Microsoft Dynamics

Microsoft Dynamics. GP
Continuum API Guide

Copyright

Trademarks

Intellectual property

Warranty disclaimer

Limitation of liability

License agreement

Publication date

Copyright © 2009 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into
a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written
permission of Microsoft Corporation. Notwithstanding the foregoing, the licensee of the software
with which this document was provided may make a reasonable number of copies of this
document solely for internal use.

Microsoft, Dexterity, Microsoft Dynamics, Visual Basic, Visual Studio, and Windows are either
registered trademarks or trademarks of Microsoft Corporation or its affiliates in the United States
and/or other countries. FairCom and c-tree Plus are trademarks of FairCom Corporation and are
registered in the United States and other countries.

The names of actual companies and products mentioned herein may be trademarks or registered
marks - in the United States and/or other countries - of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted herein are fictitious. No association with
any real company, organization, product, domain name, e-mail address, logo, person, place, or
event is intended or should be inferred.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

Microsoft Corporation disclaims any warranty regarding the sample code contained in this
documentation, including the warranties of merchantability and fitness for a particular purpose.

The content of this document is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Microsoft Corporation. Microsoft
Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear
in this manual. Neither Microsoft Corporation nor anyone else who has been involved in the
creation, production or delivery of this documentation shall be liable for any indirect, incidental,
special, exemplary or consequential damages, including but not limited to any loss of anticipated
profit or benefits, resulting from the use of this documentation or sample code.

Use of this product is covered by a license agreement provided with the software product. If you
have any questions, please call the Microsoft Dynamics GP Customer Assistance Department at
800-456-0025 (in the U.S. or Canada) or +1-701-281-6500.

April 2009

Contents

INtrodUCION ... e 2
PrereqUISIEES.cvoviviiiiictt e 2
WHhat's in thiS NANUAL........ooeiiiieeeicee ettt ettt ete et teeteeaae et eeseeeseeeseeesseeseenseeseenseenseanes

Symbols and conventions

Part 1: Getting Started ... e 6
Chapter 1: Integration BasSiCs...............c...ccoooooreee e 7
COM AULOMALION ... 7
The Continuum Integration LiDIary ... 7
IMETNOAS ... s 8
Triggers and callbacks ... 8
Types of INTEGIAtioNSccvueiiiiiiiiic s 8
Chapter 2: Setting Up a Continuum Project................oconiinnion, 9
ReQUITEA JEEINSovieietct e 9
Visuial Basic PrOJECtcciuiiiiiiiiiiiiiiic s 10
TemplateMain MOAUIE ..o s 11
CAlIDACK CASS.....veveueeiieietririeict ettt ettt ettt sttt sttt sttt b et st bbb b bttt ebeae e ebeneneas 13
Part 2: Developing Integrations ..., 16
Chapter 3: Pass-through sanScript
Writing and executing SCIIPLSccciiiiiiiiiiiii s
LOOKING UP NAIMES ...o.ooveiviiicit ittt st bbb e s sasan e s 19
DebU@ING SCIIPLSvviiiiiici s 19
Chapter 4: Passing Parameters.................icenivconnevoeesesesesesssenssoons 21
Parameter RANAIETc.coiviriiuiiriricerc ettt ettt ettt sttt neneae 21
Setting and getting ProPerties...........ocociviiiieiiiiiiec s 23
RUNNIng mMethods.........coiiiiiiiiiii s 25
Chapter 5: Database Integrations ..., 27
Registering database triggers........ccouiiiuiiiiriiiiiiiii s 27
Database triger TefereNCeccoiiuiiiiiiiiiiiiiic s 28
Accessing table datacoiiiiiii s 29
Chapter 6: Programming Techniques ..., 31
Specifying the current product ..o s 31
Starting integrating appliCationsc.cccuviiiiiiiiiiiii s 31
Retrieving data from the Microsoft Dynamics GP application..........ccccocvueiniiiicninnicincnieccicennes 32

Working with scrolling windows
Data Entry event
Delete Row event

Got Focus event.................

INSEIt ROW EVENL «.eeiiiieiesieee sttt sttt ettt et et b et st st besaeese et enbestessansanee
L0 ROW @VENLE ...vinieiiieiicieieiiietee ettt ettt et et b e e b e s esassesasensesessesessessesesans
LLOSE FOCUS EVENL...c.uiiiiiiiiiiieteteeete ettt ettt ettt ettt sb b b e s bt b e st ese e e ebanbensessassanen

CONTINUUM API GUIDE i

CONTENTS

Managing cross-thread Calls...........cccviiiiiiiiiiii s 36
User Account Control (UAQC)c.ccerueerirrreuierietereetnerierestesiesesestssesesesesseseseeesessesestsssassestasssesesesessesenta 38
Chapter 7: Packaging ... 39
Runtime COMPONENESo.oviiiiiiiiiiii s 39
Registering Microsoft Dynamics GP as an Automation SeIVer ... 39
Part 3: Integration Examples ..., 42
Chapter 8: Field Defaulter ... 43
OVEIVIEW ..ottt ettt et et e eteete et e e taeeaaeesaesss e seesseeaseesseesseessaasse s s esseesseesseesseessaesaesssenssenseenseenseensenneas 43
Running the sample appliCation..........coccueuriiiuiiiiiiiece s 43
How the ContinUum APT Was USEdcveveieriririrecreeteee et eeeresvees s ereereereereese e essessesesensesseeseenas 44
Chapter 9: Additional Information Window ..., 45
OVEIVIBW ..ttt ettt ettt et e ettt e ettt e eeaeeeeaaeeeaaeeeseeeaseeeeaseeetaeeesseeeasesensaeeasseeenseeensseesseeesseessreeenseeannes 45
Running the sample application..........coccueieiiiieiiiiiicieiece s 45
How the Continutm AP Was USEooueiiuiiiiieieieceeeeteeeteeeee ettt eas et eaeenee e e easeeseeeanens 46
Chapter 10: Name WIZard ... a7
OVEIVIBW ...ttt ettt et e ettt e ettt eeaeeeeaeeeeteeeeaaeeesaeeaseeeaeeeetseeesseeensesesaeenssesenseeensseensseeesseeenreennseeannes 47
Running the sample appliCation..........coccueieiiiieieiiiiieiee s 47
How the Continutm AP Was USEoouviuiiiiieieieceeeeteeeteeete ettt ettt eas et eaeeneeeneeeaseeseeeanens 48
Part 4: The Continuum Integration Library...................... 50
Chapter 11: Application Object
Activate methodccooveeeiiiiiiiceiceeeeeeeeee
CallVBAMacro method............
CreateFieldObject method
CurrentProduct PIOPETtYcccciviiiiiiiiiii s
CurrentProductID PIOPETrtYccoccuiiiiiiiiiiiiciic s
ExecuteSanScript Method ...
ExternalProductName Property ...
GetDataValue METNOdooviiieeeeeeceeeeeee ettt ettt ettt e eaeeeaeeaveenteeaaeenseeneas
GetDataValUeEX MEthodoovioiiieiieeeceeee ettt ev e ev et eae et e eneas
GetVBAGIODAlS METNOAooveiviieeeeeeeeeeee ettt et ettt e eeneeeae e nseeneas
5 5T (35 s <14 4 Vo ¢ USROS
MaACIOEITOT PIOPEILY «.ovviviritiicicictctctct ettt s et
LY (72l KoY S T=) Fs 15 4Ty o o VoY IR TSSO
RegisterDatabaseTrigger method ...
RegisterFocusTrigger method ...
RegisterFormTrigger method.........ccccoevviiiiiiiiiiice,

CONTINUUM API

RegisterShutdownRoutine method
RegisterWatchTrigger method
SetDataValue method...................
SetDataValueEx method
SetParamHandler Methodoooviiiiiiiiiieceeeeeeee ettt a b sbebeere e
SHOW METNOW ... ciiiiiiiietecce ettt ettt a bbb b be e b e beeseeseessessebasbessessessans
StartWizardMode MEtNOdo.eoviiuieieieieieeeeee ettt ettt v e re e seess e b esebeerens
StopProcessing Method..........ccviiiiiiii s
StopWizardMode Method ...
VBE IMEENOMeiiiiieieieceeee ettt ettt ettt et sa et et b b beebeebeeseessessessessensensansessessensessens
VISIDIE PIOPEILYouiviiiiiiiii s

GUIDE

CONTENTS

Chapter 12: Field Object
Height property........ccccoieviviicinniiciinicnnn
Left PIOPEILY ..o e
MaxLength PrOPEItYcccoiiiiiiiiiiiiiiii e
PromptHeight property
PromptLeft property.........
PromptName property
PromptStyle PrOPerty ... s
PromptTOp PIOPEILYovoviuimiiiiiiciiciciicicciccc s
PromptTyPpe PIOPEITYc.coviiiiiiiiiiiciciccecc s
PromptWidth Property ... s
Style propertyccccc..... .
SubType property
Top property

TYPO PIOPEILY .o s
WIAER PIOPEILY ...t

GUOSSANYooooooeeeeeeeeeeeeeeeeesee e 103

CONTINUUM API GUIDE iii

iv CONTINUUM API GUIDE

INTRODUCTION

Introduction

2

Continuum is the COM application programming interface (API) that is available
for Microsoft DynamicsTM GP or any other Dexterity®—based applications. Tools that
support COM automation, such as Visual Basic®, can use the Continuum API to
interact with Microsoft Dynamics GP. Before using the Continuum API, review the
information in this manual. It will help you decide whether Continuum API is
suitable for your integration.

Prerequisites

The information in this manual will help you use the Continuum API to integrate
with Microsoft Dynamics GP. It is assumed that you understand how to use the
COM integration capabilities of the development tool you have chosen, and are
familiar with the Microsoft Dynamics GP application.

Any development tool capable of interacting with COM applications can use the
Continuum API. However, this documentation focuses on using Visual Basic .NET
to create integrations with Continuum. If you are using a different development
tool, the key concepts described here still apply. You will need to use syntax and
development methods appropriate for the development tool you have chosen.

What's in this manual

CONTINUUM API

The Continuum API Guide is designed to be a basic reference for the Continuum
APIL It also describes programming and deployment issues you will need to address
for your Continuum integration. The manual is divided into the following parts:

e Part 1, Getting Started, explains the basics of a Continuum integration, and
describes how to set up a Continuum project.

e Part2, Developing Integrations, contains the information that you will need to
create integrations using Continuum. For example, it introduces the sanScript
language and explains how to use pass-through sanScript in your Continuum
integrations. It also describes how to package your integrating applications for
delivery to customers.

e Part 3, Integration Examples, describes sample applications that use Contin-
uum to integrate with Microsoft Dynamics GP.

e Part4, The Continuum Integration Library, describes the objects that are avail-
able through the Continuum APL

GUIDE

INTRODUCTION

Symbols and conventions

To help you use this documentation more effectively, we've used the following
symbols and conventions within the text to make specific types of information

stand out.
Symbol Description
Y The light bulb symbol indicates helpful tips, shortcuts
-(wo- and suggestions.
Warnings indicate situations you should be especially
A aware of.
Margin notes summarize Margin notes direct you to other areas of the
important information. documentation where a given topic is explained.
Convention Description

Part 1, Getting Started Bold type indicates the name of a part.

Chapter 7, “Packaging” Quotation marks indicate the name of a chapter.
Applying formats Italicized type indicates the name of a section.

set 'l_Item' to 1; This font is used for script examples.

Application Acronyms are spelled out the first time they’re used.
Programming Interface

(APT)

TAB or ALT+M Small capital letters indicate a key or a key sequence.

CONTINUUM API GUIDE 3

4

CONTINUUM API

GUIDE

PART 1: GETTING STARTED

6

Part 1:

CONTINUUM API

Getting Started

This part describes the basics of the Continuum API, and explains how to set up a
new Continuum project. The information is divided into the following areas:

e Chapter 1, “Integration Basics,” provides an overview of how a Continuum
integration works.

¢ Chapter 2, “Setting Up a Continuum Project,” explains how to create a new
project for a Continuum integration.

Be sure to review the information in this part of the documentation before you begin
using Continuum. Understanding the basics of an integration will make learning
the API easier.

GUIDE

Chapter 1:

Integration Basics

Before creating applications that use the Continuum API to integrate with Microsoft
Dynamics GP, you should have a basic understanding of how these integrations
work and what the Continuum API provides. This information is divided into the
following sections:

e COM Automation

® The Continuum Integration Library
¢ Methods

o Triggers and callbacks

o Types of integrations

COM Automation

An object is a combination of code and data that contains information about an
application or an item in the application, such as a field or window. COM
Automation is an industry-standard technology that allows applications to provide
access to objects in the application. An application that provides access to its objects
is called an automation server. An application that accesses objects from an
automation server is called an automation client.

The Microsoft Dynamics GP runtime engine has an object that describes the
application and another object that describes a field in the application. Code has
been added to the runtime engine that allows it to act as a server. This means that
Microsoft Dynamics GP makes its objects available to other applications, allowing
those applications to interact with Microsoft Dynamics GP through the COM
programming interface.

The Continuum Integration Library

The objects in the
Continuum Integration
Library are described
in detail in Part 4, The
Continuum

Integration Library.

Microsoft Dynamics GP acts

The Continuum Integration Library is the code in the Microsoft Dynamics GP
application that describes the objects that can be accessed through the COM
programming interface. Your integrating application will use the properties and
methods for these objects when it interacts with Microsoft Dynamics GP.

T The integrating application
as an automation server. It “ acts as an automation
-

makes its objects available to

client, accessing objects in

other applications through Microsoft Dynamics GP Integrating Application yrinroc o fr Dynamics GP.
the COM programming

The Microsoft Dynamics GP application objects provide two basic actions that
enable integration. First, they allow actions to be executed in Microsoft Dynamics
GP, such as pushing a button or setting the value of a window field. Second, they
notify the integrating application when certain events occur in Microsoft Dynamics
GP, such as when a form opens or the value in a field changes.

CONTINUUM API GUIDE 7

PART 1

8

GETTING STARTED

Methods

To make things happen in the Microsoft Dynamics GP application through the
Continuum API, your integrating application will use the methods provided. Most
of the methods you will use are associated with the Application object, such as the
Activate method, which is used the bring the Microsoft Dynamics GP application to
the foreground.

The method you will use most is the ExecuteSanScript method, which allows you
to execute sanScript code in the Microsoft Dynamics GP application. SanScript is the
language used to build the Microsoft Dynamics GP application. It provides
numerous commands to perform actions like hiding and showing fields, opening
and closing windows, and so on. You will learn more about using sanScript code in
Chapter 3, “Pass-through sanScript.”

Triggers and callbacks

An application that integrates through the Continuum API can watch for and
respond to specific events within the Microsoft Dynamics GP application. These
events, called triggers, are defined by your integrating application. You will use
methods from the Continuum API, such as the RegisterFocusTrigger method, to
specify which actions to watch for within Microsoft Dynamics GP.

When a trigger is activated, a corresponding callback method that you specified is
run in your integrating application. Typically, this callback method will execute
code in response to the action that occurred in Microsoft Dynamics GP.

For example, you could use the RegisterFocusTrigger method to register a trigger
that is activated with the Toolbar window in Microsoft Dynamics GP is closed.
When the Microsoft Dynamics GP application is shut down, the Toolbar window is
closed and the trigger is activated. The callback method you specified will be run at
that time. Typically, the callback method would close the integrating application,
since Microsoft Dynamics GP is no longer running.

Types of integrations

CONTINUUM API

Three types of integrations can be created with Continuum:

Interface-level integrations Those in which the integrating application
interacts with or manipulates the user interface in Microsoft Dynamics GP. These
are the easiest integrations to create.

Database-level integrations Those in which the integrating application reads
from and writes to the Microsoft Dynamics GP database. To do these, you must
understand the Microsoft Dynamics GP database. The Continuum API provides
limited support for these types of integrations, so keep in mind that other
integration methods might be more appropriate.

Process-level integrations Those in which the integrating application updates
information whenever a Microsoft Dynamics GP process, such as posting, is
executed. These integrations require a thorough understand the process you're
integrating with in the Microsoft Dynamics GP application.

GUIDE

Chapter 2:

Setting Up a Continuum Project

To function properly, your integrating application must contain the code to set up
the automation link to the Microsoft Dynamics GP application. This portion of the
documentation describes what is required in your code, and provides an example
that shows how to set up a Continuum project in Visual Basic .NET.

Information is divided into the following sections:

Required items
Visual Basic project

TemplateMain module
Callback class

Required items

To allow your integrating application to access the COM API in Microsoft Dynamics
GP, you must have the following:

Properly configured project

The development tool you are using may require special project or application
settings to allow access to COM resources. For example, you make need to add a
reference to the type library (named Dex.tlb) that defines the Continuum interface.
Check the documentation for information about the development tool you are
using.

Initialization code
Your integration must contain initialization code to access the Continuum API. This
initialization code does the following;:

* Defines a variable for an instance of the Microsoft Dynamics GP application
object.

¢ Creates a reference to the Microsoft Dynamics GP application.

* Specifies how to handle cross-thread calls, for Visual Studio 2005 and later.
Typically, the check for illegal cross-thread calls is suppressed.

¢ Defines a variable for an instance of the callback class (if you will be using
triggers and callbacks).

This initialization code must be run before you can use any of the methods or
properties defined in the Continuum API..

