

1

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Microsoft Dynamics
®

 AX 2012

Introduction to the
SysOperation framework

White Paper

This paper provides a comparison of the new SysOperation
framework introduced in Microsoft Dynamics AX 2012 with

the RunBase framework, and it outlines common
development scenarios using the new framework.

Date: March 2013

www.microsoft.com/dynamics/ax

Arif Kureshy

Send suggestions and comments about this document to
adocs@microsoft.com. Please include the title with your

feedback.

http://www.microsoft.com/dynamics/ax/
mailto:adocs@microsoft.com

2
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Table of Contents

Introduction .. 3

Loading the sample code ... 4

Sample 1: Comparison of the SysOperation and RunBase frameworks 5
RunBase sample: SysOpSampleBasicRunbaseBatch... 6
SysOperation sample: SysOpSampleBasicController ...13

Sample 2: Demonstration of commonly implemented features in
SysOperation and RunBase ... 19

Sample 3: Introduction to SysOperation execution modes 22
Execution modes overview ..22

Sample overview .. 24
Architecture and code.. 26

Sample 4: How to build asynchronous operations with the SysOperation
framework .. 29

Sample overview .. 30
Scaling out to multiple processors by using batch tasks ... 30
Cleaning up the results table periodically ... 32
Detecting errors in asynchronous operations .. 35
Using the alerts framework for notifications ... 38
Architecture and code.. 43

Sample 5: How to call asynchronous operations from .NET clients 51
Architecture and code.. 55

Appendix: Workarounds for issues in the framework 56
Issue 1: The controller should not be unpacked from the SysLastValue table when running via

batch. ..56
Issue 2: The default value for property parmRegisterCallbackForReliableAsyncCall should be

false to avoid unnecessary polling of the batch server. ...57
Issue 3: The default value for property parmExecutionMode should be Synchronous to avoid

issues when creating run-time tasks...57
Issue 4: The value of the column runTimeJob in the BatchJob table is overwritten when runtime

tasks are added to a batch job. ...57

Updates since initial publication ... 58

3

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Introduction

SysOperation is a framework in Microsoft Dynamics® AX 2012 that allows application logic to be
written in a way that supports running operations interactively or via the Microsoft Dynamics AX
batch server. The framework provides capabilities that are very similar to the RunBase framework
that came before it. The batch framework has very specific requirements for defining operations:

 The operation must support parameter serialization so that its parameters can be saved to the

batch table.

 The operation must have a way to display a user interface that can be launched from the batch
job configuration user interface.

 The operation must implement the interfaces needed for integration with the batch server
runtime.

The RunBase framework defines coding patterns that implement these requirements. The
SysOperation framework provides base implementations for many of the patterns defined by the

RunBase framework.

The purpose of this white paper is to outline how the SysOperation framework can be used to build
operations that can run asynchronously and make use of the full processing power available on the
server. Five samples are presented: the first two demonstrate the basic concepts, the second two
demonstrate how to build asynchronous scalable operations and the fifth sample shows how to call
asynchronous operations from .NET clients. The following figure shows the X++ project containing
the sample code for the first four samples. The fifth sample is a Microsoft® Visual Studio® solution.

 Sample 1 – Comparison of the SysOperation and RunBase frameworks

 Sample 2 – Demonstration of commonly implemented features in SysOperation and RunBase

 Sample 3 – Introduction to SysOperation execution modes

 Sample 4 – How to build asynchronous operations with the SysOperation framework

 Sample 5 – How to call asynchronous operations from .NET clients

4
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Loading the sample code

It is useful to run the samples in addition to reading this paper. To load and run the samples,
unpack the X++ project associated with this paper, and then follow these steps:

1. Download the zip file Introduction to the SysOperation Framework.zip from
http://blogs.msdn.com/b/aif/archive/2012/03/17/introduction-to-the-sysoperation-
framework.aspx, expand it and then copy the contents to the machine where the Microsoft

Dynamics AX is installed.

2. Import the project file, PrivateProject_SysOperationIntroduction.xpo. It does not overlay any
existing framework classes, so there should be no conflicts.

3. Compile the project, and make sure that there are no errors. (There are two warnings which

will not the sample execution).

4. Generate CIL incrementally from the main toolbar in the developer workspace window. For

more information about this topic, see the following article on MSDN:
http://msdn.microsoft.com/en-us/library/gg839855.aspx.

http://blogs.msdn.com/b/aif/archive/2012/03/17/introduction-to-the-sysoperation-framework.aspx
http://blogs.msdn.com/b/aif/archive/2012/03/17/introduction-to-the-sysoperation-framework.aspx
http://msdn.microsoft.com/en-us/library/gg839855.aspx

5

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

5. Deploy the service group SysOpFindPrimesServiceGroup, which is located under the
CommonItems\ServiceGroups group in the project. Deploying a service group generates a
.NET assembly from X++ code and starts a service host that provides a service endpoint for all
the service interfaces listed in the service group. For more information about service groups,

see the following article on MSDN: http://msdn.microsoft.com/en-us/library/gg731906.aspx.
Note that the services deployed in this step are required only for the .NET client sample and
are not used in any of the other samples.

6. Open the .NET console application sample, and compile it to make sure that it has no errors.

The console application is meant to work on the same machine as the Microsoft Dynamics AX

server. If it is not on the same machine, open the app.config file in the solution, and update
the <client> section to point to the Microsoft Dynamics AX server machine.

After these steps are completed, all the actions outlined in this paper can be duplicated by using
the sample code.

Sample 1: Comparison of the SysOperation and RunBase
frameworks

SysOperation and RunBase are frameworks geared toward building operations that can run via the
batch server or interactively. In order for an operation to run via the batch server, it must meet
these requirements:

 It must support parameter serialization via the SysPackable interface.

 It must support the standard run() method defined in the BatchRunable interface.

 It must support the batch server integration methods found in the Batchable interface.

 It must provide a mechanism to show input parameters with a user interface.

http://msdn.microsoft.com/en-us/library/gg731906.aspx

6
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Currently in Microsoft Dynamics AX, all operations that must run via the batch server must derive
from either the SysOperationController or the RunBaseBatch base class.

The following two samples illustrate the basic capabilities provided by the two frameworks:

 SysOpSampleBasicRunbaseBatch

 SysOpSampleBasicController

These can be found in the sample X++ project under the
Sample_1_SysOperation_RunBase_Comparision group.

RunBase sample: SysOpSampleBasicRunbaseBatch

The simplest operation based on the RunBaseBatch base class has to implement 12 overrides.
The purpose of this sample is simply to compare the RunBase and SysOperation frameworks. For
full details of the RunBase framework, see the following article on MSDN:
http://msdn.microsoft.com/en-us/library/aa863262.aspx.

+pack()
+unpack()

«interface»
SysPackable

+run()

«interface»
BatchRunable

+batchInfo()
+canGoBatch()
+caption()
+parmCurrentBatch()
+runsImpersonated()
+showBatchTab()

«interface»
Batchable

+prompt()

SysOperationController

+dialogMake()

RunBaseBatch

http://msdn.microsoft.com/en-us/library/aa863262.aspx

7

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Override Description Sample code

classDeclaration  Derives from
RunBaseBatch.

 Declares variables for
operation input
parameters.

 Declares variables for
dialog box controls.

