Master Pages :: Creating a Site-Wide Layout
Using Master Pages

Introduction

One attribute of a well-designed website is a consistent site-wide page layout. Take the
www.asp.net website, for example. At the time of this writing, every page has the same
content at the top and bottom of the page. As Figure 1 shows, the very top of each page
displays a gray bar with a list of Microsoft Communities. Beneath that is the site logo, the
list of languages into which the site has been translated, and the core sections: Home, Get
Started, Learn, Downloads, and so forth. Likewise, the bottom of the page includes
information about advertising on www.asp.net, a copyright statement, and a link to the
privacy statement.

£ Thie OFfirzieel Mhirusft 50 HET Sile - Windows Inbermst Explorer ';"El |'._||E|ﬁ

{;_ = | net hitp: flespanes) il s B 2 -

Ae Edt Wies Faworbes Toals Hedp

SF W netTha Dffidal Micrnsoft &P.NET e LR - B v - [pane - i Took - - oF @ e [

FRcrosalt Conmunities = = Shearbght: Tio of the D o e Shedght Yideos Are Hada |2

Eaglist Sign In Jin

mna w Got Staried Learn Downloads AJAY Commuonity Wiki (Data) Foroms !I

Welcoma In the Mews EJ Featurad ASP.MET Wak Hﬂltmn

&) Why ASFNET? Silverlight 2 Beta 1 Maw Awallablel F COUT m
ASENET is 2 free Slyehied) gy, e g 3kl 2E; a- rilli=] i
technology that There are tro new A2FHLT server ASP.NET WEB HOSTIMNG
allaks anyone ko corsrals thet make & easy for
creats s modsm devedapars fo incorparste Silvarlight Yotied “Rast ASPNET Weh Host® by asp.netPRo 2
wish zits carteqt irto AEFRET ‘web soolicabans, Kararin = A irnal Shodin Maravine sand Trosbard

Dare g i &8 dnsernet BT

Figure 01: The www.asp.net Website Employs a Consistent Look and Feel Across
All Pages

Another attribute of a well-designed site is the ease with which the site's appearance can be
changed. Figure 1 shows the www.asp.net homepage as of March 2008, but between now
and this tutorial's publication, the look and feel may have changed. Perhaps the menu items
along the top will expand to include a new section for the MVC framework. Or maybe a
radically new design with different colors, fonts, and layout will be unveiled. Applying such
changes to the entire site should be a fast and simple process that does not require
modifying the thousands of web pages that make up the site.

Creating a site-wide page template in ASP.NET is possible through the use of master pages.
In a nutshell, a master page is a special type of ASP.NET page that defines the markup that
is common among all content pages as well as regions that are customizable on a content
page-by-content page basis. (A content page is an ASP.NET page that is bound to the
master page.) Whenever a master page's layout or formatting is changed, all of its content
pages' output is likewise immediately updated, which makes applying site-wide appearance
changes as easy as updating and deploying a single file (namely, the master page).

This is the first tutorial in a series of tutorials that explore using master pages. Over the
course of this tutorial series we:

e Examine creating master pages and their associated content pages,

e Discuss a variety of tips, tricks, and traps,

¢ Identify common master page pitfalls and explore workarounds,

e See how to access the master page from a content page and vice-a-versa,
e Learn how to specify a content page's master page at runtime, and

e Other advanced master page topics.

These tutorials are geared to be concise and provide step-by-step instructions with plenty of
screen shots to walk you through the process visually. Each tutorial is available in C# and
Visual Basic versions and includes a download of the complete code used.

This inaugural tutorial starts with a look at master page basics. We discuss how master
pages work, look at creating a master page and associated content pages using Visual Web
Developer, and see how changes to a master page are immediately reflected in its content
pages. Let's get started!

Understanding How Master Pages Work

Building a website with a consistent site-wide page layout requires that each web page emit
common formatting markup in addition to its custom content. For example, while each
tutorial or forum post on www.asp.net have their own unique content, each of these pages
also render a series of common <div> elements that display the top-level section links:
Home, Get Started, Learn, and so on.

