

High Performance Data Warehouse with SQL
Server 2005

SQL Server Technical Article

Writer: Erin Welker, Scalability Experts

Technical Reviewers: Eric Hanson, Microsoft Corp.

 Lubor Kollar, Microsoft Corp.

 Torsten Grabs, Microsoft Corp.

Published: October 2006

Applies To: SQL Server 2005

Summary: This document discusses things to consider when architecting a large, high-

performance relational data warehouse, especially one that is host to unpredictable

ad hoc queries. The discussion includes some of the new features of SQL Server 2005

and considerations to take into account when using these features. It also includes

methodologies for creating and storing pre-aggregated result sets to facilitate

mainstream queries and reports.

Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed

as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted

to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented

after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR

STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright,

no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form

or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express

written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering

subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the

furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual

property.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places,

and events depicted in examples herein are fictitious. No association with any real company, organization, product,

domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States

and/or other countries.

All other trademarks are property of their respective owners.

Table of Contents
Introduction ..1

Creating a Solid Foundation ..2

Hardware considerations .. 2

Disk configuration .. 3

SQL Server configuration ... 4

Tempdb .. 6

Database configuration .. 6

Locking ... 6

Instant file initialization ... 8

Auto Shrink ... 9

Auto update statistics ... 9

Disk layout .. 9

Table Design ... 10

Declarative referential integrity and constraints .. 10

Indexing strategies.. 11

Dimension table indexing .. 11

Fact table indexing ... 11

Using a Smart Date key .. 12

Evaluating index utilization .. 13

Index fragmentation .. 13

Partitioning for fast loads and query performance.. 14

Partitioning considerations .. 14

Partition loading ... 15

Co-aligned partitions .. 16

Partition disk allocation ... 16

Optimizing the Data Warehouse Environment ... 16

Aggregation strategies ... 16

Designing summary tables .. 17

Analysis Services ... 17

A process for designing summary tables ... 18

Indexed views vs. summary tables ... 21

Improving summary table performance .. 23

Summary tables and Report Builder ... 24

Conclusion... 25

References .. 25

High Performance Data Warehouse with SQL Server 2005 1

 Microsoft Corporation ©2006

Introduction
We have visited a number of customer environments where a data mart has been

configured on Microsoft® SQL Server™ to allow unfettered access to the data. Some of

the ―super users‖ that have access to this data have learned to write expert

Transact-SQL. The availability of Report Builder in SQL Server 2005 Reporting Services

(SSRS) extends powerful Transact-SQL query creation capability to even more users.

Their ability to consume server resources is unsurpassed, making it a challenge for

database administrators (DBAs) to guarantee consistent performance. Yet, when

SQL Server Analysis Services (SSAS) and cube building is mentioned, users who need

to access the data in unpredictable ways may perceive their query flexibility to be

thwarted. So, how do you give your business users the access they demand, as well as

give them well-performing queries and still meet availability Service Level Agreements

(SLAs)?

A great deal of information surrounding data warehousing and Business Intelligence

(BI) has been published over the past several years. Most of this information focuses on

the process of building a data warehouse or data mart to meet and exceed business

goals related to making strategic decisions. While this aspect of building the data

warehouse is critical to the success of any BI undertaking, far less has been written

about improving the performance and management of a SQL Server relational data

warehouse. With the release of SQL Server 2005, additional features support the

implementation of relational data warehouses in the multi-terabyte range. This white

paper addresses some of the decisions involved and recommended best practices when

architecting a relational data warehouse or data mart on SQL Server 2005 from a

performance perspective.

Though this white paper discusses the obvious topics around hardware selection,

SQL Server instance and database configuration, and table/index design, it also

introduces overall strategies for delivering a data mart or data warehouse that balances

query performance with the time investment for providing such an environment in

terms of index and aggregation maintenance. We incorporate many of the features of

SQL Server 2005 in this discussion, while challenging some frequently assumed

approaches regarding the relational design of the tables, indexes, and constraints.

Performance of a relational data warehouse is usually perceived in two ways: updating

the database and querying. Updating requires more than the extraction,

transformation, and loading (ETL) of new data. Database administrators are responsible

for designing and maintaining databases as efficiently as possible and those processes

need to be worked into the batch update window. Querying can also come in various

forms, such as end-user ad hoc queries, Reporting Services and other query tools, and

loading into Analysis Services or other OLAP cubes. Since Analysis Services is very

predictable in the types of queries it issues, this paper focuses on direct queries against

the relational data warehouse. These could be ad hoc in nature via Report Builder or

other direct query tools, or more predictable queries that result from pre-coded reports.

Before continuing, we will establish some assumptions on the terms already mentioned.

The relational data warehouse refers to a store of information, usually very large, that

is housed in a relational database management system for purposes of reporting,

analysis and data mining. The terms data warehouse and data mart are often used

interchangeably. The data warehouse, however, more often refers to the storage of

information across all of the enterprise. This data is cleansed and often stored in a

High Performance Data Warehouse with SQL Server 2005 2

 Microsoft Corporation ©2006

normalized manner and seldom queried directly. Instead, it is used as a consistent

source for one or more subject-oriented data marts that service users directly or feed

OLAP cubes. The information in a data mart could be designed in any manner but

usually is a dimensional design following the Kimball star or snowflake design methods1.

―Data marts‖ are often lumped into the term ―data warehouse‖ in the industry,

however. For consistency sake, we use the term ―data warehouse‖ as a generic term to

include data marts throughout this white paper.

This paper assumes basic knowledge of data warehousing concepts, dimensional

modeling, SQL Server 2005 table partitioning, and indexed views. Many of the

comparative query tests were performed on the Project REAL database. Project REAL is

a reference implementation of an at-scale, real-world data warehouse on

SQL Server 2005. For supplemental information on these topics, see the References

section at the end of this white paper.

Creating a Solid Foundation
The key to creating a well-performing relational data warehouse is to understand the

data and how users query the database. The latter can change substantially over time,

so it is necessary to continually make adjustments based on changes in query patterns.

Prior to this, there are several infrastructure decisions to be made that can greatly

affect the performance of the system after it is implemented.

Hardware considerations
Hardware decisions often are made prematurely, before any significant knowledge of

the system is known. This is particularly tricky when choosing hardware for a relational

data warehouse that allows unbarred ad hoc access to its end users. It has become

increasingly common for ―super users‖ to have access to the warehouse to satisfy their

reporting needs, as Information Technology departments are hard-pressed to keep up

with the demand for new reporting and analysis requirements. The hardware platform

needs to allow for this, to the extent possible.

The 64-bit platform provides many advantages to a data warehouses due to the

extended memory architecture. A data warehouse that supports ad hoc querying

requires sufficient memory to read gigabytes (GBs) and terabytes of data. The cost-

effectiveness of the x64 platform has all but eliminated the consideration of 32-bit in

server purchasing decisions. This is particularly true for a data warehouse because it

stores and queries very large databases.

Even a 64-bit decision is complicated by the two high-level chip architectures—x64 and

IA64 (Itanium). There are a few things to take into consideration when making this

decision. x64 is fully supported in SQL Server 2005 and is an excellent option for data

warehouses due to its cost efficiency. Currently, Itanium-based hardware provides more

scalability but the x64 platform is quickly catching up. It is important to remember that

Itanium is a completely different chip architecture that favors parallelism and improved

computational logic, often found in data warehouses. Since both chip architectures are

quickly evolving, it is best to study the current vendor offerings. A good indicator can

be the TPC-H results posted on the TPC Web site

1 For more information on dimensional modeling, see the books referenced in the

References section of this whitepaper.

http://www.tpc.org/tpch/results/tpch_perf_results.asp

High Performance Data Warehouse with SQL Server 2005 3

 Microsoft Corporation ©2006

(http://www.tpc.org/tpch/results/tpch_perf_results.asp). This is particularly informative

when looking at the underlying database size, though that is not a pure indication of

system size.

In addition to chip architecture, the number and speed of processors is important. Data

warehouses require much number crunching and the need for parallelism, which is

facilitated by both the number of processors and their clock speed. It can be difficult to

estimate the actual requirements prior to implementing the data warehouse in

production. A good approach is to not only establish a baseline to start with, but also to

identify hardware and an architecture that can be scaled to more, faster processors in

the future.

