
Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 1

Guide to Migrating from DB2 to SQL Server and
Azure SQL DB
SQL Server Technical Article

Authors: Alexander Pavlov (DB Best Technologies), Andrey Khudyakov (DB Best Technologies), Oksana
Eremenko (DB Best Technologies), Stanislav Sklyarov (DB Best Technologies), Alexander Vasyuk (DB Best
Technologies)

Technical Reviewers: Dmitry Balin (DB Best Technologies)

Editor: Peter Skjøtt Larsen (DB Best Technologies)

Published: March 2015

Applies to: Microsoft® SQL Server® 2014 and Azure SQL DB®

Summary

In this migration guide you will learn the differences between the IBM DB2 and Microsoft SQL
Server database platforms, and the steps necessary to convert a DB2 database to SQL Server and Azure
SQL DB.

Created by: DB Best Technologies LLC

P.O. Box 7461, Bellevue, WA 980008

Tel.: (408) 202-4567

E-mail: info@dbbest.com

Web: www.dbbest.com

mailto:info@dbbest.com
http://www.dbbest.com/

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 2

Copyright

This is a preliminary document and may be changed substantially prior to final commercial release

of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on

the issues discussed as of the date of publication. Because Microsoft must respond to changing

market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and

Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,

EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the

rights under copyright, no part of this document may be reproduced, stored in or introduced into a

retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying,

recording, or otherwise), or for any purpose, without the express written permission of Microsoft

Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual

property rights covering subject matter in this document. Except as expressly provided in any

written license agreement from Microsoft, the furnishing of this document does not give you any

license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail

addresses, logos, people, places and events depicted herein are fictitious, and no association with

any real company, organization, product, domain name, email address, logo, person, place or

event is intended or should be inferred.

© 2015 Microsoft Corporation. All rights reserved.

Microsoft. SQL Server, and Visual C++ are registered trademarks of Microsoft Corporation in the

United States and other countries.

The names of actual companies and products mentioned herein may be the trademarks of their

respective owners.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 3

Contents

1.0 Contents Introduction ... 6

2.0 DB2 to SQL Server Migration .. 6

2.1 Overview of Migration Steps .. 6

2.2 Migrating Security Items .. 7

2.2.1 Authentication .. 8

2.2.2 Authorization .. 8

2.2.3 Privileges ... 8

2.2.4 Converting Users ... 8

2.3 Mapping Data Types .. 9

2.3.1 The DB2 10 for z/OS Buil-in Data Types ... 9

2.3.2 The DB2 Version 10.5.0 for Linux, UNIX, and Windows Built-in Data Types 9

2.3.3 String data types .. 10

2.3.4 Numeric data types .. 15

2.3.5 Date, time, and timestamp data types ... 18

2.3.6 XML, ROWID data types.. 21

2.4 Converting Database Objects .. 25

2.4.1 Tables, indexes .. 25

2.4.2 Triggers .. 25

2.4.3 Views.. 25

2.4.4 Sequences ... 26

2.4.5 Routines ... 26

3.0 DB2 Migration Issues ... 27

3.1 CREATE Statements ... 27

3.1.1 Migrating Tables – CREATE TABLE Statement .. 27

3.1.2 Migrating Views – CREATE VIEW Statement ... 46

3.1.3 Migrating Indexes – CREATE INDEX Statement .. 47

3.2 Triggers .. 52

3.2.2 FOR EACH ROW Triggers .. 53

3.2.3 FOR EACH STATEMENT Triggers ... 54

3.2.4 BEFORE Triggers .. 54

3.2.5 Trigger event predicates .. 57

3.2.6 WHEN clause ... 57

3.3 Sequences ... 59

3.4 Data Manipulation Statements ... 60

3.4.1 SELECT Statement .. 60

3.4.2 VALUES Statement ... 72

3.4.3 INSERT Statement .. 73

3.4.4 UPDATE Statement ... 77

3.4.5 MERGE Statement .. 78

3.4.6 DELETE Statement .. 83

3.4.7 Isolation Level and Lock Type ... 84

3.5 Routines ... 85

3.5.1 Procedures ... 85

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 4

3.5.2 User-Defined Functions ... 88

3.5.3 Flow Control Constructs... 90

3.5.4 Cursors .. 109

3.5.5 Variables .. 115

3.6 Exceptions, Handlers, and Conditions ... 115

3.6.1 EXIT Handlers .. 115

3.6.2 UNDO Handlers ... 117

3.6.3 CONTINUE Handlers ... 119

3.7 Dynamic SQL ... 121

3.7.1 DESCRIBE Statement ... 121

3.7.2 PREPARE Statement .. 121

3.7.3 EXECUTE Statement... 122

3.7.4 EXECUTE IMMEDIATE Statement ... 123

3.7.5 Dynamic SQL for a Fixed-List SELECT Statement ... 124

3.7.6 Dynamic SQL for a Varying-List SELECT Statement .. 125

3.8 Aliases ... 125

3.9 Nicknames ... 126

3.9.1 References to Other Databases .. 126

3.9.2 References to Data from a Nonrelational Wrapper ... 126

3.10 User-Defined Types ... 127

3.10.1 Distinct Type .. 127

3.10.2 Structured Type ... 127

3.10.3 3.10.3 SQL PL data types ... 131

3.11 Special Registers ... 135

3.11.1 CURRENT TIMESTAMP ... 135

3.11.2 CURRENT TIMESTAMP WITH TIME ZONE, SYSTIMESTAMP .. 135

3.11.3 CURRENT DATE .. 135

3.11.4 CURRENT TIME ... 136

3.11.5 CURRENT TIMEZONE, CURRENT TIMEZONE, CURRENT_TIMEZONE 136

3.11.6 CURRENT USER .. 137

3.11.7 SESSION_USER and USER... 137

3.11.8 SYSTEM_USER .. 137

3.11.9 CURRENT CLIENT_APPLNAME ... 138

3.11.10 CURRENT CLIENT_WRKSTNNAME ... 138

3.11.11 CURRENT LOCK TIMEOUT ... 138

3.11.12 CURRENT SCHEMA, CURRENT_SCHEMA ... 139

3.11.13 CURRENT SERVER, CURRENT_SERVER ... 139

3.11.14 CURRENT ISOLATION ... 139

3.12 Synonyms .. 140

4.0 Migrating DB2 Standard Functions .. 141

4.1 Equivalent Functions.. 141

4.2 Emulated Functions ... 141

4.2.1 Functions with a Variable Parameter Number ... 141

4.2.2 String Functions ... 141

4.2.3 Numberic Functions ... 149

4.2.4 Miscellaneous Functions ... 153

4.2.5 Date / Time Functions .. 157

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 5

4.2.6 Casting Functions .. 164

4.2.7 Aggregation Functions ... 170

5.0 Data Migration .. 172

5.1 Pre-Implementation Tasks ... 172

5.2 Implementation Tasks .. 173

5.2.1 One-Step Process Using SSIS Import and Export Wizard .. 173

5.2.2 Two-Step Process Using the bcp Utility... 174

5.2.3 Two-Step Process Using BULK INSERT... 174

5.2.4 Two-Step Process Using SSIS .. 174

5.2.5 Methods for Optimizing Bulk Import Performance ... 175

5.3 Post-Implementation Tasks ... 176

6.0 Terminology Mapping .. 177

7.0 Conclusion ... 179

7.1 About DB Best Technologies ... 179

7.2 Useful Resources ... 179

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 6

1.0 Contents Introduction

This migration guide outlines the procedures, issues, and solutions for migrating from IBM DB2 version 10.5
… for Linux, UNIX, or Windows® to Microsoft® SQL Server® 2014 and Azure SQL DB database software. The
solutions provided here can also be applied to DB2 UDB for z/OS versions 9.0 and 10.0.

2.0 DB2 to SQL Server Migration

In this section, first a high-level view of the steps for migrating a DB2 database to SQL Server 2014 is
summarized. Then you are given an overview of what you must know about converting security items and
database objects. The section concludes with a table of recommended type mappings for converting table
columns.

The free Microsoft SQL Server Migration Assistant (SSMA) for DB2 speeds up the migration process. SSMA
converts DB2 database objects (including stored procedures) to SQL Server database objects, loads those
objects into SQL Server, migrates data from DB2 to SQL Server.

2.1 Overview of Migration Steps

To migrate a DB2 database, perform the following steps, in order:

1. Decide how you will map DB2 databases to SQL Server 2014. You have two main options:

 Map each DB2 database to a separate SQL Server database. For example, if one of your DB2
databases is named MyDB, you could map the MyDB database to one of your SQL Server
databases.

 Map each DB2 database to a separate schema within a single SQL Server database. For example,
you could map your MyDB database to the schema MyDB of your SQL Server database.

Note: In SQL Server, schemas are not necessarily linked to a specific user or login ID, and one
server can contain multiple databases.

2. Migrate security items: the users and login IDs. (See section 2.2.)

3. Map data types from the DB2 data type to a corresponding SQL Server data type. (See section 2.3.)

4. Convert database objects: table columns, triggers, views, sequences, and routines. (See section 2.4.)

5. Rewrite your views, procedures, and functions according to SQL Server syntax. For a description of
various issues related to this process, see section 3.0.

6. Change your applications as necessary so that they can work with SQL Server.

7. After a successful database conversion, migrate your data from the old DB2 database to the newly
created SQL Server database. For this task you could use SQL Server Integration Services (SSIS), for
example.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 7

2.2 Migrating Security Items

There are three main mechanisms within DB2 that allow you to implement a database security plan:
authentication, authorization, and privileges. This section first covers these security items, which differ from
those used in SQL Server. A separate issue addressed in this section is the conversion of database users.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 8

2.2.1 Authentication

In DB2 client-server applications, login and password checking can be performed on a server, a client, or an
intermediate DB2 Connect gateway. Five different types of authentication are available for defining the location:
SERVER, SERVER_ENCRYPT, CLIENT, KERBEROS, and KRB_SERVER_ENCRYPT.

Authentication in SQL Server is always performed on the server side only, and is implemented in a different
way than in DB2. Because SQL Server offers two different modes: Windows Authentication and Mixed
Authentication. Depending on the system architecture, authentication should be adjusted during the
conversion.

To manage a trusted connection, DB2 uses the instance configuration parameters TRUST_ALLCLNTS and
TRUST_CLNTAUTH. When a user connects to SQL Server using Windows Authentication (by means of a
Windows login), SQL Server relies on (“trusts”) the operating system to perform authentication checking, and
checks only if the Windows user name corresponds to a login that is defined in this instance of SQL Server or
if the user’s login belongs to a Windows group with a login that is defined in SQL Server. Thus, it is sufficient
to use Windows Authentication mode to implement a trusted connection in SQL Server.

2.2.2 Authorization

User authorization defines the list of the commands and objects that are available for a user. This list thereby
controls user actions.

In DB2, there are predetermined groups of privileges for authorization, both at the instance level and at the
level of a DB2 database.

 Instance level: The privileges at the instance level—SYSADM, SYSCTRL, and SYSMAINT—can be
granted only to users and user groups of the operating system.

 Database level: DBADM and LOAD privileges are granted only on a particular database. Using the
GRANT command, the DBADM and LOAD privileges can be granted to an existing user group of the
operating system, to a DB2 user group, and to individual users of the operating system or database.

SQL Server has a similar authorization mechanism. Some DB2 privileges of the instance level or the database
level can be replaced in SQL Server with predefined server roles, database roles, or a combination. Some
privileges can also be replaced by creating new roles at the database level, which can be assigned to users
and groups.

2.2.3 Privileges

DB2 privileges generally fall into two main categories: database-level privileges, which span all objects within
the database, and object-level privileges, which are associated with a specific object. Converting privileges to
SQL Server permissions is performed by means of permission sets, which can be granted to both users and
groups. Depending on whether database-level or object-level privileges are being converted, access
permissions to a definite database or its objects are granted to either groups or users in SQL Server. All existing
DB2 privileges can be replaced with the equivalent SQL Server permissions or a combination of permissions.

2.2.4 Converting Users

In DB2, both users and groups can access an instance or a database. These users and groups can be
registered in the operating system or can simply have been granted access to it. Also, access can be given to
users and groups that belong to a domain in which the DB2 database server or the user workstation is included.

SQL Server also supports these possibilities. Thus, to move users or groups to SQL Server, first create those
users or groups in the new operating system; next, create a login for each group and user in SQL Server and
then create a user in the SQL Server target database for each login. To create a new login for the Login Name
field in the master database, choose the user or group from a list of those registered in the operating system
or domain. (You can also perform this step by means of SQL CREATE LOGIN command.) Finally, after creating
server logins and database users, grant permissions corresponding to the privileges that these users and
groups had in DB2.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 9

2.3 Mapping Data Types

Most data types used in DB2 do not have exact equivalents in Microsoft SQL Server. They differ in scale,
precision, length, and functionality. This specification explains the data type mapping for table columns and
includes remarks about conversion issues.

Section 3.11, “User-Defined Types,” covers migration of user-defined types.

2.3.1 The DB2 10 for z/OS Buil-in Data Types

Table 1. DB2 Built-in Data Types.

Area DB2 Data Type SQL Data Type

Datetime Date date

Time time

Timestamp Timestamp Without Timezone timestamp without timezone

Timestamp With Timezone timestamp with timezone

String Character Fixed Length char

Varying Length varchar

clob

Graphics Fixed Length graphic

Varying Length vargraphic

dbclob

Binaries Fixed Length binary

Varying Length varbinary

blob

Signed
Numeric

Exact Binary Integer 16 Bit smallint

32 Bit integer

64 Bit bigint

Decimal Packed decimal

Decimal Floating Point decfloat

Approximate
Floating Point

Single Precision real

Double Precision double

Row Identifier rowed

Xml xml

2.3.2 The DB2 Version 10.5.0 for Linux, UNIX, and Windows
Built-in Data Types

Table 2. DB2 LUW Built in Data Types.

http://www-01.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_datatypes.dita
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0008483.html?cp=SSEPGG_10.5.0%2F2-9-2-3&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0008483.html?cp=SSEPGG_10.5.0%2F2-9-2-3&lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 10

Area DB2 Data Type SQL Data Type

Datetime Date date

Time time

Timestamp timestamp

String Character Fixed Length char

Varying Length varchar

clob

Graphics Fixed Length graphic

Varying Length vargraphic

dbclob

Binary Varying Length blob

Signed Numeric Exact Binary Integer 16 Bit smallint

32 Bit integer

64 Bit bigint

Decimal Packed decimal

Decimal Floating Point decfloat

Approximate Floating Point Single Precision real

Double Precision double

Extensible markup language xml

2.3.3 String data types

DB2® supports several types of string data: character strings, graphic strings, and binary strings.
Character strings contain text and can be either a fixed-length or a varying-length. Graphic strings contain

graphic data, which can also be either a fixed-length or a varying-length. Binary strings contain strings of binary
bytes and can be either a fixed-length or a varying-length. All of these types of string data can be represented
as large objects.

All SQL Server character strings data types listed in the Table 3 applies to: SQL Server (SQL Server 2008
through current version), Windows Azure SQL Database (Initial release through current release).

All DB2 character strings data types listed in the Table 3 applies to: DB2 Version 10.5.0 for Linux, UNIX,
and Windows, DB2 Version 10 for z/OS.

http://go.microsoft.com/fwlink/p/?LinkId=299658
http://go.microsoft.com/fwlink/p/?LinkId=299659

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 11

Table 3. Character Strings data types - lists the recommended type mappings for converting
table columns.

DB2 v.10 for z/OS
and

DB2 v.10.5.0
for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

CHARACTER(n) Fixed-length
character strings
with a length
of n bytes. n must
be greater than 0
and not greater than
255. The default
length is 1.

char [(n)] Fixed-length, non-
Unicode string
data.
n defines the string
length and must be
a value from 1
through 8,000. The
storage size
is n bytes. The ISO
synonym
for char is character
.

varchar(n)-
variable-length non-
Unicode string
data. n 1-8000
characters;
nchar(n)- fixed-
length Unicode
string data. n 1-
4000 characters;
nvarchar(n) -
variable-length
Unicode string
data. n 1-4000
characters;

DB2 CHARACTER(n) data type can be successfully mapped to char [(n)] data type.

VARCHAR(n) Varying-length
character strings
with a maximum
length
of n bytes. n must
be greater than 0
and less than a
number that
depends on the
page size of the
table space. The
maximum length is
32704.

varchar [(max)] Variable-length,
non-Unicode string
data.
n defines the string
length and can be a
value from 1
through
8,000. max indicate
s that the maximum
storage size is
2^31-1 bytes (2
GB). The storage
size is the actual
length of the data
entered + 2 bytes.

text-variable-length
non-Unicode data.
Length 2^31 - 1
(2,147,483,647)
characters;
nvarchar(n|max)-
variable-length
Unicode string
data. n 1-4000
characters.
max indicates size
2^31-1 bytes (2
GB);
ntext-variable-
length Unicode
data. Length is 2^30
- 1 (1,073,741,823)
characters;
varchar(n)-
variable-length non-
Unicode string
data. n 1-8000
characters;
char (n) - non-
Unicode string
data. n 1-8000
characters;

DB2 VARCHAR(n) data type can be successfully mapped to SQL Server varchar [(max)] data type.

CLOB(n) Varying-length
character strings
with a maximum

varchar [(max)] Variable-length,
non-Unicode string
data.

nvarchar(max)-
variable-length
Unicode string

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 12

DB2 v.10 for z/OS
and

DB2 v.10.5.0
for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

of n characters. n ca
nnot exceed
2 147 483 647. The
default length is 1M.

max indicates that
the maximum
storage size is
2^31-1 bytes (2
GB). The storage
size is the actual
length of the data
entered + 2 bytes.

data. max indicates
size 2^31-1 bytes (2
GB);
text-variable-length
non-Unicode data.
Length 2^31 - 1
(2,147,483,647)
characters;
ntext-variable-
length Unicode
data. Length is 2^30
- 1 (1,073,741,823)
characters;

The best choice for migrating DB2 large object types (LOBs) such as CLOB(n) is SQL Server
varchar(max) data type.

GRAPHIC(n) Fixed-length graphic
strings that
contain n double-
byte
characters. n must
be greater than 0
and less than 128.
The default length is
1.

nchar [(n)] Fixed-length
Unicode string
data.
n defines the string
length and must be
a value from 1
through 4,000. The
storage size is two
times n bytes. When
the collation code
page uses double-
byte characters, the
storage size is
still n bytes.
Depending on the
string, the storage
size of n bytes can
be less than the
value specified
for n.

nvarchar(n)-
variable-length
Unicode string
data. n 1-4000
characters;
ntext-variable-
length Unicode
data. Length is 2^30
- 1 (1,073,741,823)
characters;

DB2 GRAPHIC(n) data type can be successfully mapped to SQL Server nchar [(n)] data type.

VARGRAPHIC(n) Varying-length
graphic strings that
contain n double-
byte. The maximum
length, n, must be
greater than 0 and
less than a number
that depends on the
page size of the
table space. The
maximum length is
16352.

nvarchar [(max)] Variable-length
Unicode string
data.
max indicates that
the maximum
storage size is
2^31-1 bytes (2
GB). The storage
size, in bytes, is two
times the actual
length of data
entered + 2 bytes.

ntext-variable-
length Unicode
data. Length is 2^30
- 1 (1,073,741,823)
characters;
nchar [(n)]-fixed-
length Unicode
string data. n 1-
4000;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 13

DB2 v.10 for z/OS
and

DB2 v.10.5.0
for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

DB2 VARGRAPHIC(n) data type can be successfully mapped to SQL Server nvarchar [(max)] data type.

DBCLOB(n) Varying-length
strings of double-
byte characters with
a maximum
of n double-byte
characters. n cannot
exceed
1 073 741 824. The
default length is 1M.

nvarchar [(max)] Variable-length
Unicode string
data.
max indicates that
the maximum
storage size is
2^31-1 bytes (2
GB). The storage
size, in bytes, is two
times the actual
length of data
entered + 2 bytes.

ntext-variable-
length Unicode
data. Length is 2^30
- 1 (1,073,741,823)
characters;

The best choice for migrating DB2 large object types (LOBs) such as DBCLOB(n) is
SQL Server nvarchar(max) data type.

BINARY(n) * Fixed-length or
varying-length
binary strings with a
length
of n bytes. n must
be greater than 0
and not greater than
255. The default
length is 1.

binary [(n)] Fixed-length binary
data with a length
of n bytes,
where n is a value
from 1 through
8,000. The storage
size is n bytes.

varbinary [(n)] -
variable-length
binary data. n can
be a value from 1
through 8000 bytes;

* Restriction: BINARY(n) data type can use as table column only in DB2 Version 10 for z/OS.

DB2 Version 10 for z/OS BINARY(n) data type can be successfully mapped to SQL Server binary [(n)]
data type.

VARBINARY(n) * Varying-length
binary strings with a
length of n bytes.
The length
of n must be greater
than 0 and less than
a number that
depends on the
page size of the
table space. The
maximum length is
32704.

varbinary [(max)] Variable-length
binary data.
max indicates that
the maximum
storage size is
2^31-1 bytes. The
storage size is the
actual length of the
data entered + 2
bytes. The data that
is entered can be 0
bytes in length.

varbinary [(n)] -
variable-length
binary data. n can
be a value from 1
through 8000 bytes;
binary [(n)]-fixed-
length binary data
with a length
of n bytes,
where n 1-8000
bytes;

* Restriction: VARBINARY(n) data type can use as table column only in DB2 Version 10 for z/OS.
DB2 Version 10 for z/OS VARBINARY(n) data type can be successfully mapped to
SQL Server varbinary [(max)] data type.

BLOB(n) Varying-length
binary strings with a
length

varbinary [(max)] Variable-length
binary data.

image - binary data,
size is 0 - 2^31 – 1

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 14

DB2 v.10 for z/OS
and

DB2 v.10.5.0
for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

of n bytes. n cannot
exceed
2 147 483 647. The
default length is 1M.

max indicates that
the maximum
storage size is
2^31-1 bytes. The
storage size is the
actual length of the
data entered + 2
bytes. The data that
is entered can be 0
bytes in length.

(2 147 483 647)
bytes (2 GB);
binary- fixed-length
binary data with a
length of n bytes,
where n is a value
from 1 through 8000
bytes;

The best choice for migrating DB2 large object types (LOBs) as BLOB(n) is SQL Server varbinary(max)
data type.

LONG VARCHAR varchar [(max)] text;
nvarchar(n|max);
ntext;
varchar(n);
char (n);

[LONG] VARCHAR
(n) FOR BIT DATA

 varbinary [(max)] varbinary [(n)];
image;
binary;

LONG
VARGRAPHIC

 nvarchar [(max)] ntext;
nchar [(n)];

CHAR (N) FOR BIT
DATA

 binary [(n)] varbinary [(n)];

2.3.3.1 Binary strings

A binary string is a sequence of bytes. Unlike character strings, which usually contain text data, binary
strings are used to hold non-traditional data such as pictures, voice, or mixed media. Character strings of the
FOR BIT DATA subtype may be used for similar purposes, but the two data types are not compatible. The
BLOB scalar function can be used to cast a FOR BIT DATA character string to a binary string.

Certain database columns can be declared FOR BIT DATA. These columns, which generally contain
characters, are used to hold binary information. The CHAR(n), VARCHAR, LONG VARCHAR can contain
binary data. Use these data types when working with columns with the FOR BIT DATA attribute.

2.3.3.2 Graphic strings

A graphic string is a sequence of bytes that represents double-byte character data. The length of the string

is the number of double-byte characters in the sequence. If the length is zero, the value is called the empty
string. This value should not be confused with the null value. Graphic strings are not supported in a database
defined with a single-byte code page.

Graphic strings are not checked to ensure that their values contain only double-byte character code points.
(The exception to this rule is an application precompiled with the WCHARTYPE CONVERT option. In this case,
validation does occur.) Rather, the database manager assumes that double-byte character data is contained
in graphic data fields. The database manager does check that a graphic string value is an even number of

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 15

bytes long. This data type cannot be created in a table. It can only be used to insert data into and retrieve data
from the database.

2.3.3.3 Fixed-length graphic strings (GRAPHIC)

All values in a fixed-length graphic string column have the same length, which is determined by the length
attribute of the column. The length attribute must be between 1 and 127, inclusive.

2.3.3.4 Varying-length graphic strings

There are two types of varying-length graphic string:

 A VARGRAPHIC value can be up to 16 336 double-byte characters long.

 A DBCLOB (double-byte character large object) value can be up to 1 073 741 823 double-byte
characters long. A DBCLOB is used to store large DBCS character-based data (such as documents
written with a single character set) and, therefore, has a DBCS code page associated with it.

Special restrictions apply to an expression that results in a varying-length graphic string whose maximum length
is greater than 127 bytes. These restrictions are the same as those specified in Varying-length character
strings.

2.3.3.5 LONG statement

Originally VARCHAR was limited to a length of 255, so LONG VARCHAR was needed, but obviously they
both support about 32K now VARCHAR supports 28 bytes less. One big difference between VARCHAR and
LONG VARCHAR is that LONG VARCHAR is stored in a separate area like a LOB (CLOB, BLOB, etc) and
also like a LOB, does not use bufferpools, so every select, insert, update, or delete of a LONG VARCHAR
requires direct disk I/O, just like LOBs.

2.3.4 Numeric data types

DB2® supports several types of numeric data types, each of which has its own characteristics.
For numeric data, use numeric columns rather than string columns. Numeric columns require less space

than string columns, and DB2 verifies that the data has the assigned type.
All SQL Server numeric data type listed in the Table 4 applies to: SQL Server (SQL Server 2008

through current version), Windows Azure SQL Database (Initial release through current release).
All DB2 numeric data type listed in the Table 4 applies to: DB2 Version 10.5.0 for Linux, UNIX, and

Windows, DB2 Version 10 for z/OS.

Table 4. Numeric data types. - lists the recommended type mappings for converting table
columns.

DB2 v.10 for z/OS
and

DB2 v.10.5.0
for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

SMALLINT Small integers.
A small integer is
binary integer with a
precision of 15 bits.
The range is -32768
to +32767.

smallint Range -2^15 (-
32,768) to 2^15-1
(32,767) Storage 2
Bytes

int-range -2^15 to
2^15-1, storage 4
bytes;
bigint--2^63 to
2^63-1, storage 8
bytes;

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0008470.html#r0008470__varstg
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0008470.html#r0008470__varstg
http://go.microsoft.com/fwlink/p/?LinkId=299658
http://go.microsoft.com/fwlink/p/?LinkId=299659

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 16

DB2 v.10 for z/OS
and

DB2 v.10.5.0
for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

tinyint- 0 to 255,
storage 1 byte;

DB2 SMALLINT data type can be successfully mapped to SQL Server smallint data type.

INTEGER or
INT

Large integers.
A large integer is
binary integer with a
precision of 31 bits.
The range is -
2147483648 to
+2147483647.

int Range -2^31 (-
2,147,483,648) to
2^31-1
(2,147,483,647)
Storage 4 Bytes

bigint--2^63 to
2^63-1, storage 8
bytes;
smallint- -2^15 to
2^15-1, storage 2
bytes;
tinyint- 0 to 255,
storage 1 byte;

DB2 INTEGER data type can be successfully mapped to SQL Server int data type.

BIGINT Big integers. A big
integer is a binary
integer with a
precision of 63 bits.
The range of big
integers is -
9223372036854775
808 to
+922337203685477
5807.

bigint Range -2^63 (-
9,223,372,036,854,
775,808) to 2^63-1
(9,223,372,036,854,
775,807)
Storage 8 Bytes

int-range -2^15 to
2^15-1, storage 4
bytes;
smallint- -2^15 to
2^15-1, storage 2
bytes;
tinyint- 0 to 255,
storage 1 byte;

DB2 BIGINT data type can be successfully mapped to SQL Server bigint data type.

DECIMAL
or
NUMERIC

A decimal number is
a packed decimal
number with an
implicit decimal
point. The position
of the decimal point
is determined by the
precision and the
scale of the number.
The scale, which is
the number of digits
in the fractional part
of the number,
cannot be negative
or greater than the
precision. The
maximum precision
is 31 digits.
All values of a
decimal column
have the same
precision and scale.
The range of a
decimal variable or
the numbers in a

decimal [(p[,s])]
and
numeric[(p[,s])]

Fixed precision and
scale numbers.
When maximum
precision is used,
valid values are
from - 10^38 +1
through 10^38 - 1.
p (precision) - the
maximum total
number of decimal
digits that will be
stored, both to the
left and to the right
of the decimal point.
The precision must
be a value from 1
through the
maximum precision
of 38. The default
precision is 18.
s (scale) - the
number of decimal
digits that will be
stored to the right of
the decimal point.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 17

DB2 v.10 for z/OS
and

DB2 v.10.5.0
for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

decimal column is -
n to +n, where n is
the largest positive
number that can be
represented with the
applicable precision
and scale. The
maximum range is 1
- 10³¹ to 10³¹ - 1.

This number is
substracted
from p to determine
the maximum
number of digits to
the left of the
decimal point. The
maximum number
of decimal digits
that can be stored
to the right of the
decimal point. Scale
must be a value
from 0 through p.
Scale can be
specified only if
precision is
specified. The
default scale is 0;
therefore, 0
<= s <= p.
Maximum storage
sizes vary, based
on the precision.

DB2 DECIMAL or NUMERIC data types can be successfully mapped to SQL Server decimal [(p[,s])]
and numeric[(p[,s])] data types respectively.

DECFLOAT A decimal floating-
point value is an
IEEE 754r number
with a decimal point.
The position of the
decimal point is
stored in each
decimal floating-
point value. The
maximum precision
is 34 digits.
The range of a
decimal floating-
point number is
either 16 or 34 digits
of precision; the
exponent range is
respectively 10-383
to 10+384 or 10-
6143 to 10+6144.

numeric[(p[,s])] Fixed precision and
scale numbers.
When maximum
precision is used,
valid values are
from - 10^38 +1
through 10^38 - 1

DB2 DECFLOAT data type can be successfully mapped to SQL Server numeric[(p[,s])] data type.

REAL A single-precision
floating-

real Range - 3.40E + 38
to -1.18E - 38, 0

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 18

DB2 v.10 for z/OS
and

DB2 v.10.5.0
for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

point number is a
short floating-point
number of 32 bits.
The range of single-
precision floating-
point numbers is
approximately -
7.2E+75 to
7.2E+75. In this
range, the largest
negative value is
about -5.4E-79, and
the smallest positive
value is about 5.4E-
079.

and 1.18E - 38 to
3.40E + 38 storage
4 bytes
Approximate-
number data types
for use with floating
point numeric data.
Floating point data
is approximate;
therefore, not all
values in the data
type range can be
represented exactly.

DB2 REAL data type can be successfully mapped to SQL Server real data type.

DOUBLE

A double-precision
floating-
point number is a
long floating-point
number of 64-bits.
The range of
double-precision
floating-point
numbers is
approximately -
7.2E+75 to
7.2E+75. In this
range, the largest
negative value is
about -5.4E-79, and
the smallest positive
value is about 5.4E-
079.

float [(n|53)] Range - 1.79E+308
to -2.23E-308, 0
and 2.23E-308 to
1.79E+308
Approximate-
number data types
for use with floating
point numeric data.
Floating point data
is approximate;
therefore, not all
values in the data
type range can be
represented exactly.
n is the number of
bits that are used to
store the mantissa
of the float number
in scientific notation
and, therefore,
dictates the
precision and
storage size. If n is
specified, it must be
a value
between 1 and 53.
The default value
of n is 53.

DB2 DOUBLE data type can be successfully mapped to SQL Server float [(n|53)] data type.

2.3.5 Date, time, and timestamp data types

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 19

The datetime data types are DATE, TIME, and TIMESTAMP.
All SQL Server date, time, and timestamp data types listed in the Table 5 applies to: SQL Server (SQL

Server 2008 through current version), Windows Azure SQL Database (Initial release through current release).
All DB2 date, time, and timestamp data types listed in the Table 5 applies to: DB2 Version 10.5.0 for Linux,

UNIX, and Windows, DB2 Version 10 for z/OS.

Table 5. Date, time, and timestamp data types.

DB2 v.10
for z/OS

and
DB2 v.10.5.0

for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

DATE A date is a
three-part value
representing a
year, month,
and day in the
range of 0001-
01-01 to 9999-
12-31.

date Default string literal
format
YYYY-MM-DD
YYYY is four digits
from 0001 to 9999
that represent a
year.
MM is two digits
from 01 to 12 that
represent a month in
the specified year.
DD is two digits from
01 to 31, depending
on the month, that
represent a day of
the specified month.

datetime2- defines
a date that is
combined with a
time of day that is
based on 24-hour
clock;
datetime-defines a
date that is
combined with a
time of day with
fractional seconds
that is based on a
24-hour clock;
datetimeoffset [
(fractional
seconds precision)
] - defines a date
that is combined
with a time of a day
that has time zone
awareness and is
based on a 24-hour
clock;
smalldatetime -
defines a date that is
combined with a
time of day. The time
is based on a 24-
hour day, with
seconds always
zero (:00) and
without fractional
seconds.

DB2 DATE data type can be successfully mapped to SQL Server date data type.

TIME

A time is a
three-part value
representing a
time of day in
hours, minutes,
and seconds, in
the range of

time [(fractional
second precision)]

Default string
literal format
hh:mm:ss[.nnnnnn
n]
hh is two digits,
ranging from 0 to

datetime2;
datetime;
datetimeoffset;
smalldatetime;

http://go.microsoft.com/fwlink/p/?LinkId=299658
http://go.microsoft.com/fwlink/p/?LinkId=299659

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 20

DB2 v.10
for z/OS

and
DB2 v.10.5.0

for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

00.00.00 to
24.00.00.

23, that represent
the hour.
mm is two digits,
ranging from 0 to
59, that represent
the minute.
ss is two digits,
ranging from 0 to
59, that represent
the second.
n* is zero to seven
digits, ranging
from 0 to 9999999,
that represent the
fractional seconds.

DB2 TIME data type can be successfully mapped to SQL Server time [(fractional second precision)]
data type.
When a converted TIME column is retrieved in SQL Server 2014, it should be used together with the
DATEPART function, which picks the time element out of the smalldatetime type.

TIMESTAMP * A timestamp is
a seven-part
value
representing a
date and time by
year, month,
day, hour,
minute, second,
and
microsecond, in
the range of
0001-01-01-
00.00.00.00000
0000 to 9999-
12-31-
24.00.00.00000
0000 with
nanosecond
precision.
Timestamps can
also hold
timezone
information.

datetimeoffset Defines a date that
is combined with a
time of a day that
has time zone
awareness and is
based on a 24-hour
clock.
datetimeoffset [
(fractional seconds
precision)]
Default string literal
formats
YYYY-MM-DD
hh:mm:ss[.nnnnnnn]
[{+|-}hh:mm]
YYYY is four digits,
ranging from 0001
through 9999, that
represent a year.
MM is two digits,
ranging from 01 to
12, that represent a
month in the
specified year.
DD is two digits,
ranging from 01 to
31 depending on
the month, that
represent a day of
the specified month.

datetime2;
datetime;
smalldatetime;
date;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 21

DB2 v.10
for z/OS

and
DB2 v.10.5.0

for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server
2012/2014

and
Azure SQL DB

Data Type
description

Alternative
SQL Server
2012/2014

and
Azure SQL DB

Data Types

hh is two digits,
ranging from 00 to
23, that represent
the hour.
mm is two digits,
ranging from 00 to
59, that represent
the minute.
ss is two digits,
ranging from 00 to
59, that represent
the second.
n* is zero to seven
digits, ranging from
0 to 9999999, that
represent the
fractional seconds.
hh is two digits that
range from -14 to
+14.
mm is two digits that
range from 00 to 59.

DB2 TIMESTAMP data type can be successfully mapped to SQL Server datetimeoffset data type.
* Restriction: Timestamps can hold timezone information only for DB2 Version 10 for z/OS.

2.3.6 XML, ROWID data types

XML, uniqueidentifier SQL Server data types describe in the Table 6 applies to: SQL Server (SQL Server

2008 through current version), Windows Azure SQL Database (Initial release through current release). XML,
ROWID DB2 data types describe in the Table 6 applies to: DB2 Version 10.5.0 for Linux, UNIX, and Windows,
DB2 Version 10 for z/OS.

Table 6. XML, ROWID data types.

Table 4. XML, ROWID data types

DB2 v.10
for z/OS

and
DB2 v.10.5.0

for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server 2012/2014
and

Azure SQL DB
Data Type

description

Alternative
SQL Server
2012/2014

and
Azure SQL

DB Data
Types

XML

The XML data type is used
to define columns of a
table that store XML
values. This pureXML®
data type provides the

XML

xml([CONTENT|DOCUME
NT] xml_schema_collection
)
Is the data type that
stores XML data. You can

varchar(n),
nvarchar(n),
varchar(max
),

http://go.microsoft.com/fwlink/p/?LinkId=299658
http://go.microsoft.com/fwlink/p/?LinkId=299659

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 22

Table 4. XML, ROWID data types

DB2 v.10
for z/OS

and
DB2 v.10.5.0

for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server 2012/2014
and

Azure SQL DB
Data Type

description

Alternative
SQL Server
2012/2014

and
Azure SQL

DB Data
Types

ability to store well-formed
XML documents in a
database.

store xml instances in a
column, or a variable
of xml type.
CONTENT
Restricts the xml instance
to be a well-formed XML
fragment. The XML data
can contain multiple zero or
more elements at the top
level. Text nodes are also
allowed at the top level.
This is the default behavior.
DOCUMENT
Restricts the xml instance
to be a well-formed XML
document. The XML data
must have one and only
one root element. Text
nodes are not allowed at
the top level.
xml_schema_collection
Is the name of an XML
schema collection. To
create a typed xml column
or variable, you can
optionally specify the XML
schema collection name.
For more information about
typed and untyped XML,
see Compare Typed XML
to Untyped XML.

nvarchar(m
ax)

ROWID * Use ROWID data type to
uniquely and permanently
identify rows in a DB2®
subsystem.
ROWID is externalized as
a nn-byte value. For
example,
63C6AB6415CED248260
401D3701401000000000
00201, but stored as
VARCHAR (17). Also
ROWID could externalized
in hex value. For example,
000E 63C6AB64
15CED248 260401D3

uniqueidentifier The uniqueidentifier data
type stores 16-byte binary
values that operate as
globally unique identifiers
(GUIDs).
A uniqueidentifier value
is not typically defined as
a constant. You can
specify
a uniqueidentifier consta
nt in the following ways:
Character string format:
 '6F9619FF-8B86-D011-
B42D-0C04FC964FF'
Binary format:

http://msdn.microsoft.com/en-us/library/ms184277.aspx
http://msdn.microsoft.com/en-us/library/ms184277.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 23

Table 4. XML, ROWID data types

DB2 v.10
for z/OS

and
DB2 v.10.5.0

for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server 2012/2014
and

Azure SQL DB
Data Type

description

Alternative
SQL Server
2012/2014

and
Azure SQL

DB Data
Types

7014. The value ‘000E’
declares the length of the
ROWID column, which is
currently 000E in hex and
14 in decimal.
DB2 can generate a value
for the column when a row
is added, depending on
the option that you choose
(GENERATED ALWAYS
or GENERATED BY
DEFAULT) when you
define the column. You
can use a ROWID column
in a table for several
reasons.
You can define a ROWID
column to include LOB
data in a table.
You can use direct-row
access so that DB2
accesses a row directly
through the ROWID
column. If an application
selects a row from a table
that contains a ROWID
column, the row ID value
implicitly contains the
location of the row. If you
use that row ID value in the
search condition of
subsequent SELECT
statements, DB2 might be
able to navigate directly to
the row.

0xff19966f868b11d0b42d
00c04fc964ff
A column or local variable
of uniqueidentifier data
type can be initialized to a
value in the following ways:
By using the NEWID
function.
By converting from a string
constant in the
form xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx, in
which each x is a
hexadecimal digit in the
range 0-9 or a-f. For
example, 6F9619FF-8B86-
D011-B42D-
00C04FC964FF is a
valid uniqueidentifier value.
Comparison operators can
be used
with uniqueidentifier values
. However, ordering is not
implemented by comparing
the bit patterns of the two
values. The only
operations that can be
performed against
a uniqueidentifier value are
comparisons (=, <>, <, >,
<=, >=) and checking for
NULL (IS NULL and IS
NOT NULL). No other
arithmetic operators can be
used. All column
constraints and properties,
except IDENTITY, can be
used on
the uniqueidentifier data
type.
Merge replication and
transactional replication
with updating subscriptions
use uniqueidentifier column
s to guarantee that rows
are uniquely identified
across multiple copies of
the table.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 24

Table 4. XML, ROWID data types

DB2 v.10
for z/OS

and
DB2 v.10.5.0

for LUW
data type

DB2
data type

description

Recommended
SQL Server
2012/2014

and
Azure SQL DB

Data Type

SQL Server 2012/2014
and

Azure SQL DB
Data Type

description

Alternative
SQL Server
2012/2014

and
Azure SQL

DB Data
Types

* Restriction: ROWID data type can use as table column only in DB2 Version 10 for z/OS. In DB2
Version 10.5.0 for LUW data type ROWID can use only as system information

* Restriction on mapping ROWID data type to uniqueidentifier: ROWID data type uniquely
identifies rows in a DB2® subsystem and represents physical location of the rows. ROWID data
type could be mapped to uniqueidentifier, which is a GUID that could be generated for each row.
Notice that the ROWID value for a particular row in a table might change over time due to a
REORG of the table space. Also you must remember that ROWID the column which implicitly
contains the location of the row it’s not the same as uniqueidentifier which used to uniquely
identify rows in table.

2.3.6.1 Specifying direct row access by using row IDs

For some applications, you can use the value of a ROWID column to navigate directly to a row. When you
select a ROWID column, the value implicitly contains the location of the retrieved row. If you use the value from
the ROWID column in the search condition of a subsequent query, DB2® can choose to navigate directly to
that row.

For DB2 to be able to use direct row access for the update operation, the SELECT from INSERT statement
and the UPDATE statement must execute within the same unit of work. If these statements execute in different
units of work, the ROWID value for the inserted row might change due to a REORG of the table space before
the update operation. Alternatively, you can use a SELECT from MERGE statement. The MERGE statement
performs INSERT and UPDATE operations as one coordinated statement.

2.3.6.2 ROWID columns as keys

If you define a column in a table to have the ROWID data type, DB2 provides a unique value for each row
in the table only if you define the column as GENERATED ALWAYS. The purpose of the value in the ROWID
column is to uniquely identify rows in the table.

You can use a ROWID column to write queries that navigate directly to a row, which can be useful in
situations where high performance is a requirement. This direct navigation, without using an index or scanning
the table space, is called direct row access. In addition, a ROWID column is a requirement for tables that
contain LOB columns.

Requirement: To use direct row access, you must use a retrieved ROWID value before you commit. When
your application commits, it releases its claim on the table space. After the commit, a REORG on your table
space might execute and change the physical location of the rows.

Restriction: In general, you cannot use a ROWID column as a key that is to be used as a single column
value across multiple tables. The ROWID value for a particular row in a table might change over time due to a
REORG of the table space. In particular, you cannot use a ROWID column as part of a parent key or foreign
key.

The value that you retrieve from a ROWID column is a varying-length character value that is not
monotonically ascending or descending (the value is not always increasing or not always decreasing).
Therefore, a ROWID column does not provide suitable values for many types of entity keys, such as order
numbers or employee numbers.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 25

2.3.6.3 ROWID columns

There are two different ways of defining a column to be a ROWID data type in a CREATE TABLE
statement:

 COLNAME ROWID GENERATED ALWAYS

 COLNAME ROWID GENERATED BY DEFAULT

Using the GENERATED ALWAYS keyword, DB2 always generates a ROWID when inserting a row.
Applications and users are not allowed to insert a ROWID.

If you use GENERATED BY DEFAULT, users and applications can supply a value for a ROWID column
as long as the value was previously generated by DB2 and a unique, single column index that exists on the
ROWID column. DB2 checks that the value you are going to insert is a valid ROWID. It is not sufficient to
provide unique numbers yourself. You should only use this parameter when inserting data from another table
for purposes of moving data. The recommended usage is GENERATED ALWAYS. As mentioned above, you
have to create a unique index on the ROWID column when you specify GENERATED BY DEFAULT.

Make sure that there is no way to use the GENERATED ALWAYS clause before implementing
GENERATED BY DEFAULT, because the additional index on a table may increase your response time for
inserting and deleting transactions on the base table. The index is not affected by an UPDATE statement since
the ROWID is not updateable. If you try to update a ROWID column, DB2 issues SQLCODE -151, because the
catalog description indicates that this column cannot be updated.
Attention: When you specify GENERATED BY DEFAULT for a ROWID column, make sure
that a single column unique index exists on your ROWID column. ROWID values can never
contain null values, so the ROWID column has to be defined as NOT NULL.

Be aware that a ROWID column implies some restrictions, preventing the values in the column from being
manipulated:

 Users are not allowed to update a ROWID column.