 Declares a macro defining
a list of variables that
need to be serialized.

class SysOpSampleBasicRunbaseBatch extends

RunBaseBatch

{

 str text;

 int number;

 DialogRunbase dialog;

 DialogField numberField;

 DialogField textField;

 #define.CurrentVersion(1)

 #LOCALMACRO.CurrentList

 text,

 number

 #ENDMACRO

}

dialog Populates the dialog box
created by the base class with
controls needed to get user
input. The initial values from
the class member variables
are used to initialize the
controls. The type of each
control is determined by the
EDT identifier name.

protected Object dialog()

{

 dialog = super();

 textField =

dialog.addFieldValue(IdentifierStr(Description255),

 text,

 'Text Property',

 'Type some text here');

 numberField =

dialog.addFieldValue(IdentifierStr(Counter),

 number,

 'Number Property',

 'Type some number here');

 return dialog;

}

getFromDialog Transfers the contents of
dialog box controls to
operation input parameters.

public boolean getFromDialog()

{

 text = textField.value();

 number = numberField.value();

 return super();

}

putToDialog Transfers the contents of
operation input parameters to
dialog box controls.

protected void putToDialog()

{

 super();

 textField.value(text);

 numberField.value(number);

}

pack Serializes operation input
parameters.

public container pack()

{

 return [#CurrentVersion, #CurrentList];

}

8
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Override Description Sample code

unpack Deserializes operation input
parameters.

public boolean unpack(container packedClass)

{

 Integer version = conPeek(packedClass,1);

 switch (version)

 {

 case #CurrentVersion:

 [version,#CurrentList] = packedClass;

 break;

 default:

 return false;

 }

 return true;

}

run Runs the operation. This
sample prints the input
parameters via the Infolog. It
also prints the tier that the
operation is running on and
the runtime that is used for
execution.

public void run()

{

 if (xSession::isCLRSession())

 {

 info('Running in a CLR session.');

 }

 else

 {

 info('Running in an interpreter session.');

 if (isRunningOnServer())

 {

 info('Running on the AOS.');

 }

 else

 {

 info('Running on the Client.');

 }

 }

 info(strFmt('SysOpSampleBasicRunbaseBatch: %1,

%2', this.parmNumber(), this.parmText()));

}

description A static description for the
operation. This description is
used as the default value for
the caption shown in batch
and the operation user

interface.

public static ClassDescription description()

{

 return 'Basic RunBaseBatch Sample';

}

main The main interaction code for
the operation. This code
prompts the user for input,
and then runs the operation
or adds it to the batch queue.

public static void main(Args args)

{

 SysOpSampleBasicRunbaseBatch operation;

 operation = new SysOpSampleBasicRunbaseBatch();

 if (operation.prompt())

 {

 operation.run();

 }

}

9

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Override Description Sample code

parmNumber Optional. It is a Microsoft
Dynamics AX best practice to
expose operation parameters
with the property pattern for
better testability and for
access to class member
variables outside the class.

public int parmNumber(int _number = number)

{

 number = _number;

 return number;

}

parmText Optional. It is a best practice
to expose operation
parameters with the property

pattern.

public str parmText(str _text = text)

{

 text = _text;

 return text;

}

After it is implemented, the operation can be run by using the Go button on the code editor
toolbar.

If an X++ class implements the main operation, it is automatically called by the code editor. The

sample’s main operation will prompt the user for input for the operation when
operation.prompt() is called. If the prompt returns true, main calls operation.run() directly.
If the prompt returns false, the user either canceled the operation or scheduled it via batch.

10
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

To run the operation interactively, enter data on the General tab of the operation user interface.

Make sure that the Batch processing check box is cleared on the Batch tab.

11

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Clicking OK will run the operation and print the following output to the Infolog window.

The Infolog messages show that the operation ran on the server, because the sample class is
marked to run on the server. The operation ran via the X++ interpreter, which is the default for

X++ code.

If you repeat the previous steps but select the Batch processing check box on the Batch tab, the
operation will to run via the batch server. When the Batch processing check box is selected, the
following Infolog message is shown, indicating that the operation has been added to the batch
queue.

12
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

The operation may take up to a minute to get scheduled. After waiting for about a minute, open
the Batch job form from the Application Object Tree (AOT).

Repeatedly update the form by pressing the F5 key, until the job entry shows that the job has
ended. Sorting by the Scheduled start date/time column may help you find the operation if
there are many job entries in the grid. After you find the correct job, select it, and then click Log
on the toolbar.

13

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Clicking Log opens an Infolog window indicating that the operation ran in a CLR session, which is
the batch server execution environment.

In summary, this sample shows the minimum overrides needed to create an operation that can

run either interactively or via the batch server by using the RunBaseBatch base class.

SysOperation sample: SysOpSampleBasicController

The purpose of the SysOperation framework is to provide the same capabilities as the RunBase
framework but with base implementations for common overrides. The SysOperation framework
handles basic user interface creation, parameter serialization, and routing to the CLR execution

environment. The following table of overrides shows the code needed to match the functionality
demonstrated for the RunBase-based sample in the previous section.

The SysOperation sample contains two classes: a controller class named
SysOpSampleBasicController and a data contract class named
SysOpSampleBasicDataContract.

SysOpSampleBasicController should derive from SysOperationServiceController, which
provides all the base functionality for building operations; however, there are a few issues with

that class as it is shipped with Microsoft Dynamics AX 2012, and these will be addressed in a
future service pack. In the meantime, to work around the issues, a new common class,
SysOperationSampleBaseController, is provided. Details of the issues worked around will be
discussed at the end of this paper.

The following table shows the code needed to provide equivalent functionality to the RunBase
sample.

Override Description Sample code

SysOpSampleBasicController

classDeclaration Derives from the framework base
class SysOpSampleBaseController.

Normally the operation should derive
from the
SysOperationServiceController class.
The sample base class provides a few
fixes for issues in that class.

class SysOpSampleBasicController extends

SysOpSampleBaseController

{

}

14
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Override Description Sample code

new Identifies the class and method for
the operation. In the sample, this
points to a method on the controller
class; however, in general, it can be
any class method.

The framework will reflect on this
class/method to automatically
provide the user interface and
parameter serialization.

void new()

{

 super();

 this.parmClassName(

classStr(SysOpSampleBasicController));

 this.parmMethodName(

methodStr(SysOpSampleBasicController,

 showTextInInfolog));

 this.parmDialogCaption(

 'Basic SysOperation Sample');

}

Dialog Base functionality implemented by the framework.

getFromDialog

putToDialog

pack

unpack

run Implemented by the base framework. Handles marshaling execution to a CLR session.

showTextInInfolog Prints the input parameters via the
Infolog. Also prints the tier that the
operation is running on and the
runtime that is used for execution.

public void

showTextInInfolog(SysOpSampleBasicDataCont

ract data)

{

 if (xSession::isCLRSession())

 {

 info('Running in a CLR session.');

 }

 else

 {

 info('Running in an interpreter

session.');

 if (isRunningOnServer())

 {

 info('Running on the AOS.');

 }

 else

 {

 info('Running on the

Client.');

 }

 }

info(strFmt('SysOpSampleBasicController:

%1, %2', data.parmNumber(),

data.parmText()));

}

caption A description for the operation. This
description is used as the default
value for the caption shown in batch
and the operation user interface.

public ClassDescription caption()

{

 return 'Basic SysOperation Sample';

}

15

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Override Description Sample code

main The main interaction code for the
operation. This code prompts the
user for input, and then runs the
operation or adds it to the batch
queue.

public static void main(Args args)

{

 SysOpSampleBasicController operation;

 operation = new

SysOpSampleBasicController();

 operation.startOperation();

}

SysOpSampleBasicDataContract

classDeclaration The data contract attribute is used by
the base framework to reflect on the
operation.

[DataContractAttribute]

class SysOpSampleBasicDataContract

{

 str text;

 int number;

}

parmNumber The data member attribute identifies
this property method as part of the
data contract. The label, help text,
and display order attributes provide
hints for user interface creation.