Callback class

If you will be using triggers and callbacks with your integration, you must define a
callback class that will contain the methods that are run in response to events
occurring in the Microsoft Dynamics GP application.

If you create a callback class, remember that the initialization code must define a
variable that stores an instance of the callback class. You may also have to adjust the
accessibility level for the class (such as making it public) so the callback methods in
the class can be executed by the Continuum APIL

CONTINUUM API GUIDE 9

PART 1

10

GETTING STARTED

Visual Basic project

CONTINUUM API

The following procedure describes how to create a Visual Basic .NET project that
will access the Continuum API. If you are using another development tool, adjust
the steps accordingly.

1. Create a new application project.
From the File menu, choose to create a new project. Select Visual Basic as the
project type, and Windows Application as the template to use.

New Project

Project bypes:

Business Inteligence Projects

Templates:

visual Studio installed templates

=8 viual Basic
windows o
Office =
Smart Device Windows
Database Application
Starter Kits
Test Ve
web L
Device
Visual C# Application

Wisual C4++

Distributed System Solutions
Other Project Types
Test Projects

[

Class Library

E

Workbook

A
A &
15,)
Console Windaows Crystal
Application Contral Library Reports...
Ve -] %
0 1=Ve L5Ve
Excel Outlook Add-in ASF.MET Web ASF.MET Web
Application Service Ap...
v

A project for creating an application with a Windows user interface

Hlame: Continuumépplication

Location:

Solution Name:

Civisual Studio Projects

ContinuumApplication

Create directory for solution

A4 Erowse. .

2. Add a reference to the Continuum type library.
The Continuum type library describes the methods and properties available in
the Continuum API for Microsoft Dynamics GP. The type library file for
Continuum is named Dex.tlb, and is located in the same folder as the Microsoft

Dynamics GP installation.

When Microsoft Dynamics GP is installed, the Continuum type library is
registered on the system. This allows development tools like Visual Basic to
easily find it, so you won’t have to manually locate the file.

From the Project menu, choose Add Reference. Select COM as the type of
reference to add. Locate Dynamics Continuum Integration Library in the list
and click Select. If multiple versions are listed, select the one for the version of
Microsoft Dynamics GP you are integrating with.

Choose Dynamics
Continuum Integration —
Library.

Add Reference

WET | COM

Embeddable Crystal Reports Designer .
Engine that compiles and runs J5cripk s...
Engine that compiles and runs J5cripk s...
English US \WordBreaker 1.0 Type Library
EnterprissRepositoryAdaptar 1.0 Typs ...
E-val Active control For storing/retrisvi...
EventSystem 1.0 Type Library

Execute Package Task 1.0 Type Library
Export 1.0 Type Library

ExportController 1.0 Type Library

Projects | Browse | Recent

ExportMadeller 1.0 Type Library
ExportModeller Library 10,2
ExportMadeller Library 11.0
FaxConkrol 1.0 Type Library

Typelib Version

C
<
c
C
CHWINDOWStsystem3zies.dl
c:\Program Files\Microsoft 5...
C
C
C
<
c
C

rogram FilesyCommon Fil...
COWINDOWS | Microsaft MET. .
WINDOWS|Microsoft. MET. .
WINDOWStsystem3ziLan, .
\Program FilssiCarmon Fil..
AWINDOWSIDavwnloaded P,
|

WINDOWStsystem32|cats. .
PROGRA1\OUICKT~ 140,

)
!
\Program FilesyComman Fil...
\Program FilesyComman Fil,..
\Program FilssiCarmon Fil..
WWINDOWS) systemaz|Set.. .

EES)

R

Click OK to add the reference to the project.

GUIDE

CHAPTER 2 SETTING UP A CONTINUUM PROJECT

By adding this reference, you're telling the development environment about the
COM interface you intend to use. This allows features like IntelliSense to help with
writin% code, and allows you to use the Object Browser within Microsoft Visual
Studio™ to view information about the Continuum API.

Referencing the type library may be required for some development tools to properly access
the Continuum APL

If you add the reference to the type library, and use fully-qualified references to the
objects available in the Continuum API, you will need to include the “interop” file
that is generated to allow Visual Basic .NET to access the COM interface for
Microsoft Dynamics GP.

TemplateMain module

The following procedure describes how to add a TemplateMain module to your
Visual Basic .NET project. This code module contains the initialization code for the
Continuum APL

1. Add a module to the project.
From the Project menu, choose Add Module. The Add New Item dialog will be
displayed. Choose to add a module.

Add New Item - ContinuumApplication

Templates: ‘@lE

Inkerface Companent COM Class DataSet S0L Database Feport
Class

P B 8 73 FE Z B

Crystal Report User Control Inherited Form Inherited User Custom Web Cuskom Resources File Settings File
Control Control Control

0 D 8 & £ 2 8 #

CodeFile Class Diagram wML File XML Schema R3LT File Text File HTML Page Bitmap File

[= | [= [I il M

A file For skaring groups of Functions

Marne: TemplateMain, b

Name the module TemplateMain.vb, or some other name indicating the module
contains the initialization code, and then click Add.

2. Add initialization code to the code module.
Add the following initialization code to the code module you created.

Public GPApp As Dynamics.Application
Public GPCallback As New GPCallbackClass ()

Public Sub Main()
'Create the GP application object
GPApp = CreateObject ("Dynamics.Application")

On Error GoTo 0

If GPApp Is Nothing Then

MsgBox ("Failed to create the application object")
End
End If

' Prevent thread warnings for callbacks
System.Windows.Forms.Control.CheckForIllegalCrossThreadCalls = False
End Sub

CONTINUUM API GUIDE 11

PART 1

12

GETTING STARTED

This initialization code defines a variable for the Microsoft Dynamics GP
application object. Notice that the CreateObject() method is used to create an
instance of the Microsoft Dynamics GP application.

This initialization code also creates an instance of the GPCallbackClass, which is
required if you will be using triggers and callbacks with your Continuum
integration. If you won’t be using callbacks, you can omit this line of the
initialization code.

Set the Startup object for the project.

Within your Visual Basic project you must specify which code will run when
your integration starts. Since the Continuum initialization code is contained in
the TemplateMain module, specify this module as the Startup object.

ContinuumaApplication - X

application

Compile

- Assembly name: Rook namespace:
ebug
ContinuumApplication ContinuumApplication

Ref
il Application bype: leog]

Set the Stal‘tup ObjeCi’ to Resources Windows Application | |(Default Icon) v D
TemplateMain. settings i DTy

vy

/

CONTINUUM API

\

Mark this option to make
the assembly visible t0 — - &y ssserthy comvatie

Templatstain i Assembly Information, ..

Signing
[Enable application framewark

Security
Publish

Code Analysis

You must unmark the Enable application framework option to specify TemplateMain as
the startup object.

If you need to specify a different startup object, such as a form or other code
module, you must move the initialization code for Continuum to that location.

Make the assembly COM-visible (if required).

You may need to make the assembly for your integration COM-visible for
triggers to register and run properly. To do this, click Assembly Information in
the Application Properties. Mark Make assembly COM-Visible and click OK.

Assembly Information @E

Title: Continuumapplication

Description:

Company: Microsoft

Product: ContinuurmApplication

Capyright: Copyright © Microsoft 2008
Trademark:

Assembly Version: |1 0 i) il

File: Wersion: 1 0 o]

GUID: 9b174f5c-bF43-41ff-a26b-cf 34f9e 18421

Neutral Language: |(Mone) v

CoM.

GUIDE

CHAPTER 2 SETTING UP A CONTINUUM PROJECT

Callback class

If you will be using triggers and callbacks for your Continuum integration, you
need to create a callback class that will contain the callback methods. To do this,
complete the following procedure.

1. Add a class to the project.

From the Project menu, choose Add Class. The Add New Item dialog will be
displayed. Choose to add a class.

Add New ltem - ContinuumApplication

Tomplates @E

B8 % & @ & u &

Module Interface Component COM Class DataSet S0 Database Report
Class

P B B @ B S A2

Crystal Report User Cantrol Inherited Form Inherited User Custarn “Web Custom Resources File Settings File

Contral Control Cartral
[=Y = 1 9 ¥
Code File Class Diagram #ML File XML Schema XSLT File Te:xt File HTML Page Eitmap File
[l] = [ffui] fui] =

An empty class definition

Mame: GPCallbackClass.vh

Name the class GPCallbackClass.vb, or some other name indicating the class
contains the callback methods for your integration, and then click Add.

2. Update the initialization code to create the class instance.
In the initialization code for your integration, verify that you have created an
instance of the class that contains the callback methods. For instance, if the
callback class is named GPCallbackClass, the following line is required in the
initialization code:

Public GPCallback As New GPCallbackClass ()

vy

N If you used a different name for the callback class, be sure to use the new name in the
@ initialization code.

CONTINUUM API GUIDE 13

14 CONTINUUM API GUIDE

PART 2: DEVELOPING INTEGRATIONS

Part 2: Developing Integrations

This portion of the documentation contains information about developing
integrations with Continuum. The information is divided into the following areas:

e Chapter 3, “Pass-through sanScript,” describes how to use sanScript code in
your Continuum integration.

e Chapter 4, “Passing Parameters,” explains how to pass information between
sanScript and your Continuum integration code.

e Chapter 5, “Database Integrations,” describes how your Continuum integration
can interact directly with the Microsoft Dynamics GP database.

¢ Chapter 6, “Programming Techniques,” describes additional issues you need to
be aware of when you create integrations using the Continuum APL

¢ Chapter 7, “Packaging,” explains how to package your integrating application
once it’s complete.

16 CONTINUUM API GUIDE

Chapter 3:

/

vy

\

Pass-through sanScript

The Application object in the Continuum API contains a method that allows you to
pass sanScript code into the Microsoft Dynamics GP runtime engine, which will
compile and execute it.

We recommend that you be familiar with the Dexterity development system and the
sanScript language if you want to use sanScript from within your Continuum integration.
If you are not familiar with Dexterity, you can use information in the sanScript supplement
(SanScriptSupplement.pdf) included with Continuum to learn about core sanScript
functionality.

The following items are discussed:

s Writing and executing scripts
¢ Looking up names
¢ Debugging scripts

Writing and executing scripts

When sanScript code is passed into Microsoft Dynamics GP to be compiled and
executed, it is actually run as if it were a procedure script in the Microsoft Dynamics
GP application. This means that the pass-through script has characteristics similar
to those of procedures. These characteristics include:

* The pass-through script runs in the foreground. When it is running, no other
processing occurs in Microsoft Dynamics GP.

* All resources referenced by the pass-through script must have their names fully
qualified to be referenced properly.

* The pass-through script has access to its own table buffer for each table in the
application.

e Unlike procedures, parameters can’t be passed into the pass-through script.
Instead, parameter values must be set and retrieved using OLE methods. This is
described in Chapter 4, “Passing Parameters.”

Writing scripts

In most cases, the pass-through sanScript code you write will look the same as the
sanScript code used in Dexterity-based applications. One exception is when you
include a literal string in your pass-through sanScript code. In ordinary sanScript, a
literal string is a string value enclosed in quotation marks. With pass-through
sanScript, you must enclose a literal string in two sets of quotation marks so the
Visual Basic compiler will properly interpret your pass-through sanScript code. For
example, the following sanScript code sets the value of the first_name variable.

set first_name to "Steve";

To use this code in pass-through sanScript, you must enclose the literal string
“Steve” in two sets of quotation marks to be interpreted properly.

set first_name to ""Steve"";

CONTINUUM API GUIDE 17

PART 2 DEVELOPING

For more information,
refer to the description
of the
ExecuteSanScript
method in Chapter 11,
“Application Object.”

INTEGRATIONS

Executing scripts

You will use the ExecuteSanScript method for the Microsoft Dynamics GP
application object to compile and execute your sanScript code. This method takes
the sanScript source code as a string and passes it to the Microsoft Dynamics GP
runtime engine. The Microsoft Dynamics GP runtime engine will attempt to
compile and execute the sanScript code. If the code can’t be compiled, a compiler
error will be returned to the ExecuteSanScript method. Any error generated when
the sanScript code runs will be displayed by Microsoft Dynamics GP.

Your integrating application must contain the initialization code for Continuum in order for
pass-through sanScript to work properly.

Script example

To show how pass-through sanScript works, the following sanScript code opens the
Receivables Transaction Entry window and sets the Document Type field to
Service/Repairs.

{This command opens the Receivables Transaction Entry window.}

open form RM_Sales_Entry;

{This command sets the Document Type drop-down list.}

set 'Document Type' of window RM_Sales_Entry of form RM_Sales_Entry to 4;

Once the code has been written, you must place it into your Visual Basic application
so it can be passed to the Microsoft Dynamics GP runtime engine. The following
Visual Basic procedure uses the ExecuteSanScript method to pass the sanScript
code to Microsoft Dynamics GP.

Private Sub Receivables_Click()

'Variables used for return values
Dim ErrvVal As Integer

Dim error_msg As String

ErrVal = GPApp.ExecuteSanScript ("open form " & _
"RM_Sales_Entry; set 'Document Type' of window " & _

"RM_Sales_Entry of form RM_Sales_Entry to 4;", _

error_msg)

If Errval <> 0 Then
'A compiler error occurred. Display the error.
MsgBox error_msg

End If

End Sub

Note the sanScript code in the first parameter for the ExecuteSanScript method.
The sanScript code must be contained in a single string. For short scripts, you can
do this by including the code on a single line. For longer scripts, you may want to
break the script into smaller strings that are more manageable, as was done for this
example.

18 CONTINUUM APl GUIDE

CHAPTER 3 PASS-THROUGH SANSCRIPT

Looking up names

Any pass-through sanScript code you write must use the appropriate names to
access resources in Microsoft Dynamics GP. It can be difficult to find the correct
names for resources in Microsoft Dynamics GP. To make this easier, the Continuum
interface provides two “wizard mode” methods that are used to look up names in
the Microsoft Dynamics GP application. The StartWizardMode method and
StopWizardMode method allow you to click on a resource in Microsoft Dynamics
GP and return its name for use in your pass-through sanScript.

Chapter 10, “Name Wizard,” describes a sample application that shows how to use
these two methods to retrieve names from Microsoft Dynamics GP. You may want
to compile and use this sample as a development tool when writing pass-through
sanScript for your Continuum integration.

Debugging scripts

Once you have written sanScript code and placed it into your Visual Basic
application, you can send it to Microsoft Dynamics GP to be executed.

Compiler errors

When sanScript code is sent to Microsoft Dynamics GP, the runtime engine will
attempt to compile the code. If the code can’t be compiled, a compiler error will be
returned to the ExecuteSanScript method. The second parameter of this method
will contain the compiler error message. Use the message to debug your sanScript
code.

Runtime errors

If the sanScript code is successfully compiled, it will be executed by Microsoft
Dynamics GP. If your sanScript code attempts to perform an operation that isn’t
allowed, a runtime error will occur. A runtime error will display a message in
Microsoft Dynamics GP that describes the error that occurred.

CONTINUUM API GUIDE 19

20 CONTINUUM API GUIDE

Chapter 4: Passing Parameters

In some cases, you may need to pass values into or return values from your pass-
through sanScript. This portion of the documentation describes how to perform
these actions. The following topics are discussed:

* Parameter handler
o Setting and getting properties
¢ Running methods

Parameter handler

To pass parameters between Visual Basic and your pass-through sanScript, you
must use a parameter handler. To create a parameter handler, you first add a
parameter handler class to your Visual Basic application. Then you create a parameter
handler object based upon the new class.

Parameter handler class

The parameter handler class contains properties and methods that define what type
of values you want to pass between your Visual Basic application and pass-through
sanScript. For example, if you wanted to pass a first and last name into your pass-
through sanScript, the parameter handler class would contain two string properties
— one for the first name and one for the last name.

Param Handler Class

Public FirstName as String

Public LastName as String

The Visual Basic /
application contains the
parameter handler class.

-
I/ -
-
l/ -~
s -
A
Visual Basic App Microsoft Dynamics GP

f For the Continuum API, only string values can be passed as parameters.

CONTINUUM API GUIDE 21

PART 2 DEVELOPING

22

Both the Visual Basic application
and the pass-through script
have access to the items in the

INTEGRATIONS

Parameter handler object

When your Visual Basic application runs, it must create a parameter handler object
based upon the parameter handler class. This object contains the properties and
methods you defined in the parameter handler class. Both the Visual Basic
application and the pass-through sanScript have access to the properties and
methods in the parameter handler object.

ParamHandler Object

FirstName
LastName

parameter handler object.

y

Visual Basic App Microsoft Dynamics GP

When you've created the parameter handler object, you must use the
SetParamHandler method of the Microsoft Dynamics GP application object to
specify which object in the Visual Basic application is being used as the parameter
handler. This allows the pass-through sanScript to know which object to use when it
sets or retrieves parameter values.

Continuing the previous example, you would create a parameter handler object
based on the parameter handler class. This object would contain properties for the
first name and last name. You would then use the SetParamHandler method to tell
the pass-through sanScript what object you were using as the parameter handler.
Then both the Visual Basic application and the pass-through sanScript would have
access to the properties in the parameter handler object.

Example 1

The following example illustrates how to write and set up a parameter handler
class, how to create a parameter handler object, and how to specify the object that
will be used as the parameter handler.

