
 0115msdn_CoverTip.indd 1 12/9/14 3:26 PM

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS OCTOBER 2016 VOL 31 NO 10

Cognitive Services
and Facial Recognition......16

 1016msdn_CoverTip_8x10.75.indd 1 1016msdn_CoverTip_8x10.75.indd 1 9/7/16 2:11 PM9/7/16 2:11 PM

www.devexpress.com/try

 0716msdn_CoverTip_8x10.75.indd 2 0716msdn_CoverTip_8x10.75.indd 2 6/8/16 11:57 AM6/8/16 11:57 AM

www.devexpress.com

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS OCTOBER 2016 VOL 31 NO 10

Face and Emotion Recognition in Xamarin.Forms
with Microsoft Cognitive Services
Alessandro Del Sole. 16

Working with Memory Limits and
Task Priorities in the UWP
Andrew Whitechapel.. 28

Create Interactive Geo-Applications
using Bing Maps 8
James McCaffrey.. 36

Transform Source Code to
Deployable Artifacts with TFBuild
Kraig Brockschmidt.. 44

Create a Customizable FileSystemWatcher
Windows Service
Diego Ordonez.. 56

COLUMNS
CUTTING EDGE
Event-Command-Saga Approach
for Business Logic
Dino Esposito, page 6

DATA POINTS
Run EF Core on Both .NET
Framework and .NET Core
Julie Lerman, page 10

TEST RUN
ANOVA with C#
James McCaffrey, page 62

THE WORKING
PROGRAMMER
How To Be MEAN:
Exploring Yeoman
Ted Neward, page 68

ESSENTIAL .NET
Windows PowerShell Just
Keeps Getting Better
Mark Michaelis, page 72

DON’T GET ME STARTED
A Technical Solution to
a Political Problem
David Platt, page 80

Cognitive Services
and Facial Recognition......16

1016msdn_C1_v2.indd 1 9/12/16 1:56 PM

Untitled-9 2Untitled-9 2 8/12/16 3:39 PM8/12/16 3:39 PM

www.textcontrol.com/reporting

Untitled-9 3Untitled-9 3 8/12/16 3:40 PM8/12/16 3:40 PM

www.reporting.cloud

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published monthly by 1105 Media, Inc., 9201 Oakdale
Avenue, Ste. 101, Chatsworth, CA 91311. Periodicals
postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offices. Annual subscription rates
payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in
U.S. funds are: U.S. $25.00, International $25.00. Single
copies/back issues: U.S. $10, all others $12. Send orders
with payment to: MSDN Magazine, P.O. Box 3167, Carol
Stream, IL 60132, email MSDNmag@1105service.com
or call (847) 763-9560. POSTMASTER: Send address
changes to MSDN Magazine, P.O. Box 2166, Skokie,
IL 60076. Canada Publications Mail Agreement No:
40612608. Return Undeliverable Canadian Addresses
to Circulation Dept. or XPO Returns: P.O. Box 201,
Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader ’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
A list of editors and contact information is also available
online at Redmondmag.com.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF
Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Assistant Art Director Dragutin Cvijanovic
Graphic Designer Erin Horlacher
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES
Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Account Executive Caroline Stover
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA
Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Site Administrator Biswarup Bhattacharjee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

LEAD SERVICES
Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services Mallory Bundy
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos
Coordinator, Lead Generation Marketing
Obum Ukabam

MARKETING
Chief Marketing Officer Carmel McDonagh
Vice President, Marketing Emily Jacobs
Senior Manager, Marketing Christopher Morales
Marketing Coordinator Alicia Chew
Marketing & Editorial Assistant Dana Friedman

ENTERPRISE COMPUTING GROUP EVENTS
Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Vice President & Chief Financial Officer
Michael Rafter

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Features Editor Ed Zintel
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

OCTOBER 2016 VOLUME 31 NUMBER 10

magazine

1016msdn_Masthead_v2_2.indd 2 9/12/16 1:57 PM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/QuickQuote.asp
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:FirstinitialLastname@1105media.com

Untitled-7 1 9/7/16 1:18 PM

www.leadtools.com

msdn magazine4

“Monty Python and the Holy Grail” might be the funniest movie
ever made. Filmed on a shoestring budget by the irreverent British
comedy troupe Monty Python, the movie tackles the legend of
King Arthur and lampoons everything from arranged marriages
to medieval superstitions to the French. Given its medieval setting
and farcical treatment, you’d think there would be little software
developers could learn from the film. As it turns out, “The Holy
Grail” offers more than a few lessons for those involved with code.

Be pragmatic: Everyone told the King of Swamp Castle that
he was “daft to build a castle on a swamp,” and sure enough, his
first attempt sank into the muck. “So I built a second one,” he says.
“That sank into the swamp. So I built a third. That burned down,
fell over, then sank into the swamp. But the fourth one stayed up.”

This is the kind of thinking that produces epic SAP implemen-
tation failures. The King and his melancholy son Alice ... I mean,
Herbert … could’ve spared themselves a lot of trouble if they had
listened to trusted advisors and built on another site. Be pragmatic
and be willing to shift your plan as events and conditions warrant.
Oh, and no singing.

Assume nothing: That simple code update project you were
assigned? It could be a killer rabbit. Don’t make assumptions.
Assess for complexity and scope, watch out for sharp, pointy teeth
and budget accordingly.

Commit to process: It’s not enough to have a great idea, you
have to execute. Sir Bedevere’s giant Trojan rabbit ploy worked
flawlessly—except he forgot to put anyone in the construct before
the French guards rolled it into their castle. A more rigorous process
would have ensured the project was complete before he deployed
it, allowing the knights to take the French “not only by surprise,
but totally unarmed!”

Harden your code: At the Bridge of Death, each knight had
to correctly answer three questions or face being launched into
the chasm. When the Bridgekeeper asked King Arthur the air

speed velocity of a laden swallow, Arthur replied, “What do you
mean, African or European swallow?” Surprised, the Bridgekeeper
muttered, “I don’t know that,” and was himself launched into the
abyss. The unanticipated input crashed the authentication routine
and left the bridge unguarded. This is stuff that can be addressed
by fuzz tests and error checking.

Value documentation: The knights’ quest would never have
even reached the Bridge, had Joseph of Arimethea not documented
his work in the living rock of the Caves of Caerbannog. And the
knights never would have gotten past the killer rabbit without the
Book of Armaments and its detailed instructions on using the Holy
Hand Grenade of Antioch. Document, document, document!

Consider open source: True fact: The budget for “The Holy Grail”
was so small that the crew couldn’t afford horses. So cast members
took two halves of coconut and clapped them together as they skipped
along. Sometimes, free tools are the best tools.

Know when to quit: The Black Knight always triumphs, except
when he doesn’t. Don’t be stubborn—no one is of any use with all
their limbs lopped off. Take a lesson from King Arthur and his men,
who throughout the movie would cry, “Run away! Run away!” as
they retreated from one peril after the next. It looked cowardly and
silly, but those retreats allowed the knights to regroup and press on
with their quest.

Everything I Need to Know I Learned in
‘Monty Python and the Holy Grail’

MICHAEL DESMONDEditor’s Note

© 2016 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

That simple code update project
you were assigned? It could be a

killer rabbit.

1016msdn_DesmondEdNote_v3_4.indd 4 9/12/16 1:52 PM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-5 1 9/28/15 4:25 PM

www.amyuni.com

msdn magazine6

If we could work out of relatively
frozen requirements, any design
effort done in advance of devel-
opment would certainly pay off.
If you remember the term “Big
Design Up Front,” you know what
I mean. If not, you can check it out
at bit.ly/1jVQr3g. A comprehensive
domain model that handles both
numerous and intricate workflows
and rich and denormalized data
views requires a solid and stable
knowledge of the domain, while
lengthening development time.
Put another way, given the rele-
vance that software has today for
everyday business, a comprehen-
sive domain model is as bad now
as Big Design Up Front was perceived before the Agile movement
came along.

The Event-Command-Saga (ECS) approach promotes a much
more agile way to implement business workflows. It still requires
solid knowledge of the processes and business rules, but it doesn’t
require a big design to be in place before coding starts. Further-
more, it’s flexible in accommodating changes and, more important,
business points that were initially missed or overlooked.

The ECS approach promotes a message-based formulation of busi-
ness processes, which is surprisingly closer to the abstraction level
of flowcharts. Therefore, it’s something that stakeholders can easily
communicate and validate. A message-based formulation of business
processes is also far easier to understand for developers, even when
their understanding of the specific business domain is limited. The
term ECS will probably sound new, but the concepts it builds on are
the same you might find referred to as CQRS/ES in other sources .

In this month’s column, I’ll present a .NET-based framework
specifically devised to implement the business logic of applications
using relatively new concepts such as commands and sagas. For an
introduction to the topic, you might want to check out my Septem-
ber 2016 column (msdn.com/magazine/mt767692). The term “business
logic” here encompasses both the application and domain logic.
The “application logic” is where you implement all use cases
that depend on a given front end. The “domain logic,” instead, is

invariant to use cases and entirely reusable across all flavors of
presentation and application layers you might have.

MementoFX in Action
Let’s start with a new ASP.NET MVC project already configured to
use common things such as Bootstrap, jQuery, Entity Framework
and ASP.NET SignalR. Now add a controller class with a method
and related view that displays to users an HTML form. When the
user submits the form, the following code is expected to run:

[HttpPost]
public ActionResult Apply(NewAccountRequestViewModel input)
{
 _service.ApplyRequestForNewBankAccount(input);
 return RedirectToAction("index", "home");
}

At first sight, this is standard code, but the fun lies just under the
surface. So open the code for the ApplyRequestForNewBankAccount
method in the application layer.

Business-wise, the application user (likely, a bank employee)
has just filled out the form through a customer request to open
a new account. There’s a specific process to start whenever such a
new request comes in. You can procedurally code all the steps of
the workflow right in the application layer, or you can try the ECS
approach. In the latter case, here’s what you come up with:

public void ApplyRequestForNewBankAccount(NewAccountRequestViewModel input)
{
 var command = new RequestNewBankAccountCommand(
 input.FullName, input.Age, input.IsNew);
 Bus.Send(command);
}

Event-Command-Saga Approach
for Business Logic

Cutting Edge DINO ESPOSITO

Code download available at msdn.com/magazine/1016magcode.

Figure 1 Installing the MementoFX NuGet Packages

1016msdn_EspositoCEdge_v4_6-9.indd 6 9/12/16 1:53 PM

http://msdn.com/magazine/1016magcode
www.bit.ly/1jVQr3g
http://msdn.com/magazine/mt767692

msdnmagazine.com

Instantly Search
Terabytes of Text

dtSearch.com 1-800-IT-FINDS

dtSearch’s document filters
support popular file types, emails
with multilevel attachments,
databases, web data

Highlights hits in all data types;
25+ search options

 The Smart Choice for Text Retrieval®

since 1991

Visit dtSearch.com for
• hundreds of reviews and

case studies
• fully-functional enterprise and

developer evaluations

With APIs for .NET, Java and C++.
SDKs for multiple platforms.
(See site for articles on faceted
search, SQL, MS Azure, etc.)

®

The RequestNewBankAccountCommand class is a little bit more
than just a Plain Old CLR Object (POCO) class. It’s a POCO class
but it inherits from Command. In turn, the Command class is
defined in one of the NuGet packages that form the MementoFX
framework. You then add the packages as shown in Figure 1.

The MementoFX framework is made up of three main parts:
a core library, an event store and a bus. In the sample configura-
tion, I used the embedded version of RavenDB for storing domain
events and an in-memory bus (Postie) for the application layer and
sagas to publish and subscribe to events. If you explore the NuGet
platform further, you also find a bus component based on Rebus
and an event store component based on MongoDB. So now, the
following code compiles nicely:

public class RequestNewBankAccountCommand : Command
{
 ...
}

In the current version of MementoFX, the base Command class
is a mere marker and contains no functional code, but this will
likely change in future versions. The command wraps up the input
parameters for the first step of the business process. To trigger the
business process, the command is placed to the bus.

Configuring the MementoFX Environment
The initial setup of MementoFX is easier if you make use of an
Inversion of Control (IoC) framework such as Unity. To config-
ure MementoFX, you need to do the following three things: First,
initialize the event store of choice. Second, tell MementoFX how
to resolve generic interface types to concrete types (this mostly
means telling the framework about the type of bus to use, the event
store and the event store document). Third, you actually resolve
the bus to a concrete instance and bind it to sagas and handlers as
appropriate. Figure 2 summarizes the process.

As shown in Figure 2, the bus has two subscribers—the mandatory
AccountRequestSaga and the optional AccountRequestDenormalizer.
The saga contains the code that does the job of processing the request.
Any business logic you might have applies here. The denormalizer will
receive information about the aggregate and, if needed, will create a
projection of the data just for query purposes.

// Initialize the event store (RAVENDB)
NonAdminHttp.EnsureCanListenToWhenInNonAdminContext(8080);
var documentStore = new EmbeddableDocumentStore
{
 ConnectionStringName = "EventStore",
 UseEmbeddedHttpServer = true
};
documentStore.Configuration.Port = 8080;
documentStore.Initialize();

// Configure the FX
var container = MementoFxStartup
 UnityConfig<InMemoryBus, EmbeddedRavenDbEventStore,
 EmbeddableDocumentStore>(documentStore);

// Save global references to the FX core elements
Bus = container.Resolve<IBus>();
AggregateRepository = container.Resolve<IRepository>();

// Add sagas and handlers to the bus
Bus.RegisterSaga<AccountRequestSaga>();
Bus.RegisterHandler<AccountRequestDenormalizer>();

Figure 2 Configuring the MementoFX

1016msdn_EspositoCEdge_v4_6-9.indd 7 9/12/16 1:53 PM

www.dtSearch.com
http://www.msdnmagazine.com

msdn magazine8 Cutting Edge

of the aggregate class. Therefore, for a bank account request, you can
get to know when it was received, when it was processed, approved,
delayed, denied and so forth. Moreover, all events will be stored in
their natural order, meaning that it’s easy for the framework to take
all events up until a given date and return a view of the aggregate at
any time in the life of the system. Note that in MementoFX the use
of the IApplyEvent is optional, in the sense that you’re also welcome
to manually persist relevant events in the store when some other
method of the aggregate is invoked. The use of the interface is a rec-
ommended practice that keeps the code more clear and concise.

When defining an aggregate, you must indicate its unique ID. By
convention, MementoFX recognizes as the ID a property with the
name of the aggregate class, plus “Id.” In this case, it would’ve been
AccountRequestId. If you want to use another name (say, RequestId),
you use the AggregateId attribute, as shown here:

public void ApplyEvent(
 [AggregateId("RequestId")]
 AccountRequestReceivedEvent theEvent)
{ ... }

In C# 6, you can also use the nameof operator to avoiding using
a plain constant in compiled code. With MementoFX and the ECS
approach, you need to modify a bit the persistence logic you might
be used to. For example, when the saga is about to log the request
for the account, it uses the factory of AccountRequest to get a new
instance. Note that in order to avoid compile time errors, the factory
class must be defined within the body of the AccountRequest class:

public static class Factory
{
 public static AccountRequest NewRequestFrom(string name, int age, bool isNew)
 {

 var received = new AccountRequestReceivedEvent(Guid.NewGuid(), name, age, isNew);

 var request = new AccountRequest();
 request.RaiseEvent(received);
 return request;
 }
}

As you can see, the factory doesn’t fill out the newly created
instance of the aggregate, it just prepares an event and raises it. The
RaiseEvent method belongs to the base Aggregate class, has the
effect of adding that event to the current instance of the aggregate
and calls ApplyEvent. So, in an apparently intricate way, you’re at

Figure 3 The Sample MementoFX Application in Action

Designing the Saga
A saga is a class that represents a running instance of a business pro-
cess. Depending on the actual capabilities of the bus you use, the
saga can be persisted, suspended and resumed as appropriate. The
default bus you have in MementoFX only works in memory. So, any
saga is a one-off process that transactionally runs from start to finish.

A saga must have a starter event or command. You indicate the
starter message through the interface IAmStartedBy. Any additional
message (command or event) the saga knows how to handle is
bound through the IHandlesMessage interface:

public class AccountRequestSaga : Saga,
 IAmStartedBy<RequestNewBankAccountCommand>,
 IHandleMessages<BankAccountApprovedEvent>
{
 ...
}

Both interfaces are made of a single Handle method, as shown here:
public void Handle(RequestNewBankAccountCommand message) { ... }
public void Handle(BankAccountApprovedEvent message) { ... }

Let’s switch back to the HTML form you assumed to have in
the UI. When the bank employee clicks to submit the customer’s
request for a new bank account, a command is pushed to the bus
and the bus silently triggers a new saga. Finally, the Handle method
of the saga for the specified command is run.

Adding Behavior to the Saga
A saga class is instantiated as shown here:

public AccountRequestSaga(
 IBus bus, IEventStore eventStore, IRepository repository)
 : base(bus, eventStore, repository)
{
}

It gets a reference to the bus so that the current saga can push
new commands and events to the bus for other sagas or handlers
and denormalizers to process. This is actually the key factor that
enables a flexible and agile design of business workflows. In addi-
tion, a saga gets a reference to the repository. In MementoFX, the
repository is a façade built on top of the event store. The repository
saves and returns aggregates, except that the state of the aggregate
is rebuilt every time by replaying all events it went through. Nicely
enough, the MementoFX repository also offers an overload to query
the state of a given aggregate at a given date.

Here’s a saga that would persist the request for a new bank account:
public void Handle(RequestNewBankAccountCommand message)
{
 var request = AccountRequest.Factory.NewRequestFrom(
 message.FullName, message.Age, message.IsNew);
 Repository.Save(request);
}

In this example, the AccountRequest class is a MementoFX aggre-
gate. A MementoFX aggregate is a plain class derived from a specific
parent. Assigning a parent class will save you from the burden of
coding a bunch of things as far as management of internal domain
events is concerned:

public class AccountRequest : Aggregate,
 IApplyEvent<AccountRequestReceivedEvent> { ... }

Another interesting aspect of MementoFX aggregates is the
IApplyEvent interface. The type associated with the IApplyEvent
interface defines a domain event that’s relevant for the aggregate to
track. Put another way, it means that all events associated with the
IApplyEvent interface are saved in the event store for that instance

1016msdn_EspositoCEdge_v4_6-9.indd 8 9/12/16 1:53 PM

msdnmagazine.com

Sign up to receive MSDN FLASH,
which delivers the latest resources,
SDKs, downloads, partner offers,

security news, and updates
on national and local

developer events.

Get news
from MSDN

in your inbox!

magazine

the point of returning out of the factory a fully initialized aggregate.
The benefit, though, is that not just the aggregate holds its current
state, but it also holds all of the relevant events that were brought
there in the current operation.

What happens when the saga saves the aggregate to the per-
sistence layer? The Save method of the built-in repository goes
through the list of pending events in the aggregate and writes them
down to the configured event store. When the GetById method is
called instead, it takes the ID to retrieve all the related events and
returns an instance of the aggregate that results from replaying all
logged events. Figure 3 shows a UI that’s pretty much the one you
would imagine out of a standard approach. However, what happens
under the hood is quite different. Note that in the UI I used ASP.NET
SignalR to bring changes back to the main page.

A Word on Denormalizers
One of the most important changes in software recently is the
separation between the model ideal to save data and the mod-
el ideal to consume data, as per the CQRS pattern. So far, you
just saved an aggregate with all of the information that’s relevant
to save. Each type of user, though, might have a different set of
relevant information for the same aggregate. When this happens,
you need to create one or more projections of stored data. A
projection in this context is pretty much the same as a view in a SQL
Server table. You use denormalizers to create projection of aggregates.
A denormalizer is a handler bound to an event pushed to the
bus. For example, imagine you need to create a dashboard for
the managers responsible for approving new account requests.
You might want to offer a slightly different aggregation of the
same data perhaps with some indicators that are relevant to the
business:

public class AccountRequestDenormalizer :
 IHandleMessages<AccountRequestReceivedEvent>
 {
 public void Handle(AccountRequestReceivedEvent message)
 { ... }
}

Denormalized data doesn’t need to go in the event store. You can
reasonably use any database you like for that and most of the time
a classic relational engine is the most effective solution.

Wrapping Up
This column offered a glimpse of a new way to organize business
logic putting together CQRS and Event Sourcing, but without
dealing with the low-level details and intricacies of both patterns.
Furthermore, the ECS approach is also close to the real business
to favor communication and reduce risk of misunderstanding.
MementoFX is on NuGet for you to try out. I can’t wait to hear
your feedback.	 n

Dino Esposito is the author of “Microsoft .NET: Architecting Applications for the
Enterprise” (Microsoft Press, 2014) and “Modern Web Applications with ASP.NET”
(Microsoft Press, 2016). A technical evangelist for the .NET and Android platforms
at JetBrains, and frequent speaker at industry events worldwide, Esposito shares
his vision of software at software2cents@wordpress.com and on Twitter: @despos.

Thanks to the following Microsoft technical expert for reviewing this article:
Andrea Saltarello

1016msdn_EspositoCEdge_v4_6-9.indd 9 9/12/16 1:53 PM

mailto:software2cents@wordpress.com
http://msdn.microsoft.com/flashnewsletter
http://www.msdnmagazine.com
www.twitter.com/despos

msdn magazine10

The technology formerly known as Entity Framework 7 (EF7) was
renamed to Entity Framework Core (EF Core) in early 2016. EF
Core 1.0.0 introduces some great new capabilities, though overall
it does have a smaller feature set than EF6. But this doesn’t mean
EF runs only on .NET Core. You can use EF Core in APIs and
applications that require the full .NET Framework, as well as those
that target only the cross-platform .NET Core. In this column, I’ll
walk you through two projects that explore these options. My goal
is to alleviate any worries the “Core” moniker might imply: that EF
Core only runs on .NET Core. At the same time, I’ll explain the
steps involved in creating each solution.

EF Core in Full .NET Projects
I’ll begin with a project that targets the full .NET Framework. Keep
in mind that in Visual Studio 2015, the tooling requires that you have
Visual Studio 2015 Update 3, as well as the latest Microsoft ASP.NET
and Web Tools. At the time of writing this column (August 2016), the
best guide for those installations is the documentation at bit.ly/2bte6Gu.

To keep my data access separate from whatever app will be using
it, I’ll create it in its own class library. Figure 1 shows that there’s
a template that specifically targets a .NET Core class library; but
I’m selecting Class Library, the standard option that’s always been
available for targeting .NET. The resulting project (Figure 2) is also
“normal”—you can see that there are no project.json files or any
.NET Core project assets. Everything looks just the way it always has.

So far, none of this is tied to EF in any way. I could choose EF6 or
EF Core at this point, but I’ll add EF Core into the project. As always,
I can use either the NuGet Package Manager to find and select EF
Core or the Package Manager Console window. I’ll use the console.
Remember that the “entityframework” package is for EF6. To get EF
Core, you need to install one of the Microsoft.EntityFramework-
Core packages. I’ll use the SqlServer package, which will bring in
what EF needs to communicate with SqlServer:

install-package Microsoft.EntityFrameworkCore.SqlServer

Because that package depends on the main Microsoft.Entity-
FrameworkCore package, as well as the Microsoft.EntityFramework
Core.Relational package, NuGet will install those for me at the same
time. And because the EF Core package depends on other packages,
they’ll be installed, too. In all, this process adds the three EF Core

packages, as well as 23 others from the newer, more composable
.NET on which EF Core relies. Rather than fewer large packages, I get
more small packages—but only those my software needs. These will
all play well with the standard .NET libraries already in the project.

Next, I’ll add in a simple domain class (Samurai.cs) and a DbContext
(SamuraiContext.cs) to let EF Core persist my data into a database,
as shown in Figure 3. EF Core doesn’t have the magical connection
string inference that EF6 has, so I have to let it know what provider
I’m using and what connection string. For simplicity, I’ll stick that
right in the DbContext’s new virtual method: OnConfiguring. I’ve
also created a constructor overload to allow me to pass in the pro-
vider and other details as needed. I’ll take advantage of this shortly.

Because I’m using the full .NET, which also means I’m targeting
full-blown Windows, I have Windows PowerShell available. And
this means I get to use the same migrations commands I’ve always
used: add-migration, update-database and so forth. There are some
new commands, as well, and you can check out my January 2016
column (msdn.com/magazine/mt614250) to learn all about the EF Core
migrations commands. Also, remember I mentioned that packages
are smaller and composable? Well, if I want to use migrations, I
need to add in the package that contains these commands. As I’m
writing this, the tools are still in preview mode so I need to use the
-pre parameter. I’ll add that package, then I can add a new migration:

install-package Microsoft.EntityFrameworkCore.Tools –pre
add-migration init

This works as it always has: it creates a new Migrations folder
and the migration file, as shown in Figure 4. EF Core did change
the way it stores model snapshots, which you can read about in the
aforementioned January 2016 column.

With the migration in place, the update-database command
successfully creates the new EFCoreFullNet database for me in
SQL Server localdb.

Finally, I’ll add a test project to the solution from the same Unit
Test Project template I’ve always used in Visual Studio. I’ll then
add a reference to my EFCoreFullNet class library. I don’t need my

Run EF Core on Both .NET Framework and
.NET Core

Data Points JULIE LERMAN

This article relies on preview versions of DotNet CLI and EF tools.
All information is subject to change.

Code download available at msdn.com/magazine/1016magcode.

Figure 1 Creating a Class Library for a Full .NET API

1016msdn_LermanDPts_v5_10-14.indd 10 9/12/16 1:59 PM

http://msdn.com/magazine/1016magcode
www.bit.ly/2bte6Gu
http://msdn.com/magazine/mt614250

Untitled-7 1 9/7/16 1:16 PM

www.devexpress.com/dashboard

msdn magazine12 Data Points

test project to use the data-
base to make sure EF Core
is working, so rather than
installing the SqlServer
package, I’ll run the fol-
lowing NuGet command
against the new test project:
 install-package microsoft.
 EntityFrameworkCore.InMemory

The InMemory provider
is a blessing for testing with
EF Core. It uses in-memory
data to represent the data-
base and the EF cache, and
EF Core will interact with
the cache in much the same

way it works with a database—adding, removing and updating data
Remember that extra constructor I created in the SamuraiContext?

The TestEFCoreFullNet tests, shown in Figure 5, take advantage of it.
Notice that in the constructor of the test class, I created a DbContext
Options builder for the SamuraiContext and then specified it should
use the InMemory provider. Then, in the method when I instanti-
ate SamuraiContext, I pass in those options. The SamuraiContext
OnConfiguring method is designed to check to see if the options are
already configured. If so, it will use them (in this case, the InMemory
provider); otherwise, it will move ahead with setting up to work with
SqlServer and the connection string I hardcoded into the method.

This test method takes advantage of some specific EF Core features
that don’t exist in EF6. I wrote about these and other change-track-
ing features in EF Core in my August 2016 Data Points column
(msdn.com/magazine/mt767693). For example, after creating the new
samurai object, I add it to the context using the DbContext.Add
method, letting EF determine to which DbSet it needs to be tied. Then
I save that to the data store, in this case some type of list in memory
that the InMemory provider is managing. Next, I modify the samurai
object, create a new instance of DbContext and use the new EF Core

Update command to make
sure SaveChanges will update
the stored samurai rather than
create a new one. Finally, I que-
ry the context for that samurai
and use an Assert to ensure that
the context does indeed return
the updated name.

The particular features I’m
using are not the point, how-
ever. The point is that I’m doing all of this work with EF Core in a
“plain old .NET” project in Windows.

EF Core for CoreCLR: Same Code,
Different Dependencies
I could stay in Windows and in Visual Studio 2015 Update 3 to next
show you how I can use the same EF Core APIs, the same code and
the same tests to target the CoreCLR runtime, but that looks too
similar to targeting Windows. Therefore, I’ll go to the other extreme
and create the CoreCLR variation on my MacBook, explaining the
steps as I go through them.

.NET Core doesn’t rely on Windows or its tooling. Besides
Visual Studio 2015, I could use … well, I suppose Emacs was the
popular non-Visual Studio editor of old. However, there are some
cross-platform IDEs I can pick from, not just for writing the code
but also to get features like debugging and Git support. For exam-
ple, in the August 2016 issue of MSDN Magazine, Alessandro Del
Sole walked through building an ASP.NET Core Web site using
Visual Studio Code (msdn.com/magazine/mt767698). I could see from

public class Samurai
 {
 public int Id { get; set; }
 public string Name { get; set;}
 }

public class SamuraiContext : DbContext
 {
 public DbSet<Samurai> Samurais { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder) {
 {
 if (optionsBuilder.IsConfigured == false) {
 optionsBuilder.UseSqlServer(
 @"Data Source=(localdb)\\mssqllocaldb;Initial Catalog=EFCoreFullNet;
 Integrated Security=True;");
 }

 base.OnConfiguring(optionsBuilder);
 }
 }

 public SamuraiContext(DbContextOptions<SamuraiContext> options)
 : base(options) { }
 }

Figure 3 Samurai Class and SamuraiContext DbContext Class

using EFCoreFullNet;
using Microsoft.EntityFrameworkCore;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Linq;

namespace Tests
{
 [TestClass]
 public class TestEFCoreFullNet
 {
 private DbContextOptions<SamuraiContext> _options;

 public TestEFCoreFullNet() {
 var optionsBuilder = new DbContextOptionsBuilder<SamuraiContext>();
 optionsBuilder.UseInMemoryDatabase();
 _options = optionsBuilder.Options;
 }

 [TestMethod]
 public void CanAddAndUpdateSomeData() {
 var samurai = new Samurai { Name = "Julie" };
 using (var context = new SamuraiContext(_options)) {
 context.Add(samurai);
 context.SaveChanges();
 }
 samurai.Name += "San";
 using (var context = new SamuraiContext(_options)) {
 context.Samurais.Update(samurai);
 context.SaveChanges();
 }
 using (var context = new SamuraiContext(_options)) {
 Assert.AreEqual("JulieSan", context.Samurais.FirstOrDefault().Name);
 }
 }
 }
}

Figure 5 Testing with EFCore

Figure 2 A Plain Old (and Familiar)
.NET Class Library

Figure 4 EF Core Migrations in
My Full .NET Class Library

1016msdn_LermanDPts_v5_10-14.indd 12 9/12/16 1:59 PM

http://msdn.com/magazine/mt767693
http://msdn.com/magazine/mt767698

13October 2016msdnmagazine.com

his screenshots that he was in Windows, but otherwise, the expe-
rience is essentially the same on a Mac.

Another cross-platform option is Rider from JetBrains. Rider
is designed specifically for C# and the best way to describe it is
“ReSharper in its own IDE.”

I’ve already been using Visual Studio Code in Windows and
OS X (not just for C#, but also for Node.js) and that’s what I’ll use
to show you EF Core in an app built to target CoreCLR. In fact,
because I’m building this solution in OS X, targeting CoreCLR is
my only option. The array of available APIs for my library is more
limited. However, EF Core is the same set of APIs as when I used
it in the full .NET library in the first project.

As you’ll see, most of the effort will be in setting up the projects
and the dependencies that are specific to targeting CoreCLR. But I
can use the same SamuraiContext class to define my EF Core data
model and the same CanAddAndUpdateSomeData test method
from the previous project to do the same work. The code is the
same even though I’m now targeting the more limited runtime and
working in an environment that can’t use anything but .NET Core.

Creating a Library Similar to the .NET Class Library
I’ve created a folder to contain both my Library and the Test proj-
ects, with subfolders for each project. Inside the Library subfolder,
I can call dotnet new to create the Library project. Figure 6 shows
that command, along with a confirmation that the project was
created. Listing the contents of the folder shows that only two files
were created—most important, project.json, which contains the list
of required NuGet packages and other relevant project details. The
Library.cs file is just an empty class file that I’ll delete.

Next, I’ll open this new library project in Visual Studio Code. I
can just type “code” at the prompt. Visual Studio Code opens with
this as the target folder, automatically recognizes the packages
listed in the json file and offers to run dotnet restore to fix up the
unresolved dependencies. I happily accept the offer.

The project.json file looks like the code in Figure 7.

Pretty simple. Libraries don’t need
all of the ASP.NET Core stuff I’m
used to using, just the NETStandard
Library. The .NET Standard Library
encapsulates what’s common across
the various places .NET can now
run. From the .NET Standard doc-
umentation (bit.ly/2b1JoHJ), “The

.NET Standard Library is a formal specification of .NET APIs that
are intended to be available on all .NET runtimes.” So this library
I’m building can be used with .NET Core and ASP.NET Core and
even .NET applications starting with .NET 4.5. You can see a com-
patibility grid on the documentation page.

My next step is to add EF Core to the project. Keep in mind that
because I’m on a Mac, SqlServer isn’t an option. I’ll use the PostgreSQL
provider for EF Core instead, which goes in the currently empty
dependencies section of project.json:

"dependencies": {
 "Npgsql.EntityFrameworkCore.PostgreSQL": "1.0.0-*"
 },
 "tools": {
 "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final"
 },

As before, I plan to do migrations. Normally, I’d also add a
dependency to the Microsoft.EntityFrameworkCore.Tools pack-
age that contains the commands, just as I did for the full .NET
version of this library. But because of a current limitation with the
Preview 2 tooling, I’ll postpone this until a later step in the process.
However, I do need to be able to access the commands from this
library’s folder, so I add the package into a special “tools” section of
project.json, as the preceding code shows.

Restoring the packages pulls in not only these two packages, but
their dependencies, as well. If you check in the project.lock.json
file that’s created, you can see all of the packages, including
Microsoft.EntityFrameworkCore and Microsoft.EntityFramework
Core.Relational—the same packages you saw added into the
earlier .NET solution.

Now I’ll just copy in my Samurai.cs and SamuraiContext.cs files.
I have to change the OnConfiguring class to use PostgreSQL and
its connection string instead of SQL Server. This is what that bit of
code now looks like:

optionsBuilder.UseNpgsql(
 "User ID=julie;Password=12345;Host=localhost;Port=5432;Database=EFCoreCoreCLR;
 Pooling=true;");

It should be time to run the migrations, but here you’ll run into
a known limitation of the current Preview2 version of the EFCore
tools outside of Visual Studio, which is that an executable project
is required to find critical assets. So, again, it’s a bit of a pain on first
encounter, but not too much in the way of extra effort. Read more
about that at bit.ly/2btm4OW.

Creating the Test Project
I’ll go ahead and add in my test project, which I can then use as my
executable project for the migrations. Back at the command line, I go
to the Oct2016DataPointsMac/Test subfolder I created earlier and run:

dotnet new -t xunittest

In Visual Studio Code, you’ll see the new project.json listed in the
Test folder. Because this project will be responsible for making sure the

{
 "version": "1.0.0-*",
 "buildOptions": {
 "debugType": "portable"
 },
 "dependencies": {},
 "frameworks": {
 "netstandard1.6": {
 "dependencies": {
 "NETStandard.Library": "1.6.0"
 }
 }
 }
}

Figure 7 The Project.json File

Figure 6 Creating a New CoreCLR Library with the dotnet Command

1016msdn_LermanDPts_v5_10-14.indd 13 9/12/16 1:59 PM

http://www.msdnmagazine.com
www.bit.ly/2b1JoHJ
www.bit.ly/2btm4OW

msdn magazine14 Data Points

EF command lines can run, you have to add a reference to the EF Core
Tools packages into the dependencies. Additionally, the test project needs
a reference to the Library, so I’ve also added that into the project.json
dependencies. Here’s the dependencies section after these additions:

"dependencies": {
 "System.Runtime.Serialization.Primitives": "4.1.1",
 "xunit": "2.1.0",
 "dotnet-test-xunit": "1.0.0-rc2-192208-24",
 "Library": "1.0.0",
 "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final"
 },

Now I can access the EF Core commands from my Library folder.
Notice that in Figure 8 the command points to the project in the
Test folder with the --startup-project parameter. I’ll use that with
each of the migrations commands.

Running Migrations against
the EF Model from the .NET Library
Remember, as I laid out in my column on EFCore migrations, the
dotnet ef migrations commands look different from the PowerShell
commands, but they lead to the same logic in the migrations API.

First I’ll create the migration with:
dotnet ef --startup-project ../Test migrations add init

This gives the same result as in the .NET solution: a new Migrations
folder with the migration and the migration snapshot added.

Now I can create the database with:
dotnet ef --startup-project ../Test database update

I then verified that the PostgreSQL database, tables and relation-
ships got created. There are a number of tools you can use in OS X

to do this. On my Mac, I use the
JetBrains cross-platform DataGrip
as my database IDE.

Running the Tests
in CoreCLR
Finally, I copy the TestEFCoreFull
Net class from the earlier solution
into my Test folder. Again, I have
to make infrastructure changes
to use xUnit instead of MS
Test: a few namespace changes,
removing the TestClass attribute,
replacing TestMethod attributes
with Fact and replacing Assert.Are-
Equal with Assert.Equal. Oh and,
of course, I rename the class to
TestEFCoreCoreClr.

Project.json also needs to know about the InMemory provider,
so I add:

"Microsoft.EntityFrameworkCore.InMemory": "1.0.0"

to the dependencies section, as well, then run “dotnet restore”
yet again.

