
Composite Application
Guidance for WPF

• • • • • •

• • • • • •

• • • • • •

• • • • • •

patterns & practices

Composite Application
Guidance for WPF

Information in this document, including URL and other Internet Web site refer-
ences, is subject to change without notice. Unless otherwise noted, the companies,
organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted in examples herein are fictitious. No association with any real
company, organization, product, domain name, e-mail address, logo, person, place, or
event is intended or should be inferred. Complying with all applicable copyright laws
is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system,
or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks, copy-
rights, or other intellectual property.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, Windows Vista, Expression Blend, MSDN, Visual
C#, and Visual Studio are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

Part # X15-19255

Contents

Forewords	 ix
Foreword by Ian Ellison-Taylor. . ix
Foreword by Brian Noyes. . x

Authors and Contributors	 xi

Chapter 1: Introduction	 1
Welcome. . 1
Intended Audience. . 1
Composite Application Guidance Assets . . 2
Exploring the Documentation. . 2
Community. . 4
Overview of the Composite Application Guidance for WPF . . 4

Application Development Challenges . . 4
The Composite Approach. . 5
Architectural Goals and Principles. . 7
Adoption Experience. . 8
Concerns Not Addressed by the Composite Application Guidance. . 9
Considerations for Choosing the Composite Application Guidance. . 9

Guidelines for Choosing Composite UI Deliverables from patterns & practices 10
Comparing to the Composite UI Application Block. . 11

Chapter 2: Design Concepts	 13
UI Composition. . 13

Layout. 14
Commanding. . 17
Eventing. . 18

Modularity. . 20
Designing a Modular System. . 21

Container . . 22
Using the Container . . 24
Considerations for Using the Container. . 25

Composite Application Guidance for WPFiv

Chapter 3: Patterns in the Composite Application Library	 27
Pattern Overview. . 28

Composite and Composite View. . 28
Separated Interface and Plug-In . . 30
Inversion of Control. . 30
Service Locator. . 31
Command . . 31
Adapter. 31
Event Aggregator. . 32
Separated Presentation. . 32
Façade. . 32
More Information. .33

Dependency Injection Pattern. . 34
Problem. . 34
Forces . . 35
Solution. . 35
Liabilities. . 37
Related Patterns. . 37
More Information. 37

Inversion of Control Pattern. . 38
Problem. . 38
Forces . . 39
Solution. . 39
Implementation Details . . 39
Liabilities. . 41
Related Patterns. . 41
More Information. 41

Service Locator Pattern. . 42
Problem. . 42
Forces . . 42
Solution. . 43
Liabilities. . 44
Related Patterns. . 44
More Information. .45

Separated Presentation Pattern. . 45
Problem. . 45
Forces . . 45
Solution. . 45
Liabilities. . 46
Related Patterns. . 46
More Information. 47

�Table of Contents

Supervising Controller Pattern . . 47
Problem. . 47
Forces . . 47
Solution. . 47
Liabilities. . 49
Related Patterns. . 49
More Information. .49

Presentation Model Pattern . . 50
Problem. . 50
Forces . . 50
Solution. . 50
Liabilities. . 52
Related Patterns. . 52
More Information. .52

Chapter 4: Composite Application Library	 53
System Requirements. . 54
Composite Application Library Baseline Architecture. . 55
When to Use the Composite Application Library. . 57
A New Application Based on the Composite Application Library . . 58

Define the Shell. . 59
Create the Bootstrapper. . 59
Create the Module . . 61
Add a Module View to the Shell. . 61

Goals and Benefits. . 61
Architectural Goals. . 61
Design Goals. . 62
Benefits . . 63

Organization of the Composite Application Library. . 64
Technical Concepts. . 65
Development Activities . . 66
Deploying Your Application . . 66
Customizing the Composite Application Library. . 66

Guidelines for Extensibility. . 67
Recommendations for Modifying the Composite Application Library 68
Extensibility Points in the Composite Application Library. . 68

Composite Application Guidance for WPFvi

Chapter 5: Stock Trader Reference Implementation	 71
The Scenario . . 73

Operating Environment. . 73
Operational Challenges. 74
Emerging Requirements. . 74
Meeting the Business and IT Objectives. . 75
Development Challenges. . 76
The Solution: Composite Application Guidance for WPF . . 76

Stock Trader RI Features. . 77
Logical Architecture. . 77
Implementation View. . 79
How the Stock Trader RI Works. . 80

Modules. . 81
Services and Containers. . 81
Bootstrapping the Application . . 81
Module Enumeration . . 82
Module Loading. . 82
Views . . 82
Regions and the RegionManager. . 84
Service Registration . . 85
Commands . . 85
Event Aggregator. . 87

Technical Challenges. . 87

Chapter 6: Technical Concepts	 91
Bootstrapper . . 92

Configuring the Container. . 93
Configuring the Region Mappings . . 94
Creating the Shell. . 95
Initializing the Modules. . 96
More Information. 97

Container and Services. . 97
IContainerFacade . . 97
UnityContainerAdapter. . 98
Considerations for Using IContainerFacade . . 98
Composite Application Library Services . . 99
More Information. .100

Module. . 100
Team Development Using Modules. . 101
Module Design . . 103
IModule . . 104
Considerations for Modules. . 105
Module Loading. . 105
More Information. .111

viiTable of Contents

Region. . 111
Template Layout . . 112
Multiple View Layout. . 112
Working with Regions. . 114
Scoped Regions. . 117
More Information. .118

Shell and View. . 119
Implementing a Shell . . 119
Stock Trader RI Shell. . 120
Implementing a View. . 121
Composite Views. . 122
Views in the Stock Trader RI. . 122
Views and Design Patterns. . 123
More Information. .123

Event Aggregator. . 123
IEventAggregator. . 124
CompositeWpfEvent . . 124
More Information. .128

Commands. . 128
DelegateCommand<T> . . 129
CompositeCommand . . 130
Frequently Asked Questions About Commands . . 134
More Information. .135

Communication. . 135
Commanding. . 135
Event Aggregator. . 136
Shared Services . . 136

Chapter 7: Designer Guidance	 139
Overview. . 139
Layout. . 140

Container Composition. . 140
Region . . 142

Visual Representation. . 146
User Controls. . 147
Custom Controls . . 147
Data Templates. . 147

Data Binding. . 147
Resources. . 149

Application Resources . . 150
Module Resources . . 151
Control Resources. . 151

Composite Application Guidance for WPFviii

Chapter 8: Development, Customization,
and Deployment Information	 153
Composite Application Guidance for WPF Hands-On Lab. . 153
QuickStarts. . 153
Development Activities . . 154

Creating Your Solution . . 155
Bootstrapper. . 155
Modules. . 156
Regions . . 156
Views. . 157
Services. . 157
Commands . . 157
Events . . 158

Customization Activities. . 158
Deployment Activities . . 159

Bibliography	 161
Chapter 1: Introduction. . 161
Chapter 2: Design Concepts. . 162
Chapter 3: Patterns in the Composite Application Library . . 163
Chapter 4: Composite Application Library. . 164

Solution. . 164
Bootstrapper. . 164
Container and Services. . 165
Modules. . 165
Regions . . 165
Shell and Views. . 166
Events . . 166
Commands . . 166
Deployment. . 167

Chapter 5: Stock Trader Reference Implementation. . 167
Chapter 6: Technical Concepts. . 168

Bootstrapper. . 168
Container and Services. . 168
Modules. . 168
Regions . . 169
Shell and Views. . 170
Events . . 170
Commands . . 170

Chapter 7: Designer Guidance . . 170
Chapter 8: Development, Customization, and Deployment Information. 171

Getting Started . . 171
Development Topics. . 171
Customization Topics . . 172
Deployment Topics . . 173

Forewords

Windows Presentation Foundation, WPF, is a powerful platform for writing compelling,
next generation Windows-based client applications. As WPF has grown in popularity,
we’ve seen WPF used to build an incredible range of applications, including rich media
applications, social networking applications, collaboration and productivity applica-
tions, line-of-business applications, and many, many more.

Despite the wide variety of these applications, folks embarking on these frequently
large, complex projects often ask a similar set of questions:
l	 “How should I structure my application to allow multiple development teams to

work in parallel as independently as possible?”
l	 “How do I make sure that I can unit test my application effectively?”
l	 “How should I design my application so that new functionality can easily be added?”

In order to get the best out of WPF and the .NET Framework, as with any other soft-
ware development technologies, finding and leveraging the techniques and patterns
that have proven to be successful in the past or on other projects can bring huge ben-
efits to a project. Unfortunately, this information is often not easy to come by.

Happily, the Microsoft patterns & practices team exists to make this kind of guidance
widely available in an easy-to-understand way.

The Composite Application Guidance for WPF answers all of the above questions
and more. It provides a solid foundation on which you can design and build modular
WPF client applications by helping you to split the development of your application
across multiple teams, so that each team can build, test, and deliver a piece of the
application that can be easily integrated into the overall application. This can help
you reduce the risk and complexity of your project and help get you to market faster
with a better product.

This book tells you all you need to know about the patterns and underlying concepts
behind the Composite Application Guidance for WPF. The patterns and techniques that
this book contains will really help you get the most out of WPF. It is complemented by
re-usable library code, a reference implementation, and QuickStart tutorials that provide
ready-to-use implementations of the patterns and techniques that this book contains, so
you can focus on your specific application functionality right from the start.

But remember, the important thing is to have fun with WPF!

Ian Ellison-Taylor
General Manager, Windows Presentation Foundation
Microsoft Corporation
September 2008

Composite Application Guidance for WPF�

Learning WPF on its own is a daunting task because there are so many new capabili-
ties and constructs in the WPF architecture. However, even once you master what all
those new things are, you are still at square one in figuring out how to put them all
together to design a robust, scalable, loosely coupled, testable, and maintainable UI
application. In the first half of 2008, I had the pleasure of working with the Microsoft
patterns & practices Composite Application Guidance for WPF team to come up with
some guidance and code to help you do just that. Working with such a top notch
team was its own reward, but setting aside my own bias from having contributed to
the result, I truly believe the set of guidance that came out of the whole team’s effort
is a huge step forward for teams building complex applications with WPF.

The Composite Application Library that comes with the guidance gives you a great
starting point for building modular, loosely coupled UI applications in WPF. It in-
cludes code that helps you to set up the execution environment for your application,
dynamically load modules that your application is composed of, dynamically inject
views into placeholder locations in your UI layout, hook up and handle commands
in a way that goes well beyond the capabilities of WPF itself, and have a loosely
coupled publish/subscribe events mechanism that supports thread dispatching and
filtered subscriptions. You can follow and employ the UI design patterns demon-
strated in the QuickStarts and Stock Trader Reference Implementation application
resulting in a well-factored and testable application architecture with a strong focus
on separation of concerns. The code alone that comes with the guidance should allow
you to end up with a much better architecture than if you just stick with the standard
XAML and code behind model of WPF. You can use the Composite WPF guidance to
build an application from scratch utilizing all the features in the Composite Applica-
tion Library, or you can pick and choose just the parts that you like—you can even
easily integrate them into an existing application well into the development process.

Even though the code speaks for itself to a large degree, it is always important to
have a written version of the story that you can consume to get the big picture—that
way, you can see how everything flows together in a logical way. It is also useful to
have a written reference to fall back on to quickly locate and refresh yourself on the
concepts at points in the future. Even though the Help topics that accompany the
guidance provide one form of that, this book should satisfy all those needs for you
and help make the Composite Application Guidance for WPF quick and easy to un-
derstand and employ, whether or not you are sitting at your computer. The team has
put together some great content and explanations in this book; I’m sure you will find
it invaluable.

Brian Noyes
Chief Architect, IDesign
July 2008

Authors and Contributors

The Composite Application Guidance for WPF was produced by the following
individuals:

patterns & practices Team:

Blaine Wastell, Bob Brumfield, David Hill, Erwin van der Valk, Francis Cheung,
Glenn Block, Larry Brader, Nelly Delgado, Alex Homer (Microsoft Corporation)

Brian Noyes (iDesign)

Adam Calderon (Interknowlogy LLC)

Arun Subramonian Namboothiri, Gokul Janardhanan, Padmavathy Bharathy
Jambunathan, Prashant Javiya, Prasad Paluri (Infosys Technologies Ltd)

Damian Schenkelman, Diego Poza, Ezequiel Jadib, Ignacio Baumann Fonay,
Jonathan Cisneros, Julian Dominguez, Mariano Converti, Mariano Szklanny,
Matias Woloski (Southworks)

Tina Burden McGrayne (TinaTech, Inc.)

Veronica Ruiz (CXR Design)

Many thanks to the following advisors who provided invaluable assistance and
feedback:

Bil Simser, Brad Abrams (Microsoft Corporation), Chad Myers, Clifford Tiltman
(Morgan Stanley), David S Platt (Rolling Thunder Computing, Inc.), Derek Greer,
Ian Ellison-Taylor (Microsoft Corporation), Ivo Manolov (Microsoft Corporation),
Jamie Rodriguez (Microsoft Corporation), Jeremy D. Miller (Dovetail Software), John
Gossman (Microsoft Corporation), Josh Twist (Microsoft Corporation), Matt Smith
(AltiMotion Corporation), Mark Feinholz (Microsoft Corporation), Mark Tucker (JDA
Software Group, Inc.), Michael D. Brown (Software Engineering Professionals, Inc.),
Michael Kenyon (IHS, Inc.), Michael Sparks (RDA Corp), Ohad Israeli (Hewlett-
Packard), Oren Eini (aka Ayende Rahien), Peter Lindes (The Church of Jesus Christ
of Latter-day Saints), Rob Eisenberg (Blue Spire Consulting, Inc.), Shanku Niyogi
(Microsoft Corporation), Scott Bellware, Szymon Kobalczyk (InterKnowlogy), Udi
Dahan (The Software Simplist), Varghese John (UBS), Ward Bell (IdeaBlade)

1
Introduction

Welcome
The Composite Application Guidance for WPF is a set of guidance designed to help
you more easily manage the complexities you may face when building enterprise-
level Windows Presentation Foundation (WPF) client applications. This guidance
will help you design and build flexible WPF client applications using loosely coupled,
independently evolvable pieces that work together and are integrated into the over-
all application. This type of application is known as a composite application.
The guidance includes a reference implementation, reusable library code (named
the Composite Application Library), and supporting documentation. This documen-
tation, as well as the source code, is available on the MSDN® developer network at
http://www.microsoft.com/CompositeWpf.

Intended Audience
This guidance is intended for software architects and software developers building
complex WPF applications with functionality separated across multiple teams. Such
complex applications typically feature layered architectures that may be physically
deployed across tiers, strong separation of concerns, and loosely coupled components.
Simple applications that do not have some of these requirements may not benefit as
much from the Composite Application Library.

The Composite Application Library is built on the Microsoft® .NET Framework and
Windows Presentation Foundation, and it uses a number of software design patterns.
Familiarity with these technologies and patterns is useful for evaluating and adopting
the Composite Application Library. For more information about the patterns, see
Chapter 3, “Patterns in the Composite Application Library.”

http://www.microsoft.com/CompositeWpf

Composite Application Guidance for WPF�

Composite Application Guidance Assets
The Composite Application Guidance consists of the following:
l	 Composite Application Library source code.  Developers can use the Composite

Application Library to develop WPF applications that are composed of indepen-
dent and collaborating modules.

l	 Unity Extensions for Composite Application Library source code.  This provides
components to use the Unity Application Block with the Composite Application
Library for WPF.

l	 Unity Application Block binaries.  The Composite Application Library itself is
not container-specific; however, the Stock Trader Reference Implementation uses
the Unity Application Block as the container.

l	 Stock Trader Reference Implementation (Stock Trader RI).  This is a composite
application that is based on a real world scenario. This intentionally incomplete
application illustrates the composite application baseline architecture. This is a
good reference to see how many of the challenges when building composite ap-
plications are addressed by this guidance.

l	 QuickStarts and Hands-On Lab.  This includes the source code for several small,
focused applications that illustrate user interface (UI) composition, dynamic
modularity, commanding, and event aggregation. The Hello World Hands-On
Lab provides a step-by-step hands-on lab to create your first application using the
Composite Application Library.

l	 Documentation.  This includes the architectural overview, Stock Trader RI over-
view, design and technical concepts for composite applications, applied patterns,
How-to topics, QuickStart overviews, and deployment topics. Much of this guid-
ance is applicable even if you are not using the Composite Application Library,
but you just want to know best practices for creating composite applications.

Exploring the Documentation
The documentation spans a wide range of topics from the conceptual drivers for
composite applications to step-by-step instructions for using pieces of the Composite
Application Library. The documentation is intended to appeal to a broad technical
audience to help you understand composite scenarios, evaluate the Composite
Application Library, and use the Composite Application Library. Figure 1.1 maps
the types of documentation available in this book and on MSDN.

http://msdn.microsoft.com/en-us/library/cc468366.aspx

�Chapter 1:  Introduction

Figure 1.1  Composite Application Guidance for WPF documentation

As illustrated in Figure 1.1, the documentation consists of the following:
l	 Chapter 2, “Design Concepts.”  This chapter introduces the key challenges in

building composite applications and guidance on the solutions designed to solve
these challenges. It primarily targets architects and developers seeking a deeper
understanding of the drivers for the Composite Application Library.

l	 Chapter 3, “Patterns in the Composite Application Library.”  This chapter de-
scribes the software design patterns applied in the Composite Application Library
and Stock Trader RI. It primarily targets architects and developers looking to fa-
miliarize themselves with the patterns used to address the challenges in building
composite applications.

l	 Chapter 4, “Composite Application Library.”  This chapter introduces a candi-
date composite architecture that you can use to create your own baseline architec-
ture and describes the goals, benefits, development activities, and customization
points of the library. It primarily targets architects and developers interested in
using the library and seeking a starting point for their composite applications.

l	 Chapter 5, “Stock Trader Reference Implementation.”  This chapter describes
the Stock Trader RI, which is an intentionally feature-incomplete application that
demonstrates an implementation of the baseline architecture using the Composite
Application Library. It primarily targets architects and developers wanting to see
the library working as part of an application.

l	 Chapter 6, “Technical Concepts.”  This chapter introduces individual technical
implementation details of the Composite Application Library. It primarily targets
architects and developers seeking in-depth information about a particular aspect
of the library.

Composite Application Guidance for WPF�

l	 Chapter 7, “Designer Guidance.”  This chapter helps user interface designers
understand composite applications. It provides helpful tips for designing com-
posite user interfaces with the Composite Application Library. It primarily targets
designers working on projects developing composite applications.

l	 Chapter 8, “Development, Customization, and Deployment Information.”  This
chapter includes a brief introduction and pointers to the Hands-On Lab, Quick-
Starts, and How-to topics on MSDN. These topics range from usage to custom-
ization and deployment of the library. These topics primarily target developers
seeking to accomplish specific tasks or run working examples.

l	 “Bibliography.”  This section consolidates the references provided in each chapter.

Community
The Composite Application Guidance for WPF, like other Microsoft patterns &
practices deliverables, is associated with a community site at http://www.codeplex.com/
CompositeWPF. On this community site, you can post questions, provide feedback,
or connect with other users for sharing ideas. Community members can also help
Microsoft plan and test future offerings and download additional content, such as
extensions and training material.

Overview of the Composite Application Guidance for WPF
The goal of this section is to provide you with a high-level overview of the Microsoft
patterns & practices Composite Application Guidance for WPF and the develop-
ment challenges it addresses. This section describes some of the problems you
might encounter when building complex WPF client applications, how the
Composite Application Guidance helps you to address those problems, and
how the Composite Application Guidance compares to alternative approaches.

Application Development Challenges
Typically, developers of client applications face a number of challenges. Most enter-
prise applications are sufficiently complex that they require more than one developer,
maybe even a large team of developers that includes UI designers and localizers in
addition to developers. It can be a significant challenge to decide how to design the
application so that multiple developers or sub-teams can work effectively on different
pieces of the application independently, yet ensuring that the pieces come together
seamlessly when integrated into the application.

http://www.codeplex.com/CompositeWPF
http://www.codeplex.com/CompositeWPF

�Chapter 1:  Introduction

In addition, application requirements can change over time. New business oppor-
tunities and challenges may present themselves, new technologies may become
available, or even ongoing customer feedback during the development cycle may
significantly affect the requirements of the application. Therefore, it is important to
build the application so that it is flexible and can be easily modified or extended
over time. Designing for maintainability can be hard to accomplish. It requires an
architecture that allows individual parts of the application to be independently
developed and tested and that can be modified or updated later, in isolation,
without affecting the rest of the application.

Designing and building applications in a monolithic style can lead to an application
that is very difficult and inefficient to maintain. In this case, “monolithic” refers to an
application in which the components are very tightly coupled and there is no clear
separation between them. Typically, applications designed and built this way suffer
from a number of problems that make the developer’s life hard. It is difficult to add
new features to the system or replace existing features, it is difficult to resolve bugs
without breaking other portions of the system, and it is difficult to test and deploy.
Also, it impacts the ability of developers and designers to work efficiently together.

The Composite Approach
An effective remedy for these challenges is to partition the application into a number
of discrete, loosely coupled, semi-independent components that can then be easily in-
tegrated together into an application “shell” to form a coherent solution. Applications
designed and built this way are named composite applications.

Composite applications provide many benefits, including the following:
l	 They allow modules to be individually developed, tested, and deployed by dif-

ferent individuals or sub-teams. Modules can be modified or extended with new
functionality more easily, thereby allowing the application to be more easily ex-
tended and maintained.

l	 They provide a common shell composed of UI components contributed from vari-
ous modules that interact in a loosely coupled way. This reduces the contention
that arises from multiple developers adding new functionality to the UI, and it
promotes a common appearance.

l	 They promote re-use and a clean separation of concerns between the application’s
horizontal capabilities, such as logging and authentication, and the vertical capa-
bilities, such as business functionality that is specific to your application.

l	 They help maintain a separation of roles by allowing different individuals or
sub-teams to focus on a specific task or piece of functionality according to their
focus or expertise. In particular, it provides a cleaner separation between the user
interface and the business logic of the application—this means the UI designer can
focus on creating a richer user experience.

Composite Application Guidance for WPF�

Composite applications are highly suited to a range of client application scenarios.
For example, a composite application is ideal for creating a rich end-user experience
over a number of disparate back-end systems. Figure 1.2 shows an example of this
type of a composite application.

Figure 1.2  Composite application with multiple back-end systems

In this type of application, the user can be presented with a rich and flexible user
experience that provides a task-oriented focus over functionality that spans multiple
back-end systems, services, and data stores, where each is represented by one or
more dedicated modules. The clean separation between the application logic and
the user interface allows the application to provide a consistent and differentiated
appearance (look and feel) across all constituent modules.

�Chapter 1:  Introduction

Additionally, a composite application can be useful when there are independently
evolving components in the UI that heavily integrate with each other and that are
often maintained by separate teams. Figure 1.3 shows a screen shot of this type of
application. Each of the areas highlighted represent independent components that
are composed into the UI.

Figure 1.3  Stock Trader RI composite application

In this case, the composite allows the application’s user interface to be dynamically
composed. This delivers a flexible user experience. For example, it can allow new
functionality to be dynamically added to the application at run time, which enables
rich end-user customization and extensibility.

Architectural Goals and Principles
The following table lists, approximately in priority order, the architectural principles
that have been prioritized by the Composite Application Guidance team’s customer
advisory board. These principles determine how the guidance was developed and
what the focus areas were.

Composite Application Guidance for WPF�

Quality Definition

Subsetability This is the ability to adopt a portion of the Composite Application Library. You can
choose only certain capabilities, incrementally adopt capabilities, and enable or
disable features.

Learnability This is the ability to quickly learn how to build WPF composite applications using
the Composite Application Library. With small digestible and independent capa-
bilities, you can start building your applications faster.

Extensibility This is the ability to enhance, extend, or replace pieces of the Composite Applica-
tion Library without requiring you to redesign the library or your application.

Compatibility This means you can adopt the Composite Application Library for an existing ap-
plication and you can use it with other existing infrastructure. Core services are
swappable.

Simplicity This means the Composite Application Library is designed in a minimalist way to
reduce the amount of complexity. The Composite Application Library strives for
the simplest approach to get the job done.

Testability The reference implementation in the Composite Application Guidance provides
an implementation for Separated Presentation patterns. These patterns allow UI
logic to be tested.

Performance The Composite Application Library minimizes overhead while the application is
running.

Scalability The application can scale to support increased load.
Upgradeability Existing WPF applications can be upgraded to use the Composite Application

Library.

Adoption Experience
The Composite Application Guidance has an explicit goal to provide a good adoption
experience. To deliver on this goal, the Composite Application Guidance provides the
following:
l	 You can “opt in” and “opt out” of the Composite Application Library capabilities.

For example, you can consume only services you need.
l	 You can incrementally add the Composite Application Library capabilities to your

existing WPF applications.
l	 It is non-invasive because of the following:

l	 It limits the Composite Application Library footprint in the code.
l	 It limits reliance on custom Composite Application Library attributes. You can

integrate existing libraries with the Composite Application Library through
a design that favors composition over inheritance (this avoids forcing you to
inherit from the classes in the Composite Application Library).

�Chapter 1:  Introduction

Concerns Not Addressed by the Composite Application Guidance
Please note that the Composite Application Guidance does not directly address the
following:
l	 Occasional connectivity
l	 Messaging infrastructure, including the following:

l	 Client/server communication
l	 Asynchronous communication
l	 Encryption

l	 Application performance
l	 Authentication and authorization
l	 Handling thread-safety from background updates, including the following:

l	 Data races
l	 Data synchronization
l	 Handling UI updates from multiple threads (the Composite Application

Library addresses some aspects of this)
l	 Versioning
l	 Error handling and fault tolerance

For more information about these topics, see the following resources:
l	 “Smart Client Architecture and Design Guide”
l	 “Occasionally Connected Systems Architecture: The Client”
l	 “Occasionally Connected Systems Architecture: Concurrency”

Considerations for Choosing the Composite Application Guidance
The Composite Application Guidance is for designing complex WPF applications.
The scenarios where you should consider using the Composite Application Guidance
include the following:
l	 You are building a composite application that presents information from multiple

sources through an integrated user interface.
l	 You are developing, testing, and deploying modules independently of the other

modules.
l	 Your application is being developed by multiple collaborating teams.

http://msdn.microsoft.com/en-us/library/ms998506.aspx
http://www.developer.com/design/article.php/3708006
http://www.developer.com/design/article.php/3705396

Composite Application Guidance for WPF10

If your applications do not require one or more of these scenarios, the Composite
Application Guidance may not be right for you. The Composite Application Guidance
requires you to have hands-on experience with WPF. If you need general information
about WPF, see the following sources:
l	 “Windows Presentation Foundation” on MSDN
l	 Sells, Chris and Ian Griffiths. Programming WPF: Building Windows UI with Windows

Presentation Foundation. Second Edition. O’Reilly Media, Inc., 2007.
l	 Nathan, Adam. Windows Presentation Foundation Unleashed. Indianapolis, IN: Sams

Publishing, 2006.

Guidelines for Choosing Composite UI Deliverables from
patterns & practices

The patterns & practices team has several deliverables for building composite appli-
cations. The following list highlights the scenarios where you should consider using
each, along with advantages and disadvantages to each approach:
l	 If you need to develop a composite Windows Forms application, consider using

the Smart Client Software Factory:
l	 It leverages the most mature platform.
l	 It offers a good development and debugging experience (including tooling, con-

trol support, drag and drop, and rapid application development experience).
l		 It includes code generation (this is provided with guidance package support

and recipes).
l	 It includes capabilities for occasionally connected clients.

l	 If you need to develop a composite Windows Forms application with islands of
WPF content, consider using the Smart Client Software Factory’s WPF interop
support:
l	 It can be leveraged with an existing Smart Client Software Factory infrastructure.
l	 It includes guidance automation (in the form of guidance package support and

recipes).
l	 If you want to upgrade an existing Composite UI Application Block application

to WPF, consider using the WPF/CAB layer in the Smart Client Contrib CodePlex
project:
l	 It allows building pure WPF-based applications with the Composite UI

Application Block.
l	 It can be leveraged with an existing Smart Client Software Factory infrastructure,

except for views.
l	 It is not maintained or owned by the patterns & practices team; instead, it is

supported by community.

http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/aa480482.aspx
http://www.codeplex.com/scsfcontrib
http://www.codeplex.com/scsfcontrib

Chapter 1:  Introduction

l	 It is a literal port of Composite UI Application Block to WPF and is not optimized
to take advantage of WPF.

l	 It does not include guidance automation.
l	 If you want to create a composite application with WPF or upgrade an existing

WPF application to a composite application, use Composite Application Guidance
for WPF:
l	 It targets WPF composite application development.
l	 It is designed to best use WPF capabilities.
l	 It includes a lightweight library—you can choose the library capabilities you

want to include.
l	 It integrates with existing applications and libraries.
l	 It does not include guidance automation.

Comparing to the Composite UI Application Block
This is not simply a new version of the patterns & practices Composite UI Application
Block. It is a new set of libraries and guidance, built from the ground up, that is
designed to help you develop new WPF composite applications. Although it is not
a new version of the Composite UI Application Block, it uses the core concepts of
the Composite UI Application Block, such as modularity, UI composition, services,
dependency injection, and event brokering. These concepts are essential for building
composite applications and Composite Application Guidance uses them; however,
the implementation differs from the Composite UI Application Block for several
reasons:
l	 Composite Application Guidance incorporates customer feedback.  Over the

years, the patterns & practices team has received great feedback, positive and
negative, about the Composite UI Application Block implementation. Some of
the negative feedback includes that it is too heavy, too complicated, too tightly
coupled, and too hard to get going. Additionally, customers expressed a need for
an approach that allows incremental adoption of the library and to work with
existing libraries. The patterns & practices team determined that the best way to
address the concerns and tackle the new ideas was with a clean break.

l	 The Composite UI Application Block was not built to support WPF.  Although
you can port the Composite UI Application Block to WPF, the application block
was not built to take advantage of WPF’s core functionality. In many instances,
the application block introduced mechanisms that are now native to WPF. For
example, WPF introduces attached properties that aid in UI composition in a
lighter-weight way than what existed in the application block. WPF is also an
inherently different paradigm than Windows Forms. There are many flexible
ways to compose your UI over the traditional way of using controls. WPF also
introduces the idea of using templates to control the way your UI renders.

http://www.microsoft.com/CompositeWpf
http://www.microsoft.com/CompositeWpf

Composite Application Guidance for WPF12

l	 The Composite UI Application Block relies on the Windows Forms development
experience.  Composite UI Application Block development scenarios depend on
the tooling and productivity experience provided for Windows Forms by Microsoft
Visual Studio® development system. Currently, the WPF developer experience is
a very different paradigm. In Visual Studio 2008, a good portion of WPF applica-
tion development still requires manually working with XAML. The built-in Visual
Studio designers provide only a small subset of the capabilities Windows Forms
developers are accustomed to. Tools such as Microsoft Expression Blend™ offer
some of these capabilities, but they are not targeted for developers and do not
integrate into the development environment. This experience will be improved in
future versions of the platform. Based on the current state of WPF development,
the transition from Windows Forms to WPF currently requires substantial effort
and developers face a steep learning curve. For these reasons, this guidance is
optimized for new composite application development in WPF.

For more information about the Composite Application UI Block, see “Composite UI
Application Block” on MSDN.

http://msdn.microsoft.com/en-us/library/cc540684.aspx
http://msdn.microsoft.com/en-us/library/cc540684.aspx

2
Design Concepts

This chapter discusses the core design concepts for building composite applications.
The design concepts are the following:
l	 UI Composition
l	 Modularity
l	 Container

These design concepts are important to your understanding of the technical concepts
that the Composite Application Guidance for WPF (Windows Presentation Foundation)
is based on.

UI Composition
Composite applications typically compose their user interfaces (UIs) from various
loosely coupled visual components, otherwise known as views, to deliver an inte-
grated application experience. To the user, the application appears as a seamless
program that offers many capabilities. For example, the Stock Trader Reference
Implementation (Stock Trader RI) has the views illustrated in Figure 2.1.

Composite Application Guidance for WPF14

Figure 2.1  Stock Trader RI views

There are many different challenges for composing the UI. The following are com-
mon challenges that are illustrated in the Stock Trader RI and enabled through the
Composite Application Library.
l	 Layout
l	 Commanding
l	 Eventing

The next sections describe each of these in greater detail.

Layout
In a composite application, views from multiple modules are displayed at run time.
Because of this, the application needs a mechanism for specifying how they are laid
out. There are several approaches to do this.

15Chapter 2:  Design Concepts

View Injection
In this approach, the application contains a registry of reserved locations in the UI. A
module can access one of the locations in the registry and use it to inject views. The
view being injected does not have any specific knowledge of how it will be displayed
in that location. The place it is being injected is referred to by a moniker, such as the
name. Each of the objects in the registry implements a specific interface that is used to
inject the view. Figure 2.2 illustrates the View Injection approach to dynamic layout.

Figure 2.2  View injection

The Composite Application Library introduces the concept of a region. Regions are
defined through attached properties in XAML. Together, regions and the region
manager implement view injection. The Stock Trader RI uses regions for composing
its UI. For more information about regions, see “Region” in Chapter 6, “Technical
Concepts,” and “UI Composition QuickStart” on MSDN.

http://msdn.microsoft.com/en-us/library/cc707868.aspx

Composite Application Guidance for WPF16

View Discovery
With View Discovery, the modules register their views (or presenters) in a central
location, such as in the container, using a well-known interface. A shell service or a
composite view then queries the container to discover the views that were registered.
After they are discovered, the service lays out those views on the screen as appropri-
ate, such as adding them to a panel or an items control. If, after the application is
loaded, additional views need to be displayed, such as a new order screen, the shell
service or composite view should be notified to handle the display. Figure 2.3 illus-
trates the View Discovery approach to dynamic layout.