Data warehousing requires a great amount of memory. For medium to large data

warehouses, make sure that the host SQL Server instance does not need to compete

with other processes for memory. All queried data must go through memory. For

instance, if a user designs a query that reads through all of a 500-GB fact table, every

data page in that fact table or index will ultimately be read into memory. The use of

summary tables, as mentioned later in this paper, greatly minimizes the amount of data

that flows through memory. However, it is almost impossible to design summary tables

to satisfy every query that the data warehouse will see, even in a given day. Specify as

much memory as possible for the data warehouse server—it will never be enough.

Disk configuration
The disk configuration for a data warehouse is arguably the most critical factor. The

very large memory configurations currently available can result in far fewer I/O

operations. However, data warehouse databases can easily fall into the range of many

terabytes. If all of this information is even infrequently queried, I/O will be a big factor

in your environment as even very large memory will not prevent I/O. I/O still remains

the slowest aspect of the hardware system and careful planning is required to purchase

and configure the disk subsystem appropriately. Storage Area Network (SAN) continues

to be the ideal choice for large databases, such as data warehouses. The details

regarding SAN setup is best left to the SAN vendor and is outside of the scope of this

discussion. Be sure to relay the characteristics of the different types of files (tempdb,

data files, and log files) so that the disk subsystem will be designed appropriately.

Some basic best practices for disk configuration include:

 Create more SAN disk groups to support multiple and parallel I/O from SQL Server.

Each disk group is made up of distinctly different disk arrays that are configured

based on the type of data that is hosted (active data, historical data, logs,

tempdb).

 Configure host bus adapter (HBA) to disk ratios to avoid HBA bottlenecks. Consult

the SAN vendor for recommendations based on I/O ratings for each.

 Place the data and log files on separate disk groups for isolation to ensure recovery

in the event of failure on either part. This also enables you to configure disk groups

to be customized to the read/write characteristics of each.

 Place the tempdb data files and log file on separate disk groups.

 Ensure that arrays are built from a large number of physical disks, while not

saturating the controllers.

High Performance Data Warehouse with SQL Server 2005 4

 Microsoft Corporation ©2006

 Stripe large tables that typically experience large range reads, such as fact tables,

across a large number of disks to evenly distribute I/O (see Partitioning for Fast

Loads and Query Performance later in this paper).

When defining RAID requirements, many of the best practices of OLTP follow into the

data warehousing environment. Tempdb can be a critical database that should be

segregated from all other database files on its own RAID array. Tempdb I/O

characteristics are random read/write I/O, which benefits from RAID striping, preferably

RAID 1 or 10. The transaction log I/O characteristics are sequential write I/O and

should be placed on either RAID 1 or RAID 10 arrays. Data files should usually be

configured to favor read I/O unless there are frequent updates throughout the day. If

that is the case, the I/O priority should be weighed based on business requirements.

Though RAID 5 is generally discouraged on OLTP, it is a relatively good option for data

warehouse data files where write operations are infrequent (once a day or less). The

huge disk requirements of a data warehouse often minimize or eliminate the option of

RAID 1 or 10 for data files due to the high cost of such redundancy.

When architecting your data warehouse, think creatively about your data, especially if

you come from an OLTP background. Remember that, even though the database is

huge, it is extremely rare that any but a small portion is regularly updated. Use this to

your advantage in database maintenance.

Look at the user‘s query requirements closely to determine innovative architectures. For

instance, a point in time can usually be identified to segregate active data from inactive

data. In this case, ―active‖ refers not only to data that is regularly updated but is also

frequently queried. Business requirements often require that data be stored for years,

but you can usually use an 80/20 rule to determine a cutoff where only 20% of the data

(or less) is read in 80% (or more) of the queries. Use this to isolate older, less active

data, to less expensive disks and maybe even a separate server. The latter will isolate

queries that reference all data since the beginning of time and wipe out active data in

cache.

Networking requirements can vary. Though queries can filter through a very large

amount of data, the ultimate result set returned to the client is generally small. An

exception is when a separate application is inserted between the relational data

warehouse and the end user of the data. This application may be an OLAP server, such

as Analysis Services, or a front-end analysis tool, such as Proclarity. Such applications

tend to request large amounts of data from SQL Server, requiring a higher speed

network connection between the two servers.

SQL Server configuration
Once appropriate hardware has been purchased, it is important to configure

SQL Server 2005 for its fullest potential. SQL Server was designed to be self-tuning so,

in many cases, the very best thing to do is to leave the default configuration values as

they are out of the box. Some exceptions to that rule, as well as some informative

items and suggestions on database layout, are discussed in this section.

Sharing a server that houses a data warehouse with any other application or database

is typically unwise. The inconsistent resource utilization can make it difficult or

impossible to provide consistent performance to application databases whose

characteristics can and should be consistent (OLTP).

The first topic is in regard to memory configuration. In many cases, a 64-bit platform is

the platform of choice due to the high demands on memory made by a relational data

High Performance Data Warehouse with SQL Server 2005 5

 Microsoft Corporation ©2006

warehouse. Remember that queries against a relational data warehouse are varied and

usually span numerous rows in the database. All database pages on which these rows

reside must be read into memory in order to satisfy the query. AWE (Address

Windowing Extensions) can logically raise the memory bar on a 32-bit platform, but it

introduces memory mapping overhead that can be avoided on a 64-bit platform. Also,

only the data buffer benefits from AWE—other memory resident objects such as

procedure cache, locking memory and workspace memory are still restricted by the

4-GB limitation of a 32-bit platform.

AWE is still relevant in a 64-bit scenario and is often recommended as a means of

locking SQL Server memory to prevent Microsoft Windows® from swapping database

pages to disk. This is only a consideration when SQL Server shares the server resources

with another memory-heavy application, such as another SQL Server instance or other

SQL Server components (SQL Server 2005 Integration Services (SSIS), SSAS, or

SSRS). It is recommended that a SQL Server relational data warehouse of any

significant size (300 GB or greater) reside on its own server. It is not necessary for

SQL Server to lock pages in memory in this scenario.

The Max Degree of Parallelism option tells SQL Server the maximum degree of

parallelism that will be considered for a single query execution. The default of 0 tells

SQL Server to determine this at run time. When a parallel plan is generated for a query,

the query optimizer bases this decision on the current processor availability at run time.

If there are several users on the server at a given time, it may be a good idea to

throttle this number back so that a single query does not monopolize all of the

processor resources, making them unavailable for queries that are subsequently

executed. This can also be overridden for an individual query with the MAXDOP query

hint. In SQL Server 2005, MAXDOP can also be used on index creation and rebuilds.

Cost threshold for parallelism is a server instance option that tells the optimizer when

to begin consideration of a parallel plan. The optimizer has to balance the cost of plan

generation with execution cost. If a query will run in less than a second with a good

plan, it doesn‘t make sense to spend 4 seconds finding the very best plan. By default,

parallel plans are not considered by the optimizer unless the best serial plan exceeds

5 seconds. If you consistently find that query plans are not parallel plans and you think

they should be, this may be the reason. Remember that, though parallel plans may

result in a faster query, they are usually more resource-intensive due to the overhead

cost of bringing parallel thread results back together. Reducing the value for this option

may benefit individual queries slightly, but at a cost at the system level.

An often overlooked SQL Server option is the query governor cost limit, which denies

execution of queries that have a cost greater than the current cost limit. The default is

0, which means that all queries will run, regardless of their estimated execution time.

Resetting this option is usually not valid in a data warehouse environment where large

queries are assumed. It can be used to govern queries during specified times, or for

―express lane‖ SQL Server instances that are reserved for less-resource intensive

queries. For instance, you may have a SQL Server instance that is used for querying

more active data and a separate instance for queries that may span all data. The query

governor is an advanced option but does not require a SQL Server restart.

CPU and I/O affinity can also be specified for a SQL Server instance. Unless the instance

shares server resources with other applications on the server, they should not be used.

This configuration is strongly discouraged in all but the smallest data warehouses.

High Performance Data Warehouse with SQL Server 2005 6

 Microsoft Corporation ©2006

Tempdb
The tempdb database can be an extremely critical component in the relational data

warehouse. Data warehouse queries tend to perform the grouping, ordering, and

aggregating of huge numbers of rows. Depending on memory resources, indexing, and

query structure, great demands can be placed on tempdb. Tempdb should be tuned to

perform as efficiently as possible. Formalized reporting should be scheduled outside of

the ad hoc query window to the greatest extent possible to avoid contention for this

shared resource.

