
Microsoft Small Basic

An introduction to Programming

Chapter 1

An Introduction

Small Basic and Programming
Computer Programming is defined as the process of creating computer software using programming

languages. Just like we speak and understand English or Spanish or French, computers can understand

programs written in certain languages. These are called programming languages. In the beginning there

were just a few programming languages and they were really easy to learn and comprehend. But as

computers and software became more and more sophisticated, programming languages evolved fast,

gathering more complex concepts along the way. As a result most modern programming languages and

their concepts are pretty challenging to grasp by a beginner. This fact has started discouraging people

from learning or attempting computer programming.

Small Basic is a programming language that is designed to make programming extremely easy,

approachable and fun for beginners. Small Basic’s intention is to bring down the barrier and serve as a

stepping stone to the amazing world of computer programming.

The Small Basic Environment
Let us start with a quick introduction to the Small Basic Environment. When you first launch SmallBasic,

you will see a window that looks like the following figure.

Figure 1 - The Small Basic Environment

This is the Small Basic Environment, where we’ll write and run our Small Basic programs. This

environment has several distinct elements which are identified by numbers.

The Editor, identified by [1] is where we will write our Small Basic programs. When you open a sample

program or a previously saved program, it will show up on this editor. You can then modify it and save if

for later use.

You can also open and work with more than one program at one time. Each program you are working

with will be displayed in a separate editor. The editor that contains the program you are currently

working with is called the active editor.

The Toolbar, identified by [2] is used to issue commands either to the active editor or the environment.

We’ll learn about the various commands in the toolbar as we go.

The Surface, identified by [3] is the place where all the editor windows go.

Our First Program
Now that you are familiar with the Small Basic Environment, we will go ahead and start programming in

it. Like we just noted above, the editor is the place where we write our programs. So let’s go ahead and

type the following line in the editor.

TextWindow.WriteLine("Hello World")

This is our first Small Basic program. And if you have typed it correctly, you should see something

similar to the figure below.

Figure 2 - First Program

Now that we have typed our new program, let’s go ahead and run it to see what happens. We can run

our program either by clicking on the Run button on the toolbar or by using the shortcut key, F5 on the

keyboard. If everything goes well, our program should run with the result as shown below.

Figure 3 - First Program Output

Congratulations! You have just written and run

the first Small Basic program. A very small and

simple program, but nevertheless a big step

towards becoming a real computer programmer!

Now, there’s just one more detail to cover before

we go on to create bigger programs. We have to

understand what just happened – what exactly

did we tell the computer and how did the

computer know what to do? In the next chapter,

we’ll analyze the program we just wrote, so we

can gain that understanding.

As you typed your first program, you might

have noticed that a popup appeared with a list

of items (Figure 4). This is called “intellisense”

and it helps you type your program faster. You

can traverse that list by pressing the Up/Down

arrow keys, and when you find something you

want, you can hit the Enter key to insert the

selected item in your program.

Figure 4 - Intellisense

Saving our program
If you want to close Small Basic and come back later to work on the program you just typed, you can

save the program. It is in fact a good practice to save programs from time to time, so that you don’t lose

information in the event of an accidental shutdown or a power failure. You can save the current

program by either clicking on the “save” icon on the toolbar or by using the shortcut “Ctrl+S” (press the

S key while holding down the Ctrl key).

Chapter 2

Understanding Our First Program

What really is a computer program?
A program is a set of instructions for the computer. These instructions tell the computer precisely what

to do, and the computer always follows these instructions. Just like people, computers can only follow

instructions if specified in a language they can understand. These are called programming languages.

There are very many languages that the computer can understand and Small Basic is one.

Imagine a conversation happening between you and your friend. You and your friends would use words,

organized as sentences to convey information back and forth. Similarly, programming languages contain

collections of words that can be organized into sentences that convey information to the computer.

And programs are basically sets of sentences (sometimes just a few and sometimes many thousands)

that together make sense to both the

programmer and the computer alike.

Small Basic Programs
A typical Small Basic program consists of a bunch

of statements. Every line of the program

represents a statement and every statement is an

instruction for the computer. When we ask the computer to execute a Small Basic program, it takes the

program and reads the first statement. It understands what we’re trying to say and then executes our

instruction. Once it’s done executing our first statement, it comes back to the program and reads and

executes the second line. It continues to do so until it reaches the end of the program. That is when our

program finishes.

There are many languages that the computer

can understand. Java, C++, Python, VB, etc. are

all powerful modern computer languages that

are used to develop simple to complex software

programs.

Back to Our First Program
Here is the first program we wrote:

TextWindow.WriteLine("Hello World")

This is a very simple program that consists of one statement. That statement tells the computer to write

a line of text which is Hello World, into the Text Window.

 It literally translates in the computer’s mind to:

Write Hello World

You might have already noticed that the statement can in turn be split into smaller segments much like

sentences can be split into words. In the first statement we have 3 distinct segments:

a) TextWindow

b) WriteLine

c) “Hello World”

The dot, parentheses and the quotes are all punctuations that have to be placed at appropriate

positions in the statement, for the computer to understand our intent.

You might remember the black window that appeared when we ran our first program. That black

window is called the TextWindow or sometimes referred to as the Console. That is where the result of

this program goes. TextWindow, in our program, is called an object. There are a number of such

objects available for us to use in our programs. We can perform several different operations on these

objects. We’ve already used theWriteLine operation in our program. You might also have noticed that

the WriteLine operation is followed by Hello

World inside quotes. This text is passed as input

to the WriteLine operation, which it then prints

out to the user. This is called an input to the

operation. Some operations take one or more

inputs while others don’t take any.

Our Second Program
Now that you have understood our first program, let’s go ahead and make it fancier by adding some

colors.

TextWindow.ForegroundColor = "Yellow"

TextWindow.WriteLine("Hello World")

Punctuations such as quotes, spaces and

parenthesis are very important in a computer

program. Based on their position and count,

they can change the meaning of what is being

expressed.

Figure 5 - Adding Colors

When you run the above program, you’ll notice that it prints out the same “Hello World” phrase inside

TextWindow, but this time it prints it out in yellow instead of the gray that it did earlier.

Figure 6 - Hello World in Yellow

Notice the new statement we added to our original program. It uses a new word, ForegroundColor

which we equated to a value of “Yellow.” This means we’ve assigned “Yellow” to ForegroundColor.

Now, the difference between ForegroundColor and the operation WriteLine is that ForegroundColor did

not take any inputs nor did it need any parenthesis. Instead it was followed by an equals to symbol and

a word. We define ForegroundColor as a Property of TextWindow. Here is a list of values that are valid

for the ForegroundColor property. Try replacing “Yellow” with one of these and see the results – don’t

forget the quotes, they are required punctuations.

Black

Blue

Cyan

Gray

Green

Magenta

Red

White

Yellow

DarkBlue

DarkCyan

DarkGray

DarkGreen

DarkMagenta

DarkRed

DarkYellow

Chapter 3

Introducing Variables

Using Variables in our program
Wouldn’t it be nice if our program can actually say “Hello” with the users name instead of saying the

generic “Hello World?” In order to do that we must first ask the user for his/her name and then store it

somewhere and then print out “Hello” with the user’s name. Let’s see how we can do that:

TextWindow.Write("Enter your Name: ")

name = TextWindow.Read()

TextWindow.WriteLine("Hello " + name)

When you type and execute this program, you’ll see an output like the following:

Figure 7 - Ask the user's name

And when you type in your name and hit ENTER, you’ll see the following output:

Figure 8 - A Warm Hello

Now, if you run the program again, you’ll be asked the same question again. You can type in a different

name and the computer will say Hello with that name.