My xUnit test project uses the xUnit command-line test runner.
So I’m back to my terminal window to run the tests with the com-
mand dotnet test. Figure 9 shows the output of running the test,
which passed with flying colors—except the command-line test
runner doesn’t provide the satisfying green output for passing tests.

.NET or CoreCLR: Same APIs, Same Code
So now you can see that the code and assemblies related to EF
Core are the same whether you target your software to run solely
on Windows with the full .NET Framework at your disposal or
on CoreCLR on any of the supported environments (Linux, OS
X, Windows). I could’ve done both demonstrations in Visual
Studio 2015 on my Windows machine. But I find that focusing the
CoreCLR work in an environment that’s completely unavailable to
the full .NET Framework is an eye-opening way of demonstrating
that the EF APIs and my EF-related code are one and the same in
both places. The big differences, and all of the extra work, are only
related to the target platforms (.NET vs CoreCLR). You can watch
me creating a full ASP.NET Core Web API using EF Core 1.0.0 on my
MacBook in the video, “First Look at EF Core 1.0” (bit.ly/2cmblqE).
For an abbreviated and entertaining demo of the same, check out the
video of my DotNetFringe session at bit.ly/2ci7q0T. 	 n

Julie Lerman is a Microsoft MVP, .NET mentor and consultant
who lives in the hills of Vermont. You can find her presenting
on data access and other .NET topics at user groups and con-
ferences around the world. She blogs at thedatafarm.com/blog
and is the author of “Programming Entity Framework,” as well
as a Code First and a DbContext edition, all from O’Reilly
Media. Follow her on Twitter: @julielerman and see her
Pluralsight courses at juliel.me/PS-Videos.

Thanks to the following Microsoft technical expert for
reviewing this article: Jeff Fritz

Figure 8 Leveraging an Executable Project to Enable a Library to Use the EF
Migrations Commands

Figure 9 xUnit Test Output of the Passing Test

1016msdn_LermanDPts_v5_10-14.indd 14 9/12/16 1:59 PM

www.bit.ly/2cmblqE
www.bit.ly/2ci7q0T
www.thedatafarm.com/blog
www.twitter.com/julielerman
http://www.juliel.me/PS-Videos

India
www.MelissaData.in

Australia
www.MelissaData.com.au

United Kingdom
www.MelissaData.co.uk

Germany
www.MelissaData.de

www.MelissaData.com 1-800-MELISSA

Solutions for 240+ Countries

Data Quality & Mailing Solutions

10,000+ Customers Worldwide

30+ Years Strong

Cloud • On-Premise • Services

Know Your Customer
Customers share tons of personal data through an increasing number of channels and applications. We supply
the full spectrum of data quality solutions to solve your KYC challenges – to collect, verify, enrich and consolidate
clean contact data for a true and complete view of the customer. Microsoft®, Oracle®, Pentaho®, Salesforce® and more.

Get Connected Today.
TAKE A FREE TEST DRIVE!
www.MelissaData.com/kyc

Children
2

JANE
SQUIRE

@janesquire 949-745-3375

js@jsquire.com

Household
Income
$145K

112 Main St.,
Irvine, CA
92618-8887

Latitude:
33.637553

Longitude:
-117.607415

Purchased
Home: 2007

Age
42

IP Input :
216.231.3.166

IP Output:
ISP: Cox
City: Irvine
ZIP: 92618

Current Value
of Home:
$680,000

Untitled-9 1 9/8/16 3:25 PM

http://www.MelissaData.com/kyc
http://www.MelissaData.in
http://www.MelissaData.com.au
http://www.MelissaData.de
http://www.MelissaData.co.uk
http://www.MelissaData.com

msdn magazine16

At the Build 2016 conference, Microsoft announced a
first preview of Cognitive Services (microsoft.com/cognitive-services), a
rich set of cross-platform, RESTful APIs that you can leverage to
create the next generation of apps based on natural user interaction
for any platform on any device. Cognitive Services, also known as
“Project Oxford,” are based on machine learning and perfectly fit
into the conversation-as-a-platform philosophy that Microsoft
is willing to bring into the apps ecosystem. At a higher level, the
Cognitive Services APIs are available through RESTful services
and currently offer the following categories of APIs:

• �Vision: The Vision services offer APIs that allow you to analyze
images and videos to identify faces and emotions, and to detect
actionable information. This category includes the Computer
Vision, Face, Emotion and Video APIs.

• �Speech: The Speech services offer APIs that make it easier to
implement text to speech, natural speech recognition, and even
to recognize who’s talking with the speaker recognition service.
They include the Bing Speech, Custom Recognition Intelligent
Service and Speaker Recognition APIs.

• �Language: The Language services are oriented to natural lan-
guage understanding, which means detecting and fixing spelling
errors, understanding voice commands, and analyzing complex
text including sentiments and key phrases. They include the Bing
Spell Check, Language Understanding Intelligent Service, Lin-
guistic Analysis, Text Analytics and Web Language Model APIs.

• �Knowledge: The Knowledge services help applications extend
customers’ knowledge by finding personalized product recom-
mendations, events, locations, and academic papers or jour-
nals. They include the Academic Knowledge, Entity Linking
Intelligence Service, Knowledge Exploration Service and
Recommendations APIs.

• �Search: The Search services are based on Bing and allow you
to implement powerful search tools in their apps. The included
services’ names are really self-explanatory: Bing Autosuggest,
Bing Image Search, Bing News Search, Bing Video Search and
Bing Web Search APIs.

In this article I’ll explain how to combine the Face and Emotion APIs
to retrieve face details and emotions from pictures you can take from
a camera or from an album on disk in a Xamarin.Forms app created
with C# and Visual Studio 2015 running on Android, iOS or Windows
10. Figure 1 shows the results of the article’s tutorial. It is important
mentioning that, while using Xamarin.Forms for this article, the same

CO GN IT IVE SER V IC ES

Face and Emotion
Recognition in
Xamarin.Forms with
Microsoft Cognitive Services
Alessandro Del Sole

This article discusses:
•	Understanding Microsoft Cognitive Services and how to

subscribe to the API
•	Using Face and Emotion APIs to retrieve face attributes and

emotions on pictures
•	Manipulating and displaying detection result in Xamarin.Forms
•	Leveraging plug-ins for Xamarin to capture and load images

Technologies discussed:
Xamarin.Forms, Microsoft Cognitive Services

Code download available at:
bit.ly/2bgPTm4

1016msdn_DelSoleCognitive_v3_16-26.indd 16 9/12/16 1:51 PM

www.bit.ly/2bgPTm4
http://microsoft.com/cognitive-services

17October 2016msdnmagazine.com

can be done with traditional Xamarin apps, as well as with any other
platform that supports REST. I’m assuming you have basic knowledge
of creating a Xamarin.Forms app and of the concepts about code shar-
ing; if not, make sure you read my previous articles: “Build a Cross-
Platform UX with Xamarin.Forms”
(msdn.com/magazine/mt595754) and
“Share UI Code Across Mobile
Platforms with Xamarin.Forms”
(msdn.com/magazine/dn904669).

Subscribing for Cognitive
Services APIs
In order to build apps that take
advantage of Cognitive Services,
you must subscribe to the service
in which you’re interested. At the
moment, Microsoft is offering free
trials that you can activate in the
subscriptions page (bit.ly/2b2rKDO),
but the current plans may be
subject to changes in the future.
When on the page, register with a
Microsoft account, then click
“Request new trials.” You’ll then
see a list of available services; make
sure you select free previews of
both the Face and Emotion APIs.
At this point, your subscriptions
page will show the list of active ser-
vices; you should see the Face and
Emotion APIs subscriptions. Fig-
ure 2 shows an example based on

my subscriptions. Notice how, for each active service, there are two
secret keys. You’ll need one to invoke the APIs. For now, keep them
hidden. You’ll unhide the key when creating the Xamarin.Forms app.

Generally speaking, Cognitive Services provide RESTful APIs,
which means you can interact with these services via HTTP requests
on any platform and with any language supporting REST. For exam-
ple, the following HTTP POST request demonstrates how to send
an image to the emotion recognition service for emotion detection:

POST https://api.projectoxford.ai/emotion/v1.0/recognize HTTP/1.1
Content-Type: application/json
Host: api.projectoxford.ai
Content-Length: 107
Ocp-Apim-Subscription-Key: YOUR-KEY-GOES-HERE

{ "url": "http://www.samplewebsite.com/sampleimage.jpg" }

Of course, you must replace the Ocp-Apim-Subscription-Key
with one of your own keys and the fake image URL with a real image
address. In exchange, the Emotion recognition service will send back
the result of detection as a JSON response, as shown in Figure 3.

Figure 2 Activating Subscriptions for Face and Emotion APIs

Figure 1 Face and Emotion Recognition on a Cross-Platform
App with Xamarin.Forms (Android Device on Left, Windows
10 Desktop on Right)

In order to build apps that take
advantage of Cognitive Services,
you must subscribe to the service

in which you’re interested.

1016msdn_DelSoleCognitive_v3_16-26.indd 17 9/12/16 1:51 PM

http://www.msdnmagazine.com
http://msdn.com/magazine/mt595754
http://msdn.com/magazine/dn904669
www/bit.ly/2b2rKDO

msdn magazine18 Cognitive Services

The sample response in Figure 3 shows how the Emotion service
returned the rectangle in which a face was detected and an array
called scores containing a list of emotions and a value between 0
and 1 that indicates how likely the emotion is to be true. In general,
sending HTTP requests to RESTful services and expecting a JSON
response is a common approach with all of the Cognitive Services.
However, for .NET developers working with C#, Microsoft is also
offering client portable libraries that you can download from NuGet
and that make it easier to interact with services in managed code
and in a fully object-oriented way. This is the case of the Face and
Emotion APIs, as you’ll see shortly. Don’t forget to check out the
official documentation, which contains examples based on both the
REST approach and on client libraries where available (bit.ly/2b2KJrB).
Now that you’ve registered for both services and you have your
keys, it’s time to create a cross-platform app with Xamarin.Forms
and Microsoft Visual Studio 2015.

Creating a Xamarin.Forms Application
As you know, you can create a cross-platform app with Xamarin.Forms
by choosing either the Portable or the Shared project template.
Because I’ll explain how to leverage client libraries for the Cogni-
tive Services APIs, the sample application is based on the Portable
Class Library (PCL) model. In Visual Studio 2015, select File |
New Project. If you’ve installed the latest updates from Xamarin
(xamarin.com/download), you’ll find a new project template called
Blank Xaml App (Xamarin.Forms Portable) under the Visual C#,
Cross-Platform node of the New Project dialog. This is an inter-
esting template that provides a blank XAML page, and avoids the
need to create one manually. Figure 4 shows the new template.

Call the solution FaceEmotionRecognition and click OK. During
the generation of the solution, you’ll be asked to specify the mini-
mum target version for the Universal Windows Platform (UWP)
project. This is left to your choice, but I recommend targeting the
highest version available.

Introducing Plug-ins for Xamarin
The sample application will use the Cognitive Services APIs to
recognize face details and emotions from pictures, using existing
pictures from the device or taking new pictures from the camera.
This implies that the app will need to access the Internet to connect
to the services and will need to provide the ability of taking and

selecting pictures. While an app
can easily connect to a network, it’s
your responsibility, as the developer,
to check for network availability.
Actually, features like checking
for network availability and taking
pictures would require writing spe-
cific code in the Android, iOS and
Windows projects. Luckily enough,
Xamarin supports plug-ins that
you can use in Xamarin.Forms
and that you can install to the
PCL project, so that they’ll do the
job for you. A plug-in is a library
installed from NuGet that wraps
the native APIs into a common
code implementation and invoked
in the PCL project. There’s a large
number of plug-ins—some devel-
oped and supported by Xamarin
and others created and published
by the developer community. Plug-
ins are all open source and listed Figure 4 Creating a New Xamarin.Forms Application

[
 {
 "faceRectangle": {
 "height": 70,
 "left": 26,
 "top": 35,
 "width": 70
 },
 "scores": {
 "anger": 2.012591E-11,
 "contempt": 1.95578984E-10,
 "disgust": 1.02281912E-10,
 "fear": 1.16242682E-13,
 "happiness": 1.0,
 "neutral": 9.79047E-09,
 "sadness": 2.91102975E-10,
 "surprise": 1.71011272E-09
 }
 }
]

Figure 3 The Emotion Recognition Service Detection Response

It’s your responsibility, as the
developer, to check for

network availability.

1016msdn_DelSoleCognitive_v3_16-26.indd 18 9/12/16 1:51 PM

www.bit.ly/2b2KJrB
http://xamarin.com/download

Untitled-1 1Untitled-1 1 10/13/11 11:25 AM10/13/11 11:25 AM

www.nsoftware.com

msdn magazine20 Cognitive Services

on GitHub at bit.ly/29XZ3VM. In this article I’ll show how to use the
Connectivity and Media plug-ins.

Installing NuGet Packages
When the solution is ready, the first thing you need to do is install
the following NuGet packages:

• �Microsoft.ProjectOxford.Face: Installs the client library for
the Face APIs and must be installed to the PCL project only.

• �Microsoft.ProjectOxford.Emotion: Installs the client
library for the Emotion APIs and, like for the Face API, must
be installed to the PCL project only.

• �Xam.Plugin.Connectivity: Contains the Connectivity
plug-in for Xamarin.Forms and must be installed to all the
projects in the solution.

• �Xam.Plugin.Media: Contains the Media plug-in for
Xamarin.Forms and, like the Connectivity API, must be
installed to all the projects in the solution.

Once you’ve installed the required NuGet packages, make sure
you build the solution before writing code so that all references
will be refreshed.

Designing the UI
The sample application’s UI consists of a single page. For the sake
of simplicity, I’ll use the auto-generated MainPage.xaml file. This
page defines two buttons, one for taking a picture from the camera
and one for uploading an existing image; an ActivityIndicator con-
trol that will show a busy status while waiting for a response from
the service; an Image control that will display the selected image; a
number of labels, within StackLayout panels, that are data-bound
to a custom class that will contain the result of detections over the
selected picture. Figure 5 shows the full XAML code for the page.

The next step is to prepare a place to store the result of the face
and emotion detection.

Storing Detection Results with a Class
Instead of manually populating labels in the UI with the results
of face and emotion detection, it’s best practice to create a custom
class. Not only is this a more object-oriented approach, but it also
allows for data binding the class’ instance to the UI. That said, let’s
create a new class called FaceEmotionDetection:

public class FaceEmotionDetection
{
 public string Emotion { get; set; }
 public double Smile { get; set; }
 public string Glasses { get; set; }
 public string Gender { get; set; }
 public double Age { get; set; }
 public double Beard { get; set; }
 public double Moustache { get; set; }
}

Each property has a self-explanatory name and will store infor
mation that comes from the combination of both the Face and
Emotion APIs.

Declaring the Service Clients
Before you write any other code, it’s a good idea to add the follow-
ing using directives:

Using Microsoft.ProjectOxford.Emotion;
Using Microsoft.ProjectOxford.Emotion.Contract;
Using Microsoft.ProjectOxford.Face;
Using Microsoft.ProjectOxford.Face.Contract;
Using Plugin.Connectivity;
Using Plugin.Media;

These will simplify the invocation to object names for both the
Cognitive Services APIs and the plug-ins. The Face APIs and the
Emotion APIs provide the Microsoft.ProjectOxford.Face.Face
ServiceClient and Microsoft.ProjectOxford.Emotion.Emotion
ServiceClient classes, which connect to the Cognitive Services and
respectively return information about face and emotion details.

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:FaceEmotionRecognition"
 xmlns:conv="clr-namespace:FaceEmotionRecognition.
 Converters;assembly=FaceEmotionRecognition"
 x:Class="FaceEmotionRecognition.MainPage">

 <StackLayout Orientation="Vertical">
 <Button x:Name="TakePictureButton" Clicked="TakePictureButton_Clicked"
 Text="Take from camera"/>
 <Button x:Name="UploadPictureButton" Clicked="UploadPictureButton_Clicked"
 Text="Pick a photo"/>

 <ActivityIndicator x:Name="Indicator1" IsVisible="False" IsRunning="False" />
 <Image x:Name="Image1" HeightRequest="240" />
 <StackLayout Orientation="Horizontal" Padding="3">
 <Label Text="Gender: "/>
 <Label x:Name="GenderLabel" Text="{Binding Path=Gender}" />
 </StackLayout>
 <StackLayout Orientation="Horizontal" Padding="3">
 <Label Text="Age: "/>
 <Label x:Name="AgeLabel" Text="{Binding Path=Age}"/>
 </StackLayout>
 <StackLayout Orientation="Horizontal" Padding="3">
 <Label Text="Emotion: "/>
 <Label x:Name="EmotionLabel" Text="{Binding Path=Emotion}"/>
 </StackLayout>
 <StackLayout Orientation="Horizontal" Padding="3">
 <Label Text="Smile: "/>
 <Label x:Name="SmileLabel"
 Text="{Binding Path=Smile}"/>
 </StackLayout>
 <StackLayout Orientation="Horizontal" Padding="3">
 <Label Text="Glasses: "/>
 <Label x:Name="GlassesLabel" Text="{Binding Path=Glasses}"/>
 </StackLayout>
 <StackLayout Orientation="Horizontal" Padding="3">
 <Label Text="Beard: "/>
 <Label x:Name="BeardLabel"
 Text="{Binding Path=Beard}"/>
 </StackLayout>
 <StackLayout Orientation="Horizontal" Padding="3">
 <Label Text="Moustache: "/>
 <Label x:Name="MoustacheLabel"
 Text="{Binding Path=Moustache}"/>
 </StackLayout>
 </StackLayout>
</ContentPage>

Figure 5 The UI for the Main Page

Once you’ve installed the
required NuGet packages,

make sure you build the solution
before writing code, so that all
references will be refreshed.

1016msdn_DelSoleCognitive_v3_16-26.indd 20 9/12/16 1:51 PM

www.bit.ly/29XZ3VM

(888) 850-9911
Sales Hotline - US & Canada:

/update/2016/10

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2016 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
2 New Century Place
East Street
Reading, Berkshire
RG1 4ET
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

Experience the brand new look at www.componentsource.com

Aspose.Total for .NET from $2,939.02
Every Aspose .NET component in one package.

• Programmatically manage popular � le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, project plans, emails, barcodes, OCR and OneNote � les
alongside many more document management features in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the � y and extracting text from most document types

BEST SELLER

DevExpress DXperience 16.1 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms - New TreeMap control, Chart series types and Unbound Data Source

• WPF - New Wizard control and Data Grid scrollbar annotations

• ASP.NET - New Vertical Grid control, additional Themes, Rich Editor Spell Checking and more

• Windows 10 Apps - New Hamburger Sub Menus, Splash Screen and Context Toolbar controls

• CodeRush - New debug visualizer expression map and code analysis diagnostics

BEST SELLER

LEADTOOLS Document Imaging SDKs V19 from $2,995.00 SRP

Add powerful document imaging functionality to desktop, tablet, mobile & web applications.

• Universal document viewer & conversion framework for PDF, O� ce, CAD, TIFF & more

• OCR, MICR, OMR, ICR and Forms Recognition supporting structured & unstructured forms

• PDF SDK with text edit, hyperlinks, bookmarks, digital signature, forms, metadata

• Barcode Detect, Read, Write for UPC, EAN, Code 128, Data Matrix, QR Code, PDF417

• Zero-footprint HTML5/JavaScript UI Controls & Web Services

BEST SELLER

Untitled-7 1 9/7/16 1:27 PM

http://www.componentsource.com

msdn magazine22 Cognitive Services

What you first need to do is declare an instance of both, passing
your secret key to the constructor, as shown here:

private readonly IFaceServiceClient faceServiceClient;
private readonly EmotionServiceClient emotionServiceClient;

public MainPage()
{
 InitializeComponent();

 // Provides access to the Face APIs
 this.faceServiceClient = new FaceServiceClient("YOUR-KEY-GOES-HERE");
 // Provides access to the Emotion APIs
 this.emotionServiceClient = new EmotionServiceClient("YOUR-KEY-GOES-HERE");
}

Notice that you must supply your own secret keys. Both the Face
and Emotion API secret keys can be found in the subscriptions
page of the Microsoft Cognitive Services portal (bit.ly/2b2rKDO), as
shown in Figure 2.

Capturing and Loading Images
In Xamarin.Forms, accessing both the camera and the file system
would require writing platform-specific code. A simpler approach

is using the Media plug-in for Xamarin.Forms, which lets you pick
pictures and videos from disk and take pictures and videos with
the camera from the PCL project, and with just a few lines of code.
This plug-in exposes a class called CrossMedia, which exposes the
following members:

• �Current: Returns a singleton instance of the CrossMedia class.
• �IsPickPhotoSupported and IsPickVideoSupported: Bool

properties that return true if the current device supports
selecting pictures and videos from disk.

• �PickPhotoAsync and PickVideoAsync: Methods that
invoke the platform-specific UI to select a local picture or
video, respectively, and return an object of type MediaFile.

• �IsCameraAvailable: A bool property that returns true if
the device has a built-in camera.

• �IsTakePhotoSupported and IsTakeVideoSupported: Bool
properties that return true if the current device supports
taking pictures and videos from the camera.

• �TakePhotoAsync and TakeVideoAsync: Methods that
launch the built-in camera to take a picture or video, respec-
tively, and return an object of type MediaFile.

Do not forget to set the proper permissions in the app manifest
to access the camera. For instance, in a UWP project you need both
the Webcam and Pictures Library permissions, while on Android
you need the CAMERA, READ_EXTERNAL_STORAGE, and
WRITE_EXTERNAL_STORAGE permissions. Forgetting to set
the required permissions will result in runtime exceptions. Now
let’s write the Clicked event handler for the UploadPictureButton,
which is shown in Figure 6.

The code first checks if selecting pictures is supported, showing
an error message if IsPickPhotoSupported returns false. PickPhoto
Async (as well as PickVideoAsync) returns an object of type Media
File, which is a class defined in the Plugin.Media namespace and
that represents the selected file. You must invoke its GetStream
method to return a stream that can be used as the source for the
Image control through its FromStream method. Taking a picture
with the camera is also very easy, as shown in Figure 7.

The point of interest here is that TakePhotoAsync takes a param
eter of type StoreCameraMediaOptions, an object that lets you
specify where and how to save a picture. You can set the SaveTo-
Album property as true if you want the picture to be saved to the
local camera roll, or you can set the Directory property if you want
to save to a different folder. As you can see, with very limited effort
and with a few lines of code, your app can easily leverage an impor
tant capability of all the supported platforms.

Detecting Emotions and
Implementing Face Recognition
Now it’s time to implement face and emotion recognition. Because
this is an introductory article, I’ll focus on simplicity. I’ll show how
to implement detection over one single face in a picture and I’ll
describe the most important objects and members in the APIs.
I’ll also give you suggestions on how to implement more detailed
detections where appropriate. Based on these assumptions, let’s
start writing an asynchronous method that performs detections.
The first piece is about emotion detection and it looks like this:

private async void TakePictureButton_Clicked(object sender, EventArgs e)
{
 await CrossMedia.Current.Initialize();

 if (!CrossMedia.Current.IsCameraAvailable || !CrossMedia.Current.
 IsTakePhotoSupported)
 {
 await DisplayAlert("No Camera", "No camera available.", "OK");
 return;
 }

 var file = await CrossMedia.Current.TakePhotoAsync(new StoreCameraMediaOptions
 {
 SaveToAlbum = true,
 Name = "test.jpg"
 });

 if (file == null)
 return;

 this.Indicator1.IsVisible = true;
 this.Indicator1.IsRunning = true;

 Image1.Source = ImageSource.FromStream(() => file.GetStream());

 this.Indicator1.IsRunning = false;
 this.Indicator1.IsVisible = false;
}

Figure 7 Taking a Picture with the Camera

private async void UploadPictureButton_Clicked(object sender, EventArgs e)
{
 if (!CrossMedia.Current.IsPickPhotoSupported)
 {
 await DisplayAlert("No upload", "Picking a photo is not supported.", "OK");
 return;
 }

 var file = await CrossMedia.Current.PickPhotoAsync();
 if (file == null)
 return;

 this.Indicator1.IsVisible = true;
 this.Indicator1.IsRunning = true;

 Image1.Source = ImageSource.FromStream(() => file.GetStream());

 this.Indicator1.IsRunning = false;
 this.Indicator1.IsVisible = false;
}

Figure 6 Selecting a Picture from Disk

1016msdn_DelSoleCognitive_v3_16-26.indd 22 9/12/16 1:51 PM

www.bit.ly/2b2rKDO

Untitled-6 1Untitled-6 1 8/10/16 1:56 PM8/10/16 1:56 PM

www.scaleoutsoftware.com/appfabric
www.scaleoutsoftware.com
www.scaleoutsoftware.com/trial

msdn magazine24 Cognitive Services

private async Task<FaceEmotionDetection>
DetectFaceAndEmotionsAsync(MediaFile inputFile)
{
 try
 {
 // Get emotions from the specified stream
 Emotion[] emotionResult = await
 emotionServiceClient.RecognizeAsync(inputFile.GetStream());

 // Assuming the picture has one face, retrieve emotions for the
 // first item in the returned array
 var faceEmotion = emotionResult[0]?.Scores.ToRankedList();

The method receives the MediaFile that’s produced by selecting
or taking a picture. Detecting emotions over faces on a picture is
straightforward, because you simply invoke the RecognizeAsync
method from the EmotionServiceClient class’ instance. This method
can receive either a stream or a URL as an argument. In this case, it
gets a stream from the MediaFile object. RecognizeAsync returns
an array of Emotion objects. Each Emotion in the array stores emo-
tions detected on a single face in a picture. Assuming the selected
picture has just one face, the code retrieves the first item in the array.
The Emotion type exposes a property called Scores, which contains
a list of eight emotion names and their approximate value. More
specifically, you get an IEnumerable<string, float>. By invoking its
ToRankedList method, you can get a sorted list of detected emo-
tions. The APIs cannot detect a single emotion precisely. Instead,
they detect a number of possible emotions. The highest value
returned is approximately the actual emotion on the face, but there
are still other values that could be checked. The highest value in
this list represents the emotion with the highest level of estimated
likelihood, which is possibly the actual emotion on a face. For a
better understanding, consider the following ranked list of emo-
tions retrieved with the help of the debugger’s data tips, which is
based on the sample picture shown in Figure 1:

[0] = {[Happiness, 1]}
[1] = {[Neutral, 1.089301E-09]}
[2] = {[Surprise, 7.085784E-10]}
[3] = {[Sadness, 9.352855E-11]}
[4] = {[Disgust, 4.52789E-11]}
[5] = {[Contempt, 1.431213E-11]}
[6] = {[Anger, 1.25112E-11]}
[7] = {[Fear, 5.629648E-14]}

As you can see, Happiness has a value of 1, which is the highest
in the list and is the estimated likelihood of the actual emotion.
The next step is detecting face attributes. The FaceServiceClient
class exposes the DetectAsync method, which is extremely power-
ful. Not only can it retrieve face attributes such as gender, age, and
smile, but it can also recognize people, return the face rectangle
(the area on the picture where the face was detected), and 27 face
landmark points that let an app identify information such as the
position of nose, mouth, ears, and eyes on the picture. DetectAsync
has the following signature:

Task<Contract.Face[]> DetectAsync(Stream imageStream,
 bool returnFaceId = true, bool returnFaceLandmarks = false,
 IEnumerable<FaceAttributeType> returnFaceAttributes = null);

In its most basic invocation, DetectAsync requires a stream
pointing to a picture or a URL and returns the face rectangle, while
the returnFaceId and returnFaceLandmarks optional parameters,
respectively, let you identify a person and return face landmarks.
The Face APIs let you create groups of people and assign an id
to each person so that you can easily perform recognition. Face
landmarks are instead useful to identify a face’s characteristics and

will be available through the FaceLandmarks property of the Face
object. Both identification and landmarks are beyond the scope of
this article, but you can find more about these topics at bit.ly/2adPvoP
and bit.ly/2ai9WjV, respectively. Similarly, I won’t show you how to
use face landmarks, but these are stored in the FaceLandmarks
property of the Face object. In the current sample scenario, the
goal is to retrieve face attributes. The first thing you need is an
array of the FaceAttributeType enumeration, which defines the list
of attributes you want to retrieve:

// Create a list of face attributes that the
// app will need to retrieve
var requiredFaceAttributes = new FaceAttributeType[] {
 FaceAttributeType.Age,
 FaceAttributeType.Gender,
 FaceAttributeType.Smile,
 FaceAttributeType.FacialHair,
 FaceAttributeType.HeadPose,
 FaceAttributeType.Glasses
 };

Next, invoke DetectAsync, passing the image stream and the face
attributes list. The returnFaceId and returnFaceLandmarks argu-
ments are false because the related information is unnecessary at
this point. The method invocation looks like this:

// Get a list of faces in a picture
var faces = await faceServiceClient.DetectAsync(inputFile.GetStream(),
 false, false, requiredFaceAttributes);

// Assuming there is only one face, store its attributes
var faceAttributes = faces[0]?.FaceAttributes;

DetectAsync returns an array of Face objects, each representing
a face in the picture. The code takes the first item in the array, which
represents one single face, and retrieves its face attributes. Notice
how the last line uses the null conditional operator (?), introduced
with C# 6, that returns null if the first element in the array is also
null, instead of throwing a NullReferenceException. More about
this operator can be found at bit.ly/2bc8VZ3. Now that you have both
face and emotion information, you can create an instance of the
FaceEmotionDetection class and populate its properties, as demon-
strated in the following code:

FaceEmotionDetection faceEmotionDetection = new FaceEmotionDetection();
faceEmotionDetection.Age = faceAttributes.Age;
faceEmotionDetection.Emotion = faceEmotion.FirstOrDefault().Key;
faceEmotionDetection.Glasses = faceAttributes.Glasses.ToString();
faceEmotionDetection.Smile = faceAttributes.Smile;
faceEmotionDetection.Gender = faceAttributes.Gender;
faceEmotionDetection.Moustache = faceAttributes.FacialHair.Moustache;
faceEmotionDetection.Beard = faceAttributes.FacialHair.Beard;

A few considerations at this point:
• �The highest value in the emotions list is taken by invoking

FirstOrDefault over the result of the invocation to the
Scores.ToRankedList method, which returns an
IEnumerable<string, float>.

• �The value returned by FirstOrDefault here is an object of
type KeyValuePair<string, float> and the Key of type string

The FaceServiceClient class
exposes the DetectAsync method,

which is extremely powerful.

1016msdn_DelSoleCognitive_v3_16-26.indd 24 9/12/16 1:51 PM

www.bit.ly/2adPvoP
www.bit.ly/2ai9WjV
www.bit.ly/2bc8VZ3

Untitled-2 1 7/11/16 3:30 PM

www.aspose.com
mailto:sales@aspose.com

msdn magazine26 Cognitive Services

stores the emotion name in a human-readable text that will
be shown in the UI.

• �Glasses is an enumeration that specifies if the detected face
is wearing glasses and what kind. The code invokes ToString
for the sake of simplicity, but you could definitely implement
a converter for different string formatting.

The final block in the method body returns the instance of the
FaceEmotionDetection class and implements exception handling:

 return faceEmotionDetection;
 }
 catch (Exception ex)
 {

 await DisplayAlert("Error", ex.Message, "OK");
 return null;
 }
}

The last thing you have to do is invoke the custom DetectFace-
AndEmotionAsync method. You can do this inside both Clicked
event handlers, just before setting to false the IsRunning and
IsVisible properties of the ActivityIndicator control:

FaceEmotionDetection theData = await DetectFaceAndEmotionsAsync(file);
this.BindingContext = theData;

this.Indicator1.IsRunning = false;
this.Indicator1.IsVisible = false;

The BindingContext property of the page receives an instance of
the FaceEmotionDetection class as the data source and data-bound
children controls will automatically show the related information.
With patterns like Model-View-ViewModel, you would wrap the
result with a ViewModel class. After a lot of work, you’re ready to
test the application.

Testing the Application
Select the platform of your choice and press F5. If you use the
Microsoft emulators, you can take advantage of the emulator tools
to select a physical webcam to take pictures, and you can simulate
an SD card to upload files. Figure 1 shows the result of the detec-
tion on a picture of me, on an Android device and on Windows 10
running in desktop mode.

The Face and Emotion APIs did an amazing job because the
returned values are very close to the truth, though still approxi-
mate. It’s worth mentioning that the FaceEmotionDetection class
has some properties of type double, such as Smile, Beard and
Moustache. They return numeric values, which might not make
much sense for the end user in a real-world app. So, in case you
want to convert those numeric values into human-readable
strings, you might consider implementing value converters and the
IValueConverter interface (bit.ly/2bZn01J).

Implementing Network Connectivity Check
A well-designed app that needs to access resources on the Internet
should always check for connection availability first. As for access-
ing the camera and the file system, in Xamarin.Forms checking
for connection availability should require platform-specific code.
Fortunately, the Connectivity plug-in comes in to help, providing
a shared way to perform this check from the PCL project directly.
The plug-in offers a class called CrossConnectivity with its Cur-
rent property that represents a singleton instance of the class. It
exposes a bool property called IsConnected that simply returns
true if a connection is available. To check for network availability
in the sample application, simply place the following code after the
declaration of the DetectFaceAndEmotionAsync method:

private async Task<FaceEmotionDetection>
 DetectFaceAndEmotionsAsync(MediaFile inputFile)
{
 if(!CrossConnectivity.Current.IsConnected)
 {
 await DisplayAlert("Network error",
 "Please check your network connection and retry.", "OK");
 return null;
 }

The class also exposes the following interesting members:
• �ConnectivityChanged: An event that’s raised when the

connection state changes. You can subscribe this event and
get information on the connectivity status via an object of
type ConnectivityChangedEventArgs.

• �BandWidths: A property that returns a list of available
bandwidths for the current platform.

Additional information about the Connectivity plug-in can be
found at bit.ly/2bbU7wu.

Wrapping Up
Microsoft Cognitive Services provide RESTful services and rich
APIs based on machine learning that let you create the next
generation of apps. By combining the power of these services with
Xamarin, you’ll be able to bring natural user interaction to your cross-
platform apps for Android, iOS and Windows, offering customers
an amazing experience. 	 n

Alessandro Del Sole has been a Microsoft MVP since 2008. Awarded MVP of
the Year five times, he has authored many books, eBooks, instructional videos
and articles about .NET development with Visual Studio. Del Sole works as a
solution developer expert for Brain-Sys (brain-sys.it), focusing on .NET develop-
ment, training and consulting. You can follow him on Twitter: @progalex.

Thanks to the following technical experts for reviewing this article:
James McCaffrey and James Montemagno

A well-designed app that needs
to access resources on the

Internet should always check for
connection availability first.

The code invokes ToString for the
sake of simplicity, but you could

definitely implement a converter
for different string formatting.

1016msdn_DelSoleCognitive_v3_16-26.indd 26 9/12/16 1:51 PM

www.bit.ly/2bZn01J
www.bit.ly/2bbU7wu
www.twitter.com/progalex

Live! 360SM is a unique conference where the IT and
Developer community converge to debate leading edge
technologies and educate themselves on current ones. These
six co-located events incorporate knowledge transfer and
networking, along with expert education and training, as you

create your own custom conference, mixing and
matching sessions and workshops to best suit
your needs.

Choose the ultimate education destination: Live! 360.

REGISTER BY OCTOBER 5
AND SAVE $400!

Use promo code L3601.
Scan the QR code for more

details or to register.

LIVE360EVENTS.COM

PRODUCED BYEVENT PARTNERS

ROYAL PACIFIC RESORT AT UNIVERSAL
DECEMBER 5-9

SILVER
SPONSOR

PLATINUM SPONSORS GOLD SPONSORS

Untitled-1 1Untitled-1 1 9/12/16 11:37 AM9/12/16 11:37 AM

www.live360events.com

msdn magazine28

Far more than any other app platform, the Universal Windows
Platform (UWP) supports a vast range of background activities. If these
were allowed to compete for resources in an uncontrolled manner, it
would degrade the foreground experience to an unacceptable level.
All concurrent processes compete for system resources—memory,
CPU, GPU, disk and network I/O, and so on. The system Resource
Manager encapsulates rules for arbitrating this contention, and the two
most important mechanisms are memory limits and task priorities.

The promise of the UWP is that a developer can build an app
that will run successfully on a wide range of Windows 10 platforms,
from a minimalist IoT device, to the full range of mobile and desk-
top devices, plus Xbox and HoloLens. Resource policy applies to

all Windows 10 platforms, and most policy is common across the
range—specifically to support the UWP promise of consistency.
That said, some aspects of policy do vary, because different platforms
support different sets of hardware devices with different capabilities.

So, for example, the memory limits on a Lumia 950 phone are
almost identical to those on a HoloLens because these two devices
have similar RAM characteristics and other hardware capabilities.
Conversely, the Lumia 950 limits are significantly higher than on
a Lumia 650, which has far less physical RAM and a lower hard-
ware specification, generally. Pagefile is another factor: Desktop
devices have a dynamically sizeable pagefile that’s also often very
fast, whereas on all other Windows 10 devices, the pagefile is small,
slow and a fixed-size. This is one reason why memory limits are
completely removed on desktop, but enforced on all other devices.