Parameter handler class

In this example, the parameter handler class contains a CustomerNumber
parameter and a CustomerName parameter. A new class module named
ParamHandlerClass was added to the Visual Basic project. The following
declarations were added to this class to create the CustomerNumber and
CustomerName properties.

Public Class ParamHandlerClass
Public CustomerNumber As String
Public CustomerName As String

End Class

CONTINUUM APl GUIDE

CHAPTER 4 PASSING PARAMETERS

Parameter handler object

Once the parameter handler class is defined, the Visual Basic application must
create a parameter handler object based upon the class. Typically, this is done in the
TemplateMain module, where other global variables and constants are defined. The
following code was added at the beginning of TemplateMain to create the
parameter handler object.

'Create the parameter handler object

Public ParamHandler As New ParamHandlerClass()

Finally, the SetParamHandler method for the Application object is used to specify
which object in Visual Basic will be used as the parameter handler. This is necessary
so that the pass-through sanScript code knows which object to use when it sets and
gets properties. The following code was added to the initialization code for the
Visual Basic project. It specifies which object to use as the parameter handler.

'Set the parameter handler object

Dim ErrVal As Integer
ErrVal = GPApp.SetParamHandler (ParamHandler)

Setting and getting properties

Once you have created the parameter handler object, you can use it to pass values
between Visual Basic and pass-through sanScript.

Visual Basic

To set and get properties from Visual Basic, you interact with the parameter handler
object the same way you would with any other object. For example, the following
Visual Basic code would set the FirstName property in the ParamHandler class:

ParamHandler .FirstName = "Steve"

The following line of Visual Basic code retrieves the value of the LastName property
in the ParamHandler class:

Dim LName As String
LName = ParamHandler.LastName

Pass-through sanScript

To set and get properties from pass-through sanScript, you must use two functions
from sanScript’s OLE function library. To set properties, use the OLE_SetProperty()
function. The syntax and parameters of this function are as follows:

OLE_SetProperty(property_name, value_string)

o property_name — The name of the property in the parameter handler object
whose value you want to set.

* wvalue_string — The string value to which you want to set the property.

The return value of this function is a boolean that indicates whether the function
succeeded; true indicates the function succeeded, false indicates it didn't.

CONTINUUM API GUIDE 23

PART 2 DEVELOPING

24

INTEGRATIONS

As an example, the following sanScript code sets the FirstName property in the
ParamHandler class:

local boolean err_val;

set err_val to OLE_SetProperty ("FirstName", "Steve");

To get properties, use the OLE_GetProperty() function. The syntax and parameters
of this function are as follows:

OLE_GetProperty(property_name, value_string)

o property_name — The name of the property in the parameter handler object
whose value you want to get.

¢ value_string — The string variable that will contain the property’s value.

The return value of this function is a boolean that indicates whether the function
succeeded; true indicates the function succeeded, false indicates it didn’t.

As an example, the following sanScript code gets the value of the LastName
property in the ParamHandler class:

local boolean err_val;

local string last_name;

set err_val to OLE_GetProperty("LastName", last_name) ;

Example 2

The following example illustrates how to pass values between Visual Basic and
pass-through sanScript. This example is based on Example 1, described earlier in
this chapter. The Customer Lookup window, shown in the following illustration, is
used to look up the name of a customer based upon the Customer Number.

8 customer, Lookup

Customer Number. ADYVAMCEDDOM Laokup
Customer Name: Wdvanced Paper Co.

CONTINUUM APl GUIDE

CHAPTER 4 PASSING PARAMETERS

The following Visual Basic code is attached to the Lookup button. This code passes
the Customer Number into the pass-through sanScript, which looks up and returns
the corresponding Customer Name to the Visual Basic application.

Private Sub Lookup_Click()

Dim err_val As Integer

Dim error_msg As String

'Set the CustomerNumber parameter

ParamHandler.CustomerNumber = CustomerNumber.Text

'Use pass-through sanScript to retrieve the Customer Name

err_val = DynamicsApp.ExecuteSanScript(_

"local boolean err_val; local string cust_num, cust_name; " & _
"err_val = OLE_GetProperty (""CustomerNumber"",cust_num); " & _
"'Customer Number' of table RM_Customer_ MSTR = cust_num; " & _
"get table RM_Customer_ MSTR; " & _

"if err() = OKAY then " & _

" err_val = OLE_SetProperty(""CustomerName"", 'Customer Name' " & _
" of table RM_Customer_MSTR); " & _

"else " & _

" err_val = OLE_SetProperty(""CustomerName"", ""Not Found""); " & _
"end if;", error_msg)

'Retrieve and display the CustomerName parameter

CustomerName.Text = ParamHandler.CustomerName

End Sub

Running methods

/

vy

\

From within pass-through sanScript, you can run methods that have been defined
in the parameter handler object. To do this, you use the OLE_RunMethod()
function. The syntax and parameters of this function are as follows:

OLE_RunMethod(method_name, value_string)

» method_name — The name of the method you wish to run in the parameter
handler object.

* wvalue_string — The string value you want to pass to the method.

The return value of this function is a boolean that indicates whether the function
succeeded; true indicates the function succeeded, false indicates it didn't.

Executing a method in the parameter handler object is useful if you have private data
members whose values are set through the use of property procedures.

As an example, the following sanScript code calls the SetName method in the
parameter handler object:

local boolean err_val;

set err_val to OLE_RunMethod("SetName", "Steve").

CONTINUUM API GUIDE 25

26 CONTINUUM API GUIDE

Chapter 5: Database Integrations

Refer to Chapter 11,
“Application Object,”
for a complete
description of the
RegisterDatabase
Trigger method.

Your Visual Basic application can be informed of various database events that occur
in Microsoft Dynamics GP. You must register triggers to indicate which database
events your application will be notified of. When a database event occurs for which
a trigger has been registered, a procedure in your application will run, allowing it to
respond to the event. Information is divided into the following topics:

* Registering database triggers
* Database trigger reference
* Accessing table data

Registering database triggers

/

vy

\

To register a database trigger, you will use the RegisterDatabaseTrigger method
from the Continuum Integration Library. When you register a database trigger, you
specify which table in Microsoft Dynamics GP to monitor, which database
operation or operations you want to be notified of, and which method you want to
run in the callback class in your application.

For example, the following Visual Basic code registers a database trigger for the
RM_Customer_ MSTR table. The notification will occur each time a record is added
to the table. The RMCustAdd procedure in the GPCallback class will run when the
notification occurs.

Dim ErrVal As Integer
ErrVal = GPApp.RegisterDatabaseTrigger (_
"table RM_Customer_ MSTR", "", 4, GPCallback, "RMCustAdd")
If Errval <> 0 Then

MsgBox "Unable to register the database notification."
End If

Typically, you will place the code to register database triggers in the same location as the
code that initializes Continuum.

In the previous example, the database trigger will run anytime a record is added to
the RM_Customer_MSTR table. In some cases, you may want the trigger to occur
when only a specific form performs the database operation. You can use the second
parameter of the RegisterDatabaseTrigger method to specify which form must
perform the database operation that causes the trigger to occur.

For example, the following Visual Basic code registers a database trigger for the
RM_Customer_MSTR table. The trigger will occur each time a record is read from
the table by the RM_Customer_Maintenance form. The RMCustRead procedure in
the GPCallback class will run when the trigger occurs. The trigger will not occur
when other forms or procedures read records from the RM_Customer_MSTR table.

Dim ErrvVal As Integer

ErrVal = GPApp.RegisterDatabaseTrigger(_
"table RM_Customer_MSTR", "form RM_Customer_Maintenance", 3,
GPCallback, "RMCustRead")

If Errval <> 0 Then

MsgBox "Unable to register the database notification."
End If

CONTINUUM API GUIDE 27

PART 2

28

DEVELOPING

INTEGRATIONS

Database trigger reference

vy

s

CONTINUUM API

\

The following table lists the database operations for which you can register triggers.
It also lists the integer value that corresponds to the database operation.

Operation Value |Description

Read without lock 1 Occurs when Microsoft Dynamics GP reads a record in the
table without locking it.

Read with lock 2 Occurs when Microsoft Dynamics GP reads a record in the
table with either a passive or active lock.

Add 4 Occurs when Microsoft Dynamics GP adds a new record to
the table.

Update 8 Occurs when Microsoft Dynamics GP updates a record in the
table.

Delete 16 Occurs when Microsoft Dynamics GP deletes a record from
the table.

You can add these values together to run a trigger for more than one type of
database operation. For instance, the integer “3” registers a single trigger that will
run for all types of database read operations.

Database triggers occur for only successful database operations. If a database operation fails
in Microsoft Dynamics GP, the database trigger will not occur.

In a typical database-level integration that keeps integrating application data
synchronized with Microsoft Dynamics GP, you will register the following database
triggers:

* Read operations — In most cases, a single trigger can deal with both types of
read operations. When the read trigger occurs, the integrating application reads
the appropriate data corresponding to the record read by Microsoft Dynamics
GP. You will often restrict a database read trigger to a specific form in Microsoft
Dynamics GP.

¢ Add and Update operations — In most cases, a single trigger can handle when a
new record has been added to a Microsoft Dynamics GP table or when an
existing record has been updated. When the trigger occurs, the integrating
application adds or updates the data corresponding to the data written to the
Microsoft Dynamics GP table.

¢ Delete operations — This trigger handles when Microsoft Dynamics GP deletes
a record from a table. When the trigger occurs, the integrating application
deletes the data corresponding to the record deleted by Microsoft Dynamics GP.

In all of these database triggers, the method that runs in response to the database
trigger must be able to ascertain what data was being manipulated by Microsoft
Dynamics GP. The next section describes how to work with Microsoft Dynamics GP
data when database triggers occur.

GUIDE

CHAPTER 5 DATABASE INTEGRATIONS

Accessing table data

When a database trigger occurs, your integrating application must be able to
ascertain what data in Microsoft Dynamics GP was read, added, updated or
deleted. You will use the GetDataValue method from the Continuum Integration
library to find out what record was manipulated.

Using GetDataValue

Refer to Chapter 11, In the callback method for the database trigger, you need to ascertain what record in
“Application Object” the table was being accessed when the database trigger occurred. To do this, you
for a complete will use the GetDataValue method from the Continuum Integration library.
description of the

GetDataValue When you use the GetDataValue method in the callback, you don’t need to fully
method. qualify the location of the table buffer you're accessing. By default, the

GetDataValue method will access the appropriate table buffer for the table that
caused the database trigger to occur.

For example, the following Visual Basic code is included in the callback method that
runs in response to a database read operation on the RM_Customer_MSTR table.
The GetDataValue method retrieves the value of the Customer Number field so the
Visual Basic application knows which record was read.

Dim CustNumber As String
CustNumber = GPApp.GetDataValue(_
"'Customer Number' of table RM_Customer_ MSTR")

Notice that the location of the RM_Customer_MSTR table buffer is not specified.
The GetDataValue method automatically knows the specific table buffer to access,
based upon the Microsoft Dynamics GP form or procedure that performed the
database operation and caused the trigger to be run.

Finding field names

When using the GetDataValue method, you need to specify the name of the table
field from which you want to retrieve data. The easiest way to find field names is to
use the Table Descriptions window in the Microsoft Dynamics GP Resource
Descriptions tool. The Table Descriptions window lists the fields that are part of
each table. Use the names in the Field column when specifying a field for the
GetDataValue method.

CONTINUUM API GUIDE 29

30 CONTINUUM API GUIDE

Chapter 6:

Programming Techniques

This portion of the documentation describes several programming techniques and
issues that you should be aware of when you create integrating applications with
the Continuum API. The following topics are discussed:

Specifying the current product

Starting integrating applications

Retrieving data from the Microsoft Dynamics GP application
Working with scrolling windows

Managing cross-thread calls

User Account Control (UAC)

Specifying the current product

vy

‘@’

The architecture of the Microsoft Dynamics GP application allows the main product
and multiple integrating products to operate together at the same time. When you
issue commands with Continuum, you must specify which product you will be
interacting with for the commands to function properly. You can do this with the
CurrentProduct property or the CurrentProductID property.

By default the Continuum API will issue commands to the main product (Microsoft
Dynamics GP). If you change the current product, all subsequent commands issued
through the Continuum API will be run in the context of the product you specified.
It's a good practice to always specify the current product before issuing commands
with the Continuum APL

You can specify the current product by name with the CurrentProduct property, or
by dictionary ID with the CurrentProductID property. The values for these can be
found in the launch file for Microsoft Dynamics GP. They are also returned by the
Name Wizard sample application described in Chapter 10.

Because the names for products can change, we recommend that you use the Product ID
when specifying the current product for the Continuum API.

Starting integrating applications

In most cases, you will want your integrating application to start automatically
when Microsoft Dynamics GP starts. The Microsoft Dynamics GP application must
be running before an integrating application will be able to issue any commands or
register any triggers.

The LAUNCHER.CNK file included with Continuum is a Dexterity-based
application that integrates with Microsoft Dynamics GP. It is used to start other
applications that integrate with the Microsoft Dynamics GP application through
Automation. To install the Application Launcher application, copy the
LAUNCHER.CNK file to the same location as Microsoft Dynamics GP. When you
start the Microsoft Dynamics GP application, you will receive a message asking
whether you want to include new code. Click Yes to install the application. Then
exit the Microsoft Dynamics GP application.

To have the Application Launcher start your integrating application each time you
start Microsoft Dynamics GP, you must add an entry to the DEX.INI file located in
the same folder as the Microsoft Dynamics GP application. The entry must have the
following form:

OLE_Applicationnumber=pathname

CONTINUUM API GUIDE 31

PART 2

32 CONTINUUM API

DEVELOPING

INTEGRATIONS

Substitute an integer for number, beginning with 1. Additional applications you
want to start should use 2, 3, and so on. There can’t be any gaps in the sequence. For
pathname, substitute the complete path to your application. This path should be in
the native Windows format.

As an example, the following entry could be added to the DEX.INI file to start the
Additional Information Window sample application:

OLE_Application1=C:\GP\ADDLINFO.EXE

If you also wanted to start the Field Defaulter sample application, the following
entry could be added:

OLE_Application2=C:\GP\FLDDFLTR.EXE

Retrieving data from the Microsoft Dynamics GP
application

A common integration scenario is to register a notification so your application will
be notified when a Microsoft Dynamics GP field changes. The callback procedure
will then retrieve that field’s value and the values of other fields in the window. As
described, this scenario would appear to work properly. But, based upon how
notifications actually work, you may not get the results you expect.

A notification occurs as soon as the control’s value changes. This causes the callback
procedure in the integrating application to be run. Other controls in the Microsoft
Dynamics GP window that you think should have been updated because the first
control changed won’t have changed yet. If the callback procedure retrieves values
for those controls, it will retrieve their previous values, not the updated values. The
following example illustrates this scenario.

In the Microsoft Dynamics GP application Customer Maintenance window, there is
a Customer ID. When the Customer ID changes, other values in the window are
updated. Assume an integrating application registers to be notified when the
Customer ID value changes. In the callback for the notification, the integrating
program retrieves the Customer ID and the Name. You expect the Customer ID and
its corresponding Name will be retrieved, but this isn’t what occurs. When the
Customer ID changes, the notification occurs before the Name value can be
updated. Thus, the new Customer ID and the old Name are retrieved by the callback
procedure.

A notification is Customer 1D AARONFITOON [CJHekd [Inactve
. Marne: Aaron Fitz Electrical
f‘engtered for the Short Hame Aaron Fitz Elec
Customer ID. Statement Name Asron Fiz Electiical
When the Customer ID
value changes, the
callback procedure is run. ____ [SoAPAAKoO T Dad [e
The other values in the Mame Laror Fitz Electrical
. 2 Short Name Aaron Fitz Elec
WIndOW haven t been Statement Name Aaron Fitz Electrical

updated yet.

The Name field still contains
the previous value.

GUIDE

CHAPTER 6 PROGRAMMING TECHNIQUES

You can prevent this problem by registering separate notifications for the Customer
ID and Name controls. When each value changes, the callback procedure for that
control can then retrieve the correct value.

Working with scrolling windows

To effectively work with scrolling windows in Microsoft Dynamics GP, you need to
understand how they operate. Scrolling windows are table-based. Each row in the
scrolling window corresponds to one record in a table attached to the scrolling
window. Scrolling window events occur when records are read from the attached
table and when the user interacts with the scrolling window.

Scrolling window types
There are three types of scrolling windows: browse-only, editable and adds-
allowed. Each type has unique characteristics.

Browse-only scrolling windows

A browse-only scrolling window only displays records from its attached table. The
user can “browse” through the contents, but can’t make changes or add items to the
scrolling window.

[Period Amount
A b’:owse-only SCrO”lng Beginning Balance $0.00 =
window allows you to Period { 100,000
select one item in the grid Perind 3 $27,000.00
- Period 4 $0.00
at a time. Parind § $143,440.00 =

Total §1,035,44000

Editable scrolling windows

An editable scrolling window allows the user to change the contents of the selected
row. These changes are saved in the table attached to the scrolling window.

Campany Name ACCESS |
The World Online, Inc -

You can edit items in
an editable scrolling
window.

Adds-allowed scrolling windows

An adds-allowed scrolling window has a blank line at the bottom where the user
can add new information. The new information is stored in the table attached to the
scrolling window.