The first step for configuring tempdb is to place it on the most efficient disk available.

This should be a striped RAID configuration with no parity (no RAID 5, which introduces

a write overhead). Note that disk recovery is not an issue with tempdb since it is

reinitialized every time SQL Server starts. The underlying disk array should have

numerous spindles and, ideally, multiple I/O paths. Also be aware of other operations

that place a high demand on tempdb, such as online indexing and row versioning. In

general, these features are not used in a relational data warehouse but it is good to be

aware of their effects on resources if they are being considered.

 Make as many tempdb files as you have physical CPUs2, accounting for any affinity

mask settings. Do not factor in hyperthreading or dual cored CPUs into the count.

 Make the file sizes of equal amounts (be sure they are ‗in total,‘ big enough to

handle anything they may encounter) and that they are on your best and fastest

drives.

 The tempdb files should be isolated to their own disk groups and can, therefore, be

sized to the capacity of that disk group. Auto grow is not recommended except as a

safety net. Even if the conditions exist for instant file initialization, operations that

use tempdb must pause while the file auto grows.

Determining an adequate disk capacity for tempdb can be particularly challenging in an

ad hoc query environment. If business users directly query the database, training might

be useful in order to promote query best practices that have less impact on tempdb.

One method is to collect tempdb usage information from a QA or test environment,

then extrapolate based on the expected usage growth in the production environment.

For great information on how SQL Server 2005 uses tempdb, as well as scripts and

DMVs (dynamic management views) for monitoring tempdb usage, see the Working

with tempdb in SQL Server 2005 white paper

(http://download.microsoft.com/download/4/f/8/4f8f2dc9-a9a7-4b68-98cb-

163482c95e0b/WorkingWithTempDB.doc).

Database configuration

Locking
Database locking is performed entirely for the sake of data consistency, ensuring that

data updates are atomic, consistent, isolated, and durable. The concept of data

consistency only applies in an environment where updates occur, but SQL Server has

no knowledge of a read-only environment unless that is explicitly specified. As such, all

queries result in locking behavior. In a data warehouse environment where thousands,

2 These files do not need to spread across multiple disk arrays unless you are

experiencing an I/O bottleneck in tempdb.

../../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/74CY6SY5/(http:/download.microsoft.com/download/4/f/8/4f8f2dc9-a9a7-4b68-98cb-163482c95e0b/WorkingWithTempDB.doc)
../../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/74CY6SY5/(http:/download.microsoft.com/download/4/f/8/4f8f2dc9-a9a7-4b68-98cb-163482c95e0b/WorkingWithTempDB.doc)
../../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/74CY6SY5/(http:/download.microsoft.com/download/4/f/8/4f8f2dc9-a9a7-4b68-98cb-163482c95e0b/WorkingWithTempDB.doc)

High Performance Data Warehouse with SQL Server 2005 7

 Microsoft Corporation ©2006

millions, billions, or more rows are read in a single query, locking overhead can be

tremendous. Toggling the database read-only option off and on during the batch

process can provide performance improvements across the entire query environment.

Note that changing this database option requires exclusive access to the database. The

database can be made to be read-only with the following code:

USE master;

-- Change the database to single user mode - rollback any

-- transactions and disconnect all users in the database

ALTER DATABASE [DataWarehouse]

SET SINGLE_USER

WITH ROLLBACK IMMEDIATE;

-- Change the database to read-only

ALTER DATABASE [DataWarehouse]

SET READ_ONLY;

-- Change the database back to multi-user mode

ALTER DATABASE [DataWarehouse]

SET MULTI_USER;

This has the same result as specifying the NOLOCK query hint on a query by query

basis. NOLOCK usually cannot be specified on queries that are issued from a reporting

or analysis tool and requires knowledge of this hint by users that directly access the

database. Therefore, if possible, it is recommended that the data warehouse database

be made read-only outside of the batch update cycle.

To realize the impact of a read-only database on performance, review the following

query times for this sample query against the Project REAL full-sized database:

SELECT d.Calendar_Month_Desc, i.Dept, s.District, i.Category,

 SUM(On_Hand_Qty)

FROM dbo.Tbl_Fact_Store_Inventory inv

FULL OUTER JOIN Tbl_Fact_Store_Sales sales

 ON Sales.SK_Date_ID = inv.SK_Date_ID

 AND Sales.SK_Item_ID = inv.SK_Item_ID

 AND Sales.SK_Store_ID = inv.SK_Store_ID

JOIN Tbl_Dim_Store s on

 inv.SK_Store_ID = s.SK_Store_ID

JOIN Tbl_Dim_Item i on

 inv.SK_Item_ID = i.SK_Item_ID

High Performance Data Warehouse with SQL Server 2005 8

 Microsoft Corporation ©2006

JOIN Tbl_Dim_Date d on

 inv.SK_Date_ID = d.SK_Date_ID

WHERE d.Calendar_Year_ID = 2004

AND I.Dept = 'Hardcover'

AND S.District = 'Washington'

AND I.Category = 'Art'

AND On_Hand_Qty <> 0

GROUP BY d.Calendar_Month_Desc, i.Dept, s.District, i.Category

Database READ_ONLY Avg. Response Time (ms)

False 1042

True 776

That‘s an improvement of over 25%. Both query runs were preceded by DBCC

FREEPROCCACHE and DBCC DROPCLEANBUFFERS. Note that this minimal locking

behavior is not observed simply by placing objects on read-only filegroups. The read-

only filegroup option is simply to facilitate the recovery of an unchanged filegroup so as

not to require the transaction log.

Though the above performance enhancements can also be observed by using the

NOLOCK hint in the query, setting this at the database level will benefit queries that are

issued from other applications, such as Report Builder. It also guarantees a stable

database state during the course of the day in environments that perform batch

updates on a daily or less frequent schedule.

Instant file initialization
Again, we will not review all database options, only those that are known to significantly

affect performance in a relational data warehouse. SQL Server 2005, in conjunction

with Windows 2003, is able to rapidly create or increase database sizes through instant

file initialization. To take advantage of this feature, verify that the SQL Server service

account is added to the Perform Volume Maintenance Tasks security policy. If the

service account is not already a member of a group with this privilege, use the Local

Security Settings option under Administrative tools to add it. Select Security Settings,

Local Policies, and then User Rights Assignment. Add the SQL Server account or

group to Perform volume maintenance tasks, as shown in the following figure.

High Performance Data Warehouse with SQL Server 2005 9

 Microsoft Corporation ©2006

Assigning Perform Volume Maintenance Tasks rights

This will greatly reduce the time it takes to create the very large databases associated

with data warehouses. Note that instant file initialization only applies to data files, not

log files; the database creation time will be constrained to the time it takes to create

the associated transaction log files.

Instant file initialization applies to the auto growing of database files, as well. Yet, it still

remains a best practice to proactively size database and log files to their anticipated

size in the foreseeable future. Even though auto grow is much faster with this new

capability, database activity is at a stand still until the growth operation completes.

Though sizing should be proactive, leave the auto grow capability on the files as a

safety net, but increase the default growth rate from the default 1 MB to prevent

repetitively growing the database in very small increments. This also minimizes

fragmentation.

As mentioned, transaction log files cannot take advantage of instant file initialization. It

is recommended that the transaction log file be pre-allocated to avoid auto grow. An

update that has to wait for the transaction log file to grow can greatly slow down an

ETL process. Also, make sure that auto grow increments (which should be left on as a

safety net) are large enough to prevent many small log segments which can result in

disk fragmentation.

Auto Shrink
It is generally a best practice to leave Auto Shrink turned off. If new business

requirements reduce the volume of data that needs to be kept (this is rare), the

database can be shrunk manually. Turning off Auto Shrink prevents databases from

shrinking after data is archived only to grow again once new data is added.

Auto update statistics
Auto update statistics presented an issue in previous versions of SQL Server because

the first query to compile with outdated statistics waited for new statistics to be created

before it could be compiled and run. The batch updates in a data warehouse seldom

trigger out-of-date statistics. However, when they do, users who were the first to run

queries after the nightly update were burdened with a query lag as statistics were

updated. In SQL Server 2005, statistics can be updated asynchronously and the query

that triggered them compiles and runs with the old statistics in the meantime. This

means the query compiles with old statistics, which are usually good enough. It is

recommended that Auto Update Statistics be left on, as is the default. You may wish to

enable asynchronous statistics update using the following command if statistics update

overhead as part of a user query causes an undesired delay.

