

Microsoft Dynamics™ GP

Continuum sanScript Supplement

Copyright Copyright © 2007 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into
a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written
permission of Microsoft Corporation. Notwithstanding the foregoing, the licensee of the software
with which this document was provided may make a reasonable number of copies of this
document solely for internal use.

Trademarks Microsoft, Dexterity, Microsoft Dynamics, and Windows are either registered trademarks or
trademarks of Microsoft Corporation or its affiliates in the United States and/or other countries.
FairCom and c-tree Plus are trademarks of FairCom Corporation and are registered in the United
States and other countries.

The names of actual companies and products mentioned herein may be trademarks or registered
marks - in the United States and/or other countries - of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted herein are fictitious. No association with
any real company, organization, product, domain name, e-mail address, logo, person, place, or
event is intended or should be inferred.

Intellectual property Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

Warranty disclaimer Microsoft Corporation disclaims any warranty regarding the sample code contained in this
documentation, including the warranties of merchantability and fitness for a particular purpose.

Limitation of liability The content of this document is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Microsoft Corporation. Microsoft
Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear
in this manual. Neither Microsoft Corporation nor anyone else who has been involved in the
creation, production or delivery of this documentation shall be liable for any indirect, incidental,
special, exemplary or consequential damages, including but not limited to any loss of anticipated
profit or benefits, resulting from the use of this documentation or sample code.

License agreement Use of this product is covered by a license agreement provided with the software product. If you
have any questions, please call the Microsoft Dynamics GP Customer Assistance Department at
800-456-0025 (in the U.S. or Canada) or +1-701-281-6500.

Publication date February 2007

C O N T I N U U M S A N S C R I P T S U P P L E M E N T i

Contents

Introduction ...2
What’s in this document ..2

Symbols and conventions ..2

Part 1: Scripting ...4

Chapter 1: sanScript .. 5
General syntax...5

Names...5

Statements ..6

Functions ..6

Data types ..7

Variables ...7

Constants..8

Expressions ..9

Operators..10

Arrays ...12

Composites ..13

Chapter 2: Working With Data... 15
Data type conversions ..15

Passing parameters ...15

Chapter 3: Database-level Integrations... 17
Table buffers...17

Common table operations ...17

Multiuser processing ..20

Ranges...24

Records with the same key values..28

Chapter 4: Process-level Integrations... 31
Procedures..31

Form procedures ...33

Background processing..33

User-defined functions...34

Part 2: sanScript Reference ...36

Chapter 5: Functions and Statements.. 37
Command syntax..38

Programming style ...38

Command reference ...38
abort script ...39
ask()...40
call ...41
case...end case..42
change...43

ii C O N T I N U U M S A N S C R I P T S U P P L E M E N T

C O N T E N T S

check error..45
clear field..46
clear table ...47
countrecords()..48
day() ..49
err()..50
error...52
fill...53
for do...end for ...55
get ..56
hour() ..57
if then...end if...58
minute() ..59
mktime() ...60
month() ...61
range ...62
release table ...67
remove ..68
repeat...until ...69
save table ..70
second() ..71
set ...72
setdate() ..73
str() ..74
sysdate() ...75
systime() ...76
value() ...77
warning ..78
while do...end while ...79
year() ...80

Chapter 6: Data types.. 81
Boolean ...81
Check box...81
Combo box ...81
Composite ..81
Currency...82
Date ...82
Drop-down list ..82
Integer...82
List box ...83
Long integer...83
Radio group ...83
String...83
Text ..83
Time...84
Visual switch..84

Chapter 7: Alert Messages.. 85
Compiler messages ...85

Runtime messages ..89

Glossary ...93

Index ...95

IN
T

R
O

D
U

C
T

IO
N

2 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Introduction
This supplement is intended for programmers who are not familiar with sanScript.
It contains information about core sanScript functionality used to create database-
level and process-level integrations with the Continuum API.

This supplement does not provide information about the Microsoft Dynamics GP
database structure and processes. The Microsoft Dynamics GP Software
Development Kit (SDK) contains that type of information. You will need the
information in the Microsoft Dynamics GP SDK to effectively integrate with
Microsoft Dynamics GP.

What’s in this document

The manual is divided into the following parts:

• Part 1, Scripting, introduces the sanScript language and explains how to use
sanScript in your Continuum integrations.

• Part 2, sanScript Reference, describes the commands in the sanScript language
necessary to create database-level and process-level integrations. It also pro-
vides a list of data types and alert messages for sanScript.

Symbols and conventions

To help you use this documentation more effectively, we’ve used the following
symbols and conventions within the text to make specific types of information
stand out.

Symbol Description

The light bulb symbol indicates helpful tips, shortcuts
and suggestions.

Warnings indicate situations you should be especially
aware of when completing tasks with Integration
Assistant for Excel.

Margin notes summarize
important information.

Margin notes direct you to other areas of the
documentation where a given topic is explained.

Convention Description

Part 1, Getting Started Bold type indicates the name of a part.

Chapter 6, “Commands” Quotation marks indicate the name of a chapter.

Applying formats Italicized type indicates the name of a section.
set 'l_Item' to 1; This font is used for script examples.

Software Development
Kit (SDK)

Acronyms are spelled out the first time they’re used.

TAB or ALT+M Small capital letters indicate a key or a key sequence.

P
A

R
T

 1
: S

C
R

IP
T

IN
G

4 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Part 1: Scripting
This part introduces sanScript and describes how to use it to create database-level
and process-level integrations with Continuum. The information is divided into the
following chapters:

• Chapter 1, “sanScript,” introduces the sanScript language.

• Chapter 2, “Working With Data,” describes how to use the various data types in
sanScript.

• Chapter 3, “Database-level Integrations,” provides information about how to
perform database operations with sanScript.

• Chapter 4, “Process-level Integrations,” explains how to use Microsoft
Dynamics GP procedures and functions for process-level integrations with
sanScript.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 5

Chapter 1: sanScript
SanScript is the language used by the Dexterity® development system. It is a
powerful, English-like language that is designed to be easy to learn. The code for all
Dexterity-based applications like Microsoft Dynamics™ GP, is written in sanScript.

With the Continuum API, you have the ability to write a sanScript script and pass it
into Microsoft Dynamics GP where it will be compiled an executed. This pass-
through sanScript allows you to access the power of sanScript from within your
Continuum application.

This chapter contains information about the following:

• General syntax
• Names
• Statements
• Functions
• Data types
• Variables
• Constants
• Expressions
• Operators
• Arrays
• Composites

General syntax

SanScript is a relatively easy language to learn, but you must follow some basic
rules when you write scripts.

• SanScript is case-sensitive, as are names of fields, tables and other resources. All
keywords in sanScript must be lowercase.

• Each statement in a script must end with a semi-colon. Statements can span
multiple lines.

• Comments can appear anywhere in a script. They must be bounded by braces –
{ } – and can span multiple lines.

• If a script has local variables, these must be declared at the beginning of the
script before any other lines in the script.

Names

In a script, you will refer to the names of items such as fields and tables in the
Microsoft Dynamics GP application dictionary. The names of these items must be
fully qualified so the items can be properly located.

A qualified name consists of a qualifier, which specifies the location of the item, and
the item’s name. For example, to refer to the Customer Name field in the
RM_Customer_MSTR table, you would qualify the field with the name of the table
where the field is located. The fully-qualified name is shown in the following script.

set 'Customer Name' of table RM_Customer_MSTR to "Bob Smith";

P A R T 1 S C R I P T I N G

6 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

When you reference an item whose name contains spaces, you must enclose the
name inside single quotation marks. The “of” portion of the name shouldn’t be
inside the quotation marks. The following name is valid:

The following name isn’t valid:

Single and double quotation marks are used differently in scripts. Single quotation marks
indicate the names of objects, while double quotation marks indicate that the item between
the quotation marks is a string value.

Tables
When you refer to a table, you must use the table qualifier. For example, the
following sanScript code counts the number of records in the RM_Customer_MSTR
table.

set record_count to countrecords(table RM_Customer_MSTR);

Table fields
When you refer to a field in a table, you must specify the table in which the field is
located. For example, the following sanScript code refers to the Document Number
field in the RM_Sales_WORK table.

set doc_val to 'Document Number' of table RM_Sales_WORK;

Statements

Statements are a type of command used in sanScript to complete a specific action in
your application, such as saving an item in a table. For instance, you will use the
save table statement to save a record in a table:

save table RM_Customer_MSTR;

Functions

Functions are commands similar to statements, but unlike statements, they return a
value that is then used by another portion of the script. For example, the
countrecords() function counts the number of records in a table. The name of the
table is the function’s parameter while the number of records in the table is the
value returned. The following example sets the variable “number” to the number of
records in the RM_Customer_MSTR table.

set number to countrecords(table RM_Customer_MSTR);

This name Is valid because

'Customer Name' of table
RM_Customer_MSTR

The “of” portion of the name is not within the
single quotation marks.

This name Isn’t valid because

'Customer Name of table
RM_Customer_MSTR'

The “of” portion of the name is within the
single quotation marks.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 7

C H A P T E R 1 S A N S C R I P T

Data types

Dexterity uses several data types to specify how information is stored. When
writing scripts, it’s important to know how information in a field using a particular
data type is stored, so you will know how script commands will control the
information.

Fields store data in the following standard forms: boolean, currency, integer, long,
string, text, date and time. The following table lists each storage type, its
description, and the data types that use that storage type.

The other data types not mentioned in the previous table store information in a
format unique to the data type. Composite and multi-select list box data types each
store data in their own unique format.

Variables

Variables allow an application to temporarily store values used by the application.
SanScript has two types of variables: local variables and global variables.

Local variables
Local variables are specific to a single script and are active only while the script is
running. They’re used to store intermediate values, such as the resulting value of an
expression, while a script is running. To create local variables, define them at the
beginning of the script they’ll be used in. The word local, followed by the type of
variable (integer, long, currency, string, time, boolean) and the variable name are
required for each local variable.

Note that you use the word long to indicate a long integer type in scripts.

Storage
type

Description Data types using
this storage type

Boolean A value of either true or false. Boolean
Check box

Currency A currency value in the range [-99,999,999,999,999.99999
to 99,999,999,999,999.99999]. The decimal point is
implied in the number, but not actually stored. For display
purposes, currency values are limited to 14 digits to the
left of the decimal and 5 digits to the right.

Currency

Integer An integral number in the range
[-32767 to 32767].

Drop-down list
Group box
Integer
List box
Visual switch

Long An integral number in the range [-2,147,483,648 to
2,147,483,647].

Long integer

String A sequence of up to 255 characters. Combo box
String

Text A sequence of up to 32,000 characters. Text

Date Date based on the Julian calendar. Date

Time Time based on the 24-hour standard. Time

P A R T 1 S C R I P T I N G

8 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

In the following example, a local long integer variable named “number_of_records”
is used to store a temporary value for the script. The set statement is used to set the
value of the variable to the value returned by the countrecords() function.

local long number_of_records;

set number_of_records to countrecords(table RM_Customer_MSTR);

Global variables
Global variables are active the entire time the Microsoft Dynamics GP application is
open, so they’re available to any script at any time. Global variables are used to
store information that affects the entire application. To reference global variables in
a script, the qualifier of globals must appear after the name of the global variable.

In the following example, the global variable User ID is checked retrieved to see
who is currently logged into Microsoft Dynamics GP.

local string user_ID;

set user_ID to 'User ID' of globals;

Constants

Constants are fixed numeric or string values that are used in scripts, where the
constant name is used in place of the value associated with it. Two types of
constants are available: predefined constants and user-defined constants.

Predefined constants
SanScript has a number of predefined constants that can be used in scripts. For
example, the three constants listed in the following table are associated with the
ask() function.

In the following example, the ask() function uses predefined constants to find out
which button the user clicked.

if ask("Include sales tax?”, “Yes”, “No") = ASKBUTTON1 then

set Total to Total + Tax;

end if;

User-defined constants
Microsoft Dynamics GP also has its own constants that were added when the
application was coded. For example, the following script retrieves the constant
corresponding to the number of periods.

local integer periods;

set periods to NUMBER_PERIODS;

Constant name Description

ASKBUTTON1 The value returned from the ask() function when the first button is clicked
in the ask dialog box.

ASKBUTTON2 The value returned from the ask() function when the second button is
clicked in the ask dialog box.

ASKBUTTON3 The value returned from the ask() function when the third button is
clicked in the ask dialog box.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 9

C H A P T E R 1 S A N S C R I P T

Expressions

An expression is a sequence of operands and operators that are evaluated to return a
value. Operators indicate the type of procedure to perform on the operands. The
operands are usually items such as fields or the values returned from functions or
other expressions. There are four kinds of expressions in sanScript: numeric, date
and time, string, and boolean.

Numeric expressions
Evaluating a numeric expression results in numeric value. For instance, the
following sanScript statement uses a numeric expression that returns the total price
of a sale by adding the subtotal and sales_tax values.

set total to subtotal + sales_tax;

The following table lists the numeric operators in the order they’re evaluated.

Date and time expressions
Evaluating a date and time expression results in a date, time or a numeric value. For
instance, the following sanScript statement adds 30 days to the value of the system
date to set the due_date variable.

set due_date to sysdate() + 30;

The following table lists the date and time operators in the order they’re evaluated.

String expressions
Evaluating a string expression results in a string value. For instance, the following
sanScript statement joins two string values and stores the result in the user_name
variable.

set user_name to "Cindy " + "Johnson";

The following table lists the string operators in the order they’re evaluated.

Boolean expressions
Evaluating a boolean expression results in boolean value of true or false. Boolean
expressions are used in decision-making statements such as the if...then statement.

Operator Use Example

unary minus (-) negation -15

^ power 10^3

*, /,% multiplication, division
and modulus

15/3

+,- addition and subtraction 5+10

=,<>,<,>,<=,>= comparison 4 >= 2

Operator Use Example

+,- addition and subtraction sysdate() + 30

=,<>,<,>,<=,>= comparison sysdate() <= 'Due Date'

Operator Use Example

+ concatenation "Sara " + "Johnson"

=,<>,<,>,<=,>= comparison 'Name' <> "Smith"

P A R T 1 S C R I P T I N G

10 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

For instance, the following sanScript statement evaluates the boolean expression in
the if...then statement to find out whether the script should continue, based on who
the current user is.

if 'User ID' of globals = "SKUBIS" then

{Don't allow the script to proceed.}

abort script;

end if;

The following table lists the boolean operators in the order they’re evaluated.

Overflow in numeric expressions
Overflow in a numeric expression occurs when an intermediate or final result of the
expression is too large to be stored by the type of data used in the expression. This is
especially common with integer values.

For example, multiplying the integers 450 and 75 should result in the value 33,750,
but instead results in -31,786. Because the actual result is larger than 32,767, the
maximum amount that can be represented by an integer, overflow occurs.

One method of preventing overflow is to convert all integer values in the expression
to long integers and then evaluate the expression. All integers in the expression, not
just the final result, must be converted to long integers to avoid overflow. This is
because the overflow can occur in intermediate steps while evaluating the
expression, not only the final step. For example, the expression in the following
script would still overflow:

local long product;

set product to 450 * 75;

To avoid the overflow, the two integer values must also be converted to long
integers as shown in the following script:

local long product, operand1, operand2;

set operand1 to 450;

set operand2 to 75;

set product to operand1 * operand2;

Operators

The following table lists the operators supported in sanScript. Examples are
included to show how each operator is used in the different types of expressions.