 Null values cannot be assigned to ROWID columns.

 EDITPROCs, FIELDPROCs and CHECK CONSTRAINTs are not provided for ROWIDs.

 It is not allowed to load a single partition or a range of partitions if a column of data type

 ROWID is part of the partitioning key.

 The ROWID column is stored like a VARCHAR (17) column. In DB2 V7 two different types of
ROWIDs can be defined.

2.4 Converting Database Objects

This section briefly describes methods of conversion for miscellaneous database objects.

2.4.1 Tables, indexes

The data type of table columns should be converted using selected data type mapping. For information about
recommended type mappings, see section 2.3, “Mapping Data Types.” See the issues related to table
conversion in section 3.1.1, “Migrating Tables – CREATE TABLE Statement.”

To learn about the differences between index definitions, see the CREATE INDEX description in section
3.1.3, “Migrating Indexes – CREATE INDEX Statement.”

2.4.2 Triggers

Generally, DB2 triggers can be converted to SQL Server triggers. The type of a trigger may need to be
changed; for example, you should convert the BEFORE trigger to INSTEAD OF. Also, some additional code
may need to be added to a trigger, and references to new/old tables and rows should be replaced. For
details, see section 3.2, “Triggers.”

2.4.3 Views

In most cases, views are compatible and problems appear only when converting an underlying SELECT
statement.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 26

2.4.4 Sequences

In most cases, SEQUENCEs are compatible and problems appear only when converting an PREVIOUS
VALUE expression . For details, see section 3.3, “Sequences.”

2.4.5 Routines

Routines include stored procedures and user-defined functions. To read details about their conversion, see
section 3.5.1, “Procedures” and section 3.5.2, “User-Defined Functions.”

Not all DB2 database objects have direct equivalents in SQL Server. In some cases, SSMA creates
additional objects to provide the proper emulation.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 27

3.0 DB2 Migration Issues

This section identifies problems that may occur when migrating from DB2 9.x to SQL Server, and suggests
ways to handle those problems.

3.1 CREATE Statements

This section compares the CREATE TABLE, CREATE VIEW, and CREATE INDEX statements in DB2 and
SQL Server.

3.1.1 Migrating Tables – CREATE TABLE Statement

DB2 databases store data in tables. In addition to tables used to store persistent data, there are also tables
that are used for presenting results, summary tables and temporary tables; multidimensional clustering tables
offer specific advantages in a warehouse environment, whereas partitioned tables let you spread data across
more than one database partition.

3.1.1.1 Base tables

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

These types of tables hold persistent data. There are different kinds of base tables as outlined below.

3.1.1.2 Regular tables

Regular tables with indexes are the "general purpose" table choice.

3.1.1.3 Multidimensional clustering (MDC) tables

These types of tables are implemented as tables that are physically clustered on more than one key, or
dimension, at the same time. MDC tables are used in data warehousing and large database environments.
Clustering indexes on regular tables support single-dimensional clustering of data. MDC tables provide the
benefits of data clustering across more than one dimension. MDC tables provide guaranteed clustering within
the composite dimensions.

MDC introduces indexes that are block-based. "Block indexes" point to blocks or groups of records instead
of to individual records. By physically organizing data in an MDC table into blocks according to clustering
values, and then accessing these blocks using block indexes, MDC is able not only to address all of the
drawbacks of clustering indexes, but to provide significant additional performance benefits.

MDC tables can coexist with partitioned tables and can themselves be partitioned tables.

3.1.1.4 Range-clustered tables (RCT)

These types of tables are implemented as sequential clusters of data that provide fast, direct access. Each
record in the table has a predetermined record ID (RID) which is an internal identifier used to locate a record
in a table. RCT tables are used where the data is tightly clustered across one or more columns in the table.
The largest and smallest values in the columns define the range of possible values. You use these columns to
access records in the table; this is the most optimal method of utilizing the predetermined record identifier (RID)
aspect of RCT tables.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0020090.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html?cp=SSEPGG_10.5.0%2F2-9-7-101&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms174979.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 28

3.1.1.5 Partitioned tables

Partitioned tables use a data organization scheme in which table data is divided across multiple storage
objects, called data partitions or ranges, according to values in one or more table partitioning key columns of
the table.

3.1.1.6 Detached table

 Just as you can add or attach new partitions to a partitioned table, you can also remove existing partitions.
(Removed partitions become regular, stand-alone base tables.) Partitions can be removed by executing the
ALTER TABLE statement with the DETACH PARTITION option specified.

3.1.1.7 Temporary tables

In DB2 you can globally declare temporary table to temporarily retain some rows for processing by
subsequent SQL statements. A temporary table exists only until the thread is terminated (or sooner). It is not
defined in the DB2 catalog, and neither its definition nor its contents are visible to other users. Multiple users
can declare the same temporary table at the same time, with each independently working with their own copy.

The temporary table name can be any valid DB2 table name. The table qualifier, if provided, must be
SESSION. If the qualifier is not provided, it is assumed to be SESSION. If the temporary table has been
previously defined in this session, the WITH REPLACE clause can be used to override it. Alternatively, one
can DROP the prior instance. An index can be defined on a global temporary table. The SESSION qualifier
must be explicitly provided. Any column type can be used in the table, except for BLOB, CLOB, DBCLOB,
LONG VARCHAR, LONG VARGRAPHIC, DATALINK, reference data types, and structured data types. You
can choose to preserve or delete the rows in the table when a commit occurs (deletion is the default). Deleting
the rows does not drop the table. Standard identity column definitions can be used if desired. Changes are not
logged.

In SQL Server, temporary tables work differently. A temporary table can be either local or global. A local
temporary table is visible only to the user who created that table, and is deleted after the user disconnects. If a
local temporary table is created in a procedure, then it is automatically dropped after the process goes out of
scope of the procedure. Global temporary tables are visible to all users and all sessions. Such tables are
deleted after all users who are referencing them disconnect from the instance of SQL Server. Because global
temporary tables are visible to all, you must use only local temporary tables.

When using local temporary tables in SQL Server, you must pay attention to the scope table, because the
scope table can be used only at the level where it is created, or at deeper levels. In the case of a local table
with a higher level, it will not be visible and an error message will result. On a deeper level, you can create a
new local temporary table with the same name and apply the statements directly to this table, but in that case
the previously created local temporary table becomes inaccessible.

3.1.1.7.1 Declaring a Global Temporary Table

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

Here is a DB2 example of declaring a global temporary table by listing the columns.

DB2 Example:

CREATE PROCEDURE DB2_TABLES.DECL_GLOBAL_TEMP_TAB

BEGIN

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP

 (EMPNO CHAR(6) NOT NULL,

 SALARY DECIMAL(9, 2),

 BONUS DECIMAL(9, 2),

 COMM DECIMAL(9, 2))

ON COMMIT PRESERVE ROWS;

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0003272.html?cp=SSEPGG_10.5.0%2F2-9-7-123&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.dbobj.doc/doc/t0020127.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.apsg/src/tpc/db2z_createdeclaredtemptable.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms174979.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 29

INSERT INTO SESSION.TEMP_EMP VALUES (1,1000,100,100);

END;

CALL DB2_TABLES.DECL_GLOBAL_TEMP_TAB;

Solution:

In SQL Server, generally you should not create a local temporary table in the same place where it is
declared in DB2. You should create it as early as possible, preferably at the very beginning of the session. With
this approach, the table scope will be broad enough to avoid the danger of destroying the table before some
other code can reference it.

To convert from DB2, replace DECLARE with CREATE, and change the TEMPORARY keyword to a single
pound sign (#) before the table name. Omit the database name.

SQL Server Example:

CREATE TABLE #TEMP_EMP

 (EMPNO CHAR(6) NOT NULL,

 SALARY DECIMAL(9, 2),

 BONUS DECIMAL(9, 2),

 COMM DECIMAL(9, 2))

DB2 Example:

CREATE PROCEDURE DB2_TABLES.DECL_TEMP_TAB_OPTIONS

BEGIN

DECLARE GLOBAL TEMPORARY TABLE TEMP_OPTIONS

(IDENTITY_2 INT NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 0,

INCREMENT BY 1, CACHE 7, MINVALUE 0, MAXVALUE 1000, CYCLE, ORDER),

 CLOB_V CLOB WITH DEFAULT EMPTY_CLOB(),

 DBCLOB_V DBCLOB WITH DEFAULT EMPTY_DBCLOB(),

 BLOB_V BLOB WITH DEFAULT EMPTY_BLOB(),

 NCLOB_V NCLOB WITH DEFAULT EMPTY_NCLOB(),

 USER_DEFAULT VARCHAR(100) DEFAULT 'ANNA',

 SYS_DEF_DATE DATE DEFAULT,

 SYS_DEF_VARCH VARCHAR (100) DEFAULT,

 SYS_DEF_INT INTEGER DEFAULT,

 CURRENT_DATE_V DATE WITH DEFAULT CURRENT_DATE);

END;

SQL Server Example:

CREATE PROCEDURE DBO.DECL_TEMP_TAB_OPTIONS AS

 CREATE TABLE #TEMP_OPTIONS

 (IDENTITY_2 INT NOT NULL IDENTITY (1,1),

 CLOB_V VARCHAR(MAX) DEFAULT NULL,

 DBCLOB_V NVARCHAR(MAX) DEFAULT NULL,

 BLOB_V VARBINARY(MAX) DEFAULT NULL,

 NCLOB_V NVARCHAR(MAX) DEFAULT NULL,

 USER_DEFAULT VARCHAR(100) DEFAULT 'ANNA',

 SYS_DEF_DATE DATE DEFAULT CURRENT_TIMESTAMP,

 SYS_DEF_VARCH VARCHAR (100) DEFAULT '',

 SYS_DEF_INT INTEGER DEFAULT 0,

 CURRENT_DATE_V DATE DEFAULT CURRENT_TIMESTAMP)

3.1.1.7.2 Creating a Temporary Table with Defined Columns

In DB2, in a temporary table, set LIKE to the name of a table, view, or nickname to specify that the columns of

the temporary table have exactly the same names and descriptions as the columns of the identified table or

view. The name specified after LIKE must identify a table, view, or nickname that exists in the catalog or a

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 30

declared temporary table. A typed table or typed view cannot be specified. EXCLUDING COLUMN DEFAULTS

option specify that column defaults are not copied from the source result table definition.

DB2 Example:

DECLARE GLOBAL TEMPORARY TABLE SESSION.FRED

LIKE STAFF EXCLUDING COLUMN DEFAULTS

ON COMMIT PRESERVE ROWS;

Solution:

In SQL Server, you can emulate a temporary table with defined columns by using the statement SELECT *
INTO.

SQL Server Example:

SELECT * INTO #FRED

FROM STAFF

WHERE 1 = 2

3.1.1.7.3 Creating a Temporary Table with Defined Columns and Defaults

In DB2, in a temporary table, set INCLUDING COLUMN DEFAULTS to specify that the column defaults for

each updatable column of the source result table definition are copied. Columns that are not updatable will not
have a default defined in the corresponding column of the created table.

DB2 Example:

DECLARE GLOBAL TEMPORARY TABLE SESSION.FRED

LIKE STAFF INCLUDING COLUMN DEFAULTS

ON COMMIT PRESERVE ROWS;

Solution:

In SQL Server, you can emulate a temporary table with defined columns by using the statement CREATE
TABLE and defaults for the columns.

SQL Server Example:

CREATE TABLE #FRED

(DEPT SMALLINT NOT NULL DEFAULT 1

,AVG_SALARY DECIMAL(7,2) NOT NULL

,NUM_EMPS SMALLINT NOT NULL)

3.1.1.7.4 Creating a Temporary Table with Columns Returned by the SELECT statement

Here is a DB2 example that shows a temporary table defined to have a set of columns that are returned by
a particular SELECT statement. The statement is not actually run at definition time, so any predicates provided
are irrelevant.

DB2 Example:

DECLARE GLOBAL TEMPORARY TABLE SESSION.FRED AS

(SELECT DEPT

 ,MAX (ID) AS MAX_ID

 ,SUM (SALARY) AS SUM_SAL

FROM STAFF

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 31

WHERE NAME <> 'TOM'

GROUP BY DEPT)

DEFINITION ONLY;

Solution:

In SQL Server, you can emulate a temporary table with columns returned by using the statement SELECT …
INTO.

SQL Server Example:

SELECT DEPT

 ,MAX (ID) AS MAX_ID

 ,SUM (SALARY) AS SUM_SAL

INTO #FRED

FROM STAFF

WHERE NAME <> 'TOM' AND 1=2

GROUP BY DEPT

3.1.1.7.5 Creating an Index for a Temporary Table

In DB2, an index can be added to a temporary table in order to improve performance and to enforce
uniqueness. In this example, column defaults are copied, as in section 3.8.3.

DB2 Example:

DECLARE GLOBAL TEMPORARY TABLE SESSION.FRED

LIKE STAFF INCLUDING COLUMN DEFAULTS

ON COMMIT PRESERVE ROWS;

CREATE UNIQUE INDEX SESSION.FRED ON SESSION.FRED (ID);

INSERT INTO SESSION.FRED

SELECT *

FROM STAFF

WHERE ID < 200;

SELECT COUNT(*)

FROM SESSION.FRED;

Solution:

In SQL Server, emulation is identical to DB2 when you create an index (except for changing the
TEMPORARY keyword to a pound sign before the table name, as noted above).

SQL Server Example:

CREATE TABLE #FRED

(DEPT SMALLINT NOT NULL DEFAULT 1

,AVG_SALARY DECIMAL(7,2)NOT NULL

,NUM_EMPS SMALLINT NOT NULL)

CREATE UNIQUE INDEX #FRED ON #FRED(ID)

INSERT INTO #FRED

SELECT *

FROM STAFF

WHERE ID < 200;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 32

SELECT COUNT(*)

FROM #FRED;

3.1.1.7.6 Reusing a Temporary Table

In DB2, you must drop a temporary table to reuse the name of that table.

DB2 Example:

DECLARE GLOBAL TEMPORARY TABLE SESSION.FRED

(DEPT SMALLINT NOT NULL

,AVG_SALARY DEC (7,2) NOT NULL

,NUM_EMPS SMALLINT NOT NULL)

ON COMMIT PRESERVE ROWS;

/

INSERT INTO SESSION.FRED

SELECT DEPT

 ,AVG(SALARY)

 ,COUNT(*)

FROM STAFF

GROUP BY DEPT;

/

SELECT COUNT(*)

FROM SESSION.FRED;

/

DROP TABLE SESSION.FRED;

/

DECLARE GLOBAL TEMPORARY TABLE SESSION.FRED

(DEPT SMALLINT NOT NULL)

ON COMMIT DELETE ROWS;

/

SELECT COUNT(*)

FROM SESSION.FRED;

Solution:

In SQL Server, emulation is identical to all earlier examples in this section. Here, you must remove the local
temporary table before you create a new local temporary table of the same name.

SQL Server Example:

CREATE TABLE #FRED

(DEPT SMALLINT NOT NULL

 ,AVG_SALARY DECIMAL(7,2) NOT NULL

 ,NUM_EMPS SMALLINT NOT NULL)

INSERT INTO #FRED

SELECT DEPT

 ,AVG(SALARY)

 ,COUNT(*)

FROM STAFF

GROUP BY DEPT

SELECT COUNT(*)

FROM #FRED;

DROP TABLE #FRED;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 33

CREATE TABLE #FRED

(DEPT SMALLINT NOT NULL)

SELECT COUNT(*)

FROM #FRED

3.1.1.7.7 Declaring a Temporary Table

In DB2, in the case that a declared global temporary table already exists with the specified name, you can
set WITH REPLACE to specify that the existing table is replaced with the temporary table defined by this
statement (and that all rows of the existing table are deleted).

DB2 Example:

DECLARE GLOBAL TEMPORARY TABLE SESSION.FRED

(DEPT SMALLINT NOT NULL

,AVG_SALARY DEC(7,2) NOT NULL

,NUM_EMPS SMALLINT NOT NULL)

ON COMMIT PRESERVE ROWS WITH REPLACE;

Solution:

In SQL Server, you should first check whether this table already exists, and if it does, you should drop and re-
create it as shown in the examples of sections 3.8.1 through 3.8.6.

SQL Server Example:

IF OBJECT_ID('TEMPDB..#FRED') IS NOT NULL

 DROP TABLE #FRED

CREATE TABLE #FRED

(DEPT SMALLINT NOT NULL

 ,AVG_SALARY DECIMAL(7,2) NOT NULL

 ,NUM_EMPS SMALLINT NOT NULL)

3.1.1.7.8 Deleting Rows After Commit

In DB2, you can set ON COMMIT DELETE ROWS to specify that all rows of the table will be deleted if no
WITH HOLD cursor is open on the table. ON COMMIT DELETE ROWS is default option of this statement.

DB2 Example:

DECLARE GLOBAL TEMPORARY TABLE SESSION.FRED

(DEPT SMALLINT NOT NULL

 ,AVG_SALARY DEC(7,2) NOT NULL

 ,NUM_EMPS SMALLINT NOT NULL)

ON COMMIT DELETE ROWS;

Solution:

In SQL Server, to emulate this option you must before every COMMIT statement write the following code:

SQL Server Example:

DELETE FROM #FRED

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 34

3.1.1.7.9 CREATE GLOBAL TEMPORARY TABLE statement

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

The CREATE GLOBAL TEMPORARY TABLE statement creates a description of a temporary table at the

current server. Each session that selects from a created temporary table retrieves only rows that the same

session has inserted. When the session terminates, the rows of the table associated with the session are

deleted.

DB2 Example:

CREATE GLOBAL TEMPORARY TABLE DB2_TABLES.GLOBAL_TMP_TAB

 (TMPDEPTNO CHAR(3) NOT NULL,

 TMPDEPTNAME VARCHAR(36) NOT NULL,

 TMPMGRNO CHAR(6),

 TMPLOCATION CHAR(16));

Solution:

You could use a simple table in MSSQL Server.

SQL Server Example:

CREATE TABLE DBO.GLOBAL_TMP_TAB

 (TMPDEPTNO CHAR(3) NOT NULL,

 TMPDEPTNAME VARCHAR(36) NOT NULL,

 TMPMGRNO CHAR(6),

 TMPLOCATION CHAR(16));

3.1.1.8 Materialized query tables

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

Materialized Query Tables, or MQTs can be used to greatly improve the elegance and efficiency of
DB2-based data warehouses. (Of course, MQTs are not solely for data warehousing, but they are most useful
for static data.)

An MQT can be thought of as a view whose data is physically stored instead of virtually accessed when
needed. Each MQT is defined as a SQL query, similar to a view. But the MQT pre-computes the query results
and stores the data. Subsequent user queries that require the data can re-use the data from the MQT instead
of re-computing it, which can save time and resources.

A summary table is a specialized type of materialized query table.
After the SELECT statement, there are several parameters that define the nature of the MQT. First of

all, when you create an MQT there are several options available to specify how the data is to be populated and
refreshed into the MQT. These parameters are:

DATA INITIALLY DEFERRED - Data is not inserted into the table as part of the CREATE TABLE
statement. A REFRESH TABLE statement specifying the table-name is used to insert data into the table.

REFRESH - Indicates how the data in the table is maintained.
DEFERRED - The data in the table can be refreshed at any time using the REFRESH TABLE

statement. The data in the table only reflects the result of the query as a snapshot at the time the REFRESH
TABLE statement is processed. System-maintained materialized query tables defined with this attribute do not
allow INSERT, UPDATE, or DELETE statements. User-maintained materialized query tables defined with this
attribute do allow INSERT, UPDATE, or DELETE statements.

DB2 Example:

CREATE TABLE DB2_OBJECTS.A (A BIGINT, B VARCHAR(100));

CREATE TABLE DB2_OBJECTS.MQT_A AS (

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0053719.html?cp=SSEPGG_10.5.0%2F2-9-7-78&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createglobaltemptable.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms174979.aspx
http://www.toadworld.com/platforms/ibmdb2/w/wiki/7400.creating-materialized-query-tables.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html?cp=SSEPGG_10.5.0%2F2-9-7-101&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms191432.aspx
http://www.toadworld.com/platforms/ibmdb2/w/wiki/6845.materialized-query-tables-mqts.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000977.html?cp=SSEPGG_10.5.0%2F2-9-7-172&lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 35

 SELECT COUNT (*) AS CNT, B

 FROM DB2_OBJECTS.A

 GROUP BY B)

DATA INITIALLY DEFERRED REFRESH DEFERRED;

REFRESH TABLE DB2_MSSQL_UNITTEST.MQT_A;

IMMEDIATE - The changes made to the underlying tables as part of a DELETE, INSERT, or UPDATE are
cascaded to the materialized query table. In this case, the content of the table, at any point-in-time, is the same
as if the specified subselect is processed. Materialized query tables defined with this attribute do not allow
INSERT, UPDATE, or DELETE.

DB2 Example:

CREATE TABLE DB2_OBJECTS.MQT_AI AS (

 SELECT COUNT (*) AS CNT, B

 FROM DB2_OBJECTS.A

 GROUP BY B)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

REFRESH TABLE DB2_OBJECTS.MQT_AI;

Solution

You could use SQL Server Indexed views instead of Materialized Query Tables.

SQL Server Example:
CREATE TABLE DBO.A (A BIGINT, B VARCHAR(100));

CREATE VIEW DBO.MQT_A

WITH SCHEMABINDING AS (

 SELECT COUNT_BIG(*) AS CNT, B

 FROM DBO.A

 GROUP BY B);

CREATE UNIQUE CLUSTERED INDEX IDX_V1 ON MQT_A (B);

MAINTAINED BY SYSTEM: indicates that the MQT is maintained by the system. This option is the

default and it means that the MQT does not allow LOAD, INSERT, UPDATE, or DELETE, or SELECT FOR
UPDATE statements. The REFRESH TABLE statement is used to populate data in the MQT.

MAINTAINED BY USER - The data in the materialized query table is maintained by the user. The user
is allowed to perform update, delete, or insert operations against user-maintained materialized query tables.
The REFRESH TABLE statement, used for system-maintained materialized query tables, cannot be invoked
against user-maintained materialized query tables. Only a REFRESH DEFERRED materialized query table
can be defined as MAINTAINED BY USER.

DB2 Example:
CREATE TABLE DB2_OBJECTS.MQT_MU AS (

 SELECT SUM (A) AS SM, B

 FROM DB2_OBJECTS.A

 GROUP BY B)

DATA INITIALLY DEFERRED REFRESH DEFERRED

ENABLE QUERY OPTIMIZATION

MAINTAINED BY USER;

SET INTEGRITY FOR DB2_OBJECTS.MQT_MU ALL IMMEDIATE UNCHECKED;

INSERT INTO DB2_OBJECTS.MQT_MU SELECT * FROM (

 SELECT SUM (A) AS SM, B

 FROM DB2_OBJECTS.A

 GROUP BY B) SQ;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 36

3.1.1.8.1 Materialized query table restrictions

Links: DB2 for Linux UNIX and Windows 10.5.0

The “fullselect” statements that form part of the definition of materialized query tables (MQTs) is
subject to the following restrictions.
• Every select element must have a name.
• A fullselect must not reference any of the following object types:

 materialized query tables,

 staging tables,

 declared global temporary tables,

 created global temporary tables,

 typed tables,

 system catalog tables,

 views that violate any MQT restrictions,

 protected tables,

 nicknames that are created with the DISALLOW CACHING clause of the CREATE NICKNAME or
ALTER NICKNAME statements,

 views that directly or indirectly depend on protected tables.
• A fullselect must not contain any column references or expressions of the following data types:

 LOB,

 LONG,

 DATALINK,

 XML,

 reference,

 user defined structured type,

 any distinct type that is based on these data types.
•A fullselect must not contain any column references or expressions or functions that:

 depend on the physical characteristics of the data. For example, DBPARTITIONNUM,
HASHEDVALUE, and RID_BIT, RID.

 depend on changes to the data. For example, a row change expression or a row change
timestamp column.

 are defined as EXTERNAL ACTION.

 are defined as LANGUAGE SQL, CONTAINS SQL, READS SQL DATA, or MODIFIES SQL
DATA.

• A fullselect must not include a CONNECT BY clause.
• When MAINTAINED BY FEDERATED_TOOL is specified in the CREATE TABLE statement, the SELECT
clause must not contain a reference to a base table.
• When REFRESH IMMEDIATE is specified:

 the CREATE MQT statement must not contain duplicate grouping sets.

 at least one unique key from each table that is referenced must be in the select list.

 the fullselect must be a subselect. The exception is that UNION ALL is supported in the input table
expression of a GROUP BY clause.

 the input table expressions of a UNION ALL or a JOIN must not contain aggregate functions.
• When REFRESH IMMEDIATE is specified, the fullselect must not contain:

 a reference to a nickname.

 a SELECT DISTINCT statement.

 a reference to a special register.

 a built-in function that depends on the value of a special register.

 a reference to a global variable.

 functions that are not deterministic.

 OLAP functions.

 sampling functions.

 text functions.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0060899.html?cp=SSEPGG_10.5.0%2F2-3-2-10-7-0&lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 37

 any expressions that use the result of aggregate functions.

 an aggregate function without the fullselect also containing a GROUP BY clause.

 a recursive common table expression.

 subqueries.
• When REFRESH IMMEDIATE is specified, and the fullselect contains a GROUP BY clause:

 the select list must contain COUNT() or COUNT_BIG().

 for each nullable column C, if the select list contains SUM(C), then COUNT(C) is also required.

 you must include the SUM(), or GROUPING() aggregate function. No other aggregate function can
be included.

 the HAVING clause must not be specified.

 in a partitioned database environment, the GROUP BY columns must contain the partitioning key
of the materialized query table.

 nesting of aggregate functions is not allowed.
• When REFRESH IMMEDIATE is specified, and the FROM clause references more than one table, only an
inner join, without using the explicit INNER JOIN syntax, is supported.
• When REPLICATED is specified:

 aggregate functions and the GROUP BY clause are not allowed.

 the MQT must reference only a single table. It cannot include a join, union, or subquery.

 the PARTITIONING KEY clause must not be specified.

 unique indexes are not allowed for system maintained MQTs.

3.1.1.9 3.1.1.9 Typed Table

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

Typed tables are used to store instances of objects whose characteristics are defined with the CREATE

TYPE statement. You can create a typed table using a variant of the CREATE TABLE statement.

3.1.1.9.1 Naming the Object Identifier

Because typed tables contain objects that can be referenced by other objects, every typed table has
an object identifier column as its first column. You can name the object identifier column using the REF IS …
USER GENERATED clause. In this case, the column is named Oid. The USER GENERATED part of the REF
IS clause indicates that you must provide the initial value for the object identifier column of each newly inserted
row. It is common practice in object-oriented design to completely separate the data from the object identifier.
For that reason, you cannot update the value of the object identifier after you insert the object identifier.

DB2 Example:
CREATE TYPE DB2_OBJECTS.PERSON_T AS (NAME VARCHAR(20), AGE INT, DOB DATE)

INSTANTIABLE REF USING VARCHAR(13) FOR BIT DATA MODE DB2SQL;

CREATE TABLE DB2_OBJECTS.PERSON OF DB2_OBJECTS.PERSON_T (REF IS OID USER

GENERATED)

SQL Server Example:
CREATE TYPE DBO.PERSON_T AS TABLE (NAME VARCHAR(20), AGE INT, DOB DATE);

CREATE TABLE TEST_FUNCTIONS.DBO.PERSON (OID INTEGER PRIMARY KEY, NAME

VARCHAR(20), AGE INT, DOB DATE);

3.1.1.9.3 Typed table hierarchy

You can also create a hierarchy of typed tables that is based on a hierarchy of structured types. To

store instances of subtypes in database tables, you must create a corresponding table hierarchy.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.structypes.doc/doc/t0006634.html?lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 38

The Person typed table is of type Person_t. To store instances of the subtypes of employees and
students, it is necessary to create the subtables of the Person table, Employee and Student. The two additional
subtypes of Employee_t also require tables. Those subtables are named Manager and Architect. Just as a
subtype inherits the attributes of its supertype, a subtable inherits the columns of its supertable, including the
object identifier column. A subtable must reside in the same schema as its supertable.

Rows in the Employee subtable, therefore, will have a total of seven
columns: Oid, Name, Age, Address, SerialNum, Salary, and Dept.

A SELECT, UPDATE, or DELETE statement that operates on a supertable automatically operates on
all its subtables as well. For example, an UPDATE statement on the Employee table might affect rows in
the Employee, Manager, and Architect tables, but an UPDATE statement on the Manager table can only
affect Manager rows.

Typed table hierarchy

DB2 Example:

CREATE TABLE DB2_OBJECTS.BUSINESSUNIT OF DB2_OBJECTS.BUSINESSUNIT_T (REF

IS OID USER GENERATED);

CREATE TABLE DB2_OBJECTS.PERSON OF DB2_OBJECTS.PERSON_T (REF IS OID USER

GENERATED);

CREATE TABLE DB2_OBJECTS.EMPLOYEE OF DB2_OBJECTS.EMPLOYEE_T UNDER

DB2_OBJECTS.PERSON INHERIT SELECT PRIVILEGES

(SERIALNUM WITH OPTIONS NOT NULL, DEPT WITH OPTIONS SCOPE

DB2_OBJECTS.BUSINESSUNIT);

CREATE TABLE DB2_OBJECTS.STUDENT OF DB2_OBJECTS.STUDENT_T UNDER

DB2_OBJECTS.PERSON INHERIT SELECT PRIVILEGES;

CREATE TABLE DB2_OBJECTS.MANAGER OF DB2_OBJECTS.MANAGER_T UNDER

DB2_OBJECTS.EMPLOYEE INHERIT SELECT PRIVILEGES;

CREATE TABLE DB2_OBJECTS.ARCHITECT OF DB2_OBJECTS.ARCHITECT_T UNDER

DB2_OBJECTS.EMPLOYEE INHERIT SELECT PRIVILEGES;

This section describes the differences between DB2 and SQL Server in creating tables, and covers a
few incompatible clauses of CREATE TABLE statement.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 39

3.1.1.10 LIKE Clause

In DB2, the LIKE clause specifies that the columns of the created table have exactly the same name and
description as the columns of the identified source table, view, or nickname. The name specified after LIKE
must identify a table, view, nickname, or temporary table. The LIKE clause can also be used for defining
default constraints and identity columns in the target table. This is controlled by the clauses
INCLUDING/EXCLUDING COLUMN DEFAULTS and INCLUDING/EXCLUDING IDENTITY COLUMN
ATTRIBUTES.

DB2 Example 1:

CREATE TABLE T1

(C1 INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY

 (START WITH 1 INCREMENT BY 1),

 C2 VARCHAR(50) WITH DEFAULT 'A');

CREATE TABLE T2 LIKE T1

INCLUDING IDENTITY COLUMN ATTRIBUTES;

DB2 Example 2:

CREATE TABLE T1

(C1 INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY

 (START WITH 1 INCREMENT BY 1),

 C2 VARCHAR(50) WITH DEFAULT 'A');

CREATE TABLE T2 LIKE T1

INCLUDING COLUMN DEFAULTS

INCLUDING IDENTITY COLUMN ATTRIBUTES

Solution:

SQL Server does not have similar functionality. Use the default CREATE TABLE or SELECT…INTO
statement to create a table that will have columns with the same name and description as the columns of
another table. The SQL Server statement SELECT…INTO allows you to create IDENTITY fields but does not
allow you to add defaults and calculated fields. Thus you can convert SELECT…INTO statements, which do
not contain the clause INCLUDING/EXCLUDING COLUMN DEFAULTS.

SQL Server Example 1:

CREATE TABLE T1

(C1 INT IDENTITY(1,1),

 C2 VARCHAR(50));

select * into t2 from t1;

SQL Server Example 2:

CREATE TABLE T1

(C1 INT IDENTITY(1,1),

 C2 VARCHAR(50) DEFAULT 'A');

CREATE TABLE T2

(C1 INT IDENTITY(1,1),

 C2 VARCHAR(50) DEFAULT 'A');

3.1.1.11 COMPRESS Clause

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0060027.html
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.perf/src/tpc/db2z_compressdataperf.dita?lang=en
http://msdn.microsoft.com/ru-ru/library/cc280464.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 40

You could use row compression only, value compression only, or both types of compression.

Row compression will almost always yield benefits in terms of storage savings, as it attempts to replace

data patterns that span multiple columns within a row with shorter symbol strings.

In DB2, the COMPRESS clause specifies whether data compression applies to the rows of the table.

DB2 Example:

CREATE TABLE DB2_OBJECTS.COMPRESS_TAB

(C1 INT, C2 VARCHAR(50))

COMPRESS YES

Solution:

There is no similar clause in SQL Server. To compress data in a SQL Server table, use the WITH
DATA_COMPRESSION = page statement.

SQL Server Example:

CREATE TABLE T1

(C1 INT, C2 NVARCHAR(50))

WITH (DATA_COMPRESSION = PAGE);

3.1.1.12 VALUE COMPRESSION Clause

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

Value compression can offer savings when you have a many rows with columns that contain the same
value, or when you have columns that contain the default value for the data type of the column.

In DB2, the VALUE COMPRESSION clause determines the row format that is to be used. Each data type
has a different byte count, depending on the row format that is used. The NULL value is stored using three
bytes. Whether a column is defined as nullable has no effect on the row size calculation. The zero-length data
values for columns whose data type is VARCHAR, VARGRAPHIC, LONG VARCHAR, LONG VARGRAPHIC,
CLOB, DBCLOB, BLOB, or XML are to be stored using two bytes only, which is less than the storage required
when VALUE COMPRESSION is not active.

DB2 Example:

CREATE TABLE DB2_OBJECTS.VALUE_COMPRESS

(C1 INT, C2 VARCHAR(50))

VALUE COMPRESSION

Solution:

In SQL Server, you can emulate this clause by using the WITH DATA_COMPRESSION = row statement.

SQL Server Example:

CREATE TABLE T2

(C1 INT, C2 NVARCHAR(50))

WITH (DATA_COMPRESSION = ROW);

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0056482.html
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.perf/src/tpc/db2z_compressdataperf.dita?lang=en
http://msdn.microsoft.com/ru-ru/library/cc280576.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 41

When value compression is enabled, you can also specify that columns that assume the system default
value for their data types can be further compressed with the COMPRESS SYSTEM DEFAULT option.

DB2 Example:

CREATE TABLE DB2_OBJECTS.VAL_SYS_COMPRESS

(DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 EMPNO CHAR(6) NOT NULL,

 SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT COMPRESS SYSTEM DEFAULT)

 VALUE COMPRESSION;

Solution:

In SQL Server, you can emulate this clause by using the WITH DATA_COMPRESSION = row statement.

SQL Server Example:

CREATE TABLE VAL_SYS_COMPRESS

(DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 EMPNO CHAR(6) NOT NULL,

 SALARY DECIMAL(9,2) NOT NULL DEFAULT 0)

 WITH (DATA_COMPRESSION = ROW);

Both value and row compression could be used.

DB2 Example:

CREATE TABLE DB2_OBJECTS.BOTH_COMPRESS

(DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL)

 VALUE COMPRESSION COMPRESS YES;

Solution:

In SQL Server, you can emulate this clause by using the WITH DATA_COMPRESSION = page statement.

SQL Server Example:

CREATE TABLE BOTH_COMPRESS

(DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL)

 WITH (DATA_COMPRESSION = PAGE);

3.1.1.13 CCSID [ASCII / UNICODE] Clauses

In DB2, the CCSID clause specifies the encoding scheme for string data stored in the table. If the CCSID
clause is not specified, the default is CCSID UNICODE for Unicode databases, and CCSID ASCII for all other
databases.

ASCII specifies that string data is encoded in the database code page. If the database is a Unicode
database, CCSID ASCII cannot be specified.

UNICODE specifies that string data is encoded in Unicode. If the database is a Unicode database, character
data is in UTF-8, and graphic data is in UCS-2. If the database is not a Unicode database, character data is
in UTF-8.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 42

DB2 Example 1:

CREATE TABLE DB2_TABLES.CCSID_ASCII (C1 INT, C2 VARCHAR(50)) CCSID ASCII;

DB2 Example 2:

CREATE TABLE DB2_TABLES.CCSID_UNICODE(C1 INT, C2 VARCHAR(50)) CCSID

UNICODE;

Solution:

SQL Server supports NCHAR, NVARCHAR, and NTEXT data types for storing Unicode character data.

SQL Server Example 1:

CREATE TABLE T1

(C1 INT, C2 VARCHAR(50));

SQL Server Example 2:

CREATE TABLE T1

(C1 INT, C2 NVARCHAR(50));

3.1.1.14 Generated-clause

GENERATED

Specifies that DB2 generates values for the column. GENERATED must be specified if the column is to be
considered an identity column or a row change timestamp column, row-begin column, row-end column,
transaction-start-ID column, or generated expression column.

ALWAYS

Specifies that a value will always be generated for the column when a row is inserted into the table, or whenever
the result value of the generation-expression changes. The result of the expression is stored in the table.
GENERATED ALWAYS is the recommended value unless data propagation or unload and reload operations
are being done. GENERATED ALWAYS is the required value for generated columns.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:
CREATE TABLE DB2_TABLES.GEN_ALW_STMT (ID INT, GENERATED_EXPRESSION

VARCHAR(100) GENERATED ALWAYS AS (CASE WHEN 1=1 THEN 'WORLD' ELSE

'NOTHING' END));

Solution:

You could replace GENERATED ALWAYS AS clause with SQL Server Computed Columns.
.
SQL Server Example :

CREATE TABLE GEN_ALW_ST (ID INT, GENERATED_EXPRESSION AS

(CASE WHEN 1=1 THEN 'WORLD' ELSE 'NOTHING' END))

System default - special register value as the default for this column when no other value is provided.
Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

DB2 Example:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html?cp=SSEPGG_10.5.0%2F2-9-7-101&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms188300.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sysibmsyscolumnstable.dita?cp=SSEPEK_10.0.0%2F10-0-24&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.dita?lang=en
http://msdn.microsoft.com/ru-ru/library/ms174979.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 43

CREATE TABLE DB2_TABLES.SYSTEM_DEFAULT (ID INT, SYS_DEF_DATE DATE DEFAULT,

SYS_DEF_VARCH VARCHAR(100) DEFAULT, SYS_DEF_INT INTEGER DEFAULT);

Solution:

You could replace DEFAULT clause with SQL Server DEFAULT clause plus value by default depending on
column data type: DATE equal to GETDATE(),VARCHAR equal to ’’, INTEGER equal to 0.

SQL Server Example:

CREATE TABLE SYSTEM_DEFAULT

(ID INT, SYS_DEF_DATE DATE DEFAULT GETDATE(), SYS_DEF_VARCH VARCHAR(100)

DEFAULT '', SYS_DEF_INT INTEGER DEFAULT 0)

BY DEFAULT

Specifies that DB2 will generate a value for the column when a row is inserted, or updated specifying the
DEFAULT clause, unless an explicit value is specified. BY DEFAULT is the recommended value when using
data propagation or performing an unload and reload operation.
Although not explicitly required, to ensure uniqueness of the values, define a unique single-column index on
generated IDENTITY columns.

DB2 Example:

CREATE TABLE DB2_TABLES.GEN_ALW_ST (ID INT, GENERATED_EXPRESSION INT

GENERATED BY DEFAULT AS IDENTITY (START WITH 0, INCREMENT BY 1));

Solution:

You could replace GENERATED BY DEFAULT AS IDENTITY clause with SQL Server IDENTITY clause.

SQL Server Example:
CREATE SEQUENCE SEQ_IDENTITY

 AS INT

 START WITH 0

 INCREMENT BY 1

 MINVALUE 0

 MAXVALUE 9999999999999999999999999999

 /

 CREATE TABLE SEQ_IDEN

(ID INT, SEQ_IDENTITY INT DEFAULT NEXT VALUE FOR SEQ_IDENTITY) AS IDENTITY

Specifies that the column is to be the identity column for this table. A table can only have a single identity
column (SQLSTATE 428C1). The IDENTITY keyword can only be specified if the data type associated with the
column is an exact numeric type with a scale of zero, or a user-defined distinct type for which the source type
is an exact numeric type with a scale of zero (SQLSTATE 42815). SMALLINT, INTEGER, BIGINT, or DECIMAL
with a scale of zero, or a distinct type based on one of these types, are considered exact numeric types. By
contrast, single- and double-precision floating points are considered approximate numeric data types.
Reference types, even if represented by an exact numeric type, cannot be defined as identity columns.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:
CREATE TABLE DB2_TABLES.IDENT (ID INT, IDENT INTEGER NOT NULL GENERATED

ALWAYS AS IDENTITY (START WITH 0, INCREMENT BY 1, NO CACHE, NO MINVALUE,

MAXVALUE 0, NO CYCLE, NO ORDER));

Solution:

You could replace GENERATED ALWAYS AS IDENTITY clause with SQL Server IDENTITY clause.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html?cp=SSEPGG_10.5.0%2F2-9-7-101&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.dita?lang=en
http://msdn.microsoft.com/ru-ru/library/ms186775.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 44

SQL Server Example:
CREATE TABLE IDENT (ID INT, IDENT INTEGER NOT NULL IDENTITY (1,1))

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

Specifies that the column is a timestamp column for the table. A value is generated for the column in each row
that is inserted, and for any row in which any column is updated. The value that is generated for a ROW
CHANGE TIMESTAMP column is a timestamp that corresponds to the insert or update time for that row. If
multiple rows are inserted or updated with a single statement, the value of the ROW CHANGE TIMESTAMP
column might be different for each row.
A table can only have one ROW CHANGE TIMESTAMP column. A ROW CHANGE TIMESTAMP column
cannot have a DEFAULT clause. NOT NULL must be specified for a ROW CHANGE TIMESTAMP column.

DB2 Example:
CREATE TABLE DB2_TABLES.ROW_CHANGE_TIMESTAMP (ID INT, GEN_DEF TIMESTAMP

NOT NULL GENERATED BY DEFAULT FOR EACH ROW ON UPDATE AS ROW CHANGE

TIMESTAMP);

Solution:

For INSERT statement in MS SQL Server you could use DEFAULT CURRENT_TIMESTAMP for column.

For UPDATE statement in MS SQL Server you could use additional column in SET statement and set

appropriate column with CURRENT_TIMESTAMP function.

SQL Server Example:

CREATE TABLE DBO.ROW_CHANGE_TIMESTAMP (ID INT, CT DATETIME DEFAULT

CURRENT_TIMESTAMP);

UPDATE DBO.ROW_CHANGE_TIMESTAMP_ SET ID=2, CT = CURRENT_TIMESTAMP;

Note: Azure SQL DB doesn’t support sequence objects

3.1.1.15 Constraints

3.1.1.15.1 PRIMARY KEY

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

Both DB2 and SQL Server support column constraints on tables.

DB2 Example:

CREATE TABLE DB2_TABLES.ON_DEL_NOACT_FK (ID_FK INT NOT NULL PRIMARY KEY,

VAL VARCHAR (100));

Solution:

In SQL Server, the only difference in primary key constraint syntax is that SQL Server does not require the
NOT NULL keyword to be added.

SQL Server Example:

CREATE TABLE EMPLOYEE

(EMPNO SMALLINT IDENTITY PRIMARY KEY,

 NAME CHAR(30),

 SALARY DECIMAL(5,2))

3.1.1.15.2 ON DELETE, ON UPDATE RULE-CLAUSE

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html?cp=SSEPGG_10.5.0%2F2-9-7-101&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.dita?lang=en
http://msdn.microsoft.com/ru-ru/library/ms174979.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 45

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

Specifies what action to take on dependent tables:

 ON DELETE;
Specifies what action is to take place on the dependent tables when a row of the parent table is deleted. There
are four possible actions:

 NO ACTION (default);

 RESTRICT;

 CASCADE;

 SET NULL.

 ON UPDATE.
Specifies what action is to take place on the dependent tables when a row of the parent table is updated. There
are two possible actions:

 NO ACTION (default);

 RESTRICT.

The delete rule applies when a row of T2 is the object of a DELETE or propagated delete operation and that
row has dependents in T1. Let p denote such a row of T2.

 If C or NO ACTION is specified, an error occurs and no rows are deleted.

 If CASCADE is specified, the delete operation is propagated to the dependents of p in T1.

 If SET NULL is specified, each nullable column of the foreign key of each dependent of p in T1 is set
to null.
The use of NO ACTION or RESTRICT as delete or update rules for referential constraints determines when

the constraint is enforced. A delete or update rule of RESTRICT is enforced before all other constraints,

including those referential constraints with modifying rules such as CASCADE or SET NULL. A delete or update
rule of NO ACTION is enforced after other referential constraints. One example where different behavior is
evident involves the deletion of rows from a view that is defined as a UNION ALL of related tables.

Solution:

In SQL Server you could use ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT } statement
which specifies what action happens to rows in the table created, if those rows have a referential relationship
and the referenced row is deleted from the parent table. The default is NO ACTION.

