

© 2015 Microsoft Corporation. All rights reserved.

DirectX Video Acceleration Specification
for VP8 and VP9 Video Coding

August 2016

Srinath Reddy, Yongjun Wu and Gary J. Sullivan

© 2015 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information
and views expressed in this document, including URL and other Internet Web site references, may
change without notice. You bear the risk of using it. This document does not provide you with any
legal rights to any intellectual property in any Microsoft product. You may copy and use this
document for your internal, reference purposes.

Abstract – This document contains a specification for support of VP8 and VP9 video decoding (according
to the available VP8 and VP9 source code and public documents) within the Microsoft Windows DirectX
Video Acceleration (DXVA) API/DDI context. This specification includes support of the VP8 coding
format,VP9 Profile 0 (for 8 bit 4:2:0 video) and VP9 Profile 2 in 10 bit mode. The document describes
high-level design concepts and specific VP8 and VP9 extensions to DXVA interfaces and data structures
of VP8 and VP9 video decoding. This document specifies only off-host Variable Length Decoding (VLD)
profiles for VP8 and VP9 video decoding.

© 2015 Microsoft Corporation. All rights reserved.

Contents
1. Introduction .. - 1 -

1.1 Referenced Documents and Software .. - 1 -
1.2 General Design Considerations ... - 2 -
1.3 Support Only for Off-Host VLD Operation .. - 2 -
1.4 Picture Data... - 2 -

1.4.1 VP9 Picture Data ... - 2 -
1.4.2 VP8 Picture Data ... - 4 -

1.5 Buffer Types .. - 5 -
1.6 DXVA Decoding Operations .. - 5 -
1.7 Status Reporting .. - 6 -
1.8 Accelerator Internal Operations and Information Storage ... - 7 -
1.9 Configuration Parameters ... - 8 -

1.9.1 Syntax .. - 8 -
1.9.2 Semantics .. - 8 -
1.9.3 Accelerator Decoder Specific Support .. - 9 -

2. DXVA_PicEntry_VPx Data Structure .. - 11 -
2.1 Syntax .. - 11 -
2.2 Semantics .. - 12 -

3. VP9 Picture Parameters Data Structure .. - 12 -
3.1 Syntax .. - 12 -
3.2 Semantics .. - 14 -

4. VP8 Picture Parameters Data Structure .. - 21 -
4.1 Syntax .. - 21 -
4.2 Semantics .. - 23 -

5. Slice (Picture) Control Data Structure ... - 27 -
5.1 Syntax .. - 27 -
5.2 Semantics .. - 28 -

6. Status Report Data Structure .. - 29 -
6.1 Syntax .. - 29 -
6.2 Semantics .. - 30 -

7. Restricted-Mode Profiles .. - 31 -
7.1 DXVA_ModeVP9_VLD_Profile0 Profile ... - 31 -
7.2 DXVA_ModeVP9_VLD_10bit_Profile2 Profile ... - 32 -
7.3 DXVA_ModeVP8_VLD Profile .. - 32 -

8. For More Information ... - 32 -

© 2015 Microsoft Corporation. All rights reserved.

1. Introduction
This specification defines extensions to DirectX® Video Acceleration (DXVA) to support decoding of
VP8 and VP9 video. See, e.g., https://en.wikipedia.org/wiki/VP8 and
http://en.wikipedia.org/wiki/VP9#cite_note-VP9FinalizationMay2013GoogleGroup-11.

This specification assumes the reader is familiar with the VP8 and VP9 source code and the associated
publicly available documents, and with the basic design of DXVA. This specification of DXVA usage for
VP8 and VP9 is designed to be maximally consistent with prior DXVA schemes for other video formats.

DXVA consists of a DDI for display drivers and an API for software decoders. Version 1.0 of DXVA is
supported in Windows 2000 or later versions. Version 2.0 is available starting in Windows Vista.
Considering the passage of time and the increasing prevalence of DXVA 2.0 support, this document
specifies only the DXVA 2.0 operation for VP8 and VP9 video decoding. We do not plan to specify VP8
and VP9 video decoding in the DXVA 1.0 context.

In DXVA, some decoding operations are implemented by the graphics hardware driver and GPU. This set
of functionality is termed the accelerator. Other decoding operations, such as frame surface allocation,
retirement, reuse, and release, are implemented by user-mode application software, called the host
decoder or software decoder. Processing performed by the accelerator is sometimes referred to as off-host
processing. Typically, the accelerator uses the GPU to speed up some operations. When the accelerator
performs a decoding operation, the host decoder sends buffers of parameters and data to the accelerator
that contain the information that is needed to perform the operations.

Except where stated otherwise in this specification, DXVA operations in the accelerator shall be stateless;
the accelerator design shall not contain assumptions about the sequences of decoding operation or
internal-memory state dependencies. This is necessary to enable good "trick play" and loss/error
resilience functionality (although trick play functionality in this case is somewhat limited by the design of
the entropy decoding process, which has a stored internal state).

Note – In this document, the term shall describes behavior that is required by the specification. The term
should describes behavior that is encouraged but not required. The term note refers to observations about
implications of the specification.

Questions or comments about this specification may be sent to askdxva@microsoft.com.

1.1 Referenced Documents and Software
There is a published IETF RFC 6386 document that describes the VP8 video format and decoding process
in some detail (although it is not an entirely complete specification):

https://tools.ietf.org/html/rfc6386

However, currently there are only high-level overviews about VP9 video coding that are publicly
available, such as the following:

http://forum.doom9.org/showthread.php?t=168947

© 2015 Microsoft Corporation. All rights reserved.

http://tools.ietf.org/html/draft-grange-vp9-bitstream-00

http://files.meetup.com/9842252/Overview-VP9.pdf

http://community.roxen.com/developers/idocs/drafts/draft-grange-vp9-bitstream-00.html

Associated open-source reference software for VP8 and VP9 is available within the libvpx library at the
following links:

https://code.google.com/p/webm/downloads/list

https://code.google.com/p/webm/source/browse/vp9/?repo=libvpx&r=7b8dfcb5a2cfb01ee7a6009
d945d06559b564d06

This software is currently considered the primary definitive reference for these formats. In this
specification, the phrase "reference software" refers to this publicly available software.

1.2 General Design Considerations
Section 1 of this specification provides an overview of the DXVA design for VP8 and VP9 video
decoding. It is intended as background information, and may be helpful in understanding the sections that
follow. In the case of conflicts, later sections of this document override this section. The initial design
documented here is intended to be sufficient for decoding VP9 bitstreams of Profile 0 and Profile 2 in 10-
bit mode, and VP8 bitstreams. Neither VP8 or VP9 include support for interlaced-scan field-based coding
and field-based display – they are designed for progressive-scan coding and display only. Hence in this
specification a picture is considered synonymous with a frame.

1.3 Support Only for Off-Host VLD Operation
Over time, the level of industry interest in supporting modes of DXVA operation other than off-host
Variable Length Decoding (VLD) operation (e.g., as in the DXVA_ModeH264_MoComp_NoFGT and
DXVA_ModeH264_IDCT_NoFGT profiles of DXVA operation for H.264/AVC video decoding, and the
DXVA_ModeWMV9_PostProc and DXVA_ModeVC1_IDCT profiles of DXVA operation for
WMV9/VC-1 video decoding) appears to have waned. We therefore do not plan to specify such modes of
DXVA operation for VP8 and VP9 video decoding; only off-host VLD mode of DXVA operation is
specified for VP8 and VP9 video decoding.

1.4 Picture Data
The following data must be conveyed for each VP8 or VP9 frame in order to decode each frame
independently without serial dependencies or with minimized serial dependencies. For simplicity, the
same or similar flag names from VP8 or VP9 reference software are used. For further details, see
section 3 (VP9 Picture Parameters Data Structure) and section 4 (VP8 Picture Parameters Data Structure)
of this specification.