Analysis of the program
In the program you just ran, the line that might have caught your attention is this:

name = TextWindow.Read()

Read() looks just like WriteLine(), but with no inputs. It is an operation and basically it tells the computer

to wait for the user to type in something and hit the ENTER key. Once the user hits the ENTER key, it

takes what the user has typed and returns it to the program. The interesting point is that whatever the

user had typed is now stored in a variable called name. A variable is defined as a place where you can

store values temporarily and use them later. In the line above, name was used to store the name of the

user.

The next line is also interesting:

TextWindow.WriteLine("Hello " + name)

This is the place where we use the value stored in

our variable, name. We take the value in name

and append it to “Hello” and write it to the

TextWindow.

Once a variable is set, you can reuse it any

number of times. For example, you can do the

following:

TextWindow.Write("Enter your Name: ")

name = TextWindow.Read()

TextWindow.Write("Hello " + name + ". ")

TextWindow.WriteLine("How are you doing " + name + "?")

And you’ll see the following output:

Write, just like WriteLine is another operation

on ConsoleWindow. Write allows you to write

something to the ConsoleWindow but allows

succeeding text to be on the same line as the

current text.

Figure 9 - Reusing a Variable

Rules for naming Variables
Variables have names associated with them and that’s how you identify them. There are certain simple

rules and some really good guidelines for naming these variables. They are:

1. The name should start with a letter and should not collide with any of the keywords like if, for,

then, etc.

2. A name can contain any combination of letters, digits and underscores.

3. It is useful to name variables meaningfully – since variables can be as long as you want, use

variable names to describe their intent.

Playing with Numbers
We’ve just seen how you can use variables to store the name of the user. In the next few programs,

we’ll see how we can store and manipulate numbers in variables. Let’s start with\ a really simple

program:

number1 = 10

number2 = 20

number3 = number1 + number2

TextWindow.WriteLine(number3)

When you run this program you’ll get the following as output:

Figure 10 - Adding Two Numbers

In the first line of the program, you’re assigning

the variable number1 with a value of 10. And in

the second line, you’re assigning the variable

number2 with a value of 20. In the third line,

you’re adding number1 and number2 and then

Notice that the numbers don’t have quotes

around them. For numbers, quotes are not

necessary. You need quotes only when you’re

using text.

assigning the result of that to number3. So, in this case, number3 will have a value of 30. And that is

what we printed out to the TextWindow.

Now, let’s modify that program slightly and see the results:

number1 = 10

number2 = 20

number3 = number1 * number2

TextWindow.WriteLine(number3)

The program above will multiply number1 with number2 and store the result in number3. And you can

see in the result of that program below:

Figure 11 - Multiplying Two Numbers

Similarly, you can subtract or divide numbers. Here is the subtraction:

 number3 = number1 - number2

And the symbol for division is ‘/’. The progam will look like:

number3 = number1 / number2

And the result of this division would be:

Figure 12 - Dividing Two Numbers

A Simple Temperature Converter

For the next program we’ll use the formula

 to convert Fahrenheit temperatures to Celsius

temperatures.

First, we’ll get the temperature in Fahrenheit from the user and store it in a variable. There’s a special

operation that lets us read numbers from the user and that is TextWindow.ReadNumber.

TextWindow.Write("Enter temperature in Fahrenheit: ")

fahr = TextWindow.ReadNumber()

Once we have the Fahrenheit temperature stored in a variable, we can convert it to Celsius like this:

celsius = 5 * (fahr - 32) / 9

The parentheses tell the computer to calculate the fahr – 32 part first and then process the rest. Now

all we have to do is print the result out to the user. Putting it all together, we get this program:

TextWindow.Write("Enter temperature in Fahrenheit: ")

fahr = TextWindow.ReadNumber()

celsius = 5 * (fahr - 32) / 9

TextWindow.WriteLine("Temperature in Celsius is " + celsius)

And the result of this program would be:

Figure 13 - Temperature Conversion

Chapter 4

Conditions and Branching

Going back to our first program, wouldn’t it be cool that instead of saying the general Hello World, we

could say Good Morning World, or Good Evening World depending on the time of the day? For our next

program, we’ll make the computer say Good Morning World if the time is earlier than 12PM; and Good

Evening if the time is later than 12PM.

If (Clock.Hour < 12) Then

 TextWindow.WriteLine("Good Morning World")

EndIf

If (Clock.Hour >= 12) Then

 TextWindow.WriteLine("Good Evening World")

EndIf

Depending on when you run the program you’ll see either of the following outputs:

Figure 14 - Good Morning World

Figure 15 - Good Evening World

Let’s analyze the first three lines of the program. You’d have already figured out that this line tells the

computer that if the Clock.Hour is lesser than 12,

print out “Good Morning World.” The words If,

Then and EndIf are special words that are

understood by the computer when the program is

run. The word If is always followed by a condition,

which in this case is (Clock.Hour < 12). Remember

that the parentheses are necessary for the

computer to understand your intentions. The

condition is followed by then and the actual operation to execute. And after the operation comes EndIf.

This tells the computer that the conditional execution is over.

Between the then and the EndIf, there could be more than one operation and the computer will execute

them all if the condition is valid. For example, you could write something like this:

If (Clock.Hour < 12) Then

 TextWindow.Write("Good Morning. ")

 TextWindow.WriteLine("How was breakfast?")

EndIf

Else
In the program at the start of this chapter, you might have noticed that the second condition is kind of

redundant. The Clock.Hour value could either be less than 12 or not. We didn’t really have to do the

second check. At times like this, we can shorten the two if..then..endif statements to be just one by

using a new word, else.

If we were to rewrite that program using else, this is how it will look:

If (Clock.Hour < 12) Then

 TextWindow.WriteLine("Good Morning World")

Else

 TextWindow.WriteLine("Good Evening World")

EndIf

In Small Basic, you can use the Clock object to

access the current date and time. It also

provides you a bunch of properties that allow

you to get the current Day, Month, Year, Hour,

Minutes, Seconds separately.

And this program will do exactly the same as the other one, which brings us to a very important lesson

in computer programming:

In programming, there usually are many ways of doing the same thing. Sometimes one way

makes more sense than the other way. The choice is left to the programmer. As you write more

programs and get more experienced, you’ll start to notice these different techniques and their

advantages and disadvantages.

Indentation
In all the examples you can see how the statements between If, Else and EndIf are indented. This

indentation is not necessary. The computer will understand the program just fine without them.

However, they help us see and understand the structure of the program easier. Hence, it’s usually

considered as a good practice to indent the statements between such blocks.

Even or Odd
Now that we have the If..Then..Else..EndIf statement in our bag of tricks, let’s write out a program that,

given a number, will say if it’s even or odd.

TextWindow.Write("Enter a number: ")

num = TextWindow.ReadNumber()

remainder = Math.Remainder(num, 2)

If (remainder = 0) Then

 TextWindow.WriteLine("The number is Even")

Else

 TextWindow.WriteLine("The number is Odd")

EndIf

And when you run this program, you’ll see an output like:

Figure 16 - Even or Odd

In this program, we’ve introduced another new useful operation, Math.Remainder. And yes, as you

already might have figured out, Math.Remainder will divide the first number by the second number and

then give back the remainder.