Figure 2.3  View discovery

In the Stock Trader RI, the TrendLinePresenter is registered in the container by the
market module and retrieved from the container by the PositionSummaryPresen-
tationModel. The PositionSummaryPresentationModel then calls a method on its
view (which is a composite view) to handle the display of the trend line.

17Chapter 2:  Design Concepts

Commanding
In a composite WPF application, separated presentation patterns, such as Model-View-
Presenter, PresentationModel, and Model-View-ViewModel, are used for decoupling
the view from the business logic. How then, are actions within the view routed to the
appropriate handlers outside of the view? How are the UI elements associated with
those actions enabled or disabled based on state changes within the application?

WPF introduces the concept of commands to allow this to occur. UI elements can be
bound to a command, which handles the execution logic. After it is bound, it can
execute the command, and the element will be automatically enabled or disabled
along with the command. The default RoutedUICommand mechanism requires
event handlers to be defined in the receiving view. RoutedUICommands can also
only be received by UI elements in the visual tree, which is often not the case in a
composite application. Additionally, there are complex scenarios in composites
where the handling of the command is delegated to child commands.

To overcome this constraint, you can use WPF to create custom ICommands so that
you can directly route the handling logic. Two common approaches are delegation
and composition.

Delegation
This method uses a command that delegates off its handling logic, either through
events or delegates where it can be handled externally by a class such as a presenter,
service, controller, and so on. This provides the benefit of not having to put any code
in the code behind. The command requires two handlers: one for the Execute method
and one for the CanExecute method. Whenever the Execute or CanExecute methods
are called on the command, the handlers are called either through the event being
raised or the delegate being invoked. Figure 2.4 illustrates the Delegation approach
to commanding.

Figure 2.4  Delegation

Composite Application Guidance for WPF18

Composition
Composition is a variation of delegation. In this approach, a composite command
delegates its handling logic to a set of child commands, such as in a Save All scenario
described earlier. The composite command needs to provide a way for the child com-
mands to be registered. Executing the composite command executes the children. The
composite commands CanExecute returns false, unless all the children return true.

The Composite Application Library introduces the DelegateCommand<T> and
CompositeCommand classes as implementations of these approaches. For more
information about commands, see “Commands” in Chapter 6, “Technical Concepts,”
and “Commanding QuickStart” on MSDN. Figure 2.5 illustrates the Composition
approach to commanding.

Figure 2.5  Composition

Eventing
In a composite application, components, such as presenters, services, and controllers,
residing in different modules often need to communicate with one another based on
state changes. This is a challenge due to the highly decoupled nature of a composite
application because the publisher has no connection to the subscriber. Additionally,
there may be threading issues because the publisher is on a different thread than the
subscriber.

The Publish/Subscribe pattern addresses these challenges. There are several ways to
implement the pattern. Two approaches used in the Composite Application Guidance
are Event Services and Event Aggregation.

http://msdn.microsoft.com/en-us/library/cc707837.aspx
http://msdn.microsoft.com/en-us/library/ms978603.aspx

19Chapter 2:  Design Concepts

Event Services
In this method, an application-specific service raises standard .NET Framework
events. To add new events, the service and service interface need to be modified.
This service is registered in the container where it can be accessed by the different
modules in the system. The publisher and the subscriber reference the service inter-
face and do not depend on one another. Using this approach, the subscriber needs
to manually handle any thread marshaling concerns and handle unregistering itself
from the event so that it can be garbage collected. Figure 2.6 illustrates the Event
Services approach.

Figure 2.6  Event Services

Event Aggregation
This approach uses a generic event aggregator service registered in the container
that holds a repository of event objects. The event object itself uses delegates instead
of events. The advantage of this is that these delegates can be created at the time of
publishing and immediately released, which does not prevent the subscribers from
being garbage collected. Each event object contains a collection of subscribers it will
publish to. New events can be added to the system without modifying the service.
The event object can also automatically handle marshaling to the correct thread.

The EventAggregator service and CompositeWpfEvent class are implementations
that exist in the Composite Application Library. For more information, see “Event
Aggregator” in Chapter 6, “Technical Concepts,” and “Event Aggregation QuickStart”
on MSDN. Figure 2.7 on the next page illustrates the Event Aggregation approach.

http://msdn.microsoft.com/en-us/library/cc707857.aspx

Composite Application Guidance for WPF20

Figure 2.7  Event Aggregation

Modularity
Modularity is designing a system that is divided into a set of functional units (named
modules) that can be composed into a larger application. A module represents a set
of related concerns. It can include components, such as views or business logic, and
pieces of infrastructure, such as services for logging or authenticating users. Modules
are independent of one another but can communicate with each other in a loosely
coupled way.

A composite application exhibits modularity. Imagine an online banking program.
The user can access a variety of functions, such as transferring money between
accounts, paying bills, and updating personal information from a single UI. How-
ever, behind the scenes, each of these functions is a discrete module. These modules
communicate with each other and with back-end systems such as database servers.
Application services integrate components within the different modules and handle
the communication with the user. The user sees an integrated view that looks like a
single application.

Figure 2.8 illustrates a design of a composite application with multiple modules.

21Chapter 2:  Design Concepts

Figure 2.8  Module composition

Designing a Modular System
When you develop in a modularized fashion, you structure the application into
separate modules that can be individually developed, tested, and deployed by
different teams. Modules can enforce separation of concerns by vertically partitioning
the system and keeping a clean separation between the UI and business functionality.
Not having modularity makes it difficult for the team to introduce new features and
makes the system difficult to test and to deploy.

The following are specific guidelines for developing a modular system:
l	 Modules should be opaque to the rest of the system and initialized through a

well-known interface.
l	 Modules should not directly reference one another or the application that

loaded them.
l	 Modules should use services to communicate with the application or with

other modules.

Composite Application Guidance for WPF22

l	 Modules should not be responsible for managing their dependencies. These
dependencies should be provided externally, for example, through dependency
injection.

l	 Modules should not rely on static methods that can inhibit testability.
l	 Modules should support being added and removed from the system in a pluggable

fashion.

For more information about modules, see “Module” in Chapter 6, “Technical Concepts,”
and “Dynamic Modularity QuickStarts” on MSDN.

Container
Applications based on the Composite Application Library are composites that poten-
tially consist of many loosely coupled modules. They need to interact with the shell
to contribute content and receive notifications based on user actions. Because they are
loosely coupled, they need a way to interact and communicate with one another to
deliver the required business functionality.

To tie together these various modules, applications based on the Composite Ap-
plication Library rely on a dependency injection container. The container offers a
collection of services. A service provides functionality to other modules in a loosely
coupled way through an interface and is often a singleton. The container creates
instances of components that have service dependencies. During the component’s
creation, the container injects any dependencies that the component has requested
into it. If those dependencies have not yet been created, the container creates and
injects them first. In some cases, the container itself is resolved as a dependency. For
example, modules will often register views of the container by having the container
injected.

There are several advantages of using a container:
l	 A container removes the need for a component to have to locate its dependencies

or manage their lifetime.
l	 A container allows swapping the implementation of the dependencies without af-

fecting the component.
l	 A container facilitates testability by allowing dependencies to be mocked.
l	 A container increases maintainability by allowing new services to be easily added

to the system.

Note:  For an introduction to dependency injection and inversion of control, see the article “Loosen
Up - Tame Your Software Dependencies for More Flexible Apps” by James Kovacs in MSDN Magazine.
		

http://msdn.microsoft.com/en-us/library/cc707860.aspx
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx

23Chapter 2:  Design Concepts

In the context of an application based on the Composite Application Library, there
are specific advantages to a container:
l	 A container injects module dependencies into the module when it is loaded.
l	 A container is used for registering and resolving presenters and views.
l	 A container creates presenters and presentation models and injects the view.
l	 A container injects the composition services, such as the region manager and the

event aggregator.
l	 A container is used for registering module-specific services, which are services

that have module-specific functionality.

Note:  The Stock Trader RI and QuickStarts rely on the Unity Application Block as the container; this
is referred to as a “Unity container.” The Composite Application Library itself is not container-specific,
and you can use its services and patterns with other containers, such as Castle Windsor, Structure-
Map, and Spring.NET.
		

The following code shows how injection works. When the PositionModule is
created by the container, it is injected with the regionManager and the container.
In the RegisterViewsAndServices method, which is called from the module’s
Initialize method, when the module is loaded, various services, views, and pre-
senters are registered.

C# PositionModule.cs
public PositionModule(IUnityContainer container, IRegionManager regionManager)
{
 _container = container;
 _regionManagerService = regionManager;
}

public void Initialize()
{
 RegisterViewsAndServices();
 ...
}

protected void RegisterViewsAndServices()
{
 container.RegisterType<IAccountPositionService, AccountPositionService>
 (new ContainerControlledLifetimeManager());
 _container.RegisterType<IPositionSummaryView, PositionSummaryView>();
 container.RegisterType<IPositionSummaryPresentationModel, PositionSummary
 PresentationModel>();
 ...
}

http://msdn.microsoft.com/en-us/library/cc468366.aspx
http://www.castleproject.org/container/index.html
http://structuremap.sourceforge.net/Default.htm
http://structuremap.sourceforge.net/Default.htm
http://www.springframework.net/

Composite Application Guidance for WPF24

Using the Container
Containers are used for two primary purposes, namely registering and resolving.

Registering
For services to be available to be injected, they need to be registered with the con-
tainer. Registering a service involves passing the container a service interface and a
concrete type that implements that service. There are primarily two means for regis-
tering services: through code or through configuration. The specific means vary from
container to container. In the previous code example, you can see how the Account-
PositionService is registered with the IAccountPositionService. For an example
of entering configuration information through the Unity container, see “Entering
Configuration Information” on MSDN.

Services have a lifetime. This can be either a singleton (a single instance for the
container) or an instance. The lifetime can be specified at registration or through
configuration. The default lifetime depends on the container implementation. For
example, the Unity container will register services as instance by default.

Resolving
After a service is registered, it can be resolved or injected as a dependency. When
a service is being resolved, and the container needs to create a new instance, it will
inject the dependencies into these instances.

In general, when a service is resolved, one of three things will happen:
l	 If the service has not been registered, the container will throw an exception.

Note:  Some containers will allow you to resolve a concrete type that has not been registered.
	

l	 If the service has been registered as a singleton, the container will return the
singleton instance. If this is the first time the service was called for, the container
will create it and hold on to it for future calls.

l	 If the service has not been registered as a singleton, the container will return a
new instance and will not hold on to it.

The following code example shows where the IPositionSummaryPresentationModel
is being resolved by the container.

C# PositionModule.cs
IPositionSummaryPresentationModel presentationModel = _container.Resolve_
 <IPositionSummaryPresentationModel>();

The PositionSummaryPresentationModel constructor contains the following
dependencies which are injected when it is resolved.

http://msdn.microsoft.com/en-us/library/cc440941.aspx
http://msdn.microsoft.com/en-us/library/cc440941.aspx

25

C# PositionSummaryPresentationModel.cs
public PositionSummaryPresentationModel(
 IPositionSummaryView view,
 IAccountPositionService accountPositionService,
 IMarketFeedService marketFeedSvc,
 IMarketHistoryService marketHistorySvc,
 ITrendLinePresenter trendLinePresenter,
 IOrdersController ordersController,
 IEventAggregator eventAggregator)

Considerations for Using the Container
You should consider the following before using containers:
l	 Consider whether it is appropriate to register and resolve components using the

container:
l	 Consider whether the performance impact of registering in the container and

resolving instances from it is acceptable in your scenario. For example, if you
need to create 10,000 polygons to draw a surface within the local scope of a
rendering method, the cost of resolving all of those polygon instances through
the container might have a significant performance cost because the container
uses reflection for creating each entity.

l	 If there are many or deep dependencies, the cost of creation can increase
significantly.

l	 If the component does not have any dependencies or is not a dependency for
other types, it may not make sense to put it in the container.

l	 Consider whether a component's lifetime should be registered as a singleton or
an instance:
l	 If the component is a global service that acts as a resource manager for a single

resource, such as a logging service, you may want to register it as a singleton.
l	 If the component provides shared state to multiple consumers, you may want

to register it as a singleton.
l	 If the object that is being injected needs to have a new instance of it injected

each time a dependent object needs one, register it as a non-singleton. For
example, each Presentation Model needs a new instance of a view.

l	 Consider whether you want to configure the container through code or configuration:
l	 If you want to centrally manage all the different services, configure the container

through configuration.
l	 If you want to conditionally register specific services, configure the container

through code.
l	 If you have module-level services, consider configuring the container through

code so that those services are registered only if the module is loaded.

Chapter 2:  Design Concepts

3
Patterns in the Composite
Application Library

Building composite applications is a complex endeavor that involves applying differ-
ent patterns. This section describes design patterns that the Composite Application
Guidance for WPF (Windows Presentation Foundation) team encountered when
building composite user interface (UI) applications. Figure 3.1 shows a typical
composite application architecture using the Composite Application Library and
some of the common patterns.

Figure 3.1  Composite application patterns

Composite Application Guidance for WPF28

Pattern Overview
This section provides a brief overview of each listed pattern and an area in the
Composite Application Guidance code to see an example of this pattern. The fol-
lowing patterns are described:
l	 Composite User Interface patterns:

l	 Composite and Composite View
l	 Command
l	 Adapter

l	 Modularity patterns:
l	 Separated Interface and Plug In
l	 Service Locator
l	 Event Aggregator
l	 Façade

l	 Testability patterns:
l	 Inversion of Control
l	 Separated Presentation

Composite and Composite View
At the heart of a composite application is the ability to combine individual views
into a composite view. Frequently, the composing view defines a layout for the child
views. For example, the shell of the application may define a navigation area and
content area to host child views at run time, as shown in Figure 3.2 on the next page.

29Chapter 3:  Patterns in the Composite Application Library

Figure 3.2  Composition example

For more information about the Composite pattern, see Chapter 4, “Structural Patterns,”
in Design Patterns: Elements of Reusable Object-Oriented Software1. The Composite View
pattern is a variation of the Composite pattern.

In the Stock Trader Reference Implementation (Stock Trader RI) application, this can
be seen with the use of regions in the shell. The shell defines regions that modules
locate and add views to during the initialization process. For examples of defining
regions, see the Shell.xaml file.

Composite Application Guidance for WPF30

Separated Interface and Plug-In
The ability to locate and load modules at run time opens greater opportunities for
parallel development, expands module deployment choices, and encourages a more
loosely coupled architecture. The following patterns enable this ability:
l	 Separated Interface. This pattern reduces coupling by placing the interface defini-

tion in a separate package as the implementation. The IModule definition is part
of the Composite Application Library, and each module implements the IModule
interface. For an example of implementing a module in the Stock Trader RI, see
the file NewsModule.cs.

l	 Plug-In. This pattern allows the concrete implementation of a class to be determined
at run time to avoid requiring recompilation due to which concrete implementation
is used or due to changes in the concrete implementation. In the Composite Appli-
cation Library, this is handled through the DirectoryLookupModuleEnumerator,
ConfigurationModuleEnumerator, and the ModuleLoader. For examples of plug-
ins, see the files DirectoryLookupModuleEnumerator.cs, ConfigurationModuleEnu-
merator.cs, and ModuleLoader.cs in the Composite Application Library.

Inversion of Control
Frequently, the Inversion of Control (IoC) pattern is used to enable extensibility in
a class or library. For example, a class designed with an eventing model at certain
points of execution inverts control by allowing event listeners to take action when
the event is invoked.

A form of the IoC pattern, Dependency Injection (DI), is used throughout the Stock
Trader RI and the Composite Application Library. During a class’s construction
phase, DI provides any dependent classes to the class. Because of this, the concrete
implementation of the dependencies can be changed more readily as the system
evolves. This better supports testability and growth of a system over time. The Stock
Trader RI uses Unity, a DI container. However, the Composite Application Library
itself is not tied to a specific DI container; you are free to choose whichever DI con-
tainer you want, but you must provide an adapter for it to the IContainerFacade
interface. To see an example of using the container in the Stock Trader RI, see the
NewsModule.cs file. For more details about IoC and DI patterns, see “Inversion of
Control Pattern” and “Dependency Injection Pattern” later in this chapter.

Another form of IoC demonstrated in the Stock Trader RI is the Template Method
pattern. In the Template Method pattern, a base class provides a recipe, or process,
that calls virtual or abstract methods. Because of this, an inherited class can override
appropriate methods to enable the behavior required. In the Composite Application
Library, this is shown in the UnityContainerAdapter class. For more information
about the Template Method pattern, see Chapter 5, “Behavioral Patterns,” in Design
Patterns: Elements of Reusable Object-Oriented Software1. To see an example of using the
Template pattern in the Stock Trader RI, see the file StockTraderRIBootstrapper.cs.

http://www.martinfowler.com/eaaCatalog/separatedInterface.html
http://www.martinfowler.com/eaaCatalog/plugin.html

31Chapter 3:  Patterns in the Composite Application Library

Service Locator
The Service Locator pattern is a form of the Inversion of Control pattern (as described
earlier in this section). It allows classes to locate specific services they are interested
in without needing to know who implements the service. Frequently, this is used as
an alternative to dependency injection, but there are times when a class will need to
use service location instead of dependency injection, such as when it needs to resolve
multiple implementers of a service. For more information about the Service Locator pat-
tern, see “Service Locator Pattern” later in this chapter. In the Composite Application
Library, this can be seen when ModuleLoader service resolves individual IModules.

For an example of using the UnityContainer to locate a service in the Stock Trader
RI, see the file NewsModule.cs.

Command
The Command pattern is a design pattern in which objects are used to represent
actions. A command object encapsulates an action and its parameters. This allows a
decoupling of the invoker of the command and the handlers of the command.

The Composite Application Library provides a CompositeCommand that allows com-
bining of multiple ICommand items and a DelegateCommand that allows a presenter
or model to provide an ICommand that connects to local methods for execution and
notification of ability to execute. To see the usage of the CompositeCommand and the
DelegateCommand in the Stock Trader RI, see the files StockTraderRICommands.cs
and OrderDetailsPresentationModel.cs.

For more details about the Command pattern, see Chapter 5, “Behavioral Patterns,”
in Design Patterns: Elements of Reusable Object-Oriented Software1.

Adapter
The Adapter pattern, as the name implies, adapts the interface of one class to match
the interface expected by another class. For more details, see Chapter 4, “Structural
Patterns,” in Design Patterns: Elements of Reusable Object-Oriented Software1. In the
Composite Application Library, the Adapter pattern is used to adapt regions to
the WPF ItemsControl, ContentControl, and Selector. To see the Adapters pattern
applied, see the file ItemsControlRegionAdatper.cs in the Composite Application
Library.

Composite Application Guidance for WPF32

Event Aggregator
The Event Aggregator pattern channels events from multiple objects through a single
object to simplify registration for clients. For more information about this pattern,
see “Event Aggregator” on Martin Fowler’s Web site. In the Composite Application
Library, a variation of the Event Aggregator pattern allows multiple objects to locate
and publish or subscribe to events. To see the EventAggregator and the events it
manages, see the EventAggregator and the CompositeWpfEvent in the Composite
Application Library.

To see the usage of the EventAggregator in the Stock Trader RI, see the file
WatchListPresentationModel.cs.

Separated Presentation
Separated Presentation patterns are a category of patterns that focus on keeping the
logic for the presentation separate from the visual representation. Primarily, this is
done to allow testing of your presentation logic without the need to involve a visual
representation. There are a number of specific implementations of these patterns, such
as Model-View-Controller (MVC), Model-View-Presenter (MVP) variants, and Model-
View-ViewModel (MVVM). For more information about MVC and MVP variants, see
“GUI Architectures” on Martin Fowler’s Web site. For more information about MVVM,
see “Introduction to Model/View/ViewModel pattern for building WPF apps” on
MSDN. This guidance includes a description of the Supervising Controller and Presen-
tation Model patterns. For more information, see “Supervising Controller Pattern” and
“Presentation Model Pattern” later in this chapter.

The Composite Application Library itself is intended to be neutral with respect to choice
of Separated Presentation pattern. You can be successful with any of the patterns,
although considering WPF’s highly binding-oriented nature, patterns that support
data-binding lend themselves better to WPF applications. The Stock Trader RI dem-
onstrates the use of the Presentation Model pattern, an MVP variant that encapsulates
the presentation logic and constructs a model to which the view can bind.

To see examples of the PresentationModel in the Stock Trader RI, see the files
WatchListPresentationModel.cs, WatchListView.xaml, and WatchListService.cs.

Façade
The Façade pattern simplifies a more complex interface, or set of interfaces, to ease their
use or to isolate access to those interfaces. For more details, see Chapter 4, “Structural
Patterns,” in Design Patterns: Elements of Reusable Object-Oriented Software. The Composite
Application Library interfaces with façades for the container and the logging services
to help isolate the library from changes in those services. This allows the consumer of

http://www.martinfowler.com/eaaDev/EventAggregator.html
http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html

33Chapter 3:  Patterns in the Composite Application Library

the library to provide their own services that will work with the Composite Application
Library. The IContainerFacade and ILoggerFacade are the interfaces the Composite
Application Library expects when communicating with a container or logging service
respectively.

More Information
The following are references and links to the patterns found in the Composite
Application Library and Stock Trader RI:
l	 “Composite” in Chapter 4, “Structural Patterns,” in Design Patterns: Elements of

Reusable Object-Oriented Software�

l	 “Adapter” in Chapter 4, “Structural Patterns,” in Design Patterns: Elements of
Reusable Object-Oriented Software1

l	 “Façade” in Chapter 4, “Structural Patterns,” in Design Patterns: Elements of Reusable
Object-Oriented Software1

l	 “Template Method” in Chapter 5, “Behavioral Patterns,” in Design Patterns: Elements
of Reusable Object-Oriented Software1

l	 “Plugin” on Martin Fowler’s Web site
l	 “Dependency Injection Pattern” later in this chapter
l	 “Inversion of Control Pattern” later in this chapter
l	 “Service Locator Pattern” later in this chapter
l	 “Event Aggregator” on Martin Fowler’s Web site
l	 “Separated Interface” on Martin Fowler’s Web site
l	 “Separated Presentation Pattern” later in this chapter
l	 “Supervising Controller Pattern” later in this chapter
l	 “Presentation Model Pattern” later in this chapter
l	 “Model View Controller” and “Model-View-Presenter (MVP)” sections in “GUI

Architectures” on Martin Fowler’s Web site
l	 “Introduction to Model/View/ViewModel pattern for building WPF apps” on

John Gossman’s blog

�  Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, 1995.

http://www.martinfowler.com/eaaCatalog/plugin.html
http://www.martinfowler.com/eaaDev/EventAggregator.html
http://www.martinfowler.com/eaaCatalog/separatedInterface.html
http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html
http://www.microsoft.com/practices

Composite Application Guidance for WPF34

Dependency Injection Pattern

Problem
You have classes that have dependencies on services or components whose concrete
type is specified at design time. In this example, ClassA has dependencies on Servi-
ceA and ServiceB. Figure 3.3 illustrates this.

Figure 3.3  ClassA has dependencies on ServiceA and ServiceB

This situation has the following constraints:
l	 To replace or update the dependencies, you must change your classes’ source

code.
l	 The concrete implementation of the dependencies must be available at compile

time.
l	 Your classes are difficult to test in isolation because they have a direct reference to

their dependencies. This means that these dependencies cannot be replaced with
stubs or mocks.

l	 Your classes contain repetitive code for creating, locating, and managing their
dependencies.

35Chapter 3:  Patterns in the Composite Application Library

Forces
Any of the following conditions justifies using the solution described in this pattern:
l	 You want to decouple your classes from their dependencies so that these depen-

dencies can be replaced or updated with minimal changes or no changes to your
classes’ source code.

l	 You want to be able to write classes that depend on classes whose concrete imple-
mentation is not known at compile time.

l	 You want to be able to test your classes in isolation, without using the dependencies.
l	 You want to decouple your classes from being responsible for locating and managing

the lifetime of dependencies.

Solution
Do not instantiate the dependencies explicitly in your class. Instead, declaratively
express dependencies in your class definition. Use a Builder object to obtain valid
instances of your object’s dependencies and pass them to your object during the
object’s creation and/or initialization. Figure 3.4 illustrates this.

Figure 3.4  Conceptual view of the Dependency Injection pattern

Note:  Typically, you express dependencies on interfaces instead of concrete classes. This enables
easy replacement of the dependency concrete implementation without modifying your classes’
source code.
	

The following are the two main forms of dependency injection:
l	 Constructor injection
l	 Setter injection

Composite Application Guidance for WPF36

In constructor injection, you use parameters of the object’s constructor method to
express dependencies and to have the builder inject it with its dependencies. In setter
injection, the dependencies are expressed through setter properties that the builder
uses to pass the dependencies to it during object initialization.

Implementation Using the Unity Application Block
The Dependency Injection pattern can be implemented in several ways. The Unity
Application Block (Unity) provides a container that can be used for dependency in-
jection. For more information about the Unity Application Block, see “Unity
Application Block” on MSDN.

Example

The NewsReaderPresenter class of the Stock Trader RI (located at StockTraderRI.
Modules.News\Article\NewsReaderPresenter.cs) uses constructor dependency
injection to obtain a valid instance of a view that implements the INewsReaderView
interface. The class definition is shown in the following code.

C# NewsReaderPresenter.cs
public class NewsReaderPresenter : INewsReaderPresenter
{
 private INewsReaderView readerView;

 public NewsReaderPresenter(INewsReaderView view)
 {
 this.readerView = view;
 }

 public void SetNewsArticle(NewsArticle article)
 {
 readerView.Model = article;
 }

 public void Show()
 {
 readerView.ShowView();
 }
}

Because the NewsReaderPresenter class uses dependency injection to obtain its
dependencies, its dependencies can be replaced with mock implementations when
testing. The following test methods, taken from the fixture file StockTraderRI.
Modules.News.Tests\NewsView\NewsReaderPresenterFixture.cs, show how the
NewsReaderPresenter class can be tested in isolation using mock implementations
to replace the classes’ dependencies and verify behavior.

http://msdn.microsoft.com/en-us/library/cc468366.aspx
http://msdn.microsoft.com/en-us/library/cc468366.aspx

37Chapter 3:  Patterns in the Composite Application Library

C# NewsReaderPresenterFixture.cs
[TestMethod]
public void ShowInformsViewToShow()
{
 var view = new MockNewsReaderView();
 var presenter = new NewsReaderPresenter(view);

 presenter.Show();

 Assert.IsTrue(view.ShowViewWasCalled);
}

[TestMethod]
public void SetNewsArticlesSetsViewModel()
{
 var view = new MockNewsReaderView();
 var presenter = new NewsReaderPresenter(view);

 NewsArticle article = new NewsArticle() { Title = "My Title", Body = "My Body"};
 presenter.SetNewsArticle(article);

 Assert.AreSame(article,view.Model);
}

Liabilities
The dependency injection pattern has the following liabilities:
l	 There are more solution elements to manage.
l	 You have to ensure that, before initializing an object, the dependency injection

infrastructure can resolve the dependencies that are required by the object.
l	 There is added complexity to the source code; therefore, it is harder to understand.

Related Patterns
The following patterns are related to the Dependency Injection pattern:
l	 Inversion of Control. The Dependency Injection pattern is a specialized version of

the Inversion of Control pattern where the concern being inverted is the process of
obtaining the needed dependency.

l	 Service Locator. The Service Locator pattern solves the same problems that the
Dependency Injection pattern solves, but it uses a different approach.

More Information
For more information about the Dependency Injection pattern, see the following:
l	 “Inversion of Control Containers and the Dependency Injection pattern” on

Martin Fowler’s Web site
l	 “Design Patterns: Dependency Injection” by Griffin Caprio on MSDN

http://www.martinfowler.com/articles/injection.html
http://msdn.microsoft.com/en-us/magazine/cc163739.aspx

Composite Application Guidance for WPF38

Inversion of Control Pattern

Problem
You have classes that have dependencies on services or components whose concrete
type is specified at design time. In this example, ClassA has dependencies on ServiceA
and ServiceB. Figure 3.5 illustrates this.

Figure 3.5  ClassA has dependencies on ServiceA and ServiceB

This situation has the following problems:
l	 To replace or update the dependencies, you need to change your classes’ source

code.
l	 The concrete implementations of the dependencies have to be available at compile

time.
l	 Your classes are difficult to test in isolation because they have direct references to

dependencies. This means that these dependencies cannot be replaced with stubs
or mocks.

l	 Your classes contain repetitive code for creating, locating, and managing their
dependencies.

39Chapter 3:  Patterns in the Composite Application Library

Forces
Any of the following conditions justifies using the solution described in this pattern:
l	 You want to decouple your classes from their dependencies so that the depen-

dencies can be replaced or updated with minimal or no changes to your classes’
source code.

l	 You want to write classes that depend on classes whose concrete implementations
are not known at compile time.

l	 You want to test your classes in isolation, without using the dependencies.
l	 You want to decouple your classes from being responsible for locating and man-

aging the lifetime of dependencies.

Solution
Delegate the function of selecting a concrete implementation type for the classes’
dependencies to an external component or source.

Implementation Details
The Inversion of Control pattern can be implemented in several ways. The Dependency
Injection pattern and the Service Locator pattern are specialized versions of this pat-
tern that delineate different implementations. Figure 3.6 illustrates the conceptual
view of both patterns.

Figure 3.6  Conceptual view of the Service Locator and Dependency Injection patterns

For more information about these patterns, see “Dependency Injection Pattern” and
“Service Locator Pattern” later in this chapter.

Composite Application Guidance for WPF40

Examples
The following are example implementations of the Inversion of Control pattern:
l	 In the Configuration Modularity QuickStarts, the class ModuleA defined in the

ModuleA project uses dependency injection to obtain a reference to the region
manager service, as shown in the following code.

C# ModuleA.cs
public class ModuleA : IModule
{
 private readonly IRegionManager _regionManager;

 public ModuleA(IRegionManager regionManager)
 {
 _regionManager = regionManager;
 }

 ...
}

Because the ModuleA class is instantiated by a container and an instance of
the region manager service is registered with the container, the ModuleA class
receives a valid instance of the region manager service when it is constructed.
Note that a mock instance of the region manager service can be supplied when
testing the ModuleA class by passing the mock instance in the constructor’s
parameter.

l	 The following code, extracted from the NewsModule class of the Stock Trader RI
(this class is located at StockTraderRI.Modules.News\NewsModule.cs), shows
how an instance that implements the INewsController interface is obtained using
the service locator pattern. The variable _container holds an instance to a container
that has logic to locate a valid instance of the requested type.

C# NewsModule.cs
public void Initialize()
{
 RegisterViewsAndServices();
 INewsController controller = _container.Resolve<INewsController>();
 controller.Run();
}

Note that for testing purposes, you could configure the container to return a
mock instance that implements the INewsController interface instead of the real
implementation. This enables you to test the NewsModule class in isolation.
The following code, extracted from the NewsModuleFixture test class (located
in StockTraderRI.Modules.News.Tests\NewsModuleFixture.cs), shows how
the NewsModule class can be tested in isolation using a mock instance for the
INewsController interface.

41Chapter 3:  Patterns in the Composite Application Library

C# NewsModuleFixture.cs
[TestMethod]
public void InitCallsRunOnNewsController()
{
 MockUnityResolver container = new MockUnityResolver();
 var controller = new MockNewsController();
 container.Bag.Add(typeof(INewsController), controller);
 var newsModule = new NewsModule(container);

 newsModule.Initialize();

 Assert.IsTrue(controller.RunCalled);
}

Liabilities
The Inversion of Control pattern has the following liabilities:
l	 You need to implement a mechanism that provides the dependencies that are

required by the object that is being initialized.
l	 There is added complexity to the source code, which makes it harder to understand.

Related Patterns
The following patterns are related to the Inversion of Control pattern:
l	 Dependency Injection. The Dependency Injection pattern is a specialization of the

Inversion of Control pattern. The Dependency Injection pattern uses a builder
object to initialize objects and provide the required dependencies to the object.

l	 Service Locator. The Service Locator pattern is a specialization of the Inversion
of Control pattern. The Service Locator pattern introduces a locator object that
objects use to resolve dependencies.

More Information
For more information about Inversion of Control patterns, see the following:
l	 “Inversion of Control Containers and the Dependency Injection pattern” on

Martin Fowler’s Web site.

http://www.martinfowler.com/articles/injection.html

Composite Application Guidance for WPF42

Service Locator Pattern

Problem
You have classes that have dependencies on services whose concrete type is specified
at design time. In this example, ClassA has dependencies on ServiceA and ServiceB.
Figure 3.7 illustrates this.

Figure 3.7  ClassA has dependencies on ServiceA and ServiceB

This situation has the following constraints:
l	 To replace or update the dependencies, you must change your classes’ source code.
l	 The concrete implementation of the dependencies must be available at compile time.
l	 Your classes are difficult to test in isolation because they have a direct reference to

their dependencies. This means that these dependencies cannot be replaced with
stubs or mocks.

l	 Your classes contain repetitive code for creating, locating, and managing their
dependencies.

