, refer to the Device.DevFund.INF.AddReg Windows Hardware Certification
requirement.

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for desktop editions and Windows Server Technical Preview.It

will be required in the future for those architectures.

Device.DevFund.INF.DeviceResourceConfig

INF based device resource configuration and non-PnP related configuration cannot be performed
within an INF file.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

INF files cannot be used to perform device resource configuration or non-PnP related configuration
tasks. Serveral INF directives and sections are no longer supported.

Design Notes:

The following INF sections and directives cannot be referenced in an INF file:

¶ [DDInstall.LogConfigOverride] section

¶ LogConfig

¶ [DDInstall.FactDef] section

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for desktop editions and Windows Server Technical Preview.It

will be required in the future for those architectures.

Device.DevFund.INF.FileCopyRestriction

INF based file copy restrictions

Windows Hardware Compatibility Program - 153

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

File copy destination locations are limited to prevent driver packages from installing drivers in
inappropriate locations on the system.

Design Notes:

When using the CopyFiles directive, the destination directory specified for a file must be one of the
following DIRID values:

¶ 11 (corresponds to the %WINDIR%\System32 directory)

¶ 12 (corresponds to the %WINDIR%\System32\Drivers directory)

Only these destination directories expressed as the appropriate DIRID will be a valid copy file
location.

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for d esktop editions and Windows Server Technical Preview.It

will be required in the future for those architectures.

Device.DevFund.INF.FileOrRegistryModification

Deleting or modifying existing files, registry entries, and/or services is not allowed from within an INF
file.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

INF file directives that delete or modify registry entries, services, and files are no longer supported.

Design Notes:

The following INF directives may not be referenced in an INF file:

¶ DelReg

¶ DelService

¶ DelPropertry

Windows Hardware Compatibility Program - 154

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ BitReg

¶ DelFiles

¶ RenFiles

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for desktop editions and Windows Server Technical Preview.It

will be required in the future for those architectures.

Device.DevFund.INF.InstallManagement

Management of files installed using an INF file is restricted to the system.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Any files that are installed onto the system using an INF file are managed exclusively by Windows.
Plug and Play (PnP) prevents applications from directly modifying the files that are referenced in the
INF.

Design Notes:

An INF file must include the PnpLockDown directive set to value 1 in the [Version] section. This would
appear as follows in the INF file:

[Version]

; Other Version section directives here.

PnpLockDown=1

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for desktop editions and Windows Server Technical Preview.It

will be required in the future for those architectures.

Device.DevFund.INF.LegacySyntax

Legacy service configuration cannot be performed within an INF file.

Applies to Windows 10 x64

Windows 10 x86

Windows Hardware Compatibility Program - 155

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Windows Server 2016 Technical Preview x64

Description

Service configuration using legacy INF syntax is no longer supported.

Design Notes:

The following INF service install section directive may not be referenced in an INF file:

¶ LoadOrderGroup

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for desktop editions and Windows Server Technical Preview.It

will be required in the future for those architectures.

Device.DevFund.INF.TargetOSVersion

The TargetOSVersion decoration in an INF file cannot contain a ProductType flag or SuiteMask flag.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Within the [Manufacturer] section of an INF file, a TargetOSVersion decoration is used to identify the
target OS of the driver package. The TargetOSVersion decoration cannot contain a ProductType flag
or SuiteMask flag.

Design Notes:

In Windows 7 and earlier OS versions, the TargetOSVersion decoration is formatted as follows:

nt[Architecture].[OSMajorVersion][.[OSMinorVersion][.[ProductType][\

 .[SuiteMask]]]]

Beginning in Windows 8, the ProductType field and SuiteMask field are no longer valid fields in the
TargetOSVersion decoration.

Exceptions *This is a requirement for Windows 10 Mobile, but recommended for

Windows 10 for desktop editions and Windows Server Technical Preview.It

will be required in the future for those architectures.

Windows Hardware Compatibility Program - 156

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Send comments about this topic to Microsoft

Device.DevFund.Memory

Requirements related to memory profile

In this topic:

¶ Device.DevFund.Memory.DriverFootprint

¶ Device.DevFund.Memory.NXPool

Device.DevFund.Memory.DriverFootprint

Drivers must occupy a limited memory footprint.

Applies to Windows 10 x64

Windows 10 x86

Description

Drivers must occupy less than or equal to the following size of non-paged code pages in memory:

¶ Non-paged code pages

Driver Type Graphics Drivers All other driver types

x86/ARM <= 10 MB <= 1.66 MB

x64 <= 10 MB <= 5.45 MB

¶ Driver locked allocations (including MDL allocations and contiguous memory allocations)

¶ 12 MB for all driver types for both architectures

¶ Non Paged Pool - For Windows 10, drivers must occupy less than or equal to the following

size of non-paged pool in memory:

Driver type Graphics Drivers All other driver types

x86/ARM 6 MB 4 MB

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.DevFund.INF%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 157

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

x64 10 MB 7 MB

¶ Thresholds are based in telemetry: X86/ARM ς 4MB covers 80th percentile, X64 ς 7MB

covers 76th percentile from pool allocation samples

Design Notes:

The corresponding test will check the size of the drivers non-paged code pages in MB.

Additional Information

Business

Justification

Driver non -paged memory usage constitutes a fixed cost in terms of

memory utilization for the overall lifetime of a system. These contribute

substantially toward the total OS memory footprint, and most drivers are

present in mem ory at all times. Optimizing driver memory will provide an

improved user experience and better overall system responsiveness due

to greater availability of memory for user applications.