[DataMemberAttribute,

SysOperationLabelAttribute('Number

Property'),

SysOperationHelpTextAttribute('Type some

number >= 0'),

SysOperationDisplayOrderAttribute('2')]

public int parmNumber(int _number =

number)

{

 number = _number;

 return number;

}

parmText The data member attribute identifies
this property method as part of the
data contract. The label, help text,
and display order attributes provide
hints for user interface creation.

[DataMemberAttribute,

SysOperationLabelAttribute('Text

Property'),

SysOperationHelpTextAttribute('Type some

text'),

SysOperationDisplayOrderAttribute('1')]

public Description255 parmText(str _text =

text)

{

 text = _text;

 return text;

}

16
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

As in the RunBase sample, the operation can be run by using the Go button on the code editor
toolbar.

The main class calls operation.startOperation(), which handles running the operation
synchronously or adding it to the batch queue. Although operation.run() can also be called, this
should be done only if the data contract has been programmatically filled out. The startOperation
method invokes the user interface for the operation, and then calls run.

To run the operation interactively, enter data on the General tab of the operation user interface.

The user interface created by the framework is very similar to the one created in the RunBase
sample.

17

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Make sure that the Batch processing check box is cleared on the Batch tab.

Clicking OK will run the operation and print the following output to the Infolog window.

The Infolog messages show that, unlike in the RunBase sample, the operation ran in a CLR session
on the server.

18
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

If you repeat the previous steps but select the Batch processing check box on the Batch tab, the
operation will run via batch, just as in the RunBase sample.

The operation may take up to a minute to get scheduled. After waiting for about a minute, open

the Batch job form from the AOT, as in the RunBase sample.

Repeatedly update the form by pressing the F5 key, until the job entry shows that the job has
ended. Sorting by the Scheduled start date/time column may help you find the operation if
there are many jobs entries in the grid. After you find the correct job, select it, and then click Log
on the toolbar.

19

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Clicking Log opens an Infolog window indicating that the operation ran in a CLR session, which is
the batch server execution environment.

This sample showed that the SysOperation framework can provide the same basic functionality as
the RunBase framework. In addition, it provides implementation for common RunBase overrides,
such as parameter serialization and user interface creation. It also provides the capability to route
synchronous operations to a CLR session.

Sample 2: Demonstration of commonly implemented
features in SysOperation and RunBase

Basic samples used for demonstration rarely meet the requirements of real-life scenarios. The
group named Sample_2_Commonly_Implemented_Features in the X++ sample project, illustrates
common functionality associated with user interfaces in Microsoft Dynamics AX: lookups and
validation. The samples illustrate the same functionality implemented in both frameworks to

facilitate comparison.

20
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

The SysOperation sample, SysOpSampleSimpleController, is factored differently from the first
sample, SysOpSampleBasicController. In this sample, there are four classes: the controller, the
service operation, the data contract, and the user interface builder. The following figure outlines
the classes in relation to the base framework classes.

The service and data contract classes define the operation. The derived controller class provides

the main entry point and overrides the new() method to associate the operation classes with the
controller. The base controller reflects on the operation and constructs metadata classes that
define the operation. The base class SysOperationAutomaticUIBuilder uses the metadata
derived from the operation to create the user interface. In the sample, there is a derived user
interface builder called SysOpSampleSimpleUserInterfaceBuilder. This overrides the
postBuild() and postRun() overrides on the base builder to subscribe to form control events

related to validation and lookup.

The system uses SysOperationContractProcessingAttribute to associate the custom user
interface builder with the data contract.

[DataContractAttribute,

SysOperationContractProcessingAttribute(classStr(SysOpSampleSimpleUserInterfaceBuilder))]

class SysOpSampleSimpleDataContract

{

 str text;

 int number;

}

If this attribute is not present, the default builder, SysOperationAutomaticUIBuilder, is used.
As an experiment, comment out the attribute in the preceding code, and then run the operation to
see the differences.

The postBuild() override in the custom user interface builder is where the form control metadata
needs to be modified before the controls are instantiated. The framework maintains an association
between controls and data contracts in a map that can be accessed via the this.bindInfo()

method. The map is keyed by the name of the property in the data contract.

public void postBuild()

{

 super();

 // get references to dialog controls after creation

 numberField = this.bindInfo().getDialogField(this.dataContractObject(),

Operation Base Framework Metadata

SysOperationUIBuilder

SysOperationAutomaticUIBuilder SysOperationQueryUIBuilder

+doBatch()

+pack()

+unpack()

+prompt()

+startOperation()

SysOperationController

+run()

+getServiceInfo()

+getDataContractInfo()

SysOperationServiceController

SysOperationDataContractInfo

1

*

SysOperationAttributedDataContractInfo

SysOperationDataMemberInfo

1

*

SysOperationAttributedDataMemberInfo

SysOperationGroupInfo

1

*

+showTextInInfolog()

SysOpSampleSimpleService

-text

-number

SysOpSampleSimpleDataContract

+postBuild()

+postRun()

+numberFieldValidate()

+textFieldLookup()

SysOpSampleUserInterfaceBuilder

1
*

1

*

+main()

+caption()

+new()

SysOpSampleSimpleController

Dialog (Form)

1 1

21

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

 methodStr(SysOpSampleSimpleDataContract, parmNumber));

 textField = this.bindInfo().getDialogField(this.dataContractObject(),

 methodStr(SysOpSampleSimpleDataContract, parmText));

 // change text field metadata to add lookup

 textField.lookupButton(#lookupAlways);

}

The postRun() override in the custom user interface builder is where the form control events are
subscribed to. The subscriptions must be added to the controls after they have been instantiated.

public void postRun()

{

 super();

 // register overrides for form control events

 numberField.registerOverrideMethod(methodstr(FormIntControl, validate),

 methodstr(SysOpSampleSimpleUserInterfaceBuilder, numberFieldValidate), this);

 textField.registerOverrideMethod(methodstr(FormStringControl, lookup),

 methodstr(SysOpSampleSimpleUserInterfaceBuilder, textFieldLookup), this);

}

The registerOverRideMethod method on the controls is a run-time equivalent to the control
overrides used in normal forms. If you use an override method in a standard Microsoft® MorphX®
form, you can use the same method override in a dynamic form by using this mechanism. Note
that both the RunBase and SysOperation frameworks allow the use of modeled forms as the
operation user interface. The SysOperation framework provides the override
SysOperationController.templateForm() for that purpose, however, this topic is outside the

scope of this white paper.

The samples in this section show how the user interface for the operation can use many of the
same features that are available in the normal form programming model. Control overrides fire
run-time events that can be subscribed to. The SysOperation version of the sample shows how the
different aspects of the operation can be factored into separate classes.

To show that everything is possible with code, the RunBase sample is modified so that it marshals
its interactive execution into a CLR session, in the same way that the SysOperation framework

does. This illustrates the design principle that drove the SysOperation framework: move as much
of the boilerplate code as possible into the base classes.

private static server void showTextInInfolog(container packedRunBase)

{

 SysOpSampleSimpleRunbaseBatch thisClass;

 // If not in a CLR session then marshal over. If already in a CLR session

 // then execute the logic for the operation

 if (!xSession::isCLRSession())

 {

 new XppILExecutePermission().assert();

 SysDictClass::invokeStaticMethodIL(classStr(SysOpSampleSimpleRunbaseBatch),

 staticMethodStr(SysOpSampleSimpleRunbaseBatch,

 showTextInInfolog),

 packedRunBase);

 // exit call executed in CLR session.

 return;

 }

 thisClass = new SysOpSampleSimpleRunbaseBatch();

 if (!thisClass.unpack(packedRunBase))

 {

 throw AifFault::fault('SysOpSampleSimpleRunbaseBatch unpack error', 'unpackError');

22
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

 }

 if (xSession::isCLRSession())

 {

 info('Running in a CLR session.');

 }

 else

 {

 info('Running in an interpreter session.');

 if (isRunningOnServer())

 {

 info('Running on the AOS.');

 }

 else

 {

 info('Running on the Client.');

 }

 }

 info(strFmt('SysOpSampleSimpleRunbaseBatch: %1, %2',

 thisClass.parmNumber(), thisClass.parmText()));

}

Sample 3: Introduction to SysOperation execution
modes

This sample provides a basic introduction to the reliable asynchronous execution mode that is
available in the batch server.