Forces
Any of the following conditions justifies using the solution described in this pattern:
l	 You want to decouple your classes from their dependencies so that these depen-

dencies can be replaced or updated with minimal or no changes to your classes’
source code.

l	 You want to write classes that depend on classes whose concrete implementation
is not known at compile time.

43Chapter 3:  Patterns in the Composite Application Library

l	 You want to be able to test your classes in isolation, without using the dependencies.
l	 You want to decouple your classes from being responsible for locating and man-

aging the lifetime of dependencies.

Solution
Create a service locator that contains references to the services and that encapsulates
the logic to locate them. In your classes, use the service locator to obtain service
instances. Figure 3.8 illustrates this.

Figure 3.8  ClassA uses the service locator to get an instance of ServiceA

The service locator does not instantiate the services. It provides a way to register ser-
vices and it holds references to the services. After the service is registered, the service
locator can find the service.

Note:  The service locator should provide a way to locate a service without specifying the concrete
type. For example, it could use a string key or a service interface type. This enables easy replacement
of the dependency concrete implementation without modifying your classes’ source code.
	

Implementation with the Unity Application Block
The Service Locator pattern can be implemented in several ways. The Unity Applica-
tion Block provides a container that can be used as a service locator. For more infor-
mation about the Unity Application Block, see Unity Application Block.

Example

The following code, extracted from the NewsModule class of the Stock Trader RI
(this class is located at StockTraderRI.Modules.News\NewsModule.cs), shows how
an instance that implements the INewsController interface is obtained using the ser-
vice locator pattern. The variable _container holds an instance to a Unity container
that has logic to locate a valid instance of the requested type.

http://msdn.microsoft.com/en-us/library/cc468366.aspx

Composite Application Guidance for WPF44

C# NewsModule.cs
public void Initialize()
{
 RegisterViewsAndServices();
 INewsController controller = _container.Resolve<INewsController>();
 controller.Run();
}

Note that for testing purposes, you could configure the container to return a mock
instance that implements the INewsController interface instead of the real imple-
mentation. This enables you to test the NewsModule class in isolation. The following
code, extracted from the NewsModuleFixture test class (located at StockTraderRI.
Modules.News.Tests\NewsModuleFixture.cs), shows how the NewsModule class
can be tested in isolation using a mock instance for the INewsController interface.

C# NewsModuleFixture.cs
[TestMethod]
public void InitCallsRunOnNewsController()
{
 MockUnityResolver container = new MockUnityResolver();
 var controller = new MockNewsController();
 container.Bag.Add(typeof(INewsController), controller);
 var newsModule = new NewsModule(container);

 newsModule.Initialize();

 Assert.IsTrue(controller.RunCalled);
}

Liabilities
The Service Locator pattern has the following liabilities:
l	 There are more solution elements to manage.
l	 You have to write additional code to add service references to the locator before

your objects use it.
l	 Your classes have an extra dependency on the service locator.
l	 The source code has added complexity; this makes the source code more difficult

to understand.

Related Patterns
The following patterns are related to the Service Locator pattern:
l	 Dependency Injection. The Dependency Injection pattern solves the same problems

that the Service Locator pattern solves, but it uses a different approach.
l	 Inversion of Control. The Service Locator pattern is a specialized version of

the Inversion of Control pattern where the concern being inverted is the process
of obtaining the needed dependency.

45Chapter 3:  Patterns in the Composite Application Library

More Information
For more information about the Service Locator pattern, see the following:
l	 “Inversion of Control Containers and the Dependency Injection pattern” on

Martin Fowler’s Web site
l	 “Service Locator” on MSDN

Separated Presentation Pattern

Problem
A view in a composite application contains controls that display application domain
data. A user can modify the data and submit the changes. The view retrieves the
domain data, handles user events, alters other controls on the view in response to
the events, and then it submits the changed domain data. Including the code that
performs these functions in the view makes the class complex, difficult to maintain,
and hard to test. In addition, it is difficult to share code between views that require
the same behavior.

Forces
Any of the following conditions justifies using the solution described in this pattern:
l	 You want to maximize the code that can be tested with automation. (Views are

hard to test.)
l	 You want to share code between views that require the same behavior.
l	 You want to separate business logic from user interface (UI) logic to make the code

easier to understand and maintain.

Solution
Separate the presentation logic from the business logic into different artifacts. The
Separated Presentation pattern can be implemented in multiple ways; the following
patterns provide prescriptive approaches to implement the pattern:
l	 Supervising Controller. This pattern, a variant of the Model-View-Presenter pat-

tern, separates the responsibilities for the visual display and the event handling
behavior into different classes named, respectively, the view and the presenter,
and permits using data binding to enable direct communication between the view
and the model.

l	 Presentation Model. This pattern, a variant of the Model-View-Presenter pattern,
supplements a façade on the model with UI-specific state and behavior that is easy
to consume from the view.

http://www.martinfowler.com/articles/injection.html
http://msdn.microsoft.com/en-us/library/cc304894.aspx

Composite Application Guidance for WPF46

Figure 3.9 shows the logical view of the Supervising Controller and the Presentation
Model patterns.

Figure 3.9  Logical view of the Supervising Controller and Presentation Model patterns

Liabilities
The Supervising Controller and the Presentation Model patterns have the following
liabilities:
l	 There are more solution elements to manage.
l	 You need a way to create and connect the different artifacts that collaborate to

provide the visual content.

Related Patterns
The following patterns are related to the Separated Presentation pattern:
l	 Supervising Controller. This pattern solves the same problems that the Presentation

Model pattern solves. This pattern separates the responsibilities into two classes,
named respectively, the view and the presenter, and the view interacts with the
model for simple data binding.

l	 Presentation Model. This pattern is a specialization of the Separated Presentation
pattern. This pattern separates the responsibilities for the visual display and the
user interface state and behavior into different classes named, respectively, the
view and the presentation model.

47Chapter 3:  Patterns in the Composite Application Library

More Information
For more information about Separated Presentation patterns, see the following:
l	 “Separated Presentation” on Martin Fowler’s Web site

Supervising Controller Pattern

Problem
A view in a composite application contains controls that display application domain
data. A user can modify the data and submit the changes. The view retrieves the
domain data, handles user events, alters other controls on the view in response to
the events, and submits the changed domain data. Including the code that performs
these functions in the view makes the class complex, difficult to maintain, and hard
to test. In addition, it is difficult to share code between views that require the same
behavior.

Forces
Any of the following conditions justifies using the solution described in this pattern:
l	 You want to maximize the code that can be tested with automation. (Views are

hard to test.)
l	 You want to share code between views that require the same behavior.
l	 You want to separate business logic from user interface (UI) logic to make the code

easier to understand and maintain.

Solution
Separate the responsibilities for the visual display and the event handling behavior into
different classes named, respectively, the view and the presenter. The view class man-
ages the controls on the user interface and forwards user events to a presenter class.
The presenter contains the logic to respond to the events, update the model (business
logic and data of the application) and, in turn, manipulate the state of the view.

To facilitate testing the presenter, the presenter has a reference to the view interface
instead of to the concrete implementation of the view. By doing this, you can easily
replace the real view with a mock implementation to run tests.

http://www.martinfowler.com/eaaDev/SeparatedPresentation.html

Composite Application Guidance for WPF48

View Updates and Interaction with the Model
When the model is updated, the view also has to be updated to reflect the changes.
View updates can be handled in several ways. With the Supervising Controller pattern,
the view directly interacts with the model to perform simple data binding that can be
declaratively defined, without presenter intervention. The presenter updates the model;
it manipulates the state of the view only in cases where complex UI logic that cannot
be specified declaratively is required. Examples of complex UI logic might include
changing the color of a control or dynamically hiding/showing controls. Figure 3.10
illustrates the logical view of the Supervising Controller pattern.

Figure 3.10  Supervising Controller logical view

By using the Supervising Controller pattern in a composite WPF application, devel-
opers can use the data-binding capabilities provided by WPF. With data binding,
elements that are bound to application data automatically reflect changes when the
data changes its value. Also, data binding can mean that if an outer representation of
the data in an element changes, the underlying data can be automatically updated to
reflect the change. For example, if the user edits the value in a TextBox element, the
underlying data value is automatically updated to reflect that change.

A typical use of data binding is to place server or local configuration data into forms
or other UI controls. In WPF, this concept is expanded to include the binding of a broad
range of properties to a variety of data sources. In WPF, dependency properties of ele-
ments can be bound to common language runtime (CLR) objects (including ADO.NET
objects or objects associated with Web services and Web properties) and XML data.

49Chapter 3:  Patterns in the Composite Application Library

Note:  For more information about data-binding in WPF, see “Data Binding” on MSDN.
	

Example
To see an example implementation of the Supervising Controller pattern, see the files
TrendLinePresenter.cs, TrendLineView.xaml, and TrendLineView.xaml.cs in the Stock
Trader RI (these files are located in the TrendLine folder of the StockTraderRI.Modules.
Market project).

Liabilities
The Supervising Controller pattern has the following liabilities
l	 There are more solution elements to manage.
l	 You need a way to create and connect views and presenters.
l	 The model is not aware of the presenter. Therefore, if the model is changed by any

component other than the presenter, the presenter must be notified. Typically, noti-
fication is implemented with the Observer pattern. For more information about the
Observer pattern, see “Exploring the Observer Design Pattern” on MSDN.

Related Patterns
The following patterns are related to the Separated Presentation pattern:
l	 Separated Presentation. This pattern is a specialization of the Separated Presenta-

tion pattern. Separated Presentation patterns are a category of patterns that focus
on keeping the logic for the presentation separate from the visual representation.

l	 Presentation Model. This pattern solves the same problems that the Supervising
Controller pattern solves; the main difference is that the Presentation Model pat-
tern separates responsibilities into different classes named, respectively, the view
and the presentation model.

More Information
For more information about the Supervising Controller pattern, see the following:
l	 “Supervising Controller” on Martin Fowler’s Web site
l	 “Model-View-Presenter Pattern” on MSDN

http://msdn.microsoft.com/en-us/library/ms750612.aspx
http://msdn.microsoft.com/en-us/library/ms954621.aspx
http://www.martinfowler.com/eaaDev/SupervisingPresenter.html
http://msdn.microsoft.com/en-us/library/cc304760.aspx

Composite Application Guidance for WPF50

Presentation Model Pattern

Problem
A view in a composite application contains controls that display application domain
data. A user can modify the data and submit the changes. The view retrieves the
domain data, handles user events, alters other controls on the view in response to
the events, and submits the changed domain data. Including the code that performs
these functions in the view makes the class complex, difficult to maintain, and hard
to test. In addition, it is difficult to share code between views that require the same
behavior.

Forces
Any of the following conditions justifies using the solution described in this pattern:
l	 You want to maximize the code that can be tested with automation. (Views are

hard to test.)
l	 You want to share code between views that require the same behavior.
l	 You want to separate business logic from user interface (UI) logic to make the code

easier to understand and maintain.

Solution
Separate the responsibilities for the visual display and the user interface state and
behavior into different classes named, respectively, the view and the presentation
model. The view class manages the controls on the user interface and the presenta-
tion model class acts as a façade on the model with UI-specific state and behavior, by
encapsulating the access to the model and providing a public interface that is easy
to consume from the view (for example, using data binding). Figure 3.11 provides a
logical view of the Presentation Model pattern.

51Chapter 3:  Patterns in the Composite Application Library

Figure 3.11  Presentation Model pattern logical view

By using the Presentation Model pattern in a composite WPF application, developers
can use the data-binding capabilities provided by WPF. With data binding, elements
that are bound to application data automatically reflect changes when the data
changes its value. Also, data binding can mean that if an outer representation of the
data in an element changes, the underlying data can be automatically updated to
reflect the change. For example, if the user edits the value in a TextBox element, the
underlying data value is automatically updated to reflect that change.

A typical use of data binding is to place server or local configuration data into forms
or other UI controls. In WPF, this concept is expanded to include the binding of a
broad range of properties to a variety of data sources. In WPF, dependency proper-
ties of elements can be bound to common language runtime (CLR) objects (including
ADO.NET objects or objects associated with Web services and Web properties) and
XML data.

Note:  For more information about data binding in WPF, see “Data Binding” on MSDN.
	

When you implement the Presentation Model pattern in a WPF application, you can
use data templates for your presentation model class and have WPF automatically
apply the template for it to render the visual content. By doing this, developers keep
the view code simple, and UI designers can focus on building the data templates. For
more information about data templates, see “Data Templating Overview” on MSDN.

http://msdn.microsoft.com/en-us/library/ms750612.aspx
http://msdn.microsoft.com/en-us/library/ms742521.aspx

Composite Application Guidance for WPF52

Note:  A variant of the Presentation Model pattern named Model-View-ViewModel is commonly used
in WPF applications. For more information, see John Gossman’s Tales from the Smart Client blog
“Introduction to Model/View/ViewModel pattern for building WPF apps” on MSDN.
	

Example
To see an example implementation of the Presentation Model pattern, see the files
WatchListPresentationModel.cs, WatchListView.xaml, and WatchListService.cs in the
Stock Trader RI (these files are located in the WatchList folder of the StockTraderRI.
Modules.Watch project).

Liabilities
The Presentation Model pattern has the following liabilities:
l	 There are more solution elements to manage.
l	 You need a way to synchronize the view with the presentation model. Typically,

this is done through data binding.
l	 The model is not aware of the presentation model. Therefore, if the model is

changed by any component other than the presentation model, the presentation
model must be notified. Typically, notification is implemented with the Observer
pattern. For more information about the Observer pattern, see “Exploring the
Observer Design Pattern” on MSDN.

Related Patterns
The following patterns are related to the Separated Presentation pattern:
l	 Separated Presentation. This pattern is a specialization of the Separated Presentation

pattern. Separated Presentation patterns are a category of patterns that focus on
keeping the logic for the presentation separate from the visual representation.

l	 Supervising Controller. This pattern solves the same problems that the Presentation
Model pattern solves; the main difference is that the Supervising Controller pat-
tern separates responsibilities into different classes named, respectively, the view
and the presenter, and the view interacts with the model for simple data binding.

More Information
For more information about the Presentation Model pattern, see the following:
l	 “Presentation Model” on Martin Fowler’s Web site.

http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx
http://msdn.microsoft.com/en-us/library/ms954621.aspx
http://msdn.microsoft.com/en-us/library/ms954621.aspx
http://www.martinfowler.com/eaaDev/PresentationModel.html

4
Composite Application Library

The Composite Application Library helps architects and developers create composite
Windows Presentation Foundation (WPF) applications. Composite WPF applications
are composed of discrete, functionally complete, pieces that work together to create a
single, integrated user interface. The Composite Application Library accelerates the
development of composite applications using proven design patterns to help you
build these types of applications.

The Composite Application Library is designed to address requests from architects and
developers who create WPF client applications and need to accomplish the following:
l	 Build clients composed of independent, yet cooperating, modules.
l	 Separate the concerns of module builders from the concerns of the shell developer;

by doing this, business units can concentrate on developing domain-specific mod-
ules instead of the WPF architecture.

l	 Use an architectural infrastructure to produce a consistent and high quality inte-
grated application.

Your composite WPF application will use the Composite Application Library, and it
may use the Unity Extensions for Composite Application Library and the Unity Appli-
cation Block. These are built on the .NET Framework 3.5, as illustrated in Figure 4.1 on
the next page.

Composite Application Guidance for WPF54

Figure 4.1  Composite application package

The Composite Application Library addresses a number of common requirements
for building composite applications. These compositional needs are described in
the “Overview of the Composite Application Guidance for WPF” in Chapter 1,
“Introduction.” As a whole, the Composite Application Library accelerates devel-
opment by providing the services and components to address these needs.

System Requirements
This guidance was designed to run on the Microsoft Windows® Vista, Windows XP
Professional, or Windows Server 2003 operating system. Applications built using this
guidance will require the .NET Framework 3.5 to run.

Before you can use the Composite Application Library, the following must be installed:
l	 Microsoft Visual Studio 2008
l	 Microsoft .NET Framework 3.5 (the .NET Framework 3.5 includes WPF)

http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=333325fd-ae52-4e35-b531-508d977d32a6&DisplayLang=en

55Chapter 4:  Composite Application Library

Composite Application Library Baseline Architecture
The architecture the Composite Application Library seeks to address primarily consists
of a shell application that defines regions for hosting content with views and services
offered by multiple modules—possibly dynamically loaded. Underlying the applica-
tion, and the Composite Application Library, is a service layer to provide access to
the application services based on the Composite Application Library, as illustrated in
Figure 4.2.

Figure 4.2  A composite application architecture with the Composite Application Library

Composite Application Guidance for WPF56

The architectural pieces of a composite application are the following:
l	 Shell.  This is the top-level window to host different user interface components.

The shell itself defines the layout structure, but it is typically unaware of the exact
contents it will contain. It typically has minimal capability, so most of the applica-
tion’s functionality and content is provided by modules.

l	 Shell presenter.  Any logic for the shell presentation is handled by the shell
presenter. This follows the separated presentation pattern and helps separate the
display of content from the user interface logic. This separation improves testabil-
ity and maintainability.

l	 Regions.  These are placeholders for content and host visual elements in the shell.
These can be located by other components through the RegionManager to add
content to those regions. Regions can also be used in module views to create
discoverable content placeholders.

l	 Modules.  These are separate sets of views and services, frequently logically
related, that can be independently developed, tested, and optionally deployed. In
many situations, these can be developed and maintained by separate teams. In a
composite application, modules must be discovered and loaded; in the Composite
Application Library this process is known as module enumeration and module
loading. The following describes module enumeration and module loading:
l	 Module enumeration.  This is the process of locating individual modules for

loading. This location can be done statically or dynamically through a configu-
ration file or by examining a directory. This includes the following types of
enumeration:
l	 Static enumeration.  This allows the shell application to specify the set of

modules in code and is statically referenced from the shell application.
l	 Configuration-base enumeration.  This specifies the modules to load in a

configuration file.
l	 Directory sweep enumeration.  This examines a folder for the modules to

load.
l	 Module loading.  This feature allows a component to specify, in code, when

a module should be loaded. Modules discovered during enumeration may be
immediately loaded or loaded on-demand.

l	 Initialization.  The ModuleLoader initializes each module when it is first
loaded.

57Chapter 4:  Composite Application Library

l	 Views.  Views are responsible for displaying content on the screen. In a composite
application, views are frequently the element of composition by the shell or other
views. The following are considerations for use when developing views in WPF:
l	 The user interface should be testable and implement appropriate design pat-

terns for separations of concerns. Typically, this involves some type of binding-
oriented design pattern, such as Supervising Controller or Presentation Model.

l	 WPF data binding should be used wherever possible.
l	 WPF commands should be used for binding user interface actions.

l	 Communication.  Different components in the application may need to communicate
with one another whether they reside in the same module or different modules. This
needs to happen without the modules requiring hard dependencies on one another.
The Composite Application Library provides mechanisms to do this with the
CompositeCommand and EventAggregator. Communication strategies may need
to consider thread-safety issues. The following describes the CompositeCommand
and EventAggregator:
l	 CompositeCommand.  Frequently, when compositing views, commands those

views support must also be composited. The composite command is a strategy
to combine the execution of commands. This allows the command invoker to
interact with a single command that affects multiple commands.

l	 EventAggregator.  In views that need to send an event to other views or com-
ponents and do not require a response, use the EventAggregator. Multiple
components can publish an event, and multiple subscribers can receive the event.

l	 Services.  The application and modules expose services for their own and shared
use. These are exposed through a service container that locates and, often, con-
structs the services. By default, the Composite Application Library uses the Unity
container for this service location.

When to Use the Composite Application Library
The Composite Application Library is most useful when building brand-new com-
posite WPF applications. The Composite Application Library provides core services
for building composite views and loading modules, and it helps solve challenges in
communication across decoupled components.

Discrete services offered by the Composite Application Library also help when seek-
ing to upgrade an existing WPF application to a composite WPF application.

Composite Application Guidance for WPF58

A New Application Based on the Composite Application Library
Depending on application complexity, a composite WPF application can consist of a
shell project with a number of module projects. The activity diagram in Figure 4.3
illustrates activities needed to develop a composite WPF application using the
Composite Application Library.

Figure 4.3  Activities for creating a WPF composite application

The following are the core activities needed when starting a new composite WPF
application:
l	 Define the shell.
l	 Create the bootstrapper.
l	 Create a module.
l	 Add a module view to the shell.

59Chapter 4:  Composite Application Library

Define the Shell
The application shell provides the basic layout for the application. This layout is
defined using regions that modules can use to inject views. Views, like shells, can use
regions to define discoverable areas that content can be injected into, as illustrated in
Figure 4.4. Shells typically set the appearance for the entire application and contain
the styles that are used throughout the application.

Figure 4.4  Shells, views, and regions

Create the Bootstrapper
The bootstrapper is the glue that connects the application with the Composite Applica-
tion Library services and the default Unity container. Each application creates an
application specific to the bootstrapper inheriting from UnityBootstrapper and de-
fines the enumeration strategy for its modules, such as static or configuration-based,
as illustrated in Figure 4.5 on the next page.

Composite Application Guidance for WPF60

By default, the bootstrapper logs events using the .NET Framework Trace class.
Most applications will want to supply their own logging services, such as Enterprise
Library logging. Applications can supply their logging service in their bootstrapper.

By default, the UnityBootstrapper enables all the Composite Application Library
services. These can be disabled or replaced in your application-specific bootstrapper.

Figure 4.5  Diagram demonstrating connecting to the Composite Application Library

For more information about the bootstrapper, see the following sections:
l	 “Bootstrapper” in Chapter 6, “Technical Concepts”
l	 “Container and Services” in Chapter 6, “Technical Concepts”

61Chapter 4:  Composite Application Library

Create the Module
The module contains the views and services specific to a piece of the application’s
functionality. Frequently, these are contained in separate assemblies and developed
by separate teams. A module is denoted by a class that implements the IModule
interface. These modules, during initialization, register their views and services and
may add one or more views to the shell.

Depending on your module loading approach, you may need to apply attributes to
your module classes or define dependencies between your modules. For more infor-
mation about modules, see “Module” in Chapter 6, “Technical Concepts.”

Add a Module View to the Shell
Modules take advantage of the shell’s regions for placing content. During initializa-
tion, modules use the RegionManager to locate regions in the shell and add one or
more views to those regions. The RegionManager is responsible for keeping track
of regions throughout the application and is a core service initialized from the boot-
strapper. For more information about shells and views, see the following sections:
l	 “Shell and View” in Chapter 6, “Technical Concepts”
l	 “UI Composition” in Chapter 2, “Design Concepts”

Goals and Benefits
This section provides an overview of the goals and benefits of using the Composite
Application Library.

Architectural Goals
The Composite Application Library is designed to help architects and developers
achieve the following objectives:
l	 Create a complex WPF application from modules that can be built, assembled,

and, optionally, deployed by independent teams.
l	 Minimize cross-team dependencies and allow teams to specialize in different

areas, such as UI design, business logic implementation, and infrastructure code
development.

l	 Use an architecture that promotes reusability across independent teams.
l	 Increase the quality of applications by abstracting common services that are

available to all the teams.
l	 Incrementally integrate new capabilities.

Composite Application Guidance for WPF62

Design Goals
The Composite Application Library is designed to support the following extensibility
and developer productivity objectives:
l	 Different teams can create modules that can be independently deployed to a client

computer.
l	 Developers can easily implement WPF user interfaces that use patterns to separate

user interface design code from business logic, such as the Presentation Model
pattern and the Model-View-Presenter with Supervising Controller pattern.

l	 Cooperating modules can contribute and use shared infrastructure components.
l	 The shell that hosts the modules can determine the appearance of shared module

elements.
l	 Developers can use pieces of the Composite Application Library without using the

entire library.
l	 The Composite Application Library can integrate into existing WPF applications.
l	 The Composite Application Library is extensible so you can customize its behavior

for special or uncommon scenarios.

The Composite Application Library helps achieve these design objectives through the
following strategies:
l	 It uses dependency injection techniques to simplify the code necessary to implement

the Presentation Model and Model-View-Presenter patterns.
l	 It provides a module loading infrastructure and allows modules to perform

startup operations. Modules can also register shared components for use by other
modules or the shell application.

l	 It includes an extensive set of unit tests with the source code. Developers can
modify the library and use the test to verify its functionality.

l	 It separates the interface and implementation for the library services.
l	 It provides ClickOnce deployment for independent modules.

63Chapter 4:  Composite Application Library

Benefits
Developers can use the Composite Application Library to develop WPF applications
that are composed of independent, but collaborating, modules. This allows developers
or teams to concentrate on specific tasks. For example, developers of service com-
ponents can focus on the business logic in the component; they do not have to be
concerned with background issues, such as the appearance of the application.

Applications built with the Composite Application Library have a loosely coupled
design that clearly separates user interface constructs (such as views, menu items,
and toolbars), infrastructure components (such as logging, exception handling,
authentication, or authorization), and business logic (such as the user interface logic,
entities, and service agents of the specific application).

Modularity
The Composite Application Library promotes modularity; this means you can imple-
ment business logic, visual components, infrastructure components, presenter or
controller components, and any other objects the application requires, in separate
modules. Developers can easily create the UI and implement business logic inde-
pendently of each other.

For more details about modularity, see “Module” in Chapter 6, “Technical Concepts.”

User Interface Composition
The Composite Application Library promotes user interface composition; this means
you can implement visual components from various loosely coupled visual compo-
nents, known as views, which may reside in separate modules. The visual components
may display content from multiple back-end systems. To the user, it appears as one
seamless application.

The Composite Application Library helps you compose commands and create events
that are executed across modules using a loosely coupled approach. Composing a
user interface of loosely coupled views across modules usually requires commands
and events to also be loosely coupled.

For more information about the user interface composition, see the following:
l	 “Shell and View” in Chapter 6, “Technical Concepts”
l	 “Region” in Chapter 6, “Technical Concepts”
l	 “UI Composition” in Chapter 2, “Design Concepts”

Composite Application Guidance for WPF64

Extensibility
The Composite Application Library provides the foundation for building WPF applica-
tions; its design promotes extensibility in many different ways. With it, you can do the
following:
l	 Replace the services and strategies provided as defaults (such as the way in which

modules are loaded) with your own implementations.
l	 Add custom services and behaviors as required by your applications.
l	 Use your own container or logging service.

For more information about extensibility, see “Customizing the Composite Application
Library” later in this chapter.

Adoption Experience
The Composite Application Library was designed in such a way that you can take
the services you need to help solve your problem without having to use the entire
library. For example, if you need to support a decoupled communication scenario,
you can take the EventAggregator service without using any of the other services
provided by the library.

Organization of the Composite Application Library
The Composite Application Library consists of three assemblies:
l	 Microsoft.Practices.Composite.  This assembly contains interfaces and compo-

nents to help build composite applications that are not specific to a user interface
technology. These components include the EventAggregator, TraceLogger, Mod-
uleLoader, StaticModuleEnumerator, ConfigurationModuleEnumerator, and
DirectoryLookupModuleEnumerator.

l	 Microsoft.Practices.Composite.Wpf.  This assembly contains interfaces and
components to help build composite applications that are specific to WPF.
These components include CompositeCommand, DelegateCommand,
CompositeWpfEvent, and RegionManager.

l	 Microsoft.Practices.Composite.UnityExtensions.  This assembly provides compo-
nents to use the Unity Application Block with the Composite Application Library for
WPF. These components include UnityBootstrapper and UnityContainerAdapter.

Applications based on the Composite Application Library are typically organized by
shell, module, and shared projects. Figure 4.6 illustrates the solution layout for the
Stock Trader RI.

65Chapter 4:  Composite Application Library

Figure 4.6  Solution layout

Technical Concepts
There are a number of technical concepts specific to the Composite Application
Library. These technical concepts are implementations of the design patterns and
concepts identified as important for building composite user interface (UI) applica-
tions. These technical concepts include “Bootstrapper,” “Container and Services,”
“Module,” “Region,” “Shell and View,” “Event Aggregator,” “Commands,” and
“Communication.” For details about the technical concepts, see Chapter 6,
“Technical Concepts.”

Composite Application Guidance for WPF66

Development Activities
“Development Activities” in Chapter 8, “Development, Customization, and Deployment
Information,” contains references to the How-to topics that you should use as a point
of reference when creating a composite application with the Composite Application
Library. These topics describe creating your solution and working with the bootstrap-
per, modules, commands, events, regions, services, and views.

Deploying Your Application
You can deploy and update your application using familiar desktop-based tech-
niques, such as by using a Windows Installer package or ClickOnce. Some of these
scenarios introduce more challenges because there are often no references between
assemblies, unlike in non-composite applications. Therefore, tools that support build-
ing Windows Installer packages or ClickOnce packages are unable to automatically
locate the required pieces for deployment. The Composite Application Library offers
some tools and techniques to help with managing ClickOnce deployments. For more
information, see “Deployment Activities” in Chapter 8, “Development, Customiza-
tion, and Deployment Information.”

Customizing the Composite Application Library
The Composite Application Guidance for WPF contains assets that represent recom-
mended practices for WPF client development. Developers can use an unmodified
version of the guidance to create WPF applications. However, because each applica-
tion is unique, you should analyze whether the Composite Application Guidance
is suitable for your particular needs. In some cases, you will want to customize the
guidance to incorporate your enterprise’s best practices and frequently repeated
developer tasks.

The Composite Application Library can serve as the foundation for your WPF client
applications. The Composite Application Library was designed so that significant
pieces can be customized or replaced to fit your specific scenario. You can modify the
source code for the existing library to incorporate new functionality. Developers can
replace key components in the architecture with ones of their own design due to the
reliance on a container to locate and construct key components in the architecture. In
the library, you can even replace the container itself if you want. Other common areas
to customize include creating or customizing the bootstrapper to select an enumera-
tion strategy for module loading, calling your own logger, and creating your own
region adapters.

67Chapter 4:  Composite Application Library

Guidelines for Extensibility
Use these guidelines when you extend the Composite Application Library. You can
extend the library by adding or replacing services, modifying the source code, or
adding new application capabilities.

Exposing Functionality
A library should provide a public API to expose the libraries functionality. The inter-
face of the API should be independent of the internal implementation. Developers
should not be required to understand the library design or implementation to effec-
tively use its default functionality. Whenever possible, the API should apply to com-
mon scenarios for a specific functionality.

Extending Libraries
The Composite Application Library provides extensibility points that developers can
use to tailor the library to suit their needs. For example, when using the Composite
Application Library, you can replace the provided logging service with your own
logging service.

You can extend the library without modifying its source code. To accomplish this, you
should use extensibility points, such as public base classes or interfaces. Developers
can extend the base classes or implement the interfaces and then add their extensions
to the library.

When defining the set of extensibility points, consider the effect on usability. A large
number of extensibility points can make the library complicated to use and difficult
to configure.

Some developers may be interested in customizing the code, which means that they
will modify the source code instead of using the extension points. To support this
effort, the library design should provide the following:
l	 It should follow object-oriented design principles whenever practical.
l	 It should use appropriate patterns.
l	 It should efficiently use resources.
l	 It should adhere to security principles (for example, distrust of user input and

principle of least privilege).

Composite Application Guidance for WPF68

Recommendations for Modifying the Composite Application Library
When modifying the source code, follow these best practices:
l	 Make sure you understand how the library works by reading the section that

describes its design.
l	 Consider changing the library’s namespace if you significantly alter the code or if

you want to use your customized version of the library together with the original
version.

l	 Use strong naming. A strong name allows the assembly to be uniquely identified,
versioned, and checked for integrity. You will need to generate your own key pair
to sign your modified version of the application block. For more information, see
“Strong-Named Assemblies” on MSDN. Alternatively, you can choose to not sign
your custom version. This is referred to as weak naming.

Extensibility Points in the Composite Application Library
Use the following reference list to identify the extension points, by functional area,
and associated information for extending the library.

Regions
The Composite Application Library provides default control adapters for enabling a
control as a region. Extensions around regions may involve providing custom region
adapters, custom regions, or replacing the region manager. If you have a custom WPF
control or a third-party WPF control that does not work with the provided region
adapters, you may want to create custom region adapters that will. It is also possible
to replace the default RegionManager by supplying a new IRegionManager in the
container.

For more information about the regions, region adapters, and the region manager
and customization, see the following:
l	 “Region” in Chapter 6, “Technical Concepts”
l	 “How to: Create a Custom Region Adapter” on MSDN

Logging
A number of components in the Composite Application Library log information,
warning messages, or error messages. To avoid a dependency on a particular logging
approach, it logs these messages to the ILoggerFacade interface. A common exten-
sion is to provide a custom logger for specific applications.

For information about providing custom loggers, see “How to: Provide a Custom
Logger” on MSDN.

http://msdn2.microsoft.com/en-us/library/wd40t7ad(vs.71).aspx
http://msdn.microsoft.com/en-us/library/cc707884.aspx
http://msdn.microsoft.com/en-us/library/cc707911.aspx
http://msdn.microsoft.com/en-us/library/cc707911.aspx

69

Modules
The Composite Application Library provides a number of choices for locating and
loading modules; however, your scenario may have needs that the library does not
provide, such as locating or loading modules from a database.

Module loading is separated into enumeration and loading, represented by the
IModuleEnumerator and IModuleLoader interfaces. The UnityBootstrapper uses
the enumerator to retrieve the module information and supplies the results to the
module loader.

For more background information about module enumeration and loading, see
“Module” in Chapter 6, “Technical Concepts.”