There are a variety of techniques for creating web pages with a consistent look and feel. A
naive approach is to simply copy and paste the common layout markup into all web pages,
but this approach has a number of downsides. For starters, every time a new page is
created, you must remember to copy and paste the shared content into the page. Such
copying and pasting operations are ripe for error as you may accidentally copy only a subset
of the shared markup into a new page. And to top it off, this approach makes replacing the
existing site-wide appearance with a new one a real pain because every single page in the
site must be edited in order to use the new look and feel.

Prior to ASP.NET version 2.0, page developers often placed common markup in User
Controls and then added these User Controls to each and every page. This approach
required that the page developer remember to manually add the User Controls to every new
page, but allowed for easier site-wide modifications because when updating the common
markup only the User Controls needed to be modified. Unfortunately, Visual Studio .NET
2002 and 2003 - the versions of Visual Studio used to create ASP.NET 1.x applications -
rendered User Controls in the Design view as gray boxes. Consequently, page developers
using this approach did not enjoy a WYSIWYG design-time environment.

The shortcomings of using User Controls were addressed in ASP.NET version 2.0 and Visual
Studio 2005 with the introduction of master pages. A master page is a special type of
ASP.NET page that defines both the site-wide markup and the regions where associated
content pages define their custom markup. As we will see in Step 1, these regions are
defined by ContentPlaceHolder controls. The ContentPlaceHolder control simply denotes a
position in the master page's control hierarchy where custom content can be injected by a
content page.

http://msdn2.microsoft.com/en-us/library/y6wb1a0e.aspx
http://msdn2.microsoft.com/en-us/library/y6wb1a0e.aspx
http://msdn2.microsoft.com/en-us/library/y6wb1a0e.aspx

Note: The core concepts and functionality of master pages has not changed since
ASP.NET version 2.0. However, Visual Studio 2008 offers design-time support for
nested master pages, a feature that was lacking in Visual Studio 2005. We will look
at using nested master pages in a future tutorial.

Figure 2 shows what the master page for www.asp.net might look like. Note that the master
page defines the common site-wide layout - the markup at the top, bottom, and right of
every page - as well as a ContentPlaceHolder in the middle-left, where the unique content
for each individual web page is located.

Header Region
Home | Get Started | Learn | Etc.

Advertisement
Page-Specific
Content
(Implemented in the master page as a
ContentPlaceHolder control)
Recommended
Books

Footer Region
Advertise | About | Privacy

Figure 02: A Master Page Defines the Site-Wide Layout and the Regions Editable
on a Content Page-by-Content Page Basis

Once a master page has been defined it can be bound to new ASP.NET pages through the
tick of a checkbox. These ASP.NET pages - called content pages - include a Content control
for each of the master page's ContentPlaceHolder controls. When the content page is visited
through a browser the ASP.NET engine creates the master page's control hierarchy and
injects the content page's control hierarchy into the appropriate places. This combined
control hierarchy is rendered and the resulting HTML is returned to the end user's browser.
Consequently, the content page emits both the common markup defined in its master page
outside of the ContentPlaceHolder controls and the page-specific markup defined within its
own Content controls. Figure 3 illustrates this concept.

Content Page Master Page

Header Region
Home | Get Started | Leam | Etc.

ASP.NET Forums

Advertisement
General ASP.NET
FAQ _

Page-Specific
Getting Started Content
Installation and Setup Recommendead
Books

Footer Region
Advertise | About | Privacy

~N

Fused ASP.NET Page

Header Region
Home | Get Started | Leamn | Etc.

ASP.NET Forums
Advertisement
General ASP.NET
FAC
Getting Started
Installation and Setup RECD;;L";MM

Footer Region
Adverlise | Aboul | Privacy

Figure 03: The Requested Page's Markup is Fused into the Master

Now that we have discussed how master pages work, let's take a look at creating a master
page and associated content pages using Visual Web Developer.