Execution modes overview

The concept of sessions in Microsoft Dynamics AX is important to understanding execution modes.

A session is defined as the runtime context under which the X++ code is executed. The session
defines the current user, permissions, and the in-memory state of the various X++ and kernel
objects that the user is interacting with. Sessions in Microsoft Dynamics AX are single-threaded:
only a single task can be executed in a session at a given time. Understanding this constraint is
especially important when executing in a session that is initiated from the Dynamics AX client. A
lengthy operation in a session that is initiated from the client can block the user interface and
cause the client to stop responding.

The execution modes for the SysOperation framework are designed to provide different options for
managing the single-threaded constraint that is associated with Microsoft Dynamics AX sessions.

23

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

The following table lists the four execution modes that are defined by the SysOperation framework
enum SysOperationExecutionMode and describes their operations.

Execution Mode Description Use

Reliable
asynchronous

Reliable asynchronous operations use the
batch server’s session for execution. The
call is queued to the empty batch queue by
default, but the appropriate queue can be
specified by using a property on the
operation.

It is possible to track the execution of
reliable asynchronous calls by tracking the
associated batch execution history. It is
also possible to make the initiation of the
reliable asynchronous call part of a
business process transaction. Reliable
asynchronous calls can make use of the
batch server’s parallel execution
mechanism.

IMPORTANT: For these reasons, reliable

asynchronous execution is the
recommended mechanism for executing
lengthy calls.

Running operations in this mode is
equivalent to running them on the
batch server, with the additional
behavior that the jobs are
automatically deleted after they are
completed, whether they were
successfully completed or not.
However, the job history is persisted
in the system. This pattern is
provided to facilitate building
operations that use the batch server
runtime, but that do not rely on the
batch server administration features.

These jobs only temporarily show up
in the Batch job form and can be
filtered out completely by setting a
filter in the BatchJob.RuntimeJob

field. To implement this behavior,
the batch header exposes a property
named parmRuntimeJob, which is
set to True by the SysOperation
framework to select this behavior.

For more information about batch
jobs and tasks, see the following
article on MSDN:
http://technet.microsoft.com/en-
us/library/dd309586.aspx.

Scheduled batch Scheduled batch mode uses the traditional
batch server execution mechanism. This
execution mode differs from the reliable
asynchronous mode only in the way batch
jobs persist in the system.

You use this mode to run batch jobs
in the asynchronous, server-based,
batch processing environment.
Unlike reliable asynchronous calls,
scheduled batch jobs are persisted in
the system until a user manually
deletes them.

Synchronous Synchronous calls are always initiated in
the caller’s session. The calls are always
marshaled to the server and executed in
intermediate language (IL). (There is a
mechanism to opt out of having the calls
always marshaled to the server. For more
information, see
http://msdn.microsoft.com/en-
us/library/sysoperationservicecontroller.ex
ecuteoperationwithrunas.aspx).

If the class being called is registered as a
service in the AxClient service group, then
a Windows Communication Foundation
(WCF) service proxy is used to marshal the
synchronous call to the server. If the class
being called is not registered as a service
in the AxClient service group then the call
is marshaled to the server using the
operation’s pack/unpack mechanism and is
executed in IL using the runAs mechanism.
If the call is initiated on the server, then it
is marshaled to IL, if needed, before the

You should use the synchronous
execution method when the
operation is not lengthy or when it is
initiated from a batch session.
Results may be obtained by using
the operation’s result parameter.

http://technet.microsoft.com/en-us/library/dd309586.aspx
http://technet.microsoft.com/en-us/library/dd309586.aspx
http://msdn.microsoft.com/en-us/library/sysoperationservicecontroller.executeoperationwithrunas.aspx
http://msdn.microsoft.com/en-us/library/sysoperationservicecontroller.executeoperationwithrunas.aspx
http://msdn.microsoft.com/en-us/library/sysoperationservicecontroller.executeoperationwithrunas.aspx

24
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

service method is called.

Asynchronous Asynchronous operations are very similar
to synchronous operations except that they
are executed by using the WCF
asynchronous service call mechanism.
Asynchronous calls only run
asynchronously if they are initiated from

the desktop client session and if the called
service is registered in the AxClient
service group. In all other cases, the calls
are executed synchronously. In all cases
the caller can get results by using the
SysOperationServiceController.operationRe
turnValue

Method in the afterOperation override
method. For more information, see
http://msdn.microsoft.com/en-
us/library/sysoperationservicecontroller.aft
eroperation(v=ax.60).aspx and
http://msdn.microsoft.com/en-
us/library/sysoperationservicecontroller.op
erationreturnvalue.aspx.

NOTE: Adding a service class that is used
as part of a SysOperation to the AxClient
service group is not usually required. The
SysOperation framework always marshals
the data contract to the server by value,
whether or not the service class is
published as a service. The Asynchronous
execution mode is the only mode that
explicitly requires AxClient server group
registration.

Asynchronous calls are useful for
running lengthy operations from the
desktop client, where durability is
not important. The caller must
guarantee that the call is initiated
from the desktop client to get the

benefit of asynchronous execution.

Sample overview

1. Open the form, and make sure that the Service operation execution mode field is set to
Reliable asynchronous (which is the default value).

http://msdn.microsoft.com/en-us/library/sysoperationservicecontroller.afteroperation(v=ax.60).aspx
http://msdn.microsoft.com/en-us/library/sysoperationservicecontroller.afteroperation(v=ax.60).aspx
http://msdn.microsoft.com/en-us/library/sysoperationservicecontroller.afteroperation(v=ax.60).aspx
http://msdn.microsoft.com/en-us/library/sysoperationservicecontroller.operationreturnvalue.aspx
http://msdn.microsoft.com/en-us/library/sysoperationservicecontroller.operationreturnvalue.aspx
http://msdn.microsoft.com/en-us/library/sysoperationservicecontroller.operationreturnvalue.aspx

25

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

2. Click Find Prime Numbers, and then enter the operation input parameters. Enter the range
[1,1000000].

3. Click OK to start the operation. The form will poll for changes by using the
element.settimeout() mechanism. The operation should be completed in a few seconds.
Notice that the client is not frozen while the operation is running.

If you have multiple processors in your machine, note that the full power of all the processors
is not used in the computation. There is only one thread.

4. Try the operation again with larger ranges, to see how the application behaves.

5. Change the Service operation execution mode field to Synchronous, and try the operation

again. If a large range is entered, the client will freeze while the operation is running.

26
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

6. Change the Service operation execution mode field to Scheduled Batch, and try the
operation again. In the Batch job form, in the AOT Forms node, view the difference between
Reliable Asynchronous transient jobs and Scheduled Batch normal jobs. Transient or run-
time jobs are automatically deleted on completion.