DB2 Example:

ON DELETE; NO ACTION (DEFAULT);

CREATE TABLE DB2_TABLES.ON_DEL_NOACT_PK (ID INT, ID_FK INT, VAL VARCHAR

(100), CONSTRAINT FK_NOACT FOREIGN KEY (ID_FK) REFERENCES

DB2_TABLES.ON_DEL_NOACT_FK ON DELETE NO ACTION);

CREATE TABLE DB2_TABLES.ON_DEL_NOACT_FK (ID_FK INT NOT NULL PRIMARY KEY,

VAL VARCHAR (100));

DB2 Example:

ON DELETE; RESTRICT;

CREATE TABLE DB2_TABLES.ON_DEL_RESTRICT_PK (ID INT, ID_FK INT, VAL VARCHAR

(100), CONSTRAINT FK_RESTR FOREIGN KEY (ID_FK) REFERENCES

DB2_TABLES.ON_DEL_RESTRICT_FK ON DELETE RESTRICT);

CREATE TABLE DB2_TABLES.ON_DEL_RESTRICT_FK (ID_FK INT NOT NULL PRIMARY

KEY, VAL VARCHAR (100));

Solution:

NO ACTION
The Database Engine raises an error and the delete action on the row in the parent table is rolled back.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html?cp=SSEPGG_10.5.0%2F2-9-7-101&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.dita?lang=en
http://msdn.microsoft.com/ru-ru/library/ms174979.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 46

SQL Server Example:
CREATE TABLE DBO.ON_DEL_NOACT_PK (ID INT, ID_FK INT, VAL VARCHAR (100),

CONSTRAINT FK_NOACT FOREIGN KEY (ID_FK) REFERENCES DBO.ON_DEL_NOACT_FK ON

DELETE NO ACTION);

CREATE TABLE DBO.ON_DEL_NOACT_FK (ID_FK INT NOT NULL PRIMARY KEY, VAL

VARCHAR (100));

DB2 Example:
ON DELETE; CASCADE;

CREATE TABLE DB2_TABLES.ON_DEL_CASCADE_PK (ID INT, ID_FK INT, VAL VARCHAR

(100), CONSTRAINT FK_CASC FOREIGN KEY (ID_FK) REFERENCES

DB2_TABLES.ON_DEL_CASCADE_FK ON DELETE CASCADE);

CREATE TABLE DB2_TABLES.ON_DEL_CASCADE_FK (ID_FK INT NOT NULL PRIMARY KEY,

VAL VARCHAR (100));

Solution:

CASCADE
Corresponding rows are deleted from the referencing table if that row is deleted from the parent table.

SQL Server Example:

CREATE TABLE DBO.ON_DEL_CASCADE_PK (ID INT, ID_FK INT, VAL VARCHAR (100),

CONSTRAINT FK_CASC FOREIGN KEY (ID_FK) REFERENCES DBO.ON_DEL_CASCADE_FK ON

DELETE CASCADE);

CREATE TABLE DBO.ON_DEL_CASCADE_FK (ID_FK INT NOT NULL PRIMARY KEY, VAL

VARCHAR (100));

DB2 Example:
ON DELETE; SET NULL;

CREATE TABLE DB2_TABLES.ON_DEL_SETNULL_PK (ID INT, ID_FK INT, VAL VARCHAR

(100), CONSTRAINT FK_NULL FOREIGN KEY (ID_FK) REFERENCES

DB2_TABLES.ON_DEL_SETNULL_FK ON DELETE SET NULL);

CREATE TABLE DB2_TABLES.ON_DEL_SETNULL_FK (ID_FK INT NOT NULL PRIMARY KEY,

VAL VARCHAR (100));

Solution:

SET NULL
All the values that make up the foreign key are set to NULL if the corresponding row in the parent table is
deleted. For this constraint to execute, the foreign key columns must be nullable.

SQL Server Example:
CREATE TABLE DBO.ON_DEL_SETNULL_PK (ID INT, ID_FK INT, VAL VARCHAR (100),

CONSTRAINT FK_NULL FOREIGN KEY (ID_FK) REFERENCES DBO.ON_DEL_SETNULL_FK ON

DELETE SET NULL);

CREATE TABLE DBO.ON_DEL_SETNULL_FK (ID_FK INT NOT NULL PRIMARY KEY, VAL

VARCHAR (100));

In DB2 ON UPDATE - Specifies what action is to take place on the dependent tables when a row of the parent
table is updated. The clause is optional. ON UPDATE NO ACTION is the default and ON UPDATE RESTRICT
is the only alternative. In MS SQL Server you could use ON UPDATE { NO ACTION } – statement.

3.1.2 Migrating Views – CREATE VIEW Statement

This section describes the options of DB2 views that are incompatible with SQL Server views.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 47

3.1.2.1 WITH LOCAL CHECK OPTION Clause

In DB2, the WITH LOCAL CHECK OPTION constraint on a view means that the search condition of the view
is applied as a constraint for an insert or update of the view, or for any other view that is dependent on this
view. In contrast to a view with the cascaded check option, a view with the local check option doesn’t inherit
the search conditions as constraints from any updatable view on which it is dependent.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE VIEW V2 AS SELECT ID, V FROM V1 WHERE ID < 5 WITH LOCAL CHECK

OPTION;

Solution:

SQL Server supports only views with the cascaded check option. Create the view without the check option,
and INSTEAD OF, INSERT, UPDATE, or DELETE triggers on it. Then implement the check in the triggers by
raising errors when the condition is false.

3.1.3 Migrating Indexes – CREATE INDEX Statement

This section describes the differences between DB2 and SQL Server in the syntax of the CREATE
INDEX statement.
Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

3.1.3.1 CLUSTER Keyword

DB2 uses the CLUSTER keyword to create a clustered index, which is incompatible with SQL Server.

DB2 Example:
CREATE TABLE DB2_TABLES.EMPLOYEES_INDX (

 ID DECIMAL(5,0),

 NAME VARCHAR(50),

 LAST_NAME VARCHAR(50),

 DOB DATE,

 DEPT VARCHAR(10),

 SAL DECIMAL(5,0),

 JOB VARCHAR(10));

CREATE INDEX DB2_TABLES.ID_CLUSTER ON DB2_TABLES.EMPLOYEES_INDX (ID)

CLUSTER;

Solution:

Replace the CLUSTER keyword with CLUSTERED. There is also a slight difference in the syntax of
creating clustered indexes.

SQL Server Example:
CREATE TABLE DBO.EMPLOYEES_INDX (

 ID DECIMAL(5,0),

 NAME VARCHAR(50),

 LAST_NAME VARCHAR(50),

 DOB DATE,

 DEPT VARCHAR(10),

 SAL DECIMAL(5,0),

 JOB VARCHAR(10));

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000935.html?cp=SSEPGG_10.5.0%2F2-9-7-117
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createview.dita
http://msdn.microsoft.com/en-us/library/ms187956.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000919.html?cp=SSEPGG_10.5.0%2F2-9-7-80&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms188783.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 48

CREATE CLUSTERED INDEX ID_CLUSTER ON DBO.EMPLOYEES_INDX (ID);

3.1.3.2 Filling Index Pages

In DB2, you can leave a percentage of each index page as free space when building the index.

DB2 Example:
CREATE TABLE DB2_TABLES.EMP_INDX_PSTFREE_REVERS (ID DECIMAL, NAME

VARCHAR(50), LAST_NAME VARCHAR(50), DOB DATE, DEPT VARCHAR (10), SAL

DECIMAL);

CREATE INDEX DB2_TABLES.IDX_PSTFREE_REV ON

DB2_TABLES.EMP_INDX_PSTFREE_REVERS (ID ASC) CLUSTER PCTFREE 30;

Solution:

In SQL Server, you can emulate this feature by using the FILLFACTOR keyword and a value of the
filled percentage of each index page (the reverse percentage of the PCTFREE clause in DB2).

SQL Server Example:

CREATE TABLE DBO.EMP_INDX_PSTFREE_REVERS (ID DECIMAL, NAME VARCHAR(50),

LAST_NAME VARCHAR(50), DOB DATE, DEPT VARCHAR (10), SAL DECIMAL);

CREATE CLUSTERED INDEX IDX_PSTFREE_REV ON DBO.EMP_INDX_PSTFREE_REVERS (ID)

WITH FILLFACTOR=70;

3.1.3.3 Collecting Statistics

DB2 includes a set of COLLECT STATISTICS clauses that specify which basic index statistics are to
be collected during index creation.

COLLECT DETAILED STATISTICS specifies that extended index statistics are also to be collected
during index creation. COLLECT SAMPLED DETAILED STATISTICS specifies that sampling can be used
when compiling extended index statistics.

DB2 Example 1:

CREATE TABLE DB2_TABLES.EMP_INDX_COLLECT_STAT (ID DECIMAL, NAME

VARCHAR(50), LAST_NAME VARCHAR(50), DOB DATE, DEPT VARCHAR (10), SAL

DECIMAL);

CREATE INDEX DB2_TABLES.IDX1 ON DB2_TABLES.EMP_INDX_COLLECT_STAT (ID)

COLLECT STATISTICS;

DB2 Example 2:
CREATE INDEX DB2_TABLES.IDX2 ON DB2_TABLES.EMP_INDX_COLLECT_STAT (ID)

COLLECT DETAILED STATISTICS;

DB2 Example 3:
CREATE INDEX DB2_TABLES.IDX3 ON DB2_TABLES.EMP_INDX_COLLECT_STAT (ID)

COLLECT SAMPLED DETAILED STATISTICS;

Solution:

This clause can be partially emulated in SQL Server using the WITH STATISTICS_NORECOMPUTE
statement.

SQL Server Example 1:

CREATE TABLE DBO.EMP_INDX_COLLECT_STAT (ID DECIMAL, NAME VARCHAR(50),

LAST_NAME VARCHAR(50), DOB DATE, DEPT VARCHAR (10), SAL DECIMAL);

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 49

CREATE INDEX IDX1 ON DBO.EMP_INDX_COLLECT_STAT (ID) WITH

(STATISTICS_NORECOMPUTE = OFF);

3.1.3.4 Unique XML Indexes

In DB2, for indexes on XML data, the UNIQUE keyword enforces uniqueness within a single XML
column across all documents whose nodes are qualified by the XML pattern.

DB2 Example:

CREATE TABLE DB2_TABLES.COMPANY_XML_IND (ID INT NOT NULL, XML_COLUMN XML

NOT NULL);

CREATE UNIQUE INDEX DB2_TABLES.XML_IND ON

DB2_TABLES.COMPANY_XML_IND(XML_COLUMN) GENERATE KEY USING XMLPATTERN

'/COMPANY/EMP/NAME/LAST' AS SQL VARCHAR(100);

INSERT INTO DB2_TABLES.COMPANY_XML_IND VALUES (1,

 XMLPARSE

 (DOCUMENT

'<COMPANY NAME="COMPANY1">

 <EMP ID="31201" SALARY="60000" GENDER="FEMALE">

 <NAME>

 <FIRST>LAURA</FIRST>

 <LAST>BROWN</LAST>

 </NAME>

 <DEPT ID="M25">

 FINANCE

 </DEPT>

 </EMP>

</COMPANY>'))

Solution:

SQL Server table needs to have a clustered primary key to create a primary XML index on it. The
SQL Server statement PRIMARY XML INDEX contains the primary key of the parent table, so the unique
requirement is always achieved automatically.

SQL Server Example:

CREATE TABLE DBO.COMPANY_XML_IND (ID INT NOT NULL PRIMARY KEY, XML_COLUMN

XML NOT NULL);

CREATE PRIMARY XML INDEX COMPINDEX ON DBO.COMPANY_XML_IND(XML_COLUMN);

3.1.3.5 Indexing of XML Data

Indexing of XML data depends on which pattern expression the data has. The XML pattern affects
what exactly will be indexed: the paths or the nodes of the XML document. To index on an XML pattern, you

provide the index specification clause GENERATE KEY USING XMLPATTERN during index creation.

DB2 Example 1:

@ - Specifies attributes of the context node. This is the abbreviated syntax for attribute::.
CREATE INDEX DB2_TABLES.EMPINDEX ON DB2_TABLES.COMPANY_XML_IND(XML_COLUMN)

GENERATE KEY USING XMLPATTERN '/COMPANY/EMP/@ID' AS SQL DOUBLE;

DB2 Example 2:

child:: - Specifies children of the context node. This is the default, if no other forward axis is specified.
attribute:: - Specifies attributes of the context node.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 50

CREATE INDEX DB2_TABLES.CHILDINDEX ON

DB2_TABLES.COMPANY_XML_IND(XML_COLUMN) GENERATE KEY USING XMLPATTERN

'/CHILD::COMPANY/CHILD::EMP/ATTRIBUTE::ID' AS SQL DOUBLE;

DB2 Example 3:

// (double forward slash) - this is the abbreviated syntax for /descendant-or-self::node()/.

CREATE INDEX DB2_TABLES.SLASHINDEX ON

DB2_TABLES.COMPANY_XML_IND(XML_COLUMN) GENERATE KEY USING XMLPATTERN

'//@ID' AS SQL DOUBLE;

DB2 Example 4:

descendant-or-self:: - specifies the context node and the descendants of the context node.
node() - matches any node. You cannot use node() if you also specify UNIQUE.

CREATE INDEX DB2_TABLES.DESCINDEX ON

DB2_TABLES.COMPANY_XML_IND(XML_COLUMN) GENERATE KEY USING XMLPATTERN

'/DESCENDANT-OR-SELF::NODE()/ATTRIBUTE::ID' AS SQL DOUBLE;

DB2 Example 5:

text() - matches any text node.

CREATE INDEX DB2_TABLES.TEXTINDEX ON

DB2_TABLES.COMPANY_XML_IND(XML_COLUMN) GENERATE KEY USING XMLPATTERN

'/COMPANY/EMP/NAME/LAST/TEXT()' AS SQL VARCHAR(25);

Solution:

In SQL Server, create a secondary XML index using the FOR { VALUE | PATH | PROPERTY } clause.

XML indexes fall into the following categories:

Primary XML index

Secondary XML index

The first index on the xml type column must be the primary XML index. Using the primary XML index, the

following types of secondary indexes are supported: PATH, VALUE, and PROPERTY.

PATH Secondary XML Index - if your queries generally specify path expressions on xml type columns, a PATH

secondary index may be able to speed up the search.

SQL Server Example 1:

CREATE TABLE DBO.COMP_XML_IND (ID INT NOT NULL PRIMARY KEY, XML_COLUMN XML

NOT NULL);

-- CREATE PRIMARY INDEX.

CREATE PRIMARY XML INDEX PR_EMPINDEX ON DBO.COMP_XML_IND(XML_COLUMN)

-- CREATE SECONDARY INDEX.

CREATE XML INDEX EMPINDEX_PATH ON DBO.COMP_XML_IND(XML_COLUMN) USING XML

INDEX PR_EMPINDEX FOR PATH

SQL Server Example 2:

CREATE PRIMARY XML INDEX PR_EMPINDEX ON DBO.COMP_XML_IND(XML_COLUMN)

-- CREATE SECONDARY INDEX.

CREATE XML INDEX EMPINDEX_PATH ON DBO.COMP_XML_IND(XML_COLUMN) USING XML

INDEX PR_EMPINDEX FOR PATH

SQL Server Example 3:

CREATE PRIMARY XML INDEX EMPINDEX ON DBO.COMP_XML_IND(XML_COLUMN);

-- CREATE SECONDARY INDEX.

CREATE XML INDEX EMPINDEX_VALUE ON DBO.COMP_XML_IND(XML_COLUMN) USING XML

INDEX EMPINDEX FOR VALUE

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 51

SQL Server Example 4:

CREATE PRIMARY XML INDEX EMPINDEX ON DBO.COMP_XML_IND(XML_COLUMN);

-- CREATE SECONDARY INDEX.

CREATE XML INDEX EMPINDEX_VALUE ON DBO.COMP_XML_IND(XML_COLUMN) USING XML

INDEX EMPINDEX FOR VALUE

SQL Server Example 5:

CREATE PRIMARY XML INDEX PR_EMPINDEX ON DBO.COMP_XML_IND(XML_COLUMN)

-- CREATE SECONDARY INDEX.

CREATE XML INDEX EMPINDEX_PATH ON DBO.COMP_XML_IND(XML_COLUMN) USING XML

INDEX PR_EMPINDEX FOR PATH

3.1.3.6 COMPRESS clause

COMPRESS - specifies whether index compression is enabled. By default, index compression will be
enabled if data row compression is enabled; index compression will be disabled if data row compression is
disabled. This option can be used to override the default behavior.

YES - specifies that index compression is enabled. Insert and update operations on the index will be
subject to compression.
NO - specifies that index compression is disabled.

DB2 Example :

CREATE TABLE DB2_TABLES.EMP_INDX_COMPRESS (ID INT, FIELD VARCHAR(50));

CREATE INDEX DB2_TABLES.COMPRESS_IND_YES ON

DB2_TABLES.EMP_INDX_COMPRESS (ID) COMPRESS YES;

Solution:

DATA_COMPRESSION - specifies the data compression option for the specified index, partition
number, or range of partitions. The options are as follows:

You could use PAGE compression - index or specified partitions are compressed by using page
compression.

SQL Server Example:

CREATE TABLE DBO.EMP_INDX_COMPRESS (ID INT, FIELD VARCHAR(50));

CREATE INDEX COMPRESS_IND_YES ON DBO.EMP_INDX_COMPRESS (ID) WITH

(DATA_COMPRESSION = PAGE)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 52

3.2 Triggers

This section explains how to convert DB2 triggers to SQL Server triggers.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

3.2.1.1 Create trigger restriction:

1. OLD and NEW can only be specified once each.
2. OLD or NEW correlation names cannot be defined in a FOR EACH STATEMENT trigger.
3. OLD TABLE and NEW TABLE can only be specified once each, and only for AFTER triggers or

INSTEAD OF triggers.
4. FOR EACH STATEMENT may not be specified for BEFORE triggers or INSTEAD OF triggers.
5. A trigger event must not be specified more than once for the same operation. For example, INSERT OR

DELETE is allowed, but INSERT OR INSERT is not allowed.
6. WHEN condition may not be specified for INSTEAD OF triggers.
7. A compound SQL (compiled) statement cannot be specified if the trigger definition includes a

REFERENCING OLD TABLE clause or a REFERENCING NEW TABLE clause. A compound SQL (compiled)
statement also cannot be specified for a trigger definition in a partitioned database environment.

8. Transition tables cannot be modified.

The following rules apply to the REFERENCING clause:

 If the triggered-action includes a compound SQL (compiled) statement:

 OLD TABLE or NEW TABLE identifiers cannot be defined.

 If the operation is a DELETE operation, OLD correlation-name captures the value of the deleted row. If
it is an UPDATE operation, it captures the value of the row before the UPDATE operation. For an insert
operation, OLD correlation-name captures null values for each column of a row.

 For an insert operation or an update operation, the value of NEW captures the new state of the row as
provided by the original operation and as modified by any BEFORE trigger that has executed to this point. For
a delete operation, NEW correlation-name captures null values for each column of a row. In a BEFORE
DELETE trigger, any non-null values assigned to the new transition variables persist only within the trigger
where the assignment occurred.

 If the triggered-action does not include a compound SQL (compiled) statement:

 The OLD correlation-name and the OLD TABLE identifier can only be used if the trigger event is either a
DELETE operation or an UPDATE operation. If the operation is a DELETE operation, OLD correlation-
name captures the value of the deleted row. If it is an UPDATE operation, it captures the value of the row before
the UPDATE operation. The same applies to the OLD TABLE identifier and the set of affected rows.

 The NEW correlation-name and the NEW TABLE identifier can only be used if the trigger event is either
an INSERT operation or an UPDATE operation. In both operations, the value of NEW captures the new state
of the row as provided by the original operation and as modified by any BEFORE trigger that has executed to
this point. The same applies to the NEW TABLE identifier and the set of affected rows.

Transition variables can be defined depending on the kind of trigger event:
UPDATE
An UPDATE trigger can refer to both OLD and NEW transition variables.
INSERT
An INSERT trigger can only refer to a NEW transition variable because before the activation of the INSERT

operation, the affected row does not exist in the database. That is, there is no original state of the row that
would define old values before the triggered action is applied to the database.

DELETE
A DELETE trigger can only refer to an OLD transition variable because there are no new values specified

in the delete operation.
Transition variables can only be specified for FOR EACH ROW triggers. In a FOR EACH STATEMENT

trigger, a reference to a transition variable is not sufficient to specify to which of the several rows in the set of
affected rows the transition variable is referring. Instead, refer to the set of new and old rows by using the OLD
TABLE and NEW TABLE clauses of the CREATE TRIGGER statement.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000931.html?cp=SSEPGG_10.5.0%2F2-7-3-0-0-18&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtrigger.dita?lang=en
http://msdn.microsoft.com/ru-ru/library/ms189799.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0004239.html?cp=SSEPGG_10.5.0%2F2-9-7-56&lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 53

3.2.2 FOR EACH ROW Triggers

DB2 supports the FOR EACH ROW triggers, which are not supported in SQL Server. These triggers

are fired as many times as there are rows changed by the triggering statement.
Inside a DB2 trigger, you can refer to columns in the subject table (the table associated with the trigger) by

using the OLD and NEW aliases that are specified in the REFERENCING clause. The “OLD AS O” O.col_name
refers to a column in an existing row before it is updated or deleted. The “NEW AS N” N.col_name refers to the
column of a new row to be inserted or an existing row after it is updated.

DB2 Example:

CREATE TRIGGER DB2_TABLES.FOR_EACH_ROW AFTER UPDATE ON

DB2_TABLES.AFTER_UPD

REFERENCING NEW AS N OLD AS O

FOR EACH ROW

BEGIN ATOMIC

 INSERT INTO DB2_TABLES.AFTER_UPD_INS VALUES (N.ID, O.V || '' || N.V);

END;

Solution:

The functionality offered by the FOR EACH ROW trigger can be emulated by using a SQL Server cursor
in a trigger.

For this solution, you need to add a new column to the table: This column will be used to uniquely identify
the row being updated, so we will name it rowid and assign SQL Server type uniqueidentifier to it. Thus this
column is used to synchronize old and new values of each row.

ALTER TABLE DBO.TEST ADD ROWID UNIQUEIDENTIFIER DEFAULT NEWID()

SQL Server Example:

CREATE TRIGGER DBO.FOR_EACH_ROW ON DBO.TEST AFTER UPDATE AS

 BEGIN SET NOCOUNT ON

 /* COLUMN VARIABLES DECLARATION*/

 DECLARE

 @NEW$0 UNIQUEIDENTIFIER,

 @OLD$0 UNIQUEIDENTIFIER,

 @NEW$ID NUMERIC(38, 0),

 @OLD$ID NUMERIC(38, 0),

 @NEW$V VARCHAR(100),

 @OLD$V VARCHAR(100)

 DECLARE

FOREACHINSERTEDROWTRIGGERCURSOR CURSOR LOCAL FORWARD_ONLY READ_ONLY FOR

 SELECT ROWID, ID, V FROM INSERTED

 OPEN FOREACHINSERTEDROWTRIGGERCURSOR

 FETCH FOREACHINSERTEDROWTRIGGERCURSOR

 INTO @NEW$0, @NEW$ID, @NEW$V

 WHILE @@FETCH_STATUS = 0

 BEGIN

 SELECT @OLD$0 = ROWID, @OLD$ID = ID, @OLD$V = V

 FROM DELETED

 WHERE ROWID = @NEW$0

 /* TRIGGER IMPLEMENTATION: BEGIN */

 BEGIN

 INSERT DBO.DEBUG(ID, V)

 VALUES (@NEW$ID, ISNULL(@OLD$V, '') + ISNULL(@NEW$V, ''))

 END

 /* TRIGGER IMPLEMENTATION: END */

 FETCH FOREACHINSERTEDROWTRIGGERCURSOR

 INTO @NEW$0, @NEW$ID, @NEW$V

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 54

 END

 CLOSE FOREACHINSERTEDROWTRIGGERCURSOR

 DEALLOCATE FOREACHINSERTEDROWTRIGGERCURSOR

 END

3.2.3 FOR EACH STATEMENT Triggers

FOR EACH STATEMENT can only be specified for AFTER triggers.
DB2 supports the FOR EACH STATEMENT trigger, which indicates that the trigger is invoked once after

the execution of the triggering statement. This kind of trigger is also supported in SQL Server. But there is one
small difference.

Inside a DB2 FOR EACH STATEMENT trigger, you can refer to special tables (called inserted and deleted
tables in SQL Server) by using the aliases OLD_TABLE and NEW_TABLE that are specified in the
REFERENCING clause. OLD_TABLE refers to rows before they are updated or deleted. NEW_TABLE refers
to new rows that were inserted, or existing rows after they were updated.

DB2 Example:

CREATE TRIGGER DB2_TABLES.FOR_EACH_ST AFTER UPDATE ON DB2_TABLES.AFTER_UPD

REFERENCING NEW_TABLE AS N OLD_TABLE AS O

FOR EACH STATEMENT

BEGIN ATOMIC

 INSERT INTO DB2_TABLES.AFTER_UPD_INS

 SELECT N.ID, O.V || ' ' || N.V

 FROM N JOIN O ON N.ID=O.ID;

END;

Solution:

The functionality offered by the FOR EACH STATEMENT triggers can be emulated by using INSERTED
and DELETED aliases instead of NEW_TABLE and OLD_TABLE aliases respectively.

SQL Server Example:

CREATE TRIGGER AFTER_UPD_ST ON TEST AFTER UPDATE AS SET NOCOUNT ON

BEGIN

 INSERT INTO DEBUG

 SELECT N.ID, O.V + N.V

 FROM INSERTED N JOIN DELETED O ON N.ID=O.ID;

END

3.2.4 BEFORE Triggers

DB2 supports the BEFORE Triggers, which are not supported in SQL Server. BEFORE triggers can
be emulated by using a SQL Server INSTEAD OF triggers.

BEFORE triggers must have a granularity of FOR EACH ROW.
DB2 supports BEFORE triggers only for each row. In these DB2 triggers, the BEFORE keyword indicates

that the trigger is invoked before the execution of the triggering statement.

DB2 Example:
CREATE TRIGGER DB2_TABLES.BEFORE_TRIGGER BEFORE UPDATE ON

DB2_TABLES.BEFORE_UPD

REFERENCING NEW AS N OLD AS O

FOR EACH ROW

BEGIN ATOMIC

 SET N.V=O.V || N.V;

END;

Solution:

BEFORE can be emulated by using a SQL Server INSTEAD OF trigger.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 55

Note that for this solution, you need to add a new column to the subject table. This column will be used to
uniquely identify the row being updated, so we will name it rowid and assign SQL Server type uniqueidentifier
to it. Thus this column lets us synchronize old and new values of each row. For the INSTEAD OF trigger that
is based on a view, the view should be modified in such a way that a rowid column is present there.

SQL Server Example:

CREATE TRIGGER DBO.BEFORE_TRIGGER ON BEFORE_UPD INSTEAD OF UPDATE AS

 BEGIN SET NOCOUNT ON

 /* COLUMN VARIABLES DECLARATION*/

 DECLARE

 @NEW$0 UNIQUEIDENTIFIER,

 @NEW$ID NUMERIC(38, 0),

 @OLD$ID NUMERIC(38, 0),

 @NEW$V VARCHAR(100),

 @OLD$V VARCHAR(100)

 DECLARE

 FOREACHINSERTEDROWTRIGGERCURSOR CURSOR LOCAL FORWARD_ONLY READ_ONLY FOR

 SELECT ROWID, ID, V FROM INSERTED

 OPEN FOREACHINSERTEDROWTRIGGERCURSOR

 FETCH FOREACHINSERTEDROWTRIGGERCURSOR

 INTO @NEW$0, @NEW$ID, @NEW$V

 WHILE @@FETCH_STATUS = 0

 BEGIN

 SELECT @OLD$ID = ID, @OLD$V = V

 FROM DELETED

 WHERE ROWID = @NEW$0

 /* ROW-LEVEL TRIGGERS IMPLEMENTATION: BEGIN */

 BEGIN

 SET @NEW$V = ISNULL(@OLD$V, '') + ISNULL(@NEW$V, '')

 END

 /* ROW-LEVEL TRIGGERS IMPLEMENTATION: END */

 /* DML-OPERATION EMULATION */

 UPDATE BEFORE_UPD

 SET ID = @NEW$ID, V = @NEW$V

 WHERE ROWID = @NEW$0

 FETCH FOREACHINSERTEDROWTRIGGERCURSOR

 INTO @NEW$0, @NEW$ID, @NEW$V

 END

 CLOSE FOREACHINSERTEDROWTRIGGERCURSOR

 DEALLOCATE FOREACHINSERTEDROWTRIGGERCURSOR

 END

DB2 Example:
CREATE TRIGGER DB2_TABLES.TTR$TR1 BEFORE INSERT ON DB2_TABLES.TTR

REFERENCING NEW AS N OLD AS O FOR EACH ROW

BEGIN

SET N.A= N.A||O.A;

END;

SQL Server Example:
CREATE TRIGGER DBO.TTR$TR1 ON DBO.TTR INSTEAD OF INSERT AS

 BEGIN SET NOCOUNT ON

 /* COLUMN VARIABLES DECLARATION */

 DECLARE

 @NEW$0 UNIQUEIDENTIFIER,

 @NEW$A NUMERIC(38, 0),

 @OLD$A NUMERIC(38, 0)

 DECLARE

 FOREACHINSERTEDROWTRIGGERCURSOR CURSOR LOCAL FORWARD_ONLY READ_ONLY FOR

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 56

 SELECT ROWID, A FROM INSERTED

 OPEN FOREACHINSERTEDROWTRIGGERCURSOR

 FETCH FOREACHINSERTEDROWTRIGGERCURSOR

 INTO @NEW$0, @NEW$A

 WHILE @@FETCH_STATUS = 0

 BEGIN

 SELECT @OLD$A = A

 FROM DELETED

 WHERE ROWID = @NEW$0

 /* ROW-LEVEL TRIGGERS IMPLEMENTATION: BEGIN */

 BEGIN

 SET @NEW$A = @NEW$A + @OLD$A

 END

 /* ROW-LEVEL TRIGGERS IMPLEMENTATION: END */

 /* DML-OPERATION EMULATION */

 INSERT DBO.TTR (ROWID, A) VALUES (@NEW$0, @NEW$A)

 FETCH FOREACHINSERTEDROWTRIGGERCURSOR

 INTO @NEW$0, @NEW$A

 END

 CLOSE FOREACHINSERTEDROWTRIGGERCURSOR

 DEALLOCATE FOREACHINSERTEDROWTRIGGERCURSOR

 END

DB2 Example:
CREATE TRIGGER DB2_TABLES.BEF_DEL BEFORE DELETE ON DB2_TABLES.BEF_INS

REFERENCING OLD AS O

FOR EACH ROW

BEGIN

SIGNAL SQLSTATE '75000' SET MESSAGE_TEXT = 'YOU ARE INTEND TO DELETE

ROWS';

END;

SQL Server Example:
CREATE TRIGGER DBO.BEF_DEL ON DBO.TTR INSTEAD OF DELETE AS

 BEGIN SET NOCOUNT ON

 /* COLUMN VARIABLES DECLARATION */

 DECLARE

 @OLD$0 UNIQUEIDENTIFIER,

 @NEW$A NUMERIC(38, 0),

 @OLD$A NUMERIC(38, 0)

 DECLARE

 FOREACHINSERTEDROWTRIGGERCURSOR CURSOR LOCAL FORWARD_ONLY READ_ONLY FOR

 SELECT ROWID, A FROM DELETED

 OPEN FOREACHINSERTEDROWTRIGGERCURSOR

 FETCH FOREACHINSERTEDROWTRIGGERCURSOR

 INTO @OLD$0, @OLD$A

 WHILE @@FETCH_STATUS = 0

 /* ROW-LEVEL TRIGGERS IMPLEMENTATION: BEGIN */

 BEGIN

 IF 1=1 THROW 75000, 'YOU ARE INTEND TO DELETE ROWS', 1

 END

 /* ROW-LEVEL TRIGGERS IMPLEMENTATION: END */

 /* DML-OPERATION EMULATION */

 DELETE DBO.TTR

 WHERE ROWID = @OLD$0

 FETCH FOREACHINSERTEDROWTRIGGERCURSOR

 INTO @OLD$0, @OLD$A

 CLOSE FOREACHINSERTEDROWTRIGGERCURSOR

 DEALLOCATE FOREACHINSERTEDROWTRIGGERCURSOR

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 57

 END

3.2.5 Trigger event predicates

A trigger event predicate is used in a triggered action to test the event that activated the trigger.
DELETING - True if the trigger was activated by a delete operation. False otherwise.
INSERTING - True if the trigger was activated by an insert operation. False otherwise.
UPDATING - True if the trigger was activated by an update operation. False otherwise.

DB2 Example:
CREATE TRIGGER DB2_TABLES.IF_INS_DEL_UPD

 AFTER INSERT OR DELETE OR UPDATE ON DB2_TABLES.TTR

 REFERENCING NEW AS N OLD AS O FOR EACH ROW

 BEGIN

 IF INSERTING

 THEN UPDATE DB2_TABLES.TTR2 SET A = A + 1;

 END IF;

 IF DELETING

 THEN UPDATE DB2_TABLES.TTR2 SET A = A - 1;

 END IF;

 IF UPDATING

 THEN UPDATE DB2_TABLES.TTR2 SET A = A - 10;

 END IF;

 END;

Solution:

DB2 allow any combination of the events can be specified, but each event (INSERT, DELETE, and UPDATE)
can only be specified once. In SQL Server more than one trigger event is not supported, you could create a
separate trigger for every trigger event.

3.2.6 WHEN clause

WHEN condition may not be specified for INSTEAD OF triggers.
The triggered action condition or WHEN is an optional clause of the triggered action which specifies a search
condition that must evaluate to true to run statements within the triggered action. If the WHEN clause is omitted,
then the statements within the triggered action are always executed.

The triggered action condition is evaluated once for each row if the trigger is a FOR EACH ROW trigger,
and once for the statement if the trigger is a FOR EACH STATEMENT trigger.

DB2 Example1:
CREATE TRIGGER DB2_TABLES.BEF_UPD BEFORE UPDATE ON DB2_TABLES.BEFORE_UPD

REFERENCING NEW AS N OLD AS O

FOR EACH ROW WHEN (N.ID=5 AND O.ID=1)

BEGIN ATOMIC

 SET N.V=O.V || N.V;

END;

Solution:

In SQL Server, WHEN clause can be emulated by using IF construct.

SQL Server Example1:
CREATE TRIGGER BEF_UPD ON BEFORE_UPD INSTEAD OF UPDATE AS

 BEGIN SET NOCOUNT ON

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 58

 /* COLUMN VARIABLES DECLARATION*/

 DECLARE

 @NEW$0 UNIQUEIDENTIFIER,

 @NEW$ID NUMERIC(38, 0),

 @OLD$ID NUMERIC(38, 0),

 @NEW$V VARCHAR(100),

 @OLD$V VARCHAR(100)

 DECLARE

 FOREACHINSERTEDROWTRIGGERCURSOR CURSOR LOCAL FORWARD_ONLY READ_ONLY FOR

 SELECT ROWID, ID, V FROM INSERTED

 OPEN FOREACHINSERTEDROWTRIGGERCURSOR

 FETCH FOREACHINSERTEDROWTRIGGERCURSOR

 INTO @NEW$0, @NEW$ID, @NEW$V

 WHILE @@FETCH_STATUS = 0

 BEGIN

 SELECT @OLD$ID = ID, @OLD$V = V

 FROM DELETED

 WHERE ROWID = @NEW$0

 /* ROW-LEVEL TRIGGERS IMPLEMENTATION: BEGIN*/

 BEGIN

 IF (@NEW$ID = 5 AND @OLD$ID = 1)

 BEGIN

 SET @NEW$V = ISNULL(@OLD$V, '') + ISNULL(@NEW$V, '')

 END

 END

 /* ROW-LEVEL TRIGGERS IMPLEMENTATION: END*/

 /* DML-OPERATION EMULATION*/

 UPDATE DBO.CONDITION

 SET ID = @NEW$ID, V = @NEW$V

 WHERE ROWID = @NEW$0

 FETCH FOREACHINSERTEDROWTRIGGERCURSOR

 INTO @NEW$0, @NEW$ID, @NEW$V

 END

 CLOSE FOREACHINSERTEDROWTRIGGERCURSOR

 DEALLOCATE FOREACHINSERTEDROWTRIGGERCURSOR

 END

DB2 Example2:
CREATE TRIGGER DB2_OBJECTS.AFTER_UPD_ST AFTER UPDATE ON

DB2_OBJECTS.AFTER_UPD

REFERENCING NEW_TABLE AS N OLD_TABLE AS O

FOR EACH STATEMENT WHEN ((SELECT COUNT(*) FROM N)>1)

BEGIN ATOMIC

 INSERT INTO DB2_OBJECTS.AFTER_UPD_INS

 SELECT N.ID, O.V || N.V FROM N JOIN O ON N.ID=O.ID;

END

SQL Server Example2:
CREATE TRIGGER AFTER_UPD_ST ON TEST AFTER UPDATE AS

IF ((SELECT COUNT(*) FROM INSERTED)>1)

BEGIN

 INSERT INTO DEBUG

 SELECT N.ID, O.V + N.V

 FROM INSERTED N JOIN DELETED O ON N.ID=O.ID;

END

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 59

3.3 Sequences

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

A DB2 SEQUENCE is a user-defined object that generates a series of numeric values based on the

specification with which the SEQUENCE was created. The most common purpose of a SEQUENCE is to
provide unique values for the primary key column of a table. DB2 SEQUENCEs are not associated with tables.
Applications refer to a SEQUENCE object to get the current or next value of that SEQUENCE. DB2 keeps the
set of generated values of a SEQUENCE in a cache, and a unique set of cached values is created for each
session.

In DB2, the NEXTVAL expression generates and returns the next value for the specified SEQUENCE. The
DB2 PREVVAL expression returns the most recently generated value of the previous NEXTVAL expression for
the same SEQUENCE within the current application process. In DB2, the value of the PREVVAL expression
persists until the next value is generated for the SEQUENCE, the SEQUENCE is dropped, or the application
session ends.
Solution:

SQL Server 2014 support objects with functionality similar to that of a DB2 SEQUENCE. In many cases if you
use SEQUENCE only for getting NEXTVAL you can convert it to SQL Server SEQUENCE.

DB2 Example:
CREATE SEQUENCE CUSTOMER_NO AS INTEGER

INSERT INTO CUSTOMERS VALUES

 (NEXT VALUE FOR CUSTOMER_NO, 'COMMENT', ...)

SQL Server Example:
CREATE SEQUENCE DBO.CUSTOMER_NO AS INTEGER

INSERT INTO DBO.CUSTOMERS VALUES

 (NEXT VALUE FOR DBO.CUSTOMER_NO, 'COMMENT', ...)

However, some features of DB2 SEQUENCEs (e.g. PREVVAL) are not supported in SQL Server. Two
distinct scenarios of DB2 SEQUENCE PREVVAL usage exist: a variable that saves SEQUENCE value, and
an auxiliary table that represents a DB2 SEQUENCE.

SQL Server Scenario 1: Converting a DB2 table with automatically generated primary key
In the first scenario, a SEQUENCE is used to generate single unique value which is used for a few tables. This
is fully compatible with SQL Server usage, and in this case you should modify code like as in example:

DB2 Example:

CREATE SEQUENCE SEQ1 AS INTEGER

...

INSERT INTO T1 (ID, NAME)

 VALUES (NEXT VALUE FOR SEQ1, ‘NAME’);

INSERT INTO T2 (ID, NAME)

 VALUES (PREVIOUS VALUE FOR SEQ1, ‘NAME’);

...

SQL Server Example:
CREATE SEQUENCE SEQ1 AS INTEGER

...

DECLARE @NEWID BIGINT;

SELECT @NEWID = NEXT VALUE FOR SEQ1;

INSERT INTO T1 (ID, NAME)

 VALUES (@NEWID, ‘NAME’);

INSERT INTO T2 (ID, NAME)

 VALUES (@NEWID, ‘NAME’);

...

In this case, we don’t need any emulation for PREVVAL.
SQL Server Scenario 2: Converting an auxiliary table representing a DB2 SEQUENCE

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0023175.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createsequence.dita?lang=en
http://msdn.microsoft.com/en-us/library/ff878091.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 60

In the second scenario, a DB2 SEQUENCE is used in a way that is incompatible with SQL Server SEQUENCE.
For example, NEXTVAL and PREVVAL of SEQUENCE can use in difference procedures or application
modules.

In this case, you can create an auxiliary table to represent the DB2 SEQUENCE object. This table contains
a single column declared as IDENTITY. When you need to get a new SEQUENCE value, you insert a row in
this auxiliary table and then retrieve the automatically assigned value from the new row.

CREATE TABLE MY_SEQUENCE (

 ID INT IDENTITY(1 /* SEED */, 1 /* INCREMENT*/)

)

GO

To maintain such emulation of NEXTVAL, you must clean up the added rows to avoid unrestricted growth
of the auxiliary table. The fastest way to do this in SQL Server is to use a transactional approach:

DECLARE @TRAN BIT,

 @NEXTVAL INT

SET @TRAN = 0

IF @@TRANCOUNT > 0

 BEGIN

 SAVE TRANSACTION SEQ

 SET @TRAN = 1

 END

ELSE BEGIN TRANSACTION

INSERT INTO MY_SEQUENCE DEFAULT VALUES

SET @NEXTVAL = SCOPE_IDENTITY()

IF @TRAN=1

 ROLLBACK TRANSACTION SEQ

ELSE ROLLBACK

In SQL Server, IDENTITY is generated in a transaction-independent way and, as in DB2, rolling back the
transaction does not affect the current IDENTITY value. In this scenario, we can emulate PREVVAL by using
SQL Server @@IDENTITY or SCOPE_IDENTITY() functions. @@IDENTITY returns the value for the last
INSERT statement in the session, and SCOPE_IDENTITY() gets the last IDENTITY value assigned within the
scope of current Transact-SQL module. Note that the values returned by these two functions can be overwritten
by next INSERT statement in the current session, so we highly recommend that you save the value in an
intermediate variable, if PREVVAL is used afterwards in the source code. Both @@IDENTITY and
SCOPE_IDENTITY() are limited to the current session scope, which means that as in DB2, the identities
generated by concurrent processes are not visible.

Note: Azure SQL DB doesn’t support sequence objects.

3.4 Data Manipulation Statements

This section explains how to migrate commonly used DML statements from DB2 to SQL Server.

3.4.1 SELECT Statement

3.4.1.1 FETCH FIRST Clause

In DB2, the FETCH FIRST clause sets a maximum number of rows that can be retrieved.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT ID, VAL

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0059212.html?cp=SSEPGG_10.5.0%2F2-9-6-1-6
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fetchfirstclause.dita
http://msdn.microsoft.com/en-us/library/ms188385.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 61

FROM (

 SELECT ID, VAL

 FROM TABLE_FF

 ORDER BY ID DESC

 FETCH FIRST 10 ROWS ONLY

) A

FETCH FIRST 5 ROW ONLY

Solution:

In SQL Server, convert the FETCH FIRST clause by using the optional <offset_fetch> clause of ORDER BY
in SELECT statement. OFFSET clause is required, but you should set rows count equal to 0. If ORDER BY
clause is missed in DB2, in SQL Server you should generate ORDER BY clause with (SELECT <constant>)
as an order_by_expression.

SQL Server Example:

SELECT ID, VAL

FROM (

 SELECT ID, VAL

 FROM TABLE_FF

 ORDER BY ID DESC

 OFFSET 0 ROWS

 FETCH FIRST 10 ROWS ONLY

) A

ORDER BY (SELECT 1)

OFFSET 0 ROW

FETCH FIRST 5 ROW ONLY

3.4.1.2 OPTIMIZE FOR Clause

In DB2, the OPTIMIZE FOR clause requests special processing of the select statement. If the OPTIMIZE
FOR clause is specified, it is assumed that the number of rows retrieved will probably not exceed n, where n
is the value of integer.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT ID, VAL

FROM TABLE_FF

OPTIMIZE FOR 5 ROWS

Solution:

In SQL Server, emulate an OPTIMIZE FOR clause by using the FAST query hint.

SQL Server Example:

SELECT ID, VAL

FROM TABLE_FF

OPTION (FAST 5);

3.4.1.3 EXCEPT ALL and INTERSECT ALL Operators

DB2 supports two set operators that are incompatible with SQL Server: EXCEPT ALL and INTERSECT ALL.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0059220.html?cp=SSEPGG_10.5.0%2F2-9-6-3-3
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_optimizeforclause.dita
http://msdn.microsoft.com/en-us/library/ms190322.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 62

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

EXCEPT or EXCEPT ALL

Derives a result table by combining two other result tables (R1 and R2). If EXCEPT ALL is specified, the
result consists of all rows that do not have a corresponding row in R2, where duplicate rows are significant. If
EXCEPT is specified without the ALL option, the result consists of all rows that are only in R1, with duplicate
rows in the result of this operation eliminated.