Note: In order to reach the widest possible audience, the ASP.NET website we build
throughout this tutorial series will be created using ASP.NET 3.5 with Microsoft's free
version of Visual Studio 2008, Visual Web Developer 2008. If you have not yet
upgraded to ASP.NET 3.5, don't worry - the concepts discussed in these tutorials
work equally well with ASP.NET 2.0 and Visual Studio 2005. However, some demo

http://www.microsoft.com/express/vwd/

applications may use features new to the .NET Framework version 3.5; when 3.5-
specific features are used, I include a note that discusses how to implement similar
functionality in version 2.0. Do keep in mind that the demo applications available for
download from each tutorial target the .NET Framework version 3.5, which results in
a Web.config file that includes 3.5-specific configuration elements and references to
3.5-specific namespaces in the using statements in ASP.NET pages' code-behind
classes. Long story short, if you have yet to install .NET 3.5 on your computer then
the downloadable web application will not work without first removing the 3.5-
specific markup from wWeb.config. See Dissecting ASP.NET Version 3.5's Web.config
File for more information on this topic. You will also need to remove the using
statements that reference 3.5-specific namespaces.

Step 1: Creating a Master Page

Before we can explore creating and using master and content pages, we first need an
ASP.NET website. Start by creating a new file system-based ASP.NET website. To
accomplish this, launch Visual Web Developer and then go to the File menu and choose New
Web Site, displaying the New Web Site dialog box (see Figure 4). Choose the ASP.NET Web
Site template, set the Location drop-down list to File System, choose a folder to place the
web site, and set the language to C#. This will create a new web site with a Default.aspx

ASP.NET page, an App Data folder, and a web.config file.

Note: Visual Studio supports two modes of project management: Web Site Projects
and Web Application Projects. Web Site Projects lack a project file, whereas Web
Application Projects mimic the project architecture in Visual Studio .NET 2002/2003 -
they include a project file and compile the project's source code into a single
assembly, which is placed in the /bin folder. Visual Studio 2005 initially only
supported Web Site Projects, although the Web Application Project model was
reintroduced with Service Pack 1; Visual Studio 2008 offers both project models. The
Visual Web Developer 2005 and 2008 editions, however, only support Web Site
Projects. I use the Web Site Project model for my demos in this tutorial series. If you
are using a non-Express edition and want to use the Web Application Project model
instead, feel free to do so but be aware that there may be some discrepancies
between what you see on your screen and the steps you must take versus the screen
shots shown and instructions provided in these tutorials.

http://www.4guysfromrolla.com/articles/121207-1.aspx
http://www.4guysfromrolla.com/articles/121207-1.aspx
http://msdn2.microsoft.com/en-us/library/aa730880(vs.80).aspx

New Web Site R

Templates: |
Yisual Studio installed templates
9 Qﬁ ::E ;
=l —Pﬁ
e ARV RSPOMET Web Empty Web W(CF Service
Site Service Site

My Temiplates

o

Search Cnline
Temmplates. ,,

A blank 45FKET Wb sbe [NET Framework 3.5)

w | | CiSecuricyTutorial b |

-
Larguage: isual CF w

i 0K |l Cancel J

Figure 04: Create a New File System-Based Web Site

Next, add a master page to the site in the root directory by right-clicking on the Project
name, choosing Add New Item, and selecting the Master Page template. Note that master
pages end with the extension .master. Name this new master page site.master and click

Add.

Add New Item - C:\My Projects\W ritings\Microsoft\MSDN Articles\MSDN Online Articles\SecurityTu... [? |[X]

Templates: =
¥isual Studio installed templates S
= — = | =7 i i =] —
== L i= Y I;.jﬂ éS] L ==
Web Form | Master Page | WebUser &JAX dienk A24K Chent AJAX Clienk AJ&M Master 8J4F Web
Conirol Behasdor Control Licrary Page Form
o i) ci =l L E & \é
e 04 = i = -
Adbx-enabled Browser Rle Jass CiakaSat (zEMaric EHoba HTML Page Jacript Ale
WCF Service Handler Applicati, .,
== [L | =3 ="
D &= & F o\ g @
LING bo SOL Resowrce File Site Map Skin File SOL Ferver Style Sheet Text File WICF Service
Classes Catabase "
A Mastar Page For Web Applications
Mame: ((site-mested |
Language: Visual C# w | [+ Flace code in separate file
[#] salect master page
i fdd | | Cancel]