1.4.1 VP9 Picture Data

VP9 picture-level data includes the following:

 Basic coding parameters and dimensions, including

© 2015 Microsoft Corporation. All rights reserved.

o profile

o width and height

 Frame buffering state and reference list related information, including:

o CurrPic (indicating the current destination surface)

o frame_type

o ref_frame_map[]

o ref_frame_coded_width[]

o ref_frame_coded_height[]

o frame_refs[]

o ref_frame_sign_bias[]

 Flags and associated data controlling particular coding features that are the same for the whole
frame, including

o error_resilient_mode

o intra_only

o reset_frame_context

o allow_high_precision_mv

o interp_filter

o refresh_frame_context

o frame_parallel_decoding_mode

o frame_context_idx

 Syntax element values for deblocking, quantization and tile partition, including

o filter_level

o sharpness_level

o mode_ref_delta_enabled

o ref_deltas[]

o mode_deltas[]

o base_qindex

o y_dc_delta_q

o uv_dc_delta_q

o uv_ac_delta_q

o log2_tile_cols

o log2_tile_rows

 Syntax element values for the segmentation map, including:

o enabled

o tree_probs[]

o pred_probs[]

o abs_delta

o feature_mask[]

o feature_data[][]

© 2015 Microsoft Corporation. All rights reserved.

1.4.2 VP8 Picture Data

VP8 picture-level data includes the following:

 Basic coding parameters and dimensions, including

o version

o width and height

 Frame buffering state and reference list related information, including:

o CurrPic (indicating the current destination surface)

o frame_type

o alt_fb_idx

o gld_fb_idx

o lst_fb_idx

o ref_frame_sign_bias_golden

o ref_frame_sign_bias_altref

 Flags and associated data controlling particular coding process that are the same for the whole
frame, including

o clamp_type

o refresh_entropy_probs

o vp8_coef_update_probs[][][][]

o mb_no_coeff_skip

o prob_skip_false

o prob_intra

o prob_last

o prob_golden

o intra_16x16_prob[]

o intra_chroma_prob[]

o vp8_mv_update_probs[][]

 Syntax element values for deblocking, quantization and bitstream partition, including

o filter_type

o filter_level

o sharpness_level

o mode_ref_delta_enabled

o mode_ref_lf_delta_update

o ref_lf_deltas []

o mode_lf_deltas[]

o base_qindex

o y1dc_delta_q

o y2dc_delta_q

o y2ac_delta_q

o uvdc_delta_q

o uvac_delta_q

o log2_nbr_of_dct_partitions

© 2015 Microsoft Corporation. All rights reserved.

 Syntax element values for the segmentation map, including:

o update_mb_segmentation_map

o update_mb_segmentation_data

o mb_segement_abs_delta

o segment_feature_data [][]

o mb_segment_tree_probs []

1.5 Buffer Types
The host software decoder will send the following DXVA buffers to the accelerator in off-host VLD
operation:

 One picture parameters buffer.

 One slice control buffer.

 One or more bitstream data buffers.

VP8 and VP9 do not have multiple-slice support. Hence there is always one and only one slice control
buffer per compressed frame.

These buffer types are defined as in the prior DXVA specifications, but new data structures for the data
carried within them have been defined herein for VP8 and VP9 video decoding. The sequence of
operations is described in section 1.6.

1.6 DXVA Decoding Operations
The basic sequence of operations for DXVA decoding consists of the following calls by the host software
decoder. In DXVA 2.0, they are part of the IDirectXVideoDecoder interface.

1. BeginFrame. Signals the start of one or more decoding operations by the accelerator, which
will cause the accelerator to write data into an uncompressed surface buffer.

2. Execute. The decoder calls Execute one or more times, sending one or more compressed
data buffers to the accelerator and specifying the operations to perform on the buffers. The
accelerator may return status information from the call. In DXVA 2.0, the command is
specified in the Function member of the optional DXVA2_DecodeExtensionData structure
passed to IDirectXVideoDecoder::Execute by the DXVA2_DecodeExecuteParams
structure.

3. EndFrame. Signals that the host software decoder has sent all of the data needed for the
corresponding BeginFrame call.

For VP8 and VP9 video decoding, the data passed with the Execute method includes a destination index
to indicate which uncompressed surface buffer is affected by the operation. The host software decoder can
call Execute more than once between each BeginFrame/EndFrame pair. The host software decoder
shall send the data for exactly one compressed frame between each BeginFrame/EndFrame pair.

When processing a frame of data, the accelerator will, in some cases, access uncompressed surfaces other
than the surface being written to. For example, decoding a frame may require data from one or more

© 2015 Microsoft Corporation. All rights reserved.

previously-decoded frames for use as reference data for inter-picture motion-compensated prediction. If
the host software decoder issues a command that requires writing to a buffer, and then issues a command
that requires reading from the same buffer, it is the accelerator's responsibility to serialize these
operations. In other words, the accelerator must complete a preceding write operation before starting a
subsequent read operation on the same buffer.

The DXVA design for VP8 and VP9 video decoding restricts the sequence of buffer types that can be sent
to the accelerator. With compressed picture decoding in off-host parsing, i.e., with VLD profile operation,
the host software decoder sends the following data buffers:

 One picture parameters data buffer.

 One slice control data buffers.

 One or more bitstream data buffers.

The host software decoder does not send buffers for status reporting feedback. Rather, it reads such
buffers when requesting status reporting feedback. Two values of bDXVA_Func are defined, as follows:

Value Description

1 Compressed picture decoding with off-host parsing

7 Request for status report.

dwFunction shall contain exactly one of the two values listed here. Function 7 (status reporting) is
described in the next section.

Between a single pair of BeginFrame and EndFrame calls, the host software decoder can send one or
more sets of buffers with bDXVA_Func equal to 1 for off-host parsing.

The total quantity of data in any bitstream data buffer (and the amount of data reported by the host
software decoder) shall be an integer multiple of 128 bytes. If the amount of source data is not an integer
multiple of 128 bytes, the host shall append zero-valued bytes to the data so that this requirement is
fulfilled. The accelerator shall ignore any such bytes that are present.

Whenever the host software decoder calls Execute to pass a set of compressed buffers to the accelerator,
the private output data pointer shall be NULL, as stated in other DXVA 2.0 documentation: when the
NumCompBuffers member of the DXVA2_DecodeExecuteParams structure is greater than zero,
pPrivateOutputData shall be NULL and PrivateOutputDataSize shall be zero. Alternatively, the
pExtensionData member of the DXVA2_DecodeExecuteParams structure can be NULL.

1.7 Status Reporting
After calling EndFrame for the uncompressed destination surfaces, the host software decoder may call
Execute with bDXVA_Func = 7 to get a status report. The host software decoder does not pass any
compressed buffers to the accelerator in this call. Instead, the host decoder provides a private output data
buffer into which the accelerator will write status information. The decoder provides the output data
buffer as follows in DXVA 2.0: the host software decoder sets the pPrivateOutputData member of the

© 2015 Microsoft Corporation. All rights reserved.

DXVA2_DecodeExecuteParams structure to point to the buffer. The PrivateOutputDataSize member
specifies the maximum amount of data that the accelerator is allowed to write to the buffer. The value of
cbPrivateOutputData or PrivateOutputDataSize shall be an integer multiple of
sizeof(DXVA_Status_VPx).

When the accelerator receives the Execute call for status reporting, it should not stall operation to wait for
any prior operations to complete. Instead, it should immediately provide the available status information
for all operations that have completed since the previous request for a status report, up to the maximum
amount requested. Immediately after the Execute call returns, the host software decoder can read the
status report information from the buffer. The status report data structure is described in section 6.

1.8 Accelerator Internal Operations and Information Storage
The VP9 decoding process requires storing some additional information along with the array of decoded
frames to be used as reference pictures for picture decoding. Rather than have the host decoder collect this
information and explicitly update and provide it to the accelerator, the accelerator shall store this
information as it decodes each picture, so that the information is available if the picture is later used as a
reference picture.