“

Branching
Remember, in the second chapter you learned that the computer processes a program one statement at

a time, in order from the top to bottom. However, there’s a special statement that can make the

computer jump to another statement out of order. Let’s take a look at the next program.

i = 1

start:

TextWindow.WriteLine(i)

i = i + 1

If (i < 25) Then

 Goto start

EndIf

Figure 17 - Using Goto

In the program above, we assigned a value of 1 to the variable i. And then we added a new statement

which ends in a colon (:)

start:

This is called a label. Labels are like bookmarks that the computer understands. You can name the

bookmark anything and you can add as many labels as you want in your program, as long as they are all

uniquely named.

Another interesting statement here is:

i = i + 1

This just tells the computer to add 1 to the variable i and assign it back to i. So if the value of i was 1

before this statement, it will be 2 after this statement is run.

And finally,

If (i < 25) Then

 Goto start

EndIf

This is the part that tells the computer that if the value of i is less than 25, start executing statements

from the bookmark start.

Endless execution
Using the Goto statement you can make the computer repeat something any number of times. For

example, you can take the Even or Odd program and modify it like below, and the program will run for

ever. You can stop the program by clicking on the Close (X) button on the top right corner of the

window.

begin:

TextWindow.Write("Enter a number: ")

num = TextWindow.ReadNumber()

remainder = Math.Remainder(num, 2)

If (remainder = 0) Then

 TextWindow.WriteLine("The number is Even")

Else

 TextWindow.WriteLine("The number is Odd")

EndIf

Goto begin

Figure 18 - Even or Odd running endlessly

Chapter 5

Loops

For Loop
Let’s take a program we wrote in the previous chapter.

i = 1

start:

TextWindow.WriteLine(i)

i = i + 1

If (i < 25) Then

 Goto start

EndIf

This program prints out numbers from 1 to 24 in order. This process of incrementing a variable is very

common in programming that programming languages usually provide an easier method of doing this.

The above program is equivalent to the program below:

For i = 1 To 24

 TextWindow.WriteLine(i)

EndFor

And the output is:

Figure 19 - Using the For Loop

Notice that we’ve reduced the 8 line program to a 4 line program, and it still does exactly the same as

the 8 line program! Remember earlier we said that there are usually several ways of doing the same

thing? This is a great example.

For..EndFor is, in programming terms, called a loop. It allows you to take a variable, give it an initial and

an end value and let the computer increment the variable for you. Every time the computer increments

the variable, it runs the statements between For and EndFor.

But if you wanted the variable to be incremented by 2 instead of 1 – like say, you wanted to print out all

the odd numbers between 1 and 24, you can use the loop to do that too.

For i = 1 To 24 Step 2

 TextWindow.WriteLine(i)

EndFor

Figure 20 - Just the Odd Numbers

The Step 2 part of the For statement tells the computer to increment the value of i by 2 instead of the

usual 1. By using Step you can specify any increment that you want. You can even specify a negative

value for the step and make the computer count backwards, like in the example below:

For i = 10 To 1 Step -1

 TextWindow.WriteLine(i)

EndFor

Figure 21 - Counting Backwards

While Loop
The While loop is yet another looping method, that is useful especially when the loop count is not

known ahead of time. Whereas a For loop runs for a pre-defined number of times, the While loop runs

until a given condition is true. In the example below, we’re halving a number until the result is greater

than 1.

number = 100

While (number > 1)

 TextWindow.WriteLine(number)

 number = number / 2

EndWhile

Figure 22 - Halving Loop

In the program above, we assign the value 100 to number and run the while loop as long as number is

greater than 1. Inside the loop, we print out the number and then we divide it by two, effectively

halving it. And as expected, the output of the program is numbers that are progressively getting halved

one after another.

It’ll be really hard to write this program using a For loop, because we don’t know how many times the

loop will run. With a while loop it’s easy to check for a condition and ask the computer to either

continue the loop or quit.

It’ll be interesting to note that every while loop can be unwrapped into an If..Then statement. For

instance, the program above can be rewritten as follows, without affecting the end result.

number = 100

startLabel:

TextWindow.WriteLine(number)

number = number / 2

If (number > 1) Then

 Goto startLabel

EndIf

In fact, the computer internally rewrites every

While loop into statements that use If..Then

along with one or more Goto statements.

Chapter 6

Beginning Graphics

So far in all our examples, we’ve used the TextWindow to explain the fundamentals of the Small Basic

language. However, Small Basic comes with a powerful set of Graphics capabilities that we’ll start

exploring in this chapter.

Introducing GraphicsWindow
Just like we had TextWindow that allowed us to work with Text and Numbers, Small Basic also provides

a GraphicsWindow that we can use to draw things. Let’s begin by displaying the GraphicsWindow.

GraphicsWindow.Show()

When you run this program, you’ll notice that instead of the usual black text window, you get a white

Window like the one shown below. There’s nothing much to do on this window yet. But this will be the

base window on which we’ll work on in this chapter. You can close this window by clicking on the ‘X’

button on the top right corner.

Figure 23 - An empty Graphics Window

Setting up the Graphics Window
The graphics window allows you to customize its appearance to your desire. You can change the title,

the background and its size. Let’s go ahead and modify it a bit, just to get familiar with the window.

GraphicsWindow.BackgroundColor = "SteelBlue"

GraphicsWindow.Title = "My Graphics Window"

GraphicsWindow.Width = 320

GraphicsWindow.Height = 200

GraphicsWindow.Show()

Here’s how the customized graphics window looks. You can change the background color to one of the

many values listed in Appendix B. Play with these properties to see how you can modify the window’s

appearance.

Figure 24 - A Custom Graphics Window

Drawing Lines
Once we have the GraphicsWindow up, we can draw shapes, text and even pictures on it. Let’s start by

drawing some simple shapes. Here’s a program that draws a couple lines on the Graphics Window.

GraphicsWindow.Width = 200

GraphicsWindow.Height = 200

GraphicsWindow.DrawLine(10, 10, 100, 100)

GraphicsWindow.DrawLine(10, 100, 100, 10)

Figure 25 – CrissCross

The first two lines of the program setup the

window and the next two lines draw the crisscross

lines. The first two numbers that follow DrawLine

specify the starting x and y co-ordinates and the

other two specify the ending x and y co-ordinates.

The interesting thing with computer graphics is

Instead of using names for colors you can use

the web color notation (#RRGGBB). For

example, #FF0000 denotes Red, #FFFF00 for

Yellow, and so on. We’ll learn more about

colors in [TODO Colors chapter]

that the co-ordinates (0, 0) start at the top left corner of the window. In effect, in the co-ordinate space

the window is considered to be on the 2nd quadrant.

Figure 26 - The co-ordinate map

If we go back to the line program, it’s interesting to note that Small Basic allows you to modify the

properties of the line, such as the color and its thickness. First, let’s modify the color of the lines as

shown in the program below.

GraphicsWindow.Width = 200

GraphicsWindow.Height = 200

GraphicsWindow.PenColor = "Green"

GraphicsWindow.DrawLine(10, 10, 100, 100)

GraphicsWindow.PenColor = "Gold"

GraphicsWindow.DrawLine(10, 100, 100, 10)

Figure 27 - Changing Line Color

 Now, let’s modify the size too. In the program below, we change the line width to be 10, instead of the

default which is 1.