ALTER DATABASE database_name SET AUTO_UPDATE_STATISTICS_ASYNC ON

Disk layout
A generally recognized best practice for laying out tables on disk is to use the primary

filegroup only for system objects and use explicitly defined filegroups for remaining

items. Dimension tables can go on their own filegroup, which resides on its own disk

array. This facilitates joins with fact and summary tables by distributing I/O. Fact tables

should go on their own filegroup, which is striped across multiple files, slightly fewer

than the number of available physical processors (accounting for CPU affinity). If

High Performance Data Warehouse with SQL Server 2005 10

 Microsoft Corporation ©2006

partitioning is implemented, see the section on Partition disk allocation later in this

document.

It is important to understand your SAN environment to know how LUNs are laid out.

Work with your SAN vendor and your storage administration group to design the best

disk subsystem for your data warehouse. Make sure they are aware of the emphasis

toward large, sequential read I/O that characterize data warehouse I/O.

Table Design
There are generally two approaches to the physical design of a relational data

warehouse where data is consumed directly by end users. The first is to retain the third

normal form design of the source data. This is usually the approach taken when trying

to minimize the time it takes to deliver data to the reporting user (near real-time).

Such a design is good for operational reports that are more detailed in nature. In the

case of a third-party source system, such a database can be used to feed application

reports that are segregated from high transaction-rate operational systems.

The second approach is a dimensional design, usually referred to as a star or snowflake

schema. The primary benefits of this approach are simplicity and performance. The

simplicity of the model makes it easy and quick for end users to grasp and browse. The

performance of a dimensional design over a relational design can best be observed in

actual tests that you can even perform on your own (AdventureWorks and

AdventureWorksDW can be used for this purpose). Knowledge of what constitutes a

star or snowflake design is assumed and, therefore, out of the scope of this white

paper. Due to the overwhelming arguments for using a dimensional design for the

relational data warehouse, this table design approach is assumed in the remainder of

this document.

The next design question has to do with whether to implement a star schema or a

snowflake schema design. This has been a controversial debate in the past, but

snowflake is getting more and more favor. Traditional arguments against snowflaking

are data model complexity and performance drawbacks.

In a SQL Server environment, performance of a star over a snowflake design is rarely a

big issue. Even on larger dimensions, such as a customer dimension, the narrower

tables that result from a snowflake design usually compensate for the additional JOINS.

This can, once again, be observed in testing scenarios in your own environment. The

complexity that is introduced with multiple tables in a snowflaked dimension can be

hidden from end users by implementing views that will make the design appear to be a

star schema. Ultimately, the argument between the two designs is not so compelling as

to rule out one over the other in all cases. The primary message is that performance is

not a reason for preferring one over the other.

Declarative referential integrity and constraints
In the data warehouse, a fine balance between data integrity and performance needs to

be maintained. Though data integrity is of the utmost importance, updates to the data

warehouse are typically finely controlled through the periodic batch ETL process, often

performed daily or hourly. The star or snowflake schema model strictly implies that the

low-level dimension tables contain a primary key that is a surrogate key. The source

system does not have this surrogate key information, so it must be obtained in the ETL

by looking it up based on the business key. Defining declarative referential integrity

greatly slows down the performance of the ETL code and is redundant in this case.

High Performance Data Warehouse with SQL Server 2005 11

 Microsoft Corporation ©2006

Again, data integrity takes priority, but if updates are as finely controlled as they should

be, it is recommended that referential integrity in the form of a declared foreign

key/primary key relationship between fact tables and dimension tables be omitted.

The same is true of constraints on the fact tables. It may be reasonable to define

constraints on dimension tables since the rate of update is usually far less than on fact

tables. As with PK/FK defined integrity, it should be the job of the ETL process to insure

that all data that is loaded into the data warehouse is clean.

Note that referential integrity can be defined in data source views (DSVs), allowing

Analysis Services and Report Builder to leverage these inherent relationships and

formulate appropriate queries back to SQL Server.

Indexing strategies
Appropriate indexing is extremely important in a SQL Server relational data warehouse.

The first tendency is to create as many indexes as possible to facilitate the dynamic

queries that may be directed at the fact tables. It is important to carefully plan the

indexing strategy to use, to fully understand the data that is represented in the

warehouse, how SQL Server chooses helpful indexes, and the nature of the queries that

will be issued against the warehouse. The last item is very difficult to predict. The

business user interviews that typically take place at the beginning of a data warehouse

venture will usually help to distinguish which items (dimension and measures) will be in

most high-demand when the data is made available. The delivery of even a subset of

the data to key business users early in the development phase is helpful in both

validating the design and inclusion of information, and illustrating the nature of the

queries.

Dimension table indexing
Dimension table indexing is relatively straightforward. Even if the strategy is off the

mark, inefficient indexes don‘t have a high overhead since dimension tables are usually

small and relatively stable. The primary exception is very large dimensions such a

customer dimension and Type 2 slowly changing dimensions. A general best practice is

to create a clustered, primary key on the surrogate key of each dimension table. The

surrogate key is usually an IDENTITY column, which also facilitates INSERTs. A

nonclustered index on the business key should be considered for query purposes, or if

surrogate key lookups are performed through a Transact-SQL statement during ETL.

When using SSIS to perform the lookups, the table or a subset of the table will be

loaded into memory on the SSIS server and an index on the business key is usually not

helpful. Note that a non-clustered index on the business key for Transact-SQL lookups

will not require a lookup of the actual data page since the clustered index key, the

surrogate key in this case, is replicated in all non-clustered indexes.

Fact table indexing
Just because an index exists, doesn‘t mean SQL Server will use it. The creation of

indexes that SQL Server will seldom use is just overhead for the population and

management processes, not to mention disk resources. One commonly prescribed

strategy for indexing fact tables is to create a primary key on a fabricated IDENTITY

column and create a nonclustered index on each of the foreign keys to the dimension

tables. Another strategy is to create a clustered, composite index composed of each of

the foreign keys to the fact tables. The first caution is to consider all aspects of your

High Performance Data Warehouse with SQL Server 2005 12

 Microsoft Corporation ©2006

environment and not blindly follow prescriptive guidance. Know your data, your users,

and the SQL Server optimizer. This information will greatly facilitate designing the most

efficient indexing strategy. It is often the case that neither of these strategies, alone,

are fully effective in delivering improved performance.

One consideration on index creation is to keep them as tight as possible. Compact

indexes require fewer pages, which helps performance, especially on enormous fact

tables. Remember that the clustering key is replicated on each nonclustered index leaf

page, so a smaller clustered key results in smaller nonclustered indexes.

A clustered index with the most commonly queried date column as the leftmost column

in the index is almost always a good idea in a data warehouse. If the fact table is

partitioned, this will usually be the same column as the partitioning key. Date is the

most commonly queried column in most data warehouses. Note that there can be more

than one date in the fact table (sale date, ship date, etc.) but there is usually one date

that is of the most interest to business users. A clustered index on this column has the

effect of quickly segmenting the amount of data that must be evaluated for a given

query. You might also add additional dimension foreign keys to this index to create a

composite index. Making the clustered index a composite index facilitates a star join

plan called a cross product plan. In a cross product plan, a cross product of the row sets

from different dimensions is formed, and the resulting keys consisting of two or more

dimension keys composed together are used to probe the composite clustered index in

the fact table. It is a good idea to order the foreign key columns left to right by the

dimensions that will be used most often. If there will be no nonclustered indexes, the

increased cluster key size of this composite index is much less of an issue.

Other nonclustered indexes should be evaluated very carefully before you create them.

Even dimension keys with a high cardinality (large number of distinct values) often

correlate to many rows in a fact table. The optimizer will often choose to use a

clustered index scan approach instead of using a nonclustered index to avoid numerous

lookups back to the data pages. When in doubt, create the nonclustered indexes on a

full data set, then check the query execution plans. You may be surprised by the

seemingly useful indexes that the optimizer sees little value in.