Specifically, the accelerator shall store the set of information necessary for use in VP9 inter-picture
prediction along with each decoded reference picture, such as the co-located motion vectors from a
decoded reference frame used in the motion vector candidate list. It also needs to accumulate counts for
various symbols actually decoded over a frame used for backward context updates on the completion of
current frame decoding.

VP8 video decoding only uses one reference frame, either the previous frame (last frame), the golden
frame or the altref frame. Co-located motion vectors from a decoded reference frame are not employed
during decoding. Instead, only spatial neighbor motion vectors are used. VP8 video coding uses forward
probability updates without backward context updates. The forward probability updates are persistent.
That is, a probability updated on one frame is in effect for all subsequent frames until the next key frame
(an I frame that resets inter-picture prediction processing), or until the probability is explicitly updated by
another frame.

In VP9, each inter frame might be coded at a different resolution than the previous frame(s). When
creating inter predictions, the reference frame needs to be scaled up or down accordingly. The scaling
filters are 16th-pel accurate and use 8-tap filters. The scaling on reference frames shall be done by the
accelerator as an internal operation when necessary. If the maximum coded resolution is known for VP9
video decoding, host decoder may allocate the surfaces at the maximum coded resolution, and accelerator
shall be able to decode pictures at lower resolutions into the surfaces at the maximum coded resolution,
starting from top-left corner and taking care of surface stride at the maximum coded resolution and
decoding height and width at lower resolutions with the chroma offset surface size based instead of coded
picture size based. Host decoder shall output the pictures at lower resolutions decoded in the surfaces at
the maximum coded resolution with proper cropping window.

In VP8, coded resolution changes are only allowed to happen at key frames. Inter-prediction from a
reference frame at a different coded resolution from the resolution of the current coded frame is not

© 2015 Microsoft Corporation. All rights reserved.

allowed. Hence, in VP8, there is no need to perform scaling on reference frames for motion vector
prediction and motion compensation.

1.9 Configuration Parameters

This section describes the configuration parameters for VP8 and VP9 video decoding according to this
specification.

1.9.1 Syntax
In DXVA 2.0, configuration uses the DXVA2_ConfigPictureDecode structure. This syntax structure is
documented in the DXVA 2.0 documentation, available at http://msdn.microsoft.com/en-
us/library/ms694823(VS.85).aspx.

1.9.2 Semantics
The ordinary semantics of this data structure apply for VP8 and VP9 video decoding according to this
specification. Details of the usage in this context are provided below.

guidConfigBitstreamEncryption

Defines the encryption protocol type for bitstream data buffers. If no encryption is applied, the value is
DXVA_NoEncrypt.

guidConfigMBcontrolEncryption

Shall be DXVA_NoEncrypt, as ConfigBitstreamRaw is equal to 1 always.

guidConfigResidDiffEncryption

Shall be DXVA_NoEncrypt, as ConfigBitstreamRaw is equal to 1 always.

ConfigBitstreamRaw

Shall be 1, as only off-host VLD parsing profiles are supported by this specification with
DXVA_Slice_VPx_Short structure for VP8 and VP9 video decoding.

ConfigMBcontrolRasterOrder

Shall be 0, as ConfigBitstreamRaw is equal to 1 always.

ConfigResidDiffHost

Shall be 0, as ConfigBitstreamRaw is equal to 1 always.

ConfigSpatialResid8

Shall be 0, as ConfigResidDiffHost is equal to 0 always.

ConfigResid8Subtraction

Shall be 0, as ConfigSpatialResid8 is equal to 0 always.

© 2015 Microsoft Corporation. All rights reserved.

ConfigSpatialHost8or9Clipping

Shall be 0, as ConfigResidDiffHost is equal to 0 always.

ConfigSpatialResidInterleaved

Shall be 0, as ConfigResidDiffHost is equal to 0 always.

ConfigIntraResidUnsigned

Shall be 0, as ConfigResidDiffHost is equal to 0 always.

ConfigResidDiffAccelerator

Shall be 0, as ConfigBitstreamRaw is equal to 1 always.

ConfigHostInverseScan

Shall be 0, as ConfigResidDiffAccelerator is equal to 0 always.

ConfigSpecificIDCT

Shall be 0, as ConfigResidDiffAccelerator is equal to 0 always.

Config4GroupedCoefs

Shall be 0, as ConfigResidDiffAccelerator is equal to 0 always

ConfigDecoderSpecific

Shall be 0 except for any bits that may be set by the Accelerator to signal Decoder Specific Support.
These are described in Section 1.9.3.

1.9.3 Accelerator Decoder Specific Support
The ConfigDecoderSpecific member of the DXVA2_ConfigPictureDecode structure contains information
about some decoder accelerator specific support. ConfigDecoderSpecific has the type unsigned short,
where the least-significant bit is considered bit 0 and the most significant bit is bit 15.

For purposes specified herein, a "format change" is defined as the detection by the host decoder that the
number of surfaces to be used has increased or that the decoding resolution (picture width or height) has
changed or that the accelerator capability requirements have changed, such as enabling or disabling
downsampling of the output.

© 2015 Microsoft Corporation. All rights reserved.

The semantics of bit 15 are as follows:

 0b: in the event of a format change, some accelerators indicating this value may not be capable of
continuing operation. The host decoder should therefore create a new video decoder device and
destroy the old video decoder device when a format change occurs.

 1b: in the event of a format change, the accelerator is indicated to be capable of continuing
operation. The host decoder should not create a new video decoder device and proceed using the
existing video decoder device instance.

When bit 15 of ConfigDecoderSpecific is set equal to 1 by the accelerator through the API
GetVideoDecoderConfig(), the video decoder device can be reused after a format change and the host
decoder should not create a new video decoder device in the event of a format change (thereby reducing
latency relative to that experienced by recreating the decoder device).

Note – Older accelerators use the value 0 for bit 15 of ConfigDecoderSpecific, as the use of the value 1
was not defined prior to late 2015.

For purposes specified herein, an "array of textures" is defined as having ArraySize equal to 1 in the data
structure of D3D11_TEXTURE2D_DESC, and a "texture array" is defined as having ArraySize equal to
the number of needed surfaces in the data structure of D3D11_TEXTURE2D_DESC.

The semantics of bit 14 are as follows:

 0b: accelerator may only support a texture array, or supports both an array of textures or a texture
array for uncompressed surfaces but the use of a texture array may have better performance than
an array of textures. In this case, the host decoder should create a texture array for uncompressed
surfaces to ensure proper operation.

 1b: accelerator supports both array of textures and texture array for uncompressed surfaces but an
array of textures may have better performance than a texture array. In this case, the host decoder
should create an array of textures for uncompressed surfaces.

 The performance of the use of a "texture array" versus an "array of textures" may be different for
different accelerators. Bit 14 of ConfigDecoderSpecific indicates the recommended configuration for the
uncompressed surfaces used for decoding. The recommended value for bit 14 of ConfigDecoderSpecific
is set by the accelerator through the API GetVideoDecoderConfig().

Note – Older accelerators use the value 0 for bit 14 of ConfigDecoderSpecific, as the use of the value 1
was not defined prior to late 2015.

Bit 13 is reserved for future use and shall be set to 0

© 2015 Microsoft Corporation. All rights reserved.

For purposes specified herein, a "format change on non-key frame" is defined as the detection by the host
decoder that the decoding resolution (picture width or height) has changed on a non-key frame. The
decoding process for frames with new resolution may refer to previous frames with a different resolution.

 The semantics of bit 12 shall be referred to by the host decoder only if bit 15 is also set, and are as
follows:

• 0b: in the event of a format change on a non-key frame, some accelerators indicating this value
may not be capable of continuing operation. The host decoder should therefore drop frames till
the next key frame.