In a few well-defined scenarios, memory limits can also vary at
different times on the same device, so apps should take advantage of

U N IV E RSAL WINDOWS PL ATF OR M

Working with Memory
Limits and Task Priorities
in the UWP
Andrew Whitechapel

This article discusses:
•	How to work with memory limits, and how this is different from

previous releases

•	How dynamic scenario-based task prioritization affects your app

•	The APIs that you can use to get insight into resource policy and
app resource usage

•	Making the best use of the Visual Studio memory diagnostics tools

Technologies discussed:
Universal Windows Platform, Visual Studio 2015

Code download available at:
msdn.com/magazine/1016magcode

Far more than any other app
platform, the Universal Windows
Platform (UWP) supports a vast
range of background activities.

1016msdn_WhitechapelUWP_v3_28-34.indd 28 9/12/16 1:55 PM

http://msdn.com/magazine/1016magcode

29October 2016msdnmagazine.com

the Windows.System.MemoryManager APIs to discover the limit
that’s actually applied at any point in time. This API will always
reliably tell the app its current limit and its current usage—and
these same values are exactly the values that the Resource Manager
uses in its own internal calculations. In the following example,
the app pays attention to its memory limit, and before it attempts
a memory-intensive operation, it checks to see that it does in fact
have enough headroom available for this operation:

private void TryMemoryIntensiveOperation(){
 ulong limit = MemoryManager.AppMemoryUsageLimit;
 ulong usage = MemoryManager.AppMemoryUsage;
 ulong headroom = limit - usage;
 if (headroom > SOME_APP_DEFINED_VALUE){
 // Do memory-intensive operation.
 }
}

It helps to think of memory as just another device capability. That
is, it’s common for an app to test the availability of the device features
it can use. Is there a compass on this device? Is there a forward-
facing camera? Also, some features are available only in certain
app states. For example, if a device has a microphone, it’s almost
always available to the app in the foreground, but typically not
available to any background task. So it behooves the app to check
availability at different times. In the same way, the app should be
testing how much memory is available to it at any given time. The
app can adapt to this by, for example, selecting different image res-
olutions, or different data transfer options, or even by completely
enabling or disabling certain app features. Documentation for the
MemoryManager API is at bit.ly/2bqepDL.

Memory Limits
What happens if an app hits its limit? Contrary to popular belief,
in most cases, the Resource Manager doesn’t terminate apps for
out-of-memory conditions. Instead, if the app does something
that would result in a memory allocation that would exceed its
limit, the allocation fails. In some cases, the failure is surfaced to
the app (as an OutOfMemoryException in a managed code app, or
a null pointer in a native app). If this happens, the app can handle

the failure. If not, the app will crash. Consider the following
examples. DoSomething is allocating simple byte array memory
in an infinite loop that will eventually result in an OutOfMemory
Exception, which the app can handle:

private void DoSomething(){
 List<byte[]> buffer = new List<byte[]>();
 try {
 while (true)
 buffer.Add(new byte[10 * 1024 * 1024]);
 }
 catch (OutOfMemoryException oomEx){
 // Handle the exception and recover.
 }
}

Conversely, DoAnother is using imaging APIs in an infinite loop
that are internally allocating memory on the native heap for graphics
data. This allocation is outside the app’s direct control, and when it
fails, it will almost certainly not propagate any exception that can
be handled to the app and, therefore, the app will simply crash:

private void DoAnother(IRandomAccessStream stream){
 List<BitmapImage> bitmaps = new List<BitmapImage>();
 while (true){
 stream.Seek(0);
 BitmapImage bitmap = new BitmapImage();
 bitmap.SetSource(stream);
 bitmaps.Add(bitmap);
 }
}

The scenario is a little contrived, as no app would realistically
expect to be able to create an infinite number of bitmaps, but the
point is that some allocation failures are easily handled while others
are not. You should handle OutOfMemoryExceptions when you can,
and examine your app code for scenarios where memory is allocated
outside your direct control; police these areas carefully to avoid
failures. You’re more likely to be successful handling exceptions for
operations that allocate large amounts of memory—attempting to
handle OutOfMemoryExceptions for small allocations is usually
not worth the added complexity. It’s also worth noting that an
app can hit an OutOfMemoryException well below its limit if it’s
making very large allocations—and especially in managed code.
This can arise as a result of address space fragmentation for your
process. For example, the DoSomething method is allocating 10MB
blocks, and it will hit OutOfMemoryException sooner than if it were
allocating 1MB blocks. Finally, it must be said that the cases where
your app can handle an OutOfMemoryException and continue
in a meaningful way are rare; in practice, it’s more often used as an
opportunity to clean up, notify the user and then fail gracefully.

Using Task Priorities to Resolve Contention
The system arbitrates between competing task types by weighing the
relative importance of each user scenario. For example, the system
generally assigns a higher priority to the app with which the user
is actively engaged, and a lower priority to background activity of
which the user might even be completely unaware. Even among
background tasks there are different priority levels. For example,
VoIP and push notification tasks are typically higher priority than
time-triggered tasks.

When the user launches an app, or when a trigger event tries to
activate a background task, the Resource Manager checks to see if
there are sufficient free resources for this request. If there are, the
activation goes ahead. If not, it then examines all running tasks and

Category Typical Examples Description
Critical tasks Foreground app

activations and some
important background
tasks such as VoIP,
background audio
playback and any
background task
invoked directly by a
foreground app.

These are effectively
always guaranteed to
run whenever requested
(except in cases of extreme
and unexpected system
process activity).

Opportunistic
tasks

Everything else. These are only allowed
to launch (or to continue
to run) when there
are sufficient available
resources and there’s
no higher-priority task
contending those resources.
There are multiple finely
grained priority levels
within this category.

Figure 1 The Two Broad Categories of App Task

1016msdn_WhitechapelUWP_v3_28-34.indd 29 9/12/16 1:55 PM

http://www.msdnmagazine.com
www.bit.ly/2bqepDL

msdn magazine30 Universal Windows Platform

starts canceling (or in some cases rudely terminating) tasks from
the lowest priority upward until it has freed enough resources to
satisfy the incoming request.

Prioritization is finely nuanced, but everything falls into one of
two broad priority categories, summarized in Figure 1.

Soft and Hard Memory Limits
Resource policy limits ensure that no one app can run away with
all the memory on the device to the exclusion of other scenarios.
However, one of the side effects is that a situation can arise where
a task can hit its memory limit even though there might be free
memory available in the system.

The Windows 10 Anniversary Update addresses this by relaxing
the hard memory limits to soft limits. To best illustrate this, consider
the case of extended execution scenarios. In previous releases,
when an app is in the foreground it has, say, a 400MB limit (a fic-
titious value for illustration only), and when it transitions to the
background for extended execution, policy considers it to be less
important—plus it doesn’t need memory for UI rendering—so its
limit is reduced to perhaps 200MB. Resource policy does this to
ensure that the user can successfully run another foreground app
at the same time. However, in the case where the user doesn’t run
another foreground app (other than Start), or runs only a small
foreground app, the extended execution app may well hit its mem-
ory limit and crash even though there’s free memory available.

So in Windows 10 Anniversary Update, when the app transitions
to extended execution in the background, even though its limit is
reduced, it’s allowed to use more memory than its limit. In this way,
if the system isn’t under memory pressure, the extended execution
app is allowed to continue, increasing the likelihood that it can com-
plete its work. If the app does go over its limit, the MemoryManager
API will report that its AppMemoryUsageLevel is OverLimit. It’s
important to consider that when an app is over-limit, it’s at higher
risk of getting terminated if the system comes under memory pres-
sure. The exact behavior varies per platform: Specifically, on Xbox,
an over-limit app has two seconds to get itself below its limit or it
will be suspended. On all other platforms, the app can continue
indefinitely unless and until there’s resource pressure.

The net result of this change is that more tasks will be able to
continue in the background more often than before. The only
downside is that the model is slightly less predictable: Previously, a

task that attempted to exceed its limit would always fail to allocate
(and likely crash). Now, the allocation-failure-and-crash behavior
doesn’t always follow: The task will often be allowed to exceed its
limit without crashing.

The Resource Manager raises the AppMemoryUsageIncreased
event when an app’s memory usage increases from any given level
to a higher level, and conversely, the AppMemoryUsageDecreased
event when it decreases a level. An app can respond to AppMemory
UsageIncreased by checking its level and taking appropriate action
to reduce its usage:

private void OnUsageIncreased(object sender, object e){
 AppMemoryUsageLevel level = MemoryManager.AppMemoryUsageLevel;
 if (level == AppMemoryUsageLevel.OverLimit
 || level == AppMemoryUsageLevel.High){
 // Take action to reduce memory usage.
 }
 else if (level == AppMemoryUsageLevel.Medium){
 // Continue to monitor memory usage.
 }
}

Then, when it has successfully reduced its usage, it can expect
to get a further notification that it has fallen to a safer level, via an
AppMemoryUsageDecreased event:

private void OnUsageDecreased(object sender, object e){
 AppMemoryUsageLevel level = MemoryManager.AppMemoryUsageLevel;
 if (level == AppMemoryUsageLevel.Medium){
 // Back down at an acceptable level.
 }
 else if (level == AppMemoryUsageLevel.Low){
 // Can start memory-intensive operations.
 }
}

An app can also sign up for the AppMemoryUsageLimitChang-
ing event, which the Resource Manager raises when it changes
an app’s limit. The OverLimit scenario deserves special handling,
because of the associated change in priority. An app can listen to
the notification event that’s raised when the system changes its
limit, so it can immediately take steps to reduce its memory con-
sumption. For this scenario, you should use the old and new limit
values passed in as payload of the event, rather than querying the
AppMemoryUsageLevel directly:

private void OnMemoryLimitChanging(object sender,
 AppMemoryUsageLimitChangingEventArgs e){
 if (MemoryManager.AppMemoryUsage >= e.NewLimit){
 // Take urgent action to reduce usage.
 }
}

Extended execution is just one of the scenarios where the limit is
changed. Another common scenario is where the app calls exter
nal app services—each of these will reduce the calling app’s limit
for the duration of the call. It’s not always obvious when an app is
calling an app service: For example, if the app uses a middleware
library, this might implement some APIs as app services under the
covers. Or, if the app calls into system apps, the same might happen;
Cortana APIs are a case in point.

ProcessDiagnosticInfo API
Commit usage is the amount of virtual memory the app has used,
including both physical memory and memory that has been paged
out to the disk-backed pagefile. Working set is the set of memory
pages in the app’s virtual address space that’s currently resident in
physical memory. For a detailed breakdown of memory terminol-
ogy, see bit.ly/2b5UwjL. The MemoryManager API exposes both a

So in the Windows 10 Anniversary
Update, when the app transitions

to extended execution in the
background, even though its

limit is reduced, it’s allowed to use
more memory than its limit.

1016msdn_WhitechapelUWP_v3_28-34.indd 30 9/12/16 1:55 PM

www.bit.ly/2b5UwjL

1and1.com* 1&1 Managed Cloud Hosting starting at $9.99 per month. No minimum contract term. No setup fee. © 1&1 Internet Inc. 2016 All rights reserved.
1&1 and the 1&1 logo are trademarks of 1&1 Internet SE, all other trademarks are the property of their respective owners.
1&1 Internet Inc., 701 Lee Road, Chesterbrook, PA 19087

DOMAINS | MAIL | HOSTING | eCOMMERCE | SERVERS

HOSTING
CLOUD
NEW! 1&1 MANAGED

 Dedicated resources
 20+ stack variations
 Managed by 1&1 experts
 Flexible scalability
 Deployed <1 minute

The best of both worlds!
Scalable on-demand and fl exible server
resources combined with a new high-
performance hosting package: the new
1&1 Managed Cloud Hosting is here!
Ideal for online projects which demand
only the best availability, security and
fl exibility.

Trusted Performance.
Intel® Xeon® processors.

1-844-296-2059

®

$ 9.99
starting at per month*

MONTH
FLEXIBLE PAYMENT
OPTIONS1 SECURE

FAIL-SAFE1CHOICE
CALL
SPEAK WITH AN
EXPERT 24/71

Untitled-1 1 9/12/16 11:19 AM

www.1and1.com

msdn magazine32 Universal Windows Platform

GetAppMemoryReport and a GetProcessMemoryReport for com-
mit metrics and working-set metrics, respectively. Don’t be misled
by the names of the properties—for example, in the AppMemory
Report class, the private commit used by the app is represented
by PrivateCommitUsage (which seems obvious), whereas in the
ProcessMemoryUsageReport class the same value is represented by
PageFileSizeInBytes (which is a lot less obvious). Apps can also use
a related API: Windows.System.Diagnostics.ProcessDiagnosticInfo.
This provides low-level diagnostic information on a per-process
basis, including memory diagnostics, CPU and disk-usage data.
This is documented at bit.ly/2b1IokD. There’s some overlap with
the MemoryManager API, but there’s additional information in
ProcessDiagnosticInfo beyond what’s available in MemoryManager.
For example, consider an app that allocates memory, but doesn’t
immediately use it:

private List<byte[]> buffer = new List<byte[]>();

private void ConsumeMemory(){
 byte[] data = new byte[SOME_APP_DEFINED_VALUE];
 buffer.Add(data);
}

You could use the ProcessMemoryReport or ProcessMemory-
UsageReport to get information about commit and working-set,
including private (used only by this app), total (includes private plus
shared working set), and peak (the maximum used during the cur-
rent process’s lifetime so far). For comparison, note that the memory
usage reported by Task Manager is the app’s private working-set:

private void GetDiagnostics(){
 Trace("commit={0:N}", MemoryManager.AppMemoryUsage);
 ProcessMemoryReport r1 = MemoryManager.GetProcessMemoryReport();
 Trace("private w/s={0:N}", r1.PrivateWorkingSetUsage);
 Trace("total w/s={0:N}", r1.TotalWorkingSetUsage);

 ProcessDiagnosticInfo info =
 ProcessDiagnosticInfo.GetForCurrentProcess();
 ProcessMemoryUsageReport r2 = info.MemoryUsage.GetReport();
 Trace("peak w/s={0:N}", r2.PeakWorkingSetSizeInBytes);
}

Each time the app calls its ConsumeMemory method, more
commit is allocated, but unless the memory is used, it doesn’t sig-
nificantly increase the working set. It’s only when the memory is
used that the working set increases:

private void ConsumeMemory(){
 byte[] data = new byte[SOME_APP_DEFINED_VALUE];
 for (int i = 0; i < data.Length; i++)
 data[i] = 1;
 buffer.Add(data);
}

Most apps only need to focus on commit (which is what the
Resource Manager bases its decisions on), but some more sophisti-
cated apps might be interested in tracking working-set, also. Some
apps, notably games and media-intensive apps, rapidly switch
from one set of data to the next (think graphics buffers), and the
more their data is in physical memory, the more they can avoid UI
stuttering and tearing.

Also, you can think of memory as a closed ecosystem: It can be
useful to track your working-set just to see how much pressure you’re
putting on the system as a whole. Certain system operations—such
as creating processes and threads—require physical memory, and if
your app’s working-set usage is excessive this can degrade perfor-
mance system-wide. This is particularly important on the desktop,
where policy doesn’t apply commit limits.

GlobalMemoryStatusEx API
From the Windows 10 Anniversary Update, apps also have avail-
able to them the Win32 GlobalMemoryStatusEx API. This provides
some additional information beyond the Windows RT APIs, and
while most apps will never need to use it, it has been provided for
the benefit of UWP apps that are highly complex and have very
finely tuned memory behaviors. To use this API you also need the
MEMORYSTATUSEX struct, as shown in Figure 2.

Then, you can instantiate this struct and pass it to Global
MemoryStatusEx, which will fill in the struct fields on return:

MEMORYSTATUSEX status = new MEMORYSTATUSEX();
if (GlobalMemoryStatusEx(status))
{
 Trace("TotalPhys={0:N}", status.ullTotalPhys);
 Trace("AvailPhys={0:N}", status.ullAvailPhys);
 Trace("TotalPageFile={0:N}", status.ullTotalPageFile);
 Trace("AvailPageFile={0:N}", status.ullAvailPageFile);
 // ... etc.
}

Again, don’t be misled by the names of the fields. For exam-
ple, if you’re interested in the size of the pagefile, don’t just look
at ullTotalPageFile, because this actually represents the current
maximum amount of commit, which includes both the pagefile and
physical memory. So, what most folks understand as the pagefile
size is computed by subtracting the ullTotalPhys value from the
ullTotalPageFile value, like so:

ulong pageFile =
 status.ullTotalPageFile - status.ullTotalPhys;

Also note that ullTotalPhys is not the total amount of memory
physically installed on the device. Rather, it’s the amount of physical
memory the OS has available to it at boot, which is always slightly
less than the absolute total of physical memory.

Another interesting value returned is dwMemoryLoad, which
represents the percentage of physical memory in use system-wide.
In some environments it’s important for an app’s memory usage
to be mostly in physical memory, to avoid the disk I/O overhead
of using the pagefile. This is especially true for games and media
apps—and critically important for Xbox and HoloLens apps.

Remember this is a Win32 API so it will return information that
doesn’t account for the UWP sandbox and, in particular, it has no
knowledge of resource policy. So, for example, the value returned in

[StructLayout(LayoutKind.Sequential)]
private class MEMORYSTATUSEX
{
 public uint dwLength;
 public uint dwMemoryLoad;
 public ulong ullTotalPhys;
 public ulong ullAvailPhys;
 public ulong ullTotalPageFile;
 public ulong ullAvailPageFile;
 public ulong ullTotalVirtual;
 public ulong ullAvailVirtual;
 public ulong ullAvailExtendedVirtual;
 public MEMORYSTATUSEX()
 {
 dwLength = (uint)Marshal.SizeOf<MEMORYSTATUSEX>();
 }
}

[DllImport("kernelbase.dll", SetLastError = true)]
[return: MarshalAs(UnmanagedType.Bool)]
private static extern bool GlobalMemoryStatusEx(
 [In, Out] MEMORYSTATUSEX lpBuffer);

Figure 2 Importing the GlobalMemoryStatusEx Win32 API

1016msdn_WhitechapelUWP_v3_28-34.indd 32 9/12/16 1:55 PM

www.live360events.com
www.bit.ly/2b1IokD

ROYAL PACIFIC RESORT AT UNIVERSAL
DECEMBER 5-9

Live! 360SM is a unique conference where the IT and
Developer community converge to debate leading edge
technologies and educate themselves on current ones.

These six co-located events incorporate knowledge transfer
and networking, along with fi nely tuned education and

training, as you create your own custom conference, mixing
and matching sessions and workshops to best suit your needs.

Choose the ultimate education destination: Live! 360.

� e Ultimate Educatio� Destinatio�

 Rachel Appel Jason Bock Billy Hollis Miguel Castro Marcel de Vries

 Adam Tuliper Nick Landry Brian Noyes John Papa Brian Randell

 Andrew Brust Pinal Dave Edwin Sarmiento Leonard Lobel Janis Griffi n

 Jeffery Hicks Don Jones Sami Laiho Mark Minasi Greg Shields

 Bill Ayers Mark Rackley Andrew Connell
 Matthew
McDermott Agnes Molnar

 Allen Conway Brent Edwards Kevin Ford Scott Diehl Rockford Lhotka

 Steven Green Melissa Green Kito D Mann Fabian Williams Yegor Bugayenko

REGISTER BY OCTOBER 5
AND SAVE $400!
Use promo code L360TipIn

VIEW THE FULL LIST OF SPEAKERS AT LIVE360EVENTS.COM

CONNECT WITH LIVE! 360
 twitter.com/@live360events

 facebook.com – Search “Live 360”

 linkedin.com – Join the “Live 360” group!

Feature� Speaker�

REGISTER BY OCTOBER 5
AND SAVE $400!

Use promo code
L360TipIn

Scan the QR code to
register or for more
event details.

Connect wit� Live! 360
twitter.com/live360
@live360

facebook.com
Search "Live 360"

linkedin.com
Join the "Live! 360" group!

Great Conference�
Great Price

Visual Studio Live!: VSLive!™ is a victory for code,
featuring unbiased and practical development training

on the Microsoft Platform.

SQL Server Live!: This conference will leave you with the
skills needed to Lead the Data Race, whether you are a

DBA, developer, IT Pro, or Analyst.

TechMentor
SM

: This is IT training that fi nishes fi rst, with
zero marketing speak on topics you need training on

now, and solid coverage on what’s around the corner.

Offi ce & SharePoint Live!: Provides leading-edge
knowledge and training for SharePoint both on-premises

and in Offi ce 365 to maximizethe business value.

Modern Apps Live!: Presented in partnership
with Magenic, this unique conference leads the

way to learning how to architect, design and
build a complete Modern App.

App Dev Trends: This new technology conference
focuses on the makers & maintainers of the software

that power organizations in nearly every industry in the
world — in other words, enterprise software professionals!

NEW!

LIVE360EVENTS.COM

Live! 360 brings you over 90 speakers; some of the best and brightest experts in the industry.

LIVE360EVENTS.COM

Take the Tour
Six events, 25+ tracks, and literally hundreds

of sessions to choose from — mix and match
sessions to create your own, custom event line-up

 — it’s like no other conference available today.

EVENT PARTNERS GOLD SPONSORSPLATINUM SPONSORS PRODUCED BYSUPPORTED BY

NEW!

SILVER
SPONSOR

www.live360events.com

REGISTER NOW AT LIVE360EVENTS.COM

Live! 360 Agenda-at-a-Glance

Speakers and sessions subject to change

ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

OFFICE & SHAREPOINT LIVE! TRACKS

SharePoint
On-Premises

Infrastructure
Management and

Administration

SharePoint, Office
365 and the Cloud

High-Value SharePoint
Workloads: Social,

Search, BI, Workflow,
and Business Process

Automation

Developing for
Office, Office 365
and SharePoint

SQL SERVER LIVE! TRACKS

BI, Big Data, Data
Analytics, and Data

Visualization

SQL Server
Administration
& Maintenance

SQL Server
in the Cloud

SQL Server
for Developers

SQL Server
Performance Tuning

and Optimization

START TIME END TIME Visual Studio Live! Pre-Conference: Sunday, December 4, 2016 SQL Server Live! Pre-Conference: Sunday, December 4, 2016 TechMentor Pre-Conference: Sunday, December 4, 2016 Office & SharePoint Live! Pre-Conf. Sun., Dec. 4, 2016 MAL! Pre-Conf.: Sun., Dec. 4 ADT Pre-Conf.: Sun., Dec. 4
5:00 PM 8:00 PM Pre-Conference Registration • Royal Pacific Resort Conference Center Pre-Conference Registration • Royal Pacific Resort Conference Center Pre-Conference Registration • Royal Pacific Resort Conference Center

6:00 PM 9:00 PM Dine-A-Round Dinner @ Universal CityWalk (6:00pm—Meet at Conference Registration Desk to walk over with the group) Dine-A-Round Dinner @ Universal CityWalk (6:00pm—Meet at Conference Registration Desk to walk over with the group) Dine-A-Round Dinner @ Universal CityWalk (6:00pm—Meet at Conference Registration Desk to walk over with the group)

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, December 5, 2016 SQL Server Live! Pre-Conference Workshops: Monday, December 5, 2016 TechMentor Pre-Conference Workshops: Monday, December 5, 2016 Office & SharePoint Live!: Mon., Dec. 5, 2016 MAL!: Monday, Dec. 5 ADT: Pre-Conference Workshops: Monday, Dec. 5

8:00 AM 5:00 PM
VSM01 - Workshop: Distributed Cross-Platform Application

Architecture
- Rockford Lhotka & Jason Bock

VSM02 - Workshop: Service Oriented
Technologies—Designing, Developing,
& Implementing WCF and the Web API

- Miguel Castro

VSM03 - Workshop: DevOps in a Day
- Brian Randell

SQM01 - Workshop: Performance Tune
SQL Server: Query Optimizer, Indexes,
the Plan Cache, and Execution Plans

- Bradley Ball

SQM02 - Workshop: SQL Server 2016
for Developers
- Leonard Lobel

TMM01 - Workshop: Sixty-seven VMware
vSphere Tricks That’ll Pay for This Conference!

- Greg Shields

TMM02 - Workshop: Demystifying the
Blue Screen of Death - Bring Your Own

Laptop Hands-On Lab (BYOL - HOL)
- Bruce Mackenzie-Low

8:00 AM – 12:00 PM: OSM01 - Workshop:
Installing and Configuring SharePoint

Server 2016 - Vlad Catrinescu

8:00 AM – 12:00 PM: OSM02 - Workshop:
A Beginner’s Guide to Client Side

Development in SharePoint - Mark Rackley MAM01 - Workshop: Building Modern
Mobile Apps

- Brent Edwards & Kevin Ford
ADM01 - Workshop: Building Teams -

Steve Green

ADM02 - Workshop: One Codebase
to Rule Them All: Xamarin

- Fabian Williams1:00 PM – 5:00 PM: OSM03 - Workshop:
Upgrade to SharePoint 2016

- Matthew McDermott

1:00 PM – 5:00 PM: OSM04 - Workshop:
Building Clients Side Applications in Office
365 with the New SharePoint Framework

- Andrew Connell

5:00 PM 6:00 PM EXPO Preview

6:00 PM 7:00 PM LIVE! 360 KEYNOTE: To Be Announced

TECHMENTOR TRACKS

Client DevOps IT Soft Skills The Real Cloud Security Server /
Datacenter

APP DEV TRENDS TRACKS

Agile Container-
ization

Continuous
Integration Java Mobile Cloud

MODERN APPS LIVE! TRACK

Presented in Partnership with:

VISUAL STUDIO LIVE! TRACKS

ALM /
DevOps

Cloud
Computing

Mobile
Client

Software
Practices

Visual Studio /
.NET Framework

Web
Client

Web
Server Windows Client

START TIME END TIME Visual Studio Live! Day 1: Tuesday, December 6, 2016 SQL Server Live! Day 1: Tuesday, December 6, 2016 TechMentor Day 1: Tuesday, December 6, 2016 Office & SharePoint Live! Day 1: Tues., Dec. 6 MAL! Day 1: Tues., Dec. 6 ADT Day 1: Tues., Dec. 6

8:00 AM 9:00 AM Visual Studio Live! Keynote: Topic to be announced – Tim Sneath, Principal Lead Program Manager, Visual Studio Platform, Microsoft SQL SERVER LIVE! KEYNOTE: The RDBMS is Dead. Long live the RDBMS!
– Buck Woody, Senior Technical Specialist, Machine Learning and Data Science Team, Microsoft

TECHMENTOR KEYNOTE: Sweet Sixteen, or Just Server 2012R3? A Glance at the Awesome,
the Irritating, the Improved and the Expensive in Server 2016

- Mark Minasi, IT Consultant, Author, Speaker, MR&D

OFFICE & SHAREPOINT LIVE! KEYNOTE:
The Modern Workplace and the SharePoint Revolution

 - Chris Bortlik, Collaboration Solution Architect, Microsoft

MAL! KEYNOTE: Topic TBA
– Tim Sneath, Principal Lead
Program Manager, Microsoft

APP DEV TRENDS KEYNOTE: You Are the Future of Enterprise
Java! – Reza Rahman, Speaker, Author, Consultant

9:00 AM 9:30 AM Networking Break • Visit the EXPO

9:30 AM 10:45 AM
VST01 - Building Applications with

ASP.NET Core
- Scott Allen

VST02 - Busy .NET Developer's Guide
to Swift

- Ted Neward
VST03 - What's New in Azure v2

- Eric D. Boyd

VST04 - Real World Scrum with
Team Foundation Server 2015
& Visual Studio Team Services

- Benjamin Day

SQT01 - Performance Tuning
and Monitoring for Virtualized

Database Servers
- Thomas LaRock

SQT02 - What's New
in SQL Server 2016

- Leonard Lobel

SQT03 - Power BI: Analytics for Desktop,
Mobile and Cloud

- Andrew Brust

TMT01 - Secure Access Everywhere!
Implementing DirectAccess in Windows

Server 2016 - Richard Hicks

TMT02 - Linux on Azure for the Microsoft
Specialist

- Timothy Warner

TMT03 - The Absolute
Beginner’s Guide to Advanced Certificate

Services
- Greg Shields

OST01 - What's New in
SharePoint 2016 for IT Pros

- Vlad Catrinescu
OST02 - To Be Announced

MAT01 - Modern App
Development: Transform How You Build

Web and Mobile Software
- Rockford Lhotka

ADM01 - Hacking Technical Debt
- Steve Green

ADT02 - Java 8 Lambdas and
the Streaming API
- Michael Remijan

11:00 AM 12:15 PM
VST05 - Richer MVC Sites

with Knockout JS
- Miguel Castro

VST06 - Busy .NET Developer's Guide to
Native iOS

- Ted Neward
VST07 - Overview of Power Apps

- Nick Pinheiro

VST08 - Get Good at DevOps: Feature
Flag Deployments with ASP.NET,

WebAPI, & JavaScript
- Benjamin Day

SQT04 - U-SQL Query Execution
and Performance Tuning

- Michael Rys

SQT05 - Implementing Data Protection
and Security in SQL Server 2016

- Steve Jones

SQT06 - Seeking the Perfect Hybrid:
On-Prem Data with Reports and

Dashboards in Power BI
- William E. Pearson III

TMT04 - DirectAccess Troubleshooting
Deep Dive

- Richard Hicks

TMT05 - Container Technology and
its Impact on Datacenter and Cloud

Management - Neil Peterson

TMT06 - Master Camtasia
and Build Your Own Training

in 75 Minutes or Less
- Greg Shields

OST03 - Optimizing SQL Server for
SharePoint

- Brian Alderman

OST04 - How It Works: Office 365 and the
Microsoft Graph

- Bill Ayers

MAT02 - Architecture: The
Key to Modern App Success

- Brent Edwards
ADT03 - Are You A SOLID Coder?

- Steve Green
ADT04 - PrimeFaces 5: Modern

UI Widgets for Java EE
- Kito Mann

12:15 PM 2:00 PM Lunch • Visit the EXPO

2:00 PM 3:15 PM
VST09 - WCF & Web API:

Can We All Just Get Along?!?
- Miguel Castro

VST10 - Creating Great Looking Android
Applications Using Material Design

- Kevin Ford

VST11 - Introduction to Next Generation of
Azure PaaS—Service Fabric and Containers

- Vishwas Lele
VST12 - To Be Announced

SQT07 - New Performance Tuning
and Security Features in SQL Server 2016

- Thomas LeBlanc

SQT08 - Introduction to
Elastic Azure SQL Database

- Bradley Ball
SQT09 - To Be Announced

TMT07 - Windows as a Service Explained:
Really, I've Got to Upgrade Every Year?

- Mark Minasi
TMT08 - To Be Announced

TMT09 - Getting Started
with Nano Server

- Jeffery Hicks

OST05 - IT Pros Guide to Managing
SharePoint Search

- Matthew McDermott
OST06 - To Be Announced

MAT03 - Manage Distributed
Teams with Visual Studio Team Services

and Git
- Brian Randell

ADT05 - Agile Architecture
- Steve Green

ADT06 - Full Stack Java with JSweet,
Angular 2, PrimeNG, and JAX-RS

- Kito Mann

3:15 PM 4:15 PM Networking Break • Visit the EXPO

4:15 PM 5:30 PM
VST13 - Busy Developer's Guide

to Chrome Development
- Ted Neward

VST14 - Using Visual Studio Tools
for Apache Cordova to Create

MultiPlatform Applications
- Kevin Ford

VST15 - Cloud Oriented Programming
- Vishwas Lele

VST16 - Bringing DevOps
to the Database

- Steve Jones

SQT10 - Performance Tuning and
Troubleshooting Azure SQL Database

- Bradley Ball

SQT11 - No Schema, No Problem!:
Introduction to Azure DocumentDB

- Leonard Lobel

SQT12 - Getting Started with Data
Analysis eXpressions (DAX) in
Analysis Services Tabular 2016

- William E. Pearson III

TMT10 - Troubleshooting Client
Communications with Wireshark

- Timothy Warner

TMT11 - Azure Point-to-Site VPN Suck! Fix
It with Win2012R2 VPN in the Cloud

- Richard Hicks

TMT12 - Implementing
Hyper-V Failover Clusters
in Windows Server 2016
- Bruce Mackenzie-Low

OST07 - Integrating Office Online Server
with SharePoint

- Brian Alderman

OST08 - Introduction to the Office Dev PnP
Core Library

- Rob Windsor

MAT04 - Focus on the User Experience
#FTW

- Anthony Handley
ADT07 - Crafting Innovation

- Steve Green

ADT08 - Who’s Taking Out
the Garbage? How Garbage Collection

Works in the VM
- Kito Mann

5:30 PM 7:30 PM Exhibitor Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, December 7, 2016 SQL Server Live! Day 2: Wednesday, December 7, 2016 TechMentor Day 2: Wednesday, December 7, 2016 Office & SharePoint Live! Day 2: Wed., Dec. 7 MAL! Day 2: Wed., Dec. 7 ADT Day 2: Wed., Dec. 7
8:00 AM 9:15 AM VSW01 - Moving from

Angular 1 to Angular 2
- Ben Dewey

VSW02 - The Future of Mobile
Application Search

- James Montemagno

VSW03 - Managing Enterprise
and Consumer Identity with Azure

Active Directory
- Nick Pinheiro

VSW04 - Improving Performance
in .NET Applications

- Jason Bock

SQW01 - Inside the SQL Server Query
Optimizer: SQL 2014 & 2016

- Bradley Ball

SQW02 - SQL Server
2016 Encryption
- Thomas LaRock

SQW03 - Big Data with Hadoop, Spark
and Azure HDInsight

- Andrew Brust

TMW01 - Creating Advanced Functions
in PowerShell

- Michael Wiley

TMW02 - Implementing Azure AD for
Hybrid Identity

- Timothy Warner

TMW03 - Managing Windows 10 Using the
MDM Protocol
and ConfigMgr
- Steven Rachui

OSW01 - PowerShell for
Office 365

- Vlad Catrinescu

OSW02 - Become a Developer Hero by
Building Office Add-ins

- Bill Ayers

MAW01 - DevOps, Continuous Integration,
the Cloud, and Docker

- Dan Nordquist
ADW01 - Stop Killing Requirements!

- Melissa Green

ADW02 - Migrating Customers
to Microsoft Azure: Lessons

Learned From the Field
- Ido Flatow

9:30 AM 10:45 AM VSW05 - Getting Started
with Aurelia

- Brian Noyes

VSW06 - Building Connected and
Disconnected Mobile Applications

- James Montemagno

VSW07 - Practical Internet of Things
for the Microsoft Developer

- Eric D. Boyd

VSW08 - I'll Get Back to You:
Understanding Task, Await, and

Asynchronous Methods
- Jeremy Clark

SQW04 - Does Your Performance Tuning
Need a 12-Step program?

- Janis Griffin

SQW05 - Master Data Management with
Data Quality (DQS) and Master Data
Services (MDS) in SQL Server 2016

- Thomas LeBlanc

SQW06 - Getting Started with
PolyBase in SQL Server 2016

- Edwin Sarmiento

TMW04 - Creating Class-Based
PowerShell Tools

- Jeffery Hicks
TMW05 - Fully Integrated Azure Resource

Manager Deployments - Neil Peterson
TMW06 - Building Applications in

ConfigMgr—Tips and Tricks
- Steven Rachui

OSW03 - Managing Data Recovery in
SharePoint

- Brian Alderman

OSW04 - Utilizing jQuery
in SharePoint—Get
More Done Faster

- Mark Rackley

MAW02 - Mobile Panel
- Kevin Ford, Rockford Lhotka,

James Montemagno, & Ryan J. Salva

ADW03 - Meeting-Free Software
Development in Distributed Teams

- Yegor Bugayenko

ADW04 - The Essentials of Building Cloud-
Based Web Apps with Azure

- Ido Flatow

10:45 AM 11:15 AM Networking Break • Visit the EXPO

11:15 AM 12:15 PM LIVE! 360 KEYNOTE: To Be Announced

12:15 PM 1:45 PM Birds-of-a-Feather Lunch • Visit the EXPO

1:45 PM 3:00 PM VSW09 - Living in a Command Line
Web Development World (NPM,

Bower, Gulp, and More)
- Ben Dewey

VSW10 - Understanding the Windows
Desktop App Development Landscape

- Brian Noyes
VSW11 - To Be Announced

VSW12 - Learn to Love
Lambdas (and LINQ, Too)

- Jeremy Clark

SQW07 - Configuring SQL Server
for Performance—Like a

Microsoft Certified Master
- Thomas LaRock

SQW08 - To Be Announced

SQW09 - Big Data's Missing V:
Visualization. How Do You

BigViz Your Big Data?
- Jennifer Stirrup

TMW07 - Creating WPF-Based Graphical
PowerShell Tools

- Jeffery Hicks
TMW08 - To Be Announced

TMW09 - SysInternals
Tools: Process Explorer and Process

Monitor
- Sami Laiho

OSW05 - Scripting SharePoint 2016 Tasks
with PowerShell

- Ben Stegink

OSW06 - Customizing Your SharePoint
Forms Without

Third Party Applications
- Mark Rackley

MAW03 - C# Everywhere: How
CSLA .NET Enables Amazing
Cross-Platform Code Reuse

- Rockford Lhotka

ADW05 - Introduction to
Microsoft Office Graph

- Fabian Williams

ADW06 - Building IoT and Big
Data Solutions on Azure

- Ido Flatow

3:00 PM 4:00 PM Networking Break • Visit the EXPO • Expo Raffle @ 3:30 p.m.