Operator Use Example

not logical not not (err() = 0)

=,<> equal, not equal (6 + 4) = (5 + 5)

and logical and (Amount > 10) and
(Amount < 20)

or logical or (Password = "Smith") or
(Password = "smith")

Operator Description Example

unary minus (-) In numeric expressions, the unary minus
operator (-) indicates a negative value.

set neg_val to –10;

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 11

C H A P T E R 1 S A N S C R I P T

addition (+) In numeric expressions, the result is the sum
of the two values.

set total to subtotal + 5;

In string expressions, the result is the
concatenation of the first and second
strings.

set name to "Steve " +
"Anderson";

In date expressions, a numeric quantity may
be added to a date to form a new date. The
numeric value is treated as a number of
days.

set due_date to sysdate() + 30;

In time expression, a numeric quantity may
be added to a time value to form a new time
value. The numeric value is treated as a
number of minutes.

set next_hour to systime() + 60;

subtraction (-) In numeric expressions, the result is the
difference of the two values.

set total to price - discount;

In date expressions, a numeric quantity may
be subtracted from a date value to form a
new date value. The numeric value is treated
as a number of days.

set yesterday to sysdate() – 1;

Two date values can be subtracted to find
the difference between them in days.

set days_to_pay to due_date -
sysdate();

In time expressions, a numeric quantity may
be subtracted from a time value. The
numeric value is treated as a number of
minutes.

set start_time to systime() – 30;

subtraction (-) Two time values can be subtracted to find
the difference between them in minutes.

set elapsed_time to start_time –
end_time;

multiplication
(*)

The multiplication operator (*) is used in
numeric expressions. The result is the
product of the two numbers.

set total to number_of_periods
* contribution;

division (/) The division operator (/) is used in numeric
expressions. The result is the quotient of the
two numbers.

set check_total to salary /
number_of_pay_periods;

modulus (%) The modulus operator (%) is used in
numeric expressions. The result is the
remainder of the division of the first number
by the second number (for example, 71 % 10
= 1).

set single_items to
items_ordered %
items_per_box;

power (^) The power operator is used in numeric
expressions. The result is the first operand
raised to the power of the second operand.
Only powers of 10 may be calculated.

set number to 10 ^ 5;

equality (=) The equality operator is supported in
numeric, boolean, string, date and time
expressions. In all expressions the result is
true if the two operands are equal, and false
if they are not equal.

if total = 100 then
set result to true;

end if;

inequality (<>) The inequality operator is supported in
numeric, boolean, string, date and time
expressions. In all expressions the result is
false if the two operands are equal, and true
if they are not equal.

if password <> "access" then
abort script;

end if;

less than (<) The less than operator is supported in
numeric, string, date and time expressions.
In all expressions the result is true if the first
operand is less than the second operand,
and false if it is not.

if total < 100 then
warning "Total is not 100%";

end if;

Operator Description Example

P A R T 1 S C R I P T I N G

12 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Arrays

The individual pieces that make up an array are called elements. The elements are
numbered from 1 to the size of the array. Arrays can have up to 32,767 elements. The
number used to indicate a specific element of the array is called the array index. A
specific element of the array is referenced in sanScript using its corresponding array
index.

Dexterity-based applications can use array fields and array local variables. Array
fields must have been created when the Dexterity-based application was coded.
Array local variables are created by including the size of the array in brackets – [] –
following the local variable name.

greater than (>) The greater than operator is supported in
numeric, string, date and time expressions.
In all expressions the result is true if the first
operand is greater than the second operand,
and false if it is not.

if current_date>sysdate then
warning "Date is not valid.";

end if;

less than or
equal to (<=)

The less than or equal to operator is
supported in numeric, string, date and time
expressions. In all expressions the result is
true if the first operand is less than or equal
to the second operand, and false if it is not.

if systime() <= posting_time
then
warning "Posting can’t

begin.";
end if;

greater than or
equal to (>=)

The greater than or equal to operator is
supported in numeric, string, date and time
expressions. In all expressions the result is
true if the first operand is greater than or
equal to the second operand, and false if it is
not.

if total >= 100 then
set discount to 10;

else
set discount to 0;

end if;

and The and operator is supported in boolean
expressions. The result is true if both the
operands are true, and false if either of the
operands is false.

if (count> 100) or (total> 0) then
set discount to 20;

end if;

or The or operator is supported in boolean
expressions. The result is true if either the
operands is true, and false if both of the
operands are false.

if (count> 100) or (total> 100)
then set discount to 20;

end if;

not The not operator is used in boolean
expressions to complement (reverse) the
value of a boolean expression.

if not taxable, then
set total to subtotal;

else
set total to subtotal + tax;

end if;

Operator Description Example

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 13

C H A P T E R 1 S A N S C R I P T

To access the elements of an array from within a script, simply use the name of the
array and add the index number of the element you want to reference. Be sure the
index number is included in square brackets after the name of the array and before
the qualifier. The following example sets the second element of the History Figures
array to 5500.

set 'History Figures'[2] of table GL_Account_SUM_HIST to 5500;

The following example uses a local array field with five elements to act as status
flags for the script. The for loop initializes the flags to false.

local boolean status[5];

local integer i;

for i = 1 to 5 do

set status[i] to false;

end for;

Composites

A composite is a special field that is actually composed of several individual fields.
Each part of the composite is called a component. Composites can be used to store
information such as account or item numbers, which are composed of several parts.

In sanScript, you can reference a composite field as a single entity. You can also
reference the value of a component within the composite field. Referencing
components of a composite is similar to referencing the elements of an array. The
components of a composite are numbered from 1 to the total number of components
in the composite. A specific component is referenced using the component keyword
followed by the number of the component enclosed in parentheses.

For example, the following script sets the local variable segment_2 to the value of
the second component of the Account Number composite field.

local string segment_2;

set segment_2 to str(component(2) of field 'Account Number' of table

GL_Account_MSTR);

14 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 15

Chapter 2: Working With Data
Whether you’re creating a database-level or process-level integration, you will need
to work with data in sanScript. This chapter describes how to convert data from one
type to another. It also describes data type conversions necessary when you pass
parameters to and from pass-through sanScript. Information is divided into the
following sections:

• Data type conversions
• Passing parameters

Data type conversions

When you work with fields and variables in scripts, you may need to convert data
from one storage type to another. This conversion can happen implicitly or
explicitly.

Implicit conversions
Type conversion happens implicitly in many situations. For instance, if an integer
value and a currency value are added together in an expression and the result is
stored in a currency field, the result would be a currency. If the result of the same
expression was stored in an integer field, the result would be an integer. The
conversions that occur depend on where the result is stored.

Explicit conversions
To explicitly convert a string to a numeric value, use the value() function. To
explicitly convert a numeric value to a string use the str() function. For more
information about each of these functions, refer to Chapter 5, “Functions and
Statements.”

Passing parameters

The parameter handler object allows you to pass strings between your Continuum
application and pass-through sanScript. If you want to pass other types of data,
such as integers or date values, you will need to perform explicit data type
conversions.

Passing data to sanScript
If you want to pass data other than strings to pass-through sanScript, you must first
convert the data to string format in your Continuum application. Then you can pass
the data to sanScript and reconvert it to the proper data type.

For example, assume you wanted to pass a date value from your Continuum
application into pass-through sanScript. To do this, your Continuum application
could divide the date into three strings, one containing the day, another the month
and a third the year. You would use the parameter handler object to pass these three
strings into pass-through sanScript. In sanScript, you would retrieve the three string
parameters, convert them to numeric values using the value() function, and create a
date value with the setdate() function.

P A R T 1 S C R I P T I N G

16 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Returning data from sanScript
Similar to passing data to sanScript, you can return only string values from pass-
through sanScript. If you want to return other types of data, you must first convert
the values to strings in sanScript, pass them back to your Continuum application,
and then reconvert them to the proper type.

For example, if you wanted to return a time value from pass-through sanScript, you
could use the hour(), minute(), and second() functions to retrieve the components
of the time value. You would then use the str() function to convert the values to
strings and then use the parameter handler object to pass them to your Continuum
application. Your Continuum application would them have to convert them back
into a time value.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 17

Chapter 3: Database-level Integrations
When you create database-level integrations, you must work directly with
Microsoft Dynamics GP tables. This chapter contains information you need to
effectively work with tables in pass-through sanScript. The following topics are
discussed:

• Table buffers
• Common table operations
• Multiuser processing
• Ranges
• Records with the same key values

Table buffers

A buffer is a temporary storage area in your computer’s memory. Each time you
access a table from pass-through sanScript, a table buffer is created for the table. A
table buffer can hold one record of information. The information in the table buffer
comes from either the table or the script, depending on whether you’re reading a
record from the table or adding new information to the table.

Tables are automatically opened when they are referenced in sanScript. They are closed when
the pass-through sanScript has finished.

Common table operations

There are four common operations you will perform when working with tables:

• Retrieving a record
• Saving a new record
• Updating a record
• Removing a record

One table buffer is created
for each table accessed by

pass-through sanScript.

Table

P A R T 1 S C R I P T I N G

18 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Retrieving a record
Retrieving a record is a multi-step process. You must first decide which key you
want to use to retrieve the record. Use the Table Descriptions window in Microsoft
Dynamics GP to ascertain the keys and key segments for each table. Then set the
key field or fields and use the get or change statement to retrieve the record.

The following sanScript code retrieves the customer record for American Electrical.
The second key of the RM_Customer_MSTR table is composed of the Customer
Name field, so that key will be used to retrieve the record.

{Release the lock on any record currently in the table buffer.}

release table RM_Customer_MSTR;

{Step 1: Set the key fields that will be used to retrieve the record.}

set 'Customer Name' of table RM_Customer_MSTR to "American Electrical";

{Step 2: Use the second key to retrieve the record. Don't lock the record.}

get table RM_Customer_MSTR by number 2;

{Step 3: Check for any error that may have occurred.}

if err() = MISSING then

error "The record was not found.";

end if;

Saving a new record
To save a new record, set the table fields to the values you want to save. Then use
the save table statement to save the new record.

The following sanScript code saves a new entry in the
GL_Account_Category_MSTR table. The set statement sets the new values in the
table buffer, and then the save table statement saves the new record.

{Step 1: Set the values of the fields in the table buffer.}

set 'Account Category Number' of table GL_Account_Category_MSTR to 49;

set 'Account Category Description' of table GL_Account_Category_MSTR to

➥ "Profit Sharing";

{Step 2: Save the new record.}

save table GL_Account_Category_MSTR;

{Step 3: Check for any errors that may have occurred.}

if err() <> OKAY then

error "An error occurred saving the new record: " + str(err());

end if;

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 19

C H A P T E R 3 D A T A B A S E - L E V E L I N T E G R A T I O N S

Updating a record
To update an existing record, first read the record with the change statement. This
retrieves the record and locks it, allowing you to make changes. Then use the set
statement to make the changes to the appropriate fields in the record. Finally, use
the save table statement to save the changed record back to the table.

The following sanScript code reads the customer record for Adam Park Resort. The
Salesperson ID field is changed to STEVE K. Then the record is saved in the
RM_Customer_MSTR table.

{Release the lock on any record currently in the table buffer.}

release table RM_Customer_MSTR;

{Step 1: Set the key fields that will be used to retrieve the record.}

set 'Customer Number' of table RM_Customer_MSTR to "ADAMPARK0001";

{Step 2: Use the first key to retrieve and lock the record, allowing it to be

changed.}

change table RM_Customer_MSTR by number 1;

{Step 3: Change the Salesperson ID.}

set 'Salesperson ID' of table RM_Customer_MSTR to "STEVE K.";

{Step 4: Save the changed record.}

save table RM_Customer_MSTR;

{Step 5: Check for any errors that may have occurred.}

if err() <> OKAY then

error "An error occurred saving the record: " + str(err());

end if;

Removing a record
To remove a record from a table, first read the record with the change statement.
This retrieves the record and locks it, allowing you to remove it with the remove
statement.

The following sanScript code reads the first record in the RM_Customer_MSTR
table and locks it. Then the remove statement removes the record from the table.

{Release the lock on any record currently in the table buffer.}

release table RM_Customer_MSTR;

{Step 1: Read and lock the first record in the table.}

change first table RM_Customer_MSTR;

{Step 2: Remove the record.}

remove table RM_Customer_MSTR;

P A R T 1 S C R I P T I N G

20 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Multiuser processing

Microsoft Dynamics GP supports multiple users accessing the same table at the
same time. This is accomplished through Optimistic Concurrency Control (OCC), a
form of record locking that allows multiple users to work in the same tables and
access the same records with minimal restrictions, while helping to ensure data
integrity.

Record locking
A record must be locked to delete it or save any changes made to it. A lock is
applied when a record is read from a table. Two types of locks can be used: passive
and active.

Passive locking
A passive lock allows other users to access the record. They can delete the record or
make changes to it. Passive locking ensures that other users accessing the record can
be made aware that the record has been deleted or that the contents of the record
have changed. A passive lock is applied each time a record is read using the change
statement.

Active locking
An active lock allows other users to read the record, but not make any changes or
delete the record. Active locking ensures that the user who has the active lock is the
only user who can make changes or delete the record. If other users try to delete or
change the record, a table-sharing error will occur. An active lock is applied each
time a record is read using the change statement with the lock keyword included.

The get statement is used only to read a record. It never locks a record.

Not all tables in Microsoft Dynamics GP allow active locking. If your pass-through
sanScript code uses the change statement with the lock keyword on a table that
doesn’t allow active locking, you will receive a type incompatibility message.

Releasing locks
Any of the following actions releases a record lock:

• Using the release table statement.

• Using the save table or remove statements, regardless of whether the statement
is successful.

If a record is currently locked in a table buffer, and you attempt to lock another
record, you will receive an error message indicating that a record was already
locked.

Writing your application
To allow multiple users to successfully use Microsoft Dynamics GP when pass-
through sanScript code is running, you must choose the type of locking used as well
as handle any error conditions that occur as a result of multiple users working with
the same record.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 21

C H A P T E R 3 D A T A B A S E - L E V E L I N T E G R A T I O N S

The following table lists the various scenarios that can occur. The events listed
happen in order from left to right. For example, in the first row User A passively
locks a record, then User B passively locks the same record. User A deletes the
record, then User B changes the contents of the record and saves the record. The
changes User B made will be saved.

Scenarios 1 through 3 don’t produce any errors. To be multiuser compatible, your
application should be able to handle scenarios 4 to 10, alerting users that an error
occurred, and allowing them to respond appropriately.

The err() function is used to trap errors so the script can deal with the errors that
occur. The following example scripts show how to trap for multiuser errors when
reading, saving and removing records. They use the err() function to trap and
handle errors.

You should not check for multiuser error conditions on tables containing text fields.
Multiuser error codes are not properly returned for tables containing text fields.

User A User B User A User B Result

1 Passively locks a
record.

Passively locks
the same record.

Deletes the record. Changes the
contents of the
record and saves
the changes.

The changes User B made will be
saved.

2 Passively locks a
record.

Passively locks
the same record.

Changes the
contents of the
record and saves
the record.

Deletes the record. The record will be deleted.

3 Passively locks a
record.

Passively locks
the same record.

Changes a field
and saves the
record.

Changes a
different field and
saves the record.

Both changes will be saved.

4 Passively locks a
record.

Passively locks
the same record.

Changes a field
and saves the
record.

Changes the same
field and attempts
to save the record.

User B will get an error indicating
the record changed. User B’s
changes won’t be saved.

5 Passively locks a
record.

Passively locks
the same record.

Deletes the record. Attempts to delete
the record.

User B will get an error indicating
the record is missing.

6 Actively locks a
record.

Passively locks
the same record.

Keeps the active
lock.

Attempts to delete
the record or
change a field and
save the record.

User B will get a record locked
error. The record won’t be deleted
or the changes won’t be saved.

7 Actively locks a
record.

Passively locks
the same record.

Deletes the record.
The active lock is
released.

Changes the
record and saves it
or deletes the
record.

If user B changed the record and
saved, the changes will be saved.
If User B attempts to delete the
record, User B will get an error
indicating the record is missing.

8 Actively locks a
record.

Passively locks
the same record.

Makes changes
and saves the
record. The active
lock is released.

Changes the
record and saves it
or deletes the
record.

If User B changed the same field as
User A, User B will get an error
indicating the record changed. User
B’s changes won’t be saved.
If user B changed different fields,
the changes will be saved.
If User B deleted the record, the
record will be deleted.

9 Passively locks a
record.

Actively locks the
same record.

Attempts to delete
the record or
change a field and
save the record.

Keeps the active
lock.

User A will get a record locked
error, even though User B’s active
lock came later than User A’s lock.

10 Actively locks a
record.

Attempts to
actively lock the
same record.

User B will get a record locked
error.