Communication
The two main forms of communication in the Composite Application Library are
commands and events. Commands are handled by the DelegateCommand and
CompositeCommand classes. Although these provide solutions to common com-
mand needs in composite applications, you may want to customize these classes for
other scenarios. For example, you may need an alternate strategy for aggregating
execution than what CompositeCommand offers.

The EventAggregator and CompositeWpfEvent can connect publishers and subscribers
in a decoupled manner. If you need to change how events are located or created, look
into extending or replacing the EventAggregator. If the event dispatching strategy does
not suite your needs, consider extending or replacing the CompositeWpfEvent.

To discover more about commands and eventing in the Composite Application Library,
see the following sections:
l	 “Commands” in Chapter 6, “Technical Concepts”
l	 “Communication” in Chapter 6, “Technical Concepts”
l	 “Event Aggregator” in Chapter 6, “Technical Concepts”

Container and Bootstrapper
The Composite Application Library comes with the Unity container; however, because
the container is accessed through the IContainerFacade interface, the container can be
replaced. To do this, your container will need to satisfy the IContainerFacade interface.
Usually, if you are replacing the container, you will also need to provide your own
container-specific bootstrapper. To provide this, examine the UnityBootstrapper to
ensure the container is setup and registered with the services needed for the Composite
Application Library.

For more information about the container and bootstrapper, see the following sections:
l	 “Container” in Chapter 2, “Design Concepts”
l	 “Container and Services” in Chapter 6, “Technical Concepts”
l	 “Bootstrapper” in Chapter 6, “Technical Concepts”

Chapter 4:  Composite Application Library

5
Stock Trader Reference
Implementation

The Composite Application Guidance for WPF (Windows Presentation Foundation)
includes a reference implementation, which is an application that illustrates the
baseline architecture. Within the application, you will see solutions for common,
and recurrent, challenges that developers face when creating composite WPF
applications.

The reference implementation is not a real-world application; however, it is based on
real-world challenges developers and architects face. When you look at this application,
do not look at it as a reference point for building a stock trader application—instead,
look at is as a reference for building a composite application.

Note:  When looking at this application, it may seem inappropriate to implement it in the way it was
implemented. For example, you might question why there are so many modules, and it may seem
overly complex. The focus of the Composite Application Guidance is to address challenges around
building composite applications. For this reason, certain scenarios are used in the reference imple-
mentation to emphasize those challenges.
	

Figure 5.1 on the next page illustrates the Stock Trader Reference Implementation
(Stock Trader RI).

Composite Application Guidance for WPF72

Figure 5.1  Stock Trader RI

You can use the reference implementation in different ways. You can step through a
running example that demonstrates application-specific code built on reusable guid-
ance. You can also copy sections of the source code that implement any particular
guidance into your own applications.

The reference implementation was developed using a “test driven” approach and
includes automated unit tests for most of its components. You can modify the refer-
ence implementation and use the unit tests to verify its functionality.

This chapter describes the scenario that set the context for the reference implementa-
tion and helped drive the requirements to illustrate a realistic complex, composite
application. It also describes the logical architecture and includes a walkthrough of
the main elements of the Stock Trader RI. To run the Stock Trader RI, see “Installing
and Running” on MSDN.

Note:  Before you can run the Stock Trader RI, you must download and install the Composite Applica-
tion Guidance for WPF. For information, including download information, see “Composite Application
Guidance for WPF” on MSDN at http://www.microsoft.com/CompositeWpf.
	

http://msdn.microsoft.com/en-us/library/cc707870.aspx
http://msdn.microsoft.com/en-us/library/cc707870.aspx
http://www.microsoft.com/CompositeWpf

73Chapter 5:  Stock Trader Reference Implementation

The Scenario
The Stock Trader RI illustrates a fictitious, but realistic financial investments scenario.
Contoso Financial Investments (CFI) is a fictional financial organization that is mod-
eled after real financial organizations. CFI is building a new composite application
to be used by its stock traders. This section contains a summary of the scenario and
demonstrates the business drivers that led to a series of technical decisions that ulti-
mately result in the use of the Composite Application Guidance.

Contoso Financial Investments (CFI) is a global investment firm with one hundred
traders. Core to doing business in CFI, there is a 15-year-old legacy trader application
developed in Visual C++ with the Microsoft Foundational Class Library that, over
time, has become increasingly difficult to maintain.

Operating Environment
For the last several years, CFI’s lack of maintainability has brought new develop-
ment on the application to a standstill—this has left the application in maintenance
mode. To meet new customer requirements, CFI adopted the Microsoft .NET
Framework development platform and branched out, creating additional appli-
cations that were each maintained by separate teams in a silo. The idea was that
having separately developed applications would actually result in the development
effort being more efficient. Each team developing in its own silo meant that CFI
could remove any contention that might arise, and it would pave the way for easily
creating new teams. This means CFI could scale out their development teams into
several locations, including setting up several offshore teams.

The harsh reality is that the approach proved to be extremely inefficient on several
levels. Because each application was developed in a silo, each trader is now required
to maintain multiple copies of the same data throughout a growing suite of applica-
tions, including StockPortfolio, MarketView, and StockHist. The data is not identical,
but there are elements of the data that are duplicated. To do their jobs, traders con-
stantly switch back and forth between these various applications. To assist with this,
CFI employed a “launcher” that quickly launched all the applications from a central
place. The launcher also passed the user’s login credentials to the application to skip
the logon screen for each application. The launcher is more of a bandage than anything
else. It did not greatly improve the overall workflow of the traders in that the applica-
tions cannot integrate with one another, nor do they support a consistent user interface.

Composite Application Guidance for WPF74

Operational Challenges
Because of the lack of integration, getting a consolidated view of all the related data
is not an easy task. There is a customer-facing reporting site that can pull from each
of the back-end systems to create this “one” view, but it is littered with problems,
the least of which is that if the data has not been properly duplicated, the reports
do not work. In addition, entering the duplicate data is extremely time consuming
and significantly impacts the number of orders that each trader is processing. Manu-
ally entering the data caused many errors in the system. Attempts to automatically
synchronize the different systems have been too costly, because the schemas are
very different and frequently change. With all these problems, CFI, like many other
businesses, has managed to continue to operate as a profitable business. As customer
demand has increased, CFI has invested the necessary funds to expand its services.
It has also consistently grown its trading force, whose jobs have become more and
more difficult because of the inefficient operating conditions. Recently, however, this
inefficiency has increased to the point that the business is starting to lose money. The
following are some of the inefficient operating conditions:
l	 The interaction time per transaction has greatly increased because of the time it

takes to navigate the suite of applications.
l	 The cost of employee training and in-house support has greatly increased because

of the high complexity and lack of consistency of the applications.
l	 Maintenance costs of the various applications are extremely prohibitive. For

example, in a recent instance, a logic bug that was detected required changes in
seven different systems. This critical bug took three weeks to fix because other
parts of the system heavily depended on the code where the bug resided. This
greatly increased the cost of fixing it, testing it, and deploying it—it brought the
total price to $150,000. This included the effort to fix three additional bugs that
were created as part of the original fix.

l	 CFI has been unable to keep up with emerging technologies that can offer it a
competitive edge and reduced development costs.

Emerging Requirements
Currently, CFI is faced with a new challenge around service-oriented architecture (SOA).
Fabrikam Web Traders, one of CFI’s chief competitors has offered its customers a stand-
alone rich client experience for managing their portfolios. Clients can access Fabrikam’s
back-end systems through Web services. Several large CFI customers are now request-
ing the same capabilities.

Although there is no immediate threat, in the long term, the business impact can
be crippling. If CFI continues with the current strategy and does not both improve
its efficiency and adapt to changing market conditions, it will lose business to its
competition.

75Chapter 5:  Stock Trader Reference Implementation

Meeting the Business and IT Objectives
The Chief Executive Officer (CEO) is an opportunist who sees this challenge as an
opportunity for CFI to rise to the occasion. Working with the Chief Information
Officer (CIO) and Chief Technology Officer (CTO), they devise a three-point strat-
egy for how to take CFI forward. The strategy is as follows:
l	 Reduce the cost of development. To do this, the new system should do the following:

l	 It should provide structure for teams to collaborate through a well-defined
architecture.

l	 It should support distributed teams, including using some offshore developers.
l	 It should provide a shorter development life cycle—this improves the time to

market.
l	 It should present data in ways that were previously prohibitive and time con-

suming to implement.
l	 It should support test-driven development (TDD).
l	 It should support automated acceptance tests.
l	 It should support integration with third-party systems.

l	 Improve trader efficiency. To accomplish this, the system should do the following:
l	 It should support better multitasking.
l	 It should provide a user interface that is better adapted to the trader workflow.
l	 It should consolidate existing applications.
l	 It should provide shorter interaction time per transaction (data visualizations).
l	 It should provide better information flow (contextual user interface queues).
l	 It should provide better use of screen area (also known as screen real estate).
l	 It should provide integration among the different components of the system

and with external components (services).
l	 It should present reduced training time.
l	 It should support corporate branding and user interface styling.
l	 It should minimize the cost of adding new functionality to the system.
l	 It should support adding custom extensions provided by either the customer

or third parties.
l	 Create a new customer-facing product offering. This offering should do the following:

l	 It should include a stand-alone rich client for portfolio management.
l	 It should provide user interface (UI) customization and corporate branding to

beat out the competition.
l	 It should provide extensibility for third-party vendors.

The CTO has delivered these requirements to the senior architect, who is investigating
various options for delivering them.

Composite Application Guidance for WPF76

Development Challenges
For the architect, this project represents one of the most significant changes in the
technology environment of CFI. Work will be spread across several software develop-
ment teams, with additional development being outsourced. In the past, cooperation
between the development teams has been limited, and development tended to occur
on an ad-hoc basis. This was because he identified the following problems that are a
result of current development methodology:
l	 Inconsistency.  Similar applications are developed in different ways. This results

in higher maintenance and training costs.
l	 Varying quality.  Developers with varying levels of experience lack guidance

on implementing proven practices. This situation results in inconsistent quality
among the applications they produce.

l	 Poor productivity.  In many cases, developers across the company repeatedly
solve the same problems in different applications, with little or no reuse of code.
Because there was no central design, it was very difficult to get the applications to
communicate with one another.

The Solution: Composite Application Guidance for WPF
The senior architect needs a strategy to realize the architectural vision set forth and to
resolve the development challenges identified in the previous section. After significant
research, the architect decides that the best solution can be found in the Composite
Application Guidance offered by the Microsoft patterns & practices team.

The Composite Application Guidance is a set of assets for building complex WPF
applications. The Composite Application Guidance enables designing a composite
application in the following ways:
l	 It provides infrastructure and support for developing and maintaining WPF

composite applications through non-invasive and lightweight APIs.
l	 It dynamically composes user interface components.
l	 It supports application modules that are developed, tested, and deployed by

separate teams.
l	 It allows incremental adoption.
l	 It provides an integrated and consistent user experience.
l	 It can be integrated with existing WPF applications.

77Chapter 5:  Stock Trader Reference Implementation

The Composite Application Guidance from Microsoft patterns & practices meets the
requirements of CFI and should allow them to achieve their goals by making devel-
opment significantly more efficient and predictable. Support for integrating with ex-
isting WPF applications is of particular interest to the architect because CFI recently
developed several WPF applications to address recent customer needs. The architect
is confident that the guidance will assist him in delivering an effective solution that is
robust, reliable, based on proven practices, and that can best utilize WPF. After the
architect presents these findings to the CTO, the CTO agrees that the Composite
Application Guidance will help to deliver an effective solution efficiently and cost-
effectively. The CTO gives approval for the project to proceed.

Stock Trader RI Features
The CFI stock trader application is used for managing a trader’s portfolio of invest-
ments. Using the stock trader application, they can see their portfolio, view trend
data, buy and sell shares, manage items in their watch list, and view related news.

The Stock Trader RI supports the following actions:
l	 See the pie chart and line chart for each stock.
l	 See a news item corresponding to a stock.
l	 Add a stock to the watch list.
l	 View the watch list.
l	 Remove a stock from the watch list.
l	 Buy or sell shares from a stock.
l	 View your buy and sell orders.
l	 Submit or cancel your entire buy and sell orders.

Logical Architecture
Figure 5.2 on the next page illustrates a high-level logical architecture view of the
Stock Trader RI.

Composite Application Guidance for WPF78

Figure 5.2  Architectural view of the Stock Trader RI

The following are the main elements of the Stock Trader RI architecture:
l	 Application.  The application is lightweight and contains the shell that hosts each

of the different UI components within the reference implementation. It also con-
tains the StockTraderRIBootstrapper, which sets up the container and initializes
module loading.

l	 Modules.  The solution is divided into the following four modules, which are each
maintained by separate teams in different locations:
l	 Watch module.  The Watch module contains the Watch List and Add To Watch

List functionality.
l	 News module.  The News module contains the NewsFeedService, which

handles retrieving stock news items.
l	 Market module.  The Market module handles retrieval of market trend data for

the trader’s positions and notifies the UI when those positions change. It also
handles populating the Trend line for the selected position.

l	 Position module.  The Position module handles populating the list of positions
in the trader’s portfolio. It also contains the Buy/Sell order functionality.

l	 Infrastructure.  The infrastructure contains functionality for both the Stock Trader
RI and the Composite Application Guidance core:
l	 Composite Application Library.  This contains the core composition services

and service interfaces for handling regions, commanding, and module load-
ing. It also contains the container façade for the Unity Application Block. The
StockTraderRIBootstrapper inherits from the UnityBoostrapper.

l	 Stock Trader RI Infrastructure Library.  This contains service interfaces specific
to the Stock Trader RI, shared models, and shared commands.

79Chapter 5:  Stock Trader Reference Implementation

Implementation View
The Stock Trader RI is based on the Composite Application Library. Figure 5.3 shows
the Stock Trader RI Solution Explorer.

Figure 5.3  Stock Trader RI solution view

The next section describes the main elements.

Composite Application Guidance for WPF80

How the Stock Trader RI Works
The Stock Trader RI is a composite application, which is composed of a set of modules
that are initialized at run time. Figure 5.4 illustrates the application’s startup process,
which includes the initialization of modules. The next sections provide details about
each of these steps.

Figure 5.4  Stock Trader RI startup process

The Stock Trader RI startup process is the following:
	 1.	 The application uses the StockTraderRIBootstrapper, which inherits from the

Composite Application Library’s UnityBootstrapper for its initialization.
	 2.	 The UnityBootstrapper initializes the UnityContainerAdapter for use in the

modules.
	 3.	 The StockTraderRIBootstrapper creates and shows the Shell view.
	 4.	 The Composite Application Library’s StaticModuleEnumerator finds all the

modules the application needs to load.
	 5.	 The Composite Application Library’s ModuleLoader loads and initializes each of

the modules.
	 6.	 Modules use the Composite Application Library’s RegionManager service to add

a view to a region.
	 7.	 The Composite Application Library’s Region displays the view.

81Chapter 5:  Stock Trader Reference Implementation

Modules
A module is a logical unit of separation in the application. In the Stock Trader RI,
each module exists in a separate assembly, but this is not an absolute requirement.
The advantage of having this separation is that it makes the application more
maintainable.

The application does not direct each module; instead, each module contributes con-
tent to the Shell view and interacts with other modules. The final system is composed
of the aggregation of the modules’ contributions. By using this composability, you
can create applications with emergent behaviors—this refers to the application being
able to scale up in complexity and requirements as it grows.

The modules are loosely coupled. This means they do not directly reference each
other, which promotes separation of concerns and allows modules to be individually
developed, tested, and deployed by different teams.

Services and Containers
This is possible through a set of application services that the modules have access to.
Modules do not directly reference one another to access these services. In the Stock
Trader RI, a dependency injection (DI) container (referred to as the container) injects
these services into modules during their initialization (the Stock Trader RI, uses the
Unity container).

Note:  For an introduction to dependency injection and Inversion of Control, see the article “Loosen
Up: Tame Your Software Dependencies for More Flexible Apps” by James Kovacs in MSDN Magazine.
	

Bootstrapping the Application
Modules get initialized during a bootstrapping process by a class named
UnityBootstrapper. The UnityBootstrapper is responsible for starting the core
composition services used in an application created with the Composite Appli-
cation Library. For more information, see “Bootstrapper” in Chapter 6, “Technical
Concepts.”

C# UnityBootstrapper.cs
protected virtual void InitializeModules()
 {
 IModuleEnumerator moduleEnumerator = Container.TryResolve<IModuleEnum
erator>();
 ...
 IModuleLoader moduleLoader = Container.TryResolve<IModuleLoader>();
 ...
 ModuleInfo[] moduleInfo = moduleEnumerator.GetStartupLoadedModules();
 moduleLoader.Initialize(moduleInfo);
 }

http://msdn.microsoft.com/en-us/library/cc468366.aspx
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx

Composite Application Guidance for WPF82

Module Enumeration
To enumerate a module, the bootstrapper uses an IModuleEnumerator, which is
returned from the GetModuleEnumerator method. The bootstrapper in the Stock
Trader RI overrides this method to return a StaticModuleEnumerator prepopulated
with the Stock Trader RI module metadata. The StaticModuleEnumerator specifies a
static list of modules that the Shell directly references.

C# StockTraderRIBootstrapper.cs
protected override IModuleEnumerator GetModuleEnumerator()
{
 return new StaticModuleEnumerator()
 .AddModule(typeof(NewsModule))
 .AddModule(typeof(MarketModule))
 .AddModule(typeof(WatchModule), "MarketModule")
 .AddModule(typeof(PositionModule), "MarketModule", "NewsModule");
}

Module Loading
To initialize a module, the ModuleLoader service first resolves the module from the
container. During this resolving process, the container will inject services into the
modules constructor. The following code shows that the region manager is injected.

C# WatchModule.cs
public WatchModule(IUnityContainer container, IRegionManager regionManager)
{
 _container = container;
 _regionManager = regionManager;
}

After that, the ModuleLoader calls the module’s Initialize method, as shown here.

C# WatchModule.cs
public void Initialize()
{
 RegisterViewsAndServices();
 ...
}

Views
After a module is initialized, it can use these services to access the Shell (essentially,
the top-level window, which contains all the content) where it can add views. A view
is any content that a module contributes to the UI.

Note:  In the Stock Trader RI, views are usually user controls. However, data templates in WPF are an
alternative approach to rendering a view.
	

83Chapter 5:  Stock Trader Reference Implementation

View Registration
Modules can register views in the container, where they can be resolved. The following
code shows where the WatchListView and WatchListPresentationModel are registered
with the container. In the Stock Trader RI, this registration generally happens in the
module’s RegisterViewsAndServices method.

C# WatchModule.cs
protected void RegisterViewsAndServices()
{
 ...
 _container.RegisterType<IWatchListView, WatchListView>();
 container.RegisterType<IWatchListPresentationModel, WatchListPresentation
 Model>();
 ...
}

Note:  You can also register views and services using configuration instead of code.
	

After they are registered, they can be retrieved from the container either by explicitly
resolving them or through constructor injection.

C# WatchModule.cs
public void Initialize()
{
 ...
 IWatchListPresentationModel watchListPresentationModel = _container.Resolve_
 <IWatchListPresentationModel>();
}

Presentation Model
The Stock Trader RI uses several UI design patterns for separated presentation. One
of them is the Presentation Model pattern. Using the Presentation Model, you can
separate the UI rendering (the view) from the UI business logic (the presenter or, in
this case, presentation model). Doing this allows the presentation model to be unit
tested because the view can be mocked. It also makes the UI logic more maintainable.

In our implementation of the Presentation Model, the view is injected into the presen-
tation model during its creation. The caller who created the presentation model (in
this case, the module) can access the View property to get the view.

Composite Application Guidance for WPF84

Regions and the RegionManager
After the view is created, it needs to be shown in the shell. In an application created
with the Composite Application Library, you use a region, which is a named location
in the UI, for this purpose. Using the RegionManager, a module gets a region and
adds views, shows views, or removes views. The module accesses the region through
an IRegion interface. It does not have direct knowledge of how the region will handle
displaying the view.

The following code shows where the Watch module adds the Watch List view to the
“Watch Region.”

C# WatchModule.cs
public void Initialize()
{
 ...
 _regionManager.Regions["WatchRegion"].Add(watchListPresentationModel.View);
 ...
}

This region was defined in the shell in its XAML using the RegionName attached
property, as shown here.

XAML Shell.xaml
<StackPanel Grid.Row="1" Grid.RowSpan="2" Grid.Column="3">
 <Controls:TearOffItemsControl x:Name="TearOffControl"
 cal:RegionManager.RegionName="WatchRegion"
 .../>
 <ItemsControl Margin="0,20,0,0" cal:RegionManager.RegionName="NewsRegion" />
</StackPanel>

Figure 5.5 shows how the watch list appears in the application.

Figure 5.5  CFI Stock Trader watch list

85Chapter 5:  Stock Trader Reference Implementation

Service Registration
Modules can also register services so they can be accessed by either the same module
or other modules in a loosely coupled fashion. In the following code, the WatchList-
Service, which manages the list of watch items, is registered by the Watch module.

C# WatchModule.cs
protected void RegisterViewsAndServices()
{
 container.RegisterType<IWatchListService, WatchListService>(new Container
 ControlledLifetimeManager());
 ...
}

After that, the container injects the WatchListService into the Watch module’s Watch-
ListPresentationModel, which accesses it through the IWatchListService interface.

C# WatchListPresenter.cs
public WatchListPresentationModel(IWatchListView view, IWatchListService _
 watchListService, IMarketFeedService marketFeedService, IEventAggregator
 eventAggregator)
{
 ...
 this.watchList = watchListService.RetrieveWatchList();
 ...
}

Commands
Views can communicate with presenters and services in a loosely coupled fashion by
using commands. The Add To Watch List button, illustrated in Figure 5.6, uses the
AddWatchCommand, which is a DelegateCommand, to notify the WatchListService
whenever a new watch item is added.

Note:  The DelegateCommand is one kind of command that the Composite Application Library
provides. For more information about commanding in the Composite Application Guidance, see
“Commands” in Chapter 6, “Technical Concepts.”
	

Figure 5.6  Add To Watch List button

By using a DelegateCommand, the service can delegate the command’s CanExecute
method to the service’s AddWatch method, as shown in the following code.

Composite Application Guidance for WPF86

C# WatchListService.cs
public WatchListService(IMarketFeedService marketFeedService)
{
 ...
 AddWatchCommand = new DelegateCommand<string>(AddWatch);
 ...
}

private void AddWatch(string tickerSymbol)
{
 ...
}

The WatchListService is also injected into the AddWatchPresenter, which calls the
view’s SetAddWatchCommand method in its constructor, as shown here.

C# AddWatchPresenter.cs
public class AddWatchPresenter : IAddWatchPresenter
{
 public AddWatchPresenter(IAddWatchView view, IWatchListService service)
 {
 View = view;
 View.SetAddWatchCommand(service.AddWatchCommand);
 }
 public IAddWatchView View { get; private set; }
}

This method sets the AddWatchView’s DataContext to the command, as shown here.

C# AddWatchView.xaml.cs
public void SetAddWatchCommand(ICommand addWatchCommand)
{
 this.DataContext = addWatchCommand;
}

The AddWatchButton then binds to the command (through the DataContext) with
the command parameter binding to the AddWatchTextBox.Text property.

XAML AddWatchView.xaml
<StackPanel Orientation="Horizontal">
 <TextBox Name="AddWatchTextBox" MinWidth="100"/>
 <Button Name="AddWatchButton" DockPanel.Dock="Right" Command="{Binding}"
CommandParameter="{Binding Text, ElementName=AddWatchTextBox}">Add To Watchlist_
 </Button>
</StackPanel>

This means that when the Add To Watch List button is clicked, the AddWatchCommand
will be invoked and the stock symbol will be passed to the WatchListService.

87Chapter 5:  Stock Trader Reference Implementation

Event Aggregator
The Event Aggregator pattern channels events from multiple objects through a single
object to simplify registration for clients. In the Composite Application Library, a varia-
tion of the Event Aggregator pattern allows multiple objects to locate and publish or
subscribe to events.

In the Stock Trader RI, the event aggregator is used to communicate between modules.
The subscriber tells the event aggregator to receive notifications on the UI thread. For
example, when the user selects a symbol on the Position tab, the PositionSummary-
PresentationModel in the Position module raises an event that specifies the symbol
that was selected, as shown in the following code.

C# PositionSummaryPresentationModel.cs
EventAggregator.Get<TickerSymbolSelectedEvent>().Publish(e.Value);

The NewsController in the News module listens to the event and notifies the
ArticlePresentationModel to display the news related to the selected symbol, as
shown in the following code.

C# NewsController.cs
this.regionManager.Regions["NewsRegion"].Add(articlePresentationModel.View);
eventAggregator.Get<TickerSymbolSelectedEvent>().Subscribe(ShowNews, _
 ThreadOption.UIThread);

Note:  The NewsController subscribes to the event in the UI thread to safely update the UI and avoid a
WPF exception.
	

Technical Challenges
The Stock Trader RI demonstrates how you can address common technical challenges
that you face when you build composite applications in WPF. The following table
describes the technical challenges that the Stock Trader RI addresses.

Composite Application Guidance for WPF88

Technical challenge Feature in
Stock Trader RI

Example of where feature is
demonstrated

Views and composite UI
Regions:  The use of
regions for placing the
views without having to
know how the layout is
implemented.

Regions defined in
the Shell and Position
module Orders view.
Position, Watch, and
News module initializers
adding content to
regions.

StockTraderRI\Shell.xaml
StockTraderRI.Modules.Position\Orders\
 OrdersView.xaml
StockTraderRI.Modules.Position\
 PositionModule.cs
StockTraderRI.Modules.Position\
 Controllers\OrdersController.cs
StockTraderRI.Modules.Watch\
 WatchModule.cs
StockTraderRI.Modules.News\Controllers\
 NewsController.cs

Composite view:  Shows
how a composite view
communicates with its
child view.

The line chart is nested
inside the composite
view. See the line chart
corresponding to a
stock.

StockTraderRI.Modules.Position\
 PositionSummary\PositionSummary_
 PresentationModel.cs
StockTraderRI.Modules.Market\TrendLine\
 TrendLinePresenter.cs

Order screen StockTraderRI.Modules.Position\Orders\
 OrderCompositePresentationModel.cs
StockTraderRI.Modules.Position\Orders\
 OrderDetailsPresentationModel.cs
StockTraderRI.Modules.Position\Orders\
 OrderCommandsView.xaml.cs
StockTraderRI.Modules.Position\
 Controllers\OrdersController.cs

Compose UI across
modules:  The Watch
module has a view and
also is a part of the
toolbar.

Add a stock to the
watch list

StockTraderRI.Modules.Watch\
 AddWatchView.xaml
StockTraderRI.Modules.Watch\WatchList\
 WatchListView.xaml

Decoupled communication
Commands:  Shows the
Command pattern. The
command to buy or sell a
stock is a delegate com-
mand. This command
uses the same command
instance but with a dif-
ferent parameter corre-
sponding to the stock. This
decouples the invoker from
the receiver and shows
passing additional data
with the command.

Buy and Sell command
invokers in PositionGrid
and handlers in
OrdersController

StockTraderRI.Modules.Position\
 Controllers\OrdersController.cs
StockTraderRI.Modules.Position\
 PositionGrid.xaml

89

Technical challenge Feature in
Stock Trader RI

Example of where feature is
demonstrated

Composite commands: 
Use composite commands
to broadcast all of the com-
mands. The Submit All
or Cancel All commands
execute all of the individual
instances of the Submit or
Cancel commands.

Submit All and Cancel
All buttons

StockTraderRI.Infrastructure\
 StockTraderRICommands.cs
StockTraderRI.Modules.Position\Orders\
 OrderDetailsPresentationModel.cs
StockTraderRI.Modules.Position\
 Controllers\OrdersController.cs

Active aware commands: 
Use active aware com-
mands to determine the
target model for the com-
mand depending on which
view is currently active.

Submit and Cancel
buttons

StockTraderRI.Infrastructure\
 StockTraderRICommands.cs
StockTraderRI.Modules.Position\Orders\
 OrderDetailsPresentationModel.cs
StockTraderRI.Modules.Position\
 Controllers\OrdersController.cs

Event Aggregator pattern: 
Publish and subscribe to
events across decoupled
modules. Publisher and
Subscriber have no con-
tract other than the event
type.

Show relevant news
content: When the user
selects a position in the
position list, the com-
munication to the news
module uses the Event-
Aggregator service.

StockTraderRI.Modules.Position\
 PositionSummary\PositionSummary_
 PresentationModel.cs
StockTraderRI.Modules.News\Controllers\
 NewsController.cs

Market feed updates:
The consumers of the
market feed service sub-
scribe to an event to be
notified when new feeds
are available and the
consumers then update
the model behind the UI.

StockTraderRI.Modules.Market\Services\
 MarketFeedService.cs
StockTraderRI.Modules.Position\
 PositionSummary\PositionSummary_
 PresentationModel.cs
StockTraderRI.Modules.WatchList\
 WatchList\WatchListPresentationModel.cs

Services:  Services are
also used to communi-
cate between modules.
Services are more con-
tractual and flexible than
commands.

Several service imple-
mentations in module
assemblies

Services:
StockTraderRI.Modules.Market\Services\
 MarketFeedService.cs
StockTraderRI.Modules.Market\Services\
 MarketHistoryService.cs
StockTraderRI.Modules.News\Services\
 NewsFeedService.cs
StockTraderRI.Modules.Watch\Services\
 WatchListService.cs
StockTraderRI.Modules.Position\Services\
 AccountPositionService.cs
StockTraderRI.Modules.Position\Services\
 XmlOrdersService.cs

Chapter 5:  Stock Trader Reference Implementation

(continued)

Composite Application Guidance for WPF90

Technical challenge Feature in
Stock Trader RI

Example of where feature is
demonstrated

Other technical challenges
WPF:  Use WPF for the
user interface

Shell and Module views The starting point for Stock Trader RI is in
the StockTraderRI\App.xaml\App.xaml.cs

Bootstrapper:  The use of
a bootstrapper to initialize
the application with global
services.

Created bootstrapper
with the Unity container
and configuring global
services, such as logging
and module enumeration.

Bootstrapper:
StockTraderRI\StockTraderRIBootstrapper.cs

6
Technical Concepts

This chapter discusses technical concepts that are specific to the Composite Application
Library. These technical concepts, illustrated in Figure 6.1, are implementations of the
design patterns and concepts identified as important for building composite user inter-
face (UI) applications.

Figure 6.1  Composite Application Library concepts

Composite Application Guidance for WPF92

For more details about the technical concepts, see the following sections in this chapter:
l	 “Bootstrapper”
l	 “Container and Services”
l	 “Module”
l	 “Region”
l	 “Shell and View”
l	 “Event Aggregator”
l	 “Commands”
l	 “Communication”

Bootstrapper
The bootstrapper is responsible for the initialization of an application built using the
Composite Application Library. Having a bootstrapper gives you more control of how
the Composite Application Library components are wired up to your application. For
example, if you have an existing application that you are adding the Composite
Application Library to, you can initialize the bootstrapping process after the appli-
cation is already running.

In a traditional Windows Presentation Foundation (WPF) application, a startup
Uniform Resource Identifier (URI) is specified in the App.xaml file that launches the
main window. In an application created with the Composite Application Library, it
is the bootstrapper’s responsibility to launch the main window. This is because the
shell relies on services, such as the region manager, that need to be registered before
the shell can be displayed. Additionally, the shell may rely on other services that are
injected into its constructor. For more information about the shell, see the “Shell and
View” technical concept later in this chapter.

The Composite Application Library includes a default abstract UnityBootstrapper
class that handles this initialization using the Unity container. Many of the methods on
the UnityBootstrapper class are virtual methods. You should override these methods
as appropriate in your own custom bootstrapper implementation. If you are using a
container other than Unity, you should write your own container-specific bootstrapper.

93Chapter 6:  Technical Concepts

Figure 6.2 illustrates the stages of the bootstrapping process.

Figure 6.2  Bootstrapping process

Configuring the Container
Containers play a key role in an application created with the Composite Application
Library. Both the Composite Application Library and the applications built on top of
it depend on a container for injecting required dependencies. During the container
configuration phase, the container is created and several core services are registered,
as shown in the following code from the UnityBootstrapper. Notice that the con-
tainer itself is registered with itself. This allows modules to get direct access to the
container to explicitly register and resolve dependencies.

Note:  An example of this is when a module registers module-level services in its Initialize method.
	

Composite Application Guidance for WPF94

C# UnityBootstrapper.cs
protected virtual void ConfigureContainer()
{
 ...
 Container.RegisterInstance<IUnityContainer>(Container);
 ...
 if (_useDefaultConfiguration)
 {
 RegisterTypeIfMissing(typeof(IContainerFacade), typeof(UnityContainer_
 Adapter), true);
 RegisterTypeIfMissing(typeof(IEventAggregator), typeof(EventAggregator),_
 true);
 RegisterTypeIfMissing(typeof(RegionAdapterMappings), typeof(RegionAdapter_
 Mappings), true);
 RegisterTypeIfMissing(typeof(IRegionManager), typeof(RegionManager), true);
 RegisterTypeIfMissing(typeof(IModuleLoader), typeof(ModuleLoader), true);
 }
}

The bootstrapper will determine whether a service has already been registered—it
will not register it twice. This allows you to override the default registration through
configuration. You can also turn off registering any services by default and disable
services that you do not want to use, such as the event aggregator.

Note:  If you turn off the default registration, you will need to manually register required services.
	