An exception to this is when there are frequent queries that do not filter on the first

column of the clustered key in the fact table. An example of this might be when

multiple dates are used for analysis (order date, shipping date, received date, etc.). If

this is the case, it can be beneficial to create separate non-clustered indexes on each of

the most commonly used dimension keys of the fact table. These can be used by the

SQL Server query optimizer for index intersection plans. In an index intersection plan,

sets of row IDs from two or more dimension key indexes on the fact table are

intersected. The resulting row IDs are used to seek into the fact table.

Using a Smart Date key
A useful technique is to use the smalldatetime3 data type as the surrogate keys for

the Date dimension. This allows you to specify date range filters directly against the

3 smalldatetime is recommended over datetime, where possible, since it is more

compact (4 bytes versus 8 bytes). The date range that smalldatetime covers a

smaller date range, from January 1, 1900 through June 6, 2079, which may prevent its

use. It is also less granular, as it is rounded to the minute, which is usually not an issue

in a data warehouse.

High Performance Data Warehouse with SQL Server 2005 13

 Microsoft Corporation ©2006

fact table in a readable way. Specifying range predicates directly on the partitioning key

of the fact table allows SQL Server 2005 to eliminate partitions for queries that must

scan the fact table. Specifying date range filters on the fact table via a join with the

Date dimension can cause the entire fact table to be scanned in some cases, even when

only a small number of partitions lie in the date range. For example, a query roughly

based on the Project REAL schema with a date range on the Fact table might look like

this (note the date criteria in bold):

SELECT Subject, SUM(Sales.Sales_Qty) AS Sales_Qty

FROM Tbl_Fact_Store_Sales as Sales

JOIN Tbl_Dim_Store Store

 ON Sales.SK_Store_ID = Store.SK_Store_ID

JOIN Tbl_Dim_Item Item

 ON Sales.SK_Item_ID = Item.SK_Item_ID

WHERE Sales.Transact_Date BETWEEN '01/01/2004' AND '03/31/2004'

AND Store.Region = 'West'

GROUP BY Subject

ORDER BY Sales_Qty DESC

For selective queries that seek into the fact table's clustered index, with Transact_Date

as the leading key, partition elimination is performed naturally even via joins between

the fact table and the Date dimension.

Evaluating index utilization
A useful DMV in SQL Server 2005 is sys.dm_db_index_usage_stats, which records

the number of times indexes were used in the current SQL Server run (since last

restart). Any indexes that are not recorded in this DMV have never been used since

SQL Server last started4.

For some useful scripts that can help you identify frequently used indexes, indexes that

have not been used, and comparison of index usage to cost of management, see the

Customer Advisory Team blog on ―How can SQL Server 2005 help me evaluate and

manage indexes?‖ (http://blogs.msdn.com/sqlcat/archive/2006/02/13/531339.aspx).

These scripts are good for evaluating the usefulness of your indexing strategy once it

has been implemented.

Index fragmentation
One performance aspect of indexes that can be overlooked in a data warehouse

environment is index fragmentation. We‘ve found customers who didn‘t perform index

maintenance because it was perceived that there just wasn‘t enough of a batch window

to support it! A fragmented index can have an enormous negative impact on

performance. The trick is to minimize the index maintenance by only creating useful

4 Note that there is a limit of 500 indexes that will be captured in the

sys.dm_db_index_usage_stats DMV. If there are 500 rows in this DMV, results

could be inaccurate since some relevant rows/indexes could have been evicted.

http://blogs.msdn.com/sqlcat/archive/2006/02/13/531339.aspx
http://blogs.msdn.com/sqlcat/archive/2006/02/13/531339.aspx
http://blogs.msdn.com/sqlcat/archive/2006/02/13/531339.aspx

High Performance Data Warehouse with SQL Server 2005 14

 Microsoft Corporation ©2006

indexes, and reorganizing only the indexes that are fragmented. The first point has

already been addressed.

The second point can be addressed by not assuming that all indexes must be

reorganized all the time. Small- to mid-size dimension clustered indexes are slow to

become fragmented because they are usually inserted in order by a sequential identity

column. Nonclustered dimension indexes are somewhat more problematic but also less

expensive to reorganize. Large fact tables are frequently partitioned. All index

operations are partition-aware, including those that detect fragmentation and re-

organize the index (ALTER INDEX with REBUILD or REORGANIZE). ETL programs can

even monitor updated tables/partitions to identify those that need to be evaluated for

fragmentation. A future white paper will discuss more tips on building index

maintenance into the data warehouse environment so that it is minimally intrusive.

Partitioning for fast loads and query performance
Table partitioning in a data warehouse is a common practice, primarily to facilitate the

management of very large fact tables. Knowledge of the general concepts of

partitioning is assumed in this white paper. Papers that address these concepts can be

found elsewhere (note the references at the end of this paper). Likewise, we will focus

on the new table and index partitioning feature in SQL Server 2005, though some of the

concepts can be implemented through local partitioned views which are available in

SQL Server 7.0 and 2000.

For this discussion, we assume that horizontal partitioning based on a date that is

roughly parallel to the actual progression of time is generally a good selection for a data

warehouse. For instance, the date of sale would be a good selection in a retail data

warehouse that is focused on sales. The idea is to select a partitioning key that is the

basis of the majority of queries against the data warehouse and would also be used

when determining the age of the fact records. Though dimension tables can be

partitioned, they are usually too small to consider. This discussion focuses on the

partitioning of fact tables and the impact this has on loading the data warehouse and

the queries that reference them.

We‘ll readdress the most obvious benefits of partitioning so we can focus the remaining

discussion on how to best leverage those benefits:

 Database Maintenance—the time needed for common database maintenance

operations (such as backups, restores, index maintenance) can be greatly

minimized when fact tables are divided on a column that segregates frequently

updated data from read-only data.

 Efficient loading—partitions can be loaded outside of the partitioned table, thereby

minimizing the impact on active queries.

 Partition elimination—the query optimizer can eliminate large portions of the fact

table if a query filters on the partitioning key.

 Data archival—the removal of old data from a partitioned table is greatly facilitated.

Partitioning considerations
There are a few factors to take into consideration prior to establishing a partitioning

strategy. First, know the business requirements around data archival. Don‘t partition at

a boundary beyond that where you will be removing data. For instance, if requirements

are to remove data a month at a time, it is not a good idea to partition by year since a

High Performance Data Warehouse with SQL Server 2005 15

 Microsoft Corporation ©2006

DELETE statement will be required to remove the data. Partitioning by month, in this

case, means that you can simply SWITCH out the month(s) to remove from the

partitioned table.

Query parallelism on a partitioned table is at the partition level. The only exception is if

the query optimizer is able to eliminate all but one partition to satisfy the query. In this

case, parallelism can be implemented up to the specified maximum degree of

parallelism. This can influence the partitioning strategy in an environment where many

of the queries are focused on very recent data.

To elaborate, consider a Sales data warehouse scenario where a large number of

queries analyze this month‘s sales compared to last month‘s and the table is partitioned

by month. Queries of this nature result in a maximum of two worker threads—one for

this month and one for last month. On a high-end server with numerous processors,

partitioning by month in this query environment may not be a good idea. One option is

to rewrite queries that only reference two or three partitions to use a UNION ALL

statement:

SELECT columns FROM partitioned_table … WHERE partition1

UNION ALL

SELECT columns FROM partitioned_table … WHERE partition2

It is also possible to change the partitioning unit throughout the data life cycle through

the MERGE and SPLIT verbs. In the aforementioned scenario, a table that is typically

partitioned by month could be modified for the current and previous month to be

partitioned by week until each partition ages past two months. Queries against the

current and previous month would then result in a maximum degree of parallelism of

eight. This option should be cautiously considered before implementing, due to the

expense associated with ultimately merging the weekly partitions into monthly

partitions. These merge operations may need to be performed during an extended

batch window, such as on a weekend. Furthermore, in a multi-user environment where

multiple parallelizable queries are frequently utilizing available resources anyway,

queries might not be impacted by changing the partitioning strategy. A best practice in

this case would be to implement a change in the partitioning unit after this is noted to

be an issue in your environment.

With the information addressed thus far, let‘s consider some options for a partitioning

strategy. Query patterns can vary tremendously from one environment to another so

the following options should be only be used as input to identify a suitable strategy for

your environment.

Partition loading
You will usually find it more efficient to load fact data outside of the partitioned table. If

the fact table is large enough to warrant partitioning, this usually means that

incremental updates are faster if performed external to the partitioned table. Since

performance varies across environments, be sure to validate this before implementing.