4:00 PM 5:15 PM
VSW13 - Securing Client JavaScript Apps

- Brian Noyes

VSW14 - Let's Write a Windows 10 App:
A Basic Introduction to Universal Apps

- Billy Hollis

VSW15 - ARM Yourself for Azure Success
- Esteban Garcia

VSW16 - Continuous Delivery on
Azure: A/B Testing, Canary Releases,

and Dark Launching
- Marcel de Vries

SQW10 - Performance in
60 Seconds—SQL Tricks
Everybody MUST Know

- Pinal Dave

SQW11 - Welcome to the
2016 Query Store!

- Janis Griffin

SQW12 - Improve Enterprise Reporting
with SQL Server Analysis Services

- Thomas LeBlanc

TMW10 - Harvesting the Web: Using
PowerShell to Scrape Screens, Exploit

Web Services, and Save Time
- Mark Minasi

TMW11 - In-Depth
Introduction to Docker

- Neil Peterson

TMW12 - War Driving:
How it Happens, How

to Protect Yourself
- Dale Meredith

OSW07 - Learn Best Practices for
Managing and Administering SharePoint

Online and OneDrive for Business
- Chris Bortlik

OSW08 - Using the
Office UI Fabric

- Paul Schaeflein

MAW04 - Coding for Quality
and Maintainability

- Jason Bock

 ADW07 - As You Think About
Azure Databases, Think

About DocumentDb
- Fabian Williams

ADW08 - Where Does JavaScript Belong in
the App Store?

- Jordan Matthiesen

8:00 PM 10:00 PM Live! 360 Dessert Luau

START TIME END TIME Visual Studio Live! Day 3: Thursday, December 8, 2016 SQL Server Live! Day 3: Thursday, December 8, 2016 TechMentor Day 3: Thursday, December 8, 2016 Office & SharePoint Live! Day 3: Thurs., Dec. 8 MAL! Day 3: Thurs., Dec. 8 ADT Day 3: Thurs., Dec. 8

8:00 AM 9:15 AM
VSH01 - Build Real-Time Websites

and Apps with SignalR
- Rachel Appel

VSH02 - Cognitive Services: Building Smart
Applications with Computer Vision

- Nick Landry
VSH03 - C# Best Practices

- Scott Allen
VSH04 -Application Insights: Measure

Your Way to Success
- Esteban Garcia

SQH01 - Stretching SQL Server Failover
Clustered Instances & Availability Groups

to a Disaster Recovery Site
- Edwin Sarmiento

SQH02 - Production SQL Server 2016—
Lessons from the Field

- Joseph D'Antoni

SQH03 - Agile Analytics with
AzureML and R

- Jennifer Stirrup

TMH01 - PowerShell and Workflow —
Magic Together!
- Michael Wiley

TMH02 - Pen-Testing Like
an IT Superhero
- Dale Meredith

TMH03 - Windows Clusters for Beginners:
From Highly Fearful to Highly Reliable in

75 Minutes!
- Mark Minasi

OSH01 - Implementing and Managing
Office 365

- Ben Stegink

OSH02 - Enterprise JavaScript
Development Patterns

- Rob Windsor

MAH01 - Modern Mobile Development:
Build a Single App For iOS & Android with

Xamarin Forms
- Kevin Ford

ADH01 - From VMs to Containers:
Introducing Docker Containers for Linux

and Windows Server
- Ido Flatow

ADH02 - Continuous Testing
in a DevOps World

- Wayne Ariola

9:30 AM 10:45 AM
VSH05 - HTTP/2: What You

Need to Know
- Robert Boedigheimer

VSH06 - Building Business Apps on the
Universal Windows Platform

- Billy Hollis

VSH07 - Debugging Your Way Through
.NET with Visual Studio 2015

- Ido Flatow

VSH08 - The Ultimate Intro to
Docker for Developers

- Adam Tuliper

SQH04 - Indexes —The Good, Bad and Ugly
- Pinal Dave

SQH05 - Would You Just Load Already?!
Maximizing Your SSIS Data Load

- Chris Bell

SQH06 - A Blueprint for Business
Intelligence with SQL Server 2016

- Jennifer Stirrup

TMH04 - You're Writing Your
PowerShell Functions Wrong. Stop It.

- Don Jones

TMH05 - Mobile Devices
and Security: The Bane of

the IT Superhero
- Dale Meredith

TMH06 - Office 365
Risk Mitigation

- J. Peter Bruzzese

OSH03 - Five Business Challenges of Hybrid
Search in SharePoint 2016 and Office 365

- Agnes Molnar

OSH04 - Made for Mobile—
Let the Microsoft Graph Power Your

Mobile Apps!
- Bill Ayers

MAH02 - Universal Windows Development:
UWP for PC,

Tablet & Phone
- Brent Edwards

ADH03 - CQRS 2.0 - Commands, Actors,
and Events...Oh My!

- David Hoerster

ADH04 - Microservices as
Chat Bots are the Future

- Yegor Bugayenko

11:00 AM 12:15 PM
VSH09 - TypeScript and

ES2015 JumpStart
- John Papa

VSH10 - HoloLens
- Billy Hollis & Brian Randell

VSH11 - Exploring Microservices in
a Microsoft Landscape

- Marcel de Vries

VSH12 - Automated UI Testing for iOS
and Android Mobile Apps

- James Montemagno

SQH07 - Securing Your Database with
SQL Server 2016 Features

- Edwin Sarmiento

SQH08 - Statistics and Cardinality—How
They Work Together to Find Data Efficiently

- Chris Bell

SQH09 - New and Shiny: The All-New SQL
Server Reporting Services 2016

- Tim Mitchell

TMH07 - PowerShell Desired State
Configuration (DSC) for the IT Ops Guy

- Jason Helmick

TMH08 - Understanding Windows
10/2016's Super Security: VSM, Credential

Guard, Trustlets and More - Mark Minasi
TMH09 - Evolving as an IT Pro

- J. Peter Bruzzese

OSH05 - To the Cloud!
Using IaaS as a Hosting
Provider for SharePoint

- Scott Hoag & Dan Usher

OSH06 - Introduction to
the SharePoint Client Object Model and

REST API
- Rob Windsor

MAH03 - Modern Web Development: ASP.
NET MVC

and Web API
- Allen Conway

ADH05 - The Curious Case for
the Immutable Object

- David Hoerster

ADH06 - Continuous Integration
May Have Negative Effects

- Yegor Bugayenko

12:15 PM 1:30 PM Lunch on the Lanai

1:30 PM 2:45 PM
VSH13 - All Your Tests

Are Belong To Us
- Rachel Appel

VSH14 - Developing Awesome 3D
Apps with Unity and C#

- Adam Tuliper

VSH15 - Unit Testing Makes Me
Faster: Convincing Your Boss, Your

Co-Workers, and Yourself
- Jeremy Clark

VSH16 -Writing Maintainable,
X-Browser Automated Tests

- Marcel de Vries

SQH10 - Secrets of SQL Server—
Database Worst Practices

- Pinal Dave

SQH11 - Powerful T-SQL Improvements
that Reduce Query Complexity

- Hugo Kornelis
SQH12 - Testing SSIS Packages

- Tim Mitchell

TMH10 - PowerShell Unplugged:
Stump Don
- Don Jones

TMH11 - Facing Increasing Malware
Threats and a Growing Trend of BYOD with

a New Approach of PC Security -
 Yung Chou

TMH12 - The Labyrinth of Exchange
Migration Options
- J. Peter Bruzzese

OSH07 - Findability in
YOUR Organization

- Agnes Molnar

OSH08 - Leveraging Angular2
to Build Office Add-ins

- Andrew Connell

MAH04 - Modern Web Development:
Building a Smart Web Client with TypeScript

and Angular2 - Allen Conway
ADH07 - To Be Announced

ADH08 - Mobile DevOps Demystified with
Xamarin, VSTS and HockeyApp

- Roy Cornelissen

3:00 PM 4:15 PM
VSH17 - SASS and CSS

for Developers
- Robert Boedigheimer

VSH18 - From Oculus to HoloLens: Building
Virtual & Mixed Reality Apps & Games

- Nick Landry

VSH19 - User Experience Case Studies—
Good and Bad
- Billy Hollis

VSH20 - Debugging the Web with Fiddler
- Ido Flatow

SQH13 - Hacking Expose—Using SSL
to Secure SQL Server Connections

- Chris Bell

SQH14 - T-SQL User-Defined Functions, or:
Bad Performance Made Easy

- Hugo Kornelis

SQH15 - Essential Architecture for
BI in a Virtual Environment

- Joseph D'Antoni

TMH13 - Building Highly Available and
Secure DSC Pull Servers

- Jason Helmick

TMH14 - Penetration Tests
in Real Life

- Sami Laiho

TMH15 - What's IoT Got to
Do with IT Pros? A Lot!

- Yung Chou

OSH09 - Setting Up Directory
Synchronization for Office 365

- Scott Hoag & Dan Usher
OSH10 - Webhooks in Office 365

- Paul Schaeflein
MAH05 - Using All That Data:

Power BI to the Rescue
- Scott Diehl

ADH09 - Get Started with
Microsoft PowerApps

- Fabian Williams

ADH10 - Overcoming the
Challenges of Mobile Development

in the Enterprise
- Roy Cornelissen

4:30 PM 5:30 PM Live! 360 Conference Wrap-Up - Andrew Brust (Moderator), Andrew Connell, Don Jones, Rockford Lhotka, Matthew McDermott, Brian Randell, & John K. Waters

START TIME END TIME Visual Studio Live! Post-Conference Workshops: Friday, December 9, 2016 SQL Server Live! Post-Conference Workshops: Friday, December 9, 2016 TechMentor Post-Conference Workshops: Friday, December 9, 2016 O&SPL! Post-Conf. Workshop: Fri., Dec. 9 MAL!: Fri., Dec. 9 ADT Post-Conf. Workshop: Fri., Dec. 9

8:00 AM 5:00 PM VSF01 - Workshop: Angular 2 Bootcamp
- John Papa

VSF02 - Workshop: Building Modern Web Apps with Azure
- Eric D. Boyd & Brian Randell

SQF01 - Workshop: Design and Implement SQL Server HA/DR
Hybrid Solutions with Microsoft Azure

- Edwin Sarmiento

SQF02 - Workshop: Big Data, Analytics and NoSQL:
Everything You Wanted to Learn But Were Afraid to Ask

- Andrew Brust

TMF01 - Workshop: Boost Your IT Career,
2017 Edition: The Don and Jason Show

- Don Jones and Jason Helmick

TMF02 - Workshop: BlackBelt—
Windows Security Internals

- Sami Laiho
OSF01 - Workshop: 10 Steps to be Successful with Enterprise Search

- Agnes Molnar

MAF01 - Workshop: Modern App Deep
Dive: Xamarin, Responsive Web, UWP,
CSLA .NET - Jason Bock, Allen Conway,

Brent Edwards & Kevin Ford
ADF01 - Workshop: To Be Announced

NEW!

www.live360events.com

REGISTER NOW AT LIVE360EVENTS.COM

Live! 360 Agenda-at-a-Glance

Speakers and sessions subject to change

ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

OFFICE & SHAREPOINT LIVE! TRACKS

SharePoint
On-Premises

Infrastructure
Management and

Administration

SharePoint, Office
365 and the Cloud

High-Value SharePoint
Workloads: Social,

Search, BI, Workflow,
and Business Process

Automation

Developing for
Office, Office 365
and SharePoint

SQL SERVER LIVE! TRACKS

BI, Big Data, Data
Analytics, and Data

Visualization

SQL Server
Administration
& Maintenance

SQL Server
in the Cloud

SQL Server
for Developers

SQL Server
Performance Tuning

and Optimization

START TIME END TIME Visual Studio Live! Pre-Conference: Sunday, December 4, 2016 SQL Server Live! Pre-Conference: Sunday, December 4, 2016 TechMentor Pre-Conference: Sunday, December 4, 2016 Office & SharePoint Live! Pre-Conf. Sun., Dec. 4, 2016 MAL! Pre-Conf.: Sun., Dec. 4 ADT Pre-Conf.: Sun., Dec. 4
5:00 PM 8:00 PM Pre-Conference Registration • Royal Pacific Resort Conference Center Pre-Conference Registration • Royal Pacific Resort Conference Center Pre-Conference Registration • Royal Pacific Resort Conference Center

6:00 PM 9:00 PM Dine-A-Round Dinner @ Universal CityWalk (6:00pm—Meet at Conference Registration Desk to walk over with the group) Dine-A-Round Dinner @ Universal CityWalk (6:00pm—Meet at Conference Registration Desk to walk over with the group) Dine-A-Round Dinner @ Universal CityWalk (6:00pm—Meet at Conference Registration Desk to walk over with the group)

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, December 5, 2016 SQL Server Live! Pre-Conference Workshops: Monday, December 5, 2016 TechMentor Pre-Conference Workshops: Monday, December 5, 2016 Office & SharePoint Live!: Mon., Dec. 5, 2016 MAL!: Monday, Dec. 5 ADT: Pre-Conference Workshops: Monday, Dec. 5

8:00 AM 5:00 PM
VSM01 - Workshop: Distributed Cross-Platform Application

Architecture
- Rockford Lhotka & Jason Bock

VSM02 - Workshop: Service Oriented
Technologies—Designing, Developing,
& Implementing WCF and the Web API

- Miguel Castro

VSM03 - Workshop: DevOps in a Day
- Brian Randell

SQM01 - Workshop: Performance Tune
SQL Server: Query Optimizer, Indexes,
the Plan Cache, and Execution Plans

- Bradley Ball

SQM02 - Workshop: SQL Server 2016
for Developers
- Leonard Lobel

TMM01 - Workshop: Sixty-seven VMware
vSphere Tricks That’ll Pay for This Conference!

- Greg Shields

TMM02 - Workshop: Demystifying the
Blue Screen of Death - Bring Your Own

Laptop Hands-On Lab (BYOL - HOL)
- Bruce Mackenzie-Low

8:00 AM – 12:00 PM: OSM01 - Workshop:
Installing and Configuring SharePoint

Server 2016 - Vlad Catrinescu

8:00 AM – 12:00 PM: OSM02 - Workshop:
A Beginner’s Guide to Client Side

Development in SharePoint - Mark Rackley MAM01 - Workshop: Building Modern
Mobile Apps

- Brent Edwards & Kevin Ford
ADM01 - Workshop: Building Teams -

Steve Green

ADM02 - Workshop: One Codebase
to Rule Them All: Xamarin

- Fabian Williams1:00 PM – 5:00 PM: OSM03 - Workshop:
Upgrade to SharePoint 2016

- Matthew McDermott

1:00 PM – 5:00 PM: OSM04 - Workshop:
Building Clients Side Applications in Office
365 with the New SharePoint Framework

- Andrew Connell

5:00 PM 6:00 PM EXPO Preview

6:00 PM 7:00 PM LIVE! 360 KEYNOTE: To Be Announced

TECHMENTOR TRACKS

Client DevOps IT Soft Skills The Real Cloud Security Server /
Datacenter

APP DEV TRENDS TRACKS

Agile Container-
ization

Continuous
Integration Java Mobile Cloud

MODERN APPS LIVE! TRACK

Presented in Partnership with:

VISUAL STUDIO LIVE! TRACKS

ALM /
DevOps

Cloud
Computing

Mobile
Client

Software
Practices

Visual Studio /
.NET Framework

Web
Client

Web
Server Windows Client

START TIME END TIME Visual Studio Live! Day 1: Tuesday, December 6, 2016 SQL Server Live! Day 1: Tuesday, December 6, 2016 TechMentor Day 1: Tuesday, December 6, 2016 Office & SharePoint Live! Day 1: Tues., Dec. 6 MAL! Day 1: Tues., Dec. 6 ADT Day 1: Tues., Dec. 6

8:00 AM 9:00 AM Visual Studio Live! Keynote: Topic to be announced – Tim Sneath, Principal Lead Program Manager, Visual Studio Platform, Microsoft SQL SERVER LIVE! KEYNOTE: The RDBMS is Dead. Long live the RDBMS!
– Buck Woody, Senior Technical Specialist, Machine Learning and Data Science Team, Microsoft

TECHMENTOR KEYNOTE: Sweet Sixteen, or Just Server 2012R3? A Glance at the Awesome,
the Irritating, the Improved and the Expensive in Server 2016

- Mark Minasi, IT Consultant, Author, Speaker, MR&D

OFFICE & SHAREPOINT LIVE! KEYNOTE:
The Modern Workplace and the SharePoint Revolution

 - Chris Bortlik, Collaboration Solution Architect, Microsoft

MAL! KEYNOTE: Topic TBA
– Tim Sneath, Principal Lead
Program Manager, Microsoft

APP DEV TRENDS KEYNOTE: You Are the Future of Enterprise
Java! – Reza Rahman, Speaker, Author, Consultant

9:00 AM 9:30 AM Networking Break • Visit the EXPO

9:30 AM 10:45 AM
VST01 - Building Applications with

ASP.NET Core
- Scott Allen

VST02 - Busy .NET Developer's Guide
to Swift

- Ted Neward
VST03 - What's New in Azure v2

- Eric D. Boyd

VST04 - Real World Scrum with
Team Foundation Server 2015
& Visual Studio Team Services

- Benjamin Day

SQT01 - Performance Tuning
and Monitoring for Virtualized

Database Servers
- Thomas LaRock

SQT02 - What's New
in SQL Server 2016

- Leonard Lobel

SQT03 - Power BI: Analytics for Desktop,
Mobile and Cloud

- Andrew Brust

TMT01 - Secure Access Everywhere!
Implementing DirectAccess in Windows

Server 2016 - Richard Hicks

TMT02 - Linux on Azure for the Microsoft
Specialist

- Timothy Warner

TMT03 - The Absolute
Beginner’s Guide to Advanced Certificate

Services
- Greg Shields

OST01 - What's New in
SharePoint 2016 for IT Pros

- Vlad Catrinescu
OST02 - To Be Announced

MAT01 - Modern App
Development: Transform How You Build

Web and Mobile Software
- Rockford Lhotka

ADM01 - Hacking Technical Debt
- Steve Green

ADT02 - Java 8 Lambdas and
the Streaming API
- Michael Remijan

11:00 AM 12:15 PM
VST05 - Richer MVC Sites

with Knockout JS
- Miguel Castro

VST06 - Busy .NET Developer's Guide to
Native iOS

- Ted Neward
VST07 - Overview of Power Apps

- Nick Pinheiro

VST08 - Get Good at DevOps: Feature
Flag Deployments with ASP.NET,

WebAPI, & JavaScript
- Benjamin Day

SQT04 - U-SQL Query Execution
and Performance Tuning

- Michael Rys

SQT05 - Implementing Data Protection
and Security in SQL Server 2016

- Steve Jones

SQT06 - Seeking the Perfect Hybrid:
On-Prem Data with Reports and

Dashboards in Power BI
- William E. Pearson III

TMT04 - DirectAccess Troubleshooting
Deep Dive

- Richard Hicks

TMT05 - Container Technology and
its Impact on Datacenter and Cloud

Management - Neil Peterson

TMT06 - Master Camtasia
and Build Your Own Training

in 75 Minutes or Less
- Greg Shields

OST03 - Optimizing SQL Server for
SharePoint

- Brian Alderman

OST04 - How It Works: Office 365 and the
Microsoft Graph

- Bill Ayers

MAT02 - Architecture: The
Key to Modern App Success

- Brent Edwards
ADT03 - Are You A SOLID Coder?

- Steve Green
ADT04 - PrimeFaces 5: Modern

UI Widgets for Java EE
- Kito Mann

12:15 PM 2:00 PM Lunch • Visit the EXPO

2:00 PM 3:15 PM
VST09 - WCF & Web API:

Can We All Just Get Along?!?
- Miguel Castro

VST10 - Creating Great Looking Android
Applications Using Material Design

- Kevin Ford

VST11 - Introduction to Next Generation of
Azure PaaS—Service Fabric and Containers

- Vishwas Lele
VST12 - To Be Announced

SQT07 - New Performance Tuning
and Security Features in SQL Server 2016

- Thomas LeBlanc

SQT08 - Introduction to
Elastic Azure SQL Database

- Bradley Ball
SQT09 - To Be Announced

TMT07 - Windows as a Service Explained:
Really, I've Got to Upgrade Every Year?

- Mark Minasi
TMT08 - To Be Announced

TMT09 - Getting Started
with Nano Server

- Jeffery Hicks

OST05 - IT Pros Guide to Managing
SharePoint Search

- Matthew McDermott
OST06 - To Be Announced

MAT03 - Manage Distributed
Teams with Visual Studio Team Services

and Git
- Brian Randell

ADT05 - Agile Architecture
- Steve Green

ADT06 - Full Stack Java with JSweet,
Angular 2, PrimeNG, and JAX-RS

- Kito Mann

3:15 PM 4:15 PM Networking Break • Visit the EXPO

4:15 PM 5:30 PM
VST13 - Busy Developer's Guide

to Chrome Development
- Ted Neward

VST14 - Using Visual Studio Tools
for Apache Cordova to Create

MultiPlatform Applications
- Kevin Ford

VST15 - Cloud Oriented Programming
- Vishwas Lele

VST16 - Bringing DevOps
to the Database

- Steve Jones

SQT10 - Performance Tuning and
Troubleshooting Azure SQL Database

- Bradley Ball

SQT11 - No Schema, No Problem!:
Introduction to Azure DocumentDB

- Leonard Lobel

SQT12 - Getting Started with Data
Analysis eXpressions (DAX) in
Analysis Services Tabular 2016

- William E. Pearson III

TMT10 - Troubleshooting Client
Communications with Wireshark

- Timothy Warner

TMT11 - Azure Point-to-Site VPN Suck! Fix
It with Win2012R2 VPN in the Cloud

- Richard Hicks

TMT12 - Implementing
Hyper-V Failover Clusters
in Windows Server 2016
- Bruce Mackenzie-Low

OST07 - Integrating Office Online Server
with SharePoint

- Brian Alderman

OST08 - Introduction to the Office Dev PnP
Core Library

- Rob Windsor

MAT04 - Focus on the User Experience
#FTW

- Anthony Handley
ADT07 - Crafting Innovation

- Steve Green

ADT08 - Who’s Taking Out
the Garbage? How Garbage Collection

Works in the VM
- Kito Mann

5:30 PM 7:30 PM Exhibitor Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, December 7, 2016 SQL Server Live! Day 2: Wednesday, December 7, 2016 TechMentor Day 2: Wednesday, December 7, 2016 Office & SharePoint Live! Day 2: Wed., Dec. 7 MAL! Day 2: Wed., Dec. 7 ADT Day 2: Wed., Dec. 7
8:00 AM 9:15 AM VSW01 - Moving from

Angular 1 to Angular 2
- Ben Dewey

VSW02 - The Future of Mobile
Application Search

- James Montemagno

VSW03 - Managing Enterprise
and Consumer Identity with Azure

Active Directory
- Nick Pinheiro

VSW04 - Improving Performance
in .NET Applications

- Jason Bock

SQW01 - Inside the SQL Server Query
Optimizer: SQL 2014 & 2016

- Bradley Ball

SQW02 - SQL Server
2016 Encryption
- Thomas LaRock

SQW03 - Big Data with Hadoop, Spark
and Azure HDInsight

- Andrew Brust

TMW01 - Creating Advanced Functions
in PowerShell

- Michael Wiley

TMW02 - Implementing Azure AD for
Hybrid Identity

- Timothy Warner

TMW03 - Managing Windows 10 Using the
MDM Protocol
and ConfigMgr
- Steven Rachui

OSW01 - PowerShell for
Office 365

- Vlad Catrinescu

OSW02 - Become a Developer Hero by
Building Office Add-ins

- Bill Ayers

MAW01 - DevOps, Continuous Integration,
the Cloud, and Docker

- Dan Nordquist
ADW01 - Stop Killing Requirements!

- Melissa Green

ADW02 - Migrating Customers
to Microsoft Azure: Lessons

Learned From the Field
- Ido Flatow

9:30 AM 10:45 AM VSW05 - Getting Started
with Aurelia

- Brian Noyes

VSW06 - Building Connected and
Disconnected Mobile Applications

- James Montemagno

VSW07 - Practical Internet of Things
for the Microsoft Developer

- Eric D. Boyd

VSW08 - I'll Get Back to You:
Understanding Task, Await, and

Asynchronous Methods
- Jeremy Clark

SQW04 - Does Your Performance Tuning
Need a 12-Step program?

- Janis Griffin

SQW05 - Master Data Management with
Data Quality (DQS) and Master Data
Services (MDS) in SQL Server 2016

- Thomas LeBlanc

SQW06 - Getting Started with
PolyBase in SQL Server 2016

- Edwin Sarmiento

TMW04 - Creating Class-Based
PowerShell Tools

- Jeffery Hicks
TMW05 - Fully Integrated Azure Resource

Manager Deployments - Neil Peterson
TMW06 - Building Applications in

ConfigMgr—Tips and Tricks
- Steven Rachui

OSW03 - Managing Data Recovery in
SharePoint

- Brian Alderman

OSW04 - Utilizing jQuery
in SharePoint—Get
More Done Faster

- Mark Rackley

MAW02 - Mobile Panel
- Kevin Ford, Rockford Lhotka,

James Montemagno, & Ryan J. Salva

ADW03 - Meeting-Free Software
Development in Distributed Teams

- Yegor Bugayenko

ADW04 - The Essentials of Building Cloud-
Based Web Apps with Azure

- Ido Flatow

10:45 AM 11:15 AM Networking Break • Visit the EXPO

11:15 AM 12:15 PM LIVE! 360 KEYNOTE: To Be Announced

12:15 PM 1:45 PM Birds-of-a-Feather Lunch • Visit the EXPO

1:45 PM 3:00 PM VSW09 - Living in a Command Line
Web Development World (NPM,

Bower, Gulp, and More)
- Ben Dewey

VSW10 - Understanding the Windows
Desktop App Development Landscape

- Brian Noyes
VSW11 - To Be Announced

VSW12 - Learn to Love
Lambdas (and LINQ, Too)

- Jeremy Clark

SQW07 - Configuring SQL Server
for Performance—Like a

Microsoft Certified Master
- Thomas LaRock

SQW08 - To Be Announced

SQW09 - Big Data's Missing V:
Visualization. How Do You

BigViz Your Big Data?
- Jennifer Stirrup

TMW07 - Creating WPF-Based Graphical
PowerShell Tools

- Jeffery Hicks
TMW08 - To Be Announced

TMW09 - SysInternals
Tools: Process Explorer and Process

Monitor
- Sami Laiho

OSW05 - Scripting SharePoint 2016 Tasks
with PowerShell

- Ben Stegink

OSW06 - Customizing Your SharePoint
Forms Without

Third Party Applications
- Mark Rackley

MAW03 - C# Everywhere: How
CSLA .NET Enables Amazing
Cross-Platform Code Reuse

- Rockford Lhotka

ADW05 - Introduction to
Microsoft Office Graph

- Fabian Williams

ADW06 - Building IoT and Big
Data Solutions on Azure

- Ido Flatow

3:00 PM 4:00 PM Networking Break • Visit the EXPO • Expo Raffle @ 3:30 p.m.

4:00 PM 5:15 PM
VSW13 - Securing Client JavaScript Apps

- Brian Noyes

VSW14 - Let's Write a Windows 10 App:
A Basic Introduction to Universal Apps

- Billy Hollis

VSW15 - ARM Yourself for Azure Success
- Esteban Garcia

VSW16 - Continuous Delivery on
Azure: A/B Testing, Canary Releases,

and Dark Launching
- Marcel de Vries

SQW10 - Performance in
60 Seconds—SQL Tricks
Everybody MUST Know

- Pinal Dave

SQW11 - Welcome to the
2016 Query Store!

- Janis Griffin

SQW12 - Improve Enterprise Reporting
with SQL Server Analysis Services

- Thomas LeBlanc

TMW10 - Harvesting the Web: Using
PowerShell to Scrape Screens, Exploit

Web Services, and Save Time
- Mark Minasi

TMW11 - In-Depth
Introduction to Docker

- Neil Peterson

TMW12 - War Driving:
How it Happens, How

to Protect Yourself
- Dale Meredith

OSW07 - Learn Best Practices for
Managing and Administering SharePoint

Online and OneDrive for Business
- Chris Bortlik

OSW08 - Using the
Office UI Fabric

- Paul Schaeflein

MAW04 - Coding for Quality
and Maintainability

- Jason Bock

 ADW07 - As You Think About
Azure Databases, Think

About DocumentDb
- Fabian Williams

ADW08 - Where Does JavaScript Belong in
the App Store?

- Jordan Matthiesen

8:00 PM 10:00 PM Live! 360 Dessert Luau

START TIME END TIME Visual Studio Live! Day 3: Thursday, December 8, 2016 SQL Server Live! Day 3: Thursday, December 8, 2016 TechMentor Day 3: Thursday, December 8, 2016 Office & SharePoint Live! Day 3: Thurs., Dec. 8 MAL! Day 3: Thurs., Dec. 8 ADT Day 3: Thurs., Dec. 8

8:00 AM 9:15 AM
VSH01 - Build Real-Time Websites

and Apps with SignalR
- Rachel Appel

VSH02 - Cognitive Services: Building Smart
Applications with Computer Vision

- Nick Landry
VSH03 - C# Best Practices

- Scott Allen
VSH04 -Application Insights: Measure

Your Way to Success
- Esteban Garcia

SQH01 - Stretching SQL Server Failover
Clustered Instances & Availability Groups

to a Disaster Recovery Site
- Edwin Sarmiento

SQH02 - Production SQL Server 2016—
Lessons from the Field

- Joseph D'Antoni

SQH03 - Agile Analytics with
AzureML and R

- Jennifer Stirrup

TMH01 - PowerShell and Workflow —
Magic Together!
- Michael Wiley

TMH02 - Pen-Testing Like
an IT Superhero
- Dale Meredith

TMH03 - Windows Clusters for Beginners:
From Highly Fearful to Highly Reliable in

75 Minutes!
- Mark Minasi

OSH01 - Implementing and Managing
Office 365

- Ben Stegink

OSH02 - Enterprise JavaScript
Development Patterns

- Rob Windsor

MAH01 - Modern Mobile Development:
Build a Single App For iOS & Android with

Xamarin Forms
- Kevin Ford

ADH01 - From VMs to Containers:
Introducing Docker Containers for Linux

and Windows Server
- Ido Flatow

ADH02 - Continuous Testing
in a DevOps World

- Wayne Ariola

9:30 AM 10:45 AM
VSH05 - HTTP/2: What You

Need to Know
- Robert Boedigheimer

VSH06 - Building Business Apps on the
Universal Windows Platform

- Billy Hollis

VSH07 - Debugging Your Way Through
.NET with Visual Studio 2015

- Ido Flatow

VSH08 - The Ultimate Intro to
Docker for Developers

- Adam Tuliper

SQH04 - Indexes —The Good, Bad and Ugly
- Pinal Dave

SQH05 - Would You Just Load Already?!
Maximizing Your SSIS Data Load

- Chris Bell

SQH06 - A Blueprint for Business
Intelligence with SQL Server 2016

- Jennifer Stirrup

TMH04 - You're Writing Your
PowerShell Functions Wrong. Stop It.

- Don Jones

TMH05 - Mobile Devices
and Security: The Bane of

the IT Superhero
- Dale Meredith

TMH06 - Office 365
Risk Mitigation

- J. Peter Bruzzese

OSH03 - Five Business Challenges of Hybrid
Search in SharePoint 2016 and Office 365

- Agnes Molnar

OSH04 - Made for Mobile—
Let the Microsoft Graph Power Your

Mobile Apps!
- Bill Ayers

MAH02 - Universal Windows Development:
UWP for PC,

Tablet & Phone
- Brent Edwards

ADH03 - CQRS 2.0 - Commands, Actors,
and Events...Oh My!

- David Hoerster

ADH04 - Microservices as
Chat Bots are the Future

- Yegor Bugayenko

11:00 AM 12:15 PM
VSH09 - TypeScript and

ES2015 JumpStart
- John Papa

VSH10 - HoloLens
- Billy Hollis & Brian Randell

VSH11 - Exploring Microservices in
a Microsoft Landscape

- Marcel de Vries

VSH12 - Automated UI Testing for iOS
and Android Mobile Apps

- James Montemagno

SQH07 - Securing Your Database with
SQL Server 2016 Features

- Edwin Sarmiento

SQH08 - Statistics and Cardinality—How
They Work Together to Find Data Efficiently

- Chris Bell

SQH09 - New and Shiny: The All-New SQL
Server Reporting Services 2016

- Tim Mitchell

TMH07 - PowerShell Desired State
Configuration (DSC) for the IT Ops Guy

- Jason Helmick

TMH08 - Understanding Windows
10/2016's Super Security: VSM, Credential

Guard, Trustlets and More - Mark Minasi
TMH09 - Evolving as an IT Pro

- J. Peter Bruzzese

OSH05 - To the Cloud!
Using IaaS as a Hosting
Provider for SharePoint

- Scott Hoag & Dan Usher

OSH06 - Introduction to
the SharePoint Client Object Model and

REST API
- Rob Windsor

MAH03 - Modern Web Development: ASP.
NET MVC

and Web API
- Allen Conway

ADH05 - The Curious Case for
the Immutable Object

- David Hoerster

ADH06 - Continuous Integration
May Have Negative Effects

- Yegor Bugayenko

12:15 PM 1:30 PM Lunch on the Lanai

1:30 PM 2:45 PM
VSH13 - All Your Tests

Are Belong To Us
- Rachel Appel

VSH14 - Developing Awesome 3D
Apps with Unity and C#

- Adam Tuliper

VSH15 - Unit Testing Makes Me
Faster: Convincing Your Boss, Your

Co-Workers, and Yourself
- Jeremy Clark

VSH16 -Writing Maintainable,
X-Browser Automated Tests

- Marcel de Vries

SQH10 - Secrets of SQL Server—
Database Worst Practices

- Pinal Dave

SQH11 - Powerful T-SQL Improvements
that Reduce Query Complexity

- Hugo Kornelis
SQH12 - Testing SSIS Packages

- Tim Mitchell

TMH10 - PowerShell Unplugged:
Stump Don
- Don Jones

TMH11 - Facing Increasing Malware
Threats and a Growing Trend of BYOD with

a New Approach of PC Security -
 Yung Chou

TMH12 - The Labyrinth of Exchange
Migration Options
- J. Peter Bruzzese

OSH07 - Findability in
YOUR Organization

- Agnes Molnar

OSH08 - Leveraging Angular2
to Build Office Add-ins

- Andrew Connell

MAH04 - Modern Web Development:
Building a Smart Web Client with TypeScript

and Angular2 - Allen Conway
ADH07 - To Be Announced

ADH08 - Mobile DevOps Demystified with
Xamarin, VSTS and HockeyApp

- Roy Cornelissen

3:00 PM 4:15 PM
VSH17 - SASS and CSS

for Developers
- Robert Boedigheimer

VSH18 - From Oculus to HoloLens: Building
Virtual & Mixed Reality Apps & Games

- Nick Landry

VSH19 - User Experience Case Studies—
Good and Bad
- Billy Hollis

VSH20 - Debugging the Web with Fiddler
- Ido Flatow

SQH13 - Hacking Expose—Using SSL
to Secure SQL Server Connections

- Chris Bell

SQH14 - T-SQL User-Defined Functions, or:
Bad Performance Made Easy

- Hugo Kornelis

SQH15 - Essential Architecture for
BI in a Virtual Environment

- Joseph D'Antoni

TMH13 - Building Highly Available and
Secure DSC Pull Servers

- Jason Helmick

TMH14 - Penetration Tests
in Real Life

- Sami Laiho

TMH15 - What's IoT Got to
Do with IT Pros? A Lot!