GraphicsWindow.Width = 200

GraphicsWindow.Height = 200

GraphicsWindow.PenWidth = 10

GraphicsWindow.PenColor = "Green"

GraphicsWindow.DrawLine(10, 10, 100, 100)

GraphicsWindow.PenColor = "Gold"

GraphicsWindow.DrawLine(10, 100, 100, 10)

Figure 28 - Thick Colorful Lines

PenWidth and PenColor modify the pen with which these lines are drawn. They not only affect lines but

also any shape that is drawn after the properties are updated.

By using the looping statements we learned in the previous chapters, we can easily write a program that

draws multiple lines with increasing pen thickness.

GraphicsWindow.BackgroundColor = "Black"

GraphicsWindow.Width = 200

GraphicsWindow.Height = 160

GraphicsWindow.PenColor = "Blue"

For i = 1 To 10

 GraphicsWindow.PenWidth = i

 GraphicsWindow.DrawLine(20, i * 15, 180, i * 15)

endfor

Figure 29 - Multiple Pen Widths

The interesting part of this program is the loop, where we increase the PenWidth every time the loop is

run and then draw a new line under the old one.

Drawing and Filling Shapes
When it comes to drawing shapes, there are usually two types of operations for every shape. They are

Draw operations and Fill operations. Draw operations draw the outline of the shape using a pen, and Fill

operations paint the shape using a brush. For example in the program below, there are two rectangles,

one that is drawn using the Red pen and one that’s filled using the Green Brush.

GraphicsWindow.Width = 400

GraphicsWindow.Height = 300

GraphicsWindow.PenColor = "Red"

GraphicsWindow.DrawRectangle(20, 20, 300, 60)

GraphicsWindow.BrushColor = "Green"

GraphicsWindow.FillRectangle(60, 100, 300, 60)

Figure 30 Drawing and Filling

To draw or fill a rectangle, you need four numbers. The first two numbers represent the X and Y co-

ordinates for the top left corner of the rectangle. The third number specifies the width of the rectangle

while the fourth specifies its height. In fact, the same applies for drawing and filling ellipses, as shown in

the program below.

GraphicsWindow.Width = 400

GraphicsWindow.Height = 300

GraphicsWindow.PenColor = "Red"

GraphicsWindow.DrawEllipse(20, 20, 300, 60)

GraphicsWindow.BrushColor = "Green"

GraphicsWindow.FillEllipse(60, 100, 300, 60)

Figure 31 - Drawing and Filling Ellipses

Ellipses are just a general case of circles. If you want to draw circles, you would have to specify the same

width and height.

GraphicsWindow.Width = 400

GraphicsWindow.Height = 300

GraphicsWindow.PenColor = "Red"

GraphicsWindow.DrawEllipse(20, 20, 100, 100)

GraphicsWindow.BrushColor = "Green"

GraphicsWindow.FillEllipse(100, 100, 100, 100)

Figure 32 – Circles

Chapter 7

Fun with Shapes

We’re going to have some fun in this chapter with whatever we’ve learned so far. This chapter contains

samples that show some interesting ways of combining all that you’ve learned so far to create some

cool looking programs.

Rectangalore
Here we draw multiple rectangles in a loop, with increasing size.

GraphicsWindow.BackgroundColor = "Black"

GraphicsWindow.PenColor = "LightBlue"

GraphicsWindow.Width = 200

GraphicsWindow.Height = 200

For i = 1 To 100 Step 5

 GraphicsWindow.DrawRectangle(100 - i, 100 - i, i * 2, i * 2)

EndFor

Figure 33 - Rectangalore

Circtacular
A variant of the previous program, draws circles instead of squares.

GraphicsWindow.BackgroundColor = "Black"

GraphicsWindow.PenColor = "LightGreen"

GraphicsWindow.Width = 200

GraphicsWindow.Height = 200

For i = 1 To 100 Step 5

 GraphicsWindow.DrawEllipse(100 - i, 100 - i, i * 2, i * 2)

EndFor

Figure 34 – Circtacular

Randomize
This program uses the operation GraphicsWindow.GetRandomColor to set random colors for the brush

and then uses Math.GetRandomNumber to set the x and y co-ordinates for the circles. These two

operations can be combined in interesting ways to create interesting programs that give different

results each time they are run.

GraphicsWindow.BackgroundColor = "Black"

For i = 1 To 1000

 GraphicsWindow.BrushColor = GraphicsWindow.GetRandomColor()

 x = Math.GetRandomNumber(640)

 y = Math.GetRandomNumber(480)

 GraphicsWindow.FillEllipse(x, y, 10, 10)

EndFor

Figure 35 – Randomize

Fractals
The following program draws a simple triangle fractal using random numbers. A fractal is a geometric

shape that can be subdivided into parts, each of which resembles the parent shape accurately. In this

case, the program draws hundreds of triangles each of which resembles its parent triangle. And since

the program runs for a few seconds, you can actually see the triangles forming slowly from mere dots.

The logic itself is somewhat hard to describe and I’ll leave it as an exercise for you to explore.

GraphicsWindow.BackgroundColor = "Black"

x = 100

y = 100

For i = 1 To 100000

 r = Math.GetRandomNumber(3)

 ux = 150

 uy = 30

 If (r = 1) then

 ux = 30

 uy = 1000

 EndIf

 If (r = 2) Then

 ux = 1000

 uy = 1000

 EndIf

 x = (x + ux) / 2

 y = (y + uy) / 2

 GraphicsWindow.SetPixel(x, y, "LightGreen")

EndFor

Figure 36 - Triangle Fractal

If you want to really see the dots slowly forming the fractal, you can introduce a delay in the loop by

using the Program.Delay operation. This operation takes in a number that specifies in milliseconds, how

long to delay. Here’s the modified program, with the modified line in bold.

GraphicsWindow.BackgroundColor = "Black"

x = 100

y = 100

For i = 1 To 100000

 r = Math.GetRandomNumber(3)

 ux = 150

 uy = 30

 If (r = 1) then

 ux = 30

 uy = 1000

 EndIf

 If (r = 2) Then

 ux = 1000

 uy = 1000

 EndIf

 x = (x + ux) / 2

 y = (y + uy) / 2

 GraphicsWindow.SetPixel(x, y, "LightGreen")

 Program.Delay(2)

EndFor

Increasing the delay will make the program slower. Experiment with the numbers to see what’s best for

your taste.

Another modification you can make to this program is to replace the following line:

GraphicsWindow.SetPixel(x, y, "LightGreen")

with

color = GraphicsWindow.GetRandomColor()

GraphicsWindow.SetPixel(x, y, color)

This change will make the program draw the pixels of the triangle using random colors.

Chapter 8

Turtle Graphics

Logo
In the 1970s, there was a very simple but powerful programming language, called Logo that was used by

a few researchers. This was until someone added what is called “Turtle Graphics” to the language and

made available a “Turtle” that was visible on the screen and responded to commands like Move

Forward, Turn Right, Turn Left, etc. Using the Turtle, people were able to draw interesting shapes on the

screen. This made the language immediately accessible and appealing to people of all ages, and was

largely responsible for its wild popularity in the 1980s.

Small Basic comes with a Turtle object with many commands that can be called from within Small Basic

programs. In this chapter, we’ll use the Turtle to draw graphics on the screen.

The Turtle
To begin with, we need to make the Turtle visible on the screen. This can be achieved by a simple one

line program.

Turtle.Show()

When you run this program you’ll notice a white window, just like the one we saw in the previous

chapter, except this one has a Turtle in the center. It is this Turtle that is going to follow our instructions

and draw whatever we ask it to.

Figure 37 - Turtle is visible

Moving and Drawing
One of the instructions that the Turtle understands is Move. This operation takes a number as input.