P A R T 1 S C R I P T I N G

22 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

When you’re writing scripts that handle errors using the err() function, you may want to
use the check error statement as a debugging tool while you’re working. The check error
statement will display a message indicating the type of table error that occurred.

Example 1
The following script reads and actively locks the first record in the
RM_Sales_WORK table. It uses the err() function to handle an error resulting from
the record being actively locked by another user.

{Release the lock on any record currently in the table buffer.}

release table 'RM_Sales_WORK';

{Read the first record in the table and actively lock it.}

change first table RM_Sales_WORK, lock;

if err() = LOCKED then

{The record is actively locked by another user.}

warning "This record is currently locked by another user.";

end if;

Example 2
The following script reads the first record in the RM_Customer_MSTR table,
changes the Salesperson ID, and attempts to save the changed record. The err()
function is used to handle an error resulting from the record being changed or being
actively locked by another user.

{Release the lock on any record currently in the table buffer.}

release table 'RM_Sales_WORK';

{Read the first record in the table.}

change first table RM_Customer_MSTR;

{Change the Salesperson ID field.}

set 'Salesperson ID' of table RM_Customer_MSTR to "STEVE K.";

{Save the changed record.}

save table RM_Customer_MSTR;

if err() = RECORDCHANGED then

{The record was changed by another user.}

warning "This record has been changed by another user.

➥ Their change will be overwritten.";

{Reread the current record to lock it.}

change table RM_Customer_MSTR;

set 'Salesperson ID' of table RM_Customer_MSTR to "STEVE K.";

save table RM_Customer_MSTR;

if err() <> OKAY then

error "Customer record could not be updated.";

end if;

elseif err() = LOCKED then

{The record is actively locked by another user.}

error "This record is actively locked by another user.

➥ Changes will not be saved.";

elseif err() <> OKAY then

{Another table error occurred.}

error "An error occurred saving the customer record: " + str(err());

end if;

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 23

C H A P T E R 3 D A T A B A S E - L E V E L I N T E G R A T I O N S

Example 3
The following script reads the last record in the GL_Account_Category_MSTR table
and attempts to delete it. The err() function is used to handle an error resulting from
the record being actively locked or deleted by another user.

{Release the lock on any record currently in the table buffer.}

release table 'GL_Account_Category_MSTR';

{Read the last record in the table.}

change last table GL_Account_Category_MSTR;

if err() = OKAY then

{The record was read and now can be removed.}

remove table GL_Account_Category_MSTR;

if err() = LOCKED then

{The record was actively locked by another user.}

error "The record is actively locked by another user

➥ and can't be deleted.";

elseif err() = MISSING then

{The record was deleted by another user.}

warning "The record was already deleted by another user.";

elseif err() <> OKAY then

{Another table error occurred.}

error "An error occurred deleting the record: " + str(err());

end if;

elseif err() = LOCKED then

{The record is actively locked by another user.}

error "The account category record is locked by another user.";

elseif err() <> OKAY then

{Another table error occurred.}

error "An error occurred retrieving the record: " + str(err());

end if;

P A R T 1 S C R I P T I N G

24 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Ranges

When working with tables, it is often efficient to limit the amount of information
being accessed. You can do this by setting up a range for the table. A range is based
on a key for the table, and allows you to access a specified portion of the table. The
selected range will be treated as an entire table. For instance, a get first statement
returns the first record in the range, a get last statement returns the last record in the
range, and so on.

You use the range statement to create a range for a table. You can specify one range
per table, and the range is associated with a specific key. The range will be used only
when the table is accessed by the key the range is associated with.

Example 1
In the following example, the range statement is used to limit the records accessed
to only those customers whose names start with “A”. Notice that the second key for
the table, composed of the Customer Name field, is used for each of the range
statements as well as the get first statement.

{Clear any existing range for the table.}

range clear table RM_Customer_MSTR;

{Set the start of the range.}

set 'Customer Name' of table RM_Customer_MSTR to "A";

range start table RM_Customer_MSTR by number 2;

{Set the end of the range.}

set 'Customer Name' of table RM_Customer_MSTR to "B";

range end table RM_Customer_MSTR by number 2;

{Read the first record in the range.}

get first table RM_Customer_MSTR by number 2;

Example 2
If a key is composed of several segments, you can create ranges based on several
key segments. The clear field and fill statements are often used when setting ranges
for multisegment keys. For example, the Purchase_Data table is shown in the
following illustration. It has a key composed of the Purchase Date and the Store ID.

Purchase Date Store ID Amount

11/16/98 C 100.00

11/17/98 A 50.00

11/17/98 B 75.00

11/17/98 C 22.00

11/18/98 A 175.00

11/18/98 C 60.00

11/19/98 A 45.00

11/19/98 C 16.00

11/20/98 B 100.00

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 25

C H A P T E R 3 D A T A B A S E - L E V E L I N T E G R A T I O N S

The following script sets a range to include all purchases made on 11/17/98 for all
stores. The first segment of the key is set to the date 11/17/98. The second segment
is set to its minimum value using the clear field statement, then the start of the
range is set. The first segment remains 11/17/98. The second segment is set to its
maximum value using the fill statement. Then the end of the range is set. Using the
clear field and fill statements on the Store ID fields allows all stores to be selected.

{Clear any previous range for the table.}

range clear table Purchase_Data;

{Set the start of the range.}

set 'Purchase Date' of table Purchase_Data to

➥ setdate('Purchase Date' of table Purchase_Data, 11, 17, 1998);

clear field 'Store ID' of table Purchase_Data;

range start table Purchase_Data by number 1;

{Set the end of the range.}

set 'Purchase Date' of table Purchase_Data to

➥ setdate('Purchase Date' of table Purchase_Data, 11, 17, 1998);

fill 'Store ID' of table Purchase_Data;

range end table Purchase_Data by number 1;

Example 3
The following example deletes all customer information for Aaron Fitz Electrical. A
single record must be deleted from the RM_Customer_MSTR and
RM_Customer_MSTR_SUM tables. Several records must be deleted from the
RM_Customer_MSTR_ADDR table. A range is used to delete these records.

{Delete the record from the RM_Customer_MSTR table.}

set 'Customer Number' of table RM_Customer_MSTR to "AARONFIT0001";

change table RM_Customer_MSTR by number 1;

if err() = OKAY then

remove table RM_Customer_MSTR;

end if;

{Delete the record from the RM_Customer_MSTR_SUM table.}

set 'Customer Number' of table RM_Customer_MSTR_SUM to "AARONFIT0001";

change table RM_Customer_MSTR_SUM by number 1;

if err() = OKAY then

remove table RM_Customer_MSTR_SUM;

end if;

{Delete the records from the RM_Customer_MSTR_ADDR table.}

{Clear any current range for the table.}

range clear table RM_Customer_MSTR_ADDR;

{Set the beginning of the range. The key has two segments. They are the

Customer Number and the Address Code.}

set 'Customer Number' of table RM_Customer_MSTR_ADDR to "AARONFIT0001";

clear field 'Address Code' of table RM_Customer_MSTR_ADDR;

range start table RM_Customer_MSTR_ADDR by number 1;

{Set the beginning of the range.}

set 'Customer Number' of table RM_Customer_MSTR_ADDR to "AARONFIT0001";

fill 'Address Code' of table RM_Customer_MSTR_ADDR;

range end table RM_Customer_MSTR_ADDR by number 1;

{Remove the range of records.}

remove range table RM_Customer_MSTR_ADDR;

P A R T 1 S C R I P T I N G

26 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Range types
How a range is evaluated depends on the database manager used for the table. For
the Btrieve and c-tree database managers, ranges are evaluated inclusively. For the
SQL database manager, ranges are evaluated either inclusively or exclusively.

Example 4
The following example illustrates the difference between these two methods of
evaluating a range. The sample table shown in the following illustration has a key
composed of the three segments shown.

The following range is set for the table:

Range start: A A A
Range end: A C B

Segment 1 Segment 2 Segment 3

A A A

A A B

A A C

A B A

A B B

A B C

A C A

A C B

A C C

B A A

B A B

B A C

B B A

B B B

B B C

B C A

B C B

B C C

C A A

C A B

C A C

C B A

C B B

C B C

C C A

C C B

C C C

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 27

C H A P T E R 3 D A T A B A S E - L E V E L I N T E G R A T I O N S

The following records are included in the inclusive range.

The following records are included in the exclusive range.

Notice that inclusive and exclusive ranges don’t contain the same records. This is an
issue when developing an application, because the c-tree database manager always
produce inclusive ranges, but the SQL database manager has optimal performance
when it produces exclusive ranges. The SQL database manager can be forced to
produce inclusive ranges, but the application’s performance may be seriously
degraded. To eliminate the discrepancies that result from the two types of ranges,
we recommend that you create “well-behaved” ranges in your sanScript code.

“Well-behaved” ranges
A “well-behaved” range has the following characteristics:

1. Beginning with the leftmost key segment and working to the right, the first 0 to
n segments are set to equal values for both the range start and the range end.

2. The next 0 or 1 segments are set to non-equal values for the range start and
range end.

3. The remaining segments (if any) are cleared for the range start and filled for the
range end.

The scripts in Examples 1, 2 and 3 all create “well-behaved” ranges. The ranges produced
will be the same, regardless of the database manager being used.

Segment 1 Segment 2 Segment 3

A A A

A A B

A A C

A B A

A B B

A B C

A C A

A C B

Segment 1 Segment 2 Segment 3

A A A

A A B

A B A

A B B

A C A

A C B

P A R T 1 S C R I P T I N G

28 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Records with the same key values

Tables that contain records with the same key value must be handled cautiously. For
example, in the table containing customer names, shown in the following
illustration, the key is the customer’s last name. Several customers have the last
name “Smith”. Thus, several records have the same key value.

Adding records
To allow multiple records to have the same key value, the table must allow
duplicates. Not all tables in Microsoft Dynamics GP allow duplicate records. If you
add a duplicate record to a table that doesn’t allow them, you will receive an error
indicating a duplicate record was created. Use the err() function to trap for this error
condition.

Retrieving records
It’s more difficult to retrieve records that have the same key value from a table. The
standard practice of setting the table buffer to the key value and then using a get or
change statement won’t work because the database manager can’t guarantee which
record will be retrieved. For example, if the table buffer for the table shown in the
previous illustration was set to “Smith” and a get or change statement was used to
retrieve a record, the table buffer could contain the record for Alan, Maria, Bob or
Sharon Smith. There is no way of knowing which record will be read.

Two methods can be used to reliably retrieve records that have the same key value.

• Start at the beginning of the table using the get first or change first statement.
Then use get next or change next statements to read all of the records in the
table. Be sure you’re using the same key for the get first or change first and get
next or change next statements.

This method will read all of the records in the table, including those that have
the same key value. However, there is no way of determining the order in
which the records having the same key value will be read.

• Use the range start statement to set the beginning of the range to the duplicate
key value, and use the range end statement to set the end of the range to the
duplicate key value. Use the get first or change first statement to retrieve the
first record in the range. Then use the get next or change next statement to
retrieve successive records from the range. Be sure you’re using the same key for
the range and get or change statements.

This method will read all of the records that have the same key value specified
using the range statements. However, there is still no way of determining the
order in which the records having the same key value will be read.

Last Name1 First name

Schulz Dan

Smith Alan

Smith Maria

Smith Bob

Smith Sharon

Thompson Jean

Wallace Phill

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 29

C H A P T E R 3 D A T A B A S E - L E V E L I N T E G R A T I O N S

The following script reads all of the “Smiths” from the example table. The range
statements allow the table to access only records with the key value “Smith.” The
get first and get next statements read all of records from the range in the table. Note
that the same key is used for all of the range and get statements.

{Clear any existing range for the table.}

range clear table Customers;

{Set up the new range.}

set 'Last Name' of table Customers to "Smith";

range start table Customers by number 1;

range end table Customers by number 1;

{Read the records in the range.}

get first table Customers by number 1;

while err() <> EOF do

 get next table Customers by number 1;

end while;

30 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 31

Chapter 4: Process-level Integrations
When you create process-level integrations, you will call procedures and functions
in Microsoft Dynamics GP. This chapter contains information you need to use
Microsoft Dynamics GP procedures and functions from pass-through sanScript. The
following topics are discussed:

• Procedures
• Form procedures
• Background processing
• User-defined functions

Procedures

A procedure is a script that provides functionality common to several parts of a
Dexterity-based application. Procedures are called from other scripts in an
application. When a procedure is called from another script, the two scripts
involved have specific roles:

• The calling script is the script that accesses, or calls, the procedure. For
Continuum, the pass-through sanScript is always the calling script.

• The called script is the procedure that is invoked by the calling script.

A set of parameters can be used to pass data to the called script or return data to the
calling script.

Calling procedures
The call statement temporarily transfers control to a procedure, passing an optional
set of parameters. The syntax of the statement is shown below:

call {background} procedure {of form form_name}{, parameter, parameter, ...}

Parameters
Procedures operate by passing parameters between the calling script and the
procedure. The procedure uses the information in these parameters to work with
variables, fields and tables, and to return values to the calling script. Three types of
parameters can be used, as shown in the following illustration.

in

out

inout

P A R T 1 S C R I P T I N G

32 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Parameters are classified according to how they are used when the calling script
communicates with the called script. The following table describes the different
types:

Procedures allow up to 255 parameters to be passed between the calling script and
the procedure. The types of the parameters defined for the procedure must match
the types of the parameters passed from the calling script. For example, if the calling
script passes an integer parameter to the procedure, the procedure must be set up to
receive an integer as a parameter.

Typically, the parameters passed to and from a procedure have one of the standard
storage types: boolean, currency, date, integer, long, string and time. Some
procedures also use existing global field definitions to declare parameter types. This
second method, described in the next section, is used when passing items such as
composites to a procedure.

Using global fields as parameter types
In addition to the standard storage types, applications can also use existing global
field definitions in a dictionary when declaring parameter types. This second
method is used when items such as composites must be passed to a procedure.

The following example shows how a global field is used to specify a parameter
type. The script calls the Verify_Account_Type procedure to verify account type
information for a specified account. The procedure takes an Account Number as
one of its parameters. The Account Number global field is used to specify the type
of the account_number local variable.

{Account number}

local 'Account Number' account_number;

{Status flags}

local boolean account_status;

local boolean abnormal_termination;

{Set the segments of the account number.}

set component(1) of field account_number to "000";

set component(2) of field account_number to "1100";

set component(3) of field account_number to "00";

{Open the GL_Account_MSTR table and read the appropriate record.}

set 'Account Number' of table GL_Account_MSTR to account_number;

get table GL_Account_MSTR by number 6;

Parameter type Characteristics

in The value is passed from the calling script to the called script. The called
script can’t change the value of an in parameter.

out The value is passed from the called script back to the calling script. The
called script sets the value of the out parameter.

inout The value is passed from the calling script to the called script and then
back to the calling script. The value can be used and changed by the
called script, which then passes it back to the calling script.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 33

C H A P T E R 4 P R O C E S S - L E V E L I N T E G R A T I O N S

{Call the Verify_Account_Type procedure to verify that it is a Posting

account.}

call Verify_Account_Type, account_number,

➥ true, {Posting account}

➥ false, {Unit account}

➥ false, {Posting allocation account}

➥ false, {Unit allocation account}

➥ false, {Fixed allocation account}

➥ false, {Variable allocation account}

➥ false, {Should the procedure read the account information?}

➥ account_status,

➥ abnormal_termination,

➥ table GL_Account_MSTR;

if abnormal_termination = false then

if account_status = true then

warning "Account is the specified type.";

else

warning "Account is not the specified type.";

end if;

else

error "Account type verification failed.";

end if;

Form procedures

Form procedures are functionally the same as standard procedures, except they’re
associated with a specific form. Form procedures are used to group procedures that
perform tasks associated with a specific form in Microsoft Dynamics GP. Form
procedures are called like standard procedures, except that the of form form_name
clause must be included in the call statement.

Background processing

Background processing allows a procedure to run while other processing is
occurring, such as opening windows, printing reports and so on. To run a procedure
in the background, include the background keyword in the call statement. This will
add the procedure to a processing queue that will process it when time is available.
Procedures like posting are often run in the background.

Temporary tables can’t be passed to a procedure running in the background because
the temporary tables may no longer exist when the procedure is processed.