- Yung Chou

OSH09 - Setting Up Directory
Synchronization for Office 365

- Scott Hoag & Dan Usher
OSH10 - Webhooks in Office 365

- Paul Schaeflein
MAH05 - Using All That Data:

Power BI to the Rescue
- Scott Diehl

ADH09 - Get Started with
Microsoft PowerApps

- Fabian Williams

ADH10 - Overcoming the
Challenges of Mobile Development

in the Enterprise
- Roy Cornelissen

4:30 PM 5:30 PM Live! 360 Conference Wrap-Up - Andrew Brust (Moderator), Andrew Connell, Don Jones, Rockford Lhotka, Matthew McDermott, Brian Randell, & John K. Waters

START TIME END TIME Visual Studio Live! Post-Conference Workshops: Friday, December 9, 2016 SQL Server Live! Post-Conference Workshops: Friday, December 9, 2016 TechMentor Post-Conference Workshops: Friday, December 9, 2016 O&SPL! Post-Conf. Workshop: Fri., Dec. 9 MAL!: Fri., Dec. 9 ADT Post-Conf. Workshop: Fri., Dec. 9

8:00 AM 5:00 PM VSF01 - Workshop: Angular 2 Bootcamp
- John Papa

VSF02 - Workshop: Building Modern Web Apps with Azure
- Eric D. Boyd & Brian Randell

SQF01 - Workshop: Design and Implement SQL Server HA/DR
Hybrid Solutions with Microsoft Azure

- Edwin Sarmiento

SQF02 - Workshop: Big Data, Analytics and NoSQL:
Everything You Wanted to Learn But Were Afraid to Ask

- Andrew Brust

TMF01 - Workshop: Boost Your IT Career,
2017 Edition: The Don and Jason Show

- Don Jones and Jason Helmick

TMF02 - Workshop: BlackBelt—
Windows Security Internals

- Sami Laiho
OSF01 - Workshop: 10 Steps to be Successful with Enterprise Search

- Agnes Molnar

MAF01 - Workshop: Modern App Deep
Dive: Xamarin, Responsive Web, UWP,
CSLA .NET - Jason Bock, Allen Conway,

Brent Edwards & Kevin Ford
ADF01 - Workshop: To Be Announced

NEW!

www.live360events.com
www.live360events.com

ROYAL PACIFIC RESORT AT UNIVERSAL
DECEMBER 5-9

Live! 360SM is a unique conference where the IT and
Developer community converge to debate leading edge
technologies and educate themselves on current ones.

These six co-located events incorporate knowledge transfer
and networking, along with fi nely tuned education and

training, as you create your own custom conference, mixing
and matching sessions and workshops to best suit your needs.

Choose the ultimate education destination: Live! 360.

� e Ultimate Educatio� Destinatio�

 Rachel Appel Jason Bock Billy Hollis Miguel Castro Marcel de Vries

 Adam Tuliper Nick Landry Brian Noyes John Papa Brian Randell

 Andrew Brust Pinal Dave Edwin Sarmiento Leonard Lobel Janis Griffi n

 Jeffery Hicks Don Jones Sami Laiho Mark Minasi Greg Shields

 Bill Ayers Mark Rackley Andrew Connell
 Matthew
McDermott Agnes Molnar

 Allen Conway Brent Edwards Kevin Ford Scott Diehl Rockford Lhotka

 Steven Green Melissa Green Kito D Mann Fabian Williams Yegor Bugayenko

REGISTER BY OCTOBER 5
AND SAVE $400!
Use promo code L360TipIn

VIEW THE FULL LIST OF SPEAKERS AT LIVE360EVENTS.COM

CONNECT WITH LIVE! 360
 twitter.com/@live360events

 facebook.com – Search “Live 360”

 linkedin.com – Join the “Live 360” group!

Feature� Speaker�

REGISTER BY OCTOBER 5
AND SAVE $400!

Use promo code
L360TipIn

Scan the QR code to
register or for more
event details.

Connect wit� Live! 360
twitter.com/live360
@live360

facebook.com
Search "Live 360"

linkedin.com
Join the "Live! 360" group!

Great Conference�
Great Price

Visual Studio Live!: VSLive!™ is a victory for code,
featuring unbiased and practical development training

on the Microsoft Platform.

SQL Server Live!: This conference will leave you with the
skills needed to Lead the Data Race, whether you are a

DBA, developer, IT Pro, or Analyst.

TechMentor
SM

: This is IT training that fi nishes fi rst, with
zero marketing speak on topics you need training on

now, and solid coverage on what’s around the corner.

Offi ce & SharePoint Live!: Provides leading-edge
knowledge and training for SharePoint both on-premises

and in Offi ce 365 to maximizethe business value.

Modern Apps Live!: Presented in partnership
with Magenic, this unique conference leads the

way to learning how to architect, design and
build a complete Modern App.

App Dev Trends: This new technology conference
focuses on the makers & maintainers of the software

that power organizations in nearly every industry in the
world — in other words, enterprise software professionals!

NEW!

LIVE360EVENTS.COM

Live! 360 brings you over 90 speakers; some of the best and brightest experts in the industry.

LIVE360EVENTS.COM

Take the Tour
Six events, 25+ tracks, and literally hundreds

of sessions to choose from — mix and match
sessions to create your own, custom event line-up

 — it’s like no other conference available today.

EVENT PARTNERS GOLD SPONSORSPLATINUM SPONSORS PRODUCED BYSUPPORTED BY

NEW!

SILVER
SPONSOR

www.live360events.com
www.live360events.com
https://twitter.com/live360events
https://facebook.com/live360events
https://www.linkedin.com/
https://www.linkedin.com/
https://facebook.com/live360events
https://twitter.com/live360events

33October 2016msdnmagazine.com

ullAvailPhys is the amount of physical memory currently available
on the system, but this doesn’t mean that this memory is actually
available to the app. On all platforms apart from the desktop, it’s likely
to be significantly more than the amount of memory the current
UWP app will actually be allowed to use, because its commit usage
is constrained by policy, regardless of available physical memory.

For most apps, the MemoryManager API gives you all you
need, and all the metrics that you can directly and easily influence
in your app. ProcessDiagnosticInfo and GlobalMemoryStatusEx
include some additional information that you can’t directly
influence, but which a more sophisticated app might want to pivot
off for logic decisions, for profiling during development, and for
telemetry purposes.

Visual Studio
Diagnostics Tools
The memory diagnostic tool in
Visual Studio 2015 updates its
report in real time during debug-
ging. You can turn this on while
in a debug session by selecting the
Debug menu, and then Show Diag-
nostic Tools, as shown in Figure 3.

The live graph in the Process
Memory window tracks private
commit, which corresponds to the
AppMemoryReport.PrivateCom-
mitUsage and the ProcessMemory-
UsageReport.PageFileSizeInBytes.
It doesn’t include shared memory,
so it represents only part of the
metric reported in Memory-
Manager.AppMemoryUsage, for
example. Note that if you hover
over any point in the graph, you’ll

get a tooltip with usage data for that point in time.
You can also use the tool to take snapshots for more detailed

comparisons. This is especially useful if you’re trying to track down
a suspected memory leak. In the following example, the app has
two methods, one that allocates memory (simulating a leak) and
the other that’s naively attempting to release that memory:

private List<byte[]> buffer = new List<byte[]>();

private void SimulateLeak(){
 buffer.Add(new byte[10 * 1024 * 1024]);
}

private void CleanUp(){
 buffer.Clear();
}

A glance at the memory graph will show that the memory isn’t
actually getting released at all. In
this example, the simplest fix is to
force a garbage collection. Because
collection is generational, in sce-
narios where you have complex
object trees (which this example
doesn’t), you might need to make
two collection passes, and also wait
for the collected objects’ finalizers
to run to completion. If your app
is allocating large objects, you can
also set GCLargeObjectHeapCom-
pactionMode to compact the Large
Object Heap when a collection
is made. The Large Object Heap
is used for objects greater than
80KB; it’s rarely collected unless
forced; and even when collected,
it can leave heap fragmentation.
Forcing it to be compacted will
increase your app’s chances of

Figure 3 Analyzing Process Memory in the Visual Studio Diagnostic Tools

Figure 4 Examining the Referenced Types in a Memory Snapshot

1016msdn_WhitechapelUWP_v3_28-34.indd 33 9/12/16 1:55 PM

http://www.msdnmagazine.com

msdn magazine34 Universal Windows Platform

allocating large objects later on. Note that the garbage collector
generally does a very good job on its own without prompting from
the app—you should profile your app carefully before deciding
whether you need to force a collection at any time:

private void CleanUp(){
 buffer.Clear();
 GCSettings.LargeObjectHeapCompactionMode =
 GCLargeObjectHeapCompactionMode.CompactOnce;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 GC.Collect();
 GC.WaitForPendingFinalizers();
}

The example in Figure 3 shows three snapshots, taken before
allocating memory, after allocating memory and then after releas-
ing memory (using the updated version of the code). The increase
and decrease in memory usage is clear from the graph.

The blue arrows show where the snapshots were taken. The gold
arrow shows where a garbage collection was done. The snapshot
data is listed in the Memory Usage window below, including details
of the heap. The red up arrow in this list indicates where memory
usage increased relative to the previous snapshot; conversely the
green down arrow shows where it decreased. The delta in this case
is 10MB, which matches the allocation done in the code. The Object
column lists the total number of live objects on the heap—but the
more useful count is the Diff. Both counts are also hyperlinks: for
example, if you click the Diff count, it will expand out a detailed
breakdown of the increase or decrease in objects allocated by the
app at that point in time. From this list, you can select any object
to get a more detailed view. For example, select the MainPage
in the object window, and this will pull up a breakdown in the
Referenced Types window, as shown in Figure 4. The size increase
in this example is clearly for the 10MB array.

The Referenced Types view shows you a graph of all types your
selected type is referencing. The alternative view is the Paths to
Root view, which shows the opposite—the complete graph of types
rooting your selected type; that is, all the object references that are
keeping the selected object alive.

You can choose to focus either on managed memory allocations,
native memory allocations or both. To change this, select the Project
menu, then the project Properties. On the Debug tab, select the
Debugger type (Managed, Native or Mixed), then turn on Heap Pro-
filing in the Memory Usage, as shown in Figure 5. In some cases, as
in this example, you’ll see that even though the app is forcing a gar-
bage collection and cleaning up managed allocations, the number
and size of native allocations actually increases. This is a good way
to track the full memory usage effects of any operation your app
performs, rather than focusing solely on the managed side of things.

This is turned off by default
because profiling the native heap
while debugging will significantly
slow down the app’s performance. As
always, profiling should be done on a
range of target devices—and prefer-
ably using real hardware rather than
emulators, as the characteristics are
different. While profiling is useful
during development, your app can

continue to use the MemoryManager and related APIs during pro-
duction, for making alternate feature decisions in production and
for telemetry. On top of that, because they can be used outside the
debugging environment—and without the memory overhead of
debugging—they more accurately represent the app’s behavior in real use.

Wrapping Up
Users typically install many apps on their devices, and many apps
have both foreground and background components. Resource
policy strives to ensure that the limited resources on the device are
apportioned thoughtfully, in a way that matches the user’s expecta-
tions. Priority is given to activities the user is immediately aware of,
such as the foreground app, background audio or incoming VoIP
calls. However, some resources are also allocated to less import-
ant background tasks, to ensure that, for example, the user’s tiles
are updated in a timely manner, e-mail is kept synced in the back-
ground, and that app data can be kept refreshed ready for the next
time the user launches an app.

Resource policy is consistent across all Windows 10 platforms,
although it also allows for variability in device capabilities. In this
way, a UWP app can be written to target Windows desktop, mobile,
Xbox, HoloLens or IoT while being resilient to device variation.
The app platform offers a set of APIs the app can use to track its
resource usage, to respond to notifications from the system when
interesting resource-related events happen and to tune its behavior
accordingly. The app developer can also use debugging tools in
Visual Studio to profile his app, and eliminate memory leaks.	 n

Andrew Whitechapel is a program manager in the Microsoft Windows division,
responsible for the app execution and resource policy for the Universal Windows
Application Platform.

Thanks to the following technical experts for reviewing this article:
Mark Livschitz and Jeremy Robinson

Figure 5 Tracking Both Managed and Native Heap Usage

Resource policy strives to ensure
that the limited resources on
the device are apportioned
thoughtfully, in a way that

matches the user’s expectations.

1016msdn_WhitechapelUWP_v3_28-34.indd 34 9/12/16 1:55 PM

GdPicture.NET is an

Untitled-3 1 5/3/16 12:35 PM

www.gdpicture.com

msdn magazine36

Enterprises are generating huge amounts of data, and a
lot of that data contains latitude and longitude location information.
The Bing Maps version 8 library, released in June 2016, has many
new features that allow you to create interactive geo-applications.
In this article I present two Web applications that demonstrate
some of the most interesting features of the Bing Maps 8 library.
The first application highlights some of the features that allow user
interaction, including a new drawing control and full event model
capabilities. The second application highlights some of the features
that allow users to deal with large amounts of data, including a new
data clustering module and heat map visualizations.

This article assumes you have basic familiarity with Web appli
cation development but doesn’t assume you know anything about
geolocation applications or the Bing Maps 8 library. The two
demo Web applications use only standard HTML and standard
JavaScript—no ASP.NET, and no JavaScript framework-of-the-
month. Each of the two demo Web applications is contained in a
single HTML file. The complete source code and the two data files
used are available in the accompanying code download.

Take a look at the first Web application in Figure 1. When the
Web page loaded, the HTML controls on the left were rendered
immediately while the map was being fetched asynchronously.
The map object is centered near Portland, Ore., and a default-style
purple pushpin marker was placed at the map center.

I then clicked on the HTML5 File control Browse button and
pointed to a text file named LatLonData.txt, stored on my local
machine in the C:\Data directory. The file has four data points and
each has some associated text. Then I clicked on the button con-
trol labeled Place Pushpins and the application read the text file,
created four custom-styled small orange pushpins and placed them
on the left side of the map.

Next, I clicked on the polygon item in the drawing tools con-
trol in the upper-right part of the map and interactively drew a
four-sided green polygon just above the city of Vancouver, Wash.
I drew a second polygon with three sides, to the right and below
the map center. During drawing, the Web application listened for

B IN G MAPS

Create Interactive
Geo-Applications
Using Bing Maps 8
James McCaffrey

This article discusses:
•	Creating pushpins and polygons

•	Initializing the map object

•	Creating and displaying custom pushpins

•	Retrieving interactive shapes

•	Visualizing data with heat maps and clustered pushpins

Technologies discussed:
Bing Maps 8, JavaScript, HTML5

Code download available at:
msdn.com/magazine/1016magcodes

1016msdn_McCaffreyMaps_v4_36-43.indd 36 9/12/16 2:00 PM

http://msdn.com/magazine/1016magcodes

37October 2016msdnmagazine.com

drawing-start and drawing-end events, and printed messages when
those events fired.

I clicked on the button control labeled Drawn Shape Info and
the Web application retrieved information about the interactively
created polygons, and displayed the three vertices of the triangle
polygon. Next, I moved my mouse cursor over and then away
from the bottom-most orange pushpin. The application code
caught the mouseover and mouseout and displayed the location
of the events. Although it’s not visible in the image, when I moved
my mouse cursor over the pushpin, a popup Infobox object
appeared, and when I moved the mouse cursor away, the Infobox
automatically disappeared.

I finished my demo session by moving the mouse cursor over the
top-most orange pushpin and the application responded by cre-
ating a default-style Infobox object that displayed data associated
with the pushpin (the text “first data location”) and the location of
the pushpin (45.46, -122.90).

To summarize, the first Web application demonstrates asynchro-
nous map loading, dynamic custom pushpins, rich event modeling,
interactive shape creation and Infobox objects.

Creating the Pushpins and Polygons Demo
Application
Before I started writing the first Web page, I created the source
data file using Notepad:

45.46,-122.90,first location data
45.38,-122.90,second location data
45.42,-122.94,third location data
45.42,-122.86,fourth location data

I didn’t hit the <enter> key after the last line of data so my
file-reading code wouldn’t try to interpret an empty line of text. I
used commas as the field delimiter, but I could have used the tab

character. I saved the data file as
LatLonData.txt in the C:\Data
directory on my local machine.
As you’ll see, Bing Maps can work
with any kind of data store.

I used the Notepad program to
create the demo Web applications.
I like Notepad when learning a new
technology because it forces me to
be careful and there’s no hidden
magic to obscure the key ideas.

Because I used only plain vanilla
HTML and JavaScript, I didn’t need
to do anything special to prepare
IIS or my machine. I created a
directory named NodeAtlasLight
in the C:\inetpub\wwwroot direc-
tory on my machine. That name is
arbitrary and you can use whatever
name you like if you want to run
the demo Web applications.

I launched Notepad using the
“Run as administrator”option so
I’d be able to save my code under

the protected C:\inetpub root directory. I named the application
PushpinsAndPolygonsDemo.html, but the Bing Maps 8 library
has no required naming conventions, so you can use a different
filename if you wish.

The overall structure of the Web application is shown in Figure
2. Here’s a highly abbreviated version of the structure:

<html>
 <head>
 <script type=‘text/javascript’>
 // All JavaScript here
 </script>
 </head>
 <body>
 <!-- all HTML here -->

 <script type='text/javascript'
 src='http://www.bing.com/api/maps/mapcontrol?callback=GetMap'
 async defer></script>
 </body>
</html>

The key code is the <script> tag located at the bottom of the
<body> section. You can loosely interpret this to mean, “Load
the basic Bing Maps 8 library asynchronously while the HTML

Figure 1 Pushpins and Polygons Demo

It’s possible to load the Bing
Maps 8 library synchronously,

but an asynchronous load gives
a better UX in situations where

the library is slow to load.

1016msdn_McCaffreyMaps_v4_36-43.indd 37 9/12/16 2:00 PM

http://www.msdnmagazine.com

msdn magazine38 Bing Maps

is rendering. When the library has loaded, transfer control to a
JavaScript function named GetMap.” It’s possible to load the Bing
Maps 8 library synchronously, but an asynchronous load gives a
better UX in situations where the library is slow to load.

The overall layout of the Web page consists of two side-by-side
floating <div> areas. The left-side <div> holds the HTML controls.
The right-side <div> holds the Map object:

<div id='mapDiv' style="float:left; width:700px; height:600px;
 border:1px solid red;">
</div>

It’s possible to have multiple Map objects for specialized scenarios.
Instead of specifying the map width and height using pixel units,
you can also use the CSS3 viewport units, vw and vh. For simplic-
ity, I embed all HTML styling directly rather than using a separate
CSS file, at the minor expense of a bit of messiness.

To summarize, a Bing Maps 8 map object is created using a
program-defined JavaScript function, and is placed in an HTML
<div> area that specifies the size of the map. You can load a map
synchronously or asynchronously.

Initializing the Map Object
The Web application sets up six global script-scope objects:

var map = null;
var pushpins = [];
var infobox = null;
var ppLayer = null;
var drawingManager = null;
var drawnShapes = null;

When I create a mapping application, I tend to think of the archi-
tecture as similar to a large C# or Java class, and so the script-scope
JavaScript objects are typically those that are used by two or more
functions. However, because of the JavaScript language’s quirks and
heavy use of callback functions and closures, I’ll sometimes place
objects that only need function-scope into the script-scope area.

The object named map is the Map object and although that name
isn’t required, it’s more or less standard. The pushpins object is an
array that will hold all the pushpins. I initialize the object to an
empty array here, as opposed to setting it to null, mostly to indicate
that the object is an array. The infobox object is a single instance of
the Infobox class that will be shared by all pushpins.

One of the new features of Bing Maps 8 is the Layer class.
Instead of placing all visual entities into one monolithic collection, it’s
now possible to organize visual objects into layers. The drawing
Manager object is a reference to the DrawingTools control. The
drawnShapes object is an array that will hold the Polygon object
shapes drawn by a user.

The map is initialized by function GetMap. The definition begins with:
function GetMap()
{
 var options = {
 credentials: "AmUck2_xxxx_jSCm",
 center: new Microsoft.Maps.Location(45.50, -122.50),
 mapTypeId: Microsoft.Maps.MapTypeId.road,
 zoom: 10, enableClickableLogo: false, showCopyright: false
 };
...

Note that I like to capitalize the names of my program-defined
functions to distinguish them from library functions or built-in
JavaScript functions. The code here defines some of the initial map

<!DOCTYPE html>
<!-- PushpinsAndPolygonsDemo.html -->

<html>
 <head>
 <title>Bing Maps 8 Pushpins with Infoboxes</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

 <script type="text/javascript">

 var map = null;
 var pushpins = [];
 var infobox = null; // Shared infobox for all pushpins
 var ppLayer = null; // Pushpin layer
 var drawingManager = null;
 var drawnShapes = null; // an array

 function GetMap() { . . }
 function AddDrawControlEvents(manager) { . . }
 function WriteLn(txt) { . . }
 function LatLonStr(loc) { . . }
 function Button1_Click() { . . }
 function Button2_Click() { . . }
 function ShowInfobox(e) { . . }
 function HideInfobox(e) { . . }
 function CreateCvsDot(radius, clr) { . . }

 </script>
 </head>

 <body style="background-color:wheat">
 <div id='controlPanel' style="float:left; width:262px; height:580px;
 border:1px solid green; padding:10px; background-color: beige">

 <input type="file" id="file1" size="24"></input>

 <input id="button1" type='button' style="width:125px;"
 value='Place Pushpins' onclick="Button1_Click();"></input>
 <div style="width:2px; display:inline-block"></div>
 <input id="textbox1" type='text' size='15' value=' (not used)'></input>

 <input id="button2" type='button' style="width:125px;"
 value='Drawn Shape Info' onclick="Button2_Click();"></input>
 <div style="width:2px; display:inline-block"></div>

 <input id="textbox2" type='text' size='15' value=' (not used)'></input>

 <textarea id='msgArea' rows="34" cols="36"
 style="font-family:Consolas; font-size:12px"></textarea>
 </div>

 <div style="float:left; width:10px; height:600px">
 <div id='mapDiv' style="float:left; width:700px; height:600px;
 border:1px solid red;"></div>
 <br style="clear: left;" /> <!-- magic formatting -->

 <script type='text/javascript'
 src='http://www.bing.com/api/maps/mapcontrol?callback=GetMap'
 async defer></script>
 </body>
</html>

Figure 2 Pushpins and Polygons Demo Web Page Structure

Instead of placing all
visual entities into one monolithic

collection, it’s now possible
to organize visual objects

into layers.

1016msdn_McCaffreyMaps_v4_36-43.indd 38 9/12/16 2:00 PM

Where you need us most.

magazine

MSDN.microsoft.com

Untitled-5 1Untitled-5 1 12/10/15 2:34 PM12/10/15 2:34 PM

http://MSDN.microsoft.com

msdn magazine40 Bing Maps

settings. All of these are optional, even the credentials item, which
is essentially a Bing Maps key. If you don’t have a key, you can use
any string there and your map will still load and be functional, but
there’ll be a thin strip across your map with a message, “The spec-
ified credentials are invalid. You can sign up for a free developer
account at http://www.bingmapsportal.com.” Creating an account
to get a key is relatively painless, but if you’re impatient like me and
you want to get started right away, you can sign up later.

The map’s center property is set using a Location object, which
accepts a latitude, followed by a longitude, followed optionally by
two values related to altitude. If you’re new to geo-applications, you
have to be a bit careful. With a normal geometry point (x, y) the x
value is the “left-right” value, but in geo-applications the latitude
is the “up-down” value.

Next, the map is displayed and the master Infobox object is prepared:
var mapDiv = document.getElementById("mapDiv");
map = new Microsoft.Maps.Map(mapDiv, options);
infobox = new Microsoft.Maps.Infobox(new Microsoft.Maps.Location(0, 0),
 { visible: false, offset: new Microsoft.Maps.Point(0,0) });
infobox.setMap(map);

One of the nice things about Bing Maps is that the API set uses
variable and parameter names that are, for the most part, quite
understandable. The Infobox is placed at Location (0, 0), which is
just a dummy location because the visible property is set to false.
The offset property controls the positioning of the small triangu-
lar pointer at the bottom of the Infobox object. The default value
is (0, 0), so I could’ve omitted it.

Next, the pushpins are prepared:
ppLayer = new Microsoft.Maps.Layer();
var cpp= new Microsoft.Maps.Pushpin(map.getCenter(), null);
ppLayer.add(cpp);
map.layers.insert(ppLayer);

The ppLayer (“pushpin layer”) object defines a visual layer where
all the pushpins will be stored. The cpp (“center pushpin”) is added
to the Layer and then the Layer is added into the map making the
pushpin visible. The second parameter to the Pushpin construc-
tor, which is null here, can be a PushpinOptions object, which will
be explained shortly. Passing a value of null gives you a default
Pushpin object, which is purple and has a radius of about 10 pixels.

Bing Maps 8 supports the older mechanism of placing all visual
objects into one global collection. The code would look like:

map.entities.push(cpp);

The GetMap function finishes by creating the DrawingTools
control and placing it onto the map:

...
 Microsoft.Maps.loadModule('Microsoft.Maps.DrawingTools', function() {
 var tools = new Microsoft.Maps.DrawingTools(map);
 tools.showDrawingManager(AddDrawControlEvents);
 });
}

A big architecture change for Bing Maps 8 is that the library is now
organized into 11 modules. This allows you to load only those modules

you need, which can significantly improve performance. Representative
other modules include Search, SpatialMath and HeatMap.

The loadModule function accepts the name of the module to
load, plus a callback function definition that contains code to
execute after the module has loaded. It can take a while to become
comfortable with callback functions, but like anything else, after
a few examples you get the hang of using them.

The showDrawingManager function also accepts a callback
function, this time using a name (AddDrawControlEvents) rather
than an anonymous function. Function AddDrawControlEvents
is defined as:

function AddDrawControlEvents(manager)
{
 Microsoft.Maps.Events.addHandler(manager, 'drawingStarted',
 function(e) { WriteLn('Drawing has started'); });
 Microsoft.Maps.Events.addHandler(manager, 'drawingEnded',
 function(e) { WriteLn(‘Drawing has ended \n’); });
 drawingManager = manager;
}

This code is short but rather subtle. In words, “When a user
starts drawing a shape using the DrawingTools control and the
drawingStarted event automatically fires, place a message using a
program-defined function named WriteLn.” The Events.add
Handler function accepts an event-firing object and a callback
function. The event argument, e, isn’t used in the demo but it
represents the drawn shape.

Program-defined function WriteLn is defined as:
function WriteLn(txt)
{
 var existing = msgArea.value;
 msgArea.value = existing + txt + "\n";
}

The msgArea object is an HTML textarea tag on the left side of
the Web page. The approach used here of grabbing the existing con-
tent and then replacing it with appended text is rather crude but
works well as long as the amount of text doesn’t get huge.

Creating and Displaying Custom Pushpins
When a user clicks on the button control labeled Place Pushpins,
control is passed to the Button1_Click function. The structure of
the function is:

function Button1_Click()
{
 var f = file1.files[0];
 var reader = new FileReader();
 reader.onload = function(e) {
 // Parse each line of result
 // Create pushpins
 // Add event handlers for pushpins
 // Display pushpins
 }
 reader.readAsText(f);
}

Local object f has information about the physical file pointed
to by the browsing control of the HTML file1 object. Because the
HTML File API allows multiple files to be selected, the first file
is accessed as files[0]. The FileReader object will load a file asyn-
chronously so the Web page will remain responsive. The onload
event will fire when the file has been read into memory. Notice that
you define what to do after the file is read and then you call the
readAsText function to actually start reading the file.

The anonymous function that executes when the onload event
fires begins with:

A big architecture change for
Bing Maps 8 is that the library is
now organized into 11 modules.

1016msdn_McCaffreyMaps_v4_36-43.indd 40 9/12/16 2:00 PM

41October 2016msdnmagazine.com

WriteLn("Source data = \n");
var lines = reader.result.split('\n');
for (var i = 0; i < lines.length; ++i) {
 var line = lines[i];
...

The file contents are stored in the reader.result object as one
giant string with embedded ‘\n’ characters. The String.split func-
tion is used to extract each line into an array. Then the lines are
iterated through using a for-loop with the length property. Next:

var tokens = line.split(',');
WriteLn(tokens[0] + " " + tokens[1] + " " + tokens[2]);
var loc = new Microsoft.Maps.Location(tokens[0], tokens[1]);

Recall that a line of the data file looks like:
45.46,-122.90,first location data

Each line is split on the comma delimiter and the three results
are stored into an array named tokens, so the latitude is at tokens[0]
and the longitude is at tokens[1]. Because a lot can go wrong when
reading a text file, in a production system you’d likely wrap the
attempt to create a Location object in a JavaScript try-catch block.

Next, a custom pushpin is created for the data of the current
line of text:

var ppOptions = { icon: CreateCvsDot(6, "orangered"),
 anchor: new Microsoft.Maps.Point(6,6), subTitle: tokens[2] };
var pp = new Microsoft.Maps.Pushpin(loc, ppOptions);
pushpins[i] = pp;

Custom pushpins are created by passing information to the icon
property of a PushpinOptions object. Here, a custom orange-red color
icon with a radius of 6 pixels is created by calling a program-defined
function named CreateCvsDot. I also set the subTitle property of the
current pushpin to the text from the data file that follows the lat-lon
fields. After the pushpin is created, it’s added to the global pushpins array.

The anonymous function code finishes with:
 ...
 Microsoft.Maps.Events.addHandler(pushpins[i], 'mouseover', ShowInfobox);
 Microsoft.Maps.Events.addHandler(pushpins[i], 'mouseout', HideInfobox);
}
ppLayer.add(pushpins);
map.layers.insert(ppLayer);
WriteLn("");

Each pushpin has its mouseover and mouseout events modified
using program-defined functions ShowInfobox and HideInfobox.
After all pushpins have been created, the array holding them is
adding to the pushpin Layer, which is then inserted into the map,
which makes the pushpins visible.

Function CreateCvsDot (“create HTML canvas dot”) is defined as:
function CreateCvsDot(radius, clr) {
 var c = document.createElement('canvas');
 c.width = 2 * radius; c.height = 2 * radius;
 var ctx = c.getContext("2d");
 ctx.beginPath();
 ctx.arc(radius, radius, radius, 0, 2 * Math.PI);
 ctx.fillStyle = clr; ctx.fill();
 return(c.toDataURL());
}

The function accepts a radius and a color and returns an HTML5
canvas object. There are four ways to create a custom pushpin icon.
You can use a static image such as a .png file; you can use a static
image encoded using Base64 format; you can create a dynamic
HTML canvas object; or you can create a dynamic scalable vector
graphics (SVG) object.

The ability to create a pushpin icon on the fly gives you a lot of
flexibility. For example, you could create different color and size
icons depending on the density of pushpins in an area of your map,
or depending on the zoom level of the map.

Event-handler function ShowInfobox is defined as:
function ShowInfobox(e)
{
 var loc = e.target.getLocation();
 WriteLn('\n mouseover at ' + loc);
 infobox.setLocation(loc);
 infobox.setOptions({ visible: true, title: e.target.getSubTitle(),
 description: LatLonStr(loc) });
}

When the user moves the mouse cursor over a pushpin, the
pushpin’s mouseover event will fire and control will transfer to
ShowInfobox. The function gets the Location of the event/pushpin
and uses it to place the pushpin. Recall that the subTitle property
of each pushpin holds text such as “first data location.” This text is
used as the Infobox title.

The description property of the Infobox is set to the loca-
tion of the pushpin, formatted to two decimal places using the
program-defined helper function LatLonStr:

function LatLonStr(loc)
{
 var s = "(" + Number(loc.latitude).toFixed(2) + ", " +
 Number(loc.longitude).toFixed(2) + ")";
 return s;
}

The HideInfobox function is:
function HideInfobox(e)
{
 WriteLn(' mouseout at ' + e.target.getLocation());
 infobox.setOptions({ visible: false });
}

When the user moves the mouse cursor away from a pushpin,
the pushpin’s mouseout event will fire and control will transfer to
HideInfobox. The visible property is set to false so the Infobox isn’t
visible but is still in the map.

Retrieving Interactive Shapes
When a user clicks on the button control labeled Drawn Shapes
Info, control is transferred to the Button2_Click function. The
function is defined as:

function Button2_Click()
{
 drawnShapes = drawingManager.getPrimitives();
 var numShapes = drawnShapes.length;
 var mostRecent = drawnShapes[numShapes-1]; // Polygon
 var vertices = mostRecent.getLocations();
 WriteLn("There are " + numShapes + " drawn shapes");
 WriteLn("Vertices of most recent drawn shape: ");
 for (var i = 0; i < vertices.length; ++i) {
 WriteLn(LatLonStr(vertices[i]));
 }
}

The global drawingManager object was created when the Drawing
Tools control was placed on the map. It’s used to fetch an array
containing all shapes drawn by the drawing control. The last shape
drawn will be the last item in the array. The code assumes the drawn

Custom pushpins are
created by passing information

to the icon property of a
PushpinOptions object.

1016msdn_McCaffreyMaps_v4_36-43.indd 41 9/12/16 2:00 PM

http://www.msdnmagazine.com

msdn magazine42 Bing Maps

shapes are type Polygon, but the
DrawingTool control can create
different types of objects. You could
check the shape type with code like:

var isPoly = mostRecent instanceof
Microsoft.Maps.Polygon;

The function finishes by fetching
the vertices of the last drawn shape
using the getLocations function,
and iterating through the vertices
to display them.

The Heat Map Demo
When I work with geo-applications,
I mentally categorize them accord-
ing to the number of data points
with which I’m dealing. Working
with a large number of locations
can be challenging. The Bing Maps
8 library has two very nice ways
to work with a large number of
locations—clustered pushpins and
heat maps. Take a look at the demo
heat map in Figure 3.

There are several kinds of heat maps, but one common type
displays combined data points using a color gradient where dif-
ferent colors represent different data densities. The demo Web
application initially loads a map centered at (37.50, -118.00) and
places a default large purple pushpin at center.

First, I clicked on the HTML5 File Browse button and pointed
to a local file named NV_Cities.txt containing city data. Next, I
clicked on the first button control, which loaded and displayed a
heat map for city density in the state of Nevada. Then I cleared that
heat map using the second button control.

Next, I clicked on the Browse button control again and pointed
to a tab-separated text file named CA_Cities.txt. That data file
contains a list of 1,522 cities in California and their corresponding
latitude-longitude information. Then I clicked on the Show Heat
Map button control, which read the text file, parsed out the lat-lon
data and stored that data into an array. The lat-lon data was then
displayed as a heat map, generating a city density visualization.

The structure of the heat map demo application is almost exactly
like the structure of the pushpins and polygons demo. The global
script-scope objects are:

var map = null;
var ppLayer = null;
var hmLayer = null;
var reader = null; // FileReader object
var locs = [];
var cGrad = { '0.0': 'black', '0.2': 'purple', '0.4': 'blue', '0.6': 'green',
 '0.8': 'yellow', '0.9': 'orange', '1.0': 'red' };
var hmOptions = { intensity: 0.65, radius: 7, colorGradient: cGrad };

The hmLayer object is a Layer for the heat map. The locs array
holds the Location objects that define the heat map. The cGrad
object defines a custom color gradient for the heat map options.
The hmOptions define the options for the heat map. Using a custom
HeatMapOptions object is optional, but in most situations you’ll
want to use the options to control the appearance of your heat map.

Here’s the code in function Button1_Click that reads and parses
the source data file:

var lines = reader.result.split('\n');
for (var i = 0; i < lines.length; ++i) { // Each line
 var line = lines[i];
 var tokens = line.split('\t'); // Split on tabs
 var loc = new Microsoft.Maps.Location(tokens[12], tokens[13]);
 locs[i] = loc;
}

The source data files look like:
CA 602000 2409704 Anaheim city (. .) 33.855497 -117.760071
CA 602028 2628706 Anchor Bay CDP (. .) 38.812653 -123.570267
...

Each line has 14 tab-delimited values. The first value is the state
abbreviation. The next two fields are IDs. The fourth field is the
place name, which can be a city, a town or a census-designated
place (CDP). Then there are eight fields that include information
such as U.S. census population count and land area. The last two
fields are the latitude and longitude. I got the data from the U.S.
Census Web site at bit.ly/29SETIU.

The code that creates and displays the heat map is:
Microsoft.Maps.loadModule('Microsoft.Maps.HeatMap', function() {
 hmLayer = new Microsoft.Maps.HeatMapLayer(locs, hmOptions);
 map.layers.insert(hmLayer);
});

The hmLayer Layer is created using the global array of Location
objects and the hmOptions object that contains the custom color
gradient. Very nice!

The code for function Button2_Click removes the current heat map:
function Button2_Click()
{
 WriteLn('Clearing heat map' + "\n");
 hmLayer.clear();
 reader = null;
 locs = [];
}

This code illustrates one of the advantages of working with
Layer objects. Instead of having to iterate through every object

Figure 3 Heat Map Demo

1016msdn_McCaffreyMaps_v4_36-43.indd 42 9/12/16 2:00 PM

www.bit.ly/29SETIU

43October 2016msdnmagazine.com

in the Map.entities collection, you can directly access objects in a
particular layer.

Pushpin Clustering
One of my favorite new features in Bing Maps 8 is pushpin clustering.
The idea is best explained visually. In Figure 4, the Web page named
ClusteredPushpinsDemo.html loads a map with an initial zoom level

of 10, centered near Portland, Ore. When I clicked on the button control
labeled Generate Pins, the application used the getLocations function
in the Maps.TestDataGenerator to create 6,000 random locations. Then
the application code created clustered pushpins and displayed them.
Red circles indicate there are 100 or more pushpins in the associated
map area, and blue pushpins indicate 10 to 99 pushpins.