This can be done by switching the current partition out to an external table or by

utilizing a partitioning strategy where new data results in a new partition (daily load =

daily partition). Late-arriving facts can usually be handled through the partitioned table

but, again, performance will vary based on your environment and the average number

of late-arriving facts.

High Performance Data Warehouse with SQL Server 2005 16

 Microsoft Corporation ©2006

Co-aligned partitions
It is generally a good idea to come up with a consistent partitioning strategy across all

partitioned tables in your data warehouse. If there is any potential to join these tables,

the SQL Server optimizer can consider a plan whereby parallel threads join the tables

within each partition and then combine the results. This is mostly relevant with joined

fact tables, such as a Sales and Inventory data warehouse where reporting often

compares sales to in-stock inventory.

Again, there is not prescriptive guidance in this document since query patterns,

resource availability, and business requirements are so varied across customer

environments. The goal of this discussion is to give information on partitioned table

behavior and to provide options for consideration.

Partition disk allocation
Once a partitioning strategy has been established, you need to determine how the

partitions will lay out on disk. There are two high-level approaches—map multiple

partitions to one filegroup, or map individual partitions to their own filegroup. Variations

to each approach are also discussed.

The biggest issue with the one-filegroup strategy is that all partition data will be spread

out across the same files on disk. If there are multiple files in the filegroup, SQL Server

uses a proportional fill strategy to insert data. This noncontiguous data means that

SQL Server sequential scans may be less efficient. This strategy also limits the flexibility

in partition-based backups and piecemeal restores.

Mapping partitions to their own filegroup is usually the better strategy. Each filegroup

should have a single file so there is the potential for contiguous data. Whether the data

is actually contiguous depends on how it is loaded or if the clustered index has been

recently defragmented. Using the single-file per filegroup per partition strategy, be sure

that each file is striped across a large number of disks. Preferably, each file should be

striped across all disks, or all disks in the storage tier if you have multiple tiers of disks

of different speeds.

Optimizing the Data Warehouse Environment

Aggregation strategies
A common observation with customers that allow direct, ad hoc querying of SQL Server

is the frequent use of temporary summary tables. This should not be a surprise—this is

how Analysis Services gets its performance. The issue is that the users (usually

technically advanced ―super users‖) are often the ones doing the summarization and

frequently they are summarizing the same information over and over again since they

are unaware that other users are doing the same. This has a heavy impact on system

resources. As previously mentioned, tempdb takes a very heavy hit on this type of

query. Also, the pre-aggregations have to be stored somewhere, either in the source

database or in tempdb. If this information is stored repeatedly, the disk consumption

can be enormous. When these are built during peak hours, memory demands can be

huge as all detailed data to support the summarization must be read into memory. This

usually best reveals itself with a low page life expectancy (performance counter

SQLServer:Buffer Manager\Page life expectancy).

High Performance Data Warehouse with SQL Server 2005 17

 Microsoft Corporation ©2006

Designing summary tables
A strategic and highly effective goal is to design and implement a handful of permanent

summary tables to include pre-aggregated information. What often kills this type of

initiative is the desire to create summary tables that satisfy 100% of user queries. This

goal is almost certainly unobtainable and can result in very large summary tables that

provide little benefit. The target should be closer to satisfying 75% or 80% of queries.

This initiative cannot be started until a good representation of the queries is available.

This is another reason for pushing data to the users as quickly as possible, as query

patterns can be reviewed even in a testing or QA environment.

The following is an example process for designing summary tables:

1. Collect a good sampling of queries. These may come from user interviews,

testing/QA queries, production queries, reports, or any other means that provide a

good representation of expected production queries.

2. Analyze the dimension hierarchy levels, dimension attributes, and fact table

measures that are required by each query or report.

3. Identify the row counts associated with each dimension level represented.

4. Balance the most commonly queried dimension levels against the number of rows in

the resulting summary tables. A goal should be to design summary tables that are

roughly 1/100th the size of the source fact tables in terms of rows (or less). Also,

minimize the columns that are carried in the summary table in favor of joining back

to the dimension table. The larger the summary table, the less performance

advantages it provides.

Analysis Services

Those who are familiar with the workings of SQL Server Analysis Services (SSAS) may

have already noticed that many of the recommendations in this paper come with SSAS

by default. The performance advantages in SSAS come directly by its inherent ability to

determine the best pre-aggregation algorithms and dynamically navigate through

dimensional data. In most cases, it outperforms the relational data warehouse simply

because this type of querying is what it is designed to do.

There may be inhibitors to moving to Analysis Services, perhaps because of the added

expense of a separate server and the perceived time needed to process cubes. The

latter, however, is very similar to the concept of updating summary tables with new

information during or after ETL processing. Analysis Services is the preferred platform

for reporting on aggregated data and trend analysis of data warehouse information.

Following are a set of advantages and disadvantages for Analysis Services to help you

decide whether it is a good option for your environment.

Advantages

 Many of the manual processes mentioned in this white paper, particularly regarding

pre-aggregation, are built into Analysis Services.

 There is a semi-automated process that analyzes queries submitted to the server

over time and allows the administrator to specify a modification to the aggregation

design based on those queries (usage-based optimization).

 Several third-party applications are designed to read SSAS metadata and present a

user-friendly ad hoc query interface.

High Performance Data Warehouse with SQL Server 2005 18

 Microsoft Corporation ©2006

 No explicit report model has to be designed; Report Builder can generate a model

directly from SSAS cubes.

 Aggregation design is more flexible.

 Query performance for queries that aggregate along predefined dimension

hierarchies tends to be much faster.

Disadvantages

 Programmatic access of SSAS data must utilize MDX (Multidimensional Extensions),

a language that is far less known and less intuitive than Transact-SQL.

 There is little overlap in skill sets between SQL Server and Analysis Services,

requiring existing personnel to develop the new skill set or the direct hiring of this

skill set.

 Cube (measure group) and dimension processing can be less flexible than explicitly

maintaining summary tables. SSAS may trigger a full measure group or dimension

process even when it is not really required.

 Not all data may have a home in the cube.

 Queries that must touch each fact in a large fact table (because no aggregates are

available to make them go faster) may run much slower on SSAS than the

equivalent Transact-SQL query on SQL Server.

A process for designing summary tables
Designing summary tables is not an easy task and requires a fair amount of analysis of

the expected or observed query load from reporting and ad hoc queries. If you don‘t

have any of this information, you can go back to operational reports that are of the

greatest value to the business users. Focus on those that they rely upon heavily since

there will be many stale reports that are not useful input to this process. Keep in mind

that you want to design as few summary tables as possible to satisfy the largest

number of queries.

The following is an abbreviated process that was used for Project REAL. Using a handful

of reports that were provided by the customer, we created a Microsoft Excel

spreadsheet (a simplistic representation is in the table below) to map out the primary

dimensions (Date, Store, and Item) and record the lowest dimension hierarchy levels

that were queried by each report and the fact table measures that were referenced. The

number of members at a given level was used to determine whether it was included or

not. The first summary table was designed to be a multi-purpose summary table with

no focus on a particular dimension. The bolded reports are those that would ultimately

benefit from this summary table using this methodology.