You can monitor the progress of background procedures by using the Process
Monitor in Microsoft Dynamics GP. Background procedures must be completed
before you exit Microsoft Dynamics GP. If you attempt to exit Microsoft Dynamics
GP when a background procedure is running, a message will alert you that
background processes are still running.

P A R T 1 S C R I P T I N G

34 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

User-defined functions

Microsoft Dynamics GP contains several user-defined functions. You can use these
user-defined functions in your pass-through sanScript the same way you use built-
in functions such as mktime().

Microsoft Dynamics GP also has form-level user-defined functions that are
associated with a specific form. Like form procedures, they are used to group
functions that perform tasks associated with a specific form. Form-level user-
defined functions are called like standard functions, except that the of form
form_name clause must be included immediately after the function call.

The following example shows how to call a form-level function. The script calls the
IsDupAccountNumber() function of the GL_Copy/Move_Accounts form to verify
whether an account already exists.

local 'Account Number' account_number;

{Set the segments of the account number.}

set component(1) of field account_number to "000";

set component(2) of field account_number to "1100";

set component(3) of field account_number to "00";

if IsDupAccountNumber(account_number) of form 'GL_Copy/Move_Accounts' = true

➥ then

error "This account already exists.";

end if;

P
A

R
T

 2
: S

A
N

S
C

R
IP

T
 R

E
FE

R
E

N
C

E

36 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Part 2: sanScript Reference
This portion of the manual contains reference information for the sanScript
language. The information is divided into the following chapters:

• Chapter 5, “Functions and Statements,” contains descriptions of the sanScript
functions and statements used for database-level and process-level integrations.

• Chapter 6, “Data types,”describes the various data types used in sanScript and
provides information about how to work with them.

• Chapter 7, “Alert Messages,” describes the compiler and runtime messages that
can occur when you use pass-through sanScript.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 37

Chapter 5: Functions and Statements
This chapter contains descriptions of the functions and statements used for process-
level and database-level integrations. First, the functions and statements are listed
in a table by their usage. Later, each is listed again in alphabetical order, with a
detailed description, syntax, parameter list, and example of its use.

Category Command Description

Date day() Retrieves the day portion of a given date.

month() Retrieves the month portion of a given date.

setdate() Creates or modifies a date.

sysdate() Returns the current date from the current computer.

year() Retrieves the year portion of a given date.

Error
handling

check error Checks the value of the err() function for the last
operation on the specified table and displays a
message.

err() Returns the result of the last operation on a table.

Fields clear field Clears the specified field, or list of fields.

fill Sets the specified field or variable to its maximum
value.

set Sets a field or variable to the value of an expression.

Messages ask() Displays a dialog box and returns a value indicating
which button the user clicked.

check error Checks the value of the err() function for the last
operation on the specified table and displays a
message.

error Creates an error dialog displaying the specified string.

warning Creates a warning dialog displaying the specified string.

Numerics str() Converts a numeric value to a string.

value() Returns a numeric value corresponding to the first set
of numbers encountered in the specified string.

Program
structures

case...end case Allows statements to run on a conditional basis.

if then...end if Runs a series of statements when a condition is met.

repeat...until Runs a series of statements until a condition is met.

while do...end
while

Runs a series of statements while a condition is met.

Script
controls

abort script Halts the current script.

call Starts the specified procedure.

Strings str() Converts a numeric value to a string value.

value() Derives a numeric value from a set of numeric
characters in a string.

Tables change Reads a record and actively or passively locks it.

clear table Clears the specified table buffer.

countrecords() Counts the number of records in a table.

get Reads a record from a table without locking the record.

range Limits table access to a portion of the table.

release table Releases a locked or reserved record.

remove Removes a record or range from a table.

save table Saves the contents of the table buffer to a table.

38 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Command syntax

The syntax descriptions throughout this manual use the following standards:

• Bold text indicates language-specific reserved words, including both command
names and words that appear literally in scripts.

• Any parentheses () are a part of the command.

• Italics indicate items to be replaced by object names or values.

• A vertical bar (|) between two or more items should be read as “or,” and indi-
cates that one item in the list should be chosen.

• Braces {} indicate optional items. If the braces enclose a group of items, one of
the items can be chosen.

• Square brackets [] list a group of items in which one choice is required. In rare
cases where they are part of the command syntax, they’re set in bold text.

• Ellipses (...) indicate that other commands can appear between the keywords of
the command being described.

Programming style

• Script examples are shown in Courier type.

• Each statement is terminated with a semicolon.

• Comments describing a line of the script appear above or beside the corre-
sponding line and are enclosed in braces. A sample script statement with a com-
ment is shown below:

{Release the lock on the current record.}

release table RM_Customer_MSTR;

• A continuation character (➥) indicates that a script continued from one line to
the next in the manual should be typed as one line.

Command reference

The remainder of this chapter lists the sanScript commands that are typically used
in pass-through sanScript for Continuum integrations.

Time hour() Retrieves the hours portion of a given time.

minute() Retrieves the minutes portion of a given time.

mktime() Creates a time value from a given set of numbers.

second() Retrieves the seconds portion of a given time.

systime() Returns the current time from the current computer.

Category Command Description

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 39

A B O R T S C R I P T

abort script

Description The abort script statement stops the current script.

Syntax abort script

Parameters • None

Comments The abort script statement is used to handle error conditions by stopping a script.

Example This script will be stopped if the values in the Debit and Credit variables aren’t
equal.

if Debit <> Credit then

{Debit doesn't equal Credit. Stop the script.}

abort script;

end if;

A S K ()

40 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

ask()

Description The ask() function creates a dialog box that contains a message and up to three user-
defined buttons. It returns a value that indicates which button is clicked by the user.

Syntax ask(prompt, button1, button2, button3)

Parameters • prompt – A string that contains the message you want to display in the dialog box.

• button1 – A string that contains the label for the first button in the dialog box.

• button2 – A string that contains the label for the second button in the dialog box.

• button3 – A string that contains the label for the third button in the dialog box.

Return value An integer that indicates which button the user clicked. It corresponds to one of the
following constants: ASKBUTTON1, ASKBUTTON2 or ASKBUTTON3.

Comments The string value entered as the prompt parameter provides the message for the
dialog box, and the buttons are labeled with the strings entered as the button1,
button2 and button3 parameters. If you want to use fewer than three buttons, use a
set of double quotation marks ("") for any buttons you don’t want to use.

The window closes automatically after the user clicks a button.

Example The following script asks the user whether the changes to the current customer
record should be saved.

local integer answer;

answer = ask("Do you want to save changes?", "Yes", "Discard", Cancel,);

if answer = ASKBUTTON1 then

{Yes was clicked.}

save table RM_Customer_MSTR;

else

{Discard was clicked.}

release table RM_Customer_MSTR;

clear table RM_Customer_MSTR;

end if;

Related items Commands
error, warning

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 41

C A L L

call

Description The call statement transfers temporary control to a procedure.

Syntax call {background} procedure {of form form_name}{, parameter, parameter, ...}

Parameters • background – Specifies whether the procedure will be processed in the background.
Certain Microsoft Dynamics GP procedures, such as posting, are performed in the
background.

• procedure – The name of the procedure you wish to call.

• of form form_name – A parameter that must be included if the procedure is a form
procedure. The form_name parameter is the name of the form the procedure is
attached to.

• parameter – Values, such as tables or fields you wish to pass to or return from the
procedure. Up to 255 parameters can be passed to or returned from the called
procedure.

Comments The call statement transfers temporary control to a procedure, passing information
to it. If the background keyword is used, the called procedure is queued for
execution in the background. If that background procedure calls another procedure,
that procedure will also be run in the background. If the background keyword is
not used, the called procedure can pass information back to the calling script.

You can’t pass a table buffer when calling a procedure to run in the background
because the pass-through sanScript might have finished running before the
background procedure is run. In such a case, there would be no table buffer for the
procedure to use. Similarly, you can’t pass a temporary table to a background
procedure, since the temporary table may no longer exist when the background
procedure is processed.

You can monitor the process of procedures by using the Process Monitor in
Microsoft Dynamics GP.

Example In the following example, the Get_Next_Journal_Entry procedure is called to
retrieve the next valid journal entry for a general ledger transaction.

local long journal_entry;

local boolean status;

call Get_Next_Journal_Entry, true, journal_entry, status;

if status = false

warning "Unable to get a journal entry.";

end if;

C A S E . . . E N D C A S E

42 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

case...end case

Description The case...end case statement allows a series of statements to run on a conditional
basis, much like the if then...end if statement.

Syntax case exp in [value] statements {in [value] statements} {else statements} end case

Parameters • exp – A field or expression that is to be compared to the value parameter on an
equality basis.

• in [value] – The value can be a single value or a range of values that the exp
parameter can be equal to. The value must be enclosed in brackets. Use the word
“to” to express a value range, such as “1 to 10”. The value for the expression “A or
B” can be written as “A, B”.

• statements – Any valid sanScript statement or group of statements.

• else – If the else clause is included, then the statements following it will be run if all
of the in [] clauses have been evaluated as false.

Comments If multiple in [] clauses are included, the statements after the first in [] clause to be
evaluated as true will be run, and subsequent clauses will not be evaluated.

If none of the in [] clauses are evaluated to be true and an else clause isn’t included,
then no statements will be run until those listed after the end case statement.

Example The following example uses the case...end case statement to set the rebate amount
to be paid to customers based on their total year-to-date sales.

local currency rebate_amount;

case 'Total Sales YTD' of table RM_Customer_MSTR_SUM

in [0 to 999]

{The customer purchased less than $1,000 worth of goods.

They aren’t eligible for a rebate.}

set rebate_amount to 0;

in [1000 to 2999]

{The customer purchased between $1,000 and $2,999 worth of

goods. They qualify for a $15 rebate.}

set rebate_amount to 15;

in [3000 to 4999]

{The customer purchased between $3,000 and $4,999 worth of

goods. They qualify for a $25 rebate.}

set rebate_amount to 25;

else

{The customer purchased over $5,000 worth of goods. They

qualify for a $50 rebate.}

set rebate_amount to 50;

end case;

Related items Commands
if then...end ifll

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 43

C H A N G E

change

Description The change statement reads a record from a table and passively or actively locks the
record, allowing changes to be made to the table.

Syntax change table table_name {, lock}{, wait}{, refresh}

Parameters • next | prev | first | last – Identifies which record to retrieve.

If none of these keywords are included, the record that matches the key value in the
table buffer will be retrieved. The next keyword will retrieve the record that follows
the key value currently in the table buffer. The prev keyword will retrieve the record
preceding the key value in the table buffer. The first keyword will retrieve the first
record in the table or range. The last keyword will retrieve the last record in the
table or range.

• table table_name – Identifies the table containing the record to read.

• by key_name | by number expr – Identifies the key by which you’ll search the table
to locate the record to be retrieved. If one of these parameters isn’t included, the first
key will be used.

You can identify the key by its name or by the key number. In the by key_name
parameter, key_name is the key’s technical name. In the by number expr parameter,
expr is an integer containing the number of the key, determined by its position in the
table definition. For instance, the third key created can be identified by the number
3, and so on.

• lock – Indicates that the record will be actively locked, and no other users will be
allowed to change or delete the record. If this option isn’t included, the record will
be passively locked.

Not all tables in Microsoft Dynamics GP support active locking. If you use the lock
keyword for a table that doesn't support active locking, you will receive a type
incompatibility message when you compile the pass-through sanScript.

• refresh – This keyword applies only for SQL tables. When a change statement reads
a SQL table, a record is actually read from an in-memory buffer. The refresh
keyword refreshes the records in the buffer before the read operation occurs,
ensuring that the most-current data will be read.

Comments The values of the key fields should be set in the table buffer before the change
statement is issued. You don’t need to set any fields in the table buffer to retrieve the
first or the last record in a table.

You can use the err() function or the check error statement to handle any errors that
may have occurred.

next
prev
first
last 

 
 
 
 
 
 

by key_name
by number expr 








C H A N G E

44 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Example The following example uses the set statement to copy a key value, Customer
Number, from the parameter handler object. The change statement then uses the
value in the table buffer to retrieve a record from the RM_Customer_MSTR table
and place it in the table buffer. If the retrieval is successful, the credit limit amount
for the customer is set to 50000 and the customer record is saved.

local boolean err_val;

local string cust_num;

{Retrieve the customer number from the parameter handler.}

set err_val to OLE_GetProperty("Customer Number", cust_num);

{Set the key value for the RM_Customer_MSTR table.}

set 'Customer Number' of table RM_Customer_MSTR to cust_num;

{Retrieve the record, allowing it to be changed.}

change table RM_Customer_MSTR;

if err() = OKAY then

set 'Credit Limit Amount' of table RM_Customer_MSTR to 50000;

{Save the changed record.}

save table RM_Customer_MSTR;

if err() <> OKAY then

error "An error occurred while saving: " + str(err());

end if;

end if;

Related items Commands
check error, err(), get

Additional information
Chapter 3, “Database-level Integrations”

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 45

C H E C K E R R O R

check error

Description The check error statement checks the result of the last operation on the specified
table, and displays a corresponding message if there was an error. If no table name
is specified, it checks the result of the last table operation.

Syntax check error {table table_name}

Parameters • table table_name – An optional clause specifying the name of the table for which you
want to check the last table operation.

Examples In the following example, a record is being retrieved from the RM_Customer_MSTR
table. The check error statement checks whether any errors occurred as the record
was being retrieved. An appropriate alert message is displayed if an error occurred.

set 'Customer Number' of table RM_Customer_MSTR to "ADVANCED0001";

get table RM_Customer_MSTR;

{Display any message describing any error.}

check error;

In the following example, records are being retrieved from the
RM_Customer_MSTR and RM_Customer_MSTR_SUM tables. The check error
statements check whether any errors occur as the records are being retrieved from
each table. It displays the appropriate alert message or messages if errors occur.

set 'Customer Number' of table RM_Customer_MSTR to "AARONFIT0001";

set 'Customer Number' of table RM_Customer_MSTR_SUM to "AARONFIT0001";

get table RM_Customer_MSTR;

get table RM_Customer_MSTR_SUM;

{Display any message describing any error.}

check error table RM_Customer_MSTR;

check error table RM_Customer_MSTR_SUM;

Related items Commands
err()

C L E A R F I E L D

46 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

clear field

Description The clear field statement clears one or more fields.

Syntax clear field field_name{, field_name, field_name, ...}

Parameters • field_name – The name of the field to be cleared. If you have multiple fields to clear,
list the name of each field separated by a comma.

Comments Clearing a field removes the data currently in the field. Be sure to fully qualify the
field or fields you are clearing.

If a table is not open when a field in that table is cleared, the clear field statement
will open the table.

Example The following example clears two fields in the table buffer for the
RM_Customer_MSTR table.

clear field 'Customer Number' of table RM_Customer_MSTR,

➥ 'Customer Name' of table RM_Customer_MSTR;

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 47

C L E A R T A B L E

clear table

Description The clear table statement clears a table buffer.

Syntax clear table table_name

Parameters • table_name – The name of the table for which the table buffer should be cleared.

Comments Clearing a table removes the data currently in its table buffer. It doesn’t remove data
from the actual table.

Example The following example clears the table buffer for the RM_Customer_MSTR table.

clear table RM_Customer_MSTR;

C O U N T R E C O R D S ()

48 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

countrecords()

Description The countrecords() function returns the number of records in the specified table.

Syntax countrecords (table table_name)

Parameters • table table_name – The name of the table you want to count records in.

Return value Long integer

Comments This function can also be used to retrieve an estimate of the number of records in a
range.

Example The following example sets a local variable named customer_count to the number
of records in the RM_Customer_MSTR table.

local long customer_count;

set customer_count to countrecords(table RM_Customer_MSTR);

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 49

D A Y ()

day()

Description The day() function returns the day of the month in a given date.

Syntax day(date)

Parameters • date – A date value.

Return value An integer between 1 and the maximum number of days in the month.