• 1b: in the event of a format change on non-key frame, the accelerator is indicated to be capable of
continuing operation.

The host decoder should not create a new video decoder device and proceed using the existing video
decoder device instance. The host decoder will create new surfaces or reuse previously allocated surfaces
with the new resolution and will hold reference to the older surfaces until needed.

An “array of textures” or “texture array” could be used for the uncompressed surfaces, which will be
indicated by bit 14.

Note – Older accelerators use the value 0 for bit 12 of ConfigDecoderSpecific, as the use of the value 1
was not defined prior to 2016

2. DXVA_PicEntry_VPx Data Structure

The DXVA_PicEntry_VPx structure specifies a reference to an uncompressed surface. It is used in other
data structures described in this document. The data structure itself is the same as the previous
DXVA_PicEntry_H264 and DXVA_PicEntry_HEVC data structures. It has been given a new name so
that the data structures used for VP8 and VP9 will have names that are associated with the new design.
For convenience, the form of this data structure is shown below.

2.1 Syntax
typedef struct _DXVA_PicEntry_VPx {

 union {

struct {

UCHAR Index7Bits : 7;

UCHAR AssociatedFlag : 1;

};

UCHAR bPicEntry;

 };

} DXVA_PicEntry_VPx, *LPDXVA_PicEntry_VPx;

© 2015 Microsoft Corporation. All rights reserved.

2.2 Semantics
Index7Bits

An index that identifies an uncompressed surface for the CurrPic or ref_frame_map[] and frame_refs[]
members of the picture parameters structure in VP9, and for the CurrPic or alt_fb_idx, gld_fb_idx, and
lst_fb_idx members of the picture parameters structure in VP8.

When Index7Bits is used in those members of the picture parameters structure, the value directly specifies
the DXVA index of an uncompressed surface.

When Index7Bits does not contain an index to a valid uncompressed surface, the value shall be set to
127, to indicate that the index is invalid.

AssociatedFlag

Shall be 0 when Index7Bits is valid. When Index7Bits is equal to 127 (indicating that it does not contain
a valid index), it shall be 1.

bPicEntry

Accesses the entire 8 bits of the union. Equal to 0xFF when it does not contain a valid index.

3. VP9 Picture Parameters Data Structure

The DXVA_PicParams_VP9 structure provides the picture-level parameters of a compressed picture for VP9
video decoding. This structure is used for VP9 when bDXVA_Func is 1 and the buffer type is
DXVA2_PictureParametersBufferType (in DXVA 2.0).

3.1 Syntax

typedef struct _segmentation_VP9 {

union {

 struct {

UCHAR enabled : 1;

UCHAR update_map : 1;

UCHAR temporal_update : 1;

UCHAR abs_delta : 1;

UCHAR ReservedSegmentFlags4Bits : 4;

 };

 UCHAR wSegmentInfoFlags;

};

 UCHAR tree_probs[7];

 UCHAR pred_probs[3];

© 2015 Microsoft Corporation. All rights reserved.

 SHORT feature_data[8][4];

 UCHAR feature_mask[8];

} DXVA_segmentation_VP9;

typedef struct _DXVA_PicParams_VP9 {

DXVA_PicEntry_VPx CurrPic;

UCHAR profile;

union {

 struct {

USHORT frame_type : 1;

USHORT show_frame : 1;

USHORT error_resilient_mode : 1;

USHORT subsampling_x : 1;

USHORT subsampling_y : 1;

USHORT extra_plane : 1;

USHORT refresh_frame_context : 1;

USHORT frame_parallel_decoding_mode : 1;

USHORT intra_only : 1;

USHORT frame_context_idx : 2;

USHORT reset_frame_context : 2;

USHORT allow_high_precision_mv : 1;

USHORT ReservedFormatInfo2Bits : 2;

 };

 USHORT wFormatAndPictureInfoFlags;

};

UINT width;

UINT height;

UCHAR BitDepthMinus8Luma;

UCHAR BitDepthMinus8Chroma;

UCHAR interp_filter;

UCHAR Reserved8Bits;

DXVA_PicEntry_VPx ref_frame_map[8];

UINT ref_frame_coded_width[8];

UINT ref_frame_coded_height[8];

DXVA_PicEntry_VPx frame_refs[3];

CHAR ref_frame_sign_bias[4];

CHAR filter_level;

CHAR sharpness_level;

union {

© 2015 Microsoft Corporation. All rights reserved.

 struct {

UCHAR mode_ref_delta_enabled : 1;

UCHAR mode_ref_delta_update : 1;

UCHAR use_prev_in_find_mv_refs : 1;

UCHAR ReservedControlInfo5Bits : 5;

 };

 UCHAR wControlInfoFlags;

};

CHAR ref_deltas[4];

CHAR mode_deltas[2];

SHORT base_qindex;

CHAR y_dc_delta_q;

CHAR uv_dc_delta_q;

CHAR uv_ac_delta_q;

DXVA_segmentation_VP9 stVP9Segments;

UCHAR log2_tile_cols;

UCHAR log2_tile_rows;

USHORT uncompressed_header_size_byte_aligned;

USHORT first_partition_size;

USHORT Reserved16Bits;

UINT Reserved32Bits;

UINT StatusReportFeedbackNumber;

} DXVA_PicParams_VP9, *LPDXVA_PicParams_VP9;

3.2 Semantics
CurrPic

Specifies the destination frame buffer/surface index for the decoded picture. In this context, the
AssociatedFlag has no meaning and shall be 0, and the accelerator shall ignore its value.

profile

Indicates the profile of the VP9 bitstream. The VP9 video coding format defines four profiles: profile 0,
profile 1, profile 2, and profile 3. Profile 0 supports 4:2:0 chroma sampling with 8 bits per sample. Profile
1 adds support for 4:2:2 and 4:4:4 chroma sampling, alpha channels, and depth channels. VP9 was also
later extended by adding two higher bit-depth profiles: profile 2 and profile 3. Profile 2 supports bit
depths of 10 to 12 bits per sample with 4:2:0 chroma sampling. Profile 3 supports 4:2:2 and 4:4:4 chroma
sampling and alpha channels.

For current purposes, only Profile 0 (for 8 bit video) and Profile 2 restricted to 10 bit only are supported
for VP9 by DXVA decoding profiles specification (see clause 7, Restricted-Mode Profiles).

© 2015 Microsoft Corporation. All rights reserved.

frame_type

Specifies the frame type of the current frame. It corresponds to the syntax element of the same name in
the reference software and affects the decoding process accordingly. The allowed values are 0 and 1, for
two types of VP9 frames, KEY_FRAME and INTER_FRAME.

show_frame

Indicates whether the current frame is intended to be output and displayed after its decoding is completed.
In DXVA, this has no direct effect, as the host controls the display of decoded frames separately by other
function calls.

error_resilient_mode

VP9 has a frame level error_resilient_mode flag. When the flag is turned on, it supports a coding mode
that allows decoding to continue (although with error propagation) even when some frames are lost. In
particular, the following modifications of the decoding process apply in error resilient mode:

1. The entropy coding context probabilities are reset to defaults at the beginning of each frame.
(This prevents propagation of forward updates as well as backward updates),

2. For MV reference selection, the co-located MV from a previously encoded reference frame can
no longer be included in the reference candidate list,

3. For MV reference selection, the sorting of the initial list of motion vector reference candidates
based on a search in the reference frame buffer is disabled.

subsampling_x, subsampling_y

Indicate the chroma sampling format. The allowed values of subsampling_x and subsampling_y are
constrained by the profile value. The table below specifies the allowed values for subsampling_x and
subsampling_y, and the associated chroma formats.

subsampling_x subsampling_y Chroma format

1 1 4:2:0

1 0 4:2:2

0 0 4:4:4

extra_plane

Indicates whether an alpha channel or depth channel is present. The allowed values are restricted by the
profile value.