Report Dimension Level Measures

Store Item Date Sales Inventory

Report 1 District Calendar Year Sale_Amt

Sales_Qty

Report 2 District Category Calendar Year

Calendar Month

Sale_Amt

Sales_Qty

Report 3 District Calendar Year Sale_Amt

High Performance Data Warehouse with SQL Server 2005 19

 Microsoft Corporation ©2006

Calendar Month Sales_Qty

Report 4 District Fiscal Period Sale_Amt

Report 5 Store Dept Fiscal Week Sales_Qty Model_Qty

Report 6 Dept Fiscal Period Sale_Amt

Report 7 District Fiscal Week Sale_Amt

Sales_Qty

Report 8 District Fiscal Week Sale_Amt

Sales_Qty

Report 9 District Dept Fiscal Quarter Sale_Amt

Report 10 District Fiscal Period Sales_Qty

Report 11 Region Category Fiscal Week Model_Qty

Report 12 District Fiscal Week Sales_Qty On_Hand_Qty

Days_In_Stock

Model_Qty

Return_Qty

Report 13 Region Fiscal Week Sales_Qty On_Hand_Qty

Model_Qty

On_Order_Qty

Report 14 Region Fiscal_Period Sales_Qty On_Hand_Qty

Report 15 Dept Fiscal Week Sales_Qty On_Hand_Qty

Report 16 Fiscal Period Sale_Amt

Sales_Qty

Next, we reviewed the member row counts at specific dimension levels to understand

the impact, based on potential rows in the summary table, of our summary table

decisions

Dimension Level # Populated

of Members

Store Geography Division 1

 Region 3

 District 50

 Store 3980

Item Category Subject 279

 Category 1987

 Department 4145

Date Fiscal Year 3

High Performance Data Warehouse with SQL Server 2005 20

 Microsoft Corporation ©2006

 Fiscal Quarter 12

 Fiscal Period 36

 Fiscal Week 156

Remember that our target is to design a summary table that is roughly 1/100th of the

base fact table or less. The Store Inventory fact table contains 8.5 billion rows and the

Store Sales fact table about 1.5 billion. A summary table with 85 million rows or less is

our goal. Realize that there will likely not be a row for every combination of the levels,

but we prefer a conservative estimate and will assume a high density. We decided to

summarize at the Store District (50), Item Category/Department (4145), and Fiscal

Week (156) level. The Fiscal Week ending date is stored in the same integer format

(CCYYMMDD) as the date surrogate key and is named ―Date_Summary_Key‖ to provide

the capability to include additional date rollups, if desired. The current maximum

estimated rows in our summary table will be roughly equivalent to 50 x 4145 x 156, or

32.3 million. The following is the Transact-SQL code used to create the summary table:

CREATE TABLE [dbo].[Tbl_Fact_Summary](

 [Date_Summary_Key] [int] NOT NULL,

 [Store_District_Num] [int] NULL,

 [Item_Category_Code] [char](4) NULL,

 [Item_Dept_Num] [int] NULL,

 [Sales_Qty] [int] NULL,

 [Sales_Amt] [decimal](11, 2) NULL,

 [Inv_Model_Qty] [int] NULL,

 [Inv_On_Hand_Qty] [int] NULL,

 [Inv_On_Order_Qty] [int] NULL,

 [Inv_Return_Qty] [int] NULL,

 [Inv_Days_In_Stock] [int] NULL

)

Based on the report spreadsheet, two more focused summary tables are warranted,

one with a focus on Store and one with a focus on Calendar Month. The goal is to

aggregate at the highest level possible for the dimensions that are not in the focus.

Remember that the higher the number of rows in the summary table, the slower it will

be and it may not be worth the maintenance versus the cost of querying the fact table

directly.

A few more specialized summary tables can be added. Look at possibly 5-10 summary

tables per subject area (data mart). Summary tables are a lot like indexes in that it is

easy to create so many that several will not be used, and they add to the cost of ETL. If

users are directly querying summary tables, they will usually focus on just two or three

that serve them well.

High Performance Data Warehouse with SQL Server 2005 21

 Microsoft Corporation ©2006

Indexed views vs. summary tables
It is very beneficial to automate the maintenance of all summary tables. This would be

greatly facilitated by using indexed views, a SQL Server feature, as the means for pre-

aggregating data. This seems to be a logical step due to the nature of indexed views.

There are several requirements that an indexed view must adhere to, however, which

can make it difficult to implement as a means of summarizing fact tables. Here are

some of the requirements that are often relevant in this scenario:

 OUTER JOINS are not allowed. If more than one fact table is being summarized and

row intersection is not guaranteed, an OUTER JOIN may be required. A good

example is in a data warehouse to analyze sales versus inventory. Sales and the

inventory fact tables may both contain rows that satisfy key combinations that are

not in the other, necessitating a FULL OUTER JOIN.

 Indexed views are schema-bound to their source tables. A SWITCH operation on a

partitioned fact table thereby requires that any indexed views based on that table

be dropped and recreated.

 Indexed views require a unique, clustered index as the first index. This may require

the addition of columns into the index that don‘t really need to be there. This is

primarily an issue if there are additional indexes on the indexed view, since a very

long clustered index key will be perpetuated in all nonclustered indexes.

 There are conditions that must exist in order for a query to automatically use an

indexed view over the table specified in the query. This could require the creation of

additional indexed views that are expensive to build and maintain (or that queries

explicitly name the relevant indexed views combined with the NOEXPAND hint). One

example of this is that all tables that are referenced in the indexed view must be

referenced in the query. If the indexed view references Tbl_Fact_Store_Sales,

Tbl_Dim_Store, Tbl_Dim_Date and Tbl_Dim_Item, but the query only references the

first three tables, the optimizer will not consider using the indexed view to satisfy

the query.

An obvious benefit of indexed views is that they are automatically maintained by

SQL Server. This benefit is tremendous, so indexed views should definitely be

considered if the aforementioned issues are not relevant to your environment. You can

query the indexed views directly, using the NOEXPAND hint, to get the benefit of

summary tables for query processing performance improvement, combined with the

benefit of automatic summary maintenance.

As previously described, an alternative to indexed views are explicit summary tables.

These tables must be manually maintained and referenced directly by queries. The

former issue is a big one, but is no less of an issue than the fact that they are already

manually maintained by users currently. Queries against summary tables can be orders

of magnitude faster than queries against the detail data. This should encourage users in

SQL Server to favor these tables over the enormous detailed tables. The summary

tables can be incorporated into report models to satisfy users of Report Builder. This

topic is addressed later in this document.

To quickly demonstrate the value of summary tables compared to detail, let‘s look at a

relatively simple, yet realistic, query against the Project REAL full-sized database.

SELECT Subject, SUM(Sales.Sales_Qty) AS Sales_Qty

FROM Tbl_Fact_Store_Sales as Sales

High Performance Data Warehouse with SQL Server 2005 22

 Microsoft Corporation ©2006

JOIN Tbl_Dim_Store Store

 ON Sales.SK_Store_ID = Store.SK_Store_ID

JOIN Tbl_Dim_Date Date

 ON Sales.SK_Date_ID = Date.SK_Date_ID

JOIN Tbl_Dim_Item Item

 ON Sales.SK_Item_ID = Item.SK_Item_ID

WHERE Date.Fiscal_Period_Desc IN ('F04 P5 (JUN)')

 AND Store.Region = 'West'

GROUP BY Subject

ORDER BY Sales_Qty DESC

Avg response time: 1 minute 43 seconds

This query references the detailed fact table directly. Not only does it take a while to

run, but each relevant detail record is read into buffer cache, lowering the page life

expectancy and increasing I/O for all queries on the SQL Server instance. The query

was rewritten, below, to reference our summary table instead of the detail. This

improved the query time by over 87%.

SELECT Subject, SUM(Sales_Qty) AS Sales_Qty

FROM Tbl_Fact_Summary as summary

JOIN (SELECT DISTINCT Region, District_Num

FROM Tbl_Dim_Store) Tbl_Dim_Store

 ON summary.Store_District_Num = Tbl_Dim_Store.District_Num

JOIN (SELECT DISTINCT Subject, Category_Code

FROM Tbl_Dim_Item) Tbl_Dim_Item

 ON summary.Item_Category_Code = Tbl_Dim_Item.Category_Code

JOIN Tbl_Dim_Date

 ON summary.Date_Summary_Key = Tbl_Dim_Date.SK_Date_ID

WHERE Tbl_Dim_Date.Fiscal_Period_Desc IN ('F04 P5 (JUN)')

 AND Tbl_Dim_Store.Region = 'West'

GROUP BY Subject

ORDER BY Sales_Qty DESC

Avg response time: 13 seconds

The expense of maintaining summary tables should be carefully controlled. The ETL

process can be modified to keep track of updated dates/partitions. This information can

be used to only update (re-calculate) aggregations on the rows of the summary table

that were affected. Assure that the update environment is tightly controlled to make

sure the numbers in the summary table are always accurate. How this is controlled

depends on how the ETL process was implemented.

High Performance Data Warehouse with SQL Server 2005 23

 Microsoft Corporation ©2006

Improving summary table performance
The summary tables that are created should be at a higher grain for most of the joined

dimension tables. For instance, if the detailed fact data is at the day level of the Date

dimension, the summary Date grain may be at the week, month, or quarter level. At

that point, you either need to carry the associated properties for that level and above in

the summary table, or join back to the dimension to get that information. You will

usually choose the latter option, especially if there are several properties that would be

required. This results in more flexibility if the dimension tables change and also

improves the performance of the summary table build and maintenance.