Distribution Reference
An adds_a//OWEd Ty 0oo-1300-01 §0.00
scrolling window has a iz [O0ET300E0] FI0
. KEE 000-1300-02 §1,430.50
blank line that allows 2 = 50,00
you to add items.

CONTINUUM API GUIDE 33

PART 2 DEVELOPING

34

INTEGRATIONS

Accessing a scrolling window

You can access only the current line in a scrolling window. This means you can set
or retrieve the values of fields that appear in the current line. Keep in mind that you
won’t know which line in the data grid is actually the current line; you must rely
upon the data values of the fields in the line to ascertain which line is selected.

Scrolling window events

Your integrating application can be notified when any of the six events for scrolling
windows occur. Responding to these events is the basis for integrating with a
scrolling window. The remainder of this section describes each scrolling window
event and explains how your application can use it.

Data Entry event

Description

Applies to

Use

Occurs when the user changes the value of any item in the current row of the
scrolling window and moves the focus to another row or to another field in the
form.

Editable and adds-allowed scrolling windows.

Use this event to ascertain when the user has changed the value of any items in the
current row of the scrolling window. Use the values of fields in the current row to
ascertain which row in the scrolling window was changed.

Delete Row event

Description
Applies to

Use

Occurs when the user deletes a row from the scrolling window.
All scrolling windows.

Use this event to ascertain when the user has deleted a row from the scrolling
window. Use the values of the fields in the current row to ascertain which item was
deleted.

Got Focus event

Description

Applies to

Use

Occurs when the focus moves to the scrolling window or moves to a new row in the
scrolling window.

All scrolling windows.

Use this event to ascertain when the focus has moved to the scrolling window or
moved to a different row in the scrolling window. Use the values of the fields in the
current row to ascertain which row received the focus.

Insert Row event

Description

Applies to

Use

Occurs when the user inserts a row into a scrolling window. This event does not
occur when the focus moves to a new add-line in an adds-allowed scrolling
window.

Adds-allowed scrolling windows.

Use this event to ascertain when a new row has been inserted into a scrolling
window.

CONTINUUM APl GUIDE

CHAPTER 6 PROGRAMMING TECHNIQUES

Load Row event

Description

Applies to

Use

Occurs when a row is read from the attached table and when the focus moves to a
new row in the scrolling window. When a scrolling window is initially displayed,
the load row event occurs for each record read from the attached table until all lines
in the scrolling window are filled. When the focus moves to a new line in the
scrolling window, the load row event occurs to refresh the data in the line, then the
Got Focus event occurs.

All scrolling windows.

Use this event to ascertain what data values have been read to be displayed in the
current row. Be sure the notification occurs after the Microsoft Dynamics GP code
runs so values will have been read for the current line.

Lost Focus event

Description

Applies to

Use

Occurs when the focus moves to a new row in the scrolling window or moves to
another field.

All scrolling windows.

Use this event to ascertain when the focus has moved from a row in the scrolling
window. Use the values of the fields in the current row to ascertain which row the
focus moved from.

CONTINUUM API GUIDE 35

PART 2 DEVELOPING

36

INTEGRATIONS

Managing cross-thread calls

Beginning with Visual Studio 2005, the .NET framework will automatically check
for illegal cross-thread calls in applications. The window controls in standard .NET
applications are not thread-safe. For this reason, a common cause of an illegal cross-
thread call is when one execution thread creates a control, and another execution
thread attempts to update the value of that control. When cross-thread calls are
detected, an exception is thrown and the application will not run properly.

Because of the callback architecture used for the Continuum API, you will likely
encounter exceptions for illegal cross-thread calls when you run your integration.
The issue occurs because one thread created the windows and controls for your
integrating application, but the callbacks from the Microsoft Dynamics GP runtime
are running on another thread. When the callback code tries to interact with the
windows and controls in your application, you will see exceptions when running in
the Visual Studio debugger. When running outside of the debugger, you may see
incorrect behavior in your integrating application, such as controls that do not
update when callbacks occur.

There are two ways that cross-thread issues can be resolved. You can disable the
check for cross-thread calls, or you can implement delegates in your integrating
application that will perform the actions that are causing the cross-thread issues.

Disabling cross-thread checking

The cross-thread calls that occur when code in your callbacks attempts to interact
with the .NET windows and controls in your integration shouldn’t cause issues
under normal circumstances. While it isn’t the best solution, the check for cross-
thread calls can be safely disabled for typical Continuum integrations. The
following Visual Basic code can be added to the initialization code for a Continuum
integration to disable checking for illegal cross-thread calls.

System.Windows.Forms.Control.CheckForIllegalCrossThreadCalls = False

Using delegates

The preferred way to prevent cross-thread issues that occur when accessing
windows and controls from another thread is to use delegates. Delegates allow you
to pass execution from the current thread to the thread that can access the windows
and controls. In a typical Continuum integration, you will create delegates for each
of the callback operations that interact with the windows and controls in your
integration.

To create a delegate, use the following procedure.

1. Decide what action the delegate will perform.
The action is often quite basic, such as setting the value of a control in one of the
windows for your integration.

2. Create a subroutine for that action.
In the code for the form, add a subroutine that will perform the action. The code
should be part of the form, so it has access to the controls on the form. For
example, the following subroutine sets the value of the Product text box control
for the Name Wizard sample.

Public Sub SetProduct (ByVal Product As String)
Me.Product.Text = Product
End Sub

CONTINUUM APl GUIDE

3.

CHAPTER 6 PROGRAMMING TECHNIQUES

Add a delegate for the action.

The delegate defines the signature (parameters) of the subroutine that will be
used to perform the action. The signature of the delegate must match the
signature of the subroutine that will perform the action. The delegate is added
to the code for the form, typically at the beginning of file before the class
definition of the form. Delegates often have the term “handler” included in the
name.

Continuing the example, the following delegate was added at the beginning of
the WizardWindow.vb file in the Name Wizard sample. Notice how the
signature of the delegate matches the signature of the SetProduct subroutine
that was added.

Delegate Sub ProductHandler (ByVal value As String)

Replace the direct call with the delegate.

In the callback, you will replace the direct call with the code that will use the
delegate. For instance, the following code in the callback for the Name Wizard
sample directly sets the value of the Product text box control.

WizWindow.Product.Text = Product

You will replace this code that directly accesses the Product text box control
with the delegate that uses the SetProduct subroutine to set the value of the
Product text box control. The following code shows how the delegate is used.

WizWindow.Invoke (New ProductHandler (AddressOf WizWindow.SetProduct), New
Object () {Product})

There are several parts to the statement:

* WizWindow is the instance of window object that contains the control to be
updated.

* The Invoke() method on this window instance is called to activate the
delegate. This ensure that the window’s thread is used to perform the
action. The Invoke() method takes two parameters: a delegate instance and
set of parameters.

* At the time the new instance of the ProductHandler delegate is created, the
method that will perform the operation is specified. In this case, the
SetProduct method of the WizWindow object will perform the operation
for the delegate. The AddressOf operator is required by Visual Basic to
point to this method instance.

* The new instance of the ProductHandler delegate also specifies the
parameters that will be passed from the delegate to the method that will
actually perform the operation. The parameters are passed using a generic
object and an array list the specifies the parameters to pass. In this example,
New Object() creates the parameter object. The parameter values to be
passed to the method are enclosed in braces { }. The order of the parameters
must match the order of the parameters defined for the method the delegate
is calling.

CONTINUUM API GUIDE 37

PART 2 DEVELOPING

38

INTEGRATIONS

5. Test the delegate.
When the callback is run, the delegate should use the specified method to
perform the action. In this example, the Product text control will be updated
with the value returned from the callback. When running in the Visual Studio
debugger, no cross-thread exceptions should occur for the operation.

User Account Control (UAC)

User Account Control (UAC) in Windows Vista, Windows 7, and Windows Server
2008 can affect how Continuum-based integrations run. To establish a COM
connection between the Continuum-based integration and Microsoft Dynamics GP,
both applications must be running at the same privilege level. For instance, if
Microsoft Dynamics GP is running with elevated privileges, the Continuum
integration must also be running with elevated privileges. If the applications are not
running with the same privilege level, a new instance of the Microsoft Dynamics GP
runtime will be started when the Continuum-based application is launched and
attempts to create a COM connection.

You may encounter this issue when you run a Continuum-based integration with
the Visual Studio debugger. For improved compatibility with UAC, Visual Studio is
often set to run with elevated privileges. If Visual Studio is running with elevated
privileges, and a Continuum integration is run with the Visual Studio debugger, the
integration will be run with elevated privileges. The integration will be able to
create a COM connection only if Microsoft Dynamics GP is running with elevated
privileges as well.

CONTINUUM APl GUIDE

Chapter 7:

Packaging

Once your integration is complete, you can package the application as you normally
would. There are some additional issues you may need to address. Information
about packaging your integration is contained in the following sections:

* Runtime components
* Registering Microsoft Dynamics GP as an Automation server

Runtime components

You may need to include additional runtime components with your Continuum
integration. For example, if you create your integration with Visual Basic .NET, you
must be sure the appropriate version of the .NET Framework is installed on each
Microsoft Dynamics GP workstation that will be using your integration. You may
also need to include any “interop” assemblies that are needed for COM components
you use for your integration. This includes the Interop.Dynamics.dll assembly,
which is needed to allow Visual Basic .NET to access the COM API within Microsoft
Dynamics GP.

It's important that you test your Continuum integration on a Microsoft Dynamics
GP installation that doesn’t contain the development environment you used to
create the integration. This is the best way to determine whether you must include
additional runtime components with your Continuum integration.

Registering Microsoft Dynamics GP as an Automation
server

When Microsoft Dynamics GP is installed, the installation routine automatically
registers Microsoft Dynamics GP as an Automation server. It will not be necessary
to perform this registration, unless the registration information is somehow
damaged in the Registry.

If you need to register Microsoft Dynamics GP as an Automation server, start the
runtime engine (DYNAMICS.EXE) with the /REGSERVER command line option.
Do this only one time, not each time you start the Microsoft Dynamics GP
application. Once you register Microsoft Dynamics GP as an Automation server, it
remains registered.

One way to register Microsoft Dynamics GP as an Automation server is to chose
Run from the Start menu and start the Microsoft Dynamics GP application runtime
engine as shown in the following illustration.

= Type the name of a program, folder, document, or
E Internet resource, and Windows will open it For you,

Open: | c:\GP{Dynamics.exe [REGSERVER ~

[23 H Cancel H Browse. ..

The the Microsoft Dynamics GP application runtime engine will start, add the
appropriate information to the Windows Registry and then shut down. No
windows will be displayed.

CONTINUUM API GUIDE 39

40 CONTINUUM API GUIDE

PART 3: INTEGRATION EXAMPLES

Part 3: Integration Examples

This portion of the documentation describes several examples of how the
Continuum API can be used to create applications that integrates with Microsoft
Dynamics GP. The following applications are discussed:

e Chapter 8, “Field Defaulter,” describes an application that automatically
defaults information for a field in a Microsoft Dynamics GP window.

e Chapter 9, “Additional Information Window,” describes an application that
keeps the information in a window synchronized with information in a
Microsoft Dynamics GP window.

e Chapter 10, “Name Wizard,” describes an application that uses the Continuum
API to look up the names of resources in Microsoft Dynamics GP.

42 CONTINUUM API GUIDE

Chapter 8: Field Defaulter

This sample Visual Basic .NET application will automatically enter the correct city
and state values based upon the ZIP code entered in the Microsoft Dynamics GP
Customer Maintenance window. The following topics are discussed:

Overview
Running the sample application
How the Continuum API was used

Overview

This sample Visual Basic application has an extremely simple a user interface. A
single window is displayed to tell you the integration is running. As the application
runs in the background, it monitors the ZIP Code field in the Microsoft Dynamics
GP Customer Maintenance window. When the ZIP Code changes, the Visual Basic
application attempts to fill in the correct City and State.

Address [D

Contact
Addreszsz
City Fargo
When you enter the ZIP
Code, the values for the State WD
City and State are — £IF Cade 58103
entered automatically. Country

Running the sample application

To run this sample application, perform the following steps.

1.

Start Microsoft Dynamics GP.

Microsoft Dynamics GP must be running before you start the sample
application. Refer to Chapter 6, “Programming Techniques,” to learn more
about starting applications that integrate with Microsoft Dynamics GP.

Start Visual Studio .NET and open the solution file for the sample
application.

The solution file for this sample is named FLDDFLTR.SLN and is located in the
Field Default folder inside the Samples folder.

Choose Start from the Debug menu.
The solution will be built. If there are no build errors, the following window
will be displayed.

™ Field Defaulter

Field Defaulter

CONTINUUM API GUIDE 43

PART 3
R 1/
a4 CONTINUUM API

INTEGRATION EXAMPLES

4. Open the Customer Maintenance window in Microsoft Dynamics
GP.

5. Enter a ZIP Code.
For demonstration purposes, this sample application recognizes only a small
number of ZIP codes. You can enter any of the follow ZIP codes and have the
corresponding City and State filled in:

02109 58104
531561 58474
55111 60605
56560 85012
58078 95014
58102 98052
58103

When you have finished working with the sample application, close Microsoft
Dynamics GP. The sample application will close automatically and return you
to Visual Studio development mode.

How the Continuum API was used

This sample application uses three methods and two triggers from the Continuum
API. The declarations for the initialization code are contained in the
TemplateMain.vb code module, and the actual Continuum initialization is found in
the Load() method for the Field Defaulter window.

Methods

This Visual Basic .NET application uses the GetDataValue method to retrieve the
ZIP Code value. In the calback for each focus trigger the SetDataValue method is
used to set the values of the City and State in the Customer Maintenance window,
based upon the ZIP Code value retrieved.

Triggers

This sample application uses two triggers. The first trigger is registered for the
Toolbar form. The Toolbar form closes when the Microsoft Dynamics GP application
is closed. When this occurs, the corresponding method in the callback class disposes
of the Microsoft Dynamics GP application object and closes the Visual Basic
application.

The second trigger watches the ZIP Code in the Microsoft Dynamics GP Customer
Maintenance window. When the ZIP Code value changes, the corresponding
procedure in the callback class retrieves the value and attempts to look up the city
and state that correspond to the ZIP Code.

When you examine the source for this sample integration, you will see that it contains
wrappers many of the Continuum triggers that you can use. You may want to use similar
wrappers in your integration to make adding triggers easier.

GUIDE

Chapter 9: Additional Information Window

This sample Visual Basic .NET application shows how your can use the Continuum
API to track additional information in an integrating application. The following
topics are discussed:

Overview
Running the sample application
How the Continuum API was used

Overview

This sample Visual Basic application consists of an Item Information window that
shows how you would track additional information for an inventory item. The
triggers and methods provided by the Continuum API are used to keep the
information in the Item Information window synchronized with the information
displayed in the Item Maintenance window.

The information displayed

T 1tem Information

here is kept synchronized EDiazEs [tooc

with the Item Maintenance

I Description [oreen Prone |

44 »l

window.

Running the sample application

To run this sample application, perform the following steps.

1.

Start Microsoft Dynamics GP.

Microsoft Dynamics GP must be running before you start the sample
application. Refer to Chapter 6, “Programming Techniques,” to learn more
about starting applications that integrate with Microsoft Dynamics GP.

Start Visual Studio .NET and open the solution file for the sample
application.

The solution file for this sample is named ADDLINFO.SLN and is located in the
Additional Information folder inside the Samples folder.

Choose Start from the Debug menu.
The solution will be built. If there are no build errors, the Item Information
window will be displayed.

Open the Item Maintenance window in Microsoft Dynamics GP.

Experiment with the Item Maintenance and Item Information
windows.

You should be able to retrieve items, clear the window and use the browse
buttons in the Item Maintenance window. The information in the Item
Information window should remain synchronized with the information in the
Item Maintenance window in Microsoft Dynamics GP. You can also click the
browse buttons in the Item Image window.

When you have finished working with the sample application, close Microsoft

Dynamics GP. The sample application will close automatically and return you
to Visual Studio development mode.

CONTINUUM API GUIDE 45

PART 3

46

INTEGRATION EXAMPLES

How the Continuum API was used

vy

/

CONTINUUM API

\

This sample application uses several methods and triggers from the Continuum
API. The declarations for the initialization code are contained in the AddlInfo.vb
code module, and the actual Continuum initialization is found in the Load()
method for the Item Information window.

Methods

Each of the browse buttons in the Item Information window uses the
MoveToField method and the ExecuteSanScriptmethod to push the
corresponding browse button in the Microsoft Dynamics GP Item Maintenance
window. The GetDataValue method is used in the callback for the triggers that are
activated when the Item Number or Description have changed. These methods
retrieve the values of the Item Number and Description, and copy them to the
corresponding fields in the Item Information window.

Triggers

This sample application uses five triggers. The first trigger adds the Item Image
menu item to the Extras menu for the Microsoft Dynamics GP Item Maintenance
window. When the menu item is chosen, the corresponding procedure in the
callback class displays the Item Information window in the integrating application.

The second trigger is registered for the Item Maintenance window. When this
window closes, the corresponding procedure in the callback class causes the Item
Image window to be minimized.

The third trigger is registered for the Toolbar form. The Toolbar form closes when
the Microsoft Dynamics GP application is closed. When this occurs, the
corresponding procedure in the callback class disposes of the Microsoft Dynamics
GP application object and closes the Visual Basic application.