Example The following example sets a local variable named day_of_month to the number of
the current day in the system date.

local integer day_of_month;

set day_of_month to day(sysdate());

Related items Commands
month(), setdate(), sysdate(), year()

E R R ()

50 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

err()

Description The err() function returns the result of the last operation on a specified table. If no
table name is specified, it will return the result of the last table operation regardless
of which table it was performed on.

Syntax err({table table_name})

Parameters • table table_name – The name of table you want to check the last error for.

Return value Integer

Comments The err() function is often used in an if...end if structure that follows a table
operation (get, change, save table and so on) to handle any errors that may have
occurred during the operation. Using the err() function allows a script to detect
errors, respond accordingly and specify whether to notify the user. In contrast,
using the check error statement after table operations will automatically display an
alert message notifying the user that an error occurred, but doesn’t provide a
method for the script to respond to the error.

Some of the return values from the err() function correspond to predefined
constants, allowing you to use the constant in place of the error number. The
following table lists common operation errors, and their associated error values and
constants.

The following table lists other operation errors and their associated error values.
While no constants have been associated with these error values, they are valid
values that can be returned by the err() function.

Constant Value Error type

OKAY 0 No Error

LOCKED 10 Locked Record

EOF 16 End of File

DUPLICATE 17 Duplicate Record

MISSING 18 Missing

RECORDCHANGED 30 Changed Record

DEADLOCKED 31 Deadlocked

1 – Low on memory 22 – No table definition could be found

2 – Database manager not initialized 23 – Attempted to lock two records

3 – Database manager not supported 24 – No lock on update

4 – Too many tables opened 25 – Table doesn’t match definition

5 – Record length too long 26 – The disk is full

6 – Too many keys for database type 27 – Unknown error

7 – Too many segments 28 – A non-modifiable key changed

8 – Table not registered 29 – Not a variable length field

9 – Table not found 32 – Path not found

11 – Table name error 33 – Buffer error

12 – Table not open 34 – Error in creating a Btrieve table

13 – Table not opened exclusive 35 – Invalid key definition

14 – Invalid command sent to database
manager

36 – Maximum number of SQL connections
reached.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 51

E R R ()

Examples The following script attempts to save the current record to the
RM_Customer_MSTR table. The err() function is used to find out whether another
user has changed the record. If the record has been changed, an error message is
displayed indicating the situation to the user.

save table RM_Customer_MSTR;

if err() = RECORDCHANGED then

 error "This record was changed by another user.";

 release table RM_Customer_MSTR;

end if;

The following example retrieves each record from the RM_Customer_MSTR table
and sets the Salesperson ID field to STEVE K. The err() function is used to check for
any errors that occurred during processing.

{Attempt to read the first customer record in the table.}

change first table RM_Customer_MSTR;

while err() <> EOF do

{Successfully read a customer record. Change the Salesperson ID.}

set 'Salesperson ID' of table RM_Customer_MSTR to "STEVE K.";

{Save the changed record.}

save table RM_Customer_MSTR;

{Check for any error.}

if err() <> OKAY then

error "Unable to update customer: " + 'Customer Number'

➥ of table RM_Customer_MSTR + " due to error " + str(err());

end if;

{Read the next record.}

change next table RM_Customer_MSTR;

end while;

15 – Key number doesn’t exist 37 – Error accessing SQL data

19 – A set is already active 38 – Error converting SQL data

20 – Transaction in progress 39 – Error generating SQL data

21 – Not a variable length table

Related items Commands
check error

E R R O R

52 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

error

Description The error statement creates an error dialog box displaying the specified string. The
dialog box will have one button labeled OK.

Syntax error expression

Parameters • expression – A string field, text field, or string or text value with the message to be
displayed in the dialog box.

Example The following example generates an error message for the user.

error "This is a test message.";

Related items Commands
ask(), warning

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 53

F I L L

fill

Description The fill statement sets a field to the largest value represented by the field’s data
type, regardless of any keyable length or format applied to the field. For example,
an integer field would be filled with the number 32,767.

Syntax fill field_name {, field_name, field_name, ...}

Parameters • field_name – The name of the field to be filled.

Comments The fill statement is useful for setting ranges of information to be displayed from a
table.

You can fill multiple fields using one fill statement, by listing each field name
separated by a comma.

The following table lists the storage types for which the fill statement can be used,
and the value with which the field will be filled:

Fields with date or time control types will be displayed using the format specified
for their data types. For example, a filled time field might be displayed as 12:59:59
PM.

If the table containing the field to be filled is not open, the fill statement will open
the table.

Example The following example uses the fill statement to set the range for the Invoice table.
The Invoice table is composed of records that contain the key fields
Invoice_Number and Item_Number as shown in the following illustration:

Storage type Value

Date 12/31/9999

Currency 99999999999999.99999

Integer 32,767

Long 2,147,483,647

String The length byte (first byte) of the string is set to the storage size of
the string minus 1. Each of the remaining bytes is set to string
equivalent of ASCII 255.

Time 23:59:59

Invoice

Invoice

Invoice

F I L L

54 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

The number of items included in each invoice isn’t known. The following script
uses the range statement and the fill statement to set the range so only the items for
Invoice 10002 will be accessed.

range clear table Invoice;

set Invoice_Number to 10002;

{Set the minimum value for Item_Number.}

clear Item_Number of table Invoice;

range start table Invoice;

{Set the maximum value for Item_Number.}

fill Item_Number of table Invoice;

range end table Invoice;

Related items Commands
clear field, range

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 55

F O R D O . . . E N D F O R

for do...end for

Description The for do...end for statement runs a group of statements repetitively. The count
will start at expr1 and count up until a value equal to or greater than expr2 has been
reached. At each increment, all statements between the for do and end for
keywords will be acted upon.

Syntax for index = expr1 to expr2 {by step_expr} do statements end for

Parameters • index – An integer variable used to keep track of the current number of repetitions of
the loop. This variable for the loop index must be declared separately.

• expr1 – An integer value that’s the minimum value of index. The count will start at
this number.

• expr2 – An integer value that’s the maximum value of index. The for loop will stop
counting when index passes this number.

• by step_expr – The integer that specifies the amount by which the index variable will
be incremented during each pass through the loop. Only positive step values are
supported at this time. If this increment amount isn’t stated, the loop will be
incremented by one at each repetition.

• statements – any valid sanScript statement or statements.

Example The following example sets the elements of the YTD_Sales array field to 0.

{Set up the loop index for the loop.}

local integer i;

local currency YTD_Sales[12];

for i = 1 to 12 do

set YTD_Sales[i] to 0;

end for;

Related items Commands
repeat...until, while do...end while

G E T

56 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

get

Description The get statement retrieves a record from the table without locking the record. You
can’t change the data in a record that has been retrieved with the get statement.

Syntax get table table_name {,refresh}

Parameters • next | prev | first | last – Identifies which record you want to retrieve. If none of
these keywords are included, the record that matches the key value in the table
buffer will be retrieved.

• table table_name – The name of the table that contains the record you want to read.

• by key_name | by number expr – Identifies the key by which you’ll search the table.

You can identify the key by its name or by its number. In the by keyname parameter,
keyname is the key’s technical name. In the by number expr parameter, expr is an
integer containing the number of the key, determined by its position in the table
definition. For instance, the third key created can be identified by the number 3, and
so on. If one of these parameters isn’t included, the first key will be used.

• refresh – This keyword applies only for SQL tables. When a get statement reads a
SQL table, a record is actually read from an in-memory buffer. The refresh keyword
refreshes the records in the buffer before the read operation occurs, ensuring that
the most-current data will be read.

Comments If the specified table isn’t open, the get statement will open it.

The err() function or the check error statement can be used after the get statement to
ascertain whether the operation was successful or to handle errors that occurred.

Example The following example attempts to retrieve the customer name based on the
customer number supplied in the parameter handler.

local string cust_num, cust_name;

{Retrieve the customer number from the parameter handler.}

set err_val to OLE_GetProperty("Customer Number", cust_num);

set 'Customer Number' of table RM_Customer_MSTR to cust_num;

get table RM_Customer_MSTR by number 1;

if err() = OKAY then

set cust_name to 'Customer Name' of table RM_Customer_MSTR;

else

error "An error occurred while reading the customer record: "+ str(err());

end if;

next
prev
first
last 

 
 
 
 
 
 

by key_name
by number expr 








Related items Commands
check error, error

Additional information
Chapter 3, “Database-level Integrations”

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 57

H O U R ()

hour()

Description The hour() function returns the hours portion of a given time value.

Syntax hour(time)

Parameters • time – A time value

Return value An integer between 0 and 23.

Example The following example sets the variable hour_of_time to the number of hours in the
time value returned by the systime() function.

local integer hour_of_time;

set hour_of_time to hour(systime());

Related items Commands
minute(), mktime(), second(), systime()

I F T H E N . . . E N D I F

58 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

if then...end if

Description The if then...end if statement allows statements to be run on a conditional basis.

Syntax if boolexp then statements {elseif boolexp then statements}{else statements} end if

Parameters • boolexp – Any expression that can be evaluated as true or false, such as:

A=B

Customer_Name="John Smith"

A+B<C

• elseif boolexp then – If one or more elseif clauses are included, and if the if clause
has been evaluated as false, then the statements after the first elseif clause to be
evaluated as true will be run.

• else – If the else keyword is included, statements following it will be run if the if
clause and all elseif clauses have been evaluated as false. Only one else clause can
be included in an if then...end if statement.

• statements – any valid sanScript statement or statements.

Examples The following example displays a warning if the incorrect user is logged in to
Microsoft Dynamics GP.

if 'User ID' of globals <> "SKUBIS" then

warning "Incorrect user logged into Microsoft Dynamics GP.";

end if;

The following example reads through every item in the IV_Item_MSTR table and
adjusts the list price based on the item type. The if then...end if statement selects
the appropriate list price adjustment.

{Read the first inventory record.}

change first table IV_Item_MSTR;

while err() <> EOF do

{Adjust the List Price.}

if 'Item Type' of table IV_Item_MSTR = 1 then

{Sales Inventory - 10% discount.}

set 'List Price' of table IV_Item_MSTR to 0.9 *

➥ 'List Price' of table IV_Item_MSTR;

elseif 'Item Type' of table IV_Item_MSTR = 2 then

{Discontinued - 50% discount.}

set 'List Price' of table IV_Item_MSTR to 0.5 *

➥ 'List Price' of table IV_Item_MSTR;

elseif 'Item Type' of table IV_Item_MSTR = 5 then

{Services - 25% discount.}

set 'List Price' of table IV_Item_MSTR to 0.75 *

➥ 'List Price' of table IV_Item_MSTR;

end if;

save table IV_Item_MSTR;

check error;

end while;

Related items Commands
case...end case

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 59

M I N U T E ()

minute()

Description The minute() function returns the minutes portion of a given time value.

Syntax minute(time)

Parameters • time – A time value.

Return value An integer between 0 and 59.

Example The following example sets the variable minute_of_time to the number of minutes
in the time returned by systime().

local integer minute_of_time;

set minute_of_time to minute(systime());

Related items Commands
hour(), mktime(), second(), systime()

M K T I M E ()

60 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

mktime()

Description The mktime() function creates a time value from three integer values.

Syntax mktime(hour, minute, second)

Parameters • hour – An integer between 0 and 23 representing the number of hours.

• minute – An integer between 0 and 59 representing the number of minutes.

• second – An integer between 0 and 59 representing the number of seconds.

Return value Time

Example The following example sets a local variable named this_time to a time value of
2:25:37 PM.

local time this_time;

set this_time to mktime(14,25,37);

Related items Commands
hour(), minute(), second(), systime()

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 61

M O N T H ()

month()

Description The month() function returns the month portion of a given date value.

Syntax month(date)

Parameters • date – A date value.

Return value An integer between 1 and 12.

Example The following example sets a local variable named month_of_year to the number of
the month in the date value returned by the sysdate() function.

local integer month_of_year;

set month_of_year to month(sysdate());

Related items Commands
day(), setdate(), sysdate(), year()

R A N G E

62 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

range

Description The range statement is used to select a portion of a table to use. A range can reduce
the number of records that must be accessed in order to accomplish a task,
increasing the speed and efficiency of your application.

Syntax range table table_name

Parameters • start | end | clear – Identifies the purpose of this particular range command. The
start keyword sets the beginning of the range to the current values in the table
buffer. The end keyword sets the end of the range to the current values in the table
buffer. The clear keyword clears any range set for the key, but doesn’t affect the
table buffer.

• table table_name – The name of the table the range will be applied to.

• by key_name | by number expr – Identifies the key this range will be associated
with. Keys can be identified by their name (by key_name) or by their numeric
position in the table definition (by number expr). This parameter isn’t used when
the clear keyword is used. If no key is specified, the first key is used.

• inclusive | exclusive – In the range end statement, this keyword specifies how the
range will be evaluated. This option applies only when the SQL database manager
is being used for the table; it will be ignored for the other database managers.

If the SQL database manager is being used, and the inclusive keyword is included,
an inclusive range will be generated. If the exclusive keyword is included, a pure
exclusive range will be generated. If a range type isn’t specified, Dexterity will
decide which type of range to use, based on how the key segments for the range
have been set.

Comments The selected range of the table will be treated as an entire table. For instance, a get
first statement that includes the same by key_name or by number expr clause that
the range statement used, will return the first record in the range.

Scope of the range
A range is associated with a key. The range will be used only when the table is
accessed by the key with which the range is associated. All other keys will access
the entire table.

You can define only one range at a time for a given table buffer, regardless of how many keys
have been defined for the table. Each key can’t have its own range. To use a new range to
access the table, you must clear the first range using the range clear statement.

Clearing the range
A range is cleared by the range clear statement or closing the table. If you issue a
range statement without first clearing an existing range, you’ll be able to access data
from the old range only.

Multisegment keys
If a key is composed of several segments, you can create ranges based on several
key segments. The clear field and fill statements are often used when setting ranges
for multisegment keys. Typically, the first several corresponding key segments of
the range start and range end are set to the same values. Then the remaining key
segments are cleared and filled.

start
end
clear

by key_name
by number expr 






 , inclusive

, exclusive 
 
 

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 63

R A N G E

Evaluating the range
How a range is evaluated depends on the database manager used for the table, how
the key segments for the table have been set, and whether the inclusive or exclusive
keywords have been included in the range end statement.

For the c-tree database manager, ranges are always evaluated inclusively. Including
the inclusive or exclusive keyword has no effect on the range.

The following flowchart describes the process used to evaluate an inclusive range.

For the SQL database manager, how the range is evaluated depends on whether the
inclusive or exclusive keyword is included in the range end statement. If the
inclusive keyword is included, the range will be an inclusive range, just like the one
produced for c-tree. If the exclusive keyword is included, the range will be
evaluated exclusively.

The following flowchart describes the process used to evaluate an exclusive range.

Evaluating inclusive ranges for SQL is significantly slower than evaluating exclusive
ranges. For this reason, we recommend that you use inclusive ranges for SQL tables only
when absolutely necessary.

If the SQL database manager is used and neither the inclusive nor the exclusive
keyword is included in the range end statement, Dexterity will determine the type
of range used based on how the key segments for the range have been set. If the
range is “well-behaved” or Dexterity can alter the range to make it “well-behaved,”
an exclusive range will be generated. Otherwise, an inclusive range will be
generated.

R A N G E

64 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Starting from the leftmost key segment and working to the right, a “well-behaved”
range has the following characteristics:

1. The first 0 to n segments are set to equal values for both the range start and the
range end.

2. The next 0 or 1 segments are set to non-equal values for the range start and
range end.

3. The remaining segments (if any) are cleared for the range start and filled for the
range end.

It is desirable for a range to be “well-behaved” because “well-behaved” ranges produce the
same results for all database managers.

If Dexterity analyzes a range and finds the range to be “well-behaved” except that
the rightmost key segments haven’t been cleared and filled, those segments will be
automatically cleared and filled and an exclusive range will be produced.