This number tells the Turtle how far to move. Say, in the example below, we’ll ask the Turtle to move

100 pixels.

Turtle.Move(100)

When you run this program, you can actually see

the turtle move slowly a 100 pixels upwards. As it

moves, you’ll also notice it drawing a line behind

it. When the Turtle has finished moving, the

result will look something like the figure below.

When using operations on the Turtle, it is not

necessary to call Show(). The Turtle will be

automatically made visible whenever any

Turtle operation is performed.

Figure 38 - Move a hundred pixels

Drawing a Square
A square has four sides, two vertical and two horizontal. In order to draw a square we need to be able

to make the Turtle draw a line, turn right and draw another line and continue this until all four sides are

finished. If we translated this to a program, here’s how it would look.

Turtle.Move(100)

Turtle.TurnRight()

Turtle.Move(100)

Turtle.TurnRight()

Turtle.Move(100)

Turtle.TurnRight()

Turtle.Move(100)

Turtle.TurnRight()

When you run this program, you can see the Turtle drawing a square, one line at a time, and the result

looks like the figure below.

Figure 39 - Turtle drawing a square

It will be interesting to note that we’re issuing the same two instructions over and over – four times

precisely. And we’ve already learnt that such repetitive commands can be executed using loops. So, if

we take the program above and modify it to use the For..EndFor loop, we’ll end up with a much simpler

program.

 For i = 1 To 4

 Turtle.Move(100)

 Turtle.TurnRight()

EndFor

Changing Colors
The Turtle draws on the exact same GraphicsWindow that we saw in the previous chapter. This means

that all the operations that we learned in the previous chapter are still valid here. For instance, the

following program will draw the square with each side in a different color.

For i = 1 To 4

 GraphicsWindow.PenColor = GraphicsWindow.GetRandomColor()

 Turtle.Move(100)

 Turtle.TurnRight()

EndFor

Figure 40 - Changing Colors

Drawing more complex shapes
The Turtle, in addition to the TurnRight and TurnLeft operations, has a Turn operation. This operation

takes one input which specifies the angle of rotation. Using this operation, it is possible to draw any

sided polygon. The following program draws a hexagon (a six-sided polygon).

For i = 1 To 6

 Turtle.Move(100)

 Turtle.Turn(60)

EndFor

Try this program out to see if it really draws a hexagon. Observe that since the angle between the sides

is 60 degrees, we use Turn(60). For such a polygon, whose sides are all equal, the angle between the

sides can be easily obtained by dividing 360 by the number of sides. Armed with this information and

using variables, we can write a pretty generic program that can draw any sided polygon.

sides = 12

length = 400 / sides

angle = 360 / sides

For i = 1 To sides

 Turtle.Move(length)

 Turtle.Turn(angle)

EndFor

Using this program, you can draw any polygon by just modifying the sides variable. Putting 4 here

would give us the Square we started with. Putting a sufficiently large value, say 50 would make the

result indistinguishable from a circle.

Figure 41 - Drawing a 12 sided polygon

Using the technique we just learned, we can make the Turtle draw multiple circles each time with a little

shift resulting in an interesting output.

sides = 50

length = 400 / sides

angle = 360 / sides

Turtle.Speed = 9

For j = 1 To 20

 For i = 1 To sides

 Turtle.Move(length)

 Turtle.Turn(angle)

 EndFor

 Turtle.Turn(18)

EndFor

 The program above has two For..EndFor loops,

one within the other. The inner loop (i = 1 to

sides) is similar to the polygon program and is

responsible for drawing a circle. The outer loop (j

= 1 to 20) is responsible for turning the Turtle by a

small bit for every circle that is drawn. This tells

the Turtle to draw 20 circles. When put together,

this program results in a very interesting pattern, like the one shown below.

Figure 42 - Going in circles

Moving Around
You can make the turtle not draw by calling the PenUp operation. This allows you to move the turtle to

anywhere on the screen without drawing a line. Calling PenDown will make the turtle draw again. This

can be used to get some interesting effects, like say, dotted lines. Here’s a program that uses this to

draw a dotted line polygon.

sides = 6

length = 400 / sides

angle = 360 / sides

In the program above, we have made the Turtle

go faster by setting the Speed to 9. You can set

this property to any value between 1 and 10 to

make the Turtle go as fast as you want.

For i = 1 To sides

 For j = 1 To 6

 Turtle.Move(length / 12)

 Turtle.PenUp()

 Turtle.Move(length / 12)

 Turtle.PenDown()

 EndFor

 Turtle.Turn(angle)

EndFor

Again, this program has two loops. The inner loop draws a single dotted line, while the outer loop

specifies how many lines to draw. In our example, we used 6 for the sides variable and hence we got a

dotted line hexagon, as below.

Figure 43 - Using PenUp and PenDown

Chapter 9

Subroutines

Very often while writing programs we’ll run into cases where we’ll have to execute the same set of

steps, over and over again. In those cases, it probably wouldn’t make sense to rewrite the same

statements multiple times. That’s when Subroutines come in handy.

A subroutine is a portion of code within a larger program that usually does something very specific, and

that can be called from anywhere in the program. Subroutines are identified by a name that follows the

Sub keyword and are terminated by the EndSub keyword. For example, the following snippet

represents a subroutine whose name is PrintTime, and it does the job of printing the current time to the

TextWindow.

Sub PrintTime

 TextWindow.WriteLine(Clock.Time)

EndSub

Below is a program that includes the subroutine and calls it from various places.

PrintTime()

TextWindow.Write("Enter your name: ")

name = TextWindow.Read()

TextWindow.Write(name + ", the time now is: ")

PrintTime()

Sub PrintTime

 TextWindow.WriteLine(Clock.Time)

EndSub

Figure 44 - Calling a simple Subroutine

You execute a subroutine by calling SubroutineName(). As usual, the punctuators “()” are necessary to

tell the computer that you want to execute a subroutine.

Advantages of using Subroutines
As we just saw above, subroutines help reduce the amount of code you have to type in. Once you have

the PrintTime subroutine written, you can call it from anywhere in your program and it’ll print the

current time.

In addition, subroutines can help decompose

complex problems into simpler pieces. Say you

had a complex equation to solve, you can write

several subroutines that solved smaller pieces of

the complex equation. Then you can put the

results together to get the solution to the original complex equation.

Subroutines can also aid in improving the readability of a program. In other words, if you have well

named subroutines for commonly run portions of your program, your program becomes easy to read

and comprehend. This is very important if you want to understand someone else’s program or if you

want your program to be understood by others. Sometimes, it is helpful even when you want to read

your own program, say a week after you wrote it.

Using variables
You can access and use any variable that you have in a program from within a subroutine. As an

example, the following program accepts two numbers and prints out the larger of the two. Notice that

the variable max is used both inside and outside of the subroutine.

TextWindow.Write("Enter first number: ")

num1 = TextWindow.ReadNumber()

TextWindow.Write("Enter second number: ")

num2 = TextWindow.ReadNumber()

FindMax()

Remember, you can only call a SmallBasic

subroutine from within the same program. You

cannot call a subroutine from within another

program.

TextWindow.WriteLine("Maximum number is: " + max)

Sub FindMax

 If (num1 > num2) Then

 max = num1

 Else

 max = num2

 EndIf

EndSub

And the output of this program looks like this.