Configuring the Region Mappings
During this phase, the default region adapter mappings are registered. These mappings
are used by the region manager to associate the correct adapters for XAML-defined
regions. By default, an ItemsControlRegionAdapter, a ContentControlRegionAdapter,
and a SelectorRegionAdapter are registered. For more information about these adapt-
ers, see the “Region” technical concept later in this chapter.

You can also override the ConfigureRegionAdapterMappings method to add your
own custom region adapter mappings, as shown in the following code from the
UnityBootstrapper.

95Chapter 6:  Technical Concepts

C# UnityBootstrapper.cs
protected virtual RegionAdapterMappings ConfigureRegionAdapterMappings()
{
 RegionAdapterMappings regionAdapterMappings = Container.TryResolve<Region_
 AdapterMappings>();
 if (regionAdapterMappings != null)
 {
 regionAdapterMappings.RegisterMapping(typeof(Selector), new SelectorRegion_
 Adapter());
 regionAdapterMappings.RegisterMapping(typeof(ItemsControl), new Items_
 ControlRegionAdapter());
 regionAdapterMappings.RegisterMapping(typeof(ContentControl), new Content_
 ControlRegionAdapter());
 }

 return regionAdapterMappings;
}

Creating the Shell
During this phase, the shell will be displayed if it exists. Having the creation of the
shell in the bootstrapper allows greater testability of the application because the shell
can be mocked in a unit test.

If you are adding the Composite Application Library to an existing application, there
may not be a shell. In these instances, you should override the CreateShell method
to return null. For more information about the shell, see the “Shell and View” tech-
nical concept later in this chapter. The following code from the file StockTraderRI-
Bootstrapper.cs shows the CreateShell method used in the Stock Trader Reference
Implementation (Stock Trader RI).

C# StockTraderRIBootstrapper.cs
protected override DependencyObject CreateShell()
{
 ShellPresenter presenter = Container.Resolve<ShellPresenter>();
 IShellView view = presenter.View;
 view.ShowView();
 return view as DependencyObject;
}

Composite Application Guidance for WPF96

Initializing the Modules
During this phase, module loading occurs. First, the module enumerator and mod-
ule loader services are resolved from the container. After that, the modules that have
been specified to load on startup are initialized, as shown in the following code from
the UnityBootstrapper.

C# UnityBootstrapper.cs
protected virtual void InitializeModules()
{
 IModuleEnumerator moduleEnumerator = Container.TryResolve<IModule_
 Enumerator>();
 if (moduleEnumerator == null)
 {
 throw new InvalidOperationException(Resources.NullModuleEnumerator_
 Exception);
 }

 IModuleLoader moduleLoader = Container.TryResolve<IModuleLoader>();
 if (moduleLoader == null)
 {
 throw new InvalidOperationException(Resources.NullModuleLoaderException);
 }

 ModuleInfo[] moduleInfo = moduleEnumerator.GetStartupLoadedModules();
 moduleLoader.Initialize(moduleInfo);
}

If you are loading modules statically, you should override this method and use the
StaticModuleEnumerator, as shown in the following code from the Stock Trader RI.

C# StockTraderRIBootstrapper.cs
protected override IModuleEnumerator GetModuleEnumerator()
{
 return new StaticModuleEnumerator()
 .AddModule(typeof(NewsModule))
 .AddModule(typeof(MarketModule))
 .AddModule(typeof(WatchModule), "MarketModule")
 .AddModule(typeof(PositionModule), "MarketModule", "NewsModule");
}

For more information about modules, see the “Module” technical concept later in this
chapter.

97Chapter 6:  Technical Concepts

More Information
The following topics contain procedures that customize the bootstrapper class:
l	 To set up the application’s bootstrapper, see “How to: Create a Solution Using the

Composite Application Library” on MSDN.
l	 To configure the bootstrapper to dynamically load modules, see “How to:

Dynamically Load Modules” on MSDN.
l	 To configure the bootstrapper to statically load modules, see “How to: Statically

Load Modules” on MSDN.
l	 To use a different logger in your application that uses the Composite Application

Library, see “How to: Provide a Custom Logger” on MSDN.
l	 To configure the bootstrapper to register additional region adapter mappings, see

“How to: Create a Custom Region Adapter” on MSDN.
l	 To configure the bootstrapper to register services in the application container, see

“How to: Register and Use Services” on MSDN.

Container and Services
The Composite Application Library is designed to support other dependency injection
containers. Core services, such as the ModuleLoader service, are container agnostic.
They use the Composite Application Library container or IContainerFacade interface
for resolving, instead of directly accessing the containers. The Composite Application
Library provides the UnityContainerAdapter, which is a Unity-specific implementa-
tion of this interface. This container is registered by the UnityBootstrapper.

IContainerFacade
The following code shows the IContainerFacade interface.

C# IContainerFacade.cs
public interface IContainerFacade
{
 object Resolve(Type type);
 object TryResolve(Type type);
}

You can see that IContainerFacade is used only for resolving; it is not used for regis-
tration.

The ModuleLoader uses IContainerFacade for resolving the module during module
loading, as shown in the following code.

C# ModuleLoader.cs – Initalize()
IModule module = (IModule)containerFacade.Resolve(type);
module.Initialize();

http://msdn.microsoft.com/en-us/library/cc707864.aspx
http://msdn.microsoft.com/en-us/library/cc707864.aspx
http://msdn.microsoft.com/en-us/library/cc707834.aspx
http://msdn.microsoft.com/en-us/library/cc707834.aspx
http://msdn.microsoft.com/en-us/library/cc707839.aspx
http://msdn.microsoft.com/en-us/library/cc707839.aspx
http://msdn.microsoft.com/en-us/library/cc707911.aspx
http://msdn.microsoft.com/en-us/library/cc707884.aspx
http://msdn.microsoft.com/en-us/library/cc707881.aspx

Composite Application Guidance for WPF98

UnityContainerAdapter
The following code shows the implementation of the UnityContainer.

C# UnityContainerAdapter.cs
public class UnityContainerAdapter : IContainerFacade
{
 private readonly IUnityContainer _unityContainer;

 public UnityContainerAdapter(IUnityContainer unityContainer)
 {
 _unityContainer = unityContainer;
 }

 public object Resolve(Type type)
 {
 return _unityContainer.Resolve(type);
 }

 public object TryResolve(Type type)
 {
 object resolved;

 try
 {
 resolved = Resolve(type);
 }
 catch
 {
 resolved = null;
 }

 return resolved;
 }
}

The Resolve method calls to the underlying container, except for TryResolve, which
Unity does not support. This method returns an instance of the type to be resolved if
it has been registered; otherwise, it returns null.

Considerations for Using IContainerFacade
IContainerFacade is not meant to be the general-purpose container. Containers have
different semantics of usage, which often drives the decision for why that container is
chosen. Keeping this in mind, the Stock Trader RI uses Unity directly instead of using the
IContainerFacade. This is the recommend approach for your application development.

In the following situations, it may be appropriate for you to use the IContainerFacade:
l	 You are an independent software vendor (ISV) designing a third-party service that

needs to support multiple containers.
l	 You are designing a service to be used in an organization where they use multiple

containers.

99Chapter 6:  Technical Concepts

Composite Application Library Services
Applications based on the Composite Application Library are composed through
a set of services that the application consumes. These services are injected through
the container. In addition to these core services, you may have application-specific
services that provide additional functionality as it relates to composition.

Core Services
The following table lists the core non-application specific services in the Composite
Application Library.

Service interface Description
IModuleEnumerator Enumerates the modules in the system. The Composite Application

Library provides several different enumerators. For more information, see
the “Module” technical concept later in this chapter.

IModuleLoader Loads and initializes the modules.
IRegionManager Registers and retrieves regions, which are visual containers for layout.
IEventAggregator A collection of events that is loosely coupled between the publisher and

the subscriber.
ILoggerFacade A wrapper for a logging mechanism. The reference implementation

uses the Enterprise Library Logging Application Block. This allows you to
choose your own logging mechanism.

IContainerFacade Allows the Composite Application Library to access the container. If you
want to customize or extend the library, this may be useful.

Application-Specific Services
The following table lists the application-specific services used in the Stock Trader RI.
This can be used as an example to understand the types of services your application
may provide.

Services in the Stock Trader RI Description
IMarketFeedService Provides real-time (mocked) market data. The PositionSumma-

ryPresentationModel updates the position screen based on
notifications it receives from this service.

IMarketHistoryService Provides historical market data used for displaying the trend
line for the selected fund.

IAccountPositionService Provides the list of funds in the portfolio.
IOrdersService Handles persisting submitted buy/sell orders.
INewsFeedService Provides a list of news items for the selected fund.
IWatchListService Handles when new watch items are added to the watch list.

Composite Application Guidance for WPF100

More Information
For more information about services and containers, see the following:
l	 “Container” in Chapter 2, “Design Concepts”
l	 “How to: Register and Use Services” on MSDN

Module
A module in the Composite Application Library is a logical unit in your application.
Modules assist in implementing a modularity design. These modules are defined in
such a way that they can be discovered and loaded by the application at run time.
Because modules are self-contained, they promote separation of concerns in your
application. Modules can communicate with other modules and access services
through various means. They reduce the friction of maintaining, adding, and re-
moving system functionality. Modules also help with testing and deployment.

A common usage of a module is to represent different portions of the system. The
following are some examples of modules:
l	 A module that contains a specific application feature, such as news
l	 A module that contains a specific subsystem, such as purchasing, invoicing, and

general ledger
l	 A module that contains infrastructure services, such as logging and authorization

services or Web services
l	 A module that contains services that invoke line-of-business (LOB) systems, such

as Siebel CRM and SAP, in addition to other internal systems

For example, there are four modules in the Stock Trader RI:
l	 NewsModule.  This module is responsible for aggregating and displaying the

news related to the user’s currently selected investment in his or her portfolio.
l	 PositionModule.  This module is responsible for displaying the positions and for

handling buy/sell orders.
l	 MarketModule.  This module handles aggregating and displaying trend informa-

tion for the portfolio.
l	 WatchModule.  This module handles displaying the watch list, which is a list of

funds the user monitors. This module also handles adding and removing items
from this list.

http://msdn.microsoft.com/en-us/library/cc707881.aspx

101Chapter 6:  Technical Concepts

Team Development Using Modules
Modules have explicit boundaries, typically by subsystem or feature. These boundaries
make it easier for separate teams to develop modules. On large applications, teams may
be organized by cross-cutting capabilities in addition to being organized by a specific
subsystem or feature. For example, there may be a team assigned to shared components
of the application, such as the shell or the common infrastructure module.

The following are the different teams developing the Stock Trader RI, as illustrated in
Figure 6.3:
l	 Infrastructure team.  This team develops the core cross-cutting services used in

the application and cross-module types and interfaces.
l	 Postions team.  This team maintains the positions and buy/sell functionality.
l	 News team.  This team handles aggregating and displaying news.
l	 UI team.  This team manages the shell and contains a set of graphic designers

who set the overall appearance of the application. They work across each of the
development teams.

l	 Operations team.  This team is responsible for managing deploying modules to
staging and production. They also manage the master module configuration files.

Figure 6.3 on the next page illustrates an example of a composite WPF application’s
modules and associated teams.

Composite Application Guidance for WPF102

WPF Module

Views

Figure 6.3  Modules and associated teams of a composite WPF application

103Chapter 6:  Technical Concepts

Module Design
Like the application, modules can be designed following layered principals. Modules
may consist of a presentation layer, a business or domain layer, and a resource access
layer, as illustrated in Figure 6.4.

Figure 6.4  Module design

These responsibilities may be split across modules. One module may contain the
resource access layer that other modules rely on. Or, one module may contain all the
views that could then be more easily consumed by user interface designers.

Composite Application Guidance for WPF104

IModule
A module is a class that implements the IModule interface. This interface contains a
single Initialize method that is called during the module’s initialization process.

C# IModule.cs
public interface IModule
{
 void Initialize();
}

Module Dependencies
Modules may need access to dependencies. Because they are constructed by the con-
tainer, these dependencies are injected through the module’s constructor. For example,
in the Stock Trader RI, the container and the regionManager are injected into the
WatchModule, as shown in the following code.

C# WatchModule.cs
public WatchModule(IUnityContainer container, IRegionManager regionManager)
{
 _container = container;
 _regionManager = regionManager;
}

View and Service Registration
When a module is initialized, it can register views and services. By using registra-
tion, dependencies can be provided through the container and be accessed from
other modules.

To do this, the module will need to have the container injected into the module
constructor (as shown in the preceding code). The registration is done in the
RegisterViewsAndServices method, which is not required if there is no registra-
tion. The following code shows how the MarketModule in the Stock Trader RI
registers a MarketHistoryService, MarketFeedService, and TrendLineView.

C# MarketModule.cs
protected void RegisterViewsAndServices()
{
 _container.RegisterType<IMarketHistoryService, MarketHistoryService>();
 container.RegisterType<IMarketFeedService, MarketFeedService>(new Container
 ControlledLifetimeManager());
 _container.RegisterType<ITrendLineView, TrendLineView>();
 _container.RegisterType<ITrendLinePresenter, TrendLinePresenter>();
}

Depending on which container you use, registration can also be done outside of the
code through configuration.

105Chapter 6:  Technical Concepts

Note:  The advantage of registering in code is that the registration only happens if the module loads.
	

Displaying Views
During a module’s initialization, you may also want to inject a view into a Shell region.
To do this, the region manager needs to be injected into the constructor. In the Initialize
method, you can then locate a region through the Regions[regionName] method, and
then add a view. In the Initialize method of the Position module, as shown in the fol-
lowing code, the PositionSummary view is added to the MainRegion.

C# PositionModule.cs
public void Initialize()
{
 RegisterViewsAndServices();

 IPositionSummaryPresentationModel presentationModel = _container.Resolve_
 <IPositionSummaryPresentationModel>();
 IRegion mainRegion = _regionManager.Regions["MainRegion"];
 mainRegion.Add(presentationModel.View);
 ...
}

Note:  Before resolving a view, make sure that it is registered with the container.
	

Considerations for Modules
When creating your modules, consider the following:
l	 Consider putting each module in a separate namespace.
l	 Consider not having one module directly accessing concrete types from another

module. Use interfaces instead. This reduces coupling, thereby increasing test-
ability and prevents circular references between modules.

Module Loading
Module loading in the Composite Application Library is a two-step process:

	 1.	 The module enumerator discovers modules and creates a collection of metadata
about those modules.

	 2.	 The module loader instantiates the module and calls its Initialize method.

Figure 6.5 on the next page illustrates module loading in the Composite Application
Library.

Composite Application Guidance for WPF106

Figure 6.5  Module loading

Types of Module Loading
The Composite Application Library provides several ways to load modules by default.
You can also provide your own custom implementation.

Static Module Loading

In static module loading, the shell has a direct reference to the modules, but the mod-
ules themselves do not directly reference the shell. They can be in the same assembly or
a different assembly. The benefit of this style of loading over dynamic module loading
is that modules are easier to use and debug because they are directly referenced. The
disadvantage of static module loading is that you have to add new references to the
shell and a line of code to the bootstrapper for each module.

The Stock Trader RI uses this style of loading. Figure 6.6 illustrates the Stock Trader
RI references and highlights the shell references to the modules.

107Chapter 6:  Technical Concepts

Figure 6.6  Stock Trader RI references

The following code shows where the modules are statically defined in the Stock
Trader RI bootstrapper.

C# StockTraderRIBootstrapper.cs
protected override IModuleEnumerator GetModuleEnumerator()
{
 return new StaticModuleEnumerator()
 .AddModule(typeof (NewsModule))
 .AddModule(typeof (MarketModule))
 .AddModule(typeof (WatchModule), "MarketModule")
 .AddModule(typeof (PositionModule), "MarketModule", "NewsModule");
}

Composite Application Guidance for WPF108

Dynamic Module Loading

In dynamic module loading, modules are discovered at run time, which the shell does
not directly reference. The advantage of dynamic module loading is that modules can
be added to the application without having to add any new references or modify the
executable. The other advantage is that it gives you flexibility as to how modules are
discovered; for example, the Composite Application Library ships with support for
loading modules by scanning a directory, loading modules specified in a configuration
file, or loading modules on demand.

Directory Driven Module Loading

In this style of loading, modules are located by the DirectoryLookupModuleEnumerator,
which scans the assemblies in a directory and locates all the types that implement
IModule. It will also look for the ModuleDependency attribute to determine the
dependent modules that need to be loaded before loading the current module. For
an example of this style of loading, see the Dynamic Modularity (DirectoryLookup)
QuickStart included with the Composite Application for WPF Guidance. The fol-
lowing code shows where Module A and Module B are defined and that Module B
depends on Module A.

C#
[Module(ModuleName = "ModuleA")]
public class ModuleA : IModule
{
 ...
}

C#
[Module(ModuleName = "ModuleB")]
[ModuleDependency("ModuleA")]
public class ModuleB : IModule
{
 ...
}

Configuration Driven Module Loading

In this style of loading, modules are located by the ConfigurationModuleEnumerator,
which scans the App.config file for modules and module dependencies. The following
example shows where Module A and Module B are defined and that Module B depends
on Module A. For an example of this style of loading, see the Dynamic Modularity
(Configuration) QuickStart included with the Composite Application for WPF Guidance.

109Chapter 6:  Technical Concepts

XML App.config
<modules>
 <module assemblyFile="Modules/ModuleA.dll" moduleType="ModuleA.ModuleA"
moduleName="ModuleA">
 ...
 </module>
 <module assemblyFile="Modules/ModuleB.dll" moduleType="ModuleB.ModuleB"
moduleName=”ModuleB”>
 <dependencies>
 <dependency moduleName="ModuleA"/>
 </dependencies>
 </module>
 ...
</modules>

On-Demand Module Loading

In this style of loading, modules are loaded on demand in the application. The
loader will use any available module enumerator to load the module (including the
DirectoryLookupModuleEnumerator and the ConfigurationModuleEnumerator).
For examples of this style of loading, see the Dynamic Modularity (Configuration)
QuickStart and the Dynamic Modularity (DirectoryLookup) QuickStart included
with the Composite Application for WPF Guidance. The following code shows an
example of Module C loading on demand in the Dynamic Modularity (Configuration)
QuickStart.

C# DefaultViewB.xaml.cs
private void OnLoadModuleCClick(object sender, RoutedEventArgs e)
{
 moduleLoader.Initialize(moduleEnumerator.GetModule("ModuleC"));
}

Module Enumerator
The module enumerator identifies the modules to be loaded. Each module enumerator
must implement the IModuleEnumerator interface. The Composite Application Library
includes three enumerators: StaticModuleEnumerator, DirectoryLookupEnumerator,
and ConfigurationModuleEnumerator. You could write your own module enumera-
tor that obtains module information over a Web service or from a database by simply
implementing the IModuleEnumerator interface and retrieving the module informa-
tion from wherever is appropriate for your situation, as shown in the following code.

Composite Application Guidance for WPF110

C# IModuleEnumerator.cs
public interface IModuleEnumerator
{
 ModuleInfo[] GetModules();
 ModuleInfo[] GetStartupLoadedModules();
 ModuleInfo GetModule(string moduleName);
}

The following describes each method in the preceding code:
l	 GetModules.  This method returns a list of all known modules, including those

that load during startup and those that load on-demand.
l	 GetStartupLoadedModules.  This method returns only those modules that will

load at application start (determined either through the ModuleAttribute or in
configuration).

l	 GetModule.  This method returns a specific module.

ModuleInfo
The module enumerator returns a list of module metadata that the module loader
will use to load and initialize the module.

Note:  Modules that are statically loaded are loaded by the common language runtime (CLR) instead
of by the ModuleLoader service. However, they are initialized.
	

The following code shows the ModuleInfo constructor.

C# ModuleInfo.cs
public ModuleInfo(string assemblyFile, string moduleType, string moduleName,
params string[] dependsOn)
 : this(assemblyFile, moduleType, moduleName, true, dependsOn)
{
}

In addition to information about the module, the preceding code shows that you can
provide a collection of module names that the modules depend on. The module loader
will build its load order based on these dependencies.

Module Loader
The module loader, which implements the IModuleLoader interface, loads the assem-
blies that contain the modules. The IModuleLoader.Initialize method accepts an array
of ModuleInfo instances, which determines the list of modules to be loaded. The fol-
lowing code shows the IModuleLoader interface.

C# IModuleLoader.cs
public interface IModuleLoader
{
 void Initialize(ModuleInfo[] moduleInfos);
}

111Chapter 6:  Technical Concepts

The module loader will use the ModuleDependencySolver to parse the list of
modules and create a load order based on the module dependencies that have been
defined. During loading, the module loader instantiates each module by resolving it
off of the container. This is to allow the module dependencies to get injected.

Note:  The ModuleLoader service does not depend on a specific container; instead, it uses an
IContainerFacade instance that can wrap any container. By default, the Composite Application
Library uses a UnityContainerAdapter, but this can be replaced.
	

After the module is resolved, the IModule.Initialize method is invoked—this allows
the module’s code to execute.

More Information
For more information about modules, see the following:
l	 “Modularity” in Chapter 2, “Design Concepts”
l	 “Dynamic Modularity QuickStarts” on MSDN
l	 Modularity How-to topics on MSDN:

l	 “How to: Create a Module”
l	 “How to: Dynamically Load Modules”
l	 “How to: Statically Load Modules”

l	 Modularity patterns in Chapter 3, “Patterns in the Composite Application Library”
(these patterns provide possible approaches to building composite applications):
l	 “Inversion of Control Pattern”
l	 “Dependency Injection Pattern”
l	 “Service Locator Pattern”

Region
Conceptually, a region is a mechanism that developers can use to expose WPF
controls to the application as components that encapsulate a particular visual way
of displaying and laying out views. Regions can be accessed by name and support
adding or removing views. This decoupling allows the appearance of the applica-
tion to evolve independently of the views that appear within the region (for more
information about views, see “Shell and View” in Chapter 6, “Technical Concepts”).

Regions are intended to enable a compositional pattern and are commonly used in
template layouts and multiple view layouts.

http://msdn.microsoft.com/en-us/library/cc707860.aspx
http://msdn.microsoft.com/en-us/library/cc707899.aspx
http://msdn.microsoft.com/en-us/library/cc707834.aspx
http://msdn.microsoft.com/en-us/library/cc707839.aspx

Composite Application Guidance for WPF112

Template Layout
Regions are frequently used to define a layout template for a view. Components can
locate and add content to regions in the template without exact knowledge of how and
where the region is visually displayed. This allows the template to change without
affecting the components that are adding content to the template. This is common in
the shell of an application that defines a standard layout, such as a navigation region
and a main content region, as illustrated in Figure 6.7.

Figure 6.7  A shell with regions

Multiple View Layout
Regions are frequently used where multiple views need to be displayed in a list or a
tab-style display. In these cases, regions serve to collect views that may be logically
related and displayed in a list or a tab control.

113Chapter 6:  Technical Concepts

The Stock Trader RI shows the use of both the template layout and the multiple-view
layout. The template view layout can be seen in the shell for the application. Figure
6.8 illustrates the regions defined by the Stock Trader RI shell.

Figure 6.8  Stock Trader RI shell regions

The regions for the shell are defined in the Shell.xaml file and use the RegionName
attached property from the Composite Application Library. The following code
example from the Shell.xaml file shows how the RegionManager.RegionName
attached property is used to define the regions for the Stock Trader RI.

XAML Shell.xaml
<ItemsControl Grid.Row="1" Grid.Column="1" x:Name="MainToolbar" cal:RegionManager_
 .RegionName="{x:Static inf:RegionNames.MainToolbarRegion}">
 <ItemsControl.ItemsPanel>
 ...
 </ItemsControl.ItemsPanel>
 </ItemsControl>
 <StackPanel Grid.Row="1" Grid.RowSpan="2" Grid.Column="3">
 <Controls:TearOffItemsControl x:Name="TearOffControl"
 cal:RegionManager.RegionName="{x:Static inf:RegionNames.WatchRegion}"
 ...
 <ItemsControl Margin="0,20,0,0" cal:RegionManager.RegionName=”{x:Static _
 inf:RegionNames.NewsRegion}" />
 </StackPanel>
 <TabControl x:Name="PositionBuySellTab" Margin="0,10,0,0"
Style="{StaticResource ShellTabControlStyle}" ItemContainerStyle="{Static_
 Resource ShellTabItemStyle}" SelectedIndex="0" Grid.Row="2" Grid.Column="1" _
 cal:RegionManager.RegionName="{x:Static inf:RegionNames.MainRegion}" />

Composite Application Guidance for WPF114

A multiple layout view is demonstrated in the Stock Trader RI when buying or selling
a stock. The Buy & Sell tab is a list-style region that shows multiple buy/sell views as
part of its list, as shown in Figure 6.9.

Figure 6.9  ListBox Region

Working with Regions
Regions are enabled in the Composite Application Library through a region manager,
regions, and region adapters.

Region Manager
The RegionManager class is responsible for maintaining a collection of regions and
creating new regions for controls. The RegionManager finds an adapter mapped to
a WPF control and associates a new region to that control. Figure 6.10 illustrates the
relationship between the region, control, and adapter set up by the RegionManager.

115Chapter 6:  Technical Concepts

Figure 6.10  Region, control, adapter relationship

The RegionManager also supplies the attached property that can be used for sim-
ple region creation from XAML. To use the attached property, you will need to load
the Composite Application Library namespace into the XAML and then use the
RegionName attached property. The following example shows using the attached
property for a window with a tab control.

XAML
<Window x:Class="MyApp.Shell"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:cal="http://www.codeplex.com/CompositeWPF">
...
<TabControl x:Name="TabRegion” cal:RegionManager.RegionName="MainRegion" />
...
</Window>

The RegionManager can register regions directly without using XAML. This is useful
if you want to move the control around in the visual tree and do not want the region
to be cleared when the attached property value is removed. The following code shows
registering a new region with the RegionManager located in a container.

C#
IRegionManager newRegionManager = Container.Resolve<IRegionManager>();
newRegionManager.AttachNewRegion(someControl, regionName);

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.codeplex.com/CompositeWPF

Composite Application Guidance for WPF116

IRegion
A region is a class that implements the IRegion interface. The region is the container
that holds content to be displayed by the control. The following code shows the
IRegion interface.

C# IRegion.cs
public interface IRegion
 {
 IViewsCollection Views { get; }
 IViewsCollection ActiveViews { get; }
 IRegionManager Add(object view);
 IRegionManager Add(object view, string viewName);
 IRegionManager Add(object view, string viewName, bool
 createRegionManagerScope);
 void Remove(object view);
 void Activate(object view);
 void Deactivate(object view);
 object GetView(string viewName);
 IRegionManager RegionManager { get; set; }
}

To add a view to a region, get the region from the region manager, and call the Add
method, as shown in the following code.

C#
IRegion region = _regionManager.Regions["MainRegion"];

var ordersPresentationModel = _container.Resolve<IOrdersPresentationModel>();
var _ordersView = ordersPresentationModel.View;
region.Add(_ordersView, "OrdersView");
region.Activate(_ordersView);

Region Adapters
Composite Application Library provides three region adapters: ContentControl-
RegionAdapter, SelectorRegionAdapter, and ItemsControlRegionAdapter. These
adapters are meant to adapt controls derived from ContentControl, Selector, and
ItemsControl, respectively. Adapters can be replaced or new ones added for new
controls, by adding to the RegionAdapterMappings for the RegionManager.

117Chapter 6:  Technical Concepts

In the UnityBootstrapper, the RegionAdapterMappings is supplied to the
RegionManager during application initialization, as shown in the following
code.

C# UnityBootstrapper.cs
protected virtual RegionAdapterMappings ConfigureRegionAdapterMappings()
{
 RegionAdapterMappings regionAdapterMappings =
 Container.TryResolve<RegionAdapterMappings>();
 if (regionAdapterMappings != null)
 {
 regionAdapterMappings.RegisterMapping(typeof(Selector),
 new SelectorRegionAdapter());
 regionAdapterMappings.RegisterMapping(typeof(ItemsControl),
 new ItemsControlRegionAdapter());
 regionAdapterMappings.RegisterMapping(typeof(ContentControl),
 new ContentControlRegion_
 Adapter());
 }

 return regionAdapterMappings;
}

Scoped Regions
Views defining regions with attached properties automatically inherit their parent’s
RegionManager. Usually, this is the global RegionManager that is registered in
the shell window. If the application creates more than one instance of that view,
each instance would attempt to register its region with the parent RegionManager.
RegionManager allows only uniquely named regions, so the second registration
produces an error. Instead, use scoped regions so that each view gets its own
RegionManager and its regions will be registered with that RegionManager
instead of with the parent RegionManager, as shown in Figure 6.11 on the next
page.

Composite Application Guidance for WPF118

Figure 6.11  Parent and scoped region managers

To create a local RegionManager for a view, specify that a new RegionManager
should be created when adding your view to a region, as illustrated in the following
code example.

C#
IRegion detailsRegion = this.regionManager.Regions["DetailsRegion"];
View view = new View();
bool createRegionManagerScope = true;
IRegionManager detailsRegionManager = detailsRegion.Add(view, null,
 createRegionManagerScope);

The Add method will return the new RegionManager that the view can retain for
further access to the local scope.

More Information
For more information about regions, see the following:
l	 “UI Composition QuickStart” on MSDN
l	 Region How-to topics on MSDN:

l	 "How to: Add a Region"
l	 "How to: Create a Custom Region Adapter"
l	 "How to: Provide a Custom Logger"
l	 "How to: Show a View in a Scoped Region"
l	 "How to: Show a View in a Shell Region"

http://msdn.microsoft.com/en-us/library/cc707868.aspx
http://msdn.microsoft.com/en-us/library/cc707908.aspx
http://msdn.microsoft.com/en-us/library/cc707884.aspx
http://msdn.microsoft.com/en-us/library/cc707911.aspx
http://msdn.microsoft.com/en-us/library/cc707903.aspx
http://msdn.microsoft.com/en-us/library/cc707854.aspx

119Chapter 6:  Technical Concepts

l	 Composition patterns:
l	 “Composite and Composite View” in Chapter 3, “Patterns in the Composite

Application Library”

Shell and View
The shell is the main window of the application where the primary user interface (UI)
content is contained. The shell may be composed of multiple windows if desired, but
most commonly it is just a single main window that contains multiple views. The shell
may contain named regions where modules can add views. It may also define certain
top-level UI elements, such as the main menu and toolbar. The shell also defines the
overall appearance for the application. It may define styles and borders that are pres-
ent and visible in the shell layout itself, and it may also define styles, templates, and
themes that get applied to the views that are plugged into the shell.

Views are the composite portions of the user interface that are contained in the shell’s
window(s). It is easiest to think about a view as a user control that defines a rectangu-
lar portion of the client area in the main window. However, views in the Composite
Application Library do not have to be defined with a user control. You can use a WPF
data template to define a view that will be rendered based on the data in your model.
A view could also share screen real estate with other views due to the rendering and
compositing capabilities of WPF. In simple terms, a view is just a collection of user
interface elements that define part of the rendering of the user interface. It is a unit of
encapsulation for defining the separable portions of your UI.

Implementing a Shell
You do not have to have a distinct shell as part of your application architecture to
use the Composite Application Library. If you are starting a new composite WPF
application from the very beginning, implementing a shell provides a well-defined
root and initialization pattern for setting up the main user interface of your appli-
cation. However, if you are adding Composite Application Library features to an
existing application, you do not have to change the basic architecture of your appli-
cation to add a shell. Instead, you can alter your existing window definitions to add
regions or pull in views as needed.

You can also have more than one shell in your application. If your application is de-
signed to open more than one top level window for the user, each top level window
acts as a shell for the content it contains.

Composite Application Guidance for WPF120

Stock Trader RI Shell
The Stock Trader RI has a shell as its main window. In Figure 6.12, the shell and
views are highlighted. The shell is the main window that appears when the Stock
Trader RI starts and which contains all the views. It defines the regions into which
modules add their views and a couple of top-level UI items, including the CFI Stock
Trader title and the Watch List tear-off banner.

Figure 6.12  Stock Trader RI shell window and highlighted views

The shell implementation in the Stock Trader RI is provided by Shell.xaml and its
code-behind file Shell.xaml.cs. Shell.xaml includes the layout and UI elements that
are part of the shell. This includes defining several ItemsControls that are identified
as regions for modules to add their views to, as shown here.

XAML
<ItemsControl Margin="0,20,0,0" cal:RegionManager.RegionName="NewsRegion" />

The only thing included in the code-behind file is the implementation of the IShellView
interface defined in the Shell project, as shown here.

121Chapter 6:  Technical Concepts

C# IShellView.cs
public interface IShellView
{
 void ShowView();
}

The implementation of ShowView simply calls Show on the shell class itself, which
displays the main window. ShowView is called by the bootstrapper in the initializa-
tion of the application, as shown in the following code. For more information, see
“Creating the Shell” in the Bootstrapper technical concept earlier in this chapter.

C# Shell.xaml.cs
public partial class Shell : Window, IShellView
{

 public Shell()
 {
 InitializeComponent();
 }

 public void ShowView()
 {
 this.Show();
 }
}

Implementing a View
Views are the main unit of UI construction within a composite UI application. You
can define a view as a user control, data template, or even a custom control. A view
encapsulates a portion of your user interface that you would like to keep as decou-
pled as possible from other parts of the application. You may choose what goes in a
view based on only encapsulation or a piece of functionality, or you may choose to
define something as a view because you will have multiple instances of that view in
your application.