For compatibility with other SQL implementations, MINUS can be specified as a synonym for EXCEPT.

INTERSECT or INTERSECT ALL

 Derives a result table by combining two other result tables (R1 and R2). If INTERSECT ALL is specified,
the result consists of all rows that are in both R1 and R2. If INTERSECT is specified without the ALL option,
the result consists of all rows that are in both R1 and R2, with the duplicate rows eliminated.

The ALL versions of the EXCEPT and INTERSECT operators are not supported in SQL Server.

DB2 Example:

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (1, 1, 2), (2, 1, 2),

 (2, 1, 2), (2, 1, 1), (3, 1, 1), (4, 1, 1), (4, 1, 1), (5, 1, 1)

) R1 (X, Y, Z)

EXCEPT ALL

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (2, 1, 2), (3, 1, 1),

 (3, 1, 2), (3, 2, 1), (3, 1, 3), (4, 2, 1)

) R2 (X, Y, Z)

ORDER BY X, Y, Z

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (1, 1, 2), (2, 1, 2),

 (2, 1, 2), (2, 1, 1), (3, 1, 1), (4, 1, 1), (4, 1, 1), (5, 1, 1)

) R1 (X, Y, Z)

EXCEPT

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (2, 1, 2), (3, 1, 1),

 (3, 1, 2), (3, 2, 1), (3, 1, 3), (4, 2, 1)

) R2 (X, Y, Z)

ORDER BY X, Y, Z

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (1, 1, 2), (2, 1, 2),

 (2, 1, 2), (2, 1, 1), (3, 1, 1), (4, 1, 1), (4, 1, 1), (5, 1, 1)

) R1 (X, Y, Z)

INTERSECT ALL

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (2, 1, 2), (3, 1, 1),

 (3, 1, 2), (3, 2, 1), (3, 1, 3), (4, 2, 1)

) R2 (X, Y, Z)

ORDER BY X, Y, Z

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (1, 1, 2), (2, 1, 2),

 (2, 1, 2), (2, 1, 1), (3, 1, 1), (4, 1, 1), (4, 1, 1), (5, 1, 1)

) R1 (X, Y, Z)

INTERSECT

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (2, 1, 2), (3, 1, 1),

 (3, 1, 2), (3, 2, 1), (3, 1, 3), (4, 2, 1)

) R2 (X, Y, Z)

ORDER BY X, Y, Z

Solution:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000877.html?cp=SSEPGG_10.5.0%2F2-9-6-2
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fullselect.dita
http://msdn.microsoft.com/en-us/library/ms188055.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 63

In SQL Server, emulate INTERSECT ALL and EXCEPT ALL by using an additional numeric column
(Tmp$Num) with INTERSECT and EXCEPT as shown:

SELECT <SELECT_COLUMNS_OR_ALIAS> FROM (

 SELECT <FIRST_SELECT_COLUMNS_WITH_ALIAS>,

 ROW_NUMBER() OVER(PARTITION BY

 <FIRST_SELECT_COLUMNS_WITHOUT_ALIAS> ORDER BY (SELECT 1)

) AS TMP$NUM

 FROM ...

 { INTERSECT | EXCEPT }

 SELECT <SECOND_SELECT_COLUMNS_WITH_ALIAS>,

 ROW_NUMBER() OVER(PARTITION BY

 <SECOND_SELECT_COLUMNS_WITHOUT_ALIAS> ORDER BY (SELECT 1)

) AS TMP$NUM

 FROM ...

) <SUB QUERY TABLE NAME>

All duplicate rows are numbered in both SELECT statements in the new column Tmp$Num. This set no
longer contains duplicates, so you can now use INTERSECT or EXCEPT. Then you can select the result
without the Tmp$Num column.

SQL Server Example:

SELECT X, Y, Z FROM (

 SELECT X, Y, Z,

 ROW_NUMBER() OVER(PARTITION BY X, Y, Z ORDER BY (SELECT 1)

) AS TMP$NUM

 FROM (VALUES (1, 1, 1), (1, 1, 1), (1, 1, 2), (2, 1, 2), (2, 1, 2),

 (2, 1, 1), (3, 1, 1), (4, 1, 1), (4, 1, 1), (5, 1, 1)

) R1 (X, Y, Z)

 EXCEPT

 SELECT X, Y, Z,

 ROW_NUMBER() OVER(PARTITION BY X, Y, Z ORDER BY (SELECT 1)

) AS TMP$NUM

 FROM (VALUES (1, 1, 1), (1, 1, 1), (2, 1, 2), (3, 1, 1), (3, 1, 2),

 (3, 2, 1), (3, 1, 3), (4, 2, 1)) R2 (X, Y, Z)

) R3

ORDER BY X, Y, Z

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (1, 1, 2), (2, 1, 2),

 (2, 1, 2), (2, 1, 1), (3, 1, 1), (4, 1, 1), (4, 1, 1), (5, 1, 1)

) R1 (X, Y, Z)

EXCEPT

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (2, 1, 2), (3, 1, 1),

 (3, 1, 2), (3, 2, 1), (3, 1, 3), (4, 2, 1)

) R2 (X, Y, Z)

ORDER BY X, Y, Z

SELECT X, Y, Z FROM (

 SELECT X, Y, Z,

 ROW_NUMBER() OVER(PARTITION BY X, Y, Z ORDER BY (SELECT 1)

) AS TMP$NUM

 FROM (VALUES (1, 1, 1), (1, 1, 1), (1, 1, 2), (2, 1, 2), (2, 1, 2),

 (2, 1, 1), (3, 1, 1), (4, 1, 1), (4, 1, 1), (5, 1, 1)

) R1 (X, Y, Z)

 INTERSECT

 SELECT X, Y, Z,

 ROW_NUMBER() OVER(PARTITION BY X, Y, Z ORDER BY (SELECT 1)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 64

) AS TMP$NUM

 FROM (VALUES (1, 1, 1), (1, 1, 1), (2, 1, 2), (3, 1, 1), (3, 1, 2),

 (3, 2, 1), (3, 1, 3), (4, 2, 1)

) R2 (X, Y, Z)

) R3

ORDER BY X, Y, Z

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (1, 1, 2), (2, 1, 2),

 (2, 1, 2), (2, 1, 1), (3, 1, 1), (4, 1, 1), (4, 1, 1), (5, 1, 1)

) R1 (X, Y, Z)

INTERSECT

SELECT X, Y, Z FROM (VALUES (1, 1, 1), (1, 1, 1), (2, 1, 2), (3, 1, 1),

 (3, 1, 2), (3, 2, 1), (3, 1, 3), (4, 2, 1)

) R2 (X, Y, Z)

ORDER BY X, Y, Z

3.4.1.4 ORDER BY in a Subquery and ORDER OF

In DB2, The ORDER BY clause specifies an ordering of the rows of the result table. The ORDER OF table-
designator clause specifies that the same ordering used in table-designator applies to the result table of the
subselect. The ordering that is applied is the same as if the columns of the ORDER BY clause in the nested
subselect (or fullselect) were included in the outer subselect (or fullselect), and these columns were specified
in place of the ORDER OF clause.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT ID, VAL

FROM (

 SELECT ID, VAL

 FROM TABLE_FF

 ORDER BY ID DESC

) A

ORDER BY VAL, ORDER OF A

Solution:

In SQL Server, the ORDER BY clause is invalid in views, inline functions, derived tables, subqueries, and
common table expressions, unless TOP, OFFSET or FOR XML is also specified. Also functionality of
ORDER OF is not supported in SQL Server.

Replace the ORDER OF clause with a list of fields or aliases from the subquery sort specification. Then either
remove the ORDER BY clause from the subquery (see example 1) or add the TOP clause to the subquery
(see example 2) or add the OFFSET clause to the subquery (see example 3).

SQL Server Example 1:

SELECT ID, VAL

FROM (

 SELECT ID, VAL

 FROM TABLE_FF

) A

ORDER BY VAL, ID DESC

SQL Server Example 2:

SELECT ID, VAL

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0059211.html?cp=SSEPGG_10.5.0%2F2-9-6-1-5
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_orderbyclause.dita
http://msdn.microsoft.com/en-us/library/ms188385.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 65

FROM (

 SELECT TOP 100 PERCENT ID, VAL

 FROM TABLE_FF

 ORDER BY ID DESC

) A

ORDER BY VAL, ID DESC

SQL Server Example 3:

SELECT ID, VAL

FROM (

 SELECT ID, VAL

 FROM TABLE_FF

 ORDER BY ID DESC

 OFFSET 0 ROW

) A

ORDER BY VAL, ID DESC

3.4.1.5 Column Names in a Correlation Clause

In DB2, when a correlation name is specified, column names can also be specified to give names to the
columns of the table name, view name, nickname, function name reference, or nested table expression.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example 1:

SELECT A, B

FROM (SELECT ID, VAL FROM TABLE_FF) AS C (A,B)

ORDER BY A;

DB2 Example 2:

SELECT A, B

FROM TABLE_C AS C (A,B)

ORDER BY A;

Solution:

In SQL Server, column aliases can be specified only after derived table (like nested table in DB2). Replace
the column aliases with the column names with aliases (see example 2).

SQL Server Example 1:

SELECT A, B

FROM (SELECT ID, VAL FROM TABLE_FF) AS C (A,B)

ORDER BY A;

SQL Server Example 2:

SELECT ID AS A, VAL AS B

FROM TABLE_FF AS C

ORDER BY A;

3.4.1.6 Alias for a Nested Table Expression

In DB2, you do not need to specify an alias for a nested table expression.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0059206.html?cp=SSEPGG_10.5.0%2F2-9-6-1-1-0
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_correlationclause.dita
http://msdn.microsoft.com/en-us/library/ms177634.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 66

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT VAL

FROM (SELECT ID, VAL FROM TABLE_FF)

ORDER BY ID;

Solution:

In SQL Server, you must include an alias for a derived table (subquery). Add an alias for the nested table
expression.

SQL Server Example:

SELECT VAL

FROM (SELECT ID, VAL FROM TABLE_FF) AS C

ORDER BY ID;

3.4.1.7 Table-Valued Function Call in a FROM Clause

In general in DB2, a table function, together with its argument values, can be referenced in the FROM clause
of a SELECT in exactly the same way as a table or view.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE FUNCTION FUNC_TABLE_LIST

 (PAR_SCHEMA VARCHAR(30), PAR_NAME CHAR(1))

RETURNS TABLE (NAME VARCHAR(128), CTIME TIMESTAMP)

RETURN

 SELECT NAME, CTIME

 FROM SYSIBM.SYSTABLES

 WHERE (UPPER(CREATOR) = UPPER(PAR_SCHEMA))

 AND (UPPER(SUBSTR(NAME, 1, 1)) = UPPER(PAR_NAME));

SELECT *

FROM TABLE(FUNC_TABLE_LIST('DB2_OBJECTS', 'A')) AS T;

Solution:

In SQL Server, the syntax of a table-valued function call in a FROM clause is different from that in DB2. In
SQL Server, remove the TABLE keyword and the parentheses around the function name in the FROM
clause.

SQL Server Example:

CREATE FUNCTION FUNC_TABLE_LIST

 (@PAR_SCHEMA VARCHAR(30), @PAR_NAME CHAR(1))

RETURNS TABLE

RETURN

 SELECT T.NAME, T.CREATE_DATE CTIME

 FROM SYS.TABLES T

 INNER JOIN SYS.SCHEMAS S ON T.SCHEMA_ID = S.SCHEMA_ID

 WHERE (UPPER(S.NAME) = UPPER(@PAR_SCHEMA))

 AND (UPPER(SUBSTRING(T.NAME, 1, 1)) = UPPER(@PAR_NAME));

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0059206.html?cp=SSEPGG_10.5.0%2F2-9-6-1-1-0
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_correlationclause.dita
http://msdn.microsoft.com/en-us/library/ms177634.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0059206.html?cp=SSEPGG_10.5.0%2F2-9-6-1-1-0
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_tablereference.dita
http://msdn.microsoft.com/en-us/library/ms177634.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 67

SELECT *

FROM FUNC_TABLE_LIST('DBO', 'A') AS T;

3.4.1.8 Data–change-table-reference Clause

In DB2, a data-change-table-reference clause specifies an intermediate result table. This table is based on
the rows that are directly changed by the searched UPDATE, searched DELETE, or INSERT statement that
is included in the clause. A data-change-table-reference can be specified as the only table-reference in the
FROM clause of the outer fullselect that is used in a select-statement, a SELECT INTO statement, or a
common table expression.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

In DB2, the table types for the data-change-table-reference are:

OLD: Specifies that the rows of the intermediate result table represent the set of rows that are changed
by the SQL data change statement as they existed before the application of the data change statement.

NEW: Specifies that the rows of the intermediate result table represent the set of rows that are changed
by the SQL data change statement before the application of referential constraints and AFTER triggers.
Data in the target table at the completion of the statement might not match the data in the intermediate
result table because of additional processing for referential constraints and AFTER triggers.

FINAL: Specifies that the rows of the intermediate result table represent the set of rows that are changed
by the SQL data change statement as they exist at the completion of the data change statement.

The content of the intermediate result table for a data-change-table-reference is determined when the
cursor opens. The intermediate result table contains all manipulated rows, including all the columns in the
specified target table or view. All the columns of the target table or view for an SQL data change
statement are accessible using the column names from the target table or view. If an INCLUDE clause
was specified within a data change statement, the intermediate result table will contain these additional
columns.

DB2 Example 1:

SELECT ID, VAL, MODIFY, COMMENT

FROM NEW TABLE (

 INSERT INTO TABLE_FF (ID, VAL) INCLUDE (COMMENT VARCHAR(128))

 VALUES (1, 'ABCDEFG', 'INSERT_NEW')

);

SELECT ID, VAL, MODIFY, COMMENT

FROM FINAL TABLE (

 INSERT INTO TABLE_FF (ID, VAL) INCLUDE (COMMENT VARCHAR(128))

 VALUES (1, 'ABCDEFG', 'INSERT_FINAL')

);

DB2 Example 2:

SELECT ID, VAL, MODIFY, COMMENT

FROM OLD TABLE (

 UPDATE TABLE_FF INCLUDE (COMMENT VARCHAR(128)) SET

 VAL = 'ABCDEFG',

 MODIFY = CURRENT TIMESTAMP,

 COMMENT = 'UPDATE OLD'

 WHERE ID = 10

);

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0059206.html?cp=SSEPGG_10.5.0%2F2-9-6-1-1-0
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_tablereference.dita
http://msdn.microsoft.com/en-us/library/ms177564.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 68

SELECT ID, VAL, MODIFY, COMMENT

FROM NEW TABLE (

 UPDATE TABLE_FF INCLUDE (COMMENT VARCHAR(128)) SET

 VAL = 'ABCDEFG',

 MODIFY = CURRENT TIMESTAMP,

 COMMENT = 'UPDATE NEW'

 WHERE ID = 10

);

SELECT ID, VAL, MODIFY, COMMENT

FROM FINAL TABLE (

 UPDATE TABLE_FF INCLUDE (COMMENT VARCHAR(128)) SET

 VAL = 'ABCDEFG',

 MODIFY = CURRENT TIMESTAMP,

 COMMENT = 'UPDATE FINAL'

 WHERE ID = 10

);

DB2 Example 3:

SELECT ID, VAL, MODIFY, COMMENT

FROM OLD TABLE (

 DELETE FROM TABLE_FF INCLUDE (COMMENT VARCHAR(128))

 SET COMMENT = 'DELETE OLD'

 WHERE ID = 10

);

Solution:

In SQL Server, rewrite the SELECT statement with the data-change-table-reference clause in SQL Server
syntax, using the OUTPUT clause in the nested INSERT, UPDATE, and DELETE statements. For table
types, make the following changes:

 To emulate the DB2 OLD table, use the DELETED column prefix.

 To emulate the DB2 NEW table, use the INSERTED column prefix.

 No possibility to emulate the DB2 FINAL table.

You can emulate the included columns by adding constants or expressions to the output select list.

SQL Server Example 1:

INSERT INTO TABLE_FF (ID, VAL)

OUTPUT INSERTED.ID, INSERTED.VAL, INSERTED.MODIFY, 'INSERT NEW' COMMENT

VALUES (1, 'ABCDEFG');

SQL Server Example 2:

UPDATE TABLE_FF SET

 VAL = 'ABCDEFG',

 MODIFY = GETDATE()

OUTPUT INSERTED.ID, INSERTED.VAL, INSERTED.MODIFY, 'UPDATE NEW' COMMENT

WHERE ID = 10;

UPDATE TABLE_FF SET

 VAL = 'ABCDEFG',

 MODIFY = GETDATE()

OUTPUT DELETED.ID, DELETED.VAL, DELETED.MODIFY, 'UPDATE OLD' COMMENT

WHERE ID = 10;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 69

SQL Server Example 3:

DELETE FROM TABLE_FF

OUTPUT DELETED.ID, DELETED.VAL, DELETED.MODIFY, 'DELETE OLD' COMMENT

WHERE ID = 10;

3.4.1.9 Outer join operator

In DB2, when you set the DB2_COMPATIBILITY_VECTOR registry variable to support the outer join operator
(+), queries can use this operator as alternative syntax within predicates of the WHERE clauseLinks: DB2 for
Linux UNIX and Windows 10.5.0, SQL Server 2014.

DB2 Example 1:

SELECT * FROM TABLE_FF A, TABLE_F B

WHERE A.ID = B.ID (+);

DB2 Example 2:

SELECT * FROM TABLE_FF A, TABLE_F B

WHERE A.ID (+) = B.ID;

Solution:

In SQL Server, rewrite the joins to ANSI format. If the operator (+) is specified with right operand, the joins
are converted to LEFT OUTER JOIN. If the operator (+) is specified with left operand, the joins are converted
to RIGHT OUTER JOIN.

SQL Server Example 1:

SELECT * FROM TABLE_FF A

LEFT OUTER JOIN TABLE_F B

ON A.ID = B.ID;

SQL Server Example 2:

SELECT * FROM TABLE_FF A

RIGHT OUTER JOIN TABLE_F B

ON A.ID = B.ID;

3.4.1.10 Hierarchical queries

A hierarchical query is a form of recursive query that retrieves a hierarchy from relational data by using a
CONNECT BY clause. You can then use CONNECT BY syntax, including pseudocolumns, unary operators,
and the SYS_CONNECT_BY_PATH scalar functionLinks: DB2 for Linux UNIX and Windows 10.5.0, SQL
Server 2014.

DB2 Example:

SELECT

 NAME,

 LEVEL,

 SALARY,

 CONNECT_BY_ROOT NAME AS ROOT,

 SYS_CONNECT_BY_PATH(NAME, ':') AS CHAIN

FROM MY_EMP

START WITH NAME = 'GOYAL'

CONNECT BY PRIOR EMPID = MGRID

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.porting.doc/doc/r0052878.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.porting.doc/doc/r0052878.html
http://msdn.microsoft.com/en-us/library/ms177634.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.porting.doc/doc/r0052877.html
http://msdn.microsoft.com/en-us/library/ms175972.aspx
http://msdn.microsoft.com/en-us/library/ms175972.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 70

Solution:

In SQL Server, emulate hierarchical queries by using WITH common_table_expression.

SQL Server Example:

WITH EMP_REPORT(EMPID, NAME, LEVEL, SALARY, ROOT, CHAIN, SORT) AS (

 SELECT

 EMPID,

 NAME,

 1 LEVEL,

 SALARY,

 NAME ROOT,

 CAST(':' + NAME AS VARCHAR(MAX)) CHAIN,

 CAST('.' +

 CAST(EMPID AS VARCHAR(10)) AS VARCHAR(MAX)) SORT

 FROM MY_EMP

 WHERE NAME = 'GOYAL'

 UNION ALL

 SELECT

 E.EMPID,

 E.NAME,

 D.LEVEL + 1 LEVEL,

 E.SALARY,

 D.ROOT,

 CAST(D.CHAIN + ':' + E.NAME AS VARCHAR(MAX)) CHAIN,

 CAST(D.SORT + '.' +

 CAST(E.EMPID AS VARCHAR(10)) AS VARCHAR(MAX)) SORT

 FROM MY_EMP E

 JOIN EMP_REPORT AS D ON E.MGRID = D.EMPID

)

SELECT NAME, LEVEL, SALARY, ROOT, CHAIN

FROM EMP_REPORT

ORDER BY SORT;

3.4.1.11 ROWNUM pseudocolumn

In DB2, ROWNUM numbers the records in a result set. The first record that meets the WHERE clause criteria
in a SELECT statement is given a row number of 1, and every subsequent record meeting that same criteria
increases the row number. Note that ROWNUM is affected by the ORDER BY clauseLinks: DB2 for Linux
UNIX and Windows 10.5.0, SQL Server 2014.

DB2 Example:

SELECT T.*

FROM TABLE_FF T

WHERE ROWNUM BETWEEN 2 AND 5

ORDER BY ID DESC

Solution:

In SQL Server, emulate ROWNUM pseudocolumn by using ROW_NUMBER Ranking Function. This function
can only appear in the SELECT or ORDER BY clauses.

SQL Server Example:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.porting.doc/doc/r0052875.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.porting.doc/doc/r0052875.html
http://msdn.microsoft.com/en-us/library/ms186734.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 71

SELECT T.ID, T.VAL, T.MODIFY FROM (

 SELECT T.*, ROW_NUMBER() OVER (ORDER BY ID DESC) ROWNUM

 FROM TABLE_FF T

) T

WHERE T.ROWNUM BETWEEN 2 AND 5

3.4.1.12 common-table-expression

A common table expression permits defining a result table with a table-name that can be specified as a table
name in any FROM clause of the fullselect that follows.
Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:
WITH PLUS AS (

SELECT NAME, DEPT

FROM DB2_TABLES.EMPLOYEES

WHERE DEPT=20)

SELECT NAME, DEPT FROM PLUS;

Solution:

In MS SQL Server you could use the same WITH common_table_expression – which specifies a temporary
named result set.

SQL Server Example:
WITH PLUS AS (

SELECT NAME, DEPT

FROM [DBO].[TEST_FUNC_EMPLOYEES]

WHERE DEPT=30)

SELECT NAME, DEPT FROM PLUS;

DB2 Example:
CREATE TABLE DB2_TABLES.MYEMPLOYEE (EMPLOYEEID INT, MANAGERID INT)

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (2, 10);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (3, 10);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (4, 10);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (5, 11);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (6, 11);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (7, 12);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (8, 12);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (9, 12);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (10, 15);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (11, 16);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (12, 16);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (13, 15);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (14, 16);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (15, 17);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (16, 17);

INSERT INTO DB2_TABLES.MYEMPLOYEE (EMPLOYEEID, MANAGERID) VALUES (17,

NULL);

WITH DIRECTREPORTS(MANAGERID, EMPLOYEEID, EMPLOYEELEVEL) AS

(

SELECT MANAGERID, EMPLOYEEID, 0 AS EMPLOYEELEVEL

FROM DB2_TABLES.MYEMPLOYEE

WHERE MANAGERID IS NULL

 UNION ALL

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0059217.html?cp=SSEPGG_10.5.0%2F2-12-6-3-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_commontableexpression.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms175972.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 72

SELECT E.MANAGERID, E.EMPLOYEEID, EMPLOYEELEVEL + 1

FROM DB2_TABLES.MYEMPLOYEE AS E,DIRECTREPORTS AS D

WHERE E.MANAGERID = D.EMPLOYEEID

)

SELECT MANAGERID, EMPLOYEEID, EMPLOYEELEVEL

FROM DIRECTREPORTS

ORDER BY MANAGERID;

Solution:

In MS SQL Server you could use the same WITH common_table_expression – which specifies a temporary
named result set.

SQL Server Example:
WITH DIRECTREPORTS(MANAGERID, EMPLOYEEID, EMPLOYEELEVEL) AS

(

SELECT MANAGERID, EMPLOYEEID, 0 AS EMPLOYEELEVEL

FROM DBO.MYEMPLOYEE

WHERE MANAGERID IS NULL

 UNION ALL

SELECT E.MANAGERID, E.EMPLOYEEID, EMPLOYEELEVEL + 1

FROM DBO.MYEMPLOYEE AS E, DIRECTREPORTS AS D

WHERE E.MANAGERID = D.EMPLOYEEID

)

SELECT MANAGERID, EMPLOYEEID, EMPLOYEELEVEL

FROM DIRECTREPORTS

ORDER BY MANAGERID;

DB2 Example:
WITH PLUS (AA,BB) AS (

SELECT NAME, DEPT

FROM DB2_TABLES.EMPLOYEES

WHERE DEPT=20)

SELECT AA, BB FROM PLUS;

SQL Server Example:
WITH PLUS (AA,BB) AS (

SELECT NAME, DEPT

FROM [DBO].[TEST_FUNC_EMPLOYEES]

WHERE DEPT=30)

SELECT AA, AA FROM PLUS

3.4.2 VALUES Statement

In DB2, the VALUES statement is a form of query. The VALUES statement derives a result table by
specifying the actual values, using expressions or row expressions, for each column of a row in the result
table. Multiple rows may be specified.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

VALUES (1), (2), (3); -- 3 ROWS OF 1 COLUMN

VALUES 1, (2), 3; -- 3 ROWS OF 1 COLUMN

VALUES (1, 2, 3); -- 1 ROW OF 3 COLUMNS

VALUES (1, 21), (2, 22), (3, 23); -- 3 ROWS OF 2 COLUMNS

Solution:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000877.html?cp=SSEPGG_10.5.0%2F2-9-6-2
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fullselect.dita
http://msdn.microsoft.com/en-us/library/dd776382.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 73

In SQL Server, the VALUES statement is not supported. For emulation use the table value constructor to
specify multiple values in the FROM clause of a SELECT statement. The values list must be always enclosed
in parentheses. Aliases for sets and columns must be specified.

SQL Server Example:

SELECT * FROM(VALUES (1), (2), (3)) T(A); -- 3 ROWS OF 1 COLUMN

SELECT * FROM(VALUES (1), (2), (3)) T(A); -- 3 ROWS OF 1 COLUMN

SELECT * FROM(VALUES (1, 2, 3)) T(A, B, C); -- 1 ROW OF 3 COLUMNS

SELECT * FROM(VALUES (1, 21), (2, 22), (3, 23)) T(A, B);

 -- 3 ROWS OF 2 COLUMNS

3.4.3 INSERT Statement

3.4.3.1 Values Without Parentheses

In DB2, you can write single values in a VALUES clause with or without parentheses. In SQL Server, the
values list must be always enclosed in parentheses.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

INSERT INTO TABLE_INS (ID) VALUES 1;

INSERT INTO TABLE_INS (ID) VALUES 1,(2),3;

Solution:

In SQL Server, add parentheses to all single-row values.

SQL Server Example:

INSERT INTO TABLE_INS (ID) VALUES (1);

INSERT INTO TABLE_INS (ID) VALUES (1),(2),(3);

3.4.3.2 Subquery (fullselect) as Object of the INSERT Operation

In DB2, you can use a subquery (fullselect, insertable view) as the object of the INSERT operation.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

INSERT INTO (SELECT * FROM TABLE_INS) VALUES (1,'ABC');

Solution:

In SQL Server, use the common table expression (CTE) to emulate this functionality.

SQL Server Example:

WITH PLUS AS (SELECT * FROM TABLE_INS)

INSERT INTO PLUS VALUES (1,'ABC');

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000970.html?cp=SSEPGG_10.5.0%2F2-9-7-163&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_insert.dita?lang=en
http://msdn.microsoft.com/ru-ru/library/ms174335.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000970.html?cp=SSEPGG_10.5.0%2F2-9-7-163&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_insert.dita?lang=en
http://msdn.microsoft.com/ru-ru/library/ms174335.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 74

3.4.3.3 Common Table Expression (CTE) in INSERT Statement

DB2 and SQL Server have different syntaxes for the common table expression (CTE) in an INSERT statement.
In DB2, a CTE can be used only with the SELECT part of an INSERT SELECT statement. In SQL Server, you
can specify the CTE within the scope of the INSERT statement.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

INSERT INTO TABLE_INS (ID, VAL)

WITH PLUS AS (

SELECT TD.ID, TD.VAL, TI.ID AS NEW

FROM TABLE_DEL TD LEFT OUTER JOIN TABLE_INS TI ON TD.ID=TI.ID

)

SELECT ID, VAL FROM PLUS WHERE NEW IS NULL;

Solution:

In SQL Server, place the CTE before the INSERT statement.

SQL Server Example:

with plus as (

select td.id, td.val, ti.id as new

from table_del td left outer join table_ins ti on td.id=ti.id

)

insert into table_ins (id, val)

select id, val from plus where new is null;

3.4.3.4 Inserting Rows that Contain Structured Type Values

Links: DB2 for Linux UNIX and Windows 10.5.0

When you create a structured type, DB2 automatically generates a constructor function for the
type, and generates mutator and observer methods for the attributes of the type. You can use these
methods to create instances of structured types, and insert these instances into a column of a table.

When you create a structured type, DB2 creates a function of the same name as the type is created.
This function has no parameters and returns an instance of the type with all of its attributes set to null.

The function that is created for structured type DB2_OBJECTS.MAN_T, for example, has the following
format:

DB2 Example:
CREATE FUNCTION MAN_T() RETURNS MAN_T

To construct an instance of a type to insert into a column, use the constructor function with the mutator
methods. A mutator method exists for each attribute of an object. So, for type MAN_T, DB2 for Linux, UNIX,
and Windows creates mutator methods for each of the following attributes: (Name, Age, DOB).

The mutator method DB2 creates for attribute Age, for example, has the following format:

DB2 Example:

ALTER TYPE MAN_T ADD METHOD AGE(INT) RETURNS MAN_T

An observer method exists for each attribute of an object. If the method for an attribute receives an
object of the expected type or subtype, the method returns the value of the attribute for that object.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000970.html?cp=SSEPGG_10.5.0%2F2-9-7-163&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_insert.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms175972.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.structypes.doc/doc/c0006595.html?lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 75

The observer method DB2 creates for the attribute Age of the type MAN_T, for example, has the
following format:

DB2 Example:

ALTER TYPE MAN_T ADD METHOD AGE() RETURNS INTEGER;

Assume that you want to add a new row to the typed table, and that you want that row to contain person
information (PERSON_T). Just as with built-in data types, you can add this row using INSERT with the VALUES
clause. However, when you specify the value to insert into the PERSON_T, you must invoke the system-
provided constructor function (DB2_OBJECTS.PERSON_T()) and observer methods (..Name()..Age ()..DOB)
to create the values. To invoke a method on a structured type, use the method invocation operator: '..'.

DB2 Example:

CREATE TABLE DB2_OBJECTS.WOMAN (EYES_COLOUR VARCHAR (20), HAIR_COLOUR

VARCHAR(20), PERSON DB2_OBJECTS.PERSON_T)

/

INSERT INTO DB2_OBJECTS.WOMAN (EYES_COLOUR, HAIR_COLOUR, PERSON)

 VALUES('GREEN', 'RED',

 DB2_OBJECTS.PERSON_T()

 ..NAME ('ANGELINA')

 ..AGE (26)

 ..DOB (DATE('25.12.1988')));

/

SELECT EYES_COLOUR, HAIR_COLOUR, PERSON..NAME, PERSON..AGE, PERSON..DOB

FROM DB2_OBJECTS.WOMAN

To avoid having to explicitly call the mutator methods for each attribute of a structured type every time
you create an instance of the type, consider defining your own SQL-bodied constructor function that initializes
all of the attributes. The following example contains the declaration for an SQL-bodied constructor function for
the US_addr_t type:

CREATE FUNCTION DB2_OBJECTS.UDF_PERSON_T

(NAME VARCHAR(20), AGE INT, DOB DATE)

 RETURNS DB2_OBJECTS.PERSON_T

 LANGUAGE SQL

 RETURN DB2_OBJECTS.PERSON_T()..NAME(NAME)..AGE(AGE)..DOB(DOB);

/

INSERT INTO DB2_OBJECTS.WOMAN(EYES_COLOUR, HAIR_COLOUR, PERSON)

VALUES('BROWN', 'BLACK', DB2_OBJECTS.UDF_PERSON_T('ANGEL', '20',

'01.01.1995'));

There are two common approaches of generating unique values, both of which can be applied to object
identifiers:

 with SEQUENCEs

 with the GENERATE_UNIQUE function

Links: DB2 for Linux UNIX and Windows 10.5.0, SQL Server 2014.

3.4.3.5 with sequences

If you need to use numeric values as object identifiers, you can use a SEQUENCE. To begin, use the
REF USING clause to specify that the base type of the object reference is to be a numeric type, in the following
case, an INT:

DB2 Example:

CREATE TYPE DB2_OBJECTS.MAN_T AS (NAME VARCHAR(20), AGE INT, DOB DATE)

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.structypes.doc/doc/t0006621.html?lang=en
http://msdn.microsoft.com/en-us/library/ff878091.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 76

REF USING INT MODE DB2SQL;

/

CREATE TABLE DB2_OBJECTS.MAN OF DB2_OBJECTS.MAN_T (REF IS OID USER

GENERATED)

/

CREATE SEQUENCE DB2_OBJECTS.MANOID AS REF(DB2_OBJECTS.MAN_T)

START WITH 1 INCREMENT BY 1

/

INSERT INTO DB2_OBJECTS.MAN (OID, NAME, AGE, DOB)

VALUES (NEXT VALUE FOR DB2_OBJECTS.MANOID,'ALEX', 26, DATE('25.12.1988'))

SQL Server Example:

CREATE TABLE MAN (OID INT, NAME VARCHAR(20), AGE INT, DOB DATE

CONSTRAINT UC_OID UNIQUE (OID))

/

CREATE SEQUENCE MANOID START WITH 1 INCREMENT BY 1;

/

INSERT INTO MAN (OID, NAME, AGE, DOB)

VALUES (NEXT VALUE FOR MANOID, 'ALEX', 26, GETDATE())

Note: Azure SQL DB doesn’t support SEQUENCE objects.

3.4.3.6 with the GENERATE_UNIQUE function

As an alternative to using SEQUENCEs to generate object identifiers, you can use the
GENERATE_UNIQUE function. Because GENERATE_UNIQUE returns a CHAR (13) FOR BIT DATA value,
ensure that the REF USING clause on the CREATE TYPE statement can accommodate a value of that type.
The default of VARCHAR (16) FOR BIT DATA is suitable for this purpose.

CREATE TYPE DB2_OBJECTS.WOMAN_T AS (NAME VARCHAR(20), AGE INT, DOB DATE)

MODE DB2SQL;

/

CREATE TABLE DB2_OBJECTS.WOMEN OF DB2_OBJECTS.WOMAN_T (REF IS OID USER

GENERATED)

/

DB2 Example:
INSERT INTO DB2_OBJECTS.WOMEN (OID, NAME, AGE, DOB)

VALUES(DB2_OBJECTS.WOMAN_T (GENERATE_UNIQUE ()), 'ALEX', 26,

DATE('25.12.1988'));

/

DB2 Example:
INSERT INTO DB2_OBJECTS.WOMEN (OID, NAME, AGE, DOB)

VALUES(DB2_OBJECTS.WOMAN_T('A'), 'ALEX', 26, DATE('25.12.1988'));

SQL Server Example:

CREATE TABLE WOMAN (OID VARBINARY(8000), NAME VARCHAR(20), AGE INT, DOB

DATE

CONSTRAINT U_OID UNIQUE (OID))

/

CREATE SEQUENCE MANOID START WITH 1 INCREMENT BY 1;

/

INSERT INTO WOMAN (OID, NAME, AGE, DOB)

VALUES (CAST (NEXT VALUE FOR MANOID AS VARBINARY),'ALEX', 26, GETDATE())

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 77

Note: Azure SQL DB doesn’t support SEQUENCE objects.

3.4.4 UPDATE Statement

3.4.4.1 Issue: Subquery (fullselect) as Object of the UPDATE Operation

In DB2, you can use a subquery (fullselect, updatable view) as the object of the UPDATE operation.

Links:

DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

DB2 Example:

UPDATE (SELECT * FROM A)

SET

 B = B||C

WHERE A=3

Solution:

In SQL Server, use the CTE to emulate this functionality by moving the updatable subquery to the CTE.

SQL Server Example:

WITH A$SSSMA AS (SELECT * FROM A)

UPDATE A$SSSMA

SET

 B = B + C

WHERE

 A = 3;

3.4.4.2 Column Groups in a SET Clause

In DB2, you can update a few columns from a single subquery result.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

DB2 Example:

UPDATE

 EMPLOYEES E

SET

 (ID, LAST_NAME) = (SELECT ID, PNAME FROM EMP_PATRONYMIC P WHERE

P.ID=E.ID),

 (NAME, SAL) = (NAME||' '||LAST_NAME, SAL/10);

Solution:

In SQL Server, remove from all subqueries the conditions that reference the up-level objects, and move the
subqueries from the SET clause to the CTE.

Generate a single assignment for each column from the column group. Use the expression from the
appropriate CTE for the assignment.

To generate join conditions, use the conditions that were removed from the original subqueries.

SQL Server Example:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0001022.html?cp=SSEPGG_10.5.0%2F2-9-7-239&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_update.dita
http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k%28UPDATE_TSQL%29;k%28SQL11.SWB.TSQLRESULTS.F1%29;k%28SQL11.SWB.TSQLQUERY.F1%29;k%28MISCELLANEOUSFILESPROJECT%29;k%28DevLang-TSQL%29&rd=true
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0001022.html?cp=SSEPGG_10.5.0%2F2-9-7-239&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_update.dita
http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k%28UPDATE_TSQL%29;k%28SQL11.SWB.TSQLRESULTS.F1%29;k%28SQL11.SWB.TSQLQUERY.F1%29;k%28MISCELLANEOUSFILESPROJECT%29;k%28DevLang-TSQL%29&rd=true

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 78

UPDATE E SET

 ID = (SELECT ID FROM EMP_PATRONYMIC P WHERE P.ID=E.ID),

 LAST_NAME = (SELECT PNAME FROM EMP_PATRONYMIC P WHERE P.ID=E.ID),

 NAME = NAME+' '+LAST_NAME,

 SAL = SAL/10

FROM

 EMPLOYEES E

3.4.5 MERGE Statement

3.4.5.1 Single vs Multiple Occurrences of Each Clause

SQL Server doesn’t support multiple uses of each clause in a MERGE statement..

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

DB2 Example:

MERGE INTO DB2_DML_PROC.MERG_IN_EMP E

USING DB2_DML_PROC.USING_EMP E1

ON (E.ID = E1.ID)

WHEN MATCHED AND E.ID < 4 THEN

 UPDATE SET

 E.SAL = E1.SAL

WHEN MATCHED AND E.ID > 4 THEN

 UPDATE SET

 E.SAL = 111

WHEN MATCHED AND E.ID = 4 THEN

 UPDATE SET

 E.SAL = 444

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.SAL);

Solution:

In SQL Server, you can use the CASE statement to emulate multiple uses. You can use the condition (1=1)
to emulate the Searched WHEN clause.

Note: In the CASE statement you can’t use the DEFAULT value. You must write the default value
manually.

SQL Server Example:

MERGE INTO

 EMPLOYEES E

USING

 EMPL_1 E1

ON

 (E.ID = E1.ID)

WHEN MATCHED AND 1=1 THEN

 UPDATE SET

 E.SAL =

 CASE

 WHEN E.ID < 4 THEN E1.SAL

 WHEN E.ID > 4 THEN 111

 WHEN E.ID = 4 THEN 444

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0010873.html?cp=SSEPGG_10.5.0%2F2-9-7-168&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_merge.dita
http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k%28MERGE_TSQL%29;k%28SQL11.SWB.TSQLRESULTS.F1%29;k%28SQL11.SWB.TSQLQUERY.F1%29;k%28MISCELLANEOUSFILESPROJECT%29;k%28DevLang-TSQL%29&rd=true

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 79

 END

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.DOB, E1.DEPT, E1.SAL,

E1.JOB);

3.4.5.2 SIGNAL Clause in MERGE

In DB2, you can use the SIGNAL exception to make the MERGE statement fail.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

DB2 Example:

MERGE INTO DB2_DML_PROC.MERG_IN_EMP E

USING DB2_DML_PROC.USING_EMP E1

ON (E.ID = E1.ID)

WHEN MATCHED AND E.ID < 4 THEN

 UPDATE SET

 E.SAL = E1.SAL

WHEN MATCHED AND E.ID > 4 THEN

 UPDATE SET

 E.SAL = 111

WHEN MATCHED AND E.ID = 4 THEN

 SIGNAL SQLSTATE '70102' SET MESSAGE_TEXT = 'ERROR SALARY'

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.SAL);

Solution:

In SQL Server, you can generate a conversion exception in UPDATE or INSERT, so that the MERGE
statement will fail.

SQL Server Example:

IF EXISTS (SELECT * FROM EMPLOYEES E JOIN EMPL_1 E1 ON E.ID = E1.ID

 WHERE E.ID = 4)

THROW 70102, 'ERROR MY LEBEN', 1

MERGE INTO EMPLOYEES E

USING EMPL_1 E1

ON (E.ID = E1.ID)

WHEN MATCHED AND 1=1 THEN

 UPDATE SET

 E.SAL = CASE

 WHEN E.ID < 2 THEN E1.SAL

 WHEN E.ID > 2 THEN 77777 END

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.SAL, E1.JOB);

3.4.5.3 Mixed UPDATE and DELETE Clauses in a MERGE Statement

In DB2, a MERGE statement can have mixed UPDATE and DELETE clauses with intersects conditions. This
cannot be emulated in SQL Server automaticaly. It requires manual emulation.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0010873.html?cp=SSEPGG_10.5.0%2F2-9-7-168&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_merge.dita
http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k%28MERGE_TSQL%29;k%28SQL11.SWB.TSQLRESULTS.F1%29;k%28SQL11.SWB.TSQLQUERY.F1%29;k%28MISCELLANEOUSFILESPROJECT%29;k%28DevLang-TSQL%29&rd=true
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0010873.html?cp=SSEPGG_10.5.0%2F2-9-7-168&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_merge.dita
http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k%28MERGE_TSQL%29;k%28SQL11.SWB.TSQLRESULTS.F1%29;k%28SQL11.SWB.TSQLQUERY.F1%29;k%28MISCELLANEOUSFILESPROJECT%29;k%28DevLang-TSQL%29&rd=true

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 80

DB2 Example:

MERGE INTO DB2_DML_PROC.MERGE_INTO_TAB D

USING (SELECT ID, VAL FROM DB2_DML_PROC.MERGE_INTO_TAB UNION VALUES (4,

'D') UNION VALUES (5, 'E') UNION VALUES (6, 'F')) AS B (ID, VAL)

ON (D.ID=B.ID)

WHEN MATCHED AND D.ID=1 THEN

UPDATE SET VAL='X'

WHEN MATCHED AND D.ID<3 THEN

DELETE

WHEN MATCHED THEN

UPDATE SET VAL='Y'

WHEN NOT MATCHED THEN

INSERT VALUES (B.ID,B.VAL);

Solution:

SQL Server does not have similar functionality; there is no migration solution for this DB2 capability yet.

3.4.5.4 Subquery (fullselect) as Object of a MERGE Operation

In DB2, you can use a subquery (fullselect) as an object of a MERGE operation.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

DB2 Example:

MERGE INTO (SELECT * FROM DB2_DML_PROC.MERG_IN_EMP) E

USING DB2_DML_PROC.USING_EMP E1

ON (E.ID = E1.ID)

WHEN MATCHED AND E.ID < 4 THEN

 UPDATE SET

 E.SAL = E1.SAL

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.SAL);

Solution:

In SQL Server, you can use a common table expression (CTE) to emulate this functionality.

SQL Server Example:

WITH E AS (SELECT * FROM EMPLOYEES)

MERGE INTO

 E

USING

 EMPL_1 E1

ON

 (E.ID = E1.ID)

WHEN MATCHED AND E.ID < 4 THEN

 UPDATE SET

 E.SAL = E1.SAL

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.DOB, E1.DEPT, E1.SAL,

E1.JOB);

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0010873.html?cp=SSEPGG_10.5.0%2F2-9-7-168&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_merge.dita
http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k%28MERGE_TSQL%29;k%28SQL11.SWB.TSQLRESULTS.F1%29;k%28SQL11.SWB.TSQLQUERY.F1%29;k%28MISCELLANEOUSFILESPROJECT%29;k%28DevLang-TSQL%29&rd=true

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 81

3.4.5.5 Column Groups in an UPDATE SET Clause

In DB2, in a MERGE statement you can use the UPDATE SET clause to update several columns from a
single subquery result.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

DB2 Example:

MERGE INTO DB2_DML_PROC.MERG_IN_EMP E

USING DB2_DML_PROC.USING_EMP E1

ON (E.ID = E1.ID)

WHEN MATCHED AND E.ID < 4 THEN

 UPDATE SET

 (E.NAME, E.SAL) = (SELECT 'DBBEST - '||NAME, SAL*2 FROM

DB2_DML_PROC.MERG_IN_EMP EM WHERE EM.ID = E.ID)

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.SAL);

Solution:

In SQL Server, you can generate a single assignment and a duplicate subquery for each column from a
column group.