Figure 45 - Max of two numbers using Subroutine

Let’s look at another example that will illustrate the usage of Subroutines. This time we’ll use a graphics

program that computes various points which it will store in variables x and y. Then it calls a subroutine

DrawCircleUsingCenter which is responsible for drawing a circle using x and y as the center.

GraphicsWindow.BackgroundColor = "Black"

GraphicsWindow.PenColor = "LightBlue"

GraphicsWindow.Width = 480

For i = 0 To 6.4 Step 0.17

 x = Math.Sin(i) * 100 + 200

 y = Math.Cos(i) * 100 + 200

 DrawCircleUsingCenter()

EndFor

Sub DrawCircleUsingCenter

 startX = x - 40

 startY = y - 40

 GraphicsWindow.DrawEllipse(startX, startY, 120, 120)

EndSub

Figure 46 - Graphics Example for Subroutines

Calling Subroutines inside Loops
Sometimes subroutines get called from inside a loop, during which time they execute the same set of

statements but with different values in one or more of the variables. For instance, say if you have a

subroutine named PrimeCheck and this subroutine determines if a number is prime or not. You can

write a program that lets the user to enter a value and you can then say if it is prime or not, using this

subroutine. The program below illustrates that.

TextWindow.Write("Enter a number: ")

i = TextWindow.ReadNumber()

isPrime = "True"

PrimeCheck()

If (isPrime = "True") Then

 TextWindow.WriteLine(i + " is a prime number")

Else

 TextWindow.WriteLine(i + " is not a prime number")

EndIf

Sub PrimeCheck

 For j = 2 To Math.SquareRoot(i)

 If (Math.Remainder(i, j) = 0) Then

 isPrime = "False"

 Goto EndLoop

 EndIf

 Endfor

EndLoop:

EndSub

The PrimeCheck subroutine takes the value of i and tries to divide it by smaller numbers. If a number

divides i and leaves no remainder, then i is not a prime number. At that point the subroutine sets the

value of isPrime to “False” and exits. If the number was indivisible by smaller numbers then the value of

isPrime remains as “True.”

Figure 47 - Prime Check

Now that you have a subroutine that can do the Prime test for us, you might want to use this to list out

all the prime numbers below, say, 100. It is really easy to modify the above program and make the call

to PrimeCheck from inside a loop. This gives the subroutine a different value to compute each time the

loop is run. Let’s see how this is done with the example below.

For i = 3 To 100

 isPrime = "True"

 PrimeCheck()

 If (isPrime = "True") Then

 TextWindow.WriteLine(i)

 EndIf

EndFor

Sub PrimeCheck

 For j = 2 To Math.SquareRoot(i)

 If (Math.Remainder(i, j) = 0) Then

 isPrime = "False"

 Goto EndLoop

 EndIf

 Endfor

EndLoop:

EndSub

In the program above, the value of i is updated every time the loop is run. Inside the loop, a call to the

subroutine PrimeCheck is made. The subroutine PrimeCheck then takes the value of i and computes

whether or not i is a prime number. This result is stored in the variable isPrime which is then accessed

by the loop outside of the subroutine. The value of i is then printed if it turns out to be a prime number.

And since the loop starts from 3 and goes up to 100, we get a list of all the prime numbers that are

between 3 and 100. Below is the result of the program.

Figure 48 - Prime Numbers

Chapter 10

Arrays

By now you must be well versed with how to use variables – after all you have come this far and you’re

still having fun, right?

Let’s for a moment, revisit the first program we wrote with variables:

TextWindow.Write("Enter your Name: ")

name = TextWindow.Read()

TextWindow.WriteLine("Hello " + name)

In this program, we received and stored the name of the user in a variable called name. Then later we

said “Hello” to the user. Now, let’s say there is more than one user – say, there are 5 users. How would

we store all their names? One way of doing this is:

TextWindow.Write("User1, enter name: ")

name1 = TextWindow.Read()

TextWindow.Write("User2, enter name: ")

name2 = TextWindow.Read()

TextWindow.Write("User3, enter name: ")

name3 = TextWindow.Read()

TextWindow.Write("User4, enter name: ")

name4 = TextWindow.Read()

TextWindow.Write("User5, enter name: ")

name5 = TextWindow.Read()

TextWindow.Write("Hello ")

TextWindow.Write(name1 + ", ")

TextWindow.Write(name2 + ", ")

TextWindow.Write(name3 + ", ")

TextWindow.Write(name4 + ", ")

TextWindow.WriteLine(name5)

When you run this you’ll get the following result:

Figure 49 - Not using arrays

Clearly there must be a better way to write such a simple program, right? Especially since the computer

is really good at doing repetitive tasks, why should we bother with writing the same code over and over

for every new user? The trick here is to store and retrieve more than one user’s name using the same

variable. If we can do that then we can use a For loop we learned in earlier chapters. This is where

arrays come to our help.

What is an array?
An array is a special kind of variable which can hold more than one value at a time. Basically, what it

means is that instead of having to create name1, name2, name3, name4 and name5 in order to store

five user names, we could just use name to store all five users’ name. The way we store multiple values

is by use of this thing called “index.” For example, name[1], name[2], name[3], name[4] and name[5]

can all store a value each. The numbers 1, 2, 3, 4 and 5 are called indices for the array.

Even though the name[1], name[2], name[3], name[4] and name[5] all look like they are different

variables, they’re in reality all just one variable. And what’s the advantage of this, you may ask. The

best part of storing values in an array is that you can specify the index using another variable – which

allows us to easily access arrays inside loops.

Now, let’s look at how we can put our new knowledge to use by rewriting our previous program with

arrays.

For i = 1 To 5

 TextWindow.Write("User" + i + ", enter name: ")

 name[i] = TextWindow.Read()

EndFor

TextWindow.Write("Hello ")

For i = 1 To 5

 TextWindow.Write(name[i] + ", ")

EndFor

TextWindow.WriteLine("")

Much easier to read, isn’t it? Notice the two bolded lines. The first one stores a value in the array and

the second one reads it from the array. The value you store in name[1] will not be affected by what you

store in name[2]. Hence for most purposes you can treat name[1] and name[2] as two different

variables with the same identity.

Figure 50 - Using arrays

The above program gives almost the exact same result as the one without arrays, except for the comma

at the end of Mantis. We can fix that by rewriting the printing loop as:

TextWindow.Write("Hello ")

For i = 1 To 5

 TextWindow.Write(name[i])

 If i < 5 Then

 TextWindow.Write(", ")

 EndIf

EndFor

TextWindow.WriteLine("")

Indexing an array
In our previous program you saw that we used numbers as indices to store and retrieve values from the

array. It turns out that the indices are not restricted to just numbers and in practice it’s very useful to

use textual indices too. For example, in the following program, we ask and store various pieces of

information about a user and then print out the info that the user asks for.

TextWindow.Write("Enter name: ")

user["name"] = TextWindow.Read()

TextWindow.Write("Enter age: ")

user["age"] = TextWindow.Read()

TextWindow.Write("Enter city: ")

user["city"] = TextWindow.Read()

TextWindow.Write("Enter zip: ")

user["zip"] = TextWindow.Read()

TextWindow.Write("What info do you want? ")

index = TextWindow.Read()

TextWindow.WriteLine(index + " = " + user[index])

Figure 51 - Using non-numeric indices

More than one dimension
Let’s say you want to store the name and phone number of all your friends and then be able to lookup

on their phone numbers whenever you need – kinda like a phonebook. How would we go about writing

such a program?

 In this case, there are two sets of indices (also

known as the array’s dimension) involved.

Assume we identify each friend by their nick

name. This becomes our first index in the array.