Architecture and code

Class diagram

Sequence diagram

+insert()
+read()

-callId
-BatchJob
-Result
-Status

SysOpFindPrimesTrackingTable

-RecId

BatchJob

-BatchJobId

BatchJobHistory

RecId
BatchJob

RecId

BatchJobId

Tables

-startOfRange
-endOfRange
-callId

SysOpFindPrimesDataContract

+findCountOfPrimeNumbersInRange()
+startOperation()
+prompt()
+new()
+unpack()
+pack()

SysOpFindPrimesController

SysOpFindPrimesForm

Classes

Forms

+addBatchJobToQueue()
+scheduleBatchJob()
+addRuntimeTask()

BatchServer
-startOperation

1

*

-getRanges

-Write results*
*

-read

-read

-run

SysOpFindPrimesForm SysOpFindPrimesController SysOpFindPrimesTrackingTableBatchServer

startOperation

Prompt User

addBatchJobToQueue

findCountOfPrimeNumbersInRange

insert

read

data

new()

unpack()

pack()

27

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

As the preceding figures show, SysOpFindPrimesForm creates an instance of
SysOpFindPrimesController and calls startOperation on it. The controller displays the user
interface needed to get operation parameters and starts the operation. The operation updates
SysOpFindPrimesTrackingTable, which SysOpFindPrimesForm polls to get the results.

The form starts the operation.

SysOpFindPrimesForm

void clicked()

{

 guid id;

 SysOperationStartResult result;

 Args args;

 elapsedSeconds.value(0);

 // Pass the execution mode to the controller from the combo box

 args = new args();

 args.parmEnumType(enumNum(SysOperationExecutionMode));

 args.parmEnum(operationExecutionMode.selection());

 [result, id] = SysOpFindPrimesController::main(args);

 // controller's main function passes the operation id back

 // the form uses this to poll for results.

 if (result == SysOperationStartResult::AddedToBatchQueue ||

 result == SysOperationStartResult::Started)

 {

 callId.value(id);

 initialTicks = WinAPI::getTickCount();

 element.recurringRefresh();

 }

 if (result == SysOperationStartResult::AddedToBatchQueue)

 {

 // Run the batch server ping operation in a CLR session

 // the controller will marshall it over. This will cause

 // the batch server to poll right away if it is idle.

 new SysOpSampleBatchServerPingController().run();

 }

}

Note the use of SysOperationBatchServerPingController in the preceding code. This notifies
the batch server that there is additional work to do. The API simply sets a flag that is normally set
by the batch server to process new tasks created during job execution. Setting the flag is simply

an indication of pending work, it adds no overhead to the batch server runtime.

When the controller is run in Reliable Asynchronous mode, it adds itself as a batch job. When
the batch server schedules the job, it creates the controller, hydrates it by calling unpack(), and
calls the operation logic. The operation logic updates the result table.

SysOpFindPrimesController

public void findCountOfPrimeNumbersInRange(SysOpFindPrimesDataContract range)

{

 int64 i, primes;

 SysOpFindPrimesTrackingTable logTable;

 RefRecId batchJobId;

28
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

 int ticks;

 if (this.isInBatch())

 {

 batchJobId = BatchHeader::getCurrentBatchHeader().parmBatchHeaderId();

 }

 ttsBegin;

 logTable.clear();

 logTable.BatchJob = batchJobId;

 logTable.Status = 0;

 logTable.callId = range.parmCallId();

 logTable.Result = strFmt('Finding primes in range[%1, %2]', range.parmStartOfRange(),

 range.parmEndOfRange());

 logTable.insert();

 ttsCommit;

 ticks = WinAPIServer::getTickCount();

 primes = 0;

 for (i = range.parmStartOfRange(); i <= range.parmEndOfRange(); i++)

 {

 if (SysOpFindPrimesController::isPrime(i))

 {

 primes++;

 }

 }

 ticks = WinAPIServer::getTickCount() - ticks;

 ttsBegin;

 logTable.Status = 1;

 logTable.callId = range.parmCallId();

 logTable.Result = strFmt('Found %3 primes in range[%1, %2] in %4 seconds',

 range.parmStartOfRange(), range.parmEndOfRange(), primes, ticks / 1000);

 logTable.update();

 ttsCommit;

}

The form polls the table for the results.

SysOpFindPrimesForm

public void refresh()

{

 int seconds;

 // Poll the result table using the operation id

 callIdRange.value(callId.valueStr());

 // execute the query on the datasource

 TrackingTable_ds.executeQuery();

 // update the elapsed seconds

 seconds = (WinAPI::getTickCount() - initialTicks) / 1000;

 elapsedSeconds.value(seconds);

}

29

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

The form periodically polls the table until Status != 0.

SysOpFindPrimesForm

public void recurringRefresh()

{

 element.refresh();

 if (TrackingTable.Status == 0)

 {

 element.setTimeOut(identifierStr(recurringRefresh), 1000);

 }

}

Initialize the default values in a data contract.

Derive from SysOperationInitializable.

[DataContractAttribute]

class SysOpFindPrimesDataContract implements SysOperationInitializable

Override the initialize method.

// initialize is called if the value

// is not found in the syslastvalue table

public void initialize()

{

 startOfRange = 1;

 endOfRange = 1000000;

}

Note that, in this sample, the SysOpFindPrimesService class is not used. It will be used later,
from the .NET client, to invoke the controller discussed here.

Sample 4: How to build asynchronous operations with
the SysOperation framework

The previous sample introduced architecture for building asynchronous operations by using
transient batch jobs or run-time jobs. The final sample, AsynchronousExecutionAndScaleOut,
builds on the asynchronous execution sample and illustrates how to handle many common design
issues and requirements that come with asynchronous processing. The sample shows how to

perform the following tasks:

 Scale out to multiple processors by using batch tasks.

 Clean up the results table periodically.

 Detect errors in asynchronous operations.

 Use the alerts framework for notifications.

30
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Sample overview

In this sample, the user interface is enhanced. It contains a progress bar that is updated as the
operation runs and a Result text box that shows output from the operation logic. Note that, in this

sample, the operation runs only via the batch server, so the Batch Job Status field from the
BatchJobHistory table is prominent in the UI.

Scaling out to multiple processors by using batch tasks

This sequence shows the computation of prime numbers, as in the previous sample. The range in
which primes are to be found is subdivided among multiple batch tasks.

1. Open SysOpFindPrimesWithTasksForm.

2. Click Find Prime Numbers, and then enter the operation input parameters. As in the
previous sample, enter the range [1,1000000].

31

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

3. Make sure that the Simulate Error check box is cleared. Also make sure that the Batch
processing check box is cleared on the Batch tab.

4. Click OK to run the operation.

32
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

If you have multiple processors in your machine, note that the full power of all the processors
is used in the computation. For large ranges, compare the execution time with the previous
sample. The time difference is not great for small ranges because of the overhead of
coordinating multiple tasks.

Cleaning up the results table periodically

The design of this sample involves inserting a record in SysOpFindPrimesWithTasksTrackingTable
for every operation. The record represents the status of the operation and also contains the results
when the operation succeeds. Over time, as users run operations, the table will fill with records, so
a mechanism is needed to periodically purge it. The controller class

SysOpFindPrimeNumbersCleanupController is provided to periodically purge old operations.

To install and run this controller:

1. Right-click the controller class in the sample project, and open it.

33

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

2. Click Yes to install the controller as a recurring batch job.

As configured, this batch job will clean up all operations that are more than 10 minutes old if

they are not in an error state. Operations that were not completed successfully are left in the
table, to alert the administrator of potential problems.

3. To configure the parameters for this recurring task, click Change status on the Functions
menu in the Batch job form when the job is in the Waiting status. Change the status to
Withhold.

34
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

4. After the job is in the Withhold status, click View tasks on the toolbar in the Batch job form

to open the Batch tasks form.

5. Click Parameters on the toolbar. This will instantiate the parameters dialog box for the
cleanup operation. Note that this dialog box is provided by the SysOperation framework.