Because of the content model of WPF, there is nothing specific to the Composite
Application Library required to define a view. The easiest and most common way
to define a view is to define a user control. To add a view to the UI, you simply need
a way to construct it and add it to a container. WPF provides mechanisms to do that.
The only thing the Composite Application Library adds is the ability to define a region
into which a view can be dynamically added at run time.

The following markup shows an example user control.

Composite Application Guidance for WPF122

XAML
<UserControl x:Class="WpfApplication1.ExcessivelySimpleView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="25" Width="100">
 <Label>A VERY simple view</Label>
</UserControl>

The following markup shows an example data template.

XAML
<Window x:Class="WpfApplication1.Window1" .../>
 <Window.Resources>
 <DataTemplate x:Key="ADataTemplateView">
 <Label>A really simple data template view</Label>
 </DataTemplate>
 </Window.Resources>
 <Grid .../>
</Window>

Composite Views
Frequently, a view that supports a specific set of functionality can get complicated.
In that case, it may make sense to break up the view into several child views and
have the parent view handle constructing itself using the child views as parts. It
may do this statically at design time, or it may support having modules add child
views through a contained region at run time. When you have a view that is not fully
defined in a single view class, you can refer to that as a composite view. Frequently, a
composite view is responsible for constructing the child views and for coordinating
the interactions between them. Child views can also be designed to be more loosely
coupled from their sibling views and their parent composite view by using the
Composite Application Library commands and the event aggregator.

Views in the Stock Trader RI
Figure 6.12 earlier in this section highlights five different views. In what the user sees
as a main toolbar, there are really two views plugged in by modules that are composed
of buttons and other toolbar controls. The main content area of the Stock Trader RI is
a composite view with three child views, the position grid, and two chart control in-
stances. The watch list and news articles are also individual views. The view illustrated
in Figure 6.12 does not display buy/sell orders, which are defined as composite views
themselves, and they are hosted in an ItemsControl-based region on another tab in the
main content area.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

123Chapter 6:  Technical Concepts

Views and Design Patterns
You should consider using one of several user interface design patterns when imple-
menting a view even though it is not required by the Composite Application Library.
The Stock Trader RI and QuickStarts demonstrate both the Supervising Controller
and Presentation Model patterns as a way to implement a clean separation between
the view layout and the view logic.

Separating the logic from the view is important for both testability and maintain-
ability. If you create a view with a user control or custom control and put all the logic
in the code behind, it can be difficult to test because you have to create an instance
of the view to unit test the logic. However, sometimes the base class of the view can
interfere with testing because it expects only the class to be created as part of a user
interface in a normal WPF execution context. To make sure the right things happen
in the view as part of your unit tests, you will also need a way to mock out the views,
which really requires a separate class for the view and the logic. If you define a view
as a data template, there is no code associated with the view itself, so you have to put
the associated logic somewhere else. The same clean separation of logic from layout
required for testability also helps make the view easier to maintain.

More Information
For more information about patterns that separate view layout and view logic, see
“Supervising Controller” and “Presentation Model” in Chapter 3, “Patterns in the
Composite Application Library.”

For more information about views, see the following topics on MSDN:
l	 “How to: Create a View with a Presenter.” This topic describes how to create a

view following the Model-View-Presenter pattern.
l	 “How to: Show a View in a Shell Region.” This topic describes how to place a

view in a shell-defined region.
l	 “How to: Show a View in a Scoped Region.” This topic describes how to create

scoped regions and show views in scoped regions.

Event Aggregator
The EventAggregator service is primarily a container for events that allow decoupling
of publishers and subscribers so they can evolve independently. This decoupling is
useful in modularized applications because new modules can be added that respond
to events defined by the shell or, more likely, other modules.

http://msdn.microsoft.com/en-us/library/cc707895.aspx
http://msdn.microsoft.com/en-us/library/cc707854.aspx
http://msdn.microsoft.com/en-us/library/cc707903.aspx

Composite Application Guidance for WPF124

In the Composite Application Library, EventAggregator allows subscribers or pub-
lishers to locate a specific EventBase. The event aggregator also allows for multiple
publishers and multiple subscribers, as shown in Figure 6.13.

Figure 6.13  Event aggregator

IEventAggregator
The EventAggregator class is offered as a service in the container and can be retrieved
through the IEventAggregator interface. The event aggregator is responsible for locat-
ing or building events and for keeping a collection of the events in the system.

C# IEventAggregator.cs
public interface IEventAggregator
{
 TEventType GetEvent<TEventType>() where TEventType : EventBase;
}

The EventAggregator will construct the event on its first access if it has not already
been constructed. This relieves the publisher or subscriber from having to determine
whether the event is available.

CompositeWpfEvent
The real work of connecting publishers and subscribers is done by the Composite-
WpfEvent class. This is the only implementation of the EventBase class in the
Composite Application Library. This class maintains the list of subscribers and
handles event dispatching to the subscribers.

125Chapter 6:  Technical Concepts

The CompositeWpfEvent class is a generic class that requires the payload type to
be defined as the generic type. This helps enforce, at compile time, that publishers
and subscribers provide the correct methods for successful event connection. The
following code shows a partial definition of the CompositeWpfEvent class.

C# CompositeWpfEvent.cs
public class CompositeWpfEvent<TPayload> : EventBase
{
 ...
 public SubscriptionToken Subscribe(Action<TPayload> action);
 public SubscriptionToken Subscribe(Action<TPayload> action,
 ThreadOption threadOption);
 public virtual SubscriptionToken Subscribe(Action<TPayload> action,
 ThreadOption threadOption, bool keepSubscriberReferenceAlive,
 Predicate<TPayload> filter);
 public virtual void Publish(TPayload payload);
 public virtual void Unsubscribe(Action<TPayload> subscriber);
 public virtual void Unsubscribe(SubscriptionToken token);
 ...
}

The CompositeWpfEvent class is intended to be the base class for an application’s or
module’s specific events. For example, the following code shows the TickerSymbol-
SelectedEvent in the Stock Trader RI.

C# TickerSymbolSelectedEvent.cs
public class TickerSymbolSelectedEvent : CompositeWpfEvent<string>{}

Note:  In a composite application, the events are frequently shared between multiple modules,
so they are defined in a common place. In the Stock Trader RI, this is done in the StockTraderRI.
Infrastructure project.
	

Subscribing to an Event
Subscribers can enlist with an event using one of the CompositeWpfEvent avail-
able Subscribe method overloads. There are a number of options for subscribing to
CompositeWpfEvents. Use the following criteria to help determine which option
best suits your needs:
l	 If you need to be able to update user-interface elements when an event is received,

subscribe to receive the event on the user interface thread.
l	 If you need to filter an event, provide a filter delegate when subscribing.
l	 If you have noticed performance concerns with your events, consider using strongly

referenced delegates when subscribing and manually unsubscribing from the
CompositeWpfEvent.

l	 If none of the preceding is applicable, use a default subscription.

Composite Application Guidance for WPF126

Default Subscriptions
For a minimal or default subscription, the subscriber must provide a callback method
with the appropriate signature that receives the event notification. For example,
the handler for the TickerSymbolSelectedEvent requires the method take a string
parameter, as shown here.

C#
public void Run()
{
 eventAggregator.GetEvent<TickerSymbolSelectedEvent>().Subscribe(ShowNews);
}

public void ShowNews(string companySymbol)
{
 articlePresentationModel.SetTickerSymbol(companySymbol);
}

Subscribing on the User Interface Thread
Frequently, subscribers will need to update user interface elements in response to events.
In WPF, only a UI thread can update user interface elements. By default, the subscriber
receives the event on the publisher’s thread, so if the publisher sends the event from the
UI thread, the subscriber will be able to update the user interface.

However, if the publisher’s thread is a background thread, the subscriber may be un-
able to directly update user interface elements. Instead, it would need to schedule the
updates on the UI thread using the WPF Dispatcher class. The CompositeWpfEvent
provided with the Composite Application Library can assist by allowing the subscriber
to automatically receive the event on the UI thread. The subscriber must indicate this
during subscription, as shown in the following code.

C# NewsController.cs
public void Run()
{
 eventAggregator.GetEvent<TickerSymbolSelectedEvent>().Subscribe(ShowNews,
 ThreadOption.UIThread);
}

public void ShowNews(string companySymbol)
{
 articlePresentationModel.SetTickerSymbol(companySymbol);
}

The following options are available for ThreadOption:
l	 Publisher.  Use this setting to receive the event on the publishers’ thread. This is

the default setting.
l	 Background.  Use this setting to receive the event on a .NET Framework thread-

pool thread.
l	 UIThread.  Use this setting to receive the event on the user interface thread.

127Chapter 6:  Technical Concepts

Subscription Filtering
Subscribers may not need to handle every instance of a published event. In these cases,
the subscriber can subscribe and supply a delegate that filters the event before the
registered handler is called. Frequently, this filter is supplied as a lambda expression,
as shown in the following code.

C#
FundAddedEvent fundAddedEvent = eventAggregator.GetEvent<FundAddedEvent>();

fundAddedEvent.Subscribe(FundAddedEventHandler,
 ThreadOption.UIThread, false,
 fundOrder => fundOrder.CustomerId == _customerId);

Subscribing Using Strong References
If you have noticed performance concerns with your events, you may need to subscribe
with strong delegate references—and therefore, manually unsubscribe from the event—
instead of the default weak delegate references maintained by CompositeWpfEvent.

By default, CompositeWpfEvent maintains a weak delegate reference to the
subscriber’s handler and filter on subscription. This means the reference that
CompositeWpfEvent holds to the subscriber will not prevent garbage collection of
the subscriber. Using a weak delegate reference relieves the subscriber from the need
to unsubscribe to enable proper garbage collection. However, maintaining this weak
delegate reference is slower than a corresponding strong delegate reference. For most
applications, this performance will not be noticeable, but if your application pub-
lishes a large number of events in a short period of time, you may need to use strong
delegate references with CompositeWpfEvent to achieve reasonable performance. If
you do use strong delegate references, your subscriber should unsubscribe to enable
proper garbage collection of your subscribing object.

To subscribe with a strong reference, use the keepSubscriberReferenceAlive option
on the Subscribe method, as shown in the following code.

C#
FundAddedEvent fundAddedEvent = eventAggregator.GetEvent<FundAddedEvent>();

bool keepSubscriberReferenceAlive = true;

fundAddedEvent.Subscribe(FundAddedEventHandler,
 ThreadOption.UIThread, keepSubscriberReferenceAlive,
 fundOrder => fundOrder.CustomerId == _customerId);

Publishing an Event
Publishers raise an event by retrieving the event from the EventAggregator and
calling the Publish method. For example, the following code in the Stock Trader RI
demonstrates publishing the TickerSymbolSelectedEvent.

Composite Application Guidance for WPF128

C# PositionSummaryPresentationModel.cs
EventAggregator.GetEvent<TickerSymbolSelectedEvent>().Publish(e.Value);

Unsubscribing from an Event
If your subscriber no longer wants to receive events, you can directly unsubscribe
using your subscriber’s handler or you can unsubscribe by using a subscription
token. The following example shows how to directly unsubscribe to the handler.

C#
compositeWpfEvent.Subscribe(
 FundAddedEventHandler,
 ThreadOption.PublisherThread);

compositeWpfEvent.Unsubscribe(FundAddedEventHandler);

To unsubscribe with a subscription token, the token supplied during the subscribe
process can be supplied to the Unsubscribe method call, as shown here.

C#
FundAddedEvent fundAddedEvent = eventAggregator.GetEvent<FundAddedEvent>();

subscriptionToken = fundAddedEvent.Subscribe(FundAddedEventHandler,
 ThreadOption.UIThread, false,
 fundOrder => fundOrder.CustomerId == _
customerId);

fundAddedEvent.Unsubscribe(subscriptionToken);

More Information
For more information about events in the Composite Application Library, see the
following resources:
l	 “Event Aggregation QuickStart” on MSDN
l	 “How to: Create and Publish Events” on MSDN
l	 “How to: Subscribe and Unsubscribe to Events” on MSDN
l	 “Event Aggregator” on Martin Fowler’s Web site

Commands
Commands are a way to handle user interface (UI) actions. They are a loosely coupled
way to bind the UI to the logic that performs the action.

When building composite applications, presentation design patterns such as Model-
View-Presenter (MVP) and Model-View-Controller (MVC) are often used to separate
the UI logic from the UI layout and presentation. When implementing these patterns
with WPF, the presenter or controller handles commands but lives outside the logical

http://msdn.microsoft.com/en-us/library/cc707857.aspx
http://msdn.microsoft.com/en-us/library/cc707855.aspx
http://msdn.microsoft.com/en-us/library/cc707892.aspx
http://www.martinfowler.com/eaaDev/EventAggregator.html
http://msdn.microsoft.com/en-us/library/ms753391.aspx

129Chapter 6:  Technical Concepts

tree. WPF-routed commands deliver command messages through UI elements in
the tree, but the elements outside the tree will not receive these messages because they
only bubble up or down from the focused element or an explicitly stated target ele-
ment. Additionally, the WPF-routed commands require a command handler in the
code behind.

The Composite Application Library introduces two new commands that can be routed
outside the boundaries of the logical tree and that do not require handling logic in the
code behind. The commands are custom implementations of the ICommand interface
defined by WPF, and they implement their own routing mechanism to get the com-
mand messages delivered to objects outside of the logical tree. The commands in the
Composite Application Library include DelegateCommand and CompositeCommand.

DelegateCommand<T>
The DelegateCommand allows delegating the commanding logic instead of requiring a
handler in the code behind. It uses a delegate as the method of invoking a target han-
dling method.

In the Stock Trader RI, the Buy and Sell shortcut menu items that appear when the
user right-clicks a specific symbol on the positions screen is a delegate command.
These commands are handled by the OrdersController. DelegateCommands can
also be handled by a either a ViewModel or a presenter, depending on the scenario.

The DelegateCommand uses its delegate to invoke a CanExecute method or Execute
method on the target object when the command is invoked. Because the class is generic,
it enforces compile-time checking on the command parameters, which traditional WPF
commands do not. Additionally, because it accepts delegates, it removes the need for
creating a new command type for every instance where you need commanding.

DelegateCommand accepts two constructor parameters, executeMethod and
canExecuteMethod. Because the parameter types are generic delegates, the handlers
can be easily hooked into the underlying controllers or presenters. The following code
shows how the DelegateCommand holds onto the provided delegates that it uses to
invoke the target methods.

C# DelegateCommand.cs
public class DelegateCommand<T> : ICommand
{
 public DelegateCommand(Action<T> executeMethod, Func<T, bool> canExecute_
 Method)
 {
 ...
 this.executeMethod = executeMethod;
 this.canExecuteMethod = canExecuteMethod;
 ...
 }
...
}

Composite Application Guidance for WPF130

IActiveAware Interface
In some instances, you may want a delegate command to execute only if it is in a
view that is currently active (selected). For example, the Submit command (which
the Submit button binds to) in each Buy/Sell order is active only when that order is
selected.

To support this behavior, the DelegateCommand implements IActiveAware. This
interface has an IsActive property, which can be set whenever the command becomes
active. Whenever the property changes, the DelegateCommand raises the IsAc-
tiveChanged event.

The following code shows the implementation of the IActiveAware interface on the
DelegateCommand.

C# DelegateCommand.cs
public event EventHandler IsActiveChanged;

public bool IsActive
{
 get { return _isActive; }
 set
 {
 if (_isActive != value)
 {
 _isActive = value;
 OnIsActiveChanged();
 }
 }
}

protected virtual void OnIsActiveChanged()
{
 EventHandler isActiveChangedHandler = IsActiveChanged;
 if (isActiveChangedHandler != null) isActiveChangedHandler(this, EventArgs._
 Empty);
}

CompositeCommand
The CompositeCommand is a command that has multiple child commands. The
CompositeCommand is used in the Stock Trader RI in two cases: first, for the Buy/
Sell Submit All button on the main toolbar and second, for the Submit and Cancel
buttons on that toolbar. When you click the Submit All button, all the child Submit
commands in the Buy/Sell screens are executed. When you click the Submit or
Cancel button, only the active Buy/Sell order’s command is executed.

131Chapter 6:  Technical Concepts

When you call the Execute or the CanExecute method on the composite command, it
calls the respective method on the child commands. The following code shows how
the Execute and CanExecute methods are implemented in the CompositeCommand
class. The ShouldExecute method is described in the next section.

C# CompositeCommand.cs
public virtual bool CanExecute(object parameter)
{
 bool hasEnabledCommandsThatShouldBeExecuted = false;

 foreach (ICommand command in registeredCommands)
 {
 if (ShouldExecute(command))
 {
 if (!command.CanExecute(parameter))
 {
 return false;
 }

 hasEnabledCommandsThatShouldBeExecuted = true;
 }
 }
 return hasEnabledCommandsThatShouldBeExecuted;
}

public virtual void Execute(object parameter)
{
 Queue<ICommand> commands = new Queue<ICommand>(registeredCommands);

 while (commands.Count > 0)
 {
 ICommand command = commands.Dequeue();
 if (ShouldExecute(command))
 command.Execute(parameter);
 }
}

Figure 6.14 on the next page illustrates a diagram of the connection between
DelegateCommands and CompositeCommands.

Composite Application Guidance for WPF132

Figure 6.14  Connection between CompositeCommand and DelegateCommand

In some instances, you may want a composite command to execute only if it is in a view
that is currently active (selected). To support this behavior, the DelegateCommand
implements IActiveAware. This interface has an IsActive property, which can be set
whenever the command becomes active. Whenever the property changes, the Delegate-
Command throws the IsActiveChanged event.

In the following code, you can see the implementation of the IActiveAware interface
on the DelegateCommand.

Activity Monitoring Behavior
In some cases, you may want the composite command to execute only the active com-
mand. For example, in the Stock Trader RI, the Submit composite command, which is
invoked by the Submit button on the toolbar, submits only the current order. That is,
it executes only the current order’s Submit command.

Figure 6.15 illustrates the Submit button on the main toolbar in the Stock Trader RI.

133Chapter 6:  Technical Concepts

Figure 6.15  Stock Trader RI main toolbar

To support the submit functionality, the CompositeCommand has an activity monitor-
ing behavior. This behavior is enabled in the CompositeCommand’s constructor by
setting the monitorCommandActivity to true. When this behavior is enabled, the
CompositeCommand performs an additional check on commands that implement
IActiveAware before it executes them. If that command’s IsActive property is set to
true and the command’s CanExecute method returns true, it executes. The Should-
Execute method handles this logic, as shown here.

C# CompositeCommand.cs
protected virtual bool ShouldExecute(ICommand command)
{
 var activeAwareCommand = command as IActiveAware;

 if (monitorCommandActivity && activeAwareCommand != null)
 {
 return (activeAwareCommand.IsActive);
 }

 return true;
}

Registering and Unregistering Composite Commands
Composite commands are either registered or unregistered through the Register-
Command and UnregisterCommand. In the Stock Trader RI, the OrdersController
is responsible for registering and unregistering the child order commands. The fol-
lowing code shows where the Submit and Cancel commands are registered in the
StartOrder method.

C# OrdersController.cs
virtual protected void StartOrder(...)
{
...
 commandProxy.SubmitOrderCommand.RegisterCommand (orderCompositePresentation_
 Model.SubmitCommand);
 commandProxy.CancelOrderCommand.RegisterCommand
(orderCompositePresentationModel.CancelCommand);
...
}

Composite Application Guidance for WPF134

Frequently Asked Questions About Commands

Why are WPF commands not used?
WPF commands have a number of limitations. They are coupled to elements in the
logical tree because they use routed events under the covers to deliver the command
messages. This means you cannot directly hook up a separate class, such as a presen-
tation model, presenter, or controller, to be the direct command handler. The view
would have to be the routed command handler, and it would have to forward the call
to the presenter or controller through a method call or event. Additionally, the com-
mand handler that the routed event is delivered to is determined by the current focus
in the UI. This works fine if the command handler is at the window level, because the
window is always in the focus tree of the currently focused element, so it gets called
for command messages. However, it does not work for child views who have their
own command handlers unless they have the focus at the time. Finally, only one com-
mand handler is ever consulted with routed commands. After one command handler
is invoked (for CanExecute or Execute), no other handlers are consulted, even if they
are in the focus tree of the focused element. For scenarios where multiple views (or
their presenters) need to handle the command, there is no decoupled way to address
it with routed commands.

Can delegate commands be replaced with routed commands?
No, because both are meant for two different purposes. Routed commands, such as
Cut, Copy, and Paste, are meant for controls with command binding that live within
the logical tree and that will have the focus for the intent of the command. They can
also be used for general purposes if it is acceptable to put centralized command han-
dling at the root window or page element and have it as part of the view. However,
that approach does not scale for composite applications, so the DelegateCommand
approach allows you to have the flexibility of multiple command handlers that live
outside the logical tree.

Can the order of execution of commands be set up inside the Composite com-
mands?
Currently, you cannot specify the order that commands are executed within Composite
commands. Moreover, this is not required from a high level, because command
handlers should be decoupled from one another and not rely on a specific invocation
order. The workaround for this is the judicious usage of DelegateCommands and the
implementation logic. You just need to know how the composite command works.
Because the composite command orders the command list internally, execution mode
will be First In, First Out (FIFO).

135Chapter 6:  Technical Concepts

More Information
For more information about commands, see the following topics on MSDN:
l	 “Commanding QuickStart”
l	 “How to: Create Globally Available Commands”
l	 “How to: Create Locally Available Commands”

Communication
When building large complex applications, a common approach is to divide the
functionality into discrete module assemblies. It is also desirable to minimize the use
of static references between these modules. This allows the modules to be indepen-
dently developed, tested, deployed, and updated, and it forces loosely coupled
communication.

When communicating between modules, you can use commanding, event aggrega-
tion, or shared services. Use the following to help decide which approach to use:
l	 Commanding.  Use this in response to user gestures and custom enablement.
l	 Event aggregator.  Use this to publish an event across modules.
l	 Shared services.  Use this if neither of the preceding is applicable.

Commanding
If you need to respond to a user gesture, such as clicking on a command invoker (for
example, a button or menu item), and you want the invoker to be enabled based on
business logic, use commanding.

WPF provides RoutedCommand, which is good at connecting command invokers,
such as menu items and buttons, with command handlers that are associated with
the current item in the visual tree that has keyboard focus.

However, in a composite scenario, the command handler is often a controller that does
not have any associated elements in the visual tree or is not the focused element.
To support this scenario, the Composite Application Library provides Composite-
Command and DelegateCommand, which has a direct routing mechanism, compared
to RoutedCommand, which uses tunneling and bubbling.

The CompositeCommand is an implementation of ICommand so that it can be bound
to invokers. CompositeCommands can be connected to several child commands and
when the CompositeCommand is invoked, the child commands are also invoked.

http://msdn.microsoft.com/en-us/library/cc707837.aspx
http://msdn.microsoft.com/en-us/library/cc707861.aspx
http://msdn.microsoft.com/en-us/library/cc707896.aspx

Composite Application Guidance for WPF136

CompositeCommands support the notion of enablement. CompositeCommands
listen to the CanExecuteChanged event of each one of its connected commands. It
then raises this event notifying its invoker(s). The invoker(s) reacts to this event by
calling CanExecute on the CompositeCommand. The CompositeCommand then
again polls all its child commands by calling CanExecute on each child command.
If any call to CanExecute returns false, the CompositeCommand will return false,
thus disabling the invoker(s).

How does this help with cross module communication? Applications based on the
Composite Application Library may have global CompositeCommands that are de-
fined in the shell that have meaning across modules, such as Save, Save All, Cancel.
Modules can then register their local commands with these global commands and
participate in their execution.

For more information about using composite commands, see “Commands” earlier in
this chapter.

Event Aggregator
If you need to publish an event across modules and do not need a response, use
EventAggregator.

Consider using EventAggregator when sending a message between business logic
code, such as controllers and presenters. An example is when the Process Order but-
ton has been clicked and the order successfully processed; in this case, other modules
need to know the order is successfully processed so they can update their views.

EventAggregator provides multicast publish/subscribe functionality. This means
there can be multiple publishers that raise the same event and there can be multiple
subscribers listening to the same event.

This helps with cross module communication because events can be defined in a
shared assembly in a way that publishers and subscribes can reside in entirely
separate modules.

For more information about using EventAggregator, see “Event Aggregator” earlier
in this chapter.

Shared Services
Another method of cross-module communication is through shared services. When
the modules are loaded, modules add their services to the service locator. Typically,
services are registered and retrieved from a service locator by common interface types.
This allows modules to use services provided by other modules without requiring a
static reference to the module. Service instances are shared across modules, so you can
share data and pass messages between modules.

137

In the Stock Trader RI, the News module provides an implementation of INews-
FeedService. The Position module consumes these services by using the shell
application’s dependency injection container, which provides service location and
resolution. The INewsFeedService is meant to be consumed by other modules, so it
can be found in the StockTraderRI.Infrastructure common assembly.

To see how these modules register their services into the Unity dependency injection
container, see the files NewsModule.cs, as shown in the following code, and Market-
Module.cs. The Position module’s PositionSummaryPresentationModel receives
these services through constructor dependency injection. For more information about
the Dependency Injection pattern, see “Dependency Injection Pattern” in Chapter 3,
“Patterns in the Composite Application Library.”

C# NewsModule.cs
protected void RegisterViewsAndServices()
{
 container.RegisterType<INewsFeedService, NewsFeedService>(new Container
 ControlledLifetimeManager());
}

This helps with cross-module communication because service consumers do not
need a static reference to modules providing the service. This service can be used
to send or receive data between modules.

For more information about services and containers, see “Container and Services”
earlier in this chapter.

Chapter 6:  Technical Concepts

7
Designer Guidance

Overview
The approach to building applications with the Composite Application Library can
vary widely from implementation to implementation. Designing a user interface (UI)
can become confusing without clear guidance. The majority of the confusion stems
from the difference between the design-time experience of monolithic applications
and the design-time experience of composite applications.

A monolithic application is an application where all its pieces are combined into a
single application. It is designed without modularity—this means the parts are very
tightly coupled and cannot be separated or replaced. From a user interface (UI) per-
spective, the individual screens in these applications are often laid out at design time
and statically composed at run time. This type of application is simpler to design
because the majority of the UI artifacts are placed on screens during design time and
the overall appearance of the application is easy to see.

A composite application is an application where the UI is dynamically composed at run
time. This allows business logic to determine what is shown to the user. It also allows
you to add new functionality to the UI with less friction. In these types of applications,
only portions of screens can be seen at design time, and the design experience is more
focused on creating islands of visual representation that are combined to represent an
overall screen. It is the dynamic nature of these types of applications that presents the
most confusion to designers because, in many cases, the complete view of the applica-
tion can be seen only by actually running the application.

The goal of this section is to provide some high-level guidance to designers when
working on a team that is building an application with the Composite Application
Library. This section describes UI layout, visual representation techniques, binding,
and resources distribution. After reading this section, you should have a high-level
understanding of how to approach designing the UI of an application based on the
Composite Application Library and some of the techniques that can help you create
a maintainable UI in composite applications.

Composite Application Guidance for WPF140

Layout
The layout of applications created with the Composite Application Library builds
on the standard principals of Windows Presentation Foundation (WPF)—the layout
uses the concepts of panels that contain related items. One of the differences in
the Composite Application Library is that the content inside the various panels is
dynamic and is not known during design time. This turns the design experience
upside-down by forcing designers to create page structures that can contain various
content and then work on the actual content in another context. As a designer, this
forces you to think about two main layout concepts in the Composite Application
Library: container composition and regions.

Container Composition
The term “container composition” is really just an extension to the containment
model that WPF inherently provides. This term is used here because of the extremely
flexible containment model that WPF has. The term “container” can mean any element,
including a window, page, user control, control template, or data template, that can
contain other elements.

How you visualize your UI can vary from implementation to implementation, but
you will find reoccurring themes that stand out. You will be creating either a window,
page, or user controls that will contain both fixed content and dynamic content. The
fixed content will consist of the overall structure of the containing UI element, and the
dynamic content will be what is placed inside a region (for more information about
regions, see the next section). For example, the Stock Trader Reference Implementation
(Stock Trader RI) application has a startup window (named Shell.xaml) that contains
the overall structure for the application. The window in Microsoft Expression Blend,
as shown in Figure 7.1, shows a fixed portion of the window. The remaining sections
of the window are dynamically inserted into the various regions by the modules as
the application loads.

The design-time experience is a little limited in this type of application, but the fact that
you know content will be placed in the various regions during run time is something
that you need to design around. To see an example of this, compare the designer view
of the main page in Figure 7.1 to the run-time view in Figure 7.2. In the designer view,
the page is mostly empty; it has a title and a section header titled Watch List. Contrast
that with the run-time view, where there is a toolbar area with a series of buttons, a

141Chapter 7:  Designer Guidance

position area that contains a tab control with position data, and a News and Watch
List area that contain stocks to watch and news pertaining to the selected stocks. The
differences between the designer view and run-time view demonstrate the challenges
designers face when they create applications built with the Composite Application
Library. The items cannot be seen during design time, so determining how big they
are and how they fit into the overall appearance of the application is a little difficult.
Consider the following as you create the layout for your containers:
l	 Are there any size constraints that will limit how large content can be? If there are,

consider using containers that support scrolling.
l	 Consider using an expander and ScrollViewer combination in situations where a

lot of dynamic content needs to fit into a confined area.
l	 Pay close attention to how content enlarges as the screen content grows to ensure

the appearance of your application is appealing in any resolution.

Figure 7.1  Stock Trader RI main window in Microsoft Expression Blend

Composite Application Guidance for WPF142

Figure 7.2  Stock Trader RI main window during run time

Region
The term “region” represents a container that can hold dynamic data that is manifested
into a UI representation. A region allows the Composite Application Library to place
dynamic content contained in modules in predefined placeholders in a UI container.
The power of regions comes in their ability to hold any type of UI content. A module
can contain UI content manifested as a user control, a data type that is associated with
a data template, a custom control, or any combination of these. Essentially, this gives
a designer the ability to create an appearance and behavior for a UI area and then to
have modules place content in these predetermined areas. Figure 7.3 illustrates that the
Stock Trader RI main window contains four regions: MainToolbarRegion, MainRegion,
WatchListRegion, and NewsRegion. These regions are populated by the various mod-
ules in the application—the content can be changed at any time.

143Chapter 7:  Designer Guidance

Figure 7.3  Stock Trader RI regions

To create a region, you need to add the RegionManager.RegionName property in
XAML to a ContentControl-based UI element or an ItemsControl-based UI element
that has built-in support in the Composite Application Library. The value of the name
can be anything and will be used by the module developer to determine where con-
tent will be placed. The XAML in the following code shows how the four regions are
assigned in the Stock Trader RI. If these two types of containers do not provide what
you need, the Composite Application Library provides the ability to create region
adaptors that can be created to work with any type of UI element. For more informa-
tion, see “How to: Create a Custom Region Adapter” on MSDN.

http://msdn.microsoft.com/en-us/library/cc707884.aspx

Composite Application Guidance for WPF144

XAML Shell.xaml
<Window x:Class="StockTraderRI.Shell"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:cal="http://www.codeplex.com/CompositeWPF"
 xmlns:inf="clr-namespace:StockTraderRI.Infrastructure;assembly=StockTraderRI._
 Infrastructure"
 xmlns:Controls="clr-namespace:StockTraderRI.Controls"
 Title="Shell" Height="630" Width="1024" WindowStartupLocation="CenterScreen">
 <Window.Resources>
 ...
 </Window.Resources>
 <Grid>
 <Grid.ColumnDefinitions>
 ...
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>

 <TextBlock .../></TextBlock>
 <ItemsControl Grid.Row="1" Grid.Column="1" x:Name="MainToolbar" _
 cal:RegionManager.RegionName="{x:Static inf:RegionNames.MainToolbar_
 Region}">
 <ItemsControl.ItemsPanel>
 ...
 </ItemsControl.ItemsPanel>
 </ItemsControl>
 <StackPanel Grid.Row="1" Grid.RowSpan="2" Grid.Column="3">
 <Controls:TearOffItemsControl x:Name="TearOffControl"
 cal:RegionManager.RegionName="{x:Static inf:RegionNames._
 WatchRegion}”
 HeaderBackground="#FF77B6EB"
 HeaderButtonBackground="#FF77B6EB"
 HeaderButtonRollOverBackground=_
 "#7F77B6EB"
 HeaderText="WATCH LIST"
 HeaderTextStyle="{StaticResource
 TearOffControlHeaderTextStyle}"
 WindowHeight="400" WindowWidth="300" />
 <ItemsControl Margin="0,20,0,0" cal:RegionManager.RegionName="{x:Static
 inf:RegionNames.NewsRegion}" />
 </StackPanel>
 <TabControl x:Name="PositionBuySellTab" Margin="0,10,0,0"
 Style="{StaticResource ShellTabControlStyle}" ItemContainerStyle=_
 "{StaticResource ShellTabItemStyle}" SelectedIndex="0" Grid.Row="2"
 Grid.Column="1" cal:RegionManager.RegionName="{x:Static inf:Region_
 Names.MainRegion}" />
 </Grid>
</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.codeplex.com/CompositeWPF

145Chapter 7:  Designer Guidance

To demonstrate how modules and their content are associated with regions, see
Figure 7.4, which shows the association of WatchListModule and the NewsModule
with their corresponding regions on the main window. The WatchRegion contains
the WatchListView.xaml user control, which is contained in the WatchListModule,
and the NewsRegion contains the ArticleView.xaml user control, which is contained
in the NewsModule. In applications created with the Composite Application Library,
mappings like this will be a part of the design process as designers and developers
use to determine what content is proposed to be in a particular region. This allows
designers to determine the overall space needed and any additional items that need
to be added to ensure the content will be viewable in the allowable space.