SQL Server Example:

MERGE INTO

 EMPLOYEES E

USING

 EMPL_1 E1

ON

 (E.ID = E1.ID)

WHEN MATCHED AND E.ID < 4 THEN

 UPDATE SET

 E.NAME = (SELECT 'DBBEST - '+NAME FROM EMPLOYEES EM WHERE

EM.ID = E.ID),

 E.SAL = (SELECT SAL*2 FROM EMPLOYEES EM WHERE EM.ID = E.ID)

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.DOB, E1.DEPT, E1.SAL,

E1.JOB);

DB2 Example:
 MERGE INTO DB2_DML_PROC.MERGE_INTO_TAB MI

 USING (SELECT ID, VAL FROM DB2_DML_PROC.USING_TAB) US

 ON (MI.ID = US.ID)

 WHEN NOT MATCHED AND US.ID = 3 THEN

 INSERT (MI.ID, MI.VAL)

 VALUES (US.ID, US.VAL)

 WHEN NOT MATCHED AND US.ID = 4 THEN

 INSERT (MI.ID, MI.VAL)

 VALUES (5, 'BLA-BLA');

SQL Server Example:
 MERGE INTO DBO.MERGE_INTO_TAB MI

 USING (SELECT ID, VAL FROM DBO.USING_TAB) US

 ON (MI.ID = US.ID)

 WHEN NOT MATCHED THEN

 INSERT VALUES (CASE WHEN US.ID = 3 THEN ID

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0010873.html?cp=SSEPGG_10.5.0%2F2-9-7-168&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_merge.dita
http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k%28MERGE_TSQL%29;k%28SQL11.SWB.TSQLRESULTS.F1%29;k%28SQL11.SWB.TSQLQUERY.F1%29;k%28MISCELLANEOUSFILESPROJECT%29;k%28DevLang-TSQL%29&rd=true

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 82

 WHEN US.ID = 4 THEN 5 END,

 CASE WHEN US.ID = 3 THEN VAL

 WHEN US.ID = 4 THEN 'BLA-BLA' END);

DB2 Example:
MERGE INTO DB2_DML_PROC.MERG_IN_EMP E

USING DB2_DML_PROC.USING_EMP E1

ON (E.ID = E1.ID)

WHEN MATCHED AND E.ID < 4 THEN

 UPDATE SET E.SAL = 77777

WHEN MATCHED AND E.ID = 4 THEN

 UPDATE SET E.SAL = 11111

WHEN MATCHED THEN

 UPDATE SET E.SAL = 22222

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.SAL);

SQL Server Example:
MERGE INTO DBO. MERG_IN_EMP E

USING DBO. USING_EMP E1

ON (E.ID = E1.ID)

WHEN MATCHED THEN

 UPDATE SET E.SAL = CASE WHEN E.ID < 4 THEN 77777

 WHEN E.ID = 4 THEN 11111

 WHEN 1=1 THEN 22222 END

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.SAL);

DB2 Example:
MERGE INTO DB2_DML_PROC.MERG_IN_EMP E

USING DB2_DML_PROC.USING_EMP E1

ON (E.ID = E1.ID)

WHEN MATCHED AND E.ID < 4 THEN

 UPDATE SET E.SAL = 77777

WHEN MATCHED AND E.ID = 4 THEN

 UPDATE SET E.SAL = 22222

WHEN MATCHED AND E.ID > 4 THEN

 DELETE

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.SAL);

SQL Server Example:
MERGE INTO DBO.MERG_IN_EMP E

USING DBO.USING_TAB E1

ON (E.ID = E1.ID)

WHEN MATCHED AND 1=1 THEN

 UPDATE SET E.SAL = CASE WHEN E.ID < 4 THEN 77777

 WHEN E.ID = 4 THEN 22222 END

WHEN MATCHED AND E.ID > 4 THEN

DELETE

WHEN NOT MATCHED THEN

 INSERT VALUES(E1.ID, E1.NAME, E1.LAST_NAME, E1.SAL);

DB2 Example:
MERGE INTO DB2_DML_PROC.MERGE_INTO_TAB D

USING DB2_DML_PROC.USING_TAB AS B

ON (D.ID=B.ID)

WHEN MATCHED AND D.ID=1 THEN

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 83

DELETE

WHEN MATCHED THEN

DELETE

WHEN MATCHED AND D.ID=2 THEN

UPDATE SET VAL='Y'

WHEN NOT MATCHED THEN

INSERT VALUES (B.ID,B.VAL);

SQL Server Example:
MERGE INTO DBO.MERGE_INTO_TAB D

USING DBO.USING_TAB AS B

ON (D.ID=B.ID)

WHEN MATCHED AND D.ID=1 OR 1=1 THEN

DELETE

WHEN MATCHED AND D.ID=2 THEN

UPDATE SET VAL='Y'

WHEN NOT MATCHED THEN

INSERT VALUES (B.ID,B.VAL);

3.4.6 DELETE Statement

3.4.6.1 Correlation Clause in DELETE Statement

In DB2, a correlation clause can be used in a DELETE statement to designate a table, view, nickname,
fullselect, or column names.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

DELETE FROM TABLE_DEL AS D (A,B,C,D) WHERE D.A BETWEEN 100 AND 109;

Solution:

In SQL Server, replace the column aliases with the column names in a search condition, and remove the
correlation clause from the DELETE statement.

SQL Server Example:

DELETE FROM TABLE_DEL WHERE ID BETWEEN 100 AND 109;

3.4.6.2 Subquery (fullselect) as Object of DELETE

In DB2, the syntax of using a subquery as the object of the DELETE operation is different from that in
SQL Server.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

-- DELETING DUPLICATES

DELETE FROM

 (SELECT ROWNUMBER() OVER (PARTITION BY ID ORDER BY IDENT)

 FROM DB2_OBJECTS.IDENT) AS E (RN)

 WHERE RN > 1

Solution:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000939.html?cp=SSEPGG_10.5.0%2F2-9-7-124&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_delete.dita?lang=en
http://msdn.microsoft.com/ru-ru/library/ms189835.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000939.html?cp=SSEPGG_10.5.0%2F2-9-7-124&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_delete.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms189835.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 84

In SQL Server, convert such queries by assigning an alias to the subquery and then adding a FROM clause
with this alias.

SQL Server Example:

-- DELETING DUPLICATES

DELETE E FROM

(SELECT ROW_NUMBER() OVER (PARTITION BY ID ORDER BY IDENT)

FROM IDENT) AS E (RN)

WHERE RN > 1;

3.4.7 Isolation Level and Lock Type

In DB2, the optional isolation-clause (WITH {RR|RS|CS|UR}) specifies the isolation level at which the
subselect or fullselect is run, and whether a specific type of lock is to be acquired. The lock-request-clause
(USE AND KEEP) applies only to queries and to positioning read operations within an insert, update, or
delete operation. The insert, update, and delete operations themselves will run using locking determined by
the database manager.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

Isolation levels are enforced by locks, and the type of lock that is used limits or prevents access to the data

by concurrent application processes. Declared temporary tables and their rows cannot be locked because

they are only accessible to the application that declared them.

The database manager supports three general categories of locks:

Share (S)

 Under an S lock, concurrent application processes are limited to read-only operations on the data.

Update (U)

 Under a U lock, concurrent application processes are limited to read-only operations on the data, if these

processes have not declared that they might update a row. The database manager assumes that the process

currently looking at a row might update it.

Exclusive (X)

 Under an X lock, concurrent application processes are prevented from accessing the data in any way. This

does not apply to application processes with an isolation level of uncommitted read (UR), which can read but

not modify the data.

Regardless of the isolation level, the database manager places exclusive locks on every row that is inserted,

updated, or deleted. Thus, all isolation levels ensure that any row that is changed by an application process

during a unit of work is not changed by any other application process until the unit of work is complete.

The database manager supports four isolation levels.

 Repeatable read (RR)

 Read stability (RS)

 Cursor stability (CS)

 Uncommitted read (UR)

DB2 Example 1:

SELECT ID, VAL

FROM TABLE_FF

WHERE ID BETWEEN 65 AND 90

WITH UR

DB2 Example 2:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0004121.html
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.perf/src/tpc/db2z_chooseisolationoption.dita
http://msdn.microsoft.com/en-us/library/ms187373.aspx
http://www-01.ibm.com/support/knowledgecenter/api/content/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0004121.html#c0004121__rr
http://www-01.ibm.com/support/knowledgecenter/api/content/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0004121.html#c0004121__rs
http://www-01.ibm.com/support/knowledgecenter/api/content/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0004121.html#c0004121__cs
http://www-01.ibm.com/support/knowledgecenter/api/content/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0004121.html#c0004121__ur

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 85

SELECT ID, VAL

FROM TABLE_FF

WHERE ID BETWEEN 65 AND 90

WITH RS USE AND KEEP EXCLUSIVE LOCKS

Solution:

In SQL Server, use table hints to set the isolation level and lock type. Correspondence between the DB2 and
SQL Server isolation levels and lock types is presented in Table 2.

Table 2: Isolation Level and Lock Type Differences Between DB2 and SQL Server

DB2 Isolation Level Description SQL Server Table Hint

RR Repeatable Read SERIALIZABLE

RS Read Stability REPEATABLEREAD

CS Cursor Stability READCOMMITTED

UR Uncommitted Read READUNCOMMITTED

DB2 Lock Type Description SQL Server Table Hint

SHARE Concurrent processes can acquire SHARE or
UPDATE locks on the data.

TABLOCK

UPDATE Concurrent processes can acquire SHARE
locks on the data, but no concurrent process
can acquire an UPDATE or EXCLUSIVE lock.

UPDLOCK

EXCLUSIVE Concurrent processes cannot acquire a lock
on the data.

TABLOCKX

Unlike DB2, SQL Server does not lock the current cursor row in READCOMMITTED isolation level.

SQL Server Example 1:

SELECT ID, VAL

FROM TABLE_FF WITH (READUNCOMMITTED)

WHERE ID BETWEEN 65 AND 90

SQL Server Example 2:

SELECT ID, VAL

FROM TABLE_FF WITH (REPEATABLEREAD, TABLOCKX)

WHERE ID BETWEEN 65 AND 90

3.5 Routines

This section describes migration issues for DB2 stored procedures and user-defined functions.

The syntax of DB2’s routines language is significantly different from the syntax of SQL Server’s procedural
language, Transact-SQL. This makes converting code from stored procedures, functions, or triggers a
challenge. SSMA, however, can resolve most of the problems related to these conversions.

3.5.1 Procedures

3.5.1.1 Overloaded Procedures

In DB2, two procedures can exist in one schema with the same name but different parameter types or a
different number of parameters. SQL Server 2014 – SQL Server does not support this.

http://social.msdn.microsoft.com/Forums/sqlserver/en-US/7fb4b48c-62c2-4467-bdd7-cb76399d98f6/overloading?forum=transactsql

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 86

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0 – DB2 zOS does not support
overloaded procedures

DB2 Example 1:

-- PROCEDURE

CREATE PROCEDURE PROC_NAME (

 IN A INTEGER,

 IN B INTEGER

)

LANGUAGE SQL

BEGIN

 SQL STATEMENT

…

END;

--OVERLOAD PROCEDURE

CREATE PROCEDURE PROC_NAME (-- NAME OF PROCEDURE IS LIKE IN THE STATEMENT

ABOVE

 IN A INTEGER,

 IN B INTEGER,

 IN C INTEGER

)

LANGUAGE SQL

BEGIN

 SQL STATEMENT

…

END;

Solution:

In SQL Server, you must choose distinct names for procedures that have the same DB2 name but different
parameter signatures.

SQL Server Example 1:

--PROCEDURE 1

CREATE PROCEDURE PROC_NAME$OVL1 –- WE ADD SUFFIX $OVL1 IN A NAME OF THE

FIRST PROCEDURE

 @A INT,

 @B INT

AS

BEGIN

 SQL STATEMENT

 …

END;

--PROCEDURE2

CREATE PROCEDURE PROC_NAME$OVL2 –- WE ADD SUFFIX $OVL2 IN A NAME OF THE

SECOND PROCEDURE

 @A INT,

 @B INT,

 @C INT

AS

BEGIN

 SQL STATEMENT

 …

END;

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.apdv.routines.doc/doc/c0009106.html?lang=en
http://www.ibm.com/developerworks/data/library/techarticle/dm-0412greenstein/

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 87

3.5.1.2 OUT and INOUT Parameters

In DB2, if a procedure has an OUT parameter, it always returns a value in a call variable. In SQL Server this
construct cannot return any value SQL Server 2014.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0

If argument has an IN then its value can’t change into a body of procedure. If argument has an OUT or an IN
OUT then its value can change into body. Also, we can’t set a constant value for OUT or (IN OUT)-arguments
in external call. For IN-arguments it's should be variable. Using of OUT-argument cannot send value into a
body of procedure. Need use IN or IN OUT for this.

DB2 Example:

CREATE PROCEDURE PROC_IN_OUT(

 IN P_IN1 INTEGER DEFAULT 6,

 INOUT P_INOUT INTEGER,

 OUT P_OUT INTEGER

)

LANGUAGE SQL

BEGIN

 SET P_OUT = P_IN1 * P_INOUT;

 SET P_INOUT = P_IN1 + P_INOUT;

END;

BEGIN ATOMIC

 DECLARE RET1 INTEGER;

 DECLARE RET2 INTEGER;

 SET RET2 = 4;

 CALL PROC_IN_OUT(5, RET2, RET1);

 CALL DBMS_OUTPUT.ENABLE(5000);

 CALL DBMS_OUTPUT.PUT_LINE('RET1 = '||RET1||'; RET2 = '||RET2);

END

SELECT DB2ADMIN.WRAPPER_DBMS_OUTPUT() A FROM SYSIBM.SYSDUMMY1;

BEGIN ATOMIC

 DECLARE RET1 INTEGER;

 DECLARE RET2 INTEGER;

 SET RET2 = 4;

 CALL PROC_IN_OUT(DEFAULT, RET2, RET1);

 CALL DBMS_OUTPUT.ENABLE(5000);

 CALL DBMS_OUTPUT.PUT_LINE('RET1 = '||RET1||'; RET2 = '||RET2);

END

SELECT DB2ADMIN.WRAPPER_DBMS_OUTPUT() A FROM SYSIBM.SYSDUMMY1;

BEGIN ATOMIC

 DECLARE RET1 INTEGER;

 DECLARE RET2 INTEGER;

 SET RET2 = 4;

 CALL PROC_IN_OUT(P_INOUT=>RET2, P_OUT=>RET1);

 CALL DBMS_OUTPUT.ENABLE(5000);

 CALL DBMS_OUTPUT.PUT_LINE('RET1 = '||RET1||'; RET2 = '||RET2);

END

SELECT DB2ADMIN.WRAPPER_DBMS_OUTPUT() A FROM SYSIBM.SYSDUMMY1;

http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k%28CREATE_PROCEDURE_TSQL%29;k%28SQL11.SWB.TSQLRESULTS.F1%29;k%28SQL11.SWB.TSQLQUERY.F1%29;k%28MISCELLANEOUSFILESPROJECT%29;k%28DevLang-TSQL%29&rd=true
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000897.html?cp=SSEPGG_10.5.0%2F2-9-7-48&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_call.dita

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 88

Solution:

In SQL Server, when you call a procedure using EXEC for each OUT variable, you must add the OUTPUT
keyword.

SQL Server Example:

CREATE PROCEDURE PROC_IN_OUT

 @P_IN1 INT = 6,

 @P_INOUT INT OUTPUT,

 @P_OUT INT OUTPUT

AS

 SET @P_OUT = @P_IN1 * @P_INOUT;

 SET @P_INOUT = @P_IN1 + @P_INOUT;

GO

DECLARE @RET1 INT;

DECLARE @RET2 INT;

SET @RET2 = 4;

EXEC PROC_IN_OUT 5, @RET2 OUTPUT, @RET1 OUTPUT;

SELECT @RET1, @RET2

GO

DECLARE @RET1 INT;

DECLARE @RET2 INT;

SET @RET2 = 4;

EXEC PROC_IN_OUT DEFAULT, @RET2 OUTPUT, @RET1 OUTPUT;

SELECT @RET1, @RET2

GO

DECLARE @RET1 INT;

DECLARE @RET2 INT;

SET @RET2 = 4;

EXEC PROC_IN_OUT @P_INOUT = @RET2 OUTPUT, @P_OUT = @RET1 OUTPUT;

SELECT @RET1, @RET2

GO

3.5.2 User-Defined Functions

3.5.2.1 Overloaded Functions

In DB2, two functions can exist in one schema with the same name but different parameter types or a
different number of parameters. SQL Server 2014 – SQL Server does not support this.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0 – DB2 zOS does not support
overloaded procedures

DB2 Example 1:

CREATE FUNCTION FUNC1 (

 IN P1 INTEGER

)RETURNS INTEGER

LANGUAGE SQL

BEGIN

 RETURN P1*P1;

END;

CREATE FUNCTION FUNC1 (

http://social.msdn.microsoft.com/Forums/sqlserver/en-US/7fb4b48c-62c2-4467-bdd7-cb76399d98f6/overloading?forum=transactsql
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.apdv.routines.doc/doc/c0009106.html?lang=en
http://www.ibm.com/developerworks/data/library/techarticle/dm-0412greenstein/

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 89

 IN P1 VARCHAR(100)

)RETURNS INTEGER

LANGUAGE SQL

BEGIN

 RETURN LENGTH(P1);

END;

Solution:

In SQL Server, you must choose distinct names for the functions that have the same DB2 name but different
parameter signatures.

CREATE FUNCTION FUNC1$OVL1(--WE ADD SUFFIX $OVL1 IN A NAME OF THE FIRST

PROCEDURE

 @P1 INT

)RETURNS INTEGER AS

BEGIN

 RETURN @P1*@P1;

END;

CREATE FUNCTION FUNC1$OVL2(--WE ADD SUFFIX $OVL2 IN A NAME OF THE FIRST

PROCEDURE

 @P1 VARCHAR(100)

)RETURNS INTEGER AS

BEGIN

 RETURN LEN(@P1);

END;

3.5.2.2 RETURNS ROW Function

In DB2, the RETURNS ROW function specifies that the output of the function is a single row. If the function
returns more than one row, an error is raised (SQLSTATE 21505).

Solution:

In SQL Server, create a table-valued function and make sure that the SELECT statement returns one row.
See RETURN Statement in Table Functions or Procedures later in this section for more details.

3.5.2.3 MODIFIES SQL DATA Clause

In DB2, the MODIFIES SQL DATA clause is used when a function can change data in a table (using Data
Manipulation Language, or DML), either directly or by a call procedure.

Solution:

In SQL Server, user-defined functions (UDFs) can’t use DML statements or executing procedures. You can
emulate the MODIFIES SQL DATA clause by using an extended stored procedure.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 90

3.5.3 Flow Control Constructs

This section covers differences in behavior between DB2 and SQL Server versions of various commands
used in routines that control the flow of execution.

3.5.3.1 CALL Statement for a Procedure

In DB2, the CALL statement can call a procedure or a foreign procedure (but it cannot call a function).

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE P_EX_CALL (IN A INTEGER, OUT B INTEGER)

BEGIN

 SET B = A * 2;

END

BEGIN ATOMIC

 DECLARE B INTEGER;

 CALL P_EX_CALL(5, B);

 SET B = NULL;

 CALL P_EX_CALL(NULL, B);

END

Solution:

In SQL Server, use the EXECUTE (EXEC) statement to call a stored procedure.

SQL Server Example:

CREATE PROCEDURE P_EX_CALL (@A INTEGER, @B INTEGER OUT)

AS

BEGIN

 SET @B = @A * 2;

END;

GO

DECLARE @B INTEGER;

EXECUTE P_EX_CALL 5, @B OUT;

SET @B = NULL;

EXEC P_EX_CALL NULL, @B OUT;

GO

3.5.3.2 CASE Statement

The CASE statement selects an execution path based on multiple conditions. This statement should not be
confused with the CASE expression, which allows an expression to be selected based on the evaluation of
one or more conditions.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

3.5.3.2.1 The simple-case-statement-when-clause

In DB2, the value of the simple-case-statement-when-clause expression prior to the first WHEN keyword is
tested for equality with the value of each expression that follows the WHEN keyword. If the search condition
is true, the THEN statement is executed. If the result is unknown or false, processing continues to the next

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000897.html?cp=SSEPGG_10.5.0%2F2-9-7-48
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_callstatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms188332.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005646.html?cp=SSEPGG_10.5.0%2F2-9-7-49
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_casestatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms182717.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 91

search condition. If the result does not match any of the search conditions, and an ELSE clause is present,
the statements in the ELSE clause are processed.

DB2 Example:

CREATE PROCEDURE DB2_FLOW_CONTR_PROC.P_CASE_EX (IN A INTEGER)

BEGIN

 CASE A

 WHEN 5 THEN

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT3 = A * 3.14;

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT1 = AT3;

 WHEN 10 THEN

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT1 = A / 3.14;

 ELSE

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT1 = A + ID * 3.14;

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT3 = A - ID * 3.14;

 END CASE;

END;

Solution:

In SQL Server, because the CASE statement cannot be used in routines as control flow statements, use the
IF....ELSE statement to convert the DB2 CASE statement. In SQL Server the IF or ELSE condition can affect
the performance of only one Transact-SQL statement. To define a statement block, use the control-of-flow
keywords BEGIN and END.

SQL Server Example:

CREATE PROCEDURE P_CASE_EX1 (@A INTEGER)

AS

BEGIN

 IF (@A = 5)

 BEGIN

 UPDATE TAB1 SET AT3 = @A * 3.14;

 UPDATE TAB1 SET AT1 = AT3;

 END

 ELSE

 IF (@A = 10)

 UPDATE TAB1 SET AT1 = @A / 3.14;

 ELSE

 BEGIN

 UPDATE TAB1 SET AT1 = @A + ID * 3.14;

 UPDATE TAB1 SET AT3 = @A - ID * 3.14;

 END;

END;

GO

EXECUTE P_CASE_EX1 7;

GO

3.5.3.3 The searched-case-statement-when-clause

In DB2, the searched-case-statement-when-clause is used to evaluate the search-condition following the
WHEN keyword. If it evaluates to true, the statements in the associated THEN clause are processed. If it
evaluates to false, or unknown, the next search-condition is evaluated. If no search-condition evaluates to
true and an ELSE clause is present, the statements in the ELSE clause are processed.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 92

DB2 Example:

CREATE PROCEDURE DB2_FLOW_CONTR_PROC.P_CASE_EX_WHEN (IN A INTEGER)

BEGIN

 CASE

 WHEN A = 5 THEN

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT3 = A * 3.14;

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT1 = AT3;

 WHEN A = 10 THEN

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT1 = A / 3.14;

 ELSE

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT1 = A + ID * 3.14;

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT3 = A - ID * 3.14;

 END CASE;

END;

CALL DB2_FLOW_CONTR_PROC.P_CASE_EX_WHEN(7);

Solution:

In SQL Server, the solution for the searched-case-statement is exactly the same as for the simple-case-
statement: use the IF....ELSE statement.

SQL Server Example:

CREATE PROCEDURE P_CASE_EX2 (@A INTEGER)

AS

BEGIN

 IF (@A = 5)

 BEGIN

 UPDATE TAB1 SET AT3 = @A * 3.14;

 UPDATE TAB1 SET AT1 = AT3;

 END

 ELSE

 IF (@A = 10)

 UPDATE TAB1 SET AT1 = @A / 3.14;

 ELSE

 BEGIN

 UPDATE TAB1 SET AT1 = @A + ID * 3.14;

 UPDATE TAB1 SET AT3 = @A - ID * 3.14;

 END;

END;

GO

EXECUTE P_CASE_EX2 7;

GO

3.5.3.4 FOR Statement

In DB2, the FOR statement executes a statement or group of statements for each row of a table using a
cursor. The cursor can be declared explicitly or implicitly.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE DB2_FLOW_CONTR_PROC.FOR_EX

BEGIN

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0004238.html?cp=SSEPGG_10.5.0%2F2-9-7-140
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_forstatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms178642.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 93

 DECLARE NEW_AT VARCHAR(100);

 FOR VL AS

 SELECT ID AS CURID, AT1 AS CURAT1, AT3 AS CURAT3

 FROM DB2_FLOW_CONTR_PROC.CASE_EX_TAB

 WHERE ID BETWEEN 1 AND 3

 DO

 SET NEW_AT = CAST((CURID + CURAT1 - CURAT3) AS VARCHAR(100));

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT2 = NEW_AT

 WHERE ID = CURID;

 END FOR;

END;

CALL DB2_FLOW_CONTR_PROC.FOR_EX;

Solution:

In SQL Server, you can organize the LOOP statement with the WHILE statement, and then use the
@@FETCH_STATUS function to define the end of the loop. The cursor can be declared explicitly only.

SQL Server Example:

CREATE PROCEDURE FOR_EX

AS

BEGIN

 DECLARE @NEW_AT VARCHAR(100);

 DECLARE @CURID INTEGER;

 DECLARE @CURAT1 INTEGER;

 DECLARE @CURAT3 FLOAT(53);

 DECLARE V1 CURSOR LOCAL FOR

 SELECT ID AS CURID, AT1 AS CURAT1, AT3 AS CURAT3

 FROM TAB1

 WHERE ID BETWEEN 55 AND 75;

 OPEN V1;

 FETCH V1 INTO @CURID, @CURAT1, @CURAT3;

 WHILE @@FETCH_STATUS = 0

 BEGIN

 SET @NEW_AT = CAST((@CURID + @CURAT1 - @CURAT3) AS VARCHAR(100));

 UPDATE TAB1 SET AT2 = @NEW_AT

 WHERE ID = @CURID;

 FETCH V1 INTO @CURID, @CURAT1, @CURAT3; -- FOR LOOP DATA

 -- PROCESSING

 END;

 CLOSE V1;

 DEALLOCATE V1;

END;

GO

EXECUTE FOR_EX;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 94

3.5.3.5 GET DIAGNOSTICS Statement

In DB2, the GET DIAGNOSTICS statement is used to obtain current execution environment information
including information about the previous SQL statement (other than a GET DIAGNOSTICS statement) that
was executed.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0.

3.5.3.6 ROW_COUNT Variable

In DB2, the ROW_COUNT variable identifies the number of rows associated with the previous SQL
statement. If the previous SQL statement is a DELETE, INSERT, or UPDATE statement, ROW_COUNT
identifies the number of rows that qualified for the operation. If the previous statement is a PREPARE
statement, ROW_COUNT identifies the estimated number of result rows in the prepared statement.

DB2 Example:

CREATE PROCEDURE DB2_FLOW_CONTR_PROC.DIAGNOSTIC_ROW_CNT (IN V_ID INTEGER,

OUT ROW_C INTEGER)

BEGIN

 UPDATE DB2_FLOW_CONTR_PROC.CASE_EX_TAB SET AT2 = 'DEFINE'

 WHERE ID = V_ID;

 GET DIAGNOSTICS ROW_C = ROW_COUNT;

END;

BEGIN ATOMIC

 DECLARE ROW_C INTEGER;

 CALL DB2_FLOW_CONTR_PROC.DIAGNOSTIC_ROW_CNT(60, ROW_C);

END

Solution:

In SQL Server, you can use the @@ROWCOUNT function to return the number of rows that are associated
with the previous SQL statement. However, there is not yet a solution for emulating the GET DIAGNOSTICS
statement when the previous statement is a PREPARE statement.

SQL Server Example:

CREATE PROCEDURE DIAGNOSTICS_EX (@V_ID INTEGER, @ROW_C INTEGER OUT)

AS

BEGIN

 UPDATE TAB1 SET AT2 = 'DEFINE'

 WHERE ID = @V_ID;

 SET @ROW_C = @@ROWCOUNT;

END;

GO

DECLARE @ROW_C INTEGER;

EXEC DIAGNOSTICS_EX 60, @ROW_C OUT;

GO

3.5.3.7 DB2_RETURN_STATUS Variable

In DB2, the DB2_RETURN_STATUS identifies the status value returned from the procedure associated with
the previously executed SQL statement, provided that the statement was a CALL statement invoking a
procedure that returns a status. If the previous statement is not such a statement, then the value returned has
no meaning and could be any integer.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005647.html?cp=SSEPGG_10.5.0%2F2-9-7-142
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_getdiagnosticsstatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms187316.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 95

DB2 Example:

CREATE PROCEDURE RETURN_VALUE_EX

BEGIN

 RETURN;

END

CREATE PROCEDURE RETURN_STATUS_EX

BEGIN

 DECLARE RETVAL INTEGER;

 CALL RETURN_VALUE_EX;

 GET DIAGNOSTICS RETVAL = DB2_RETURN_STATUS;

 IF RETVAL <> 0 THEN

 RETURN RETVAL;

 ELSE

 CALL WHILE_EX;

 END IF;

END

BEGIN ATOMIC

 CALL RETURN_STATUS_EX;

END

Solution:

A SQL Server procedure can return any integer value, and DB2_RETURN_STATUS can be emulated by
returning an integer value from the SQL Server procedure (use EXECUTE and RETURN statements).

SQL Server Example:

CREATE PROCEDURE RETURN_VALUE_EX

AS

BEGIN

 RETURN;

END;

GO

CREATE PROCEDURE RETURN_STATUS_EX

AS

BEGIN

 DECLARE @RETVAL INTEGER;

 EXECUTE @RETVAL = REPEAT_EX;

 IF (@RETVAL <> 0)

 RETURN @RETVAL;

 ELSE

 EXECUTE WHILE_EX;

END;

GO

EXEC RETURN_STATUS_EX;

GO

3.5.3.8 condition-information

In DB2, condition-information specifies that the error or warning information for the previously executed SQL
statement is to be returned. If information about an error is needed, the GET DIAGNOSTICS statement must
be the first statement specified in the handler that will handle the error. If information about a warning is

http://msdn.microsoft.com/en-us/library/ms188332.aspx
http://msdn.microsoft.com/en-us/library/ms174998.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 96

needed, and if the handler will get control of the warning condition, the GET DIAGNOSTICS statement must
be the first statement specified in that handler.

DB2 Example:

CREATE PROCEDURE RETURN_MESSAGE_EX(IN V_ID INTEGER,OUT RETSTR VARCHAR(70))

BEGIN

 DECLARE A INTEGER;

 DECLARE EXIT HANDLER FOR SQLEXCEPTION

 BEGIN

 GET DIAGNOSTICS EXCEPTION 1 RETSTR = MESSAGE_TEXT;

 END;

 SELECT V_ID / 0 INTO A FROM SYSIBM.SYSDUMMY1;

END

BEGIN ATOMIC

 DECLARE RETSTR VARCHAR(70) DEFAULT 'OK!';

 CALL RETURN_MESSAGE_EX(60, RETSTR);

END

Solution:

In SQL Server, you can use the TRY…CATCH statement and ERROR_MESSAGE () function to set an
output parameter value.

SQL Server Example:

CREATE PROCEDURE RETURN_MESSAGE_EX(@V_ID INTEGER, @RETSTR VARCHAR(70) OUT)

AS

BEGIN

 DECLARE @A INTEGER

 BEGIN TRY

 SELECT @A = @V_ID / 0

 END TRY

 BEGIN CATCH

 SET @RETSTR = ERROR_MESSAGE();

 END CATCH

END;

GO

DECLARE @RETSTR VARCHAR(70) = 'OK!'

EXEC RETURN_MESSAGE_EX 60, @RETSTR OUT;

GO

3.5.3.9 IF Statement

In DB2, the IF statement selects an execution path based on the evaluation of a condition.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE IF_EX(IN V CHAR(1), INOUT STAT INTEGER)

BEGIN

 IF V IS NOT NULL THEN

 IF V = 'W' THEN

http://msdn.microsoft.com/en-us/library/ms175976.aspx
http://msdn.microsoft.com/en-us/library/ms190358.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005649.html?cp=SSEPGG_10.5.0%2F2-9-7-161
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_ifstatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms182717.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 97

 CALL WHILE_EX;

 ELSEIF V = 'R' THEN

 CALL REPEAT_EX;

 ELSE

 CALL ITERATE_EX;

 END IF;

 ELSE

 SET STAT = 1;

 END IF;

 RETURN STAT;

END

BEGIN ATOMIC

 DECLARE STAT INTEGER DEFAULT 0;

 CALL IF_EX ('W', STAT);

END

Solution:

In SQL Server, the IF statement differs only in syntax and can be easily converted from DB2.

SQL Server Example:

CREATE PROCEDURE IF_EX(@V CHAR(1), @STAT INTEGER OUT)

AS

BEGIN

 IF @V IS NOT NULL

 IF @V = 'W'

 EXECUTE WHILE_EX;

 ELSE IF @V = 'R'

 EXECUTE REPEAT_EX;

 ELSE

 EXECUTE ITERATE_EX;

 ELSE

 SET @STAT = 1;

 RETURN @STAT;

END;

GO

DECLARE @STAT INTEGER = 0

EXECUTE IF_EX 'W', @STAT OUT;

GO

3.5.3.10 ITERATE Statement

In DB2, the ITERATE statement causes the flow of control to return to the beginning of a labeled loop.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example 1:

CREATE PROCEDURE ITERATE_EX

BEGIN

 DECLARE V_ID INTEGER;

 DECLARE CUR1 CURSOR FOR

 SELECT ID FROM TAB1 ORDER BY ID;

 OPEN CUR1;

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005650.html?cp=SSEPGG_10.5.0%2F2-9-7-164
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_iteratestatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms174366.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 98

 FETCH_LOOP:

 LOOP -- AFTER ITERATE STATEMENT, CONTROL RESUMES HERE

 FETCH CUR1 INTO V_ID;

 IF V_ID < 64 THEN

 ITERATE FETCH_LOOP;

 ELSEIF V_ID > 70 THEN

 LEAVE FETCH_LOOP;

 ELSE

 UPDATE TAB1 SET AT2 = 'ITERATE'

 WHERE ID = V_ID;

 END IF;

 END LOOP FETCH_LOOP;

 CLOSE CUR1;

END

BEGIN ATOMIC

 CALL ITERATE_EX;

END

Solution 1:

In SQL Server, the CONTINUE statement has similar functionality to the ITERATE statement in DB2, if the
labeled loop is most inner loop enclosing the ITERATE statement, so use it instead of ITERATE. You do not
need to use a label—using just the CONTINUE statement is sufficient.

SQL Server Example 1:

CREATE PROCEDURE ITERATE_EX

AS

BEGIN

 DECLARE @V_ID INTEGER;

 DECLARE CUR1 CURSOR LOCAL FOR

 SELECT ID FROM TAB1 ORDER BY ID;

 OPEN CUR1;

 FETCH_LOOP: -- WE KEPT THE LABEL ONLY FOR READABILITY

 WHILE 1 = 1 -- AFTER CONTINUE STATEMENT, CONTROL RESUMES HERE

 BEGIN

 FETCH CUR1 INTO @V_ID;

 IF @@FETCH_STATUS <> 0

 BREAK;

 IF (@V_ID < 64)

 CONTINUE; -- WE DO NOT NEED TO USE A LABEL

 -- IN THE MOST INNER LOOP

 ELSE IF (@V_ID > 70)

 BREAK;

 ELSE

 UPDATE TAB1 SET AT2 = 'ITERATE' WHERE ID = @V_ID;

 END;

 CLOSE CUR1;

 DEALLOCATE CUR1;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 99

END;

GO

EXECUTE ITERATE_EX;

GO

DB2 Example 2:

An ITERATE statement can be issued from a nested block to cause that flow of control to return to the
beginning of a loop at a higher level. In the following example, the ITERATE statement within the LAB2
compound statement causes the flow of control to return to the beginning of the LAB1 LOOP statement:

LAB1: LOOP -- AFTER ITERATE STATEMENT, CONTROL RESUMES HERE

 SET A = 0;

 LAB2: LOOP

 ...

 LAB3: LOOP

 ...

 ITERATE LAB1; -- MULTILEVEL ITERATE

 ...

 END LOOP LAB3;

 ...

 ITERATE LAB1; -- MULTILEVEL ITERATE

 ...

 END LOOP LAB2;

END LOOP LAB1;

Solution 2:

In SQL Server, we need to mark the end of the labeled loop with a constructed label (adding suffix _continue
sounds as a reasonable choice) and use GOTO instead of ITERATE. If loop conversion creates emulated
increment block, then this block should follow after the target label.

SQL Server Example 2:

LAB1: -- WE KEPT THE LABEL ONLY FOR READABILITY

WHILE 1 = 1

BEGIN

 SET A = 0

 LAB2:

 WHILE 1 = 1

 BEGIN

 ...

 LAB3:

 WHILE 1 = 1

 BEGIN

 ...

 GOTO LAB1_CONTINUE -- MULTILEVEL CONTINUE EMULATED BY GOTO

 ...

 END

 ...

 GOTO LAB1_CONTINUE -- MULTILEVEL CONTINUE EMULATED BY GOTO

 ...

 END

-- AFTER GOTO STATEMENT, CONTROL RESUMES HERE

 LAB1_CONTINUE: -- WE SHOULD PUT LABEL BELOW THE VERY LAST STATEMENT

http://msdn.microsoft.com/en-us/library/ms180188.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 100

 -- OF THE LOOP BODY

END

3.5.3.11 LEAVE Statement

In DB2, the LEAVE statement transfers program control out of a loop or a compound statement.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example 1:

CREATE PROCEDURE LEAVE_EX

BEGIN

 DECLARE V_ID INTEGER;

 DECLARE CUR1 CURSOR FOR

 SELECT ID FROM TAB1 ORDER BY ID;

 OPEN CUR1;

 FETCH_LOOP:

 LOOP

 FETCH CUR1 INTO V_ID;

 IF V_ID < 64 THEN

 UPDATE TAB1 SET AT2 = 'LEAVE'

 WHERE ID = V_ID;

 ELSE

 LEAVE FETCH_LOOP;

 END IF;

 END LOOP FETCH_LOOP;

-- AFTER LEAVE STATEMENT, CONTROL RESUMES HERE

 CLOSE CUR1;

END

BEGIN ATOMIC

 CALL LEAVE_EX;

END

Solution 1:

In SQL Server, the BREAK statement has similar functionality to the LEAVE statement in DB2, so use it
instead of LEAVE. You do not need to use a label in the most inner loop - using just the BREAK statement is
sufficient.

SQL Server Example 1:

CREATE PROCEDURE LEAVE_EX

AS

BEGIN

 DECLARE @V_ID INTEGER;

 DECLARE CUR1 CURSOR LOCAL FOR

 SELECT ID FROM TAB1 ORDER BY ID;

 OPEN CUR1;

 FETCH_LOOP: -- WE KEPT THE LABEL ONLY FOR READABILITY

 WHILE 1 = 1

 BEGIN

 FETCH CUR1 INTO @V_ID;

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005651.html?cp=SSEPGG_10.5.0%2F2-9-7-165
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_leavestatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms181271.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 101

 IF @@FETCH_STATUS <> 0

 BREAK;

 IF (@V_ID < 64)

 UPDATE TAB1 SET AT2 = 'LEAVE' WHERE ID = @V_ID;

 ELSE

 BREAK; -- WE DO NOT NEED TO USE A LABEL IN THE MOST INNER LOOP

 END;

-- AFTER BREAK STATEMENT, CONTROL RESUMES HERE

 CLOSE CUR1;

 DEALLOCATE CUR1;

END;

GO

EXECUTE LEAVE_EX;

GO

DB2 Example 2:

A LEAVE statement can be issued from a nested block to leave a statement at a higher level. In the following
example, the LEAVE statement within the LAB2 compound statement causes the LAB1 LOOP statement to
terminate:

LAB1: LOOP

 ...

 LAB2: LOOP

 SET A = 0;

 ...

 LAB3: LOOP

 ...

 LEAVE LAB1; -- MULTILEVEL LEAVE

 ...

 END LOOP LAB3;

 ...

 LEAVE LAB1; -- MULTILEVEL LEAVE

 ...

 END LOOP LAB2;

END LOOP LAB1;

-- AFTER LEAVE STATEMENT, CONTROL RESUMES HERE

Solution 2:

In SQL Server, we need to mark the very first statement below the labeled loop with a constructed label
(adding suffix _leave sounds as a reasonable choice) and use GOTO instead of LEAVE

SQL Server Example 2:

LAB1: -- WE KEPT THE LABEL ONLY FOR READABILITY

WHILE 1 = 1

BEGIN

 SET A = 0

 LAB2:

 WHILE 1 = 1

 BEGIN

 ...

http://msdn.microsoft.com/en-us/library/ms180188.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 102

 LAB3:

 WHILE 1 = 1

 BEGIN

 ...

 GOTO LAB1_LEAVE -- MULTILEVEL LEAVE EMULATED BY GOTO

 ...

 END

 ...

 GOTO LAB1_LEAVE -- MULTILEVEL LEAVE EMULATED BY GOTO

 ...

 END

END

-- AFTER GOTO STATEMENT, CONTROL RESUMES HERE

LAB1_LEAVE: -- WE SHOULD LABEL THE VERY FIRST STATEMENT

 -- BELOW THE LOOP BODY

3.5.3.12 LOOP Statement

In DB2, the LOOP statement repeats the execution of a statement or a group of statements.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE LOOP_EX

BEGIN

 DECLARE V_ID INTEGER DEFAULT 0;

 LAB1:

 LOOP

 SET V_ID = V_ID + 1;

 IF V_ID = 100 THEN

 LEAVE LAB1;

 END IF;

 END LOOP LAB1;

 RETURN V_ID;

END

BEGIN ATOMIC

 CALL LOOP_EX;

END

Solution:

In SQL Server, you can organize the LOOP statement with the WHILE statement. In SQL Server the WHILE
statement can repeats execution of an SQL statement or statement block. To define a statement block, use
the control-of-flow keywords BEGIN and END.

SQL Server Example:

CREATE PROCEDURE LOOP_EX

AS

BEGIN

 DECLARE @V_ID INTEGER = 0;

 WHILE 1 = 1

 BEGIN

 SET @V_ID = @V_ID + 1;

 IF @V_ID = 100

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005652.html?cp=SSEPGG_10.5.0%2F2-9-7-167
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_loopstatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms178642.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 103

 BREAK;

 END;

 RETURN @V_ID

END;

GO

EXECUTE LOOP_EX;

GO

3.5.3.13 REPEAT Statement

In DB2, the REPEAT statement executes a statement or a group of statements until a search condition is
true.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE REPEAT_EX

BEGIN

 DECLARE V_ID INTEGER;

 DECLARE END_R SMALLINT DEFAULT 0;

 DECLARE CUR1 CURSOR FOR

 SELECT ID FROM TAB1 ORDER BY ID;

 OPEN CUR1;

 FETCH_LOOP:

 REPEAT

 FETCH CUR1 INTO V_ID;

 IF V_ID < 64 THEN

 UPDATE TAB1 SET AT2 = 'REPEAT'

 WHERE ID = V_ID;

 ELSE

 SET END_R = 1;

 END IF;

 UNTIL END_R <> 0

 END REPEAT FETCH_LOOP;

 CLOSE CUR1;

END

BEGIN ATOMIC

 CALL REPEAT_EX;

END

Solution:

In SQL Server, the WHILE statement provides similar functionality to the REPEAT statement in DB2, so use
it to emulate REPEAT. Because REPEAT is a cycle with a post-condition, you must check the exit-condition
at the end of the cycle.