Figure 05: Add a Master Page Named Site.master to the Website

Adding a new master page file through Visual Web Developer creates a master page with
the following declarative markup:

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="Site.master.cs" Inherits="Site" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>

<asp:ContentPlaceHolder id="head" runat="server">
</asp:ContentPlaceHolder>

</head>
<body>
<form id="forml" runat="server">
<div>
<asp:ContentPlaceHolder id="ContentPlaceHolderl"
runat="server">
</asp:ContentPlaceHolder>
</div>
</form>
</body>
</html>

The first line in the declarative markup is the @Master directive. The @Master directive is
similar to the @Page directive that appears in ASP.NET pages. It defines the server-side

language (C#) and information about the location and inheritance of the master page's
code-behind class.

The DOCTYPE and the page's declarative markup appears beneath the @Master directive. The
page includes static HTML along with four server-side controls:

¢ A Web Form (the <form runat="server">) - because all ASP.NET pages
typically have a Web Form - and because the master page may include Web
controls that must appear within a Web Form - be sure to add the Web Form to
your master page (rather than adding a Web Form to each content page).

¢ A ContentPlaceHolder control named ContentPlaceHolderl - this
ContentPlaceHolder control appears within the Web Form and serves as the
region for the content page's user interface.

e A server-side <head> element - the <head> element has the runat="server"
attribute, making it accessible through server-side code. The <head> element is
implemented this way so that the page's title and other <head>-related markup
may be added or adjusted programmatically. For example, setting an ASP.NET

http://msdn2.microsoft.com/en-us/library/ms228176.aspx
http://msdn2.microsoft.com/en-us/library/ydy4x04a.aspx

page's Title property changes the <title> element rendered by the <head>
server control.

e A ContentPlaceHolder control named head - this ContentPlaceHolder control
appears within the <head> server control and can be used to declaratively add
content to the <head> element.

This default master page declarative markup serves as a starting point for designing your
own master pages. Feel free to edit the HTML or to add additional Web controls or
ContentPlaceHolders to the master page.

Note: When designing a master page make sure that the master page contains a
Web Form and that at least one ContentPlaceHolder control appears within this Web
Form.

Let's expand site.master's default declarative markup to create a site layout where all
pages share: a common header; a left column with navigation, news and other site-wide
content; and a footer that displays the "Powered by Microsoft ASP.NET" icon. Figure 6
shows the end result of the master page when one of its content pages is viewed through a
browser. The red circled region in Figure 6 is specific to the page being visited
(Default.aspx); the other content is defined in the master page and therefore consistent

across all content pages.

2 Untitled Faps - Windomes Internet Fxplorer El@l E"EE

s

2 | htrpellecalhesst -4 520 AsFHET_Masterages_Tobadal 00 _CSmefauk. o
Ak Edt =W Favowdes Tools Help

W W | @Euied Pags fir - B - om v ikmeoe - 5 Tods - - & e B

Master Pages Tutorials

__LESSONS | Welcome!
» fobo Welcome to the dema application for the Master Fage Tutorials.
i | Tver the course of the next several tutorials this demo
 NEWS | zaplication will Hlustrate & varlety of featuras of mastar pages,
miciuding
e TODO

Creating master pages and content pages

Li=ing multiple ContantPlaceHolder controls

Specifying Title, MET A tans, and other HTML header contents
Comectly basing LUELs

Control ID mnaming

taster page and content page infersction

Master pages snc ASPEMNET AJAK

Specifving a content page's master pags programmatically
Fastad master paoss

Powered oy

ASPnet

[% Locd infrenet T T

Figure 06: The Master Page Defines the Markup for the Top, Left, and Bottom
Portions