Figure 7.4  User control to region mapping

Composite Application Guidance for WPF146

Visual Representation
The visual representation of your application can take many forms, including user
controls, custom controls, and data templates, to name a few. In the case of the Stock
Trader RI, user controls are predominately used to represent distinct sections on the
main window, but this is not a standard. In your application, you should use an ap-
proach that is most familiar to you and fits into how you work as a designer. Regard-
less of the predominate visual representation in your application, you will inevitably
use a combination of user controls, custom controls, and data templates in your
overall design. Figure 7.5 shows where the Stock Trader RI used these various items.
This illustration also serves as a reference for the following sections, which describe
each of the items.

Figure 7.5  Stock Trader RI usage of user controls, custom controls, and data templates

147Chapter 7:  Designer Guidance

User Controls
The rich support in Blend for creating user controls makes them an easy choice for
creating UI content in the Composite Application Library. As mentioned earlier in
this section, the Stock Trader RI uses them extensively to create content that will be
inserted into regions. The WatchList.xaml user control is a good example of a simple
UI representation that is contained inside the WatchListModule. This control is a
very simple control that is straightforward to create using this model.

Custom Controls
In some situations, a user control is too limiting. In these cases, custom layout or
extensibility is more important than ease of creation. This is where custom controls
are useful. In the Stock Trader RI, the pie chart control is a good example of this. This
control is composed from data derived from the positions and shows a chart of your
overall portfolio. This type of control is a little more challenging than a user control
to create, and it has limited support in Blend.

Data Templates
Data templates are an important part of most types of data-driven applications. The
use of data templates for list-based controls is prevalent throughout the Stock Trader
RI. In many cases, complete visual representations can be created using a data tem-
plate alone, without the need to create any type of control. The News Article region
uses a data template to show articles and, in conjunction with an Items style, pro-
vides an indication of which item was selected.

Data Binding
The design experience for data binding will mirror that of most dynamic data-driven
applications where the data context is not assigned until run time. Of course, this
limits some of the designer-specific data binding features of Blend, but it is a reality
in most applications of this type.

In most cases, the view will have its data context assigned by the presenter or pre-
sentation model, which will expose data and delegate commands that are available
for binding during design time. Whether binding to data or commands, a custom
path expression must be used in the Create Data Binding wizard in Blend. In the case
of binding to data, Figure 7.6 shows an example of binding to the Articles property,
which is a collection, to the ItemsSource property of the ListBox contained in the
ArticleView.xaml user control.

Composite Application Guidance for WPF148

Note:  The following defines some terms as they are used here:
View.  A view can consist of a window, page, or user control that represents your visual represen-
tation. This could also refer to a data template in some cases.
Presenter.  A presenter is the class that works with a View in a Model-View-Presenter (MVP) pat-
tern.
Presentation model.  A presentation model is a class that works with a view and serves as a com-
bined representation of the presenter and model in a Model-View-Presenter (MVP) pattern.
Delegate command.  A delegate command is a specific type of command in the Composite 	
Application Library. For more information, see “Commands” in Chapter 6, “Technical Concepts.”

	

Figure 7.6  Binding to data

Figure 7.7 shows the technique for binding to a command where the SubmitCommand
property, which is a Delegate command, is bound to the SubmitCommand property of
the Submit button contained in the OrdersCommandView.xaml user control.

149Chapter 7:  Designer Guidance

Figure 7.7  Binding to commands

Resources
Resources such as styles, resource dictionaries, and control templates can be scattered
throughout an application—even more so with a composite application. When con-
sidering where to place resources, special attention needs to be paid to dependencies
between UI elements and the resources they need. The Stock Trader RI solution is
shown in Figure 7.8, with labels indicating the various areas where resources can live.

Composite Application Guidance for WPF150

Figure 7.8  Resource distribution across a solution

Application Resources
Typically, application resources are resources that are available to an application as a
whole. These types of resources tend to be focused on the root application, but they
can also provide default styling on a type basis for modules or controls. An example
of this is a text box style that is applied to the text box type in the root application.
This style will be available to all text boxes in the application unless the style is over-
ridden at the module or control level.

151Chapter 7:  Designer Guidance

Module Resources
Module resources play the same role as root application resources in that they can apply
to all items in a module. Using resources at this level can provide a consistent appear-
ance and behavior across the entire module and also allow for reuse in more specific
instances that span one or more visual components. The use of resources at the module
level should be contained to each individual module. Creating dependencies between
modules can potentially lead to issues that are difficult to locate when UI elements
appear incorrectly.

Control Resources
Control resources are usually contained in control libraries and can be used by all
the controls in the control library. In terms of scope, these resources tend to have the
finest scope because control libraries typically contain very specific controls and
do not contain user controls, which in an application created with the Composite
Application Library, usually go in the modules where they are used.

8
Development, Customization, and
Deployment Information

This chapter summarizes the additional information included with the Composite
Application Guidance and provides links to the getting started, development, cus-
tomization, and deployment information that is available on MSDN.

Composite Application Guidance for WPF Hands-On Lab
The “Composite Application Guidance for WPF Hands-On Lab” on MSDN helps you
learn the basic concepts of the Composite Application Guidance for WPF and apply
them to create a Composite Application Library solution that you can use as the start-
ing point for building a composite Windows Presentation Foundation (WPF) applica-
tion. After completing this lab, you will be able to do the following:
l	 You will understand the basic concepts of the Composite Application Guidance

for WPF.
l	 You will create a new solution based on the Composite Application Library.
l	 You will create a module and load it statically.
l	 You will create a view and show it in the Shell window.

QuickStarts
The QuickStarts included with the Composite Application Guidance for WPF are
brief, easy-to-understand illustrations of key software factory activities. QuickStarts
are an ideal starting point if you want to gain an understanding of a key concept and
you are comfortable learning new techniques by examining source code. The Com-
posite Application Guidance includes the following QuickStarts on MSDN:
l	 “Dynamic Modularity.” This includes two QuickStarts that demonstrate how to

build WPF applications composed of modules that are dynamically discovered
and loaded at run time.

http://msdn.microsoft.com/en-us/library/cc707878.aspx
http://msdn.microsoft.com/en-us/library/cc707860.aspx

Composite Application Guidance for WPF154

l	 “UI Composition.” This demonstrates how to build a WPF user interface composed
of different views that are dynamically loaded into regions and that interact with
each other in a decoupled way.

l	 “Commanding.” This demonstrates how to build a WPF user interface (UI) that
uses commands provided by the Composite Application Library to handle UI
actions in a decoupled way.

l	 “Event Aggregation.” This demonstrates how to build a WPF application that
uses the Event Aggregator service. This service enables you to establish loosely
coupled communications between components in your application.

Development Activities
Figure 8.1 illustrates the mapping of composite application concepts to How-to topics
included with the Composite Application Guidance.

Figure 8.1  Mapping of composite application concepts to How-to topics

http://msdn.microsoft.com/en-us/library/cc707868.aspx
http://msdn.microsoft.com/en-us/library/cc707837.aspx
http://msdn.microsoft.com/en-us/library/cc707857.aspx

155Chapter 8:  Development, Customization, and Deployment Information

The next sections describe activities that developers usually perform when creating
applications based on the Composite Application Library. Each How-to topic listed
in the following sections provides the main steps for performing a particular task. As
you review the How-to topics, consider how you can apply them to your application.

Creating Your Solution
A solution based on the Composite Application Library is a solution that you can
use as a starting point for your composite WPF application. The solution includes
recommended practices and techniques, and it is the basis for the procedures in the
Composite Application Guidance for WPF. For procedures related to creating a solu-
tion that uses the Composite Application Library, see “How to: Create a Solution
Using the Composite Application Library” on MSDN.

Bootstrapper
The bootstrapper is responsible for the initialization of an application built using the
Composite Application Library. Having a bootstrapper gives you more control of how
the Composite Application Library components are wired up to your application. The
following topics on MSDN contain procedures that help you customize the bootstrap-
per class:
l	 “How to: Dynamically Load Modules.” This topic describes how to configure the

bootstrapper to dynamically load modules.
l	 “How to: Statically Load Modules.” This topic describes how to configure the

bootstrapper to statically load modules.
l	 “How to: Provide a Custom Logger.” This topic describes how to use a different

logger in your application that uses the Composite Application Library.
l	 “How to: Create a Custom Region Adapter.” This topic describes how to configure

the bootstrapper to register additional region adapter mappings.
l	 “How to: Register and Use Services.” This topic describes how to configure the

bootstrapper to register services in the application container.

For more information about the bootstrapper, see “Bootstrapper” in Chapter 6,
“Technical Concepts.”

http://msdn.microsoft.com/en-us/library/cc707864.aspx
http://msdn.microsoft.com/en-us/library/cc707864.aspx
http://msdn.microsoft.com/en-us/library/cc707834.aspx
http://msdn.microsoft.com/en-us/library/cc707839.aspx
http://msdn.microsoft.com/en-us/library/cc707911.aspx
http://msdn.microsoft.com/en-us/library/cc707884.aspx
http://msdn.microsoft.com/en-us/library/cc707881.aspx

Composite Application Guidance for WPF156

Modules
A module encapsulates a set of related concerns. Modules are independently developed
and deployed, and they interact with each other to create an application. For procedures
related to creating modules, see the following topics on MSDN:
l	 “How to: Create a Module.” This topic describes how to create a module.
l	 “How to: Dynamically Load Modules.” This topic describes how to dynamically

load modules.
l	 “How to: Statically Load Modules.” This topic describes how to statically load

modules.
l	 “How to: Load Modules On Demand.” This topic describes how to load modules

on demand.

For more information about modules, see “Module” in Chapter 6, “Technical Concepts.”

Regions
Conceptually, a region is a mechanism that developers can use to expose to the
application’s WPF container controls—those that permit child elements—as compo-
nents that encapsulate a particular visual way of displaying views (typically, views
are user controls). Regions can be accessed in a decoupled way by their name and
support adding or removing views dynamically at run time. For procedures related
to regions, see the following topics on MSDN:
l	 “How to: Add a Region.” This topic describes how to add a region to a view or the

Shell window through XAML.
l	 “How to: Create a Custom Region Adapter.” This topic describes how to create

custom region adapters.
l	 “How to: Show a View in a Shell Region.” This topic describes how to place a

view in a Shell-defined region.
l	 “How to: Show a View in a Scoped Region.” This topic describes how to create

scoped regions and show views in scoped regions.

For more information about the regions, see “Region” in Chapter 6, “Technical Concepts.”

http://msdn.microsoft.com/en-us/library/cc707899.aspx
http://msdn.microsoft.com/en-us/library/cc707834.aspx
http://msdn.microsoft.com/en-us/library/cc707839.aspx
http://msdn.microsoft.com/en-us/library/cc707852.aspx
http://msdn.microsoft.com/en-us/library/cc707908.aspx
http://msdn.microsoft.com/en-us/library/cc707884.aspx
http://msdn.microsoft.com/en-us/library/cc707854.aspx
http://msdn.microsoft.com/en-us/library/cc707903.aspx

157Chapter 8:  Development, Customization, and Deployment Information

Views
Views are objects that contain visual content. For more information about views, see
the following topics on MSDN:
l	 “How to: Create a View with a Presenter.” This topic describes how to create a

view following the Model-View-Presenter pattern.
l	 “How to: Show a View in a Shell Region.” This topic describes how to place a

view in a Shell-defined region.
l	 “How to: Show a View in a Scoped Region.” This topic describes how to create

scoped regions and show views in scoped regions.

For more information about the shell and views, see “Shell and View” in Chapter 6,
“Technical Concepts.”

Services
A service is an object that provides functionality in a loosely coupled way to other
components. These components can be in the same module or in other modules. The
Composite Application Library includes a set of basic services that you can use in
your applications. You can also develop your own services to provide infrastructure
capabilities that are specific to your applications. For procedures related to services,
see the following topic on MSDN:
l	 “How to: Register and Use Services.” This topic describes how to register and

obtain references to services in an application that uses the Composite Application
Library and the Unity container.

For more information about the services, see “Container and Services” in Chapter 6,
“Technical Concepts.” For more information about when to use shared services, see
“Communication” in Chapter 6, “Technical Concepts.”

Commands
Commands are a way to handle user interface (UI) actions. They are a loosely coupled
way to bind the UI to the logic that performs the action. For procedures related to com-
mands, see the following topics on MSDN:
l	 “How to: Create Locally Available Commands.” This topic describes how to create

locally available commands.
l	 “How to: Create Globally Available Commands.” This topic describes how to create

globally available commands.

For more information about the commands, see “Commands” in Chapter 6, “Technical
Concepts.” For more information about when to use commands, see “Communication”
in Chapter 6, “Technical Concepts.”

http://msdn.microsoft.com/en-us/library/cc707895.aspx
http://msdn.microsoft.com/en-us/library/cc707854.aspx
http://msdn.microsoft.com/en-us/library/cc707903.aspx
http://msdn.microsoft.com/en-us/library/cc707881.aspx
http://msdn.microsoft.com/en-us/library/cc707896.aspx
http://msdn.microsoft.com/en-us/library/cc707861.aspx

Composite Application Guidance for WPF158

Events
The Composite Application Library provides an event mechanism that enables com-
munications between loosely coupled components in the application. By using this
mechanism, based on the event aggregator service, publishers and subscribers can
communicate through events that do not have a direct reference to each other. For
more information about events, see the following topics on MSDN:
l	 “How to: Create and Publish Events.” This topic describes how to create and

publish an event that can be consumed in a loosely coupled way.
l	 “How to: Subscribe and Unsubscribe to Events.” This topic describes how to sub-

scribe and unsubscribe to an event that can be consumed in a loosely coupled way.

For more information about events, see “Event Aggregator” in Chapter 6, “Technical
Concepts.” For more information about when to use events, see “Communication” in
Chapter 6, “Technical Concepts.”

Customization Activities
The Composite Application Guidance for WPF contains assets that represent recom-
mended practices for composite application development in WPF. Developers can
use an unmodified version of the Composite Application Library. However, because
each application is unique, you may want to modify it to suit your particular needs.

The following topics on MSDN describe how to customize the Composite Application
Library to meet the needs of your development team:
l	 “How to: Create a Custom Region Adapter.” This topic describes how to create

custom region adapters.
l	 “How to: Provide a Custom Logger.” This topic describes how to use a different

logger in your application that uses the Composite Application Library.

For more information about extensibility points in the Composite Application Library,
see “Customizing the Composite Application Library” in Chapter 4, “Composite
Application Library.”

http://msdn.microsoft.com/en-us/library/cc707855.aspx
http://msdn.microsoft.com/en-us/library/cc707892.aspx
http://msdn.microsoft.com/en-us/library/cc707884.aspx
http://msdn.microsoft.com/en-us/library/cc707911.aspx

159

Deployment Activities
ClickOnce is a WPF or Windows Forms deployment mechanism that has been part
of the .NET Framework since version 2.0. ClickOnce enables automatic deployment
and update of WPF applications over the network from a deployment server. Com-
posite WPF applications can use ClickOnce to get the shell, modules, and any other
dependencies deployed to the client computer. The main challenge with composite
applications is that ClickOnce does not easily address deploying dynamically loaded
modules.

By using ClickOnce deployment, you can publish Windows-based applications to a Web
server or network file share for simplified installation. The Composite Application
Guidance for WPF includes guidance that helps you use ClickOnce to deploy an
application built using the Composite Application Library. For more information,
see the following topics on MSDN:
l	 “Deploying WPF Applications with ClickOnce.” This topic provides general infor-

mation about deploying WPF applications with ClickOnce.
l	 “How to: Publish an Initial Version of an Application.” This topic describes how to

publish an initial version of a composite WPF application.
l	 “How to: Deploy an Initial Version of an Application.” This topic describes how to

deploy an application to a client computer.
l	 “How to: Publish an Updated Version.” This topic describes how to publish an

updated version of your application.
l	 "How to: Deploy an Updated Version." This topic describes how to deploy an updated

version of an application to a client computer.

The Manifest Manager Utility sample utility available on the Composite Application
Guidance for WPF Community site demonstrates how to use the ClickOnce publish-
ing API to manage deployment and application manifests in a simpler way. This utility
is used for updating application manifest file lists and deployment manifest settings
in automated procedures for the How-to topics. Where appropriate, the activities are
described using both the Manifest Manager Utility (automated) and Mage (manual)
so that you can see the steps the utility automates.

Chapter 8:  Development, Customization, and Deployment Information

http://msdn.microsoft.com/en-us/library/cc707835.aspx
http://msdn.microsoft.com/en-us/library/cc707846.aspx
http://msdn.microsoft.com/en-us/library/cc707893.aspx
http://msdn.microsoft.com/en-us/library/cc707849.aspx
http://msdn.microsoft.com/en-us/library/cc671928.aspx
http://www.codeplex.com/CompositeWPF/Release/ProjectReleases.aspx?ReleaseId=14771
http://www.codeplex.com/CompositeWPF/Release/ProjectReleases.aspx?ReleaseId=14771

Bibliography

This section consolidates the references provided in each chapter.

Chapter 1: Introduction
For more information and to download the source code, see “Composite Application
Guidance for WPF” on MSDN:
http://www.microsoft.com/CompositeWpf

For more information about the Unity Application Block, see “Unity Application
Block” on MSDN:
http://www.msdn.com/Unity

To ask questions and engage with the community, see “Composite Application
Guidance for WPF” community site on CodePlex:
http://www.codeplex.com/CompositeWPF

For information about aspects of composite application development that are not
addressed by this guidance, see the following sources:
l	 “Smart Client Architecture and Design Guide” on MSDN:

http://msdn.microsoft.com/en-us/library/ms998506.aspx
l	 “Occasionally Connected Systems Architecture: The Client”:

http://www.developer.com/design/article.php/3708006
l	 “Occasionally Connected Systems Architecture: Concurrency”:

http://www.developer.com/design/article.php/3705396

For general information about WPF, see the following sources:
l	 “Windows Presentation Foundation” on MSDN:

http://msdn.microsoft.com/en-us/library/ms754130.aspx
l	 Sells, Chris and Ian Griffiths. Programming WPF: Building Windows UI with Windows

Presentation Foundation. Second Edition. O’Reilly Media, Inc., 2007.
l	 Nathan, Adam. Windows Presentation Foundation Unleashed. Indianapolis, IN:

Sams Publishing, 2006.

For more information about other deliverables for building composite applications,
see the following sources:
l	 “Smart Client Software Factory” on MSDN:

http://msdn.microsoft.com/en-us/library/aa480482.aspx
l	 “Smart Client Contrib Project” on CodePlex:

http://www.codeplex.com/scsfcontrib

http://www.microsoft.com/CompositeWpf
http://www.msdn.com/Unity
http://www.codeplex.com/CompositeWPF
http://msdn.microsoft.com/en-us/library/ms998506.aspx
http://www.developer.com/design/article.php/3708006
http://www.developer.com/design/article.php/3705396
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/aa480482.aspx
http://www.codeplex.com/scsfcontrib

Composite Application Guidance for WPF162

For more information about the Composite UI Application Block, see “Composite UI
Application Block” on MSDN:
http://msdn.microsoft.com/en-us/library/cc540684.aspx

Chapter 2: Design Concepts
For more information about regions, see “Region” in Chapter 6, “Technical Concepts”
and “UI Composition QuickStart” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707868.aspx

For more information about commands, see “Commands” in Chapter 6, “Technical
Concepts” and “Commanding QuickStart” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707837.aspx

For more information about the Publish/Subscribe pattern, see “Publish/Subscribe”
on MSDN:
http://msdn.microsoft.com/en-us/library/ms978603.aspx

For more information about event aggregation, see “Event Aggregator” in Chapter 6,
“Technical Concepts” and Event Aggregation QuickStart on MSDN:
http://msdn.microsoft.com/en-us/library/cc707857.aspx

For more information about modules, see “Module” in Chapter 6, “Technical Concepts”
and Dynamic Modularity QuickStarts on MSDN:
http://msdn.microsoft.com/en-us/library/cc707860.aspx

For an introduction to dependency injection and inversion of control, see “Loosen
Up - Tame Your Software Dependencies for More Flexible Apps” on MSDN:
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx

For more information about dependency injection containers, see the following
sources:
l	 “Unity Application Block” on MSDN:

http://msdn.microsoft.com/en-us/library/cc468366.aspx
l	 Castle Windsor:

http://www.castleproject.org/container/index.html
l	 StructureMap:

http://structuremap.sourceforge.net/Default.htm
l	 Spring.NET:

http://www.springframework.net/

For an example of entering configuration information through the Unity container,
see “Entering Configuration Information” on MSDN:
http://msdn.microsoft.com/en-us/library/cc440941.aspx

http://msdn.microsoft.com/en-us/library/cc540684.aspx
http://msdn.microsoft.com/en-us/library/cc707868.aspx
http://msdn.microsoft.com/en-us/library/cc707837.aspx
http://msdn.microsoft.com/en-us/library/ms978603.aspx
http://msdn.microsoft.com/en-us/library/cc707857.aspx
http://msdn.microsoft.com/en-us/library/cc707860.aspx
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx
http://msdn.microsoft.com/en-us/library/cc468366.aspx
http://www.castleproject.org/container/index.html
http://structuremap.sourceforge.net/Default.htm
http://www.springframework.net/
http://msdn.microsoft.com/en-us/library/cc440941.aspx

163Bibliography

Chapter 3: Patterns in the Composite Application Library
The following are references and links to the patterns found in the Stock Trader RI
and in the Composite Application Library:
l	 “Composite” in Chapter 4, “Structural Patterns,” in Design Patterns: Elements of

Reusable Object-Oriented Software�

l	 “Adapter” in Chapter 4, “Structural Patterns,” in Design Patterns: Elements of
Reusable Object-Oriented Software1

l	 “Façade” in Chapter 4, “Structural Patterns,” in Design Patterns: Elements of
Reusable Object-Oriented Software1

l	 “Template Method” in Chapter 5, “Behavioral Patterns,” in Design Patterns:
Elements of Reusable Object-Oriented Software1

l	 “Plugin” on Martin Fowler’s Web site:
http://www.martinfowler.com/eaaCatalog/plugin.html

l	 “Event Aggregator” on Martin Fowler’s Web site:
http://www.martinfowler.com/eaaDev/EventAggregator.html

l	 “Separated Interface” on Martin Fowler’s Web site:
http://www.martinfowler.com/eaaCatalog/separatedInterface.html

l	 “Model View Controller” and “Model-View-Presenter (MVP)” sections in “GUI
Architectures” on Martin Fowler’s Web site:
http://martinfowler.com/eaaDev/uiArchs.html

l	 “Introduction to Model/View/ViewModel pattern for building WPF apps” on
John Gossman’s blog:
http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx

For more information about the Dependency Injection pattern, see the following
sources:
l	 “Inversion of Control Containers and the Dependency Injection pattern” on

Martin Fowler’s Web site at:
http://www.martinfowler.com/articles/injection.html

l	 “Design Patterns: Dependency Injection” by Griffin Caprio on MSDN:
http://msdn.microsoft.com/en-us/magazine/cc163739.aspx

For more information about the Unity Application Block, see “Unity Application
Block” on MSDN:
http://www.msdn.com/Unity

For more information about Inversion of Control patterns, see “Inversion of Control
Containers and the Dependency Injection pattern” on Martin Fowler’s Web site:
http://www.martinfowler.com/articles/injection.html

�  Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, 1995.

http://www.martinfowler.com/eaaCatalog/plugin.html
http://www.martinfowler.com/eaaDev/EventAggregator.html
http://www.martinfowler.com/eaaCatalog/separatedInterface.html
http://martinfowler.com/eaaDev/uiArchs.html
http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx
http://www.martinfowler.com/articles/injection.html
http://msdn.microsoft.com/en-us/magazine/cc163739.aspx
http://www.msdn.com/Unity
http://www.martinfowler.com/articles/injection.html

Composite Application Guidance for WPF164

For more information about the Service Locator pattern, see the following sources:
l	 “Inversion of Control Containers and the Dependency Injection pattern” on

Martin Fowler’s Web site:
http://www.martinfowler.com/articles/injection.html

l	 “Service Locator” on MSDN:
http://msdn.microsoft.com/en-us/library/cc304894.aspx

For more information about Separated Presentation patterns, see “Separated
Presentation” on Martin Fowler’s Web site:
http://www.martinfowler.com/eaaDev/SeparatedPresentation.html

For more information about the Supervising Controller pattern, see the following
sources:
l	 “Supervising Controller” on Martin Fowler’s Web site:

http://www.martinfowler.com/eaaDev/SupervisingPresenter.html
l	 “Model-View-Presenter Pattern” on MSDN:

http://msdn.microsoft.com/en-us/library/cc304760.aspx

For more information about data-binding in WPF, see “Data Binding” on MSDN:
http://msdn.microsoft.com/en-us/library/ms750612.aspx
l	 For more information about the Observer pattern, see “Exploring the Observer

Design Pattern” on MSDN:
http://msdn.microsoft.com/en-us/library/ms954621.aspx

For more information about data templates, see "Data Templating Overview" on MSDN:
http://msdn.microsoft.com/en-us/library/ms742521.aspx

For more information about the Presentation Model pattern, see “Presentation
Model” on Martin Fowler’s Web site:
http://www.martinfowler.com/eaaDev/PresentationModel.html

Chapter 4: Composite Application Library

Solution
For more information about building a solution, see the following source:
l	 “How to: Create a Solution Based on the Composite Application Library” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707864.aspx

Bootstrapper
For more information about the bootstrapper, see the following sources:
l	 “Bootstrapper” in Chapter 6, “Technical Concepts”
l	 “Container and Services” in Chapter 6, “Technical Concepts”

http://www.martinfowler.com/articles/injection.html
http://msdn.microsoft.com/en-us/library/cc304894.aspx
http://www.martinfowler.com/eaaDev/SeparatedPresentation.html
http://www.martinfowler.com/eaaDev/SupervisingPresenter.html
http://msdn.microsoft.com/en-us/library/cc304760.aspx
http://msdn.microsoft.com/en-us/library/ms750612.aspx
http://msdn.microsoft.com/en-us/library/ms954621.aspx
http://msdn.microsoft.com/en-us/library/ms742521.aspx
http://www.martinfowler.com/eaaDev/PresentationModel.html
http://msdn.microsoft.com/en-us/library/cc707864.aspx

165Bibliography

l	 “Composite Application Guidance for WPF Hands-On Lab” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707878.aspx

l	 “Dynamic Modularity QuickStarts” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707860.aspx

l	 “How to: Provide a Custom Logger” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707911.aspx

l	 “How to: Dynamically Load Modules” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707834.aspx

l	 “How to: Statically Load Modules” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707839.aspx

l	 “How to: Load Modules on Demand” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707852.aspx

Container and Services
For more information about the container and services, see the following sources:
l	 “Container and Services” in Chapter 6, “Technical Concepts”
l	 “Container” in Chapter 2, “Design Concepts”
l	 “How to: Register and Use Services” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707881.aspx

Modules
For more information about modules, see the following sources:
l	 “Module” in Chapter 6, “Technical Concepts”
l	 “How to: Create a Module” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707899.aspx
l	 For module loading How-to topics, see the “Bootstrapper” section listed earlier.

Regions
For more information about regions, see the following sources:
l	 “Region” in Chapter 6, “Technical Concepts”
l	 “UI Composition QuickStart” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707868.aspx
l	 “How to: Add a Region” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707908.aspx

http://msdn.microsoft.com/en-us/library/cc707878.aspx
http://msdn.microsoft.com/en-us/library/cc707860.aspx
http://msdn.microsoft.com/en-us/library/cc707834.aspx
http://msdn.microsoft.com/en-us/library/cc707839.aspx
http://msdn.microsoft.com/en-us/library/cc707881.aspx
http://msdn.microsoft.com/en-us/library/cc707899.aspx
http://msdn.microsoft.com/en-us/library/cc707868.aspx
http://msdn.microsoft.com/en-us/library/cc707911.aspx
http://msdn.microsoft.com/en-us/library/cc707852.aspx
http://msdn.microsoft.com/en-us/library/cc707908.aspx

Composite Application Guidance for WPF166

Shell and Views
For more information about shells and views, see the following sources:
l	 “Shell and View” in Chapter 6, “Technical Concepts”
l	 “UI Composition” in Chapter 2, “Design Concepts”
l	 “How to: Show a View in a Shell Region” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707854.aspx
l	 “How to: Show a View in a Scoped Region” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707903.aspx
l	 “How to: Create a View with a Presenter” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707895.aspx

Events
For more information about events, see the following sources:
l	 “Communication” in Chapter 6, “Technical Concepts”
l	 “Event Aggregator” in Chapter 6, “Technical Concepts”
l	 “Event Aggregation QuickStart” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707857.aspx
l	 “How to: Create and Publish Events” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707855.aspx
l	 “How to: Subscribe and Unsubscribe Events” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707892.aspx

Commands
For more information about commands, see the following sources:
l	 “Communication” in Chapter 6, “Technical Concepts”
l	 “Commands” in Chapter 6, “Technical Concepts”
l	 “Commanding QuickStart” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707837.aspx
l	 “How to: Create Locally Available Commands” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707896.aspx
l	 “How to: Create Globally Available Commands” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707861.aspx

http://msdn.microsoft.com/en-us/library/cc707854.aspx
http://msdn.microsoft.com/en-us/library/cc707903.aspx
http://msdn.microsoft.com/en-us/library/cc707857.aspx
http://msdn.microsoft.com/en-us/library/cc707855.aspx
http://msdn.microsoft.com/en-us/library/cc707892.aspx
http://msdn.microsoft.com/en-us/library/cc707837.aspx
http://msdn.microsoft.com/en-us/library/cc707896.aspx
http://msdn.microsoft.com/en-us/library/cc707895.aspx
http://msdn.microsoft.com/en-us/library/cc707861.aspx

167Bibliography

Deployment
For more information about deployment, see the following sources:
l	 “Deploying WPF Applications with ClickOnce” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707835.aspx
l	 “How to: Publish an Initial Version of an Application” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707846.aspx
l	 “How to: Deploy an Initial Version of an Application” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707893.aspx
l	 “How to: Publish an Updated Version” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707849.aspx
l	 “How to: Deploy an Updated Version” on MSDN:

http://msdn.microsoft.com/en-us/library/cc671928.aspx

Chapter 5: Stock Trader Reference Implementation
To download and install the Stock Trader RI, see “Composite Application for WPF”
on MSDN:
http://www.microsoft.com/CompositeWpf

To run the Stock Trader RI, see “Installing and Running” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707870.aspx

For more information about the concepts described in this chapter, see the following
technical concepts in Chapter 6, “Technical Concepts”:
l	 “Module”
l	 “Commands”
l	 “Region”
l	 “Shell and View”
l	 “Container and Services”
l	 “Bootstrapper”
l	 “Event Aggregator”

For more information about the Presentation Model pattern, see “Presentation Model
Pattern” in Chapter 3, “Patterns in the Composite Application Library.”