 SQL Server Example:

CREATE PROCEDURE REPEAT_EX

AS

BEGIN

 DECLARE @V_ID INTEGER;

 DECLARE @END_R SMALLINT = 0;

 DECLARE CUR1 CURSOR LOCAL FOR

 SELECT ID FROM TAB1 ORDER BY ID;

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005653.html?cp=SSEPGG_10.5.0%2F2-9-7-178
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_repeatstatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms178642.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 104

 OPEN CUR1;

 WHILE 1 = 1

 BEGIN

 FETCH CUR1 INTO @V_ID;

 IF @@FETCH_STATUS <> 0

 BREAK;

 IF (@V_ID < 64)

 UPDATE TAB1 SET AT2 = 'REPEAT' WHERE ID = @V_ID;

 ELSE

 SET @END_R = 1;

 IF @END_R <> 0

 BREAK;

 END;

 CLOSE CUR1;

 DEALLOCATE CUR1;

END;

GO

EXECUTE REPEAT_EX;

GO

3.5.3.14 RESIGNAL Statement

In DB2, the RESIGNAL statement is used within a condition handler to resignal the condition that activated
the handler, or to raise an alternate condition so that it can be processed at a higher level. It causes an
exception, warning, or not found condition to be returned, along with optional message text.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE RESIGNAL_EX(IN V INTEGER)

BEGIN

 DECLARE A INTEGER;

 DECLARE CONTINUE HANDLER FOR SQLSTATE '22012'

 BEGIN

 RESIGNAL SQLSTATE '75000'

 SET MESSAGE_TEXT = 'NOT ZERO PARAMETER IS REQUIRED.';

 END;

 SELECT 1000/V INTO A FROM SYSIBM.SYSDUMMY1;

END

BEGIN ATOMIC

 CALL RESIGNAL_EX(0);

END

Solution:

In SQL Server, the THROW statement provides similar functionality to the RESIGNAL statement in DB2, so
use it to emulate RESIGNAL. For THROW statement error_number is int and must be greater than or equal
to 50000 and less than or equal to 2147483647, message is nvarchar(2048). RESIGNAL without parameters
should be converted into THROW without parameters. In SQL Server is absent possibility to create and use
condition unlike DB2.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005654.html?cp=SSEPGG_10.5.0%2F2-9-7-179
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_resignalstatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ee677615.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 105

 SQL Server Example:

CREATE PROCEDURE RESIGNAL_EX(@V INTEGER)

AS

BEGIN

 DECLARE @A INTEGER;

 BEGIN TRY

 SELECT @A = 1000/@V;

 END TRY

 BEGIN CATCH

 THROW 50000, 'NOT ZERO PARAMETER IS REQUIRED.', 1;

 END CATCH;

END;

GO

EXEC RESIGNAL_EX 0;

GO

3.5.3.15 RETURN Statement

In DB2, the RETURN statement is used to return from a routine. For SQL Server functions or methods, it
returns the result of the function or method. For a SQL Server procedure, it optionally returns an integer
status value.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

3.5.3.11.1 RETURN Statement in Scalar Functions or Procedures

If the routine is a function or method, then an expression, NULL, or fullselect must be specified after the
RETURN keyword, and the data type of the result must be assignable to the RETURNS type of the routine. A
procedure cannot return NULL or a fullselect.

DB2 Example:

CREATE FUNCTION RETURN_EX(X DOUBLE)

RETURNS DOUBLE

RETURN SIN(X)/COS(X)

SELECT RETURN_EX(100) FROM SYSIBM.SYSDUMMY1

Solution:

When a routine is a scalar function, the SQL Server RETURN statement can be used as in DB2.

SQL Server Example:

CREATE FUNCTION RETURN_EX(@X FLOAT(53))

 RETURNS FLOAT

AS

BEGIN

 RETURN SIN(@X)/COS(@X);

END;

GO

SELECT DBO.RETURN_EX(100)

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0004237.html?cp=SSEPGG_10.5.0%2F2-9-7-180
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_returnstatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms174998.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 106

3.5.3.16 RETURN Statement in Table Functions

DB2 functions can return a table or row. This feature is supported in SQL Server, but the syntax is different.
Row should be emulated by table.

DB2 Example1:

CREATE FUNCTION TABLE_FUNCTION_EX(V_ID INTEGER)

RETURNS TABLE (ID INTEGER,

 AT1 INTEGER,

 AT2 VARCHAR(200),

 AT3 DOUBLE)

RETURN

 SELECT ID, AT1, AT2, AT3

 FROM TAB1

 WHERE ID = V_ID

SELECT * FROM TABLE(TABLE_FUNCTION_EX(60))

DB2 Example2:

CREATE TYPE TAB1ROW AS ROW ANCHOR ROW OF TAB1;

CREATE FUNCTION ROW_FUNCTION_EX(V_ID INTEGER)

RETURNS TAB1ROW

BEGIN

 DECLARE R1 TAB1ROW;

 SELECT * INTO R1

 FROM TAB1 WHERE ID = V_ID;

 RETURN R1;

END

CREATE PROCEDURE ROW_EX

BEGIN

 DECLARE R1 TAB1ROW;

 SET R1 = ROW_FUNCTION_EX(60);

END

BEGIN ATOMIC

 CALL ROW_EX;

END

Solution:

When a SQL Server function returns a table or row value, the function must be declared with the RETURNS
TABLE keyword. In both cases function return the table, but for row emulation the table will be consist one
row only. In inline table-valued functions (see Example1), the TABLE return value is defined through a single
SELECT statement. Inline functions do not have associated return variables. In multistatement table-valued
functions (see Example2), returned variable is a TABLE variable, used to store and accumulate the rows that
should be returned as the value of the function.

SQL Server Example1:

CREATE FUNCTION TABLE_FUNCTION_EX(@V_ID INTEGER)

RETURNS TABLE AS

RETURN

 SELECT ID, AT1, AT2, AT3

 FROM TAB1

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 107

 WHERE ID = @V_ID;

GO

SELECT * FROM TABLE_FUNCTION_EX(60)

SQL Server Example2:

CREATE FUNCTION ROW_FUNCTION_EX(@V_ID INTEGER)

RETURNS @ROW_TABLE TABLE

 (ID INTEGER,

 AT1 INTEGER,

 AT2 VARCHAR(100),

 AT3 FLOAT(53)

)

AS

BEGIN

 INSERT @ROW_TABLE

 SELECT * FROM TAB1 WHERE ID = @V_ID;

 RETURN;

END;

GO

SELECT * FROM ROW_FUNCTION_EX(60);

3.5.3.17 SIGNAL Statement

In DB2, the SIGNAL statement is used to signal an error or warning condition. It causes an error or warning
to be returned with the specified SQLSTATE, along with optional message text.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE SIGNAL_EX(IN V INTEGER)

BEGIN

 IF V IS NULL THEN

 SIGNAL SQLSTATE '75000'

 SET MESSAGE_TEXT = 'NOT NULL PARAMETER IS REQUIRED.';

 END IF;

END

BEGIN ATOMIC

 CALL SIGNAL_EX(NULL);

END

Solution:

In SQL Server, the THROW statement provides similar functionality to the SIGNAL statement in DB2, so use
it to emulate SIGNAL. For THROW statement error_number is int and must be greater than or equal to 50000
and less than or equal to 2147483647, message is nvarchar(2048). In SQL Server is absent possibility to
create and use condition unlike DB2.

 SQL Server Example:

CREATE PROCEDURE SIGNAL_EX(@V INTEGER)

AS

BEGIN

 IF @V IS NULL

 THROW 50000, 'NOT NULL PARAMETER REQUIRED.', 1;

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0004232.html?cp=SSEPGG_10.5.0%2F2-9-7-236
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_signalstatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ee677615.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 108

END

GO

EXEC SIGNAL_EX NULL;

GO

3.5.3.18 WHILE Statement

The WHILE statement repeats the execution of a statement or group of statements while a specified
condition is true.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE WHILE_EX

BEGIN

 DECLARE V_ID INTEGER;

 DECLARE END_R SMALLINT DEFAULT 1;

 DECLARE CUR1 CURSOR FOR

 SELECT ID FROM TAB1 ORDER BY ID;

 OPEN CUR1;

 FETCH_LOOP:

 WHILE END_R <> 0

 DO

 FETCH CUR1 INTO V_ID;

 IF V_ID < 64 THEN

 UPDATE TAB1 SET AT2 = 'WHILE'

 WHERE ID = V_ID;

 ELSE

 SET END_R = 0;

 END IF;

 END WHILE FETCH_LOOP;

 CLOSE CUR1;

END

BEGIN ATOMIC

 CALL WHILE_EX;

END

Solution:

The WHILE statement can be converted almost as is, although it has a slightly different syntax in SQL
Server. In SQL Server the WHILE statement can repeats execution of an SQL statement or statement block.
To define a statement block, use the control-of-flow keywords BEGIN and END.

SQL Server Example:

CREATE PROCEDURE WHILE_EX

AS

BEGIN

 DECLARE @V_ID INTEGER;

 DECLARE @END_R SMALLINT = 1;

 DECLARE CUR1 CURSOR LOCAL FOR

 SELECT ID FROM TAB1 ORDER BY ID;

 OPEN CUR1;

 WHILE @END_R <> 0

 BEGIN

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005655.html?cp=SSEPGG_10.5.0%2F2-9-7-243
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_whilestatement4nativesqlpl.dita
http://msdn.microsoft.com/en-us/library/ms178642.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 109

 FETCH CUR1 INTO @V_ID;

 IF @@FETCH_STATUS <> 0

 BREAK;

 IF (@V_ID < 64)

 UPDATE TAB1 SET AT2 = 'WHILE' WHERE ID = @V_ID;

 ELSE

 SET @END_R = 0;

 END;

 CLOSE CUR1;

 DEALLOCATE CUR1;

END;

GO

EXECUTE WHILE_EX;

GO

3.5.4 Cursors

This section covers differences between DB2 and SQL Server versions of cursor implementation, and gives
some hints about how to handle cursors during migration.

DB2 supports static, forward-only, and scrollable cursors. There are two types of scrollable cursor: static and
keyset-driven. The latter provides the ability to detect or make changes to the underlying data.

SQL Server supports all ANSI-style cursors: static, dynamic, forward only, and keyset-driven. This includes
support for INSENSITIVE and SCROLL cursor behavior and for all fetch options (FIRST, LAST, NEXT, PRIOR,
RELATIVE, and ABSOLUTE).

Cursor support is available through the following interfaces: ADO.NET, OLE DB, ODBC, DB-Library, and
Transact-SQL.

3.5.4.1 Closing a Cursor

In DB2, the CLOSE statement closes a cursor. If a result table was created when the cursor was opened, that
table is destroyed.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

The SQL Server CLOSE CURSOR statement closes the cursor but leaves the data structures accessible for
reopening.

DB2 Example:

CLOSE MYCUR;

Solution:

SQL Server requires the DEALLOCATE CURSOR statement to remove the cursor data structures. The
DEALLOCATE CURSOR statement differs from CLOSE CURSOR in that a closed cursor can be reopened.
The DEALLOCATE CURSOR statement releases all data structures associated with the cursor and removes
the definition of the cursor.

SQL Server Example:

CLOSE MYCUR;

DEALLOCATE MYCUR;

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000899.html?cp=SSEPGG_10.5.0%2F2-9-7-50
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_close.dita
http://msdn.microsoft.com/en-us/library/ms175035.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 110

3.5.4.2 Returning a Result Set

DB2 always requires that cursors be used with SELECT statements, regardless of the number of rows
requested from the database.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example :

CREATE PROCEDURE CURSOR_TO_CLIENT

RESULT SETS 1

BEGIN

 DECLARE MYCUR CURSOR WITH RETURN TO CLIENT FOR

 SELECT ID, VAL

 FROM TABLE_FF;

 OPEN MYCUR;

END;

BEGIN ATOMIC

 CALL CURSOR_TO_CLIENT;

END;

Solution:

In SQL Server, a SELECT statement that is not enclosed within a cursor returns rows to the client as a
default result set. This is an efficient way to return data to a client application.

SQL Server Example :

CREATE PROCEDURE CURSOR_TO_CLIENT

AS

BEGIN

 SELECT ID, VAL

 FROM TABLE_FF;

END;

GO

EXEC CURSOR_TO_CLIENT;

GO

3.5.4.3 Auto Closing a Cursor

In DB2, all open cursors are automatically closed when the thread terminates, or when a rollback occurs, or
when a commit is done—except if the cursor is defined "with hold." If the cursor is declared "with hold," it will
remain open after a commit; otherwise it will be closed at commit time.

Solution:

In SQL Server, the cursor is not automatically closed on commit or on rollback. To emulate DB2 behavior,
manually close all cursors after rollback, and close all cursors after commit—except the cursors defined as
"with hold."

3.5.4.4 Cursor Loop with Handlers

In DB2, cursor loops can be organized using handlers. After the handler is invoked successfully, control is
returned to the SQL statement that follows the statement that raised the exception.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000973.html?cp=SSEPGG_10.5.0%2F2-9-7-169
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_open.dita
http://msdn.microsoft.com/en-us/library/ms190500.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000954.html?cp=SSEPGG_10.5.0%2F2-9-7-134
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fetch.dita
http://msdn.microsoft.com/en-us/library/ms180152.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 111

DB2 Example 1:

CREATE PROCEDURE CURSOR_LOOP_1

 BEGIN

 DECLARE S DECIMAL(9,2);

 DECLARE I DECIMAL(9,2);

 DECLARE EXITCODE INTEGER DEFAULT 0;

 DECLARE NO_MORE_ROWS CONDITION FOR SQLSTATE '02000';

 DECLARE MYCUR CURSOR FOR

 SELECT ID

 FROM TABLE_FF ORDER BY ID;

 DECLARE CONTINUE HANDLER FOR NO_MORE_ROWS

 SET EXITCODE = 1;

 SET S = 0;

 OPEN MYCUR;

 FETCH MYCUR INTO I;

 WHILE EXITCODE <> 1

 DO

 SET S = S + I;

 FETCH MYCUR INTO I;

 END WHILE;

 CLOSE MYCUR;

END

BEGIN ATOMIC

 CALL CURSOR_LOOP_1;

END;

Solution:

SQL Server does not provide such exceptions to emulate cursor loops using handlers emulating. To emulate
this behavior, add the following block after each FETCH statement:

IF(@@FETCH_STATUS <> 0)

BEGIN

 SET @EXITCODE = 1 --HANDLER BODY

END

SQL Server Example:

CREATE PROCEDURE CURSOR_LOOP_1

AS

BEGIN

 DECLARE @S DECIMAL(9,2);

 DECLARE @I DECIMAL(9,2);

 DECLARE @EXITCODE INTEGER = 0;

 DECLARE MYCUR CURSOR LOCAL FOR

 SELECT ID

 FROM TABLE_FF ORDER BY ID;

 SET @S = 0

 OPEN MYCUR

 FETCH MYCUR INTO @I

 IF(@@FETCH_STATUS <> 0)

 BEGIN

 SET @EXITCODE = 1

 END

 WHILE @EXITCODE <> 1

 BEGIN

 SET @S = @S + @I

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 112

 FETCH MYCUR INTO @I

 IF(@@FETCH_STATUS <> 0)

 BEGIN

 SET @EXITCODE = 1

 END

 END

 CLOSE MYCUR

 DEALLOCATE MYCUR

END;

GO

EXEC CURSOR_LOOP_1;

GO

3.5.4.5 Cursor Loop with SQLCODE Check

In DB2, a cursor loop can be organized by using a direct check of the SQLCODE after each FETCH
statement.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE CURSOR_LOOP_2

BEGIN

 DECLARE SQLCODE INTEGER DEFAULT 0;

 DECLARE I DECIMAL(9,2);

 DECLARE S DECIMAL(9,2);

 DECLARE MYCUR CURSOR FOR

 SELECT ID

 FROM TABLE_FF ORDER BY ID;

 SET S = 0;

 OPEN MYCUR;

 FETCH MYCUR INTO I;

 WHILE SQLCODE <> 100

 DO

 SET S = S + I;

 FETCH MYCUR INTO I;

 END WHILE;

 CLOSE MYCUR;

END;

BEGIN ATOMIC

 CALL CURSOR_LOOP_2;

END;

Solution:

In SQL Server, analyze the string before SQLCODE <> 100. If it is a FETCH statement, then replace
SQLCODE <> 100 with @@FETCH_STATUS = 0:

 FETCH MYCUR INTO I; --\ FETCH MYCUR INTO @I;

 WHILE SQLCODE <> 100 --/ WHILE @@FETCH_STATUS = 0

SQL Server Example:

CREATE PROCEDURE CURSOR_LOOP_2

AS

BEGIN

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000954.html?cp=SSEPGG_10.5.0%2F2-9-7-134
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fetch.dita
http://msdn.microsoft.com/en-us/library/ms180152.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 113

 DECLARE @S DECIMAL(9,2);

 DECLARE @I DECIMAL(9,2);

 DECLARE MYCUR CURSOR LOCAL FOR

 SELECT ID

 FROM TABLE_FF ORDER BY ID;

 SET @S = 0

 OPEN MYCUR

 FETCH MYCUR INTO @I

 WHILE @@FETCH_STATUS = 0

 BEGIN

 SET @S = @S+@I

 FETCH MYCUR INTO @I

 END

 CLOSE MYCUR

 DEALLOCATE MYCUR

END;

GO

EXEC CURSOR_LOOP_2;

GO

3.5.4.6 CURSOR_ROWCOUNT scalar function

The CURSOR_ROWCOUNT function returns the cumulative count of all rows fetched by the specified
cursor since the cursor was opened.

Links: DB2 for Linux UNIX and Windows 10.5.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE CURSOR_ROWCOUNT_FUNC()

BEGIN

 DECLARE ROWS_FETCH BIGINT;

 DECLARE ID DECIMAL(9,2);

 DECLARE EOF INT DEFAULT 0;

 DECLARE MYCUR CURSOR;

 DECLARE CONTINUE HANDLER FOR NOT FOUND

 SET EOF = 1;

 SET MYCUR = CURSOR FOR

 SELECT ID

 FROM TABLE_FF ORDER BY ID;

 OPEN MYCUR;

 FETCH MYCUR INTO ID;

 WHILE EOF <> 1

 DO

 SET ROWS_FETCH = CURSOR_ROWCOUNT(MYCUR);

 INSERT INTO DEBUG(MODULE, MESSAGE)

 VALUES ('CURSOR_ROWCOUNT_FUNC',

 COALESCE(TO_CHAR(ROWS_FETCH), 'NULL'));

 FETCH MYCUR INTO ID;

 END WHILE;

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0054573.html?cp=SSEPGG_10.5.0%2F2-12-4-1-29
http://msdn.microsoft.com/en-us/library/ms187316.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 114

 CLOSE MYCUR;

END;

BEGIN ATOMIC

 CALL CURSOR_ROWCOUNT_FUNC;

END;

Solution:

In SQL Server, you could emulate DB2 CURSOR_ROWCOUNT scalar function with the simple variable. After
each FETCH increase the variable.

SQL Server Example:

CREATE PROCEDURE CURSOR_ROWCOUNT_FUNC

AS

BEGIN

 DECLARE @ROWS_FETCH BIGINT = 0;

 DECLARE @ID DECIMAL(9,2);

 DECLARE @EOF INT = 0;

 DECLARE @MYCUR CURSOR;

 SET @MYCUR = CURSOR FOR

 SELECT ID

 FROM TABLE_FF ORDER BY ID;

 OPEN @MYCUR;

 FETCH @MYCUR INTO @ID;

 IF (@@FETCH_STATUS <> 0)

 SET @EOF = 1

 WHILE @EOF <> 1

 BEGIN

 SET @ROWS_FETCH += 1;

 PRINT @ROWS_FETCH

 FETCH @MYCUR INTO @ID;

 IF (@@FETCH_STATUS <> 0)

 SET @EOF = 1

 END;

 CLOSE @MYCUR;

 DEALLOCATE @MYCUR;

END;

GO

EXEC CURSOR_ROWCOUNT_FUNC;

GO

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 115

3.5.5 Variables

3.5.5.1 Variable Declaration

In DB2, local variable support in SQL procedures allows you to assign and retrieve SQL values in support of
SQL procedure logic. Variables in SQL procedures are defined by using the DECLARE statement. When
declaring a variable, you can specify a default value using the DEFAULT clause.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

BEGIN ATOMIC

 DECLARE V_RCOUNT INTEGER;

 DECLARE V_MAX DECIMAL (9,2);

 DECLARE V_ADATE, V_ANOTHER DATE;

 DECLARE V_TOTAL INTEGER DEFAULT 0;

END;

Solution:

In SQL Server, variables are declared in the body of a batch or procedure with the DECLARE statement.
Variable names must begin with an ‘at’ (@) sign. You can declare variables by list, but data type must be
defined for each variable in this list. You can assign a value to the variable in-line. The value can be a
constant or an expression, but it must either match the variable declaration type or be implicitly convertible to
that type.

SQL Server Example:

DECLARE @V_RCOUNT INTEGER;

DECLARE @V_MAX DECIMAL (9,2);

DECLARE @V_ADATE DATE, @V_ANOTHER DATE;

DECLARE @V_TOTAL INTEGER = 0;

3.6 Exceptions, Handlers, and Conditions

The elements of exception handling in SQL Server differ significantly from its DB2 counterparts. Here we give
a few examples about handling these differences.

3.6.1 EXIT Handlers

In DB2, the EXIT handler executes SQL PL statements in the handler. After that, the handler continues
execution at the end of the compound statement in which it was declared.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

DB2 Example:

CREATE PROCEDURE PRC_EXIT

LANGUAGE SQL

BEGIN ATOMIC

 DECLARE RETURN_MESSAGE VARCHAR(100) DEFAULT 0;

 DECLARE RETURN_CODE INTEGER DEFAULT 0;

 DECLARE V_ID INTEGER;

 DECLARE V_NAME VARCHAR(100);

 DECLARE C1 CURSOR FOR SELECT ID, NAME FROM EMPLOYEES;

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.sqlpl.doc/doc/c0020497.html
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sqlprocedurebody.dita
http://msdn.microsoft.com/en-us/library/ms180152.aspx
http://www.toadworld.com/platforms/ibmdb2/w/wiki/6701.declare-handlers.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.apsg/src/tpc/db2z_definehandlersmorestmts.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms175976%28v=sql.105%29.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 116

 /*** HANDLER DECLARATION ***/

 DECLARE EXIT HANDLER FOR NOT FOUND BEGIN

 /*** HANDLER STATEMENTS ***/

 SET RETURN_MESSAGE = 'ERROR. ROWS HAVE BEEN COMPLITED.';

 SET RETURN_CODE = 200;

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT',

'RETURN_MESSAGE='||RETURN_MESSAGE);

 CLOSE C1;

 END;

 /*** CODE STATEMENTS ***/

 OPEN C1;

 LOOP

 FETCH C1 INTO V_ID, V_NAME;

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT', 'GOOD:

V_NAME='||V_NAME);

 END LOOP;

 CLOSE C1;

END;

Solution:

In SQL Server, use a TRY/CATCH block. Because exception doesn’t occur in SQL Server after unsuccessful
fetch data from cursor, so we need to check the @@fetch_status variable and generate a manual exception.
Code-statements need to place in try-block and handler-statements need to place in catch-block.

SQL Server Example:

/*** CREATE PROCEDURE ***/

CREATE PROCEDURE PROC_EXIT AS

BEGIN

 DECLARE @RETURN_MESSAGE VARCHAR(100) = 0;

 DECLARE @RETURN_CODE INT = 0;

 DECLARE @V_ID INT;

 DECLARE @V_NAME VARCHAR(100);

 DECLARE C1 CURSOR FOR SELECT ID, NAME FROM EMPLOYEES;

 BEGIN TRY

 /*** CODE STATEMENTS ***/

 OPEN C1;

 WHILE 1=1 BEGIN

 FETCH C1 INTO @V_ID, @V_NAME; IF (@@FETCH_STATUS <> 0)

THROW 51000, '', 1; /* THIS CLAUSE GENERATES USER’S EXCEPTION */

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT', 'GOOD:

V_NAME='+@V_NAME);

 END;

 CLOSE C1;

 DEALLOCATE C1;

 END TRY

 BEGIN CATCH /* THIS BLOCK PROCESSES THAT EXCEPTION */

 /*** HANDLER STATEMENTS ***/

 SET @RETURN_MESSAGE = 'ERROR. ROWS HAVE BEEN COMPLITED.';

 SET @RETURN_CODE = 200;

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT', 'ERROR:

RETURN_MESSAGE='+@RETURN_MESSAGE);

 CLOSE C1;

 DEALLOCATE C1;

 END CATCH;

END;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 117

/*** CALL PROCEDURE BLOCK ***/

DELETE MES

BEGIN

 EXEC PROC_EXIT;

END;

/*** SEE THE RESULT ***/

SELECT * FROM MES

3.6.2 UNDO Handlers

In DB2, an UNDO handler is similar to the EXIT handler: it continues with execution at the end of the
compound statement in which it was declared. However, in the UNDO handler each executed statement is
rolled back in this compound statement. The UNDO handler can only be used in ATOMIC compound
statements.

DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

DB2 Example:

/*** CREATE PROCEDURE ***/

CREATE PROCEDURE PRC_UNDO

LANGUAGE SQL

BEGIN ATOMIC

 DECLARE RETURN_MESSAGE VARCHAR(100) DEFAULT 0;

 DECLARE RETURN_CODE INTEGER DEFAULT 0;

 DECLARE V_ID INTEGER;

 DECLARE V_NAME VARCHAR(100);

 DECLARE C1 CURSOR FOR SELECT ID, NAME FROM EMPLOYEES;

 /*** HANDLER DECLARATION ***/

 DECLARE UNDO HANDLER FOR NOT FOUND BEGIN

 /*** HANDLER STATEMENTS ***/

 SET RETURN_MESSAGE = 'ERROR. ROWS HAVE BEEN COMPLITED.';

 SET RETURN_CODE = 200;

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_UNDO', 'ERROR:

RETURN_MESSAGE='||RETURN_MESSAGE);

 CLOSE C1;

 END;

 /*** CODE STATEMENTS ***/

 OPEN C1;

 LOOP

 FETCH C1 INTO V_ID, V_NAME;

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_UNDO', 'GOOD:

V_NAME='||V_NAME);

 END LOOP;

 CLOSE C1;

END;

/*** TEST RESULT ***/

DELETE MES;

BEGIN ATOMIC

 CALL DB2_OBJECTS.PRC_UNDO;

END;

SELECT * FROM MES ORDER BY ID;

http://www.toadworld.com/platforms/ibmdb2/w/wiki/6701.declare-handlers.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.apsg/src/tpc/db2z_definehandlersmorestmts.dita?lang=en
http://msdn.microsoft.com/en-us/library/ms175976%28v=sql.105%29.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 118

Solution:

In SQL Server, specify a savepoint after the BEGIN statement and the ROLLBACK statement in a CATCH
block.

SQL Server Example:

/*** CREATE PROCEDURE ***/

ALTER PROCEDURE PROC_UNDO AS

BEGIN

 DECLARE @RETURN_MESSAGE VARCHAR(100) = 0;

 DECLARE @RETURN_CODE INT = 0;

 DECLARE @V_ID INT;

 DECLARE @V_NAME VARCHAR(100);

 DECLARE @TRANCOUNTER INT; /* THIS VARIABLE STORES

TRANSACTION STATE */

 DECLARE C1 CURSOR FOR SELECT ID, NAME FROM EMPLOYEES;

 SET @TRANCOUNTER = @@TRANCOUNT;

 IF (@TRANCOUNTER > 0) SAVE TRAN SSMAPTN; ELSE BEGIN TRAN SSMAPTN; /*

FOR UNDO-EMULATION WE NEED TO PLACE SAVEPOINT-CLAUSE BEFORE TRY-BLOCK */

 BEGIN TRY

 /*** CODE STATEMENTS ***/

 OPEN C1;

 WHILE 1=1 BEGIN

 FETCH C1 INTO @V_ID, @V_NAME; IF (@@FETCH_STATUS <> 0)

THROW 51000, '', 1; /* THIS CLAUSE GENERATES USER’S EXCEPTION */

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_UNDO', 'GOOD:

V_NAME='+@V_NAME);

 END;

 CLOSE C1;

 DEALLOCATE C1;

 END TRY

 BEGIN CATCH

 IF (@TRANCOUNTER = 0) /* FOR UNDO-EMULATION WE NEED TO PLACE

ROLLBACK-CLAUSE BEFORE HANDLER STATEMENTS */

 ROLLBACK TRAN;

 ELSE

 IF (XACT_STATE() <> -1) ROLLBACK TRAN SSMAPTN;

 /*** HANDLER STATEMENTS ***/

 SET @RETURN_MESSAGE = 'ERROR. ROWS HAVE BEEN COMPLITED.';

 SET @RETURN_CODE = 200;

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_UNDO', 'ERROR:

RETURN_MESSAGE='+@RETURN_MESSAGE);

 CLOSE C1;

 DEALLOCATE C1;

 END CATCH;

END;

/*** TEST RESULT ***/

DELETE MES

BEGIN

 BEGIN TRAN;

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_UNDO', 'FIRST');

 EXEC PROC_UNDO;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 119

END;

SELECT * FROM MES ORDER BY ID;

3.6.3 CONTINUE Handlers

In DB2, the CONTINUE handler is the opposite of the EXIT handler. The CONTINUE handler continues
execution at the statement that follows the statement that raised the exception.

DB2 Example:

CREATE PROCEDURE DB2_OBJECTS.CONT

LANGUAGE SQL

BEGIN ATOMIC

 DECLARE X INTEGER;

 DECLARE SQLSTATE CHAR(5) DEFAULT '00000'; /* IT IS REGISTER

SQLCODE */

 DECLARE SQLCODE INTEGER DEFAULT 0; /* IT IS REGISTER SQLSTATE

*/

 DECLARE RSTATE CHAR(5) DEFAULT '00000';

 DECLARE RCODE INTEGER DEFAULT 0;

 DECLARE ZERO CONDITION FOR SQLSTATE '22012';

 DECLARE RESULT INTEGER;

 /* PROCESSING OF AN EXCEPTION "DIVISION BY ZERO" */

 DECLARE CONTINUE HANDLER FOR ZERO BEGIN

 SET (RCODE, RSTATE) = (SQLCODE, SQLSTATE); /* ON THE FIRST

STEP WE SHOULD SAVE SQLCODE AND SQLSTATE IN OTHER VARIABLES BECAUSE THEY

ARE CLEARED AFTER EACH STATEMENT. */

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT',

'RCODE='||RCODE||'; RSTATE='||RSTATE||'; ERRM='||SYSPROC.SQLERRM (RSTATE,

'', '', 'EN_US', 1));

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT',

'RCODE='||RCODE||'; RSTATE='||RSTATE||'; ERRM='||SYSPROC.SQLERRM

(REPLACE(RCODE,'-','SQL'),', ';', 'EN_US', 1));

 END;

 /* FIRST STATEMENT */

 SET X = 1/0; /* MAKE AN EXCEPTION DIVISION BY ZERO */

 /* SECOND STATEMENT */

 SET RESULT = (SELECT CAST('12' AS INTEGER) FROM SYSIBM.SYSDUMMY1);

 /* THIRD STATEMENT */

 SET RESULT = (SELECT COS(0)/SIN(0) FROM SYSIBM.SYSDUMMY1); /* MAKE

AN EXCEPTION DIVISION BY ZERO */

END;

Solution:

In SQL Server, use the same syntax as in the EXIT handler, but wrap every single statement in a
TRY/CATCH block.

SQL Server Example:

CREATE PROCEDURE CONT AS

BEGIN

 DECLARE @X INT;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 120

 DECLARE @V_ERR NUMERIC(38);

 DECLARE @RCODE VARCHAR(10);

 DECLARE @RSTATE VARCHAR(10);

 DECLARE @SQLERRM VARCHAR(8000);

 DECLARE @SQLERRM1 VARCHAR(8000);

 DECLARE @SSMA$ZERO_CONDITION VARCHAR(10) = '22012'; /* DECLARE

CONDITION */

 DECLARE @RESULT INT;

 /* FIRST STATEMENT */

 BEGIN TRY

 SET @X = 1/0; /* MAKE AN EXCEPTION DIVISION BY ZERO */

 END TRY

 BEGIN CATCH

 SET @V_ERR = ERROR_NUMBER();

 SET @RCODE = SSMA_DB2.SQLCODE(@V_ERR);

 SET @RSTATE = SSMA_DB2.SQLSTATE(@V_ERR);

 SET @SQLERRM = SSMA_DB2.SQLERRM(@RSTATE, '', '', 'EN_US', 1);

 SET @SQLERRM1= SSMA_DB2.SQLERRM (REPLACE(@RCODE,'-','SQL'),

'', '', 'EN_US', 1);

 IF @RSTATE != @SSMA$ZERO_CONDITION BEGIN /* CHECK ON CONDITION

*/

 THROW;

 END;

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT',

'RCODE='+@RCODE+'; RSTATE='+@RSTATE+'; ERRM='+@SQLERRM);

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT',

'RCODE='+@RCODE+'; RSTATE='+@RSTATE+'; ERRM='+@SQLERRM1);

 END CATCH;

 /* SECOND STATEMENT */

 BEGIN TRY

 SELECT RESULT = CAST('12' AS INTEGER);

 END TRY

 BEGIN CATCH

 SET @V_ERR = ERROR_NUMBER();

 SET @RCODE = [SSMA_DB2].[SQLCODE](@V_ERR);

 SET @RSTATE = [SSMA_DB2].[SQLSTATE](@V_ERR);

 SET @SQLERRM = SSMA_DB2.SQLERRM(@RSTATE, '', '', 'EN_US', 1);

 SET @SQLERRM1= SSMA_DB2.SQLERRM (REPLACE(@RCODE,'-','SQL'),

'', '', 'EN_US', 1);

 IF @RSTATE != @SSMA$ZERO_CONDITION BEGIN /* CHECK ON

CONDITION. */

 THROW;

 END;

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT',

'RCODE='+@RCODE+'; RSTATE='+@RSTATE+'; ERRM='+@SQLERRM);

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT',

'RCODE='+@RCODE+'; RSTATE='+@RSTATE+'; ERRM='+@SQLERRM1);

 END CATCH;

 /* THIRD STATEMENT */

 BEGIN TRY

 SELECT RESULT = COS(0)/SIN(0); /* MAKE AN EXCEPTION DIVISION

BY ZERO */

 END TRY

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 121

 BEGIN CATCH

 SET @V_ERR = ERROR_NUMBER();

 SET @RCODE = [SSMA_DB2].[SQLCODE](@V_ERR);

 SET @RSTATE = [SSMA_DB2].[SQLSTATE](@V_ERR);

 SET @SQLERRM = SSMA_DB2.SQLERRM(@RSTATE, '', '', 'EN_US', 1);

 SET @SQLERRM1= SSMA_DB2.SQLERRM (REPLACE(@RCODE,'-','SQL'),

'', '', 'EN_US', 1);

 IF @RSTATE != @SSMA$ZERO_CONDITION BEGIN /* CHECK ON CONDITION

*/

 THROW;

 END;

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT',

'RCODE='+@RCODE+'; RSTATE='+@RSTATE+'; ERRM='+@SQLERRM);

 INSERT INTO MES(GROUP_ID, TEXT)VALUES('PRC_EXIT',

'RCODE='+@RCODE+'; RSTATE='+@RSTATE+'; ERRM='+@SQLERRM1);

 END CATCH;

END;

GO

3.7 Dynamic SQL

DB2 has specifics intended for creating dynamic statements that can be embedded only in an application
program: the DESCRIBE statement and the SQL Descriptor Area (SQLDA). DB2 has four general types of
dynamic SQL: caching dynamic SQL, non-SELECT dynamic SQL using EXECUTE, and dynamic SQL for
fixed-list and varying-list SELECT.

3.7.1 DESCRIBE Statement

In DB2, the DESCRIBE statement obtains information about a prepared statement. DESCRIBE can be
embedded only in an application program. In dynamic SQL, the DESCRIBE statement is commonly used with
SQLDA; its usage is specific to DB2.

Solution:

In SQL Server, there is no direct solution to emulate the DESCRIBE statement or SQLDA. Instead, change
these statements to another type of dynamic SQL in an application using varying-list SELECT, and then
convert.

3.7.2 PREPARE Statement

in DB2, a PREPARE statement is used to save prepared dynamic statements in a cache pool that all
application processes can use to save and retrieve prepared dynamic statements. After an SQL statement
has been prepared and is automatically saved in the cache, subsequent PREPARE requests for that same
SQL statement can avoid the costly preparation process by using the statement that is in the cache.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE PREPARE_EX

BEGIN

 DECLARE STMT VARCHAR(1000);

 SET STMT = 'INSERT INTO TAB1(ID, AT1, AT2, AT3) VALUES(100, 1,

''1'', 1)';

 PREPARE STMT_EX FROM STMT;

 EXECUTE STMT_EX;

END;

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000975.html?cp=SSEPGG_10.5.0%2F2-12-7-171
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_prepare.dita
http://msdn.microsoft.com/en-us/library/ms188332.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 122

BEGIN ATOMIC

 CALL PREPARE_EX;

END;

Solution:

SQL Server prepares and caches SQL statement only after execution. Therefore you can remove the
PREPARE statement, and replace the EXECUTE statement syntax with the SQL Server EXECUTE
statement.

SQL Server Example:

DECLARE @STMT VARCHAR(1000);

SET @STMT = 'INSERT INTO TAB1(ID, AT1, AT2, AT3) VALUES(100, 1, ''1'',

1)';

EXECUTE (@STMT);

3.7.3 EXECUTE Statement

Non-SELECT dynamic SQL uses PREPARE and EXECUTE statements to issue SQL statements. This type
of dynamic SQL cannot issue the SELECT statement. Non-SELECT dynamic SQL can provide huge
performance benefits over using the EXECUTE IMMEDIATE statement (see section 3.7.4 EXECUTE
IMMEDIATE Statement) because with EXECUTE you can use a parameter marker (or bind variable), which
is a placeholder for host variables in a dynamic SQL statement.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE DYNAMIC_EX (

 IN DYN_T VARCHAR(20), IN DYN_V VARCHAR(100), IN VAL INTEGER)

BEGIN

 DECLARE STMT VARCHAR(1000);

 SET STMT = 'INSERT INTO ' || DYN_T ||

 ' (ID, AT1, AT2, AT3) VALUES(?, ' || DYN_V || ')';

 PREPARE STMT_EX FROM STMT;

 WHILE (VAL < 200)

 DO

 EXECUTE STMT_EX USING VAL;

 SET VAL = VAL + 10;

 END WHILE;

END;

BEGIN ATOMIC

 DECLARE TLIST VARCHAR(20);

 DECLARE VLIST VARCHAR(100);

 DECLARE VAL INTEGER;

 SET TLIST = 'TAB1';

 SET VLIST = '1, ''1'', 1';

 SET VAL = 110;

 CALL DYNAMIC_EX(TLIST, VLIST, VAL);

END;

Solution:

In SQL Server, you can use the EXECUTE statement without previous use of the PREPARE statement. To
convert a non-SELECT or caching dynamic SQL statement, you need to generate a dynamic string using a
local variable and execute the string using the EXECUTE statement.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000948.html?cp=SSEPGG_10.5.0%2F2-12-7-131
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_execute.dita
http://msdn.microsoft.com/en-us/library/ms188332.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 123

SQL Server Example:

CREATE PROCEDURE DYNAMIC_EX (

 @DYN_T VARCHAR(20), @DYN_V VARCHAR(100), @VAL INTEGER)

AS

BEGIN

 DECLARE @STMT VARCHAR(1000);

 WHILE (@VAL < 200)

 BEGIN

 SET @STMT = 'INSERT INTO ' + @DYN_T +

 ' (ID, AT1, AT2, AT3) VALUES(' + CAST(@VAL AS VARCHAR(10)) +

 ', ' + @DYN_V + ')';

 EXECUTE (@STMT);

 SET @VAL = @VAL + 10;

 END;

END;

GO

DECLARE @TLIST VARCHAR(20);

DECLARE @VLIST VARCHAR(100);

DECLARE @VAL INTEGER;

SET @TLIST = 'TAB1';

SET @VLIST = '1, ''1'', 1';

SET @VAL = 110;

EXECUTE DYNAMIC_EX @TLIST, @VLIST, @VAL;

GO

3.7.4 EXECUTE IMMEDIATE Statement

DB2 includes the EXECUTE IMMMEDIATE call with a simple text parameter. It is used if one of the
statements allowed for dynamic SQL is supposed to be constructed and executed.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE DYNAMIC_IMMEDIATE_EX (

 IN DYN_T VARCHAR(20), IN DYN_V VARCHAR(100))

BEGIN

 DECLARE STMT VARCHAR(1000);

 SET STMT = 'INSERT INTO ' || DYN_T || ' ' || DYN_V;

 EXECUTE IMMEDIATE STMT;

END;

BEGIN ATOMIC

 DECLARE TLIST VARCHAR(20);

 DECLARE VLIST VARCHAR(100);

 SET TLIST = 'TAB1';

 SET VLIST = '(ID, AT1, AT2, AT3) VALUES(200, 1, ''1'', 1)';

 CALL DYNAMIC_IMMEDIATE_EX (TLIST, VLIST);

END;

Solution:

In SQL Server, the EXECUTE IMMEDIATE statement can be converted directly to the EXECUTE statement.
There are only minor differences between DB2 and SQL Server in the syntax, such as in declaring variables
and calling procedures.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000950.html?cp=SSEPGG_10.5.0%2F2-12-7-132
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_executeimmediate.dita
http://msdn.microsoft.com/en-us/library/ms188332.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 124

SQL Server Example:

CREATE PROCEDURE DYNAMIC_IMMEDIATE_EX (@DYN_T VARCHAR(20), @DYN_V

VARCHAR(100))

AS

 DECLARE @STMT VARCHAR(1000);

 SET @STMT = 'INSERT INTO ' + @DYN_T + ' ' + @DYN_V;

 EXECUTE (@STMT);

GO

DECLARE @TLIST VARCHAR(20);

DECLARE @VLIST VARCHAR(100);

SET @TLIST = 'TAB1';

SET @VLIST = '(ID, AT1, AT2, AT3) VALUES(200, 1, ''1'', 1)';

EXECUTE DYNAMIC_IMMEDIATE_EX @TLIST, @VLIST;

GO

3.7.5 Dynamic SQL for a Fixed-List SELECT Statement

In DB2, you can use dynamic SQL for a fixed-list SELECT statement to explicitly prepare and execute SQL
SELECT statements when the columns to be retrieved are known and unchanging. To do this you must use a
cursor to fetch the results into local variables.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE PROCEDURE DYNAMIC_FIXED_LIST_EX (IN VAL INTEGER, OUT V_ID INTEGER,

OUT V_AT1 INTEGER, OUT V_AT2 VARCHAR(200), OUT V_AT3 DOUBLE)

BEGIN

 DECLARE STMT VARCHAR(1000);

 DECLARE CUR1 CURSOR FOR STMT_EX;

 SET STMT = 'SELECT ID, AT1, AT2, AT3 FROM TAB1 WHERE ID = ?';

 PREPARE STMT_EX FROM STMT;

 OPEN CUR1 USING VAL;

 FETCH CUR1 INTO V_ID, V_AT1, V_AT2, V_AT3;

 CLOSE CUR1;

END;

BEGIN ATOMIC

 DECLARE VAL, VID, VAT1 INTEGER;

 DECLARE VAT2 VARCHAR(200);

 DECLARE VAT3 DOUBLE;

 SET VAL = 60;

 CALL DYNAMIC_FIXED_LIST_EX(VAL, VID, VAT1, VAT2, VAT3);

END;

Solution:

In SQL Server, to convert dynamic SQL for a fixed-list SELECT statement you can use the sp_executesql
stored procedure, This procedure makes it possible to create a cursor based on a dynamic string, and to use
local variables as parameters of this cursor.

SQL Server Example:

CREATE PROCEDURE DYNAMIC_FIXED_LIST_EX(

 @V_VAL INTEGER,

 @V_ID INTEGER OUTPUT,

 @V_AT1 INTEGER OUTPUT,

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000975.html?cp=SSEPGG_10.5.0%2F2-12-7-171
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_prepare.dita
http://msdn.microsoft.com/en-us/library/ms188332.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 125

 @V_AT2 VARCHAR(200) OUTPUT,

 @V_AT3 FLOAT(53) OUTPUT

)

AS

DECLARE @STMT NVARCHAR(1000);

DECLARE @PARAMS_DEFINITION NVARCHAR(500);

DECLARE @CUR1 CURSOR;

SET @STMT = (N'SET @CUR = CURSOR LOCAL FOR '+

 'SELECT ID, AT1, AT2, AT3 FROM TAB1 WHERE ID = @VAL; OPEN @CUR');

SET @PARAMS_DEFINITION = N'@VAL INTEGER, @CUR CURSOR OUTPUT';

EXECUTE SP_EXECUTESQL

 @STMT,

 @PARAMS_DEFINITION,

 @VAL = @V_VAL,

 @CUR = @CUR1 OUTPUT;

FETCH @CUR1 INTO @V_ID, @V_AT1, @V_AT2, @V_AT3;

CLOSE @CUR1;

DEALLOCATE @CUR1

GO

DECLARE @VAL INTEGER, @VID INTEGER, @VAT1 INTEGER;

DECLARE @VAT2 VARCHAR(200);

DECLARE @VAT3 FLOAT(53);

SET @VAL = 60;

EXECUTE DYNAMIC_FIXED_LIST_EX @VAL, @VID OUTPUT, @VAT1 OUTPUT, @VAT2

OUTPUT, @VAT3 OUTPUT;

GO

3.7.6 Dynamic SQL for a Varying-List SELECT Statement

In DB2, dynamic SQL for varying-list SELECT allows the execution of any SQL statement when you do not
know in advance which columns will be retrieved. This type of dynamic SQL uses a SQL descriptor area
(SQLDA) to contain information about the SQL statement. This type of dynamic SQL is usually used in
applications.

Solution:

In SQL Server there is no solution to emulate SQLDA. Instead, change this statement to another type of
dynamic SQL in an application using varying-list SELECT, and then convert.