© 2015 Microsoft Corporation. All rights reserved.

refresh_frame_context, frame_parallel_decoding_mode

Indicate whether the frame context state for the entropy decoding process is refreshed or not, when
error_resilient_mode flag is equal to 0, as shown in the table below.

refresh_frame_context frame_parallel_decoding_mode action done

1 0 refresh the context by backward update

0 0 do not refresh

0 1 do not refresh

1 1 refresh the context by forward update

When error_resilient_mode flag is equal to 1, refresh_frame_context shall be equal to 0 and
frame_parallel_decoding_mode shall be equal to 1.

intra_only, frame_context_idx, reset_frame_context

If frame_type is equal to 0 (KEY_FRAME), or error_resilient_mode is equal to 1, all frame contexts are
reset. Only when intra_only is equal to 1, frame contexts are set as specified by reset_frame_context as
follows.

If reset_frame_context is equal to 0 or 1, do not reset any contexts.

If reset_frame_context is equal to 2, reset the context specified in the frame header by frame_context_idx.

If reset_frame_context is equal to 3, reset all frame contexts.

allow_high_precision_mv

Corresponds to the same syntax element of the same name in the reference software and affects the
decoding process of motion vector and motion compensation accordingly. When frame_type is equal to 0
(KEY_FRAME), allow_high_precision_mv shall be equal to 0.

ReservedFormatInfo2Bits

Reserved bit fields which shall be set to 0. The accelerator shall ignore the values in the reserved bit
fields.

wFormatAndPictureInfoFlags

Provides an alternative way to access the bit fields.

© 2015 Microsoft Corporation. All rights reserved.

width, height

Specify the coded width and height of the current frame. These correspond to the syntax elements of the
same names in the reference software and affect the decoding process accordingly. Each VP9 frame may
be coded at a different resolution than the previous frame(s).

BitDepthMinus8Luma, BitDepthMinus8Chroma

Indicate the bit depth of the luma and chroma decoded samples. The allowed values are restricted by the
profile value.

interp_filter

Corresponds to the same syntax element of the same name in the reference software and affects the
decoding process of motion compensation interpolation accordingly. The motion compensation filter in
VP9 has 1/8th sample position precision. The table below shows the possible values of interp_filter.

Value Filter type

0 normal 8-tap

1 smooth 8-tap

2 sharp 8-tap

3 bilinear

4 switchable

Reserved8Bits

Reserved bit fields for 32-bit alignment. Shall be set to 0. The accelerator shall ignore the values in the
reserved bit fields.

ref_frame_map[]

Contains a list of uncompressed frame buffer surfaces. Entries that will not be used for decoding the
current picture, or any subsequent pictures, are indicated by setting bPicEntry to 0xFF. If bPicEntry is
not 0xFF, the entry may be used as a reference surface for decoding the current picture or a subsequent
picture in decoding order. All uncompressed surfaces that correspond to frames that may be used for
reference in the decoding process of the current picture or any subsequent picture shall be present in the
ref_frame_map[] array (regardless of whether these pictures are actually used in the decoding process of
the current frame or not). No particular order is specified for the ordering of the entries in the
ref_frame_map[] array.

The AssociatedFlag has no meaning and shall be 0, and the accelerator shall ignore its value.

Note – The accelerator must use the content of the ref_frame_map[] as provided by the accelerator
rather than trying to derive this information from the bitstream (in order to ensure stateless operation for
which the decoded frame buffer handling is to be performed under the control of the host rather than
inferred from the bitstream by the accelerator).

© 2015 Microsoft Corporation. All rights reserved.

ref_frame_coded_width[] and ref_frame_coded_height[]

Indicate the coded width and height of the corresponding reference frames with the same indices in
ref_frame_map[]. If the corresponding entry in ref_frame_map[] is not used for decoding the current
picture, or any subsequent pictures, the entry in ref_frame_coded_width[] and
ref_frame_coded_height[] should be set to 0.

frame_refs[]

Indicates the reference surfaces to be used for inter prediction (known as Last, Golden and AltRef) during
current frame decoding. The reference surface indices in frame_refs[] shall exist in ref_frame_map[]
array.

Note – The VP9 decoder maintains a pool (ref_frame_map[]) of 8 reference pictures at all times. Each
frame picks 3 reference frames (frame_refs[]) from the pool to use for inter prediction (known as Last,
Golden, and AltRef) of the current frame. After the current frame finishes decoding, the host decoder can
insert the current frame into any, all, or none of these 8 slots in the pool (ref_frame_map[]), evicting
whatever frame was there before.

The accelerator shall use the content of the frame_refs[] array as provided by the host decoder rather than
trying to derive the information from the bitstream.

Each new inter frame can be coded using a different resolution from that of the previous frame. When
creating inter predictions, the reference frame is scaled up or down accordingly when necessary. The
scaling filters are 16th-pel accurate and 8-tap. The scaling on reference frames shall be done by
accelerator when necessary.

ref_frame_sign_bias[]

Corresponds to the same syntax element of the same name in the reference software and affects the
decoding process about reference mode and reference selection accordingly. ref_frame_sign_bias[]
affects the motion vector candidate list, the setup of compound reference mode and compound motion
compensation. The enums and indices for ref_frame_sign_bias[] are defined in the same way as the
enum MV_REFERENCE_FRAME structure in reference software mentioned previously, where
INTRA_FRAME = 0, LAST_FRAME = 1, GOLDEN_FRAME = 2, and ALTREF_FRAME = 3.

filter_level, sharpness_level

Correspond to the syntax elements of the same name in the reference software and affect the decoding
processes of the deblocking filter accordingly.

mode_ref_delta_enabled, mode_ref_delta_update, ref_deltas[], mode_deltas[]

Correspond to the same syntax elements of the same name in the reference software about loop filter
deltas applied at the macroblock (MB) level based on mode or reference frame, and affect the decoding
processes of the deblocking filter accordingly.

use_prev_in_find_mv_refs

Indicates whether the previous mode information context from the last decoded frame can be used or not.

© 2015 Microsoft Corporation. All rights reserved.

ReservedControlInfo5Bits

Reserved bit fields. Shall be set to 0. The accelerator shall ignore the values in the reserved bit fields.

wControlInfoFlags

Provides an alternative way to access the bit fields.

base_qindex, y_dc_delta_q, uv_dc_delta_q, uv_ac_delta_q

Correspond to the same syntax elements of the same name in the reference software about quantization
parameters applied for the Y, U and V planes, and affect the decoding processes of inverse quantization
accordingly.

stVP9Segments

Provides the segmentation related syntax values when segmentation is enabled, including the control flags
of enabled, abs_delta, and segmentation map and data related tables tree_probs[], pred_probs[],
feature_data[][], and feature_mask[].

enabled in stVP9Segments

Indicates whether segmentation map related syntax elements are present or not for current frame.
If enabled is equal to 0, it indicates that segmentation map related syntax elements are not present
for the current frame and the control flags of abs_delta and segmentation map related tables
tree_probs[], pred_probs[], feature_data[][], and feature_mask[] are not valid and shall be
ignored by accelerator.

update_map and temporal_update in stVP9Segments

Indicate whether tree_probs[] and pred_probs[] are to be updated by syntax elements in the
frame or not.

tree_probs[] and pred_probs[] in stVP9Segments

Provide segmentation map for current frame and affect the decoding process accordingly.

abs_delta, feature_data[][],and feature_mask[] in stVP9Segments

Indicate segmentation data for current frame and affect the decoding process accordingly.

ReservedSegmentFlags4Bits

Reserved bit fields. Shall be set to 0. The accelerator shall ignore the values in the reserved bit
fields.

wSegmentInfoFlags

Provides an alternative way to access the bit fields.

© 2015 Microsoft Corporation. All rights reserved.

log2_tile_cols, log2_tile_rows

Correspond to the same syntax elements of the same name in the reference software about tile partitions,
and affect the decoding process of tiles accordingly.