For more information about the Unity Application Block, see “Unity Application
Block” on MSDN:
http://www.msdn.com/Unity

For an introduction to dependency injection and inversion of control, see “Loosen
Up - Tame Your Software Dependencies for More Flexible Apps” on MSDN:
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx

http://msdn.microsoft.com/en-us/library/cc707835.aspx
http://msdn.microsoft.com/en-us/library/cc707846.aspx
http://msdn.microsoft.com/en-us/library/cc707893.aspx
http://msdn.microsoft.com/en-us/library/cc707849.aspx
http://msdn.microsoft.com/en-us/library/cc671928.aspx
http://www.microsoft.com/CompositeWpf
http://msdn.microsoft.com/en-us/library/cc707870.aspx
http://www.msdn.com/Unity
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx

Composite Application Guidance for WPF168

Chapter 6: Technical Concepts

Bootstrapper
For more information on the bootstrapper, see the following sources:
l	 To set up the application’s bootstrapper, see “How to: Create a Solution Using the

Composite Application Library” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707864.aspx

l	 To configure the bootstrapper to dynamically load modules, see “How to:
Dynamically Load Modules” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707834.aspx

l	 To configure the bootstrapper to statically load modules, see “How to: Statically
Load Modules” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707839.aspx

l	 To use a different logger in your application that uses the Composite Application
Library, see “How to: Provide a Custom Logger” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707911.aspx

l	 To configure the bootstrapper to register additional region adapter mappings, see
“How to: Create a Custom Region Adapter” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707884.aspx

l	 To configure the bootstrapper to register services in the application container, see
“How to: Register and Use Services” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707881.aspx

Container and Services
For more information about services and containers, see the following sources:
l	 “Container” in Chapter 2, “Design Concepts”
l	 “How to: Register and Use Services” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707881.aspx

Modules
For more information about modules, see the following soruces:
l	 “Modularity” in Chapter 2, “Design Concepts”
l	 “Dynamic Modularity QuickStarts” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707860.aspx

http://msdn.microsoft.com/en-us/library/cc707864.aspx
http://msdn.microsoft.com/en-us/library/cc707834.aspx
http://msdn.microsoft.com/en-us/library/cc707839.aspx
http://msdn.microsoft.com/en-us/library/cc707911.aspx
http://msdn.microsoft.com/en-us/library/cc707884.aspx
http://msdn.microsoft.com/en-us/library/cc707881.aspx
http://msdn.microsoft.com/en-us/library/cc707881.aspx
http://msdn.microsoft.com/en-us/library/cc707860.aspx

169Bibliography

l	 Modularity How-to topics on MSDN:
l	 “How to: Create a Module”:

http://msdn.microsoft.com/en-us/library/cc707899.aspx
l	 “How to: Dynamically Load Modules”:

http://msdn.microsoft.com/en-us/library/cc707834.aspx
l	 “How to: Statically Load Modules”:

http://msdn.microsoft.com/en-us/library/cc707839.aspx
l	 Modularity patterns in Chapter 3, “Patterns in the Composite Application Library”

(these patterns provide possible approaches to building composite applications):
l	 “Inversion of Control Pattern”
l	 “Dependency Injection Pattern”
l	 “Service Locator Pattern”

Regions
For more information about regions, see the following sources:
l	 “UI Composition QuickStart” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707868.aspx
l	 Region How-to topics:

l	 “How to: Add a Region”:
http://msdn.microsoft.com/en-us/library/cc707908.aspx

l	 “How to: Create a Custom Region Adapter”:
http://msdn.microsoft.com/en-us/library/cc707884.aspx

l	 “How to: Provide a Custom Logger”:
http://msdn.microsoft.com/en-us/library/cc707911.aspx

l	 “How to: Show a View in a Scoped Region”:
http://msdn.microsoft.com/en-us/library/cc707903.aspx

l	 “How to: Show a View in a Shell Region”:
http://msdn.microsoft.com/en-us/library/cc707854.aspx

l	 Composition patterns:
l	 “Composite and Composite View” in Chapter 3, “Patterns in the Composite

Application Library”

http://msdn.microsoft.com/en-us/library/cc707899.aspx
http://msdn.microsoft.com/en-us/library/cc707834.aspx
http://msdn.microsoft.com/en-us/library/cc707839.aspx
http://msdn.microsoft.com/en-us/library/cc707868.aspx
http://msdn.microsoft.com/en-us/library/cc707908.aspx
http://msdn.microsoft.com/en-us/library/cc707884.aspx
http://msdn.microsoft.com/en-us/library/cc707911.aspx
http://msdn.microsoft.com/en-us/library/cc707903.aspx
http://msdn.microsoft.com/en-us/library/cc707854.aspx

Composite Application Guidance for WPF170

Shell and Views
For more information about shells and views, see the following sources:
l	 “UI Composition” in Chapter 2, “Design Concepts”
l	 “How to: Show a View in a Shell Region” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707854.aspx
l	 “How to: Show a View in a Scoped Region” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707903.aspx
l	 “How to: Create a View with a Presenter” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707895.aspx

Events
For more information about events, see the following sources:
l	 “Event Aggregation QuickStart” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707857.aspx
l	 “How to: Create and Publish Events” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707855.aspx
l	 “How to: Subscribe and Unsubscribe to Events” on MSDN:

http://msdn.microsoft.com/en-us/library/cc707892.aspx
l	 “Event Aggregator” on Martin Fowler’s Web site:

http://www.martinfowler.com/eaaDev/EventAggregator.html

Commands
For more information about the logical tree in WPF, see “Trees in WPF” on MSDN:
http://msdn.microsoft.com/en-us/library/ms753391.aspx

For more information about commands, see the following topics on MSDN:
l	 “Commanding QuickStart”:

http://msdn.microsoft.com/en-us/library/cc707837.aspx
l	 “How to: Create Globally Available Commands”:

http://msdn.microsoft.com/en-us/library/cc707861.aspx
l	 “How to: Create Locally Available Commands”:

http://msdn.microsoft.com/en-us/library/cc707896.aspx

Chapter 7: Designer Guidance
For information about creating region adaptors that can work with any type of UI
element, see “How to: Create a Custom Region Adapter” on MSDN:
http://msdn.microsoft.com/en-us/library/cc707884.aspx

http://msdn.microsoft.com/en-us/library/cc707854.aspx
http://msdn.microsoft.com/en-us/library/cc707903.aspx
http://msdn.microsoft.com/en-us/library/cc707857.aspx
http://msdn.microsoft.com/en-us/library/cc707855.aspx
http://msdn.microsoft.com/en-us/library/cc707892.aspx
http://www.martinfowler.com/eaaDev/EventAggregator.html
http://msdn.microsoft.com/en-us/library/ms753391.aspx
http://msdn.microsoft.com/en-us/library/cc707837.aspx
http://msdn.microsoft.com/en-us/library/cc707861.aspx
http://msdn.microsoft.com/en-us/library/cc707896.aspx
http://msdn.microsoft.com/en-us/library/cc707884.aspx
http://msdn.microsoft.com/en-us/library/cc707895.aspx

171

Chapter 8: Development, Customization, and Deployment
Information

Getting Started
For more information and to download the source code, see “Composite Application
Guidance for WPF” on MSDN:
http://www.microsoft.com/CompositeWpf

To learn about and get started with the Composite Application Library, see the
following topics on MSDN:
l	 “Composite Application Guidance for WPF Hands-On Lab”:

http://msdn.microsoft.com/en-us/library/cc707878.aspx
l	 QuickStarts:

l	 “Dynamic Modularity QuickStarts”:
http://msdn.microsoft.com/en-us/library/cc707860.aspx

l	 “UI Composition”:
http://msdn.microsoft.com/en-us/library/cc707868.aspx

l	 “Commanding”:
http://msdn.microsoft.com/en-us/library/cc707837.aspx

l	 “Event Aggregation”:
http://msdn.microsoft.com/en-us/library/cc707857.aspx

l	 “Stock Trader Reference Implementation”:
http://msdn.microsoft.com/en-us/library/cc707869.aspx

Development Topics
For more information about activities that developers usually perform when creating
applications based on the Composite Application Library, see the following topics on
MSDN:
l	 “How to: Create a Solution Using the Composite Application Library”:

http://msdn.microsoft.com/en-us/library/cc707864.aspx
l	 “How to: Create a Module”:

http://msdn.microsoft.com/en-us/library/cc707899.aspx
l	 “How to: Dynamically Load Modules”:

http://msdn.microsoft.com/en-us/library/cc707834.aspx
l	 “How to: Statically Load Modules”:

http://msdn.microsoft.com/en-us/library/cc707839.aspx
l	 “How to: Load Modules On Demand”:

http://msdn.microsoft.com/en-us/library/cc707852.aspx

Bibliography

http://www.microsoft.com/CompositeWpf
http://msdn.microsoft.com/en-us/library/cc707878.aspx
http://msdn.microsoft.com/en-us/library/cc707860.aspx
http://msdn.microsoft.com/en-us/library/cc707868.aspx
http://msdn.microsoft.com/en-us/library/cc707837.aspx
http://msdn.microsoft.com/en-us/library/cc707857.aspx
http://msdn.microsoft.com/en-us/library/cc707869.aspx
http://msdn.microsoft.com/en-us/library/cc707864.aspx
http://msdn.microsoft.com/en-us/library/cc707899.aspx
http://msdn.microsoft.com/en-us/library/cc707834.aspx
http://msdn.microsoft.com/en-us/library/cc707839.aspx
http://msdn.microsoft.com/en-us/library/cc707852.aspx

Composite Application Guidance for WPF172

l	 “How to: Add a Region”:
http://msdn.microsoft.com/en-us/library/cc707908.aspx

l	 “How to: Show a View in a Shell Region”:
http://msdn.microsoft.com/en-us/library/cc707854.aspx

l	 “How to: Show a View in a Scoped Region”:
http://msdn.microsoft.com/en-us/library/cc707903.aspx

l	 “How to: Create a View with a Presenter”:
http://msdn.microsoft.com/en-us/library/cc707895.aspx

l	 “How to: Register and Use Services”:
http://msdn.microsoft.com/en-us/library/cc707881.aspx

l	 “How to: Create Locally Available Commands”:
http://msdn.microsoft.com/en-us/library/cc707896.aspx

l	 “How to: Create Globally Available Commands”:
http://msdn.microsoft.com/en-us/library/cc707861.aspx

l	 “How to: Create and Publish Events”:
http://msdn.microsoft.com/en-us/library/cc707855.aspx

l	 “How to: Subscribe and Unsubscribe to Events”:
http://msdn.microsoft.com/en-us/library/cc707892.aspx

Customization Topics
For more information about activities that developers can perform to customize the
Composite Application Library, see the following topics on MSDN:
l	 “How to: Create a Custom Region Adapter”:

http://msdn.microsoft.com/en-us/library/cc707884.aspx
l	 “How to: Provide a Custom Logger”:

http://msdn.microsoft.com/en-us/library/cc707911.aspx

http://msdn.microsoft.com/en-us/library/cc707908.aspx
http://msdn.microsoft.com/en-us/library/cc707854.aspx
http://msdn.microsoft.com/en-us/library/cc707903.aspx
http://msdn.microsoft.com/en-us/library/cc707895.aspx
http://msdn.microsoft.com/en-us/library/cc707881.aspx
http://msdn.microsoft.com/en-us/library/cc707896.aspx
http://msdn.microsoft.com/en-us/library/cc707861.aspx
http://msdn.microsoft.com/en-us/library/cc707855.aspx
http://msdn.microsoft.com/en-us/library/cc707892.aspx
http://msdn.microsoft.com/en-us/library/cc707884.aspx
http://msdn.microsoft.com/en-us/library/cc707911.aspx

173

Deployment Topics
For more information about deploying WPF applications with ClickOnce, see the
following topics on MSDN:
l	 “Deploying WPF Applications with ClickOnce”:

http://msdn.microsoft.com/en-us/library/cc707835.aspx
l	 “How to: Publish an Initial Version of an Application”:

http://msdn.microsoft.com/en-us/library/cc707846.aspx
l	 “How to: Deploy an Initial Version of an Application”:

http://msdn.microsoft.com/en-us/library/cc707893.aspx
l	 “How to: Publish an Updated Version”:

http://msdn.microsoft.com/en-us/library/cc707849.aspx
l	 “How to: Deploy an Updated Version”:

http://msdn.microsoft.com/en-us/library/cc671928.aspx

For a demonstration of how to use the ClickOnce publishing API to manage
deployment and application manifests in a simpler way, see the Manifest Manager
Utility sample utility available on the Composite Application Guidance for WPF
Community site:
http://www.codeplex.com/CompositeWPF/Release/ProjectReleases.aspx?ReleaseId=14771

Bibliography

http://msdn.microsoft.com/en-us/library/cc707835.aspx
http://msdn.microsoft.com/en-us/library/cc707846.aspx
http://msdn.microsoft.com/en-us/library/cc707893.aspx
http://msdn.microsoft.com/en-us/library/cc707849.aspx
http://msdn.microsoft.com/en-us/library/cc671928.aspx
http://www.codeplex.com/CompositeWPF/Release/ProjectReleases.aspx?ReleaseId=14771

Index

A
active aware commands, 89
Adapter pattern, 31
AddWatchPresenter, 86
AddWatchView, 86
adoption experience, 8

Composite Application Library,
64

applications
deployment, 66
development challenges, 4‑5
resources, 150

architecture
Composite Application Library

baseline architecture, 55‑57
goals, 61
goals and principles, 7‑8
scenario, 76‑77

assemblies
Microsoft.Practices.Composite,

64
Microsoft.Practices.Composite.

UnityExtensions, 64
Microsoft.Practices.Composite.

Wpf, 64
assets, 2
audience, 1
authors and contributors, xi

B
bibliography, 161‑173

Composite Application Library,
164‑167

bootstrapper, 164‑165
commands, 166
container and services, 165
deployment, 167
events, 166
modules, 165
regions, 165

shells and views, 166
solution, 164
customization topics, 172
deployment topics, 173
design concepts, 162
designer guidance, 170
development, customization,

and deployment, 171‑173
development topics, 171‑172
patterns in the Composite

Application Library, 163‑164
Stock Trader RI, 167
technical concepts, 168‑170
bootstrapper, 168
commands, 170
container and services, 168
events, 170
modules, 168‑169
regions, 169
shells and views, 170

bootstrapper, 92‑97
bibliography, 164‑165, 168
Composite Application Library,

59‑60, 69
configuring region adapter

mappings, 94‑95
container configuration, 93‑94
development activities, 155
module loading, 96
more information, 97, 155
shell creation, 95
Stock Trader RI, 81
technical challenges, 90

C
challenges, 4‑5, 87‑90
commanding, 17‑18
Commanding QuickStart

described, 154
Command pattern, 31

commands
activity monitoring behavior,

132‑133
bibliography, 166, 170
CompositeCommand, 130‑132
Composite commands, 134
delegate commands, 134
DelegateCommand<T>, 18, 129
development activities, 157
FAQ, 134
IActiveAware interface, 129
more information, 157
order of execution, 134
RegisterCommand, 133
routed commands, 134
Stock Trader RI, 85‑86
Submit button, 132
technical challenges, 88
technical concepts, 128‑135
UnregisterCommand, 133
WPF commands, 134

common technical challenges,
87‑90

communication
commanding, 135‑136
Composite Application Library,

69
EventAggregator, 136
shared services, 136‑137
technical concepts, 135‑137

community, 4
compatibility defined, 8
Composite Application Guidance,

9‑10
Composite Application Guidance

for WPF
documentation, 3
Hands-On Lab described, 2, 153

Composite Application Library,
53‑69

application deployment, 66
baseline architecture, 55‑57

Index 175

bibliography, 164‑167
bootstrapper, 59‑60, 69
communication, 69
concepts diagram, 91
container, 69
core services, 99
customizing, 66‑69
development activities, 66
exposing functionality, 67
extensibility guidelines, 67
extensibility points, 68
goals and benefits, 61‑64
adoption experience, 64
architectural goals, 61
design goals, 62
extensibility, 64
modularity, 63
user interface composition, 63
IContainerFacade interface, 69
library extension, 67
logging, 68
modification recommendations,

68
modularity, 63
modules, 61, 69
new applications, 58
organization, 64‑65
regions, 68
services, 99
shell defining, 59
solution layout diagram, 65
system requirements, 54
technical concepts, 65
UnityBootstrapper, 69
UnityContainerAdapter class, 30
when to use, 57

composite applications
benefits, 5‑7
described, 1, 139
how-to topics, 154‑159
with multiple back-end systems

diagram, 6
package diagram, 54
patterns diagram, 27

CompositeCommand class, 18, 31,
69, 130‑136

composite commands, 89

Composite pattern, 28‑29
more information, 29
Template pattern, 30

Composite UI Application Block
compared to Composite

Application Guidance, 11‑12
comparing, 11‑12
customer feedback, 11
Windows Forms development

experience, 12
WPF, 12

Composite UI deliverables, 10‑11
composite views, 88
Composite WPF applications

described, 53
CompositeWpfEvent class, 19,

124‑125
composition, 18

example, 29
concerns not addressed, 9
configuration driven module

loading, 108‑109
Configuration Modularity

QuickStart, 40
container and services

Composite Application Library
services, 99‑100

more information, 100
containers, 20‑25

advantages, 22‑23
bibliography, 165
Composite Application Library,

69
composition described, 140‑142
considerations, 25
IContainerFacade

considerations, 98
IContainerFacade interface, 97
registering, 24
resolving, 24‑25
technical concepts, 97‑100
UnityContainer, 98

ContentControl-RegionAdapter
region adapter, 116

Contoso Financial Investments
(CFI) See Stock Trader RI

control resources, 151

customization
activities, 158
Composite Application Library,

66‑69

D
data binding, 147‑149

Presentation Model pattern, 51
Supervising Controller pattern,

48
DelegateCommand class, 31, 69
delegate command defined, 148
DelegateCommands, 131‑132
DelegateCommand<T> class, 18,

129
delegation, 17
Dependency Injection (DI) pattern,

34‑37
constructor injection, 35‑36
forces, 35
Inversion of Control (IoC)

pattern, 30
liabilities, 37
more information, 37
problem, 34
related patterns, 37
setter injection, 35‑36
solution, 35‑37
Unity Application Block (Unity),

36
deployment, 167

activities, 159
design

concepts, 13‑25
goals, 62

designer guidance, 139‑151
data binding, 147‑149
layout, 140‑145
container composition, 140‑142
region, 142‑145
resources, 149‑151
application resources, 150
control resources, 151
module resources, 151
visual representation, 146‑147
custom controls, 147
data templates, 147
user controls, 147

Index176

development activities, 154‑158
bootstrapper, 155
challenges, 4‑5
commands, 157
Composite Application Library,

66
diagram, 154
information, 153‑158
modules, 156
regions, 156
services, 157
solution creation, 155
views, 157

directory driven module loading,
108

documentation, 2‑4
Dynamic Modularity QuickStart

described, 153
dynamic module loading, 108

E
event aggregation, 18‑20, 87
Event Aggregation QuickStart

described, 154
Event Aggregator pattern, 32

Stock Trader RI, 87
technical challenges, 87‑90

EventAggregator service, 19,
123‑128, 136

CompositeWpfEvent class,
124‑125

default subscriptions, 126
IEventAggregator interface, 124
more information, 128
publishing an event, 127‑128
subscribing on UI thread, 126
subscribing to an event, 125
subscribing with strong

references, 127
subscription filtering, 127
unsubscribing from an event,

128
eventing, 18‑20

bibliography, 166
Event Services, 18‑19
extensibility

Composite Application Library,
64

defined, 8
guidelines, 67
points, 68

F
Façade pattern, 32
figures

development activities, 154
documentation, 3
logical architecture, 78
modularity, 21
Stock Trader RI, 72
Stock Trader RI composite

application, 7
Stock Trader RI shell regions, 113

functionality, 67

G
GetModule method, 110
GetModules method, 110
GetStartupLoadedModules

method, 110
goals and principles, 7‑8
guidelines for choosing Composite

UI deliverables, 10‑11

H
Hands-On Lab described, 2, 153
how-to topics, 154‑159

I
IAccountPositionService, 99
IActiveAware interface, 130
IContainerFacade interface, 69,

97‑99
IEventAggregator interface, 99, 124
ILoggerFacade, 99
IMarketFeedService, 99
IMarketHistoryService, 99
IModuleEnumerator, 99
IModule interface, 104
IModuleLoader interface, 99,

110‑111

implementation view, 79
INewsFeedService, 99
intended audience, 1
Inversion of Control (IoC) pattern,

30‑31, 38‑41
Dependency Injection (DI)

pattern, 30
forces, 39
implementation details, 39‑41
liabilities, 41
more information, 41
problem, 38
related patterns, 41
and Service Locator pattern, 31
solution, 39
Template Method pattern, 30

IOrdersService, 99
IRegion interface, 116
IRegionManager, 99
ItemsControlRegionAdapter

region adapter, 116
IWatchListService, 99

L
labs, 153
layout, 14‑16

designer guidance, 140‑145
learnability defined, 8
library See Composite Application

Library
ListBox Region pictured, 114
loading

configuration driven module
loading, 108‑109

directory driven module
loading, 108

dynamic module loading, 108
on-demand module loading, 109
static module loading, 106‑107

logical architecture, 77‑78

M
Manifest Manager Utility sample

utility, 159
Model-View-ViewModel pattern,

52

Index 177

modularity, 20‑22
Composite Application Library,

63
designing, 21‑22
diagram, 21

ModuleInfo constructor described,
110

ModuleLoader service, 82
modules, 100‑111

bibliography, 165
Composite Application Library,

61
considerations, 105
described, 100‑101
design, 103
development activities, 156
enumeration, 82
IModule interface, 104‑105
loading, 82, 105‑111
configuration driven module

loading, 108‑109
directory driven module

loading, 108
dynamic module loading, 108
on-demand module loading, 109
static module loading, 106‑107
module enumerator, 109‑110
module loader, 110‑111
resources, 151
Stock Trader RI, 81
team development with, 101‑102
technical concepts, 111

monolithic application described,
139

monolithic style, 5
more information

bootstrapper, 97, 155
commands, 157
Composite pattern, 29
container and services, 100
customization activities, 158
Dependency Injection (DI)

pattern, 37
deployment activities, 159
EventAggregator service, 128
Inversion of Control (IoC)

pattern, 41

modules, 156
patterns, 33
Presentation Model pattern, 52
regions, 118‑119, 156
Separated Presentation pattern,

47
Service Locator pattern, 45
services, 100, 157
shell and view, 123
Supervising Controller pattern,

49
technical challenges, 87‑90
views, 157
WPF, 10

more information See also
bibliography; technical
concepts

N
NewsModule class, 43
NewsModuleFixture test class, 44
NewsReaderPresenter class, 36

O
on-demand module loading, 109
order of execution, 134
overview, 4‑10

concerns not addressed, 9
considerations for choosing, 9‑10

P
patterns, 27‑52
performance defined, 8
Plug-In pattern, 30
PositionSummaryPresentation-

Model, 87
presentation model

defined, 148
Stock Trader RI, 83

Presentation Model pattern, 50‑52
data binding, 51
forces, 50
more information, 52
Presentation Model pattern

logical view, 51

problem, 50
related patterns, 52
Separated Presentation pattern,

45
solution, 50‑52

Presentation Model pattern logical
view, 51

presenter defined, 148
Publish/Subscribe pattern, 18‑20

Q
QuickStarts, 153‑154

R
RegionManager, 84
regions, 111‑119

bibliography, 165
designer guidance, 142‑145
development activities, 156
IRegion interface, 116
more information, 118‑119, 156
multiple view layout, 112‑114
region adapters, 116‑117
RegionManager class, 114‑115
scoped regions, 117
Stock Trader RI, 84
technical challenges, 88
template layout, 112
working with, 114‑117

resources
application resources, 150
control resources, 151
module resources, 151
root application resources, 151

root application resources, 151
RoutedUICommand mechanism,

17

S
scalability defined, 8
scenarios, 9‑11

architecture, 76‑77
SelectorRegionAdapter region

adapter, 116
Separated Interface pattern, 30

Index178

Separated Presentation pattern,
45‑47

forces, 45
liabilities, 46
more information, 47
overview, 32
Presentation Model pattern, 45
problem, 45
related patterns, 46
solution, 45‑46
Supervising Controller pattern,

45
Service Locator pattern, 42‑45

forces, 42‑43
and Inversion of Control (IoC)

pattern, 31
liabilities, 44
more information, 45
overview, 31
problem, 42
related patterns, 44‑45
solution, 43‑44
Unity Application Block, 43‑44

service-oriented architecture
(SOA), 74

services
bibliography, 165
Composite Application Library

services, 99‑100
and containers, 81
Event Services, 18‑19
IContainerFacade

considerations, 98
IContainerFacade interface, 97
more information, 100, 157
registration, 85
shared services, 136‑137
technical challenges, 89
technical concepts, 97‑100
UnityContainer, 98

setter injection, 35‑36
shared services, 136‑137
shell

Composite Application Library,
59

described, 119

shell and view, 119‑123, 166
composite views, 122
more information, 123
shell implementing, 119
Stock Trader RI shell, 120‑121
Stock Trader RI views, 122‑123
view implementing, 121‑122
views and design patterns, 123

simplicity defined, 8
singletons, 24
Smart Client Software Factory, 10
solutions

bibliography, 164
creation development activities,

155
startup process, 80
static module loading, 106‑107
Stock Trader Reference

Implementation See Stock
Trader RI

Stock Trader RI, 71‑90
bootstrapping, 81
CFI
development challenges, 76
emerging requirements, 74
meeting objectives, 75
operating environment, 73
operational challenges, 74
solution, 76‑77
commands, 85‑86
common technical challenges,

87‑90
composite application diagram,

7
diagram, 72
event aggregator, 87
features, 77
how it works, 80‑87
implementation view, 79
logical architecture, 77‑78
main window during run time,

141
main window in Microsoft

Expression Blend, 141

module enumeration, 82
module loading, 82
modules, 81
presentation model, 83
RegionManager, 84
regions, 84
service registration, 85
services and containers, 81
shell regions pictured, 113
startup process, 80
teams, 101
view registration, 83
views, 82‑83
views (illustration), 14

Stock Trader RI See also CFI
strategy for CFI, 75
strong references, 127
subsetability defined, 8
Supervising Controller logical

view, 48
Supervising Controller pattern,

48
Supervising Controller pattern,

47‑49
data binding, 48
forces, 47
liabilities, 49
more information, 49
problem, 47
related patterns, 49
Separated Presentation pattern,

45
solution, 47‑48
Supervising Controller logical

view, 48
View updates, 48

T
technical challenges, 87‑90
technical concepts, 91‑137

bootstrapper, 92‑97
bibliography, 168‑170
code creating the shell, 95
configuring region adapter

mappings, 94‑95

Index 179

container configuration, 93‑94
module loading, 96
more information, 97
commands, 128‑135
activitiy monitoring behaviour,

132‑133
CompositeCommand, 130‑132
Composite commands, 134
delegate commands, 134
DelegateCommand<T>, 129
FAQ, 134
IActiveAware interface, 129
order of execution, 134
RegisterCommand, 133
routed commands, 134
Submit button, 132
UnregisterCommand, 133
WPF commands, 134
communication, 135‑137
commanding, 135‑136
EventAggregator, 136
shared services, 136‑137
container and services, 97‑100
Composite Application Library

services, 99‑100
IContainerFacade

considerations, 98
IContainerFacade interface, 97
more information, 100
UnityContainer, 98
EventAggregator service,

123‑128
CompositeWpfEvent class,

124‑125
default subscriptions, 126
IEventAggregator interface, 124
more information, 128
publishing an event, 127‑128
subscribing on UI thread, 126
subscribing to an event, 125
subscribing with strong

references, 127
subscription filtering, 127
unsubscribing from an event,

128
module, 100‑111
considerations, 105

described, 100‑101
design, 103
IModule interface, 104‑105
loading, 105‑111

configuration driven module
loading, 108‑109

directory driven module
loading, 108

dynamic module loading,
108

on-demand module loading,
109

static module loading,
106‑107

module enumerator, 109‑110
module loader, 110‑111
team development with, 101‑102
technical concepts, 111
region, 111‑119
IRegion interface, 116
more information, 118‑119
multiple view layout, 112‑114
region adapters, 116‑117
RegionManager class, 114‑115
scoped regions, 117
template layout, 112
working with, 114‑117
shell and view, 119‑123
composite views, 122
more information, 123
shell implementing, 119
Stock Trader RI shell, 120‑121
Stock Trader RI views, 122‑123
view implementing, 121‑122
views and design patterns, 123

Template Method pattern, 30
testability defined, 8
TickerSymbolSelectedEvent,

125‑126

U
UI composition, 13‑14

Composite Application Library,
63

technical challenges, 88
UI Composition QuickStart, 154

Unity Application Block (Unity)
Dependency Injection (DI)

pattern, 36
Service Locator pattern, 43‑44

UnityBootstrapper, 59‑60, 69, 81, 96
UnityContainer, 31
UnityContainerAdapter class, 30,

98
upgradeability defined, 8

V
View Discovery, 16
views

defined, 148
described, 119
development activities, 157
injection, 15
more information, 157
registration in Stock Trader RI,

83
Stock Trader RI, 82‑83

views See also shell and view

W
Web sites See more information
Windows Forms development

experience, 12
WPF

Composite Application
Guidance for Hands-On Lab,
2, 153

creating composite application,
58

technical challenges, 90
WPF/CAB layer, 10‑11

About Microsoft patterns & practices

The Microsoft patterns & practices team is responsible for delivering applied engineering guidance
that helps software architects, developers, and their teams take full advantage of Microsoft’s platform
technologies. Organizations around the world use Microsoft’s proven software engineering practices to
reduce project cost, reduce risk, save time, and prepare for future Microsoft technologies.

patterns & practices areas of guidance include those shown in the following image:

patterns & practices guides are reviewed by Microsoft engineering teams, consultants, and by
partners and customers.

To learn more about patterns & practices, visit http://www.microsoft.com/practices.

http://www.microsoft.com/practices

	Cover

	Title page

	Contents
	Forewords
	Authors and Contributors
	Chapter 1: Introduction

	Welcome
	Intended Audience
	Composite Application Guidance Assets
	Exploring the Documentation
	Community
	Overview of the Composite Application Guidance for WPF
	Application Development Challenges
	The Composite Approach
	Architectural Goals and Principles
	Adoption Experience
	Concerns Not Addressed by the Composite Application Guidance
	Considerations for Choosing the Composite Application Guidance

	Guidelines for Choosing Composite UI Deliverables from patterns & practices
	Comparing to the Composite UI Application Block

	Chapter 2: Design Concepts

	UI Composition
	Layout
	View Injection
	View Discovery

	Commanding
	Delegation
	Composition

	Eventing
	Event Services
	Event Aggregation

	Modularity
	Designing a Modular System

	Container
	Using the Container
	Registering
	Resolving

	Considerations for Using the Container

	Chapter 3: Patterns in the Composite Application Library

	Pattern Overview
	Composite and Composite View
	Separated Interface and Plug-In
	Inversion of Control
	Service Locator
	Command
	Adapter
	Event Aggregator
	Separated Presentation
	Façade
	More Information

	Dependency Injection Pattern
	Problem
	Forces
	Solution
	Implementation Using the Unity Application Block
	Example

	Liabilities
	Related Patterns
	More Information

	Inversion of Control Pattern
	Problem
	Forces
	Solution
	Implementation Details
	Examples

	Liabilities
	Related Patterns
	More Information

	Service Locator Pattern
	Problem
	Forces
	Solution
	Implementation with the Unity Application Block
	Example

	Liabilities
	Related Patterns
	More Information

	Separated Presentation Pattern
	Problem
	Forces
	Solution
	Liabilities
	Related Patterns
	More Information

	Supervising Controller Pattern
	Problem
	Forces
	Solution
	View Updates and Interaction with the Model
	Example

	Liabilities
	Related Patterns
	More Information

	Presentation Model Pattern
	Problem
	Forces
	Solution
	Example

	Liabilities
	Related Patterns
	More Information

	Chapter 4: Composite Application Library

	System Requirements
	Composite Application Library Baseline Architecture
	When to Use the Composite Application Library
	A New Application Based on the Composite Application Library
	Define the Shell
	Create the Bootstrapper
	Create the Module
	Add a Module View to the Shell

	Goals and Benefits
	Architectural Goals
	Design Goals
	Benefits
	Modularity
	User Interface Composition
	Extensibility
	Adoption Experience

	Organization of the Composite Application Library
	Technical Concepts
	Development Activities
	Deploying Your Application
	Customizing the Composite Application Library
	Guidelines for Extensibility
	Exposing Functionality
	Extending Libraries

	Recommendations for Modifying the Composite Application Library
	Extensibility Points in the Composite Application Library
	Regions
	Logging
	Modules
	Communication
	Container and Bootstrapper

	Chapter 5: Stock Trader Reference Implementation

	The Scenario
	Operating Environment
	Operational Challenges
	Emerging Requirements
	Meeting the Business and IT Objectives
	Development Challenges
	The Solution: Composite Application Guidance for WPF

	Stock Trader RI Features
	Logical Architecture
	Implementation View
	How the Stock Trader RI Works
	Modules
	Services and Containers
	Bootstrapping the Application
	Module Enumeration
	Module Loading
	Views
	View Registration
	Presentation Model

	Regions and the RegionManager
	Service Registration
	Commands
	Event Aggregator

	Technical Challenges

	Chapter 6: Technical Concepts

	Bootstrapper
	Configuring the Container
	Configuring the Region Mappings
	Creating the Shell
	Initializing the Modules
	More Information

	Container and Services
	IContainerFacade
	UnityContainerAdapter
	Considerations for Using IContainerFacade
	Composite Application Library Services
	Core Services
	Application-Specific Services

	More Information

	Module
	Team Development Using Modules
	Module Design
	IModule
	Module Dependencies
	View and Service Registration
	Displaying Views

	Considerations for Modules
	Module Loading
	Types of Module Loading
	Static Module Loading
	Dynamic Module Loading
	Directory Driven Module Loading
	Configuration Driven Module Loading
	On-Demand Module Loading

	Module Enumerator
	ModuleInfo
	Module Loader

	More Information

	Region
	Template Layout
	Multiple View Layout
	Working with Regions
	Region Manager
	IRegion
	Region Adapters

	Scoped Regions
	More Information

	Shell and View
	Implementing a Shell
	Stock Trader RI Shell
	Implementing a View
	Composite Views
	Views in the Stock Trader RI
	Views and Design Patterns
	More Information

	Event Aggregator
	IEventAggregator
	CompositeWpfEvent
	Subscribing to an Event
	Default Subscriptions
	Subscribing on the User Interface Thread
	Subscription Filtering
	Subscribing Using Strong References
	Publishing an Event
	Unsubscribing from an Event

	More Information

	Commands
	DelegateCommand<T>
	IActiveAware Interface

	CompositeCommand
	Activity Monitoring Behavior
	Registering and Unregistering Composite Commands

	Frequently Asked Questions About Commands
	Why are WPF commands not used?
	Can delegate commands be replaced with routed commands?
	Can the order of execution of commands be set up inside the Composite commands?

	More Information

	Communication
	Commanding
	Event Aggregator
	Shared Services

	Chapter 7: Designer Guidance

	Overview
	Layout
	Container Composition
	Region

	Visual Representation
	User Controls
	Custom Controls
	Data Templates

	Data Binding
	Resources
	Application Resources
	Module Resources
	Control Resources

	Chapter 8: Development, Customization, and Deployment Information

	Composite Application Guidance for WPF Hands-On Lab
	QuickStarts
	Development Activities
	Creating Your Solution
	Bootstrapper
	Modules
	Regions
	Views
	Services
	Commands
	Events

	Customization Activities
	Deployment Activities

	Bibliography