Records outside of the range
If you set a range and then set the key value out of the specified range and issue an
unqualified get or change statement (one that doesn’t include the prev, next, first or
last keywords), you will receive an EOF error. However, depending on what value
you set the key field to, you could successfully retrieve data by issuing a get, or
change statement that uses the next or prev keywords. If you set the key value to a
value before the range, then issue a get next statement, for example, the first record
in the range will be retrieved. If you set the key value to a value after the specified
range, then issue a get prev statement, the last record in the range will be retrieved.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 65

R A N G E

Examples The following example sets up a range so that only records with a customer name
between “A” and “K” will be accessed. The second key for the table is used because
it is composed of the Customer Name field. Note that the first line clears any
previous range that may have been used before the new range is applied.

{Clear any existing ranges associated with this table.}

range clear table RM_Customer_MSTR;

set 'Customer Name' of table RM_Customer_MSTR to "A";

range start table RM_Customer_MSTR by number 2;

set 'Customer Name' of table RM_Customer_MSTR to "K";

range end table RM_Customer_MSTR by number 2;

The following example illustrates how to use a range for a multisegment key. The
Purchase_Data table is shown in the following illustration. It has a key composed of
the Purchase Date and the Store ID.

The following script sets a range to include all purchases made on 11/17/98 for all
stores. The first segment of the key is set to the date 11/17/98. The second segment
is set to its minimum value using the clear field statement. Then the start of the
range is set. The first segment remains 11/17/98. The second segment is set to its
maximum value using the fill statement. Then the end of the range is set. Using the
clear field and fill statements on the Store ID fields allows all stores to be selected.

{Clear any previous range for the table.}

range clear table Purchase_Data;

{Set the start of the range.}

set 'Purchase Date' of table Purchase_Data to setdate('Purchase

➥ Date' of table Purchase_Data, 11, 17, 1998);

clear field 'Store ID' of table Purchase_Data;

range start table Purchase_Data by number 1;

{Set the end of the range.}

set 'Purchase Date' of table Purchase_Data to setdate('Purchase

➥ Date' of table Purchase_Data, 11, 17, 1998);

fill 'Store ID' of table Purchase_Data;

range end table Purchase_Data by number 1;

The following records are included in the range.

Purchase Date Store ID Amount

11/16/98 C 100.00

11/17/98 A 50.00

11/17/98 B 75.00

11/17/98 C 22.00

11/18/98 A 175.00

11/18/98 C 60.00

11/19/98 A 45.00

11/19/98 C 16.00

11/20/98 B 100.00

Purchase Date Store ID Amount

11/17/98 A 50.00

11/17/98 B 75.00

11/17/98 C 22.00

R A N G E

66 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

The following example illustrates how the inclusive keyword is included in the
range end statement to force an inclusive range for a table with a SQL database
type. The Purchase_Data table is shown in the following illustration. It has a key
composed of the Purchase Date and the Store ID.

The following script sets a range to include all purchases from 11/17/98 to 11/19/
98 where the Store ID is A.

{Clear any previous range for the table.}

range clear table Purchase_Data;

{Set the start of the range.}

set 'Purchase Date' of table Purchase_Data to setdate('Purchase

➥ Date' of table Purchase_Data, 11, 17, 1998);

set 'Store ID' of table Purchase_Data to "A";

range start table Purchase_Data by number 1;

{Set the end of the range.}

set 'Purchase Date' of table Purchase_Data to setdate('Purchase

➥ Date' of table Purchase_Data, 11, 19, 1998);

set 'Store ID' of table Purchase_Data to "A";

range end table Purchase_Data by number 1, inclusive;

The following records are part of the inclusive range.

Purchase Date Store ID Amount

11/16/98 C 100.00

11/17/98 A 50.00

11/17/98 B 75.00

11/17/98 C 22.00

11/18/98 A 175.00

11/18/98 C 60.00

11/19/98 A 45.00

11/19/98 C 16.00

11/20/98 B 100.00

Purchase Date Store ID Amount

11/17/98 A 50.00

11/17/98 B 75.00

11/17/98 C 22.00

11/18/98 A 175.00

11/18/98 C 60.00

11/19/98 A 45.00

Related items Commands
fill, remove

Additional information
Ranges in Chapter 3, “Database-level Integrations”

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 67

R E L E A S E T A B L E

release table

Description The release table statement releases a lock on a record read with the change
statement.

Syntax release table table_name

Parameters • table_name – The name of the table buffer that will have its current record released.

Comments The table buffer won’t be cleared when a release table statement is run. Use the
clear table statement to clear the buffer.

Example The following example releases the current record in the RM_Customer_MSTR
table so another item can be read from or written to the table.

release table Customer_Master;

Related items Commands
change

Additional information
Multiuser processing in Chapter 3, “Database-level Integrations”

R E M O V E

68 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

remove

Description The remove statement removes the current record or a range of records from the
specified table.

Syntax remove {range} table table_name

Parameters • range – Causes the entire set of records that fall within the currently active range to
be removed. If this keyword isn’t used, only the record in the table buffer will be
removed from the table.

• table table_name – The name of the table from which a record or range of records
will be removed.

Comments To remove a single record, the record must have been read using the change
statement, because the record must be locked to be removed.

The record must be actively locked to guarantee that no other user in a multi-user
system will be accessing the record when it’s removed.

If the remove range statement is used for a table for which a range hasn’t been set,
all of the records in the table will be removed.

Examples The following example removes the current record from the RM_Customer_MSTR
table.

remove table RM_Customer_MSTR;

The following example removes records for all the customers from A to K for the
RM_Customer_MSTR table. The range of customers to remove is set first, then the
records are removed.

{Clear any existing ranges associated with this table.}

range clear table RM_Customer_MSTR;

set 'Customer Name' of table RM_Customer_MSTR to "A";

range start table RM_Customer_MSTR;

set 'Customer Name' of table RM_Customer_MSTR to "K";

range end table RM_Customer_MSTR;

remove range table RM_Customer_MSTR;

Related items Commands
change, range

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 69

R E P E A T . . . U N T I L

repeat...until

Description The repeat...until statement is used to run statements repetitively. The statements
enclosed in the repeat statement are run, then the exit condition is tested. If the
condition returns a false value, the loop is continued. If true is returned, the loop is
exited.

Syntax repeat statements until boolexp

Parameters • statements – Any valid sanScript statements.

• boolexp – Any expression that can be evaluated as true or false, such as:

A=B

Customer_Name="John Smith"

A+B<C.

Example The following example reads all the records in the RM_Customer_MSTR table.
Records are read until an End of File (EOF) error is returned.

get first table RM_Customer_MSTR;

if err() <> EOF then

{Indicates there are records to retrieve.}

repeat

get next table RM_Customer_MSTR;

until err() = EOF;

{EOF signals the end of the table has been reached.}

end if;

Related items Commands
for do...end for, while do...end while

S A V E T A B L E

70 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

save table

Description The save table statement saves the current contents of the table buffer to the table.

Syntax save table table_name

Parameters • table_name – The name of the table that will have its table buffer contents saved.

Example The following example retrieves each record from the RM_Customer_MSTR table
and sets the Salesperson ID field to STEVE K. Then the record is saved.

{Attempt to read the first customer record in the table.}

change first table RM_Customer_MSTR;

while err() <> EOF do

{Successfully read a customer record. Change the Salesperson ID.}

set 'Salesperson ID' of table RM_Customer_MSTR to "STEVE K.";

{Save the changed record.}

save table RM_Customer_MSTR;

{Check for any error.}

if err() <> OKAY then

error "Unable to update customer: " + 'Customer Number'

➥ of table RM_Customer_MSTR + " due to error " + str(err());

end if;

{Read the next record.}

change next table RM_Customer_MSTR;

end while;

Related items Additional information
Common table operations and Multiuser processing in Chapter 3, “Database-level Integrations”

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 71

S E C O N D ()

second()

Description The second() function returns the seconds portion of a given time value.

Syntax second(time)

Parameters • time – A time value.

Return value An integer between 0 and 59.

Example The following example sets the variable second_of_time to the number of seconds
in the time value returned by the systime() function.

local integer second_of_time;

set second_of_time to second(systime());

Related items Commands
hour(), minute(), mktime(), systime()

S E T

72 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

set

Description The set statement assigns the value of an expression to a field or variable.

Syntax set item to expression

Parameters • item – The field or variable that’s to be set to a value.

• expression – The value to be assigned to the field.

Comments The field can have any data type, but the expression should have the same storage
type as the field. If you use the set statement to set the value of a field in a table that
isn’t open, the set statement will open the table.

Examples The following example shows the set command.

set 'Customer Name' of table RM_Customer_MSTR to "Ace Electric";

The following example shows the set command used to perform a calculation.

local currency discount_price;

set discount_price to 'List Price' of table IV_Item_MSTR * 0.75;

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 73

S E T D A T E ()

setdate()

Description The setdate() function is used to create a date value or modify an existing date
value.

Syntax setdate(date, month, day, year)

Parameters • date – The date field or variable you want to modify.

• month – A new month value for the date, in the range 0 to 12. If set to 0, the current
month value of the specified date field won’t be modified. If an attempt is made to
enter an out-of-range month, an alert message is automatically displayed to the
user.

• day – A new day value for the date, in the range 0 to 31. If set to 0, the day value of
date won’t be modified. If an attempt is made to enter an out-of-range day for any
month, an alert message is automatically displayed to the user.

• year – A new 4-digit year value for the date. If set to 0, the year portion of date won’t
be modified.

Return value Date

Example The following example sets the value of the start_date variable. The day is set to the
12th day of October, and the year is set to 1998.

local date start_date;

set start_date to setdate(start_date, 10, 12, 1998);

Related items Commands
day(), month(), sysdate(), year()

S T R ()

74 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

str()

Description The str() function returns a string representation of a numeric value. This is useful
for any situation in which you want to include a number in a string to be displayed
to the user.

Syntax str(expression)

Parameters • expression – The numeric variable, field, or value you wish to convert to a string.

Return value String

Comments The str() function is commonly used to convert non-string values to string values so
the parameter handler can be used to return them to the Continuum application.

Example The following example converts the value of the List Price currency field to a string
so it can be included in a message to the user.

warning "Current price is $" + str('List Price' of table RM_Customer_MSTR);

Related items Commands
value()

Additional information
Chapter 2, “Working With Data”

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 75

S Y S D A T E ()

sysdate()

Description The sysdate() function returns the current date from the current computer.

Syntax sysdate()

Parameters • None

Return value Date

Example The following example sets the value of the start_date variable to the system date.

local date start_date;

set start_date to sysdate();

Related items Commands
day(), month(), setdate(), year()

S Y S T I M E ()

76 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

systime()

Description The systime() function returns the current system time from the current computer.

Syntax systime()

Parameters • None

Return value Time

Example The following example sets the value of the start_time variable to the system time.

local time start_time;

set start_time to systime();

Related items Commands
hour(), minute(), mktime(), second()

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 77

V A L U E ()

value()

Description The value() function returns a numeric value containing the first set of numbers
encountered in a specified string.

Syntax value(string)

Parameters • string – The string expression or string field you wish to evaluate.

Return value Initially, the value is returned as a currency type. It is converted to the appropriate
numeric type based on the storage type of the field or variable the value is set to.

Comments If the string value contains letters and numbers, only the first numbers in the string
will be converted. The conversion process will begin with the first number
encountered, and end when the first character that is not a number is encountered.
For example, the string “Jones78Smith8” will be converted to 78.

If the string value contains a number with the system-defined decimal separator, the
return value may be rounded, depending on the type of field the return value is set
to. If the data type is set to an integer or long integer, the return value will be
rounded up or down as appropriate. If the value is returned to a currency field or
variable, the value won’t be rounded.

If a string contains no numbers, a value of 0 will be returned.

The value() function is commonly used to convert string values to their numeric
equivalents after the Continuum application has used the parameter handler to
pass them to pass-through sanScript.

Examples The following example converts the string “A123” to the value 123 and assigns the
value to the integer variable new_integer.

local integer new_value;

set new_integer to value("A123");

The following example converts the string “Cost123.45” to the value 123 and
assigns the value to the integer variable new_integer. The value is rounded because
it is returned to an integer variable.

local integer new_value;

set new_integer to value("Cost123.45");

The following example converts the string “Cost123.45” to the currency value
123.45000 and assigns the value to the variable new_currency. The value isn’t
rounded because it is returned to a currency field.

local currency new_currency;

set new_currency to value("Cost123.45");

Related items Commands
str()

Additional information
Chapter 2, “Working With Data”

W A R N I N G

78 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

warning

Description The warning statement creates a warning dialog box displaying the specified string.
The dialog box will have one button labeled OK.

Syntax warning expression

Parameters • expression – A string field, text field, or string or text value with the message to be
displayed in the dialog box.

Example The following example generates a warning message for the user.

warning "This is a test message.";

Related items Commands
ask(), error

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 79

W H I L E D O . . . E N D W H I L E

while do...end while

Description The while do...end while statement runs statements repetitively. The statements
enclosed in the while do...end while statement are run as long as a boolean
expression remains true. The expression is evaluated once before each repetition of
the loop.

Syntax while boolexp do statements end while

Parameters • boolexp – Any expression that can be evaluated as true or false, such as:

A=B

Customer_Name="John Smith"

A+B<C

• statements – Any valid sanScript statements.

Example In the following example, items are read from the RM_Customer_MSTR table until
the end of the table is reached.

get first table RM_Customer_MSTR;

while err() = OKAY do

{While the end of the table hasn't been reached, read the next item.}

get next table RM_Customer_MSTR;

end while;

Related items Commands
for do...end for, repeat...until

Y E A R ()

80 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

year()

Description The year() function returns the year portion of a given date value. The returned
value will be a four-digit year, such as 1998.

Syntax year(date)

Parameters • date – A date value.

Return value Integer

Example The following example sets a local variable named year to the number of the year in
the date value returned by the sysdate() function.

local integer year;

set year to year(sysdate());

Related items Commands
day(), month(), setdate(), sysdate()

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 81

Chapter 6: Data types
The following is a list of the data types used for fields that are stored in tables, and
provides an example illustration and information of how to work with fields of each
type.

Boolean

Example None

Description Stores a boolean (true or false value). The default value is false.

Check box

Example

Description Stores and displays a boolean (true or false) value. The value in the field is true if
marked and false if unmarked.

Combo box

Example

Description Allows a text item to be entered by a user or chosen from the list. The value in the
field is stored as a string.

Composite

Example

Description A composite is a special data type that is composed of several individual fields. The
Microsoft Dynamics GP Account Number field is a composite.

Each portion of the composite is called a component. To reference a component, use
the sanScript component keyword, followed by the component number enclosed in
parentheses. For example, the following sanScript code references the second
component of the Microsoft Dynamics GP account number:

local string segment_2;

set segment_2 to str(component(2) of field 'Account Number' of

➥ table GL_Account_MSTR);

P A R T 2 S A N S C R I P T R E F E R E N C E

82 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Currency

Example

Description Displays a value as a currency amount, with a currency symbol and thousands
separator if specified in the data type’s format.

The currency value can be in the range [-99,999,999,999,999.99999 to
99,999,999,999,999.99999]. The decimal point is implied in the number, but not
actually stored. For display purposes, currency values are limited to 14 digits to the
left of the decimal and 5 digits to the right. Any formatting, such as the currency
symbol and thousands separator, is not stored with the value.

Date

Example

Description Stores and displays a date. To set the value of a data field or variable, use the
setdate() function. To read the day, month and year portions of a data value, use the
day(), month() and year() functions. No formatting information is stored with the
date value.

An uninitialized date field (one that hasn’t been set to a value) will have the value
000000.

Drop-down list

Example

Description The value of the drop-down list is an integer associated with the item selected in the
list. Because the list items can be sorted, the value associated with an item may not
correspond to its position. For example, the first item appearing in the drop-down
list could have the value 3 associated with it. This means that when the item is
selected, the drop-down list will have the value 3, not 1 as you might expect.

Integer

Example

Description Displays and stores integers from -32,767 to 32,767.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 83

C H A P T E R 6 D A T A T Y P E S

List box

Example

Description The value of the list box is an integer associated with the item selected in the list.
Because the list items can be sorted, the value associated with an item may not
correspond to its position. For example, the first item appearing in the list could
have the value 3 associated with it. This means that when the item is selected, the
drop-down list will have the value 3, not 1 as you may expect.

Long integer

Example

Description Displays and stores integers from -2,147,483,648 to 2,147,483,647.