6. Modify the cleanup interval as desired, and then click OK. Close the Batch tasks form, and
change the status of the parent batch job from Withhold to Waiting.

7. Run some operations.

35

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

8. Validate that all the operations exist in the tracking table by clicking the Selected Operation
Id lookup.

9. Wait for the cleanup interval that you configured, and then click the Selected Operation Id
lookup again to verify that the successful operations have been purged.

Detecting errors in asynchronous operations

Error handling requires a little more thought in asynchronous scenarios. Errors happen in a
different session, possibly in a different process and on a machine from where the caller is. The
sample application uses the BatchJobHistory table to determine whether an error has occurred.
The calling form polls that table to determine when the operation is completed. This is an indirect

mechanism, so the sample also attempts to update the Status column in

SysOpFindPrimesWithTasksTrackingTable to indicate that the task has been completed with an

36
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

error. This step cannot be done in the code executing the task, because an unhandled exception
can cause the task code to exit. SysOpFindPrimeNumbersCleanupController is used to
propagate the error information from the BatchJobHistory table to the tracking table. Make sure
that the cleanup controller is installed by using the steps in the previous section, “Cleaning up the

results table periodically”, before completing the following steps.

1. Run an operation, and select the Simulate Error check box in the operation input parameters
form.

2. Wait for the operation to finish running. Notice that the Batch Job Status field shows an
error.

37

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

3. Click Batch Job History to open the Batch job history form.

4. Click Log to view the errors.

5. Wait a minute or two for the cleanup job to run. It is set to recur every minute. Click Refresh
in the sample form. The Status field should be updated to -1, and the operation should be

marked as Done! in the Description field.

38
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

The -1 status on the operation record signifies that the operation did not end correctly. The caller
can request more information as needed from the batch job history. Having the error status
updated by a periodic job takes care of all exceptional scenarios. The task of catching all
exceptions is assigned to the batch server. Application logic can handle the exceptions that it

understands and is free to throw exceptions.

Using the alerts framework for notifications

Microsoft Dynamics AX provides an alerts subsystem that can be used to communicate operation
status to administrators and end users. The batch server uses this subsystem to signal the status
of batch jobs. Clicking the Alerts button in the Batch job form shows the current alert
configuration for a given job.

It is important to note that alerts are not generated for transient batch jobs created by the
SysOperation Reliable Asynchronous execution mode. Transient batch jobs are batch jobs that
have the property parmRuntimeJob set. Alerts can, however, be generated in application code as
needed. To see alerts in action by using the default batch server functionality, use the form
SysOpFindPrimesWithTasksForm.

1. Open the form.

39

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

2. Click Find Prime Numbers, and then enter operation input parameters as before.

3. Select the Batch processing check box to run the operation via a non-transient job.

4. Click OK to run the job.

40
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

5. The job runs as before, but its entry persists in the batch job table. Navigate to the Batch job
form to verify that the job is not automatically deleted upon completion. Look at its alerts
configuration: it was configured in code and the settings differ from the default settings.

6. Click the Notifications (bell) button in the status bar at the bottom of the sample form. The
notification count may not be updated immediately, but clicking the button will update it and
open the Notification list form.

The standard batch server alerts may not be desirable for asynchronous operations where the use
of the batch server is an implementation detail. The sample generates alerts in the asynchronous
error propagation scenario. Make sure that the cleanup controller is installed by using the steps in

the “Cleaning up the results table periodically” section before completing the following steps.

41

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

1. Run an operation with the Simulated Error check box selected and the Batch processing
check box cleared.

2. Click OK to run the operation in Reliable Asynchronous execution mode.

42
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

3. Wait a minute, and then click Refresh until the Status field shows -1 and the Description
field shows Done!

4. Click the Notifications (bell) button in the status bar at the bottom of the form. The
notification count may not be updated immediately, but clicking the button will update it and
open the Notification list form. A custom notification with the subject Errors finding primes
should be in the list.

43

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Architecture and code

Class diagram

-RecId

BatchJob

-BatchJobId

BatchJobHistory

RecId

BatchJobId

Tables

Classes

Forms

SysOperationFindPrimesWithTasksForm

-callId
-startOfRange
-endOfRange
-simulateError

SysOpFindPrimesWithTasksDataContract

+caption()
+createTasksForFindingPrimeNumbers()
+doBatch()
+new()
+main()
+startOperation()
+promptUser()
+pack()
+unpack()

SysOpFindPrimeNumbersJobController

+caption()
+findCountOfPrimeNumbersInRange()
+new()
+setRanges()
+pack()
+unpack()

SysOpFindPrimeNumbersTaskController

+BatchJob()
+callId()
+numberOfFinishedTasks()
+numberOfPrimesFound()
+Result()
+Status()
+write()
+read()

SysOpFindPrimesWithTasksTrackingTable

1

-cleanupIntervalInMinutes

SysOpFindPrimeNumbersCleanupDataContract

+cleanupOldOperations()
+doBatch()
+caption()
+new()
+main()

SysOpFindPrimeNumbersCleanupController

RecId

BatchJob

-startOperation

11

-Write results -Propagate Errors

+addBatchJobToQueue()
+scheduleBatchJob()
+addRuntimeTask()

BatchServer

-run

-Read
-Read

44
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Sequence diagram

Create multiple run-time tasks.

SysOpFindPrimeNumbersJobController

public void createTasksForFindingPrimeNumbers(SysOpFindPrimesWithTasksDataContract range)

{

 #SysOpFindPrimesWithTasks

 int64 i, start, end, blockSize, remainder;

 SysOpFindPrimesWithTasksTrackingTable logTable;

 RefRecId batchJobId;

 BatchHeader batchHeader;

 BatchJob currentJob;

 SysOpFindPrimesWithTasksDataContract subRange;

 SysOpFindPrimeNumbersTaskController taskController;

 // This sample can only function in batch mode

 if (!this.isInBatch())

 {

 throw AifFault::fault('SysOpFindPrimeNumbersJobController must run in batch mode',

 'NotInBatch');

 }

Form JobController TaskController BatchServer TrackingTable

startOperation

promptUser

pack

addBatchJobToQueue

new

unpack

createTasksForFindingPrimeNumbers

new

pack()

setRanges()

addRuntimeTask

new

unpack

findCountOfPrimeNumbersInRange

read

data

update

insert()

45

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

 // Get the header of the currently executing job

 batchHeader = BatchHeader::getCurrentBatchHeader();

 batchJobId = batchHeader.parmBatchHeaderId();

 // the delete on success flag (runtimeJob) is lost when altering batch header.

 // Restoring it. This parameter is set when the job is created to execute in reliable

 // async mode

 select RuntimeJob from currentJob where currentJob.RecId == batchJobId;

 batchHeader.parmRuntimeJob(currentJob.RuntimeJob);

 // break up to range to create tasks. The number of tasks is hardcoded in a macro

 start = range.parmStartOfRange();

 end = range.parmEndOfRange();

 blockSize = (end - start + 1) / #BatchTaskCount;

 remainder = (end - start + 1) - (blockSize * #BatchTaskCount);

 for (i = 0; i < #BatchTaskCount; i++)

 {

 end = start + blockSize;

 if (i == #BatchTaskCount - 1)

 {

 end += remainder;

 }

 // Create a controller for each sub task and add it

 // to the current job

 taskController = new SysOpFindPrimeNumbersTaskController();

 subRange = taskController.getDataContractObject();

 subRange.parmCallId(range.parmCallId());

 subRange.parmStartOfRange(start);

 subRange.parmEndOfRange(end - 1);

 subRange.parmSimulateError(range.parmSimulateError());

 batchHeader.addRuntimeTask(taskController, 0);

 start = end;

 }

 ttsBegin;

 // Save the current batch header along with all the newly

 // created tasks

 batchHeader.save();

 // Insert a record in the operation tracking table. All the tasks will

 // update this record.

 logTable.clear();

 logTable.BatchJob = batchJobId;

 logTable.Status = 0;

 logTable.callId = range.parmCallId();

 logTable.Result = strFmt('Finding primes in range[%1, %2]',

 range.parmStartOfRange(), range.parmEndOfRange());

 logTable.insert();

 ttsCommit;

}

46
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Each task finds primes in its subrange.