To achieve the site layout shown in Figure 6, start by updating the site.master master
page so that it contains the following declarative markup:

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="Site.master.cs" Inherits="Site" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>

<asp:ContentPlaceHolder id="head" runat="server">
</asp:ContentPlaceHolder>

<link href="Styles.css" rel="stylesheet" type="text/css" />
</head>
<body>
<form id="forml" runat="server">
<div id="topContent">
Master Pages Tutorials

</div>

<div id="mainContent">
<asp:ContentPlaceHolder id="MainContent"
runat="server">
</asp:ContentPlaceHolder>

</div>

<div id="leftContent">
<h3>Lessons</h3>

<1i>TODO</11i>

<h3>News</h3>

<1i>TODO</1i>

</div>

<div id="footerContent">

<img src="Images/PoweredByASPNET.gif" alt="Powered by

ASP.NET!" />

</div>
</form>
</body>
</html>

The master page's layout is defined using a series of <div> HTML elements. The
topContent <div> contains the markup that appears at the top of each page, while the
mainContent, leftContent, and footerContent <div>s are used to display the page's
content, the left column, and the "Powered by Microsoft ASP.NET" icon, respectively. In
addition to adding these <div> elements, I also renamed the 1D property of the primary
ContentPlaceHolder control from ContentPlaceHolderl t0 MainContent.

The formatting and layout rules for these assorted <div> elements is spelled out in the
Cascading Stylesheet (CSS) file styles.css, which is specified via a <1ink> element in the
master page's <head> element. These various rules define the look and feel of each <div>
element noted above. For example, the topContent <div> element, which displays the
"Master Pages Tutorials" text and link, has its formatting rules specified in styles.css as
follows:

#topContent {
text-align: right;
background-color: #600;
color: White;
font-size: x-large;
text-decoration: none;
font-weight: bold;
padding: 10px;
height: 50px;
}
If you are following along at your computer, you will need to download this tutorial's
accompanying code and add the styles.css file to your project. Similarly, you will also

need to create a folder named Images and copy the "Powered by Microsoft ASP.NET" icon
from the downloaded demo website to your project.

Note: A discussion of CSS and web page formatting is beyond the scope of this
article. For more on CSS, check out the CSS Tutorials at W3Schools.com. I also
encourage you to download this tutorial's accompanying code and play with the CSS
settings in Styles.css to see the effects of different formatting rules.

Over the years I've built a number of ASP.NET web applications for small- to medium-sized
companies. Some of my clients had an existing site layout they wanted to use; others hired
a competent graphics designer. A few entrusted me to design the website layout. As you
can tell by Figure 6, tasking a programmer to design a website's layout is usually as wise as
having your accountant perform open-heart surgery while your doctor does your taxes.

http://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://www.w3schools.com/css/default.asp
http://www.w3schools.com/

Fortunately, there are innumerous websites that offer free HTML design templates - Google
returned more than six million results for the search term "free website templates." One of
my favorite ones is OpenDesigns.org. Once you find a website template you like, add the
CSS files and images to your website project and integrate the template's HTML into your
master page.

Note: Microsoft also offers a number of free ASP.NET Design Start Kit Templates
that integrate into the New Web Site dialog box in Visual Studio.

Step 2: Creating Associated Content Pages

With the master page created, we are ready to start creating ASP.NET pages that are bound
to the master page. Such pages are referred to as content pages.

Let's add a new ASP.NET page to the project and bind it to the site.master master page.
Right-click on the project name in Solution Explorer and choose the Add New Item option.
Select the Web Form template, enter the name About.aspx, and then check the "Select
master page" checkbox as shown in Figure 7. Doing so will display the Select a Master Page
dialog box (see Figure 8) from where you can choose the master page to use.