Once we use the first index to get our friend

variable, the second of indices, name and phone

number would help us get to the actual name and phone number of that friend.

Array indices are not case sensitive. Just like

regular variables, array indices match don’t

have to match the precise capitalization.

The way we store this data would be like this:

friends["Rob"]["Name"] = "Robert"

friends["Rob"]["Phone"] = "555-6789"

friends["VJ"]["Name"] = "Vijaye"

friends["VJ"]["Phone"] = "555-4567"

friends["Ash"]["Name"] = "Ashley"

friends["Ash"]["Phone"] = "555-2345"

Since we have two indices on the same array, friends, this array is called a two dimensional array.

Once we have set this program up, we can then take as input the nickname of a friend and then print

out the information we have stored about them. Here’s the full program that does that:

friends["Rob"]["Name"] = "Robert"

friends["Rob"]["Phone"] = "555-6789"

friends["VJ"]["Name"] = "Vijaye"

friends["VJ"]["Phone"] = "555-4567"

friends["Ash"]["Name"] = "Ashley"

friends["Ash"]["Phone"] = "555-2345"

TextWindow.Write("Enter the nickname: ")

nickname = TextWindow.Read()

TextWindow.WriteLine("Name: " + friends[nickname]["Name"])

TextWindow.WriteLine("Phone: " + friends[nickname]["Phone"])

Figure 52 - A simple phone book

Using Arrays to represent grids
A very common use of multi-dimensional arrays is to represent grids/tables. Grids have rows and

columns, which can fit nicely into a two dimensional array. A simple program that lays out boxes in a

grid is given below:

rows = 8

columns = 8

size = 40

For r = 1 To rows

 For c = 1 To columns

 GraphicsWindow.BrushColor = GraphicsWindow.GetRandomColor()

 boxes[r][c] = Shapes.AddRectangle(size, size)

 Shapes.Move(boxes[r][c], c * size, r * size)

 EndFor

EndFor

This program adds rectangles and positions them to form an 8x8 grid. In addition to laying these boxes,

it also stores these boxes in an array. Doing so makes it easy for us to keep track of these boxes and use

them again when we need them.

Figure 53 - Laying out boxes in a grid

For example, adding the following code to the end of the previous program would make these boxes

animate to the top left corner.

For r = 1 To rows

 For c = 1 To columns

 Shapes.Animate(boxes[r][c], 0, 0, 1000)

 Program.Delay(300)

 EndFor

EndFor

Figure 54 - Keeping track of boxes in the grid

Chapter 11

Events and Interactivity

In the first two chapters, we introduced objects that have Properties and Operations. In addition to

properties and operations, some objects have what are called Events. Events are like signals that are

raised, for example, in response to user actions, like moving the mouse or clicking it. In some sense

events are the opposite of operations. In the case of operation, you as a programmer call it to make the

computer do something; whereas in the case of events, the computer lets you know when something

interesting has happened.

How are events useful?
Events are central to introducing interactivity in a program. If you want to allow a user to interact with

your program, events are what you’ll use. Say, you’re writing a Tic-Tac-Toe game. You’ll want to allow

the user to choose his/her play, right? That’s where events come in - you receive user input from within

your program using events. If this seems hard to grasp, don’t worry, we’ll take a look at a very simple

example that will help you understand what events are and how they can be used.

Below is a very simple program that has just one statement and one subroutine. The subroutine uses

the ShowMessage operation on the GraphicsWindow object to display a message box to the user.

GraphicsWindow.MouseDown = OnMouseDown

Sub OnMouseDown

 GraphicsWindow.ShowMessage("You Clicked.", "Hello")

EndSub

The interesting part to note in the program above is the line where we assign the subroutine name to

the MouseDown event of GraphicsWindow object. You’ll notice that MouseDown looks very much like

a property – except that instead of assigning some value, we’re assigning the subroutine OnMouseDown

to it. That’s what is special about events – when the event happens, the subroutine is called

automatically. In this case, the subroutine OnMouseDown is called every time the user clicks using the

mouse, on the GraphicsWindow. Go ahead, run the program and try it out. Anytime you click on the

GraphicsWindow with your mouse, you’ll see a message box just like the one shown in the picture

below.

Figure 55 - Response to an event

This kind of event handling is very powerful and allows for very creative and interesting programs.

Programs written in this fashion are often called event-driven programs.

You can modify the OnMouseDown subroutine to do other things than popup a message box. For

instance, like in the program below, you can draw big blue dots where the user clicks the mouse.

GraphicsWindow.BrushColor = "Blue"

GraphicsWindow.MouseDown = OnMouseDown

Sub OnMouseDown

 x = GraphicsWindow.MouseX - 10

 y = GraphicsWindow.MouseY - 10

 GraphicsWindow.FillEllipse(x, y, 20, 20)

EndSub

Figure 56 - Handling Mouse Down Event

Notice that in the program above, we used MouseX and MouseY to get the mouse co-ordinates. We

then use this to draw a circle using the mouse co-ordinates as the center of the circle.

Handling multiple events
There are really no limits to how many events you want to handle. You can even have one subroutine

handle multiple events. However, you can handle an event only once. If you try to assign two

subroutines to the same event, the second one wins.

To illustrate this, let’s take the previous example and add a subroutine that handles key presses. Also,

let’s make this new subroutine change the color of the brush, so that when you click your mouse, you’ll

get a different colored dot.

GraphicsWindow.BrushColor = "Blue"

GraphicsWindow.MouseDown = OnMouseDown

GraphicsWindow.KeyDown = OnKeyDown

Sub OnKeyDown

 GraphicsWindow.BrushColor = GraphicsWindow.GetRandomColor()

EndSub

Sub OnMouseDown

 x = GraphicsWindow.MouseX - 10

 y = GraphicsWindow.MouseY - 10

 GraphicsWindow.FillEllipse(x, y, 20, 20)

EndSub

Figure 57 - Handling multiple events

If you ran this program and clicked on the window, you’ll get a blue dot. Now, if you press any key once

and click again, you’ll get a different colored dot. What’s happening when you press a key is that the

subroutine OnKeyDown gets executed which changes the brush color to a random color. After that

when you click the mouse, a circle is drawn using the newly set color – giving the random color dots.

A paint program
Armed with events and subroutines, we can now write a program that lets users draw on the window.

It’s surprisingly easy to write such a program, provided we break down the problem into smaller bits. As

a first step, let’s write a program that will allow users to move the mouse anywhere on the graphics

window, leaving a trail wherever they move the mouse.

GraphicsWindow.MouseMove = OnMouseMove

Sub OnMouseMove

 x = GraphicsWindow.MouseX

 y = GraphicsWindow.MouseY

 GraphicsWindow.DrawLine(prevX, prevY, x, y)

 prevX = x

 prevY = y

EndSub

However, when you run this program, the first line always starts from the top left edge of the window

(0, 0). We can fix this problem by handling the MouseDown event and capture the prevX and prevY

values when that event comes.

Also, we really only need the trail when the user has the mouse button down. Other times, we

shouldn’t draw the line. In order to get this behavior, we’ll use the IsLeftButtonDown property on the

Mouse object. This property tells whether the Left button is being held down or not. If this value is

true, then we’ll draw the line, if not we’ll skip the line.