The last two triggers watch the Item Number and Description in the Microsoft
Dynamics GP Item Maintenance window. When the content of these items change,
the corresponding procedures in the callback class use Continuum methods to
retrieve the Item Number and Description.

When you examine the source for this sample integration, you will see that it contains
wrappers many of the Continuum triggers that you can use. You may want to use similar
wrappers in your integration to make adding triggers easier.

GUIDE

Chapter 10: Name Wizard

This sample Visual Basic .NET application uses methods from the Continuum API
to retrieve resource names from the Microsoft Dynamics GP application. You will
find this sample to be a useful tool while developing your Continuum integrations.
The following topics are discussed:

e Qverview
* Running the sample application
* How the Continuum API was used

Overview

This sample Visual Basic application consists of single window that allows you to
look up the name of a form, window, or field in Microsoft Dynamics GP simply by
clicking on it in the application.

™ Name Wizard
Product [Sample Integrating App. Copy Product
Product [D: |3333 Copy Product ID
Walue: |'Lead 10" of window Lead Maintenance' of form '|G_Lead_Maintenance’ Copy Value

Click the type of name |
you want to retrieve.

— Gt Field Name | Get Window Mame Get Farm Mame:

Click one of the buttons at the bottom of the window to specify what type of name
you want to retrieve. You will be placed into “wizard mode” in the Microsoft
Dynamics GP application. Click on the resource for which you want to retrieve the
name. The product, product ID, and fully-qualified name will be displayed in the
Name Wizard. Use the buttons on the right side of the window to copy the content
to the clipboard so you can paste it into your Continuum integration code.

Running the sample application

To run this sample application, perform the following steps.

1. Start Microsoft Dynamics GP.
Microsoft Dynamics GP must be running before you start the sample
application.

2. Start Visual Studio .NET and open the solution file for the sample
application.
The solution file for this sample is named NAMEWIZARD.SLN and is located
in the Name Wizard folder inside the Samples folder.

3. Choose Start from the Debug menu.
The solution will be built. If there are no build errors, the Name Wizard window
will be displayed.

4. Open a window in Microsoft Dynamics GP.

You must open the window in Microsoft Dynamics GP from which you want to
retrieve name information before you start wizard mode.

CONTINUUM API GUIDE 47

PART 3

48

INTEGRATION EXAMPLES

5. Select the type of name you want to retrieve.
In the Name Wizard, click one of the buttons at the bottom to specify which
type of name you want to retrieve. This will start the wizard mode and activate
the Microsoft Dynamics GP application. The pointer will change to indicate that
you are in wizard mode.

6. Click on an item in Microsoft Dynamics GP.
While in wizard mode click on the item for which you want to retrieve the
name. The name information will be retrieved and displayed in the Name
Wizard.

7. Use the name information retrieved.
Use the buttons on the right side of the Name Wizard to copy the name content
to the clipboard so you can paste the information into your integration code.

How the Continuum API was used

CONTINUUM API

This sample application uses several methods from the Continuum APIL The
declarations and Continuum initialization code are contained in the
TemplateMain.vb code module.

Methods

The Name Wizard starts and stops the wizard mode wusing the
StartWizardMode method and StopWizardMode method. These methods use a
callback in the GPCallback class to return name and product information from the
item selected. The ExecuteSanScript method is used to execute pass-through
sanScript to retrieve the product ID for the application from which name
information was retrieved.

Parameter handler

The Name Wizard sample uses a parameter handler to pass information from the
pass-through sanScript to the Visual Basic code. The initialization code for the
sample uses the SetParamHandler method to specify that the GPCallback object
will be used as the parameter handler. A string variable named ProdID is defined in
this class. The OLE_SetProperty() function is used from pass-through sanScript to
set the value of the ProdID variable, allowing the Visual Basic code to access the
value and display it in the Name Wizard window.

GUIDE

PART 4: THE CONTINUUM INTEGRATION LIBRARY

Part 4: The Continuum Integration
Library

This part describes the objects that Microsoft Dynamics GP makes available to other
applications through the Continuum API. It provides detailed descriptions of the
properties and methods for each object. The information is divided into the
following areas.

¢ Chapter 11, “Application Object,” describes the properties and methods for the
Application object.

e Chapter 12, “Field Object,” describes the properties of the Field object.

The syntax descriptions and programming style used in this part are similar to
those used in Visual Basic’s documentation.

50 CONTINUUM API GUIDE

Chapter 11: Application Object

Your integrating application will use the Application object to perform many tasks
in Microsoft Dynamics GP. The methods and properties that apply to the
Application object are listed below. A detailed explanation of each appears on the
following pages:

e Activate method

e CallVBAMacro method

¢ CreateFieldObject method

e CurrentProduct property

e CurrentProductID property

¢ ExecuteSanScript method

¢ ExternalProductName property
¢ GetDataValue method

¢ GetDataValueEx method

e GetVBAGIlobals method

e Hide method

¢ MacroError property

e MoveToField method

e RegisterDatabaseTrigger method
e RegisterFocusTrigger method

¢ RegisterFormTrigger method

* RegisterShutdownRoutine method
e RegisterWatchTrigger method
¢ SetDataValue method

e SetDataValueEx method

e SetParamHandler method

e Show method

e StartWizardMode method

e StopProcessing method

¢ StopWizardMode method

e VBE method

¢ Visible property

CONTINUUM API GUIDE 51

ACTIVATE METHOD

Activate method

Description Causes the application to become the active application.

Syntax object.Activate

Parameters ® object — A Microsoft Dynamics GP application object.

Return value None

Comments This method is typically used to bring the Microsoft Dynamics GP application to the
foreground.

Examples This example uses the Activate method to bring the Microsoft Dynamics GP

application to the foreground.

GPApp.Activate

52 CONTINUUM API GUIDE

CALLVBAMACRO METHOD

CallVBAMacro method

Description
Syntax

Parameters

Return value

Examples

Executes the specified procedure within the VBA environment.
object.CallVBAMacro(procedure_name)

object — A Microsoft Dynamics GP application object.

procedure_name — A string containing the name of the procedure to be run in the
VBA environment. The procedure to run must not have any parameters. When
specifying the procedure to run, use the form:

project_name.[module_name].procedure_name.

The procedure name does not have to be fully qualified if it is unique within the
current VBA project.

An integer. The value 0 indicates the procedure couldn’t be found and executed.

This example uses the CallVBAMacro method to execute the ShowName
procedure in the TimeBilling module for the Dynamics_GP project.

Private Sub CallVBAMacro_Click()

GPApp.CallVBAMacro ("Dynamics_GP. [TimeBilling] .ShowName")
End Sub

CONTINUUM API GUIDE 53

CREATEFIELDOBJECT METHOD

54

CreateFieldObject method

Description
Syntax

Parameters

Return value
Comments

Examples

Related items

CONTINUUM API

Creates a field object for the specified field in the application.
object.CreateFieldObject(ficld_name)

object — A Microsoft Dynamics GP application object.

¢ field_name — A string containing the name of the field for which a field object will be

created. The field name must be fully qualified.
A field object
Use the properties of the field object to ascertain characteristics of the field.

This example uses the CreateFieldObject method to create a field object for the
Customer Number field in the Microsoft Dynamics GP Customer Maintenance
window.

Private Sub CreateFieldObject_Click()
Dim FieldObj As Object
Set FieldObj = GPApp.CreateFieldObject _
("'Customer Number' of window RM_Customer_Maintenance " & _

"of form RM_Customer_Maintenance")
End Sub

Additional information

Chapter 12, “Field Object”

GUIDE

CURRENTPRODUCT PROPERTY

CurrentProduct property

Description

Syntax

Parameters

Comments

Examples

Related items

Returns a string containing the name of the currently-active product, or sets the
currently-active product for the application.

object.CurrentProduct [= product_name]

object — A Microsoft Dynamics GP application object.

¢ product_name — A string containing the name of the product that will be made the

currently-active product. This name must be the same as the product name that
appears in the Microsoft Dynamics GP launch file.

This property is used to switch between products when Microsoft Dynamics GP is
operating in a multidictionary configuration. You must make a product the current
product before you can perform other operations in it.

Since the name of a product can change, you should consider using the
CurrentProductID property to specify the current product.

This example uses the CurrentProduct property to retrieve the name of the
currently-active product in the Microsoft Dynamics GP application.

Private Sub CurrentProduct_Click()
Dim CurrentProd As String
CurrentProd = GPApp.CurrentProduct
End Sub

This example uses the CurrentProduct property to make the Sample Integrating
App. product the current product in the Microsoft Dynamics GP application.

Private Sub CurrentProduct_Click()

GPApp.CurrentProduct = "Sample Integrating App."
End Sub

Commands

CurrentProductID property

CONTINUUM API GUIDE 55

CURRENTPRODUCTID PROPERTY

56

CurrentProductID property

Description

Syntax

Parameters

Comments

Examples

Related items

CONTINUUM API

Returns an integer containing the product ID of the currently-active product, or sets
the currently-active product for the application.

object.CurrentProduct [= product_ID]

object — A Microsoft Dynamics GP application object.

® product_ID — An integer containing the product ID of the product that will be made

the currently-active product. This name must be the product ID of a product that
appears in the Microsoft Dynamics GP launch file.

This property is used to switch between products when Microsoft Dynamics GP is
operating in a multidictionary configuration. You must make a product the current
product before you can perform other operations in it.

The CurrentProductID property is the preferred method for specifying the current
product, because unlike the product name, the product ID is unlikely to change for
future releases.

This example uses the CurrentProductID property to retrieve the product ID of the
currently-active product in the Microsoft Dynamics GP application.

Private Sub CurrentProduct_Click()
Dim CurrentProdID As Integer
CurrentProdID = GPApp.CurrentProductID
End Sub

This example uses the CurrentProductID property to make the Sample Integrating
App. product (product ID 3333) the current product in the Microsoft Dynamics GP
application.

Private Sub CurrentProduct_Click()

GPApp.CurrentProductID = 3333
End Sub

Commands

CurrentProduct property

GUIDE

EXECUTESANSCRIPT METHOD

ExecuteSanScript method

Description
Syntax

Parameters

Return value

Examples

Related items

Sends sanScript code into the application to be compiled and executed.
object.ExecuteSanScript(code_string, compile_error_message)

object — A Microsoft Dynamics GP application object.

code_string — A string containing the sanScript code to be compiled and executed.

compile_error_message — A returned string containing any compiler error that
occurred when the sanScript code was compiled.

An integer indicating the compiling status. The value 0 indicates the sanScript code
compiled successfully. Any other value indicates a compiler error occurred.

This example uses the ExecuteSanScript method to execute sanScript code to open
the Customer Maintenance window.

Private Sub ExecuteSanScript_Click()
Dim Err_Num As Integer
Dim ErrorMsg As String
Err_Num = GPApp.ExecuteSanScript(_

"open form RM_Customer_Maintenance;", ErrorMsg)

If Err_Num <> 0 Then
'A compiler error occurred. Display the error.
MsgBox ErrorMsg
End If
End Sub

Additional information

Chapter 3, “Pass-through sanScript”

CONTINUUM API GUIDE 57

EXTERNALPRODUCTNAME PROPERTY

58

ExternalProductName property

Description

Syntax

Parameters

Comments

Examples

CONTINUUM API

Sets or returns a string that specifies the name of the application that is integrating
with Microsoft Dynamics GP through the Continuum APL

object. ExternalProductName [=string]
object — A Microsoft Dynamics GP application object.

string — A string containing the name of the product that will be integrating with
Microsoft Dynamics GP through the Continuum APIL

We recommend that you set this property immediately after you create an instance
of the Microsoft Dynamics GP application object in your integrating application’s
code. You should set the ExternalProductName property before you register any
triggers.

This example uses the ExternalProductName property to tell Microsoft Dynamics
GP the name of the application that is integrating with Microsoft Dynamics GP.

Private Sub SetExternalProductName ()
GPApp.ExternalProductName = "Quick GL Entry"
End Sub

GUIDE

GetDataValue method

GETDATAVALUE METHOD

Description
Syntax

Parameters

Return value

Comments

Examples

Retrieves the data value from the specified field.

object.GetDataValue(field_name)

object — A Microsoft Dynamics GP application object.

e field_name — A string containing the name of the field for which the data value will
be retrieved. The field name must be fully qualified.

A string containing the data value.

The following table lists each control type for which a data value can be returned, as
well as a description of the value returned from it.

Control type

Description

Button drop list

A numeric value that identifies the item last selected in the list.

Check box The value 0 if the check box is not marked, 1 if the check box is
marked.

Combo box The text of the item selected in the combo box.

Composite The data in the composite field, including any formatting.

Currency The value in the currency field, including any formatting.

Date The value in the date field, including any formatting.

Drop-down list

A numeric value that identifies the item selected in the list.

Integer

The numeric value in the field.

List box

A numeric value that identifies the item selected in the list.

Long integer

The numeric value in the field.

Multi-select list box

A 32-bit numeric value that identifies which items in the list are
marked.

Progress indicator

The numeric value in the field.

Radio group A numeric value that identifies which radio button is selected in the
group.

String The string value in the field, including any formatting.

Time The value in the time field, including any formatting.

Visual switch

A numeric value that identifies the item selected in the visual
switch.

If you are using GetDataValue in the callback method for a database trigger, you
don’t need to fully qualify the location of the table buffer you're accessing. By
default, the GetDataValue method will access the table buffer for the table that
caused the database trigger to run.

This example uses the GetDataValue method to retrieve the value in the Customer
Number field of the Customer Maintenance window.

Private Sub GetDataValue_Click()

Dim CustNumber As String

CustNumber =

"'Customer Number'

of window RM_Customer_Maintenance" &

GPApp.GetDatavalue(_

"of form RM_Customer_Maintenance")

End Sub

CONTINUUM API GUIDE 59

GETDATAVALUE METHOD

This example uses the GetDataValue method to retrieve the value in the Customer
Number field of the RM_Customer_MSTR table that is used for the
RM_Customer_Maintenance form.

Private Sub GetDataValue_Click()
Dim CustNumber As String
CustNumber = GPApp.GetDataValue(_
"'Customer Number' of table RM_Customer_ MSTR of form " & _
"RM_Customer_Maintenance")
End Sub

Related items Commands

GetDataValueEx method, SetDataValue method, SetDataValueEx method

60 CONTINUUM API GUIDE

GETDATAVALUEEX METHOD

GetDataValueEx method

Description

Syntax

Parameters

Return value

Examples

Related items

Retrieves the data value from the specified currency field and applies the
designated format.

object.GetDataValueEx(field_name, format_selector)

object — A Microsoft Dynamics GP application object.

¢ field_name — A string containing the name of the currency field for which the data

value will be retrieved.

* format_selector — An integer indicating which format string to apply to the value

returned from the field. The following table lists the integer values and the
corresponding format that will be applied.

Integer value |Format

Control Panel Defaults
1,234.
1,234.5
1,234.56
1,234.567
1,234.5678
1,234.56789
$1,234.
$1,234.5
$1,234.56
$1,234.567
$1,234.5678
12 $1,234.56789

Ol N/oja|h~|W|N| =|O

_
o

-
sy

A string containing the currency value with the designated format applied.

This example uses the GetDataValueEx method to retrieve the value in the Sales
Amount currency field in the Receivables Transaction Entry window. The value will
be returned with two decimal places, but won’t display the currency symbol.

Private Sub GetDataValueEx_Click()
Dim SalesAmount As String

SalesAmount = GPApp.GetDataValueEx(_
"'Sales Amount' of window RM_Sales_Entry" & _
"of form RM_Sales_Entry", 3)

End Sub

Commands

GetDataValue method, SetDataValue method, SetDataValueEx method

CONTINUUM API GUIDE 61

GETVBAGLOBALS METHOD

62

GetVBAGIlobals method

Description

Syntax
Parameters
Return value

Comments

Examples

CONTINUUM API

Retrieves a reference to the globals in the Visual Basic for Applications (VBA)
environment embedded in Microsoft Dynamics GP. This provides access to items in
the DUOS (Dynamic User Object Store) that is part of the Microsoft Dynamics GP
VBA implementation. The VBA environment must be open and active in Microsoft
Dynamics GP for this method to work properly.

object. GetVBAGIlobals
object — A Microsoft Dynamics GP application object.
A reference to the globals of the Visual Basic for Applications environment.

Refer to the VBA Developer’s Guide for more information about accessing items
from the DUOS.

The following example uses the GetVBAGlobals method to retrieve a reference to
the globals for the Visual Basic for Applications environment within Microsoft
Dynamics GP. Then the DUOSObjectCombinelD method is accessed through the
globals reference to create a data object ID.

Public Sub GetVBAGlobals_Click()

Dim VBAGlobals As Object

Dim objID As String

Set VBAGlobals = GPApp.GetVBAGlobals

objID = VBAGlobals.DUOSObjectCombineID("Microsoft Dynamics GP", "A")
End Sub

GUIDE

HIDE METHOD

Hide method

Description Causes Microsoft Dynamics GP to become hidden.

Syntax object Hide

Parameters ® object — A Microsoft Dynamics GP application object.

Return value None

Examples The following example uses the Hide method to make the Microsoft Dynamics GP

application invisible.