Next, I zoomed in three levels. Clustering automatically occurs at
each zoom change. At zoom level 13
(see Figure 5) the individual push-
pins become visible as small red dots,
and green circles indicate there are
two to nine pushpins at that location.

Both heat maps and pushpins
clustering enable you to manage
a large number of location items.
But using pushpin clustering allows
users to access individual items.

Wrapping Up
The demo Web applications present-
ed here should give you a good idea
of what the new Big Maps 8 library
is like. There are many additional
new features that I didn’t cover,
including Infobox customization,
tile layers, geo-search and spatial
math functions. If you want to learn
more about Bing Maps 8, I recom-
mend going to the interactive SDK
Web site at binged.it/29SFytX. It presents
approximately 137 very short but
complete Web pages that illustrate
many key features of Bing Maps 8.
You’ll also find that the official doc-
umentation at aka.ms/BingMapsV8Docs
is very well-written and useful.

I’ve used two of the main alter-
natives to the Bing Maps 8 library,
the Google Maps library, and the
open source Leaflet.js library. All
three libraries are excellent, but
I really like Bing Maps 8. Some
technologies just have a “right feel”
to them and for me, at least, Bing
Maps 8 is now my preferred library
for geo-applications.	 n

Dr. James McCaffrey works for Microsoft
Research in Redmond, Wash. He has worked
on several Microsoft products including
Internet Explorer and Bing. He can be
reached at jammc@microsoft.com.

Thanks to the following Microsoft
technical experts who reviewed this
article: Ricky Brundritt (Bing Maps)
and John Krumm (Microsoft Research)Figure 5 Pushpin Clustering with Zoom Level 13

Figure 4 Pushpin Clustering with Zoom Level 10

1016msdn_McCaffreyMaps_v4_36-43.indd 43 9/12/16 2:00 PM

mailto:jammc@microsoft.com
http://www.msdnmagazine.com
www.binged.it/29SFytX
www.aka.ms/BingMapsV8Docs

msdn magazine44

In my last article, “The Source of Truth: The Role of Repositories
in DevOps”(bit.ly/2bKeC2T), I discussed the vital role that source control
plays in the overall release pipeline, shown in Figure 1. I’ve described
the release pipeline as the collection of processes that transform code
in the source repository into customer-ready apps and services, and
delivers those to customer devices and customer-accessible servers.
The release pipeline, too, is simply a list of the steps that are necessary
to make a release happen, irrespective of automation. The practice
of DevOps thus begins with knowing what steps and processes are
involved in a release, after which you can then incrementally auto-
mate those processes to lower costs and increase quality.

This article focuses on the Build/Continuous Integration (CI)
stage of the pipeline for mobile apps (outlined in Figure 1).
Positioned where it is, I think of Build this way: Build is what trans-
forms source code into testable and deployable artifacts as needed
by the rest of the release pipeline. That is, the outputs of Build are
the inputs for the remaining stages of the pipeline that work or act
on build artifacts. For example, all forms of testing operate against

executable app and service code, not raw source code. And, of course,
you must have the appropriate binaries to deploy to app stores and
Web servers. Even in cases where source files go through the pipe-
line more or less unmodified (as with many JavaScript, HTML
and CSS files in an Apache Cordova app, for instance), Build still
fulfills the role of creating the appropriate packages, combining
files, applying preprocessors and minifiers, and so on.

Think of Build as you would about physical construction. A large
pile of building materials, such as lumber, concrete and rebar, nails,
screws, windows, pipe, wire, roofing, insulation, fixtures, and so
forth, contains the potential for a house, but the pile will not auto
matically turn itself into such a structure. That happens only by
having someone apply the knowledge of how all those pieces get
put together, step by step. That’s what “doing a build” is all about.
In the realm of mobile apps, especially, it might even be said that
there are multiple piles of source materials, some of which are
shared among target platforms, and others of which are unique.

Of course, a big advantage with software is that doing a build doesn’t
consume the source materials in the process. You can do a build as
often as you want, as many times as you want and, if the process is
automated, at very little cost. Continuous integration relies on these
characteristics. You can build multiple, independent artifacts from
the same source code, each of which has a separate release pipeline.
This is often the case with mobile apps. In the MyDriving project
(aka.ms/iotsampleapp), the example I’ve been referring to in this
series, there are separate builds for iOS, Android and Windows, and
for the code that’s deployed to Azure App Service, as illustrated in
Figure 2. (Note that you can use Build/CI for ongoing testing for
your dev team without necessarily feeding into a release pipeline.)

Know, too, that Visual Studio Team Services can draw from
repositories outside of a Team Project, allowing you to manage
certain libraries for your app in public, open source repositories,
while the proprietary portions are kept private. Any given build

MO BILE DEVOPS

Transform Source Code
to Deployable Artifacts
with TFBuild
Kraig Brockschmidt

This article discusses:
•	The role of Build in DevOps to validate a source repository

•	The advantage of continuous integration to closely associate
build results with code commits

•	Team Foundation Build servers, queues, agents and pools

•	Setting up automated builds in Visual Studio Team Services

•	Deploying a build agent to a Mac OS X machine to support
iOS builds

Technologies discussed:
Visual Studio, Visual Studio Team Services, Team Foundation
Server, Team Foundation Build, Build Definitions, Build Agents,
Agent Pools, Continuous Integration

1016msdn_BrockSchmidtDevOps_v4_44-51.indd 44 9/12/16 1:50 PM

www.bit.ly/2bKeC2T
www.aka.ms/iotsampleapp

45October 2016msdnmagazine.com

definition can draw from only a single repository, but a Team Project
can employ any number of build definitions.

The Role of Build in DevOps
Within professional construction crews that work on houses and
other buildings, someone is always checking whether all the neces-
sary materials are on hand for at least the next few days of work. This
continuous validation improves the efficiency and productivity of the
crew, which is to say, their performance, and is essential for deliver-
ing results on time and within budget. Build accomplishes the same
thing in software. As I said in “From Code to Customer: Exploring
Mobile DevOps” (bit.ly/2ayD9Zw), all DevOps activities and practices
are means to continually validate the performance of your apps and
services. (Again, “performance” means delivering the greatest value
to your customers at the lowest cost to your business.) Thus, Build
is fundamentally a means to validate the contents of a source code
repository, because you expect to have everything in place.

A build (excluding additional tests that might be run) generally
has only one of two results: success or failure. Success means that
the source repository contains the necessary, buildable files to pro-
duce testable and deployable artifacts. Failure means that one or
more files are faulty (they have syntax errors), or that something
is missing from the repository according to the way the build is
configured. (That configuration could be itself faulty, of course.)

Ideally, you want to know as quickly as possible when a defect
that “breaks the build” is introduced into the repository. This is
where build automation becomes a huge advantage, because you
can run a build and get immediate validation whenever there’s a
change to the repository. This is known as Continuous Integration.

Continuous Integration
In times past, builds were often complex, tedious processes that for
large projects typically required one or more full-time dedicated
employees. For this reason, they were run only infrequently, by which
time many hundreds or even thousands of changes might have been
committed to the repository. Because any number of those changes,
in any combination, might cause the build to fail, it could be a real
nightmare to get everyone’s changes integrated into a working build.

I even remember a few ambitious projects at Microsoft that were
canceled simply because they couldn’t actually be built.

Avoiding such nightmares has given rise to CI. Here’s how I
think of it:

1. �Because Build validates your repository, you naturally want
to run builds early and often.

2. �If you can automate builds, you make the process highly
repeatable at very little cost.

3. �If you can automatically trigger a build whenever there’s a
change to the source repository, you’ve achieved CI.

CI, in short, validates each and every change to the source reposi-
tory as close in time as possible to the change itself, and immediately
notifies the appropriate developer if the build fails. Features like gated
check-in (with Team Foundation Version Control) or pull request
(PR) builder with Git can also trigger a build with the new code
before it’s checked in or merged, so that the repository is changed
only if the build is successful. Either way, CI quickly detects faulty
code in the repository (including code that fails automatically trig-
gered tests, but that’s the subject of a later article).

All this is why build automation with CI is one of the most
common DevOps practices. Indeed, even if you do everything else
in your release pipeline manually, you’ll find that investing early
in source control with automated builds and CI is well worth it,
especially as a project becomes more complex.

The Anatomy of Builds
At minimum, Build requires three components: the source code, a
build agent and a build definition, which is to say: the code you want
to build; a machine that has the necessary tools and SDKs to produce
artifacts from that code; and a set of instructions that tell the machine
how to go about it. The basic relationships are illustrated in Figure
3. (Again, it’s certainly possible to have multiple repositories, build
definitions and build agents, as suggested in Figure 2.)

Even if the terms “build agent” and “build definition” seem new,
you’ve actually been using them since your very first day of coding
with a quintessential “Hello, World!” program:

1. �By installing some programming tools on your machine,
you turned it into a build agent.

2. �By writing a short program and
storing it in a file, you created
your first piece of source code.

3. �By typing in a command to com-
pile and link that code, you created
a build definition and ran a build,
resulting in a runnable executable.
(Modern JIT tools like Microsoft
.NET Core typically compile and
run the program together.)
Of course, as soon as you got a

taste for the magic of coding you
started writing a lot more code, fac-
toring that code into multiple files
and creating much more complex
projects. At that point, typing in
commands over and over became

Figure 1 Build Transforms Source Code into the Artifacts Needed in the Rest
of the Release Pipeline

Commit to
repository

Post-commit
DevOps
activities

Cost to fix issues

Upload to
store

Telemetry
Analytics

Responding to
ratings/reviews,
issues, feedback

Pre-launch testing
Crowd testing

Localization testing
Diagnostics

Load testing (back end)
Telemetry testing

Approver sign-offs

UI testing (emulators
and/or device farms)

Manual testing
Integration testing

Security testing
Diagnostics

Load testing (back end)
Approver sign-offs

Run builds
Unit testing

Dev Build/CI QA (Internal) QA (External) MonitoringPlan

1016msdn_BrockSchmidtDevOps_v4_44-51.indd 45 9/12/16 1:50 PM

http://www.msdnmagazine.com
www.bit.ly/2ayD9Zw

msdn magazine46 Mobile DevOps

tedious, so your build definitions likely took the form of batch files or
other scripts. Eventually you also got tired of waiting for everything to
recompile every time you ran a build and, thus, discovered the virtues
of systems such as NMAKE and MSBuild with makefiles and project
files, respectively, serving as build definitions. These systems let you
define the interrelationships between files such that you recompile
only what’s necessary, greatly shortening your edit-build-test dev loop.

All of this is to say that as software development continues
to evolve, so does the sophistication of the build tools you have
at your disposal. Most recently, making these tools available as
scalable cloud services—what we call Team Foundation Build or
TFBuild—has laid the groundwork for the next generation.

Servers, Queues, Agents and Pools
When working by yourself, you’ll gradually install more tools and
SDKs on your development machine, making it a richer and more
capable agent. Before long, though, it makes sense to create one or
more dedicated build servers on which you can cleanly manage the
software environment. This is especially important with teams,
because it avoids having to keep every developer machine in sync
with the necessary tools. Managing such build servers, along with other
collaborative tasks like source control, work tracking, and testing,
drove the creation of the Microsoft Team Foundation Server (TFS)
and TFBuild more than a decade ago.

An important feature of TFBuild, especially with CI, is its ability
to manage and coordinate multiple build requests through a queue.
If you have many developers committing code throughout the day,
many commits will undoubtedly happen when another build is
already in progress. But you don’t want to cancel that build, because
with CI you want every succeed/fail build report to be associated with
a specific commit. At the same time, the more requests that get stacked
up in the queue, the longer developers have to wait for build results.

At this point you need to scale the system,
meaning that a build agent becomes dis-
tinct from a machine. Technically speaking,
a build agent is a service: Multiple agents
can run on the same physical server, allow-
ing full utilization of multi-core machines
by running parallel builds. And when that
server is maxed out, you can easily add one
or more machines with additional agents.

This creates what’s called an agent
pool, an abstraction that refers to the

combined power of all the agents, regardless of how
they’re distributed across physical machines. TFBuild,
in fact, works with agent pools rather than machines.
When a build gets to the front of the queue, TFBuild
delegates it to the next available agent in the pool.
Agent pools can also be shared across different Team
Projects, as explained on the “Administer Your Build
and Deployment System” page at bit.ly/2b0UwAg.

With mobile app projects, especially, you’ll typically
need more than one kind of agent because each target
system has a unique set of platform-specific tools and
SDKs. Fortunately, Microsoft provides free agents for

Windows, OS X, and Linux, as illustrated in Figure 4. Later in this
article I’ll demonstrate setting up a Mac agent for iOS builds.

Build Servers in the Cloud
Any conversation about scaling naturally brings up the potential
for migrating that computing power to the cloud, where policies
and regulations allow. With cloud-based servers, you don’t need
to manage the physical machines or even the software environ-
ment. Cloud computing is also centered on pay-as-you-go pricing,
making it easy and cost-effective to vary your capacity as needed.
This is what’s offered through Visual Studio Team Services.

Team Services provides “hosted” build agents. These are Windows
machines that are pre-configured with a wide variety of tools and SDKs,
as listed on bit.ly/2aNFKis. As of this writing, a hosted agent can build just
about anything you can build with Visual Studio and the Java toolchain,
including Windows and Android apps written with Xamarin, Apache
Cordova, or native tools. You can set up any number of hosted agent
pools and organize them as desired into different pricing tiers.

Because the hosted agents run on Windows, however, they
can’t build iOS apps or .NET Core/ASP.NET Core apps for Mac
or Linux. For these you need to install the OS X or Linux agents
on suitable machines and connect those agents to Team Services,
where you can then organize them into pools. Similarly, you can
install the Windows agent on your own customized machine that
includes software not included on the hosted agents. And “machine”
here includes virtual machines, as well as those from services like
MacinCloud.com. All in all, Team Services really lets you work with any
combination of cloud-hosted and on-premises agents.

Automating Builds with Visual Studio Team Services
Let’s now set up an automated TFBuild with continuous integra-
tion for a Xamarin app (roughly following “Build Your Xamarin

App” at bit.ly/2aiy48y). To begin, create a
new Xamarin.Forms project in Visual
Studio called Xamarin Build Oct 2016.
Next, create a new Team Project for it in
your Team Services account called MSDN
Magazine Oct 2016, using Git for source
control. Then publish the code into the
Team Project from within Visual Studio
Team Explorer. This results in the code
being available in the Team Project code
tab on the Team Services portal.

Figure 3 The Basic Relationships Between a
Source Repository, a Build Definition, a Build
Agent and the Resulting Build Artifacts

Build
ArtifactsRepository

Build Definition

Build
Agent

Figure 2 The MyDriving Project Has Four Builds and Four Release Pipelines

Hosted
Build Agent
(Windows)

MacinCloud
Build Agent

Repository

Build Definitions

Xamarin.Android

Xamarin.UWP

ASP.NET

Xamarin.iOS

Release Pipelines

Google Play

Windows Store

Azure App Service

iOS App Store

1016msdn_BrockSchmidtDevOps_v4_44-51.indd 46 9/12/16 1:50 PM

www.bit.ly/2b0UwAg
www.bit.ly/2aNFKis
www.bit.ly/2aiy48y
www.MacinCloud.com

Untitled-2 1 7/11/16 11:28 AM

www.lightningChart.com

msdn magazine48 Mobile DevOps

Now set up a build definition for Android by clicking on the
Build tab in the Team Project, then clicking + New. This brings up
a dialog with a long list of build definition templates for a variety of
self-explanatory project types, including native and cross-platform
mobile apps. (Note that Apache Cordova projects need an exten-
sion from the Team Services marketplace; see bit.ly/2atxNgp for more
information.) You can also start with an empty definition and build
it up step-by-step.

For this walk-through, select the Xamarin.Android template, click
Next to bring up a configuration dialog, and then provide initial set-
tings for the source repository, CI, and the agent queue (all of these
can be changed later). Then click Create, and Team Services opens
the build definition editor shown in Figure 5. Red text indicates that
additional information is required, as you can see with the Build tab.

Before going through the build steps shown in Figure 5, let me
summarize what’s on the other tabs (you’ll find the full documen-
tation at bit.ly/2ayghJh):

• �Repository is where you connect to repositories outside of your
Team Project, such as GitHub, Subversion or any other Git server.

• �Triggers set when builds happen, with options for CI, gated
check-in and scheduled builds (often used for nightly runs).
Note that you can always queue a build manually from Team
Services or from within Visual Studio Team Explorer.

• �Options | Create Work Item on Failure is how you assign
work items to whomever requested a build that fails. When
used with CI, the requestor will always be the developer who
committed the code that triggered the build, thus making a
tight loop between code commits, builds and immediate no-
tifications of failures. (There are also extensions in the Team
Services marketplace for sending other types of notifications.)

• �Variables let you associate tokens with optionally encrypted values
that you can use elsewhere in the build definition, such as creden-
tials. Encrypted values can’t be copied out of the build definition.

• �History gives you the change log for the build definition. This is
important because the build definition isn’t part of your source
repository, and yet changes to the definition can break the build.

Returning to Figure 5, remember that Build is all about turning
source code into the artifacts needed by the rest of the release pipe-
line, which means applying specific tools to the source code through
discrete steps. As you can see, the first step in the Xamarin.Android
template is NuGet restore, because you typically don’t add such pack-
ages to source control. When the build agent retrieves that code for
a build, then, it must restore those packages.

Next, the template includes (as of this writing) steps to activate
and deactivate a Xamarin license, which are no longer necessary
because Xamarin is now free. It’s safe to delete those steps because
they’ll be removed from the template soon enough anyway.

The Build Xamarin.Android Project step is what runs MSBuild
on the Android project in the solution. Clicking that step shows
the options as in Figure 5, where the More Information link at the
bottom takes you to the detailed documentation for the step. Notice
the $() references to variables, such as $(BuildConfiguration), which
is set to “Release” on the Variables tab. Also, Output Directory is
where the build definition will place its artifacts for use by other
build steps and even other parts of the release pipeline.

The next two steps build any project in the solution that contains the
name “test” and then deploys the built app to Xamarin Test Cloud and
runs applicable tests. This, along with other test steps added through
the + Add build step… command, is how you include test runs in your
CI. Because there are no test projects in my solution at this point, I
just disable these steps by clearing their Control Options | Enabled
checkbox. This way the steps remain in the definition, but won’t be run.

The last two steps, as you can see, sign the Android app package
and then publish the artifacts to some other location, if needed. In the
latter case, the earlier MSBuild step already stores its results in a Team
Services folder, but that’s available only to people with Team Project

permissions. A publish or file copy step (there are a
number of options in Add new step…) is how you
copy artifacts to locations outside of the Team Project.

Running the Build
Once you’ve completed and saved your build defi-
nition, click Queue build… to start the process
running. This pops up a dialog where you can select
the agent queue and the Git branch (if applicable),
and even set additional variables and demands for
just this one build. Being able to change these param-
eters lets you easily run a build through a different
agent pool without editing the build definition. For
example, if you’re in the process of migrating from
on-premises agents to hosted agents, you’ll want to
manually queue builds to the hosted queue while
CI-triggered builds continue to happen on your
local agents. When you’re ready to switch over, you
then edit the build definition and redirect the CI
builds to the hosted agents instead.

In my case, I don’t need to change anything, so
I just start the build. This switches to a UI where I Figure 4 Windows, Mac, and Linux Agents and the Project Types They Can Build

Linux Machine (Ubuntu, Red Hat)
.NET/ASP.NET Core
Android SDK/NDK

iOS
Android

.NET Core

ASP.NET Core

Windows

.NET

ASP.NET

Mac OS X Machine
.NET/ASP.NET Core
Android SDK/NDK

XCode

Windows Machine
.NET/ASP.NET

.NET/ASP.NET Core
Windows SDK

Android SDK/NDK

Windows Machine
.NET/ASP.NET

.NET/ASP.NET Core
Windows SDK

Android SDK/NDK

1016msdn_BrockSchmidtDevOps_v4_44-51.indd 48 9/12/16 1:50 PM

www.bit.ly/2atxNgp
www.bit.ly/2ayghJh

FOR-PRINT-Alachisoft-msdn-ad-August-2016-ver-1.0

Monday, July 11, 2016 7:51:14 PM

Untitled-2 1 7/11/16 12:52 PM

www.alachisoft.com
mailto:sales@alachisoft.com
www.aka.ms/mydrivingdocs

msdn magazine50 Mobile DevOps

can see what steps have been com-
pleted, what step is running and
the console output directly from
the build agent. I have to admit, it’s
always interesting to watch a build as
it progresses—I’m sure you’ve done
that many times! And once the build
is done you can download the out-
put for further analysis if needed.

Eventually the build will com-
plete successfully or encounter a
failure. Either way, you’ll see a final
report, which appears in the list of
Completed builds for the definition,
as shown in the left side of Figure 6.
This is where you can go back and
review however many builds are
being retained in your Team Project
and, of course, queue new builds. This same list appears in the Visual
Studio Team Explorer pane, as shown in the right side of Figure 6. From
here you can also queue new builds and create new build definitions.

I encourage you to play around with this yourself using a new
project created from a template in Visual Studio. Especially try
checking Continuous Integration in the definition’s Triggers tab,
then make some small change in a source file code and commit/
push it to the repository. You can then see the new build queued
automatically, which appears in the definition’s Queued list in Team
Services and in Visual Studio Team Explorer.

Additional TFBuild Steps
A build definition template is obviously just a place to start, and you
can just as easily start with an empty definition and add each step
individually. Either way, you want to fully familiarize yourself with
all of the available steps by opening any build definition and clicking
on the Add build step… command. From the Add tasks dialog that
appears, you can build a wide variety of custom build definitions. Here’s
an overview of what’s available (the current list is always at bit.ly/2biafxz):

• �Build tasks: Android (including signing), Ant, CMake,
Gradle, Grunt, Gulp, queue a job
on a Jenkis server, Maven, MS-
Build, SonarQube analysis for
MSBuild, Visual Studio Build,
Xamarin.Android, Xamarin.iOS,
Xcode (build and package).

• �Test tasks: Cloud-based load test-
ing with Apache JMeter or Visual
Studio Team Services; cloud-based
performance testing; publish code
coverage and test results; run func-
tional tests (CodedUI or Selenium);
Visual Studio Test (including deploy-
ing agents); Xamarin Test Cloud.

• �Package tasks: Run NuGet and npm
tasks, restore Xamarin components,
install CocoaPods.

• �Deploy tasks: Deploy to Azure Cloud Service, blob, VM,
SQL database, WebApp; run Azure PowerShell scripts; run
PowerShell or SSH scripts on target machines; manage Azure
Resource Groups; deploy Azure Service Fabric applications;
copy files to a remote machine.

• �Utility tasks: manage zip files, copy/decrypt/delete files;
run batch files or command-line tools (including bash and
PowerShell); upload files with cURL; and copy files.

There’s also a healthy marketplace of additional tasks to choose from
at bit.ly/2aiRnPh, where you’ll find extensions for Azure DevTest Labs,
publishing to Google Play, Bower, Docker, HockeyApp, CodePush,
FTP, ReactNative, Apache Cordova and much more. Again, spend
a little time familiarizing yourself with what’s possible. It’s especially
interesting to see tasks for the Google Play marketplace, Docker,
HockeyApp and CodePush, among others. Along with the built-in
deployment tasks, they demonstrate that you can easily place a task
at the end of your build definition to deploy the results to other
environments, including testing, staging and even production.

The MyDriving project provides some additional real-world
build definition examples. For Xamarin.Android, it uses all of

Figure 5 The Initial View of a New Xamarin.Android Build Definition

Figure 6 TFBuild Results in Team Services (left) and Visual Studio (right)

1016msdn_BrockSchmidtDevOps_v4_44-51.indd 50 9/12/16 1:50 PM

www.bit.ly/2biafxz
www.bit.ly/2aiRnPh

51October 2016msdnmagazine.com

the same steps as discussed in the earlier example and adds a few
more to replace tokens, update version names and numbers, use
cURL to download a keystore, and deploy to Xamarin Test Cloud.
The Universal Windows Platform and iOS build definitions are
much the same, just with slightly different steps to manage details
like signing certificates. And for the back-end ASP.NET code,
MyDriving has a simple definition to run NuGet restore, invoke
MSBuild, and publish the artifacts to a server. You can find a step-
by-step breakdown of all these build definitions in Chapter 10 of
the “MyDriving Reference Guide” at aka.ms/mydrivingdocs.

Deploying an Agent
A distinctive part of any definition is its list of “demands” that you
can find on the General tab. The idea of demands is that if you try
to queue a build to an agent that doesn’t meet those demands, Team
Services can give you an immediate error rather than attempting a
hopeless build and making you pick through errors in build out-
put. Thus, a Xamarin.Android definition will list demands like
the Android SDK and Xamarin.Android. A build definition for
iOS, in contrast, will list demands such as Xcode or Xamarin.iOS.

As noted before, hosted agents in Team Services are Windows
machines, but only a Mac can meet the demands for iOS. How, then,
do you get a build agent running on such a machine? One way is to
use a service like MacinCloud, which is what’s used in MyDriving.
There’s a great post on the Visual Studio ALM blog (bit.ly/2ajHtIz) that
provides all the details about setting this up.

The other option is to install an agent on your own Mac. Detailed
instructions are found on “Deploy an Agent on OS X” (bit.ly/2azm136),
but let me share some of that experience here using the humble 5-year-
old MacBook that’s sitting on my desk. On that machine I downloaded
the OS X agent and started the configuration. This prompted me to
enter the URL of my Team Services account, followed by a personal
access token obtained from my profile in the Team Services portal.
The token is how the agent on the Mac identifies itself, given that a
Mac doesn’t otherwise know about my Microsoft account.

Once connected to Team Services, I was prompted for the pool
to which to add the agent. As an example, I went to the Agent pool
section in Team Services and created “On-Prem Mac,” as shown in
Figure 7. A few moments after I gave this name to the agent on the
Mac, the agent appeared on Team Services, as shown in the inset.

With the agent connected, I made sure to run it on the Mac,
which I could do either interactively or as a service. The “Deploy
an Agent on OS X” page mentioned earlier describes all this. I

then created a Xamarin.iOS build definition in Team Services and
selected my Mac-based agent queue for the build (I also chose this
in the build definition’s General | Default agent queue setting).
Finally, I queued a build through Team Services and—voilà—I see
it running on my MacBook and see the build output directly in
Team Services, just as with the hosted agent.

A Few Tips and Notes
• �Remember that most projects will need a package restore step

early in the build definition, such as the NuGet Installer step
for Xamarin and .NET projects and the npm step for Apache
Cordova projects. Build errors will remind you of this fact!

• �By default, each step you add to a build definition will have its
Control Options | Continue on error and Always run boxes
unchecked. Checking the first means that the step isn’t actually
essential for subsequent steps, and shouldn’t fail the build. The
second means that the step should always run regardless of what
happens with other steps. For example, you might have a step at
the end of the definition to copy whatever artifacts were built, even
if some didn’t get built, or you might have a specialized cleanup
task that should always run.

• �When you do manage your own build agents, it’s your responsi-
bility to keep the software up-to-date. Build errors will typically
tell you if there’s a version mismatch somewhere.

• �Remember to check the Options | Create Work Item on Failure
box in the build definition to assign a bug to whoever committed
code that triggered a CI build that failed. You can also find addi-
tional notification- and e-mail-related tasks in the Team Services
marketplace with which to customize your process if you don’t
want to rely solely on work items.

• �Have an idea for a build extension of your own? Check out the
documentation at bit.ly/2avgl97.

Looking Ahead
As stated earlier in this article, Build is what transforms source code
into the artifacts needed by the rest of the release pipeline (even
if only for testing purposes). The next article in this series will ex-
plore the Release Management features of Visual Studio Team Ser-
vices, which is how you can define and potentially automate any
additional steps that must take place between a build and getting
your app and services out to customers. Fortunately, much of what
you’ve learned about Build definitions applies also to Release defi-
nitions, as the latter are also configured with discrete steps. All of

this takes you ever closer to a fully
automated release pipeline.	 n

Kraig Brockschmidt works as a senior
content developer for Microsoft and is
focused on DevOps for mobile apps. He’s the
author of “Programming Windows Store
Apps with HTML, CSS and JavaScript”
(two editions) from Microsoft Press and
blogs on kraigbrockschmidt.com.

Thanks to the following technical expert
for reviewing this article: Andy LewisFigure 7 Creating a New Agent Pool and How a New Agent Appears After Connecting (Inset)

1016msdn_BrockSchmidtDevOps_v4_44-51.indd 51 9/12/16 1:50 PM

http://www.msdnmagazine.com
www.aka.ms/mydrivingdocs
www.bit.ly/2ajHtIz
www.bit.ly/2azm136
www.bit.ly/2avgl97
www.kraigbrockschmidt.com

Join us as we journey into real-world, practical education
and training on the Microsoft Platform. Visual Studio

Live! (VSLive!™) returns to warm, sunny Orlando for the
conference more developers rely on to expand their .NET

skills and the ability to build better applications.

Journey into Code

twitter.com/live360
@live360

facebook.com
Search "Live 360"

linkedin.com
Join the "Live! 360" group!

ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

EVENT PARTNERS PLATINUM SPONSORS SUPPORTED BYGOLD SPONSORS

Untitled-7 2Untitled-7 2 9/12/16 3:44 PM9/12/16 3:44 PM

www.vslive.com/orlando
https://twitter.com/live360events
https://facebook.com/live360events
https://www.linkedin.com/

NEW!

Six (6) events and hundreds of
sessions to choose from – mix and
match sessions to create your own,
custom event line-up – it’s like no
other conference available today!

Visual Studio Live! Orlando is part
of Live! 360, the Ultimate Education
Destination. This means you’ll have
access to fi ve (5) other co-located
events at no additional cost:

VSLIVE.COM/ORLANDO

Whether you are an
 Engineer
 Developer
 Programmer
 Software Architect
 Software Designer

You will walk away from this event
having expanded your .NET skills and
the ability to build better applications.

REGISTER TODAY
AND SAVE $400!

Use promo code
ORLSEP4 by October 5

Scan the QR code to
register or for more
event details. TURN THE PAGE FOR

MORE EVENT DETAILS

PRODUCED BY

Untitled-7 3Untitled-7 3 9/12/16 3:45 PM9/12/16 3:45 PM

www.vslive.com/orlando

Check Out the
Additional Sessions
for Devs, IT Pros, &
DBAs at Live! 360

SQL Server Live! features 15+
developer sessions, including:

• What's New in SQL Server 2016
- Leonard Lobel

• Powerful T-SQL Improvements
that Reduce Query Complexity
- Hugo Kornelius

• Implementing Data Protection and Security in SQL Server 2016 -
Steve Jones

• Welcome To The 2016 Query Store! - Janis Griffi n
• Workshop: Big Data, Analytics and NoSQL: Everything You Wanted

to Learn But Were Afraid to Ask - Andrew Brust

TechMentor features IT Pro
and DBA sessions, including:
• Workshop: 67 VMware vSphere

Tricks That’ll Pay for This
Conference! - Greg Shields

• Secure Access Everywhere!
Implementing DirectAccess in
Windows Server 2016 - Richard Hicks

• Getting Started with Nano Server - Jeffery Hicks
• Creating Class-Based PowerShell Tools - Jeffery Hicks
• Harvesting the Web: Using PowerShell to Scrape Screens,

Exploit Web Services, and Save Time - Mark Minasi
• PowerShell Unplugged: Stump Don - Don Jones
• Facing Increasing Malware Threats and a Growing Trend of BYO

with a New Approach of PC Security - Yung Chou

• Workshop: A Beginner’s Guide
to Client Side Development in
SharePoint - Mark Rackley

• Become a Developer Hero by Building Offi ce Add-ins - Bill Ayres
• Utilizing jQuery in SharePoint - Get More Done Faster
 - Mark Rackley
• Using the Offi ce UI Fabric - Paul Schaefl ein
• Enterprise JavaScript Development Patterns - Rob Windsor
• Leveraging Angular2 to Build Offi ce Add-ins - Andrew Connell
• Webhooks in Offi ce 365 - Paul Schaefl ein

Offi ce & SharePoint Live!
features 12+ developer
sessions, including:

START TIME END TIME

5:00 PM 8:00 PM

6:00 PM 9:00 PM Dine-A-Round Dinner @ Universal CityWalk

START TIME END TIME

8:00 AM 5:00 PM VSM01 Workshop: Distributed Cross-Platform Application
Architecture - Rockford Lhotka & Jason Bock

12:00 PM 1:00 PM Lunch

1:00 PM 5:00 PM VSM1 Workshop Continues

5:00 PM 6:00 PM EXPO Preview

6:00 PM 7:00 PM Live! 360 Keynote: To Be Announced

START TIME END TIME

8:00 AM 9:00 AM Visual Studio Live! / Modern Apps Live! Keynote: Topic To Be Announced

9:00 AM 9:30 AM Networking Break • Visit the EXPO

9:30 AM 10:45 AM VST01 Building Applications with
ASP.NET Core - Scott Allen

VST02 Busy .NET Developer’s
Guide to Swift - Ted Neward

11:00 AM 12:15 PM VST05 Richer MVC Sites with
Knockout JS - Miguel Castro

VST06 Busy .NET Developer’s
Guide to Native iOS

- Ted Neward

12:15 PM 2:00 PM Lunch • Visit the EXPO

2:00 PM 3:15 PM
VST09 WCF & Web API: Can

We All Just Get Along?!?
- Miguel Castro

VST10 Creating Great Looking
Android Applications Using
Material Design - Kevin Ford

3:15 PM 4:15 PM Networking Break • Visit the EXPO

4:15 PM 5:30 PM
VST13 Busy Developer’s Guide to

Chrome Development
- Ted Neward

VST14 Using Visual Studio Tools
for Apache Cordova to Create

MultiPlatform Applications
- Kevin Ford

5:30 PM 7:30 PM Exhibitor Reception

START TIME END TIME

8:00 AM 9:15 AM VSW01 Moving from Angular 1
to Angular 2 - Ben Dewey

VSW02 The Future of
Mobile Application Search

- James Montemagno

9:30 AM 10:45 AM VSW05 Getting Started with
Aurelia - Brian Noyes

VSW06 Building Connected
and Disconnected Mobile

Applications - James Montemagno

10:45 AM 11:15 AM Networking Break • Visit the EXPO
11:15 AM 12:15 PM Live! 360 Keynote: To Be Announced
12:15 PM 1:45 PM Birds-of-a-Feather Lunch • Visit the EXPO

1:45 PM 3:00 PM
VSW09 Living in a Command Line

Web Development World
(NPM, Bower, Gulp, and More)

- Ben Dewey

VSW10 Understanding
the Windows Desktop App
Development Landscape

- Brian Noyes
3:00 PM 4:00 PM

4:00 PM 5:15 PM VSW13 Securing Client
JavaScript Apps - Brian Noyes

VSW14 Let’s Write a Windows
10 App: A Basic Introduction to

Universal Apps - Billy Hollis

8:00 PM 10:00 PM Live! 360 Dessert Luau - Wantilan Pavilion

START TIME END TIME

8:00 AM 9:15 AM
VSH01 Build Real-Time Websites

and Apps with SignalR
- Rachel Appel

VSH02 Cognitive Services:
Building Smart Applications with
Computer Vision - Nick Landry

9:30 AM 10:45 AM VSH05 HTTP/2: What You Need
to Know - Robert Boedigheimer

VSH06 Building Business Apps
on the Universal Windows

Platform - Billy Hollis

11:00 AM 12:15 PM VSH09 TypeScript and ES2015
JumpStart - John Papa

VSH10 A Developers Introduction
to HoloLens - Billy Hollis &

Brian Randell
12:15 PM 1:30 PM Lunch on the Lanai

1:30 PM 2:45 PM VSH13 All Your Tests Are Belong
To Us - Rachel Appel

VSH14 Developing Awesome
3D Apps with Unity and C#

- Adam Tuliper

3:00 PM 4:15 PM VSH17 SASS and CSS for
Developers - Robert Boedigheimer

VSH18 From Oculus to HoloLens:
Building Virtual & Mixed Reality

Apps & Games - Nick Landry

4:30 PM 5:30 PM Live! 360 Conference Wrap-Up

START TIME END TIME

8:00 AM 5:00 PM VSF01 Workshop: Angular 2 Bootcamp
- John Papa

12:00 PM 1:00 PM Lunch

1:00 PM 5:00 PM VSF01 Session Continues

Speakers and sessions subject to change

ALM / DevOps Cloud
Computing Mobile Client Software

Practices
Visual Studio /

.NET Framework

ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

Untitled-7 4Untitled-7 4 9/12/16 3:45 PM9/12/16 3:45 PM

www.live360events.com

Pre-Conference: Sunday, December 4, 2016

Pre-Conference Workshops: Monday, December 5, 2016
VSM02 Workshop: Service

Oriented Technologies - Designing,
Developing, & Implementing WCF
and the Web API - Miguel Castro

VSM03 Workshop: DevOps in a Day
- Brian Randell

MAM01 Workshop: Building
Modern Mobile Apps

- Brent Edwards & Kevin Ford
ADM01 Workshop: Building Teams

- Steve Green
ADM02 Workshop: One Codebase to

Rule Them All: Xamarin
- Fabian Williams

VSM2 Workshop Continues VSM3 Workshop Continues MAM01 Workshop Continues ADM01 Workshop Continues ADM02 Workshop Continues

Day 1: Tuesday, December 6, 2016

Tim Sneath, Principal Lead Program Manager, Visual Studio Platform, Microsoft App Dev Trends Keynote: You Are the Future of Enterprise Java!
- Reza Rahman, Speaker, Author, Consultant

VST03 What’s New in Azure v2
- Eric D. Boyd

VST04 Real World Scrum with Team
Foundation Server 2015 & Visual

Studio Team Services - Benjamin Day

MAT01 Modern App Development:
Transform How You Build Web and
Mobile Software - Rockford Lhotka

ADT01 Hacking Technical Debt
- Steve Green

ADT02 Java 8 Lambdas and the
Streaming API - Michael Remijan

VST07 Overview of Power Apps
- Nick Pinheiro

VST08 Get Good at DevOps: Feature
Flag Deployments with ASP.NET,

WebAPI, & JavaScript - Benjamin Day
MAT02 Architecture: The Key to

Modern App Success - Brent Edwards
ADT03 Are You A SOLID Coder?