Note: If you created your ASP.NET website using the Web Application Project model
instead of the Web Site Project model you will not see the "Select master page"
checkbox in the Add New Item dialog box shown in Figure 7. To create a content
page when using the Web Application Project model you must choose the Web
Content Form template instead of the Web Form template. After selecting the Web
Content Form template and clicking Add, the same Select a Master Page dialog box
shown in Figure 8 will appear.

fdd Mew e - C:Udy Projectz\Writings Wicrosoft WSDN ArticlesWSDH Online Articles‘\MasterPage

Templates: [E
¥isual Studio installed templates S
= - L L [=] [—
| i S = = | -
Master Page Web User AJAX Jisct AJAY Chent AJAM Client AJAN Master AJAK Web
Conirol Behaor Control Licrary Page Form
: = . ' L
B o] H A 8 & @9 4
Adbi-enabled Browser Rle Jass CiakaSat (zEnaric EHobal HTML Page Jacript Ale
WICF Service Handler Applicati,,,
e ': aa | A= = T
. EIEB = | L) E: l :J &
LIMNG bo 501 Resource File Sike Map Skin File S0L Server Shyle Shest Text Fike WWCF Service
Classes Catabase "
A Form For Web Applcations
Mame: 1 Abouk. a5 I
Languane: Wisual Ca w | | Flace code in separabe fil
[select master page
| add | Cancel

http://opendesigns.org/
http://msdn2.microsoft.com/en-us/asp.net/aa336613.aspx

Figure 07: Add a New Content Page

Project Folders: Contents of Folder:
= P C\...\ASPNET _MasterPages_Tut TR g
#-[_ App_Data
+-{_J Images
£ b]
[OK] | Cancel

Figure 08: Select the site.master Master Page

As the following declarative markup shows, a new content page contains a @page directive
that points back to its master page and a Content control for each of the master page's
ContentPlaceHolder controls.

<%@ Page Language="C#" MasterPageFile="~/Site.master"
AutoEventWireup="true" CodeFile="About.aspx.cs" Inherits="About"

Title="Untitled Page" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="head"
Runat="Server">

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent"
Runat="Server">

</asp:Content>

Note: In the "Creating a Simple Site Layout" section in Step 1 I renamed
ContentPlaceHolderl to MainContent. If you did not rename this
ContentPlaceHolder control's 1D in the same way, your content page's declarative
markup will differ slightly from the markup shown above. Namely, the second
Content control's contentPlaceHolderID Will reflect the 1D of the corresponding
ContentPlaceHolder control in your master page.

When rendering a content page, the ASP.NET engine must fuse the page's Content controls
with its master page's ContentPlaceHolder controls. The ASP.NET engine determines the

content page's master page from the @page directive's MasterPageFile attribute. As the
above markup shows, this content page is bound to ~/Site.master.

Because the master page has two ContentPlaceHolder controls - head and MainContent -
Visual Web Developer generated two Content controls. Each Content control references a
particular ContentPlaceHolder via its ContentPlaceHolderID property.

Where master pages shine over previous site-wide template techniques is with their design-
time support. Figure 9 shows the About.aspx content page when viewed through Visual
Web Developer's Design view. Note that while the master page content is visible, it is
grayed out and cannot be modified. The Content controls corresponding to the master
page's ContentPlaceHolders are, however, editable. And just like with any other ASP.NET
page, you can create the content page's interface by adding Web controls through the
Source or Design views.

O ASPHET MaslorPages Tulorial 07 C% - Vicual Wil Duyilaper B00E Expriss Edition =
Fhe Edt e ‘Webske Buki Dsbug Formet Table Took Window Help
N RN - | (b= ko] = iE iE HTHL 1.0 Trenskonal { »
Hore) - Yerdag =i - B L U A Gt = .= i— B chde Apolication: Marws - =
W Almnaspi w % SoltonEeplrsr = 0 X
-:' Se.master || L2 ﬂ .‘]_.-, =] = ;
i - P L AGPNET_Maske
Iz Master Pages Tutorials 3 Abp_Sata
3 B[Tnages
: HainContent (O sbomg : :1;‘:11::‘_
[Databisplay] i___,_,,__,__,,_,,_____,,_,,__,__,,_,,__,__,,_,___,__I;:'l +-] Steomaster
] S A] Sovkes.oes
S LESSONS ASpnet £ . conh
g « TOOO
a —
3 NEWS
= TOOOD
E S 4)
La Desicy S Spik | B Source g nnkenthortentl = I%: ;5.._. .'..I-l.' :'g'_'n-
j_i‘--.. bt -‘|.'.|.|_—ﬂ=.;'\-...|._
Ready