Public Sub HideDynamics_Click()
GPApp.Hide
End Sub

Related items Commands
Show method

CONTINUUM API GUIDE 63

MACROERROR PROPERTY

MacroError property

Description Returns an integer that describes the result of the MoveToField method.

Syntax object.MacroError

Parameters ® object — A Microsoft Dynamics GP application object.

Comments Use the MacroError property after you execute the MoveToField method to

ascertain the results of the move. The following table lists the possible values that
can be returned, along with a description of each.

Value Description
0 No error occurred. The MoveToField method was successful.
1 The window containing the field is not open or does not exist.
2 The focus was diverted by a focus field statement in sanScript code.
3 A restart field statement in sanScript code was encountered. The focus was
not moved.
4 Attempted to move to an unfocusable field.
Examples This example uses the MacroError property to retrieve the result of the
MoveToField method.

Private Sub MacroError_Click()
GPApp.MoveToField (" 'Customer Number' of window " & _
"RM_Customer_Address of form RM_Customer_ Address")
If GPApp.MacroError <> 0 Then
MsgBox "The focus couldn’t be moved to the Customer ID."
End If

End Sub

Related items Commands
MoveToField method

64 CONTINUUM API GUIDE

MOVETOFIELD METHOD

MoveToField method

Description Moves the focus to the specified field in the application.
Syntax object. MoveToField(field_name)
Parameters ® object — A Microsoft Dynamics GP application object.

e field_name — A string containing the name of the field to which the focus will be
moved. The field name must be fully qualified.

Return value An integer indicating the result of the move. The value 0 indicates the focus did not
move to the specified field. The value 1 indicates the focus did move to the specified
field.

Examples This example uses the MoveToField method to move the focus to the Customer

Number field in the Microsoft Dynamics GP Customer Maintenance window.

Private Sub CreateFieldObject_Click()
Dim ErrVal As Integer
ErrVal = GPApp.MoveToField("'Customer Number' " &

"of window RM_Customer_Maintenance of form " & _
"RM_Customer_Maintenance")
If Errval <> 1 Then

MsgBox "Unable to move focus to the Customer ID field."
End If

End Sub

Related items Commands
MacroError property

CONTINUUM API GUIDE 65

REGISTERDATABASETRIGGER METHOD

66

RegisterDatabaseTrigger method

Description

Syntax

Parameters

Return value

CONTINUUM API

Registers a database trigger for the Microsoft Dynamics GP application. Database
triggers respond to successful table operations in an application, such as saving a
record, deleting a record or reading a record.

object.RegisterDatabaseTrigger(table_name, form_name, table_operations,
callback_object, callback_method)

object — A Microsoft Dynamics GP application object.

table_name — A string containing the name of the table for which the database trigger
is being registered. The string must include the qualifier “table”.

form_name — A string containing the name of the form to which the database trigger
will be restricted. The string must include the qualifier “form”. The trigger will run
for the database operations originating from this form only. It won’t run for table
operations originating from other areas. If you don’t want to restrict the trigger to a

"

particular form, set this parameter to the empty string "".

table_operations — An integer that specifies which table operations cause the trigger
to run. The following table lists the table operations and their corresponding integer
values. You can add these values together to run a trigger for more than one table
operation. For instance, the integer “3” runs a database trigger for all types of
database read operations.

Operation Value |Description

Read without lock 1 Occurs when Microsoft Dynamics GP reads a record in the
table without locking it.

Read with lock 2 Occurs when Microsoft Dynamics GP reads a record in the
table with either a passive or active lock.

Add 4 Occurs when Microsoft Dynamics GP adds a new record to
the table.

Update 8 Occurs when Microsoft Dynamics GP updates a record in the
table.

Delete 16 Occurs when Microsoft Dynamics GP deletes a record in the
table.

callback_object — The name of the callback object in the integrating application
containing the method to be run in response to the database trigger.

callback_method — A string containing the name of the method in the callback object
of the integrating application. This method will run in response to the database
trigger.

An integer indicating whether the trigger was registered properly. The following
table lists the possible values that can be returned:

Value Description

0 No error occurred.

1 An unknown error occurred and the trigger was not registered.
4 The table or form could not be found.

GUIDE

Comments

Examples

REGISTERDATABASETRIGGER METHOD

In the callback method for the database trigger, you can use the GetDataValue
method to retrieve field values from the table buffer. When you do this, you don’t
need to fully qualify the location of the table buffer you're accessing. By default, the
GetDataValue method will access the table buffer for the table that caused the
database trigger to activate.

This example uses the RegisterDatabaseTrigger method to register a database
trigger for delete operations that occur in the RM_Customer MSTR table. The
RMCustDel procedure in the GPCallback class will be run when the trigger runs.

Private Sub RegisterDatabaseTrigger_Click()
Dim ErrVal As Integer
ErrVal = GPApp.RegisterDatabaseTrigger(_
"table RM_Customer_MSTR", "", 16, GPCallback, "RMCustDel")
If Errval <> 0 Then
MsgBox "Unable to register the database trigger."
End If

End Sub

This example registers a database trigger for any read operations of the
RM_Customer_MSTR table that originate from the Customer Maintenance form.

Private Sub RegisterDatabaseTrigger_Click()
Dim ErrVal As Integer
ErrVal = GPApp.RegisterDatabaseTrigger(_
"table RM_Customer_MSTR", "form RM_Customer_Maintenance", _
3, GPCallback, "RMCustRead")
If Errval <> 0 Then

MsgBox "Unable to register the database trigger."

End If

End Sub

CONTINUUM API GUIDE 67

REGISTERFOCUSTRIGGER METHOD

68

RegisterFocusTrigger method

Description

Syntax

Parameters

Return value

CONTINUUM API

Registers a focus trigger for the Microsoft Dynamics GP application. Focus triggers
respond to “focus” events in an application, such as a window opening or closing,
or the focus moving from one field to the next.

object.RegisterFocusTrigger(qualified_resource, focus_type, attach_type, callback_object,
callback_method)

object — A Microsoft Dynamics GP application object.

qualified_resource — A string containing qualified name of the resource for which the
focus trigger is being registered. This parameter will have a form such as:

e form form_name

¢ window window_name of form form_name

e window scrolling_window_name of form form_name
field_name of window window_name of form form_name

* focus_type — An integer that identifies which focus event causes the trigger to run.

The following table lists the focus events and the resources to which they apply:

Event Value Resources

PRE 0 Fields, windows, forms and scrolling windows

CHANGE 1 Fields and scrolling windows

POST 2 Fields, windows, forms and scrolling windows

PRINT 3 Windows

ACTIVATE 4 Windows

FILL 5 Scrolling windows

INSERT 6 Scrolling windows

DELETE 7 Scrolling windows

MODAL DIALOG |8 Modal dialog (dialogs generated by error, warning, ask() or
getstring() sanScript commands)

CONTEXT MENU | 9 Context menu

attach_type — An integer indicating when the focus trigger runs relative to the
original focus event:

Value Description
1 Trigger runs before the focus event.
2 Trigger runs after the focus event.

callback_object — The name of the callback object in the integrating application
containing the method to be run in response to the focus trigger.

callback_method — A string containing the name of a method in the callback object for
the integrating application. This method will run in response to the focus trigger.

An integer indicating whether the trigger was registered properly. The following
table lists the possible values that can be returned:

Value Description

0 No error occurred.

1 An unknown error occurred and the trigger was not registered.
4 The specified resource could not be found.

GUIDE

Comments

Examples

REGISTERFOCUSTRIGGER METHOD
For modal dialog triggers, the callback method must use the following format for its
definition:
MethodName (dialog_type, prompt, control_1, control_2, control_3, answer)
MethodName — The name of the callback method.

dialog_type — An integer specifying the type of dialog being displayed.

Value Description
0 Indicates an error, warning, ask() dialog is being displayed.
1 Indicates a getstring() dialog is being displayed.

prompt — A string containing the text displayed in the dialog. When checking the
value of this parameter, be sure you have the capitalization and spelling correct.

control_1 — A string containing the text displayed in button 1 of the dialog.
control_2 — A string containing the text displayed in button 2 of the dialog.

control_3 — A string containing the text displayed in button 3 of the ask() dialog. For
getstring() dialogs, this is the editable string displayed.

answer — An integer specifying what button was pressed (after event) or is to be
pressed (before event). The value will depend on the type of dialog that was
displayed.

Dialog type Value Description
error or 0 Indicates the OK button was pressed.
warning
ask() 0 Indicates that button 1 was pressed.

1 Indicates that button 2 was pressed.

2 Indicates that button 3 was pressed.
getstring() -1 Indicates that no button was pressed.

0 Indicates that the OK button was pressed.

1 Indicates that the Cancel button was pressed.

For modal dialog triggers, the “before” trigger callback can modify the text of the
dialog and the buttons displayed. It can also automatically respond to the dialog by
changing the value of the answer callback parameter.

This example uses the RegisterFocusTrigger method to register a focus trigger for
the Change event of the Clear button in the Customer Maintenance window. The
CustMaintClear method in the GPCallback class is called when the trigger runs.

Private Sub RegisterFocusTrigger_Click()
Dim ErrVal As Integer
ErrVal = GPApp.RegisterFocusTrigger (

"'Clear Button' of window RM_Customer_Maintenance of " & _
"form RM_Customer_Maintenance", 1, 2, GPCallback, _
"CustMaintClear")
If Errval <> 0 Then

MsgBox "Unable to register the focus trigger."
End If

End Sub

CONTINUUM API GUIDE 69

REGISTERFOCUSTRIGGER METHOD

This example uses a modal dialog trigger to handle the ask() dialog that is
displayed in the Sales Transaction Entry window when a Customer ID is entered,
but the customer has not been defined. The trigger is registered to run before the
dialog is displayed. In the callback for the trigger, the content of the dialog is
examined, a message is displayed, and the dialog is dismissed without being shown
to the user.

The following is the registration for the modal dialog trigger.

GPApp.RegisterFocusTrigger ("window 'SOP_Entry' of form 'SOP_Entry'", 8, 1,
GPCallback, "cbSOPCustomerID")

The following is the callback method that is run in response to the trigger. Notice
that the parameters that can be set by the callback are passed by reference and not
by value.

Public Sub cbSOPCustomerID(ByVal DialogType As Integer, ByRef Prompt As
String, ByRef Controll As String, ByRef Control2 As String, ByRef Control3 As
String, ByRef Answer As Integer)

Dim sanScript As String

Dim err_val As Integer

Dim err_msg As String

'Verify that it is an ask() dialog
If DialogType <> 0 Then
Exit Sub
Else
'Check the message to verify it is the dialog we expect
If Prompt = "Do you want to add this customer record?" Then
sanScript = "warning" + Chr(34) + "This customer does " &

"not exist. Please add the customer using the Customer " & _
"Maintenance window." + Chr(34) + ";"
err_val = GPApp.ExecuteSanscript (sanScript, err_msg)
If err_val <> 0 Then
MsgBox (err_msg)

End If

'Dismiss the ask() dialog by clicking button 2
Answer = 1
GPApp.StopProcessing ()
End If
End If
End Sub

Related items Commands
StopProcessing method

70 CONTINUUM API GUIDE

REGISTERFORMTRIGGER METHOD

RegisterFormTrigger method

Description

Syntax

Parameters

Return value

Examples

Registers a form trigger for the Microsoft Dynamics GP application. If successfully
registered, an item will appear in the “Extras” menu when the form for which the
trigger was registered is open.

object.RegisterFormTrigger(form_name, menu_item_name, accelerator_key,
callback_object, callback_method)

object — A Microsoft Dynamics GP application object.

form_name — A string containing the name of the form for which the form trigger is
being registered. The string must include the qualifier “form”.

menu_item_name — A string containing the name of the menu item that will be added
to the Extras menu.

accelerator_key — A string containing the character that will be used as the accelerator
key for the new menu item. Be sure this accelerator key does not conflict with any
existing accelerator keys. If you don’t want an accelerator key, use the empty string

(")

callback_object — The name of the callback object in the integrating application
containing the method to be run in response to the form trigger.

callback_method — A string containing the name of a method in the callback object for
the integrating application. This method will be run in response to the form trigger.

An integer indicating whether the trigger was registered properly. The following
table lists the possible values that can be returned:

Value Description

0 No error occurred.

1 An unknown error occurred and the trigger was not registered.
4 The specified form could not be found.

This example uses the RegisterFormTrigger method to add the “Picture” item to
the Extras menu that will appear when the Customer Maintenance window is open.
When the user chooses Picture from the Extras menu, the CustPicture procedure in
the GPCallback class will run.

Private Sub RegisterFormTrigger_Click()
Dim ErrVal As Integer
ErrVal = GPApp.RegisterFormTrigger (_
"form RM_Customer_Maintenance", "Picture", "P", GPCallback, _
"CustPicture")
If Errval <> 0 Then

MsgBox "Unable to register the form trigger."

End If

End Sub

CONTINUUM API GUIDE 71

REGISTERSHUTDOWNROUTINE METHOD

72

RegisterShutdownRoutine method

Description

Syntax

Parameters J

Return value

Comments

Examples

Specifies the routine in the integrating application that will run when Microsoft
Dynamics GP is shut down. This event does not occur when you enter the Modifier
or the Report Writer.

object.RegisterShutdownRoutine(callback_object, callback_method)
object — A Microsoft Dynamics GP application object.

callback_object — The name of the callback object in the integrating application
containing the method to be run when Microsoft Dynamics GP shuts down.

callback_method — A string containing the name of a method in the callback object for
the integrating application. This method will run when Microsoft Dynamics GP
shuts down.

An integer. The value 0 indicates the shutdown routine was registered properly.
Any other value indicates the shutdown routine was not registered.

The procedure run by this method is typically used to shut down the integrating
application.

If you will be using the Modifier or the Report Writer, we recommend that you register a
focus trigger for the close event on the Toolbar form in Microsoft Dynamics GP, rather than
using the RegisterShutdownRoutine method. The close event on the Toolbar form occurs
when you enter the Report Writer or the Modifier, as well as when you shut down the
Microsoft Dynamics GP application.

This example uses the RegisterShutdownRoutine method to cause the Shutdown
procedure in the GPCallback class to run when Microsoft Dynamics GP is shut
down.

Private Sub RegisterShutdownRoutine_Click()
Dim ErrvVal As Integer
ErrVal = GPApp.RegisterShutdownRoutine (GPCallback, _
"Shutdown")
If Errval <> 0 Then
MsgBox "Error registering shutdown routine."
End If
End Sub

CONTINUUM API GUIDE

REGISTERWATCHTRIGGER METHOD

RegisterWatchTrigger method

Description

Syntax

Parameters

Examples

Registers a watch trigger for a field in the Microsoft Dynamics GP application.
Watch triggers run each time the content of the field changes, regardless of where
the focus is in the window.

object.RegisterWatchTrigger(field_name, callback_object, callback_method)
object — A Microsoft Dynamics GP application object.

field_name — A string containing the name of the field for which the watch trigger is
being registered. The field name must be fully qualified.

callback_object — The name of the callback object in the integrating application
containing the method to be run in response to the watch trigger.

callback_method — A string containing the name of a method in the callback object for
the integrating application. This method will run in response to the watch trigger.

This example uses the RegisterWatchTrigger method to register a watch trigger for
the Customer Number field in the Customer Maintenance window. The
CustMaintCustNum procedure in the GPCallback class will run when the trigger
runs.

Private Sub RegisterWatchTrigger_Click()
Dim ErrvVal As Integer
ErrVal = GPApp.RegisterWatchTrigger (

"'Customer Number' of window RM_Customer_Maintenance of " & _
"form RM_Customer_Maintenance", GPCallback, "CustMaintCustNum")
If Errval <> 0 Then

MsgBox "Unable to register the watch trigger."
End If

End Sub

CONTINUUM API GUIDE 73

SETDATAVALUE METHOD

74

SetDataValue method

Description Sets the data value in the specified field.

Syntax object.SetDataValuel(field_name, string_value)
Parameters ® object — A Microsoft Dynamics GP application object.

Return value

Comments

field_name — A string containing the name of the field for which you want to set the
data value. The field name must be fully qualified.

string_value — A string containing the value to which you want to set the field.

An integer indicating whether the field value was set. The value 0 indicates the field
value was set. Any other value indicates the field value was not set.

The following table lists each control type for which a value can be set, as well as a
description of the string used to set the data value.

Control type Description

Button drop list A numeric value that identifies the item to select in the list.

Check box The value 0 to unmark the check box. The value 1 to mark the check
box.

Combo box The text of the item to select in the combo box.

Composite The value in the composite field, including any formatting.

Currency The value in the currency field, including any formatting.

Date The value in the date field, including any formatting.

Drop-down list A numeric value that identifies the item to select in the list.

Integer The numeric value for the field.

List box A numeric value that identifies the item to select in the list.

Long integer The numeric value for the field.

Multi-select list box A 32-bit numeric value that identifies which items in the list to
mark.

Progress indicator The numeric value for the field.

Radio group A numeric value that identifies which radio button to select in the
group.

String The string value for the field, including any formatting.

Time The value for the time field, including any formatting.

Visual switch A numeric value that identifies the item to select in the visual
switch.

If the value you're setting is negative, you must precede it with a minus sign (-) to indicate
that it is negative, regardless of how the value is displayed in the field.

You may want to use the MoveToField method to move the focus to the destination
field before you set the field’s value. That way, any validation code for the field will
be run when the focus leaves the destination field.