Any reduction in non -pageable driver footprint directly improves the

baseline memory consumption of the OS which increases scalability.

Current tests for Windows 8 cover driver Locked allocations

(MDL/Contiguous memory allocations) and non -paged driver code. Non

Paged pool usage is the only non -pageable driver footprint asp ect that is

not covered by existing tests.

Device.DevFund.Memory.NXPool

All driver pool allocations must be in NX pool.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Driver pool allocations must be made in the non-executable (NX) pool.

Design Notes:

A new type of non-paged pool that is a non-executable (NX) pool has been introduced. Since it is
non-executable, it is inherently more secure as compared to executable non-paged (NP) pool, and
provides better protection against overflow attacks.

Additional Information

Business

Justification

Moving allocations to the non -executable pool, the surface area of

attack for a rogue binary's executable code is minimized.

Windows Hardware Compatibility Program - 158

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

Send comments about this topic to Microsoft

Device.DevFund.Reliability

Reliability tests containing the content of the former DEVFUND tests.

In this topic:

¶ Device.DevFund.Reliability.BasicReliabilityAndPerformance

¶ Device.DevFund.Reliability.BasicSecurity

¶ Device.DevFund.Reliability.BootDriverEmbeddedSignature

¶ Device.DevFund.Reliability.DriverInstallUninstallReinstall

¶ Device.DevFund.Reliability.DriverUninstallInstallOtherDeviceStability

¶ Device.DevFund.Reliability.NoReplacingSysComponents

¶ Device.DevFund.Reliability.NormalOpWithDEP

¶ Device.DevFund.Reliability.PnPIDs

¶ Device.DevFund.Reliability.PnPIRPs

¶ Device.DevFund.Reliability.ProperINF

¶ Device.DevFund.Reliability.RemoteDesktopServices

¶ Device.DevFund.Reliability.PCSupportsLowPowerStates

¶ Device.DevFund.Reliability.Signable

¶ Device.DevFund.Reliability.SWDeviceInstallsUsePnPAPIs

Device.DevFund.Reliability.BasicReliabilityAndPerformance

Drivers are architected to maximize reliability and stability and do not "leak" resources such as
memory.

Applies to Windows 10 x64

Windows 10 x86

Windows Server 2016 Technical Preview x64

Description

Driver components must not cause the system to crash or leak resources. These resources include
but are not limited to the following:

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[p_compat_program/p_compat_program%5d:%20Device.DevFund.Memory%20%20RELEASE:%20(11/4/2015)&body=%0A%0APRIVACY%20STATEMENT%0A%0AWe%20use%20your%20feedback%20to%20improve%20the%20documentation.%20We%20don't%20use%20your%20email%20address%20for%20any%20other%20purpose,%20and%20we'll%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20that%20you're%20reporting%20is%20fixed.%20While%20we're%20working%20to%20fix%20this%20issue,%20we%20might%20send%20you%20an%20email%20message%20to%20ask%20for%20more%20info.%20Later,%20we%20might%20also%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20we've%20addressed%20your%20feedback.%0A%0AFor%20more%20info%20about%20Microsoft's%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.

Windows Hardware Compatibility Program - 159

November 6, 2015 - Microsoft makes no warranties, express or implied.
© 2015 Microsoft. All rights reserved.

¶ Memory

¶ Graphics Device Interface (GDI) or user objects

¶ Kernel objects such as files, mutex, semaphore, and device handles

¶ Critical sections

¶ Disk space

¶ Printer handles

Design Notes

To improve the reliability and stability of Windows drivers, all drivers will be subjected to a series of
generic driver quality tests. These tests include:

Embedded Signature Verification Test - This test verifies that boot start drivers are embedded signed.

Device Install Check for File System Consistency - This test verifies that no system resources have
been overwritten during the process of a device/driver install.

Device Install Check for Other Device Stability - This test verifies that no device or driver, except the
device under test, has been affected by the device(s)/driver(s) install or co-install process.

PCI Root Port Surprise Remove Test - This test removes the PCI root port for the device (if applicable).

PNP (disable and enable) with IO Before and After - This test performs basic I/O and basic PNP
disable/enable on the test device(s).

Reinstall with IO Before and After - This test uninstalls and reinstalls the drivers for test device(s) and
runs I/O on these device(s).

Sleep with PNP (disable and enable) with IO Before and After - This test cycles the system through
various sleep states and performs I/O and basic PNP (disable/enable) on test device(s) before and
after each sleep state cycle.

Sleep with IO Before and After - This test cycles the system through various sleep states and
performs I/O on device(s) before and after each sleep state cycle.

Sleep with IO During ς This test cycles the system through various sleep states and performs I/O on
device(s) during each sleep state cycle.

Plug and Play Driver Test - This test exercises PnP-related code paths in the driver under test.

Device Path Exerciser Test - This consists of a set of tests, each of which concentrates on a different
entry point or I/O interface. These tests are designed to assess the robustness of a driver, not its
functionality.

CHAOS Test - This test the runs PnP tests (disable/enable, rebalance, remove/restart, surprise
remove, and DIF remove) and Driver Fuzz tests on the test device in parallel, while cycling the test
system in and out of all of its supported sleep states (S1, S2, S3, S4 and Connected Standby) at the
same time.

All of these tests will be run with Driver Verifier enabled with standard settings.

In addition, Driver Verifier will be enabled on all applicable kit tests.