GraphicsWindow.MouseMove = OnMouseMove

GraphicsWindow.MouseDown = OnMouseDown

Sub OnMouseDown

 prevX = GraphicsWindow.MouseX

 prevY = GraphicsWindow.MouseY

EndSub

Sub OnMouseMove

 x = GraphicsWindow.MouseX

 y = GraphicsWindow.MouseY

 If (Mouse.IsLeftButtonDown) Then

 GraphicsWindow.DrawLine(prevX, prevY, x, y)

 EndIf

 prevX = x

 prevY = y

EndSub

Appendix A

Fun Samples

Turtle Fractal

Figure 58 - Turtle drawing a tree fractal

angle = 30

delta = 10

distance = 60

Turtle.Speed = 9

GraphicsWindow.BackgroundColor = "Black"

GraphicsWindow.PenColor = "LightGreen"

DrawTree()

Sub DrawTree

 If (distance > 0) Then

 Turtle.Move(distance)

 Turtle.Turn(angle)

 Stack.PushValue("distance", distance)

 distance = distance - delta

 DrawTree()

 Turtle.Turn(-angle * 2)

 DrawTree()

 Turtle.Turn(angle)

 distance = Stack.PopValue("distance")

 Turtle.Move(-distance)

 EndIf

EndSub

Photos from Flickr

Figure 59 - Retrieving pictures from Flickr

GraphicsWindow.BackgroundColor = "Black"

GraphicsWindow.MouseDown = OnMouseDown

Sub OnMouseDown

 pic = Flickr.GetRandomPicture("mountains, river")

 GraphicsWindow.DrawResizedImage(pic, 0, 0, 640, 480)

EndSub

Dynamic Desktop Wallpaper

For i = 1 To 10

 pic = Flickr.GetRandomPicture("mountains")

 Desktop.SetWallPaper(pic)

 Program.Delay(10000)

EndFor

Paddle Game

Figure 60 - Paddle Game

GraphicsWindow.BackgroundColor = "DarkBlue"

paddle = Shapes.AddRectangle(120, 12)

ball = Shapes.AddEllipse(16, 16)

GraphicsWindow.MouseMove = OnMouseMove

x = 0

y = 0

deltaX = 1

deltaY = 1

RunLoop:

 x = x + deltaX

 y = y + deltaY

 gw = GraphicsWindow.Width

 gh = GraphicsWindow.Height

 If (x >= gw - 16 or x <= 0) Then

 deltaX = -deltaX

 EndIf

 If (y <= 0) Then

 deltaY = -deltaY

 EndIf

 padX = Shapes.GetLeft (paddle)

 If (y = gh - 28 and x >= padX and x <= padX + 120) Then

 deltaY = -deltaY

 EndIf

 Shapes.Move(ball, x, y)

 Program.Delay(5)

 If (y < gh) Then

 Goto RunLoop

 EndIf

GraphicsWindow.ShowMessage("You Lose", "Paddle")

Sub OnMouseMove

 paddleX = GraphicsWindow.MouseX

 Shapes.Move(paddle, paddleX - 60, GraphicsWindow.Height - 12)

EndSub

Appendix B

Colors

Here’s a list of named colors supported by Small Basic, categorized by their base hue.

Red Colors

IndianRed #CD5C5C

LightCoral #F08080

Salmon #FA8072

DarkSalmon #E9967A

LightSalmon #FFA07A

Crimson #DC143C

Red #FF0000

FireBrick #B22222

DarkRed #8B0000

Pink Colors

Pink #FFC0CB

LightPink #FFB6C1

HotPink #FF69B4

DeepPink #FF1493

MediumVioletRed #C71585

PaleVioletRed #DB7093

Orange Colors

LightSalmon #FFA07A

Coral #FF7F50

Tomato #FF6347

OrangeRed #FF4500

DarkOrange #FF8C00

Orange #FFA500

Yellow Colors

Gold #FFD700

Yellow #FFFF00

LightYellow #FFFFE0

LemonChiffon #FFFACD

LightGoldenrodYellow #FAFAD2

PapayaWhip #FFEFD5

Moccasin #FFE4B5

PeachPuff #FFDAB9

PaleGoldenrod #EEE8AA

Khaki #F0E68C

DarkKhaki #BDB76B

Purple Colors

Lavender #E6E6FA

Thistle #D8BFD8

Plum #DDA0DD

Violet #EE82EE

Orchid #DA70D6

Fuchsia #FF00FF

Magenta #FF00FF

MediumOrchid #BA55D3

MediumPurple #9370DB

BlueViolet #8A2BE2

DarkViolet #9400D3

DarkOrchid #9932CC

DarkMagenta #8B008B

Purple #800080

Indigo #4B0082

SlateBlue #6A5ACD

DarkSlateBlue #483D8B

MediumSlateBlue #7B68EE

Green Colors

GreenYellow #ADFF2F

Chartreuse #7FFF00

LawnGreen #7CFC00

Lime #00FF00

LimeGreen #32CD32

PaleGreen #98FB98

LightGreen #90EE90

MediumSpringGreen #00FA9A

SpringGreen #00FF7F

MediumSeaGreen #3CB371

SeaGreen #2E8B57

ForestGreen #228B22

Green #008000

DarkGreen #006400

YellowGreen #9ACD32

OliveDrab #6B8E23

Olive #808000

DarkOliveGreen #556B2F

MediumAquamarine #66CDAA

DarkSeaGreen #8FBC8F

LightSeaGreen #20B2AA

DarkCyan #008B8B

Teal #008080

Blue Colors

Aqua #00FFFF

Cyan #00FFFF

LightCyan #E0FFFF

PaleTurquoise #AFEEEE

Aquamarine #7FFFD4

Turquoise #40E0D0

MediumTurquoise #48D1CC

DarkTurquoise #00CED1

CadetBlue #5F9EA0

SteelBlue #4682B4

LightSteelBlue #B0C4DE

PowderBlue #B0E0E6

LightBlue #ADD8E6

SkyBlue #87CEEB

LightSkyBlue #87CEFA

DeepSkyBlue #00BFFF

DodgerBlue #1E90FF

CornflowerBlue #6495ED

MediumSlateBlue #7B68EE

RoyalBlue #4169E1

Blue #0000FF

MediumBlue #0000CD

DarkBlue #00008B

Navy #000080

MidnightBlue #191970

Brown Colors

Cornsilk #FFF8DC

BlanchedAlmond #FFEBCD

Bisque #FFE4C4

NavajoWhite #FFDEAD

Wheat #F5DEB3

BurlyWood #DEB887

Tan #D2B48C

RosyBrown #BC8F8F

SandyBrown #F4A460

Goldenrod #DAA520

DarkGoldenrod #B8860B

Peru #CD853F

Chocolate #D2691E

SaddleBrown #8B4513

Sienna #A0522D

Brown #A52A2A

Maroon #800000

White Colors

White #FFFFFF

Snow #FFFAFA

Honeydew #F0FFF0

MintCream #F5FFFA

Azure #F0FFFF

AliceBlue #F0F8FF

GhostWhite #F8F8FF

WhiteSmoke #F5F5F5

Seashell #FFF5EE

Beige #F5F5DC

OldLace #FDF5E6

FloralWhite #FFFAF0

Ivory #FFFFF0

AntiqueWhite #FAEBD7

Linen #FAF0E6

LavenderBlush #FFF0F5

MistyRose #FFE4E1

Gray Colors

Gainsboro #DCDCDC

LightGray #D3D3D3

Silver #C0C0C0

DarkGray #A9A9A9

Gray #808080

DimGray #696969

LightSlateGray #778899

SlateGray #708090

DarkSlateGray #2F4F4F

Black #000000