CONTINUUM API GUIDE

SETDATAVALUE METHOD

Examples This example uses the SetDataValue method to set the value in the Customer
Number field of the Customer Maintenance window.

Private Sub SetDataValue_Click()
Dim ErrVal As Integer
ErrVal = GPApp.SetDataValue(_
"'Customer Number' of window RM_Customer_Maintenance" & _
"of form RM_Customer_Maintenance", "ADVANCEDOOO1")
End Sub

Related items Commands

GetDataValue method, GetDataValueEx method, MoveToField method

CONTINUUM API GUIDE 75

SETDATAVALUEEX METHOD

76

SetDataValueEx method

Description

Syntax

Parameters

Return value

Examples

Related items

CONTINUUM API

Sets the value in the specified currency field. The data value supplied must be in the
form indicated by the format selector.

object.SetDataValueEx(field_name, string_value, format_selector)
object — A Microsoft Dynamics GP application object.

field_name — A string containing the name of the currency field for which the data
value will be set. The field name must be fully qualified.

string_value — A string containing the value to which you want to set the currency
field.

format_selector — An integer indicating the format of the string containing the value
for the field. The following table lists the integer values and the corresponding
format.

Integer value |Format

0 Control Panel Defaults
1,234.
1,234.5
1,234.56
1,234.567
1,234.5678
1,234.56789
$1,234.
$1,234.5
$1,234.56
$1,234.567
$1,234.5678
12 $1,234.56789

-

Wl o N oo~ wWN

_
o

-
sy

An integer indicating whether the field value was set. The value 0 indicates the field
value was set. Any other value indicates the field value was not set.

This example uses the SetDataValueEx method to set the value of the Sales
Amount currency field in the Receivables Transaction Entry window. The value
supplied has two decimal places and doesn’t include the currency symbol.

Private Sub SetDataValueEx_Click()
Dim ErrVal As Integer
ErrVal = GPApp.SetDataValueEx(_
"'Sales Amount' of window RM_Sales_Entry" & _
"of form RM_Sales_Entry", "145.85", 3)

End Sub

Commands

GetDataValue method, GetDataValueEx method, SetDataValue method

GUIDE

SETPARAMHANDLER METHOD

SetParamHandler method

Description

Syntax

Parameters

Return value

Comments

Examples

Related items

Specifies the object in the integrating application that will be used as the parameter
handler to exchange values between the integrating application and pass-through
sanScript.

object.SetParamHandler(paramhandler_object)

object — A Microsoft Dynamics GP application object.

paramhandler_object — The name of the object in the integrating application that will
be used to pass values between the integrating application and pass-through
sanScript.

The integer value 0.

You must use this method to specify the parameter handler object before you can
pass values between the integrating application and pass-through sanScript.

This example uses the SetParamHandler method to set the ParamHandler object as
the parameter handler object.

Private Sub SetParamHandler ()

Dim ErrvVal As Integer

ErrVal = GPApp.SetParamHandler (ParamHandler)
End Sub

Additional information

Chapter 4, “Passing Parameters”

CONTINUUM API GUIDE 77

SHOW METHOD

Show method

Description Causes Microsoft Dynamics GP to become visible if it was hidden.

Syntax object.Show

Parameters ® object — A Microsoft Dynamics GP application object.

Return value None

Examples The following example uses the Show method to make the Microsoft Dynamics GP

application visible.

Public Sub ShowDynamicsGP_Click()
GPApp . Show
End Sub

Related items Commands
Hide method, Visible property

78 CONTINUUM API GUIDE

STARTWIZARDMODE METHOD

StartWizardMode method

Description Causes Microsoft Dynamics GP to switch to the specified Wizard Mode, allowing
the name of a resource to be retrieved.

Syntax object.StartWizardMode(mode, callback_object, callback_method)

Parameters ® object — A Microsoft Dynamics GP application object.

¢ mode — An integer that specifies which type of resource the user will select in Wizard
Mode. The following table lists the modes:

Value Description

1 Field mode. The user must click on a field in the application to return its fully-
qualified name.

2 Window mode. The user must click on a window in the application to return
its fully-qualified name.

3 Form mode. The user must click on a window in the application to return the
name of the form the window is part of.

e callback_object — The name of the callback object in the integrating application
containing the method to be run in response to the user clicking on an item while in

Wizard Mode.
e callback_method — A string containing the name of the method that will be run in the
callback object.
Return value The integer value 0.
Comments The method in the callback object must have two string parameters. The first

parameter will be set to the fully-qualified resource name for the item the user
clicked on while in Wizard Mode. The second parameter will be set to the name of
the product containing the item clicked on.

Examples This example uses the StartWizardMode method to look up the name of a field.
The WizardCallback method in the GPCallback object will be run when the user
clicks on a field in Microsoft Dynamics GP.

Private Sub StartWizardMode_Click()

Dim i As Integer

i = GPApp.StartWizardMode (1, GPCallback, "WizardCallback")
End Sub

The following is the code for the WizardCallback method contained in the
GPCallback object. Note that it has two string parameters to which the fully-
qualified resource name and product will be returned.

Public Sub WizardCallback (ResName As String, Product As String)
NameWizard.ResourceName.Text = ResName
NameWizard.Product.Text = Product
GPApp . StopWizardMode
NameWizard. Show

End Sub

Related items Commands
StopWizardMode method

CONTINUUM API GUIDE 79

STOPPROCESSING METHOD

StopProcessing method

Description Causes Microsoft Dynamics GP to stop processing the current sequence of scripts.
Syntax object.StopProcessing

Parameters ® object — A Microsoft Dynamics GP application object.

Comments This method is used in the callback procedure for focus triggers. If the focus trigger

runs before the Microsoft Dynamics GP code, you may want to prevent the
Microsoft Dynamics GP code from running. You would use the StopProcessing
method to do this.

Examples This example uses the StopProcessing method in the callback procedure that runs
in response to clicking the Save button in the Customer Maintenance window. The
callback procedure runs before the Microsoft Dynamics GP code for the push button.
The callback procedure ascertains whether the Commentl field in the Customer
Maintenance window contains data. If it doesn’t, an error message is displayed and
the Microsoft Dynamics GP Save Button script is prevented from running. The
following is the code for the callback procedure.

Public Sub cbPushSaveButton()
Dim ErrvVal As Integer
Dim ErrMsg As String
If GPApp.GetDatavValue ("Commentl of window " & _
"RM_Customer_Maintenance of form RM_Customer_Maintenance") _
= "" Then
ErrVal = GPApp.ExecuteSanScript(_
"error ""You must enter a comment."";", ErrMsg)
GPApp . StopProcessing
End If
End Sub

Related items Commands
RegisterFocusTrigger method

80 CONTINUUM API GUIDE

STOPWIZARDMODE METHOD

StopWizardMode method

Description Causes Microsoft Dynamics GP to leave Wizard Mode.

Syntax object.StopWizardMode

Parameters ® object — A Microsoft Dynamics GP application object.

Comments You must use this method after you have used the StartWizardMode method.
Examples The following is the code for the WizardCallback method contained in the

GPCallback object. This method is run in response to the user clicking on a resource
while in Wizard Mode. The StopWizardMode method is used after the name and
location of the resource have been retrieved.

Public Sub WizardCallback (ResName As String, Product As String)
NameWizard.ResourceName.Text = ResName
NameWIzard.Product.Text = Product
GPApp . StopWizardMode
NameWizard. Show

End Sub

Related items Commands
StartWizardMode method

CONTINUUM API GUIDE 81

VBE METHOD

82

VBE method

Description

Syntax
Parameters
Return value

Comments

Examples

CONTINUUM API

Retrieves a reference to the Visual Basic for Applications (VBA) environment
embedded in Microsoft Dynamics GP. The VBA environment must be open and
active in Microsoft Dynamics GP for this method to work properly.

object. VBE
object — A Microsoft Dynamics GP application object.
A reference to the Visual Basic for Applications environment.

To access the VBA environment, your integrating application should include the
Microsoft Visual Basic for Applications Extensibility reference.

The following example uses the VBE method to retrieve a reference to the Visual
Basic for Applications environment within Microsoft Dynamics GP. Then the
version number of the VBA environment is retrieved and displayed to the user.

Public Sub VBE_Click()
Dim VBE As Object
Set VBE = GPApp.VBE
MsgBox VBE.Version

End Sub

GUIDE

VISIBLE PROPERTY

Visible property

Description

Syntax

Parameters

Return value

Examples

Returns a boolean indicating whether the application is visible, or makes the
application visible or invisible.

object.Visible [=status]
object — A Microsoft Dynamics GP application object.

status — A boolean indicating whether the application should be visible or invisible.
True indicates the application will be visible, while false indicates it will not.

Boolean

The following example uses the Visible property to find out whether the Microsoft
Dynamics GP application is visible. If it is not, a message is displayed.

Public Sub IsDynamicsGPVisible_Click()
If GPApp.Visible = False Then
MsgBox "Microsoft Dynamics GP is hidden."
End If
End Sub

The following example uses the Visible property to make Microsoft Dynamics GP
visible.

Public Sub MakeVisible_Click()

GPApp.Visible = True
End Sub

CONTINUUM API GUIDE 83

84 CONTINUUM API GUIDE

Chapter 12: Field Object

Your integrating application will use the field object to ascertain characteristics of
fields in Microsoft Dynamics GP. The properties that apply to the Field object are
listed below. A detailed explanation of each appears on the following pages:

e Height property

e Left property

e MaxLength propert
e PromptHeight property

e PromptLeft property

¢ PromptName property
¢ PromptStyle property
¢ PromptTop property

¢ PromptType property
e PromptWidth property
e Style property

e SubType property

e Top property

e Type property

* Width property

CONTINUUM API GUIDE 85

HEIGHT PROPERTY

Height property

Description Returns an integer containing the height of the field, measured in pixels.

Syntax object.Height

Parameters ® object — A field object.

Examples This example uses the Height property to retrieve the height of the Customer
Number field.

Private Sub Height_Click()
Dim FieldObj As Object
Dim FieldHeight As Integer
Set FieldObj = GPApp.CreateFieldObject _
("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
FieldHeight = FieldObj.Height
End Sub

86 CONTINUUM API GUIDE

Left property

LEFT PROPERTY

Description

Syntax

Parameters J

Examples

Returns an integer containing the position of the left edge of the field, measured in
pixels from the left edge of the window.

object.Left
object — A field object.

This example uses the Left property to retrieve the position of the left edge of the
Customer Number field.

Private Sub Left_Click()

Dim FieldObj As Object

Dim FieldLeftPos As Integer

Set FieldObj = GPApp.CreateFieldObject _

("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
FieldLeftPos = FieldObj.Left

End Sub

CONTINUUM API GUIDE 87

MAXLENGTH PROPERTY

MaxLength property

Description Returns an integer containing the keyable length of the field. The keyable length is
the number of characters that can be typed in the field.

Syntax object. MaxLength

Parameters ® object — A field object.

Examples This example uses the MaxLength property to retrieve the keyable length of the

Customer Number field.

Private Sub MaxLength_Click()

Dim FieldObj As Object

Dim KeyableLength As Integer

Set FieldObj = GPApp.CreateFieldObject _

("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
KeyableLength = FieldObj.MaxLength

End Sub

88 CONTINUUM API GUIDE

PROMPTHEIGHT PROPERTY

PromptHeight property

Description

Syntax
Parameters

Examples

Returns an integer containing the height of the prompt linked to the field, measured
in pixels.

object.PromptHeight
object — A field object.

This example uses the PromptHeight property to retrieve the height of the prompt
linked to the Customer Number field.

Private Sub PromptHeight_Click()
Dim FieldObj As Object
Dim PromptHeight As Integer
Set FieldObj = GPApp.CreateFieldObject _
("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
PromptHeight = FieldObj.PromptHeight
End Sub

CONTINUUM API GUIDE 89

PROMPTLEFT PROPERTY

PromptLeft property

Description Returns an integer containing the position of the left edge of the prompt linked to
the field, measured in pixels from the left edge of the window.

Syntax object.PromptLeft
Parameters ® object — A field object.
Examples This example uses the PromptLeft property to retrieve the position of the left edge

of the prompt for the Customer Number field.

Private Sub PromptLeft_Click()

Dim FieldObj As Object

Dim PromptLeftPos As Integer

Set FieldObj = GPApp.CreateFieldObject _

("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
PromptLeftPos = FieldObj.PromptLeft

End Sub

90 CONTINUUM API GUIDE

PROMPTNAME PROPERTY

PromptName property

Description
Syntax
Parameters

Comments

Examples

Returns a string containing the text of the prompt linked to the field.
object.PromptName
object — A field object.

For check boxes and push buttons, the text appearing on the control is returned. For
other fields that don’t have prompts linked to them, the empty string "" is returned.

This example uses the PromptName property to retrieve the text for the prompt
linked to the Customer Number field.

Private Sub PromptName_Click()

Dim FieldObj As Object

Dim PromptName As String

Set FieldObj = GPApp.CreateFieldObject _

("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
PromptName = FieldObj.PromptName

End Sub

CONTINUUM API GUIDE 91

PROMPTSTYLE PROPERTY

92

PromptStyle property

Description

Syntax
Parameters

Comments

Examples

CONTINUUM API

Returns a long integer indicating the characteristics of the prompt linked to the
field.

object.PromptStyle
object — A field object.

This property provides information that is specific to the internal implementation of
fields for the Microsoft Dynamics GP runtime engine. The individual characteristics
are retrieved from the PromptStyle property through the use of bitmasks. A bitmask
allows you to ascertain whether specific bits of the 32-bit style value are set. Each
bitmask corresponds to a specific set of characteristics for the prompt.

To use a bitmask, you perform a logical AND operation on the style value and the
bitmask value. If the operation results in a non-zero value, the characteristics that
correspond to the bitmask have been applied to the prompt.

Most of the information contained in the return value is not useful for integrating
applications. One useful characteristic that can be retrieved from the PromptStyle
property is whether a field is required to contain data before Microsoft Dynamics
GP will allow the window’s contents to be saved. The example for this property
demonstrates how to use a bitmask to retrieve whether a field is a required field.

The following example uses the PromptStyle property to ascertain whether the
Customer Number field is required. The bitmask for the PromptStyle property
indicating that a field is required is the hexadecimal value 200. (It is common for
bitmasks to be represented in hexadecimal form.) An AND operation is performed
on the prompt style value and the bitmask. If a non-zero value is the result, the field
is required.

Public Sub IsRequired_Click()
Dim FieldObj As Object
Dim FieldRequired As Boolean
Set FieldObj = GPApp.CreateFieldObject

("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
'Is the field required?
If (FieldObj.PromptStyle And &H200) <> 0 Then
FieldRequired = True
Else
FieldRequired = False
End If

End Sub

GUIDE

PROMPTTOP PROPERTY

PromptTop property

Description

Syntax
Parameters

Examples

Returns an integer containing the position of the top edge of the prompt linked to
the field, measured in pixels from the top of the window.

object.PromptTop
object — A field object.

This example uses the PromptTop property to retrieve the position of the top edge
of the prompt for the Customer Number field.

Private Sub PromptTop_Click()

Dim FieldObj As Object

Dim PromptTopPos As Integer

Set FieldObj = GPApp.CreateFieldObject _

("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
PromptTopPos = FieldObj.PromptTop

End Sub

CONTINUUM API GUIDE 93

PROMPTTYPE PROPERTY

94

PromptType property

Description Returns an integer indicating the type of prompt linked to the field.

Syntax object.PromptType

Parameters ® object — A field object.

Comments The value 0 indicates no prompt is attached to the field. The value 12 indicates the

prompt is a string. Currently, no other return values are possible.

Examples This example uses the PromptType property to retrieve the type of prompt for the
Customer Number field. If the value is not 0, the field has a prompt and the prompt
name is retrieved.

Private
Dim
Dim
Dim

Set

("'Customer Number' of window RM_Customer_Maintenance "

"of

Sub PromptType_Click()

FieldObj As Object

PromptType As Integer

PromptName As String

FieldObj = GPApp.CreateFieldObject _

form RM_Customer_Maintenance")

PromptType = FieldObj.PromptType

If PromptType <> 0 Then

End

End Sub

CONTINUUM API GUIDE

'A prompt is attached to the field
PromptName = FieldObj.PromptName
If

&

PROMPTWIDTH PROPERTY

PromptWidth property

Description Returns an integer containing the width of the prompt linked to the field, measured
in pixels.

Syntax object. PromptWidth

Parameters ® object — A field object.

Examples This example uses the PromptWidth property to retrieve the width of the prompt

linked to the Customer Number field.

Private Sub PromptWidth_ Click()

Dim FieldObj As Object

Dim PromptWidth As Integer

Set FieldObj = GPApp.CreateFieldObject _

("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
PromptWidth = FieldObj.PromptWidth

End Sub

CONTINUUM API GUIDE 95

STYLE PROPERTY

96

Style property

Description
Syntax
Syntax

Comments

Examples

Returns a long integer indicating the characteristics of the field.
object.Style
object — A field object.

This property provides information that is specific to the internal implementation of
fields for the Microsoft Dynamics GP runtime engine. The individual characteristics
are retrieved from the Style property through the use of bitmasks. A bitmask allows
you to ascertain whether specific bits of the 32-bit style value are set. Each bitmask
corresponds to a specific set of characteristics for the field.