3.8 Aliases

A DB2 alias can be defined for a table, view, nickname, or another alias. The alias should be created in the
same database where the object for which it was created exists.

Links:

DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014

DB2 Example:

CREATE ALIAS DB2OBJECTS.A1 FOR DB2OBJECTS.EMPLOYEES; /* CREATE ALIAS FOR

TABLE */

CREATE ALIAS DB2OBJECTS.A2 FOR DB2OBJECTS.A1; /* CREATE ALIAS FOR

ALIAS */

CREATE PUBLIC ALIAS A3 FOR DB2OBJECTS.EMPLOYEES; /* CREATE

PUBLIC ALIAS (IT DOES STORED IN THE SCHEMA SYSPUBLIC) */

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0000910.html?cp=SSEPGG_10.5.0%2F2-12-7-59&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createalias.dita?lang=en
http://msdn.microsoft.com/query/dev10.query?appId=Dev10IDEF1&l=EN-US&k=k%28CREATE_SYNONYM_TSQL%29;k%28SQL11.SWB.TSQLRESULTS.F1%29;k%28SQL11.SWB.TSQLQUERY.F1%29;k%28MISCELLANEOUSFILESPROJECT%29;k%28DevLang-TSQL%29&rd=true

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 126

Solution:

To convert a DB2 alias, you can use a SQL Server synonym. However, SQL Server does not allow the
creation of a synonym for another synonym. To convert an alias that has been based on another alias, you
should create a synonym for the underlying object instead.

Note: SQL Server does not support public synonyms, so we don’t convert them automatically.

SQL Server Example:

CREATE SYNONYM DB2OBJECTS.A1 FOR DB2OBJECTS.EMPLOYEES; /* CREATE SYNONYM

FOR TABLE */

CREATE SYNONYM DB2OBJECTS.A2 FOR DB2OBJECTS.EMPLOYEES; /* CREATE SYNONYM

FOR THE SAME TABLE (WE MAKE EMULATION OF SYNONYMS ON EACH OTHER) */

3.9 Nicknames

In DB2, a nickname can be used to access objects either from other databases or from non-relational data
sources. Both cases are discussed below.

3.9.1 References to Other Databases

Because DB2 doesn’t allow the use of remote database names in queries, nicknames are used in DB2.
Nicknames can be created for objects from another database or data source that is defined on a local DB2
instance.

DB2 Example:

CREATE NICKNAME DEPT FOR SALE.BUH.DEPARTMENT;

Solution:

SQL Server allows three-level object names in the format <database-name>.<schema-name>.<object-
name>. You can convert DB2 nicknames that have been defined for tables, views, or stored procedures by
using SQL Server synonyms. For remote databases, a SQL Server linked server object should be created.

SQL Server Example:

CREATE SYNONYM DEPT FOR SALE.BUH.DEPARTMENT;

3.9.2 References to Data from a Nonrelational Wrapper

In DB2, the CREATE NICKNAME statement can be used to define the data that is to be accessed through a
nonrelational wrapper. This statement has options that permit the creation of nicknames for structured files so
that the files can be treated like database tables.

DB2 Example:

CREATE NICKNAME DATA1

(DCODE INTEGER,

NAME CHAR(20),

DEPARTMENT CHAR(20))

FOR SERVER DEPTS

OPTIONS

(FILE_PATH ’/USR/PAT/DATA1.TXT’,

COLUMN_DELIMITER ’,’,

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 127

KEY_COLUMN ’DCODE’,

SORTED ’Y’,

VALIDATE_DATA_FILE ’Y’);

Solution:

In SQL Server, the solution is the same as for DB2, except that you must create a linked server for the
nonrelational data source; in this example, the nonrelational data source is a text file. SQL Server makes this
possible using the OLE DB provider mechanism.

SQL Server Example:

CREATE SYNONYM DEPT FOR LINKED_SERVER.SALE.BUH.DEPARTMENT;

Note that this code is not applicable on Azure SQL DB as this version of SQL Server doesn’t support working

with file system.

3.10 User-Defined Types

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

There are six types of user-defined data type:

 Distinct type

 Structured type

 Reference type

 Array type

 Row type

 Cursor type
Each of these types is described in the following sections.

3.10.1 Distinct Type

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

A DB2 distinct type is a user-defined type that is based on an existing DB2 built-in data type. Internally, a
distinct type shares its representation with an existing type (the source type), but is considered to be a separate
and incompatible type. Values with a user-defined distinct type can only be compared with values of exactly
the same user-defined distinct type. The user-defined distinct type must have been defined using the WITH
COMPARISONS clause.

DB2 Example:

CREATE DISTINCT TYPE DB2_UDT.DISTINCT_TYPE AS VARCHAR (100) WITH

COMPARISONS

Solution:

In SQL Server, user-defined types are the same as DB2 user-defined distinct types. The WITH
COMPARISONS clause can be omitted.

SQL Server Example:

CREATE TYPE DISTINCT_TYPE FROM VARCHAR(100);

3.10.2 Structured Type

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0008476.html?cp=SSEPGG_10.5.0%2F2-9-2-3-0-12&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.structypes.doc/doc/c0006439.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.structypes.doc/doc/c0006441.html?lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 128

A DB2 structured type is a user-defined type that contains one or more attributes, each of which has a
name and a data type of its own. A structured type can serve as the type of a table or view in which each
column of the table derives its name and data type from one of the attributes of the structured type. A structured
type can also serve as a type of a column or a type for an argument to a routine.

A structured type also includes a set of method specifications. Methods enable you to define behaviors for
structured types. Like user-defined functions (UDFs), methods are routines that extend SQL. In the case of
methods, however, the behavior is integrated solely with a particular structured type.

A structured type can be used as the type of a table, view, or column. When used as the type for a table or
view, that table or view is known as a typed table or typed view respectively. For typed tables and typed views,
the names and data types of the attributes of the structured type become the names and data types of the
columns of the typed table or typed view. Rows of the typed table or typed view can be thought of as a
representation of instances of the structured type.

A structured type instance can be stored in the database as a row in a table, in which each column of the
table is an attribute of the instance of the type, or as a value in a column. To store objects as rows in a table,
the table is defined with the structured type, rather than by specifying individual columns in the table definition.

DB2 Example1:

CREATE TYPE DB2_UDT.STRUCTURED_TYPE AS (DEPT_NAME VARCHAR(100), MAX_EMPS

INT) MODE DB2SQL;

CREATE TABLE DB2_UDT.STRUCT_TYPE_TABLE OF DB2_UDT.STRUCTURED_TYPE (REF IS

OID USER GENERATED);

INSERT INTO DB2_UDT.STRUCT_TYPE_TABLE (OID, DEPT_NAME, MAX_EMPS) VALUES

(DB2_UDT.STRUCTURED_TYPE (GENERATE_UNIQUE()), 'SALES', 20);

DB2 EXAMPLE2:

CREATE TYPE DB2_UDT.STRUCT_TYPE_REF_USING AS (DEPT_NAME VARCHAR(100),

MAX_EMPS INT) REF USING INTEGER MODE DB2SQL;

CREATE TABLE DB2_UDT.STRUCT_TYPE_TABLE_REF_USING OF

DB2_UDT.STRUCT_TYPE_REF_USING (REF IS OID USER GENERATED);

INSERT INTO DB2_UDT.STRUCT_TYPE_TABLE_REF_USING (OID, DEPT_NAME, MAX_EMPS)

VALUES (DB2_UDT.STRUCT_TYPE_REF_USING (1), 'SALES', 20);

Solution:

In SQL Server, a table type is a user-defined type that can partially emulate a DB2 typed table. However,
SQL Server does not allow using table types as the types for columns in a table. In SQL Server a table type
can be used to emulate a DB2 structured type only when the structured type is used as a local variable, or
when a typed table is based on the structured type whose attributes are DB2 base types.

If, in DB2, a definition of a structured type on which a DB2 table is based has the REF USING rep-type
expression, then in SQL Server you should add a primary key or unique constraint that contains the object
identifier (OID) attribute of rep-type type to the SQL Server table type definition when converting a table of this
type. In this situation, you should perform the conversion of DB2 base types to SQL Server by using type
mapping.

If there is no REF USING expression in the definition of the DB2 structured type, then the OID attribute
should be defined as varbinary(16) in SQL Server. You do not need to add an OID field and a key in a table
type in SQL Server when you are converting a structured type that is used as a local variable.

There is no SQL Server solution yet to emulate DB2 typed views. To emulate reference types and
structured type method hierarchies, you should use SQL Server CLR user-defined types.

SQL Server Example1:

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 129

CREATE TYPE STRUCTURED_TYPE AS TABLE

(DEPT_NAME VARCHAR(20),

 MAX_EMPS INTEGER);

CREATE TABLE STRUCT_TYPE_TABLE

(OID INTEGER PRIMARY KEY,

 DEPT_NAME VARCHAR(20),

 MAX_EMPS INTEGER);

3.10.2.1 Structured Type Hierarchy

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

A structured type may be created under another structured type, in which case the newly created type is a
subtype of the original structured type. The original type is the supertype. The subtype inherits all the attributes
of the supertype, and can optionally have additional attributes of its own.
For example, a data model may need to represent a special type of employee called a manager. Managers
have more attributes than employees who are not managers. The Manager_t type inherits the attributes defined
for an employee, but also is defined with some additional attributes of its own, such as a special bonus attribute
that is only available to managers. The type hierarchies are shown in following figure.

Type hierarchies

DB2 Example:

CREATE TYPE DB2_UDT.HIERACHY_BUSINESSUNIT_T AS (Name VARCHAR(20), Headcount INT)

MODE DB2SQL;

--To create the Person_t type hierarchy, issue the following SQL statements:

CREATE TYPE DB2_UDT.Hierachy_Address_t AS (street VARCHAR(30),number

CHAR(15),city VARCHAR(30), state VARCHAR(20), zip CHAR(10)) MODE DB2SQL;

CREATE TYPE DB2_UDT.Hierachy_Person_t AS (Name VARCHAR(20), Age INT, Address

DB2_UDT.Hierachy_Address_t) REF USING VARCHAR(13) FOR BIT DATA MODE DB2SQL;

CREATE TYPE DB2_UDT.Hierachy_Employee_t UNDER DB2_UDT.Hierachy_Person_t AS

(SerialNum INT, Salary DECIMAL(9,2), Dept REF (DB2_UDT.HIERACHY_BUSINESSUNIT_T))

MODE DB2SQL;

http://www.columbia.edu/acis/rad/db2/doc/db2a0/struct.htm#PToC_303
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.structypes.doc/doc/c0006588.html?lang=en
http://www.columbia.edu/acis/rad/db2/doc/db2a0/db2a077.htm#FIGFIGTYPEHIER

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 130

CREATE TYPE DB2_UDT.Hierachy_Student_t UNDER DB2_UDT.Hierachy_Person_t AS

(SerialNum CHAR(6), GPA DOUBLE) MODE DB2SQL;

CREATE TYPE DB2_UDT.Hierachy_Manager_t UNDER DB2_UDT.Hierachy_Employee_t AS

(Bonus DECIMAL(7,2)) MODE DB2SQL;

CREATE TYPE DB2_UDT.Hierachy_Architect_t UNDER DB2_UDT.Hierachy_Employee_t AS

(StockOption INTEGER) MODE DB2SQL;

3.10.2.2 Structured type includes a set of method specifications.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

The CREATE METHOD statement is used to associate a method body with a method specification that is

already part of the definition of a user-defined structured type. The method specification must be previously
defined using the CREATE TYPE or ALTER TYPE statement before CREATE METHOD.

DB2 Example:

CREATE TYPE DB2_UDT.TYPE_WITH_METHODS AS (PRINCIPLE INT, INTEREST

DECIMAL(5,2), YEAR INT)

 NOT FINAL

 MODE DB2SQL

 METHOD SI()

 RETURNS FLOAT

 LANGUAGE SQL,

 METHOD CI()

 RETURNS FLOAT

 LANGUAGE SQL,

 METHOD PROD(NUM INT)

 RETURNS INTEGER

 LANGUAGE SQL

CREATE METHOD SI() FOR DB2_UDT.TYPE_WITH_METHODS RETURN

(SELF..PRINCIPLE*SELF..INTEREST*SELF..YEAR)/100

CREATE METHOD CI() FOR DB2_UDT.TYPE_WITH_METHODS RETURN SELF..PRINCIPLE *

POWER((1 + SELF..INTEREST/100), SELF..YEAR)

CREATE METHOD PROD(NUM INT) FOR DB2_UDT.TYPE_WITH_METHODS RETURN

NUM+SELF..YEAR

DB2 Example:

CREATE TYPE DB2_UDT.METHOD_ADDRESS_T AS (STREET VARCHAR(30),NUMBER

CHAR(15),CITY VARCHAR(30), STATE VARCHAR(20), ZIP CHAR(10)) MODE DB2SQL;

CREATE TYPE DB2_UDT.TYPE_WITH_METH_C_LANG AS (STREET VARCHAR(30), NUMBER

CHAR(15), CITY VARCHAR(30), STATE VARCHAR(10))

 NOT FINAL

 MODE DB2SQL

 METHOD SAMEZIP_2 (ADDR DB2_UDT.METHOD_ADDRESS_T)

 RETURNS INTEGER

 LANGUAGE SQL,

 METHOD DISTANCE_2 (ADDR DB2_UDT.METHOD_ADDRESS_T)

 RETURNS FLOAT

 LANGUAGE C

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0003476.html?cp=SSEPGG_10.5.0%2F2-9-7-83&lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 131

 DETERMINISTIC

 PARAMETER STYLE SQL

 NO SQL

 NO EXTERNAL ACTION

3.10.2.3 Reference type

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

A reference type is a companion type to a structured type. Similar to a distinct type, a reference type is a

scalar type that shares a common representation with one of the built-in data types. This same representation
is shared for all types in the type hierarchy. The reference type representation is defined when the root type of
a type hierarchy is created. When using a reference type, a structured type is specified as a parameter of the
type. This parameter is called the target type of the reference.

The target of a reference is always a row in a typed table or a typed view. When a reference type is used,
it may have a scope defined. The scope identifies a table (called the target table) or view (called the target
view) that contains the target row of a reference value. The target table or view must have the same type as
the target type of the reference type. An instance of a scoped reference type uniquely identifies a row in a typed
table or typed view, called the target row.

DB2 Example:

CREATE TYPE DB2_UDT.REF_TYPE AS (NAME VARCHAR(30), LOCATION VARCHAR(30))

MODE DB2SQL;

CREATE TABLE DB2_UDT.REF_TYPE_TAB OF DB2_UDT.REF_TYPE (REF IS SUPPNO USER

GENERATED);

INSERT INTO DB2_UDT.REF_TYPE_TAB VALUES

(DB2_UDT.REF_TYPE('1'),'DBDEST','KHARKIV');

INSERT INTO DB2_UDT.REF_TYPE_TAB VALUES

(DB2_UDT.REF_TYPE('2'),'NOVOSVIT','KHARKIV');

CREATE TYPE DB2_UDT.REF_TYPE_2 AS (DESCRIPT VARCHAR(20), SUPPLIED_BY

REF(DB2_UDT.REF_TYPE)) MODE DB2SQL;

CREATE TABLE DB2_UDT.REF_TYPE_TAB_2 OF DB2_UDT.REF_TYPE_2 (REF IS PARTNO

USER GENERATED, SUPPLIED_BY WITH OPTIONS SCOPE DB2_UDT.REF_TYPE_TAB);

INSERT INTO DB2_UDT.REF_TYPE_TAB_2 VALUES

(DB2_UDT.REF_TYPE_2('2'),'PROGRAMMS',DB2_UDT.REF_TYPE('1'));

INSERT INTO DB2_UDT.REF_TYPE_TAB_2 VALUES

(DB2_UDT.REF_TYPE_2('3'),'APPLICATION',DB2_UDT.REF_TYPE('2'));

SELECT PARTNO, SUPPLIED_BY->NAME FROM DB2_UDT.REF_TYPE_TAB_2

3.10.3 3.10.3 SQL PL data types

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

3.10.3.1 Array type

An array type is a user-defined data type consisting of an ordered set of elements of a single data type.
A user-defined array type is a data type that is defined as an array with elements of another data type.

Every ordinary array type has an index with the data type of INTEGER and has a defined maximum cardinality.
Every associative array has an index with the data type of INTEGER or VARCHAR and does not have a defined
maximum cardinality.

Array type usage: An array type can only be used as the data type of:

 A local variable in a compound SQL (compiled) statement

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.structypes.doc/doc/c0006593.html?cp=SSEPGG_10.5.0%2F3-0-2-9-1-9-6-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.sqlpl.doc/com.ibm.db2.luw.apdv.sqlpl.doc-gentopic1.html?lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 132

 A parameter of an SQL routine

 A parameter of a Java™ procedure (non-nested ordinary arrays only)

 The returns type of an SQL function

 A global variable
A variable or parameter defined with an array type can only be used in compound SQL (compiled)

statements

An ordinary array type has a defined upper bound on the number of elements and uses the ordinal position

as the array index.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE TYPE DB2_UDT.SIMPLE_ARRAY AS INTEGER ARRAY[]

CREATE PROCEDURE DB2_UDT.SIMPLE_ARRAY_TYPE ()

 LANGUAGE SQL

 READS SQL DATA

BEGIN

DECLARE MYSIMPLEA DB2_UDT.SIMPLE_ARRAY;

 SET MYSIMPLEA[100] = 123;

END;

An associative array type has no specific upper bound on the number of elements and each element has

an associated index value. The data type of the index value can be an integer or a character string but is the
same data type for the entire array.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

CREATE TYPE DB2_UDT.INT_ARRAY AS INTEGER ARRAY[100];

CREATE TYPE DB2_UDT.STRING_ARRAY AS VARCHAR (100) ARRAY [100];

CREATE PROCEDURE DB2_UDT.ARRAY_TYPE ()

 LANGUAGE SQL READS SQL DATA

BEGIN

DECLARE INT_ARR DB2_UDT.INT_ARRAY;

DECLARE STR_ARR DB2_UDT.STRING_ARRAY;

SET INT_ARR = ARRAY[1,2,3];

SET STR_ARR = ARRAY['BOB', 'ANN', 'SUE'];

END;

3.10.3.2 Row type

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

A row type is a data type that is defined as an ordered sequence of named fields, each with an associated

data type, which effectively represents a row. A row type can be used as the data type for variables and
parameters in SQL PL to provide simple manipulation of a row of data.

Row type usage: A row type can only be used as the data type of:

 A local variable in a compound SQL (compiled) statement

 A parameter of an SQL routine

 The return type of an SQL function

 The element of an array type

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.sqlpl.doc/doc/c0053478.html?cp=SSEPGG_10.5.0%2F4-3-4-2-1&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.sqlpl.doc/doc/c0053499.html?cp=SSEPGG_10.5.0%2F4-3-4-2-2&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.sqlpl.doc/doc/c0053377.html?cp=SSEPGG_10.5.0%2F4-3-4-1&lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 133

 The field type in a row type

 A user-defined cursor type (only non-nested row types)

 A global variable
A variable or parameter defined with a row type can only be used in compound SQL (compiled) statements

DB2 Example:

CREATE TYPE DB2_UDT.ROW_TYPE AS ROW (DEPTNO VARCHAR(3), DEPTNAME

VARCHAR(29), MGRNO CHAR(6));

CREATE TABLE DB2_UDT.ROW_TYPE_TAB (DEPTNO VARCHAR(3), DEPTNAME

VARCHAR(29), MGRNO CHAR(6))

CREATE PROCEDURE DB2_UDT.ROW_TYPE_PROC ()

 LANGUAGE SQL

 MODIFIES SQL DATA

BEGIN

DECLARE R1 DB2_UDT.ROW_TYPE;

SET R1.DEPTNO = '1';

SET R1.DEPTNAME = 'SALES';

SET R1.MGRNO = '111111';

INSERT INTO DB2_UDT.ROW_TYPE_TAB VALUES (R1.DEPTNO, R1.DEPTNAME,

R1.MGRNO);

END;

CALL DB2_UDT.ROW_TYPE_PROC;

3.10.3.3 Anchored data type

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

An anchored type defines a data type based on another SQL object such as a column, global variable,

SQL variable, SQL parameter, or the row of a table or view.
A data type defined using an anchored type definition maintains a dependency on the object to which it is

anchored. Any change in the data type of the anchor object will impact the anchored data type. If anchored to
the row of a table or view, the anchored data type is ROW with the fields defined by the columns of the anchor
table or anchor view.

This data type is useful when declaring variables in cases where you require that the variable have the
same data type as another object, for example a column in a table, but you do not know exactly what is the
data type.

An anchored data type can be of the same type as one of:

 a row in a table

 a row in a view

 a cursor variable row definition

 a column in a table

 a column in a view

 a local variable, including a local cursor variable or row variable

 a global variable
Anchored data types can only be specified when declaring or creating one of the following:

 a local variable in an SQL procedure, including a row variable

 a local variable in a compiled SQL function, including a row variable

 a routine parameter

 a user-defined cursor data type using the CREATE TYPE statement.
It cannot be referenced in a DECLARE CURSOR statement.

 a function return data type

 a global variable

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.sqlpl.doc/doc/c0053588.html?lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 134

DB2 Example:

CREATE PROCEDURE DB2_UDT.ANCHOR_TYPE_VAL()

BEGIN

 DECLARE V1 ANCHOR DATA TYPE TO DB2_UDT.ANCHOR_ROW_TYPE.DEPTNAME;

 SELECT DEPTNAME INTO V1 FROM DB2_UDT.DEPT_ROW_TYPE;

 INSERT INTO DB2_UDT.ANCHOR_ROW_TYPE VALUES (5, V1, 555);

END;

CALL DB2_UDT.ANCHOR_TYPE_VAL();

DB2 Example:

CREATE TYPE DB2_UDT.ANCHOR_TYPE AS ROW ANCHOR DATA TYPE TO ROW OF

DB2_UDT.DEPT_ROW_TYPE;

CREATE TABLE DB2_UDT.ANCHOR_ROW_TYPE LIKE DB2_UDT.DEPT_ROW_TYPE;

CREATE PROCEDURE DB2_UDT.ANCHOR_TYPE()

BEGIN

 DECLARE ANCHOR_VAR DB2_UDT.ANCHOR_TYPE;

 SELECT * INTO ANCHOR_VAR FROM DB2_UDT.DEPT_ROW_TYPE;

 INSERT INTO DB2_UDT.ANCHOR_ROW_TYPE VALUES (ANCHOR_VAR.DEPTNO, 'MANAGER',

ANCHOR_VAR.MGRNO);

END;

CALL DB2_UDT.ANCHOR_TYPE();

3.10.3.4 Cursor data type

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

A user-defined cursor type is a user-defined data type defined with the keyword CURSOR and optionally
with an associated row type. A user-defined cursor type with an associated row type is astrongly-typed cursor
type; otherwise, it is a weakly-typed cursor type. A value of a user-defined cursor type represents a reference
to an underlying cursor.

Cursor type usage: A cursor type can only be used as the data type of:

 A local variable in a compound SQL (compiled) statement

 A parameter of an SQL routine

 The returns type of an SQL function

 A global variable

 A variable or parameter defined with a cursor type can only be used in compound SQL (compiled)
statements

 A variable or parameter that has a strongly-typed cursor type must not be used to assign cursor values
that are based on a statement-name instead of a select-statement

A user-defined cursor type with an associated row type is a strongly-typed cursor type; otherwise, it is a
weakly-typed cursor type.

DB2 Example:

CREATE TYPE DB2_UDT.ANCHOR_TYPE AS ROW ANCHOR DATA TYPE TO ROW OF

DB2_UDT.DEPT_ROW_TYPE;

CREATE TYPE DB2_UDT.CURSOR_TYPE AS DB2_UDT.ANCHOR_TYPE CURSOR;

CREATE PROCEDURE DB2_UDT.CURSOR_TYPE (IN NOM VARCHAR(8))

LANGUAGE SQL

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.sqlpl.doc/doc/c0053411.html?cp=SSEPGG_10.5.0%2F4-3-4-3&lang=en

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 135

BEGIN

 DECLARE C1 DB2_UDT.CURSOR_TYPE;

 SET C1 = CURSOR FOR SELECT * FROM DB2_UDT.DEPT_ROW_TYPE WHERE DEPTNO =

NOM;

END;

CALL DB2_UDT.CURSOR_TYPE(1);

3.11 Special Registers

This section describes emulation of some common special registers from DB2 to SQL Server.

3.11.1 CURRENT TIMESTAMP

In DB2, the special register CURRENT TIMESTAMP (or CURRENT_TIMESTAMP) specifies a timestamp
that is based on a reading of the time-of-day clock when the SQL statement is executed at the application
server.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT CURRENT TIMESTAMP FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate the CURRENT TIMESTAMP register by using the CURRENT_TIMESTAMP
or GETDATE() functions.

SQL Server Example:

SELECT CURRENT_TIMESTAMP;

SELECT GETDATE();

3.11.2 CURRENT TIMESTAMP WITH TIME ZONE,
SYSTIMESTAMP

If you want a timestamp with a time zone, the special register can be referenced as CURRENT TIMESTAMP
WITH TIME ZONE.

Solution:

In SQL Server, use SYSDATETIMEOFFSET function.

SQL Server Example:

SYSDATETIMEOFFSET()

3.11.3 CURRENT DATE

In DB2, the special register CURRENT DATE (or CURRENT_DATE) specifies a date that is based on a
reading of the time-of-day clock when the SQL statement is executed at the application server.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005886.html?cp=SSEPGG_10.5.0%2F2-12-2-5-31
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currenttimestamp.dita
http://msdn.microsoft.com/en-us/library/ms188751.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005870.html?cp=SSEPGG_10.5.0%2F2-12-2-5-4
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentdate.dita
http://msdn.microsoft.com/en-us/library/ms188751.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 136

SELECT CURRENT DATE FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate CURRENT DATE using the CURRENT_TIMESTAMP function.

SQL Server Example:

SELECT CAST(CURRENT_TIMESTAMP AS DATE);

SELECT DATEFROMPARTS (DATEPART(YEAR, CURRENT_TIMESTAMP), DATEPART(MONTH,

CURRENT_TIMESTAMP), DATEPART(DAY, CURRENT_TIMESTAMP));

SELECT DATETIMEFROMPARTS (DATEPART(YEAR, CURRENT_TIMESTAMP),

DATEPART(MONTH, CURRENT_TIMESTAMP), DATEPART(DAY, CURRENT_TIMESTAMP), 0,

0, 0, 0);

3.11.4 CURRENT TIME

In DB2, the special register CURRENT TIME (or CURRENT_TIME) specifies a time that is based on a
reading of the time-of-day clock when the SQL statement is executed at the application server.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT CURRENT TIME FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate CURRENT TIME by using the CURRENT_TIMESTAMP function.

SQL Server Example:

SELECT CAST(CURRENT_TIMESTAMP AS TIME);

SELECT TIMEFROMPARTS (DATEPART(HOUR, CURRENT_TIMESTAMP), DATEPART(MINUTE,

CURRENT_TIMESTAMP), DATEPART(SECOND, CURRENT_TIMESTAMP) , 0, 0);

3.11.5 CURRENT TIMEZONE, CURRENT TIMEZONE,
CURRENT_TIMEZONE

In DB2, the special register CURRENT TIMEZONE (or CURRENT_TIMEZONE) specifies the difference
between UTC (Coordinated Universal Time, formerly known as GMT) and local time at the application server.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT CURRENT TIMEZONE FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate CURRENT TIMEZONE by using the DATEPART and
SYSDATETIMEOFFSET functions.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005885.html?cp=SSEPGG_10.5.0%2F2-12-2-5-30
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currenttime.dita
http://msdn.microsoft.com/en-us/library/ms188751.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005887.html?cp=SSEPGG_10.5.0%2F2-12-2-5-32
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currenttz.dita
http://msdn.microsoft.com/en-us/library/ms174420.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 137

SQL Server Example:

WITH TZ (O) AS (SELECT DATEPART (TZOFFSET, SYSDATETIMEOFFSET ()))

SELECT (O / 60 * 100 + O % 60) * 100 FROM TZ;

3.11.6 CURRENT USER

In DB2, the special register CURRENT USER (or CURRENT_USER) contains the authorization ID that is to
be used for statement authorization.

Links: DB2 for Linux UNIX and Windows 10.5.0, SQL Server 2014.

DB2 Example:

SELECT CURRENT USER FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate the CURRENT USER register by using the CURRENT_USER function.

SQL Server Example:

SELECT CURRENT_USER

3.11.7 SESSION_USER and USER

In DB2, the SESSION_USER special register specifies the authorization ID that is to be used for the current
session. USER is a synonym for the SESSION_USER special register. SESSION_USER is the preferred
spelling. Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT SESSION_USER FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate SESSION_USER and USER by using the SESSION_USER function.

SQL Server Example:

SELECT SESSION_USER

3.11.8 SYSTEM_USER

In DB2, the SYSTEM_USER special register specifies the authorization ID of the user who is connected to
the database.

Links: DB2 for Linux UNIX and Windows 10.5.0, SQL Server 2014.

DB2 Example:

SELECT SYSTEM_USER FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate SYSTEM_USER by using the SYSTEM_USER function.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0011138.html?cp=SSEPGG_10.5.0%2F2-12-2-5-33
http://msdn.microsoft.com/en-us/library/ms176050.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0011134.html?cp=SSEPGG_10.5.0%2F2-12-2-5-34
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sessionuser.dita
http://msdn.microsoft.com/en-us/library/ms177587.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0011137.html?cp=SSEPGG_10.5.0%2F2-12-2-5-35
http://msdn.microsoft.com/en-us/library/ms179930.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 138

SQL Server Example:

SELECT SYSTEM_USER

3.11.9 CURRENT CLIENT_APPLNAME

In DB2, the CURRENT CLIENT_APPLNAME (or CLIENT APPLNAME) special register contains the value of
the application name, derived from the client information specified for this connection.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT CURRENT CLIENT_APPLNAME FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate the CURRENT CLIENT_APPLNAME register by using the APP_NAME()
function.

SQL Server Example:

SELECT APP_NAME()

3.11.10 CURRENT CLIENT_WRKSTNNAME

In DB2, the CURRENT CLIENT_WRKSTNNAME (or CLIENT WRKSTNNAME) special register contains the
value of the workstation name, derived from the client information specified for this connection.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT CURRENT CLIENT_WRKSTNNAME FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate CURRENT CLIENT_WRKSTNNAME by using the HOST_NAME() function.

SQL Server Example:

SELECT HOST_NAME()

3.11.11 CURRENT LOCK TIMEOUT

In DB2, the CURRENT LOCK TIMEOUT special register specifies the number of seconds to wait for a lock,
before returning an error that indicates that a lock cannot be obtained.

Links: DB2 for Linux UNIX and Windows 10.5.0, SQL Server 2014.

DB2 Example:

SET CURRENT LOCK TIMEOUT 1800;

SELECT CURRENT LOCK TIMEOUT FROM SYSIBM.SYSDUMMY1;

Solution:

In SQL Server, you can emulate CURRENT LOCK TIMEOUT by using the @@LOCK_TIMEOUT function.

SQL Server Example:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005865.html?cp=SSEPGG_10.5.0%2F2-12-2-5-1
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentclientapplname.dita
http://msdn.microsoft.com/en-us/library/ms189770.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005869.html?cp=SSEPGG_10.5.0%2F2-12-2-5-3
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentclientwrkstnname.dita
http://msdn.microsoft.com/en-us/library/ms178598.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0011857.html?cp=SSEPGG_10.5.0%2F2-12-2-5-16
http://msdn.microsoft.com/en-us/library/ms182729.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 139

SET LOCK_TIMEOUT 1800;

SELECT @@LOCK_TIMEOUT;

3.11.12 CURRENT SCHEMA, CURRENT_SCHEMA

In DB2, the CURRENT SCHEMA (or CURRENT_SCHEMA) special register specifies a VARCHAR(128)
value that identifies the schema name used to qualify database object references, where applicable, in
dynamically prepared SQL statements.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT CURRENT SCHEMA FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate CURRENT SCHEMA by using the db_name() or schema_name() functions.
It depends from mapping type (Schema - Database or Schema - Schema).

SQL Server Example:

SELECT DB_NAME();

SELECT SCHEMA_NAME();

3.11.13 CURRENT SERVER, CURRENT_SERVER

In DB2, the CURRENT SERVER (or CURRENT_SERVER) special register specifies a VARCHAR(18) value
that identifies the current application server. The register contains the actual name of the application server,
not an alias.

Links: DB2 for Linux UNIX and Windows 10.5.0, DB2 for z/OS 11.0.0, SQL Server 2014.

DB2 Example:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1

Solution:

In SQL Server, you can emulate CURRENT SERVER by using the @@SERVERNAME function.

SQL Server Example:

SELECT @@SERVERNAME

3.11.14 CURRENT ISOLATION

In DB2, the CURRENT ISOLATION special register holds a CHAR(2) value that identifies the isolation level
(in relation to other concurrent sessions) for any dynamic SQL statements issued within the current session.

Links: DB2 for Linux UNIX and Windows 10.5.0, SQL Server 2014.

DB2 Example:

SELECT CURRENT ISOLATION FROM SYSIBM.SYSDUMMY1

Solution:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005881.html?cp=SSEPGG_10.5.0%2F2-12-2-5-25
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentschema.dita
http://msdn.microsoft.com/en-us/library/ms189753.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0005882.html?cp=SSEPGG_10.5.0%2F2-12-2-5-26
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentserver.dita
http://msdn.microsoft.com/en-us/library/ms187944.aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0010945.html?cp=SSEPGG_10.5.0%2F2-12-2-5-13
http://msdn.microsoft.com/en-us/library/ms180065.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 140

In SQL Server, you can emulate CURRENT ISOLATION by using the script in the following example. But this
example returns isolation levels used in SQL Server. For more information about how to match a DB2
isolation level to a SQL Server isolation level, see section “Isolation Level and Lock Type”.

SQL Server Example:

SELECT

 CASE S.TRANSACTION_ISOLATION_LEVEL

 WHEN 4 THEN 'RR'

 WHEN 3 THEN 'RS'

 WHEN 2 THEN 'CS'

 WHEN 1 THEN 'UR'

 ELSE ' '

 END

FROM SYS.DM_EXEC_SESSIONS S

WHERE S.SESSION_ID = @@SPID

3.12 Synonyms

In DB2, a synonym is an alternate name for a table or view. A synonym can be used to reference a table or
view in cases where an existing table or view can be referenced. However, synonyms are deprecated,
therefore we convert them like the aliases. See Aliases for more details.

DB2 Example:

CREATE SYNONYM DB2_OBJECTS.A1 FOR DB2_OBJECTS.EMPLOYEES

SQL Server Example:

CREATE SYNONYM DB2_OBJECTS.A1 FOR DB2_OBJECTS.EMPLOYEES

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 141

4.0 Migrating DB2 Standard Functions

This section describes how to map DB2 standard functions to equivalent SQL Server functions, and provides
solutions for emulating DB2 functions.

4.1 Equivalent Functions

The following DB2 system functions are usable as they stand, in SQL Server code:

ABS, ACOS, ASCII, ASIN, ATAN, ATN2, AVE, CEILING (CEIL), COALESCE (VALUE, NVL),
COUNT, COUNT_BIG, COS, COT, CURRENT_TIMESTAMP, CURRENT_USER, DAY, DEGREES,
DIFFERENCE, EXP, FLOOR, LEFT, LENGTH, LOWER, LN, LOCATE, LOG10, LTRIM, MAX, MIN,
MONTH, NULLIF, POWER, RADIANS, RAND, REPLACE, RIGHT, ROUND, RTRIM,
SESSION_USER, SUM, SYSTEM_USER, SIGN, SIN, SINH, SOUNDEX, SQRT, TAN, UNICODE,
UPPER, YEAR.

4.2 Emulated Functions

The following DB2 system functions can be emulated by using various SQL Server functions or Transact-
SQL constructions.

4.2.1 Functions with a Variable Parameter Number

In DB2, the following functions have a variable parameter number:

GREATEST(VALUE1, VALUE2, …)

LEAST(VALUE1, VALUE2, …)

Solution:

In SQL Server, you can emulate functions that have a variable parameter number by using the Transact-SQL
IIF function.

4.2.2 String Functions

4.2.2.1 ASCII_CHR

In DB2, the ASCII_CHR function returns the character that has the ASCII code value that is specified by the
argument.

DB2 Example:

ASCII_CHR(65)

Solution:

In SQL Server, use CHAR function.

SQL Server Example:

CHAR(65)

4.2.2.2 CHARACTER_LENGTH, CHAR_LENGTH, LENGTH, LENGTHB, LENGTH2,
LENGTH4

In DB2, returns the length of an expression in the specified string-unit.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 142

DB2 Example:

CHARACTER_LENGTH(‘JOHN SMIT ’, OCTETS)

Solution:

In SQL Server, use LEN function.

The OCTETS as a CODEUNITS is compatible with LEN() only.

Replace trilling spaces or use other way to other character to correct length evaluate.

SQL Server Example:

LEN(REPLACE(’JOHN SMIT ’, ’ ’, ’.’))

LEN(’JOHN SMIT ’ + ’.’) - 1

4.2.2.3 CHR

In DB2, returns the character that has the ASCII code value specified by the argument.

DB2 Example:

CHR(65)

Solution:

In SQL Server, use CHAR function.

SQL Server Example:

CHAR(65)

4.2.2.4 CONCAT

In DB2, returns the concatenation of two strings.

DB2 Example:

CONCAT(’NUMBER ’, ’1’)

Solution:

 In SQL Server, use + (plus) operator.

SQL Server Example:

’NUMBER ’ + ’1’

4.2.2.5 CONTAINS

In DB2, the CONTAINS function searches a text search index using criteria that are specified in a search
argument and returns a result of bit type about whether or not a match was found.

DB2 Example:

CONTAINS (PEOPLE.FIRST_NAME, ’THOM%’)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 143

Solution:

In SQL Server, use CONTAINS function. It is returning logical true or false, so you are need to wrap function
to get bit result.

SQL Server Example:

IIF(CONTAINS(PEOPLE.FIRST_NAME, ’THOM%’), 1, 0)

4.2.2.6 DECRYPT_BIN, DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR,
DECRYPT_DB

In DB2, returns a value that is the result of decrypting encrypted data using a password string.

DB2 Example:

DECRYPT_BIN(@STR, @PASS)

DECRYPT_CHAR(@STR, @PASS)

Solution:

In SQL Server, use DECRYPTBYPASSPHRASE function which decrypts data that was encrypted with a
passphrase.

SQL Server Example:

DECRYPTBYPASSPHRASE(@PASS, @STR)

4.2.2.7 ENCRYPT, ENCRYPT_TDES

In DB2, returns a value that is the result of encrypting a data string expression.

The ENCRYPT_TDES function uses the Triple DES encryption algorithm.

DB2 Example:

ENCRYPT(@STR)

ENCRYPT(@STR, @PASS)

ENCRYPT(@STR, @PASS, @HINT)

ENCRYPT_TDES(@STR)

ENCRYPT_TDES(@STR, @PASS)

ENCRYPT_TDES(@STR, @PASS, @HINT)

Solution:

In SQL Server, use ENCRYPTBYPASSPHRASE function, which encrypt data with a passphrase using the
TRIPLE DES algorithm with a 128 key bit length.

Hint is ignored.

SQL Server Example:

ENCRYPTBYPASSPHRASE (@PASS, @STR)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 144

4.2.2.8 GENERATE_UNIQUE

In DB2, returns a bit data character string that is unique compared to any other execution of the same
function. The result of this function can be used to provide unique values in a table. Each successive value
will be greater than the previous value, providing a sequence that can be used within a table. The sequence
is based on the time when the function was executed.

DB2 Example:

GENERATE_UNIQUE()

Solution:

In SQL Server, use GETDATE function and SEQUENCE to generate unique value in necessary format.

The limitation is method does not work in function context because of SEQUENCE.

SQL Server Example:

CONVERT(VARBINARY(13), '0X' +

LEFT(REPLACE(REPLACE(REPLACE(REPLACE(CONVERT(VARCHAR(18), GETDATE(), 21),

' ', ''), '-', ''), '.', ''), ':', '') + '000000000000000000', 18) +

LEFT(CAST(NEXT VALUE FOR SEQUENCE_GEN_UNIQUE AS VARCHAR(8)) + '00000000',

8), 1)

Note: Azure SQL DB doesn’t support SEQUENCE objects.

4.2.2.9 INITCAP

In DB2, returns a string with the first character of each word converted to uppercase and the rest to
lowercase.

DB2 Example:

INITCAP(’JOHN SMIT’)

Solution:

In SQL Server, create such function:

CREATE FUNCTION DBO.INITCAP(@S NVARCHAR(MAX)) RETURNS NVARCHAR(MAX)

BEGIN

 DECLARE

 @RESULT NVARCHAR(MAX) = ’’,

 @MODE INT = 0,

 @I INT = 1,

 @CUR INT,

 @CHAR NVARCHAR(1),

 @LEN INT = LEN(@S),

 WHILE @I <= @LEN

 BEGIN

 SET @CHAR = SUBSTRING(@S, @I, 1);

 SET @CUR = ISNUMERIC(@CHAR) +

 IIF(UNICODE(UPPER(@CHAR)) != UNICODE(LOWER(@CHAR)), 1, 0);

 SET @RESULT = @RESULT +

 IIF(@MODE != @CUR, UPPER(@CHAR), LOWER(@CHAR));

 SET @MODE = @CUR;

 SET @I = @I + 1;

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 145

 END

 RETURN @RESULT;

END

SQL Server Example:

DBO.INITCAP(’JOHN SMIT’)

4.2.2.10 INSERT, OVERLAY

In DB2, returns a string, where LENGTH bytes are deleted from SOURCE beginning at START,
and INSERT is inserted into SOURCE beginning at START.

DB2 Example:

INSERT(@SOURCE_STR, @START, @LENGTH, @INSERT_STR)

OVERLAY(@SOURCE_STR, @INSERT_STR, @START, @LENGTH)

OVERLAY(@SOURCE_STR PLACING @INSERT_STR FROM @START FOR @LENGTH)

Solution:

In SQL Server, use STUFF function.

SQL Server Example:

STUFF($SOURCE_STR, $START, $LENGTH, $ INSERT_STR)

4.2.2.11 INSTR, INSTRB, INSTR2, INSTR4

In DB2, returns the starting position of a string within another string.

DB2 Example:

INSTR(@STR, @FRAGMENT, @START, @OCCURED)

INSTRB(@STR, @FRAGMENT, @START)

INSTR2(@STR, @FRAGMENT)

Solution:

In SQL Server, use such recursive solution:

CREATE FUNCTION DBO.INSTR(@S NVARCHAR(MAX), @FRAGMENT NVARCHAR(MAX),

 @START BIGINT, @OCCURED INT = NULL, @CODEUNITS VARCHAR(20) = NULL)

RETURNS BIGINT AS

BEGIN

 IF @ OCCURED IS NULL OR @ OCCURED < 1 SET @OCCURED = 1;

 IF @START < 1 SET @START = 1;

 DECLARE @POS BIGINT = CHARINDEX(@FRG, @S);

 IF @ OCCURED = 1 RETURN @POS;

RETURN DBO.INSTR(SUBSTRING(@S, @POS + 1, LEN(@S + '.') - 1), @FRAGMENT,

 1, @OCR - 1, @CODEUNITS) + @POS;

END

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 146

SQL Server Example:

DBO.INSTR(@STR, @FRAGMENT, @START, @OCCURED)

DBO.INSTR(@STR, @FRAGMENT, @START, DEFAULT)

DBO.INSTR(@STR, @FRAGMENT, DEFAULT, DEFAULT)

4.2.2.12 LCASE

In DB2, returns a string in which all the SBCS characters have been converted to lowercase characters.

DB2 Example:

LCASE(@S)

Solution:

In SQL Server, use LOWER function.

SQL Server Example:

LOWER(@S)

4.2.2.13 LOCATE, LOCATE_IN_STRING, POSITION, POSSTR

In DB2, returns the starting position of one string within another string.

DB2 Example:

LOCATE(@FRAGMENT, @STR, @START)

POSITION(@FRAGMENT, @STR)

Solution:

In SQL Server, use CHARINDEXfunction.

SQL Server Example:

CHARINDEX (@FRAGMENT, @STR, @START)

CHARINDEX (@FRAGMENT, @STR)

4.2.2.14 LPAD

In DB2, returns a string that is padded on the left with the specified character, or with blanks.

DB2 Example:

LPAD(’123’, 10, ’0’)

Solution:

In SQL Server, use RIGHT function.

SQL Server Example:

RIGHT(’0000000000’ + ’123’, 10)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 147

4.2.2.15 OCTET_LENGTH

In DB2, returns the length of an expression in octets (bytes).

DB2 Example:

OCTET_LENGTH(@STR)

Solution:

In SQL Server, use function DATALENGTH which returns the number of bytes used to represent any
expression.