SysOpFindPrimeNumbersTaskController

public void findCountOfPrimeNumbersInRange(SysOpFindPrimesWithTasksDataContract range)

{

 #SysOpFindPrimesWithTasks

 int64 i, primes;

 int ticks;

 SysOpFindPrimesWithTasksTrackingTable logTable;

 RefRecId batchJobId;

 // This controller can only run in batch mode

 if (this.isInBatch())

 {

 batchJobId = BatchHeader::getCurrentBatchHeader().parmBatchHeaderId();

 }

 // Compute prime numbers in the sub range

 ticks = WinAPIServer::getTickCount();

 primes = 0;

 for (i = range.parmStartOfRange(); i <= range.parmEndOfRange(); i++)

 {

 if (SysOpFindPrimeNumbersTaskController::isPrime(i))

 {

 primes++;

 }

 }

 ticks = WinAPIServer::getTickCount() - ticks;

 try

 {

 ttsBegin;

 // Hold a lock on the current row to avoid update conflicts with other threads

 // use forUpdate instead of pessimisticLock and you will see lots of retries

 // in the batch job history log

 select pessimisticLock logTable where logTable.callId == range.parmCallId();

 logTable.numberOfFinishedTasks++;

 // last thread updates the done status

 if (logTable.numberOfFinishedTasks == #BatchTaskCount)

 {

 // For simulated errors use the AIF fault mechanism. It allows application

 // errors to be differentiated from general unhandled errors

 if (range.parmSimulateError())

 {

 throw AifFault::fault('This is a simulated error', 'ApplicationError');

 }

 logTable.Status = 1;

 }

 logTable.numberOfPrimesFound += primes;

 logTable.callId = range.parmCallId();

 logTable.Result += strFmt('\r\nTask %4 Found %3 primes in range[%1, %2] in %5

seconds',

47

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

 range.parmStartOfRange(),

 range.parmEndOfRange(),

 primes,

 BatchHeader::getCurrentBatchTask().RecId,

 ticks / 1000);

 logTable.update();

 // Since all the tasks update the same record, there is significant

 // conflict on committing the transaction. There are better ways to do

 // this; each task could have its own tracking record

 ttsCommit;

 }

 catch (Exception::Deadlock)

 {

 retry;

 }

 catch (Exception::UpdateConflict)

 {

 // This will not be used with pessimistic locking

 // use ForUpdate instead of PessimisticLock in the select

 // to see this in action

 retry;

 }

}

Install a cleanup job programmatically.

SysOpFindPrimeNumbersCleanupController

public static void main(args a)

{

 BatchJob batchJob;

 SysOpFindPrimeNumbersCleanupController cleanupController;

 SysOpFindPrimeNumbersCleanupDataContract cleanUpParameters;

 batchInfo batchInfo;

 SysRecurrenceData recurrenceData;

 #define.JobName('Advanced Find Prime Recurring Cleanup');

 if (Box::yesNo('Do you want to install a recurring cleanup job for Find Prime Number

operation history', DialogButton::Yes) == DialogButton::Yes)

 {

 select RecId from batchJob where batchJob.Caption == #JobName;

 if (batchJob)

 {

 warning('Batch job for recurring cleanup job of Find Prime Number operation

history already exists.');

 }

 else

 {

 // instantiate the cleanup controller

 cleanupController = new SysOpFindPrimeNumbersCleanupController();

 // set its parameters

 cleanUpParameters = cleanupController.getDataContractObject();

 cleanUpParameters.parmCleanupIntervalInMinutes(10);

 // set up the recurrence information

 batchInfo = cleanupController.batchInfo();

48
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

 batchInfo.parmCaption(#JobName);

 recurrenceData = SysRecurrence::defaultRecurrence();

 // start in x minutes from now so that the job can be inspected via the batchjob

 // form before it starts.

 recurrenceData = SysRecurrence::setRecurrenceStartDateTime(recurrenceData,

 DateTimeUtil::addMinutes(DateTimeUtil::utcNow(), 1));

 recurrenceData = SysRecurrence::setRecurrenceNoEnd(recurrenceData);

 // Set the minimum recurrence interval of 1 minute

 recurrenceData = SysRecurrence::setRecurrenceUnit(recurrenceData,

 SysRecurrenceUnit::Minute, 1);

 batchInfo.parmRecurrenceData(recurrenceData);

 // This will add the job to the batch table

 cleanupController.parmExecutionMode(SysOperationExecutionMode::ScheduledBatch);

 cleanupController.doBatch();

 }

 }

}

Override the default batch job notification settings.

SysOpFindPrimeNumbersJobController

public Batch doBatch()

{

 BatchHeader batchHeader;

 if (executionMode == SysOperationExecutionMode::ScheduledBatch)

 {

 // Set up alerts so that they alert on success or error via a popup toast

 // If the job is set up for scheduled batch

 batchHeader = this.batchInfo().parmBatchHeader();

 batchHeader.clearAllAlerts();

 batchHeader.addUserAlerts(curUserId(), // alert user who created the job

 NoYes::Yes, // completed

 NoYes::Yes, // error

 NoYes::No, // canceled

 NoYes::Yes, // popup or toast in desktop client

 NoYes::No); // email

 }

 else if (executionMode == SysOperationExecutionMode::ReliableAsynchronous)

 {

 // Alerts don't fire in reliable async mode so clear them

 batchHeader = this.batchInfo().parmBatchHeader();

 batchHeader.clearAllAlerts();

 batchHeader.addUserAlerts(curUserId(), // alert user who created the job

 NoYes::No, // completed

 NoYes::No, // error

 NoYes::No, // canceled

 NoYes::No, // popup or toast in desktop client

 NoYes::No); // email

 }

 return super();

49

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

}

Create notifications from application code (and cleanup logic).

SysOpFindPrimeNumbersCleanupController

public void cleanupOldOperations(SysOpFindPrimeNumbersCleanupDataContract _input)

{

 SysOpFindPrimesWithTasksTrackingTable operationTable;

 BatchJobHistory jobHistory;

 utcDateTime minimumDateTime;

 int64 operationTableCount;

 int64 errorCount;

 int interval;

 EventNotificationBatch alerts;

 interval = _input.parmCleanupIntervalInMinutes();

 if (interval <= 0)

 {

 interval = 30;

 }

 // Clean up anything that is more than X minutes old where X is passed in

 // via the input parameter

 ttsBegin;

 minimumDateTime = DateTimeUtil::addMinutes(DateTimeUtil::utcNow(), -interval);

 // Get a count of records that will be cleaned up

 select count(RecId) from operationTable exists join jobHistory

 where

 jobHistory.Status == BatchStatus::Finished &&

 jobHistory.BatchJobId == operationTable.BatchJob &&

 operationTable.modifiedDateTime < minimumDateTime;

 operationTableCount = operationTable.RecId;

 // clean up the operation table. Don't delete errors

 delete_from operationTable exists join jobHistory

 where

 jobHistory.Status == BatchStatus::Finished &&

 jobHistory.BatchJobId == operationTable.BatchJob &&

 operationTable.modifiedDateTime < minimumDateTime;