Figure 09: The Content Page's Design View Displays Both the Page-Specific and
Master Page Contents

Take a moment to create some content for the About.aspx page. As you can see in Figure
10, I entered an "About the Author" heading and a couple of paragraphs of text, but feel
free to add Web controls, too. After creating this interface, visit the About.aspx page
through a browser.

Bl B

& hibp: S flocalhost: 4380/ ASPNET_MastarPages_Tutorial, ™ | *# || A B

£ Untitied Pape - Windows Internet Explorer

Fie Edit Vew Favorites Jook Help

i SR | 8 Untitled Page - B b v bPage - CF Tools + i@ < @ e [

Master Pages Tutorials

LESSONS About the Author
» TODO Hello! My name is Scott Mitchell, and [am the
editor, founder, and primary contributor to
NEWS dGuysFromiEolla. com. In addition to founding
4GuysFromRolla.com, T also created
« TOODO ASPFADS com and ASPMessageboard. com. [

work as a freelance writer, trainer, and
consultant from San Diego, California

My primary experience lies in Web
development with Microsoft technologies.

Powered by
My

ASPnet

% Local Intranet o0 -

Figure 10: Visit the about.aspx Page Through a Browser

It is important to understand that the requested content page and its associated master
page are fused and rendered as a whole entirely on the web server. The end user's browser
is then sent the resulting, fused HTML. To verify this, view the HTML received by the
browser by going to the View menu and choosing Source. Note that there are no frames or
any other specialized techniques for displaying two different web pages in a single window.

As we saw in this step, adding a new content page to an ASP.NET web application is as easy
as checking the "Select master page" checkbox and picking the master page. Unfortunately,
converting an existing ASP.NET page to a master page is not as easy.

To bind a master page to an existing ASP.NET page you need to perform the following
steps:

1. Add the MasterPageFile attribute to the ASP.NET page's @page directive,
pointing it to the appropriate master page.
2. Add Content controls for each of the ContentPlaceHolders in the master page.

3. Selectively cut and paste the ASP.NET page's existing content into the
appropriate Content controls. I say "selectively" here because the ASP.NET page

likely contains markup that's already expressed by the master page, such as the
DOCTYPE, the <html> element, and the Web Form.

For step-by-step instructions on this process along with screen shots, check out Scott
Guthrie's Using Master Pages and Site Navigation tutorial. The "Update Default.aspx and
DataSample.aspx to use the Master Page" section details these steps.

Because it is much easier to create new content pages than it is to convert existing ASP.NET
pages into content pages, I recommend that whenever you create a new ASP.NET website
add a master page to the site. Bind all new ASP.NET pages to this master page. Don't worry
if the initial master page is very simple or plain; you can update the master page later.

Note: When creating a new ASP.NET application, Visual Web Developer adds a
Default.aspx page that isn't bound to a master page. If you want to practice
converting an existing ASP.NET page into a content page, go ahead and do so with
Default.aspx. Alternatively, you can delete Default.aspx and then re-add it, but
this time checking the "Select master page" checkbox.

Step 3: Updating the Master Page's Markup

One of the primary benefits of master pages is that a single master page may be used to
define the overall layout for numerous pages on the site. Therefore, updating the site's look
and feel requires updating a single file - the master page.