- Steve Green
ADT04 PrimeFaces 5: Modern UI
Widgets for Java EE - Kito Mann

VST11 Introduction to Next
Generation of Azure PaaS – Service

Fabric and Containers - Vishwas Lele
VST12 To Be Announced

MAT03 Manage Distributed Teams
with Visual Studio Team Services

and Git - Brian Randell
ADT05 Agile Architecture

- Steve Green
ADT06 Full Stack Java with JSweet,

Angular 2, PrimeNG, and JAX-RS
- Kito Mann

VST15 Cloud Oriented
Programming - Vishwas Lele

VST16 Bringing DevOps to the
Database - Steve Jones

MAT04 Focus on the
User Experience #FTW

- Anthony Handley
ADT07 Crafting Innovation

- Steve Green
ADT08 Who’s Taking Out the Garbage?

How Garbage Collection Works
in the VM - Kito Mann

Day 2: Wednesday, December 7, 2016
VSW03 Managing Enterprise and

Consumer Identity with Azure
Active Directory - Nick Pinheiro

VSW04 Improving Performance in
.NET Applications - Jason Bock

MAW01 DevOps, Continuous
Integration, the Cloud, and Docker

- Dan Nordquist
ADW01 Stop Killing Requirements!

- Melissa Green
ADW02 Migrating Customers to
Microsoft Azure: Lessons Learned

From the Field - Ido Flatow

VSW07 Practical Internet of
Things for the Microsoft
Developer - Eric D. Boyd

VSW08 I’ll Get Back to You:
Understanding Task, Await, and

Asynchronous Methods
- Jeremy Clark

MAW02 Mobile Panel
- Kevin Ford, Rockford Lhotka,

James Montemagno,
& Jordan Matthiesen

ADW03 Meeting-Free Software
Development in Distributed Teams

- Yegor Bugayenk

ADW04 The Essentials of Building
Cloud-Based Web Apps with Azure

- Ido Flatow

VSW11 To Be Announced VSW12 Learn to Love Lambdas
(and LINQ, Too) - Jeremy Clark

MAW03 C# Everywhere:
How CSLA .NET Enables Amazing

Cross-Platform Code Reuse
- Rockford Lhotka

ADW05 Introduction to

- Fabian Williams

ADW06 Building IoT and Big Data
Solutions on Azure

- Ido Flatow

VSW15 ARM Yourself
for Azure Success
- Esteban Garcia

VSW16 Continuous Delivery on
Azure: A/B Testing, Canary Releases,
and Dark Launching - Marcel de Vries

MAW04 Coding for Quality
and Maintainability

- Jason Bock

ADW07 As You Think About Azure
Databases, Think About DocumentDb

- Fabian Williams

ADW08 Where Does JavaScript
Belong in the App Store?

- Jordan Matthiesen

Day 3: Thursday, December 8, 2016

VSH03 C# Best Practices
- Scott Allen

VSH04 Application Insights:
Measure Your Way to Success

- Esteban Garcia

MAH01 Modern Mobile
Development: Build a Single App For
iOS & Android with Xamarin Forms

- Kevin Ford

ADH01 From VMs to Containers:
Introducing Docker Containers for Linux

and Windows Server - Ido Flatow
ADH02 Continuous Testing in a
DevOps World - Wayne Ariola

VSH07 Debugging Your Way
Through .NET with Visual Studio

2015 - Ido Flatow
VSH08 The Ultimate Intro to Docker

for Developers - Adam Tuliper
MAH02 Universal Windows

Development: UWP for PC, Tablet &
Phone - Brent Edwards

ADH03 CQRS 2.0 - Commands, Actors,
and Events...Oh My! - David Hoerster

DH04 Microservices as Chat Bots
Are the Future - Yegor Bugayenk

VSH11 Exploring Microservices
in a Microsoft Landscape

- Marcel de Vries

VSH12 Automated UI Testing for
iOS and Android Mobile Apps

- James Montemagno

MAH03 Modern Web Development:
ASP.NET MVC and Web API

- Allen Conway
ADH05 The Curious Case for the

Immutable Object - David Hoerster
ADH06 Continuous Integration May

Have Negative Effects - Yegor Bugayenk

VSH15 Unit Testing Makes Me
Faster: Convincing Your Boss,

Your Co-Workers, and Yourself
- Jeremy Clark

VSH16 Writing Maintainable,
X-Browser Automated Tests

- Marcel de Vries

MAH04 Modern Web Development:
Building a Smart Web Client with

TypeScript and Angular2
- Allen Conway

ADH07 To Be Announced
ADH08
with Xamarin, VSTS and HockeyApp

- Roy Cornelissen

VSH19 User Experience Case
Studies - Good and Bad

- Billy Hollis
VSH20 Debugging the Web with

Fiddler - Ido Flatow
MAH05 Using All That Data: Power

BI to the Rescue - Scott Diehl
ADH09 Get Started with Microsoft

PowerApps - Fabian Williams
ADH10 Overcoming the Challenges of
Mobile Development in the Enterprise

- Roy Cornelissen

Post-Conference Workshops: Friday, December 9, 2016

VSF02 Workshop: Building Modern Web Apps with Azure
- Eric D. Boyd & Brian Randell

MAF01 Workshop: Modern App
Deep Dive: Xamarin, Responsive

Web, UWP, CSLA .NET - Jason Bock,
Allen Conway, Brent Edwards &

Kevin Ford

ADF01 Workshop: To Be Announced

VSF02 Session Continues MAF01 Session Continues ADF01 Session Continues

Web Client Web Server Windows Client Modern Apps Live! Agile Containerization Continuous
Integration Java Mobile Cloud

AGENDAS AT-A-GLANCE
Presented in
Partnership with

Look for the FULL Live! 360 Pull-Out Agenda on Page 33

 -

Untitled-7 5Untitled-7 5 9/12/16 3:55 PM9/12/16 3:55 PM

msdn magazine56

The FileSystemWatcher class is a very powerful tool that’s been
a part of the Microsoft .NET Framework since version 1.1, and
according to its official definition (bit.ly/2b8iOvQ), it “listens to the file
system change notifications and raises events when a directory, or
file in a directory, changes.”

This class is able to detect events in the file system, such as create,
modify, or delete files and folders; it’s fully customizable; and its
constructor accepts parameters like folder location and file exten­
sion to listen for, and a Boolean parameter to specify whether the
listening process should work recursively through the folder struc­
ture. However, including those parameters in your source code
isn’t a good approach because they won’t help when the application
needs to include new folders and file extensions, which, moreover,
will require coding, building and redeployment. Unless you’re sure

your application will hardly ever change those settings, a better idea
is to implement a mechanism that can change the configuration
without modifying the source code.

In this article I explore how to write an application that uses the
FileSystemWatcher class just once, but then, via XML serialization,
allows further modifications to the application’s settings, such as
folder names, file extensions and actions to be executed upon raising
an event. In this way, all the changes can be easily achieved simply
by updating an XML file and restarting the Windows service.

For simplicity’s sake, I’m not going to explain the details about
how to run this C# console application as a Windows service, but
many resources are available online regarding this matter.

The Structure of Customized Folder Settings
Because I plan to deserialize the XML settings file into a well-structured
C# class, the first component of the application must be the definition
of the parameters FileSystemWatcher requires to operate. Figure 1
shows the code that defines that class.

Now let’s look at how an XML file can be translated into this
C# class using the deserialization process. Please note that there
won’t be one single instance of the class CustomFolderSettings;
instead there will be a list (List<CustomFolderSettings>) allowing
the Windows service to listen for many different folder locations
and file extensions.

Figure 2 shows an example of an XML settings file from which I
can provide the FileSystemWatcher with all the arguments it needs to

WIN DO WS SER V IC E

Create a Customizable
FileSystemWatcher
Windows Service
Diego Ordonez

This article discusses:
•	The structure of customized folder settings
•	Starting the FileSystemWatcher process to listen for changes
•	Starting and stopping FileSystemWatcher instances within a

Windows service

Technologies discussed:
FileSystemWatcher Class, XML, Windows Services

Code download available at:
msdn.com/magazine/1016magcode

1016msdn_OrdonezXML_v4_56-60.indd 56 9/12/16 2:03 PM

http://msdn.com/magazine/1016magcode
www.bit.ly/2b8iOvQ

57October 2016msdnmagazine.com

work. It’s important to understand at this point that the information
contained in the XML file (Figure 2) will feed the C# class (Figure 1).

Let’s take a closer look at the parameters contained in the XML
file now. First, note that the XML root element is <ArrayOfCustom­
FolderSettings>, which allows as many elements <CustomFolder­
Settings> as required. This is the key to being able to concurrently
monitor several folder locations and file extensions.

Second, notice that the parameter <FolderEnabled> is true for
the first folder, but false for the second one. This is an easy way to
disable one of the FileSystemWatchers without having to delete it
from the XML file, meaning that even if the configuration is present,
the class will omit it when it’s running.

Finally, it’s important to understand how to specify which action
will be triggered upon detection of a file that has been created, deleted
or modified, which is the final goal of the FileSystemWatcher class.

The parameter <ExecutableFile> contains the application that will
be launched, in this example the DOS command line (CMD.EXE).

The parameter <ExecutableArguments> contains the options
that will be passed to the executable as arguments. Here’s the
example from Figure 2:

 >/C echo It works properly for .ZIP extension -- File {0} >
 c:\temp\it_ZIP_works.txt

This will translate into the following at running time:
CMD.EXE /C echo it works properly for .ZIP extension –– File
 d:\tests\file_modified_detected.doc > c:\temp\it_works_ZIP.txt

It will write the string into the file c:\temp\it_works_ZIP.txt, and
the value {0} in the XML will be replaced by the actual name of the
file FileSystemWatcher has detected. If you’re familiar with the C#
method string.Format, you won’t have any problems figuring it out.

Well, at this point I have one XML configuration file and one C#
class with matching attributes, so the next step is to deserialize the
XML information into a list of classes (List<CustomFolderSettings>).
Figure 3 shows the method that performs this key step.

Once this method executes, a list containing all the required
FileSystemWatcher instances will be available, so the next step is to
start the FileSystemWatcher class, which starts the listening process.

Of course, the method needs to know where the XML settings
file is, and I use the App.config file to define the location of the
XML file. Here’s the content of App.config:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="XMLFileFolderSettings" value=
 "C:\Work\CSharp_FileSystemW\CustomSettings.xml" />
 </appSettings>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />
 </startup>
</configuration>

/// <summary>
/// This class defines an individual type of file and its associated
/// folder to be monitored by the File System Watcher
/// </summary>
public class CustomFolderSettings
{
 /// <summary>Unique identifier of the combination File type/folder.
 /// Arbitrary number (for instance 001, 002, and so on)</summary>
 [XmlAttribute]
 public string FolderID { get; set; }

 /// <summary>If TRUE: the file type and folder will be monitored</summary>
 [XmlElement]
 public bool FolderEnabled { get; set; }

 /// <summary>Description of the type of files and folder location –
 /// Just for documentation purpose</summary>
 [XmlElement]
 public string FolderDescription { get; set; }

 /// <summary>Filter to select the type of files to be monitored.
 /// (Examples: *.shp, *.*, Project00*.zip)</summary>
 [XmlElement]
 public string FolderFilter { get; set; }

 /// <summary>Full path to be monitored
 /// (i.e.: D:\files\projects\shapes\)</summary>
 [XmlElement]
 public string FolderPath { get; set; }

 /// <summary>If TRUE: the folder and its subfolders will be monitored</summary>
 [XmlElement]
 public bool FolderIncludeSub { get; set; }

 /// <summary>Specifies the command or action to be executed
 /// after an event has raised</summary>
 [XmlElement]
 public string ExecutableFile { get; set; }

 /// <summary>List of arguments to be passed to the executable file</summary>
 [XmlElement]
 public string ExecutableArguments { get; set; }

 /// <summary>Default constructor of the class</summary>
 public CustomFolderSettings()
 {
 }
}

Figure 1 Definition of the CustomFolderSettings Class

<?xml version="1.0" encoding="utf-8"?>
<ArrayOfCustomFolderSettings xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <CustomFolderSettings FolderID="ExampleKML_files">
 <FolderEnabled>true</FolderEnabled>
 <FolderDescription>Files in format KML corresponding to the example project
 </FolderDescription>
 <FolderFilter>*.KML</FolderFilter>
 <FolderPath>C:\Temp\testKML\</FolderPath>
 <FolderIncludeSub>false</FolderIncludeSub>
 <ExecutableFile>CMD.EXE</ExecutableFile>
 <!-- The block {0} will be automatically replaced with the
 corresponding file name -->
 <ExecutableArguments>/C echo It works properly for .KML extension-- File {0}
 > c:\temp\it_works_KML.txt</ExecutableArguments>
 </CustomFolderSettings>
 <CustomFolderSettings FolderID="ExampleZIP_files">
 <FolderEnabled>false</FolderEnabled>
 <FolderDescription>Files in format ZIP corresponding to the example project
 </FolderDescription>
 <FolderFilter>*.ZIP</FolderFilter>
 <FolderPath>C:\Temp\testZIP\</FolderPath>
 <FolderIncludeSub>false</FolderIncludeSub>
 <ExecutableFile>CMD.EXE</ExecutableFile>
 <!-- The block {0} will be automatically replaced with the
 corresponding file name -->
 <ExecutableArguments>/C echo It works properly for .ZIP extension -- File {0}
 > c:\temp\it_works_ZIP.txt</ExecutableArguments>
 </CustomFolderSettings>
</ArrayOfCustomFolderSettings>

Figure 2 Structure of the XML Settings File

Of course, the method needs to
know where the XML settings file
is, and I use the App.config file to
define the location of the XML file.

1016msdn_OrdonezXML_v4_56-60.indd 57 9/12/16 2:03 PM

http://www.msdnmagazine.com

msdn magazine58 Windows Service

It’s important to remember that any changes in the XML settings
file or in the App.config file will require restarting the Windows
service in order for those changes to be applied.

Starting the FileSystemWatcher Process
(Listening for Changes)
At this point, all the settings required for the several (or at least
one) instances of the FileSystemWatcher are available in the list
created in Figure 3.

Now it’s time to start the listening process. For this, I need to loop
through the list and start the instances one-by-one. The code in
Figure 4 shows how to perform the initialization process and how
to assign all the parameters retrieved from the XML file.

In this code, the FileSystemWatcher is listening only for a cre­
ation event; however, other events are available, as well, such as
Deleted and Renamed.

I want to especially point to the line where a function subscribes
to the FileSystemWatcher Created event. Here, I use a lambda
expression for an important reason: Because I have a list of instances
of the FileSystemWatcher class, I need to associate a specific exe­
cutable to each instance. If I handle this differently (that is, by not
using a lambda expression but directly assigning the function),
only the last executable will be kept and all the FileSystemWatcher
instances will perform the same action.

Figure 5 shows the code for the function that actually performs
the action based on individual criteria for each single instance of
the FileSystemWatcher.

And, finally, Figure 6 shows the ExecuteCommandLineProcess
function, which is a very standard way to execute command-line
instructions (a DOS console).

Starting and Stopping FileSystemWatcher
Within a Windows Service
As initially stated, this application is designed to be run as a
Windows service, so I need a way to start or stop FileSystemWatcher
instances automatically when the Windows service starts, stops
or restarts. Even though I’m not going to dig into the Windows
Service definition here, it’s worth mentioning the two main meth­
ods of the Windows service implementation: OnStart and OnStop.

/// <summary>Reads an XML file and populates a list of
<CustomFolderSettings> </summary>
private void PopulateListFileSystemWatchers()
{
 // Get the XML file name from the App.config file
 fileNameXML = ConfigurationManager.AppSettings["XMLFileFolderSettings"];

 // Create an instance of XMLSerializer
 XmlSerializer deserializer =
 new XmlSerializer(typeof(List<CustomFolderSettings>));
 TextReader reader = new StreamReader(fileNameXML);
 object obj = deserializer.Deserialize(reader);

 // Close the TextReader object
 reader.Close();

 // Obtain a list of CustomFolderSettings from XML Input data
 listFolders = obj as List<CustomFolderSettings>;
}

Figure 3 Deserialization of the XML Settings File

/// <summary>Start the file system watcher for each of the file
/// specification and folders found on the List<>/// </summary>
private void StartFileSystemWatcher()
{
 // Creates a new instance of the list
 this.listFileSystemWatcher = new List<FileSystemWatcher>();

 // Loop the list to process each of the folder specifications found
 foreach (CustomFolderSettings customFolder in listFolders)
 {
 DirectoryInfo dir = new DirectoryInfo(customFolder.FolderPath);

 // Checks whether the folder is enabled and
 // also the directory is a valid location
 if (customFolder.FolderEnabled && dir.Exists)
 {
 // Creates a new instance of FileSystemWatcher
 FileSystemWatcher fileSWatch = new FileSystemWatcher();

 // Sets the filter
 fileSWatch.Filter = customFolder.FolderFilter;

 // Sets the folder location
 fileSWatch.Path = customFolder.FolderPath;

 // Sets the action to be executed
 StringBuilder actionToExecute = new StringBuilder(
 customFolder.ExecutableFile);

 // List of arguments
 StringBuilder actionArguments = new StringBuilder(
 customFolder.ExecutableArguments);

 // Subscribe to notify filters
 fileSWatch.NotifyFilter = NotifyFilters.LastWrite | NotifyFilters.FileName |
 NotifyFilters.DirectoryName;

 // Associate the event that will be triggered when a new file
 // is added to the monitored folder, using a lambda expression
 fileSWatch.Created += (senderObj, fileSysArgs) =>
 fileSWatch_Created(senderObj, fileSysArgs,
 actionToExecute.ToString(), actionArguments.ToString());

 // Begin watching
 fileSWatch.EnableRaisingEvents = true;

 // Add the systemWatcher to the list
 listFileSystemWatcher.Add(fileSWatch);

 // Record a log entry into Windows Event Log
 CustomLogEvent(String.Format(
 "Starting to monitor files with extension ({0}) in the folder ({1})",
 fileSWatch.Filter, fileSWatch.Path));
 }
 }
}

Figure 4 Initialization of the FileSystemWatcher Instances
This application is designed

to be run as a Windows service,
so I need a way to start

or stop FileSystemWatcher
instances automatically when
the Windows service starts,

stops or restarts.

1016msdn_OrdonezXML_v4_56-60.indd 58 9/12/16 2:03 PM

Untitled-4 1 8/25/16 12:21 PM

www.gnostice.com
mailto:support@gnostice.com
mailto:sales@gnostice.com

msdn magazine60 Windows Service

Initially, every time the Windows service starts, it has to perform
two actions: Populate the list of FileSystemWatcher instances from
the XML file (Figure 3), and then start the instances (Figure 4).

Here’s the code required to start the process from the Windows service:
/// <summary>Event automatically fired when the service is started by
Windows</summary>
/// <param name="args">array of arguments</param>
protected override void OnStart(string[] args)
{
 // Initialize the list of FileSystemWatchers based on the XML configuration file
 PopulateListFileSystemWatchers();

 // Start the file system watcher for each of the file specification
 // and folders found on the List<>
 StartFileSystemWatcher();
}

And, finally, the method in Figure 7 implements the logic to
stop the FileSystemWatcher; it requires stopping or restarting the
Windows service.

Wrapping Up
FileSystemWatcher is a powerful class that allows you to monitor
(listen to) changes occurring in the file system, such as creating,
deleting, and renaming files and folders, as well as modifying them.
This application, which is intended to run as a Windows service,
has been designed to allow for easy modification of the files and
folders to be monitored, including file extensions. The approach I
followed uses a very handy concept available in the .NET Framework,
serialization and deserialization, making it possible to feed the
FileSystemWatcher class from an XML file without requiring
any change to the source code. Instead, after any modification in
the XML settings file, it’s just a matter of restarting the Windows
service and, voilà, the changes are applied.	 n

Diego Ordonez is a civil engineer with more than 15 years of experience in IT working
mainly with GIS and CAD technologies as an analyst, developer and architect. He
is a Microsoft Certified Professional Developer in C#, ASP.NET, ADO.NET, SQL
Server and he really enjoys learning and applying technologies around the .NET
Framework. He lives in Calgary, Alberta, Canada, with his wife and two lovely
daughters and works for Altus Geomatics as a GIS team lead (bit.ly/2aWfi34).

Thanks to the following Microsoft technical expert for reviewing this article:
James McCaffrey

/// <summary>Executes a set of instructions through the command window</summary>
/// <param name="executableFile">Name of the executable file or program</param>
/// <param name="argumentList">List of arguments</param>
private void ExecuteCommandLineProcess(string executableFile, string argumentList)
{
 // Use ProcessStartInfo class
 ProcessStartInfo startInfo = new ProcessStartInfo();
 startInfo.CreateNoWindow = true;
 startInfo.UseShellExecute = false;
 startInfo.FileName = executableFile;
 startInfo.WindowStyle = ProcessWindowStyle.Hidden;
 startInfo.Arguments = argumentList;

try
 {
 // Start the process with the info specified
 // Call WaitForExit and then the using-statement will close
 using (Process exeProcess = Process.Start(startInfo))
 {
 exeProcess.WaitForExit();

 // Register a log of the successful operation
 CustomLogEvent(string.Format(
 "Succesful operation --> Executable: {0} --> Arguments: {1}",
 executableFile, argumentList));
 }
 }
 catch (Exception exc)
 {
 // Register a Log of the Exception
 }
}

Figure 6 Executing Command-Line Instructions

/// <summary>Event automatically fired when the service is stopped by
Windows</summary>
protected override void OnStop()
{
 if (listFileSystemWatcher != null)
 {
 foreach (FileSystemWatcher fsw in listFileSystemWatcher)
 {
 // Stop listening
 fsw.EnableRaisingEvents = false;

 // Dispose the Object
 fsw.Dispose();
 }

 // Clean the list
 listFileSystemWatcher.Clear();
 }
}

Figure 7 Stopping the FileSystemWatcher

/// <summary>This event is triggered when a file with the specified
/// extension is created on the monitored folder</summary>
/// <param name="sender">Object raising the event</param>
/// <param name="e">List of arguments - FileSystemEventArgs</param>
/// <param name="action_Exec">The action to be executed upon detecting a
change in the File system</param>
/// <param name="action_Args">arguments to be passed to the executable
(action)</param>
void fileSWatch_Created(object sender, FileSystemEventArgs e,
 string action_Exec, string action_Args)
{
 string fileName = e.FullPath;

 // Adds the file name to the arguments. The filename will be placed in lieu of {0}
 string newStr = string.Format(action_Args, fileName);

 // Executes the command from the DOS window
 ExecuteCommandLineProcess(action_Exec, newStr);
}

Figure 5 Performing an Action Based on the Criteria for
Each Instance

FileSystemWatcher is a
powerful class that allows you
to monitor (listen to) changes
occurring in the file system,

such as creating, deleting, and
renaming files and folders, as

well as modifying them.

1016msdn_OrdonezXML_v4_56-60.indd 60 9/12/16 2:03 PM

www.bit.ly/2aWfi34

Untitled-1 1Untitled-1 1 4/1/14 10:47 AM4/1/14 10:47 AM

www.spreadsheetGear.com

msdn magazine62

Analysis of variance (ANOVA) is a classical statistics tech-
nique that’s used to infer if the means (averages) of three or
more groups are all equal, in situations where you only have
sample data. For example, suppose there are three differ-
ent introductory computer science classes at a university.
Each class is taught by the same teacher, but uses a different
textbook and a different teaching philosophy. You want to
know if student performance is the same or not.

You have an exam that evaluates computer science pro-
ficiency on a one-to-15 scale, but because the exam is very
expensive and time-consuming, you can give the exam
to only six randomly selected students in each class. You
administer the exam and perform ANOVA on the samples
to infer if the means of all three classes are the same or not.

If you’re new to ANOVA, the name of the technique may
be mildly confusing because the goal is to analyze the means
of data sets. ANOVA is named as it is because behind the
scenes it analyzes variances to make inferences about means.

A good way to get an idea of what ANOVA is and to see
where this article is headed is to take a look at the demo
program in Figure 1. The demo sets up hardcoded scores
for three groups. Notice that there are only four scores
in Group1 and only five scores in Group3—it’s quite common for
sample sizes to be unequal because test subjects can drop out or
data can be lost or corrupted.

There are two main steps to ANOVA. In the first step, an
F-statistic value and a pair of values called the “degrees of freedom”
(df) are calculated using the sample data. In the second step, the
values of F and df are used to determine the probability that all
population means are the same (the p-value). The first step is rel-
atively easy. The second step is very difficult.

In the demo, the value of F is 15.884. In general, the larger F is,
the less likely it is that all population means are equal. I’ll explain
why df = (2, 12) shortly. Using F and df, the p-value is calculated
to be 0.000425. This is very small, so you’d conclude that the
population means are likely not all the same. At this point, you
could perform additional statistical tests to determine which pop-
ulation means are different from each other. For the demo data, it
appears that Group1 (sample mean = 4.50) is worse than Group2
(mean = 9.67) and Group3 (mean = 10.60).

The Demo Program
To create the demo program, I launched Visual Studio, clicked on
File | New | Project and selected the C# Console Application option.
The demo program has no significant .NET dependencies, so any
version of Visual Studio will work. After the template code loaded
in the Solution Explorer window, I right-clicked on file Program.cs
and renamed it to AnovaProgram.cs and allowed Visual Studio to
automatically rename class Program for me.

At the top of the editor window, I deleted all unnecessary using state-
ments, leaving just the one that references the top-level System namespace.
The overall structure of the program is shown in Figure 2. The demo
program is too long to present in its entirety, but the complete demo
source code is available in the download that accompanies this article.

Static method Fstat computes and returns an F-statistic based
on data stored in an array-of-arrays object. The method also calcu-
lates and returns two df values in an array out-parameter. Function
ShowData is just a little helper function to display the sample means.

The remaining five methods are all used to calculate the p-value.
Method QF is the primary method. It calls method PF, which in
turn calls method BetaInc, which in turn calls methods BetaIncCf
and LogGamma.

ANOVA with C#

Test Run JAMES MCCAFFREY

Code download available at msdn.com/magazine/1016magcode.

Figure 1 ANOVA with C# Demo Program

1016msdn_McCaffreyTRun_v3_62-66.indd 62 9/12/16 1:54 PM

http://msdn.com/magazine/1016magcode

APPDEVTRENDS.COM

6 Great Conferences, 1 Great Price

App Dev Trends, brought to you by ADTmag.com, is a
new technology conference focused on the makers and
maintainers of the purpose-designed software that Power
organizations in virtually every industry in the world—in
other words, enterprise software professionals! You Power
your company. It’s our job to Power you!

This event is for:
 • down-in-the-trenches developers
 • team leaders
 • entire software development teams

Track topics include:
 • Agile
 • Cloud
 • Mobility
 • Java
 • Containerization
 • Continuous Integration

A NEW CONFERENCE FOR
SOFTWARE DEVELOPERS

REGISTER BY OCTOBER 5
AND SAVE $400!

Use promo code ADTSEP1

Scan the QR code to register
or for more event details.

ORLANDO
ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

PRODUCED BY

Untitled-8 1Untitled-8 1 8/12/16 3:52 PM8/12/16 3:52 PM

www.appdevtrends.com

msdn magazine64 Test Run

After some preliminary WriteLine messages, the Main method
sets up and displays the sample data:

double[][] data = new double[3][]; // 3 groups
data[0] = new double[] { 3, 4, 6, 5 };
data[1] = new double[] { 8, 12, 9, 11, 10, 8 };
data[2] = new double[] { 13, 9, 11, 8, 12 };
string[] colNames = new string[] { "Group1", "Group2", "Group3" };
ShowData(data, colNames);

In a non-demo scenario, your data would likely be stored in a
text file and you’d write a helper function to read and load the data
into an array-of-arrays.

The F-statistic and df are calculated like so:
int[] df = null;
double F = Fstat(data, out df);

For ANOVA, the df for a data set is a pair of values. The first value
is K - 1 where K is the number of groups, and the second value is N
- K where N is the total number of sample values. So for the demo
data, df = (K-1, N-K) = (3-1, 15-3) = (2, 12).

The p-value is computed and displayed like this:
double pValue = QF(df[0], df[1], F);
Console.Write("p-value = ");

In short, when performing an ANOVA, the calling statements are
very simple. But there’s a lot of work that goes on behind the scenes.

Calculating the F-Statistic
Calculating the value of an F-statistic has several sub-steps. Suppose
the sample data values are the ones from the demo:

Group1: 3.00, 4.00, 6.00, 5.00
Group2: 8.00, 12.00, 9.00, 11.00, 10.00, 8.00
Group3: 13.00, 9.00, 11.00, 8.00, 12.00

The first sub-step is to calculate the means of each group, and the
overall mean of all sample values. For the demo data:

means[0] = (3.0 + 4.0 + 6.0 + 5.0) / 4 = 4.50
means[1] = (8.0 + 12.0 + 9.0 + 11.0 + 10.0 + 8.0) / 6 = 9.67
means[2] = (13.0 + 9.0 + 11.0 + 8.0 + 12.0) / 5 = 10.60
gMean = (3.0 + 4.0 + . . . + 12.0) / 15 = 8.60

The definition of method Fstat starts with:
static double Fstat(double[][] data, out int[] df)
{
 int K = data.Length; // Number groups
 int[] n = new int[K]; // Number items each group
 int N = 0; // total number data points
 for (int i = 0; i < K; ++i) {
 n[i] = data[i].Length;
 N += data[i].Length;
 }
...

At this point, local array n has the number of values in each group,
K has the number of groups, and N is the total number of values in
all groups. Next, the group means are calculated into an array named
means, and the overall grand mean is calculated into variable gMean:

double[] means = new double[K];
double gMean = 0.0;
for (int i = 0; i < K; ++i) {
 for (int j = 0; j < data[i].Length; ++j) {
 means[i] += data[i][j];
 gMean += data[i][j];
 }
 means[i] /= n[i];
}
gMean /= N;

The next sub-step is to calculate the “sum of squares between
groups” (SSb) and “mean square between groups” (MSb). SSb is
the weighted sum of squared differences between each group mean
and the overall mean. MSb = SSb / (K-1) where K is the number of
groups. For the demo data:

SSb = (4 * (4.50 - 8.60)^2) + (6 * (9.67 - 8.60)^2) + (5 * (10.60 - 8.60)^2) = 94.07
MSb = 94.07 / (3-1) = 47.03

The code that calculates SSb and MSb is:
double SSb = 0.0;
for (int i = 0; i < K; ++i)
 SSb += n[i] * (means[i] - gMean) * (means[i] - gMean);
double MSb = SSb / (K - 1);

The next sub-step is to calculate the “sum of squares within
groups” (SSw) and the “mean square within groups (MSw). SSw is
the sum of squared differences between each sample value and its
group mean. MSw = SSw / (N-K). For the demo data:

SSw = (3.0 - 4.50)^2 + . . + (8.0 - 9.67)^2 + . . + (12.0 - 10.60)^2 = 35.53
MSw = 35.53 / (15-3) = 2.96

The code that calculates SSw and MSw is:
double SSw = 0.0;
for (int i = 0; i < K; ++i)
 for (int j = 0; j < data[i].Length; ++j)
 SSw += (data[i][j] - means[i]) * (data[i][j] - means[i]);
double MSw = SSw / (N - K);

The final sub-step is to calculate the two df values and the
F-statistic. The two df values are K - 1, and N - K. And F = MSb /
MSw. For the demo data:

df = (K-1, N-K) = (3-1, 15-3) = (2, 12)
F = 47.03 / 2.96 = 15.88.

The demo code that calculates df and F is:
...
 df = new int[2];
 df[0] = K - 1;
 df[1] = N - K;
 double F = MSb / MSw;
 return F;
} // Fstat

using System;
namespace Anova
{
 class AnovaProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin ANOVA using C# demo");
 // Set up sample data
 // Use data to calculate F and df
 // Use F and df to calculate p-value
 Console.WriteLine("End ANOVA demo");
 }

 static double Fstat(double[][] data, out int[] df) { . . }
 static double LogGamma(double z) { . . }
 static double BetaIncCf(double a, double b, double x) { . . }
 static double BetaInc(double a, double b, double x) { . . }
 static double PF(double a, double b, double x) { . . }
 static double QF(double a, double b, double x) { . . }
 static void ShowData(double[][] data, string[] colNames) { . . }
 }
}

Figure 2 Demo Program Structure

In short, when performing an
ANOVA, the calling statements are
very simple. But there’s a lot of work

that goes on behind the scenes.

1016msdn_McCaffreyTRun_v3_62-66.indd 64 9/12/16 1:54 PM

Where you need us most.

magazine

MSDN.microsoft.com

Untitled-5 1Untitled-5 1 12/10/15 2:34 PM12/10/15 2:34 PM

http://MSDN.microsoft.com

msdn magazine66 Test Run

I think you’ll agree that calculating an F-statistic and df values
from a set of data is mechanical and relatively easy once you know
the math equations.

Calculating the p-value
Converting an F-statistic and df values into a p-value that tells you
the probability that all population means are equal based on the sam-
ple data that produce F and df is simple in principle, but extremely
difficult in practice. I’ll explain as briefly as possible, leaving out
an enormous amount of detail that would require a huge amount
of additional explanation. Take a look at the graph in Figure 3.

Each possible pair of df values determines a graph called the
F-distribution. The shape of an F-distribution can vary wildly based on
the values of df. The graph in Figure 3 shows an F-distribution for df
= (4, 12). I used df = (4, 12) rather than the df = (2, 12) from the demo
data because the shape of the df = (2, 12) F-distribution is very atypical.

The total area under any F-distribution is exactly 1.0. If you know
the value of the F-statistic, then the p-value is the area under the
F-distribution from F to positive infinity. Somewhat confusingly,
the area under the F-distribution from zero to the F-statistic is often
called PF, and the area under the F-distribution from the F-statistic
to positive infinity (representing the p-value) is often called QF.
Because the total area under the distribution is 1, PF + QF = 1. It turns
out that it’s a bit easier to calculate PF than QF, so to find the p-value
(QF), you typically calculate PF then subtract that from 1 to get QF.

Calculating PF is brutally difficult but, luckily, magic estimation
equations have been known for decades. These math equations, and
hundreds of others, can be found in a famous reference, “Handbook
of Mathematical Functions” by M. Abramowitz and I.A. Stegun.
The book is often called simply “A&S” among scientific program-
mers. Each A&S equation has an ID number.

In the demo, method PF is really just a wrapper around meth-
od BetaInc:

static double PF(double a, double b, double x)
{
 double z = (a * x) / (a * x + b);
 return BetaInc(a / 2, b / 2, z);
}

The name of method BetaInc stands for “incomplete Beta.” Method
BetaInc uses A&S equations 6.6.2 and 26.5.8. Those equations call
a LogGamma function and a BetaIncCf function. The LogGamma
function is extremely difficult to explain and to implement. Briefly,
the mathematical Gamma function extends the notion of factorial
to real-valued numbers. Just like factorials, the values of the Gamma
function can become astronomically large, so to handle them it’s
common to compute the log of Gamma to keep values smaller.

Calculating LogGamma is very tricky and there are several algo
rithms you can use. The demo program uses an algorithm called
the Lanczos approximation with (g=5, n=7). The A&S reference has
different algorithms that can calculate LogGamma, but the Lanczos
approximation, which was not known when A&S was published,
gives more accurate results.

The name of method BetaIncCf stands for “incomplete Beta
computed by continued fraction.” The demo program uses A&S
equation 26.5.8 for method BetaIncCf.

Wrapping Up
An ANOVA test makes three mathematical assumptions: that the
group data items are mathematically independent; that the population
data sets are distributed normally (as in the Gaussian distribution);
and that the population data sets have equal variances.

There are several ways you can test these assumptions, but inter
preting their results is challenging. The problem is that it’s highly
unlikely that real-world data is exactly normal and has exactly
equal variances, though ANOVA still works when data is some-
what non-normal or has non-equal variances. The bottom line is
that it’s extremely difficult to prove ANOVA assumptions so you
should be very conservative when interpreting results.