 // Clean up the batch job history where there are no operation records

 delete_from jobHistory notexists join operationTable

 where

 jobHistory.BatchJobId == operationTable.BatchJob;

 ttsCommit;

 // bubble up error from batch history into operation table

 // set status to -1 where the batch job is in error

 ttsBegin;

 // get the count of errors that need to be propagated

 select count(RecId) from operationTable

 where

 operationTable.Status == 0

 exists join jobHistory

50
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

 where

 jobHistory.Status == BatchStatus::Error &&

 jobHistory.BatchJobId == operationTable.BatchJob;

 errorCount = operationTable.RecId;

 update_recordSet operationTable setting

 Status = -1

 where

 operationTable.Status == 0

 exists join jobHistory

 where

 jobHistory.Status == BatchStatus::Error &&

 jobHistory.BatchJobId == operationTable.BatchJob;

 ttsCommit;

 // Generate alert for erroneous operations

 if (errorCount)

 {

 ttsBegin;

 alerts = EventNotification::construct(EventNotificationSource::Batch);

 alerts.newInfo(curUserId(), // user

 'Errors finding primes', // subject

 null, // menu item

 null, // record

 true, // popup

 false, // email

 '', // email address

 curext(), // company

 DateTimeUtil::utcNow(), // date

 strfmt('%1 errors propagated', errorCount)); // message

 alerts.create();

 alerts.insertDatabase();

 ttsCommit;

 }

 info(this.caption());

 info(strFmt('Cleaned up %1 operation records. %2 errors detected.', operationTableCount,

errorCount));

}

Note that, in this sample, the class SysOpFindPrimesWithTasksService is not used. It will be

used in the next section, from the .NET client, to invoke the controller discussed here.

51

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Sample 5: How to call asynchronous operations from
.NET clients

So far, all the samples have used Microsoft Dynamics AX forms to drive the controllers built with
the SysOperation framework. This sample will show how to use the same asynchronous execution
patterns from a .NET client. The architecture is the same as for the Microsoft Dynamics AX forms.
The .NET client runs a Reliable Asynchronous operation on the Microsoft Dynamics AX server,
and then polls periodically for the operation results. This sample requires that the service group
deployed at the beginning of this paper be available.

52
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Deploying this group creates a WCF endpoint out of the Microsoft Dynamics AX server. The
endpoint exposes two service interfaces. Four artifacts in the sample project define the service
interfaces exposed by the endpoint.

The first service, SysOpFindPrimesService, runs the controller that computes primes by using a
single batch task. The second service, SysOpFindPrimesWithTasks, computes primes by using
multiple batch tasks. The .NET client calls both service interfaces in the common endpoint and
provides a comparison between the two designs.

53

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

To run the .NET client:

1. Open the solution SysOpFindPrimesSample.

2. Check the app.config file to make sure that the service endpoints point to localhost. It is
assumed that the sample will be run on the same machine as the Microsoft Dynamics AX

server.

3. Run the sample. It will run in three steps:

1. Run with a single batch task

2. Run with multiple batch tasks

This should run faster on a multiprocessor machine.

3. Run with multiple batch tasks and simulate an error in one of the tasks

54
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

The error is propagated from the batch history to the .NET client.

55

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Architecture and code

Class diagram

+Main()

Program

+findCountOfPrimeNumbersInRange()
+getOperationStatus()

SysOpFindPrimesService

+findCountOfPrimeNumbersInRange()
+getOperationStatus()

SysOpFindPrimesWithTasksService

-startOfRange
-endOfRange
-callId

SysOpFindPrimesDataContract

-callId
-startOfRange
-endOfRange
-simulateError

SysOpFindPrimesWithTasksDataContract

+findCountOfPrimeNumbersInRange()

SysOpFindPrimesController

+caption()
+createTasksForFindingPrimeNumbers()
+doBatch()
+new()
+main()
+startOperation()
+promptUser()
+pack()
+unpack()

SysOpFindPrimeNumbersJobController

+addBatchJobToQueue()
+scheduleBatchJob()
+addRuntimeTask()

BatchServer

-run

WcfServiceProxies

-Invoke

-Fill
-Fill

-Invoke

-run -run

-addBatchJobToQueue

-addBatchJobToQueue

-run

AX Server

56
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

Sequence diagram

Appendix: Workarounds for issues in the framework

There are multiple workarounds for framework issues in the SysOpSampleBaseController class.

This class is used as a base for all controllers in the sample projects. The issues will be addressed
in a future service pack.

Issue 1: The controller should not be unpacked from the
SysLastValue table when running via batch.

Class SysOpSampleBaseController

protected void loadFromSysLastValue()

{

 if (!dataContractsInitialized)

 {

 // This is a bug in the SysOperationController class

 // never load from syslastvalue table when executing in batch

 // it is never a valid scenario

 if (!this.isInBatch())

DotNet Program FindPrimesWithTasksService JobController TaskController BatchServer TrackingTable

findCountOfPrimeNumbersInRange

setDataContract()

run()

addBatchJobToQueue

new

unpack

createTasksForFindingPrimeNumbers

new()

setRanges()

pack()

addBatchJobToQueue()

new

unpack

findCountOfPrimeNumbersInRange

insert()

update

read()

data

getOperationStatus

data

57

INTRODUCTION TO THE SYSOPERATION FRAMEWORK

 {

 super();

 }

 dataContractsInitialized = true;

 }

}

Issue 2: The default value for property
parmRegisterCallbackForReliableAsyncCall should be false to

avoid unnecessary polling of the batch server.

public void new()

{

 super();

 // defaulting parameters common to all scenarios

 // If using reliable async mechanism do not wait for the batch to

 // complete. This is better done at the application level since

 // the batch completion state transition is not predictable

 this.parmRegisterCallbackForReliableAsyncCall(false);

 … code removed for clarity …

}

Issue 3: The default value for property parmExecutionMode

should be Synchronous to avoid issues when creating run-time
tasks.

Class SysOpSampleBaseController

public void new()

{

 … code removed for clarity …

 // default for controllers in these samples is synchronous execution

 // batch execution will be explicitly specified. The default for

 // SysOperationServiceController is ReliableAsynchronous execution

 this.parmExecutionMode(SysOperationExecutionMode::Synchronous);

}

Issue 4: The value of the column runTimeJob in the BatchJob table

is overwritten when runtime tasks are added to a batch job.

SysOpFindPrimeNumbersJobController

public void createTasksForFindingPrimeNumbers(SysOpFindPrimesWithTasksDataContract range)

{

 … code removed for clarity …

 // Get the header of the currently executing job

 batchHeader = BatchHeader::getCurrentBatchHeader();

 batchJobId = batchHeader.parmBatchHeaderId();

 // the delete on success flag (runtimeJob) is lost when altering batch header.

 // Restoring it. This parameter is set when the job is created to execute in reliable

 // async mode

58
INTRODUCTION TO THE SYSOPERATION FRAMEWORK

 select RuntimeJob from currentJob where currentJob.RecId == batchJobId;

 batchHeader.parmRuntimeJob(currentJob.RuntimeJob);

 … code removed for clarity …

}

Updates since initial publication

The following table lists changes made to this document after it was initially published.

Date Change

March 2012

March 2013

Initial publication

Sample 3: Introduction to SysOperation execution modes was
added to provide descriptions of the execution modes for the
SysOperation framework that are designed to provide different options
for managing the single-threaded constraint that is associated with
Microsoft Dynamics AX sessions.

This document is provided “as-is.” Information and views expressed in this document, including URL and other Internet Web site

references, may change without notice. You bear the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or

should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and

use this document for your internal, reference purposes. You may modify this document for your internal, reference purposes.

© 2013 Microsoft Corporation. All rights reserved.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

http://www.microsoft.com/dynamics