VP9 supports tiles, where the picture is broken up into a grid of tiles along superblock boundaries.
Superblocks have the size of 64x64 in luma sample units. The tiles are always as evenly spaced as
possible, and there are a power-of-two number of them. Tiles must be at least 256 luma samples wide and
must be no more than 4096 luma samples wide. There can be no more than four tile rows. The tiles are
scanned in raster scan order, and the super blocks within them are coded in raster scan order within each
tile. Thus the ordering of superblocks within the frame depends on the tile structure. Coding dependencies
are broken along vertical tile boundaries, which means that two tiles in the same tile row may be decoded
at the same time. Coding dependencies are not broken between horizontal boundaries. Thus, for example,
a frame split into 2x2 tiles can be decoded with two cores/threads operating in parallel, but not with four.

At the start of every tile except the last one, a 32-bit byte count is transmitted, indicating how many bytes
are used to code the next tile. This lets a decoder with parallel computing capability skip ahead to the next
tile in order to start a parallel decoding task.

uncompressed_header_size_byte_aligned

Corresponds to the size of uncompressed header in bytes (with byte alignment). The accelerator may
choose to skip the parsing of the uncompressed header and start parsing of the compressed header and
block data using the parameter of uncompressed_header_size_byte_aligned.

first_partition_size

Corresponds to the size of the compressed header data partition in bytes. The bitstream data buffer shall
contain the uncompressed header in the size of uncompressed_header_size_byte_aligned, the
compressed header with the size equal to first_partition_size, and the compressed frame data. The
accelerator can identify the beginning of the compressed block-level data by using the sum of the offsets,
uncompressed_header_size_byte_aligned and first_partition_size which corresponds to the
uncompressed header size and the compressed header size in bytes.

Reserved16Bits, Reserved32Bits

Reserved bit fields. Shall be set to 0 by the host decoder and the accelerator shall ignore their value.

StatusReportFeedbackNumber

Arbitrary number set by the host decoder to use as a tag in the status report feedback data. The value
should not be equal to 0, and should be different in each call to Execute. For more information, see
section 6 (Status Report Data Structure).

Header Inclusion Requirements

Header: Include dxva.h.

© 2015 Microsoft Corporation. All rights reserved.

4. VP8 Picture Parameters Data Structure

The DXVA_PicParams_VP8 structure provides the picture-level parameters of a compressed picture for
VP8 video decoding. This structure is used when bDXVA_Func is 1 and the buffer type is
DXVA2_PictureParametersBufferType (in DXVA 2.0).

4.1 Syntax

typedef struct _segmentation_VP8 {

union {

 struct {

UCHAR segmentation_enabled : 1;

UCHAR update_mb_segmentation_map : 1;

UCHAR update_mb_segmentation_data : 1;

UCHAR mb_segement_abs_delta : 1;

UCHAR ReservedSegmentFlags4Bits : 4;

 };

 UCHAR wSegmentFlags;

};

CHAR segment_feature_data[2][4];

UCHAR mb_segment_tree_probs [3];

} DXVA_segmentation_VP8;

typedef struct _DXVA_PicParams_VP8 {

UINT first_part_size;

UINT width;

UINT height;

DXVA_PicEntry_VPx CurrPic;

union {

 struct {

UCHAR frame_type : 1;

UCHAR version : 3;

UCHAR show_frame : 1;

UCHAR clamp_type : 1;

UCHAR ReservedFrameTag3Bits : 2;

 };

 UCHAR wFrameTagFlags;

};

DXVA_segmentation_VP8 stVP8Segments;

© 2015 Microsoft Corporation. All rights reserved.

UCHAR filter_type;

UCHAR filter_level;

UCHAR sharpness_level;

UCHAR mode_ref_lf_delta_enabled;

UCHAR mode_ref_lf_delta_update;

CHAR ref_lf_deltas[4];

CHAR mode_lf_deltas[4];

UCHAR log2_nbr_of_dct_partitions;

UCHAR base_qindex;

CHAR y1dc_delta_q;

CHAR y2dc_delta_q;

CHAR y2ac_delta_q;

CHAR uvdc_delta_q;

CHAR uvac_delta_q;

DXVA_PicEntry_VPx alt_fb_idx;

DXVA_PicEntry_VPx gld_fb_idx;

DXVA_PicEntry_VPx lst_fb_idx;

UCHAR ref_frame_sign_bias_golden;

UCHAR ref_frame_sign_bias_altref;

UCHAR refresh_entropy_probs;

UCHAR vp8_coef_update_probs[4][8][3][11];

UCHAR mb_no_coeff_skip;

UCHAR prob_skip_false;

UCHAR prob_intra;

UCHAR prob_last;

UCHAR prob_golden;

UCHAR intra_16x16_prob[4];

UCHAR intra_chroma_prob[3];

UCHAR vp8_mv_update_probs[2][19];

USHORT ReservedBits1;

USHORT ReservedBits2;

USHORT ReservedBits3;

UINT StatusReportFeedbackNumber;

} DXVA_PicParams_VP8, *LPDXVA_PicParams_VP8;

© 2015 Microsoft Corporation. All rights reserved.

4.2 Semantics
first_part_size

Determines the size of the first several partitions (control partitions), including the first compressed (bool
coded) partition for header information that applies to the frame as a whole, the second compressed (bool
coded) partition for per-macroblock information specifying how each macroblock is predicted from the
already-reconstructed data that is available to the decoding process. The accelerator may choose to skip
the parsing of the uncompressed header (10 bytes for a key frame or 3 bytes for a non-key frame) and the
partitions indicated by first_part_size and start decoding block data. The bitstream data buffer shall
contain the uncompressed header (3 bytes for inter frames and 10 bytes for key frames), the first
compressed (bool coded) partition for header information that applies to the frame as a whole, the second
compressed (bool coded) partition for per-macroblock information specifying how each macroblock is
predicted from the already-reconstructed data that is available to the decoding process, and other
partitions for the DCT/WHT coefficients (quantized and logically compressed) of the residue signal to be
added to the predicted block values in each block.

width, height

Specify the coded width and height of current frame. Correspond to the syntax elements of the same name
in the reference software and affect the decoding process accordingly. Coded resolution changes are only
allowed to occur on key frames in VP8. Under the DXVA framework, the optional upscaling of decoded
pictures prior to display is performed outside of the VP8 accelerator, when horiz_scale and/or vert_scale
are non-zero.

CurrPic

Specifies the destination frame buffer/surface index for the decoded picture. In this context, the
AssociatedFlag has no meaning and shall be 0, and the accelerator shall ignore its value.

frame_type

Indicates the current frame type. Allowed values are 0 (KEY_FRAME) and 1 (INTER_FRAME).

version

Version number that enables or disables certain features in the bitstream, as specified in the Internet-Draft
of the VP8 bitstream specification.

show_frame

Indicates whether the current frame is meant to be displayed or not. The accelerator might use the flag for
internal optimizations.

© 2015 Microsoft Corporation. All rights reserved.

clamp_type

Specifies whether the decoder is required to clamp the reconstructed sample values. Allowed values are 1
(RECON_CLAMP_REQUIRED) and 1 (RECON_CLAMP_NOTREQUIRED), as defined in the
reference software.