Radio group

Example

Description Groups radio buttons and stores a single integer value corresponding to the
position of the selected radio button in the tab sequence. If the first radio button is
selected, the value 0 is stored; if the second one is selected, the value 1 is stored, and
so on.

String

Example

Description Displays and stores strings of up to 255 characters.

Text

Example

Description Displays and stores text up to 32,000 characters in length.

P A R T 2 S A N S C R I P T R E F E R E N C E

84 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Time

Example

Description Stores and displays a time value in 24-hour format. To set the value of a time field or
variable, use the mktime() function. To read the hour, minute and second portions
of a time value, use the hour(), minute() and second() functions. No formatting
information is stored with the time value.

An uninitialized time field (one that hasn’t been set to a value) will have the value
000000.

Visual switch

Example

Description Displays a series of items. The value of the field is an integer corresponding to the
position of the currently-displayed item in the series, starting with 1 and
incremented by 1.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 85

Chapter 7: Alert Messages
This chapter describes the alert messages that can occur when you use pass-through
sanScript. It lists compiler messages and runtime messages.

Compiler messages

Compiler messages can occur when you send pass-through sanScript to the
Microsoft Dynamics GP runtime engine to be compiled and executed. When a
compiler error occurs, the message will be returned in the CompileErrorMessage
parameter of the ExecuteSanScript method.

Some messages identify the resource, such as a field or form, that caused the error.
Italic type is used to indicate items that will be substituted when the message is
returned.

Array array_name must have a constant size.

Situation When creating a local array, you attempted to use a variable to set the size of the
array. Array_name is the array that must have a constant size.

Solution Be sure you’re using a constant value when setting the size of a local array.

Can't message a constant.

Situation You attempted to use a constant in a command that doesn’t allow a constant as a
parameter. For example, if you attempt to clear or fill a constant using the clear or
fill statements, this message will appear since a constant isn’t a valid parameter for
these statements. Message is the string indicating the attempted action for the
constant, such as fill or clear.

Solution Remove the reference to the constant, or use a statement with which the constant
can be used as a valid parameter.

Cannot find resource resource_name.

Situation You’ve referenced a resource that can’t be found. Resource is the type of resource that
can’t be found. Resource_name is the name of the resource that can’t be located.

Solution Common solutions are:

• Check spelling. Be sure the resource name is spelled correctly in the script.

• Be sure the resource name is properly qualified. For example, if the resource is a
global variable, be sure that you’re using the qualifier “of globals” in the script.

Comment unterminated.

Situation You started a comment using an opening brace - { -, but didn’t indicate the end of
the comment with a closing brace - } -. There must be one closing brace for each
opening brace.

Solution Be sure you’ve included both braces when adding comments to a script.

Expression not allowed in function_name.

Situation You’ve used a function that doesn’t allow an expression as a parameter.
Function_name is the name of the function that contains the invalid expression.

Solution Be sure that the function you’re using allows an expression as a parameter before
you attempt to compile the script.

P A R T 2 S A N S C R I P T R E F E R E N C E

86 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Index out of bounds for array array_name.

Situation You’ve entered a value for the array index that’s larger than the array size. For
instance, if an array component is referenced as Array[6] in a script but the array
has a size of 5, the error will occur. Array_name is the name of the array field.

Solution Use an array index within the upper bounds of the array field or the local variable
definition.

Local variable variable_name not found.

Situation You’ve referenced a local variable that can’t be found. Variable_name is the name of
the local variable that can’t be located.

Solution Common solutions are:

• Check spelling. Be sure the local variable name is spelled correctly where it’s
defined and where you refer to it in the script.

• Be sure the local variable has been defined.

• If the item shouldn’t be a local variable, it’s probably not properly qualified.

Name declared twice.

Situation Two declared items, such as local variables, have the same name. Name is the name
of the item that’s declared twice.

Solution Change the name of one of the items.

Field_name is an array and requires a subscript.

Situation You’ve referenced an array field, but didn’t include the square brackets - [] - around
the array index.

Solution Be sure to include the square brackets and array index when referencing an array.

Field_name is not an array.

Situation You’ve referenced a field as an array, but the field isn’t an array. Field_name is the
name of the field you tried to reference.

Solution Change the script so the field isn’t referenced as an array.

Operands incompatible with operator operator.

Situation You’ve used an operator with incompatible operands. For example, adding a string
and a number together will cause this message to appear. Operator is the operator
that can’t be used with the operands.

Solution Be sure the operands are of the same type and are in the appropriate expression
type (string, integer, boolean, and so on). Refer to Chapter 1, “sanScript,” for more
information.

Too many local variables.

Situation A script is using more than 64K of local variable space.

Solution Reduce the size of the local variables used to less than 64K. If necessary, divide the
script into several smaller scripts.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 87

C H A P T E R 7 A L E R T M E S S A G E S

Probably an infinite loop_type loop.

Situation The index variable for a “while” loop created using the while do...end while
statement or a “repeat” loop created using the repeat...until statement isn’t
modified inside the loop body. When the index variable isn’t modified, no exit
condition exists and an infinite loop occurs. Loop_type indicates the type of loop that
might be infinite.

Solution Be sure that an appropriate exit condition exists for the boolexp parameter specified
for each of these statements. For the while do...end while statement, the boolexp
must return false for the exit condition to occur. For the repeat...until statement,
boolexp must return true for the exit condition to occur.

Syntax error, probably a missing end <something> or a missing ';'.

Situation The script compiler can’t locate the end marker for a command or a line in a script.

Solution Review the statements in the script and be sure there’s a semicolon at the end of
each. Also be sure that each statement requiring an “end” keyword, such as end if
or end while, has one.

Syntax error: name.

Situation The script compiler requires a certain keyword within a script command, but none
is present. This renders other portions of the script command invalid.

Solution Common solutions are:

• Check keywords. Check the syntax of the commands that may have caused the
error. If there are keywords missing for the command, such as the word “table”
in the parameter “table table_name,” be sure to add the proper keywords.

• Check spelling. Review any names that may be misspelled.

• Be sure you aren’t using a keyword as a name.

• Review the statements in the script and be sure there’s a semicolon at the end of
each.

• Check for a missing “end if” portion of an if then...end if statement in the
script. Be sure that you have an equal number of “if” and “end if” keywords if
you use conditional statements in your script.

Table table_name does not have a key key_name.

Situation You’ve referenced a table key that can’t be found. Table_name indicates the table for
which the key key_name can’t be located.

Solution Be sure the key name exists and is spelled correctly in the script.

The field field_name isn't in table table_name.

Situation A table field referenced in a script can’t be found. Field_name is the name of the field
that can’t be located in the table table_name.

Solution Common solutions are:

• Be sure the name of the field is spelled correctly in the script.

• Be sure the field is part of the table. You can verify this by using the Table
Descriptions window from the Resource Descriptions tool.

P A R T 2 S A N S C R I P T R E F E R E N C E

88 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Type incompatibility message.

Situation The script compiler has found conflicting data types in a script. Message indicates
the data types that are in conflict. This occurs if a value with one data type (such as
an integer) is used in an expression for another data type (such as a boolean).

If the message was “active lock on non-active lock table,” you have included the
lock option in a change statement used to retrieve data from a table that does not
allow active locking.

Solution If you’re using an expression in the script, review the operands to be sure they use
the same data type. If using a variable, be sure the data type for the variable
matches the values set for that variable in script. If necessary, use the str() and the
value() functions to convert data from one data type to another.

If the message was “active lock on non-active lock table,” remove the lock option.

Type literal too large.

Situation The compiler has located a literal, or static value, that is too large. The type of the
literal will be displayed in the message dialog box. This could be caused by a
number that’s too large to represent in a numeric data type, or a static string that’s
longer than the 255-character string limit.

Solution Be sure that the literal you’re using has a valid length for the data type that it’s
being stored in.

Unknown identifier name.

Situation The script compiler can’t locate the name of an item in the dictionary that you’ve
referenced in script. Name is the item in the script that can’t be identified.

Solution Review the name to be sure it’s spelled properly.

Wrong number of arguments to function_name.

Situation A function you’ve used has an incorrect number of arguments (parameters).
Function_name is the name of the function with the incorrect number of arguments.

Solution Review the parameters for the function to be sure you’ve used the correct number.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 89

C H A P T E R 7 A L E R T M E S S A G E S

Runtime messages

Runtime messages can appear when your sanScript code is executed by the runtime
engine. When a problem occurs, the message will be displayed in a dialog box in the
application. Italic type is used to indicate items that will be substituted when the
message is displayed.

Some messages will appear only if the check error statement is used in a script after
a table operation.

A get/change next operation on table table_name has reached the end of the table.

Situation You attempted to read the next record in the table with the get next or change next
statements, but the end of the table was reached. This message can appear when the
check error statement is used. Table_name is the table that encountered the error.

Solution Use the err() function to check for the end of table (EOF) condition.

A get/change operation on table table_name caused a file sharing error.

Situation You attempted to read and actively lock a record that was actively locked by
another user. This message can appear when the check error statement is used.
Table_name is the table that encountered the error.

Solution Be sure no other users have placed an active lock on a record before you attempt to
read and actively lock the same record. If multiple users must access the same
record at the same time, use passive locking.

A get/change operation on table table_name could not find a record.

Situation You attempted to retrieve a record from a table, but the record couldn’t be located.
This message can appear when the check error statement is used. Table_name is the
table that encountered the error.

Solution Check the key values to be sure they’re correct. Also be sure data has been saved in
the table before you retrieve records.

A get/change operation on table table_name failed. A record was already locked.

Situation You attempted to retrieve a record from a table, but there was already a locked
record in the table buffer. Table_name is the table that encountered the error.

Solution To read another record from a table into the record buffer, the lock on the current
record in the table must be released. Use the release table statement to release the
lock from the current record before reading another record.

A get/change operation on table table_name is for an invalid key.

Situation You attempted to read a record from a table using a key that doesn’t exist.
Table_name is the table that encountered the error.

Solution Be sure that at least one table key has been defined for the table. Check whether
you’re using a key that doesn’t exist.

A remove operation on table table_name caused a file sharing error.

Situation You attempted to remove a record from a table that was actively locked by another
user. Table_name is the table that encountered the error.

Solution Be sure no other users or forms have placed an active lock on a record before you
attempt to delete the same record. If multiple users must access the same record at
the same time, use passive locking.

P A R T 2 S A N S C R I P T R E F E R E N C E

90 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

A remove operation on table table_name failed because the record couldn't be locked.

Situation You attempted to remove a record from a table, but the record was not locked.
Table_name is the table that encountered the error.

Solution Be sure you’ve used the change statement to read the record and lock it before you
use the remove statement to remove the record from the table.

A save operation on table table_name caused a file sharing error.

Situation The following situations can cause this message:

• You attempted to save a record that was actively locked by another form or
another user. Table_name is the table that encountered the error.

• A form is accessing a table in read-only mode and is attempting to save to the
table.

Solution Be sure no other users or forms have placed an active lock on a record before you
attempt to save the same record. If multiple forms or users must access the same
record at the same time, use passive locking.

A save operation on table table_name has created a duplicate key.

Situation You attempted to save a record that has the same key value as another record
already in the table. This message can appear when the check error statement is
used. Table_name is the table that encountered the error.

Solution Use a different command. This message will appear if you want to change the
contents of records in a table, but are using the get statement instead of the change
statement. If you want to change records in the table, be sure to use the change
statement.

A save operation on table table_name record was changed by another user.

Situation You attempted to save a record, but another user had accessed the record and
changed it. This message can appear when the check error statement is used.
Table_name is the table that encountered the error.

Solution Read the record again to view the changes made by the other user. Then make
appropriate changes to the information stored in the record and save it again.

An open operation on table table_name caused a file sharing error.

Situation You tried to open a table that was already opened for exclusive use. Table_name is
the table that encountered the error.

Solution Wait until the other user is no longer accessing the table for exclusive use. Then
attempt to open the table.

An open operation on table table_name failed accessing SQL data.

Situation You’ve attempted to retrieve data from a table.

Solution This alert message typically will include a More Info button. Click the More Info
button to read the ODBC driver message, which will help you determine the source
of the problem. The following list includes possible solutions:

• The database is full. Using your database’s Administrator function, increase the
size allocated for the database.

• The system log is full. Using your database’s Administrator function, increase
the size of the system log, back it up to tape, or dump (delete) it.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 91

C H A P T E R 7 A L E R T M E S S A G E S

An open operation on table table_name failed because the maximum number of
connections has been reached.

Situation You’ve attempted to perform an operation that requires a connection to a SQL data
source, but the maximum number of connections allowed by your application has
been reached.

Solution Wait for other operations that are using connections to be completed. You should
then be able to complete the desired operation.

Bad power value.

Situation You attempted to use the power operator (^) with a base value other than 10.

Solution The power operator is supported only if the base value is 10. For example, 10^3 is a
valid statement, while 2^3 is not.

Division by zero, script aborted.

Situation In a script, the divisor in a division operation was zero, causing the error.

Solution Determine whether the constant or variable used as the divisor in the division
operation is zero or becomes zero during program operation.

Index index_number of array_name is out of range in script_name. Script terminated.

Situation The index value used to reference an array is larger than the size of the array.
Number is the index value that is out of range. Array_name is the array for which the
index value exceeded the size of the array. Script_name is the script that was active
when the array size was exceeded.

Solution Be sure that any variable used as the index for the array doesn’t exceed the size of
the array. Determine whether the array is large enough or whether the array size
was entered incorrectly when the array was created.

Long integer out of range. Results invalid.

Situation You’ve tried to store a long integer value or the result of a long integer expression in
an integer field or variable. The resulting value is too large to be stored as an integer.

Solution Store the result of the expression in a long integer field or variable.

Background process is running: Exit aborted.

Situation A procedure was still running in the background when you tried to exit the
application.

Solution Wait for the background task to finish before exiting.

String overflow during concatenation.

Situation A concatenation of two or more strings resulted in a string longer than 255
characters.

Solution Check the script where strings are concatenated (using the + operator) to determine
whether the 255-character limit for strings is being exceeded.

String overflow on set field_name.

Situation A set statement attempted to fill a string field with a value of greater length than the
field’s keyable length.

Solution Check the keyable length of the target string and the number of characters in the
string value of the set statement.

92 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 93

Glossary
Active locking

A method of locking that ensures only one
user can change or delete the contents of a
record at one time. The data in the locked
record can’t be changed or deleted by
another user until the lock is released. The
lock for the record is released when the user
with the active lock moves to another record
or closes the table.

Alert message
A message that appears when inappropriate,
inadequate or unclear data or instructions
are issued, when data is not accessible or
when a confirmation is required.

Array
A field or variable containing multiple
occurrences of the same type of information.
The individual pieces of information stored
by an array are called elements. For example,
a seven-element array could be used to store
daily sales totals instead of seven individual
fields or variables.

Array index
The number designating a specific element
within an array.

Ask dialog box
A modal dialog box generated by the ask()
function. A dialog box displays a text string,
an information icon and up to three push
buttons allowing the user to make a
selection.

Background processing
Processing, such as printing a report or
running a procedure, that occurs while
allowing other tasks to be completed
simultaneously, such as entering data in a
window.

Boolean expression
An expression that results in a value of true
or false.

Buffer
A temporary storage area in a computer’s
memory.

c-tree Plus
A data manager used within the Microsoft
Dynamics GP application.

Called script
The procedure or form procedure that’s
invoked by a calling script. The parameters
for the called script are provided, or passed,
by the calling script.

Calling script
The script that accesses, or calls, a procedure.

Check box
A data type that allow users to mark or
unmark a selection. Check boxes are stored
as boolean values.

Combo box
A data type that allow users to enter a text
value or choose that value from a list. The
combo box value is stored as a string.

Command
A function or statement included in the
sanScript language.

Compile
To run a script through a compiler. A
compiler translates the script instructions
into a language that the computer can
understand. Once the script has been
compiled, the instructions within the script
can be executed.

Compiler errors
Errors generated when a script is compiled.

Component
One field of a composite field.

Composite
A composite is a special data type that is
composed of several individual fields. The
Microsoft Dynamics GP Account Number
field is a composite.