To use a bitmask, you perform a logical AND operation on the style value and the
bitmask value. If the operation results in a non-zero value, the characteristics that
correspond to the bitmask have been applied to the field.

Most of the information contained in the return value is not useful for integrating
applications. Two useful characteristics that can be retrieved from the Style
property are whether a field is editable by the user and whether a list field is sorted.
The examples for this property demonstrate how to use bitmasks to retrieve these
characteristics.

Style properties for fields are often retrieved when a field is selected while in
Wizard Mode. The following code starts Wizard Mode. The WizardCallback
method in the GPCallback object will be run when the user clicks on a field in
Microsoft Dynamics GP.

Private Sub SelectField_Click()

Dim i As Integer

i = GPApp.StartWizardMode(l, GPCallback, "WizardCallback")
End Sub

The following is the code for the WizardCallback method contained in the
GPCallback object. It creates a field object based upon the name information
returned from Wizard Mode. The Style property is used to retrieve the
characteristics of the field the user clicked on. The bitmask indicating a disabled
appearance is the hexadecimal value 1. (It is common for bitmasks to be represented
in hexadecimal form.) An AND operation is performed on the style value and the
bitmask. If a non-zero value is the result, the field is disabled and can’t be edited.

Public Sub WizardCallback(ResName As String, Product As String)
Dim FieldObj As Object
'Stop Wizard Mode
GPApp . StopWizardMode
'Create the field object
Set FieldObj = GPApp.CreateFieldObject (ResName)

'Is the field editable by the user?
If (FieldObj.Style And &H1l) <> 0 Then
'Field is disabled. Can't set its value.
MsgBox "Field is disabled. Can't set its value."
End If
End Sub

CONTINUUM API GUIDE

STYLE PROPERTY

The following example is the code for the WizardCallback method contained in the
GPCallback object. It creates a field object based upon the name information
returned from Wizard Mode. The SubType property is used to ascertain whether
the selected field is a list field (list box, drop-down list, multi-select list, button drop
list, combo box or visual switch). If the field is a list, the Style property is used to
ascertain whether the items in a list field are sorted. The bitmask indicating whether
items are sorted is the hexadecimal value 10000.

Public Sub WizardCallback (ResName As String, Product As String)
Dim FieldObj As Object
Dim SortedList As Boolean
'Stop Wizard Mode
GPApp . StopWizardMode
'Create the field object
Set FieldObj = GPApp.CreateFieldObject (ResName)

'Is the field a list?
Select Case FieldObj.SubType
Case 6, 7, 8, 13, 14, 21, 25
If (FieldObj.Style And &H10000) <> 0 Then
SortedList = True
Else
SortedList = False
End If
End Select
End Sub

CONTINUUM API GUIDE 97

SUBTYPE PROPERTY

SubType property

Description Returns an integer indicating the control type of the field.
Syntax object.SubType
Parameters ® object — A field object.
Comments The following table lists the values that are returned for the various field types:
Field type Value
Button drop list 25
Check box 12
Combo box 13
Composite 15
Currency 2
Date 18
Drop-down list 6
Horizontal list box 17
Integer 0
List box 8 (non-native) or 21 (native)
Long integer 1
Multi-select list box 7
Picture 23
Progress indicator 22
Push button 16
Radio group 9
String 4
Text 5
Time 19
Visual switch 14
Examples This example uses the SubType property to retrieve the field type of the Customer
Number field.

Private Sub SubType_Click()
Dim FieldObj As Object
Dim FieldType As Integer
Set FieldObj = GPApp.CreateFieldObject _
("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
FieldType = FieldObj.SubType
End Sub

98 CONTINUUM API GUIDE

Top property

TOP PROPERTY

Description

Syntax
Parameters

Examples

Returns an integer containing the position of the top edge of the field, measured in
pixels from the top of the window.

object. Top
object — A field object.

This example uses the Top property to retrieve the position of the top edge of the
Customer Number field.

Private Sub PromptTop_Click()

Dim FieldObj As Object

Dim PromptTopPos As Integer

Set FieldObj = GPApp.CreateFieldObject _

("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
PromptTopPos = FieldObj.Top

End Sub

CONTINUUM API GUIDE 99

TYPE PROPERTY

100

Type property

Description
Syntax
Parameters

Comments

vy

/

Examples

CONTINUUM API

Returns an integer indicating the primary category of the field.

object. Type

® object — A field object.

\

The following table lists the values that are returned for the various types of fields:

Field type Value
Button drop list 33
Check box 18
Combo box 34
Composite 36
Currency 21
Date 21
Drop-down list 30
Horizontal list box 24
Integer 21
List box 25 (non-native) or 32 (native)
Long integer 21
Multi-select list box 31
Picture 9
Progress indicator 20
Push button (with native picture) 17
Push button (with text) 29
Radio group 23
String 21
Text 22
Time 21
Visual switch 27

The same value is returned for composites, currency values, dates, integers, long integers,
strings and times. You can use the SubType property to differentiate between these fields.

This example uses the Type property to retrieve the primary category of the

Customer Number field.

Private Sub Type_Click()
Dim FieldObj As Object

Dim FieldType As Integer
Set FieldObj = GPApp.CreateFieldObject

("'Customer Number' of window RM_Customer_Maintenance " &

"of form RM_Customer_Maintenance")

FieldType = FieldObj.Type

End Sub

GUIDE

WIDTH PROPERTY

Width property

Description
Syntax
Parameters

Examples

Returns an integer containing the width of the field, measured in pixels.
object Width
object - A field object.

This example uses the Width property to retrieve the width of the Customer
Number field.

Private Sub Width_Click ()

Dim FieldObj As Object

Dim Fieldwidth As Integer

Set FieldObj = GPApp.CreateFieldObject _

("'Customer Number' of window RM_Customer_Maintenance " & _
"of form RM_Customer_Maintenance")
FieldWwidth = FieldObj.wWidth

End Sub

CONTINUUM API GUIDE 101

02 CONTINUUM API GUIDE

Glossary

Automation
An industry-standard technology that allows
applications to provide access to the objects
in the application. See also object.

Automation client
An application that accesses objects from an
automation server. See also Automation
server.

Automation server
An application that provides access to its
objects through automation. See also
Automation client.

Callback
The process of Microsoft Dynamics GP
calling a method in a callback object when an
event occurs in Microsoft Dynamics GP.

Callback class
The class in the project that contains the
methods that run as a result of triggers from
events in Microsoft Dynamics GP.

Callback object
The object in the integrating application that
is created from the callback class.

Continuum Integration Library
The code in Microsoft Dynamics GP that
describes the objects Microsoft Dynamics GP
makes available to other applications
through COM. Other applications can use
these objects when they integrate with
Microsoft Dynamics GP.

Database-level integration
An integration in which the integrating
application reads from or writes to the
Microsoft Dynamics GP database.

DEX.TLB
The type library that contains definitions of
the objects, methods and properties available
in Microsoft Dynamics GP. See also TLB file.

Dexterity
The application development tool used to
create Microsoft Dynamics GP.

Interface-level integration
An integration where the integrating
application keeps information synchronized
with windows displayed in Microsoft
Dynamics GP.

Object
A combination of code and data that
contains information about an application or
an item in the application, such as a control
or window.

Parameter handler
A mechanism that allows the integrating
application and pass-through sanScript to
exchange data.

Parameter handler class
A class in the integrating application that
defines the properties and methods that will
be used to pass data between integrating
application and pass-through sanScript.

Parameter handler object
The object created from the parameter
handler class defined in the integrating
application. Both the integrating application
and pass-through sanScript have access to
the properties and methods in this object.

Pass-through sanScript
SanScript code that is embedded in the code
of the integrating application. The sanScript
code is passed into the Microsoft Dynamics
GP runtime engine, where it is compiled and
executed.

Process-level integration
An integration in which the integrating
application updates information whenever a
Microsoft Dynamics GP process, such as
posting, is performed.

TLB file
The file extension for a type library. A type
library contains definitions of the objects,
methods and properties an application
exposes through COM.

Trigger
An event occurring in Microsoft Dynamics
GP that causes methods in the integrating
application to be run. See also callback.

CONTINUUM API

GUIDE

103

104 CONTINUUM API GUIDE

Index
A

accessing table data 29
Activate, method 52
Additional Information Window, chapter
45-46

adds-allowed scrolling windows 33
Application Launcher 31
application object, chapter 51-83
applications

activating 52

hiding 63, 83

showing 78, 83

starting 31
assembly information 12
automation

defined 103

described 7
automation client

defined 103

described 7
automation server

defined 103

described 7

registering Microsoft Dynamics GP

39

browse-only scrolling windows 33

C
callback, defined 103
callback class
defined 103
described 9, 13
for Continuum integration 9, 13
callback methods
cross-thread issues with 36
described 8
callback object, defined 103
CallVBAMacro method 53
compiler errors
see also pass-through sanScript
in pass-through sanScript 19
COM-Visible project setting 12
Continuum
callback class 9
current product 31
described 2
initialization code 9, 11
integration library 7
integration types 8
methods 8
prerequisites 2
Continuum Integration Library
defined 103
described 7
part 50-101

conventions, see documentation, symbols
and conventions
CreateFieldObject method 54
cross-thread calls
disabling cross-thread checking 36
managing 36
suppressing check for 9
using delegates to resolve 36
current product, specifying for
Continuum API 31
CurrentProduct property 55
CurrentProductID property 56

D
data

retrieving from Microsoft Dynamics

GP 32

retrieving from table buffers 59, 61

setting for table buffers 74, 76
database triggers

chapter 27-29

database operations 28

described 27

registering 27, 66

retrieving data 29

typical 28
database-level integration, defined 8, 103
debugging pass-through sanScript 19
delegates, using for cross-thread calls 36
Developing Integrations, part 16-39
DEX.TLB file

defined 103

described 10
Dexterity, defined 103
documentation, symbols and conventions

3

editable scrolling windows 33

errors, in pass-through sanScript 19
examples, see sample applications
ExecuteSanScript method 57
ExternalProductName property 58
Extras menu, registering event trigger 71

F
Field Defaulter, chapter 43-44
field object

chapter 85-101

creating 54

properties of 85
field watch event triggers, registering 73
fields

finding names 29

retrieving characteristics 85
focus, moving 65
focus event triggers, registering 68
formatted data

retrieving 61

setting 76

CONTINUUM API

G
GetDataValue method 59
described 29
example 29
finding field names 29
GetDataValueEx method 61
Getting started, part 6-13
GetVBAGIlobals method 62

H
Height property 86
Hide method 63

initialization code

example 11

for Continuum integration 9
integration basics, chapter 7-8
Integration Examples

see also sample applications

part 42-48
interface-level integration, defined 8, 103
Interop assemblies

described 11
packaging 39

L

LAUNCHER.CNK file
described 31
installing 31

launching Continuum applications 31

Left property 87

light bulb symbol 3

looking up names in Microsoft Dynamics
GP 19

MacroError property 64
margin notes 3
MaxLength property 88
methods
available in the Continuum API 8
calling VBA methods 53
running from pass-through sanScript
25
Microsoft Dynamics GP
activating 52
hiding 63, 83
registering as Automation server 39
showing 78, 83
modal dialog triggers, described 69
MoveToField method 65

N
name, of external product 58
Name Wizard, chapter 47-48
names
for resources in pass-through
sanScript 19
looking up resource names 19

GUIDE 105

INDEX

(0]

object
defined 103
described 7

OLE
_GetProperty() 24
_RunMethod() 25
_SetProperty() 23

P

packaging

chapter 39

registering Microsoft Dynamics GP as

Automation server 39

runtime components 39
parameter handler

class 21

defined 103

described 21

object 22
parameter handler class

defined 103

described 21

example 22
parameter handler object

defined 103

described 22

example 23

specifying 22, 77
parameters

parameter handler 21

passing 21
passing parameters

chapter 21-25

example 22, 24

getting properties 23

setting properties 23
pass-through sanScript

chapter 17-19

characteristics 17

compiler errors 19

debugging 19

defined 103

example 18

executing 18, 57

looking up names 19

passing parameters 21

referencing resources 17

running methods 25

runtime errors 19

table buffers 17

when run 17

writing 17
processing, stopping 80
process-level integration, defined 8, 103
product, current 31, 55, 56
product IDs, specifying current product 31
product names, specifying current

product 31

Programming Techniques, chapter 31-38

6 CONTINUUM API

GUIDE

project
callback class 9
for Continuum integration 9, 10
initialization code 9, 11
required items 9
PromptHeight property 89
PromptLeft property 90
PromptName property 91
prompts, retrieving characteristics 85
PromptStyle property 92
PromptTop property 93
PromptType property 94
PromptWidth property 95

reference, to Continuum type library 10
RegisterDatabaseTrigger method 66
RegisterFocusTrigger method 68
RegisterFormTrigger method 71
registering

database triggers 27, 66

Extras menu event triggers 71

field watch event trigger 73

focus event triggers 68

Microsoft Dynamics GP as an

Automation server 39

shutdown event triggers 72
RegisterShutdownRoutine method 72
RegisterWatchTrigger method 73
resources, referencing from pass-through

sanScript 17

retrieving data 32
runtime components, for an integration 39
runtime errors

see also pass-through sanScript

in pass-through sanScript 19

S

sample applications

Additional Information Window 45

Field Defaulter 43

Name Wizard 47
scrolling windows

accessing data 34

adds-allowed 33

browse-only 33

Data Entry event 34

Delete Row event 34

described 33

editable 33

events 34

Got Focus event 34

Insert Row event 34

Load Row event 35

Lost Focus event 35

types of 33
SetDataValue method 74
SetDataValueEx method 76
SetParamHandler method 77
Setting Up a Continuum project, chapter

9-13

Show method 78

shutdown event triggers, registering 72
starting Continuum applications 31
Startup object, for Visual Basic project 12
StartWizardMode method 19, 79
StopProcessing method 80
StopWizardMode method 19, 81

Style property 96

SubType property 98

T
table buffers
accessing data 29
in pass-through sanScript 17
retrieving data 59
retrieving formatted data 61
setting data 74
setting formatted data 76
TemplateMain, for Continuum integration
11
threads
see cross-thread calls
suppressing check for cross-thread
calls 9
TLB file, defined 103
Top property 99
triggers
defined 103
described 8
for database events 27
for modal dialogs 69
type library, adding reference to
Continuum type library 10
Type property 100

U
UAUGC, see User Account Control

User Account Control, connection issues
38

Vv
VBA
calling methods 53
retrieving reference to 82
VBA globals, retrieving reference to 62
VBE method 82
Visible property 83
Visual Basic project
callback class 13
creating 10
Startup object 12
TemplateMain module 11

w

warning symbol 3
watch event triggers, registering 73
Width property 101
Wizard Mode
starting 79
stopping 81

	Copyright
	Contents
	Introduction
	Prerequisites
	What’s in this manual
	Symbols and conventions

	Part 1: Getting Started
	Chapter 1: Integration Basics
	COM Automation
	The Continuum Integration Library
	Methods
	Triggers and callbacks
	Types of integrations

	Chapter 2: Setting Up a Continuum Project
	Required items
	Visual Basic project
	TemplateMain module
	Callback class

	Part 2: Developing Integrations
	Chapter 3: Pass-through sanScript
	Writing and executing scripts
	Looking up names
	Debugging scripts

	Chapter 4: Passing Parameters
	Parameter handler
	Setting and getting properties
	Running methods

	Chapter 5: Database Integrations
	Registering database triggers
	Database trigger reference
	Accessing table data

	Chapter 6: Programming Techniques
	Specifying the current product
	Starting integrating applications
	Retrieving data from the Microsoft Dynamics GP application
	Working with scrolling windows
	Data Entry event
	Delete Row event
	Got Focus event
	Insert Row event
	Load Row event
	Lost Focus event

	Managing cross-thread calls
	User Account Control (UAC)

	Chapter 7: Packaging
	Runtime components
	Registering Microsoft Dynamics GP as an Automation server

	Part 3: Integration Examples
	Chapter 8: Field Defaulter
	Overview
	Running the sample application
	How the Continuum API was used

	Chapter 9: Additional Information Window
	Overview
	Running the sample application
	How the Continuum API was used

	Chapter 10: Name Wizard
	Overview
	Running the sample application
	How the Continuum API was used

	Part 4: The Continuum Integration Library
	Chapter 11: Application Object
	Activate method
	CallVBAMacro method
	CreateFieldObject method
	CurrentProduct property
	CurrentProductID property
	ExecuteSanScript method
	ExternalProductName property
	GetDataValue method
	GetDataValueEx method
	GetVBAGlobals method
	Hide method
	MacroError property
	MoveToField method
	RegisterDatabaseTrigger method
	RegisterFocusTrigger method
	RegisterFormTrigger method
	RegisterShutdownRoutine method
	RegisterWatchTrigger method
	SetDataValue method
	SetDataValueEx method
	SetParamHandler method
	Show method
	StartWizardMode method
	StopProcessing method
	StopWizardMode method
	VBE method
	Visible property

	Chapter 12: Field Object
	Height property
	Left property
	MaxLength property
	PromptHeight property
	PromptLeft property
	PromptName property
	PromptStyle property
	PromptTop property
	PromptType property
	PromptWidth property
	Style property
	SubType property
	Top property
	Type property
	Width property

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