ReservedFrameTag3Bits

Reserved bit fields. Shall be set to 0 by the host decoder and the accelerator shall ignore their value.

wFrameTagFlags

Provides an alternative way to access the bit fields.

stVP8Segments

Provides the segmentation related syntax values when segmentation is enabled, including the control flags
of update_mb_segmentation_map, update_mb_segmentation_data, mb_segement_abs_delta and
segmentation map and data related tables segment_feature_data[][],and mb_segment_tree_probs[].

segmentation_enabled in stVP8Segments

Enables the segmentation feature for the current frame. When segmentation_enabled is equal to
0, the accelerator shall ignore the values in stVP8Segments. VP8 uses segment based
adjustments to support changing the quantizer level and loop filter level for a macroblock. When
the segment-based adjustment feature is enabled for a frame, each macroblock within the frame is
coded with a segment_id. This results in segmenting the macroblocks of the current frame into a
number of different segments. Macroblocks within the same segment use the same for quantizer
and loop filter level adjustments.

update_mb_segmentation_map in stVP8Segments

Determines whether the MB segmentation map is updated in the current frame.

update_segment_feature_data in stVP8Segments

Indicates whether the segment feature data is updated in the current frame.

mb_segement_abs_delta in stVP8Segments

Indicates the feature data update mode, 0 for delta and 1 for the absolute value.

segment_feature_data[][] in stVP8Segments

Indicates the alternate quantizer and alternate loop filter value for segments.

mb_segment_tree_probs [] in stVP8Segments

Indicates the branch probabilities of the segment_id decoding tree.

© 2015 Microsoft Corporation. All rights reserved.

ReservedSegmentFlags4Bits

Reserved bit fields. Shall be set to 0 by the host decoder and the accelerator shall ignore their
value.

wSegmentFlags

Provides an alternative way to access the bit fields.

filter_type, filter_level, and sharpness_level

filter_type determines whether the normal or the simple loop filter is used, filter_level controls the
deblocking filter, and sharpness_level controls the deblocking filter.

mode_ref_lf_delta_enabled, mode_ref_lf_delta_update

Indicate whether the MB-level loop filter adjustment (based on the used reference frame and coding
mode) is on for the current frame, and whether the delta values used in adjustment are updated in the
current frame.

ref_lf_deltas[]

Specify the adjustment delta values corresponding to a certain used reference frame for loop filtering.

mode_lf_deltas[]

Specify the adjustment delta values corresponding to certain MB prediction mode for loop filtering.

log2_nbr_of_dct_partitions

Determines the number of separate partitions containing the DCT coefficients of the macroblocks.

base_qindex

Specifies the dequantization table index used for the luma AC coefficients (and other coefficient groups if
no delta value is present).

y1dc_delta_q, y2dc_delta_q, y2ac_delta_q, uvdc_delta_q, uvac_delta_q

Indicate the delta values that are added to the baseline index to obtain the luma DC coefficient
dequantization index, the Y2 block DC coefficient dequantization index, the Y2 block AC coefficient
dequantization index, the chroma DC coefficient dequantization index, and the chroma AC coefficient
dequantization index.

alt_fb_idx, gld_fb_idx, lst_fb_idx

Specify the frame buffer/surface indices for the altref frame, the golden frame, and the previous
reconstructed frame. In this context, the AssociatedFlag has no meaning and shall be 0, and the
accelerator shall ignore its value. The host decoder may set alt_fb_idx, gld_fb_idx, and lst_fb_idx
parameters according to the bitstream syntax elements of copy_buffer_to_arf, copy_buffer_to_gf,
refresh_golden_frame, refresh_alt_ref_frame, refresh_last_frame. The host decoder may set the
alt_fb_idx, gld_fb_idx, and lst_fb_idx parameters different from the indication of those bitstream syntax

© 2015 Microsoft Corporation. All rights reserved.

elements on purpose. The accelerator shall honor the host decoder settings of alt_fb_idx, gld_fb_idx, and
lst_fb_idx parameters.

The VP8 decoder needs to maintain four YUV frame buffers/surfaces for decoding purposes. These
buffers hold the current frame being reconstructed, the previous reconstructed frame, the most recent
golden frame, and the most recent altref frame.

ref_frame_sign_bias_golden, ref_frame_sign_bias_altref

ref_frame_sign_bias_golden controls the sign of motion vectors when the golden frame is referenced
and ref_frame_sign_bias_altref controls the sign of motion vectors when the altref frame is referenced.

refresh_entropy_probs

Determines whether updated token probabilities are used only for this frame or until further update.

vp8_coef_update_probs[][][][]

Indicate the new branch probability for different block types, coefficient bands, coefficient contexts, and
entropy coding nodes. The forward probability updates are accumulative. That is, a probability updated
on one frame is in effect for all subsequent frames until the next key frame or until the probability is
explicitly updated by another frame.

mb_no_coeff_skip

Enables or disables the skipping of macroblocks containing no non-zero coefficients.

prob_skip_false

Indicates the probability estimate that the macroblock is not skipped (flag indicating skipped macroblock
is false).

prob_intra, prob_last, prob_golden

Indicate the probability estimate of an intra macroblock, the probability estimate that the last reference
frame is used for inter prediction, and the probability estimate that the golden reference frame is used for
inter prediction.

intra_16x16_prob[]

Specify the branch probability estimates of the luma intra prediction mode decoding tree.

intra_chroma_prob[]

Specify the branch probability estimates of the chroma intra prediction mode decoding tree.

vp8_mv_update_probs[][]

Specify the corresponding MV decoding probability estimates for the current frame.

© 2015 Microsoft Corporation. All rights reserved.

ReservedBits1, ReservedBits2, ReservedBits3

Reserved bit fields. Shall be set to 0 by the host decoder and the accelerator shall ignore their value.

StatusReportFeedbackNumber

Arbitrary number set by the host decoder to use as a tag in the status report feedback data. The value
should not be equal to 0, and should be different in each call to Execute. For more information, see
section 6 (Status Report Data Structure).

Header Inclusion Requirements

Header: Include dxva.h.

5. Slice (Picture) Control Data Structure
The slice control structure is used when bDXVA_Func is 1 and the buffer type is
DXVA2_SliceControlBufferType (DXVA 2.0). The slice control buffer is accompanied by a raw
bitstream data buffer. The total quantity of data in the bitstream buffer (and the amount of data reported
by the host software decoder) shall be an integer multiple of 128 bytes. Since both VP8 and VP9 do not
have multiple slice support, each picture contains one slice and only one slice control buffer shall be
present for a frame.

Only the DXVA_Slice_VPx_Short structure is defined in this specification.

5.1 Syntax
The DXVA_Slice_VPx_Short data structure, as specified for other DXVA usage cases, is sent by the
host software decoder to the accelerator to convey slice control data. The data structure and associated
semantics are essentially the same as for the previous DXVA_Slice_H264_Short and
DXVA_Slice_HEVC_Short data structures. It has been given a new name so that the data structures used
for VP8 and VP9 will have names that are associated with the new design.

© 2015 Microsoft Corporation. All rights reserved.

For convenience, the form of this data structure is shown below:

typedef struct _DXVA_Slice_VPx_Short {

UINT BSNALunitDataLocation;

UINT SliceBytesInBuffer;

USHORT wBadSliceChopping;

} DXVA_Slice_VPx_Short, *LPDXVA_Slice_VPx_Short;

5.2 Semantics
BSNALunitDataLocation

If wBadSliceChopping is 0 or 1, this member locates the compressed bitstream data for the current
frame. The value is the byte offset, from the start of the bitstream data buffer, of the first byte of the
compressed frame.

If wBadSliceChopping is not 0 or 1, BSNALunitDataLocation shall be 0.

SliceBytesInBuffer

Number of bytes in the bitstream data buffer that are associated with this slice control data structure,
starting with the byte at the offset given in BSNALunitDataLocation.

wBadSliceChopping

Contains one of the following values:

Value Description
0 All bits for the slice are located within the corresponding bitstream data buffer.

1 The bitstream data buffer contains the start of the slice, but not the entire slice, because the buffer is
full.

2 The bitstream data buffer contains the end of the slice. It does not contain the start of the slice,
because the start of the slice was located in the previous bitstream data buffer.

3 The bitstream data buffer does not contain the start of the slice (because the start of the slice was
located in the previous bitstream data buffer), and it does not contain the end of the slice (because the
current bitstream data buffer is full).