Constant
A fixed numeric or string value used in
scripts. Several constants have been defined
for Microsoft Dynamics GP. SanScript also
has predefined constants that are used with
specific functions or statements.

Data type
A resource in a Dexterity-based application
that defines the characteristics for a field.

Date and time expression
An expression that results in either a date or
time value. Date and time expressions can
also result in a numeric value.

Deadlocked condition
The error condition that occurs when two
users or scripts lock separate records and
then also try to lock the records already
locked by the other. For example, suppose
script A locks record X and script B locks
record Y. Script A then also attempts to lock
record Y and script B also tries to lock record
X. Both requests will be denied, forcing both
scripts to wait endlessly for the desired
record. Dexterity-based applications contain
mechanisms to avoid deadlock conditions.

Dictionary
A group of resources that, when interpreted
by the runtime engine, present a complete
functioning application.

Drop-down list
A data type that allows users to select one
item from a list. The value of a drop-down
list is the integer associated with the selected
item.

Element
One of the fields in an array field.

Error dialog box
The modal dialog box generated with the
error statement. A text string, the standard
error icon for the operating system, and an
OK button are displayed in the dialog box.

Error trapping
To watch for and handle an exceptional
event, such as an error. In sanScript, the err()
function is used to trap table errors that
occur at runtime, allowing the script to
respond appropriately.

Expression
A sequence of operands and operators that
are evaluated to return a value.

Field
A field contains a single piece of information
used by the application dictionary. A field
can be displayed in a window or stored in a
table. The kind of information the field
displays or stores depends on the data type
associated with it.

Form
In Dexterity-based applications, a form is a
collection of related windows, menus and
scripts.

Form function
A user-defined function that’s associated
with a specific form.

Form procedure
A procedure that’s associated with a specific
form.

Function
A sanScript command that uses parameters
and returns a value that must be used in an
expression.

Global variable
A variable available to any script in the
application at any time. Global variables are
active the entire time a Dexterity-based
application is open.

In parameter
A value that is passed from the calling script
to the called script. The called script cannot
change the value of an in parameter.

Inout parameter
A value passed from the calling script to the
called script, then back to the calling script.

Key
A field or combination of fields within a
record that is used as a basis by which to
store, retrieve and sort records.

G L O S S A R Y

94 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

Key segment
One field of a group of fields that compose a
key.

List box
A Dexterity data type that allows users to
select one item from a list. The value of a list
box is the integer associated with the
selected item.

Local variable
A variable specific to a single script that is
active only while the script is running. Local
variables are defined at the beginning of the
script.

Locking
The process of reserving the use of a record
in a table. Locking can be passive, allowing
others users to change or delete the record,
or active, which doesn’t allow other users to
change or delete the record. A record must
be locked before it can be changed or
deleted.

Loop
A statement in script that runs repetitively
until a defined condition is met. SanScript
supports three loop structures: for, while and
repeat.

Numeric expression
An expression that results in a numeric
value.

Operand
An item in an expression that is acted on by
an operator.

Operator
A symbol that indicates the action to
perform on the operands in an expression.

Optimistic Concurrency Control
A form of record locking that enables several
users to update the same record in a
controlled manner, ensuring that record
updates are completed properly and
efficiently while placing minimal restrictions
on the user’s ability to access a record.

Order of precedence
The order in which the operations are carried
out for an expression. The traditional order
of precedence for numeric expressions is:
first unary minus, then exponentiation,
followed by multiplication and division, and
finally addition and subtraction. This is also
referred to as the order of evaluation.

Out parameter
The value passed from the called script back
to the calling script.

Overflow
The condition that occurs in a numeric
expression when an intermediate or final
result of the expression is too large to be
stored by the type of data used in the
expression.

Pass
The process of sending data to and receiving
data from a procedure by including a list of
constants, variables or fields as parameters
when the script is called.

Passive locking
A method of locking a record that allows
other users to access and make changes to
the record. The lock for the record is released
when the user with access to the record
moves to another record or closes the table.

Power operator
An operator symbolized in sanScript by a
caret (^) that is supported in numeric
expressions. The result is the first operand
raised to the power of the second operand. In
sanScript, only powers of 10 may be
calculated.

Precedence
The order in which operations are performed
for a type of expression.

Procedure
A script in a Dexterity-based application that
can be called from other scripts to perform a
common function.

Radio group
A data type in that’s used to group related
radio buttons and store the value of the
selected button. A radio group’s value is an
integer corresponding to the selected radio
button in the group.

Record
A collection of data made up of one instance
of each field in a table.

Resource
An object such as a field, string, table,
window or script that make up applications
in Dexterity.

Resource Descriptions Tool
A tool that displays information about
Microsoft Dynamics GP’ fields, windows
and tables.

sanScript
The scripting language in Dexterity.

Script
A list of instructions an application uses to
perform tasks.

Statement
A script command used to complete a
specific action in an application, such as
saving a record to a table.

String
A sequence of up to 255 ASCII characters.

String expression
An expression that results in a string value.

Table
A collection of related data formatted in
rows. Each row represents a separate record,
and each column represents a separate field.

Table buffer
A buffer that acts as an intermediate storage
area to hold one record from a table.

Table field
A field that’s used to store information in
tables.

Time expression
See Date and time expression.

Trap
To watch for and handle an exceptional
event, such as an error. In sanScript, the err()
function is used to trap table errors that
occur at runtime, allowing the application to
respond appropriately.

User-defined function
A script in a Dexterity-based application that
you use in the same manner as sanScript’s
built-in functions.

Variable
A script item that allows an application to
store values. They’re called variables because
their values can change. For example, a
variable could be used to store the value
returned from a dialog box created with the
ask() function.

Warning dialog box
The modal dialog box generated with the
warning statement. A text string, the
standard warning icon for the operating
system, and an OK button are displayed in
the dialog box.

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 95

Index
A
abort script statement 39
account numbers, for procedure

parameters 32
active locking

defined 93
described 20

addition operator 11
alert messages

chapter 85-91
compiler errors 85
defined 93
runtime messages 89

arrays
defined 93
described 12

ask() function 40
ASKBUTTON, predefined constants 8

B
background processing

described 33
monitoring 33
temporary tables 33

boolean, data type 7, 81
boolean expressions

defined 93
described 9

buffers
defined 93
described 17

C
call statement 41
called script, defined 93
calling script, defined 93
case...end case statement 42
change statement 43
check boxes

data type 81
defined 93

check error statement 45
clear field statement 46
clear table statement 47
clearing

fields 46
table buffers 47

combo boxes
data type 81
defined 93

commands
defined 93
syntax conventions 38

compiler errors, defined 93
compiler messages, described 85
compiling, defined 93
components, defined 93

composites
data type 81
defined 93
described 13
for procedure parameters 32

constants
defined 93
described 8
in sanScript 8
predefined 8
types 8
user-defined 8

conventions in documentation, see
documentation

converting
data types 15
numeric values to strings 74
strings to numeric values 77

countrecords() function 48
c-tree Plus, defined 93
currency

converting to strings 74
data type 7, 82

D
data type conversions

explicit conversions 15
implicit conversions 15

data types
boolean 81
chapter 81-84
check box 81
combo box 81
composite 81
converting 15
currency 82
date 82
defined 93
described 7
drop-down list 82
for parameters 15, 31, 32
integer 82
list box 83
long integer 83
radio group 83
string 83
text 83
time 84
visual switch 84

database-level integrations
adding records 28
chapter 17-29
checking for errors 45, 50
common operations 17
key values 28
retrieving records 28
table buffers 17

date and time expressions
defined 93
described 9

dates
converting to strings 15
creating 73
data type 7, 82
modifying 73
parameters for pass-through

sanScript 15
returning

current system date 75
month portion 61
portion 49
year portion 80

subtracting numeric values from 11,
example 10

day() function 49
deadlocked condition, defined 93
deleting records, see removing records
Dexterity development system,

pass-through sanScript 5
dialog boxes

using ask() function 40
using error statement 52
using warning statement 78

dictionary, defined 93
division operator 11
documentation, symbols and conventions

2
drop-down lists

data type 82
defined 93

duplicate records
described 28
retrieving 28
saving 28

E
elements of arrays

defined 93
described 12

equality operator 11
err() function

return values 50
syntax and description 50

error dialog boxes, defined 93
error statement 52
error trapping

defined 93
for table errors 45
using the err() function 50

errors
checking for 45, 50
compiler errors 85
error codes 50
error statement 52
runtime errors 89
warning statement 78

exclusive ranges
described 26
example 26
how to evaluate 63

explicit type conversions 15

I N D E X

96 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

exponents, power operator 11
expressions

boolean 9
date and time 9
defined 93
described 9
numeric 9
string 9

F
fields

as parameter types 32
clearing current data in 46
defined 93
maximum values, defined 53
setting values 72

fill statement 53
for do...end for() statement 55
form functions

defined 93
described 34

form procedures
defined 93
described 33

forms, defined 93
functions

defined 93
described 6, 34

functions and statements
chapter 37-80
described 37

G
get statement 18, 56
global fields, as parameter types 32
global variables

defined 93
described 8
example 8

greater than operator 12
greater than or equal to operator 12

H
hour() function 57
hours, retrieving from a time value 57

I
if then...end if 58
implicit type conversions 15
in parameters

defined 93
described 32

inclusive ranges
described 26
example 27
how to evaluate 63

inequality operator 11
inout parameters

defined 93
described 32

integer data type 7, 82

K
key segments, defined 94
keys

defined 93
multisegment keys and ranges 24

L
less than operator 11
less than or equal to operator 12
light bulb symbol 2
list boxes

data type 83
defined 94

local variables
defined 94
described 7
example 8
using in scripts 8

locking
active 20
defined 94
passive 20
records 20
releasing locks 20

logical end operator 12
logical not operator 12
logical or operator 12
long integer data type 7, 83
loops

defined 94
for loop 55
repeat loop 69
while loop 79

M
margin notes 2
minute() function 59
minutes, retrieving from a time value 59
mktime() function 60
modulus operator 11
month() function 61
multiplication operator 11
multiuser processing

described 20
record locking 20
removing records 23
retrieving records 22
scripting guidelines 20
updating records 22

N
names

for objects in scripts 5
for table fields 6
for tables 6

numeric expressions
defined 94
described 9
overflow in 10

numeric values
converting from strings 77

numeric values (continued)
converting to strings 74

O
objects, naming in scripts 5
operands, defined 94
operators

defined 94
described 10
script samples 10

optimistic concurrency control
defined 94
described 20

order of precedence, defined 94
out parameters

defined 94
described 32

overflow
defined 94
described 10
in numeric expressions 10
preventing 10

P
parameters 15

data types of 31
for procedures 31
global fields as parameter types 32
passing data to sanScript 15
returning data from sanScript 16
types of 31

pass, defined 94
passing data, see pass-through sanScript
passing parameters, data type issues 15
passive locking

defined 94
described 20
releasing locks 67

pass-through sanScript
see also scripts
data types 7
database-level integrations 17
passing data to 15
process-level integrations 31
programming style 38
returning data from 16
storage types 7

power operator
defined 94
described 11

precedence, defined 94
predefined constants

described 8
example 8

procedures
background processing 33
calling 31
defined 94
described 31
form procedures 33
parameters 31

C O N T I N U U M S A N S C R I P T S U P P L E M E N T 97

 I N D E X

procedures (continued)
starting 31

process-level integrations
calling Microsoft Dynamics GP

functions 34
calling Microsoft Dynamics GP

procedures 31
chapter 31-34

R
radio groups

data type 83
defined 94

range statement 62
records outside of the range 64
scope of the range 62

range types, well-behaved ranges 27
ranges

clearing 62
creating 24, 28
described 24
exclusive ranges 26, 63
for multisegment keys 24, 25
how to evaluate 63
inclusive ranges 26, 63
multisegment keys 62
purpose 24
range statement 24, 62
removing a range of records 68
retrieving records with 28, 29
script sample 24, 25
types 26
well-behaved ranges 27, 64

record locking
active 20
cases 20-23
described 20
error conditions 20-23
passive 20
releasing locks 20

records
accessing a range of records in a table

62
counting records in a table 48
defined 94
duplicate records 28
having the same key values 28
limiting access to records using

ranges 24
locking 20, 43
removing 19
retrieving 18

with change statement 43
with get statement 56

saving 18
updating 19

release table statement 67
remove statement 68
removing records

described 19
example 19

repeat...until statement 69
Resource Descriptions Tool, defined 94
resources, defined 94
retrieving records

described 18
example 18
with the same key values 28

returning data, see pass-through sanScript
runtime messages, described 89-91

S
sanScript

arrays 12
chapter 5-13
composites 13
constants 8
defined 94
described 5
expressions 9
functions 6
operators 10
statements 6
syntax 5
table operations 17
variables 7

sanScript reference, part 36-91
save statement 18, 19, 70
saving records

described 18, 70
example 18
with same key values 28

scripting, part 4-34
scripts

arrays 12
composites 13
constants 8
defined 94
expressions 9
functions 6
looping 55, 69, 79
multiuser-compatible 20
naming objects in 5
overview 5
passing data to 15
returning data from 16
statements 6
stopping 39
syntax 5
table operations 17
using ranges 24
variables 7

second() function 71
seconds, retrieving from a time value 71
set statement 72
setdate() function 73
statements

defined 94
described 6
running conditionally 42, 58

stopping scripts 39
str() function 74

string expressions
defined 94
described 9

strings
converting from numeric values 74,

77
data type 7, 83
defined 94

subtraction operator 11
symbols in documentation, see

documentation
syntax

for commands 38
for sanScript 5

sysdate() function 75
system time, returning 76
systime() function 76

T
table buffers

clearing 46
defined 94
described 17

table fields
defined 94
names 6

table operations
checking for errors 45, 50
list of error codes 50

tables
common operations 17
counting number of records in 48
defined 94
names 6
ranges of records 62
releasing of locked records 67
removing records 19, 68
retrieving records 18
saving records 18
table buffers 17
trapping errors 50
updating records 19

text data type 7, 83
times

converting to strings 16
creating 60
data type 7, 84
parameters for pass-through

sanScript 16
returning

current system time 76
hour portion 57
minutes portion 59
seconds portion 71

subtracting, from another time value
11

traps, defined 94

U
unary minus operator 10

I N D E X

98 C O N T I N U U M S A N S C R I P T S U P P L E M E N T

updating records
described 19
example 19

user-defined constants
described 8
example 8

user-defined functions
defined 94
described 34

V
value() function 77
variables

defined 94
global variables 8
in sanScript 7
local variables 7
setting values 72
types 7

visual switch data type 84

W
warning dialog boxes, defined 94
warning statement 78
warning symbol 2
well-behaved ranges 27, 63, 64
while do...end while statement 79
working with data, chapter 15-16

Y
year function 80

	Copyright
	Contents
	Introduction
	What’s in this document
	Symbols and conventions

	Part 1: Scripting
	Chapter 1: sanScript
	General syntax
	Names
	Statements
	Functions
	Data types
	Variables
	Constants
	Expressions
	Operators
	Arrays
	Composites

	Chapter 2: Working With Data
	Data type conversions
	Passing parameters

	Chapter 3: Database-level Integrations
	Table buffers
	Common table operations
	Multiuser processing
	Ranges
	Records with the same key values

	Chapter 4: Process-level Integrations
	Procedures
	Form procedures
	Background processing
	User-defined functions

	Part 2: sanScript Reference
	Chapter 5: Functions and Statements
	Command syntax
	Programming style
	Command reference
	abort script
	ask()
	call
	case...end case
	change
	check error
	clear field
	clear table
	countrecords()
	day()
	err()
	error
	fill
	for do...end for
	get
	hour()
	if then...end if
	minute()
	mktime()
	month()
	range
	release table
	remove
	repeat...until
	save table
	second()
	set
	setdate()
	str()
	sysdate()
	systime()
	value()
	warning
	while do...end while
	year()

	Chapter 6: Data types
	Boolean
	Check box
	Combo box
	Composite
	Currency
	Date
	Drop-down list
	Integer
	List box
	Long integer
	Radio group
	String
	Text
	Time
	Visual switch

	Chapter 7: Alert Messages
	Compiler messages
	Runtime messages

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