If the dimensional table design that is the basis for the summary tables is in a

snowflake schema, this is very easy. The table that represents the higher level in the

dimension table is simply joined to the summary table. If the dimension tables are

flattened, per the star schema design, it is easy to introduce a Cartesian product into

the resulting queries that join for the dimension property information since there are

several rows that represent data at the higher level. To solve this, we make sure we

select only distinct values for the higher level. Revisiting the query from above, the bold

lines represent subqueries to return these distinct values.

SELECT Subject, SUM(Sales_Qty) AS Sales_Qty

FROM Tbl_Fact_Summary as summary

JOIN (SELECT DISTINCT Region, District_Num

FROM Tbl_Dim_Store) Tbl_Dim_Store

 ON summary.Store_District_Num = Tbl_Dim_Store.District_Num

JOIN (SELECT DISTINCT Subject, Category_Code

FROM Tbl_Dim_Item) Tbl_Dim_Item

 ON summary.Item_Category_Code = Tbl_Dim_Item.Category_Code

JOIN Tbl_Dim_Date

 ON summary.Date_Summary_Key = Tbl_Dim_Date.SK_Date_ID

WHERE Tbl_Dim_Date.Fiscal_Period_Desc IN ('F04 P5 (JUN)')

 AND Tbl_Dim_Store.Region = 'West'

GROUP BY Subject

ORDER BY Sales_Qty DESC

Note that we have to query far more rows than we need to in the dimension tables. In

large dimension tables, such as the Item dimension, this can add significantly to the

query‘s response time. A simple measure is to implement a modified snowflake schema

behind the scenes by using indexed views. In this case, we created one for the item

category and the store district, per the subqueries highlighted above. An example of the

item category indexed view definition follows:

CREATE VIEW [dbo].[vTbl_Dim_Item_Category] WITH SCHEMABINDING

AS

SELECT Subject_Code, Subject, Category_Code, Category,

High Performance Data Warehouse with SQL Server 2005 24

 Microsoft Corporation ©2006

COUNT_BIG(*) AS CountBig

FROM dbo.Tbl_Dim_Item

GROUP BY Subject_Code, Subject, Category_Code, Category

GO

CREATE UNIQUE CLUSTERED INDEX [IV_Dim_Item_Category] ON

[dbo].[vTbl_Dim_Item_Category]

(

 [Category_Code] ASC,

 [Subject] ASC,

 [Subject_Code] ASC

)

GO

We added properties from the parent dimension levels (Subject, in this case) to

facilitate the automated use of the indexed views. Now we can rerun the query with no

changes and it will utilize the new indexed views for the item department and store

district. The query response time was reduced from 13 seconds to 1 second in the

Project REAL full-sized database, with no changes to the query. It is a best practice to

reference the indexed view name explicitly in queries and use the NOEXPAND hint. This

ensures that the indexed views will be used instead of the base tables.

The general recommendation is to create an indexed view for each level represented at

or above the grain in the summary tables. Include all columns related to that grain and

above. Create the unique, clustered index based on the grain represented. For the store

city level, for instance, index by city and state (you cannot index by city alone as it is

not the unique index that is required for an indexed view). Nonclustered indexes can be

added to the views as necessary to facilitate the queries.

Using the a combination of a well-designed summary table and indexed views on

dimension tables, we were able to reduce the response time for a query that ran an

average of 1 minute 43 seconds to 1 second! That‘s an improvement of 99%, or over

100 times faster. Additionally, several queries should be able to benefit from using this

single summary table.

Summary tables and Report Builder
We‘ve shown how summary tables can provide a tremendous benefit to a majority of

queries. ―Super users‖ who write Transact-SQL queries and can understand the

contents of the summary tables and how to use them can incorporate them into their

daily queries to greatly enhance performance. Typical business users may have a lesser

skill set around building query code and no time or desire to learn this skill.

SQL Server 2005 Reporting Services released a component to facilitate ad hoc queries

called Report Builder specifically for this type of user. One or more report models must

be defined in order for Report Builder to report against a SQL Server relational

database. A report model is built on top of a DSV (data source view) and these two

concepts, together, can provide the tools to insert summary tables into the query in

place of fact tables as appropriate.

High Performance Data Warehouse with SQL Server 2005 25

 Microsoft Corporation ©2006

There are two general approaches to incorporating summary tables into the report

model. The first is to create a separate report model for each or most of the summary

tables, and then one more for the detailed view. The key is to name the report model

appropriately so that it is obvious to the user which one is desirable to select when

creating a new Report Builder report. The biggest issue with this approach is that if the

user selects an incorrect report model, they will have to start over with a new report.

Another approach is to incorporate the summary tables into a single report model that

also includes the detailed fact information. This will present multiple views of the data

to the end user. When using a summary-based hierarchy in the report model, the user

will automatically gain access only to the levels of information in the remaining

dimensions in the summary table. The biggest consideration with this strategy is to

configure the report model and summary tables in such a way that users are not

confused by the hierarchies and will not repeatedly select inappropriate hierarchies.

In both approaches, the dimension tables that are related to the summary level

information can be sourced from the indexed views that were previously mentioned, or

to named queries that are created within the source DSV.

Conclusion
A scalable, high-performance data warehouse can be developed irrespective of the size

of the underlying database(s). Both query performance and the batch update window

can be managed by building a solid foundation as follows:

 Create a foundation based on a robust hardware platform and a properly configured

SQL Server environment. Consider an architecture where the less frequently

accessed data is isolated completely from data which is in high demand.

 Rethink some of the perceived table design best practices. Carefully plan your

indexing strategy, and use table and index partitioning to make your data

warehouse more manageable.

 Study the query load on your server and build strategic pre-aggregations to

facilitate good query performance.

By developing a well-thought-out data warehousing strategy and continuously

monitoring your batch maintenance and query environment, you can deliver a data

mart that provides high performance and high availability so that your users can focus

on Business Intelligence.

References
Data Warehousing concepts and dimensional modeling

 ―The Data Warehouse Lifecycle Toolkit‖ by Ralph Kimball, Laura Reeves, Margy

Ross and Warren Thornthwaite

 ―The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling‖ by

Ralph Kimball and Margy Ross

 ―The Microsoft Data Warehouse Toolkit‖ by Joy Mundy and Warren Thornthwaite

with Ralph Kimball

SQL Server 2005 table partitioning

 SQL Server 2005 Books Online

 Project REAL: Data Lifecycle – Partitioning by Erin Welker

(http://www.microsoft.com/technet/prodtechnol/sql/2005/realpart.mspx)

http://www.microsoft.com/technet/prodtechnol/sql/2005/realpart.mspx

High Performance Data Warehouse with SQL Server 2005 26

 Microsoft Corporation ©2006

 Partitioned Tables and Indexes in SQL Server 2005 by Kimberly Tripp

(http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnsql90/html/sql2k5partition.asp)

SQL Server indexed views

 SQL Server 2005 Books Online

 Improving Performance with SQL Server 2005 Indexed Views by Eric Hanson

(http://www.microsoft.com/technet/prodtechnol/sql/2005/ipsql05iv.mspx)

SQL Server 2005 and tempdb

 Working with tempdb in SQL Server 2005 by Wei Xiao, Matt Hink, Mirek Sztajno,

and Sunil Agarwal (http://download.microsoft.com/download/4/f/8/4f8f2dc9-

a9a7-4b68-98cb-163482c95e0b/WorkingWithTempDB.doc)

Project REAL (http://www.microsoft.com/sql/solutions/bi/projectreal.mspx)

For more information:

http://www.microsoft.com/technet/prodtechnol/sql/default.mspx

Did this paper help you? Please give us your feedback. On a scale of 1 (poor) to 5

(excellent), how would you rate this paper?

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql90/html/sql2k5partition.asp
http://www.microsoft.com/technet/prodtechnol/sql/2005/ipsql05iv.mspx
http://download.microsoft.com/download/4/f/8/4f8f2dc9-a9a7-4b68-98cb-163482c95e0b/WorkingWithTempDB.doc
http://www.microsoft.com/sql/solutions/bi/projectreal.mspx
http://www.microsoft.com/technet/prodtechnol/sql/default.mspx
mailto:sqlfback@microsoft.com?subject=White%20Paper%20Feedback:%20High%20Performance%20Data%20Warehouse%20with%20SQL%20Server%202005