Generally the host decoder should avoid using values other than 0 for wBadSliceChopping.

The size of the data in the bitstream data buffer (and the amount of data reported by the host software
decoder) shall be an integer multiple of 128 bytes. When wBadSliceChopping is 0 or 2, if the end of the
slice data is not an even multiple of 128 bytes, the decoder should pad the end of the buffer with zeroes.

© 2015 Microsoft Corporation. All rights reserved.

The host decoder is recommended to send only decodable compressed frames to accelerator. However,
the accelerator shall be robust enough to handle any non-decodable frames.

6. Status Report Data Structure
The DXVA_Status_VPx data structure is sent by the accelerator to the host software decoder to convey
decoding status information. This structure is used when bDXVA_Func is 7.

The status reporting command does not use a compressed buffer. Instead, the host software decoder
provides a buffer as private output data. For more information, see section 1.7 (Status Reporting) of this
specification.

The status information command should be asynchronous to the decoding process. The host software
decoder should not wait to receive status information on a process before it proceeds to initiate another
process. After the host software decoder has received a status report for a particular operation, the
accelerator shall discard that information and not report it again. (That is, the results of each particular
operation shall not be reported to the host software decoder more than once.) Accelerators shall be
capable of providing status information for every buffer for every operation performed.

Accelerators are required to store at least a minimum of 512 DXVA_Status_VPx structures internally,
pending status requests from the host software decoder. An accelerator may (and should) exceed this
storage capacity. If the accelerator discards reporting information, it should discard the oldest data first.
The accelerator should provide status reports in approximately reverse temporal order of when the
operations were completed. That is, status reports for the most recently completed operations should
appear earlier in the list of status report data structures.

Note – As previously stated, the term should describes guidelines that are encouraged but are not
mandatory requirements.

6.1 Syntax
The DXVA_Status_VPx data structure is sent by the accelerator to the host software decoder to convey
decoding status information. The data structure and associated semantics are essentially the same as for
the previous DXVA_Status_H264 and DXVA_Status_HEVC data structures. It has been given a new
name so that the data structures used for VP8 and VP9 will have names that are associated with the new
design. For convenience, the form of this data structure is shown below:

typedef struct _DXVA_Status_VPx {

 UINT StatusReportFeedbackNumber;

 DXVA_PicEntry_VPx CurrPic;

 UCHAR bBufType;

 UCHAR bStatus;

 UCHAR bReserved8Bits;

 USHORT wNumMbsAffected;

} DXVA_Status_VPx, *LPDXVA_Status_VPx;

© 2015 Microsoft Corporation. All rights reserved.

6.2 Semantics
StatusReportFeedbackNumber

Contains the value of StatusReportFeedbackNumber set by the host software decoder in the picture
parameters data structure for the associated operation.

CurrPic

Specifies the uncompressed destination surface that was affected by the operation.

bBufType

Indicates the type of compressed buffer associated with this status report. If bStatus is 0, the value of
bBufType may be 0xFF. This value indicates that the status report applies to all of the compressed
buffers conveyed in the associated Execute call. Otherwise, if bBufType is not 0xFF, it must contain one
of the following values, defined in dxva.h:

Value

Description

DXVA_PICTURE_DECODE_BUFFER (1) Picture decoding parameter buffer.

DXVA_SLICE_CONTROL_BUFFER (6) Slice control buffer.

DXVA_BITSTREAM_DATA_BUFFER (7) Bitstream data buffer.

bStatus

Indicates the status of the operation as shown in the table below.

Value Description

0 The operation succeeded.

1 Minor problem in the data format. The host
decoder should continue processing.

2 Significant problem in the data format. The host
decoder may continue executing or skip the display
of the output picture.

3 Severe problem in the data format. The host
decoder should restart the entire decoding process,
starting at a sequence or random-access entry point.

4 Other severe problem. The host decoder should
restart the entire decoding process, starting at a
sequence or random-access entry point.

© 2015 Microsoft Corporation. All rights reserved.

If the value is 3 or 4, the host software decoder should halt the decoding process unless it can take
corrective action.

bReserved8Bits

This structure member has no meaning, and the value shall be 0. The accelerator shall ignore its value.

wNumMbsAffected

If bStatus is not 0, this member contains the accelerator's estimate of the number of super-blocks in the
decoded frame that were adversely affected by the reported problem. If the accelerator does not provide
an estimate, the value is 0xFFFF.

If bStatus is 0, the accelerator may set wNumMbsAffected to the number of super-blocks that were
successfully decoded by the operation. If the accelerator does not provide an estimate, it shall set the
value either to 0 or to 0xFFFF.

Header Inclusion Requirements

Header: Include dxva.h.

7. Restricted-Mode Profiles
The following restricted-mode profiles for DXVA operations for VP8 and VP9 video decoding are
defined. The GUIDs that identify these profiles will be defined in the header file dxva.h. Additional
restricted-mode profiles for DXVA operations may be defined in the future.

7.1 DXVA_ModeVP9_VLD_Profile0 Profile
This profile supports the features necessary for a decoder that conforms to VP9 profile 0 (which supports
8 bit 4:2:0 video). In this profile, the accelerator performs bitstream parsing, inverse quantization scaling,
inverse transform processing, motion compensation, and deblocking with the support of 4:2:0 chroma
subsampling.

All data buffers shall contain only data that is consistent with the constraints specified for VP9 profile 0
(including the constraint that BitDepthMinus8Luma and BitDepthMinus8Chroma shall both be equal to
0).

The associated GUID definition for the corresponding entry in the dxva.h header file is as follows:

// {463707F8-A1D0-4585-876D-83AA6D60B89E}

DEFINE_GUID(DXVA_ModeVP9_VLD_Profile0,

0x463707f8, 0xa1d0, 0x4585, 0x87, 0x6d, 0x83, 0xaa, 0x6d, 0x60, 0xb8,
0x9e);

© 2015 Microsoft Corporation. All rights reserved.

7.2 DXVA_ModeVP9_VLD_10bit_Profile2 Profile
This profile supports the features necessary for a decoder that conforms to VP9 profile 2 for 10 bit video.
In this profile, the accelerator performs bitstream parsing, inverse quantization scaling, inverse transform
processing, motion compensation, and deblocking with the support of 4:2:0 chroma subsampling.

All data buffers shall contain only data that is consistent with the constraints specified for VP9 profile 2
for 10 bit video (including the constraint that BitDepthMinus8Luma and BitDepthMinus8Chroma shall
both be equal to 2).

The associated GUID definition for the corresponding entry in the dxva.h header file is as follows:

// {A4C749EF-6ECF-48AA-8448-50A7A1165FF7}

DEFINE_GUID(DXVA_ModeVP9_VLD_10bit_Profile2,

0xa4c749ef, 0x6ecf, 0x48aa, 0x84, 0x48, 0x50, 0xa7, 0xa1, 0x16, 0x5f,
0xf7);

7.3 DXVA_ModeVP8_VLD Profile
This profile supports the features necessary for a decoder that conforms to the VP8 coding format. In this
profile, the accelerator performs bitstream parsing, inverse quantization scaling, inverse transform
processing, motion compensation, and deblocking with the support of 4:2:0 chroma subsampling.

All data buffers shall contain only data that is consistent with the constraints specified for the VP8 coding
format.

The associated GUID definition for the corresponding entry in the dxva.h header file is as follows:

// {90B899EA-3A62-4705-88B3-8DF04B2744E7}

DEFINE_GUID(DXVA_ModeVP8_VLD,

0x90b899ea, 0x3a62, 0x4705, 0x88, 0xb3, 0x8d, 0xf0, 0x4b, 0x27, 0x44,
0xe7);

8. For More Information
 DirectX Video Acceleration 2.0 documentation: http://go.microsoft.com/fwlink/?LinkId=94771

Web addresses can change, so you might be unable to connect to the Web site or sites mentioned here.