ANOVA is closely related to the t-test. The t-test determines if
the population means of exactly two groups are equal, in situations
where you have only sample data. So, if you have three groups, as
in the demo, instead of using ANOVA, you could conceivably
perform three t-tests, comparing groups 1 and 2, groups 1 and 3,
and groups 2 and 3. However, this approach isn’t recommended
because it introduces what’s called a Type 1 error (a false positive).

The kind of ANOVA explained in this article is called one-way
(or one-factor) ANOVA. A different technique, called two-way
ANOVA, is used when there are two factors.

ANOVA is based on the calculated value of an F-statistic from a
data set. There are other statistical tests that use an F-statistic. For
example, you can use an F-statistic to infer if the variances of two
groups of data are the same.	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products including Internet Explorer and Bing. Dr.
McCaffrey can be reached at jammc@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this
article: Chris Lee and Kirk OlynkFigure 3 Calculating the p-Value from an F-Statistic and df Values

F-Distribution, df1 = 4, df2 = 12

0.1

0
0

1

0.2

0.3

2

0.4

0.5

3 4 5

0.6

0.7

0.8

6

F(
x)

F-statistic = 2.67

The area under curve from
calculated F statistic to
+infinity is probability that
all means are equal

The area under curve from
calculated F statistic to
+infinity is probability that
all means are equal

The total area under any
F-distribution is exactly 1.0.

1016msdn_McCaffreyTRun_v3_62-66.indd 66 9/12/16 1:54 PM

mailto:jammc@microsoft.com

SUPPORTED BYEVENT PARTNERS PLATINUM SPONSORS GOLD SPONSORS SILVER
SPONSOR

SPLIVE360.COM
PRODUCED BY

6 GREAT CONFERENCES, 1 GREAT PRICE

Today, organizations expect people to work from
anywhere at any time. Office & SharePoint Live!, provides
leading-edge knowledge and training to administrators,
developers, and planners who must customize, deploy
and maintain SharePoint Server on-premises and in
Office 365 to maximize the business value.

Whether you are a Manager, IT Pro, DBA, or Developer,
Office & SharePoint Live! brings together the best the
industry has to offer for 5 days of workshops, keynotes,
and sessions to help you work through your most
pressing collaboration projects.

Use promo code OSPOCT1

Scan the QR code to register or for
more event details.

ORLANDO
ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

REGISTER BY OCTOBER 5
AND SAVE $400!

Untitled-5 1Untitled-5 1 9/12/16 2:55 PM9/12/16 2:55 PM

www.splive360.com

msdn magazine68

Welcome back, MEANers.
As I mentioned in a previous column, it’s time to pull a comic-book

move and engage in a little “retroactive continuity”—a common
move whenever the story needs to change its past to better support
its future. In this particular case, the ret-con you need to engage in
is to make use of some of the tools that you should’ve used from the
beginning, but didn’t, because I deemed it necessary to walk through
some of the parts in a step-by-step fashion before effectively hiding
them behind the tools.

One thing I’ve heard through some of your e-mails, for example,
is how much the MEAN development experience differs from that
of the traditional .NET experience. One commenter went so far as
to point out that with Visual Studio, you have all the project tem-
plates that can take much of the burden of organizing the source
away from you. ASP.NET MVC, for example, decided a long time
ago what directory controllers would live in, so that any ASP.NET
MVC developer walking up to any ASP.NET MVC project will
know exactly where everything lives.

On that note, I begin my discussion on Yeoman, the ECMAScript
scaffolding tool, which serves the same purpose
as the project template facility in Visual Studio.
(For those who aren’t aware of the etymology of
the term “yeoman,” one such dictionary definition
defines it as “a servant in a royal or noble house-
hold, ranking between a sergeant and a groom or
a squire and a page.” For this reason, the Yeoman
tool, documentation and site tend to pass them-
selves off as a Cockney English bloke.)

Get Your Yeoman on, Yo
Like almost everything in the JavaScript universe,
Yeoman is a command-line tool that’s installed via
npm. The documentation for Yeoman is available

at yeoman.io, but it’s already obvious what the first step will be: “npm
install --g yo.” Once completed, this will put the “yo” command-line
tool on the PATH, and an easy way to check that it’s installed is
to simply run it. Running “yo --help” brings up the usual list of
options, but running “yo” by itself will actually be more interesting:
It brings up an interactive command-line menu of options that
Yeoman can execute on your behalf, as shown in Figure 1.

When freshly installed, Yeoman will not have any generators
already installed (contrary to my list in Figure 1 of a few already
there), but scrolling up and down (using the arrow keys) will also
show a few other options, such as “Install a generator,” “Find some
help” or “Get me out of here!” Yeoman is nothing if not obvious.

The term “generator” is an apt and appropriate term; like Visual
Studio, Yeoman doesn’t actually know how to generate anything
itself. Instead, it relies on “generators,” community-contributed
packages that consist of scripts and templates that can interrogate
the user for specifics of what to generate. In order for Yeoman
to use one of these generators, however, it must be installed on
the local system. In addition, in order for it to be installed, you
need to figure out which of the almost 4,000 generators (as of this
writing) available you want to use.

Finding Generators, Yo
While it’s certainly possible to let Yeoman search npm for genera-
tors (one of the options presented by the command line when it’s
run), it’s usually easier to let search engines manage that for you, or
to simply browse for the generator on the Yeoman site (yeoman.io/
generators). Therefore, for example, if you want to make use of
Yeoman to scaffold out a new MEAN application, you need to find

How To Be MEAN: Exploring Yeoman

The Working Programmer TED NEWARD

Figure 1 Yeoman with Execution Options

Like almost everything in the
JavaScript universe, Yeoman
is a command-line tool that’s

installed via npm.

1016msdn_NewardWProg_v3_68-71.indd 68 9/12/16 1:54 PM

www.yeoman.io
www.yeoman.io/generators
www.yeoman.io/generators

SUPPORTED BYEVENT PARTNERS PLATINUM SPONSORS GOLD SPONSORS SILVER
SPONSOR

SQLLIVE360.COM
PRODUCED BY

6 GREAT CONFERENCES, 1 GREAT PRICE

After 5 days of workshops, deep dives and
breakout sessions, SQL Server Live! will leave you
with the skills needed to Lead the Data Race.

With timely, relevant content, SQL Server Live!
helps administrators, DBAs, and developers do more
with their SQL Server investment. Sessions will
cover performance tuning, security, reporting, data
integration, adopting new techniques, improving
old approaches, and modernizing the SQL Server
infrastructure.

Use promo code SQLSEP1

Scan the QR code to register or for
more event details.

REGISTER BY OCTOBER 5
AND SAVE $400!

ORLANDO
ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

Untitled-8 1Untitled-8 1 8/12/16 3:53 PM8/12/16 3:53 PM

www.sqllive360.com

msdn magazine70 The Working Programmer

one that does Angular (v1 for now)
and MongoDB. As it turns out, as of
this writing, the one that’s by far the
most popular, “angular-fullstack,”
is right near the top of the list.
However, if it wasn’t, or if there
was something different desired
(such as a generator that did React,
or for a Chrome extension, or even
an ASP.NET Core generator), you
could use the Yeoman generators
page to search for it. For exam-
ple, you might want to split the
code into two projects, one for
the back-end Web API, and one
for the front-end Angular client.
That would suggest that you want
an Express-plus-MongoDB project
(sometimes called a MEN project),
which has a couple of generators
available, including “express-api”
or “node-express-mongo”), plus
another generator that can build
an Angular front end.

For now, the generator you want is the “angular-fullstack” genera-
tor, because it will generate both client- and server-side scaffolding.
Therefore, once you’ve identified which generator you want, you need
to install it using the npm tool. (Yeoman doesn’t use yo to manage
generator installs; it relies on npm to handle that.) Thus, the next step
is to “npm install --g generator-angular-fullstack.” Note the “genera-
tor-” prefix; this is the convention for all Yeoman generator packages.

Once installed, Yeoman can use it by simply referencing it (with-
out the “generator-” prefix) as a parameter to the “yo” command:
“yo angular-fullstack.” At this point, Yeoman will pass control of
what happens next to the generator itself, and in the case of the
angular-fullstack generator, it’ll begin to ask questions about what
kind of application you want to scaffold out:

• �whether to use Babel or TypeScript
• �whether to use HTML or Jade (a popular JavaScript HTML

templating library) for markup
• �which CSS tool to use (raw CSS, Sass, Stylus or Less)
• �which Angular router to use (ngRoute or uiRouter)
• �whether to include Bootstrap
• �whether to include UI-Bootstrap (an extension to Angular

for Bootstrap features)

• �whether to use Mongoose (which you’ve seen before) or Sequelize
(modeling for RDBMSes) for the models in the application

• �whether to scaffold out the Passport authentication code,
and if so, for which services (choosing from Google, Twitter
or Facebook)

• �whether to use Grunt or Gulp (which I’ll examine next time)
as the project build tool

• �finally, which testing tools to use (Jasmine or a collection of
several libraries together)

Once the Q&A is done, Yeoman will generate a slew of files (most
of which will fall into either the generated “client” or “server” direc-
tories it creates). It will then run an “npm install” to pull down all
the dependencies for the server and run a “bower install” (which
may require installing bower, “npm install –g bower”) to do the
same for the client. Note that because the various dependencies
that are pulled in by these steps will vary depending on the exact
version of the generator (and the various libraries referenced by
the generated code), it’s possible (likely, even) that these steps will
generate warnings.

Once finished, though, you’ll have a fully fleshed out scaffolded
application. It won’t do much, but if you kick it off with “gulp
serve” as the generated README indicates (which will require
having Gulp installed—“npm install –g gulp-cli”—if it’s not already
present), and if MongoDB is running on your local box, it’ll bring
up a page similar to what the ASP.NET MVC project template
generates, as shown in Figure 2.

Note that it has full user-management support, including the
ability to authenticate using Google, Facebook, or Twitter (though
using each of those will require obtaining the appropriate cre-
dential tokens or keys from each of those services and specifying
them in the configuration directory in the server code) or using
e-mail/passwords.

Figure 2 The Scaffolded Application Front End

For now, the generator you want is
the “angular-fullstack” generator,

because it will generate both
client- and server-side scaffolding.

1016msdn_NewardWProg_v3_68-71.indd 70 9/12/16 1:54 PM

71October 2016msdnmagazine.com

Adding Speakers, Yo
Because the application you’ve been building (sort of) has been a
speaker-rating system, one of the first things you’ll need to model
in this new codebase is that of a speaker. And while you could
start diving into the generated files to find out where models are
declared and so on, it’s much easier to let Yeoman help with that: “yo
angular-fullstack:endpoint speaker.” It’ll ask what you want to use
for the API endpoint URL, and then go do its thing. This is the
command-line equivalent of using Yeoman to do the ASP.NET
MVC right-click/Add-Controller thing, and will generate some
“emptyish” files in server/api/speaker for you to modify.

It turns out that the angular-fullstack Yeoman generator can do this
for a number of different elements of the application, both client-side
and server-side. You can see the full list of “sub-generators” by asking
the generator itself for a list via “yo angular-fullstack --help”.

Layout, Yo
Because I haven’t really explored the client side of things, I’ll leave
that be for now. But the server side is something I’ve been exploring
for some time, so without further ado, let’s go plunging into that.

First, all the server code—not surprisingly—is contained in the
“server” directory. This directory contains the main application file,
app.js, the list of Express routes in routes.js and several subdirec-
tories that contain the rest of the server-side code. That includes
“api” (where the model- and controller-related code resides), “auth”
(which is where the authentication code resides), “components”
(which will contain non-API-related components), “config” (con-
figuration) and “views” (which only contains a 404.html file, for
when you request unknown URLs).

The auth directory is pretty much done as is; there will rarely
be, if ever, a need to wander around in here. As its name implies,
Config contains the configuration values used by the rest of the
application in much the same way that I built up the “config.js” file

in my previous columns. Most of the developer action will happen
in the api subdirectory.

Within api, you’ll find three subdirectories: the one you just
created (“speaker”), one specifically for modeling users (“user”) and
one that’s generated automatically for you by the generator (“thing”)
as a template or example to follow. Within each of these API sub
directories, you’ll find a pattern—a collection of “double-extension”
files: thing.controller.js, thing.events.js, thing.model.js and so on.
There will also be an index.js file, which serves as a sort of “single
entry-point” for the entire subdirectory (it brings together each
of the other files together for easy reference from the rest of the
directory) and an index.spec.js file, which is used specifically to
test the code found in this directory.

So, for example, if you want to indicate that speakers have a
first name, last name, and list of topics they like to speak on, you
can open the speaker.model.js file, and model it using standard
Mongoose facilities (I discussed this in an earlier column; see
msdn.com/magazine/mt683801), as shown in Figure 3.

(Note the use of the “export”; this is a new ECMAScript 2015
feature, as discussed in my September 2015 column at msdn.com/
magazine/mt422588.) However, now that you’ve changed the model
for Speaker, you need to update the tests (in speaker.integration.js),
or else tests will fail when you run them. I’ll leave that as an exer-
cise for you as a way of exploring the code; run the tests with “gulp
test:server” to avoid the client-side tests. Of course, you can always
explore the API by using curl (“curl localhost:3000/api/speakers,”
which will be empty unless you insert a few via POSTing to that
endpoint or directly into MongoDB. Note that the generators are
undergoing continuous development, so future versions of the
generator will set a different default port or URL).

Wrapping Up
This hasn’t been a particularly code-heavy column, yet you just
rebooted the entire application, gained a whole ton of function-
ality, and essentially brought the application up to the same level
(and beyond) from what you’d been building for the past year or
so. Gotta love scaffolding! More important, having built all the
parts piece-by-piece by hand prior to running the scaffolding, it’s
much easier to understand the code as a whole and what’s happen-
ing where. For example, opening up routes.js will look familiar to
the routing table you built by hand earlier, and the package.json
(in the root of the project directory) will be bigger, though it will
basically remain the same as you had been using.

The only new thing, in fact, beyond the use of Yeoman itself, is
the introduction of a “build tool” to gather all the pertinent parts
together into the right place, and that will be what I discuss next
time. Until then, however … happy coding!	 n

Ted Neward is a Seattle-based polytechnology consultant, speaker and mentor.
He has written more than 100 articles, is an F# MVP and has authored and
coauthored a dozen books. Reach him at ted@tedneward.com if you’re interested in
having him come work with your team, or read his blog at blogs.tedneward.com.

Thanks to the following technical expert for reviewing this article:
Shawn Wildermuth

'use strict';

import mongoose from 'mongoose';

var SpeakerSchema = new mongoose.Schema({
 firstName: {
 type: String,
 required: true
 },
 lastName: {
 type: String,
 required: true
 },
 topics: [String],
 active: Boolean,
 created: {
 type: Date,
 default: Date.now
 },
 updated: Date
});

SpeakerSchema
 .pre('save', function(next) {
 this.updated = new Date();
 next();
 });

export default mongoose.model('Speaker', SpeakerSchema);

Figure 3 The Speaker Mongoose Schema

1016msdn_NewardWProg_v3_68-71.indd 71 9/12/16 1:54 PM

mailto:ted@tedneward.com
http://www.msdnmagazine.com
http://msdn.com/magazine/mt683801
http://msdn.com/magazine/mt422588
http://msdn.com/magazine/mt422588
http://blogs.tedneward.com

msdn magazine72

In a departure from my recent focus on .NET
Core, in this month’s Essential .NET Column
I’m going to focus on a host of new features that
significantly increase the power of Windows
PowerShell. To me, the most significant improve-
ments are in the area of cross-platform support—
yes, really, PowerShell now runs on Linux. Not
only that, but it has also moved to open source
on GitHub (github.com/PowerShell/PowerShell) so that
the community at large can begin to bolster its
features. Cool!!

But the most recent announcements don’t tell
the whole story. Back in February, PowerShell
5.0 was released and it includes new or improved
support for class and enum declarations, module
and script discovery, package management and
installation, OData endpoint access, enhanced
transcription and logging, and more. In this
article I’m going to review each of these fea-
tures and provide examples.

PowerShell Goes Cross-Platform
To begin, take a look at the following command
script, which installs PowerShell on Ubuntu
14.04 from Windows PowerShell Host, along
with a screenshot of the execution session from
Windows Bash in Figure 1 (For those of you not
familiar with Bash running Ubuntu on Windows 10 Anniversary
Update see “Installing Bash on Windows 10.”):

wget -O powershell.deb https://github.com/PowerShell/PowerShell/releases/
download/v6.0.0-alpha.9/powershell_6.0.0-alpha.9-1ubuntu1.14.04.1_amd64.deb
sudo apt-get install libunwind8 libicu52
sudo dpkg -i powershell.deb
powershell

Note that the command script specifically targets Ubuntu
14.04. For other platforms, the deb package URL and the prereq-
uisite versions will vary. See bit.ly/2bjAJ3H for instructions on your
specific platform.

Many years ago now Jeffrey Snover tweeted that PowerShell
could reasonably be expected to appear on Linux, but it has taken
so long and there have been so few progress reports that even
today as I use it I’m amazed. I mean, really? I’m running Bash on
top of Ubuntu running on Windows (without leveraging any
virtualization technology) and (assuming I don’t want to install
PowerShell directly into the same Bash instance) using SSH to

connect to a remote Bash session where I can install PowerShell
and pipe .NET objects between commands within the Bash shell.

If I had suggested this would be possible a couple of years ago I
doubt many would have believed me.

PowerShell Repositories
and the PowerShell Gallery
While it’s great that you can write your own scripts and libraries, it’s
likely that someone else in the community has already done some-
thing similar that you can leverage and improve upon. Until the
advent of the PowerShell Gallery (PowerShellGallery.com), however, you
had to comb the Internet to find scripts and modules that might
be useful—whether they were community contributions or official
PowerShell product releases like Pscx or the Posh-Git module. One
of the more recent PowerShell improvements (part of PowerShell 5.0)
I’ve become completely dependent on is the new repository support,

Windows PowerShell
Just Keeps Getting Better

Essential .NET MARK MICHAELIS

Figure 1 Installing and Running Windows PowerShell on Ubuntu 14.04 from Bash
on Ubuntu on Windows

1016msdn_MichaelisNET_v4_72-77.indd 72 9/12/16 2:02 PM

http://github.com/PowerShell/PowerShell
www.PowerShellGallery.com
www.bit.ly/2bjAJ3H

SUPPORTED BYEVENT PARTNERS PLATINUM SPONSORS GOLD SPONSORS SILVER
SPONSOR

MODERNAPPSLIVE.COM
PRODUCED BY

A Part of Live! 360: Th e Ulimae Educaion Dsiaion
6 GREAT CONFERENCES, 1 GREAT PRICE

Presented in partnership with Magenic, Modern Apps
Live! brings Development Managers, Software Architects
and Development Leads together to break down the
complex landscape of mobile, cross-platform, and cloud
development and learn how to architect, design and build
a complete Modern Application from start to fi nish.

In-depth and educational sessions taught by the
industry's top thought leaders will lay out how to get an
app done successfully and at a low cost!

Navigae E--E
Modrn App

Use promo code MALOCT1
Scan the QR code to register or for
more event details.

✱

ORLANDO
ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

REGISTER BY OCTOBER 5
AND SAVE $400!

✱

Untitled-7 1 9/7/16 5:24 PM

www.modernappslive.com

msdn magazine74 Essential .NET

specifically the PowerShell Gallery. Imagine, for example, that you’ve
been writing PowerShell for some time and, in so doing, you’ve
become aware that there are many pitfalls to be avoided, if only there
was a way to analyze your code and find them. With this in mind,
you could browse to the PowerShell Gallery and search for an analyze
module to install. Or, even better (because you presumably already
have a PowerShell window open), you can leverage the PowerShell-
Get module’s Find-Module command (included with PowerShell 5.0):

Find-Module *Analyze* | Select-Object Name,Description

The output of which is shown in Figure 2.
Note that if you don’t have a sufficiently modern version of

NuGet installed, leveraging the PowerShellGet module will trigger
a NuGet package update.

Assuming you find the module you want, you can view its con-
tents via the Save-Module command. To install the module, use the
Install-Module (in this case, Install-Module PSScriptAnalyzer) com-
mand. This will download the module and install it for you, making
all the functions included in the module available. After installing the
PSScriptAnalyzer module, you can invoke Invoke-ScriptAnalyzer
$profile to scan your profile and identify concerns that the analyzer
considers suboptimal. (Note that it’s no longer necessary to import
a module in order to access it. Module functions are automatically
indexed such that when you invoke a module function, the module
will automatically import and be accessible on demand.)

Note that the PowerShell Gallery is configured as a repository
by default:

>Get-PSRepository

Name InstallationPolicy SourceLocation
---- ------------------ --------------
PSGallery Untrusted https://www.powershellgallery.com/api/v2/

As a result, Find-Module works without issue. However,
Install-Module will prompt you with an untrusted repository
warning. To avoid this, assuming you do indeed trust the reposi-
tory, you can set it to trusted with the command:

Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

Apt-Get for Windows
with PowerShell Package
Management
Those of you who have spent any
time as an IT professional in the
Linux world have no doubt taken
apt-get for granted—likely with
install scripts that bootstrap their
environment the moment they
start up a new Linux instance. For
those of you who haven’t, apt-get is

a command-line way to download and install programs/packages
and any dependencies quickly and easily from the Internet right
from the command line. Figure 1 shows a trivial example of such an
installation when it leverages apt-get to install libunwind8 libicu52,
on which PowerShell (on Ubuntu 14.04) depends. With PowerShell
5.0, the same functionality comes to Windows (I’m not sure whether
to shout, “Yahoo!” or exasperatedly sigh, “Finally!”—perhaps both).

Just as there are repositories, like PowerShell Gallery, for
PowerShell modules, PowerShell 5.0 also includes support for man-
aging programs—called packages—in Windows. One such package
manager is Chocolatey (chocolatey.org) and you can add it as a pack-
age repository using the following command:

Get-PackageProvider -Name chocolatey

This allows you to use PowerShell to find packages that have been
deployed into Chocolatey. For example, if you want to install Visual
Studio Code all you have to do is enter the commands:

Find-Package V*S*Code | Install-Package

As shown, wild cards are supported.

Figure 3 Available Windows PowerShell Package Commands

Figure 2 Output of Find-Module Command

To me, the most significant
improvements are in the area

of cross-platform support—yes,
really, PowerShell now

runs on Linux.

Starting with Windows 10 Anniversary Edition, you can
install Bash natively onto Windows with the following Windows
PowerShell command:

Get-WindowsOptionalFeature -Online -FeatureName *linux* | Enable-
WindowsOptionalFeature -NoRestart -all –online

Note, however, that this is still in beta and, therefore, only en-
abled in developer mode (use “Get-Help WindowsDeveloper” to
see how to explore developer mode).

Unfortunately, this feature does require a restart, but I include
the -NoRestart option so that enabling the feature doesn’t directly
trigger the restart.

Installing Bash on Windows 10

1016msdn_MichaelisNET_v4_72-77.indd 74 9/12/16 2:02 PM

www.chocolatey.org

msdn.microsoft.com/flashnewsletter

Sign up to receive MSDN FLASH, which delivers
the latest resources, SDKs, downloads, partner
offers, security news, and updates on national
and local developer events.

Get news from MSDN
in your inbox!

magazine

Untitled-2 1Untitled-2 1 12/11/15 11:06 AM12/11/15 11:06 AM

http://msdn.microsoft.com/flashnewsletter

msdn magazine76 Essential .NET

Other Package commands to be familiar with are available using
the following command, with the results shown in Figure 3:

Get-Help "-package" | Select-Object Name,Synopsis

As you can see, you can both get and uninstall a package.
Get-Package lists all the programs (and more) available from the
Control Panel Programs and Features. Therefore, if you wanted
to uninstall Notepad2, for example, you could use the command:

Get-Package Notepad2* | Uninstall-Package

The ease this brings to automating Windows computer setup is
tremendous. I’ve been a Chocolatey fan for a number of years now
and this integrates Chocolatey support directly into Windows. It
ultimately brings package management to Windows in much the
same way that Apt-Get does on Linux.

One thing to consider is that not only can the Chocolatey repos
itory be accessed via the *-package* PowerShell commands, but
Chocolatey can also be installed directly. While not required,

installing Chocolatey directly will occasionally provide a more
robust feature set of package management functionality. Fortunately
(and perhaps ironically), installing Chocolatey is simply a matter of
invoking Install-Package Chocolatey, but (and this is an example of
the discrepancies between Chocolatey and *-Package behavior) the
default install location will depend on which installation engine is used.
Check out chocolatey.org/install for more information on the Chocolatey
toolset, including installation instructions for your environment.

OData with Export-ODataEndpointProxy
Another PowerShell 5.0 feature that’s worth mentioning is the abil-
ity to generate a set of methods that access an OData data source
such as Visual Studio Team Services (VSTS). Figure 4 demonstrates
running the Export-ODataEndpointProxy on an OData service, a
public sample Northwind OData service in this case.

If you browse the generated module commands, you’ll notice that
separate commands are generated
for each entity (Advertisement,
Category, Person and so forth),
along with corresponding actions
for each (Get, New, Remove, Set).

One thing to note on the com-
mand line in Figure 4 is the use of
the -AllowUnsecureConnection
parameter. This is necessary
because the OData service used in
this example doesn’t require authen
tication or encryption.

Converting from
Text to Objects with
ConvertFrom-String
Another new command to appear
in PowerShell 5.0 is Convert-
From-String. It’s designed to take
structured text as input and inter-
polate the structure so as to output
an object based on the parsed text.
You could use this, for example, to
parse a flat file or (and this is where
I find it extremely useful) to convert
the text output from an executable
into an object.

Consider, for example, Sys-
Internal’s handle.exe program,
(which you can install using the
Install-Package Handle command—
leveraging package management
as discussed in the previous sec-
tion). As you’d expect from a
command-line utility, it writes out
text to stdout—in this case a list
of open handles associated with
a name. In PowerShell, however,
you’ve grown accustomed to

Figure 4 Generating and Invoking an OData Proxy

Figure 5 Utilizing ConvertFrom-String to Parse stdout into an Object

1016msdn_MichaelisNET_v4_72-77.indd 76 9/12/16 2:02 PM

www.chocolatey.org/install

77October 2016msdnmagazine.com

working with objects. And, to convert the text output into an object,
you use the ConvertFrom-String function, as shown in Figure 5.

Figure 5 starts by showing the raw output of the handle.exe utility.
Next, it demonstrates ConvertFrom-String without any parameters.
As a result, the ConvertFrom-String utility simply splits the text on
each line based on white space.

In the third example, I demonstrate the option of specifying a regu-
lar expression split pattern in order to fine-tune the parsing. However,
note that familiarity with regular expressions isn’t required. You can
instead specify a template—perhaps more accurately a sample—of
either a file or a string, in which you parse the first few items manu-
ally. ConvertFrom-String then leverages the sample-parsed content
and interprets how to parse the remainder of the input.

In the final example, I added the -PropertyNames parameter so
as to assign meaningful names to the output.

In the end, ConvertFrom-String bridges the impedance mismatch
of the text-based world of the traditional process stdout with a Power
Shell world built on objects. In this case, I can pipe the output into
Stop-Process -Id mapping the pid value into the -Id parameter value.

Classes and Enums
Finally, here’s a rundown on the new class and enumeration
support. In PowerShell 5.0, two new keywords were added cor-
responding to the two structures so that you can now declare a
class or an enumeration directly in PowerShell (rather than using
Add-Type and passing C# code or perhaps instantiating a PSCustom
Object). The syntax is what you’d expect—see Figure 6.

Notice in particular, that both properties and methods are sup-
ported. Furthermore, there are declaration modifiers like static
and hidden, which designate the associated construct accordingly.
Furthermore, inheritance is supported with a syntax very similar to C#:

class Employee : Person {}

Last, and also demonstrated in Figure 6, constructors can be
declared. In this example, I declare a default constructor (with no
parameters) and a second constructor that takes all the parame-
ters. The constructors are invoked via the New-Object command
by specifying either the -ArgumentList parameter (where
an array of constructor arguments is listed) or else a HashTable
argument is passed via the -Property parameter.

Wrapping Up
By no means is this a complete list of new features in PowerShell
5.0. Other notable items include:

• �Integration of archive (.zip file support) through the
Compress-Archive and Expand-Archive commands.

• �Get-Clipboard and Set-Clipboard commands that also work
with the pipe operator.

• �Out-File, Add-Content and Set-Content include a
–NoNewline parameter, allowing for file content that
omits the new-line character.

• �The New-TemporaryFile command works similar to
[System.IO.Path]::GetTempFileName (though not identi-
cally). Like its .NET equivalent, New-TemporaryFile doesn’t
delete the temporary file, so be sure to save the output so
you can remove the file once you’re done with it.

• �SymbolicLinks can now be managed directly from the
PowerShell cmdlets New-Item and Remove-Item.

• �PowerShell Integrated Scripting Environment (ISE) now sup-
ports logging via the Start/Stop/Search-Transcript functions,
which previously errored when called from PowerShell ISE.

Furthermore, while not supported immediately in the open
source release of PowerShell, Microsoft fully intends to support
Open SSH such that it will be a remoting transport option in
PowerShell, as well as in Windows Remote Management, not long
after this article is published.

All this to say, PowerShell just keeps getting better and better. If
you haven’t learned it yet, get going.	 n

Mark Michaelis is founder of IntelliTect, where he serves as its chief technical
architect and trainer. For nearly two decades he has been a Microsoft MVP,
and a Microsoft Regional Director since 2007. Michaelis serves on several
Microsoft software design review teams, including C#, Microsoft Azure, Share-
Point and Visual Studio ALM. He speaks at developer conferences and has writ-
ten numerous books including his most recent, “Essential C# 6.0 (5th Edition).”
Contact him on Twitter: @markmichaelis or via e-mail at mark@IntelliTect.com.

Thanks to the following IntelliTect technical experts for reviewing this article:
Kevin Bost, Phil Spokas and Michael Stokesbary

enum CustomProcessType {
 File
 Section
}
class CustomProcess {
 [string]$ProcessName;
 hidden [string]$PIDLabel;
 [int]$PID;
 hidden [string]$TypeLabel;
 [CustomProcessType]$Type;
 [int]$Handle;
 [string]$Path;
 CustomProcess(
 [string]$processName,[string]$pidLabel,[int]$pid,
 [string]$typeLabel,[string]$type,[int]$handle,[string]$path) {
 $this.ProcessName = $processName;
 $this.PIDLabel=$pidLabel;
 $this.PID=$pid;
 $this.TypeLabel=$typeLabel;
 $this.Type=$type;
 $this.Handle=$handle;
 $this.Path=$path;
 }
 CustomProcess() {}
 GetProcess() {
 Get-Process -Id $this.PID
 }
 static StopProcess([CustomProcess]$process) {
 Stop-Process -Id $process.PID
 }
}

Figure 6 Declaring Classes and Enums in Windows PowerShell

In the end, ConvertFrom-String
bridges the impedance mismatch

of the text-based world of the
traditional process stdout with a

PowerShell world built on objects.

1016msdn_MichaelisNET_v4_72-77.indd 77 9/12/16 2:02 PM

mailto:mark@IntelliTect.com
http://www.msdnmagazine.com
www.twitter.com/markmichaelis

Code!
PRODUCED BYEVENT PARTNERS SUPPORTED BY

magazine

LAS VEGAS
MARCH 13-17 2017
BALLY’S, LAS VEGAS, NV

Untitled-6 2Untitled-6 2 9/12/16 3:02 PM9/12/16 3:02 PM

www.vslive.com/lasvegas

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

Register NOW and Save $500!
Use promo code VSLOCT2 Scan the QR code to register or for more event details.

vslive.com/lasvegas

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Track Topics include:

Visual Studio / .NET Framework
JavaScript / HTML5 Client
Modern App Development
Mobile Client
Software Practices
Database and Analytics

Angular JS
ASP.NET / Web Server
Agile
ALM / DevOps
Cloud Computing
Windows Client

Untitled-6 3Untitled-6 3 9/12/16 3:03 PM9/12/16 3:03 PM

www.vslive.com/lasvegas
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine80

I’m sick of this U.S. presidential election cycle. I was sick of this
election cycle a year ago. As I write these words in August, I despair
at the thought of 100 more days of this ever-increasing cacophony.

I’ve never been a fan of politics, but this election is especially
bad. As Ian Tuttle wrote in early August (bit.ly/2bkAt2T), we have “two
small groups of extreme partisans fighting on behalf of horrible
candidates, and a sea of voters in between disheartened by two
miserable options.” Sometimes I think both sides are trying to lose
(shades of “The Producers,” anyone?), and wish there was some way
that could happen. Maybe it’s confirmation bias, but I’m noticing a
lot more bumper stickers like the one in Figure 1.

The Web is often lauded as a medium for the exchange of ideas.
That’s not happening now. The volume of speech is huge, but the
content is minimal. I’m omitting no detail whatsoever when I para-
phrase the conversation thusly: one side shouts, “X good, Y bad,”
while their opponents riposte with the witty and thoughtful, “No,
you idiot, Y good, X bad.”

My political philosophy is simple: I agree with Mark Twain, that
politicians should be changed as often as diapers, and for the same
reason. Throw the rascals out, and put our rascals in. But for Pete’s
sake, can’t we finish the damn throwing so we can get on with our
lives? Especially because I’ve already voted by absentee ballot, and
couldn’t change it if I wanted to.

We geeks could provide an option for those who want out of
it. I’ll bet many people do by now. As Mr. Peabody always said to
Sherman, “As usual, I have a plan.”

Most people I know use ad blockers on their Web browsers. I’m
sure that the lack of one hampered the adoption rate of the Microsoft

Edge browser. (It just got one over the summer.) How hard would it
be to concoct a blocker for political content? I think not very.

Content blockers were the second mass-market product to
appear on the consumer Internet. Parents bought them to shield
their children from pornography (the first mass-market product),
and their capabilities have expanded over the years. Net Nanny, the
market leader, advertises that it can filter 18 categories of content,
from dating to alcohol to abortion. The primary limitation has
always been that the kids are more computer-savvy than the
parents, so the filter settings don’t last long. We won’t have this
problem as we build our content blockers for consenting adults.

The early content blockers were blunt. But today’s Net Nanny
claims to be smart enough to distinguish the word “breast” in a
cooking context (chicken), a medical context (cancer) or a sexual
context (augmentation). Surely such an engine could distinguish
between Trump the candidate and trump in a card game. I’ll call
it Plattski’s Political Pablum Preventer (P4).

How would such a thing improve our lives? For a quick test, I
scanned the front page of The New York Times Web site, imagining
blank spaces replacing the political articles, as Adblock Plus replaces
the ads with blank spaces. I’d still see all the sports scores, the
technology section and daily news coverage. Just no Donald and
no Hillary. Looks fine to me. Let’s get it done.

I cannot close this column without renewing my eternal election-
year call: Lie to the exit pollsters. The control they exercise over
our society is revolting, but it’s also easy to disrupt. All we have
to do is lie. If you voted for A, say you voted for B, and vice ver-
sa. If you made up your mind a long time ago, tell them you just
made it up in the voting booth, or the other way around. If they
ask your age, add or subtract five years, whichever you think you
can get away with. If they ask your gender, you’d probably better
tell the truth; it might be a control question. If everyone does this,
we’ll have a delightful election evening of watching the prog-
nosticators fall on their faces—the funniest night of political
foolishness since Henry Kissinger won the Nobel Peace Prize.
Now let’s go to it.	 n

David S. Platt teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Software Legend in 2002. He wonders whether he should tape down two
of his daughter’s fingers so she learns how to count in octal. You can contact him
at rollthunder.com.

A Technical Solution to a Political Problem

Figure 1 A 2016 Presidential Election Bumper Sticker

Don’t Get Me Started DAVID S. PLATT

1016msdn_PlattDGMS_v3_80.indd 80 9/12/16 1:55 PM

www.bit.ly/2bkAt2T
www.rollthunder.com

Untitled-2 1 7/11/16 3:31 PM

www.groupdocs.com

Untitled-5 1 9/2/16 12:57 PM

www.syncfusion.com/MSDNunlimited

	Back
	Print
	MSDN Magazine, October 2016
	Cover Tip
	Front
	Back

	Contents
	CUTTING EDGE: Event-Command-Saga Approach for Business Logic
	DATA POINTS: Run EF Core on Both .NET Framework and .NET Core
	Face and Emotion Recognition in Xamarin.Forms with Microsoft Cognitive Services
	Working with Memory Limits and Task Priorities in the UWP
	Create Interactive Geo-Applications using Bing Maps 8
	Transform Source Code to Deployable Artifacts with TFBuild
	Create a Customizable FileSystemWatcher Windows Service
	TEST RUN: ANOVA with C#
	THE WORKING PROGRAMMER: How To Be MEAN: Exploring Yeoman
	ESSENTIAL .NET: Windows PowerShell Just Keeps Getting Better
	DON’T GET ME STARTED: A Technical Solution to a Political Problem

	Live! 360, Orlando 2016 - Insert