To illustrate this behavior, let's update our master page to include the current date in at the
top of the left column. Add a Label named DateDisplay to the leftContent <div>.
<div id="leftContent">
<p style="text-align: center;">
<asp:Label ID="DateDisplay" runat="server"></asp:Label>

</p>

<h3>Lessons</h3>

<1i>TODO</1i>

<h3>News</h3>

<1i>TODO</1i>

</div>
Next, create a Page Load event handler for the master page and add the following code:

protected void Page Load(object sender, EventArgs e)

{
DateDisplay.Text = DateTime.Now.ToString("dddd, MMMM dd") ;

http://weblogs.asp.net/scottgu/
http://weblogs.asp.net/scottgu/
http://weblogs.asp.net/scottgu/
http://webproject.scottgu.com/CSharp/MasterPages/MasterPages.aspx

The above code sets the Label's Text property to the current date and time formatted as
the day of the week, the name of the month, and the two-digit day (see Figure 11). With
this change, revisit one of your content pages. As Figure 11 shows, the resulting markup is
immediately updated to include the change to the master page.

CE EBX

& hibp: S flocalhost: 4380/ ASPNET_MastarPages_Tutorial, ™ | *# || A B

£ Untitied Pape - Windows Internet Explorer

¢ Fie Edit Yew Fgworites Took Help

0 d | @ Untitled Page v Bl e v shPage » F ook v g <F 0 a1

Master Pages Tutorials

' Wednesday, March 12 I Ab'ﬂut the Authﬂr

Hello! My name Is Scott Mitchell, and [am the
editor, founder, and primary contributor to
« TOLG 4GuysFromRolla com. In addition to founding
e 4GuysFromRolla.com, I also created
MEWS ASPFADS com and ASPMessageboard.com. 1
work as a freelance writer, trainer, and
. TOOO consultant from San Diego, California

My primary experience lies in Web
development with Microsoft technologies.

Powered by
My

ASPnet

Done % Local Intranet H o0 -

Figure 11: The Changes to the Master Page are Reflected When Viewing the a
Content Page

Note: As this example illustrates, master pages may contain server-side Web
controls, code, and event handlers.

Summary

Master pages enable ASP.NET developers to design a consistent site-wide layout that is
easily updateable. Creating master pages and their associated content pages is as simple as
creating standard ASP.NET pages, as Visual Web Developer offers rich design-time support.

The mater page example we created in this tutorial had two ContentPlaceHolder controls,
head and MainContent. We only specified markup for the MainContent ContentPlaceHolder
control in our content page, however. In the next tutorial we look at using multiple Content
controls in the content page. We also see how to define default markup for Content controls
within the master page, as well as how to toggle between using the default markup defined
in the master page and providing custom markup from the content page.

Happy Programming!

For more information on the topics discussed in this tutorial, refer to the following
resources:

ASP.NET for Designers: Free Design Templates and Guidance on Building ASP.NET
Websites Using Web Standards

ASP.NET Master Pages Overview
Cascading Stylesheets (CSS) Tutorials

Dynamically Setting the Page's Title

Master Pages in ASP.NET

Master Pages QuickStart Tutorials

Scott Mitchell, author of multiple ASP/ASP.NET books and founder of 4GuysFromRolla.com,
has been working with Microsoft Web technologies since 1998. Scott works as an
independent consultant, trainer, and writer. His latest book is Sams Teach Yourself ASP.NET
2.0 in 24 Hours. Scott can be reached at mitchell@4GuysFromRolla.com or via his blog at

http://ScottOnWriting.NET.

Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

http://msdn2.microsoft.com/en-us/asp.net/aa336602.aspx
http://msdn2.microsoft.com/en-us/asp.net/aa336602.aspx
http://msdn2.microsoft.com/en-us/library/wtxbf3hh.aspx
http://www.w3schools.com/css/default.asp
http://aspnet.4guysfromrolla.com/articles/051006-1.aspx
http://www.odetocode.com/articles/419.aspx
http://quickstarts.asp.net/QuickStartv20/aspnet/doc/masterpages/default.aspx
http://www.4guysfromrolla.com/ScottMitchell.shtml
http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
mailto:mitchell@4GuysFromRolla.com
http://scottonwriting.net/
mailto:mitchell@4GuysFromRolla.com