SQL Server Example:

DATALENGTH(@STR)

4.2.2.16 REPEAT

In DB2, returns a character string composed of argument#1 repeated argument#2 times.

VARBINARY is supported too.

DB2 Example:

 REPEAT(@STR, @COUNT)

Solution:

In SQL Server, use REPLICATE function.

SQL Server Example:

REPLICATE(@STR, @COUNT)

4.2.2.17 RPAD

In DB2, returns a string that is padded on the right with the specified character, string, or with blanks.

DB2 Example:

RPAD(’F’, 10, ’O’)

Solution:

In SQL Server, use LEFT function.

SQL Server Example:

LEFT(’F’ + ’OOOOOOOOOO’, 10)

4.2.2.18 SPACE

In DB2, returns a character string that consists of a specified number of blanks.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 148

DB2 Example:

SPACE(N)

Solution:

In SQL Server, use REPLICATE function.

SQL Server Example:

REPLICATE (' ', N)

4.2.2.19 STRIP, TRIM

mode = { both | b | leading | l | trailing | t }

Removes leading or trailing blanks or other specified leading and/or trailing characters from a string
expression.

DB2 Example:

STRIP(:S)

STRIP(:S, BOTH)

STRIP(:STR, LEADING, ’0’)

TRIM(:S)

TRIM(:S, BOTH)

TRIM(:STR, LEADING, ’0’)

Solution:

In SQL Server, create special function or use inline T-SQL code with cycles.

SQL Server Example:

WHILE @S LIKE '0%' SET @S = RIGHT(@S, LEN(@S) - 1);

WHILE @S LIKE '%0' SET @S = LEFT(@S, LEN(@S) - 1);

4.2.2.20 SUBSTR, SUBSTRB, SUBSTRING

In DB2, returns a substring of a string.

DB2 Example:

SUBSTR (:STR, :START, :LEN)

SUBSTR (:STR, :START)

Solution:

In SQL Server, use SUBSTRING function.

If nessesary negative LEN must be exchanged to 1.

SQL Server Example:

SUBSTRING(@STR, @START, @LEN)

SUBSTRING(@STR, @START, LEN(@STR))

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 149

4.2.2.21 UCASE

In DB2, the UCASE returns capitalized argument.

DB2 Example:

UCASE (’JOHN’)

Solution:

In SQL Server, use UPPER function.

SQL Server Example:

UPPER(’JOHN’)

4.2.3 Numberic Functions

4.2.3.1 TRUNCATE, TRUNC

In DB2, returns a datetime value, truncated to the unit specified by format-string.

DB2 Example:

TRUNCATE(:DATETIME_VALUE, ’HH’)

Solution:

In SQL Server, use DATEPART function to decompose argument to parts, then use DATEFROMPARTS or
DATETIMEFROMPARTS to compose parts into truncated value.

4.2.3.2 ATAN2

In DB2, returns the arc tangent of x and y coordinates as an angle expressed in radians.

DB2 Example:

ATAN2(:X, :Y)

Solution:

In SQL Server, use ATAN function with precalculated parameter.

SQL Server Example:

ATAN(@Y / @X);

4.2.3.3 ATANH

In DB2, returns the hyperbolic arc tangent of a number, in radians.

DB2 Example:

 ATANH(:x)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 150

Solution:

In SQL Server, use formula for arc tangent.

SQL Server Example:

LOG((1 + @X) / (1 - @X)) / 2

4.2.3.4 COMPARE_DECFLOAT

In DB2, returns a SMALLINT value that indicates whether the two arguments are eq

ual or unordered, or whether one argument is greater than the other.

DB2 Example:

COMPARE_DECFLOAT(X, Y)

Solution:

In SQL Server, the function is converted to inline expression.

SQL Server Example:

CASE

 WHEN X IS NULL OR Y IS NULL THEN 3

 WHEN X = Y THEN 0

 WHEN X < Y THEN 1

 WHEN X > Y THEN 2

 ELSE 3

END

4.2.3.5 DECFLOAT_FORMAT, TO_NUMBER

In DB2, returns a DECFLOAT(34) from a character string.

DB2 Example:

DECFLOAT_FORMAT(:X)

Solution:

In SQL Server, instead DECFLOAT use similar DECIMAL(34, 10) data type.

Before casting clear argument from characters which enabled in DB2 but wrong in SQL Server number
presentation.

SQL Server Example:

CAST(IIF(CHARINDEX('-', @X) > 0, ’-’, ’’) +

REPLACE(REPLACE(REPLACE(REPLACE(REPLACE

(@X, '-', ''), '<', ''), '>', ''), ',', ''), '$', '')

AS DECIMAL(34, 10));

4.2.3.6 DECFLOAT_SORTKEY

The DECFLOAT_SORTKEY function returns a binary value that can be used when sorting DECFLOAT
values. The sorting occurs in a manner that is consistent with the IEEE 754R specification on total ordering.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 151

DB2 Example:

DECFLOAT_SORTKEY(X)

Solution:

SQL Server, numbers don’t have to be converted for comparison.

SQL Server Example:

@X

4.2.3.7 DIGITS

In DB2, returns a character-string representation of the absolute value of a number.

DB2 Example:

DIGITS(:X)

Solution:

In SQL Server, remove decimal point and add leading zeros to make length according to data type
precission.

SQL Server Example:

RIGHT('00' +

 REPLACE(CAST(

 IIF(CAST(SQL_VARIANT_PROPERTY(@X,'BASETYPE') AS VARCHAR(20)) IN

 ('FLOAT', 'MONEY', 'REAL', 'CHAR', 'NCHAR', 'NVARCHAR',

'VARCHAR'),

 CAST(@X AS DECIMAL(31, 6)), @X)

 AS VARCHAR(MAX)), '.', ''),

 CAST(SQL_VARIANT_PROPERTY(@X,'PRECISION') AS INT));

4.2.3.8 MOD

In DB2, returns the remainder of the first argument divided by the second argument.

DB2 Example:

MOD(:X, :Y)

Solution:

In SQL Server, use % operator, which returns the remainder of one number divided by another.

SQL Server Example:

@X % @Y

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 152

4.2.3.9 MULTIPLY_ALT

In DB2, returns the product of two arguments as a decimal value. This function is useful when the sum of the
argument precisions is greater than 31.

DB2 Example:

MULTIPLAY_ALT(:X, :Y)

Solution:

In SQL Server, use * operator.

SQL Server Example:

@X * @Y

4.2.3.10 NORMALIZE_DECFLOAT

In DB2, returns a decimal floating-point value that is the result of the argument set to its simplest form.

DB2 Example:

NORMALIZE_DECFLOAT(:X)

Solution:

In SQL Server, use casting to REAL.

SQL Server Example:

CAST(@X AS REAL)

4.2.3.11 QUANTIZE

In DB2, returns a decimal floating-point number that is equal in value and sign to the first argument, and
whose exponent is equal to the

 exponent of the second argument.

Returns @val with the same precission (in fact) as @exp.

By other words, with the same count of significant digits.

DB2 Example:

SELECT QUANTIZE(:X, :EXP) FROM SYSIBM.SYSDUMMY1;

Solution:

In SQL Server, emulate necessary behavior by T-SQL code. You can wrap it into custom defined scalar
function too.

SQL Server Example:

DECLARE @I INT = 0;

WHILE @I < 30

BEGIN

 IF CAST(@EXP AS BIGINT) > 0

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 153

 BEGIN

 SET @X = ROUND(@X, 1 - LEN(CAST(@EXP AS BIGINT) + @I);

 BREAK;

 END

 SET @EXP *= 10;

 SET @I += 1;

END

SELECT @X;

4.2.3.12 TANH

In DB2, returns the hyperbolic tangent of a number.

DB2 Example:

TANH(:X)

Solution:

In SQL Server, use hyperbolic tangent formula.

SQL Server Example:

(EXP(2 * @X) - 1) / (EXP(2 * @X) + 1)

4.2.3.13 TOTALORDER

In DB2, returns comparison order as -1, 0, or 1.

DB2 Example:

TOTALORDER(:X, :Y)

Compares pair values

Solution:

In SQL Server, use IIF function.

SQL Server Example:

IIF(@X < @Y, -1, IIF(@X > @Y, 1, 0))

4.2.4 Miscellaneous Functions

4.2.4.1 BITAND

In DB2, performs a bitwise AND operation.

DB2 Example:

BITAND(:X, :Y)

Solution:

In SQL Server, use & operator.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 154

SQL Server Example:

@X & @Y

4.2.4.2 BITANDNOT

In DB2, clears any bit in the first argument that is in the second argument.

DB2 Example:

BITANDNOT(:X, :Y)

Solution:

In SQL Server, use & and ~ operators.

SQL Server Example:

@X & ~ @Y

4.2.4.3 BITNOT

In DB2, performs a bitwise NOT operation.

DB2 Example:

BITNOT(:X)

Solution:

In SQL Server, use ~ operator.

SQL Server Example:

~@X

4.2.4.4 BITOR

In DB2, performs a bitwise OR operation.

DB2 Example:

BITOR(:X, :Y)

Solution:

In SQL Server, use | operator.

SQL Server Example:

@X | @Y

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 155

4.2.4.5 BITXOR

In DB2. performs a bitwise exclusive OR operation.

DB2 Example:

BITXOR(:X, :Y)

Solution:

In SQL Server, use ^ operator.

SQL Server Example:

@X ^ @Y

4.2.4.6 DECODE

In DB2, compares each specified expression2 to expression1. If expression1 is equal to expression2, or
both expression1 andexpression2 are null, the value of the following result-expresssion is returned. If
no expression2 matches expression1, the value ofelse-expression is returned; otherwise a null value is
returned.

DB2 Example:

DECODE(:X, :Y1, :Z1, :Y2, :Z2, :Z)

Solution:

In SQL Server, use IIF or CASE function.

SQL Server Example #1:

IIF(@X = @Y1, @Z1, IIF(@X = @Y2), @Z2, @Z) -- SUPPOSABLY @X IS NOT NULL

SQL Server Example #2:

CASE

 WHEN @X = @Y1 OR (@X IS NULL AND @Y1 IS NULL) THEN @Z1

 WHEN @X = @Y2 OR (@X IS NULL AND @Y2 IS NULL) THEN @Z2

 ELSE @Z

END

4.2.4.7 GREATEST, MAX

In DB2, returns the maximum value in a set of values.

DB2 Example:

GREATEST(:X1, :X2, :X3, :X4, :X5)

Solution:

In SQL Server, use MAX aggregate function.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 156

SQL Server Example:

SELECT MAX(C) FROM (VALUES (@X1), (@X2), (@X3), (@X4), (@X5)) T(C)

4.2.4.8 HEX

In DB2, returns a hexadecimal representation of a value.

DB2 Example:

HEX(:X)

Solution:

In SQL Server, use casting to VARBINARY, then converting to VARCHAR.

SQL Server Example:

CONVERT(VARCHAR(MAX), CAST(@X AS VARBINARY(MAX)), 1)

4.2.4.9 IDENTITY_VAL_LOCAL

In DB2, returns the most recently assigned value for an identity column.

Solution:

In SQL Server, use SCOPE_IDENTITY function.

SQL Server Example:

SCOPE_IDENTITY()

4.2.4.10 IFNULL, NVL

In DB2, returns the first nonnull argument.

DB2 Example:

IFNULL(:X, :Y)

Solution:

In SQL Server, use COALESCE function.

SQL Server Example:

COALESCE(@X, @Y)

4.2.4.11 LEAST, MIN

In DB2, returns the minimum value in a set of values.

DB2 Example:

LEAST(:X1, :X2, :X3, :X4, :X5)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 157

Solution:

In SQL Server, use MIN aggregate function.

SQL Server Example:

SELECT MIN(C) FROM (VALUES (@X1), (@X2), (@X3), (@X4), (@X5)) T(C)

4.2.4.12 NVL2

In DB2, returns the second argument when the first argument is not NULL. If the first argument is NULL, the
third argument is returned.

DB2 Example:

NVL2(:TEST, :THEN, :ELSE)

Solution:

In SQL Server, use IIF function.

SQL Server Example:

IIF (@TEST IS NOT NULL, @THEN, @ELSE)

4.2.5 Date / Time Functions

4.2.5.1 ADD_MONTHS

In DB2, returns a datetime value that represents expression plus a specified number of months.

DB2 Example:

ADD_MONTHS(:X, :QTY)

Solution:

In SQL Server, use function DATEADD which returns a specified date with the specified number interval
(signed integer) added to a specified datepart of that date.

SQL Server Example:

DATEADD(MONTH, @QTY, @X)

4.2.5.2 DAYNAME

In DB2, returns a character string containing the name of the day (for example, Friday) for the day portion of
expression, based on locale-name or the value of the special register CURRENT LOCALE LC_TIME.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 158

DB2 Example:

DAYNAME(@X)

Solution:

In SQL Server, use function DATENAME which returns a character string that represents the
specified datepart of the specified date

SQL Server Example:

DATENAME(WEEKDAY, @X)

4.2.5.3 DAYOFMONTH

The DAYOFMONTH function returns the day part of a value. The function is similar to the DAY function,
except DAYOFMONTH does not support a date or timestamp duration as an argument.

DB2 Example:

DAYOFMONTH(@X)

Solution:

In SQL Server, use function DAY which returns an integer representing the day (day of the month) of the
specified date.

SQL Server Example:

DAY(@X)

4.2.5.4 DAYOFWEEK

In DB2, returns the day of the week from a value, where 1 is Sunday and 7 is Saturday.

DB2 Example:

DAYOFWEEK(@X)

Solution:

In SQL Server, use tricky formula from the example.

SQL Server Example:

(DATEPART(WEEKDAY, @X) + @@DATEFIRST + 6) % 7 + 1

4.2.5.5 DAYOFWEEK_ISO

In DB2, returns the day of the week from a value, where 1 is Monday and 7 is Sunday.

DB2 Example:

DAYOFWEEK_ISO(:X)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 159

Solution:

In SQL Server, use tricky formula from the example.

SQL Server Example:

(DATEPART(WEEKDAY, @X) + @@DATEFIRST + 5) % 7 + 1

4.2.5.6 DAYOFYEAR

In DB2, returns the day of the year from a value.

DB2 Example:

DAYOFYEAR(:X)

Solution:

In SQL Server, use DATEPART function.

SQL Server Example:

DATEPART(DAYOFYEAR, @X)

4.2.5.7 DAYS

In DB2, returns an integer representation of a date.

DB2 Example:

DAYS(:X)

Solution:

In SQL Server, use DATEDIFF function with the birth of Christ as first argument.

SQL Server Example:

DATEDIFF(DD, CAST('0001-01-01' AS DATE), @X) + 1

4.2.5.8 EXTRACT

In DB2, returns a portion of a date or timestamp based on the arguments.

DB2 Example:

EXTRACT(YEAR FROM :X)

Solution:

In SQL Server, use DATEPART function.

SQL Server Example:

DATEPART(YEAR, @X)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 160

4.2.5.9 HOUR

In DB2, returns the hour part of a value.

DB2 Example:

HOUR(:X)

Solution:

In SQL Server, use DATEPART function.

SQL Server Example:

DATEPART(HOUR, @X)

4.2.5.10 JULIAN_DAY

In DB2, returns an integer value representing the number of days from January 1, 4712 B.C. to the date
specified in the argument.

DB2 Example:

JULIAN_DAY(:X)

Solution:

In SQL Server, use DATEDIFF function with the birth of Christ as first argument plus 1721426 as difference
between calendars.

SQL Server Example:

DATEDIFF(DD, CAST('0001-01-01' AS DATE), @DATE) + 1721426

4.2.5.11 LAST_DAY

In DB2, returns a datetime value that represents the last day of the month of the argument.

DB2 Example:

LAST_DAY(EXPR)

Solution:

In SQL Server, use EOMONTH function.

SQL Server Example:

EOMONTH(@X)

4.2.5.12 MICROSECOND

In DB2, returns the microsecond part of a value.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 161

DB2 Example:

MICROSECOND(:X)

Solution:

In SQL Server, use DATEPART function.

SQL Server Example:

DATEPART(MICROSECOND, @X)

4.2.5.13 MIDNIGHT_SECONDS

In DB2, returns an integer value representing the number of seconds between midnight

and a specified time value.

DB2 Example:

MIDNIGHT_SECOND(:X)

Solution:

In SQL Server, calculate number of seconds since midnight using DATEDIFF.

SQL Server Example:

DATEDIFF(SECOND, CAST('00:00:00' AS TIME), CAST (@X AS TIME))

4.2.5.14 MINUTE

In DB2, returns the minute part of a value.

DB2 Example:

MINUTE(:X)

Solution:

In SQL Server, use DATEPART function.

SQL Server Example:

DATEPART(MINUTE, @X)

4.2.5.15 MONTHNAME

In DB2, returns a character string containing the name of the month (for example, January) for the month
portion of expression.

 DB2 Example:

MONTHNAME(:X)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 162

Solution:

In SQL Server, use function DATENAME which returns a character string that represents the
specified datepart of the specified date

SQL Server Example:

DATENAME(MONTH, @X)

4.2.5.16 MONTHS_BETWEEN

Returns an estimate of the number of months between ARGUMENT #1 and ARGUMENT #2.

DB2 Example:

MONTHS_BETWEEN(:ARG1, :ARG2)

Solution:

In SQL Server, use DATEDIFF function, but note that strictly speaking it is no equivalent to DB2 result.

SQL Server Example:

DATEDIFF(MONTH, @ARG1, @ARG2)

4.2.5.17 QUARTER

In DB2, returns an integer that represents the quarter of the year in which a date resides.

DB2 Example:

QUARTER(:X)

Solution:

In SQL Server, use DATEPART function.

SQL Server Example:

DATEPART(QUARTER, @X)

4.2.5.18 SECOND

In DB2, returns the seconds part of a value.

DB2 Example:

SECOND(:X)

Solution:

In SQL Server, use formula.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 163

SQL Server Example:

DATEPART(SECOND, @X) +

ROUND(DATEPART(NANOSECOND, @DATE) / 1000000000.000000000 , @SCALE, 12)

4.2.5.19 TIMESTAMP_ISO, TO_TIMESTAMP

In DB2, returns a timestamp value based on a date, time, or timestamp argument. If the argument is a date, it
inserts zero for all the time elements. If the argument is a time, it inserts the value of CURRENT DATE for the
date elements, and zero for the fractional time element.

DB2 Example:

TIMESTAMP_ISO(:X)

Solution:

In SQL Server, use convertion into DATETIME2 data type.

SQL Server Example:

CAST(@X AS DATETIME2)

4.2.5.20 WEEK

In DB2, returns the week of the year from a value, where the week starts with Sunday.

DB2 Example:

WEEK(:X)

Solution:

In SQL Server, use xxxxx function.

SQL Server Example:

DATEDIFF(WEEK, DATENAME(YEAR, @X) + '-01-01', @X) + 1

4.2.5.21 WEEK_ISO

In DB2, returns the week of the year from a value, where the week starts with Monday.

DB2 Example:

WEEK_ISO(:X)

Solution:

In SQL Server, use DATEPART function.

SQL Server Example:

DATEPART(ISO_WEEK, @X)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 164

4.2.6 Casting Functions

4.2.6.1 BIGINT

In DB2, converts argument to Big Integer.

Date and time are converted particularly (not as cast()).

DB2 Example:

BIGINT(:X)

Solution:

In SQL Server, use castint to BIGINT. Different data types are converted by different way. See examples.

SQL Server Example for DATE:

CAST(CONVERT(VARCHAR(10), @X, 112) AS BIGINT)

SQL Server Example for TIME:

CAST(REPLACE(CONVERT(VARCHAR(MAX), @X, 120), ':', '') AS BIGINT)

SQL Server Example for DATETIME, DATETIME2, DATETIMEOFFSET, SMALLDATETIME:

CAST(REPLACE(REPLACE(REPLACE(CONVERT(VARCHAR(MAX), CAST(@X AS DATETIME2),

120), '-', ''), ' ', ''), ':', '') AS BIGINT)

4.2.6.2 BINARY, VARBINARY, BLOB

In DB2, the BINARY function returns a BINARY (fixed-length binary string) representation of a string of any
type or of a row ID type.

DB2 Example:

BINARY(:STR)

VARBINARY(:STR, LEN)

Solution:

In SQL Server, use casting to VARBINARY.

SQL Server Example:

CAST(S AS VARBINARY(MAX))

CAST(S AS VARBINARY(LEN))

4.2.6.3 CLOB, TO_CLOB

In DB2, the CLOB function returns a CLOB representation of a character string type. In a Unicode database, if a

supplied argument is a graphic string, it is first converted to a character string data type before the function is
executed.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 165

DB2 Example:

CLOB(:STR)

TO_CLOB(:STR, :LEN)

Solution:

In SQL Server, use casting to VARCHAR.

SQL Server Example:

CAST(@STR AS VARCHAR(MAX))

CAST(@STR AS VARCHAR(@LEN))

4.2.6.4 DATE

In DB2, returns a DATE from a argument.

DB2 Example:

DATE ('2015-10-20')

Solution:

In SQL Server, use different ways for different dada types. See examples.

SQL Server Example for numeric argument:

DATEADD(D, CAST(@X AS BIGINT) - 1, CAST('00010101' AS DATE))

SQL Server Example for string argument contain ‘.’:

CONVERT(DATE, @X, 104)

SQL Server Example for string argument contain ‘-’:

CONVERT(DATE, @X, 120)

SQL Server Example for argument of other data type:

CAST(@X AS DATE)

4.2.6.5 DBCLOB

In DB2, returns a DBCLOB representation of a string.

DB2 Example:

DBCLOB(:STR)

DBCLOB(:STR, :LEN)

Solution:

In SQL Server, use casting to VARCHAR.

SQL Server Example:

CAST(@STR AS VARCHAR(MAX))

CAST(@STR AS VARCHAR(@LEN))

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 166

4.2.6.6 DECFLOAT

In DB2, returns the decimal floating-point representation of a value.

DB2 Example:

DECFLOAT(:STR)

DECFLOAT(:STR, :DEC)

Solution:

In SQL Server, use casting into decimal(38, 10).

SQL Server Example:

CAST(@STR AS DECIMAL(38,10))

CAST(REPLACE(@STR, @DEC, '.') AS DECIMAL(38,10))

4.2.6.7 DECIMAL, DEC

In DB2, returns a DECIMAL representation of a value. Dates are converted to YYYYMMDDHHmiSS.mmm

DB2 Example:

DECIMAL(:X, :SCALE, :DEC)

DECIMAL(:X, :SCALE)

DECIMAL(:X)

Solution:

In SQL Server, use casting into decimal(31, 10) after cleaning argument from wrong characters.

SQL Server Example for DATE:

CAST(CONVERT(VARCHAR(10), CAST(@X AS DATE), 112) AS DECIMAL(31, 10))

SQL Server Example for TIME:

CAST(REPLACE(CONVERT(VARCHAR(MAX), @X, 120), ':', '') AS DECIMAL(31, 10))

SQL Server Example for DATETIME, DATETIME2, DATETIMEOFFSET, SMALLDATETIME:

CAST(REPLACE(REPLACE(REPLACE(CONVERT(VARCHAR(30), @X, 120),

'-', ''), ' ', ''), ':', '') AS DECIMAL(31, 10))

SQL Server Example for strings:

CAST(REPLACE(@X), @DEC, '.') AS DECIMAL(31, 10))

SQL Server Example for other data types:

CAST(CAST(@X AS VARCHAR(MAX)) AS DECIMAL(31, 10)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 167

4.2.6.8 DOUBLE_PRECISION, DOUBLE

In DB2, returns the floating-point representation of a value.

DB2 Example:

 DOUBLE_PRECISION(:X)

Solution:

In SQL Server, use casting into DOUBLE PRECISSION.

SQL Server Example:

CAST(@X AS DOUBLE PRECISION)

4.2.6.9 EMPTY_BLOB

In DB2, returns a zero-length value of the associated data type.

DB2 Example:

EMPTY_BLOB

Solution:

In SQL Server, use VARBINARY of zero length.

SQL Server Example:

CAST('' AS VARBINARY)

4.2.6.10 EMPTY_CLOB, EMPTY_DBCLOB, and EMPTY_NCLOB

Return a zero-length value of the associated data type.

Solution:

In SQL Server, use empty string

SQL Server Example:

 ''

4.2.6.11 FLOAT

In DB2, returns a FLOAT representation of a value.

DB2 Example:

FLOAT(:X)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 168

Solution:

In SQL Server, use casting to FLOAT(37).

SQL Server Example:

CAST(@X AS FLOAT(37))

4.2.6.12 INTEGER, INT

In DB2, returns an INTEGER representation of a value.

Date and time are converted particularly (not as cast()).

DB2 Example:

 INTEGER(:x)

Solution:

In SQL Server, use castint to INT. Different data types are converted by different way. See examples.

SQL Server Example for DATE:

CAST(CONVERT(VARCHAR(10), @X, 112) AS INT)

SQL Server Example for TIME:

CAST(REPLACE(CONVERT(VARCHAR(MAX), @X, 120), ':', '') AS INT)

SQL Server Example for DATETIME, DATETIME2, DATETIMEOFFSET, SMALLDATETIME:

CAST(REPLACE(REPLACE(REPLACE(CONVERT(VARCHAR(MAX), CAST(@X AS DATETIME2),

120), '-', ''), ' ', ''), ':', '') AS INT)

4.2.6.13 NCLOB, TO_NCLOB

In DB2, convert argument to nclob presentation.

DB2 Example:

NCLOB(:STR)

NCLOB(:STR, :LEN)

Solution:

In SQL Server, instead NCLOB the VASRCHAR is used.

SQL Server Example:

CAST(@STR AS VARCHAR(MAX))

CAST(@STR AS VARCHAR(@LEN))

4.2.6.14 REAL

In DB2, returns the single-precision floating-point representation of a value.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 169

DB2 Example:

REAL(:X)

Solution:

In SQL Server, use casting in REAL.

SQL Server Example:

CAST(@X AS REAL)

4.2.6.15 SMALLINT

In DB2, returns a SMALLINT representation of a value.

DB2 Example:

 SMALLINT(:x)

Solution:

In SQL Server, use casting into SMALLINT.

SQL Server Example:

CAST(@X AS SMALLINT)

4.2.6.16 TIME

In DB2, returns a TIME from a value.

DB2 Example:

TIME(:X)

Solution:

In SQL Server, use xxxxx function.

SQL Server Example:

CAST(CAST(@X AS DATETIME2) AS TIME)

4.2.6.17 TIMESTAMP

In DB2, returns a TIMESTAMP from a value.

For strings 'yyyyxxddhhmmss.d' format is supported.

DB2 Example:

TIMESTAMP(X)

Solution:

In SQL Server, use xxxxx function.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 170

SQL Server Example for strings:

IIF(LENGTH(@X) = 13,

 CONVERT(DATETIME, SUBSTRING(CAST(@X AS VARCHAR(MAX)), 1, 8), 112) +

 CAST(SUBSTRING(@X), 9, 2) + ':' +

 SUBSTRING(@X), 11, 2) + '.' +

 SUBSTRING(@X), 13, 1) AS DATETIME),

 CAST(@X AS DATETIME2))

SQL Server Example for another data types:

CAST(@X AS DATETIME2)

4.2.7 Aggregation Functions

4.2.7.1 LISTAGG

In DB2, aggregates a set string elements into one string by concatenating the strings.

DB2 Example:

SELECT LISTAGG(COL1) FROM TABLE1

Solution:

In SQL Server, use FOR XML clause.

SQL Server Example:

SELECT COL1 + '' FROM TABLE1 FOR XML PATH('')

4.2.7.2 MEDIAN

The MEDIAN function returns the median of a set of numbers.

DB2 Example:

SELECT MEDIAN(SALARY)

FROM EMPLOYEE

WHERE WORKDEPT = ‘D11’

Solution:

In SQL Server, emulate median evaluating through SQL queries.

SQL Server Example:

SELECT TOP 1 SALARY

FROM

(

 SELECT TOP 50 PERCENT SALARY

 FROM EMPLOYEE

 WHERE WORKDEPT = ‘D11’

 ORDER BY SALARY

) Q

ORDER BY SALARY DESC

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 171

4.2.7.3 STDDEV, STDDEV_SAMP

In DB2, returns the standard deviation of a set of numbers.

DB2 Example:

STDDEV(DISTINCT COL1)

Solution:

In SQL Server, use STDEVP function which returns the statistical standard deviation for the population for all
values in the specified expression.

SQL Server Example:

STDEVP(DISTINCT COL1)

4.2.7.4 VARIANCE, VARIANCE_SAMP

In DB2, returns the variance of a set of numbers.

DB2 Example:

VARIANCE(COL1)

Solution:

In SQL Server, use function VARP which returns the statistical variance for the population for all values in the
specified expression.

SQL Server Example:

VARP(COL1)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 172

5.0 Data Migration

Data migration is the process of transferring data from a source database to a target database. Both
SQL Server and DB2 provide built-in utilities for data migration.

DB2 provides the EXPORT utility for exporting data from DB2 to flat (text) files. For information about DB2
EXPORT, go to
pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.ref.doc%2Fdoc%2Fr00594
82.html.

SQL Server offers the Bulk Copy Program (bcp), the BULK INSERT statement, and the SQL Server
Integration Services (SSIS) platform of utilities for importing data. These utilities can be used to perform data
migration from DB2 to SQL Server.

Bulk Copy Program (bcp) is a command-line utility that uses the ODBC bulk copy API. For bcp, data
must be input as ASCII text files. For more information about BCP, go to msdn.microsoft.com/en-
us/library/ms162802.aspx.

BULK INSERT is a T-SQL statement that has same functionality as bcp, and also imports DB2 data as
flat files. The major difference from bcp is that BULK INSERT is available from within a database session.
For more information about BULK INSERT, go to msdn.microsoft.com
/en-us/library/ms188365.aspx.

SQL Server Integration Services (SSIS) is a powerful set of tools that can be used to extract, transform,
and load DB2 data to SQL Server databases. SSIS wizards simplify the process of defining and
performing the import. SSIS also provides access to the BULK INSERT statement in the BULK INSERT
task. SSIS offers two methods for importing:

 Load data from flat files.

 Provide direct connectivity with DB2 using OLEDB AND ODBC providers to extract data from
DB2.

This section details the steps to perform while migrating the data, in these three areas:

 Pre-implementation

 Implementation

 Post-implementation

The various SQL Server options for migrating data from DB2 to SQL Server are presented in section 5.2,
“Implementation Tasks.”

Note that Azure SQL DB doesn’t support working with the file system.

5.1 Pre-Implementation Tasks

Perform these seven tasks before performing the migration:

1. In SQL Server, back up the empty target SQL Server database.

2. In DB2, export DB2 data to flat (text) files using the DB2 UDB export utility, exporting one flat file for each
table.

3. In SQL Server, set the recovery model of the database to Bulk-logged using the command below:

ALTER DATABASE <DATABASENAME>

SET RECOVERY BULK LOGGED

4. In SQL Server, disable all constraints.

Note: By default, constraints are not checked when you use bcp or BULK INSERT.

5. In SQL Server, disable triggers on all tables into which data will be loaded using the command below:

ALTER TABLE <TABLENAME> DISABLE TRIGGER ALL

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.ref.doc%2Fdoc%2Fr0059482.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.ref.doc%2Fdoc%2Fr0059482.html
http://msdn.microsoft.com/en-us/library/ms162802.aspx
http://msdn.microsoft.com/en-us/library/ms162802.aspx
http://msdn.microsoft.com/en-us/library/ms188365.aspx
http://msdn.microsoft.com/en-us/library/ms188365.aspx

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 173

In the BULK INSERT statement, use the FIRE_TRIGGERS option to enable and disable triggers.

6. In SQL Server, handle identity column inserts:

 In bcp, use the –E switch.

 In BULK INSERT, use the KEEPIDENTITY argument.

5.2 Implementation Tasks

The data migration implementation is the actual transfer of data from the source DB2 database to the
SQL Server database. Tis can be performed in either one step or two steps. When trying to determine the
most efficient method for loading a database, take into account the volume of data to be loaded.

Single-step process: Data is extracted from the DB2 database by direct connectivity to DB2, using OLE
DB or ODBC. In situations in which a small to moderate amount of data is involved, consider using the
single-step method with SSIS Import and Export Wizard. The single-step method is also preferable when
the data row contains large binary objects or graphical objects, or when the length of the data row varies
significantly, which makes it costly to store and encode the fields in the text file format.

Two-step process: Data is extracted from DB2 to ASCII flat files, and then loaded to the SQL Server
database using bcp or the BULK INSERT statement. The bcp utility and the BULK INSERT statement
provide the two most efficient methods of loading large data sets. Use BULK INSERT instead of the bcp
utility if you are running the process on the computer that is running SQL Server; BULK INSERT is
available from within a database session.

The following sections outline the steps for performing the implementation using different tools.

5.2.1 One-Step Process Using SSIS Import and Export
Wizard

The following steps outline how to create a SSIS package to directly connect to DB2 database using an OLE
DB provider, and how to import data directly from a DB2 database without creating an intermediate file.

To import by direct connection using SSIS

1. From SQL Server Management Studio, launch the SSIS Import and Export Wizard: right-click the target
SQL Server database, point to Tasks, and then click Import Data.

2. On the Welcome page, click Next.

3. On the Choose a Data Source page, in the Data Source list, click IBM OLE DB Provider for DB2, and
then click Properties.

4. In the Properties dialog box, enter the properties for your data source.

5. On the Choose a Destination page, in the Destination box, select Microsoft OLEDB for SQL Server
and provide server and login information for the destination SQL Server database.

6. In the Specify Table Copy or Query page, do one of the following:

 Select the Copy data from one or more tables or views option. From the list of tables and views
that appears, choose which tables and views you want to import.

 Select the Write a query to specify the data to transfer option. From the Provide a Source Query

page, enter your query.

7. On the Save and Run Package page, click Finish to run the import package immediately, or click Save
to run the package at later time.

Note: To customize the SSIS package, click Save.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 174

5.2.2 Two-Step Process Using the bcp Utility

The bcp utility is a command-line utility that can be used to load data to SQL Server from flat files.

Syntax

BCP DBNAME.SCHEMA.TABLENAME IN DATA_FILE –T FIELD_TERMINATOR –S

SERVER_NAME -U LOGIN_ID –P PASSWORD

where -t specifies the field delimiter.

To make the bcp process repeatable, create a format file and use the -f switch to specify the format file for
future imports.

The following arguments should be taken into consideration while importing large volume of data from DB2.

-e error_file logs errors to an error file during the import procedure.

-b batch_size specifies the size of the batch; the default is all the rows. Each batch is imported and
logged in a separate transaction. After a given transaction is committed, the rows that have been
imported by that transaction are committed. If the operation fails, only those rows that have been
imported from the current batch are rolled back, and you can resume importing data starting at the
beginning of the failed batch, rather than at the beginning of the data file.

-E specifies that the identity value or values in the imported data file are to be used for the identity
column. If -E is not specified, then the identity values for this column in the data file being imported are
ignored, and SQL Server automatically assigns unique values based on the seed and increment values
that were specified during table creation.

Note that Azure SQL DB doesn’t support working with the file system.

5.2.3 Two-Step Process Using BULK INSERT

BULK INSERT is a Transact-SQL statement that has the same functionality as bcp, and can be used to
import DB2 data to SQL Server from a flat file. Choose BULK INSERT rather than bcp to make the table
migration an integral part of a Transact-SQL batch or a stored procedure.

Syntax

BULK INSERT DBNAME.OWNER.TABLE FROM FILENAME WITH(DATAFILETYPE=’CHAR’,

FIELDTERMINATOR=’,’ , ROWTERMINATOR=’\N’)

The following additional arguments should be taken into consideration while importing large volume of data
from DB2:

KEEPIDENTITY specifies that identity values in the flat file are to be used for the identity column.

FIRETRIGGERS specifies that triggers are not suppressed.

CHECK_CONSTRAINTS specifies that constraints on the table must be checked.

BATCHSIZE specifies the number of rows in the batch. Each batch is copied as an individual transaction.

TABLOCK specifies that a table-level lock is acquired for the duration of the bulk-import operation.

5.2.4 Two-Step Process Using SSIS

This section outlines two ways that SSIS can be used to import data from flat (text) files in a DB2 database:
with and without the SSIS Import and Export Wizard. The wizard is easier to use, but the other option is more
flexible.

To import from a flat file using the SSIS Import and Export Wizard

1. From SQL Server Management Studio, launch the SSIS Import and Export Wizard: right-click the target
SQL Server database, point to Tasks, and then click Import Data.

2. On the Welcome page, click Next.

3. On the Choose a Data Source page, do the following:

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 175

 In the Data Source list, select Flat File Source.

 In the File name box, enter the name of the file that contains the DB2 table data.

 Move to the Columns subpage, and then choose the appropriate column delimiter and row delimiter.

4. On the Choose a Destination page, in the Destination box, select Microsoft OLEDB for SQL Server
and provide server and login information for the destination SQL Server database.

5. On the Save and Run Package page, click Finish to run the import package immediately, or click Save
to run the package at later time or to do customization.

To import from a flat file using SSIS

1. In Microsoft Visual Studio®, create a new project from the Integration Services Project template.

2. On the Data Flow tab, click Data Flow Sources in the Toolbox, and then choose Flat File Source.

3. Create a new flat file connection manager that is based on your flat file configuration; have the manager
point to the file containing the DB2 table data.

4. Right-click the component, and then click Show Advanced Editor.

5. On the Input and Output Properties tab, expand Flat File Source Output, and then expand Output
Columns.

6. For each column, set the Fast Parse custom property to True to increase performance.

Note: The FastParse property indicates whether the column uses the quicker but locale-insensitive

fast parsing routines that SSIS provides, or the locale-sensitive standard parsing routines. If the data

flow in the package requires locale-sensitive parsing, standard parse is recommended instead of fast

parse, in which case set this to False.

7. From Data Flow Destinations in the Toolbox, click OLE DB Destination.

8. In the OLE DB Destination Editor dialog box, do the following:

 In the OLE DB connection manager list, click the name of the destination connection that should
point to the target SQL Server database.

 In the Data access mode list, click Table or view - fast load.

 In the Name of the table or the view list, click the name of the table where you want to dump the
data from the file.

9. Select the Table Lock and Keep Identity check boxes.

10. From the File menu, click Save All to save the package.

11. Press F5 to run the package.

5.2.5 Methods for Optimizing Bulk Import Performance

Here are a few suggestions for improving the performance of a bulk data import.

 Use BULK INSERT instead of the bcp utility if you are running the process on the computer that is
running SQL Server.

 Loading of large amount of data in parallel creates the best performance when dealing with a
multiprocessor server. The parallelism can be intra-table or inter-table. Follow these guidelines for
parallel data loading:

 Load the data into the same table from multiple clients in parallel, thereby improving the performance
of the bulk-copy operation. Run as many load processes as you have available CPUs. If you have
eight CPUs, run eight parallel loads.

 Use the TABLOCK hint during parallel loads. Both bcp and BULK INSERT support this hint.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 176

 Divide the data to be imported among clients into same number of data files as there are clients.
Place one of file for each of the clients.

 To use the processor most effectively, distribute data evenly among the clients and make sure that all
the data files are approximately the same size.

 Make sure that indexes do not exist for any table, because if indexes exist on a table, you cannot
perform a parallel load operation by using the TABLOCK hint.

 Use TABLOCK to avoid row-at-a-time locking. Table locking can improve the performance of the
bulk-import operation by reducing lock contention on the table.

 Use minimal logging by setting the database recovery model to Bulk-logged or Simple.

 Make the batch size as large as practical. Typically, the larger the batch size, the better the
performance of the bulk-import operation. To achieve maximum performance, the batch size
specified for each client should be the same as the size of the client’s data file.

 Disable triggers in target tables.

 Disable constraints. By default, constraints are ignored when bcp or BULK INSERT is used.

5.3 Post-Implementation Tasks

To ensure the success of the data transfer, perform the following tasks to undo the changes that were made
to the schema prior to implementation.

1. Validate the data migration.

2. Re-enable the constraints by typing the following command:

ALTER TABLE <TABLE> CHECK CONSTRAINTS ALL

3. Recreate the indexes using saved scripts.

4. Enable the triggers by typing the following command:

ENABLE TRIGGER ALL ON <TABLE>

5. Set the recovery model to FULL by executing the following commands:

ALTER DATABASE DATABASE_NAME

SET RECOVERY FULL

6. Create a backup of the migrated database.

To validate migrated data, perform the following tasks:

1. Verify the data load:

A. Check the data transfer logs for errors or failures.

B. Check row counts of every table in the destination SQL Server database; row counts should match
the source DB2 database.

C. If any discrepancy is found in step B, troubleshoot to find the missing rows using logs.

D. Check the sum (SUM) of several numeric columns in both the source and target databases, to make
sure they are the same.

2. Validate the data integrity. Ensure that integrity is automatically checked by enabling or creating

constraints by using the WITH CHECK clause when adding constraints.

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 177

6.0 Terminology Mapping

Table 6-1 shows the terminology mapping of physical objects between DB2 UDB and SQL Server.

Table 6-1: Physical Objects

DB2 UDB SQL Server

Tablespace Filegroup

Table 6-2 shows the terminology mapping of logical objects between DB2 UDB and SQL Server.

Table 6-2: Logical Objects

DB2 UDB SQL Server

Server Server

Instance Instance

Database Database

Database Manager configuration file Windows registry

Database configuration file Windows registry

Catalog tables System tables (master DB)

Table 6-3 shows the terminology mapping of database objects between DB2 UDB and SQL Server.

Table 6-3: Database Objects

DB2 UDB SQL Server

Schema Schema

Table Table

Table constraint Rule and table constraint

Index Index

View View

Transaction log (also called Recovery log) Transaction log

Archive log Transaction log dump

Users and groups (operating system) Users, groups, and roles

Table 6-4 shows the terminology mapping of administration and usage between DB2 UDB and SQL Server.

Table 6-4: Administration and Usage

DB2 UDB SQL Server

Control Center Management Studio

Tables assigned to a tablespace Tables assigned to a filegroup

Containers assigned to tablespaces Database files assigned to filegroups

Administration commands (get db cfg) System stored procedures

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 178

Binding packages n/a

Backup database Backup database

Archive online logs files Backup log

Restore from backup Restore database

Roll-forward recovery Point in Time Recovery

Crash recovery Automatic recovery

Run statistics (runstats command) UPDATE statistics, CREATE statistics

LOAD, IMPORT, and EXPORT BCP (bulk copy program)

Guide to Migrating from DB2 to SQL Server and Azure SQL DB Page | 179

7.0 Conclusion

From this migration guide you learned the differences between DB2 and SQL Server 2014 database
platforms, and the steps necessary to convert a DB2 database to SQL Server.

It explains the algorithms that SSMA for DB2 uses to perform this conversion so that you can better

understand the processes that are executed when you run the SSMA Convert Schema and Migrate Data

commands. For those cases when SSMA does not handle a particular migration issue, approaches to manual

conversion are included.

7.1 About DB Best Technologies

DB Best Technologies is a leading provider of database and application migration services and custom
software development. We have been focused on heterogeneous database environments (SQL Server,
Oracle, Sybase, DB2, MySQL) since starting at 2002 in Silicon Valley. Today, with over 75 employees in the
United States and Europe, we develop database tools and provide services to customers worldwide.

DB Best developed migration tools to automate conversion between SQL dialects. In 2005 Microsoft acquired
this technology, which later became a family of SQL Server Migration Assistant (SSMA) products. We
continue to develop new versions of SSMA, and support Microsoft customers who are migrating to SQL
Server.

We also provide migration services covering all major steps of a typical migration project: complexity
assessment, schema conversion, data migration, application conversion, testing, integration, deployment,
performance tuning, training, and support.

For more details, visit us at www.dbbest.com, e-mail us at info@dbbest.com, or call 1-408-202-4567.

7.2 Useful Resources

Database migration portal powered by DB Best Technologies, available at www.databasemigrate.com/.

DB Best blogs dedicated to various aspects of database migration, available at http://dbbest.com/blog/.

For more information:

http://www.microsoft.com/sqlserver/: SQL Server Web site

http://technet.microsoft.com/en-us/sqlserver/: SQL Server TechCenter

http://msdn.microsoft.com/en-us/sqlserver/: SQL Server DevCenter

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5

(excellent), how would you rate this paper and why have you given it this rating? For example:

 Are you rating it high due to having good examples, excellent screenshots, clear writing, or

another reason?

 Are you rating it low due to poor examples, fuzzy screenshots, unclear writing?

This feedback will help us improve the quality of the white papers we release.

Send feedback.

http://www.databasemigrate.com/
http://dbbest.com/blog/
http://www.microsoft.com/sqlserver/
http://technet.microsoft.com/en-us/sqlserver/
http://msdn.microsoft.com/en-us/sqlserver/
mailto:sqlfback@microsoft.com?subject=White%20Paper%20Feedback:%20Guide%20to%20Migrating%20from%20IBM%20DB2%20to%20SQL%20Server%202014

